
On the use of multiple models in macro-economic

forecasting and decision-making

PhD Thesis

Tony Chernis Department of Economics

University of Strathclyde, Glasgow

August 9, 2024



This thesis is the result of the author’s original research. It has been

composed by the author and has not been previously submitted for

examination which has led to the award of a degree.

The copyright of this thesis belongs to the author under the terms of the

United Kingdom Copyright Acts as qualified by University of Strathclyde

Regulation 3.50. Due acknowledgement must always be made of the use of

any material contained in, or derived from, this thesis.

i



Acknowledgements

First, I would like to thank my supervisors Gary Koop and Stuart McIntyre. Gary for

patiently responding to my constant barrage of emails and questions while also giving

me the opportunity to work with him. Stuart has been immensely helpful with many

research discussions, advice, and has expertly guided me through the PhD process.

I would also like to thank Mike West. I was lucky enough to co-author with Mike

which taught me a lot about doing research, statistical thinking, and Bayesian methods.

Additionally, I would like to thank my co-authors Niko Hauzenberger, Florian Huber,

James Mitchell, and Emily Tallman. These collaborations were a formative experience

that has contributed greatly to my development as an econometrician.

I would also like to thank Rodrigo Sekkel. Rodrigo has for the last ten years been a

terrific mentor, advisor, and friend. I am not sure where I would be without his help.

Many thanks are also in order for Paul Beaudry. Paul has graciously spent hours

chatting with me about economics and research. I also owe him thanks for encouraging

me to pursue this PhD. It was his advice which finally convinced me to take the plunge.

I would also like to thank Luis Uzeda for being so helpful and always taking the

time to comment on my papers. He consistently provided useful research direction. I

am also grateful to Saeed Zaman for being very positive and encouraging me to pursue

the PhD at Strathclyde.

I gratefully acknowledge the funding and support for my PhD from the Bank of

Canada. Specifically, I would like to thank Calista Cheung, Joshua Slive, and Brigitte

Desroches for giving me the time and support necessary to complete my PhD. Without

their support this would not have been possible.

I would like to thank my Mom, Deborah Wilkins, for always believing in me and

ii



encouraging me to follow my dreams. And, finally, I would like to thank my wife, Tricia

Riley, for the constant unwavering support. She was always there to listen to me during

the program and her proof-reading has made my papers readable.

iii



Abstract

This thesis studies prediction and decision-making with multiple models in a Bayesian

context. It is common practice to use multiple models in a forecasting and decision-

making environment. This is because the true model is unknown, if it even exists, and

even the ‘best’ model can be hard to identify. Consequently, there is often large amounts

of uncertainty around the choice of model and decision-makers resort to multiple models.

Using multiple models in practice is an open area of research where this thesis will

contribute over the course of three essays. The three problems I seek to address are

how to combine large numbers of forecasts; how to explain why combination techniques

place higher, or lower, weight on certain models; and finally, how to use multiple models

in a monetary policy decision-making context.

The first essay (Chapter 2) investigates model combination with large numbers of

models and predictions. To this end I use Bayesian Predictive Synthesis (BPS) which

is a flexible method of combining density predictions. The flexibility comes from the

ability to choose an arbitrary synthesis function to combine predictions. Through careful

choice of this synthesis function I show how to combine large numbers of predictions

—which is a common occurrence in macroeconomics. Specifically, I consider shrinkage

priors and factor modeling techniques which are common choices for high-dimensional

problems in macroeconomics. Additionally, these techniques provide an interesting

contrast between the sparse weights implied by shrinkage priors and dense weights of

factor modeling techniques. I find that the sparse weights of shrinkage priors perform

well across exercises.

The second essay (Chapter 3) addresses a common issue which is that it can be

difficult to understand the reason why models are chosen in a combination. This is
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of particular importance in decision-making contexts. As in Chapter 2 we develop a

synthesis function to address this problem. Typically, synthesis functions are specified

parametrically as a dynamic linear regression. Instead, we develop a nonparametric

treatment of the synthesis function using regression trees. We are able to explain the

combination weights since we introduce observable variables in the regressions trees’

splitting rule. We can then examine the tree splits to see which variables are most im-

portant for explaining the weights. We show the advantages of our tree-based approach

in two macroeconomic forecasting applications. The first uses density forecasts for GDP

growth from the euro area’s Survey of Professional Forecasters. The second combines

density forecasts of US inflation produced by many regression models involving different

predictors. Both applications demonstrate the benefits – in terms of improved forecast

accuracy and interpretability – of modeling the synthesis function nonparametrically.

The third essay (Chapter 4) goes beyond the previous chapters going from prediction

to decision-making. We show to make optimal monetary policy decisions with multiple

models. We use Bayesian predictive decision synthesis (BPDS) as a formal Bayesian

decision theory-based approach to monetary policy decision-making. BPDS draws on

recent developments in model combination and statistical decision theory that make it

possible to combine models in a manner that incorporates decision goals, expectations,

and outcomes. We develop a BPDS procedure for a case study of monetary policy

decision-making with an inflation-targeting central bank. Our procedure searches for

an optimal monetary policy decision through maximizing the decision-maker’s utility

function and weighting models conditionally on that decision. The model weights are

determined by their empirical fit, past and expected decision-making performance, and

the model-based plausibility of the policy decision. We find that BPDS produces quite

different decisions and weights from standard approaches, such as Bayesian Model Av-

eraging, that only consider forecasting performance.
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Chapter 1

Introduction

‘All models are wrong but some are useful’

George Box

1.1 Motivation and Contribution

The preceding aphorism from George Box underlies much of the thinking in this thesis

and much of macroeconomic modelling. It is a very simply, yet insightful, observation

that the models are an abstraction from reality and are thus imperfect. However, it is

this abstraction that allows a model to draw out insight. Compounding this problem is

that for policy-makers and practitioners it may not even be clear which model is best

suited for their task. Consequently, it is common practice to use multiple models in a

forecasting and decision-making environment to hedge against model uncertainty.

The case for combining forecasts in economics goes back at least as far as Bates

and Granger (1969). While Timmermann (2006a) provides a convincing motivation

based on hedging against model uncertainty. The basis of the arguments for model

combination comes from that observation that by simply choosing the best performing

model one might be throwing out useful information contained in the other candidate

models. This becomes even more complicated once you consider that choosing the

best model is not always easy. The argument then follows that a practitioner who is

concerned with making the best forecast or decision should combine the information in

all the models. Furthermore, to hedge against choosing a poorly performing model, a

2



Chapter 1. Introduction

practitioner should average across candidate models. Judged by their uptake by Central

Banks1 forecast combination techniques have been proven a successful strategy. While

Aastveit et al. (2019) provides a modern overview of density combination in economics

which recounts many successes of density combinations. Despite the proliferation of

research, density combinations are still an activity area of research and this thesis

investigates several issues present when using multiple models within a Bayesian context.

Broadly speaking this thesis investigates the choice of functional forms to combine

forecasts, how to explain the weighting of models, and how to make decisions with

these models.

The first essay (Chapter 2) investigates model combination with large numbers of

models and predictions. This is a common scenario in macro-economic contexts. For

example, surveys of forecasters can include dozens of respondents while some nowcast-

ing systems have close to a hundred models. With large numbers of models it can

be challenging to find an appropriate weighting for each model due to the relatively

short-sample size in macroeconomic data. To this end I use Bayesian Predictive Syn-

thesis (BPS) which is a flexible method of combining density predictions. The flexibility

comes from the ability to choose an arbitrary synthesis function to combine predictions.

Through careful choice of this synthesis function I show how to combine large numbers

of predictions. Specifically, I consider shrinkage priors and factor modeling techniques

which are common choices for high-dimensional problems in macroeconomics. Addi-

tionally, these techniques provide an interesting contrast between the sparse weights

implied by shrinkage priors and dense weights of factor modeling techniques. I find that

the sparse weights of shrinkage priors perform well across exercises and simple constant

weight specifications perform best.

The second essay (Chapter 3) addresses a common issue which is that it can be

difficult to understand the reason why models are chosen in a combination. This is of

particular importance in decision-making contexts. It can be tempting to hand-wave

this away by appealing to forecast accuracy metrics, but this can be unsatisfying for
1For example, the Bank of Canada (Chernis and Sekkel, 2018; Chernis and Webley, 2022), the

Norges Bank (Bjørnland et al., 2012; Aastveit et al., 2011), and the Bank of England (Kapetanios
et al., 2008)
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Chapter 1. Introduction

a policy-maker when they are forced to defend their forecast. As in Chapter 2 we de-

velop a synthesis function to address this problem. Typically, the synthesis function is

specified parametrically as a dynamic linear regression. Instead, we develop a nonpara-

metric treatment of the synthesis function using regression trees. We are able explain

the combination weights since we introduce observable variables in the regressions trees

splitting rule. We can then examine the tree splits to see which variables are most im-

portant for explaining the weights. We show the advantages of our tree-based approach

in two macroeconomic forecasting applications. The first uses density forecasts for GDP

growth from the euro area’s Survey of Professional Forecasters. The second combines

density forecasts of US inflation produced by many regression models involving different

predictors. Both applications demonstrate the benefits – in terms of improved forecast

accuracy and interpretability – of modeling the synthesis function nonparametrically.

The third essay (Chapter 4) addresses an often neglected issues which is that fore-

casts are often used to make a decision. I show how to make optimal monetary policy

decisions with multiple models while weighting models with the goal of achieving an in-

flation target in mind. We use Bayesian predictive decision synthesis (BPDS) as a formal

Bayesian decision-theory based approach to monetary policy decision-making. BPDS

draws on recent developments in model combination and statistical decision theory that

make it possible to combine models in a manner that incorporates decision goals, ex-

pectations, and outcomes. We develop a BPDS procedure for a case study of monetary

policy decision-making with an inflation-targeting central bank. Our procedure searches

for an optimal monetary policy decision through maximizing a decision-maker’s utility

function then weighting models conditional on that decision. The models considered

by the decision-maker are determined by their empirical fit, past and expected decision

making performance, and the model-based plausibility of the policy decision. We find

that BPDS produces quite different decisions and weights from standard approaches,

such as Bayesian Model Averaging, that only consider forecasting performance.

As of July 2024, Chapter 2 has been published as Chernis (2024). A working paper

version of Chapter 3 has been published as Chernis et al. (2023) and is submitted for

possible publication. Chapter 3 is joint work with Gary Koop, Niko Hauzenberger,

4



Chapter 1. Introduction

Florian Huber, and James Mitchell. Similarly, a working paper version of Chapter

4, which is co-authored with Gary Koop, Emily Tallman, and Mike West, has been

published as Chernis et al. (2024) and is submitted for possible publication.

5



Chapter 2

Combining Large Numbers of

Density Predictions with Bayesian

Predictive Synthesis

2.1 Introduction

This paper develops and studies several techniques to combine large numbers of

predictive densities. This is a common problem since decision-makers often consult a

wide variety of models and experts to form the basis of their decision-making (Coletti

and Murchison, 2002). They consult multiple models because of the recognition that

individual models (or experts) often provide a partial understanding of the economy

due to different underlying datasets or modeling assumptions, creating significant un-

certainty around their predictions. It is useful for decision-makers to understand the

uncertainty around a prediction. Therefore, practitioners create predictive densities

and combine them to characterize uncertainty from individual predictions and model

choice (Chernis and Webley, 2022). These density combinations show not just the un-

certainty around a prediction, but the balance of risks, or the severity of tail risks.

However, combining density predictions often involves large numbers of densities, such

as in nowcasting platforms or expert surveys, which can be a difficult task and requires

specialized techniques.
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Chapter 2. Combining Large Numbers of Density Predictions with Bayesian
Predictive Synthesis

I address the issue of combining large numbers of density forecasts using two ap-

proaches that are commonly used to deal with large datasets in economics. Specifically,

I compare global-local shrinkage priors and factor models when combining predictive

densities within the framework of Bayesian Predictive Synthesis (BPS). Global-local

shrinkage priors and factor models naturally lend themselves to large dimensional prob-

lems. BPS is an approach for combining densities that allows the user to choose the

functional form by which the predictions will be combined. In particular, I use the triple

gamma prior (Cadonna et al., 2020) as a baseline global-local shrinkage prior since it

nests many commonly used priors, such as the horseshoe (Carvalho et al., 2010) and

the Bayesian Lasso (Belmonte et al., 2014). Because of this feature, I also compare the

performance of various hierarchical priors. Additionally, I develop a Bayesian Factor

Model (Lopes, 2014) to combine forecasts. To the best of my knowledge, this is a novel

method of combining density predictions. The closest approach I am aware of is Casarin

et al. (2019), who model the weights as correlated using a factor structure. In contrast,

in this paper the forecasts are modeled as correlated and have a factor structure.

I find that global-local shrinkage priors generally outperform factor models as mea-

sured by the Continuous Rank Probability Score (CRPS) of Gneiting and Raftery

(2007). Since shrinkage priors induce sparsity, this finding suggests that focusing on

a smaller set of accurate experts is preferable to following the herd. Another important

finding relates to the specification of the synthesis functions: I find that constant param-

eter models are a more reliable choice. The extra flexibility from allowing time-varying

weights can cause the accuracy of the forecasts to deteriorate significantly. In addition,

in some cases, time-varying parameter specifications can reduce to a time-varying mean

model that overfits the model, resulting in poor out-of-sample performance.

This kind of analysis is only possible in a BPS framework. BPS frames the issue

of combining predictions as a decision theory problem—a decision-maker rationally

synthesizes some set of information to inform their choice of action. The theoretical

underpinnings are provided by West and Crosse (1992) and West (1992), who show how

a decision-maker would combine a set of forecast distributions (or partial summaries) in

a fully Bayesian manner. Recently, this has been codified by McAlinn and West (2019),
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who introduce Bayesian Predictive Synthesis for time series. Apart from the strong

theoretical motivation for using BPS, it is very flexible. A researcher can specify the

functional form, called the synthesis function, of the density combination with very few

restrictions. This makes it very easy to compare and experiment with different ways of

combining forecasts.

So far, comparisons of synthesis functions have not been addressed in a BPS frame-

work. Most applications of BPS use a dynamic linear model as a synthesis function

(Prado and West, 2010, Sect. 4.5). Instead, BPS is extended to a multivariate forecast

setting in McAlinn et al. (2020). Takanashi and McAlinn (2021) establish additional

theoretical properties such as the BPS combined predictions being minimax. McAlinn

(2021) uses BPS in a mixed-frequency nowcasting exercise, and Aastveit et al. (2023)

use it to forecast oil prices.

Comparing global-local shrinkage priors and factor-model-based synthesis functions

is interesting for several reasons. These approaches naturally allow for combining fore-

casts with a large number of experts. This is significant since many applications feature

large numbers of experts, such as nowcasting with ensembles and survey forecasts. This

can be challenging due to the requirement of estimating a large number of parame-

ters with small datasets. From a frequentist perspective, the approach is to employ

regularization while estimating an optimal combination (Conflitti et al., 2015; Diebold

et al., 2023). Bayesian approaches can also face difficulties in large dimensions. For

example, Bayesian Model Averaging requires calculation of the marginal likelihood for

each model, which is computationally expensive. Researchers have addressed this issue

using approximations (Jore et al., 2010) or reducing the number of marginal likelihoods

to be calculated (Onorante and Raftery, 2016). Another solution is to estimate clusters

of weights instead of weights for each individual model, such as in Billio et al. (2013)

and Casarin et al. (2019).

Additionally, global-local shrinkage priors and factor models have very different

properties. Shrinkage priors tend to place weight on a smaller subset of experts (spar-

sity), while factor models look for co-movement and the weights are more egalitarian

(or dense). To the best of my knowledge, this contrast has not been examined in the
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density forecast combination literature. This is in contrast to studies that examine

whether a dense representation of the data is appropriate (Giannone et al., 2021; Cross

et al., 2020) or an artifact of prior choice (Fava and Lopes, 2021). In the context of

density combinations, this is equivalent to asking, “should a decision-maker pick winners

or follow the herd?” when provided with views on the economy.

This paper is part of a long history of research on forecast combinations in macroe-

conomics, econometrics, and statistics. Over the past twenty years, a lot of progress

has been made in the study of density combinations in economics.1 Several authors

show that combining densities can make predictions more robust and improve their

accuracy (Jore et al., 2010; Del Negro et al., 2016), while others specify optimal combi-

nation strategies from both frequentist (Conflitti et al., 2015) and Bayesian perspectives

(Geweke and Amisano, 2011). More recent academic work focuses on modeling the de-

pendence and correlation across forecasts, and time variation in weights.2 Furthermore,

Knotek and Zaman (2023) and Chernis and Webley (2022) show how density combina-

tions can have non-Gaussian and time-varying features, which improves the predictions

and are useful for characterizing uncertainty. Similar to point forecast combinations,

density combinations have also proven useful in central banks (Bjørnland et al., 2012;

Aastveit et al., 2011). For a thorough review of the evolution of density predictions in

economics and its advantages, see Aastveit et al. (2019).

The remainder of the paper proceeds as follows. Section 2.2 describes Bayesian

Predictive Synthesis along with an outline of the Markov Chain Monte Carlo (MCMC)

approach. This is followed by a description of the forecast combination techniques—the

synthesis functions. In addition, I provide a brief overview of global-local shrinkage

priors and Bayesian factor models. Section 2.3 details the prediction exercises, while

Section 2.4 discusses the results. Section 2.5 concludes.
1For example, Wallis (2005); Hall and Mitchell (2007); Mitchell and Hall (2005); Bache et al. (2009).
2Del Negro et al. (2016); Billio et al. (2013); Aastveit et al. (2018); McAlinn and West (2019).
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2.2 Econometric Framework

In this section, I begin by describing BPS, followed by a discussion of the synthesis

functions. Appendix A.2 provides details on the global-local shrinkage priors, imple-

mentation of the factor model combination, and the implementation of BPS, along with

an overview of the MCMC algorithm to estimate the density combinations.

2.2.1 Bayesian Predictive Synthesis

Bayesian Predictive Synthesis is a method for combining predictive densities.3 The

theory of BPS provides the posterior distribution of the combined density forecast. In

other words, given a set of forecasts, for say GDP, BPS provides an expression for

the distribution of GDP conditional on those forecasts. This posterior distribution is

then estimated with an MCMC routine with two steps. The procedure amounts to

estimating a synthesis function, which is used to combine the forecasts, on a set of

regressors drawn from the predictive distributions I wish to combine. As pointed out

by Aastveit et al. (2023), this means BPS can be thought of as a multivariate regression

model with generated regressors as predictors.

More formally, the decision-maker D is presented with hj(x) ∈ H, where hj(x)

are the set of density functions that are elements of the information set H, and x is

a (conditional) draw from the forecast distributions. The goal of BPS is to find a

distribution of the target variable (y) conditional on these densities: p(y|H). The agent

opinion analysis theory (West and Crosse (1992) and West (1992)), extended to a time

series context by McAlinn and West (2019), shows that the posterior has the form:

p(yt|Φt,Ht) =

∫
α(yt|xt,Φt)

∏
j=1:J

htj(xtj)dxtj (2.1)

where xt = xt,1:J = (1, xt,1, . . . , xt,J)
′, J is the number of experts, and the dimension

of xt is d = J + 1 to include an intercept that can account for biases. α(yt|xt,Φt) is

an arbitrary synthesis function used to combine the expert densities, while Φt are the
3A general description can be found in McAlinn and West (2019) and specific details related to this

application can be found in the technical appendix.
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synthesis function parameters. This equation shows how to relate a set of agent forecast

distributions to the decision-maker’s combined forecast or, in more simple terms, how

to combine forecast distributions in a Bayesian fashion. With equation 2.1 in hand, I

can write out a Gibbs Sampler with two blocks:

1. Estimate the synthesis function α(yt|xt,Φt) by sampling from p(Φ1:t|y1:t, x1:t).

2. Then, draw x1:t from p(x1:t|Φ1:t, y1:t,H1:t).

As an illustrative example of the MCMC routine, consider the following synthesis

function used in McAlinn and West (2019):

yt = xtβt + ϵt βt = βt−1 + utϵt ∼ N (0, σ2t ) ut ∼ N (0, θ) (2.2)

where yt is the target variable, xt are draws from the forecast distributions (including

a vector of ones for the intercept), and dimension d = J + 1, where J is the number of

experts, βt are combination weights that vary over time following a random walk with

variance θ, and ϵt is an error term with time varying volatility σ2t .

The first step in BPS is to estimate equation 2.2, which is a textbook state-space

model and can be estimated with standard techniques (Prado and West (2010), Sect

4.5). This is a very flexible specification that can account for biases in the expert’s

predictions, recalibrate the predictions, and allow for model incompleteness. Applying

BPS to different synthesis functions, such as global-local shrinkage priors and factor

model combinations, is straightforward. The researcher simply specifies the function

and estimates it during the appropriate Gibbs step.

The second step of the MCMC is to draw new forecasts from p(x1:t|Φ1:t, y1:t,H1:t).

These xt are conditionally independent over time with the following conditionals:

p(xt|Φt, yt,Ht) ∝ N(yt|X ′
tβt, ϵt)

∏
j=1:J

htj(xtj) with xt = (1, xt1, . . . , xtJ)
′ (2.3)

If the individual expert densities are normal (hj(xj)), this yields a multivariate nor-

mal for xt and can be sampled with a Gibbs step using the analytical results from
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McAlinn and West (2019). However, the applications in this paper do not have ana-

lytical representations. For example, the European SPF elicits histograms from survey

respondents. This requires a small adjustment to the algorithm, which is to sample xt

using a block Metropolis-Hastings step using the aforementioned multivariate normal

as a proposal distribution. Details are provided in the appendix. Finally, when creating

forecasts (e.g., yt+1), I create “synthetic futures” as in McAlinn and West (2019). That

is, for every pass of the MCMC, the synthesis function parameters are iterated forward

using the model dynamics and xt+1 are drawn unconditionally from hjt+1(xjt+1).

2.2.2 Global-local Shrinkage Priors

This section discusses the implementation of global-local shrinkage priors in BPS. Global-

local shrinkage priors are a common way of introducing shrinkage to Bayesian statistical

models. This class of prior includes many commonly used shrinkage priors and gets its

name from the two parameters in the prior: one governs shrinkage over all parameters

and another governs component-specific shrinkage. More precisely, the prior has the

following form:

βj ∼ N (0, κψj)

where κ is a global shrinkage parameter and ψj is a component-specific parameter.

The prior distribution on these individual components determines the shrinkage proper-

ties. There are a wide variety of possible choices. In general, a desirable shrinkage profile

is horseshoe-shaped, which means there are two modes in the shrinkage density such that

coefficients are shrunk to zero or are scarcely changed. For this paper, I use the triple

gamma prior (Cadonna et al., 2020) since it is has the desirable horseshoe-shaped shrink-

age profile and is very flexible, encompassing many other commonly-used priors. Since

the triple gamma prior encompasses many priors as special cases, I also consider the

horseshoe prior (Carvalho et al., 2010), double gamma (Bitto and Frühwirth-Schnatter,

2019), and Bayesian Lasso (Belmonte et al., 2014). All these priors have fully hierarchi-

cal representations, so no tuning of hyperparameters is required. Details are provided

in the technical appendix.
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I consider time-varying parameter models where shrinkage is imposed on them by

rewriting them in the non-centered parameterization (Frühwirth-Schnatter and Wagner,

2010):

yt = xtβ + xtDiag(
√
θ1, ...,

√
θd)β̃t + ϵt, ϵt ∼ N (0, σ2t )

β̃t = β̃t−1 + ũt, ũt ∼ NJ(0, IJ)
(2.4)

The non-centered parameterization allows shrinkage on θ, which is the variance of

βt, and β, which is the constant component. This means the coefficients can be con-

stant, time-varying, or time-varying with an intercept. In addition, alternating between

the centered and non-centered parameterization in the MCMC routine can improve

the estimation efficiency (Yu and Meng, 2011; Kastner and Frühwirth-Schnatter, 2014;

Kastner et al., 2017). The model in equation 2.4 is estimated by the MCMC described

in Cadonna et al. (2020) and Bitto and Frühwirth-Schnatter (2019), and a sketch of the

algorithm is presented in the appendix.

2.2.3 Factor-model-based Combination

The next section discusses how a factor model can be used as a synthesis function in

BPS. There are many options for specifying a factor model (Lopes, 2014), but in this

paper I follow the classic example from Lopes and West (2004). The Bayesian factor

model is a natural choice for synthesis function since macroeconomic forecasts can be

highly correlated and it has been successful in many applications with large numbers of

predictors.

To see how a factor model can be used as a synthesis function, consider equation

2.2. Simply replace xt with ft in the observation equation, which is a factor estimated

on the draws xt. This results in equation 2.5:

yt = F
′
tγt + ϵt γt = γt−1 + ut xt = Λft + νt (2.5)

ϵt ∼ N (0, σ2t ) ut ∼ N (0, θ) νt ∼ N (0, R) (2.6)
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where Ft = (1, ft) and ft is a k× 1 vector of factors, Λ is a J × k vector of loadings,

and R is a diagonal covariance matrix with elements σ2νJ . Additionally, γt is a k + 1

vector. In order to derive combination weights, I need to identify the factors. This is

done by using the restriction f ′tft = IJ and restricting the first k rows of the loadings

matrix to be the lower diagonal and positive elements on the main diagonal. This is a

common identification scheme used to fix indeterminacy in the estimation of the factors.

MCMC estimation is straightforward since the loadings can be estimated by linear

regression and the factors can be drawn from a conditional normal distribution. The xt

are standardized using the mean and standard deviation estimated from the marginal

distribution of each agent. There is a small complication introduced by the factor model

when drawing xt. This is because I need to evaluate p(yt|xtγt, ϵt) during the MH step,

but equation 2.5 is specified in terms of ft. However, the model can be reparameterized

in terms of xt and xt|yt,Φt and sampled using the standard technique.

2.3 Forecasting Environment

I empirically compare the sparse and dense combination approaches in two settings.

The first exercise is nowcasting Canadian real GDP in pseudo real-time using a large

set of models. This is a good application for two reasons. First, it is a common

scenario considered by policy-makers and researchers at Central Banks.4 And, second, a

nowcasting cycle allows for a comprehensive assessment of performance since it involves

multiple forecast horizons, a diverse set of models, and large datasets with a mix of

hard and soft indicators. Overall, a nowcasting application provides a realistic and

challenging environment for the various synthesis functions. The second exercise is

forecasting Euro Area real GDP using the Survey of Professional Forecasters, which

is a more standard setting than nowcasting in Canada.5 Using the SPF is a good

check on the Canadian results, which may be affected by idiosyncratic factors. These

two environments are very different: not only are they in different regions, but the

types of forecasts provided are also different. The nowcasting exercise uses model-
4Examples are Aastveit et al. (2011), Chernis and Webley (2022), and Knotek and Zaman (2023).
5For example, Diebold et al. (2023) and Conflitti et al. (2015) consider the European SPF.
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based predictions from four different model classes. In contrast, the forecasting exercise

features mostly judgemental forecasts (ECB, 2019) that are provided as histograms.

Since these two applications cover two regions, have different forecast horizons, include

model-based and survey-based predictions, and have an evaluation sample that covers

the Great Financial Crisis, Euro Area Crisis, and COVID-19 pandemic, they should

allow for a comprehensive and reliable assessment of the various synthesis functions.

2.3.1 Details on the Model-based Nowcasting Exercise

The first application uses density predictions produced in Chernis and Webley (2022),

which builds on Chernis and Sekkel (2018), as inputs into BPS. The models are standard

implementations of nowcasting models used at Central Banks. They include leading

indicator models (or ARX), mixed data sampling models (MIDAS), Bayesian vector

autoregression, and dynamic factor models, totalling 98 models (see figure 2.1). Pre-

dictions are made using a medium-sized dataset of 35 indicators that is constructed

by choosing variables that are followed by the market and, in many cases, reported on

Statistics Canada’s official release bulletin “The Daily." It includes 24 domestic indi-

cators, seven US or international indicators, and four financial variables. The reader

can consult these papers and references within for detailed results and descriptions of

the models and dataset. Pseudo real-time forecasts are produced from 2000 to 2021

and real-time predictions from 2013 to 2019. In this paper, I use the pseudo real-time

forecasts with a five-year expanding estimation window; the training sample covers

2000–2005, with an evaluation window from 2005Q1 to 2021Q1.

Figure 2.1: Model List

In a nowcasting exercise, the timing of the forecast cycle can be quite important.

Figure 2.2 illustrates the timing of releases throughout the six-month forecast cycle
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starting in December after the release of the Q3 National Accounts data targeting the

Q1 figures for the upcoming year. Forecasts are produced 12 times over the six months,

representing a prediction roughly every two weeks, and is designed to replicate the

forecast cycle faced by a practitioner. The cycle starts in December, when the analyst

is forecasting the Q1 figures. Throughout Q1, the analyst is in the nowcast phase.

From the April to May National Accounts data release, the analyst is backcasting the

Q1 figures while awaiting publication of the official figures.

Figure 2.2: Overview of Forecast Cycle

 National Accounts released for Q3 

                     Dec               Jan            Feb             Mar             Apr             May                   

National Accounts released for Q4 

Nowcast Backcast 

National Accounts released for Q1 

Forecast 

A peculiarity of Canadian nowcasting is that there is a monthly GDP figure avail-

able two months after the reference period. This data is different from the National

Accounts figures since monthly GDP is at a by-industry basis compared to the expen-

diture approach of the National Accounts. There can be differences between the figures

of as much as a percentage point. This means monthly GDP is an important predictor

for quarterly GDP, but not a perfect predictor. The consequences of including this

predictor in the dataset is that once it is available, there is a large improvement in

the accuracy of the prediction and other variables become less important (Chernis and

Sekkel, 2017).
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2.3.2 Details on the Survey of Professional Forecasters

The survey forecast application uses density forecasts from the European Central Bank’s

Survey of Professional Forecasters. A full description is available in García (2003).

The quarterly survey began in 1999 and is the longest running Euro-area survey of

macroeconomic expectations. The survey elicits probability and point forecasts on

inflation and GDP growth at various horizons (I use the one-year-ahead expectation for

year-over-year GDP growth). On average, there are 50 responses a quarter from a panel

of over 100 participants. Because of the time series length and panel characteristics,

the survey is often used to study density forecast combinations as seen in Diebold et al.

(2023) and Conflitti et al. (2015).

Several attributes of the survey merit discussion. Survey respondents are provided

with fixed ranges for which they provide probabilities. For example, in 1999Q1, they

were provided with 10 bins, the first starting with less than 0 percent and increasing

by 50 basis point intervals to 4 percent growth or above. A few issues arise here. First,

the bins change over time to address unexpected developments (such as the COVID-19

shock) and the open intervals. The bins changing over time are not an issue for the

model since I convert the forecasts to pdfs over a fine grid of 750 points. This results

in a pdf resembling a histogram, and adding more bins just adds more rectangles to

the pdf. For the open bins, I distribute the assigned probability, if any, from the start

of the bin plus or minus two standard deviations of GDP growth, estimated using the

vintage available at the time of the forecast.

Another issue is that forecasters can join and leave the panel at any time. This

means there are often missing forecasts and the panel size can change over time. This

paper takes two approaches to deal with survey entry and exit in an effort to avoid the

results being influenced by these choices. First, I construct a “wide” dataset with the

goal of including as many forecasters as possible, corresponding to the approach taken

in Conflitti et al. (2015). Since there are a large number of missing forecasts, I drop

forecasters with fewer than five forecasts in a five-year period. This five-year period

is also the rolling estimation window I use for the model. After dropping forecasters

for each five-year period, the remaining unbalanced panel has about 35 respondents
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each quarter. One consequence of the changing panel composition is that examining

the online weights is not meaningful because there are different forecasters at each

point in time. Next, missing observations in the panel are imputed. Deviating from

Conflitti et al. (2015), these missing distributions are filled in with a normal distribution

corresponding to the marginal distribution of GDP estimated in real time.6 Overall,

this is a very challenging prediction exercise since there are large amounts of missing

data, a wide panel, and a short time series to train the algorithm.

Second, I construct a “tall” dataset that aims to build the longest consistent panel

possible. Following Diebold et al. (2023), I drop forecasters who have not responded

for five consecutive quarters. This results in a panel of 14 forecasters with minimal

missing data. Any missing data is imputed with a normal distribution corresponding

to the unconditional distribution of GDP estimated in real-time. Despite having half as

many experts as the “wide” dataset relative to the length of the panel, this is still a wide

dataset. However, the prediction exercise is easier than the “wide” dataset since there is

much less missing data being imputed and a longer time series to train the algorithm.

Once the data set is assembled, the first estimation window is 1999Q3 to 2004Q2,

and the evaluation window is 2005Q2 to 2020Q4. The forecast combination is estimated

with a five-year rolling window for the “wide” dataset and an expanding window for the

“tall” dataset. This is a full real-time exercise with the models estimated on the vintage

available to the forecasters and evaluated against the most recently available vintage of

GDP.

2.4 Results

This section discusses the main findings of this paper: 1) sparse combination techniques

often perform better, and 2) the simpler constant parameter combinations usually per-

form better. First, there are a few details to dispense with. I use the CRPS as an

accuracy metric since it is less sensitive to outliers relative to the log score and thus

prevents extreme events from dominating performance during “normal” times. Detailed
6Replacing missing forecast distributions with a uniform distribution, as in Conflitti et al. (2015),

does not qualitatively change the results.
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results for the nowcasting exercise are reported in table A.1, and table A.3 shows results

for the survey forecast application. The tables also include as a benchmark the dynamic

linear model (DLM) in equation 2.2, which is used in McAlinn and West (2019). Overall,

the synthesis functions introduced in this paper are competitive with the benchmark,

suggesting that the performance of the new synthesis functions are reasonable. Finally,

in the appendix I present results suggesting that forecasts from both synthesis functions

are well calibrated using the test from Knüppel (2015).

2.4.1 Predictive Accuracy: Global-local Shrinkage Priors and Factor

Model Combinations

In general, the shrinkage priors have lower average CRPS across both nowcasting and

forecasting exercises. Figure 2.3 shows the results from the nowcasting exercise (panel

(a)) and for the survey forecast application (panel (b)). For clarity of exposition, the

results from factor models are shaded red and the shrinkage priors are shaded blue.

Most of the time the shrinkage priors perform better, and this pattern is apparent in

both the nowcasting and the SPF application across both the tall and wide datasets.

Depending on the application and forecast horizon, improvements can be as high as 30

percent in the nowcasting excercise and 20 percent in the SPF application. There are

some exceptions, which I examine throughout the remainder of this section.

To better understand the forecasting performance over time, I examine the cumu-

lative CRPS difference. This is particularly useful for highlighting episodes that may

have undue influence on average forecast accuracy and help explain the above findings.

For brevity, I focus my analysis on comparing the best-performing models from each

class of synthesis function: the constant parameter triple gamma prior and the factor

model combination with two factors. Figure 2.5(a) shows results for the nowcasting

application and panel 2.5(b) for the survey forecast exercise. Despite being for differ-

ent countries and different forecast horizons, there are similarities in the results. In

both applications, the triple gamma prior performs slightly worse at the beginning of

the sample. However, as the GFC arrives, the triple gamma prior begins to perform

better, signified by positive values in the figures. For most of the post-GFC period, the
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(a) (b)

Figure 2.3: Comparison of Shrinkage Priors and Factor Models

(a) (b)

Figure 2.4: Comparison of Time-varying and Constant Parameter Specification

triple gamma prior continues to improve upon the factor model combination. During

the COVID period, the factor model starts to perform better in both the SPF tall data
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application and the longer prediction horizons in the nowcasting application. Inspecting

the forecast densities over time can help explain these results.

(a) (b)

Figure 2.5: Cumulative CRPS Difference

Figure 2.6 shows predictive densities for the nowcasting application7 and figure

2.8 shows the difference between their forecast probability distributions. Red shading

indicates higher probability assigned to a region by the triple gamma prior, and blue

indicates more probability assigned to a region by the two factor model. Similar charts

for the SPF application are shown in figures 2.7 and 2.9.

Remarkably, examining the forecast densities shows that there are similar patterns

across the forecasting and nowcasting applications. In both applications, GDP out-

turns often occur in the red areas where the triple gamma combination put higher

probability.8 Additionally, the triple gamma prior has lower variance predictions than

the factor models, which contributes to their better performance. This is most obvious

post-GFC in the SPF application where the shrinkage priors produce substantially lower

variance forecasts using both the wide and tall datasets and the forecast periods of the

nowcasting application. The more precise predictions of triple gamma prior results in
7COVID-19 is excluded because the volatility in GDP growth makes the chart illegible.
8This result is corroborated by a quantile score decomposition of the CRPS, which shows better

performance across the entire distribution. Results are available upon request.
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Figure 2.6: Nowcasting Application Predictive Densities

Figure 2.7: SPF Application Predictive Densities

systematically better forecasts during normal times. This can be seen in figure 2.9 by

noticing the large number of out-turns in the red shaded regions, which signify the

shrinkage prior places relatively higher probability on the out-turn. However, there is

an important caveat to this result. Figure 2.5(b) shows that during the Euro Area

crisis, the factor model improves over the triple gamma approach. This can be seen in
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Figure 2.8: Nowcasting Application Difference Between Triplegamma and Factor Model-
2 in Predictive Densities with GDP Realizations

Notes Red values in the heat map indicate the triple gamma prior adds more probability
to the bin relative to the factor model. Blue shading signifies the factor model adds
more probability to a region than the triple gamma prior.

figure 2.9 where the GDP out-turns are in the blue area, signifying higher mass put on

that region by the factor model. It turns out that this is because one of the forecasters,

which has a weight of around 75 percent, drops out from the sample for a few quarters

and is replaced with the unconditional distribution of GDP. This results in poor forecast

performance and, when combined with overconfidence, is quite punishing. The factor

model approach has more egalitarian weights, so this is less of a problem. This serves

as a practical lesson that placing significant weight on an individual expert has risks.

An event deserving special scrutiny is the COVID-19 pandemic. Not surprisingly, it

has a significant impact on the results and is the reason why the factor model combina-

tion is occasionally competitive. For the nowcasting application, this is most apparent

at the forecast horizon and to a lesser extent when backcasting. The triple gamma

captures the declines in 2020Q1 and 2020Q2 more accurately, but it misses the sharp

and immediate rebound in 2020Q3. This can be observed in figure 2.5(a), where the

blue line approaches the y-axis at the end of sample, signifying that on average the two

23



Chapter 2. Combining Large Numbers of Density Predictions with Bayesian
Predictive Synthesis

Figure 2.9: SPF Application: Difference Between Triple Gamma and Factor Model-2
in Predictive Densities with GDP Realizations

Notes Red values in the heat map indicate the triple gamma prior adds more probability
to the bin relative to the factor model. Blue shading signifies the factor model adds
more probability to a region than the triple gamma prior.

methods perform similarly. There is a similar result for the SPF application using the

tall dataset. During the pandemic, the factor models perform so well that they catch

up to and slightly exceed the average performance of the shrinkage priors. Figure 2.7

shows that in 2020Q1 and 2020Q2, this is not so much due to the factor model provid-

ing a significantly better forecast. The higher variance of the factor model combination

means they are punished less for inaccurate predictions. The story is different in 2020Q4

and 2021Q1, where the factor model is more accurate. This can be seen quite clearly

in figure 2.7, where the factor model not only puts a large amount of mass around the

out-turns, but also relatively more than the triple gamma (figure 2.9). The reason for

this is that triple gamma prior puts close to 70 percent of the weight on a single model,

which happens to provide a very poor forecast. Again, this highlights the risks of using

sparse weights. While the triple gamma synthesis function systematically outperforms

the factor models most of the time, it can be risky to put a large amount of weight on

a single expert.
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2.4.2 Predictive Accuracy: Time-varying and Constant Parameter

Combinations

Another finding is that constant parameter combinations generally have a lower CRPS

than their time-varying counterparts. Figure 2.4 shows the CRPS for the nowcasting

(panel (a)) and the SPF application (panel (b)), which shades the time-varying param-

eter combinations red and their constant parameter counterparts blue. There can be

significant gains for choosing the more parsimonious constant parameter specification.

In the nowcasting application, there are gains of up to 20 percent between constant and

time-varying factor model combination specifications. In the survey forecasting exer-

cise, performance gains can be up to 25 percent for both shrinkage and factor model

combinations, and improvements are seen in both datasets for both classes of synthesis

functions.

The most dramatic performance increases, seen in the survey forecast application,

are explained by the time-varying parameter combinations reducing to a time-varying

mean model with little weight on the individual experts. Figure 2.10 shows the in-sample

time-varying intercept for the triple-gamma prior and the one-factor combination ap-

proach overlaid with the four-quarter lagged Euro Area GDP figures. It is apparent that

the intercept matches the GDP figures very closely, suggesting that it may be overfit-

ting. Additionally, inspection of the weights for each of the time-varying combination

methods reveals that the weight put on individual experts is quite small (lower panel in

figure 2.11). In contrast, the upper panel of figure 2.11 shows that the sum of weights

from constant parameter specifications is much closer to 1. Taken together, it is evident

that poor performance of the time-varying parameter models is because the forecast

is driven by the time-varying intercept while ignoring useful information contained in

the expert densities. On the other hand, the constant parameter specifications, which

lack the flexibility of a time-varying intercept, place more weight on the experts. This

finding is in contrast to other studies (Aastveit et al. (2023)), which find that a time-

varying intercept in BPS can be extremely useful. This is likely due to differences in

the applications—the aforementioned paper forecasts oil prices, which have large and

persistent movements in price that make a time-varying intercept useful. In contrast,
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Euro Area and Canadian real GDP have much smaller movements in their growth rates

over the twenty-year period in question.

Figure 2.10: Time-varying Predictive of Mean of BPS Intercepts for SPF Tall Dataset

2.4.3 Examining the Combination Weights

It is instructive to examine the weights in figure 2.11 to gain some intuition of the

implications of synthesis function choice. Let us start with the weights from the triple

gamma prior in the top left panel.

First, the combination method puts significant weight on a single expert, a handful

of other forecasts, and close to zero weight on the rest.9 This prior implies the decision-

maker should mostly listen to a few trusted experts, but not completely ignore the herd.

Additionally, a few of the experts have negative weights. This reflects the very flexible

specification that allows the weights to adjust for biases. This is similar to portfolio

optimization where the optimal portfolio involves short selling an asset as a hedge. Put

in terms of BPS, the decision-maker hedges against the high weight on a given expert

by “short-selling” a similar correlated forecast.
9The triple gamma appears to be good at picking up weak signals in the data and not shrinking

experts to zero weight. Sparsifying the weights using signal adaptive variable selector (Ray and Bhat-
tacharya (2018)) results in worse forecasting performance, suggesting the non-zeros weights are not
numerical artifacts.
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Figure 2.11: Sequentially Estimated Mean Combination Weights

Second, examination of the right panel indicates that the one factor model has

weights that are spread more evenly over experts (but not equally), meaning the combi-

nation is closer to consensus weights.10 I use the term “consensus weights” since a factor

model extracts the common variance across experts or, in some sense, what the experts

can agree upon. There is an important difference between this weighting scheme and

equal weights since the former removes idiosyncratic differences across experts and the

latter includes all the experts equally. This synthesis function implies the decision-maker

should follow a consensus-based approach to processing forecasts, and the approach is

quite different from shrinkage priors where the decision-maker focuses on a small subset

of experts. The results above suggest that sparse weights are preferable to consensus

weights—a decision-maker should not follow the herd, but instead focus on a smaller

set of experts.
10Adding more factors allows experts to have more weight but does not change the pattern of dense

weights or the interpretation of consensus-based weights.
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2.5 Conclusion

In this paper, I investigate different approaches for combining large numbers of density

predictions within the framework of Bayesian Predictive Synthesis. This is an impor-

tant issue since many practical applications can involve large numbers of forecasts, such

as nowcasting systems or combining survey forecasts. I use two common approaches

in economics to deal with large datasets: global-local shrinkage priors and factor mod-

eling. In particular, I use the newly developed triple gamma prior, and the priors it

encompasses, along with a novel factor modeling approach to density combinations.

I test the approaches using two very different applications: a model-based nowcasting

exercise on Canadian real GDP, and forecasting Euro Area real GDP growth using

distributions from the Survey of Professional Forecasters. These two applications cover

two regions, have different forecast horizons, include model-based and survey-based

predictions, and the evaluation sample covers the Great Financial Crisis, Euro Area

Crisis, and COVID-19 pandemic, allowing for a comprehensive assessment of the various

synthesis functions. First, I find that constant parameter specifications tend to perform

better than their time-varying counterparts. This shows that in applications with little

structural change, relatively short samples, and a large cross-section of models, a more

parsimonious model is preferable. This is an important finding as recently developed

combination schemes tend to utilize time-varying parameter specifications. Second, and

more importantly, I find that shrinkage approaches generally outperform factor-model-

based combinations. With the exception of the Bayesian lasso, the shrinkage priors all

perform well in terms of a low average CRPS.

It is interesting to note that the two synthesis functions imply very different weight-

ing structures. The sparse weighting scheme of shrinkage priors implies that decision-

makers should give considerable weight to a smaller set of experts. This, however,

carries the risk of “putting all your eggs in one basket,” which at times adversely af-

fects the performance of the sparse combinations. In contrast, the factor-model-based

combination implies a dense weighting scheme, which produces a “consensus” forecast.

Overall, my results suggest that focusing on a parsimonious combination that considers
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a smaller set of accurate experts is preferable to following the herd.
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Chapter 3

Predictive Density Combination

Using a Tree-Based Synthesis

Function

3.1 Introduction

It is commonplace when forecasting macroeconomic variables, such as output growth

or inflation, to consider a large number of competing predictive densities. These den-

sity forecasts might come from different reduced-form or structural models and/or be

subjective and come from surveys. How to combine these densities is an open question

being addressed by a growing literature.1 The literature concludes that combined den-

sity forecasts tend to be more accurate and more robust than single-model approaches

that ignore model uncertainty; for a review, see Aastveit et al. (2019). One issue is that

traditional forecast combination techniques are often linear and do not exploit infor-

mation besides the forecasts and the target variable. Contrast this with a policymaker

who combines forecasts nonlinearly and uses external information, such as on the cur-

rent state of the economy or financial conditions, to help determine how much weight
1See, among many others, Mitchell and Hall (2005); Wallis (2005); Hall and Mitchell (2007); Geweke

and Amisano (2011); Koop and Korobilis (2012); Billio et al. (2013); Aastveit et al. (2014); Conflitti
et al. (2015); Chernis and Webley (2022); Knotek and Zaman (2023); Aastveit et al. (2023); Čapek
et al. (2023); Diebold et al. (2023).
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to attach to the different forecasts. We propose a novel technique that mimics this

practice. Our approach combines density forecasts nonparametrically while allowing

the combination weights to be determined by information that may be external to the

forecasting models.

Key to our approach is Bayesian predictive synthesis (BPS). It has emerged, as

extended into a time-series context by McAlinn and West (2019), as a general method

of density forecast combination with a strong theoretical basis. BPS draws on an earlier

Bayesian literature on agent or expert opinion analysis (West, 1992) and provides a

formal and theoretically justified method for pooling densities. It can be shown to nest

many previous approaches (see, for example, Section 2.2 of McAlinn and West, 2019)

and has been used successfully in various applications in economics, such as McAlinn

et al. (2020), Chernis (2023), and Aastveit et al. (2023). In this paper we develop

density forecast combination strategies within the BPS framework.

In existing implementations of BPS, the so-called synthesis function, which deter-

mines the weight attached to each density, needs to be specified parametrically. Com-

mon choices, as made in the aforementioned papers, are to assume that the synthesis

function takes the form of a dynamic linear regression, with parameters that are al-

lowed to change over time typically as random walk processes. This specification of the

synthesis function thus allows the weights on competing density forecasts to evolve over

time as linear Gaussian random walks. But such an assumption may or may not be

valid. Misspecification occurs if the weights depend on other factors or if they follow a

different law of motion than a random walk.

These considerations motivate the present paper. BPS has theoretically rigorous

foundations, but the manner in which it has been implemented in practice risks mis-

specification due to the adoption of particular and untested parametric assumptions.

We therefore propose to use flexible nonparametric techniques to specify the synthesis

function. Specifically, we use regression trees. In conventional (single-model) forecasting

applications, tree-based models of the conditional mean have proven highly successful

(see, for example, Clark et al., 2023; Huber and Rossini, 2022; Huber et al., 2023). A

small number of other papers have used nonparametric techniques to combine predic-
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tive densities (for example, Jin et al., 2022; Bassetti et al., 2018, 2023). However, unlike

our proposed method, these other papers neither use regression trees nor fit explicitly

within the formal BPS framework.

While regression trees have become a popular way to estimate nonparametric regres-

sions, here we propose to use them differently. Similarly to Goulet Coulombe (2024),

Deshpande et al. (2020), and Hauzenberger et al. (2023), who provide a nonparamet-

ric treatment to the parameters rather than the variables in single-equation and VAR

models, we model the coefficients in the synthesis function with regression trees (RT).

Accordingly, we label our version of BPS “BPS-RT.” The synthesis function remains

linear in the parameters, which, as we will demonstrate, aids in interpretation. Use of

regression-tree methods requires the choice of covariates, which we call “weight modi-

fiers.” These weight modifiers help determine the weights attached to the competing

density forecasts. Conventional BPS does not make use of weight modifiers, given that

the weights are typically assumed to follow random walks. Thus, in popular implementa-

tions of BPS, any relevant information in the form of additional covariates is neglected.2

But decision makers, when combining competing density forecasts, may wish to condi-

tion their forecasts on such “outside” information. For example, they may wish to let

the weights on the different forecasting models vary with the state of the economy or

vary as a function of the features of each forecast density. Our tree-based specification

for the synthesis function is able to condition on both “global” (that is, information

not associated with a particular forecaster) and “local” (that is, information associated

with a given forecaster) variables when determining the weights. In our tree-based syn-

thesis function, the weights on each density forecast are dynamically determined via

a sequence of decision rules. BPS-RT allows the decision maker to combine predic-

tive densities in a highly flexible way and to distill optimally all relevant information

contained in the predictive densities and weight modifiers. The fact that the synthesis
2Notable recent exceptions are Oelrich et al. (2023), who, following Li et al. (2023), let the weights

in linear density forecast combinations depend on (potentially time-varying) exogenous variables. As
Oelrich et al. (2023) explain, such linear pools are one specific instance of BPS. Letting the combi-
nation weights in linear pools change over time according to these “pooling variables,” as in the more
general (nonlinear) BPS framework that we consider, can offer more flexibility than assuming that the
combination weights follow an assumed autoregressive process; cf. Del Negro et al. (2016).
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function remains conditionally linear in the parameters helps the decision maker inter-

pret the combined density and better understand the role each individual density is

playing in the combination. We will show how BPS-RT can be used to understand the

role of model incompleteness, agent clustering, and the time-varying importance of the

different weight modifiers.

The next section of the paper introduces and motivates BPS in theory and then

discusses how it has been implemented in the existing literature. It then proposes our

generalization, BPS-RT, and explores its properties. Section 3 demonstrates the utility

of BPS-RT by undertaking two forecasting applications. The first application takes the

individual forecaster density forecasts from the European Central Bank Survey of Pro-

fessional Forecasters (ECB SPF) and combines them. The second application forecasts

US inflation using a commonly used large set of indicators. The predictive densities

that are synthesized are produced by regression models using the different indicators.

We find that BPS-RT produces well-calibrated and accurate forecasts. Notably, we find

that single-tree models perform best, in contrast to standard recommendations when

using regression trees. This suggests that a relatively parsimonious weight scheme with

few changes in weights is supported by the data. The superior performance of BPS-RT

stems from its better ability to explain periods of volatility, such as the global finan-

cial crisis that affected euro area GDP growth and the post-COVID inflation period in

the US. Zooming in on the best-performing BPS-RT specification in the US inflation

application, we show how the combination forecasts from BPS-RT can be interpreted.

BPS-RT can be used to understand the role of model incompleteness, agent (forecast)

clustering, and the time-varying importance of the different weight modifiers. We find

little model set incompleteness during the post-COVID inflation period, suggesting that

BPS-RT’s success comes from its ability to successfully forecast inflation using the un-

derlying models with changes in the combination weights driven by a time trend. This

contrasts with the earlier period of lower inflation, when business cycle indicators are

shown to be more important. Section 4 concludes. Appendix B.1 provides details on

Bayesian inference of BPS-RT, and Appendix B.2 provides additional empirical results,

as referenced in the main paper.
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3.2 Bayesian Predictive Synthesis with Regression Trees

In Section 3.2.1, we provide some background on BPS, distinguishing between BPS

in theory and its use in practice in extant empirical applications. Then, in Section

3.2.2, we explain how regression trees can be used to provide a more flexible way of

operationalizing BPS.

3.2.1 Bayesian Predictive Synthesis

BPS in Theory

BPS is a foundational theoretically coherent Bayesian method for combining predictive

densities.3 The theory of BPS provides a pooled predictive distribution for the variable

being forecast (say, GDP growth) given a set of individual density forecasts. Opera-

tionally, this pooled predictive distribution is produced using Markov chain Monte Carlo

(MCMC) methods involving two steps. In the first step, draws are taken from the indi-

vidual predictive densities for GDP growth. These draws are then, in effect, treated in

a second step as explanatory variables in a time-series model where the dependent vari-

able is the outcomes for GDP growth. This time-series model amounts to the synthesis

function. Standard choices for this function are typically based on linearity, either sim-

ply a constant linear relationship or a dynamic relationship where the linear coefficients

evolve over time according to a random walk. As pointed out by Aastveit et al. (2023),

this means that BPS can be thought of as a multivariate regression relating the target

variable (GDP growth) to the forecasts for GDP growth, which are treated as generated

regressors. We make use of this generated regressor interpretation below.

More formally, at time t a decision maker D is confronted with h-step-ahead fore-

cast densities for variable yτ+h produced by J different agents, experts, or models,

where τ ranges from 1 to t. At each forecast origin, τ , we label these predictive

densities {πjτ (yτ+h)}Jj=1. These densities, available from time 1 through t, form the

information set Ht of D and can, in principle, be of any distributional form. D

then forms an incomplete joint prior p(yt+h,Ht) = p(yt+h) × E
(∏

j πjt(xjt+h|t)
)

with

3For a general description of BPS, see McAlinn and West (2019); specific implementation details
related to our applications are discussed below and in Appendix A.
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xt+h|t = (x1t+h|t, . . . xJt+h|t)
′ denoting latent agent states (that is, draws from the agent-

specific predictive densities). These agents’ forecasts target t+ h but, under the prior,

are made using information through time t. The prior is incomplete, in the sense that

D only forms an expectation of the product of the agent densities. Agent opinion anal-

ysis theory (West and Crosse, 1992; West, 1992), extended to a time-series context by

McAlinn and West (2019), shows that the posterior conditional density for yt+h under

this incomplete prior takes the form

p(yt+h|Ψt+h,Ht) =

∫
α(yt+h|xt+h|t,Ψt+h)

J∏
j=1

πjt(xjt+h|t)dxjt+h|t, (3.1)

where α(yt+h|xt+h|t,Ψt+h) denotes the synthesis function that reflects how D combines

her prior information with the set of expert-based forecasts; Ψt+h denotes a matrix of

parameters and latent states that control the properties of the synthesis function, α(.).

BPS in Practice

Theory offers no guide as to the specific choice of the synthesis function, α(yt+h|xt+h|t,Ψt+h).

But a common choice in empirical applications, used, for example, in McAlinn and West

(2019), McAlinn et al. (2020), and Aastveit et al. (2023), is to assume a dynamic lin-

ear regression model treating the draws from the J competing densities as generated

regressors, xt+h|t. Our synthesis functions will have a dynamic regression form, but we

will use a non-centered parameterization (see Frühwirth-Schnatter and Wagner, 2010):

α(yt+h|xt+h|t,Ψt+h) = N

yt+h|ct+h +
J∑

j=1

(γj + βjt+h)xjt+h|t, σ
2
t+h

 , (3.2)

where ct+h is a time-varying intercept assumed to follow a random walk, γ = (γ1, . . . , γJ)
′

are time-invariant weights, and βt+h = (β1t+h, . . . , βJt+h)
′ denotes the time-varying

combination weights. As discussed above, a common choice in the literature is to as-

sume that the weights, βjt+h, evolve as a random walk (RW) with innovation covariance

matrix V , leading to a version of BPS that we label “BPS-RW.” When implementing

BPS-RW in our empirical applications below, we make standard choices for the prior
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and MCMC method. In particular, they are similar to those used in Hauzenberger et al.

(2022). The only difference is that we use the hyperparameter-free horseshoe prior in-

stead of the normal-Gamma prior, so as to have a prior that is comparable to the one

used with our regression-tree model. Accordingly, we do not provide additional details

here on drawing the time-varying weights for BPS-RW; see Hauzenberger et al. (2022)

for details.

In all of our implementations of BPS, including BPS-RW, we consider two versions:

one that assumes stochastic volatility (SV) and another that is homoskedastic. In the

SV case, the error variance, σ2t+h, changes over time. We assume that the log-volatilities

ςt+h := log σ2t+h evolve according to an AR(1) model with autoregressive coefficient ρς ,

unconditional mean µς , initial value ς0, and error variance σ2ς . The prior choices for these

parameters are given in Appendix B.1.1. Homoskedastic cases are obtained setting σ2ς

to zero. Below, for notational ease, we do not explicitly note those parameters relating

to SV in the conditioning arguments.

All of our implementations of BPS also include a time-varying intercept, ct+h, which

is assumed to follow a random walk. As discussed below, ct+h is included to allow for

model incompleteness. Further econometric details are provided in Appendix B.1.

With these notational conventions established, Ψt+h =
(
γ, {cτ ,βτ , στ}t+h

τ=0,θ
)
, where

θ will be method-specific parameters that define the law of motion of latent states or

appear in the hierarchical priors (such as V in the case of BPS-RW).

The synthesis function, α(yt+h|xt+h|t,Ψt+h), is quite flexible, given that the weights

it attaches to each of the J densities are dynamic and because it allows for time-

varying error variances. We can also see that while Eq. (3.2) implies a Gaussian

density conditional on βt+h, xt+h|t, and σ2t+h, when carrying out predictive inference

we marginalize out the unknowns of the model, leading to a predictive density that can

be highly non-Gaussian; see Eq. (3.3) below.

In contrast with other approaches to combining models and density forecasts, such

as Bayesian model averaging (BMA), the weights on each density are restricted neither

to lie between zero and one nor to sum to unity. In the case of BPS-RW, the degree of

change in the weights will depend on the magnitude of the state innovation variances
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for these parameters: small values imply slow, smooth adjustment of the weights over

time, while large values allow for bigger, sharper changes.

Two additional aspects of this parameterization of the synthesis function are worth

noting before we introduce our regression-tree approach, which provides a more flexible

nonparametric representation of the synthesis function.

First, as a special case, we define a static version of BPS that assumes time-invariant

weights βτ = 0J for all τ but leaves γ unrestricted. We label this instance of BPS,

which assumes the combination weights to be constant over time, “BPS-CONST.”

Second, the presence of both an intercept and an error in the synthesis function

means that these versions of BPS allow for model set “incompleteness” (Geweke, 2010).

That is, they allow the “true” (but unknown) model not to be in D’s model space;

see, for example, Billio et al. (2013) and Aastveit et al. (2018). A conventional model

combination scheme such as BMA sets both intercept and error to zero. The fact that

the intercept, ct+h, and error variance, σ2t+h, are both time varying provides additional

flexibility when modeling the degree of model set incompleteness. Note that these

specific assumptions are equivalent to embedding a popular benchmark for forecasting

(especially of inflation) – the unobserved components SV (UCSV) model of Stock and

Watson (2007) – within our set of now J + 1 density forecasts. This is also related

to an alternative treatment of model set incompleteness in BPS that adds a fictitious

baseline predictive density to the set of densities being synthesized (see, for instance,

the discussion in Section 2.2.3 of Tallman and West, 2023).4 In our case, this baseline

predictive density comes from a UCSV model. But importantly, as when estimating

a mixture density, the parameters of the UCSV density are estimated simultaneously

with the weights in the synthesis function.

To carry out predictive inference, we need to compute the predictive distribution.

We do so by simulation. Let yT+h denote a future realization of our target variable at

time T + h and let HT denote the set of agent densities that are available at time T
4Diebold et al. (2023) also add a fictitious forecaster in their ECB SPF application that, like ours

below, combines forecaster-level density forecasts.
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but target T + h. The predictive density, in our case, is obtained as follows:

p(yT+h|IT ) =
∫ ∫

p(yT+h|ΨT+h,HT ) dΨ dH, (3.3)

where IT indicates the information set up to time T and ΨT+h are the latent states

(projected forward to time T + h). We can simulate from (3.3) by simulating from the

joint posterior of the agents and states, projecting the states forward to time T + h,

and then using the synthesis function in (3.2) to produce a combined forecast draw.

By doing so, we integrate out the unknowns of the model, and the resulting predictive

density can be highly non-Gaussian and feature heavy tails, multi-modalities, and/or

skewness.

3.2.2 Bayesian Predictive Synthesis with Regression Trees (BPS-RT)

In this paper, our proposal is to relax the restrictions in BPS-RW by considering more

flexible forms of time variation in βt+h. Specifically, we use techniques from machine

learning to model the dynamic evolution of the weights, βt+h, in a nonparametric

manner as a function of additional weight modifiers. This treatment can be contrasted

with the alternative of treating the function, α, itself nonparametrically. We follow

Chipman et al. (2010) and use Bayesian additive regression trees (BART) to estimate

the regression trees. BART consists of a set of priors for the tree structure and the

terminal nodes (the leaf parameters) and a likelihood for data in the terminal nodes.

BPS-RT differs from existing implementations of BPS through both the hierarchical

priors used on elements in γ and βt+h and the incorporation of additional covariates

into D’s information set. These are stored in a Kγ vector zγ
j and a Kβ vector zβ

jt+h|t,

both containing additional “data” known to D through period t.

We postulate a nonlinear relationship between the weights and the weight modifiers

through functions µγj (z
γ
j ) and µβj (z

β
jt+h|t) that determine the state transition equation

that can be interpreted as a prior. In particular, we assume

γj ∼ N (µγj (z
γ
j ), τ

γ
j ) and βjt+h ∼ N (µβj (z

β
jt+h|t), τ

β
j ), (3.4)
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where τγj and τβj denote prior scaling parameters. For convenience, we define µγj :=

µγj (z
γ
j ) and µβjt+h := µβj (z

β
jt+h|t). The best way to illustrate the effect the scaling pa-

rameters have on the actual estimates of the weights is to consider a reparameterization

of the synthesis function. Integrating out γj and βjt+h by plugging Eq. (3.4) into Eq.

(3.2) yields

yt+h = ct+h+
J∑

j=1

(µγj (zγ
j ) +

√
τγj ν

γ
j

)
︸ ︷︷ ︸

γj

xjt+h|t +

(
µβj (z

β
jt+h|t) +

√
τβj ν

β
jt+h

)
︸ ︷︷ ︸

βjt+h

xjt+h|t

+σt+hut+h,

(3.5)

with νγj , ν
β
jt+h ∼ N (0, 1) denoting process innovations. The innovations, νγj and νβjt+h,

and the corresponding scaling terms control the degree of dispersion of the actual weights

from those expected under the prior mean. If the scalings are close to zero, the posterior

of γj and βjt+h is pulled toward the prior mean and the resulting estimates will be close

to µγj (z
γ
j ) and µβj (z

β
jt+h|t) and so strongly depend on zγ

j and zβ
jt+h|t. If this is not the

case, the resulting scaling parameters would be larger, so that substantial deviations

from the prior means are more likely. Another feature of this representation is worth

emphasizing. As opposed to a model that directly approximates the synthesis function

nonparametrically, the specification in (3.5) introduces interaction terms of the form

µγj (z
γ
j )× xjt+h|t. This specific form might reduce the risk of overfitting by introducing

more structure on the space of functions that we approximate.

We approximate the prior mean functions through a sum-of-trees model with S

trees:

µγj (z
γ
j ) ≈

S∑
s=1

g(zγ
j |T

γ
s ,ϕ

γ
s ) and µβjt+h = µβj (z

β
jt+h|t) ≈

S∑
s=1

g(zβ
jt+h|t|T

β
s ,ϕ

β
s ), (3.6)

where g denotes a tree function that is parameterized by so-called tree structures, T n
s ,

and terminal node parameters, ϕn
s , for n ∈ {β, γ}. The basic idea behind a single tree

is that the tree structures describe sequences of disjoint sets. These sets partition the

input space (determined by exogenous covariates, zγ
j and zβ

jt+h|t, respectively). Each

of these sets is associated with a particular terminal node parameter. In our case, the
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terminal node parameters serve as prior expectations for the γjs and for the βjt+hs. The

input space is associated with vectors of variables, zγ
j and zβ

jt+h|t, which we refer to as

weight modifiers. Note that zβ
jt+h|t could include quantities (such as moments from the

agent-specific predictive densities) that explicitly target t+ h but are available at time

t.

There are two main justifications for our BPS-RT modeling approach. First, there

is no reason to restrict attention, as in BPS-RW, to random walk specifications for

the evolution of βt+h. BPS-RW implies, at a given point in time, a linear relationship

between yt+h and xt+h|t. This assumption might be warranted in tranquil periods.

But, in unusual times, nonlinearities could be present, and exploiting these might lead

to more accurate forecasts. Our regression-tree approach allows for flexibility in the way

such nonlinearities are modeled and lets the “data speak.” Second, and this holds across

all existing instances of BPS not just BPS-RW, an implicit assumption made is that the

information set available to D comprises exclusively the agent-based forecast densities.5

But, in principle, additional unmodeled information is available to D and might help

inform evolution of the weights. In our BPS-RT approach, the weight modifiers, zγ
j and

zβ
jt+h|t, comprise this extra information.

These weight modifiers might include characteristics of the agents’ forecasts not

directly reflected in their predictive distributions or other common (to agents) factors,

such as general information about the macroeconomic environment. For example, zγ
j

might contain summary metrics of overall past forecast performance (such as the average

historical forecast performance) for each agent. Or, as noted above, zβ
jt+h|t might contain

more granular and time-varying information, such as time-varying characteristics of

the agent-specific predictive densities (say their higher moments and/or time-varying

measures of past forecasting performance). We provide specific context and motivate

our choice of weight modifiers in the empirical applications in Section 3.3.1 below.

To return to the regression tree, note that it is defined by disjoint sets that are

determined by splitting rules of the form zβk,jt+h|t ≤ dk or zβk,jt+h|t > dk, where zβk,jt+h|t

5As mentioned in footnote 2, an exception is Oelrich et al. (2023), who, when combining density
forecasts using the linear opinion pool, also let the weights depend on exogenous variables. Our BPS-
RT model generalizes to consider BPS combinations beyond the linear special case and to allow for
nonlinearities in how the weight modifiers affect the weights.
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is the kth weight modifier for the jth agent/model and dk is a threshold parameter as-

sociated with the kth effect modifier, which is estimated from the data. It is important

to note, however, that any splitting rule associated with the kth effect modifier is com-

mon across agents and periods (that is, it is specific neither to agent j nor to period

t). Hence, the thresholds dk and thus the tree structures do not have t or j subscripts

and are common across agents/models and time. Since these splitting rules effectively

govern the prior mean, µβjt+h, this structure in a sense captures the notion of a pooling

prior and reflects the situation that D decides on the weights associated to each of the

different agents based on using additional factors zγ
j and zβ

jt+h|t according to a set of

common decision/splitting rules. The same structure also holds for the γjs, with the

difference that the splitting rules controlling µγj pool exclusively over the cross-section

and not over time (since the γjs are time invariant).

To see this pooling feature more clearly, consider a BPS-RT model that assumes

βt+h = 0J and features only a time-variant part γ, for which the prior mean µγ =

(µγ1 , . . . , µ
γ
J)

′ is defined by a single tree (S = 1) and by a single effect modifier in zγj

(that is, zγj is a scalar with Kγ = 1). In this case, the prior on γj can be written as

γj = g(zγj |T
γ
s ,ϕ

γ
s ) +

√
τγj vj , vj ∼ N (0, 1). (3.7)

If we now compute the difference between γj and γm for distinct agents, j ̸= m, and

assume that zγj and zγm are similar, in the sense that both imply the same decomposition

of the input space and are thus located in the same terminal node of the tree, we end

up with

(γj − γm) ∼ N (0, τγj + τγm). (3.8)

This equation implies that if the tree suggests that the characteristics between agents

are so similar that they are grouped together in the same terminal node, the same prior

mean applies and the difference between prior means will be zero. The presence of the

prior scaling parameters τγj and τγm will then allow for data-based testing of whether that

restriction should be strongly enforced or not. Since both prior means would coincide,

setting both τγj and τγm to values close to zero would induce a clustering of γj and γm
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around g(zγj |T
γ
s ,ϕ

γ
s ) = g(zγm|T γ

s ,ϕ
γ
s ). Hence, the choice of the prior specified on the

scaling parameter τγj is crucial in determining the clustering behavior of BPS-RT.

Another feature of our prior is that D adjusts her weights on the agents’ densities

depending on the (common) macroeconomic environment as captured by the weight

modifiers, which might include, as discussed, indicators of the state of the business cycle,

measures of economic uncertainty, or deterministic trends. For example, in turbulent

times, larger weights on component densities that are far from Gaussian and feature,

say, heavy tails might lead to better combined density forecasts. Our approach can

control for this, if supported by the data.

Note that we estimate the tree structures and the terminal parameters alongside

all other unknown parameters and therefore also specify priors for them. We follow

here the recommendations of Chipman et al. (2010) and discuss the remaining model

and prior specification issues in detail in Appendix B.1. This technical appendix also

describes the MCMC methods used to estimate BPS-RT. In summary, these MCMC

methods are straightforward. They require a method for predictive simulation from

each individual model (to draw from each agent’s forecast density) and a method for

drawing from the regression-tree model conditional on the individual-agent draws. For

BPS-RT, the algorithm is taken directly from Chipman et al. (2010).

3.2.3 Illustrating BPS-RT

We now explain how BPS-RT works and allocates combination weights using an illus-

trative toy example. Assume that, unknown to D, the “true” data for yt are generated

by the following threshold model:

yt =


ρ1yt−1 + cρ2yt−2 + σ0νt, for t = 1, . . . , 200

cρ1yt−1 + ρ2yt−2 + σ0νt, for t = 201, . . . , 350,

(3.9)

where ρ1 = 0.8, ρ2 = −0.8 and σ0 = 1.2, y0 = y1 = 0, c = 1/100, and νt ∼ N (0, 1).
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Then, J = 2 agents predict yt as follows (these forecasts are one-step-ahead, h = 1):

x1t ∼ y1t = N (ρ1yt−1, (1− ρ21)σ
2
0), (3.10)

x2t ∼ y2t = N (ρ2yt−2, (1− ρ22)σ
2
0). (3.11)

Both agents use forecasting methods with a different type of misspecification. The

first agent’s forecast is almost correctly specified for the first part of the sample, but

the second agent’s is substantially misspecified. In the second part of the sample this

switches. We would hope that BPS-RT, when combining these two misspecified densi-

ties, would put more weight on the first agent when t ≤ 200, then increase the weight

on agent 2 when t > 200.

Notice that the structure of the data-generating process (DGP) implies that BPS-

RW is severely misspecified, since BPS-RW implies that the combination weights on the

two agents evolve smoothly over time. Our more flexible choice of synthesis function,

(3.2), conditional on choosing appropriate effect modifiers, as we shall show, is capable

of accommodating the break at t = 200.

We consider three variables as weight modifiers. The first is a simple deterministic

time trend, zβ1,jt+1|t = t+ 1, that is common to both agents. The remaining two effect

modifiers are agent-specific and measure historical forecasting performance. To capture

historical point forecasting performance, we consider each agent’s squared forecast error

(SFE) as recursively computed at time t − 1: zβ2,jt+1|t = (yt − E(xjt|t−1))
2 for j =

1, 2. Then, to measure past density forecasting performance, we consider each agent’s

continuous ranked probability score (CRPS).6

Our synthesis function is given by Eq. (3.2). To facilitate illustration of BPS-RT,

we make some simplifying assumptions. We set the time-invariant weights γ = 0 and,

for the prior on βt+1, set the scaling parameters equal to zero so that the weights and

prior means coincide, and we focus on the single-tree case (S = 1). For expositional

ease, we drop corresponding sub- and super-scripts when there is no loss in meaning.

Under these simplifying assumptions, the synthesis function, similarly to (3.5), reduces
6If F is the c.d.f. of the forecast and y the subsequent realization, then CRPS(F, y) =

∫
(F (x) −

1x≥y)
2dx.
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to

α(yt+1 | xt+1|t, zt+1|t,Ψt+1) = N
(
yt+1 |ct+1 + g(z1|T , ϕ)x1t+1|t + g(z2|T , ϕ)x2t+1|t, σ

2
t+1

)
.

This equation shows that with the scaling parameters set equal to zero, we end up

with a BART model that assumes the weights depend nonlinearily on zt+1|t.

Figure 3.1: Illustration of BPS-RT.

(a) Decision tree of D (b) Combination weights over time
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Notes: As the weight modifiers, we use a simple linear time trend, SFE, and CRPS. Each oval box in panel
(a) indicates the terminal node parameter of a particular branch and the share (in percent) of observations

belonging to this branch.

Figure 3.1 depicts in panel (a) the estimated tree and in panel (b) the temporal

evolution of the estimated weights. We emphasize that these weights are in-sample

estimates, that is, conditional on data through T = 350.

The tree in panel (a) can be understood as follows. Let us start at the bottom of

the tree. We see five terminal nodes. Hence, we observe five groups/clusters that define

the prior mean both over time and across agents. Put differently, there are five “breaks”

over time and across agents in the prior mean.

How we pool is defined by the splitting rules. These are understood by turning to

the top of the tree. At the root (level 0), the SFE is used as a splitting variable. The

threshold parameter is 1.8 and, hence, if the SFE in t− 1 is larger than or equal to 1.8,

we move down the left branch of the tree. At the first level, the lagged CRPS shows up

as the next threshold variable. If the CRPS is smaller than 1.3, we end up in a terminal
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node and set the weight associated with an agent that has an SFE greater than or equal

to 1.8 and a CRPS smaller than 1.3 equal to E(βjt) = 0.054. These conditions are

fulfilled 21 percent of the time. By contrast, if the CRPS is greater than or equal to

1.3, we drop down to the second level of the tree. In this segment, time shows up as a

splitting variable, and if t ≥ 201, we assign a weight of 0.72. For t < 201, we introduce

a further splitting rule that splits the sample once more by testing whether t < 42. If

this is the case, a negative weight of −0.062 is applied, whereas if 42 ≤ t < 201 the

weight is 0.15. If the past SFE is smaller than 1.8, we end up in the right branch of the

tree and assign a weight equal to 0.7.

Hence, the tree suggests that, first and foremost, D selects agents according to the

past performance of their forecasts, since both SFE and CRPS are identified in the

estimated tree. Under our DGP, this implies that weights dynamically update if a

given agent issued a poor prediction in the previous period without taking into account

the past performance of her forecasts. To understand how these decision rules translate

into the actual evolution of model weights, panel (b) shows the weights over time. These

indicate that in the first part of the sample, Agent 1 receives substantial weight, while

Agent 2 receives relatively little weight. This makes sense, given that the former is only

mildly misspecified, whereas the latter features substantial model misspecification. As

expected, given the structural break in the DGP, D now overweights the second agent,

whereas the weight on Agent 1 is now much smaller.

This simple exercise illustrates how D incorporates additional information (time and

past forecast errors in this case) to combine models. In general, though, the prior scaling

parameters in BPS-RT are greater than zero, and hence, the decision tree gives rise to

prior expectations that in turn inform the posterior estimates of the weights. Hence,

if there is no relationship between the weights and the weight modifiers, the resulting

prior variance would be large and the weights would follow a white noise process.

3.3 Two Macroeconomic Forecasting Applications

We investigate the performance of BPS-RT in two forecasting exercises. In the first

application, we combine predictive densities of GDP growth for the euro area (EA)
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produced by individual professional forecasters participating in the ECB Survey of Pro-

fessional Forecasters (SPF). Beyond its intrinsic interest, this data set is a good testing

ground for BPS-RT because it has been used before when comparing alternative den-

sity forecast combination methods; see Diebold et al. (2023), Conflitti et al. (2015),

and Chernis (2023). Second, we forecast US inflation using a set of autoregressive dis-

tributed lag (ADL) regression models. This data set and model set has been used by

Stock and Watson (2003) and Rossi and Sekhposyan (2014), the latter using a similar

ADL strategy to create each of the agent’s forecast densities.

These two applications differ not only geographically and in terms of target vari-

ables, but also in the number of agents and the nature of the forecast densities the

agents provide. The EA GDP growth application features a relatively small number of

subjective, most likely judgment-informed, forecasts (ECB, 2019) that are provided in

the form of histograms (with J = 14). In contrast, the US inflation application uses a

large number of model-based predictive densities, which are continuous and produced

with distinct ADL regressions (with J = 56). Further details on the design of both

applications are provided in the subsequent sub-sections 3.3.2 and 3.3.3. Both applica-

tions’ evaluation samples cover the global financial crisis, the euro area crisis, and the

COVID-19 pandemic. Taken together, these two applications enable a comprehensive

assessment of BPS-RT.

3.3.1 BPS-RT Specifications

We experiment with several different specifications of BPS-RT to draw out how density

forecast accuracy varies with the characteristics of the specific synthesis function used.

In broad strokes, we look at the importance of time variation, in both weights and

volatility, the number of trees, and the choice of weight modifiers. Accommodating

temporal instabilities (for example, see Rossi, 2021) is important in macro-modeling,

and so is a natural subject of inquiry, while the number of trees is an important aspect

of specifying BART models. Being able to specify weight modifiers is an attractive

feature of BPS-RT and allows the combination weights to change based on information

exogenous to the individual agents but known to the BPS decision maker. Hence, this
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is also a key area of inquiry.

We accordingly investigate the following four specifications of BPS-RT distinguished

by their choice of weight modifier(s) and whether that choice introduces cross-sectional

(which we label C) or cross-sectional and time variation (which we label TC) in the

combination weights seen in (3.2).

• BPS-RT(C): AVG.-SCORES: This specification uses as weight modifiers for

the cross-sectional varying coefficients (zγ
j ) measures of each agent’s historical (ex

post) forecast accuracy. Specifically, to capture past point and density forecast

accuracy, it considers model-specific averages of the mean squared forecast errors

(MSEs) and the CRPSs, respectively. These averages are computed recursively

to reflect information known only to D in real time and could help the synthesis

function distinguish between “good” and “bad” forecasters. This specification as-

sumes constant weights over a given estimation window, although the weights are

updated recursively through the evaluation period.

• BPS-RT(TC): EXO.-IND: This specification selects as weight modifiers application-

specific exogenous indicators. These vary over time but not over the cross-

section, implying that they are the same for each agent. These indicators are

intended to provide a signal on the state of the economy, prompting BPS-RT

to reweight the individual agents while simultaneously fostering a certain de-

gree of synchronization among them. For example, during periods of high eco-

nomic uncertainty, financial stress, or elevated inflation expectations, BPS-RT

may weight a subset of models more heavily. In the EA SPF application, we use

the European economic policy uncertainty (EPU) index of Baker et al. (2016),

available via https://www.policyuncertainty.com. In recessions, their uncer-

tainty measure rises; so, allowing the combination weights to depend on uncer-

tainty enables them to move with the business cycle. In the US inflation appli-

cation, we consider measures of inflation expectations and financial conditions.

Both variables have been considered in the inflation-at-risk literature (López-

Salido and Loria, 2020). Specifically, we consider households’ one-year-ahead
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inflation expectations from the University of Michigan survey and, as a broad

measure of financial conditions, the Chicago Fed’s national financial conditions

index (NFCI). Both measures are available from the Federal Reserve Bank of St.

Louis (https://fred.stlouisfed.org). In our empirical application, where we

use a direct forecast design, we lag these exogenous indicators by the forecast

horizon h to acknowledge the reality that we do not observe values for them in a

future period, t+ h, but only have information up to t. To catch any other time

effects, in both applications we also consider a time trend (t = 1, . . . , T ).

• BPS-RT(TC): FEATURES: In addition to the scores discussed above, this

specification considers statistical “features” of each agent’s predictive density,

known to D in real time. Specifically, we consider the first four moments of

each agent’s predictive density and the cross-sectional dispersion of the agents.

The latter is measured by the standard deviation (at time t) across the J agents’

(models’) mean forecasts. Consideration of these features allows the density com-

bination weights, in effect, to cluster to reflect the marginal properties of the

individual forecasts and their disagreement. For example, it may well be that

high (ex ante) uncertainty forecasters should be weighted similarly. Besides these

features, we consider historical point and density forecast performance, measured

by lagged MSEs and lagged CRPSs. For this RT(TC) specification, it is notewor-

thy that both score measures are used in such a way that the averages of these

lagged scores impact the time-invariant part of the weights γ, while the plain

lagged scores impact the weights through the time-varying part βt.

• BPS-RT(TC): ALL: This specification includes all the previously discussed

weight modifiers. By looking at the weight modifiers individually, and adding

features sequentially, we can assess the marginal benefit of each weight modifier.

For each of these four versions of the model, we consider models with SV and ho-

moskedastic errors and we allow the BART specification to either have a single tree

(S = 1), leading to a Bayesian regression-tree specification (see Chipman et al., 1998),

or a large number of trees (S = 250), leading to BART. In traditional Bayesian im-
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plementations using trees for nonlinear regression, such as Chipman et al. (2010), it

is generally found that increasing the number of trees, starting at S = 1, leads to an

improvement in forecast performance. But this improvement tends to peter out when

the number of trees gets moderately large. The conventional wisdom is that the precise

choice of the number of trees is not that important, provided that too small a value is

not chosen. This may not be the case in BPS, since the data may prefer to have weights

that are reasonably constant over time and change only occasionally. Hence, we choose

to focus on single-tree specifications and BART to model the weights in BPS. As we

shall see, we find that single-tree methods tend to forecast more accurately. As bench-

marks in the forecasting exercises below, we consider both BPS-CONST and BPS-RW

(as defined in Section 2.1.2).

3.3.2 Forecasting EA Output Growth Using the Survey of Profes-

sional Forecasters

The ECB has been producing the SPF since 1999. The ECB SPF is the longest-running

EA survey of macroeconomic forecasts. Each quarter, the survey elicits from a panel of

professional forecasters point and probability forecasts of EA inflation and GDP growth

at various horizons.7 We consider the two-quarter-ahead forecasts of year-on-year EA

GDP growth. On average, there are 50 responses a quarter from a survey panel of over

100 professional forecasters.

There are a couple of features of the forecaster-level density forecasts from the ECB

SPF that we have to address in order to combine them. First, survey respondents

provide their probability forecasts over given (fixed) ranges. That is, they produce

histogram rather than continuous density forecasts. For example, in the 1999Q1 survey,

forecasters were instructed to provide their probability forecasts over 10 bins. The first

bin was GDP growth less than 0 percent, with the bins then increasing in intervals of 50

basis points, until the tenth bin of higher than 4 percent growth. To accommodate the

discretized nature of these probability forecasts, rather than fit a continuous density to

the histogram (that may or may not have a good fit), we use the histogram forecast data
7For a full description of the EA SPF, see García (2003).
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“as is." We do this by, within our BPS approach, drawing samples for each forecaster

directly from the histograms. Details of our algorithm, which involves a Metropolis-

Hastings step, are given in Appendix A.2. Our sampling approach changes over time

to capture the fact that the bin definitions have been moved over time. In particular,

after shocks such as the global financial crisis and COVID-19, the ECB shifted the

bins to allow forecasters to say more about the probabilities in what were, prior to the

survey change, the extremes of the distribution. We also have to take a stand on the

open intervals at the bottom and top of the histogram. We set the end-points for the

histograms equal to the outer bin plus or minus (depending on whether we are at the

top or bottom of the histogram) two standard deviations of GDP growth, as estimated

using the vintage of GDP data available at the time the forecast was made.

Second, forecasters enter and exit the panel. This means that the panel is unbal-

anced. We follow Diebold et al. (2023) in constructing the longest consistent panel

possible by dropping forecasters who are regular non-responders and then filling in the

occasional missing values for the remaining forecasters. Specifically, we drop forecasters

who have not responded for five or more consecutive quarters. This results in a panel

of 14 forecasters. Any missing forecast data for these 14 forecasters are estimated us-

ing a Normal distribution based on the unconditional distribution of GDP growth as

estimated in real time.8

We then take these 14 forecasters’ densities and carry out a recursive out-of-sample

evaluation of the alternative BPS specifications over the sample 2005Q2 through 2021Q1.

To do this, we first estimate the BPS combinations on a set of training samples that

comprise a sequence of expanding windows of GDP and density forecast data. The GDP

data used in the training sample are that vintage of GDP data available to the forecast-

ers when they made their forecasts. The first training sample uses forecasts from the

five-year period targeting GDP outturns from 1999Q3 through 2004Q2. These forecasts

are taken from the surveys administered between 1999Q1 and 2003Q4. Given its publi-

cation lags and our desire to approximate the information set available at the time the
8We differ from Diebold et al. (2023) in two ways. First, they interpolate missing forecasts based

on historical performance. Second, we have a different number of forecasts because we use a different
sample and we forecast GDP growth instead of inflation.
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SPF forecasts are publicly available, the GDP outturns required to estimate the BPS

synthesis function over this training sample are taken from the 2004Q4 vintage. This

estimated synthesis function then uses the 2004Q4 survey to forecast (out-of-sample)

2005Q2. The training sample and vintage of GDP data are then extended by one quar-

ter, and forecasts are produced for 2005Q3. This process is continued until forecasts are

produced for 2021Q1. This set of out-of-sample BPS density forecasts is then evaluated

against GDP outturns taken from the June 9, 2021, vintage.

3.3.3 Forecasting US inflation Using a Set of Indicators from FRED-

QD

We follow Rossi and Sekhposyan (2014) and construct density forecasts of US inflation

using a set of autoregressive distributed lag (ADL) models. Each ADL model considers 1

of 27 indicators taken from the FRED-QD data set (McCracken and Ng, 2021), which is

commonly used when forecasting macroeconomic aggregates such as inflation in the US.

The selected indicators capture movements in assets prices, measures of real economic

activity, wages and prices, and money. This rich and diverse set of economic indicators

allows the ADL density forecasts of US inflation to display significant heterogeneity.

Table B.1 in the Appendix provides an overview of the variables used as exogenous

predictors and the transformations applied to ensure their stationarity.

We then use each of these ADL models to produce direct forecasts for quarter-on-

quarter consumer price (CPIAUCSL) inflation one quarter ahead (h = 1) and one year

ahead (h = 4). Specifically, for each indicator, xjt, for j = 1, ..., 27, we estimate the set

of ADL models:

πt+h = ρππt + απxjt + επ,t+h, επ,t+h ∼ N
(
0, σ2π,t+h

)
, (3.12)

where πt is inflation, ρπ is the autoregressive coefficient, and απ denotes the coefficient

related to the jth exogenous indicator.9 We supplement these j = 1, . . . , 27 models

with a 28th model (the AR(1) model) that sets xt = 0 in Eq. (3.12). We also allow
9For notational ease, we do not use j subscripts to distinguish parameters in Eq. (3.12).
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σ2π,t+h, the error variance, to be both time-varying and constant. Hence, we estimate

28 models both with and without SV, delivering, in total, a set of 56 individual models

whose density forecasts we then combine using BPS. All 56 models are estimated using

standard Bayesian techniques. Details are provided in Appendix B.1.3.

We first estimate these models on a training sample from 1970Q1 to 1989Q4. We

then iterate forward using a rolling estimation window of 80 quarters to account for

possible structural changes in the US economy. The first ten years of forecasts (1990Q1

to 1999Q4) are used as a training window to estimate the BPS synthesis functions. The

combined forecasts are then assessed on the evaluation sample 2000Q1 to 2022Q4. This

evaluation period includes distinct economic periods characterized by different inflation

dynamics, including the dotcom crash, the global financial crisis, the COVID-19 period,

and the post-pandemic inflationary period.

3.3.4 Empirical Results

We break the empirical results into three parts presented in the following three sub-

sections. First, we evaluate the relative and absolute density forecast accuracy of BPS-

RT. Second, we examine why BPS-RT forecasts more accurately than the benchmarks

by comparing features of their forecast densities. Third, we demonstrate aspects of

interpretability of BPS-RT by examining how BPS-RT can be used to understand the

role of model incompleteness, agent clustering, and the time-varying importance of the

different effect modifiers.

Forecast Accuracy

We evaluate forecast accuracy in several ways. We first evaluate the point (condi-

tional mean) forecasts, extracted from the combined densities, using the root mean

squared forecast error (RMSE) loss function. Second, we evaluate the full predictive

densities. We emphasize evaluation of the predictive densities rather than the point

forecasts. Since the loss functions of forecast users tend not to be quadratic – as the

density forecast literature (see Aastveit et al., 2019) emphasizes – it is always impor-

tant to produce and evaluate complete probabilistic forecasts. We measure the relative
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forecast accuracy of the forecast densities using two popular metrics: CRPS and a tail-

weighted CRPS. Both are loss functions that score the density forecast according to the

realization that subsequently materializes. CRPS evaluates the “whole" density, while

tail-weighted CRPS focuses on accuracy in the tails (Gneiting and Ranjan, 2011).10 We

also test the absolute calibration of the combined density forecasts using the Rossi and

Sekhposyan (2019) test on the probability integral transforms (PITs); and we assess the

temporal stability of forecast performance using the fluctuation test of Giacomini and

Rossi (2010). The results of both these tests are summarized below, with full results

presented in Appendix B.2.

Figures 3.2 and 3.3 report the relative forecast performance of the different models

in the EA GDP growth and US inflation applications, respectively, using the RMSE,

CRPS, and CRPS-tails loss functions. Each row in these figures reports the relative

(to the BPS-RW benchmark) performance of the four BPS-RT specifications as dif-

ferentiated by whether they use a single tree or 250 trees and whether they have SV

or homoskedastic errors. The four columns in the figures refer to which set of weight

modifiers is used.

Looking first at the RMSE panel in Figure 3.2 for EA GDP growth, we see little

difference between the alternative BPS-RT specifications in terms of their point fore-

cast accuracy. The accuracy of the BPS-RT specifications also tends to be similar to

that of BPS-CONST and BPS-RW, with gains/losses in general only around 3 percent.

This supports the stylized fact from the forecasting literature that equal-weighted com-

binations of point forecasts are hard to beat (see Timmermann, 2006b). Turning to

US inflation (Figure 3.3), we do see in the RMSE panel that some of the tree-based

methods now improve upon the point forecast accuracy of both benchmarks and in a

manner that is statistically significant. Of particular note is the superior performance of

the single-tree models, which almost always outperform the more complicated 250-tree

models. We discuss this finding further below.

The CRPS panels in both Figures 3.2 and 3.3 reveal yet more of a payoff to using

BPS-RT, certainly relative to BPS-RW, when we evaluate the whole density. Many of
10In the empirical appendix, we follow Gneiting and Ranjan (2011) and break CRPS tails into their

left and right tails. See Figures B.1 and B.2 in Appendix B.2.
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the forecast accuracy gains for BPS-RT are statistically significant. An implication of

this finding is that BPS-RW’s assumption that the combination weights follow a random

walk is not supported by the data. But BPS-CONST, especially when BPS allows for

SV, remains competitive for EA GDP growth.

The CRPS and CRPS tail results echo those under RMSE loss in concluding that

single-tree structures, S = 1, are almost always preferred to S = 250. The fact that

a single-tree model produces more accurate forecasts contrasts with the conventional

wisdom in the wider BART literature; see Chipman et al. (2010). In our case, however,

we model the weights, rather than the observed outcomes, nonparametrically; hence,

the implied conditional mean relation (see Equation 3.5) introduces more restrictions

relative to a standard BART model and hence lessens the risk of overfitting.

While the benefits of allowing for SV are well established in the density forecast

literature (see Clark, 2011), allowing for SV in the BPS combination does not obviously

improve the density forecasts from BPS-RT. But recall, and we touch on this again

below when showing that these models in fact receive higher combination weights, in

the US inflation application, half of the components models themselves allow for SV.

We now focus on comparing forecast accuracy across the first four columns of both

Figures 3.2 and 3.3. This comparison reveals that the choice of weight modifier does

affect forecast accuracy. It is not always the case that using more weight modifiers

delivers more accurate forecasts. The benefit of different modifiers varies by application

and by which row (which of the four BPS-RT specifications) is consulted.

Finally, we summarize the results from both the PITs calibration tests and the fluc-

tuation tests. These results are reported in the online appendix for space reasons. The

PITs plots (see Figure B.10) show that the BPS-RT densities are well calibrated, and

especially so when forecasting EA GDP growth or US inflation one-quarter-ahead. The

fluctuation test of Giacomini and Rossi (2010) reveals that there is temporal variation

in the relative performance (under CRPS loss) of the preferred BPS-RT model and

BPW-RW. Results (see Figure B.9) indicate that the superior performance of BPS-RT

in the EA application is due to better forecasting performance toward the end of the

global financial crisis. For US inflation, the better accuracy of BPS-RT is explained by
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its more accurate density forecasts in the post-lockdown inflationary period.

Figure 3.2: Relative forecast accuracy: EA GDP growth.
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Notes: This figure shows root mean square error (RMSE) ratios, (unweighted) continuous ranked probability
score (CRPS) ratios, and a variant of quantile-weighted CRPS ratios that focuses on the tails. The gray-shaded
entries give the actual scores of our benchmark (BPS-RW with homoskedastic error variances). Green-shaded
entries refer to models that outperform the benchmark (with the forecast metric ratios below one), while red-
shaded entries denote models that are outperformed by the benchmark (with the forecast metric ratios greater
than one). The best-performing model specification by forecast metric is given in bold. Asterisks indicate
statistical significance of the Diebold and Mariano (1995) test, which tests equal forecast performance for each
model relative to the benchmark, at the 1 (∗∗∗), 5 (∗∗), and 10 (∗) percent significance levels.
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Figure 3.3: Relative forecast accuracy: US inflation.
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Notes: This figure shows root mean square error (RMSE) ratios, (unweighted) continuous ranked probability
score (CRPS) ratios, and a variant of quantile-weighted CRPS ratios that focuses on the tails. The gray-shaded
entries give the actual scores of our benchmark (BPS-RW with homoskedastic error variances). Green-shaded
entries refer to models that outperform the benchmark (with the forecast metric ratios below one), while red-
shaded entries denote models that are outperformed by the benchmark (with the forecast metric ratios greater
than one). The best-performing model specification by forecast metric is given in bold. Asterisks indicate
statistical significance of the Diebold and Mariano (1995) test, which tests equal forecast performance for each
model relative to the benchmark, at the 1 (∗∗∗), 5 (∗∗), and 10 (∗) percent significance levels.
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Properties of the BPS-RT Density Forecasts

In this section we examine how and why BPS-RT forecasts more accurately. We focus on

the best-performing (most accurate) model in each application and compare its forecast

densities to those of the benchmark model, BPS-RW.11

Figure 3.4 shows a heat map of the difference in probabilities, in intervals of 1.5

percentage point for EA GDP growth and of 1 percentage point for US inflation, between

BPS-RT and BPS-RW. Green (red) shading indicates that BPS-RT adds (subtracts)

probability relative to BPS-RW in that interval. This is the approach pioneered by

Diebold et al. (2023) as a way of visualizing the differences between competing density

forecasts.12

Panel (a) of Figure 3.4 shows that, in general, BPS-RT predictions are less dispersed

than BPS-RW with more mass near the subsequent outcomes. Additionally, the BPS-

RT density adds probability to low GDP growth outturns prior to the financial crisis

and also forecasts higher growth than BPS-RW in both the post-global financial crisis

recovery and the rebound from the COVID-19-induced recession.13 Panels (b) and (c)

of Figure 3.4 show the analogous plots for US inflation. Similar to panel (a), BPS-RT

places more mass closer to the outturn and produces forecasts that are, in general,

less disperse. Moreover, BPS-RT adjusts much more quickly to the increase in infla-

tion post-pandemic, both one quarter ahead and one year ahead, attributing a higher

probability to these outturns than BPS-RW. Consistent with the evidence in Rossi and

Sekhposyan (2014) that combinations of predictive densities for US inflation appear to

be approximately Gaussian, the inflation forecast densities from BPS-RT also tend to
11As seen from Figures 3.2 and 3.3, in the EA GDP growth application, the “best" BPS-RT specifica-

tion has a single tree and SV and uses average scores as effect modifiers (i.e., RT(C): AVG.-SCORES). For
the US inflation application, the “best” BPS-RT specification has a single tree, homoskedastic errors,
and the full set of weight modifiers (i.e., RT(TC): ALL).

12For an alternative but complementary visualization, Figure B.12 in Appendix B.2 shows the tem-
poral evolution of the underlying density forecasts from BPS-RT and the benchmark BPS-RW model
over the EA and US evaluation samples.

13As shown in Figure B.13 in the online appendix, in moving the probability mass from the centers to
the left tail of the forecast density, BPS-RT captures asymmetries in the forecast densities. While there
is some evidence of heightened downside risk asymmetries to GDP growth in the course of the financial
crisis, consistent with the growth-at-risk literature (Adrian et al., 2019), the evidence for negative skew
is stronger still during the COVID-19 pandemic.
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be symmetric (see Figure B.13 in the appendix), although there is clear evidence of a

spike in downside risks in 2011, a time when the Fed was engaged in quantitative easing

to combat deflation threats.

Interpretation: A Deeper Dive into the Mechanics of BPS-RT for US Infla-

tion

This section discusses how D can interpret the combined forecasts from BPS-RT. In so

doing, we continue to focus on the preferred BPS-RT specification in the US inflation

application, not least because this is where we observe greater differences across the

competing combination strategies. We first show how to quantify the degree of model

set incompleteness, as a way of assessing how well the agents (the J forecasting models)

that BPS-RT is combining are actually able to forecast. Second, we assess the relative

importance of individual weight modifiers in driving BPS-RT.

To measure model set incompleteness, we compute an R2-type measure. This esti-

mates the proportion of the variation in yt+h that is explained by the J agents. This

measure is computed, for a specific period in the evaluation sample, as the ratio between

the variation in the conditional mean in Eq. (3.2) explained exclusively by the BPS-RT

component – which is the conditional mean in Eq. (3.2) without the time-varying inter-

cept ct+h – and the overall variation of the target variable, yt+h. R2 values close to zero

signify a high degree of model incompleteness, which means that the agents’ forecasts

are not informative about the target variable. Instead, the intercept and error term in

the BPS synthesis function, Eq. (3.2), explain a large portion of the total variation. In

contrast, R2 values close to one indicate that the agents’ forecasts are informative and

account for the majority of the variation, implying a complete model space.

Figure 3.5 plots this R2-type estimate over the evaluation sample. Given that it is

computed recursively, quarter by quarter, it experiences some volatility. But Figure 3.5

still evidences meaningful temporal variations in the degree of model set incompleteness

at both forecast horizons. We see higher model incompleteness for the one-year-ahead

forecasts than for the one-quarter-ahead forecasts. This is not surprising, as producing

longer-horizon forecasts is obviously more difficult. At both horizons, we see increases in
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Figure 3.4: Difference in probabilities between BPS-RT and BPS-RW

(a) EA GDP growth

−15

−10

−5

0

5

10

15

20
05

Q2

20
06

Q1

20
08

Q1

20
10

Q1

20
12

Q1

20
14

Q1

20
16

Q1

20
18

Q1

20
20

Q1

20
21

Q1

−40 −20 0 20

(b) One-quarter-ahead US inflation (h = 1)
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(c) One-year-ahead US inflation (h = 4)
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Notes: This figure shows the difference in probabilities between the best-performing BPS-RT model (in terms
of CRPS) and BPS-RW. We define a grid of possible values for EA GDP growth ranging from −15 percent to 15
percent with increments of 1.5 percent, while we define a grid of possible values for US inflation ranging from −10
percent to 10 percent with increments of 1 percent. Green (red)-shaded cells indicate that the best-performing
model adds (subtracts) probability relative to the benchmark in the respective region.
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model incompleteness during the period 2004–2008, a time of extreme oil price volatility

as well as the global financial crisis, and in the disinflation period after the 2015 oil price

shock.

Interestingly, there is no clear evidence of an increase in model incompleteness during

the post-pandemic rise in inflation, reinforcing the message from Figure 3.4 that BPS-

RT was better able to anticipate the 2021 rise in US inflation.
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Figure 3.5: Measuring model incompleteness: US inflation
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Notes: This figure shows the evolution of the model incompleteness measure over time. For each quarter in
the evaluation sample, this measure is computed for our preferred specification (homoskedastic BPS-RT(TC):
ALL with a single tree) as the ratio between the variation explained exclusively by the BPS-RT part (i.e., the
conditional mean without the time-varying intercept) and the total variation, which thus can be interpreted
as an R2 measure. The green solid lines represent the posterior median of this incompleteness R2, which is
bounded between zero and one. Values close to zero suggest that model incompleteness, as measured by the
time-varying intercept and the error variance in Eq. (3.2), plays an important role, while values close to one
indicate that the BPS-RT part explains most of the variation.

We now turn to assessing the relative importance of the individual weight modifiers

in driving the density forecasts from BPS-RT. We do so by looking first at the number

of tree splits and then by calculating inclusion probabilities for each weight modifier.

Inclusion probabilities are calculated as the number of splits associated with the re-

spective weight modifier divided by the total number of splits. For space reasons, we

focus our discussion on Figure 3.6, which examines the weight modifiers for forecasting

US inflation one quarter ahead. Analogous results forecasting inflation one year ahead

are reported in Figure 3.7 and summarized below when the conclusions differ markedly

from those discussed in greater detail for the one-quarter-ahead forecasts.

We start in panel (a) of Figure 3.6 by plotting the evolution of the total number of

tree splits over the evaluation sample. This panel indicates whether variability in the

combination weights comes from the time-varying (βjt+h) or constant component (γj)

of BPS-RT. Panel (a) reveals that BPS-RT tends to select a relatively small number

of tree splits, especially for the time-invariant weights. Typically for γj , we observe

that the posterior mean of the number of tree splits lies between 0.52 (lower quartile

over the evaluation sample) and 1.15 (upper quartile, with a few more exceptions in

the upper tail), while the average over the evaluation sample is 1.28. On the other

hand, the posterior mean number of tree splits for the time-varying weights, βjt+h,
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Figure 3.6: Number of tree splits for BPS-RT (S = 1) and relative importance for each
weight modifier for US inflation: One-quarter-ahead forecasts
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(b) Time-invariant weights: Two weight modifiers and their relative importance
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(c) Time-varying weights: Ten weight modifiers and their relative importance
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Notes: Panel (a) shows the evolution of the total number of tree splits over time, while panels (b) and (c) show
the marginal importance of each weight modifier for each quarter in the evaluation sample. Relative importance
is defined as the share of the total number of splits. For each quarter in the evaluation sample, we obtain the
posterior mean for these measures for our preferred specification (homoskedastic BPS-RT(TC): ALL with a single
tree). For the exogenous indicators and the MSE/CRPS scores, (t−h) indicates that these measures are lagged
by the forecast horizon h, while all other measures can be included contemporaneously.
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ranges from 1.08 to 1.68 (indicating the interquartile range) and has an average of 1.59

over the evaluation sample. To place these numbers in the context of a single-tree

split on, for example, γj indicates that the combination weights tend to cluster around

two distinct prior means. With this in mind, we interpret the results in panel (a)

as showing that the combination weights often fall into a handful of clusters that are

more likely to be determined by time-specific factors. However, the number of splits is

modest, so the weights are relatively stable over time. This finding is consistent with

the density forecast combination literature that finds that constant weight combinations

can forecast well (see, for example, Chernis, 2023).

Panels (b) and (c) of Figure 3.6 then show the inclusion probabilities for each of the

constant and time-varying weight modifiers. Panel (b) shows the inclusion probabilities

for the weight modifiers (CRPS and MSE) used to model the time-invariant combination

weights. Neither CRPS nor MSE is obviously more important. Both weight modifiers

receive positive and often fairly similar probabilities of inclusion. This implies that

BPS-RT does partition models on the basis of their historical forecast accuracy.

Panel (c) of Figure 3.6 shows the importance of both time-varying weight modifiers.

The first thing to notice is that there is much more sparsity in terms of the weight

modifiers BPS-RT selects. In the first half of the evaluation sample, we see that features

of the individual density forecasts drive the posterior inclusion probabilities. Specifically,

we see that the moments of the marginal densities and CRPS, lagged by the forecast

horizon h, are selected. But in the second half of the evaluation sample, we see the

largest proportion of tree splits attributed to the NFCI during and immediately after

recessions. The Michigan survey expectations measure also receives more weight after

the financial crisis. This is evidence that nonlinear features of BPS-RT are driven by

weight modifiers related to the business cycle. In other words, our BPS-RT model finds

that the data support changing the combination weights abruptly with business cycle

fluctuations. Finally, the time trend receives a higher weight in the post-COVID period

of higher inflation seen in 2021 and 2022. This finding indicates that this inflationary

episode – unprecedented within the sample – requires a substantial and rapid adjustment

of the combination weights. These required weight dynamics cannot be fully captured
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by the business cycle weight modifiers. Instead, a time trend (or, more precisely, a time

dummy) is ideal for modeling such a regime shift from low to high inflation during this

exceptional period.

Finally, we summarize the properties of the posterior median estimates of the com-

bination weights that are plotted over the evaluation sample in Appendix B.2. We

draw out two conclusions for the combination weights estimated when forecasting US

inflation one quarter ahead (see Figure B.4). First, BPS-RT places more weight on

those component models with SV, especially toward the end of the evaluation sample.

This corresponds to the period when BPS-RT outperforms the BPS-RW benchmark

(see Figure B.8).

Second, among these SV models, only a subset receives large, in absolute value,

weights. This indicates that there is some payoff, in terms of forecast accuracy, to occa-

sionally placing a significantly higher weight on a small subset of models. Interestingly,

some models get large negative weights. This amounts to short-selling those models as

a “hedge” against the models with higher weights. A roughly similar pattern is seen for

the one-year-ahead forecast combination weights seen in Figure B.5.14

While this subsection has focused on the US inflation application, we end by re-

turning briefly to the EA GDP growth forecasting application. Figure B.3 in Appendix

B.2, shows that the combination weights on most individual forecasters from the ECB

SPF are, as anticipated given our earlier results, closer to equal than in the inflation

application, where there was greater sparsity in the weights. This said, we do still see

higher weights on a couple of experts (forecasters 6 and 14). We take this contrast-

ing evidence across the two applications as empirical proof that BPS-RT is sufficiently

flexible to adjust to forecasting scenarios that exhibit different dependence structures

between the agents’ forecasts.
14Figure B.6 in the online appendix provides additional perspective on the temporal stability of the

combination weights by plotting their sum over the evaluation sample. We see that when forecasting
US inflation, this sum becomes negative during the global financial crisis, indicating how BPS-RT is
reweighting most agents’ densities in the face of temporal instabilities. The sum of the weights also
spikes upward during the 2021–22 inflationary episode, again indicating how BPS-RT can quickly adapt
to temporal change.
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Figure 3.7: One-year-ahead horizon: Number of (total) tree splits for our single-tree
models and relative importance for each effect modifier.
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(b) Time-invariant part: Two effect modifiers and their relative importance
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(c) Time-varying part: Ten effect modifiers and their relative importance
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Notes: Panel (a) shows the evolution of the total number of tree splits over time, while panels (b) and (c) show
the marginal importance of each weight modifier for each period in the evaluation sample. Relative importance
is defined as the share of the total number of splits. For each period in the evaluation sample, we obtain the
posterior mean for these measures for our preferred specification (homoskedastic BPS-RT(TC): ALL with a single
tree). For the exogenous indicators and the MSE/CRPS scores, (t−h) indicates that these measures are lagged
by the forecast horizon h, while all other measures can be included contemporaneously.
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3.4 Conclusion

Within the general BPS framework of McAlinn and West (2019), this paper develops

a method for nonparametric density forecast combination using regression trees: BPS-

RT. While a handful of papers use nonparametric techniques to combine densities, ours

is the first to use regression trees. In contrast to most applications of regression trees,

we model the coefficients, in our case the combination weights, instead of the variables

using the regression trees. We show how this aids interpretation, since the combination

model remains linear in the parameters. Additionally, regression trees use covariates,

or weight modifiers, to drive changes in parameters, in contrast to conventional BPS

applications where model parameters follow a random walk. Taken together, our ap-

proach is flexible but retains interpretability through linearity and the use of weight

modifiers. We explain how BPS-RT can be used to understand the role of model incom-

pleteness, agent (forecast) clustering, and the time-varying importance of the different

weight modifiers.

We test the performance of BPS-RT in two different applications – combining model-

based US inflation density forecasts and subjective histogram-based forecasts of euro

area GDP growth. We find that, across both applications, BPS-RT forecasts well in

terms of both relative and absolute accuracy. Interestingly, and in contrast to standard

BART applications, we find that using a parsimonious single-tree specification outper-

forms models with more trees. Inspecting the best-performing specification, we observe

that this superior performance is due to less disperse forecast densities and BPS-RT’s

ability to better accommodate the shocks associated with the global financial crisis (in

the GDP application) and COVID-19 (in the inflation application). Our proposed mea-

sure of model set incompleteness suggests that BPS-RT is able to capture much of the

post-COVID rise in inflation. Triggered by a rise in the relative importance of the time

trend in determining tree splits, itself highlighting the unusual nature of this inflation-

ary period, BPS-RT also shifts its combination weights toward component models with

SV. This contrasts with the prior period of lower inflation, when the business cycle

indicators were found to be more important weight modifiers.
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Future lines of research could involve investigating, in other forecasting applications

and contexts, the usefulness of different sets of weight modifiers and the implications

for weight structure. For instance, this could draw on the ability of BPS-RT, via its

choice of weight modifiers, to capture general patterns of cross-sectional dependence

between competing agents’ probabilistic forecasts. Additional structure could be given

to the clustering by, for example, letting the combination weight on a given individual

agent’s density forecast depend not only on characteristics of her own forecast (such as

its mean or variance) but on characteristics of the other agents’ forecasts.
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Decision Synthesis in Monetary

Policy

4.1 Introduction

Monetary policymakers are tasked with simple, but hard to achieve, objectives. A com-

mon objective is to target the future inflation rate, or other macroeconomic outcomes,

using interest rates as the policy instrument. These decisions are made based on un-

certain information from many sources. In this paper, these sources are econometric

models that generate predictive distributions for the macroeconomic outcomes and the

policy instruments over multiple time periods. For a single model, it is straightforward

to select an optimal policy instrument using decision analysis and conditional forecast-

ing. Applying standard methods, such as Bayesian model averaging (BMA), is one way

to address the issue of model uncertainty, as routine decision analysis can then be ap-

plied to the weighted average as a single model. However, this traditional view ignores

the reality that a set of models may each individually recommend very different optimal

policy decisions. The question then arises of how to synthesize this information and,

potentially, exploit it in the overall final decision process. This paper addresses and

answers this question.

There is an extensive Bayesian econometrics literature on model combination, but

discussion of the issue that models are built for different purposes—specific prediction
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and decision goals—is very sparse. Traditional BMA analysis weights models according

to purely statistical model fit, and in time series explicitly, and only scores one step

ahead of forecast outcomes. Extensions and alternatives have arisen to define model

weightings based on aspects of past forecast performance with respect to specific forecast

goals. Martin et al. (2023) survey Bayesian forecasting in economics and finance and

review various forecast combination approaches, including some that are more explic-

itly concerned with goal-focused prediction (e.g., Mitchell and Hall, 2005; Geweke and

Amisano, 2011; Conflitti et al., 2015; Kapetanios et al., 2015; Loaiza-Maya et al., 2021;

Chernis and Webley, 2022; Aastveit et al., 2023; Bernaciak and Griffin, 2024). Lavine

et al. (2021) provide additional perspectives and put many of the earlier approaches

in a foundational Bayesian context. They justify model weights based on utilities in

forecasting using historical model-specific “scoring” of past forecast outcomes. The un-

derlying theoretical justifications come from Bayesian predictive synthesis (BPS) and

the specific class of “mixture BPS” models (McAlinn and West, 2019, section 2.2; John-

son and West, 2022). However, while ultimate decision goals may be implicit in specific

applications of model combination, they are rarely, if ever, taken into account in the

analysis and resulting decision-making. This raises concerns. Although a model that

has fit or forecast specific outcomes well in the past may be a good bet for use in result-

ing decision analysis—in our settings, defining optimal decisions about values of policy

instruments—there is no guarantee that this will be so.

Our view is that models that have recommended policy decisions that turn out to

be “good” should be more heavily weighted in looking ahead, just as past statistical

predictive performance is generally positively weighted. The question is how to de-

fine “good,” since econometric models are not explicitly used and scored in past policy

decisions. The challenge is then to operationalize the concept of “good decision” perfor-

mance. For example, a vector autoregression (VAR) model can be evaluated on forecast

performance using a pseudo real-time forecasting exercise. But, it is not clear how to

evaluate such a model when it is used to advise policy decisions. We can, however, use

the VAR model at present to inform near-term decisions and explore how it would have

advised on decisions in the past. Evaluations can then compare such analysis to deci-
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sions actually made by policymakers in the past (albeit recognizing that policymakers’

past decisions were not necessarily correct and rather were just the outcomes of the

amorphous reality of monetary policy-making).

Bayesian predictive decision synthesis (BPDS—Tallman and West, 2023; Tallman,

2024) addresses these questions. As part of the theoretical framework of Bayesian pre-

dictive synthesis (BPS—McAlinn and West, 2019; Johnson and West, 2022), BPDS

explicitly allows and encourages the scoring of models based on decision analysis per-

formance as well as statistical predictive accuracy. In addition to reflecting historical

outcomes of predictions and decisions, BPDS critically also allows for differential model

weighting based on expected decision outcomes. This is a complete decision parallel to

the proven use of BPS models that incorporate outcome-dependent weights that mod-

ify BMA-like mixtures to differentially favour models in different parts of the future

outcome space for pure forecasting. The latter concept was introduced by Kapetanios

et al. (2015), whose empirically inspired developments recognized, for example, that

one model may be better at predicting inflation when inflation is high and rising, while

another model may be better when inflation is low and stable. BPS defines the concep-

tual and theoretical Bayesian bases and a broader methodological framework for this.

BPDS goes further by integrating both historical and expected decision outcomes; here

we develop, extend, and exemplify BPDS in our central macroeconomic policy context.

BPDS applies the broader Bayesian mixture model approach of BPS using defined

utility—or “score”—functions that relate to explicit decision goals. Importantly, this

allows for multiple objectives (i.e., multi-attribute decision analysis). For example, a

purely predictive vector score function can allow for multiple forecast horizons (e.g., to

produce inflation near a target for each of the next eight quarters) and/or multiple out-

come criteria (e.g., to separately reflect inflation targeting, interest rate smoothing, and

stable growth patterns over coming quarters), among others. For policymakers juggling

multiple objectives, this key feature is rather distinct from conventional approaches that

adopt single, scalar criteria for model weighting. For example, a forecast combination

approach might choose model weights based on the h−step-ahead predictive likelihood

for a single choice of h, with BMA simply focused on h = 1. In contrast, BPDS can
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address multi-steps ahead in parallel, along with scoring the outcomes of decision goals

that simultaneously target several macroeconomic outcomes.

The opportunities for exploring such practically relevant questions, and the differ-

ences relative to traditional single-model and BMA-based analyses, are showcased in

our empirical studies. This involves an exploratory case study using US macroeconomic

data with multiple-objective score functions to define BPDS model weights. This exem-

plifies the use of BPDS in macroeconomic forecasting and advisory decision-making.

4.2 BPDS Framework

We present and discuss the structure of BPDS at a particular point in time, ignoring

the time dependency and relevance in the notation for clarity in communicating these

essentials. Practical implementation in time series is of course sequential, with models

at time t depending on all relevant historical data and information.

4.2.1 Mixture BPDS and Decision Setting

At a given time point, let y denote the q−dimensional outcome variable of interest (e.g.,

inflation in each of the next q quarters) and x the vector of control/decision variables

(e.g., a target profile of central bank interest/base rates over the next q quarters). Each

of a set of J models, Mj , j = 1:J, predicts the outcome y via a predictive density

pj(y|x,Mj) conditional on any considered decision x. The policymaker responsible for

ultimate decisions adopts a general BPDS approach with the overall conditional (on x)

predictive pdf

f(y|x) ∝
∑
j=0:J

πj(x)αj(y|x)pj(y|x,Mj) (4.1)

with the following ingredients.

BPDS model probabilities

The decision-dependent model probabilities πj(x) can differentially weight models j over

the decision space of x, incorporating any prior information relevant to model weighting

based on past predictive model fit and decision outcomes, and now explicitly allowing
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for adjustments based on a currently considered decision x. Dependence of πj(x) on x

is simply fundamental and critical in our policy setting.

BPDS calibration functions

The αj(y|x) are calibration functions that define outcome dependence of model weights

over the outcome space of y for any chosen x. This defines the opportunity to increase

or decrease the model weights differentially over the outcome y space to address model-

specific biases and preferences and address questions of model-specific calibration more

generally. The BPDS mixture of eqn. (4.1) has the equivalent form

f(y|x) =
∑
j=0:J

π̃j(x)fj(y|x,Mj) (4.2)

where

fj(y|x,Mj) = αj(y|x)pj(y|x,Mj)/aj(x) and π̃j(x) = k(x)πj(x)aj(x) (4.3)

with normalizing terms k(x) and aj(x) explicitly dependent on x. This form shows how

the calibration functions αj(·|·) modify the initial mixture pdfs pj(·|·) → fj(·|·) with

corresponding changes of mixture weights πj(x) → π̃j(x).

Note that the choice of relevant calibration functions αj(y|x) will, in any given

application, be partly dependent on characteristics of the model pdfs pj(y|x,Mj). In

particular, the expectation of each αj(y|x) under pj(y|x,Mj) must be finite in order

that eqn. (4.1) defines a valid BPDS density f(y|x). Unbounded score functions may

sometimes apply, but this point supports the use of bounded scores in general.

Baseline mixture component

The model index j = 0 explicitly allows for a baseline model component M0 in the

mixture pdf f(·|·) that can, among other things, address the ever-present issue of “model

set incompleteness” (Tallman and West, 2023, section 2.2.3). M0 can be chosen to

produce a pdf f0(·|·) that is over-dispersed relative to the mixture of the initial J

models, so supporting outcomes y that are unusual under the J models. The baseline
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is then a suitable “fall back” model for times when the other models are forecasting

poorly.

Initial mixture

The special case with each αj(y|x) = 1 defines the initial mixture with no BPDS

calibration. We use p(y|x) in notion, that is, p(y|x) =
∑

j=1:J πj(x)pj(y|x,Mj).

Special cases fix ideas. First, if πj(x) = πj with π0 = 0 are model probabilities

based on historical BMA analysis, and with αj(y|x) = 1, then eqn. (4.1) specializes

to BMA. Thus, BMA analyses—with or without this decision dependence in model-

specific forecasts—are very special cases of BPDS. Second, again with πj(x) = πj ,

π0 = 0 and αj(y|x) = 1, the decision-maker has the freedom to specify the initial

mixture probabilities πj in other ways than with BMA. This includes using historical

performance defined by scoring of past forecast outcomes, justifying various approaches

to goal-focused model weighting (e.g., Lavine et al., 2021; Loaiza-Maya et al., 2021, and

references therein) as special cases of BPDS. Third, mixture BPS (McAlinn and West,

2019; Johnson and West, 2022) is a special case in which models are combined with

outcome-dependent weights. In these settings, πj(x) = πj depends on past predictive

performance, pj(y|x) = pj(y) and αj(y|x) = αj(y) define outcome-dependent modifi-

cations of model probabilities, but there is no decision context so no x−dependence.

BPDS critically recognizes that the foundational BPS theory allows explicit incorpo-

ration of decision goals—admitting the conditioning on x throughout all components

of eqn. (4.1)—to extend the foregoing analyses.

With predictions of (y|x) based on eqn. (4.2), the Bayesian decision-maker acts to

identify the optimal decision x based on a chosen utility function U(y,x). This involves

numerical optimization to maximize the implied expected utility Ū(x) = Ef [U(y,x)|x]

over the decision space of x. The notation Ef [·|·] here explicitly represents expectation

with respect to the BPDS distribution, and we use Ep[·|·] to denote expectation under

the initial mixture.
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4.2.2 Decision-dependent Scores for Calibration Functions

The key step in integrating decision outcomes into relative model weightings is to address

the question of how each Mj would inform decisions if used alone. Given the predictive

pdf pj(y|x,Mj) and a chosen, potentially model-specific utility function uj(y,x), acting

based only on Mj leads to the optimal decision xj that maximizes Epj [uj(y,x)|x]

over x. The decision-maker has access to this set of model recommendations and is

interested in model combination to preferentially weight “good decision models” as well

as models that generate good predictions. BPDS formalizes this with specified score

functions sj(y,xj), each being a k−vector of utilities that can be chosen to reflect both

predictive and decision goals. The use of multi-dimensional scores addresses multiple

goals simultaneously.

The Bayesian decision-theoretic development of Tallman and West (2023) generates

the resulting functional forms of the BPDS calibration functions as

αj(y,x) = exp{τ (x)′sj(y,xj)}, j = 0:J, (4.4)

where τ (x) is a k−vector with elements differentially weighting the multiple utility

dimensions of the score vector. The reasoning and theory behind this key result is as

follows.

The initial mixture p(y|x) =
∑

j=1:J πj(x)pj(y|x,Mj) is the y−margin of the joint

distribution p(y,Mj |x) = πj(x)pj(y|x,Mj), (j = 1:J). Under this initial distribution

for any candidate decision x, and with score vectors sj(y,xj) defined and evaluated

at model-specific optimal decisions xj , the decision-maker has initial expected score

mp(x) =
∑

j=0:J πj(x)mjp(x) where mjp(x) =
∫
y sj(y,xj)pj(y|x,Mj)dy. Treating

mp(x) as a benchmark to improve on in expectation, the BPDS theory enquires about

distributions f(y,Mj |x) that yield expected scores mf (x) ≥ mp(x) + ϵ(x) for some

non-negative k−vector (with at least one positive entry) ϵ(x); this may be chosen to

depend on x, or may be a specified constant “decision score improvement.” Given mf (x),

the BPDS theory identifies a unique f(·, ·|x) that minimizes the Küllback-Leibler (KL)

divergence of p(·, ·|x) from f(·, ·|x) and has an expected score of exactly mf (x). The
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theory is that of relaxed entropy tilting (Tallman and West, 2022, 2023; West, 2023)

and yields f(y,Mj |x) ∝ πj(x)αj(y,x)pj(y|x,Mj) with calibration function precisely

as in eqn. (4.4). The tilting vector τ (x) is implicitly defined by the vector of k target

score constraints Ef [sj(y,xj)|x] = mf (x).

BPDS takes the view that the initial mixture is based on past performance, and

additional small changes in models and the way they are weighted based on their ex-

pected performance may lead to better future decisions. It asks the question of whether

there are perturbations of the mixture based on the initial model probabilities that can

lead to improved scores. Consider a stylized example with J = 2 models that in the

past have forecast equally well. Traditional model averaging methods focused only on

past forecasting experience—and BMA in particular—would confer equal weights in the

combination. If, however, the models have different expected scores mjp(x), conferring

slightly more weight on the model expected to lead to a higher score makes sense.

The entropic (or exponential) tilting theory is general. It is, of course, possible

to tilt the initial joint distribution to most targets, so long as they are technically

achievable under the initial distribution. However, an overly ambitious target score

will result in a tilted joint distribution that is empirically unreasonable. Hence we

emphasize the importance of selecting mf (x) that represents a “small ” improvement

over the initial benchmark score mp(x). This is bolstered by the assumption that the

initial model probabilities reflect the empirical plausibility of models, as well as any

available information about historical predictive and decision performance. Further,

as we exemplify later in the case study, aspects of the computational methodology

for model fitting in the sequential time series setting naturally inform on, and allow

monitoring of, relevant choices of target expected scores.

4.2.3 BPDS Summary

This section has outlined the main ideas underlying BPDS and the key ingredients of the

theory and resulting technical machinery. Specifications of score and utility functions,

initial model probabilities, and target scores are all required for implementation and are,

of course, application specific. The following section develops full details in the context
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of the macroeconomic decision-making application. In terms of computation, BPDS

requires the use of posterior simulation methods (i.e., draws from conditional predictive

densities from each model are required) as well as numerical optimization methods (i.e.,

to find xj or the overall optimal decision x under the final BPDS analysis).

4.3 BPDS for Optimal Monetary Policy Decisions

The choice of data and models is inspired by Furlanetto et al. (2019). We use quarterly

macroeconomic and financial variables from 1973:Q1 to 2022:Q2 from the FRED-QD

database maintained by the Federal Reserve Bank of St. Louis. The data set includes

GDP (the log of real GDP), prices (the log of the GDP deflator), the interest rate

(the shadow rate1, which we treat as the policy rate), investment (the ratio of real

gross private domestic investment to GDP), stock prices (the log of the S&P500) and

the spread (the spread between BAA bonds and the Fed funds rate). Models are run

over multiple years. At the end of each quarter, they produce forecasts—full predictive

distributions in terms of Monte Carlo samples—of outcomes of interest over the following

k = 8 quarters. This is conditional on candidate settings of the decision vector, which

is taken as the trajectory of interest (shadow) rates over those quarters. Within-model

decision analysis then delivers model-specific optimal decisions about these rates.

4.3.1 Models, Forecasts, and Model-specific Decisions

We consider J = 2 models: M1 is a three-variable monetary policy VAR involving GDP,

prices, and the interest rate; M2 is the model of Furlanetto et al. (2019), a VAR with

the same variables as M1 plus investment, stock prices, and the spread. Following the

latter, we include five lags in the VARs. The two structural VARs are identified using

the sign restrictions from Table 1 of Furlanetto et al. (2019). In M1 these restrictions

define supply, demand, and monetary policy shocks. In M2 investment and financial

shocks are additionally identified. We condition on a given value of the policy rate and

set the monetary policy to be the driving shock. We do this by imposing restrictions on
1This is the Federal Funds rate when the latter is positive but can go negative when it is at the zero

lower bound, taking into account unconventional monetary policy; see Wu and Xia (2016).
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the set of structural shocks underlying the conditional forecasts. Structural shocks other

than the monetary policy shock have zero means. We use the asymmetric conjugate

prior of Chan (2022), with the advantage that the marginal likelihoods for each can

be easily calculated; prior hyperparameter choices are made to maximize the marginal

likelihood as in this referenced paper. At each quarter, multi-step ahead predictions are

based on simulations using the precision-based sampler of Chan et al. (2023). Details on

the conditional forecast computations are summarized in Appendix C.2. In short, this

generates pj(y, |x) with zero-mean constraints on all shocks apart from the monetary

policy variable. We do not restrict the variance (i.e., “soft” restrictions) such that we

also have uncertainty around the path of x. This can be thought of as conditional

commitment—we allow the possibility of x deviating from the proposed policy path

with deviations informed by historical uncertainty around forecasts of the interest rate

outcomes.

In this setting, the decision variable is also modelled as an outcome variable. In

the current quarter, x = (x1, . . . , xk)
′ is the k−vector of interest rate values over the

next k quarters, and y = (y1, . . . , yk)
′ is the corresponding k−vector of inflation rates.

Whatever other variables are in the VAR model Mj , our interest focuses on the implied

pj(y|x,Mj) required for BPDS eqn. (4.1). This conditional predictive is used in decision

analysis with the same utility function for each model, namely uj(y,x) = U(y,x) given

by

U(y,x) = −
∑
h=1:k

{ρk−h(yh − y∗)2 + (xh − xh−1)
2} (4.5)

where ρ ∈ (0, 1) is a discount factor. This is a conventional quadratic function that

reflects the dual goals of inflation rate targeting and interest rate smoothing over the

next k = 8 periods. The y terms relate an inflation targeting mandate of y∗ = 2% over

the longer run, while the x terms encourage relatively constrained changes in quarter-

to-quarter interest rates (the latter being a “don’t rock the boat” consideration, as large

swings in interest rates can/will have otherwise unduly effects on the macro-economic

system). The terms involving the discount factor ρ represent the fact that monetary

policy works with a lag, so it is desirable to less heavily penalize deviations from the
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target at shorter horizons h. With our two-year horizon (k = 8 quarters), our example

analysis below adopts ρ = 0.95. The model-specific optimal decision vector xj then

maximizes Epj [U(y,x)|x] over x. Again, this analysis is repeated each quarter over

time, producing rolling updates of the “currently optimal” projections for interest rates

over the coming eight quarters.

4.3.2 BPDS Model Specification

BPDS requires specification of a relevant class of baseline pdfs p0(y|x), the model-

specific vector score functions sj(y,x), the initial BPDS model probabilities πj(x) as

functions of candidate decisions x, and the target expected scores mf (x) at any x.

These are discussed in turn. In addition to customizing BPDS to the specific appli-

cation, this section highlights a number of methodological developments relevant to

other applications, particularly in: (a) the linkages of the πj(x) to x that are relevant

more generally when x is both an outcome to be forecast as well as a putative deci-

sion variable (highlighted in Section 4.3.2 below); and (b) the relevance of dependence

structure among the elements of the vector score under the initial distribution p(y,Mj)

(highlighted in Section 4.3.2 below).

Baseline Distribution

Completing the main BPDS pdf in eqn. (4.1) requires the baseline p0(y|x). This is taken

as a multivariate T distribution with 10 degrees of freedom, using the location from the

initial mixture p(y|x), ignoring the baseline (i.e., with π0(x) = 0) and corresponding

variance of that mixture inflated by 4. This defines a relevant, tractable M0 that can

capture outcomes y that the two VAR models are not predicting well for any x under

consideration, and signal that to the decision-maker.

BPDS Score Functions

The considerations of inflation targeting and interest rate smoothing reflected in the

model-specific decision analysis in Section 4.3.1 are relevant to the choices of BPDS score
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functions. Our example takes sj(y,x) = [sj1(y1, x1), . . . , sjk(yk, xk)]
′ with elements

sjh(yh, xh) = exp {−(yh − y∗)2/(2z2y)}+ exp {−(xh − xh−1)
2/(2z2x)}, h = 1:k, (4.6)

where y∗ = 2% is the inflation target and zy and zx are score bandwidth parameters.

This defines a class of bounded score functions, always relevant in decision analysis and

here ensuring that the entropically tilted BPDS pdf of eqn. (4.3) is always integrable.

The score bandwidths are set so that a certain deviation dy = (y − y∗)2 has a score

of ε; given a choice of ε we set zy = dy/
√

−2 log(ε). Similar considerations apply

to choosing zx. Our analyses use ε = 0.4, dy = 2, and dx = 1 to ensure the score

function is dispersed enough to accommodate modest changes in the Federal Funds rate

while being more lenient in deviations from the inflation target. Obvious modifications

could incorporate horizon h−specific inflation targets and differentially weight the two

exponential terms, but this form suffices for our main goals in this paper. Note also that,

if inflation deviations from target and interest rate changes are “small,” then sjh(yh, xh)

is approximately quadratic in |yh−y∗| and |xh−xh−1| for all h, perhaps a more familiar

utility form.

Initial Model Probabilities

For clarity in the presentation in this section, we now make explicit the dependency on

time, so that the ingredients of the full BPDS predictive pdf in eqn. (4.1)—with the

exponential form of the calibration function of eqn. (4.4)—are now indexed by current

time t; that is,

ft(yt|xt) ∝
∑
j=0:J

πtj(xt)eτt(xt)′stj(yt,xtj)ptj(yt|xt,Mj).

Bayesian model weighting based on historical predictive performance with respect to

defining forecast goals, as developed in (Lavine et al., 2021), provides the starting point

for specification of the πtj(xt). The general form adopted is

πtj(xt) ∝ πtjptj(xt|Mj), j = 0:J, (4.7)
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subject to summing to 1 over j = 0:J and with ingredients as follows.

Initial model probabilities

Traditional Bayesian analysis (e.g., West and Harrison, 1997, chapter 12) defines the

starting point. Here the time t initial model probabilities are based on standard sequen-

tial Bayesian updating from those at t − 1; that is, πtj ∝ πt−1,jptj(zt−1,j |Mj) where

the “marginal model likelihood” term ptj(zt−1,j |Mj) is the value of the one-step-ahead

predictive pdf under Mj at the observed values of the last period outcomes zt−1,j under

that model. In our applied setting, this zt−1,j includes time t − 1 outcome values of

inflation (y), interest rate (x), and other economic indicators modelled and forecast in

Mj in our setting. In general these can differ across models, but in consideration for

the initial weights we restrict to variables common across models.

Then, BPDS allows the decision-maker freedom to make alternative choices of the

πtj , and the goal and decision focus recommend modification of the standard BMA

choice. BMA, after all, only reweights models based on one-step-ahead predictive accu-

racy. Hence, we adopt two modifications based on recent literature consonant with the

goal foci.

First, we use simple power discounting of historically accrued support across models,

in which the time t − 1 to time t evolution is reflected in πtj ∝ πγt−1,jptj(zt−1,j |Mj),

where γ is a discount factor in (0, 1], closer to 1 for most applications. This acts to

discount historically accrued support for model j at a per-time unit discount rate γ

prior to updating by the time t − 1 information. Going back at least to Smith (1979)

and then, in a formal dynamic model uncertainty context, West and Harrison (1989,

chapter 12, p. 445), power-discounting has been shown to be of value in empirical

studies in implicitly allowing for time-variation in the predictive relevance of different

models (e.g., Raftery et al., 2010; Koop and Korobilis, 2013; Zhao et al., 2016). Our

case study below uses γ = 0.95.

Second, reflecting the foci on specific predictive and decision goals, initial model

probabilities should also generally be modified based on the recent relative performance

of models with respect to the defined goals. This is the premise underlying the specific
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variants of BPS in the setting of adaptive variable selection, or BPS-AVS, in Lavine

et al. (2021), and related developments in Loaiza-Maya et al. (2021), for example. This

leads to the immediate BPDS extension of these prior approaches in which the above

reasoning is extended to define

πtj ∝ πγt−1,jptj(zt−1,j |Mj)eτt−1(xt−1)′st−1,j(yt−1,xt−1,j).

Here the discounted Bayesian model probabilities are further updated with AVS-style

weights using the realized BPDS calibration function with relative model scores based

on the actual decision outcomes at the last time period. As a result, models are initially

and naturally reweighted based on both predictive and decision outcome performance

at the last time period.

As a result, in our applied setting, this means that models achieving “good” re-

cent trajectories of interest rate smoothness, as well as relatively accurate forecasting

performance of realized inflation outcomes, will be rewarded with higher initial BPDS

model probabilities in looking forward to the next time point. And we note that the

specification here can cut back to define special cases including BPS-AVS (by setting

τt−1(xt−1) = 0), and within that to traditional BMA (by setting γ = 1) for comparisons.

Finally, the inclusion in BPDS of the baseline model and its forecast densities leads

to a modification of these initial model probabilities to provide a non-zero value πt0

for the baseline. We choose a fixed probability—in our analysis πt0 = 0.1 at each time

point t—and simply renormalize the πtj above over j = 1:J accordingly.

Informative conditioning on xt

As noted earlier, in our setting the future values of decision variables are also considered

outcomes predicted under the models. The models each forecast the future evolution of

interest rates as part of the complex, dynamic macroeconomic system, whereas for deci-

sions we must condition on xt. This is reflected in the conditional (on xt) distributions

ptj(yt|xt,Mj) in BPDS where xt is treated as known. The theoretical implication for

the BPDS model probabilities is the term ptj(xt|Mj) in eqn. (4.7)—this is the value
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of the current marginal predictive pdf of the vector xt under Mj . Assuming the prior

(to time t) probabilities πtj are specified, this form arises directly via Bayes’ theo-

rem. The act of conditioning on xt is informative, and the implied update is, simply by

Bayes’ theorem, that in eqn. (4.7). Critically, this implies that candidate decision values

that are not well-supported under the joint distribution of a model are down-weighted.

Conversely, at any candidate decision vector xt, models that are more predictively sup-

portive of the decision xt will be relatively rewarded with higher values of resulting

πtj(xt).

In other applications of BPDS, the decision variables may be exogenous, that is, con-

trol variables that are to be chosen by the decision-maker but that are not forecast jointly

with yt in the set of models. In such cases, it will be common to assume that the exter-

nal choice of xt is not informative, and then eqn. (4.7) results in decision-independent

BPDS probabilities πtj(xt) = πtj based only on historical data and information.

BPDS Target Scores

The BPDS target expected score mf (x) = Ef [s(y,x)] represents a desired improvement

over the initial expected score mp(x) = Ep[s(y,x)]. In the multi-objective case, the

resulting τ (x) that defines f(y|x) to satisfy this target expectation is sensitive to both

the relative scales and dependence of elements of s(y,x) under the initial mixture y ∼

p(y|x) at any candidate decision x. As functions of y, the elements of the random score

vector s(y,x) can be strongly correlated, leading to challenges in specifying relevant

targets. This can also complicate the calculation of the implied BPDS tilting vector

τ (x) (i.e., the vector that is needed to satisfy mf (x) = Ef [s(y,x)] under the BPDS

density of eqn. (4.1)). We address this by explicitly recognizing score dependencies and

defining an approach that explicitly incorporates dependence.

Some theoretical intuition is gained by considered cases of “small perturbations” in

which mf (x)−mp(x) has small elements. In this setting, entropic tilting theory in Tall-

man and West (2022) yields the second-order approximation τ (x) ≈ Vp(x)
−1(mf (x)−

mp(x)) where Vp(x) is the variance matrix of s(y,x) under the initial mixture p(y|x).

This shows that the implied tilting vector will be very sensitive to the initial score
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scales and dependencies as reflected in Vp(x), and suggests a prime focus on a stan-

dardized score scale; that is, define Cp(x) as the scaled eigenvector matrix such that

Vp(x) = Cp(x)Cp(x)
′ and set the target score using mf (x) = mp(x) +Cp(x)ϵ(x) for

a specified standardized expected score vector ϵ(x). The usual convention is taken in

which the eigenvector columns of Cp(x) are ordered according to decreasingly values

of the corresponding eigenvalues, so that the first column is “dominant,” and so forth.

This provides insights into how to practically define target scores related to the abso-

lute standardized scale. As examples of the two extremes, taking ϵ(x) = ϵ(x)1 for some

scalar ϵ(x) represents targets deviating from the initial expected score in equal amounts

of ϵ(x) along each of the standardized eigen dimensions. At the other extreme, and most

relevant when there are strong score dependencies, taking ϵ(x) = (ϵ(x), 0, . . . , 0)′ defines

the resulting target mf (x) based on the major, dominant eigen dimension alone. The

latter is a starting point in general and is taken to define our BPDS case study below.

In that setting, we choose ϵ(x) such that min{(mf (x)/mp(x))} = 0.75 to define the

maximum expected improved score in any dimension.2 It is obviously straightforward

to extend this methodology to define target scores impacted by higher eigen dimensions,

though that is left for future applications.

4.3.3 BPDS Implementation and Optimal Decisions

The final step couples the decision-maker’s utility with the BPDS predictive eqns. (4.1,4.2)

to define the optimal decisions from the model synthesis. The decision-maker can adopt

any utility function, but an initial neutral analysis will be based on using the same form

as usual in the model-specific decisions, the function U(y,x) of eqn. (4.5). This is used

in the example analysis to follow, with the aim of computing x to maximize the im-

plied expected utility function Ū(x). In the case study analysis, we compare decisions

recommended by BPDS to those from each of the models and to a traditional BMA-

based analysis. On the latter, the BMA mixture uses model weights proportional to

the marginal likelihoods of the data that are common to all of the models (including in-
2Additionally, due to the arbitrariness of the signs of eigenvectors, we apply a ±1 multiplier to the

first column of Cp(x) so that the sum of the elements are positive, ensuring the target score improves
upon mp(x).
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flation, interest rate, and GDP) under each Mj . The BMA mixture naturally involves

only the pj(y|x) with no BPS/BPDS outcome-dependence, no notion of a baseline

model to address model-set incompleteness, and no regard for the decision-focused use

of the models. The foundational BPDS framework theoretically allows for these critical

considerations as fundamental to the broader subjective Bayesian decision-analytic and

goal-focused approach. Then, technically, BMA arises as a special case of the BPDS

analysis as earlier discussed throughout Section 4.3.

The computation of BPDS involves two key components. First, the overall optimiza-

tion over x explores potential BPDS decisions and finds the optimizing vector x. This

requires an “outer loop” numerical optimization to explore x space. In our study, this is

performed using a trust region method, namely Powell’s Derivative Free Optimization

Solvers (PDFO—Ragonneau and Zhang, 2023). Due to the possibility of multi-modality

in Ū(x), the optimization is run repeatedly (in parallel) from multiple starting values.

In some periods over time, we do find evidence of multi-modality, so repeat starts of

the optimization routine are mandated. Second, within each evaluation of a potential

BPDS decision, it is necessary to compute the tilting vector τ (x) given the constraint

Ef [s(y,x)] = mf (x) for a target expected score mf (x).. The theoretical basis of this is

an implicit equation that is solved via standard, generic numerical optimization meth-

ods. Relevant details follow Tallman and West (2023, section 4.4) and are summarized

in our Appendix C.1.

The BPDS forecast distributions are evaluated using importance sampling. At any

given x, the BPDS predictive distribution in eqn. (4.1) is simulated by sampling from the

pj(y|x,Mj) in proportions defined by the BPDS probabilities πj(x). Then, the resulting

importance sampling weights are simply proportional to the realized values of αj(y|x).

This provides for efficient computation as well as access to traditional methods and

metrics—such as the importance of sampling effective sample sizes (ESS, e.g., Gruber

and West, 2016, 2017, in related contexts)—to monitor and evaluate the quality of the

resulting Monte Carlo approximations compared to resulting predictive expectations.

Note that this evaluation can deliver such metrics to assess “concordance” between the

initial densities pj(y|x,Mj) and their corresponding BPDS-tilted versions fj(y|x,Mj)
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in eqn. (4.2), as well as that of the initial mixture p(y|x) and the resulting f(y|x). More

aggressive BPDS target scores will generally lead to lower concordance, and choices can

be partly guided by such empirical evaluations.

85



Chapter 4. Decision Synthesis in Monetary Policy

4.4 Case Study

4.4.1 Overview

The analysis and all empirical results proceed sequentially on an expanding window of

data beginning in 1992Q2. Our summaries begin with a comparison of the decisions

recommended by BPDS to those suggested by BMA. This is followed by a discussion

of the individual models and how they are combined by BPDS and BMA. Additional

discussion highlights some operational BPDS details to provide further insights into the

resulting decision outcomes.

4.4.2 Optimal Decisions

Figure 4.1 shows the actual policy rate each quarter along with the 1−8 quarters-ahead

policy recommendations that would have been made by BPDS and BMA. In using the

shadow rate, the zero lower bound is not in effect and negative values for the policy

rate are possible. Recommendations for negative values for the policy rate are not

to be taken literally as advising cuts to a negative Federal Funds rate, but rather as

a suggestion to undertake other forms of monetary easing that would be expected to

proxy such cuts.

Since 2014, the optimal policy paths recommended by the two approaches are gen-

erally similar, though there are notable differences prior to that time. Some specific

periods of interest are now highlighted.

2014 to the present

During this period, BMA and BPDS provide similar recommendations that are often

quite different from the actual policy rate. For almost all of these times, the policy

recommendations are to cut interest rates, whereas (apart from 2019–2021) the actual

policy rate increased. Some differences do arise between BMA and BPDS. For example,

during the post-COVID inflation period, BPDS recommends a higher rate path. BPDS

is closer to the decision actually made by the Federal Reserve, although according to

BPDS interest rates should decrease throughout 2023 and 2024.
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The financial crisis and subsequent recession

It is during this period that the differences between BPDS and BMA are most acute.

The actual policy rate fell slowly during this period. BPDS recommends rate cuts as

well, initially at a more rapid rate than what actually occurred, but as of 2010, its

recommendations are similar to the ones the policymakers actually made. In contrast,

BMA recommends huge cuts to the policy rate right at the start of the financial crisis,

but subsequently consistently argues for rate increases.

The first years of the 21st century

From 2003 through to the beginning of the financial crisis, the actual policy rate was

gradually increasing. In this period, BMA consistently recommends rapid rate increases.

In contrast, BPDS recommendations are generally similar to what actually transpired,

apart from at the beginning of this period where the advice is to raise the policy rate

more slowly than what actually occurred.

The 1990s

During this period, the pattern is more mixed. Optimal policy recommendations gener-

ated under each of BMA and BPDS often differ from actual decisions, with no consistent

pattern; at times the recommended rates are higher than the actual policy rate, and at

other times they are lower.

A general pattern, one that occurs throughout the sample period, is that BMA and

BPDS typically recommend larger changes in policy rates than were actually imple-

mented by policymakers. Part of this is presumably due to differences between the

policymakers’ utility function and those used in our analyses. Other possible expla-

nations are that policymakers can affect expectations through their communications,

which is a channel not captured in the model, or their models use a much steeper

Phillips Curve. Also, we focus only on inflation up to two years ahead, without con-

sidering the possibility of an over- or under-shoot of inflation after eight quarters. In

contrast, policymakers would generally aim for inflation to be sustainably at target over

the longer-term.
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4.4.3 Trajectories of BPDS and BMA Predictive Densities

Figures 4.2–4.4 shed light on these patterns. These images represent the time trajecto-

ries of predictive densities of inflation at each relevant horizon, using BPDS (Fig. 4.2)

and BMA (Fig. 4.3), as well as their differences (Fig. 4.4). These indicate that the BPDS

mixtures are less dispersed than the BMA mixture for much of the sample period; that

is, BMA predictive distributions are relatively more heavy-tailed, especially at longer

horizons. This is partly due to the BPDS score function emphasizing that the policy-

maker wants to avoid extreme inflation outcomes, and also accounts for why BMA often

tells policymakers to make larger changes to the policy rate than BPDS, as discussed

in Section 4.4.2. The differences between BPDS and BMA become larger at longer

forecast horizons. Medium- and long-term macroeconomic forecasting is difficult, which

leads to standard methods such as BMA producing fairly dispersed predictive densities

at longer horizons. BPDS, on the other hand, is reducing this effect, which dampens

the BPDS optimal decisions and reduces predictive uncertainty relative to BMA. Then,

differences between BPDS and BMA forecast densities are reduced after the financial

Figure 4.1: Recursively calculated policy decisions
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crisis, which helps account for why their policy recommendations are similar in the last

decade of the sample.

4.4.4 Model Probabilities

Figure 4.5 shows the trajectories of model probabilities under BPDS and BMA. These

are the discounted AVS prior model probabilities πtj over time, the implied initial

decision-dependent probabilities πtj(xt) evaluated at the BPDS-optimal decision xt at

each time, the resulting BPDS probabilities π̃tj(xt) of eqn. (4.3) at each time, and the

standard BMA probabilities over time.

Under traditional BMA, the two model probabilities are appreciable until the finan-

cial crisis. After the start of the crisis, the less parsimonious M2, which includes addi-

tional financial variables, receives virtually all the weight. In contrast, BPDS weights

vary more over time, allocating most of the weight to the parsimonious M1 for much

of the period (i.e., 1997 through 2017), though M2 plays more of a role at both the

beginning and end of the sample period. That BPDS generally favours the more par-

simonious M1, with less dispersed forecast distributions, partially accounts for why

BPDS often dampens extreme recommendations made when using BMA.

BPDS probabilities on the over-dispersed M0 are generally small, though with no-

table increases at two critical periods: the start of the financial crisis and the start of the

COVID-19 pandemic. In such extreme times, when neither M1 nor M2 forecasts well,

the increased probability on the fall-back M0—though small—provides an indicator of

this.

The BPDS prior model probabilities πtj based on discounted AVS differ noticeably

from BMA probabilities (except at the very start of the time period). A big impact

then arises from the conditioning on information generated in the decision space to map

these πtj to the decision-dependent weights πtj(xt) at the BPDS optimal decisions xt

at each time. Recall that this mapping theoretically properly takes into account the

likelihood of future, as yet unobserved, interest rate outcomes; this relevant information

is not accounted for in the prior weights πtj and is, of course, absent under BMA.

The subsequent map from initial probabilities πtj(xt) to the BPDS weights π̃tj(xt) is
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Figure 4.2: BPDS forecast densities of inflation. The frames represent 1–8 quarter ahead
forecasts, reading along the rows from top-left to bottom-right. The colours represent
probabilities, with the blue shading showing lower probability, and red showing higher
probability.
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Figure 4.3: BMA forecast densities of inflation. The frames represent 1–8 quarter ahead
forecasts, reading along the rows from top-left to bottom-right. The colours represent
probabilities, with the blue shading showing lower probability, and red showing higher
probability.
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Figure 4.4: Difference between BPDS and BMA forecast densities of inflation. Red-
shaded regions have higher probability under BPDS than under BMA, with blue shading
indicating the reverse, and white shading showing equal probability.
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(a) (b)

(c) (d)

Figure 4.5: Time trajectories of model probabilities. (a) Prior BPDS probabilities πtj
based on discounted AVS with a fixed baseline πt0 = 0.1; (b) BPDS decision-dependent
initial probabilities πtj(xt); (c) Implied BPDS weights π̃tj(xt); (d) BMA probabilities.

wholly based on the impact of the entropic tilting towards “more favourable” decisions,

in expectation. We see that the impact is rather small over time, and this is to be

expected: the BPDS analysis uses “small” perturbations of the initial mixture based

on target expected scores that are only modest increases over those under the initial

mixture. We expect to see slight tilting towards models that are expected to do well,

but not large changes relative to the initial probabilities.
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4.4.5 Additional Insights from BPDS Results

Time trajectories of the evaluated tilting vectors τt(xt), evaluated at the optimal deci-

sions xt, are shown in Figure 4.6. The values generally tend to increase with horizon h,

thus attaching more weight to longer forecasting horizons. This is partly to be expected

due to the higher uncertainties at longer forecast horizons.

Figure 4.7 plots trajectories of several effective sample size (ESS) measures arising

from the importance sampling to simulate BPDS predictive distributions, as discussed in

Figure 4.6: Trajectories of the eight elements of the evaluated BPDS tilting vector
τt(xt) at the optimized xt at each quarter.

Figure 4.7: Trajectories of the effective sample size (ESS) metrics for individual models
and for the BPDS initial mixture.
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Section 4.3.3. This provides a read-out of the extent of tilting the initial mixture p(y|x)

to the BPDS mixture f(y|x), as well as that for tilting each of the individual model

pdfs from pj(y|x,Mj) to fj(y|x,Mj) (again, time-indexed and updated throughout

the time series). Until the COVID recession, the ESS of the initial mixture is stable

between 90–95%, suggesting only a small amount of tilting, as desired. The COVID

recession is a period of rapid change, as expected, as we see large changes in the initial

weights and larger values of τ required to achieve the desired target. The low value of

ESS indicates that at that point, the target expected scores are unrealistic given the

then-current state of the economy. However, the resulting decisions during this time

period appear to be rather sensible. This means we do not need to be too concerned

about the low ESS, which can, in any case, be redressed by simply increasing the overall

Monte Carlo sample size accordingly. The ESS values of individual models are generally

lower than that of the overall mixture and somewhat more volatile. One nice point is

that, even when one of the models seems to suffer a low ESS, the BPDS mixture ESS

is generally maintained at higher values. This indicates that BPDS is able to strike a

balance in weighting expected versus historical performance of models on both predictive

and decision outcomes.

Finally, Figure 4.8 compares the realized trajectories of expected utilities under

BPDS and BMA. Each uses the same utility function to define the final optimal policy

path decision, so these are directly comparable, and the comparison is relevant in terms

of the setting of forward, sequential decisions where a change to much lower values at

any time point should signal concern to the decision-maker. BPDS is designed to target

an expected utility higher than that of the initial mixture, but whether it achieves a

higher expected utility than BMA—which has different initial probabilities and lacks

outcome-dependent weighting—is a question for empirical study. In this example, as

illustrated in the figure, BPDS utility does exceed that of BMA in virtually every period.

After the financial crisis, the two are similar, consistent with the earlier finding that

they typically produced similar decisions during this time period. However, before the

financial crisis, there were several periods during which the BPDS expected utilities were

substantially higher than those of BMA. These correspond to times where we see more
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Figure 4.8: Trajectories of expected utilities comparing BPDS with BMA.

differences between optimal policy path recommendations. Within these time there are

some periods of greater concordance between BPDS and actual policy decisions, as well

as more constrained (i.e., less extreme) recommended decisions under BPDS relative to

BMA.

4.5 Summary Comments

BPDS is the formal, foundational Bayesian framework that extends traditional Bayesian

model uncertainty analysis to address explicit use of model-specific decision outcomes as

well as purely predictive performance in model comparison and combination. This paper

has adapted the BPDS foundations to define implied methodology in formulating macro-

economic decision-making when faced with multiple objectives and multiple outcomes

of interest in the monetary policy setting.

Earlier applications of BPDS have focused mainly on financial portfolio forecasting

and decisions (Tallman and West, 2023, section 6; Tallman and West, 2024). In this

setting, forecasting models do not (generally) depend on the decisions of interest, while

utility functions may and often do depend on the models and their predictions. In con-

trast, the setting of monetary policy analysis is one in which the dependence of models

and their forecasts on the decision variables (policy instruments) is simply fundamen-

tal. It is also a setting in which the decision variables are treated simultaneously as
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outcomes. The future paths of central bank interest rates, for example, are modelled

as time series outcomes along with other economic and financial indicators in VAR

models. This then leads to conditioning on decision variables to define predictions of

other indicators, with consequent implications for relative model weights in the model

uncertainty setting. This latter point is critical as it then leads to relatively up- or

down-weighting a model based on how well-supported a particular candidate decision

is under its predictions; to our knowledge, this is the first time this central question

has been formally, statistically addressed. These central features of predictive decision-

making in monetary policy contexts are addressed with extensions and customization

of the existing theory of BPDS.

The BPDS perspective—of integrating historical and expected decision outcomes

with focused aspects of statistical predictive performance into relative model weightings—

is new to the policy arena. We argue for this perspective since policymakers are primar-

ily interested in using sets of models for the eventual policy decisions. Pure forecasting

exercises—and evaluation and combinations of models for prediction per se—are, of

course, of parallel interest and importance. We emphasize that BPDS also involves

addressing predictive performance on specific, defined outcomes of interest. But most

importantly, by putting the spotlight on decision-making, we gain additional insights

into policy-making that are not possible in exercises that focus solely on predictive

performance.

In a recursive, real-time decision-making exercise, we find substantial differences at

various periods of time between the policy recommendations of BPDS and the tradi-

tional Bayesian model averaging approach, though good concordance at other times.

When recommended policy decisions differ between the approaches, in most cases the

BPDS policy paths are more intuitively sensible and less extreme than under BMA, and

more consistent with the actual decisions made by the policymakers at the time. The

case study presented investigates and interprets aspects of BPDS in terms of differential

model weights based on historical information alone, and then updated based on iden-

tified optimal decisions, with consequent insights into how the differences relative to

standard BMA arise and are exploited. This case study is a first step towards broader
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development and evaluation of BPDS in a setting with larger numbers of econometric

models. The parallel next steps will naturally include BPDS for scenario forecasting.

These analyses, in collaboration with policymakers, explore and aim to understand

the sensitivity of model-based recommendations relative to chosen potential economic

scenarios.
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Conclusion

5.1 Summary Comments

Policy makers often use multiple models to hedge against the weaknesses of individual

macro-economic models. In this context it is important to understand how best to utilize

multiple models both in terms of using them for decision-making and forecasting. This

thesis explores several issues related to the use of multiple models in macro-economic

policy making.

In 2, I investigate different approaches for combining large numbers of density pre-

dictions. This is an important issue since many practical applications can involve large

numbers of forecasts, such as nowcasting systems or combining survey forecasts. I use

two common approaches in economics to deal with large datasets: global-local shrinkage

priors and factor modeling. In particular, I use the newly developed triple gamma prior,

and the priors it encompasses, along with a novel factor modeling approach to density

combinations.

I test the approaches in two very different applications: a model-based nowcasting

exercise on Canadian real GDP, and forecasting Euro Area real GDP growth using

distributions from the Survey of Professional Forecasters. These two applications cover

two regions, have different forecast horizons, include model-based and survey-based

predictions, and the evaluation sample covers the Great Financial Crisis, Euro Area

Crisis, and COVID-19 pandemic, allowing for a comprehensive assessment of the various
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synthesis functions. First, I find that constant parameter specifications tend to perform

better than their time-varying counterparts. This shows that in applications with little

structural change, relatively short samples, and a large cross-section of models, a more

parsimonious model is preferable. This is an important finding as recently developed

combination schemes tend to utilize time-varying parameter specifications. Second, and

more importantly, I find that shrinkage approaches generally outperform factor-model-

based combinations.

It is interesting to note that the two synthesis functions imply very different weight-

ing structures. The sparse weighting scheme of shrinkage priors implies that decision-

makers should give considerable weight to a smaller set of experts. This, however,

carries the risk of “putting all your eggs in one basket,” which at times could adversely

affect the performance of the sparse combinations. In contrast, the factor-model-based

combination implies a dense weighting scheme, which produces a “consensus” forecast.

Overall, my results suggest that focusing on a parsimonious combination that considers

a smaller set of accurate experts is preferable to following the herd.

Chapter 3, extends the previous work by examining nonparametric density forecast

combination using regression trees: BPS-RT. While a handful of papers use nonpara-

metric techniques to combine densities, ours is the first to use regression trees. We

model the combination weights using the regression trees which keeps the model lin-

ear in parameters such that interpretation is easier. Regression trees use covariates, or

weight modifiers, to drive changes in parameters which allows us to explain the com-

bination weights. Which is in contrast to conventional BPS applications where model

parameters follow a random walk. Taken together, our approach is flexible but retains

interpretability through linearity and the use of weight modifiers.

We test the performance of BPS-RT in two different applications – combining model-

based US inflation density forecasts and subjective histogram-based forecasts of euro

area GDP growth. We find that, across both applications, BPS-RT forecasts well in

terms of both relative and absolute accuracy. Interestingly, and in contrast to stan-

dard BART applications, we find that using a parsimonious single-tree specification

outperforms models with more trees. Which is thematically similar from the findings in
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Chapter 3 which show simpler models perform better. Inspecting the best-performing

specification, we observe that this superior performance is due to less disperse forecast

densities and BPS-RT’s ability to better accommodate the shocks associated with the

global financial crisis (in the GDP application) and COVID-19 (in the inflation appli-

cation). Our proposed measure of model set incompleteness suggests that BPS-RT is

able to capture much of the post-COVID rise in inflation. Triggered by a rise in the

relative importance of the time trend in determining tree splits, itself highlighting the

unusual nature of this inflationary period, BPS-RT also shifts its combination weights

toward component models with SV. This contrasts with the prior period of lower infla-

tion, when the business cycle indicators were found to be the more important weight

modifiers.

Chapter 4 shows how to use multiple models to make decisions by using BPDS

for monetary policy decision-making. We build on earlier applications of BPDS that

have focused mainly on financial portfolio forecasting and decisions (Tallman and West,

2023, section 6; Tallman and West, 2024). In portfolio settings, the forecast typically

do not depend on the decisions of interest – individual agents can rarely effect the

stock market value. In contrast, monetary policy decisions are made with the intent of

affecting inflation. This creates a challenging environment since we weight models by

outcomes which are then a function of the decision. Therefore the weights are a function

of both the outcome and decision. There are other aspects of monetary policy decision-

making contexts that add to the challenge. For example, monetary policy is made for

outcomes over multiple horizons, there can be multiple objectives, and the decision

variables are also endogenous to the models. This latter point is critical as it then leads

to relatively up- or down-weighting a model based on how well-supported a particular

candidate decision is under its predictions; to our knowledge, this is the first time this

central question has been formally, statistically addressed. Despite the challenges we

develop a BPDS approach that takes into account these aspects of the monetary policy

decision-making context. Specifically, we weight forecasts at each forecast horizon,

weight models by expected and realized decision criteria, their empirical fit, and by the

plausibility of a proposed policy path.
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This BPDS perspective—of integrating historical and expected decision outcomes

with focused aspects of statistical predictive performance into relative model weightings—

is new to monetary policy decision making. And we argue that this approach is prefer-

able to classical approaches based on forecasting accuracy. This is because policymakers

are primarily interested in using sets of models for the eventual policy decisions. This is

not to diminish the importance of pure forecasting exercises—and evaluation and com-

binations of models for prediction per se. We would be remiss not to emphasize that

BPDS also involves addressing predictive performance on specific, defined outcomes of

interest. But by focusing on decision-making, we gain additional insights into policy-

making that are not possible in exercises that focus solely on predictive performance.

In a recursive, pseudo real-time decision-making exercise, we find substantial dif-

ferences at various periods of time between the policy recommendations of BPDS and

the traditional Bayesian model averaging approach, though high concordance at other

times. When recommended policy decisions differ between the approaches, in most

cases the BPDS policy paths are more sensible and less extreme than under BMA, and

more consistent with the actual decisions made by the policymakers at the time. The

case study presented investigates and interprets aspects of BPDS in terms of differen-

tial model weights based on historical information alone, and then updated based on

identified optimal decisions, with consequent insights into how the differences relative

to standard BMA arise and are exploited.

Overall this thesis explored issues related to using multiple models for forecasting

and decision-making. I showed how to combine forecasts when faced with large numbers

of models finding that sparse combinations techniques perform better. This implies it is

better to choose a handful of models then average of a large number of models. Second,

I show how tree based synthesis functions could be useful for forecast combination.

Namely, that they offer some advantages in being able to explain the combination

weights. Finally, I show how to use multiple model in monetary policy decision-making

employing BPDS in a novel and challenging application.
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5.2 Further Research

Future lines of research could involve further development of synthesis functions for fore-

cast combination. Otherwise using tree-based synthesis functions in other forecasting

applications and contexts could be fruitful. Specifically, we could investigate the useful-

ness of different sets of weight modifiers and the implications for weight structure. For

instance, this could draw on the ability of BPS-RT, via its choice of weight modifiers,

to capture general patterns of cross-sectional dependence between competing agents’

probabilistic forecasts. Additional structure could be given to the clustering by, for

example, letting the combination weight on a given individual agent’s density forecast

depend not only on characteristics of her own forecast (such as its mean or variance) but

on characteristics of the other agents’ forecasts. There could also be further work on

the broader development and evaluation of BPDS in monetary policy makings. These

could be settings with more diverse set of econometric models or different monetary

policy regimes or decison-maker utility functions. For example, incorporating prefer-

ences for financial stability or to ‘lean against the wind’ when there are high debt levels.

Further developments could include BPDS for scenario forecasting. These analyses,

in collaboration with policymakers, aim to understand the sensitivity of model-based

recommendations relative to chosen potential economic scenarios.
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A.1 Tables

Table A.1: Nowcasting Application: Overview of Forecasting Performance

Global-Local Shrinkage Priors Factor Model Combinations
Time-Varying Constant Time-Varying Constant

DLM Lasso DG TG HS Lasso DG TG HS 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor
24 weeks until NA 2.77 2.73 2.67 2.62 2.63 3.30 2.68 2.67 2.69 2.58 2.57 2.58 2.58 2.57 2.87 2.77 2.76 2.76 2.76
22 weeks until NA 2.74 2.67 2.60 2.59 2.58 3.22 2.64 2.77 2.67 2.57 2.58 2.57 2.58 2.57 2.84 2.77 2.75 2.74 2.74
20 weeks until NA 2.20 2.14 2.02 2.06 2.02 2.53 1.92 1.91 1.92 2.58 2.55 2.55 2.55 2.54 2.91 2.02 2.03 2.03 2.03
18 weeks until NA 2.28 2.08 1.94 1.86 1.99 2.43 1.97 1.87 1.91 2.53 2.51 2.49 2.50 2.49 2.66 1.93 1.91 1.90 1.91
16 weeks until NA 1.72 1.83 1.71 1.55 1.60 2.12 1.64 1.53 1.54 2.19 2.23 2.24 2.21 2.20 1.93 1.86 1.83 1.82 1.80
14 weeks until NA 1.59 1.74 1.66 1.53 1.53 2.01 1.57 1.61 1.57 2.01 2.11 2.11 2.09 2.05 1.83 1.76 1.73 1.72 1.70
12 weeks until NA 1.31 1.46 1.29 1.14 1.14 1.69 1.21 1.14 1.15 1.34 1.36 1.36 1.36 1.35 1.27 1.26 1.24 1.24 1.23
10 weeks until NA 1.30 1.47 1.29 1.09 1.12 1.67 1.20 1.11 1.20 1.33 1.35 1.34 1.34 1.33 1.26 1.24 1.22 1.21 1.21
8 weeks until NA 0.89 0.96 0.92 0.83 0.82 1.19 0.82 0.79 0.81 1.30 1.28 1.26 1.25 1.24 1.35 1.06 1.07 1.06 1.05
6 weeks until NA 0.85 0.94 0.88 0.78 0.80 1.16 0.80 0.77 0.79 1.29 1.24 1.23 1.22 1.21 1.33 1.02 1.02 1.01 0.99
4 weeks until NA 0.58 0.68 0.62 0.57 0.56 0.80 0.54 0.54 0.54 0.58 0.58 0.58 0.58 0.58 0.56 0.53 0.55 0.55 0.55
2 weeks until NA 0.58 0.68 0.61 0.56 0.56 0.80 0.54 0.54 0.54 0.58 0.58 0.57 0.58 0.58 0.55 0.53 0.56 0.56 0.56

Notes: The rows show prediction horizons in weeks until the release of the National
Accounts (NA). Periods 24 and 22 weeks until the National Accounts are the forecast
periods, while 20 to 10 weeks is the nowcast period, and 8 until 2 weeks is the backcast
period. The columns correspond to the Dynamic Linear Model benchmark (DLM),
constant and time-varying specification of the Lasso, double gamma prior (DG), triple
gamma prior (TG), Horseshoe prior (HS) and factor model synthesis functions with 1
to 5 factors.
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Table A.2: SPF Application: Overview of Forecasting Performance

Global-Local Shrinkage Priors Factor Model Combinations
Time-Varying Constant Time-Varying Constant

DLM Lasso DG TG HS Lasso DG TG HS 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor
Wide dataset 1.33 1.73 1.47 1.56 1.50 1.34 1.32 1.37 1.36 1.67 1.65 1.64 1.64 1.62 1.58 1.57 1.54 1.54 1.51
Tall dataset 1.32 1.47 1.51 1.54 1.45 1.24 1.23 1.22 1.22 1.63 1.61 1.62 1.60 1.61 1.19 1.17 1.21 1.23 1.18

Table A.3: The rows show results for wide and tall datasets. The columns correspond to
the Dynamic Linear Model benchmark (DLM), constant and time-varying specification
of the Lasso, double gamma prior (DG), triple gamma prior (TG), Horseshoe prior
(HS), and factor model synthesis functions with 1 to 5 factors.

A.2 Technical Appendix

A.2.1 MCMC Algorithm

This section describes the Markov Chain Monte Carlo (MCMC) algorithm used to

estimate the forecast combinations. It largely follows McAlinn and West (2019) for the

BPS steps, Cadonna et al. (2020) for the global-local shrinkage priors combinations,

and Lopes and West (2004) for the factor model combinations. The MCMC follows

a two-component block Gibbs sampler: one component samples the synthesis function

parameters, and the second samples from the expert forecast distributions or the agent

states. As such, I discuss the estimation of each synthesis function separately, followed

by details on sampling the agent states.

A.2.2 Global-local Shrinkage Combinations

This section describes the estimation of the global-local shrinkage synthesis functions.

Knaus et al. (2021) provide an R package and the vignette is an excellent overview of

the estimation and priors of these models. More details are available in Cadonna et al.

(2020) and Bitto and Frühwirth-Schnatter (2019). I first describe the model, followed

by the priors, and then describe the MCMC algorithm.

Starting with the centered parameterization of the synthesis function, for t =

1, . . . , T , we have that

yt = xtβt + ϵt βt = βt−1 + utϵt ∼ N (0, σ2t ) ut ∼ N (0, Q) (A.1)
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where yt is a univariate response variable and xt = (xt0, xt1, . . . , xtd) is a d-dimensional

row vector containing the regressors at time t, with xt1 corresponding to the intercept.

For simplicity, I assume here that Q = Diag(θ1, . . . , θd) is a diagonal matrix, im-

plying that the state innovations are conditionally independent. Moreover, I assume

the initial value follows a normal distribution (i.e., β0 ∼ Nd(β,Q)), with initial mean

β = (β1, . . . , βd). Model (A.1) can be rewritten equivalently in the non-centered

parametrization as

yt = xtβ + xtDiag(
√
θ1, ...,

√
θd)β̃t + ϵt, ϵt ∼ N (0, σ2t )

β̃t = β̃t−1 + ũt, ũt ∼ Nd(0, Id)
(A.2)

with β̃0 ∼ Nd(0, Id), where Id is the d-dimensional identity matrix. Furthermore,

the model can accommodate stochastic volatility or constant volatility. In the former

case, the log-volatility ht = log σ2t follows a random-walk. More specifically,

ht|ht−1, σ
2
η ∼ N

(
ht−1, σ

2
η

)
, (A.3)

with initial state h0 ∼ N (a0, b0)).

Shrinkage Priors on Variances and Model Parameters

This section describes the priors used in the previously discussed synthesis function. The

triple gamma prior can be represented as a conditionally normal distribution, where the

component specific variance is itself a compound probability distribution resulting from

two gamma distributions. This results in independent normal-gamma-gamma (NGG)

priors (Cadonna et al., 2020), both on the standard deviations of the innovations, that

is the
√
θj ’s, and on the means of the initial value βj , for j = 1, . . . , d. Note that, in the

case of the standard deviations, this can equivalently be seen as a triple gamma prior

on the innovation variances θj , for j = 1, . . . , d. In the constant parameterizations, I

place an NGG prior on the βj using the centered parameterization:
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√
θj |ξ2j ∼ N (0, ξ2j ), ξ2j |aξ, κ2j ∼ G(aξ,

aξκ2j
2

), κ2j |cξ, κ2B ∼ G(cξ, c
ξ

κ2B
) (A.4)

βj |τ2j ∼ N (0, τ2j ), τ2j |aτ , λ2j ∼ N (aτ ,
aτλ2j
2

) λ2j |cτ , λ2B ∼ N (cτ ,
cτ

λ2B
). (A.5)

Letting cξ and cτ go to infinity results in a normal-gamma (NG) prior (Brown and

Griffin, 2010) on the
√
θj ’s and βj ’s. It also has a representation as a conditionally nor-

mal distribution, with the component specific variance following a gamma distribution;

that is

√
θj |ξ2j ∼ N (0, ξ2j ), ξ2j |aξ, κ2B ∼ G(aξ,

aξκ2B
2

), (A.6)

βj |τ2j ∼ N (0, τ2j ), τ2j |aτ , λ2B ∼ G(aτ ,
aτλ2B
2

). (A.7)

The parameters aξ, aτ , cξ, cτ , κ2B, and λ2B can be learned from the data through

appropriate prior distributions. Results from Cadonna et al. (2020) motivate the use

of different distributions for these parameters under the NGG and NG prior. In the

NGG case, the scaled global shrinkage parameters conditionally follow F distributions,

depending on their respective pole and tail parameters:

κ2B
2
|aξ, cξ ∼ F (2aξ, 2cξ),

λ2B
2
|aτ , cτ ∼ F (2aτ , 2cτ ). (A.8)

The scaled tail and pole parameters, in turn, follow beta distributions:

2aξ ∼ B (αaξ , βaξ) , 2cξ ∼ B (αcξ , βcξ) , (A.9)

2aτ ∼ B (αaτ , βaτ ) , 2cτ ∼ B (αcτ , βcτ ) . (A.10)

These priors are chosen as they imply a uniform prior on a suitably defined model

size; see Cadonna et al. (2020) for details. In the NG case, the global shrinkage param-
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eters follow independent gamma distributions:

κ2B ∼ G(d1, d2), λ2B ∼ G(e1, e2). (A.11)

In order to learn the pole parameters in the NG case, I generalize the approach taken

in Bitto and Frühwirth-Schnatter (2019) and place the following gamma distributions

as priors:

aξ ∼ G(αaξ , αaξβaξ), aτ ∼ G(αaτ , αaτβaτ ), (A.12)

which correspond to the exponential priors used in Bitto and Frühwirth-Schnatter

(2019) when αaξ = 1 and αaτ = 1. The parameters αaξ and αaτ act as degrees of

freedom and allow the prior to be bounded away from zero.

In the constant parameter case, I employ a hierarchical prior, where the scale of an

inverse gamma prior for σ2 follows a gamma distribution; that is,

σ2|C0 ∼ G−1(c0, C0), C0 ∼ G(c0 + g0, (G0 + σ−2)−1), (A.13)

with hyperparameters c0, g0, and G0.

In the case of stochastic volatility, the priors on the parameters σ2η in Equation A.3

are,

σ2η ∼ G−1(ν, Sh), h0 ∼ N (a0, b0) (A.14)

with hyperparameters ν, Sh, a0 and b0.

MCMC Sampling Algorithm

This next section describes the MCMC Gibbs sampling algorithm with Metropolis-

Hastings steps to obtain draws from the posterior distribution of the global-local shrink-

age prior synthesis function parameters. This is meant to be an overview of the algo-

rithm; for more details, please refer to Cadonna et al. (2020) and Bitto and Frühwirth-

Schnatter (2019).
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Algorithm 1: Gibbs Sampling Algorithm

1. If in TVP specification, sample the latent states β̃ = (β̃0, . . . , β̃T ) in the non-

centered parametrization from a multivariate normal distribution using precision

sampling (Chan and Jeliazkov, 2009). Otherwise skip.

2. If in TVP specification, sample jointly β1, . . . , βd, and
√
θ1, . . . ,

√
θd in the non-

centered parametrization from a multivariate normal distribution. Otherwise,

sample β1, . . . , βd, in the centered parameterization from a multivariate normal

distribution.

3. If in TVP specification, perform an ancillarity-sufficiency interweaving step and re-

draw each β1, . . . , βd from a normal distribution and each θ1, . . . , θd from a general-

ized inverse Gaussian distribution using the MATLAB implementation (Hartkopf,

2022) of Hörmann and Leydold (2014). Otherwise skip.

4. Sample (where required) the prior variances ξ21 , . . . ξ2d and τ21 , . . . τ2d and the com-

ponent specific hyper-parameters. Sample the pole, tail, and global shrinkage

parameters. In the NGG case, this is done by employing steps (b)–(f) from Al-

gorithm 1 in Cadonna et al. (2020). In the NG case, use steps (d) and (e) from

Algorithm 1 in Bitto and Frühwirth-Schnatter (2019).

5. Sample the error variance σ2 from an inverse gamma distribution in the ho-

moscedastic case or, in the SV case, sample the volatility of the volatility σ2η

and the log-volatilities h = (h0, . . . , hT ).

Step 4 presents a fork in the algorithm, as different parameterizations are used in the

NGG and NG case, to improve mixing. For details on the exact parameterization used

in the NGG case, see Cadonna et al. (2020). One key feature of the algorithm is the joint

sampling of the time-varying parameters β̃t, for t = 0, . . . , T in step 1 of Algorithm 1.

I employ the procedure described in Chan and Jeliazkov (2009) and McCausland et al.

(2011) from Rue and Held (2005), which exploits the sparse, block tri-diagonal structure

of the precision matrix of the full conditional distribution of β̃ = (β̃0, . . . , β̃T ), to speed

up computations.
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Step 3, as described in Bitto and Frühwirth-Schnatter (2019), makes use of the

ancillarity-sufficiency interweaving strategy (ASIS) introduced by Yu and Meng (2011).

ASIS is well known to improve mixing by sampling certain parameters both in the

centered and non-centered parameterization.

A.2.3 Factor Model Combinations

The second synthesis function considered in this paper is a Bayesian Factor Model

similar to that of Lopes and West (2004), and Lopes (2014) provides an overview of

Modern Bayesian Factor Analysis. Please refer to those references for detailed discussion

on the methods. Here I provide a brief overview of the model and estimation technique.1

yt = F
′
tγt + ϵt γt = γt−1 + ut xt = Λft + νt (A.15)

ϵt ∼ N (0, σ2t ) ut ∼ N (0, θ) νt ∼ N (0, R) (A.16)

where ft is a k× 1 vector of factors, Ft = (1, ft), γt is k+ 1 vector of coefficients, Λ

is a J × k vector of loadings, and R is a diagonal covariance matrix with elements σ2νJ .

In order to derive combination weights, I need to identify the factors. This is done by

the following restriction f ′tft = IJ and by restricting the first k elements of the loadings

matrix to be positive block lower diagonal. This is a common identification scheme used

to fix indeterminacy in the estimation of the factors.

To complete model specifications, I need priors for Λ, R, σ2t , and θ. The factor load-

ings have independent priors Λij ∼ N (0, C0) when i ̸= j and Λij ∼ N (0, C0)1(Λii >

0) for the upper-diagonal elements of positive loadings i = 1, . . . , k. Each of the

prior variances are independent and modeled as σ2νJ ∼ IG(ν/2, νs2/2), similarly θ ∼

IG(νθ/2, νθs2θ/2). Initial conditions for the γt are γ0 ∼ N (0, P0), where P0 ∼ IG(νP , (νP−

1)× cP ).

With the model specified, the next section provides a sketch of the MCMC routine.

Interested readers can refer to Lopes and West (2004).
1The implementation in the paper includes an intercept. For ease of exposition, it has been omitted

in the following section.
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Algorithm 2: Gibbs Sampling Algorithm

1. Sample ft from independent normal distributions for every t, namely,

ft ∼ N ((Ik + Λ′R−1Λ)−1Λ′R−1xt, (Ik + Λ′R−1Λ)−1).

2. Sample Λ for i = 1, . . . , k Λi ∼ N (mi, Ci)1(Λii > 0) where mi = Ci(C
−1
0 µ01i +

σ2νiFixi) and C−1
i = C−1

0 Ii + σ2νiF
′
iFi.

3. Sample Λ for i = k+1, . . . , J Λi ∼ N (mi, Ci)1(Λii > 0) wheremi = Ci(C
−1
0 µ01k+

σ2νiF
′xi) and C−1

i = C−1
0 Ik + σ2νiF

′F .

4. Sample σ2νi ∼ IG((ν + T )/2, (νs2 + di)/2) where di = (xi − FΛ′)′(xi − FΛ′).

5. If in TVP specification, sample the latent states γ1, . . . , γd, jointly from a mul-

tivariate normal distribution using the precision sampler of Chan and Jeliazkov

(2009). Otherwise, sample γ = (γ0, . . . , γT ) from a multivariate normal distribu-

tion.

6. Sample the error variance σ2 from an inverse gamma distribution in the ho-

moscedastic case or, in the SV case, sample the volatility of the volatility σ2

and the log-volatilities h = (h0, . . . , hT ).

A.2.4 Sampling the Agent States

After estimating the synthesis function parameters, the next step in BPS is to draw x1:t

from p(x1:t|Φ1:t, y1:t,H1:t) where Φ is the model parameters, yt is the target variable, and

H1:t is the set of agent densities. As shown in McAlinn and West (2019), the xt, draws

from agent densities, are conditionally independent over t with time t conditionals:

p(xt|Φt, yt,Ht) ∝ N(yt|X ′
tβt, ϵt)

∏
j=1:J

htj(xtj) with Xt = (1, xt1, . . . , xtJ)
′ (A.17)

If the agents provide normal forecast densities, then A.17 yields a multivariate nor-

mal distribution for xt. The posterior distribution for each xt is:

p(xt|Φt, yt,Ht) = N (ht + btct, Ht − btb
′
tgt) (A.18)
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where ct = yt−βt0−h′tβt,1:J , gt = σ2t +β
′
t,1:JHtβt,1:J , and bt = Htβt,1:J/gt. Unfortu-

nately, the applications in this paper do not have analytical forms; instead, histograms

represent the agent densities. With no analytical form, I use a Block Metropolis-

Hastings step with A.18 as a proposal distribution. Since the number of agent densities

can be large, I break the MH step into blocks of five experts that are sampled at a time.

There are a few details for Bayesian Factor Model combinations that warrant ex-

planation. First, the model has to be re-parameterized in terms of the xt so that I can

use the proposal distribution from A.18 in the MH step. The model is straightforward

to re-parameterize with the following steps:

yt = x′tγt + ϵt xt = Λft + νt (A.19)

ft = (Λ′Λ)−1Λ′xt − (Λ′Λ)−1Λ′νt where, Ω = (Λ′Λ)−1Λ′ (A.20)

yt = x′tΩ
′γt − ν ′tΩ

′γt + ϵt → yt = x′tγ
∗
t + ϵ∗t (A.21)

where, ϵ∗t = −ν ′tΩ′γt + ϵt and γ∗t = Ω′γt (A.22)

Now that the model has been re-parameterized, I can use the equation A.18 in the

MH step by substituting in βt = γ∗t , and error variance ϵ∗t ∼ N (0, γ′tΩRΩ
′γt + σ2t ).

The second issue that the data (xt) used to estimate Bayesian Factor Models is stan-

dardized to be mean 0 and variance 1. Since the agents provide forecast distributions, I

calculate mean and variance used to standardized draws from the agent densities using

the marginal density of each expert over all T (h(x)1:T ). Each xt draw is standardized

during each MCMC iteration.
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A.3 Calibration Appendix

This section assesses the calibration of the BPS predictions. Calibration (also referred

to as absolute accuracy) is achieved when a predictive density properly characterizes

the probability of the events that it is predicting. For example, events predicted to

occur with a 20 percent probability should be observed in the data roughly 20 percent

of the time. More formally, calibration refers to the statistical consistency between the

predictive distributions and the observations of the data they are predicting (Gneiting

and Raftery, 2007). I assess calibration with a test based off of the probability integral

transforms (PITs) (Diebold et al., 1998) as proposed in Knüppel (2015). In general, I

find little evidence to suggest that the predictions from any of the synthesis functions

are not calibrated.

Figures A.1 and A.2 show results from the nowcasting application and the SPF fore-

casting application. For the most part in the nowcasting applications, the factor model

combinations show little evidence of being uncalibrated. However, the shrinkage ap-

proaches have slightly different results. The LASSO synthesis function does not appear

to produce calibrated predictions, and the test rejects calibration for the time-varying

double gamma specification at most horizons. In contrast, the constant parameter

specifications produce calibrated predictions at most horizons, the exception being the

shortest horizons where calibration is rejected at the 10 percent level. The SPF ap-

plication has more straightforward results—there is little evidence to suggest the BPS

predictions are uncalibrated from any synthesis function. In only two cases is the null

hypothesis rejected at the 10 percent level.
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Figure A.1: Knüpple Test for Probabilistic Calibration: Nowcasting Application

Notes: Results from the Knüpple test for probabilistic calibration. Null hypothesis is
for calibration and values in the table correspond to p-values. Red shading corresponds
to rejection of calibration at 5 percent level and yellow at 10 percent level.
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Figure A.2: Knüpple Test for Probabilistic Calibration: Survey Forecast Application

Notes: Results from the Knüpple test for probabilistic calibration. Null hypothesis is
for calibration and values in the table correspond to p-values. Red shading corresponds
to rejection of calibration at 5 percent level and yellow at 10 percent level.

A.4 MCMC Convergence Appendix

In this section, I assess the convergence of the MCMC algorithms. This is done using the

Gelman-Rubin diagnostic (Rubin et al., 2015) and implemented through the MATLAB

MCMC Diagnostics Toolbox (Vehtari and Särkkä, 2014). The Gelman-Rubin diagnostic

compares within-chain variance to across-chain variance to estimate a potential scale

reduction factor (R), which can be used to assess convergence of the MCMC chain. As

a rule of thumb, values below 1.1 suggest convergence. The diagnostic is performed

with five chains and on four specifications of BPS using the SPF “tall” dataset. I focus

on the constant and time-varying versions of the triple gamma and one factor synthesis

functions. This is because the other shrinkage priors are special cases of the triple

gamma prior and reduce to simpler versions of the sampler. Results for other shrinkage

are available upon request. Since the number of parameters, state variables, and hyper-
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parameters sampled can number in the thousands, I report box plots of the potential

scale reduction factor in Figure A.3. These results show reasonable convergence of the

MCMC algorithms.

Figure A.3: Box Plots of Potential Scale Reduction Factors

Notes: The above shows the potential scale reduction factors (R) from the Gelman-
Rubin diagnostic with 5 chains on the SPF ‘Tall’ dataset. Values less than 1.1 provide
evidence that the MCMC has converged.
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B.1 Technical Appendix: Bayesian Inference

Before we start discussing the modeling choices, and the prior and the posterior sampler

in detail, we introduce a bit of additional notation to simplify the exposition.

We can rewrite Eq. (3.2) as a standard TVP regression:

yt = ct + γ ′xt|t−h + β′
txt|t−h + σtνt, νt ∼ N (0, 1). (B.1)

The priors on γ and βt can be written in the form of multivariate Gaussian distri-

butions:

γ ∼ N (µγ(Zγ),V γ),

βt ∼ N (µβ(zβ
t|t−h),V

β).

Here, µγ(Zγ) and µβ(Zβ
t|t−h) are both prior mean functions of dimension J and

V n = diag(τn1 , . . . , τnJ ) for n ∈ {γ, β}. The weight modifiers are stored, respectively, in

a (J×Kγ) matrix Zγ with typical row zγ
j and in a (JT×Kβ) matrix Zβ = (zβ

1 , . . . ,z
β
T )

′,

with zβ
t = (zβ

1t|t−h, . . . ,z
β
Jt|t−h), t = 1, . . . , T .

Notice that the prior on stacked β = (β′
1, . . . ,β

′
T ) can be written as a JT−dimensional

Gaussian distribution:

β ∼ N (µβ(Zβ), IT ⊗ V β),

where the prior mean function µβ(Zβ) is now also of dimension JT .

B.1.1 Additional Details about Our Modeling Choices and Priors

In this sub-section we provide additional details about our hierarchical prior setup used

for γ and the time-varying part, βt, of the weights. In both cases, the prior mean

functions, µγ(Zγ) and µβ(zβ
t ), are approximated by tree functions (see Eq. 3.6), while

the prior variances – which define the degree of shrinkage toward these prior means –

are modeled with a horseshoe (HS, Carvalho et al., 2010) prior. In addition, we sketch
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the law of motion and modeling choices for the time-varying intercept and time-varying

variances in Eq. (B.1), both of which capture the idea of model incompleteness.

Tree functions to approximate the prior mean. We closely follow here the sug-

gestions of the Bayesian additive regression tree (BART) literature (Chipman et al.,

1998, 2010) and use a similar prior setup for our tree structures T n
s and terminal node

parameters ϕn
s for n ∈ {β, γ}. To generate the tree function, Chipman et al. (1998) and

Chipman et al. (2010) suggest using a stochastic process of the following form:

1. Prior on the tree structure T n
s . Impose a decreasing probability of growing more

complex trees and that a terminal node is non-terminal. This probability is assumed

to be
c0

(1 + ϑ)c1
,

for a particular terminal node at depth ϑ, with the hyperparameters c0 = 0.95 and

c1 = 2 being two values that have been shown to be reasonable choices in much of

the literature using Bayesian (additive) tree models. Chipman et al. (2010) show

that this choice works well even for single-tree models. Moreover, for each splitting

rule at each node, Chipman et al. (2010) propose a prior that is agnostic about the

choice of the specific splitting variable and propose a natural default choice, which

is to use a uniform prior on the splitting variables, treating each variable as equally

likely to be used in a splitting rule.

2. Prior on the terminal node parameters ϕn
s . We use a Gaussian prior for the

terminal node parameters. For a typical element in ϕn
s , that is

ϕnj,s ∼ N (0, c2/S),

where c2 refers to a shrinkage parameter and S to the number of trees. It is worth

noting that – to avoid overfitting – the prior variances for these terminal parameters
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are scaled down by the number of trees and become tighter, so that each individual

tree explains only a tiny fraction within the additive sum-of-tree function.

Shrinkage toward the prior mean through the horseshoe prior. The horseshoe

prior amounts to setting the scaling parameters as follows:

τnj = λnψn
j , λn ∼ C+(0, 1), ψn

j ∼ C+(0, 1), for n ∈ {γ, β},

with C+(0, 1) denoting the half-Cauchy distribution. The key feature of this prior is that

λn serves as a global shrinkage parameter that pulls all weights toward the prior mean,

whereas ψn
j allows for agent-specific deviations from this common pattern. Another

representation of this prior, which simplifies posterior sampling enormously, is based on

introducing inverse Gamma distributed auxiliary variables (see Makalic and Schmidt,

2015):

λn|ζn ∼ G−1(1/2, 1/φn), φn ∼ G−1(1/2, 1),

ψn
j |ϖn

j ∼ G−1(1/2, 1/ϖn
j ), ϖn

j ∼ G−1(1/2, 1).

This representation is convenient since – when combined with the likelihood – it gives

rise to a simple Gibbs sampling step that involves only inverse Gamma full conditionals

(see Sub-section B.1.2 below).

Controlling for model incompleteness. A time-varying intercept ct and time-

varying variances σ2t both control for model incompleteness. The fact that both are

potentially time-varying gives additional flexibility in the degree of model set incom-

pleteness (as outlined in Sub-section 3.2.1). The time-varying intercept follows a random

walk (RW) law of motion with the state equation given by

ct = ct−1 + ηc,t, ηc,t ∼ N (0, σ2c ),
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where σ2c denotes the state innovation variance. To discipline ct, we use a relatively

tight Gamma prior on σ2c and strongly push the state innovation variance toward a

small positive value close to zero.

The error variances σ2t in Eq. (3.1) can be time-varying or constant. The time-

varying case is given by

ςt = µς + ρς(ςt−1 − µς) + ης,t, ης,t ∼ N (0, σ2ς ), (B.2)

with µς denoting the unconditional mean, ρς the persistence parameter, and σ2ς the

state innovation variance of the log-volatility process. For SV we follow Kastner and

Frühwirth-Schnatter (2014) and assume a Gaussian prior on µς ∼ N (0, 102), a (trans-

formed) Beta prior on (ρς + 1)/2 ∼ B(5, 1.5), and a Gamma prior on σ2ς ∼ G (0.5, 0.5).

Moreover, for the case of homoskedastic errors, we assume an inverse Gamma prior on

σ2 ∼ iG(0.01, 0.01).

B.1.2 Posterior Simulation

The prior discussed in the previous section can be combined with the likelihood to

derive the full posterior over all unknown quantities in our model. Since this joint

density is untractable, we use Markov chain Monte Carlo (MCMC) methods to carry

out posterior simulation. In what follows, we let • be generic notation that indicates

that we condition on all other parameters/states of the model.

We start the discussion of our posterior sampler by first describing how we estimate

the latent quantities that enter the synthesis function. This includes the static and

dynamic weights, the error variances, the latent trend components, and the agent-

specific forecasts.

Sampling from {p(ct|•)}Tt=1. We sample the full history of the random walk

intercept term conditional on all other unknowns in the model using a forward-filtering

backward-sampling (FFBS) step (Carter and Kohn, 1994). This is achieved by noting
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that

yt − γ ′xt|t−h − β′
txt|t−h︸ ︷︷ ︸

yγ,βt

= ct + σtνt (B.3)

is a standard unobserved components model with heteroskedastic shocks.

Sampling from p(γ|•). The time-invariant weights are sampled from a J-dimensional

Gaussian full conditional posterior distribution,

γ|• ∼ N (γ,V
γ
), (B.4)

with moments given by

V
γ
= (X ′Σ−1X + (V γ)−1)−1,

γ = V
γ
(
X ′Σ−1yβ,c + (V γ)−1µγ(Zγ)

)
,

where X is a T × J matrix with tth row x′
t|t−h, Σ = diag(σ21, . . . , σ2T ) and yβ,c is a

T -dimensional vector with typical element yt − β′
txt|t−h − ct.

Sampling p(β|•). The dynamic regression coefficients are simulated by writing the

model in static form. The static form of the model reads:

yγ,c = Wβ + ν, ν ∼ N (0T ,Σ), (B.5)

where yγ,c is T × 1 and has typical element yt − γ ′xt|t−h − ct and W is a T × TJ-

dimensional block diagonal matrix with W = bdiag(x′
1|1−h, . . . ,x

′
T |T−h).

1 Under this

static representation, the posterior of β takes a standard form and is multivariate Gaus-

sian:

β|• ∼ N (β,V
β
), (B.6)

1Observations −h, . . . , 0 refer to a part of the sample that we use to initialize our models.
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with posterior covariance matrix and mean vector given by, respectively,

V
β
=
(
W ′Σ−1W + (IT ⊗ V β)−1

)−1
,

β = V
β
(
W ′Σ−1yγ,c + (IT ⊗ V β)−1µβ(Zβ)

)
.

This distribution is high dimensional even for moderate values of J , and we thus

use the efficient sampler outlined in Hauzenberger et al. (2022).

Sampling from p(σ21, . . . , σ
2
T |•). We sample the log volatilities and associated state

equation parameters using the algorithm outlined in Kastner and Frühwirth-Schnatter

(2014). This step is implemented in the R package stochvol.

Sampling from {p(xt|t−h|•)}Tt=1. We draw from {p(xt|t−h|•)}Tt=1 on a t-by-t basis.

The time t full conditional posterior of xt is given by

p(xt|t−h|•) ∝ N (yt|ct + γ ′xt|t−h + β′
txt|t−h, σ

2
t )
∏

j=1:J

πjt(xjt|t−h),

which, unless the agent densities πjt(xjt|t−h) are Gaussian, takes no well-known form. In

our applications, the agent densities do not have analytical representations. For exam-

ple, the ECB-SPF elicits histograms from survey respondents and in the US application

the available forecasts are predictive draws based on model-specific Gibbs samplers. Ac-

cordingly, we sample xt using an adaptive Metropolis Hastings step (see, e.g., Roberts

and Rosenthal, 2009). This step proposes x∗
t|t−h from a mixture of Gaussian distribu-

tions:

x∗
t|t−h ∼ (1− κ)N (xt|t−h, (2.38)

2Q̂tm/J) + κN (xt|t−h, (0.1)
2IJ/J), (B.7)

where κ = 0.05 is a small constant and Q̂tm/J is the empirical covariance matrix of

the target distribution based on the first m draws. Since this algorithm learns the

proposal, it can quickly adjust to cases where the agent densities are non-Gaussian,

feature multiple modes, or are heavy tailed.
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Next, we discuss the steps involved in sampling the parameters of the priors on the

weights.

Sampling from p(T n
1 , . . . , T n

S ,ϕ
n
1 , . . . ,ϕ

n
S |•) for n ∈ {γ, β}. We sample the tree

structures and the terminal node parameters using the algorithm proposed in Chipman

et al. (2010). This algorithm is applicable since, conditional on γ and β, the corre-

sponding priors can be interpreted as regression models. For instance, in the case of β,

notice that

βjt =

S∑
s=1

g(zβ
jt|T

β
s ,ϕ

β
s ) + τβj νjt, νjt ∼ N (0, 1), (B.8)

which, in stacked form, can be written as

β =

S∑
s=1

g(Zβ|T β
s ,ϕ

β
s ) + r, r ∼ N (0TJ , IT ⊗ V β). (B.9)

Equation B.9 is a standard BART regression with latent responses and heteroskedas-

tic errors. For γ, a similar regression representation can be derived.

Sampling from p(τn1 , . . . , τ
n
J |•) for n ∈ {γ, β}. The scaling parameters are ob-

tained using the algorithm described in Makalic and Schmidt (2015). This algorithm

involves only inverse Gamma distributions and, for brevity, we do not discuss them in

detail here.

These steps form our MCMC algorithm. In all our empirical work, we iteratively

sample from the different full conditionals to obtain draws from the joint posterior of

the coefficients and the latent states. Based on these draws, we back out the predictive

distribution as described in the main text through Monte Carlo integration. That is,

after obtaining a draw from the posterior, we use this draw to forecast yt∗ . This is

done for every draw, leading to a posterior distribution over future values yt∗ . In all

our empirical work, we repeat this 12, 500 times and discard the initial 2, 500 draws as

a burn-in. We subsequently keep every second draw, yielding a total of 5, 000 draws

from the joint posterior distribution.
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B.1.3 ADL Model Estimation

Our US inflation forecasting exercise involves Bayesian estimation of ADL models in-

volving different explanatory variables. Table B.1 provides an overview of the 27 vari-

ables each used as an exogenous predictor in Eq. (3.12) and also highlights (in bold

typeface) the target variable.

Table B.1: List of variables used for the autoregressive distributed lag (ADL) specifications.

Mnemonic Description Transformation

GDPC1 Real Gross Domestic Product 100 × ∆ log
PCECC96 Real Personal Consumption Expenditures 100 × ∆ log
FPIx Real Private Fixed Investment 100 × ∆ log
GCEC1 Real Government Consumption Expenditures and Gross Investment 100 × ∆ log
INDPRO Total index Industrial Production Index 100 × ∆ log
CUMFNS Capacity Utilization: Manufacturing (SIC) none
PAYEMS Emp:Nonfarm All Employees: Total nonfarm 100 × ∆ log
CE16OV Civilian Employment 100 × ∆ log
UNRATE Civilian Unemployment Rate ∆
AWHMAN Average Weekly Hours of Production and Nonsupervisory Employees: Manufacturing Hours none
CES0600000007 Average Weekly Hours of Production and Nonsupervisory Employees: Goods-Producing ∆
CLAIMSx Initial Claims 100 × ∆ log
GDPCTPI Gross Domestic Product: Chain-type Price Index 100 × ∆ log
CPIAUCSL Consumer Price Index for All Urban Consumers 100 × ∆ log
PPIACO Producer Price Index for All Commodities 100 × ∆ log
WPSID61 Producer Price Index by Commodity Intermediate Materials: Supplies & Components 100 × ∆ log
WPSID62 Producer Price Index: Crude Materials for Further Processing 100 × ∆ log
COMPRNFB Nonfarm Business Sector: Real Compensation Per Hour 100 × ∆ log
ULCNFB Nonfarm Business Sector: Unit Labor Cost 100 × ∆ log
CES0600000008 Average Hourly Earnings of Production and Nonsupervisory Employees 100 × ∆ log
FEDFUNDS Effective Federal Funds Rate ∆
BAA10YM Moodys Seasoned BAA Corporate Bond Yield Relative to Yield on 10-Year Treasury none
GS10TB3Mx 10-Year Treasury Constant Maturity Minus 3-Month Treasury Bill, secondary market none
CPF3MTB3Mx 3-Month Commercial Paper Minus 3-Month Treasury Bill, secondary market none
M2REAL Real M2 Money Stock 100 × ∆ log
BUSLOANSx Real Commercial and Industrial Loans, All Commercial Banks 100 × ∆ log
CONSUMERx Real Consumer Loans at All Commercial Banks 100 × ∆ log
S.P.500 S&Ps Common Stock Price Index 100 × ∆ log

Notes: The variable in bold refers to the target inflation series.

To estimate these ADL specifications, we use standard Bayesian non-conjugate re-

gression techniques with posteriors of standard form. The non-conjugate priors are

weakly informative. We center both ρπ and απ in Eq. (3.12) on a prior mean of zero

and assume a prior variance of 100. For the case of homoskedastic errors, we assume an

inverse Gamma prior on σ2π,t+h := σ2π ∼ iG(0.01, 0.01), while for SV we essentially use

the setup sketched in Appendix B.1.1 (see Eq. B.2). However, non-conjugacy (and SV

in particular) leads to predictive densities for which there is no closed-form solution.

Therefore we use MCMC methods and predictive simulation.
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B.2 Empirical Appendix: Additional Results

This empirical appendix contains supplementary results as referenced in the main pa-

per. It is structured as follows. Section B.2.1 reports left and right tail CRPSs. Section

B.2.2 presents the combination weights. Section B.2.3 presents the cumulative CRPS

statistics. Section B.2.4 presents the fluctuation tests. Section B.2.5 presents the PITs

tests. Section B.2.6 presents results showing how we can draw out the degree of shrink-

age implied by BPS-RT. Section B.2.7 plots the predictive densities in both applications

and examines their skewness.

B.2.1 Tail forecast accuracy

Figure B.1: Relative tail forecast accuracy: EA GDP growth.
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Notes: This figure shows two variants of quantile-weighted CRPS ratios, one focusing on the left tail and
the other on the right tail. The gray-shaded entries give the actual scores of our benchmark (BPS-RW with
homoskedastic error variances). Green-shaded entries refer to models that outperform the benchmark (with
the forecast metric ratios below one), while red-shaded entries denote models that are outperformed by the
benchmark (with the forecast metric ratios greater than one). The best-performing model specification by
forecast metric is given in bold. Asterisks indicate statistical significance of the Diebold and Mariano (1995)
test, which assumes equal forecast performance for each model relative to the benchmark, at the 1 (∗∗∗), 5 (∗∗),
and 10 (∗) percent significance levels.
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Figure B.2: Relative tail forecast accuracy: US inflation.
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(b) One-year-ahead (h = 4)
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Notes: This figure shows two variants of quantile-weighted CRPS ratios, one focusing on the left tail and
the other on the right tail. The gray-shaded entries give the actual scores of our benchmark (BPS-RW with
homoskedastic error variances). Green-shaded entries refer to models that outperform the benchmark (with
the forecast metric ratios below one), while red-shaded entries denote models that are outperformed by the
benchmark (with the forecast metric ratios greater than one). The best-performing model specification by
forecast metric is given in bold. Asterisks indicate statistical significance of the Diebold and Mariano (1995)
test, which assumes equal forecast performance for each model relative to the benchmark, at the 1 (∗∗∗), 5 (∗∗),
and 10 (∗) percent significance levels.
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B.2.2 Combination Weights

Figure B.3: Combination weights over the evaluation sample: EA GDP growth
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Notes: This figure shows the posterior median of the combination weights, (γj +βjt+h), for each of the 14 SPF
forecasters. Green (red)-shaded cells indicate that calibration parameters are above (below) zero. The top panel
corresponds to our preferred BPS-RT specification, while the bottom panel corresponds to the benchmark.
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Figure B.4: Combination weights over the evaluation sample: One-quarter-ahead US
inflation
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Notes: This figure shows the posterior median of the one-quarter-ahead combination weights, (γj + βjt+h),
for each of the 56 ADL model variants. Green (red)-shaded cells indicate that weights are above (below) zero.
The top panel corresponds to our preferred BPS-RT specification, while the bottom panel corresponds to the
benchmark. 129
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Figure B.5: Combination weights over the evaluation sample: One-year-ahead US in-
flation (h = 4)
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Notes: This figure shows the posterior median of the one-year-ahead combination weights, (γj + βjt+h), of the
best-performing model parameters for each of the 56 ADL model variants. Green (red)-shaded cells indicate
that weights are above (below) zero. The top panel corresponds to our preferred BPS-RT specification, while
the bottom panel corresponds to the benchmark. 130
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Figure B.6: Sum of combination weights over the evaluation sample
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(c) One-year-ahead US inflation (h = 4)
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Notes: This figure shows the posterior median of the sum of the combination weights,
∑J

j=1(γj + βjt+h), for
the models shown in Figures B.3, B.4 and B.5. Green (red)-shaded cells indicate that the overall sum of weights
is above (below) zero for a specific evaluation period.
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B.2.3 Cumulative CRPS

Figure B.7: Forecast performance of single-tree specifications with stochastic volatility:
EA GDP growth
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Notes: This figure shows relative cumulative continuous ranked probability scores (CRPSs) over the full evalu-
ation sample, which ranges from 2005Q2 to 2021Q1. The benchmark model is a TVP regression with a random
walk evolution of parameters (BPS-RW) and homoskedastic error variances. Green-shaded entries indicate periods
in which the respective model outperforms the benchmark (with the cumulative CRPS ratio below one), while
red-shaded entries denote periods in which the respective model is outperformed by the benchmark (with the
cumulative CRPS ratio greater than one). We refrain from showing the forecast performance over time for all
models, but focus on the class of models that contains the best-performing specification in terms of CRPS, that
is, all single-tree specifications with stochastic volatility.
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Figure B.8: Forecast performance of single-tree specifications with homoskedastic error
variances: US inflation
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Notes: This figure shows average relative cumulative continuous ranked probability scores (CRPSs) over the
evaluation sample, which ranges from 2000Q1 to 2022Q4. The benchmark model is a TVP regression with a
random walk evolution of parameters (BPS-RW) and homoskedastic error variances. Green-shaded entries indicate
periods in which the respective model outperforms the benchmark (with the cumulative CRPS ratio below one),
while red-shaded entries denote periods in which the respective model is outperformed by the benchmark (with
the cumulative CRPS ratio greater than one). We refrain from showing the forecast performance over time for
all models, but focus on the class of models that forecast well in terms of CRPS, that is, all homoskedastic,
single-tree specifications, the class containing the best-performing specification for the one-quarter-ahead (h = 1)
horizon.
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B.2.4 Giacomini and Rossi (2010) Fluctuation Test Statistic

We focus on evaluating the BPS-RT specifications with the best overall forecast per-

formance. As seen from Figures 3.2 and 3.3, in the EA-GDP application, this is the

single-tree specification with SV using average scores as effect modifiers. For the US

inflation application, this is the homoskedastic single-tree specification with the full set

of weight modifiers.

Figure B.9: Evolution of the Giacomini and Rossi (2010) fluctuation test statistic
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Notes: This figure shows the evolution of the Giacomini and Rossi (2010) fluctuation test statistic over time.
The green solid line represents the test statistic, the black solid line marks the zero line, and the black dashed
lines indicate the respective 95% confidence bands. To compute this period-specific test statistic, we use local
relative continuous ranked probability scores (CRPSs) between the preferred BPS-RT specification and the
benchmark (homoskedastic BPS-RW) over a rolling window comprising 10% of the evaluation sample. In panel
(a), this implies that the rolling window is based on five observations (with the initial value of the test statistic
available in 2006Q3), while in panels (b) and (c), this implies the rolling window is based on eight observations
(with the initial value of the test statistic available in 2002Q1).
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B.2.5 Probability Integral Transforms (PITs)

We focus on evaluating the BPS-RT specifications with the best overall forecast perfor-

mance. As seen from Figures 3.2 and 3.3, in the EA-GDP application, this is the single

tree specification with SV using average scores as effect modifiers. For the US inflation

application, this is the homoskedastic single tree specification with the full set of weight

modifiers.

Figure B.10: Evaluating model calibration using probability integral transforms (PITs)
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Notes: This figure shows the empirical cumulative density function of the PITs in the left panels and the
histogram of the PITs in the right panels. A correctly specified model has PITs that are standard uniformly
distributed. Such a specification is denoted by the black solid lines, with the black dashed lines denoting the
respective 95% confidence bands (see Rossi and Sekhposyan, 2019). The preferred BPS-RT specification is shown
in green, while the benchmark is indicated in red.
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B.2.6 Measuring the Degree of Shrinkage

Figure B.11: Overall degree of shrinkage toward the prior mean for US inflation.
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Notes: This figure shows the evolution of the degree of shrinkage measure over time. For each period in the
evaluation sample, this measure is computed for our preferred specification (homoskedastic BPS-RT(TC): ALL
with a single tree) as the ratio between the variation explained of the prior mean and the total variation of the
respective coefficient part. This measure is bounded between zero and one. Values close to zero suggest that
idiosyncratic deviations of coefficients (via the state innovation variances) dominate the prior mean (at least for
some coefficients), while values close to one indicate that all coefficients are strongly pushed toward the prior
mean in the respective period in the evaluation sample.

Figure B.11 shows a measure for overall shrinkage for both the time-invariant part

(γ) and the time-varying part (βt) of the weights. This measure effectively summarizes

the overall variation explained by the prior mean as part of the overall variation in coef-

ficients. It thus allows us to assess the relative importance of idiosyncratic innovations

to the coefficients (i.e., innovations to the state equation) compared to the prior mean,

and thus serves to quantify the overall degree of shrinkage by resembling something

like a “joint" R2-type of measure, which is bounded between zero and one. In each of

the state equations, the target variables are either the constant coefficients γ or the
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stacked time-varying coefficients βt (for, t = 1, . . . , T ). In such a hierarchical model,

the prior mean can then be treated as the conditional mean (i.e., the fit), while the

state innovations (i.e., the shocks) are mainly driven by the state innovation (or prior)

variances. In the following, a low joint R2 suggests that the state innovation variances

play a significant role (at least for some of the coefficients), whereas a high joint R2

suggests that the coefficients are heavily shrunk toward the prior mean. It is worth

noting that in recessions, the R2 is typically essentially zero and thus the prior means

are less informative in these periods and random innovations to the state equations

provide/add more model flexibility, which is required/necessary in these highly volatile

periods.

B.2.7 Combined Predictive Densities and Their Skewness

Figure B.12: BPS-RT and BPS-RW predictive densities
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(h = 1) (c) One-year-ahead US inflation (h = 4)
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Notes: This figure displays the corresponding predictive densities. The colored shaded areas and the colored
solid lines represent the 90% confidence interval and the posterior median, respectively. The preferred BPS-RT
specification is shown in green, while the benchmark is indicated in red. The black solid line in both panels
refers to the respective realization.
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Figure B.13: Evolution of a quantile-based skewness measure for the BPS-RT predictive
densities
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Notes: This figure shows the evolution of a quantile-based skewness measure for predictive densities in our
preferred BPS-RT specification, as shown in Figure B.12. The quantile-based skewness measure is defined as
((q95% − q50%) − (q50% − q5%))/(q95% − q5%), where q5%, q50%, and q95% represent the 5th, 50th, and 95th

percentiles of the predictive densities, respectively. The green solid line represents the computed skewness
measure, while the black solid line marks the zero line.
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C.1 Evaluation of Tilting Vectors

Evaluation of tilting vectors τ (x) involves Monte Carlo integration and numerical op-

timization, briefly summarized here. This follows and customizes the general results

in Tallman and West (2023, section 4.4).

The vector τ (x) is implicitly defined to satisfy Ef [sj(y,xj)|x] = mf where mf is

the chosen target score and expectation is with respect to

f(y,Mj) = π̃j(x)fj(y|x,Mj) = k(x)πj(x)αj(y|x)pj(y|x,Mj), j = 0:J,

with components given in eqn. (4.3) in the main text. With αj(y|x) of the exponential

form in eqn. (4.4) in the main text, numerical optimization aims to solve

k(x)
∑
j=0:J

∫
y
πj(x)eτ (x)

′sj(y,xj)pj(y|x,Mj)dy −mf = 0 (B.1)

for τ (x). The normalizing term k(x) is defined via k(x)−1 =
∑

j=0:J πj(x)aj(x) where

aj(x) =

∫
y

eτ (x)
′sj(y,xj)pj(y|x,Mj)dy, j = 0:J. (B.2)

At any given x, the integrals in equations (B.1,B.2) are approximated using Monte

Carlo integration based on random samples from each of the pj(y|x,Mj). This gives the

ingredients for numerical search over τ (x) using derivative-free optimization methods

such as those used in the current paper.

For completeness, we note that the same approach applies where gradient-based

optimization is considered. Newton-Raphson and allied methods will require the vector

derivative ȧj(x) of aj(x) with respect to τ (x), and may also require the matrix of second

140



Appendix C. Chapter 4 Appendix

derivatives äj(x). These are given by

ȧj(x) =

∫
y
sj(y,xj)eτ (x)

′sj(y,xj)pj(y|x,Mj)dy,

äj(x) =

∫
y
sj(y,xj)sj(y,xj)

′eτ (x)
′sj(y,xj)pj(y|x,Mj)dy.

Hence the Monte Carlo integration approach used to evaluate the aj(y) also delivers

approximations to these derivatives.

C.2 Conditional Forecasts

This section discusses the construction of conditional forecasting in VAR models, fol-

lowing Chan et al. (2023) and discussion in Antolin-Diaz et al. (2021).

C.2.1 Observational Constraints

The general theory for constraining on exact or uncertain linear constraints in multivari-

ate normal forecast distributions (e.g. West and Harrison, 1997, sect. 16.3.2) underlies

these results used in that paper and here in the specific case of VAR models.

The n× 1 vector time series yt = (yt1, . . . , ytn)
′ follows a VAR(p) in structural form

A0yt = a +A1yt−1 + · · ·+Apyt−p + εt, εt ∼ N(0n, In) (B.3)

with the following terms: a is a n×1 vector of intercepts, A1, . . . ,Ap are the n×n VAR

coefficient matrices, A0 is a full-rank contemporaneous impact matrix, 0n is a n × 1

zero vector and In is the n× n identity matrix.

Given the history of observations {y1−p, . . . ,yT } at any time T , unconditional fore-

casting of the n variables for the next h periods, namely the nh× 1 vector yT+1:T+h =

(y′
T+1, . . . ,y

′
T+h)

′, is based on the implied form

HyT+1:T+h = c + εT+1:T+h, εT+1:T+h ∼ N(0nh, Inh) (B.4)
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where

c =



a +
∑p

j=1AjyT+1−j

a +
∑p

j=2AjyT+1−j

...

a +ApyT

a
...

a



, H =



A0 0n×n . . . . . . . . . . . . . . . 0n×n

−A1 A0 0n×n . . . . . . . . . . . . 0n×n

−A2 −A1 A0 0n×n . . . . . . . . . 0n×n

...
. . . . . . . . . . . . . . . . . .

...

−Ap . . . . . . −A1 A0 0n×n . . . 0n×n

0n×n . . . . . .
. . . . . . . . . . . .

...
... . . . . . . . . .

. . . . . . . . .
...

0n×n . . . 0n×n −Ap . . . . . . −A1 A0


with 0n×n the n× n zero matrix. Since A0 is full rank and |H| = |A0|h ̸= 0, then H is

non-singular and

yT+1:T+h ∼ N(m,M) with moments m = H−1c and M = (H′H)−1. (B.5)

Now consider a set of r < nh linear restrictions on the path of future observables,

namely

RyT+1:T+h ∼ N(r,Ω) (B.6)

where R is a chosen r×nh constant matrix with full row rank, r is an r×1 vector mean

and Ω is the corresponding r × r variance matrix related to the restrictions. This can

be regarded as a set of uncertain constraints r when Ω is non-zero, or exact constraints

RyT+1:T+h = r in the case Ω = 0.

Conditioning the forecast distribution of eqn. (B.5) on this constraint informa-

tion yields the updated distribution below; details follow from West and Harrison

(sect. 16.3.2 1997) and Chan et al. (2023). The updated distribution for the path

is

yT+1:T+h|R, r,Ω ∼ N(m∗,M∗),
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with

m∗ = m+A(r−Rm) and M∗ = M+A(Ω−RMR′)A′ where A = MR′(RMR′)−1.

The special case of exact constraints RyT+1:T+h = r has constraint uncertainty

matrix Ω = 0 so that M∗ reduces to M∗ = M − ARMR′A′. This is relevant in

applications where it is justifiable to assume exact constraints. In our policy setting,

the targeted constraint vector r is just that, a target policy path, for example, so

that there will always be some level of uncertainty. The starting point is uncertainty

represented by the variance matrix V (RyT+1:T+h) = RMR′. As argued in Antolin-

Diaz et al. (2021), adopting Ω = RMR′ represents a position that admits relevant and

conservative levels of such uncertainty. This is used in the application of our paper as

we constrain on candidate values of the policy path in considering conditional forecasts,

hedged with uncertainty.

C.2.2 Constraints on Structural Shocks

The above development implicitly involves constraints imposed on all of the structural

shocks of the model. In conditional forecasting exercises, it is often necessary to focus

on only specific structural shocks set at restricted values (exact or uncertain), to obtain

finer control. For example, a forecast conditional on an increasing policy rate path

might result in an increase in inflation (i.e., the “price puzzle”) as the forecast is driven

by reduced form shocks which are a mix of the structural shocks (i.e., demand, supply,

monetary). For further discussion, see Antolin-Diaz et al. (2021). Due to these issues, we

impose structural restrictions so that changes in the policy rate are driven by monetary

policy shocks (i.e., decisions from the Central Bank) rather than as reactions to other

shocks. This can be done by considering the restrictions

WεT+1:T+h ∼ N(w,Ψ) (B.7)
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where W is a w × nh full rank-selection matrix, w is a w × 1 vector of constants and

Ψ is a w × w covariance matrix. Substituting eqn. (B.4) into eqn. (B.7) for εT+1:T+h

results in

WHyT+1:T+h ∼ N(Wc, Iw) (B.8)

Then combining eqn. (B.8) with eqn. (B.6) yields

 R0

WH


︸ ︷︷ ︸

R

yT+1:T+h ∼ N

( r0

Wc


︸ ︷︷ ︸

r

,

 Ω0 0r0×w

0w×r0 Iw


︸ ︷︷ ︸

Ω

)
(B.9)

where R0 is a selection matrix for observable restrictions, r0 is a vector of restrictions

on observables, and Ω0 is a matrix of covariance restrictions on observables. Thus,

by setting R, r and Ω as indicated in eqn. (B.8), the structural restrictions can be

regarded as a specific case of eqn. (B.6). In our applications, we set r0 = x and W = 0

for all εT+1:T+h except those associated with the monetary policy shock– those are

kept unrestricted. This amounts to conditioning on a proposed decision vector x and

assuming it is driven only by monetary policy shocks. Other conditioning assumptions

are possible. For example, in addition to assuming the driving shock is monetary policy

one could assume a vector of positive/negative demand shocks representing different

future scenarios.
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