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Abstract 

 

In traditional ship design process, the design work has to depend on the experience of 

designers. However due to the decreasing number of available experts for various 

reasons, retaining and the utilising the previous experience/expertise in the industry, 

which can be design office, shipyard etc, is a serious issue. At the same time, modern 

ships have become large and complex while trying to comply with stricter 

requirements of the rules and regulations. The old design support system can not 

satisfy the design tasks. This research presents a new ship design decision support 

system with learning ability, which can automatically improve itself with learning. 

This system can process complex ship design via effective learning by utilising data 

mining and the available data from natural ship database. It can provide a robust 

support via automatically learning approaches to help designers to manage their 

complex world of multiple simultaneous tasks to make an excellent decision and 

develop innovative design.  

 

In this study, several machine learning methods are applied in different subjects. The 

decision tree and case-based reasoning is employed to build learning based ship 

design learning library. The Q-learning method is selected to improve the real-time 

learning in ship design. The support vector machine based fuzzy multiple attribute 

decision making method is developed to assist the designers to select the final design. 

In order to achieve this distributed support system, multi-agent architecture is 

employed and a new optimization method is created. Two classic problems including 

stability based hull subdivision design and structure optimization in ship design are 

studied as case studies. The application of this new methodology demonstrates that 

this system has excellent performance on both numerical factions and real world 

problems. The quality of design has been improved greatly with the distinctly 

reduced time under the assistance of this system. 
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Chapter 1  

 

 

Introduction 
 

1.1 Introduction 

The global maritime trade is one of the most important activities of the world 

economics. “Seaborne trade is, in a sense, at the apex of world economic 

activity”(Stopford 1997). The development of maritime trade keeps a large 

proportion of the world economic and directly affects the growth of the world 

economic. “With over 80 per cent of world merchandise trade by volume being 

carried by sea, maritime transport remains the backbone supporting international 

trade and globalization.” (The UNCTAD secretariat 2008). The maritime marketing 

improves the living of people, enhances the international cooperation and 

intercommunion, and promotes the development of world economic. The global 

maritime trade has made a significant contribution to the growth of world economics.  

 

The world’s ship fleets provide strong support for the global maritime transport. At 

the beginning of 2008, the world merchant fleet reached 1.12 billion deadweight tons 

(dwt) (The UNCTAD secretariat 2008). In recent years, the world ship fleet 
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developed rapidly (Figure 1.1) and the demands of fleet expansion require better, 

faster and cheaper ships.  

 

The increased globalisation brings high level of competition in terms of trade and 

this reflects on the design and manufacturing of the ships and other floating 

structures. The ship owners are looking for reducing their cost via cheaper building 

and operational costs while complying with international standards. However, in 

recent years, in parallel to other industries maritime industries need to comply with 

new standards in terms of safety of passengers, crew, cargo, ships and environment. 

Furthermore, with decreasing fossil based energy sources, new efficient and 

innovative developments in terms of technologies, designs and energy sources. This 

means novel ship designs for which designers may not have as much experience as 

desired. 

 

The new ships should be designed and built to high standards as far as possible to 

respond to the globe maritime market needs. In the meantime, increasing safety 

standards with constantly improved ship design and building standards while 

reducing the cost have been a severe challenge to the naval architects. In order to 

achieve high performing ship design, a high quality learning based ship design 

decision support system to assist the ship design work is the key to such achievement. 

Such decision support system can greatly improve the ability of designers and reduce 

the design time. Ultimately it can help the naval architects to design the novel and 

harmonious ship with excellent performance and cost effectiveness.    
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Figure 1. 1 The DWT of world fleet, taken from the UNCTAD secretariat 2008 

(The UNCTAD secretariat 2008) 

1.2 Motivation  

In current ship design, the existing design system can not store the prior experience 

of humans and largely depend on software designer/expert interaction. Without the 

help of prior experience, ship design system can not make an auto-reaction to 

alteration of design environments but waiting for designer to adjust. It is a hard and 

time-consuming work which is one of main bottlenecks in ship design. 

 

With the development of ship science and maritime industry, ships have been 

becoming larger and more complex in order to meet the demands of maritime 

industry within increasingly global business, leisure and trade. On the other end 

despite the increasing size of the fleet and shipbuilding, availability of number of 

experienced/skilled designers is significantly less than the desirable level. As the 

experience and knowledge intensive subject, ship design largely depends on 
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experience/skills of designers and specialists. The design solutions would alternate 

according to experience level and therefore the utilization of knowledge/experience 

becomes new but critically important for modern ship design. Firstly, ship design, as 

one classic type of systems engineering and parallel design, has to consider the 

interaction among different design tasks via update of knowledge and experience. 

Secondly, fast design works up with requirement of maritime market. When enquires 

or orders come, shipping company not only needs the required knowledge but also 

fast design to respond to the market requirements, which mean that it is extremely 

important to design an appropriate ship in a short time. The key factor in fast design 

is controlling whole process for better design decision making in a most effective 

way. For this aim, a design decision system must have the learning function to 

transfer experience to particular ship design to help for design process. Furthermore, 

the adaptability of dynamic design environment also requires that the design decision 

system can learn automatically from previous design exercises and provide a real-

time answer for questions in new designs. In another word, a design support system 

with learning function is very useful and essential approach for ship design.  

1.3 Problem Definition 

As a dynamic process, ship design contains many uncertain information. For decision 

based design, decision support systems are very important for a successful ship 

design. The decision support systems should have learning ability, which means the 

systems can fully use prior experience as new design guidance. However, current 

decision support systems focus mainly on numerical simulation and calculation, 

leaving the design experience to the skills of the designers or the specialists who also 

should be the user of the system. This raises the issue that design quality may heavily 

depend on a designer’s experience. In order to improve the design quality, as a 

complex system, new computer aided ship design needs prior experience to avoid 

failure and to give a better direction. How to make use of this prior experience has 

become a key problem for the marine design process.  

 

Ship design decision support systems with learning ability will be an important 

improvement for the current ship design practice. This research aims to improve the 
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ability to process complex ship design via effective learning by utilising the data 

mining of the ship database together with effective artificial intelligence and practical 

experience. It can provide a robust support via automatic learning to help designers 

to manage their complex worlds of multiple simultaneous tasks to make an excellent 

decision and create an innovative design.  

 

This thesis deal with the development of the learning based ship design decision 

support system combining optimisation, design and learning approach in an 

integrated environment. The learning method, artificial intelligence, decision theory, 

and virtual design are studied and a new approach is developed with a number of 

applications on various case studies.  

1.4 Aim and Objectives of the thesis 

Definition of the problem in section 1.3 gives the detailed description of the research 

problem which needs to be solved in this thesis. This is the preliminary step in 

research. However, the ship design is a very large and complex subject which 

requires different types of information and knowledge in both science and 

engineering areas in an integrated form. Developing a successful ship design 

decision support system with learning ability is a very challenging indeed. 

Meanwhile, there have been many other good attempts in ship expert systems and 

design methods. Inevitably, more effort is required to develop a new system based on 

various previous research findings. According to this aspect, one of the critical gaps 

in ship design support system development is the lack of a systemic experience 

sharing framework to enable self-learning function within the system to solve the 

practical design problem.    

 

The aim of this research work is to develop a multi-agent ship design decision 

support system with learning ability, which can automatically improve the design 

according to the experience gained via agents’ self-determination for learning. 

Through the learning function of agent, the system will abandon line-design frame 

and transfer to system engineering network which fits better to the dynamic ship 

design environment.  
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Therefore the research outcome ought to satisfy the following objectives: 

 Development of learning based ship design decision support framework 

 Development of an integrated learning method, which is suitable ship design 

problems, in order to find relationship between input and output in ship design 

process with minimum information.   

 Development of the approach for storing, drawing and using of experience for 

better management of prior experience. 

 Incorporation of reinforced learning into multi-objective optimisation to improve 

search performance and better solution space forecasting ability.  

 Improving the speed of optimisation via providing guidance of search direction 

using learning method. 

 Development of self-learning decision support system to assist the final decision 

of solutions.    

 Testing and evaluating the framework on existing ship designs and new designs. 

 

In this study, the research will focus on the part of learning ability including 

experience sharing and real-time learning. The system will accept multi-agent 

framework, which is studied in previous research. The development of multi-agent 

framework mainly concentrates on creating a communication environment. For 

learning method, many kinds of machine learning approaches are introduced and 

analyzed from both theory and practice in engineering. An integrated systemic 

learning method is proposed for ship design decision support system.  

1.5 Structure of the thesis 

The thesis consists of 9 main chapters and a number of associated appendices. The 

content of each chapter is given briefly as follows: 

 

Chapter 1: Introduction 

 

In chapter 1, a brief introduction is given pertaining to general scope of this research. 

The critical problem in ship design and the reason for study this problem is explained 
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together with the importance of such things. A brief historical background is 

introduced while the overall aim of the thesis, structural outline of the thesis is 

presented. This chapter also presents the definition and explanation of the main aim 

and objectives of the study.  

 

Chapter 2: Critical Review 

 

In chapter 2, a critical review of ship design, the application of artificial intelligence 

and machine learning in ship design, ship design optimisation, multi-agent design 

decision support system and design decision technology is presented. The review 

focuses on both theory and application together with detail analyses and discussion 

on the methods.  

 

Chapter 3: Learning Based Ship Design Decision Support System 
 

This chapter presents the blueprint of the whole study covering the global viewpoint 

from theory to practical application with the functional description. The framework 

of learning based ship design decision support system is introduced together with the 

research emphasises and contributions.  

 

Chapter 4: Data Mining in Ship Design 

 

In this chapter, the importance of learning library within the design support system is 

explained. The reasons of selecting different data mining approaches are discussed. 

The theory, principle and application of two approaches (decision tree and Case 

Based Reasoning (CBR)) are given. This chapter provides the method of drawing the 

experience, which includes the selection of design variables, the choosing of 

optimisation objectives and the range of constraints etc., from previous cases to 

better improve the next design. The research focuses on the method to build the new 

database, named learning library which uses the relationship storing to replace 

traditional data storing. The decision tree and CBR are employed in this chapter to 

deal respectively with the numerical and linguistic attributes.  
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Chapter 5: Multi-objective Optimisation and Multi-objective Particle Swarm 

Optimisation in Ship Design 

 

Optimisation is the core part of decision based ship design theory. The optimisation 

can provide strong support to decision maker. In this chapter, a new optimisation 

approach, multi-objective particle swarm optimisation based on multi-agent system, 

is introduced. The comparison of the proposed method with NSGAII algorithm is 

carried out to evaluate this new approach on the test functions and real cases. The 

aim of this chapter is to provide an easy parameter setting optimisation algorithm 

with good inside learning ability.   

 

Chapter 6: Real-time Learning in Ship Design Environment 

  

Time cost is a critical problem for optimisation part in ship design support system. 

Real-time learning, which can change optimisations own behaviour according to the 

practical environment, is proposed in this chapter to solve time cost problem and 

help proposed system to obtain better solutions. The real-time learning can forecast 

the optimisation direction based on prior experience in the running. Meanwhile, the 

real-time learning can prevent the optimisation into inefficient areas. This chapter 

introduces the Q learning, which was proposed first time by Watkins (Watkins 1989), 

as one of the real-time learning approaches, then explains the algorithm and presents 

an application using barge model.  

 

Chapter 7: Learning Based Ship Design Decision Making and Decision Support 

System. 

 

In this chapter, the fuzzy multiple attribute decision-making (FMADM) is employed 

to solve the problem of selecting final decision. The original FMADM is rebuilt via 

multi-agent system to automate for improving the adaptability to large scale problem. 

But when FMADM is applied on ship design practice, the main problem, which is 

difficult to be solved in the traditional method, is that the human specialists are very 

hard to be selected and ranked. In this chapter, a new Learning and Multi-agent 
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based FMADM (LMFMADM), which adds the learning function to assist FMADM 

to adjust the situation of where there is a lack of enough human specialists, is 

proposed. A new machine learning approach, support vector machine, is employed to 

realize the self-learning of system in this part and assign virtual specialist committee 

and technology manager, who will rank the specialists. The procedure of proposed 

learning based ship design decision system is concluded and analysed. The detailed 

description about structure and function of every part is presented. 

 

Chapter 8: Case Study 

 

In this chapter, two cases are employed to evaluate proposed system. The first case 

study is a classic stability design problem. The different algorithms are utilised to 

compare and the learning function is added. In the second case study, a chemical 

tanker structure design problem based on CBR rules of IACS is selected to evaluate 

the proposed system.  

 

Chapter 9: Discussions and Conclusion 

 

This chapter reviews the whole research including the account of the original 

contributions and achievements of this thesis. The discussions are outlined while 

further considerations are given for possible future work on the basis of experience 

gained during this study. This chapter contains main conclusions emerging from this 

research study. 
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Chapter 2  

 

 

Critical Review 

 

2.1 Introduction 

The learning based design decision support system is a multidisciplinary approach, 

which can improve the practical ship design significantly. It develops an integrated 

system by combining engineering design, human decision factor, computer science 

etc. In this research, ship design methods, decision making approach, decision 

support system, artificial intelligence and machine learning, multi-agent system and 

multi-objective optimisation are studied and therefore in this chapter, the 

developments with regard to these subjects in ship design area are critically reviewed. 

As many of these subjects have very rare application in ship design, the review will 

make reference to related engineering applications in order to give a full picture of 

these technologies used in this thesis.       
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This review mainly focuses on the new ideas developed in recent years. The multi-

agent system puts emphasis on the system framework and conflict resolution. 

Because there is little application of machine learning in ship design, the review is 

extended to the intelligent systems in ship design, which utilise some machine 

learning approaches. The optimisation in ship design is a traditional research area 

and attracts plenty of research interests. The review of this part focuses on the multi-

objective optimisation via GAs and new Particle Swarm Optimisation (PSO) 

algorithm in practical application.  

2.2 Ship design method 

The traditional ship design method, which is still broadly practised in most ship 

design departments and shipyards, will be mentioned but the more emphasis will be 

laid on the new advanced ship design methods. The detailed analysis will be given to 

provide an insight of the features of new system. 

 

There are many different stages in ship design which may be called under different 

names due to the different design phases such as navy ship and merchant ship. At the 

same time the key points of design are different between navy ships and merchant 

ships. This is also one of the reasons why there are different definitions of design 

stages. The design stages in this thesis are categorised as shown in Figure 2.1. The 

Basic Design includes Concept Design, Preliminary Design and Initial Design 

(Contract Design and Functional Design).  
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Figure2. 1 Ship Design Phases 
 

2.2.1 Traditional ship design methods 

The “modern ship era” began in the mid 1800’s. Before that, the ships were usually 

designed by simply developing a new ship based on an existing one. The new ship 

would be the scale of old designs with minimal alterations, so the results would be 

random because no scientific principles were applied. 

 

Normally, it is considered that the modern ship era begins with two significant events: 

the replacement of sail power with steam powered propulsion in 1780s and William 

Froude’s scientific approach to vessel performance prediction in 1860s.  

 

The design spiral, proposed by Professor J. Harvey Evans (Evans 1959) has been 

used to describe the preferred ship design process for many years as shown in Figure 

2.2. In this method, ship design is viewed as a sequential iterative process (design 

spiral) and in every phase, ranging from concept design to detail design, every 

important aspect of the ship design is re-evaluated, starting from mission 

requirements to hydrostatics, powering and cost estimates. In every cycle of the 

design spiral, the complexity increases, however, the number of possible designs 

decreases. 
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Buxton (Buxton 1972) proposed to embed cost estimates into the design spiral, 

particularly at the preliminary design stage. Buxton pointed out that the benefits of 

including cost estimates into the design spiral are easy comparison among different 

concept alternatives, and to reduction of the time required for tendering. 

 

Figure2. 2 The Ship Design Spiral, from (Evans 1959) 
 

Andrews (Andrews 1981; Andrews 1998) proposed to include constraints into ship 

design spiral in three categories: design, design process and design environment. The 

minimizing building time, structure of design organization and economic climate can 

be listed as constrain respectively for each category. Andrews also discussed the 

layout arrangement of a ship and size consideration of the ships according to 

volumetric considerations, major spaces, machinery spaces, and residues. In a later 

study, Andrews proposed a more sophisticated approach to ship design, by including 

mission information, as shown in Figure 2.3. The methodology was called building 

block methodology and the functionality of each component was defined in the 

design process while the methodology was realized by commercially available ship 

design software.  



 14

 

Figure2. 3 Overall module of ship design process (Andrews 1998) 

2.2.2 New ship design approaches 

2.2.2.1 Decision based ship design 

Mistree et al. (Mistree, Smith et al. 1990) proposed a contemporary paradigm, 

decision-based design, for the design of ships which encompasses systems thinking 

and embodies the concept of concurrent engineering design for the life cycle. The 

author analyzed the traditional ship design spiral and pointed out its disadvantages. 

The author considered that the spiral was effective only when the shipbuilding 

industry was doing well and the volume of ship building was high, but the spiral was 

ineffective when the market was depressed and single ship design was done. The 

author also criticized that the spiral was limited to single objective optimisation. In 

order to overcome these disadvantages and to enable concurrent engineering practice, 

Mistree proposed a frustum of cone model instead of a design spiral, as shown in left 

part of Figure 2.4. In the outer surface of the cone, the spiral proceeds along with 

constraints. For the cross section, Mistree adopted a concurrent engineering approach, 

which is represented by rings of interaction depicting information flow to different 

aspects of ship design such as structure, stability and lines. The right part of Figure 

2.4 showed the systems approach used in the paper. Mistree also proposed design 

guidance system to implement decision-based design and argued to implement 

design changes by resolving decision problems in phases of the design process. A 

light-patrol frigate was used as a case to evaluate this decision based design method. 
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Mistree et al. introduced the decision based design into ship design area and realised 

that the concurrent engineering was the trend of ship design. The author also 

forecasted that the role of computer would change from the tools to the partner of 

design work, and put the designer on the role of decision maker. However because 

engineering theory and computer technology on ship design area of twenty years ago 

were not well developed, the author did not recognize that the multi-agent system 

was a strong support tool for decision based design theory but tried to use simple 

computer technology to support the complex design situation. This increased the 

difficulty of realizing this method. At the same time, the author also ignored the 

importance of experience. The experience of the designers determines the quality of 

design decision. Without experience, it is very difficult for automatically updating 

system to provide the full support for decision maker.  

 

 
 

Figure2. 4 Decision based ship design approach (Mistree, Smith et al. 1990) 
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2.2.2.2 Set-based ship design 

Parsons et al (Parsons, Singer et al. 1999) introduced the set-based design to ship 

design. They proposed a hybrid human computer agent approach to facilitate set-

based conceptual ship design by a cross functional team of naval architects and 

marine engineers. The authors found that the advanced marine design, particularly in 

the United States, advocates the use of cross-functional design teams, or Integrated 

Product Teams (IPT’s), who will undertake a concurrent engineering approach to all 

phases of ship design. Further, the study of the world-class Toyota automotive design 

process had highlighted the potential of a set-based design approach in concurrent 

engineering to provide a greater probability of achieving a global optimum for the 

overall design. The disciplinary/technical specialists were organized and acted as 

agents within a design network that can be either co-located or interconnected across 

the web. Computer agents are introduced between each pair of human design agents 

to facilitate their communication and negotiation. A systematic market approach, 

developed in the Defense Advance Research Projects Agency (DARPA) sponsored 

Responsible Agents for Product-Process Integrated Design (RAPPID) project, was 

utilized as an initial approach to facilitate this team for set-based design.  

 

The author introduced the agent based approach for realizing the set based ship 

design and successfully applied it to a real case. But the agent in this paper was 

hybrid agent, which meant the agent was consisted by computer and human together. 

This would reduce the robustness of the design system and decrease the speed of 

whole design process. The second disadvantage was the chief agent in the agent 

framework. Obviously, the chief agent was a simulation of the general manager in 

real world, but when all the information was sent to the chief agent, the whole design 

work had to wait for the chief agent to take action. This might have caused the 

problems from information sharing to process blocking in the practical design work. 
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2.2.2.3 Risk-based Ship Design  

Applications of risk-based approaches in the maritime industry started in the early 

1960s with the introduction of the concept of probabilistic ship’s damage stability. 

(Papanikolaou 2009)  

 

Figure2. 5 Risk based ship design approach (Papanikolaou 2009) 
 

The risk based design is developed from rule based design as shown in Figure 2.5. 

This method supports a safety culture paradigm in the ship design process by treating 

safety as a design objective rather than a constraint. It creates a design process for the 

concept design stage under extremely tight cost and time constraints. The method 

points out that notion of “risk” is usually associated with undesirable events and 

shipping operations being undoubtedly “risky”. So the ships should be designed with 

this as basic principle.  

 

This method aimed at fast design via matching the limitation of the rules and all 

kinds of design conditions. For solving the conflict caused by extremeness of design 

limitations, this method put the safety at the first place. This method will fit into the 
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economic requirements of the maritime industry but do not provide insight details of 

the ship design. The harmonious of very design factors are equally important to 

economic aims. So the multi-objective optimisation and decision making approach 

should be fully developed for this method.    

 

Table 2.1 Development of ship design methods 

 

 

Table 2.1 summaries the development history of main ship design methods in recent 

years. 

2.3 Multi-agent system application in ship design  

Multi-agent design system (MAS) was proposed in 1990s and has developed very 

quickly in recent years. There are many kinds of definitions of multi-agent system 

and the following definitions are used in this thesis. An agent is anything that can 

perceive its environment through sensors and act upon that environment through 

actuators (Russell and Norvig 2003). A system that consists of a group of agents that 

can potentially interact with each other is called a multi-agent system (MAS), and the 

corresponding subfield of artificial intelligence (Eamon and Rais-Rohani) that deals 

with principles and design of multi-agent systems is called distributed AI (Vlassis 

2007). 
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The agents in a multi-agent system can be robots, human or human teams, but in this 

study, they represent the software agents. The multi-agent system can deal with a 

complex task even when its individual strategies are simple. Based on this 

characteristic, there are several applications of MAS in ship design.     

 

One of the first ship design studies of MAS is presented by Parsons et al. (Parsons, 

Singer et al. 1999) as shown in Figure 2.6. The authors built a hybrid network of 

human and computer agents to solve the complex environment such as ship design 

which continue to require the expertise, perception and judgment of the human 

designers. This MAS method is keeping the close connection with the set based 

design in subsection 2.2.2.2. A systematic market approach for design negotiation 

was studied in this paper. The author also gave the definition and function of agents 

as follows: the agents are elements of computer code with elements of perception, 

intelligence and adaptability capable of taking independent action. In the paper, there 

were seven agents being created: chief engineer agent, resistance agent, maneuvering 

agent, stability agent, cargo agent, propulsion agent and hull agent, as shown in 

Figure 2.6. The chief agent is set as the head agent, which is the overall leader of 

design team and serves as the voice of the customer. The author used a market 

approach to find the design solutions. The agents participate in a design marketplace 

where the goods being traded represent the design characteristics in a common 

currency.  The conceptual design of a hatch-covered, cellular feeder container ship 

was undertaken by a team of student design agents to assess the effectiveness. Singer 

and Parsons (Singer and Parsons 2003) developed their idea and proposed a fuzzy 

logic software agent model. A new implementation of a fuzzy system has been 

developed to enable the designers to communicate their preferences over a range of 

parameter values. The authors added a fuzzy software agent on the model of (Parsons, 

Singer et al. 1999). In the paper, the chief engineer agent is still the control agent and 

fuzzy logic software gives the chief engineer suggestions for the possible range of a 

variable for a new negotiation round, but the ultimate decision is in the hands of the 

chief engineer. 
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The author introduced the agent concept to ship design and discussed the negotiation 

method via a market approach. But the whole process of the design was controlled by 

the chief engineer agent. This would limit the effect of MAS. Because all the 

information would be sent to the chief engineer agent, the information can be 

blocked at this point. The chief agent must have the outstanding ability to take charge 

of whole design. This still made the design quality to largely dependent on the 

personal ability.  

  

 

Figure2. 6 The agent system network structure (Singer and Parsons 2003) 
 

Another design system for ship design was proposed by Fujita et al. (Fujita and 

Akagi 1999) as shown in Figure 2.7. The authors gave the method for agent-based 

distributed design system and also gave the computer implementation of distributed 

design system. For application, an experimental system for basic ship design was 

proposed and a 38,000 ton deadweight bulk carrier was employed to evaluate this 

system. For agent communication, the authors defined four kinds of messages based 

on object orientation: send-type message, broadcast-type message, agent-setup-type 

message and remote-procedure-call-type message. The computer environment was 

UNIX and programming language was Allegro Common Lisp. For experimental 

system, the authors mentioned that the design procedures and knowledge had been 

well established.  
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In this paper, the author introduced the software agent into ship design and also built 

the distributed design system. However for the knowledge sharing, the author did not 

give enough information and did not give the detailed building procedure. The author 

proposed communication mode but this method was based on single direction 

specific objective. This meant the agents still were organized via line process and can 

not adjust to the dynamic environment.  

 

 

Figure2. 7 The distributed basic design system for ship (Fujita and Akagi 1999) 
 

Lee et al. (Lee and Lee 2002) proposed an agent-based system and focused on the 

negotiation part among design agents as shown in Figure 2.8. They introduced agent-

based collaborative design system and conflict resolution based on a case-based 

reasoning approach. Under the concept of a global economy, design and production 

may be assigned separately to different companies. In order to overcome the problem 

of low productivity due to the interruption of information, the concept of 

simultaneous engineering and concurrent design becomes very significant. In this 

article an agent-based ship design system was developed to support cooperation in 

distributed ship design environments. The authors pointed out that the conflicts that 

occur while sharing knowledge in the system must be resolved. One approach is to 

adopt a case-based conflict resolution strategy formulated to resolve current conflict 

on the basis of similar previous cases in agent-based collaborative design system 
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environments. In order to do this, conflict cases that occur in the initial ship design 

stage are provided. The case-based conflict resolution strategy was evaluated by 

applying it to a collaborative design process in the initial ship design stage, 

especially the machinery outfitting design, the preliminary design, the hull form 

design, and the structural design. Through the help of the collaboration of the design 

agents, the facilitator, the conflict resolution handler, and the case-based system, a 

designer can make decisions based on similar previously resolved cases. 

 

The author recognized the importance of collaboration of the agents and used a case 

based reasoning method to solve the conflict of the agents. But the author did not 

provide the insight of the relationships what case-based reasoning was found. 

Actually, what CBR gives are the experiences of prior work and depending only on 

the CBR to seek sharing of the experience may greatly reduce the speed of system. 

The author did not study the running time for large design problem.  

 

 

Figure2. 8 The conflict resolution process in the collaborative ship design agent 

system (Lee and Lee 2002) 

  

Turkmen and Turan (Turkmen and Turan 2003; Turkmen and Turan 2004; Turkmen 

2005) developed a new multi-agent ship design decision support system as shown in 

Figure 2.9. The ship design agent group concept was defined and a case study of hull 
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subdivision problem was given. The authors created five agents in the study: Deck 

Layout Agent (DLA), Damage Stability Agent(DSA), Economics Agent (Trelea), 

General Arrangement Agent (GGA) and User Interface Agent (UIA) to solve a 

damage stability design problem as shown in Figure 2.9. The JADEX agent design 

environment was employed. A subdivision of barge was employed to evaluate the 

system. The authors provided the framework of multi-agent system for ship design 

and the work is the basis of the study presented in the thesis.  

 

 

Figure2. 9 The multi-agent architecture (Turkmen 2005) 

 

2.4 Machine learning and intelligent system in ship 

design 

Herbert Simon (Simon 1983) defined machine learning as ‘Any changes in a system 

that allows it to perform better the second time on repetition of the same task or on 

another task drawn from the same population’. In this study, machine learning means 

the design decision method can draw experience from prior designs and give 

directions to current design for better design quality. The tasks of machine learning 

in this design decision system focuses on two aspects: one is to draw design rules and 

limitations from prior designs and the other is to help designers to adopt dynamic 

environments for optimisation.  
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Machine learning has been developed rapidly in recent years. But the application of 

machine learning in ship design is very rare. Although some intelligence systems or 

design systems utilise one or several approaches of machine learning, the systematic 

application is very limited in literature.  

 

The review of this part will not be just limited to machine learning but also extended 

to other expert systems which use one or several learning approaches in ship design 

to give a review of developments on artificial intelligent application in ship design. 

2.4.1 Machine learning of ship design system 

Srdoč et al. (Srdoč, Bratko et al. 2007) proposed a machine learning approach in ship 

repair domain. The authors used machine learning to leave values of the target 

attribute as they are, and use learning schemes for numerical prediction. The 

regression and model trees, which is a variant of decision trees was employed and for 

comparison reasons, instance based learning—another machine learning approach, 

and classical statistical approaches, had also been used in the study. The software 

Weka (Witten and Frank 2005) was employed for learning approaches. Weka 

contains the data mining tools for data pre-processing, classification, regression, 

clustering, association rules, and visualization.  

 

This work introduced regression and model tree and instance based learning into the 

ship repair programming. But the application was still in the traditional machine 

learning area --- programming problem and the learning approach was also relatively 

simple.  

 

Alkan et al. (Alkan and Gülez 2004) developed a knowledge-based computational 

design tool for determining preliminary stability particulars of naval ships. A robust 

neural network (NN) structure was established and using principle design data from 

22 naval ships. This NN structure used both the classical back-propagation algorithm 

(CBA) and the fast back-propagation algorithms (FBA). The ANN method has the 
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problems for small sample and over fitting problem which are not discussed by that 

the author often happen in ship design area. The author also did not provide the 

detailed training information.   

 

Lee et al. (Lee, Oh et al. 2006) dealt with generating optimal polynomials using 

genetic programming (GP) as the module of Data Miner. The Data Miner for the ship 

design based on polynomial genetic programming was presented. The paper dealt 

with polynomial GP for regression or approximation problems when the given 

learning samples were not sufficient. The authors generated 1000 data by using 

empirical formula and the data contained some noise. The system automatically used 

800 data for training, and 200 data for test among 1000 learning data. The system 

was implemented by using Microsoft Visual Studio .Net C# programming. The 

author said that because of security problem, the paper could not provide the detailed 

information. So it is impossible to review the detailed method. 

 

From the review, it can be seen that the machine learning in ship design is at the 

starting stage. The application depends on the statistics software and just made some 

very simple applications. The machine learning approaches employed by these 

applications are very limited.  

 

In the following part, the learning approaches used in this thesis will be reviewed. 

Because this thesis focuses on learning application in ship design, the review 

correspondingly put emphasis on learning approach application in ship design area.     

2.4.2 Decision tree and its application in engineering 

Decision tree is one of the most popular learning approaches. Decision tree is the tool 

which uses tree-like graph or model to classify instances by sorting them based on 

feature values. Feature values in decision tree means the values which can represent 

the characteristics of the case. Each node in a decision tree represents a feature in an 

instance to be classified, and each branch represents a value that the node can assume. 
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Instances are classified starting at the root node and sorted based on their feature 

values.  

 

With the development of the decision tree theory, there are different versions (for 

example ID3, C4.5, C5 etc.) of algorithm for different stages and also there are 

different varieties for every version. Tjen-Sien Lim (Lim, Loh et al. 2000) made a 

comparison between decision tree and other learning algorithms and shows that C4.5 

has a very good combination of error correction and speed. Figure 2.10 gives the 

work flow of C4.5 algorithm.  

 

 

Figure2. 10 Work flow of C4.5 algorithm (Quinlan 1993) 

 

There are three main reasons why the decision tree is selected as a learning approach 

in SDLL. The first one is the decision tree has good ability to operate complex 

representation and also can be easily explained. In the decision support system, one 

important principle is that the analysis process should be powerful and easily 

understood. The designers not only want to know the calculation results when the 

system solves a complex problem but also the process to make the results. In another 

word, how to get the results is much more important than the solution itself. 

Normally，only when the designers clearly understand the mechanism, they will 

apply it in practice. The decision tree can make the decision makers understand the 

process of analysis better and can use it in application. 
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The second one is the ability of treating the discrete data. In most ship design 

optimisations, the objectives and limitations are discrete. The learning approach 

needs very good ability of processing discrete data together with the ability to deal 

with continuous data. 

 

Table 2.2 The comparison of main data mining approaches 

 
 
Table 2.2 compares the performance of some main data mining approaches. In the 

table, one star means poor and two stars means normal when three stars means good 

and four stars means excellent. The ability of decision tree to deal with discrete data 

is outstanding and it can also operate the continuous data, so it is very suitable for 

requirements of the study in this thesis.  

 

The last one is the speed of classification. The fast speed can reduce the time of the 

training and running, especially for mass data. In modern marine design, time is very 

important parameter for generally high quality design. The decision support system 

requires the learning algorithm to quickly finish classification and give correct 

classification in time. The speed of classification of decision tree is relatively fast in 
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all the approaches of data mining as shown in Table 2.2. This proves that the 

decision tree can successfully solve the time costing problem in running process. 

 

As the expression of the decision tree, an effective and intuitive tree is selected and 

this will help the designers to understand the process of making decision. Each inner 

node corresponds to a variable; an arc to a child represents a possible value of that 

variable. A leaf represents the predicted value of target variable given the values of 

the variables represented by the path from the root.  

 

 

Figure2. 11 Example of a general decision tree (Safavian and Landgrebe 1991) 

 

Figure 2.11 gives an example of a general decision tree including the root, node, leaf 

(terminals). Figure 2.12 gives more detailed examples of decision tree. Figure 2.12 (a) 

is an example of simple decision tree and (b) is an example of complex tree.  

 

The study of applying decision tree to ship knowledge is very limited while its 

application in knowledge based ship design is very rare. Caprace et al. (Caprace, 

2007) proposed using decision tree to process the ship data as a tool, which is used in 

classification problems. The authors point out that” This method has the major 
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advantage to select the most relevant variables before an analysis by an artificial 

neuronal network in order to avoid unnecessary high computing times”  

 

 

       (a) 

 

              (b) 

 
Figure2. 12 Examples of decision trees(Quinlan 1986) 

2.4.3 Case-based reasoning and application in engineering 

The case-based reasoning (CBR), also called as instance learning, developed since 

1977, is one of the important learning approaches. The idea of CBR is simple and 

useful. It uses the solutions of past problems to derive the solutions for new problem. 

In concept, CBR is to solve a new problem by remembering a previous similar 

situation and by reusing information and knowledge of that situation. (Aamodt 1994) 
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With many years of development, the case-based reasoning approach has formed a 

standard four-step process.   

 
Retrieve: Given a target problem, retrieve cases that are relevant to it from memory. 

A case consists of a problem, its solution, and, typically, annotations about how the 

solution was derived. For example we want to design a new tanker with length of 

150m, we can look for in the database that successful designs with length from 120 

m to 180 m and find the nearest design as the reference one.   

 
Reuse: Map the solution from the previous case for the target problem. This may 

involve adapting the solution as needed to fit the new situation. 

 

Revise: Having mapped the previous solution for the target situation, test the new 

solution in the real world (or a simulation) and, if necessary, revise. 

 

Retain: After the solution has been successfully adapted to the target problem, store 

the resulting experience as a new case in the memory. 

 

Lee (Lee and Lee 2002) used case-based reasoning to solve the conflict of agent-

based system, which was reviewed in part 2.3. 

 

Delatte and Butler (Delatte and Butler 2003) proposed an object-oriented model for 

conceptual ship design supporting case-based design. The authors presented a data 

storage system to store historical design data for subsequent reuse in conceptual 

design. The database was designed to support case-based reasoning and other similar 

processes in which recall of past solutions becomes a basis for adaptation to form a 

new solution. The data involved complex geometric information, and an object-

oriented database system was presented. The authors gave detailed application of the 

design information but the revision of 3D model needs further study. The 3D model 

of CBR in this article should be developed for practical application. 
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Kowalski (Kowalskia, Meler-Kapciab et al. 2005) introduced CBR methodology 

application to aid ship’s engine room automation design. The paper presented case 

based reasoning (CBR) methods of cases in which similarity calculation is applied in 

the elaborated expert system for the design of ship’s engine room automation. The 

author proposed that CAD model can be used but did not give the model examples. 

2.5 Multi-objective Optimisation in Ship Design 

Multi-objective optimisation is one of the main study areas of ship design. Especially 

in recent years, there are many multi-objective optimisation approaches being used in 

ship design area. In this study, a new multi-objective particle swarm optimisation 

approach is proposed. Some previous work of the PSO algorithm and multi-objective 

optimisation used in ship design are reviewed in this section.  

2.5.1 Multi-objective genetic algorithm 

MOGA (multi-objective genetic algorithm), as one kind of heuristics methods, looks 

like the only solution to the complex ship design optimisation problem. (Sen and 

Yang 1998). Because there are many researches of MOGAs in every area of ship 

science, this review mainly focuses on the application of main MOGA methods on 

the ship design.   

 

Lee (Lee 1997) proposed a hybrid optimizer for marine vehicle design with aid of 

design knowledge. The hybrid optimizer is constituted by the genetic algorithm and 

direct search method. Then a knowledge processor gives the knowledge support. The 

author recognized that the main weakness of the genetic algorithm is that it requires 

longer time because of the search of many points. The author wanted to find out a 

candidate region around the global optimum point by using the genetic algorithm, 

and then searching the global optimum point in the region by direct search. The task 

of the knowledge-based system in this paper is to improve the efficiency of 

optimisation by the generation of proper input data for the design model before 

performing optimum design process. The author mentioned that knowledge based 

system provides population size, number of generations, crossover and mutation rate 
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for the genetic algorithm and proper step size and end conditions for direct search 

method. But the author did not give how the knowledge based system works and 

gave references in Korean, so it is very difficult to define the real benefits of 

proposed approach. 

 

Finding some possible optimal points and then performing a small search for finding 

final solutions can be seen as one kind of disguised  -constraint methods.  

 

It is noteworthy that this paper recognized the importance of small population and 

generations for ship design process. The author tried to find optimal candidate 

solutions to reduce the calculation time. But in multi-objective optimisation, it is 

very difficult to find these candidate solutions and if the candidates are the wrong 

choices, the whole optimisation will fail. On the other hand, this method can find 

several different local optimal points and the final solution is on or besides one of 

these points. This is also difficult for multi-objective optimisation technology.    

 

Thomas (Thomas 1998) used Pareto ranking, MOGA and NPGA, to investigate the 

feasibility of full stern submarines. Three objectives were considered: maximize 

internal volume, minimize power coefficient for ducted propulsion submarines, and 

minimize cavitation index. Binary representation and different selection techniques 

were used. Thomas also compared several different algorithms and reached 

conclusions that MOGA outperforms the other methods in all of the aspects 

considered.  

Pareto efficiency, or Pareto optimality, is an important concept in economics which 

was used in multi-objective optimisation. The term is named after Vilfredo Pareto, an 

Italian economist. Informally, Pareto efficient situations are those in which any 

(additional) change to make any person better off is impossible without making 

someone else worse off. In the multi-objective optimisation, the designers are 

looking for solutions for which each objective has been optimized to the extent that if 

try to optimize it any further, then the other objective will suffer as a result. These 

solutions are called Pareto solutions.  
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Brown and Thomas (Brown and Thomas 1998) used a GA with Pareto ranking for 

naval ship concept design. Two objectives are considered: maximize overall measure 

of effectiveness (this factor represents customer requirements and relates ship 

measures of performance to mission effectiveness) and minimize life cycle cost. 

Binary representation and roulette wheel selection with stochastic universal sampling 

were used. Brown et al. (Brown and Salcedo 2003; Brown and Mierzwicki 2004) 

introduced a multi-objective genetic optimisation in naval ship design. A Multiple-

Objective Genetic Optimisation (MOGO) is used to search design parameter space 

and identify non-dominated design concepts based on life cycle cost and mission 

effectiveness. A non-dominated frontier and selected generations of feasible designs 

are used to present results to the customer for selection of preferred alternatives. The 

genetic or evolutionary algorithm used decimal floating-point gene coding and a 

finite resolution and range or set of values for design variables. A national guided 

missile destroyer (DDGx) is selected as a case study and overall mission 

effectiveness (OMOE) and life cycle cost (LCC) are moulded as the objective 

attributes. The optimisation was run for 100 generations with a population of 200 

ships. In Brown and Mierzwicki 2004, a two-stage concept design strategy was 

proposed that they used a multi-objective optimisation and simplified risk event 

approach for concept exploration, and a more rigorous multi-disciplinary 

optimisation with uncertainty for concept development. The case study was based on 

a Mission Need Statement for an unmanned combat air vehicle (UCAV) carrier 

(CUVX).  

 

Todd and Sen (Todd and Sen 1997) used a variant of MOGA for the pre-planning of 

container ship layouts (a large scale combinatorial problem). Four objectives were 

considered: maximize proximity of containers, minimize transverse center of gravity, 

minimize vertical center of gravity, and minimize unloads. Binary representation and 

roulette wheel selection with elitism based on non-dominance were used. They used 

the same algorithm in the shipyard plate cutting shop problem (Todd and Sen 1997; 

Todd and Sen 1998). Two objectives were considered: minimize make-span and 

minimize total penalty costs.  
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Peri and Campana (Peri and Campana 2003) proposed a multi-disciplinary design 

optimisation of a naval surface combat ship. The authors used an approach called 

multi-disciplinary design optimisation (MDO). It couples the analysis disciplines 

with numerical optimisation, and is a methodology for design of complex, coupled 

engineering systems. In order to formulate and solve the multi-disciplinary 

engineering problem of the hydrodynamic optimisation of a surface combatant, the 

David Taylor Model Basin (DTMB) model ship 5415 was used. Three objective 

functions were considered: two of them come from the solution of the partial 

differential equations (PDE) governing the motion of the ship in waves (heave and 

pitch response), solved in the frequency domain, and the third one comes from the 

solution of the PDE governing the steady motion of the fluid about the ship 

advancing in calm water (total resistance). The author proposed a recursive process 

with a careful selection of the samples to be placed in the design variable space. A 

subsequent refinement of the more promising solution is then undertaken, either 

applying a gradient method or shrinking the investigated space, re-centered on the 

more promising solution. With this approach, a subset of the Pareto optimal set is 

generated. The author used this method to avoid the high cost of evaluation.  

 

Peri et al. (Peri and Campana 2005) used high-fidelity models and multi-objective 

global optimisation algorithms in simulation-based design. This work presented a 

simulation based design environment based on a Global Optimisation (GO) 

algorithm for the solution of optimum design problems. The procedure, illustrated in 

the framework of a multi-objective ship design optimisation problem, make use of 

high fidelity, computational models with expensive CPU time, including a free 

surface capturing RANSE solver. The use of GO prevented the optimizer to be 

trapped into local minima. The optimisation was composed of global and local 

phases. In the global stage of the search, a few computationally expensive 

simulations are needed for creating surrogate models of the objective functions. 

Tentative design, created to explore the design variable space, is evaluated with the 

inexpensive analytical approximations. The more promising designs were clustered, 

then locally minimized and eventually verified with high-fidelity simulations. New 

exact values were used to improve the meta models and repeated cycles of the 
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algorithm were performed. A decision making strategy was finally adopted to select 

the more promising design. 

 

Ölçer (Ölçer 2008) proposed a hybrid approach for multi-objective optimisation 

problems in ship design and shipping. In his study, software Frontier was employed 

to perform the optimisation via MOGA. The optimisation procedure in his work is 

explained in Figure 2.13. 

 

 

Figure2. 13 Global view for MOCO problems in ship design and shipping 

(Ölçer 2008) 

 
Boulougouris and Papanikolaou (Boulougouris and Papanikolaou 2008) introduced a 

multi-objective optimisation of a floating LNG terminal. The software Frontier with 

MOGA was employed. The paper presented a comprehensive multi-objective 

hydrodynamic optimisation procedure and its application on the early design of a 

floating liquefied natural gas (LNG) terminal for improved seakeeping and wave 

attenuation characteristics on its lee side. Genetic algorithms were used to find the 

Pareto optima designs followed by multi-objective decision making procedures to 

select the optimum designs among them. The paper addressed the definition of the 
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relevant optimisation problem and the set-up and interfaces of relevant software tools; 

presented results of systematic studies with respect to the minimization of the motion 

responses and wave elevation on the leeward side of free-floating terminals; and 

concluded with analysis and critical review of the obtained results and their impact 

on terminal design. 

2.5.2 Multi-objective particle swarm optimisation 

The Particle Swarm Optimisation is a global optimisation algorithm and described as 

sociologically inspired. It was first proposed by Kennedy and Eberhard in 1995 

(Kennedy and Eberhart 1995). In the PSO algorithm, the candidate solution is the 

particle position in search space. Every particle is structured with two parameters: 

position and velocity, then the particle searches the solution space by updating the 

position and velocity. There are two best positions in PSO. First one is Pbest, which 

represents the best position that the particle itself can reach; the other is Gbest, which 

is the best position in the whole swarm.  

 

The PSO can be described by the following equation, 
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where n
idx is the position of particle i, in n-th iteration and d dimension; n

idv is the 

velocity of particle i, in n-th iteration and d dimension; n
idp  as Pbest is the best 

position of particle reached and n
gdp  as Gbest is the best position in current swarm; 

1c and 2c are two coefficients; 1r  and 2r  are two random numbers with the range[0,1]; 

  is the inertia weight and   is constriction factor.  

   

PSO has been proven as a simple but effective algorithm in single objective 

optimisation and multi-objective research using PSO has rapidly developed in recent 

years. Since the first extension was proposed in 1999, many different multi-objective 

PSOs have been presented (Margarita and Coello 2006) and some of these 

approaches are briefly given below. 
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Aggregating approaches: They combine all the objectives of the problem into a 

single objective and three types of aggregating functions are adopted: conventional 

linear aggregating function, dynamic aggregating function and the Bang-bang 

weighted aggregation approach (Jin, Olhofer et al. 2001), (Parsopoulos and Vrahatis 

2002), (Baumgartner, Magele et al. 2004) 

  

Lexicographic ordering: In this algorithm, which was introduced by Hu and Eberh 

(Hu and Eberhart 2002), only one objective is optimized at a time using 

lexicographic ordering Schema. 

 

Sub-Population approaches: These approaches involve the use of several 

subpopulations as single-objective optimizers. Then, the subpopulations somehow 

exchange information or recombine amongst themselves, aiming to produce trade-

offs amongst the different solutions, which were previously generated for the 

objectives that were individually optimised. Parsopoulos et al. (Parsopoulos, Tasoulis 

et al. 2004), Chow et al. (Chow and Tsui 2004) and Zheng et al. (Zheng and Liu 

2007) used this approach.  

 

Pareto-based approaches: These approaches use leader selection techniques based 

on Pareto dominance and references include Moore and Chapman (Moore and 

Chapman 1999), Ray and Liew (Ray and Liew 2002), Fieldsend and Singh 

(Fieldsend and Singh 2002), Coello et al (Coello and Lechuga 2002) and (Coello, 

Pulido et al. 2004) and Li (Li 2003). 

  

Some of the other approaches, which use different techniques such as Combined 

Approach and MaxMin approach, can also be found in literature.  

 

In PSO area in ship design, Pinto et al. (Pinto, Peri et al. 2007) emphasized the 

importance of initial points’ configuration and addressed some preliminary aspects of 

global convergence of PSO towards stationary points. They presented a deterministic 
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method for multi-PSO and applied the method to the multi-objective (two objectives) 

on sea keeping of container ship problem.  

 

From the review, it can be seen that the multi-objective research generates more and 

more interest. In many GAs tested, the number of objectives is increased together 

with increasing constraints and as a result, the application environment becomes 

more complex. This naturally requires more sophisticated approaches that will 

enhance ship design.  

2.6 Discussion 

In this chapter, the technologies used in learning based design decision system are 

reviewed. Through the review, it is clear that the knowledge development is an 

emerging direction for design support system. The agent based system framework 

provides the great advantages for new system and it is a developing trend for new 

knowledge system. However, autonomous agent needs knowledge support and this 

raises the learning problem. Learning function is critically important for agent based 

design support system.  

 

The machine learning is very rare in ship design and the most approaches are used 

via data mining software. A special method for ship design should be developed to 

improve the learning factors in the system, while for multi-objective optimisation, 

the new approaches should be tested. This is the main basis of the research presented 

in this thesis.  
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Chapter 3 

 
 

Learning Based Ship Design Decision 

Support System 

 

3.1 Introduction 

Based on the critical review of the current expert system and machine learning 

technology, the decision based design concept and multi-agent system are employed 

to constitute the framework of this learning based ship design decision support 

system. There are several machine learning approaches being integrated to build the 

systematic knowledge learning method in this study while the whole system will be 

designed as distributed system for multi-tasks according to ship design and 

manufacture practice. The whole ship design work should be seen as the knowledge 

based multi-criteria fuzzy decision-making process.  

 

The critical problem in the marine design and manufacturing, which the naval 

architects face, is the interlacing relationships of complex knowledge and experience 

with new design. The more challenging issue is that this relationship exists in the 

concurrent environment. The proposed system aims to solve this problem via 
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building an efficient and feasible integrated approach to find, store and reuse the 

relationships intelligently for supporting the ship design in a dynamic environment. 

The different learning approaches are introduced, analyzed and developed to solve 

different problems and finally an integrated systematic methodology is proposed for 

ship design.   

3.2 Framework of proposed system 

Taking account of the natural complexity of ship design process, the decision support 

systems for ship design usually are very complex, which makes these systems very 

difficult to use. Simultaneously, most of these systems were organized linearly, 

which is not suitable for the concurrent engineering characteristics of modern ship 

design and manufacturing. What is more, previous expert systems normally need the 

special system designers to maintain and update new knowledge into the systems, 

which make maintenance hard and very expensive. All of above problems seriously 

restrict the application and development of ship design expert system. This study is 

utilising learning theory and multi-agent technology combining with the research 

based on previous work (Turkmen 2005). The whole work of this thesis attempts to 

develop a simple but effective system to develop and use in a very friendly way 

during the ship design process with the prior work being well integrated in this 

system. This system developed is oriented to concurrent engineering on the 

foundation of multi-agent system for satisfying the requirements of agile 

manufacturing. The key technique of this system is realizing the system self-update 

using machine learning methods, which greatly reduce the maintenance and 

developing cost of the system. All of these advantages help this ship design decision 

support system to move into a new intelligent age. The research emphasis and 

blueprint are described in detail as follows.  

3.2.1 Research emphasis 

The study puts the research emphasis on four aspects, which are the learning library 

building，new optimisation approach, real-time learning and learning based decision 

making. 
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First of all, every learning method, which is selected in this system, should be easy to 

understand clearly for both the system designers and the system users. This system is 

developed from the decision based design theory. The designer should take the role 

of the final decision maker while the support system takes charge of providing the 

full support for the designers. So the support system should provide clear and simple 

solutions to naval architects and all of these solutions should be clearly explained. 

This is the first key point of the support system: clear, simple and easily explained.  

 

The second aspect is the experience of sharing and self-learning. Most of time, the 

design and production engineering highly depend on the personal experience of 

designers. There are two main problems in this situation. One problem is that this 

kind of design and production are too sensitive as the quality of design and 

production is very unstable and changes greatly according to the ability of designer. 

Especially, when there is no matured knowledge and experience, the absence of 

guidance will critically reduce the quality of final decision under uncertain design 

environment. The other problem is that the experience can not be updated 

automatically. Currently, most of experience is controlled by personal designers. The 

expert system has to continue introducing new experience via system designers 

which makes the maintenance of expert system very complex and expensive. This 

study attempts to find a method to automatically obtain experience from prior design 

case and then transfer the knowledge in order to guide the next design. The study in 

this aspect includes two parts. First part is collecting the experience from prior case 

and the second part is controlling the design process via real-time self-learning.  

 

The third aspect is building an integrated optimisation method with learning function. 

This research takes most of the ship design process into account as the optimisation 

problem. In other words, the design process is multi-objective optimisation based 

decision making. So building a new optimisation approach with good inter-learning 

ability and simple parameters setting is necessary for this system.  
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The last aspect is the intelligent decision making method. This system accepts the 

decision based design concept, so the decision making method is the core of the 

system. The traditional methods need specialists to evaluate the optimisation results. 

But the high level specialists are often difficult to find during the design process. An 

experience based virtual committee can help designers to evaluate the designs via 

prior experience and improve the robustness of whole system.  

3.2.2 Framework of proposed system 

The framework of whole system which is shown in Figure 3.1, is developed 

according to multi-agent system theory and concurrent engineering concept. The 

single ship design and manufacture is still organized via linear mode but when 

several ships are designed and produced, the system can operate parallel to design 

and manufacture. 

 

As shown in Figure 3.1, the framework of proposed system is divided into three parts. 

The first part, which locates at the left area above red line, is Ship Design Learning 

Library. The aim of this part is to provide strong support for experience storing and 

sharing. The sub-system of this part is built on multi-agent theory when the data is 

stored via XML. The development of this part is a new hybrid data storing and 

sharing mode when the relationship and data are operated together.  

 

The second part which is the right area above red line, is the agent society. The 

reason of creating this agent society is aiming to fit the concurrent character of ship 

design and manufacture in real world. In this study, the research aims to improve the 

comprehensive ability but not single ship design. In real world, it is impossible that a 

design system just provide a service for a single ship and then, begin the next new 

design. For this aim, the proposed system is designed to distributed decision support 

system. The agent society does not specially belong to single ship design process but 

is public to all ship design process. In the agent society, the agents are classified to 

different agent group according to function. In Figure 3.1, three agent groups are 

provided as example. Every time, the ship design process gives a sign to require 
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agent and this sign will be analyzed and redirected to agent group. The agent group 

will select an appropriate agent to perform this task. This part is the main research 

emphasis.  

 

The third part is below the red line. This part is the application of proposed system. 

The design task 1 and design task 2, which are processed at the same time, are 

provided as the example of concurrent engineering. From Figure 3.1, it can be seen 

that the steps of design are the same for these two tasks. The green line express that 

every task has to draw the experience from SDLL. The yellow lines mean both tasks 

can apply for the same agent to do the same work at the same time. Based on the 

assumption that the task 2 is quicker than task1, blue lines clearly explain that 

different task can operate different step via applying different agent.  

 

 

Figure 3. 1 The framework of learning based ship design decision system 
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3.3 Approach adopted and developed in this research 

work 

This research focuses on employing and developing state-of-the-art machine learning, 

optimisation and decision making methods to create an integrated multi-agent ship 

design decision system. In order to develop this system, four new methods in 

different research fields are developed and two new practical applications are 

performed (shown in Figure 3.2). These new methods and applications lead the ship 

design work into artificial intelligence design decision system environment, which 

will provide more feasible design space and freedom design concepts under the 

guidance of self-learning experience.  

 

The emphasis of this study has been put on both theory and practice. The employed 

and developed approaches in this research consist of two basic actions, which are 

vital in achieving the goal of this thesis. They are as follows: mathematic analyses 

and practical evaluation. The mathematical analyses action presents the research 

problems, builds the mathematical model and creates novel or integrated algorithms. 

The practical evaluation action provides practical problem solving framework and 

presents the application of real case study 
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Figure 3. 2 Developed approaches in this study 

 

The first method developed in this study is “A New Integrated Learning Method for 

Ship Design Data” as shown in Figure 3.2. The reason of developing this method is 

the storing model of the traditional drawings can not satisfy the requirements of new 

development of ship design pattern and has become one of the bottleneck problems. 

How to use new information technology of data operation to replace old data storing 

has been one of the most difficult problems for ship design. The aim of developing 

this method is to create a new data storing model of ship design for quick retrieving 

via assistance of learning algorithms. This new approach, which will be presented in 

chapter four, integrates two well established machine learning approaches: decision 

tree and case-based reasoning. For solving this problem, a new integrated learning 

method, which aims to find, store and reuse the relationship of every design data 

instead of simply keeping the data, is created. In other words, the new method can 

automatically retrieve the results using relationship of data and abandon old manual 

retrieval. At the same time, this method pays attention to improving the retrieval 

speed. In order to achieve this objective, the new method adopts different approaches 

to deal with different data. It is noteworthy to highlight that this method is 

sustainable which means the relationships, found via previous ships’ data, can be 
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revised or enhanced by newly added ships. Logically, this approach is the foundation 

of whole new design decision support system and it provides an excellent method of 

gaining experience from previous designs.   

 

The second method is “A New Multi-PSO Optimisation Method—HCPSO” as shown 

in Figure 3.2. The reason of creating this new optimisation method is to provide the 

foundation for learning based optimisation. Because the ship design process in this 

study is seen as optimisation process, for better application of machine learning, the 

optimisation approach in this system should have two essential attributes: internal 

learning ability and simple parameters setting. The internal learning ability means 

that the new system need not to prepare special internal learning function especially 

for algorithm itself. The simple parameter setting means that the system can control 

the optimisation really well without too complex parameters setting. This new 

HCPSO approach has excellent attributes to satisfy these requirements with very 

good performance on optimisation ability proven in chapter 5.  

 

The third method is “A new learning based optimisation method” as shown in Figure 

3.2. It greatly improves the external learning of this system in real time learning 

mode. When the first and second methods in Figure 3.2 offer the abundant 

experience and advanced optimisation algorithm, how to combine them together to 

construct a high-performance intelligent collaborative learning system becomes 

primary problem.  

 

This approach can capture the change of optimisation environment and provide 

guidance to optimisation. From the ship design optimisation point of view, the 

bottleneck problem in current application environment is the cost of time. In order to 

solve this problem in an effective way is to make the system more intelligent to assist 

the optimisation. This learning based optimisation can reduce the run time via 

intelligent guidance using the experience from both previous design and real time 

optimisation in chapter 6.  
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The last method is “A New Learning Based Decision Making Method” as shown in 

Figure 3.2. When the optimisation is finished, the system needs to select the final 

solution for designers. Most traditional decision making methods depend on human 

to make an evaluation. This will make the designs to become sensitive and when lack 

of specialists, it will be very hard to make decision or the decision may not be the 

best one. This learning based decision making method rebuild previous work-

FMADM via multi-agent theory. This rebuilding work transfers traditional FMADM 

from semi-automatic to automatic, which enhances the robustness of the system. 

Then Support Vector Machine (SVM) method is introduced to construct the virtual 

committee which can learn human decision experience under the direction of virtual 

technology manager which is also built via SVM. This method can assist the 

designers significantly to make a good decision after optimisation. The theory and 

practice of “A New Learning Based Decision making Method” are explained in 

chapter 7.     

 

Two application cases shown in Figure 3.2 are very important research problems in 

ship design. The first application, which is explained in chapter 8, belongs to ship 

design which focuses on stability. The subdivision optimisation of chemical tanker 

according to new SOLAS is selected as a case study. The third party naval 

architecture software NAPA is employed to realize the simulation and calculation. 

The second application in chapter 8 belongs to ship structure design and optimisation 

of mid-ship of bulk carrier. The Common Structural Rules (CSR) of International 

Association of Classification Societies (IACS) is selected as calculation basis. The 

Finite Element Analysis (FEA) software ABAQUS is utilised to assist the application.   

3.4 Discussion 

This chapter gives the research direction of the study. The system keeps the structure 

of multi-agent system and put the emphasis on developing the learning function of 

the system. The selection of the learning approaches follows the principle of 

simplification and effectiveness. At the same time, the construction of learning 

function is independent from other parts of the system. The learning function can be 
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easy to update, which can help to better support the whole design process for 

realising a quick design and decision making.  

 

The adopted and developed approaches in this research work are concluded and 

presented in this chapter. The logical relationship of these approaches is analysis 

together with the reasons and aims of employing and developing these approaches. 

The original contributions of the author are also briefly introduced. 
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Chapter 4 

 

 

Data Mining in Ship Design 
 

4.1 Introduction 

Data mining is described as the process of extracting hidden patterns from data. The 

application of data mining is developed and extended in engineering field very 

rapidly in recent years with the improvement of statistics and computer science. At 

the same time, ship design suffers the problem of massive data, as with the 

development of computer application, naval architect encounters more and more 

unorganized data. As the traditional method of storing information in shipyard, the 

drawings used to be collected manually. However, in today’s shipbuilding for current 

situation, the data contains many kinds of information which greatly exceeds beyond 

the range of drawings. What is more, the designers need quick control on both the 

explicit and implicit knowledge gained from previous experience. The original 

manual retrieval approach can not suit the development of ship design. All of these 

raise a new problem: how to manage the information and draw knowledge directly 

from database to provide an experience for the next ship design.  
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Data mining and machine learning present a new idea for solving above ship design 

problem. The suitable learning approach should have the ability to help the design 

support system to deal with the mass data and draw knowledge automatically from 

these data. But up to now, there has not been a general approach of machine learning, 

which can solve all the problems of data mining, especially for the application in ship 

design and production. In this study, a systematic learning method for sharing past 

experience in concept design of ships is presented to solve the complex ship data 

problems. Ship design learning library (SDLL), as a new concept database is 

introduced, while decision tree and case based reasoning approaches are selected to 

construct and run this new database. The theory and algorithm implementation is 

explained and a case is introduced for evaluating the method in this chapter.  

4.2 Background and aim of this chapter 

4.2.1 Background of data mining 

Data mining is not a new concept but has a complete new development due to the 

new technology of statistics and computer science in recent years. The humans have 

analysed data to find pattern for centuries. At the beginning, the operation of data 

mining was processed manually, so the efficiency was very low. At the same time, 

the theory of statistics was not mature, which also constrained the application of data 

mining. In this progress over the years, many useful methods including Bayes 

theorem and regression analysis were developed, but overall, the development of 

data mining was very slow. Since 1950s, the development of computer technology 

and statistics theory has given a new life to the data mining. The research and 

application of data mining began to make a rapid development and now, data mining 

has been one of the important technologies for engineering.  

 

“Data mining is an iterative process within which progress is defined by discovery, 

through either automatic or manual methods. Data mining is the search for new, 

valuable, and nontrivial information in large volumes of data.” (Kantardzic 2003). In 
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this study, the data mining is defined as an effective method to find the implicit 

relationships of ship data via the pattern analyses. The modern engineering is based 

on the first-principle models. The normal process of engineering is that building a 

basic scientific model, and then building up and extending to various applications. 

The problem of ship engineering is that many ship engineering problems are too 

complex to be mathematically formalized. So the data should be analyzed to find the 

relationships and build an experienced model.  “Thus there is currently a paradigm 

shift from classical modelling and analyses based on first principles to developing 

models and the corresponding analyses directly from data.” (Kantardzic 2003). In 

other words, the system analyses the data and builds an experienced model via the 

value knowledge mining from existed ship data for improving the next practical 

design.  

 

The task of data mining in ship engineering is analyzing the prior ship data and 

giving a predictive model. In recent years, data mining has been widely in use in 

engineering and developed different fields to build model. Normally, there are four 

main aspects of data mining application in engineering to help building a model.  

 

Classification: allocation of data to the predefined groups. As massive amount of 

data is coming from different parts and different stages in ship design and production, 

the user needs to be very clear which data belongs to which part. For example, in 

ship design industry, the design department always makes the concurrent design with 

many ships. Suppose that there are three different main productions of ships: 

container ships, bulk carrier and LNG ship. When new data come, the designers need 

to give an accurate classification that which corresponding ship type the data should 

belong to can be identified easily. Let us assume in this example that this data 

belongs to container ships and it is the information of deck depth. The next time, 

when the new design task needs to design deck depth for a containership, the system 

will automatically provide this information to help the designers as experience. In 

other word, this classified data can be used directly for the same type of ship. 

 

http://en.wikipedia.org/wiki/Statistical_classification�
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Clustering: the algorithm will try to group similar items together. In most of the time, 

especially in database building period, there is no predefined group which can be 

selected.  Allocating the data to a specified group is difficult. So it needs the 

algorithm to provide similar data together to form a new group. For example, when a 

data about ship’s length is classified as container ship as above example and if the 

system already has 100 examples, the system, which has now 101 vessels, will 

classify these 101 examples into two categories. Here, suppose the 100 meters length 

is the intermediate value, so the system will have two groups: less than or equal to 

100 meters and more than 100 meters. It is noteworthy that this classification is 

automatic and some times, it needs designers to make a revision. In this example, the 

designer can modify this classification length limit of 100 meters, to different values 

according to different rules and regulations.       

 

Regression: Regression in data mining means the system will find a function to 

express the data with the appropriate model. For simple data sets, if the system can 

find a function to express the data clearly, it will greatly improve the utilization of 

the data.  

 

Association rule learning: It finds the relationships among variables. When the data 

is complex, it is difficult to use simple expression to describe the data model. So 

finding the explicit and implicit relationship of variables is favourable for utilization 

of data. This is the main application of data mining in ship design. In the 

environment of fast changing marine business, designers have to face large amount 

of data and to provide quick response. For example, in a ship design, length, breadth, 

depth etc. are given and the speed range is to be identified. The data mining should 

conclude the association rule among these factors for the designers and give 

corresponding speed range according to new input factors using knowledge derived 

from prior ship design cases. 

 

There are other applications besides these four areas. But in this study, the 

application of data mining will focus on these four areas: classification, clustering, 

regression and association rule learning in ship design. 

http://en.wikipedia.org/wiki/Cluster_analysis�
http://en.wikipedia.org/wiki/Regression_analysis�
http://en.wikipedia.org/wiki/Association_rule_learning�
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4.2.2 Aim of the application of data mining in ship design  

The aim of the application of data mining in ship design is to build an intelligent 

learning based ship design learning library (SDLL), which can find the explicit and 

implicit relationships among data and provide these to the next practical design as the 

experience to improve the design quality. In other words, the SDLL has the ability of 

updating itself and every time, it can provide both the data and the relationships 

which come from the data to help to create better design. As part of the data mining, 

the following problems are studied: 

 The decision tree and its application in SDLL; 

 Case based reasoning and its application in SDLL; 

 A hybrid algorithm for SDLL building; 

4.3 Ship Design Learning Library (SDLL) 

Ship Design Learning Library (SDLL) is a new concept database with the learning 

ability and is created for learning from complex ship design data. The word ‘Library’ 

is used here to replace ‘database’ because this system is not merely storing the data 

but exploring the self-learning, just like the library storing knowledge. This new 

database can find relationships among the data and update the new knowledge 

together while deleting the overdue knowledge. When a new problem is encountered, 

it can give all valid, accurate and timely information and experience drawing from 

pervious design cases to assist the designers. So SDLL is an intelligent database with 

the ability of self-learning for ship design.  

 

The reason of building new type database for this system is multiplicity. First of all, 

the old ship information sharing mode obviously lags behind the requirements of 

modern ship design. In most of the time, the ship designers need to have an insight 

into the relationships behind data instead of holding massive amount of data. So the 

relationships among the data are more useful for designers. The second one is the 

type of stored data. As usual, the ship design agency always merely keeps the 

drawings but spurn other useful information. With the development of naval 



 54

architecture, the information required in design process has been far beyond 

drawings. The storing and managing data is a challenge for designers. The third one 

is the utilization of knowledge. The development of marine marketing requires the 

designers to find more information to improve the design work and further improve 

the competitiveness. The optimisation is a good tool for improving the design but the 

current optimisation costs too much time. So it needs the knowledge to provide the 

good direction for guidance. The traditional knowledge to be shared from books 

often can not match the development of practical design, so a new database with self-

learning and auto-updating function is necessary for ship design.  

 

The learning ability of SDLL is realized via two learning approaches: decision tree 

and case-based reasoning. The decision tree mainly operates numerical rules while 

the case-based reasoning is employed to deal with linguistic rules.   

 

The building and use of SDLL are not independent; on the contrary, they are closely 

related in practice and have no obvious boundaries.  

 

The building part also can be seen as the training part. In SDLL, the learning 

methods are both supervised learning, which means that there are ‘teachers’ to give 

the instructions about learning process. In other word, past cases give the guidance to 

find the solution of new problem.  

 

In this phase, the first important aspect is the data format. In previous work, the 

XML format is employed and for the continuous development, the new SDLL still 

accept the XML format. The XML format has many advantages: simple structure, 

easy to debug, online application etc. But the XML is not mature enough in current 

situation in large database. Therefore the learning module is designed to be 

independent from the database and can be embedded into any other module including 

module written via other database languages.      

 

The second important aspect is the learning ability realization, which is one of the 

difficult parts of SDLL. The learning ability of SDLL means not only learning before 
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the application but also learning during the application process. And it does not only 

give all the mature rules and regulations before the new application but also makes a 

concrete analysis of well established concrete conditions. For different learning 

problems, SDLL employs different strategies. For a numerical problem, SDLL will 

adopt the decision tree approaches to search the relationships and to store these 

relationships in the database. For linguistic properties of cases, the properties will be 

directly put into the database without any other operations. In other word, the 

linguistic properties will not be processed until there is a requirement given by new 

application.  

 

This raises two problems. The first one is how to link the linguistic attributes to other 

attributes. The second one is how to retrieve the linguistic attribute.  

 

For the first one, SDLL uses uniform index number, which means once a new case 

comes into the SDLL, a unique ID number, which is composed of the time (day, 

month, year) plus four numbers given in SDLL. It is noteworthy that the case will be 

given a sequence number when the decision tree finishes classification. But the new 

sequence number is just for storing in sub-database and will not be treated as retrieve 

number. So if the linguistic attribute is not treated as a retrieval attribute, it will be 

given as a part of the result via ID number.  

 

For the second problem, the linguistic attribute is one of the retrieval attributes. It is 

more complex. Normally, in the retrieval process, linguistic attribute is coupled with 

other attributes. If CBR is used, one important problem is how to measure the 

distance between neighbour cases as numerical attributes. SDLL accepts man-

machine cooperation idea to deal with this problem. The system divides the linguistic 

attributes into two classes. One is precision matching and the other is fuzzy matching.  

 

For precision matching, the designer can directly select total matching cases and then 

measure the distance of other attributes to decide the best solution. For example, for 

a stability design, the system wants to use IMO A256 as design standard. In this 
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situation, measuring the distance has no practical significance or even may be 

misleading. So the system just searches the case with IMO A256.       

 

The last important aspect is the structure of SDLL. As presented in Figure 4.1, which 

gives the structure of SDLL, there are three libraries in SDLL. For linguistic attribute 

library, there are only two parts: ID number and linguistic attributes. For numerical 

attribute library, the relationships among the data are analysed and stored in the 

relationship library. The rules and regulations library stores the standards coming 

from the classification society, IMO, flag nations etc. and uses these to correct the 

linguistic and numerical attribute library.    

  

 

Figure 4. 1 The structure of SDLL 
 

4.4 An integrated learning method for building SDLL 

According to the characteristics of SDLL, the main task of SDLL is finding and 

storing the relationships behind the data. As the designers need to obtain the useful 

data from massive data of ship design. In this section, a new integrated data mining 

method will be put forward to deal effectively with the massive data. 

 

Before selecting an appropriate approach, the composition of data in ship design 

should be taken into account. The main data can be divided into two categories: 
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numerical and linguistic. Then the numerical data can further be divided into 

drawings, tables, etc. In this research, without loss of generality, the data is classified 

under three categories: numerical data, drawings and linguistic data. Because the 

drawings can not directly be analysed by current technology, the objective data is 

limited to numerical and linguistic data. Correspondingly, the data mining 

approaches should also be considered for dealing with these two categories data. 

 

A hybrid learning method is created to deal with this task. The decision tree is 

appropriate method for the numerical data while CBR is employed for the linguistic 

data. The detailed method has been shown in Figure 4.2.  

 

As shown in Figure 4.2, the learning method is composed of two approaches: 

decision tree and CBR. The applications of these two approaches belong to different 

types of data. The decision tree will find the relationships behind the numerical data 

during the training time, and at the same time, the CBR make an analysis of 

linguistic data after receiving the new requirements.  

 

At the beginning, a data classifier is created to different types of data. Because this 

study will not process the drawings and the drawings are directly store in the data 

warehouse, the categories are limited to two types: numerical data and linguistic data.  

 

After all the training data is put into database, the decision tree will classify the 

attributes firstly. The name and value are also separated in this step. Then the 

decision of what kind of decision tree should be created becomes the primary 

problem. Because every attribute can be used as root node, a simple and effective 

decision tree becomes the first objective. The system needs to make the preference 

bias clear, in other words, the system has to decide what kind of standard should be 

preferentially used in the process of building trees.  
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Figure 4. 2 An integrated learning method for building SDLL 
 

For mass data, there could be many kinds of trees according to same data sets. How 

to build an effective tree becomes important. The Ockham's Razor is selected in this 

study as preference bias. The basic idea about Ockham's Razor is that the simplest 

explanation which is consistent with all observations is required as the best. This 

means the smallest decision tree that correctly classifies all of the training examples 

is the best. Finding the smallest decision tree is an NP (nondeterministic polynomial 

time)-Hard problem, so instead of constructing the absolute smallest tree which is 

consistent with all of the training examples, construct one that is relatively small. 

 

After decisions about the principle of preference bias, the next problem is what 

method should be used to measure the difference among attributes of every case, 

which means how to make sure the best attribute for a given node. Most algorithms 

that have been developed for learning decision trees are variations of the core 

algorithm that employs a top-down, greedy search through the space of possible 

decision tree. This means the method will search the complete space of attributes.  
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For solving the above problems, an approach should be selected to decide the basic 

root node and following nodes of every lever. A method named Max-Gain, which is 

employed by decision tree algorithms, is also accepted in this integrated method. The 

Max-Gain comes from the information theory. The concept of Max-Gain is to choose 

the attribute that has the largest expected information gain. In other words, try to 

select the attribute that will result in the smallest expected size of the sub-trees rooted 

at its children. Information theory is used to estimate the size of the sub-trees rooted 

at each child for each possible attribute; that is, try each attribute, evaluate and pick 

the best one.  

 

After obtaining the value of every attributes, the system will select the attribute with 

maximum gain value as the root node. Then the system will calculate the remaining 

attributes and select attribute from these remaining attributes with maximum gain 

value as the next lever node. The loop continues until the objective attribute is 

distinguished clearly. Until this step, the relationship of this objective attribute to 

others has been built. Then the next attribute will be analyzed, and after analysing all 

the attributes, the relationship net among attributes will be built.  

 

This relationship net will be stored together with linguistic attribute and drawings in 

the data warehouse as presented in Figure 4.2. This warehouse is hybrid system 

combining the operated data and original data. The operated data means the 

discovered relationships of the data which has been stored and ready for use. In 

Figure 4.2, the data warehouse is divided into three parts for different data and in this 

study, the language XML is used to build the whole data warehouse.      

 

For the application stages, the same data classifier of training part is employed to 

classify the new design requirement. The numerical attributes will directly be given 

to the relationship nets and the result will be obtained.  

 

The linguistic attributes will active the CBR approach. Firstly, the linguistic attribute 

will be divided into several small parts for the next step. The detailed amount of parts 
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is decided by the designer according to the concrete problem. For example, a speed 

can be divided into slow (<16 knots), normal (16 to 18 knots), good (18 to 22 knots), 

fast (>22 knots) for seagoing cargo tankers and also can be divided into slow(<8 

knots), normal (8-12knots)，rapid (>12 knots) for inland ships. It is notified that 

when the standard of divisions is established, every case in the database will be 

divided. So the designers should take into account the whole design space and not to 

be absorbed by the design requirements. In the rent step, the distance between the 

requirement and the original case is measured and the nearest neighbours are 

identified. As the final step these cases are revised and by combining the result 

obtained via decision tree a new solution is provided.     

4.4.1 Work flow of SDLL 

While Figure 4.3 presents the work flow of SDLL, the detailed steps are given as 

follows:  

 

Training part 

 

Step 1: Read a new case, then transfer the data to SDLL format. 
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Figure 4. 3 The work flow of building Learning Library 

 

Step 2: Classify the case attributes. If the attributes are linguistic, the attributes are 

directly transferred to case-based reasoning sub-database. Only ID numbers and 

linguistic attributes are stored; 

 

Step 3: All other attributes are transferred to decision trees sub-database and the 

attributes of every case are re-sorted according to previous classification.  

 

Step 4: When all the cases in the training set are put into the database, the decision 

tree method is called to process the data. 

 

No 
Yes 
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Step 5: Steps from 5 to step 8 include the decision tree inner work flow.  

 

Considering set S as training examples, which consist of the subset P of positive 

examples and subset N of negative examples; 

 

Calculate the entropy S via Equation 4.1. The definition of entropy and gain is 

explained in appendix A. 

 

2 2( ) ( log ) ( log )Entropy S P P N N       (4.1) 

where P=p/(p+n) and N=n/(p+n)  

P: fraction of examples where S is positive; 

N: fraction of examples where S is negative; 

 

Step 6: Calculate information gain by using a given attribute via Equation 4.2, which 

measures the expected reduction in entropy. That is, measure the difference in the 

information content of a node and the information content after a node splits up the 

examples based on a selected attribute's possible values. 

 

     
( )

| |
,

| |v Values A

Sv
Gain S A Entropy S Entropy Sv

S

  
  (4.2) 

 

Where A is the set of all possible values for attribute a, and Sv is the subject of S for 

which attribute a has value v. The second term is the expected value of the entropy 

after S is partitioned using attribute a. 

 

Step 7: Select the attribute with the highest normalized information gain, and create a 

decision node on the best attribute on this information gain. The best attribute is the 

attribute with the highest normalized information gain. This decision node will be the 

new sub-root node for the next time.  

 

Step 8: Repeat on the sub-lists obtained by splitting, and add those nodes until all the 

cases are classified.  
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Step 9: Store the decision tree in the relationship library.  

 

Running part 

 

Step 1: The SDLL interface transfers the new design requirement to standard format. 

 

Step 2: If the attribute is linguistic, enter linguistic attribute library else enter 

relationships library (go to Step 7). 

 

Step 3: Judge whether it is a precision matching or a fuzzy matching. If it is a 

precision matching, directly search the cases with same attribute and measure the 

distance of other attributes. If it is a fuzzy matching, it needs designers to classify the 

linguistic attribute and transfer to numerical attribute.   

 

Step 4: Calculate the distance between the cases with the pointed weights.  

 

Step 5: Select the case and output. 

 

Step 6: Ask the designers to revise the results and store as a new case in the library. 

 

Step 7: Search the relationships library and give results. 

 

Step 8: Ask the designers to revise the results and if necessary, revise the old 

decision tree. 

4.4.2 Essence of data mining in SDLL  

When SDLL is built successfully, after carefully training, it can be used in new 

design. The findings, which are given via machine learning method, are feasible in 

ship practical level. This section will investigate the essence of data mining in SDLL. 
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Ship design, as an engineering application, follows the general law of engineering 

science which is observing situation, building model, finding mathematical solutions, 

then exploring the general application. So ship design, in a certain degree, is seeking 

the mathematical solutions to all kind of ship related problems. But it is too complex 

to find all the solutions for all the problems in ship science; therefore, there are many 

empirical formulas which actually are fitted based on data from prior cases with 

correction via experimental data. With the development of marine industry, large 

numbers of new types of ships appear, for example, the container ships have many 

new types in recent years as the displacement increasing continuously. On the other 

hand, the corresponding study can not follow the market development. Both the 

empirical formulas and analytical theory including the study of flow fields, velocity 

fields etc. in ship design cannot follow the development of ship building. It also 

needs a very long time to transfer this research to knowledge and to teach designers. 

So the modern ship design needs to draw experience directly from the prior cases to 

rapid design in the constraints of rules and regulations, which are made by 

classification society, IMO etc. The machine learning and data mining can deal with 

these tasks effectively.  

 

What kind of knowledge is mined from these cases? They can be seen as special 

rules and regulations in the current known attributes in specific cases. These 

relationships can be corrected via published rules and regulations. So they can be 

directly used in practice. What is more, many of these relationships can be 

transferred to general knowledge after research. It can also promote the development 

of ship science.   

 

4.5 Discussion 

This chapter proposes a systematic learning approach to build SDLL. The decision 

tree and CBR are employed to solve the learning problems in the SDLL. The theory 

and reason of selecting these two learning approaches are explained. The detailed 

workflow including both training and running parts is given.  
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This chapter introduced a new type learning based database for ship design work. 

The system can automatically learn from prior cases and provide help to the 

designers for improving the quality of the design. The decision tree is to be used for 

the first time for analysing the relationships behind ship data, while the CBR is to be 

used for the first time for linguistic attributes of ship data. Both of these approaches 

provide good performance for relevant data and demonstrate the power of method for 

utilising the past experience to develop high performance design.  
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Chapter 5 

 
 

Multi-objective Optimisation and 

Multi-PSO in Ship Design 

 

5.1 Introduction 

As ship design is a systematic process, multi-objective optimisation in ship design 

has attracted a lot of interest in recent years. Many algorithms have been developed 

to solve the design and analyses problem in ship design, which is dynamic and 

complex concurrence engineering. The design process usually takes a long time to 

make the analysis of the problem. However current algorithms for GAs always need 

big population and steps, which make the time to complete the optimisation very 

long. While this problem requires faster algorithm, in order to be able to introduce 

learning function to the optimisation approaches, the optimisation algorithm should 

be as simple as possible. What is more, the algorithm should have the learning ability, 

in other words, the inner learning of the optimisation algorithm should be processed 

by the algorithm itself.   
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This chapter introduces a new ‘Hybrid Co-evolution based multi-objective Particle 

Swarm Optimisation’ (HCPSO) method to solve the above problem. The HCPSO 

combines co-evolution, game theory and -disturbance technique to develop an 

effective optimisation approach which performs remarkably well in the multi-agent 

system.  

5.2 Background of multi-objective optimisation  

The main aim of a general multi-objective optimisation problem (also called multiple 

criteria optimisation, multi-performance or vector optimisation) is to find the design 

variables that optimize a vector objective function (F(Y) = {f1, …, ft}) over the 

feasible design space (Ölçer 2008). The objective functions are the quantities that the 

designer wishes to minimize, maximize, or attain a certain value. This problem can 

be formulated as follows: 

 

Minimize: 1 2( ) { ( ), ( ),..., ( )}tF Y f Y f Y f Y                  (5.1) 

Subject to:  

p inequality constraints ( ) 0, 1,...,g y p    

q equality constrains ( ) 0, 1,...,h y q     

 

where Y = [y1, y2, …, yn] is the vector of decision variables.  

In multi-objective optimisation, the objectives are usually in conflict with each other. 

The aim of multi-objective optimisation is to find a solution which is acceptable to 

decision makers.  

 

Design variables are the numerical quantities for which values are to be chosen in an 

optimisation problem. In most engineering applications, the design variable is 

controllable by designers according to factual problems. Design variables usually 

have maximum and minimum boundaries which can be treated as separate 

constraints.   
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There are various restrictions from the environment or resources (e.g., physical 

limitations, time restrictions, etc.), which must be satisfied for an acceptable solution 

in an optimisation problem. These restrictions are generally called constraints and 

they could be explicit or implicit.  

 

In multi-objective optimisation, the aim is not just to find a single solution as global 

optimisation but to find good compromises (or “trade-offs”). Here Pareto Optimality 

is introduced.  

 

For a multi-objective optimisation problem, any two solutions y1 and y2 can have one 

of the two possibilities: one dominates the other or none dominates the other. In a 

minimization problem, without loss of generality, a solution y1 dominates y2 if the 

following two conditions are satisfied: 

 

1 2{1,2,..., }: ( ) ( )t f y f y   
                       (5.2) 

1 2{1,2,..., }: ( ) ( )t f y f y                           (5.3) 

 

If any of the above conditions are violated, the solution y1 does not dominate the 

solution y2. If y1 dominates the solution y2, y1 is called the non-dominated solution. 

The solutions that are non-dominated within the entire search space are denoted as 

pareto-optimal and constitute the pareto-optimal set or pareto-optimal frontier.(Ölçer 

2008)  

5.3 Description of the proposed approach-HCPSO 

The proposed approach combines co-evolution approach, Nash equilibrium and -

disturbance technique to form a new improved hybrid approach. At the same time, 

agent-based structure is adopted for distributed synchronous cooperation.  
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5.3.1 Nash-optima in proposed method 

In HCPSO, co-evolution approach is combined with Nash optima, which looks for 

Nash Equilibrium. For an optimisation problem with M number of objectives in an 

agent environment, M numbers of agent-groups are employed to optimise their own 

objective while changing the objective of other/remaining agent-groups. When no 

agent-group can improve its objective further, it means that the system has reached a 

state of equilibrium called Nash Equilibrium. In HCPSO, Co-evolution approach 

provides a public information sharing mechanism to improve the communication 

amongst agent-groups.  

 

The reason for adopting the co-evolution approach here is that on the one hand, co-

evolution approach can provide quicker search ability, and on the other hand, by 

using the co-evolution approach it is easier to perform simulation via a multi-agent 

system. In an engineering application, the approach can be studied in a multi-

computer environment thereby reducing time via parallel calculations.   

 

The Nash optima (Sefrioui and Periaux 2000)，(Holt and Roth 2004) is deployed in 

HCPSO because the information sharing in Nash optima is simple and effective. 

Furthermore, in Nash optima, one agent, which has one objective, receives the 

information from other agents, and this is a good model for the multi-agent system in 

concept and computer realization.  

5.3.2 -disturbance in the proposed method 

In the multi-objective PSO method, sometimes the algorithm will generate local 

optima value and the -disturbance technique is deployed to avoid it. When both 

Pbest and Gbest stand on a fixed value and the particle position is stagnant on 

boundary, a random -disturbance is needed to help the algorithm jump out of 

stagnation point. For a given step T, if stagnant step ts > T, a random -disturbance is 

introduced to both Pbest and Gbest. For example, setting T=10 steps, the algorithm 

would check the value of Pbest and Gbest at every step. If both Pbest and Gbest keep 
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the same values as the last step, the counter in algorithm will increase by one. In the 

next iteration, if both Pbest and Gbest still keep the same values, the counter will 

further increase by one, otherwise the counter returns to zero. When the counter is 

equal to 10, the algorithm will give a random -disturbance value to change Pbest 

and Gbest, so as to keep the particles moving. 

5.3.3 The proposed method in study 

For an optimisation problem with K design variables and M objectives, the algorithm 

would employ N particles to run optimisation and N should be multiples of M. 

Firstly, HCPSO divides N particles into M sub-swarm group according to objectives. 

Secondly, the design variables, K, are also divided into K1, K2, … Km sub-groups 

according to objectives. This means every sub-swarm group has its own 

corresponding objectives and design variables. Then every sub-swarm group 

optimises relevant design variables according to relevant objectives in its own group. 

The optimised result would be sent to the “public board” as shared information. In 

the next step, the sub-swarm group would read other design variables and 

corresponding information from the public board as an update. At last, when a Nash 

Equilibrium is reached, the algorithm gives the final results. In every sub-swarm, in 

order to give enough pressure to push the solution space to Pareto space, particles in 

two generations are compared to update the position.  

 

Algorithm HCPSO 

The step-wise description of the proposed algorithm, HCPSO, is given below and 

shown in Figure 5.1: 

1. initialize the population including position and velocity; 

(i) create public-board to store information; public-board is a simple database to 

store all particles’ information;   

(ii) give the number of sub-swarms and size of each sub-swarm; 

(iii) divide population into sub-swarms; 

2. every sub-swarm begins iteration; for example (mth sub-swarm with (N/M) 

particles and Km design variables); 

3. read information from public-board and calculate fitness; 
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4. update Pbest via comparing individual position history according to mth objective ; 

5. non-dominated sorting via Pareto-based approach; 

6. give pointed number of best ranking particles to public-board;  

7. collect particles in step 6 from all sub-swarm to public-board and form Gbest pool; 

8. every sub-swam randomly selects Gbest from pool; 

9. compare Pbest and Gbest with past values to decide whether to introduce -

disturbance or not;  

10. calculate velocity and give limit velocity; 

11. update and limit the position of particles; 

12. combine last iteration particles with this iteration to form a new group with 

2*(N/M) population and perform non-dominated sorting via Pareto-based approach;   

13. select first (N/M) particles from new group with 2*(N/M) population in step12 

and update position and velocity;  

14. send corresponding information to public-board; 

15. if every solution can not be improved, stop and if it can be improved, continue 

iteration;  

16. output final results; 

 

Sub-swarm partition  

In HCPSO, the whole swarm is divided into different sub-swarms according to the 

number of objectives. If an optimisation problem has M objectives, the swarm is 

divided in to M sub-swarms. The relationship between variable and sub-swarm is 

very important. For special objective functions, detailed analysis of these 

relationships should be processed before partition. For example, a two objective 

problem: 1 1 2 2 3( ) , ( ) ( , ,..., );nf x x f x g x x x  following the above principle, the swarm 

should be divided into two sub-swarms. The first choice of variables is allocated to 

the first sub-swarm which contains variable 1x and second sub-swarm includes the 

variables from 2x  to nx . The second choice is averaged out and every sub-swarm has 

half variables. In a particle application in engineering, when the relationship is 

unclear, the average distribution is recommended.  

 

 

http://www.iciba.com/average/�
http://www.iciba.com/distribution/�
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Information sharing mechanism 

The information sharing mechanism is realised through public-board in sub-swarm 

optimisation. The public-board concept in HCPSO comes from a multi-agent system 

environment. For easy and efficient communication in an agent environment, a black 

board is used for sharing the public information. The same mechanism is used here, 

and the black board is called public board for public information sharing. In every 

sub-swarm, the particles optimise variables according to sub-swarm optimisation 

objective, and send the information including the optimised objective value, the best 

particle location etc. to public board in the system. In synchronization, the sub-

swarm reads the information from the other sub-swarm optimisation as the 

information for the next step. 

 

Pbest and Gbest updating 

The Pbest updating in HCPSO adopts the updating inside sub-swarm while Gbest 

uses updating outside sub-swarm. For Pbest, the particle in nth sub-swarm compares 

the corresponding objective fitness value between the current position and the 

previous best position. If the current position in the nth objective fitness is better than 

the previous value, the Pbest is replaced by the current value or if the current value is 

not better, then the previous value is retained. 

 

The Gbest selection uses Gbest pool in public board. Every sub-swarm provides its 

best value to the public board and constructs a Gbest pool and then HCPSO 

randomly selects a particle as Gbest position from Gbest pool.  

 

Particle updating 

In order to give enough pressure to Pareto front, an updating position approach is 

used to mutate every particle. In every sub-swarm, the system will compare the 

fitness in the last generation and the current generation (size of population is 

2N/M), then selects N/M position as this generation; some particles hold their own 

position and others will be replaced by the nearest neighbour. 
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Figure 5. 1 Flow chart of proposed HCPSO algorithm. 
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5.4 Experiments 

5.4. 1 Test Functions 

Eight multi-objective test functions (Table 5.1), from the related literature, are 

selected to evaluate the proposed algorithm. Deb (Deb, Thiele et al. 2001) introduced 

the design of a multi-objective test problem for EAs (Evolutionary Algorithms) and 

the test problems in Table 5.1 are chosen following the principles of Deb. Test 1 is 

selected by Pinto et al. (Pinto, Peri et al. 2007) as a convex Pareto front. Test 2 is 

ZDT1 function in Zitzler et al. (Zitzler, Deb et al. 2000) with continuous Pareto front 

and a uniform distribution of solutions across the front. Test 3 is ZDT2 in which the 

Pareto front is not convex. Test 4 is obtained combining the test function of Test 2 

and Test 3 (Jin, Olhofer et al. 2001) and explored by Pinto et al. (Pinto, Peri et al. 

2007). Test 4 is neither purely convex nor purely non convex. Test 5 is ZTD3, which 

is difficult for a discontinuous Pareto front. Test 6 is ZTD4 and the difficulty of this 

problem is that the sheer number of multiple local Pareto-optimal fronts produces a 

large number of hurdles for an algorithm to converge to the global Pareto-optimal 

front. 
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Table 5.1 Two-objective test problems selected to evaluate HCPSO algorithm. 

Name Variables n Range Test Function 

Test 1 30 [0,1] 

2
1

1

2
2

1

1
( ) ,

1
( ) ( 2) .

n

i
i

n

i
i

f x x
n

f x x
n









  





 

Test 2 30 [0,1] 
1 1 2 1

2
2

1 1

( ) , ( ) ( ) ( ( ), ( )).

9
( ,..., ) 1 ,

1

( , ) 1 / .

n

m i
i

f x x f x g x h f x g x

g x x x
n

h f g f g




  
   


 


 

Test 3 30 [0,1] 

1 1 2 1

2
2

2
1 1

( ) , ( ) ( ) ( ( ), ( ))

9
( ,..., ) 1 ,

1

( , ) 1 ( / ) .

n

m i
i

f x x f x g x h f x g x

g x x x
n

h f g f g



  

   
  

  

Test 4 30 [0,1] 

1 1 2 1

2
2

4 4
1 1 1

( ) , ( ) ( ) ( ( ), ( ))

9
( ,..., ) 1 ,

1

( , ) 1 / ( / ) .

n

m i
i

f x x f x g x h f x g x

g x x x
n

h f g f g f g



  


  
   


 

Test 5 30 [0,1] 

1 1 2 1

2
2

1 1 1 1

( ) , ( ) ( ) ( ( ), ( ))

9
( ,..., ) 1 ,

1

( , ) 1 / ( / )sin(10 ).

n

m i
i

f x x f x g x h f x g x

g x x x
n

h f g f g f g f


  

   
   


 

Test 6 10 
1 [0,1],

[ 5,5],

2,...30;

x

xi

i


 


 
1 1 2 1

2
2

2

1 1

( ) , ( ) ( ) ( ( ), ( ))

( ,..., ) 1 10( 1) ( 10cos(4 )),

( , ) 1 / .

n

m i i
i

f x x f x g x h f x g x

g x x n x x

h f g f g




  

     

  



 

Two three-objective test functions are selected according to Deb (Deb, Thiele et al. 

2001) in Table 5.2. Test 7 is DTLZ2 and is used here to investigate HCPSO’s ability 

to scale up its performance in a large number of objectives. Test 8, as DTLZ4, is 

selected to test HCPSO’s ability to maintain a good distribution of solutions.  
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Table 5.2 Three-objective test problems selected to evaluate HCPSO algorithm. 

Name Variables n Range Test Function 

Test 7 12 [0,1] 

1 1 2

2 1 2

3 1

2

( ) (1 ( ))cos( / 2)cos( / 2)

( ) (1 ( )) cos( / 2)sin( / 2)

( ) (1 ( ))sin( / 2)

( ) ( 0.5)
i M

M

M

M

M i
x x

f x g x x x

f x g x x x

f x g x x

g x x

 
 




 
  
  


 



 

Test 8 12 [0,1] 

100 100
1 1 2

100 100
2 1 2

100
3 1

2

( ) (1 ( ))cos( / 2)cos( / 2)

( ) (1 ( )) cos( / 2)sin( / 2)

( ) (1 ( ))sin( / 2)

( ) ( 0.5)
i M

M

M

M

M i
x x

f x g x x x

f x g x x x

f x g x x

g x x

 

 





  


 
  

  




 

 

5.4.2 Parameters Setting 

As a critical parameter for the PSO’s convergence behaviour,   is utilised to control 

the impact of prior velocities. Usually, a large   facilitates global exploration while 

a small one tends to facilitate local exploration. The experimental results indicate that 

it is better to set the inertia to a large value initially, in order to promote global 

exploration of the search space, and gradually decrease it in order to obtain more 

refined solutions. The proper setting of parameters c1 and c2 may result in faster 

convergence and alleviation of local minima. The constriction factor χ controls the 

magnitude of the velocities, in a similar way to the Vmax parameter (Parsopoulos, 

2002). 

 

The standard PSO is the original algorithms provided by Kennedy and Eberhard 

(Kennedy and Eberhart 1995), which is similar to equation (2.1) in subsection 2.5.2 

but without  . The coefficient   is equal to 1 and 1 2 2.0c c  .   

 

In order to compare the rate of convergence between standard PSO and its improved 

form, two test functions in the literature are selected (Shi and Eberhart 1999), 

(Eberhart and Shi 2000): 
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1. De Jong’s function 

2

1

( )
n

if x x , 5.12 5.12ix          (5.4) 

Global minimum ( ) 0f x  is obtainable for 0 , 1,..., .ix i n   

2. Griewangk’s function  

2

1 1

1
( ) cos( ) 1

4000

nn
i

i
i i

x
f x x

i 

    , 600 600xi       (5.5) 

2D 
2 2

( , ) cos( )cos( ) 1
4000 2

x y y
f x y x


    

Global minimum (x,y)=(0,0) 0;f   

 

The standard PSO and improved PSO with different parameters are listed in Table 

5.3. For better comparison of the rate of convergence with other algorithm, the GAs 

(Genetic Algorithms) is also listed.  

 

The number of particles and generation are set to be 200 and 100 respectively. The 

corresponding GAs setting is that population and the cycle number are 200 and 100. 

Every algorithm ran 10 times and selected the best solution of the 10 times. For 

standard PSO the coefficients are fixed, the adjusting convergence depends on the 

Vmax, and here Vmax is set as 2% of range. 
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Table 5.3 Parameters used for standard PSO, improved PSO and GA in comparison 

of the rate of convergence 

Parameters Name 
Standard  

PSO 

Improved 

PSO 
Parameters Name Genetic Algorithms

Constriction function 

χ 
N/A 0.72 Crossover rate 1 

Initial inertia weight 1 (fixed) 1 Mutation rate 1/n 

Final inertia weight 1 (fixed) 0.4 SBX 20 

Cognitive parameter 

c1 
2 2 

Polynomial 

Mutation 
100 

Social parameter c2 2 2 Selection Method 
Tournament 

selection 

 

     

Typical convergence of average fitness values as a function of generations is shown 

in Figure 5.2 The rate of convergence of standard PSO is better than GA. The 

improved PSO is the best among three algorithms. In the Figure (c) and (d), the 

improved PSO is still the best one but GA performed better than standard PSO. The 

reason is that the standard PSO has to adjust itself via Vmax, which is difficult to 

control.   

 

 

 

 

 

 

 



 79

 

                                (a)                                                               (b) 

 

                                 (c)                                                              (d) 

Figure 5. 2 Comparison of results for the rate of convergence of standard PSO, 
improved PSO and GA (a) De Jong’s function; (b) De Jong’s function with average 
fitness range from 0 to 1; (c) Griewangk’s function; (d) Griewangk’s function with 
average fitness range from 0 to 10; 
 

Clerc and Kennedy (Clerc and Kennedy 2002) has given a mathematics analysis 

based on algorithm parameters and derived a reasonable set of parameters. Based on 

this, Trelea (Trelea 2003) provides a direct and simple guideline for parameter 

selection. A convergence triangle is given as a diagram (Figure 5.3). Trela transfers 

classic PSO formula to the following and makes c=d=1: 

1 1 1 1 2 2 2

1 1

( ) ( );

;
k k k k

k k k

v av b r p x b r p x

x cx dv


 

    
 

     (5.6) 

1 2 ;
2

b b
b


  

Corresponding to equation (2.1) in subsection 2.5.2, a and b can be expressed as: 
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1 2

;

( )

2

a

c c
b






 



       (5.7) 

These parameters are critically important for PSO. The different parameters setting is 

given in Table 5.4. Test 2 is selected as a standard test function to evaluate the effort 

of parameters in HCPSO. In order to compare the final results (Figure 5.3), the 

number of particles and generation are set to 200 and 50 respectively. 

 

Table 5.4 Parameters used for HPCSO in comparison of the rate of convergence on 

multi-objective optimisation problem --- Test 2 in Table 5.1; 

Parameters Name Choice 1 Choice 2 Choice 3 Choice 4 

Constriction Function χ 0.72 0.72 -0.72 1.5 

Initial inertia weight 1 1 1 0.6 

Final inertia weight 0.4 0.4 0.4 0.6 

Cognitive parameter c1 2 0.5 0.5 2 

Social parameter c2 2 0.5 0.5 2 

a1 0.72 0.72 -0.72 0.9 

a2 0.288 0.288 -0.288 0.9 

b 1.44 0.36 -0.36 3 
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Figure 5. 3 Comparison of results for the rate of convergence of convergence on 

multi-objective optimisation problem --- Test 2 in Table 5.1; 

 

The line 1 in Figure 5.3 is a zigzagging line and line 2 is a harmonic oscillation line. 

As can be seen from Figure 5.3, choices 1 and 2 fit well after optimisation, but 

choice 3 and choice 4 can not fit Pareto solutions. Figure 5.3 displays that the 

principle of Trelea is applicable to HCPSO. 

5.4.3 Performance Metrics 

Two evaluation criteria are selected:  

(1) GD (Generational Distance) finds an average of the solutions of Q from P* (Q is 

solution and P* is a known set of the Pareto-optimal) 
| |

1/

1

( )

| |

Q
p p

i
i

d
GD

Q



 

For a two objective problem (p=2), id  is the Euclidean distance between the solution 

i Q  and nearest member of P*. 
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(2) Spread 

Deb et al. (Deb 2001) suggested the following metrics to alleviate the above 

difficulty 
| |

1 1

1

| |

| |

QM
e
m i

m i
M

e
m

m

d d d

d Q d

 



 
 



 


 

where d  can be any distance measured between neighbouring solution and d  is the 

mean value of the above distance measure. The parameter e
md  is the distance 

between the extreme solutions of P* and Q corresponding to mth objective function. 

5.4.3 Results  

The HCPSO is run 10 times and real-coded NSGAII, a multi-objective genetic 

algorithm, is used for comparison. In HCPSO, the parameters are set as following: 

the population of swarm is 200 and generation is 100 iteration steps. 1c  and 2c  are 

set to 0.5 while   is gradually decreased from 1.0 to 0.4. Vmax is set to the 

boundaries of decision variable ranges.   is 0.72. The -disturbance has 3 steps. The 

number of sub-swarm is 2 and population of sub-swarm is 100. In NSGA II, the 

number of individuals is 200 and the number of generation is set to 100. The SBX 

(Simulated binary crossover) is used with 10c  and the polynomial mutation is 

used with 20m  . The crossover and mutation probabilities are set to 0.9 and1/ n  

respectively. The parameters of NSGAII are selected according to prior study. The 

results of performance metrics of Test 1 to 6 are averaged and summarised in Table 

5.5. The non-dominated solutions found by HCPSO for all test functions are 

displayed in Figure 5.4 and they all perform very well for both 2D and 3D objectives. 

The HCPSO gives last generation results as non-dominated solutions.  
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Test 1      Test 2  

 

 

Test 3     Test 4 

 

Test 5      Test 6  
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Test 7        Test 8 

Figure 5.4 Non-dominated solutions found by HCPSO on test functions in Table 5.1 

and 5.2 with Pareto Fronts 

 

Table 5.5 Comparison of Mean and variance values of convergence metric GD and 

diversity metric on six two-objective problems; 

 

 

As can be seen in Table 5.5，HCPSO can perform very well for all six standard 

multi-objective optimisation test functions, which are tested in this chapter, in 

comparison to NSGAII.  

 

For checking the rate of convergence, the convergence history of two algorithms on 

test 2 is given in Figure 5.5. As it can be seen in Figure 5.5, the HCPSO is 
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converging faster (approximately 60%) than NSGAII and this means a significant 

reduction in computing time.  
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Figure 5.5 Comparison of convergence history of HCPSO and NSGAII on two-

objective optimisation problem --- Test 2 in Table 5.1; 

 

5.5 Conclusions 

This chapter presents a new hybrid approach, HCPSO, which is a co-evolutionary 

based Multi-Objective Particle Swarm Optimisation methodology. The theory and 

workflow of algorithm are given together with the parameter selecting principle. The 

proposed algorithm is tested and validated successfully utilising the most widely 

used 2D and 3D test functions. In test functions, HCPSO converges significantly 

faster than NSGAII and provides 3D solutions using PSO comfortably. 

 

This algorithm has two outstanding features for the proposed system. One is the 

sample parameter setting. This feature will help the system to easily control the 

optimisation process. The other is the internal learning ability. The optimisation itself 

has the ability of learning.  
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Chapter 6  

 
 

Real-time Learning in Ship Design 

Environment 

 

6.1 Introduction 

Ship design is a complex and distributed optimisation process. The design conditions 

and the variables often change dynamically within both continuous and discrete 

ranges. A good and effective design support system should be able to observe these 

changes in time and can take actions to adjust accordingly. At the same time, the 

time of optimisation in ship design, which often runs for several weeks, is a critical 

problem for designers. So the design support system should reduce the design 

duration by speeding up the convergence intelligently. The prior experience provides 

a good way to solve both these problems. The support system can guide the direction 

of design and avoid the fault areas in advance via experience. The experience also 

can assist the system to adjust the uncertain variation of ship design environment. 

 

In this chapter, the method, which simulates the human learning process, is 

introduced into ship design practice. Both the theory and application are explained 
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within the context of the ship design process. Reinforcement learning as an important 

machine learning method is introduced here to solve the problem due to its good real 

time learning performance. The Q-learning as an idiographic approach of 

reinforcement learning is employed and embedded in ship design support system to 

realize and improve learning ability of the proposed system. Applications are 

presented in both the box model using manual calculation and the real ship model 

using the developed computer calculation. The advantages and disadvantages of the 

application of Q-learning are also discussed.   

6.2 Aim of Real-time Learning in Ship Design  

Learning in ship design is a new concept. As reviewed in Chapter 2, most of AI 

application in ship design focused on Case Based Reasoning. The machine learning 

merely has few applications and still is limited due to the programming problems. In 

this research, the machine learning will be introduced to the whole ship design 

process. In this chapter, the machine learning will be employed to solve the real time 

learning problem in optimisation support. This chapter is arranged as following: 

(a) Analysis of the characteristics of ship design environment and process; 

(b) The method of learning in ship design practice; 

(c) The theory of reinforcement learning and Q learning with the adjustment for ship 

design; 

(d) The realization of manual calculation for simple case; 

(e) The realization of computer calculation for complex case; 
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6.3 Background and development  

6.3.1 The development of ship design and design 

optimisation 

The design optimisation is a basic and effective tool for decision based ship design. 

In early ship design period, the designers and engineers of different subjects worked 

together to develop an acceptable design for the design requirements and the design 

decision was made by experienced designers, who mainly employed their prior 

experience as their design criterions. They began to use some basic and simple 

optimisation approach to assist design action but it was not the main instrument at 

that time because there was a very simple method with limited objectives. So the 

optimisation is not powerful enough to support the design process.   

 

On one hand, in preliminary design stage, every design condition would vary for 

different reasons, so the initial design may be changed many times for every 

condition changing. Designers had to collect data again and again to deal with this 

situation, which makes the design process very long and wastes a lot of time during 

the design work. On the other hand, because of the uncertainty and limitations of the 

experience, the final design could always not reach at the best level. The problem of 

improving design ability in this period focused on increasing efficiency. 

 

With the wide application of computers in ship design process, more and more work 

is processed by the computer system. In optimisation research area, the optimisation 

technology has a great development and as a result the number of objectives has been 

increased in optimisation process. The optimisation subject has been recently used 

more widely in areas of ship design and also began to provide more support for 

decision making. But in general application, most optimisations still play process 

support as an extrinsic tool, which is independent of ship design process and usually 

is realized by the third party software.  
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The situation that the optimisation was not embedded in ship design support system 

but used as an extra tool which would cause two problems. The first one is that the 

optimisation may not match the requirements of ship design work and it needs 

designers to adjust input values, coefficients and criterions etc, that increases the 

degree of difficulty for ship designer to bring higher professional knowledge into 

optimisation. Because of the complex environment in ship design, it is very hard to 

modify an optimisation approach to adapt to every practical ship design. The other 

problem is the difficulty of selecting an appropriate optimisation approach. There are 

many approaches in the optimisation area but none of them is an ideal approach for 

all the problems. So for the best effect, the support system has to select the most 

appropriate optimisation approach, but every approach needs to adjust different 

parameters for different problems. Therefore how to select a good approach and give 

correct parameters setting become very important.  

 

So the current problem of the optimisation application in ship design support system 

includes two aspects. First aspect is improving the efficiency and the other is 

reducing the time. For increasing the efficiency, two methods are employed in this 

study. One is forecasting the searching direction presented in this chapter and other is 

self-adaptive selecting optimisation approach presented in next chapter. The time is 

very important in ship design support system and too long running time would 

adversely affect the support ability of optimisation. For example, in a MOGA 

application of ship subdivision arrangement case, it may take couple of weeks to 

finish a full run. If design variables changed, the optimisation has to be done all over 

again. In this chapter, the machine learning approach is utilised to make a faster 

convergence speed. 

  

In summary, there are two main problems when the optimisation is applied to the 

ship design support system. First one is the easy control of optimisation performance 

without changing optimisation algorithm itself, and the second one is the time. A 

decision support system is required to reduce the time to an acceptable level. 

Machine learning method can help decision support system on both aspects. 
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6.3.2 The characteristic of ship design optimisation 

When applying machine learning to the ship design optimisation, the characteristics 

of ship design optimisation should be studied for selecting the most appropriate 

approach.  

 

The first characteristic is that most variables in ship design process are discrete rather 

than continuous, which gives an advantage to control the optimisation. For the 

discrete variables, in relatively small area, the number of all choices of the design 

variables is finite. So in this situation, reviewing a fixed percentage optimal and 

known solutions and giving a forecast to the direction of other unknown solutions is 

possible. Discrete variables give a good basement for the application of machine 

learning, which is easier to realize than continuous variables in both theory and 

application.  

 

The second characteristic is that the design environment is complex due to the 

frequent variable changing. Ship design is a systematic process, which includes hull, 

propeller, machinery, electrics, outfitting etc. And they are all fluctuating factors. 

The variation of one factor will result in the changes of other factors, which will 

directly lead to whole system re-optimisation. So the optimisation method should 

have excellent adaptability to the environment, which means that changing factors 

will not result in whole system re-optimisation but self-adjustment. In other word, 

the optimisation method should become aware of the changes of environment and 

can adjust automatically to these changes. 

 

The last characteristic of ship design is the time cost which is the most important 

factor in decision based ship design process. Usually, the fitness evaluation of 

optimisation action in ship design optimisation is performed by another software. For 

example, in subdivision problem, the stability performance is always simulated in 

NAPA. Then the fitness function uses the stability performance simulation results as 

the fitness function to make the optimisation. In the next circulation, NAPA software 

will be called again. In this case, the most time costing process of design 
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optimisation is caused by NAPA. So if the designers want to reduce the running time, 

the research emphasis should be put on reducing the times to call NAPA for each run.  

 

In summary, the learning method should aim at these characteristics and provide an 

appropriate but simple and effective method to realize experience-sharing and give 

correct guidance.  

6.4 Approach adopted in this chapter  

In this method, the ship design process is treated as a repeating decision process. 

This method can not only be employed for a single ship design project but also can 

be utilised in the whole lifecycle design. The method improves the efficiency via 

sustainable development of the whole design process.  

 

In a single run, the ship design optimisation process is divided into three parts 

according to memory theory. Every part makes a simulation of relevant function as 

shown in Figure 6.1. 

 

 

Figure 6. 1 The machine learning based ship optimal design in single run 

 

Sensory memory part, as defined by psychologists as immediate memory, is used 

here to look for new rules in optimisation process. These new rules are established by 
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trial and error. This is very helpful for design, because every time, the design task is 

different and the experience gained in one run maybe not be right for other designs. 

So first of all, the method should analyse the data and distinguish what type of design 

task it belongs to. Then the method should attend to derive more rules from data. 

These rules can be either selected to long-term memory and also may be abandoned 

to be forgotten. 

 

Short-term memory, using the working memory theory, is the most important part in 

this method. This part is managed via a “central executive” centre, which firstly 

checks the new rule in the database to find whether it has already been the formal 

rule. The formal rules here mean the rules from mature knowledge, classification 

society, IMO, etc. The formal rules also include the rules which are found in 

previous designs and have been proven as reasonable and available resource. If the 

new rule is the formal rule, it can be directly used. If not, the central executive will 

continue to check whether the new rule belongs to temple rules. The temple rules 

mean the rules which have been proven correct at least twice. Every temple rule has 

a counter. If the new rule belongs to the temple rules, the counter of this temple rule 

will increase by 1. If not, the method will create a new rule and allot the relative 

counter. The central executive also checks the counter of every temple rule after a 

pointed time. If the counter exceeds the given numbers, the method will transfer the 

temple rules to formal rules. If not, the method will delete it.       

 

Long-term memory, presented by Baddeley (Baddeley 1986), is stored sufficiently 

long duration in order to be accessible over a period anything more than a few 

seconds. In Figure 6.1, the “long-term memory” means that the method will store 

long term relationships discovered by the previous practice. This method can also be 

extended to whole design agency.  

 

Reinforcement learning is one of the most important and classic machine learning 

approaches which solve the problem faced by an agent that must learn the behavior 

through trial-and-error interactions in a dynamic environment. “The work described 

here has a strong family resemblance to eponymous work in psychology, but differs 
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considerably in the details and in the use of the word “reinforcement” (Kaelbling and 

Littman 1996). The reinforcement learning can be handled well with the real time 

learning and is easy to control without too many parameters. So it is introduced here 

for realizing the real time learning in ship design support system. 

6.4.1 Reinforcement learning 

In a classic reinforcement learning model, an agent is connected to the environment 

via the perception and action. In the model shown in Figure 6.2, B is an agent and T 

is the environment. 

 

 

Figure 6. 2 The standard reinforcement learning Model (taken from Kaelbling etc, 

1996) 

 

In the first step, agent B receives an input ‘I’; in the second step, the agent B chooses 

an action ‘a’ to generate an output. This action ‘a’ changes the environment T and in 

third step, the value of this state transition is communicated to the agent B through a 

scalar reinforcement signal, ‘r’. The agent's behavior, B, should choose actions that 

tend to increase the long-run sum of the values of reinforcement signal. It can learn 

to do this over time by systematic trial and error, guided by a wide variety of 

algorithms.  
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In this model, there are two main factors which should be studied when it is applied 

in practice. The first one is what kind of evaluation the environment gives to the 

agent. The evaluation of the environment directly affects the direction of agent action. 

How to define the environment? How to evaluate the input signal and what kind of 

feedback should be given? These are all important questions. The second one is how 

to define reward and punishment. The strength and stability of reward and 

punishment signals are critical factors for the impression of learning method. When 

reinforcement learning is applied to the ship design support system, both of these 

factors must be considered carefully. 

 

The reinforcement learning changes the agent’s action via reward and punishment 

environment by assessing two key points: the environment evaluation and the 

environment reward strategy.  

6.4.2 The Reinforcement learning in ship design decision 

support system 

For the application in ship design decision support system, the function of a learning 

method is not constructing a new algorithm but a general method, which is 

independent of the optimisation algorithm. The function of learning focuses on two 

aspects. The first one is alarm mechanism; the learning method is able to make 

system not to touch or move far away from the forbidden area, for example, 

boundary limitation, etc. The second one is the guidance function; this means the 

learning method should give the direction of good solutions and avoid bad solution 

area as far as possible. Besides these two points, the learning method should also be 

able to solve the multi-agent communication in a simple way and to avoid 

introducing other additional factors.  

 

There are three main reasons for employing the reinforcement learning approach to 

the ship design support system. The first one is the excellent real-time control 

function of reinforcement learning. In the optimisation process, the experience, rules 

and regulations are all fixed. If the designers want to change the performance of 
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optimisation, a message should be given and the reinforcement learning can easily be 

realized. The second reason is the simplicity to operate. The reinforcement learning 

controls the direction of situation via rewards which means the designers can just 

modify the rewards to control the optimisation process. The last one is that the 

reinforcement learning can be independent from other optimisation approaches. The 

designers do not need to change the optimisation itself when applying the 

reinforcement learning. 

 

The structure of environment is considered in the first place. There are three general 

principles. The first one is that the environment should be in modular form. This 

means that the environment should be constructed by different modules and these 

modules should have a uniform structure and can solve different problems via 

various combinations. The second one is that the environment should be simple and 

clear. The environment should use a simple and clear method with the distinct 

practical concept that makes this environment suitable for a decision system. The 

designers should be able to see clearly why the results are achieved. The last one is 

that the information sharing should be open to all the agents and should avoid the 

dialog between single pair agents. Although the communication and negotiation 

mechanism is a hot research area, for this research, the aim of the environment is the 

application in engineering. So the simple communication is more suitable. According 

to above principles, a model is proposed in Figure 6.3.  
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Figure 6. 3 Proposed reinforcement learning model for ship design decision support 

system 

 

In this model, the action agent will give the integrated input information to the 

environment. Then, in the second step the classifier agent group would check this 

information and separate the data into two types: numerical and linguistic. The 

reason of this step is that the operational methods of these two types are totally 

different. Actually, most data are the numerical type. The linguistic type is very 

difficult to deal with. In the third step, two data types are used as input into Function 

Agent Group. In this group, the data would be classified as subjects like Hull, 

Electrical etc. The aim of this step is to provide organized information flow. Because 

the information sharing in this system is open and simple, the data must be in order 

and dimensionless for easy identification. Then the evaluating agent group would 

read corresponding data and provide the functions of reward and punishment. For 

better learning ability, a feedback to improve evaluating agent group is proposed in 

Figure 6.3 as the red line.  

 

As the final step, the information sharing mechanism is considered. The principles 

used here are “open” and “simple”. The principle “open” means that all information 

is open to the members in the system and the “simple” means that the information 

sharing mechanism should be easy to realize and should try not to introduce new 

factors. There are different agent groups and sub agents with different functions just 
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like a society. So the learning among ship design support system becomes a social 

learning. Because the theory of social learning is very complex and immature, for a 

decision support system, a simplified method is more suitable. A public board is set 

here just like a billboard to tell everything to everyone. All agents read the 

information from this public board and also write the results on it, which means that 

there is no communication between any two agents as all information is on the board.  

 

This model has a number of advantages as explained below. Firstly, all the 

information is open to anyone including the agents in the environment and designers, 

who can be seen as external agents. This helps information maintenance and 

modification, which means that all the information exchange can be watched by 

designers and also can be adjusted manually. Secondly, non-communication between 

agents will reduce the complexity of the system. The communication among agents 

of the social learning is very complex. So here, all the information is given to public 

board. The agent just needs to spend time to test the publishing board, which is a 

single direction. It just needs to contact public board rather than contacting other 

agents. Lastly, through the uniform format, the information becomes simple and 

easily recognized.  

 

There are two disadvantages of this model. One is that the public board may turn out 

to be large and complex. The other is the agent would have to “ping” to public board 

which will make traffic problem and block the system. The “ping” here means the 

system send a test signal to test every agent. 
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Figure 6. 4  Public board model of ship design decision support system 

 

Figure 6.4 presents the model of public board. There are three main key aspects in 

this model. The first one is the agent must have a clear output format. For reducing 

the complexity and increasing stability of the system, the agent must be clear about 

to which agent, the output result should be sent to. The second one is that the public 

board design includes three parts: number, context and read mark. The information 

sent by agent firstly checks the number and finds its own location. Then check the 

read mark, if read mark is ‘there is a message which has not been read’, which 

represented by ‘1’, the information will wait until the read mark is clear, which 

represented by ‘0’. After the read mark is clear, the agent can read information to 

update. The third one is that the traffic of the system. Here, the sequence method is 

accepted, which means the system will read the public board one by one in despite of 

the clear read mark. In other words, the agent just read once and then move to the 

next. So the agent would not waste time to test the read state. 

6.4.3 Q learning 

6.4.3.1 Introduction of Q learning 

There are many approaches in reinforcement learning area, but Q-learning, as an 

excellent approach, is selected to realize the real time learning in this study. 
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Q-learning (Watkins 1989), (Watkins and Dayan 1992) is one of the important 

reinforcement learning approaches. It works by learning an action-value function that 

gives the expected utility of taking a given action in a given state and following a 

fixed policy thereafter. An important advantage of Q-learning is that it is able to 

compare the expected utility of the available actions without requiring a model of the 

environment. 

As a form of model-free reinforcement learning, the requirement of Q-learning is 

loose for the environment, but this does not mean Q-learning is applicable for any 

situation (Watkins and Dayan 1992). With the development of Q-learning theory, the 

research in continuous mathematical model has made a progress.  But the discrete 

and finite mathematical environment still is the main topic of application for Q-

learning. So a discrete environment with finite steps changing is a good foundation 

of the Q-learning, which just fits to the characteristic of ship design optimisation 

presented in Section 6.3.2. 

The Q learning method has developed very quickly in recent years and has extensive 

application in engineering, business, management etc. 

6.4.3.2 Analysis of Q learning 

The theory of Q-learning is simple and clear but its mathematical proof is complex 

and involves many disciplines. In order to give a systematic and general 

understanding, a conceptual framework combined with mathematical discussion is 

presented in this section.  

First of all, the method still begins from the concept of reinforcement learning. 

Reinforcement learning as an unsupervised learning method has a difficult point, 

which is the learning system that can not be taught whether the actions it performed 

are good or bad because there are no ‘teachers’. For example, in ship design 

optimisation, the aim of a learning system is to avoid the failure of stability via 

calculating the Index A with Transverse Bulkhead as variables. If the final result is 

failed, how to decide which modification Transverse Bulkheads should be 

responsible for the failure? A method in mathematical field called dynamical 
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programming can solve this problem. The dynamic programming involves just two 

basic principles. “First, if an action causes something bad to happen immediately, 

then the system learns not to do that action in that situation again. The second 

principle is that if all the actions in a certain situation lead to bad results, then that 

situation should be avoided. With these two principles, the reinforcement learning 

also can do any number of tasks”. (Harmon and Harmon 1996) 

The Q-learning is developed from the theory of dynamic programming. The dynamic 

programming itself has the strict mathematical proof. For better understanding Q-

learning, the essence of dynamic programming is taken into account. For the 

dynamic programming, the primary objective of learning is to find the correct 

mapping from states to state values. In other words, the dynamic programming tries 

to find the relationship between the states and the expression values of state.  

Let us assume that: 

*( )tV x is the optimal value function where tx is the state vector; 

( )tV x is the approximation of the value function; 

  is a discount factor in the range [0,1] that causes immediate reinforcement to have 

more importance (weighted more heavily) than future reinforcement; 

( )te x  is the error in the approximation of the value of the state occupied at time t;  

Without loss of generation, ( )tV x  will be initialized to random values without any 

information about *( )tV x . This means ( )tV x  is equal to the sum of *( )tV x  and ( )te x . 

As expressed in Equation (6.1); 

*( ) ( ) ( )t t tV x e x V x  ;            (6.1) 

for time t+1, it is the same as Equation (6.2)  

*
1 1 1( ) ( ) ( )t t tV x e x V x    ;          (6.2) 
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*( )tV x  is the sum of the reinforcements when starting from state tx  and performing 

optimal actions until a terminal state is reached. By this definition, a simple 

relationship exists between the values of successive states tx  and 1tx   as Equation 

(6.3). Here   is used to exponentially decrease the weight of reinforcements 

received in the future. 

*
1*( ) ( ) ( )t t tV x r x V x   ;        (6.3) 

( )tV x  has the same relationship as in Equation (6.4) 

1( ) ( ) ( )t t tV x r x V x   ;       (6.4) 

Then by substituting Equations (6.1) and (6.2) into (6.4), one can get Equations (6.5) 

and (6.6). 

* *
1 1( ) ( ) ( ) ( ( ) ( ))t t t t te x V x r x e x V x      ;      (6.5) 

* *
1 1( ) ( ) ( ) ( ) ( )t t t t te x V x r x e x V x           (6.6) 

Substituting Equation (6.3) into (6.6), one can get Equation (6.7). 

1( ) ( )t te x e x          (6.7) 

From Equation (6.7), if it is true for all tx , then the approximation error in each state 

is required to be zero. So the process of learning is the process of finding a solution 

to Equation (6.4) for all states (which is also to Equation (6.7)).  

Now, if it is assumed that the function approximator used to represent *V is a lookup 

table, then one can find the optimal value function by performing sweeps through 

state space, updating the value of each state according to Equation (6.8). 

1max( ( , ) ( )) ( )t t t t
u

w r x u V x V x     ;     (6.8) 
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in which u is the action performed in state tx  and causes a transition to state 1tx  .  

1( ) max( ( , ) ( )) ( )t t t t
u

e x r x u V x V x               (6.9) 

So the aim of learning is to find ( ) 0te x  . 

For Q-learning, a deterministic Markov Decision Process (MDP) is one in which the 

state transitions are deterministic. In a nondeterministic MDP, a probability 

distribution function defines a set of potential successor states for a given action in a 

given state. If the MDP is non-deterministic, the iteration of value requires that we 

find the action that returns the maximum expected value. Theoretically, value 

iteration is possible in the context of nondeterministic MDP. However, in practice, it 

is computationally impossible to find the necessary integrals without additional 

knowledge or some modification. Q-learning solves the problem by taking the 

maximum value over a set of integrals. Rather than finding a mapping from state to 

state values (as in value iteration), Q-learning finds a mapping from state/action pairs 

to values (called Q-values). Instead of having an associated value function, Q-

learning makes use of the Q-function. In each state, there is a Q-value associated 

with each action. The definition of a Q-value is the sum of the (possibly discounted) 

reinforcements received when performing the associated action and then following 

the given policy thereafter. Likewise, the definition of an optimal Q-value is the sum 

of the reinforcements received when performing the associated action and then 

following the optimal policy thereafter. 

 

Q-learning differs from value iteration in that it doesn’t require that in a given state 

each action be performed and the expected values of the successor states be 

calculated. 

1

1 1( , ) ( , ) max ( , )
t

t t t t t t
u

Q x u r x u Q x u


        (6.10) 

So the learning process is seeking the solutions to Equation (6.10). 
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Considering Q-learning, before learning has started, Q returns a fixed value, chosen 

by the designer. Then, each time the agent is given a reward (the state has changed). 

New values are calculated for each combination of a state s from S, which is 

statement sets, and action a from A, which is action sets. The core of the algorithm is 

a simple value iteration update. It assumes the old value and makes a correction 

based on the new information as shown in Equation (6.11).  

 1( , ) ( , ) max ( , ) ( , )t t t t t t t tQ s a Q s a r Q s a Q s a          (6.11) 

where rt is the reward given at time t,  ( 0 1  ) is the learning rate, may be the 

same value for all pairs. The discount factor γ is 0 1  . Equation (6.11) is 

equivalent to: 

 1( , ) ( , )(1 ) max ( , )t t t t t t tQ s a Q s a r Q s a           (6.12) 

6.4.3.3 The Application of Q learning in Ship Design Optimisation 

The application of Q learning in this research requires two functions. The first 

function is Q learning, which will be used in an independent programming which 

means the Q learning can be applied into any ship design optimisation. The second 

function is that is the Q learning can adopt changes according to environment. The Q 

learning should adjust to the environment and change the reward or punishment. 

Figure 6.5 presents the detailed work flow of proposed Q-learning in ship design 

optimisation. 
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Figure 6. 5 The work flow of Q-learning in ship design optimisation 

6.5 Application in Ship Design Environment 

The ship design optimisation is a dynamic process and this process always has two 

limitations: run time and parameters setting. With regards to run time, an 

optimisation operation usually needs to link with the third party software to make the 

simulation and evaluation. This usually costs large time in calculation and simulation. 

For example, in ship subdivision problem it took a couple of weeks for three 

objectives optimisation in current mainstream configuration of a single processor. 

With regards to parameters setting aspect, the problem focuses on the limiting 

numbers of population and generation. The current approaches utilised in ship design 

optimisation are heuristic method such as GA approaches. For GAs, large population 

and large amount for repeated calculations are two important factors. But in 

application of ship design, these two factors have limits. The main reason of this 

problem is that the evaluation of fitness has to rely on the third software which would 

cost most of the time in current conditions of technology. The large population and 

large generation obviously elongate the running time of optimisation process, and 
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also elongate the time of whole design work. In order to solve these two problems, 

Q-learning is applied here to reduce the time and obtain Pareto front in fewer 

numbers of steps because it can help correct optimisation direction and keep away 

from the low efficiency area.  

 

For some brief propose, a simple barge subdivision optimisation problem is 

employed in this study to evaluate the calculation ability of Q learning. This barge 

ship can be seen as a box model and the whole case study will be divided into two 

parts: On is to check the ability of control single objective which will be proposed in 

6.5.2 and other is to check the ability of control multi-variables which will be 

introduced in 6.5.3. Taking into account the complexity of calculation, the multi-

objective problem will be tested in chapter 9 with real world problem. 

 

The method accepted in this case study is calculation of the real value of total deck 

area. Then some of values are randomly selected as input data. The system will 

calculate predicted value of other deck areas via Q-learning. The predicted value will 

be compared with the real deck area to judge the ability of Q-learning. 

6.5.1 Introduction of optimisation on box model 

Model: A barge model with length 150m, breadth 40m and depth 10m. (Figure 6.6): 

In this model, the locations of Transverse Bulkhead (TB) including TB01, TB02 and 

TB03 can be changed when the locations of Longitudinal Bulkhead (Kaelbling and 

Littman) including LB01, LB02 and LB03 are also variable. The Longitudinal 

Bulkhead LB is fixed. The bilge area between two lines of longitudinal bulkhead 

decides the capacity of barge. When adding the height of barge, the corresponding 

space also represents the capacity. So in this example, the bilge area and space are 

selected as the objectives, which are seeking the maximum and the variables will be 

improved step by step.  
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Figure 6. 6 The barge model for calculation 

 

Variables: Transverse Bulkhead (TB) and Longitudinal Bulkhead (Kaelbling and 

Littman). Constraint: Table 6.1 shows the dimension constraints of this model.  

 

As presented in Figure 6.7, the Longitudinal Bulkheads (Kaelbling and Littman) 

including LB01, LB02 and LB03 have the same boundaries, which vary between 0 m 

and 10 m, but every LB change independently. In Table 6.1, the step of variables is 

given as 5 m, which means the LB just has three choices: 0 m, 5 m and 10 m. As 

shown in Figure 6.7, the Transverse Bulkheads (TB) have different boundaries. 

TB01 has the boundaries from 35 m to 45 m and as given in Table 6.1, while the step 

of TB is 5 m. So the TB01 has three choices: 35 m, 40 m and 45 m. Correspondingly, 

TB02 has three choices: 75 m, 80m and 85m, when TB03 has three choices: 115 m, 

120m and 125m. 

 

 

Figure 6. 7 The barge model constraints 
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Table 6. 1 The barge model constraints 
 

Limits Step Size 
No 

Optimisation 
Variables Lower (m) Upper(m) (m) 

1 TB01 35 45 5 
2 TB02 75 85 5 
3 TB03 115 125 5 
4 LB01 0 10 5 
5 LB02 0 10 5 
6 LB03 0 10 5 

6.5.2 Case study of box model 1: single objective with two 

variables 

Aim of case study of box model 1 

This experiment includes one objective and two optimisation variables. The aim is to 

test the learning ability of Q-learning on single objective optimisation problem.  

 

Optimisation Objective:  

Maximum Deck Area  

 
Optimisation Variables:  

It is assumed that TB02, TB03 is fixed to 80 m, 120m; LB, LB02, LB03 is fixed to 0, 

0 (Figure 6.8), so there are only two variables: TB01 and LB01.  

 

Table 6. 2 The barge model optimisation variables 
 

No Optimisation Variables Value (m) Step (m) 
1 TB01 35-45 5 
2 LB01 0-10 5 
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Figure 6. 8 The barge model of Q learning (single objective with two variables) 
 
The variables and steps are shown in Table 6.2. The variable TB01 is limited from 35 

m to 45m with the step of 5m, which means the TB01 has three choices to change: 

35 m, 40 m and 45 m. For the variable LB01, the changing range is the same, from 

35 m to 45 m and the step still is 5 m. The Figure 6.8 provides the visual aid for the 

variables and steps, the blue dash-dot line is the limitations of variables and red line 

is the central location of the variables.   

  
Set parameters and environment reward matrix R 

maxDS ---Max deck area; 

2
max 150 40 6000DS m    

minDS ---Min deck area; 

2
min 35 40 (80 35) (40 10 2) 40 70 5100  DS m           

standDS ---Stand deck area, this value is defined by designer for the convenience of 

calculation according to maxDS  and minDS . This value is used as the comparison 

standard for deck area calculation to make (deck area)S  non-dimensionalise.  
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For example, in this case, standDS =5000 m2 is selected, which is smaller than the 

minimum value of maxDS  and minDS . 

So reward matrix R can be obtained from S (deck area) stand(deck area) DS S ; 

Parameters 
0.15  ; 
0.95  ; 

 
Calculate the real value of deck area as shown in Table 6.3: 
 

35 40 (80 35) (40 0 2) 40 (150 80) 6000;AIS             

35 40 (80 35) (40 5 2) 40 (150 80) 5550;AIIS             

35 40 (80 35) (40 10 2) 40 (150 80) 5100;AIIIS             

… 
 

Table 6. 3 The deck area of barge model Q learning, single objective with two 
variables 

 
A B C 

Transverse 
Bulkhead01 

Transverse 
Bulkhead01 

Transverse 
Bulkhead01  

35 40 45 
Longitudinal 
Bulkhead01 I 

0 
6000 6000 6000 

Longitudinal 
Bulkhead01 II 

5 
5550 5600 5650 

Longitudinal 
Bulkhead01 III 

10 
5100 5200 5100 

 

The values in Table 6.3 are the real deck area of different bulkhead location 

according to Table 6.2. Now, let us select three Rs randomly and calculate these 

three values of R according to  

1 deck area Dstand Dstand( ) / ;R C S S S          (6.13) 

1C  is the constant and here is 100. The function of 1C  is scaling up the original R for 

the calculation convenience. The aim of Equation 6.13 is to make non-
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dimensionalisition. Too large or too small numerical value may cause the calculation 

error, so non-dimensionalisation is necessary for Q-learning. 

 

The randomly selected values are AI, BII and CIII, so the R values are calculated as 

follows. 

100 (6000 5000) / 5000 20;AIR      

100 (5600 5000) / 5000 12;BIIR      

100 (5100 5000) / 5000 2;CIIIR      

The detailed R value in this calculation is shown in Table 6.4.  

 

Table 6. 4 The R value deck area of barge model Q learning, single objective with 
two variables; 

 
A B C 

Transverse 
Bulkhead01 

Transverse 
Bulkhead01 

Transverse 
Bulkhead01 

  

35 40 45 
Longitudinal 
Bulkhead01 I 

0 
20   

Longitudinal 
Bulkhead01 II 

5 
 12  

Longitudinal 
Bulkhead01 III 

10 
  2 

 

Assuming: 

The optimisation variables have to move one step in order to change in every step. 

For example, the VAII can move to VAI, VAIII and VBII but can not move to VBI or VBII. 

 
So 

20

12

2

R

  
    
   

 and 

0 0 0

0 0 0

0 0 0

Q

 
   
  

 

 
Step1 
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Randomly Select QBII 1
AI BI CI

STEP
AII CII

AII

BII

I BIII CIII

A B C

I Q Q Q
Q

II Q Q

III Q Q Q

Q

 
 
 
 
 
 

 

 
According to the assumption, in this time QBII=0, and next time, 

 can move to ,  ,  , .BII AII BI BIII CIIQ Q Q Q Q  

Obviously, in next time the max =Max( ,  ,  , ) 0.AII BI BIII CIIQ Q Q Q Q    

According to equation (6.12),  

 
 

1 1( , ) ( , )(1 ) max ( , )

( , ) 0 (1 ) 0

             

             0.15 12 1.8

t t t t t t t

BII t t t

t

Q s a Q s a r Q s a

Q s a r

r

  

  


    

     

 

  

 

 

So Q value can be updated to  

1

0 0 0

0 1.8 0

0 0 0
STEPQ

 
   
  

 

 

Step2 

This time, QAII is randomly selected.  2
AI BI CI

STEP
BII CII

AIII BII

II

I

A

I CII

A B C

I Q Q Q
Q

II Q Q

III Q Q Q

Q

 
 
 
 
 
 

 

 
According to the assumption, in this time QAII=0, and next time, 

 can move to ,   and  .AII AI BII AIIIQ Q Q Q  

When checking the 1STEPQ , it can be achieved that max =Max( ,  ,  ) 1.5.AI BII AIIIQ Q Q Q   

According to equation (6.12),  

 
 

 

1 1( , ) ( , )(1 ) max ( , )

( , ) 0 (1 ) 1.8

             1.8

             0.15 [0 0.95 1.8]

             0.2565

t t t t t t t

BII t t t

t

Q s a Q s a r Q s a

Q s a r

r

  

  

 

    

     

  

   

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So Q value is updated to  

2

0 0 0

0.2565 1.8 0

0 0 0
STEPQ

 
   
  

 

 

Then calculation is performed according to equation (6.12) and run can be repeated 

for 1000 times, the results are listed in Table 6.5; 

 
Table 6. 5 The results of value deck area for barge model Q-learning, single 

objective with two variables 

 

(a) 
 

A B C 
Transverse 
Bulkhead01 

Transverse 
Bulkhead01 

Transverse 
Bulkhead01 

 

35 40 45 
Longitudinal 
Bulkhead01 I 

0 
 454 418 

Longitudinal 
Bulkhead01 II 

5 
452  454 

Longitudinal 
Bulkhead01 III 

10 
409 442  
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(b) 
 

A B C 
Transverse 
Bulkhead01 

Transverse 
Bulkhead01 

Transverse 
Bulkhead01 

 

35 40 45 
Longitudinal 
Bulkhead01 I 

0 
 17.27% 15.90% 

Longitudinal 
Bulkhead01 II 

5 
17.19%  17.27% 

Longitudinal 
Bulkhead01 III 

10 
15.56% 16.81%  

 
The Table 6.3 indicates that BI, CI and AII, CII provide bigger deck areas. So the 

aim of this experiment is that the proposed algorithm should indicate the 

optimisation direction to BI, CI, AII and CII. In Table 6.5 (a), the black numbers in 

red area are the values obtained from calculations which are the probability 

calculated by Q-learning. These numbers are not the accurate values of the future in 

this point but are the moving directions of optimisation variables. Because after 1000 

calculations, the values in Table 6.5 (a) are very big. For better understanding, Table 

6.5 (a) is transferred to Table 6.5 (b) as percentage format via being divided by 

amount. Table 6.5 (b) provides the probability of moving to bigger deck area. The 

new points, which are created in optimisation, should spread more in red areas and 

the old points should move to red areas. For example, the CIII point should move to 

CII firstly because the value of CII is bigger than BIII. From Table 6.3, it can be seen 

that the real value of CII is better than BIII. This demonstrates that the Q learning 

algorithm can correctly forecast the direction to the field of the maximum deck area 

 

In order to improve the forecast ability, the ability of changing the Transverse 

Bulkhead and Longitudinal Bulkhead at the same time is considered. The initial 

value and parameters setting are the same as above case including the R values. After 

1000 runs, the results are listed in Table 6.6 
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Table 6. 6 Improvement of the results I for deck area value of barge model;  
Q-learning, single objective with two variables; 

(a) 

A B C 
Transverse 
Bulkhead01 

Transverse 
Bulkhead01 

Transverse 
Bulkhead01 

 

35 40 45 
Longitudinal 
Bulkhead01 I 

0 
 504 516 

Longitudinal 
Bulkhead01 II 

5 
508  518 

Longitudinal 
Bulkhead01 III 

10 
507 502  

 

(b) 

A B C 
Transverse 
Bulkhead01 

Transverse 
Bulkhead01 

Transverse 
Bulkhead01 

 

35 40 45 
Longitudinal 
Bulkhead01 I 

0 
 16.50% 16.89% 

Longitudinal 
Bulkhead01 II 

5 
16.63%  16.96% 

Longitudinal 
Bulkhead01 III 

10 
16.60% 16.43%  

 

The Table 6.6 is the same as Table 6.5 and from Table6.6, it can be clearly seen that 

the proposed system can provide the direction corrects for optimisation as show in 

red areas.  

 

For improving the forecast ability further, the locations of R values in the algorithm 

can be changed as shown in Table 6.7. The results are listed in Table 6.8. 
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Table 6. 7 Improvement of R values for deck area of barge model;  
Q learning, single objective with two variables; 

 

A B C 
Transverse 
Bulkhead01 

Transverse 
Bulkhead01 

Transverse 
Bulkhead01 

 

35 40 45 
Longitudinal 
Bulkhead01 I 

0 
20   

Longitudinal 
Bulkhead01 II 

5 
11   

Longitudinal 
Bulkhead01 III 

10 
  2 

 

In Table 6.8, the red areas moved to BI and CI and this direction is correct 

considering the Table 6.3, which indicates that the big deck area should be BI, CI, 

BII and CII. It is noteworthy that the values in the results are not the prediction of 

exact deck area but the predictive probability of maximum deck area. In running 

process, the reward function gives the predictive probability and makes an 

accumulative calculation. The Q learning is searching the state-action value but not 

state-state value. This means the optimisation which is searching towards the 

predictive areas can obtain revenue maximization. So if the optimisation is operated 

according to this direction, the speed of optimisation will be quickened. This 

demonstrates that the Q learning algorithm (equation (6.12)) can correctly forecast 

the direction of the maximum deck area.  
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Table 6. 8 Improvement of the results II for deck area value for barge model ;Q-
learning, single objective with two variables; 

(a) 

A B C 
Transverse 
Bulkhead01 

Transverse 
Bulkhead01 

Transverse 
Bulkhead01 

 

35 40 45 
Longitudinal 
Bulkhead01 I 

0 
 700 762 

Longitudinal 
Bulkhead01 II 

5 
 210 210 

Longitudinal 
Bulkhead01 III 

10 
375 227  

 

(b) 

A B C 
Transverse 
Bulkhead01 

Transverse 
Bulkhead01 

Transverse 
Bulkhead01 

 

35 40 45 
Longitudinal 
Bulkhead01 I 

0 
 28.18% 30.68% 

Longitudinal 
Bulkhead01 II 

5 
 8.45% 8.45% 

Longitudinal 
Bulkhead01 III 

10 
15.10% 9.14%  

 

6.5.3 Case study of box model 2: single objective with four 

variables 

The experiment in this section still focuses on single objective but will extend to a 

more complex environment. Four variables are employed this time in order to check 

the performance of Q-learning mechanism (equation (6.12)).  
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Figure 6. 9 The deck area of barge model, single objective with four variables; 

 

In this experiment, the Transverse Bulkhead TB03 and Longitudinal Bulkheads 

including LB and LB03 would be fixed. The LB and LB03 are set to zero when 

TB03 is set to 120m. So the Transverse Bulkheads including TB01 and TB02 with 

Longitudinal Bulkheads including LB01 and LB02 can be altered. For better 

understanding, let us set the distance between LB01 and shell as x1 when the 

distance between LB02 and shell is x2. The distance between the TB01 and ship bow 

is set as y1 with the distance between the TB02 and ship bow is set as y2. Because 

location of TB03 is fixed, the distance between the TB03 and ship bow is 120 2y  

as shown in Figure 6.9. 

 

 

Figure 6. 10 The deck area of barge model 

 

So the deck area of whole barge consists of four parts as shown in Figure 6.10.  

1Deck area 1 = 40;y   

2 1 1Deck area 2 = ( ) (40 2 );y y x     
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2 2Deck area 3 = (120 ) (40 2 );y x     

Deck area 4 = (150 (120 2) 40;y    

The problem is  

max 1 2 1 1 2 2

1 2

1

2

40 ( ) (40 2 ) (120 ) (40 2 )

                (150 (120 2) 40);

, {0,5,10}

{35, 40, 45}

{75,80,85}

Area y y y x y x

y

x x

y

y

           
     
 
 

 

 

In Table 6.9, there are 81 designs in this case, which are calculated according to real 

deck areas. The real maximum deck area is represented red as given in Table 6.9. 

The aim of Q-learning is to find maximum deck areas. In other words, the proposed 

system should provide the direction towards to red area for optimisation. 

Correspondingly, 20% random values are given as the initial values. These values are 

used to calculate R values as shown in Table 6.10. The calculation is processed 

according to equation (6.12) with 0.15  and 0.95  . The DstandS  selects the 

average value of all the design value from Table 6.9 and is DstandS =7000. 
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Table 6. 9 The real deck area of barge model, Single objective with four variables 
 

 I II III 

y2 No 
x1 x2 y1 

75 80 85 
1 0 0 35 9000 9200 9400 
2 0 0 40 9000 9200 9400 
3 0 0 45 9000 9200 9400 
4 0 5 35 8550 8800 9050 
5 0 5 40 8550 8800 9050 
6 0 5 45 8550 8800 9050 
7 0 10 35 8100 8400 8700 
8 0 10 40 8100 8400 8700 
9 0 10 45 8100 8400 8700 
10 5 0 35 8600 8750 8900 
11 5 0 40 8650 8800 8950 
12 5 0 45 8700 8850 9000 
13 5 5 35 8150 8350 8550 
14 5 5 40 8200 8400 8600 
15 5 5 45 8250 8450 8650 
16 5 10 35 7700 7950 8200 
17 5 10 40 7750 8000 8250 
18 5 10 45 7800 8050 8300 
19 10 0 35 8200 8300 8400 
20 10 0 40 8300 8400 8500 
21 10 0 45 8400 8500 8600 
22 10 5 35 7750 7900 8050 
23 10 5 40 7850 8000 8150 
24 10 5 45 7950 8100 8250 
25 10 10 35 7300 7500 7700 
26 10 10 40 7400 7600 7800 
27 10 10 45 7500 7700 7900 
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Table 6. 10 The R value of real bilge area of barge model with 20% random training 
sample, Single objective with four variables; 

 
 I II III 

y2 No 
x1 x2 y1 

75 80 85 
1 2 2 35    
2 2 2 40   34.29 
3 2 2 45    
4 2 5 35  25.71  
5 2 5 40 22.14   
6 2 5 45   29.29 
7 2 8 35  20.00  
8 2 8 40    
9 2 8 45    
10 5 2 35    
11 5 2 40 23.57   
12 5 2 45    
13 5 5 35  19.29  
14 5 5 40 17.14   
15 5 5 45   23.57 
16 5 8 35    
17 5 8 40    
18 5 8 45   18.57 
19 8 2 35    
20 8 2 40 18.57   
21 8 2 45    
22 8 5 35  12.86  
23 8 5 40    
24 8 5 45    
25 8 8 35 4.29  10.00 
26 8 8 40    
27 8 8 45  10.00  
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Table 6. 11 The Results I of Deck Area of Barge Model, Single Objective with four 
variables 

 
 I II III 

y2 No 
x1 x2 y1 

75 80 85 
1 2 2 35 64.1 195.1 181.1 
2 2 2 40 88.8 169.3  

3 2 2 45 192.5 185 171.9 
4 2 5 35 152.4  143.3 
5 2 5 40  157 172.8 
6 2 5 45 150.7 191.7  

7 2 8 35 139.3  180.4 
8 2 8 40 156.2 152.3 122.8 
9 2 8 45 61.5 84.3 60.2 
10 5 2 35 70.5 31.8 32.5 
11 5 2 40  36.6 44.3 
12 5 2 45 107.9 76.9 89.4 
13 5 5 35 105.7  92 
14 5 5 40  111.4 135.9 
15 5 5 45 151.9 113.3  

16 5 8 35 57.2 89.6 154 
17 5 8 40 58.6 70.8 92.5 
18 5 8 45 56.2 132.7  

19 8 2 35 80.6 117.3 117.5 
20 8 2 40  79.9 48.4 
21 8 2 45 65 69.7 68 
22 8 5 35 51  47.6 
23 8 5 40 71.8 64.9 61.2 
24 8 5 45 22.5 54 43.6 
25 8 8 35  46.9  

26 8 8 40 47.1 28.2 30 
27 8 8 45 44.5  44.6 

 

As shown in Table 6.11, the proposed method calculate the predictive value for 

optimisation and for better understanding, the Table 6.11 will be transferred to Table 

6.12 with percentage format. 
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Table 6. 12 The Results II of Deck Area of Barge Model, Single Objective with four 
variables 

 
 I II III 

y2 No 
x1 x2 y1 

75 80 85 
1 2 2 35 1.00% 3.05% 2.83% 

2 2 2 40 1.39% 2.65%  

3 2 2 45 3.01% 2.90% 2.69% 

4 2 5 35 2.39%  2.24% 

5 2 5 40  2.46% 2.70% 

6 2 5 45 2.36% 3.00%  

7 2 8 35 2.18%  2.82% 

8 2 8 40 2.44% 2.38% 1.92% 

9 2 8 45 0.96% 1.32% 0.94% 

10 5 2 35 1.10% 0.50% 0.51% 

11 5 2 40  0.57% 0.69% 

12 5 2 45 1.69% 1.20% 1.40% 

13 5 5 35 1.65%  1.44% 

14 5 5 40  1.74% 2.13% 

15 5 5 45 2.38% 1.77%  

16 5 8 35 0.90% 1.40% 2.41% 

17 5 8 40 0.92% 1.11% 1.45% 

18 5 8 45 0.88% 2.08%  

19 8 2 35 1.26% 1.84% 1.84% 

20 8 2 40  1.25% 0.76% 

21 8 2 45 1.02% 1.09% 1.06% 

22 8 5 35 0.80%  0.75% 

23 8 5 40 1.12% 1.02% 0.96% 

24 8 5 45 0.35% 0.85% 0.68% 

25 8 8 35  0.73%  

26 8 8 40 0.737% 0.441% 0.470% 

27 8 8 45 0.697%  0.698% 

 

In Table 6.12, the red area provides the direction of optimisation, which means these 

red areas give the quickest way to arrive the maximum area. Comparing with Table 

6.9, the proposed approach can correctly provide the direction of optimization. So the 

optimisation should go to this direction for fast convergence.  
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In this study the GA developed in JAVA language is deployed to deal with the same 

problem as the one given in section 6.5.3; ‘case study of box model 2: single 

objective with four variables’. Two algorithms were in the same computer 

environment with the same parameter settings. Then every algorithm was run 10 

times. The program searches the solutions until it finds the eight solutions as given in 

Table 6.9 (70%). The average time is calculated to compare the speed of algorithm. 

The GA without Q-learning takes 211 seconds and GA with Q-learning takes 156s 

which means that the GA with Q-learning improve the computation time by 26%.   

6.6 Discussion  

In this chapter, the theory and application of ship real-time learning in optimisation 

process were explained. As a case study, the application of Q learning is 

demonstrated using the barge model. The results indicate that the Q learning can 

improve optimisation and reduce running time. The proposed system is tested and 

validated successfully. The learning model is created from the brain science and 

combined with the ship design practice. Q-learning, as a detailed approach of sensory 

memory part, provides the advantages for realizing the learning function.  

 

The proposed algorithm is structured via a multi-agent system and every agent 

worked remarkably well. It can be concluded that the proposed system has shown 

great potential and can be applied to similar and even more complex optimisation 

problems in ship design as well as to related areas within the maritime industry. 
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Chapter 7  

 
 

Learning Based Decision Making and 

Decision Support System in Ship Design 

 

7.1 Introduction 

The learning based decision making is one of the key parts of this ship design 

decision system proposed in this thesis. After the multi-objective optimisation is 

completed and the Pareto feasible solutions are given, it is critically important to 

know how to identify the most suitable solutions from the optimal solutions. The 

numerical calculations of optimisation provide a series of solutions to the designers 

as a solid support but the support system needs the further analysis to make an 

accurate and scientific decision as the final solution. At this stage of the design, the 

opinions including the linguistic attribute of different specialist will be 

comprehensively considered. So a powerful and intelligent method is required to 

help the designers to make a good decision.      
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A fuzzy multiple attribute decision-making (FMADM) method, which can solve both 

linguistic and numerical attribute, is introduced here to solve the decision making 

problem. The linguistic attribute is one of the most difficult aspects in decision 

making period. In the proposed method, the specialist committee decide the quality 

of design, which totally depends on individual’s knowledge and experience level. 

Then the technology manager, who allocates the weighting, further improves the 

interaction with human. This study proposes a new learning based virtual specialists 

committee which can use prior experience to evaluate the solutions. It also creates 

relevant virtual technology manager, who will allocate the weighting to every 

member of the committee  

 

For better application in ship decision support system, an agent based framework is 

utilised to realize this method in computer environment. The method is rebuilt 

according to module based design principle, which makes the system satisfy the 

change of designer’s requirement and the expansion of the data. A case study on 

subdivision is used to evaluate the method.  

7.2 Problem Definition 

In decision based ship design, decision making is a very important problem for 

whole ship design. Ölçer et al. (Ölçer, Tuzcu et al. 2006) successfully employed a 

fuzzy multiple attribute decision-making (FMADM) method to solve the subdivision 

design of a passenger ship. But this FMADM method has two problems in 

application. The first one is that the realization of this approach in computer 

environment depends on manual controlling and Excel forms, in other words, the 

approach is semi- automatic. This makes the approach unsuitable for complex 

decision making environment under certain conditions. The second one is that the 

specialists and technology manager play the key role in this approach, which makes 

the decision process greatly dependent on the level of human taking part in the 

evaluation process. This approach cannot store the experience of event and relies on 

the personal ability of specialists who should be involved in every run. This reduces 

the robustness of the system, which means that slight difference in weighting will 

probably cause significantly different final decision. 
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The first problem creates complex operations for designers. The designers have to 

make frequent switch between Excel forms and manual calculation. This is difficult 

for the designers without decision making knowledge. At the same time, the ranking 

approach is also difficult to understand for new learners. The second problem is the 

time it takes to reach a decision. If there are not enough specialists, the decision 

making can not be processed. Even if the designers bring enough number of 

specialists together, the evaluation still needs a long time. 

  

This chapter will focus on solving these two problems via machine learning 

approaches. The new multi-agent frame is employed to realize the FMADM 

approach, which makes this approach more convenient for embedded system. What 

is more, the multi-agent system makes the approach more modular and user can 

freely replace any parts of the approach, for example, original approach use TOPSIS 

approach for ranking, and user can choose the other more efficient new ranking 

approaches. This can be realized by just replacing the ranking module without 

changing the other modules.  

 

For the second problem, the virtual specialist committee and technology manager are 

created to avoid the absence of human being. The original method needs the 

specialist committee to give an evaluation. But in normal situation, this requirement 

is difficult to implement in a short time and also the evaluation would take a long 

time. What is more important is the specialist committee does not have inheritance, 

which means if there are not enough people to make the specialist committee, the 

method cannot be processed. Due to the lack of prior information to share for similar 

past problems, the prior experience can not be used for next time. If the prior 

experience can be utilized, the system can give a predictable expert simulation. 

Therefore building a machine learning based virtual specialist committee is a good 

improvement for the stability and robustness of this FMADM method. 

 

The virtual specialists committee can give an evaluation based on prior examples to 

replace the human specialists. In the beginning, the human specialists are convened 
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to evaluate the samples. The system saves these evaluations and makes an analysis 

via Support Vector Machine (SVM) learning approach. After finding the 

relationships between the data and evaluations, the system can automatically judge 

the situation with the new cases and give the correct evaluation. So, the decision 

making method does not need human specialists during the run and can give 

evaluation once the nearest experience is found in the software.   

 

In summary, there are two contributions in this chapter: one is the new Multi-agent 

based FMADM (MFMADM) method for decision making, which combines the 

multi-agent theory and FMADM. The second is the new Learning based MFMADM 

(LMFMADM). LMFMADM add the learning function to MFMADM.  

 

For rebuilding of multi-agent framework, the most important thing is to make clear 

the functions and context of every agent. This requires transferring the original 

algorithm to independent agent, which can deal with the sub-jobs successfully and 

also can collaborate together to solve the whole problem. The other important thing 

is how to define the communication and conflict resolution in the application.  

 

For learning based virtual specialists and technology manager, the research focuses 

on the selection of an appropriate method to give precise forecast result. Because the 

behaviours of specialists and technology manager greatly affect the final decision, 

the learning method in this part should be more accurate.   
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Figure 7. 1 The structure of chapter 7 

 

This chapter is organized according to Figure 7.1. The traditional FMADM is the 

foundation of new developed multi-agent based FMADM, which contains two parts. 

The first one is multi-agent based FMADM. This new developed FMADM makes 

two main contributions. One is that the new method transfers operation from 

traditional semi-automatic to new automatic programme. One of the advantages of 

this modification is that the automatic programme provides great convenience for 

integrated decision support system. Another contribution is that the modularisation 

will bring fast updating of technology.  

 

The second innovation part is the virtual committee, which again contains two sub-

section. One is specialist committee, which will evaluate the results from 

optimisation part. Another is the technology manager, which is responsible for 

weighting distribution. In this part, a new learning approach — SVM will be 

introduced and used to build this committee.  

 

The objectives of rebuilding of multi-agent framework are as follows: 

1. Redefine the agent based workflow; 
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2. Define the agents and build the multi-agent system; 

3. Introduce the Support Vector Machine (SVM) in this system; 

4. Build the virtual specialist and technology manager;  

5. The training run of virtual specialist and technology manager;  

7.3 Learning and Multi-agent based FMADM 

(LMFMADM) 

The fuzzy multiple attribute decision-making (FMADM) method is proposed by 

Olcer and Odabasi (Ölçer 2001). It is suitable for multiple attributive group decision 

making (GDM) problems in fuzzy environment, and has been employed to deal with 

some ship design decision problems (Ölçer, Tuzcu et al. 2005), (Ölçer 2008). In this 

section, an agent based frame in computer environment is taken into account, which 

can greatly improve the calculation efficiency compared to the original Excel based 

partial auto-calculation.    

 

The contributions of new learning based FMADM concludes two parts. The first one 

is the revision of FMADM from Excel based partial auto-calculation to multi-agent 

based auto-calculation. This contribution improves the feasibility of the algorithm. 

The second one is to add the learning ability to FMADM. The learning ability solves 

the problem of lacking of experts and improves robustness of the algorithm.  

7.3.1 Basic FMADM method  

Olcer and Odabasi (Ölçer 2001) reviewed and analyzed the most of the known 

FMADM methods according to their group decision-making ability. Based on this 

research, they provide a new FMADM approach that can be utilised in ship design, 

for example, propulsion/manoeuvring system selection or subdivision optimisation.  
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Figure 7. 2 a the work flow of FMADM used in this study 

(This graph is taken from Olcer etc. 2001) 

 

The authors have given the work flow as shown in Figure 7.2 a. In order to develop 

learning based FMADM, multi-agent system has to be modified as the basic step. A 

multi-agent based work flow is developed to make a clear understanding of whole 

rebuilding process of this approach as shown in Figure 7.2 b.  

 

7.3.2 New LMFMADM method  
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Interface Agent

Rating Agent

Aggregation 
Agent
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Figure 7.2 b Work flow of new MFMADM 

 

In Figure 7.2 b, there are seven software agents and two human agents. A standard 

agent architecture, as shown in Figure 7.3, which was employed in previous work 

(Turkmen 2005), is also utilised here to construct the agent.  

 

 

Figure 7. 3 the proposed intelligent agent architecture and conflict resolution 

(taken from the thesis of Turkmen 2005) 
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In the intelligent agent architecture of Figure 7.3, the agent is divided into different 

layers and for some layers, there are sub-layers. This study follows the organization 

of Figure 7.3 and improves the sub-layer structure. The new agents are also created 

according to proposed decision making method. The detailed functions and 

operations of every agent are developed and realized in the system.  

 

In following, every agent and its layers are explained. 

 

Interface Agent: The function of this agent is to transfer the Pareto-optimal designs, 

obtained from the optimisation part, to an available format of this decision making 

process. This agent is the simplest agent in this approach and the aim is to read data, 

classify and calculate the number of attributes.  

 

Communication Layer: This is the main part of this agent. The agent will receive a 

signal from the optimisation module and open the ‘door’ for the data transfer. 

 

Negotiation/Collaboration Layer: Because this is a simple agent, there is only one 

module, acquaintance module, being active. This acquaintance module lists all of the 

agents and stores the data for different agents. 

 

Task Layer: The task layer of this agent has two functions. One is the input function 

and other is the counter function. The input function reads the data and corrects the 

format. Then it will store the data according to the usage of every agent like a 

classification system with database. The counter function is responsible for 

calculating the attributes to construct the matrix of following agents.  

 

Rating Agent: The aim of this agent is to integrate fuzzy data into standardised 

positive trapezoidal fuzzy numbers and establish the decision matrix.  

 

Communication Layer: The communication layer is to connect one software agent 

with one human agent. The software agent is interface agent, which gives the 
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initialized data including optimisation solutions to this agent. The human agent is 

specialist committee agent, which will evaluate of optimisation solutions.  

 

Negotiation/Collaboration Layer: This layer contains several sub-layers. The first 

sub-layer is acquaintance module sub-layer. There are two parts in this sub-layer. 

The first one is the list of agents, which is necessary for controlling the actions of 

every agent in the multi-agent system. The other one is the agent services, which also 

includes two parts: the agents which act on this agent and the agents which this agent 

will act on. The second sub-layer is conflict resolution module sub-layer. This sub-

layer uses the rules to check the validity of the solutions coming from the task layer. 

The last sub-layer is optimisation module and learning module. In original algorithm, 

there is no application of these two modules. But following the rebuilding with 

learning ability, they will be used. So here the structure is kept some as before but 

not the context.  

 

Task Layer: The task layer of this part will not employ third party software but to 

make its own coding via Java language. One of the difficult points is the 

conversation of fuzzy data. Normally, the decision matrix will contain large amount 

of fuzzy data because that the linguistic terms are more easy to express the opinions 

of specialists. For example poor and good make sense, but {0 1}, {4 5} give no idea 

both to the specialist and to the system. The similar Linguistic terms and their 

corresponding fuzzy numbers and membership functions are used as in Olcer et al. 

(Olcer et al. 2005) as shown in Figure 7.4. All the linguistic terms will be transferred 

to numbers. The output of this agent is a numerical matrix. 
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Figure 7. 4 Linguistic terms and their corresponding fuzzy numbers and membership 

functions (This graph is taken from Olcer etc. 2005) 

 

Aggregation Agent: The aim of this agent is to combine the opinion of single or 

multidiscipline specialist to form a group consensus opinion. There is close linkage 

between this agent and technology manager.  

 

Communication Layer: This communication layer is also used to connect one agent 

and one human interface. The agent is the rating agent and the human interface is 

technology manager, who allocates the weightings of specialists.  

 

Negotiation/Collaboration Layer: This layer contains two sub-layers. Firstly, the 

acquaintance module sub-layer contains the list of other agents and information on 

the needs of these agents. The second one is the conflict resolution module to check 

the validity of task layer.  

 

Task Layer: The task layer of this agent will employ other two agents, the 

homogeneous agent and the heterogeneous agent. So it just contains the code to call 

other agents and there is no calculation part.  
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Heterogeneous/Homogeneous Agent: the aim of this agent is to give the result of 

the fuzzy opinions. It needs to measure the degree of similarity between trapezoidal 

fuzzy numbers. 

 

Communication Layer: This communication layer connects only to: Aggregation 

Agent. It will read data from Aggregation Agent and the results will be given to the 

Aggregation Agent. So this agent just talks with Aggregation Agent.  

 

Negotiation/Collaboration Layer: This layer is similar with the Aggregation Agent. 

 

Task Layer: The task layer of this agent uses JAVA language for coding. It will not 

employ other third party software. 

 

Selection Agent: the aim of this agent is to select the best solutions according to the 

suggestions of specialists. It will employ a ranking approach to give the rank of 

suggestions.  

 

Communication Layer: The communication layer connects to three agents, which are 

Aggregation Agent, TOPSIS approach agent and technology manager. This agent 

reads the matrix from the aggregation agent then will input the weightings from the 

technology manager while employing the TOPSIS approach agent to rank.  

 

Task Layer: The task layer of this agent selects the final solution according to the 

specialist’s option. So it needs to analyses the suggestions from specialists and the 

ranking results from TOPSIS agent.   

 

TOPSIS Agent: This agent is a special approach agent. Here it does not employ the 

normal structure but uses the work pattern. This means this agent does not employ 

other agents and can not be interfered by other agents. It is jut a pure work agent.  

 

Technology manager and Specialist Committee are the external human interfaces. 

They are responsible for evaluating the optimisation results. 
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It can be seen that in this approach, the technology managers and specialists are very 

important to engineering application. Every time, designers have to organize a 

committee and manager to discuss the optimisation solutions. But organizing a high 

level committee is not easy. The final decision is decided by the knowledge level of 

committee and manager. In order to improve the robustness of decision, a viral 

experience based committee and manager are proposed and SMV method is 

employed in order to realize this idea. 

 

There are three main advantages of the rebuilding. The first point is the rebuilding 

change from manual/semi-automatic to automatic. The automatic improves the 

efficiency of this method and also transfers it to a good decision making tool for 

practical engineering application. The designers can directly use this method without 

the special knowledge and the method would give the selections and reasons. 

 

The second advantage is that module based rebuilding makes the update easier. For 

example, the original method introduced one ranking approach---TOPSIS. With the 

development of ranking theory and application, the new and more powerful ranking 

approaches continue to come out. If the designers want to update a new ranking 

approach, they just need to replace the old ranking agent. It is easy to realize without 

changing other agents. 

 

The last advantage is that the rebuilding adds the convenience for improving original 

method. In the following part, an experience based learning approach will be 

integrated in FMADM to improve the ability of absence specialists. In original 

method, the system has to make a linking to every part. After rebuilding, the system 

just needs to add a new agent with standard input and output.       

7.4 The machine learning method used in this 

chapter 

There are several machine learning approaches proposed in previous chapters but a 

new one will be introduced here to assist the system to realize the learning function 
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specific for the problems addressed in this chapter. This chapter requires the learning 

method which can make an accurate prediction according to small sample. At the 

same time, the learning method should have the excellent ability to control the 

complex learning environment while providing a clear explanation to the users. The 

Support Vector Machine (SVM) as a powerful machine learning approach is selected 

here to deal with above learning problem during decision making stage.  

 

“The Support Vector Machine (SVM) is a supervised learning method that generates 

input-output mapping functions from a set of labelled training data. The mapping 

function can be either a classification function, i.e., the category of the input data, or 

a regression function”, (Wang 2005). Generally, the ‘machine’ in SVM is not a real 

machine. In machine learning, an algorithm is always called machine, so SVM 

continues using this custom and ‘machine’ here means algorithm. The word ‘support 

vector’ comes from the training samples in SVM which are expressed via vectors and 

SVM strongly focuses on the vectors at the edges which support the seeking of hyper 

plane. Usually, a support vector machine is constructed by a hyper-plane or set of 

hyper-planes in a high or infinite dimensional space. The hyper-plane, which has the 

largest distance to the nearest training data points of any class, can make a good 

separation to data. In this section, firstly, the basic concept of SVM including the 

extension statistical learning definition will be introduced. The extension statistical 

learning definition consists Empirical Risk Minimization principle (ERM), Structure 

Risk Minimisation (SRM). Then, on above foundation, a general application for 

building virtual committee is introduced. Finally, combined with practical 

applications, the virtual committee including specialists and technology manager is 

built.  

7.4. 1 The theory of Support Vector Machine (SVM)  

The learning function at this stage has several critical properties which can greatly 

affect the selection of the learning method. Firstly, the decision making process must 

be controlled strictly by decision maker. This means that the supervised learning is 

more appropriate and a friendly human-computer interaction system is needed. 
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Secondly, the training set is very small and the continuing development of training 

set is also limited. At this stage, the specialists in real world give the professional 

evaluation to every design. The numbers of specialists are limited and the cases, 

which are evaluated, are also limited and have recalling the specialists is very 

difficult. So the learning method should have good ability to operate the small 

training set at this stage. The third one is the precision. This part needs the learning 

method to give the accurate prediction. The precision requirement of this part is 

significantly higher than the methods presented in previous chapters because the 

slight variation will cause great difference in the final results. The last one is the 

explicitness. This is also a basic principle for the whole support system. For this 

point, especially for small samples, in order to insure the precision of the results, a 

learning method with solid mathematical foundation is needed.  

 

The support vector machine is a kind of novel machine learning method to solve the 

nonlinear and multi dimensional problem with small sample sets. The main ideas are 

developed in 1990s, and it has the firm foundation of mathematical theory.  

 

First of all, a brief explanation of the task of machine learning will be given here to 

clear the aim of employing the support vector machine. Without the 

loss of generality, let x be an input of one system and y be the output of this system. 

Normally, it can be considered that there is a certain function which can express the 

relationship between x and y. So the task of machine learning is to seek an optimum 

function to represent this relationship as far as possible according to training sets 

{ 1 1 2 2( , ), ( , ),..., ( , )n nx y x y x y }, which means that the estimation error of this function is 

minimum. In other words, ultimately the expected risk function (Equation (7.1)) 

should be minimized. (Vapnik 1995)  

 

[ ] ( , ( )) ( , )
X Y

R f L y f x P x y dxdy


                                   (7.1) 

 

In equation (7.1), ( , )P x y is the joint probability distribution function which 

represents the relationship between x and y. ( , ( ))L y f x is the loss or discrepancy 

between the response y of the supervisor to a given input x and the response ( , )f x  . 
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But the expected risk function cannot be calculated by depending only on the training 

set, which is usually small sample data. So in statistical learning theory, the 

Empirical Risk Minimization principle (ERM) is accepted. 

 

e
1

1
R [ ] ( , ( ))

l
i i

mp
i

f L y f x
l 

                                       (7.2) 

 

The task of machine learning is transferred to design an algorithm to minimize 

Equation (7.2). It is noteworthy that the ERM is not strictly proven in mathematics, 

but it is intuitive and has a leading position in machine learning for a long time. 

Obviously, this method has theoretical defect and a classic example is ANN 

(Artificial Neural Network). For ANN, the training error can be very small in 

training sets but the results may be bad when this ANN is applied to new cases, 

which is called over learning in the machine learning area. The reason of this 

situation is that the ANN can remember every training set but can not improve to 

give a good prediction for new inputs, in other words, the system tries to find a 

complex model via limited samples and the model, which was developed by the 

system, has the excellent adaptability for training sets but poor generalization for 

new cases. So a theory which can make learning from small samples is fully 

necessary. 

 

Before discussing the new algorithms, some definitions should be explained for a 

better understanding. The first concept is VC (Vapnik–Chervonenkis) dimension. 

The VC dimension is a scalar value that measures the capacity of a set of functions. 

The VC dimension of a set of functions is p, if and only if there exists a set of points 

{ }i px  such that these points can be separated in all 2p possible configurations, and 

that no set { }i qx  exists where q > p satisfying this property (Steve R. Gunn). The VC 

dimension reflects the capacity of learning ability, and larger VC dimension means 

the learning is more complex.  
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The second concept is “Bounds on the Generalization Ability of Learning 

Machine”. This concept is complex and here simply the result of the concept is 

introduced: 

The following bound in Equation (7.3) holds with probability1  , 

 

e

2
ln( 1) ln( )

4[ ] R [ ]mp

n
h

hR f f
n


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 
                               (7.3) 

 

 R f  is the actual risk, n is the number of training sets and h is VC dimension. The 

actual risk which is related to VC dimension and the number of training sets, is 

divided into two parts: the empirical risk and confidence interval. So the machine 

learning should make minimization both on the empirical risk and confidence 

interval, which means the VC dimension, should be as small as possible to minimize 

the actual risk in order to obtain good generalization ability in the future. 

 

The third concept is Structural Risk Minimisation (SRM), which aims to minimize 

both the empirical risk and the confidence interval.   

 

e
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ln( 1) ln( )

4min R [ ]mp
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h

hf
n


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
                                  (7.4) 

 

Here, the VC dimension is made as a controlling variable. For better understanding, 

the set S (of function ( , ),Q z    ), which is structured via nested subsets of 

functions, is given. { ( , ), }k kS Q z    : 

1 2... ...,nS S S   

where the elements of the structure satisfy the following two properties: 

(i) The VC dimension kh of each set kS  of the function is finite 

(ii) Any element kS  of the structure contains either 

A set of totally bounded functions 



 144

0 ( , ) , ,kQ z B     

or a set of functions satisfying the inequality 

 

1

( ( , ) ( ))
sup , 2,

( , ) ( )k

p

k

Qp z dF z
p

Qp z dF z





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
                                (7.5) 

 

For a pair ( , )kp  , p has defined in VC dimension concept and k  is a real number. 

For a given set of observation 1,..., lz z , the SRM principle chooses the function 

( , )k
lQ z   minimizing the empirical risk in the subset kS  for which the guaranteed 

risk, which is determined by the empirical risk and the confidence interval, is 

minimal.  

 

Then, come to the support vector machine. The support vector machine designs the 

set S to make every subset obtain the minimal empirical risk and selects the 

appropriate subset whose confidence interval is minimal. 

 

In the following parts of this section, the support vector machine is introduced briefly. 

The detailed theory and mathematical proof are given by Vapnik (Vapnik 1998).   

 

Without loss of generality, consider the situation that there are two types of samples 

which need to be classified as shown in Figure 7.5.  
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Figure 7. 5 Two sample Sets need to be classified 
 

There are many possible linear planes (X1, X2,…,Xn) that can separate the data as 

shown in Figure 7.5 (a). In order to find the hyper plane, the first step is to define the 

distance between two samples and the nearest data point of other class sets as margin, 

for example, the distance between H1 and H2. Then the optimal separating hyper 

plane (H) is defined as the linear classifier which maximizes the margin.  

 

Consider the problem of separating the set of training vectors belonging to two 

separate classes as Equation (7.6): 

 

1 1{( , ),...., ( , )};

, { 1,1}

l l

n

D x y x y

x R y



  
     (7.6) 

 

In Equation (7.6), D is the set which represents the whole space. The x is the location 

of point and y represent the class of the point.   

 

A separating hyper plane in canonical form must satisfy Equation (7.7). 

 

 [ , ] 1, 1,..., .i iy w x b i l        (7.7) 

 

This constraint is that the norm of the weight vector should be equal to the inverse of 

the distance of the nearest point in the data set to the hyper plane. 

 

X1

1

X2 
Xn
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It can be proven that the hyper plane that optimally separates the data is the one that 

minimizes the distance between the edges of different samples. (as shown in 

Equation (7.8)): 

 

21 1
( ) , .

2 2
w w w w        (7.8) 

 

So the classifier, which minimizes Equation (7.8), is the hyper plane. In Figure 7.5, 

this classifier is H. The sample sets on H1 and H2 are called support vector, which is 

the reason of support vector machine (The ‘machine’ in machine learning sometimes 

means the algorithm). 

 

Through Lagrange method, Equation (7.8) can be transferred to  

 

1 1 1

1
( ) , ,

2

n n n

i j i j i j
i i j

Q y y x x   
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        (7.9) 

 

Equation (7.10) is obtained by solving Equation (7.9), 

 

*( ) sgn( , );f x w x b       (7.10) 

*
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w y x
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   * *1
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2 r sb w x x    

 

Form Equation (7.8), (7.9) and (7.10), it can be seen that SVM is concerned with 

inner product. An inner product in feature space has an equivalent kernel (Equation 

(7.11)) in input space, 

 

( , ') ( ), ( ')K x x x x       (7.11) 

 

Therefore, if a suitable kernel function, which is corresponding to an inner product in 

a transformed space can be utilised, then the SVM can be transferred to the function 

based on this kernel function. In SVM, using kernel function can realize the mapping 
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from low dimension space to high dimension space without adding calculation 

complexity. In other word, the kernel function can help SVM to realize to transfer 

nonlinear classification to linear classification without adding calculation complexity.  

 

There are several types of kernel functions and three of them are studied broadly. A 

polynomial mapping is a popular method for non-linear modelling as Equation (7.12), 

   

( , ') ( , ' 1) .dK x x x x       (7.12) 

 

Gaussian Radial Basis Function is Equation (7.13). Radial basis functions have 

received significant attention, most commonly in a Gaussian form. 

 

2

2

'
( , ') exp( )

2

x x
K x x




       (7.13) 

 
When the SVM is applied in practice, the user can select the appreciate kernel 

function for the problem. In this system, these three methods namely Lagrange 

method (Equations (7.10)), Polynomial mapping method (Equations (7.12)) and 

Gaussian radial basis function (Equations (7.13)) are employed for comparing the 

utility of different kernel functions.  

 

In this section, the concepts of SVM and static learning including VC dimension, 

ERM, SRM are introduced together with the theory of SVM. This section also 

presents the kernel function and the reason to employ in SVM. 

7.4.2 The general method of SVM application in FMADM  

In section 7.4.1, the concepts and theory of SVM has been explained. In this section, 

the detailed application procedures will be presented to solve the practical problem. 

Taking into account the complexity of practical problem in ship design, the 

procedures are introduced from linear to nonlinear step by step.  
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7.4.2.1 The linear method in SVM for application 

The first approach is the linear method. Although the nonlinear classification has 

become popular research field, the linear programming still have great advantage due 

to the simplicity of algorithm and easy parameter setting. When a new problem is 

coming, the linear classification should be preferred as the first choice.     

 

The linear method defined here means that if a linear function can correctly classify 

the sample space, this sample space is named as linearly separable and the method to 

find the linear function is named as linear method. If not, the sample space is 

nonlinearly separable and the method is nonlinear method.  

 

Assume the linear function has the form as shown in Equation (7.14):  

 

( ) ( ) ;g x w x b          (7.14) 

 

If Equation (7.14) is used as a decision function, a threshold should be defined to 

distinguish different categories. For example, if the threshold is defined as 0, the 

samples, which are less than 0, belong to category 1 and others belong to category 2. 

Then if g in Equation (7.15) is less than 0, the sample is classified as category 1 and 

if not, the sample is classified as category 2. In mathematics the above process equals 

to appointing a sign function to Equation (7.15).  

 

So the decision function is: 

 

sgn( ) sgn(( ) )y g w x b          (7.15) 

w and b are vectors.  

 

It is noteworthy to highlight if Equation (7.15) does not have to be limited to two 

dimensions. For n dimension problem, the w and b are n dimension vectors. So in 

linear method, Equation (7.15) is the hyper plane to classify the data. The aim of 
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linear method is to find solutions of w andb . The whole process can be described as 

stylization procedure (a) (Deng and Tian 2004).  

 

Stylization procedure (a): 

Step 1 Assuming that the sample is 

1 1 i{( , ),..., ( , )} ( ) ,   x X= , {1, 1}, 1,..., ;   l n
l l iT x y x y X Y y Y i l       ¡  

 

Step 2 Construct and solve (7.16) 

2

i

1
min   ( ) ,                                    (a)

2
. .    y (( ) ) 1,   1,..., ,                 (b)i

w w

s t w x b i l

 
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    (7.16) 

and obtain the solution *  and *.w b  

 

Step 3 Construct hyper plane ( ) 0;w x b    , and obtain decision function: 

*( ) sgn(( ) )f x w x b    

7.4.2.2 The nonlinear method in SVM for application 

In above procedure, the samples must be linearly separable, but in most of the time, 

the samples may be only nonlinearly separable. So this procedure should be 

extended to nonlinear cases. At the same time, above classification problem has only 

two categories. In the practical ship design problem, the classification problem 

usually is multi-category, which means the categories are often more than two, for 

example, in Appendix A, the cargo capacity has four categories including normal, 

good, very good and excellent. So this procedure also should be extended to more 

general situation based on the number of categories.  

 

Firstly, the procedure will be extended to nonlinear situation and then in order to 

have better understanding of what nonlinearity is, a two dimensional example is 

given.  
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                    (a)                                           (b) 

Figure 7. 6 Two dimensions example of nonlinear classification 
 

In Figure 7.6 (a), two kinds of data can be classified by a line, but in the situation of 

Figure 7.6 (b), the data can not be classified by a line. The sample space in Figure 7.6 

(a) is linearly separable space while the sample space in Figure 7.6 (b) is nonlinearly 

separable space.  

 

For nonlinearly separable space, an important method to solve classification problem 

is to find an effective transformation from nonlinear to linear. In Figure 7.6 (b), an 

ellipse can be used to separate the data. So if the line can be transferred to ellipse or 

other forms, the nonlinear problem can be solved.  

 

In order to take into account the procedure of above linear example which is 

spontaneously formed, a stylization procedure is necessary for better understanding 

the difference between the linear and nonlinear. The above linear classification of 

SVM can be seen as a minimum solution of Equation (7.16):  

 

Actually, Equation (7.16) consists of Equations (7.7) and (7.8). It is the original form 

of SVM definition.   

 

Equation (7.16) can be expressed differently as given in Equation (7.17) which 

provides easier mathematical expression that can be solved. This new expression is 

required due to the difficulty in linear programming. In linear programming, the first 
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problem and the second problem are complementary, which means that a solution to 

either one determines a solution for the both. 
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Compared with Equation (7.16) and (7.17), *  and *w b  are replaced by  . So the 

calculation of   replaces the previous calculations for solving equations about 

*  and *w b . What is more, the constraint conditions become simpler. Obviously, the 

Equation (7.17) is similar to Equation (7.9), which actually introduced the Lagrange 

Function (Equation 7.18): 

 

( ) ( );L f x c x         (7.18) 

 

( ) and ( )f x c x  in Equation (7.16) is Equation (7.19), 
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So  
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where 1( ,..., ) .T l
l R      

In optimisation field, the minimum of Equation (7.20) can be transferred to solve 

Equation (7.21).  
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So, Equation (7.22) and (7.23) can be obtained as: 
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Introduce Equation (7.22) and (7.23) into Equation (7.20).  
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    

1 1 1
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( 0 )

               

l l l

i i j j j i i
i j i

l l l

i i j j j i i
i j i

y y x x b

y y x x

  

  

  

  

   

   

  

 

             (7.24) 

Now, come to Equation (7.18). According to Equation (7.19), ( ) 0c x   and 

1( ,..., ) .T l
l R       

So ( ) 0.c x    

Assume that  

max max( ( ) ( )).
R R

L f x ac x
   

   

When ( ) 0,c x   L will obtain the maximum. In this time, 

max max( ( ) 0 ) ( ).
R R

L f x f x
 


  

     

So min ( )f x  can be transferred to min max L . 

min ( ) min(max );
x x R

f x L
     

  

Therefore, introduced Equation (7.24) into Equation (7.19), Equation (7.25) can be 

obtained.  

1 1 1

max max( ).
l l l

i i j j j i i
R R i j i

L y y x x
 

  
     

      
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1 1 1

1 1 1

min max min max( )

                 = min min( )

l l l

i i j j j i i
x xR R i j i

l l l

i i j j j i i
x R i j i

L y y x x

y y x x

  

 

  

  

 



     

    

   

 

 

 
   (7.25) 

 

So the second problem can be constructed as Equation (7.26).  

1 1 1

1

i

1
min   ( ) ,

2

. .     0,

          0, 1,..., ,

l l l

i j i j i j j
i j j

l

i i
i

y y x x

s t y

i l


  





  



 



 

 

      (7.26) 

 

So a new stylization procedure to linear problem, which is solving the second 

problem of stylization procedure (b), can be shown as follows. (Deng and Tian 2004)  

 

Stylization procedure (b): 

(1) Assume that the sample is 

1 1 i{( , ),..., ( , )} ( ) ,   x X , {1, 1}, 1,..., ;   l n
l l iT x y x y X Y R y Y i l          

 

(2) Construct and solve (7.26) 

1 1 1

1

i

1
min   ( ) ,

2

. .     0,

          0, 1,..., ,

l l l

i j i j i j j
i j j

l

i i
i

y y x x

s t y

i l


  





  



 



 

 

  

and obtain the solution 1( ,..., ) .T
l      

 

(3) Calculate 
1

;
l

i i i
i

w y x 



  and select positive component j  of  and calculate 

the 
1

( );
l

j i i i j
i

b y y x x 



    
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(4) Construct hyper plane ( ) 0;w x b     and obtain decision function:  

* *

1

( ) sgn(( ) ),   or   ( ) sgn( ( ) ),  
l

i i i
i

f x w x b f x y x x b 



       

 

Correspondingly, a stylization procedure for nonlinearly separable problem can be 

shown as follows (Deng and Tian 2004). 

 

Stylization procedure (c): 

 

(1) Assume that the sample is 

1 1 i{( , ),..., ( , )} ( ) ,   x X , {1, 1}, 1,..., ;   l n
l l iT x y x y X Y R y Y i l          

 

(2) Select penalty parameter C, then construct and solve (7.27) 

1 1 1

1

i

1
min   ( ) ,

2

. .     0,

          0 , 1,..., ,

l l l

i j i j i j j
i j j

l

i i
i

y y x x

s t y

C i l
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  





  



 



  

 

                                  (7.27) 

and obtain the solution 1( ,..., ) .T
l      

 

(3) Calculate 
1

;
l

i i i
i

w y x 



  and select positive component 0 j C   of  and 

calculate the 
1

( );
l

j i i i j
i

b y y x x 



    

 

(4) Construct hyper plane ( ) 0;w x b     and obtain decision function:  

* *

1

( ) sgn(( ) ),   or   ( ) sgn( ( ) ),  
l

i i i
i

f x w x b f x y x x b 



       

 

In comparison to stylization procedure (b), stylization procedure (c) adds the penalty 

parameter C. For nonlinearly separable problem, a margin can not always be positive. 

Therefore if one still wants to use the hyper plane to distinguish the data, a slack 
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variable 0, 1,..., ;i i l    is introduced. Equation (7.16 b) can be transferred to 

Equation (7.28). 

 

i. .    y (( ) ) 1 ,   1,...,   i is t w x b i l          (7.28) 

 

Obviously, if i  is big enough, there is always a hyper plane that can be found. But, 

if i  is too big, it is very hard to control. So a penalty parameter C is introduced. In 

this case, Equation (7.18) can be transferred to Equation (7.29). 
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So, the second problem of Equation (7.29) can be constructed as Equation (7.27). 
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Thus, they can be extended to nonlinear problem. For nonlinear problem, a hyper 

plane can not be used, instead hyper surface is needed. The problem of seeking hyper 

surface (3D) can be transferred to seeking hyper plane (2D) via dimension changing.  

 

Stylization procedure (c) is a good procedure for understanding, but for particle 

operation, it is hard because there is no selection standard for parameter C. For better 

operation, an improved procedure is introduced. (Deng and Tian 2004)  

  

Stylization procedure (d): 

 

(1) Assume that the sample is 

1 1 i{( , ),..., ( , )} ( ) ,   x X= , {1, 1}, 1,..., ;   l n
l l iT x y x y X Y y Y i l       ¡  

 

(2) Select proper kernel function ( , ')K x x and parameter  , then construct and solve 

(7.30) 
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and obtain the solution 1( ,..., ) .T
l      

 

(3) Select * *{ (0,1/ ), 1}, { (0,1/ ), 1}i i i ij S i l y k S i l y           and 

calculate the 
1

1
( ( , ) ( , ));

2

l

i i i j i k
i

b y K x x K x x 



    

 

(4) Construct decision function:  

*

1

  ( ) sgn( ( , ) ),  
l

i i i
i

f x y K x x b 



   
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Here, parameter  replaces the parameter C.  

If * 0  , then： 

If number of margin error samples (shown in Figure 7.5) is p, then / ;p l   

If number of support vectors is q, then / ;q l    

* is the solution of follows: 

21
2

1

i

1
min   ( , , ) ,                                    (a)

. .    y (( ) ) ,   1,..., ,                                   (b)

        0, 1,..., , 0

l

i
i

i i

i

T w w v
l

s t w x b i l

i j

   

 
 



  

   
  


g            (7.31) 

* is the margin error samples. 

 

In this section, the whole framework of SVM application from Stylization procedure 

(d) has been built. In the next section, the detailed case study will be presented. 

There are two virtual parts within learning function which need to be created: the 

specialist committee and the technology manager. The specialists committee gives 

the evaluation to the case and the manager allots the weightings to the specialists. 

Both factors are critical for this FMADM method. In the following section, these two 

virtual parts will be independently built and then put together. 

7.5 Case Study of LMFMADM in the ship stability 

design 

Before starting to build the virtual specialist committee, there are several principles, 

which must be clearly defined in order to ensure the items to be processed smoothly. 

The first one is the structure of virtual specialist committee with the learning function. 

The structure should be simple and clear to both the designers who will use the 

results and the trainers who will train the virtual specialist committee before it is put 

into use formally. Especially for the designers, they may not be expert for decision 

making but just they need to know how to use the software. So the specialist 

committee should be easily operated without additional decision making knowledge. 

The second principle is that the virtual specialist committee should have the ability to 
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handle the linguistic properties. In other words, after the linguistic attribute is 

transferred to the numerical attribute, the virtual specialist committee can control 

both discrete and continuous numbers. The last one is that the training work before 

use should be kept on renewing the knowledge and reforming the context. This 

requires that the continuing output should be introduced as a training set input after 

revised by the designers. This action will expand the training set and improve the 

accuracy and stability of the system.  

 

The SVM is selected as machine learning approach to build the virtual specialist and 

technology manager while the JAVA language is employed for coding.  

 

In order to create a successful method, the first important thing is to build the model 

which includes selection of the training sets, the detailed SVM approaches and the 

detailed parameters setting.  

 

In this model, every specialist will provide the evaluation for every attribute of the 

alternative designs. So before the system can give the prediction, the training set 

containing these evolutions should be given to SVM.  

 

The training set is very important for the application because the prediction is given 

based on them. Even if the training sets have very small errors, the final prediction 

will probably have a large deviation. So the training set should be checked carefully 

before it is utilised by the designers. 

 

The reason that SVM can well control the classification for the small sample is that 

the SVM is seeking the minimum of SRM according to Equation (7.3) and (7.4). The 

over-fitting of ANN caused by the machine learning is too complex. The machine 

learning ensures that the empR [ ]f  is very small but VC dimension is very big, which 

means the expected risk is still very high. The under-fitting of ANN caused by the 

machine learning is too simple. In this situation, the empR [ ]f  is very high but VC 

dimension is very small. So the expected risk is still very high. The SVM is seeking 

for the structure risk minimisation (SRM) and can avoid these problems.  
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7.5.1 Introduction of Case Study of LMFMADM in the ship 

stability design 

The case study is the same as previous work (Ölçer, Tuzcu et al. 2005)，which is 

used to demonstrate the learning function of FMADM method. In previous case, the 

specialists in different areas are convened to make an evaluation of every design 

solution. Then the weights are allocated for the ranking and analysis, which are 

processed to obtain the final design. 

 

In previous work, the authors wanted to select one design as the final design from six 

Pareto-optimal design alternatives (PODAs). Three experts from three subjects 

including production engineer, designer and operator gave evaluation from six 

attributes. Because the proposed paper did not provide the values of six PODAs, the 

solutions in another optimisation case study (Cui and Turan 2009) will be used to 

replace the solutions of original work.  

 

Therefore, the aim of this case study is to build the virtual experts and technology 

manager via LMFMADM to evaluate the PODAs from optimisation on stability 

design. There are six designs which will be evaluated by the human experts 

according to six attributes and then these data will be analysed via LMFMADM. The 

ten designs randomly selected from PODAs will evaluate the ability of this method.   

 

In this study, the situation is that there are no specialists and corresponding 

weightings in the design but only previous design experience, which also is the 

common situation in design process. The SVM will be applied to construct the 

virtual specialist committee to provide the function of specialists and of technology 

manager. 
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7.5.2 Parameters setting of Case Study of LMFMADM 

In this section, A represents the attributes of design solutions which are expressed as 

X. The specialists are E. There are six attributes (A1 to A6), six solutions (X1 to X6) 

and three specialists (E1 to E3).  

 

There are three objectives attributes (A1, A2 and A3) and three subjective attributes, 

which are listed below: 

A1 : cargo capacity 

A2 : Hs value 

A3 : KG limiting value 

A4 : producbility 

A5 : ease of maintenance and repair 

A6 : loading/unloading efficiency of arrangement 

 

These attributes are taken from previous work (2005). The first three attributes are 

numerical attributes, which obtained from the optimisation algorithm and they do not 

need to evaluate. The last three attributes are attributes and they need experts to make 

an evaluation based on the first three attributes.  

 

The six solutions (X1 to X6) are shown in Table 7.1: 

 

Table 7. 1 The optima solutions for training in SVM 

 X1 X2 X3 X4 X5 X6 

A1 (Hs) 5.14501m 5.13495m 5.12806m 5.13548m 5.00481m 4.9279m

A2 (KG Lim) 14.7361m 14.7551m 14.8708m 14.7551m 14.9139m 14.9827m

A3 (Cap.) 12 lines 10 lines 10 lines 10 lines 8 lines 12 lines
 
 

From Table 7.1, X1 to X6 are six solutions taken from previous work (Cui and Turan 

2009). All of these solutions are Pareto optimisations and are selected randomly. 

These data will be analysed by the human experts as the training data. The rules and 



 161

regulations found by analysis will be used to as the classifier of the oncoming 

designs. In this case study, other solutions will be used to check the classifier.  

 

The group consists of three experts:  

E1 production engineer 

E2 designer 

E3 operator 

 

The experts are selected according to previous work (Ölçer, Tuzcu et al. 2006) and 

different expert assesses different aspect of solutions. For production engineer (E1), 

this expert pays attention to the building cost. The designer expert (E2) will focus on 

the design performance when the operator (E3) will assess the easy operation. The 

evaluations of three subjective attributes of specialists are displayed in Table 7.2.  

 

Table 7. 2 Experts’ evaluation of six training PODAs under three subjective 
attributes and their corresponding fuzzy numbers 

 

 

Table 7. 3 Attributes’ properties and weightings of attributes and experts 

 

 

The training set should be considered carefully to satisfy the following principles: 

 The training set should have enough examples. Although the SVM is suitable for 
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the small training set, the training set should contain as many examples as 

possible.  

 The attributes in the training set should be appropriate because they will affect 

the results of training. 

 

For easy understanding, the experts’ evaluation of six training PODAs is limited to 

two results: good and bad. The evaluation results are shown in Table 7.2. The 

problem is transferred to build a model which can intelligently give an evaluation for 

new design and the evaluation is classified into two levels: Good or Bad. Table 7.3 

shows  

 

In the second step, the designers should select appropriate approaches of SVM 

including core functions and parameters. For this problem, different approaches of 

SVM are selected to compare the efficiency.  

 

In order to simplify the objective function and reduce the complexity, the problem is 

divided into smaller problems. The evaluation results of the specialists are shown in 

Table 7.2. In order to further clearly express the relationship between the expert and 

attribute, Table 7.4 shows all the experts’ evaluation to the attribute A4. From Table 

7.4, it can be easily seen that experts’ assessments are different for the same attribute 

of every PODA. The expert E1 thinks the PODA x5 is good when others consider it 

is bad from the view of their subject. The LMFMADM should learn the knowledge 

from these experts and apply this knowledge to make an evaluation in the next 

application. 
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Table 7. 4 Experts’ evaluation of six training PODAs for attribute A4 

 

7.5.3 Virtual experts 

The construction of virtual experts is complex task. Different design requirement 

needs different experts and even the same design cases but slight changes will affect 

the robustness of experts’ evaluation. 

  

Because the expert comes from different area and has different preference, the expert 

group should be divided into individual for better moulding of experts’ personalities. 

Firstly, the specialist E1 needs to be constructed, and for attribute A4, the evaluation 

of E1 includes two sets: 

 

1 4 {((5.14501,14.7361,12),1), ((5.13495,14.7551,10),1),

((5.12806,14.8708,10),1), (5.13548,14.7551,10),1), ((4.9279,14.9827,12),1)}
E AG 

(7.32) 

1 4 {((5.00481,14.9139,8), 1)};E AB    

 

Equation (7.32) shows that two sets are created: G and B. A is the set of attributes 

which expert E1 thinks ‘good’. The 1 4E AG  includes five PODAs and the numerical 

value ‘1’ is given to represent that this category is good. Correspondingly, set B is 

the PODA aggregate of ‘bad’ and the numerical value ‘-1’ is given as representation. 

 

Now application of stylization procedure (d) into practical design can be considered. 

From Table 7.1 and Table 7.2, the training sample set of specialist E1 for attribute A4 

can be constructed as shown in Table 7.5: 
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Table 7. 5 The training sample set of specialist E1 for attribute A4 
 

Train 
samples 

X1 X2 X3 X4 X5 X6 

A1 (Hs) 5.14501 m 5.13495 m 5.12806 m 5.13548 m 5.00481 m 4.9279 m 

A2 (KG Lim) 14.7361 m 14.7551 m 14.8708 m 14.7551 m 14.9139 m 14.9827 m 

A3 (Cap.) 12 Lines 10 Lines 10 Lines 10 Lines 8 Lines 12 Lines

A4(y) 1 1 1 1 -1 1 

Category G1 G2 G3 G4 B1 G5 
 

 

 

Figure 7. 7 The graph of training sample set of specialist E1 for attribute A4 
 

For a better display of the run results, a 2D graph is given, which means only A1 and 

A2 in Table 7.5 are selected in the first step. The Figure 7.7 shows this 2D graph of 

the training sample set of specialist E1 for attribute A4. The blue represents the 

category G (good) and red means the category B (Baddeley).  
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In the next steps, an appropriate kernel function should be selected to promote the 

calculation. Up to now, there is not a general method to select kernel functions. In 

this case, several popular kernel functions will be tested to check the effectiveness. In 

the following, the popular kernel functions will be tested.    

 

First, kernel function is a linear function: K= ( )i jx x . 

Because Table 7.5 is nonlinear data, the linear kernel function can not find the 

solution even if C tends to go to infinity. 

 

Second, kernel function is Polynomial (homogeneous) function: K1= 2( ) ;i jx x  

1 1
1

sgn( ( , )-123.9199);
l

K i i i
i

f y K x x


   

 

(a) 
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 (b) 

Figure 7. 8 The decision function of K1= 2( )i jx x  on training sample set of 

specialist E1 for attribute A4 
 

Third, kernel function is Polynomial (inhomogeneous) function: 

K2= 3(( ) 100) ;i jx x   

2 2
1

sgn( ( , )+728.2246);
l

K i i i
i

f y K x x


   
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(a) 

 

 (b) 

Figure 7. 9 The decision function of K2= 3(( ) 100)i jx x  on training sample set of 

specialist E1 for attribute A4 
 

The last one, kernel function is Gaussian Radial basis function: 

K3=
2

2
exp( );

2

xi xj




  
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1

sgn( ( , )+73.7188);
l

K i i i
i

f y K x x


   

 

Figure 7. 10 The decision function of K3=
2

2
exp( )

2

xi xj




  on training sample set of 

specialist E1 for attribute A4 
 

 

From Figure 7.8, 7.9 and 7.10 it can be seen that, several popular kernel functions all 

can correctly distinguish the data. Because 
2

3 2
exp( )

2

xi xj
K




  has the minimum 

Area shown in Figure 7.10, the kernel 3K  is selected as the best classifier for this 

case. This means if the new data belongs to the inner circle (purple circle) in Figure 

7.10, it will be good for specialist E1 for attribute A4. If not, it will be bad. The new 

running data can continue to revise the decision function. 
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The comparison of decision functions of different kernel functions on training 

sample set of specialist E1 for attribute A4 is shown in Figure 7.10. In Figure 7.10 (a), 

the green line is the kernel function K1= 2( )i jx x  and yellow line is the kernel 

function K2= 3(( ) 100)i jx x   when purple line is the third kernel function 

K3=
2

2
exp( )

2

xi xj




 . It can be seen from Figure 7.10 (a) that every line can make a 

partition of the training data. In proposed design support system, the kernel function 

K3 is used as default method. If the users of the system do not select the special 

kernel function, K3 is pointed to make a classification.  
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(a) 

 

 (b) 

Figure 7. 11 Comparison of decision functions of different kernel functions on 
training sample set of specialist E1 for attribute A4 
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For the attributes A5 and A6, the same method is used and the kernel function K3 is 

selected. The full virtual expert E1 is shown in Figure 7.12. When put the all 

decision function together, a systemic virtual specialists will be created.  

 

 

Figure 7. 12 Virtual expert E1 
 

After the virtual experts are created, the system will automatically use these virtual 

experts to make an evaluation. For better understanding, the Figure 7.13 shows the 

application of virtual expert E1. Suppose there are four designs which are four test 

points as shown in Figure 7.13 and the system needs to provide evaluation of these 

designs. For the attribute A4 of test point 1, virtual expert E1 will use purple line to 

make discrimination. The test point 1 is located above the purple line, so it belongs to 

category of ‘good’ on attribute A4. Then the evaluations are processed to Test Point 

2, Test Point 3 and Test Point 4. It can be seen that all of these points are located 

under the purple line, so they belong to category of ‘bad’ on attribute A4.  
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Figure 7. 13 Application of Virtual expert E1 

 

In the following step, the attribute A5 is taken account. The red line will be used to 

make the evaluations. Of the four points, the Test Point 1, Test Point 2 and Test Point 

3 are above the red line. So these designs belong to category of ‘good’ on attribute 

A5. For the fourth point, Test Point 4 is below the red line, so this design belongs to 

category of ‘bad’ on attribute A5. The similar operations are processed to the 

evaluation of attribute A6 and the green line is used. The Test Point 1 and Test Point 

2 belong to category of ‘good’ on attribute A6 when Test Point 3 and Test Point 4 

belong to category of ‘bad’ on attribute A6. The final evaluations are listed in Table 

7.6. 
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Table 7. 6 The result set of specialist E1 for test 
 

Test Points Test Point 1 Test Point 2 Test Point 3 Test Point 4 

A 4 Good Bad Bad Bad 

A 5 Good Good Good Bad 

A 6 Good Good Bad Bad 

 
 

7.6 Learning based ship design decision support 

system 

In previous chapters, Learning Based Ship Design Support system is fully explained. 

In this section, the whole system will be built on the frame of multi-agent system. 

The method and key points of building this system, the organization of the system 

and the communication among agents, etc. are listed and explained. With the theory 

of multi-agent, which is utilized in the proposed system, there is no administer agent 

which manages other agents. All the agents are independently embedded into the 

environment as a real human society. In order to effectively organise the design 

actions, a smart environment is created.  

 

The collaboration of agents is very important for the multi-agent system. A simple 

communion approach via smart environment has been taken into account to avoid 

complex dialogue between the agents. Because the multi-agent technology is not 

mature yet, the design decision support system will employ some simple approaches 

to reduce the complexity of system and keep the system focusing on the engineering 

application. The modularisation idea is used here to make the system more robust 

and feasible so that if a new technology comes, the system can rapidly replace old 

module with the new one.   
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7.6.1 Introduction of learning based design decision support 

system 

The introduction of group technology into the ship building technology started 

during 1960s. In 1990s, the researchers proposed the idea of sets in automotive 

industry and introduced the assembly line to ship production. In ship yard 

management, many ship yards introduced the supply chain management from 1990s. 

All of these changes made a great improvement of ship production. However, the 

development of ship design still has no obvious improvement except for the 

application of CAD and CAE in the design area. The idea of decision based design 

and agent based design has been proposed for a long time, but it is not used in 

practice. The design work still follows the old spiral. One of the very important 

reasons is that the knowledge, which supports the ship design, is very complex and 

the design work has to largely depend on experience of specialists. This makes the 

automated design very difficult. The learning function, which is given in previous 

chapters, has greatly promoted the possibility to solve this problem. The other reason 

is that the design work was processed based on line principle by human designers. 

This limits the efficiency of whole ship design work. A multi-agent system is 

introduced in this chapter to overcome this problem.      

  

The learning based design decision support system is an effective and intelligent tool 

to assist the ship designers to make a better design. It has the ability to control the 

whole design process via parallel design theories. Every agent is independent and has 

service-oriented architecture. The independence means that the agent can operate by 

itself based on enough information without the help from other agents. The service-

oriented architecture, which is transferred from computer science, means that the 

agent is organized according to different service that they can provide.  

 

The design decision support system consists of four agent groups and two interface 

agents. For the convenience of communication, a smart environment is created. The 

four agent groups are independent from each other. The smart environment is 

responsible for the information exchange. In other word, there is no main agent or 
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agent group dominate other agents. The agent and agent group calculate the service 

function, and then send the results to the environment. The environment classifies the 

data and makes sure the direction to which the data are sent. This means the 

environment can function as the organizer of the system. But what should be kept in 

mind is that the multi-agent is a parallel environment and the priority does not exist 

in this environment. The environment just gives a route of the design work.   

 

In the system, there is no chief agent to avoid too many tasks on one agent. If all the 

design work needs a chief agent to manage, the information has to wait the chief 

agent to respond, which will cause waste of time and delays.  
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Figure 7.14 The proposed learning based design decision support system 
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7.6.2 Definition of agent/agent group 

As mentioned before, there are four agent groups and two interface agents in the 

system. This section will explain the structure and function of these agent 

groups/agents. The important and difficult points in building and running process 

will also be introduced. It is noteworthy to mention that these agent groups/agents 

are not arranged according to the process order but based on service function. They 

can finish a job independently. The environment calls them according to the 

requirements of process. In other word, there may be many synchronizing design 

tasks and the environment allots the different process to different design task. The 

detailed process can employ the agents according to its own design requirements.         

 

The first agent group is database agent group as shown in Figure 7.15. This agent 

group contains SDLL and other database used in this system. The database is the 

basement of the system and most of algorithms need a database to support the 

operation. All the databases are managed here except the temporary database, which 

are created in running process and will be deleted after the run. The two main 

databases in this group are the SDLL and decision making training database. The 

function of SDLL focuses on providing relationships among the design variables, the 

rules and regulations as constraints, reference cases etc. to assist the designers make 

clear about the entire design line and detailed operations. The decision making 

training database provides the training sets for SVM to make a prediction and 

support virtual specialists and the technology manager. The database also needs to be 

updated after runs to enlarge the training sets to improve the ability of SMV.    
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Figure 7.15 The ship database agent group 

 

The second agent group is optimisation agent group as shown in Figure 7.16. This 

agent group provides the optimisation for other agent/agent group. There are four 

independent agents and one link agent. The two of the four independent agents are 

the single objective optimisation agents which are Particle swarm optimisation (PSO) 

agent and GA agent, and two multi-objective optimisation agents, HCPSO and 

NSGAII. The link agent provides the link to Mode Frontier software. So the system 

can use other mature optimisation approach to do the optimisation work.  

 

 

Figure 7.16 The optimisation agent group 

 

The third agent group is learning approach agent group as shown in Figure 7.17. This 

agent group contains the learning approaches for operation including decision tree, 
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CBR, Q-learning and SVM. Other agents can use the fixed learning approaches for 

their own function and they can also employ other learning methods freely.   

 

 

Figure 7.17 The learning approach agent group 

 

The fourth agent group is decision making agent group as shown in Figure 7.18. This 

agent group contains the decision making agents for final decision. In current 

research, the FAMDA decision making approach together with its improved version 

with virtual specialist committee and technology manager can be utilized. The 

designers can select between these two approaches. In the future research, more 

decision making approaches will be introduced.   
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Figure 7.18 The learning approach agent group 

 

The independent agents are the interface agent and output agent. The interface agent 

is the ‘window’ to the designers. The designers can set initial values though this 

agent. They can also control the process via this agent. The output agent takes charge 

of the output function.  

7.6.3 Smart system environment  

The smart environment in this system actually means the agent service platform. This 

environment looks like a virtual society as shown in Figure 7.19. It provides the 

information for every agent/agent group and also manages the output of the 

agent/agent group, which helps the agent/agent group to focus on its own inner 

actions. So the environment should have following functions:  

 

The first one is the thread mechanism. The multi-agent has no priority for all agents 

and there is also no general manager agent to administer other agents. In order to 

make sure that the agent clearly knows what to do in the next step, an environment 

should be responsible for the management of design tasks in this system. The 
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environment will provide an ID number to every design task and this unique ID 

number will lead the agent to work. There are many service nodes on every thread. 

The environment will force the thread to finish the service node one by one. On 

every service node, the thread will check the related agent or agent group. The 

agent/agent group will send the statement signal to the environment. The signal has 

three options: busy (Caprace, Losseau et al.), idle (green) and waiting (yellow). 

When the environment reads “busy” (Caprace, Losseau et al.), it will transfer to other 

agents and when this agent changes to red or yellow, thread will come back to try 

again after a specified time. When the environment reads idle (green), the 

environment will collect the information and give it to agent. The agent will be 

activated. When the environment reads waiting (yellow), the environment will hold a 

short time and at the same time, collect the data for further application. So the actions 

of design work are processed by the environment.    

 

The second is the information sharing mechanism. In this system, all the information 

is open to public. This means that before taking actions, the agent will collect the 

necessary information from environment and after the run, the agents will directly 

provide the results to the environment. These results can be seen by every agent in 

the environment. This raises two problems: how to effectively manage the 

information and when to delete the out of date data to release the space. For the first 

problem, a ‘blackboard’ mechanism is employed here. The results are stored 

according to the ID number and a service period number is added to the ID number.  

 

The last one is the conflict resolution. In the multi-agent environment, when there are 

several design tasks being processed at the same time, how to coordinate the agents 

to finish the work becomes very important. This system accepts prior method. The 

case-based conflict resolution is still preferred but not the first choice as the random 

selection is the first choice.  
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Figure 7.19 The smart environment of system 

 

7.6.4 Software environment 

The Java language is employed to build this design decision support system. The 

agent platform is constructed via the idea of JADEX, which is adopted from previous 

work (Turkmen 2005). But considering the future development, the software of 

JADEX is no longer used. The new platforms still accept XML to define the agent 

for user. The agent framework is employed to all agents. In other word, the agent is 

modular.    

7.6 Discussion  

In this chapter, the decision making method with learning function is constructed. 

The multi-agent system is employed and the SVM method is confirmed to realize the 

learning function. The designers can obtain an appropriate solution via this decision 

making method even if there is no specialists and technology manager. The virtual 

specialists and manager are created to give an evaluation on the optimisation results. 
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For the decision making method, the multi-agent framework makes the method 

robust and modular. This is also easy to accept new technology to update this method, 

for example, when a new ranking method is developed, the method can just change 

one agent to update without changing others. The agent based system also transfers 

original method to an automatic method and makes it more convenient to use.  

 

The virtual specialist and manager use prior designs to make a prediction. This 

method can give a good prediction on a small sample. In the system, several kernel 

functions are provided to help the designers choose a good classification plane to 

perform a better prediction. In this chapter, the learning based ship design support 

system is concluded and the realization method and environment are explained. The 

utilization of the system is a hybrid process of the human and machine. The design 

decision support system can provide full and effective information to the designers. 

This design decision support system can successfully help the designers to solve the 

new design problem based on the prior experience. 
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Chapter 8 

 

 

Case study  

 

8.1 Introduction 

This chapter applies the proposed system to practical ship design to evaluate the 

whole system. Two typical ship design problems are selected as case studies. The 

methods developed in this research are deployed to process design work and 

compared with other popular methods. The results are also compared against the 

original designs. The analysis and conclusion on application are given at the end of 

every case study. 

 

Ship stability based subdivision optimisation is a traditional and classical problem in 

ship design. In all ship types, Ropax ships have particularly strict requirement for 

safety at sea. The case study 1 will apply the proposed system to hull subdivision 

design of Ropax ship. Ship structural optimisation is another important part of 

optimisation application in ship design. As other optimisation problems in this field, 
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the time cost has a great influence on the structural optimisation. For a merchant ship 

in current computing environment, the ship structural optimisation usually continues 

for several weeks or months and this has become one of the main reasons that 

optimisation application has been limited. Case study 2 will deploy the proposed 

system for mid-ship structure optimisation of a bulk carrier in order to evaluate the 

performance of this system.  

8.2 Case Study 1--- Safety design of Ropax ship 

Ropax vessels have gone through significant design changes due to the well 

publicised recent accidents with the loss of many lives, while the demand for 

passenger and cargo capacity in European waters has increased. Following the tragic 

accidents of the Herald of Free Enterprise in 1987 and the Estonia in 1994, a 

significant surge of research related to the capsizing of Roll on –Roll off type ships 

was initiated. The ‘Water on Deck’ standards, which are known as Stockholm 

Agreement determines the limiting wave height（Hs）in which a ROPAX vessel 

survives in a damaged condition. In response to these regulations, the shipping 

industry has been in search of new modern designs to match these high safety 

standards, while maximizing the cargo capacity of vehicles in a cost effective 

approach.  

 

The changes in design focus on the damage stability and survivability, cargo and 

passenger capacity. Therefore, the internal hull subdivision layout is an important 

problem especially for damage stability, survivability, internal cargo capacity and the 

general arrangement of the vessel.  

 

In literature, different solution methods have been proposed. Sen and Gerick(1992) 

(Sen and Gerigk 1992) suggested using a knowledge-based expert system for 

subdivision design using the probabilistic regulations for passenger ships. 

Zaraphonitis et al. (Zaraphonitis, Boulougouris et al. 2003) proposed an approach for 

the optimisation of Ro-Ro ships in which centre-casing, side-casing, bulkhead deck 

height and locations of transverse bulkheads are treated as optimisation variables. 
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Ölçer et al. (Ölçer, Tuzcu et al. 2003) studied the subdivision arrangement problem 

of a ROPAX vessel and evaluated conflicting designs in a totally crisp environment 

where all the parameters are deterministic. They also examined the same case study 

in a fuzzy multiple attributive group decision-making environment, where multiple 

experts are involved and available assessments are imprecise and deterministic 

(Ölçer, Tuzcu et al. 2006). Turan et al. (2004) (Turan, Turkmen et al. 2004) 

approached the subdivision problem by using the case-based reasoning approach. 

Turkmen et al. (2005) (Turkmen 2005) proposed NSGAII with TOPSIS (Technique 

for Order Preference by Similarity to Ideal Solution) to perform design optimisation 

for internal subdivision. 

8.2.1 Problem modelling 

The case study naturally focuses on improving the performance of the Ropax vessels 

in terms of not only maximising the ship related parameters mentioned above but 

also reducing the time to perform the multi-objective design iteration. 

 

As this study is based on the previous work of Ölçer et al.(Ölçer, Tuzcu et al. 2003), 

(Ölçer, Tuzcu et al. 2006), the same problem is selected and used in this study. The 

optimisation problem is an internal hull subdivision optimisation for a ROPAX 

vessel whose main particulars are given in Table 8.1. Therefore the main aim of this 

case study is to maximise the survivability and damage stability standards as well as 

to improve the cargo capacity. These three parameters form the objectives of the 

study as presented in Table 8.2. 

 

The recently developed ‘Static Equivalent Method (SEM)’ is used to calculate the 

limiting significant wave height (HS) value for the worst SOLAS’90 damage, 

determined from damage stability calculations.  

 

Stockholm Water on deck standards, which are applied specifically for Ropax 

vessels, determine the maximum significant wave height at which the Ropax vessel 

can survive and therefore is allowed to operate in wave heights, which are equal to or 

less than the maximum wave height. The Stockholm agreement allows model tests 
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for demonstration of compliance to determine the maximum wave height as an 

equivalent approach. The SEM is an empirical capsize model for Ro-Ro ships that 

can predict with reasonable accuracy the limiting sea-state for specific damage 

conditions. The SEM for Ro–Ro ships postulates that the ship capsizes quasi-

statically, as a result of an accumulation of a critical mass of water on the vehicle 

deck, the height of which above the mean sea surface uniquely characterises the 

ability of the ship to survive in a given critical sea state. This method was developed 

following observations of the behaviour of damage ship models in waves and it was 

validated using several model experiments and a large number of numerical 

simulations. Therefore in this particular case study SEM is used as an equivalent 

approach to the Stockholm Agreement. 

 

Figure 8. 1 Ship model built in NAPA for optimisation. 

 

The whole ship has been modelled in NAPA software as shown in Figure 8.1 and the 

original ship hull subdivision is shown in Figure 8.2.  
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Figure 8. 2 The original ship hull subdivision model 

 

Table 8. 1 Main dimensions of the vessel in case study. 
 

Length Overall(Loa) 194.4 m 

Length between perpendiculars (Lbp) 172.2 m 

Breadth moulded (B) 28.4 m 

Depth to car deck 9.7 m 

Lower Hold Height  2.6 m 

Depth to upper deck 15.0 m 

Draught design  6.6 m 

Displacement  20200 ton 

Max number of persons on board 2660 

Number of car lanes 8 
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There are three objectives and 16 design variables in this study (Table 8.2). Three of 

the design variables are: the depth of the ship to the car deck, ’Car Deck Height’, 

‘Lower Hold Height’ and the width of the side casing at the car deck, ’Side Casing 

Width’. As presented, the original design has 9.7 m depth to car deck and 2.6 m 

lower deck height and no side casings at the car deck (Figure 8.6 a). The remaining 

13 design parameters are the locations of transverse bulkheads given in the format of 

frame numbers (starting from the stern of the ship). Table 8.2 also presents the lower 

and upper boundaries of the parameters with assigned increments to be used in the 

optimisation study. 

 

Table 8. 2 Optimisation variables with their types, bounds, and objectives. 
 

  Type Bounds  
No Variables 

Original 
design Discrete Cont. Lower Upper Increment

1 Car deck height 9.7 m   9.6m 9.9m 0.025m 
2 Lower-hold height  2.6m   2.6m 5.2m 2.6 
3 Side casing width No    1m 2m 0.5m 
4 Transverse Bulkhead 02 27   25 29 1 
5 Transverse Bulkhead 03 39   37 41 1 
6 Transverse Bulkhead 04 51   49 53 1 
7 Transverse Bulkhead 05 63   61 65 1 
8 Transverse Bulkhead 06 81   79 83 1 
9 Transverse Bulkhead 07 99   97 101 1 
10 Transverse Bulkhead 08 117   115 119 1 
11 Transverse Bulkhead 09 129   127 131 1 
12 Transverse Bulkhead 10 141   139 143 1 
13 Transverse Bulkhead 11 153   151 155 1 
14 Transverse Bulkhead 12 165   163 167 1 
15 Transverse Bulkhead 13 177   175 179 1 
16 Transverse Bulkhead 14 189   187 191 1 
Boundaries for transverse bulkheads are given in frame numbers 

No Objectives Type Description 
1 HS value Maximization for the worst two compartment damage case 
2 KG limiting value Maximization for the worst two compartment damage case 
3 Cargo capacity value Maximization expressed in car lanes 

 

The damage stability has been calculated according to the constraints from 

SOLAS’90 regulations as shown in Table 8.3.  
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Table 8. 3 Constraints of SOLAS’90 requirements 
 

No Constraints Requirements 
1 Range Range of positive stability up to 10 degrees 

2 Min. GZ Area Minimum area of GZ-curve more than 

0.015mrad 

3 Maximum GZ Maximum righting lever more than 0.1m 

4 Maximum GZ due to 

Wind Moment 

Maximum righting lever after applied wind 

moment more than 0.04m 

5 Maximum GZ due to 

Passenger Moment 

Maximum righting lever after passenger 

crowding more than 0.04m 

6 Maximum Heel Maximum static heel less than 12degrees 

7 Minimum GM Minimum GM more than 0.05m 

8 Margin Line Margin line should not be immersed 

9 Progressive Flooding No progressive flooding should occur 

 

JAVA language is used to code the optimisation system according to the multi-agent 

structure and the calculation is processed between optimisation system and NAPA 

software. The Visual Basic (VB) is used to form the interface. The optimisation 

system uses NAPA to calculate the Hs, KG limiting and Cargo Capacity, and after 

optimisation, modified design variables are transferred to NAPA (Figure 8.3).  
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Figure 8. 3 Work flow between the Optimisation system and third party software 

NAPA 

 

The vessel is modelled in NAPA and can be modified for each design experiment (or 

design layout) with respect to each optimisation parameter via NAPA macro 

language. For each design experiment, the relevant adjustments of Draught and 

Displacement are made during the optimisation process as shown in Figure 8.4.  

 

 

 

Figure 8. 4 Interface of ship design optimisation system. 
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8.2.2 Result and analysis of HCPSO 

The calculations are performed using both NSGAII and HCPSO, and the results are 

compared in terms of numerical value of objectives and the computing time that each 

approach takes.  

 

This optimisation has three objectives to maximize, thus three sub-swarms are set. 

The population size is 30 and generation is 100. Therefore every sub-swarm has 10 

particles. 1c and 2c  are set to 2.0.   is gradually decreased from 1.0 to 0.4. Vmax is 

set to the bounds of decision variable ranges.   is 0.72. The -disturbance has 3 

steps. The NSGA II uses the parameters setting of prior research in the same 

environment (Turkmen 2005). The HCPSO and NSGAII parameters are listed in 

Table 8.4. 

 

Table 8. 4 Parameters setting in case study for HCPSO and NSGAII 
 

HCPSO Parameters Setting NSGAII Parameters Setting 

Parameters Name 
Parameters 

Value 
Parameters Name 

Parameters 

Value 

Constriction Function 0.72 SBX (Simulated binary crossover) 10 

Inertia weight 1.0 to 0.4 polynomial mutation 20 

Cognitive parameter 2 crossover probabilities 0.9 

Social parameter 2 mutation probabilities 0.1 

Population 30 Population 30 

Generation 100 Generation 100 

 

The optimisation is performed using a PC (Dual Core 2.4GHz, 3 GB RAM) 

environment and takes 80h. At the end of this run, 2625 different designs are 

obtained in design space with 615 of them being unfeasible designs. Therefore 2010 

(=2625-615) feasible designs are filtered in design space to obtain only the designs 

that belong to the Pareto front. The selected HCPSO optimisation solutions are listed 

in Table 8.5 together with the NSGAII optimisation. The comparison of original 
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design and selected design in amidships is also given in Figure 8.6. In this solution 

(Table 8.5), the Hs in HCPSO is improved by more than 0.55 m compared to the 

original design, while the number of car lanes is increased by 6 extra lanes, which is 

equivalent to an increase of above 50%. The KG limiting value is also increased 

significantly (0.9 m) thus provides flexibility for future modifications on the basis of 

changing passenger demands as well as improvement in survivability. When 

comparing the two optimisation methods, the HCPSO design improves both the 

limiting KG and significant wave height (Hs) by 0.1m compared to the NSGAII 

design. Both methods provide the same solution for the cargo capacity by increasing 

the lower-hold height and car deck height, thus yielding more cargo capacity. 

 

More importantly, for the real design case application, compared to NSGAII, 

HCPSO converges faster and reduces the computing, and hence the design time 

significantly. In ship design, most of the computing time is not consumed on the 

optimisation approach, but rather on the naval architectural calculations using third 

party software (NAPA etc.). It is important to note that it takes sometimes hours for 

one fitness calculation. In this study, the solution begins converging from 40th 

generations in HCPSO, while the NSGAII begins converging from 54th generations 

in NSGAII. This means the HCPSO takes 35% less time in looking for Pareto 

solutions compared to NSGAII. In a more complex environment, such as real ship 

application with many objectives, this provides an advantage in terms of completing 

the design faster and thus cheaper. 

 

All feasible results are given in Figure 8.5. The relationships between different 

variables are shown for designers to make a direct observation and to select the 

appropriate solution according to their practical preference. All of the feasible 

designs are listed in 3D space (Figure 8.5 d).  
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                      (a)                                     (b) 

 

                     (c)                                      (d) 

Figure 8. 5 Optimisation results of HCPSO. (a) Limiting KG vs Hs; (b) Cargo 
Capacity vs Limiting KG; (c) Cargo Capacity vs Hs (d) optimisation feasible designs 
 

 

             (a) Original design                           (b) selected design 

Figure 8. 6 Comparison between original design and selected design HCPSO. 
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Table 8. 5 Comparison of the original design and selected design which are optimal 

solutions for HCPSO and NSGAII 

 

No Optimisation Variables 
Original 

Design 
NSGAII Design HCPSO design

1 Car deck height 9.7 m 9.9m 9.9m 

2 
Lower-hold height (from car 

deck) 
2.6m 5.2m 5.2m 

3 Side Casing width No side-casing 1m 1m 

 
Watertight transverse bulkheads

(In frame numbers) 

 

 
  

4 Transverse Bulkhead 02 27 27 27 

5 Transverse Bulkhead 03 39 39 39 

6 Transverse Bulkhead 04 51 52 53 

7 Transverse Bulkhead 05 63 65 63 

8 Transverse Bulkhead 06 81 83 83 

9 Transverse Bulkhead 07 99 97 99 

10 Transverse Bulkhead 08 117 115 118 

11 Transverse Bulkhead 09 129 128 130 

12 Transverse Bulkhead 10 141 141 143 

13 Transverse Bulkhead 11 153 153 155 

14 Transverse Bulkhead 12 165 164 167 

15 Transverse Bulkhead 13 177 175 179 

16 Transverse Bulkhead 14 189 189 189 

Optimisation Objectives  

1 HS value (m) 4.641 5.082 5.179 

2 KG limiting value (m) 14.012 14.813 14.9085 

3 Cargo capacity value (lines) 8 14 14 
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8.2.3 Improving learning function of stability optimisation 

In this part the same case of section 8.2.1 is selected to evaluate the Q learning in 

ship design. It is noteworthy that in the real case, the dynamic update is accepted 

which is obviously different with the numerical examples. This means, the system 

will use the calculation value to explore the beginning values group every time. The 

system will correct the wrong prediction value and recalculate the R value. Keep the 

continual circulation.  

 

The optimisation results are listed in Table 8.6. This optimisation has three 

objectives to maximize, so three sub-swarm are set. In HCPSO, the population size is 

set to 30 and generation is set to 100. So every sub-swarm has 10 population. 1c and 

2c  are set to 2.0.   is gradually decreased from 1.0 to 0.4. Vmax is set to the bounds 

of decision variable ranges.   was 0.72.  -disturb approach has 3 steps.  

 

The results of HCPSO design and learning based HCPSO design are listed in Table 

8.6. Compared to the original design, the limiting significant wave height that ship 

survives (Hs)by using learning based HCPSO, is improved by more than 0.5 m, 

while the number of car lanes is increased by 6 extra lanes, which is equivalent to 

almost 50% increase (Table 8.6). The KG limiting value is also increased 

significantly which provides flexibility for future modifications on the basis of 

changing passenger demands as well as increased survivability. Compared to the 

design based on HCPSO, the design based on HCPSO with learning, improved the 

Hs by 0.13m but limiting KG remains the same. This means that the improvement on 

the solutions of the HCPSO with learning to the HCPSO is not significant. However, 

the generation of learning HCPSO is significantly faster than normal HCPSO, which 

means the searching ability and speed of learning HCPSO is better than normal 

HCPSO. Time cost will be analysed in the following section. 
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Table 8. 6 Comparison of the Original design and selected design which are optimal 

solutions for HCPSO and Learning based HCPSO design 

 

No Optimisation Variables Original Design 
HCPSO 
design 

Learning 
based HCPSO 

design 

1 Car deck height 9.7 m 9.9m 9.9m 

2 
Lower-hold height (from car 

deck) 
2.6m 5.2m 5.2m 

3 Side Casing width No side-casing 1m 1m 

Watertight transverse 
bulkheads  

(In frame numbers) 
   

4 Transverse Bulkhead 02 27 27 27 

5 Transverse Bulkhead 03 39 39 40 

6 Transverse Bulkhead 04 51 53 52 

7 Transverse Bulkhead 05 63 63 63 

8 Transverse Bulkhead 06 81 83 83 

9 Transverse Bulkhead 07 99 99 100 

10 Transverse Bulkhead 08 117 118 116 

11 Transverse Bulkhead 09 129 130 131 

12 Transverse Bulkhead 10 141 143 142 

13 Transverse Bulkhead 11 153 155 155 

14 Transverse Bulkhead 12 165 167 166 

15 Transverse Bulkhead 13 177 179 177 

16 Transverse Bulkhead 14 189 189 190 

Optimisation Objectives   

1 HS value (m) 4.641 5.179 5.1921 

2 KG limiting value (m) 14.012 14.9085 14.9126 

3 Cargo capacity value (lines) 8 14 14 
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Figure 8. 7 KG limiting vs Hs HCPSO without learning function 

 
 

 
Figure 8. 8 KG limiting vs Hs NSGAII without learning function 

 

In Figure 8.7 and 8.8, the red line is Pareto solution line. Comparing Figure 8.7 and 

8.8, it can be seen that the HCPSO performs better than NSGAII from both the 

distribution of solutions and the numbers of solutions, which are close to Pareto 

solutions.  
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Figure 8. 9 KG limiting vs Hs HCPSO with fixed learning function 

 
 

 
Figure 8. 10 KG limiting vs Hs NSGAII with fixed learning function 

 

Comparing Figure 8.9 and 8.10, it can be seen that the HCPSO with fixed learning 

function performs better than NSGAII with fixed learning function on number of 

Pareto solutions. The red line is Pareto solution line. 



 200

 

Figure 8. 11 KG limiting vs Hs HCPSO with learning function 
 

 

 
Figure 8. 12 KG limiting vs Hs NSGAII with learning function 

 

Comparing Figure 8.11 and 8.12, it can be seen that the HCPSO with learning 

function performs better than NSGAII with learning function on number of Pareto 

solutions. The red lines provide Pareto solution lines for both algorithms. The 
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numbers of Pareto solutions on the red line of HCPSO with learning are more than 

the Pareto solutions on the red line of NSGAII with learning function. At the same 

time, the solution distribution of HCPSO with learning function is more uniform. So 

the HCPSO with learning function gives more and better selections compared to 

NSGAII with learning function.  

 
Time Cost 
 
As far as the time cost is considered, most of the running time is voted by running 

NAPA simulation rather than optimisation. Therefore, reducing generations of 

convergence can reduce time. The summary of running time of both HCPSO and 

NSGAII is listed in Table 8.7. Figure 8.13 provides the comparison of run time of 

different HCPSO. And the Pareto solution of every HCPSO approaches. From Table 

8.8, 8.9 and 8.10, it can be seen that the approach with learning function converge 

faster than other approaches. But for learning with five fixed one, which means just 

change five design variables every time, the solutions are not as good as random 

selecting one.  

 

Table 8. 7 The summary of running time 
 

Approach Generation 
Time 

(Hours)
HCPSO without learning 42-46 84-92 

HCPSO  learning with five fixed 15-24 30-49 
HCPSO  learning 25-35 60-80 

   

NSGAII without learning 45-48 88-97 
NSGAII  learning with five fixed 20-28 40-56 

NSGAII  learning 32-46 64-90 
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Figure 8. 13 Comparison of run time of different HCPSO 

 
Table 8. 8  The Pareto solutions of HCPSO without learning 

 
index Generation Hs KG Lim. Cap. Time (h) 

1 42 4.67835 14.9112 12 84 
2 42 4.92334 14.9112 12 84 
3 42 4.70002 14.9112 14 84 
4 42 5.17285 14.8712 8 84 
5 43 4.78847 14.9110 12 87 
6 43 5.16283 14.8707 8 87 
7 43 4.67835 14.9112 12 87 
8 44 5.17285 14.8712 8 88 
9 45 5.17285 14.8712 8 90 
10 46 5.17285 14.8712 14 92 
11 46 5.17285 14.8712 14 92 

 

Table 8. 9 The Pareto solutions of HCPSO with 5 parameters fixed learning 
 

index Generation Hs KG Lim. Cap. Time(h) 
1 15 4.63126 14.8471 14 30 
2 15 5.15367 14.8393 8 30 
3 17 4.73154 14.8471 8 33 
4 18 5.17862 14.8321 12 36 
5 18 4.73154 14.8471 8 36 
6 19 5.17862 14.8091 8 38 
7 19 5.17862 14.8238 8 38 
8 19 5.17862 14.8227 8 38 
9 19 5.17862 14.7712 8 38 
10 23 5.17862 14.8142 12 46 
11 24 5.17862 14.7753 12 49 
12 24 5.17862 14.7712 8 49 
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Table 8. 10 The Pareto solutions of HCPSO with randomly selecting learning 
 

index Generation Hs KG Lim. Cap. Time 

1 25 4.9210 14.9572 12 50 
2 25 5.1387 14.9572 10 50 
3 26 5.1465 14.9572 8 52 
4 27 4.9223 14.9572 12 54 
5 27 5.1428 14.9572 14 54 
6 27 5.1921 14.8731 10 54 
7 27 4.9670 14.9572 10 54 
8 28 5.1921 14.9126 14 56 
9 30 5.1503 14.9572 12 60 

8.2.4 Decision making after optimisation 

This section deploys the virtual committee, which is proposed in Chapter 7 to decide 

the final solution. For easier and better understanding, the Pareto solutions in the 

explanation part of this section are limited to two objectives: KG limiting and Hs.  

 

First of all, the Pareto solutions of HCPSO without learning in Table 8.8 are 

considered. In the explanation part, there are only two objectives being considered. 

For simplified calculation, the solutions without objective ‘cargo capacity’ are listed 

in Table 8.11. The following calculations will be processed according to these 

solutions. 

 

Table 8. 11 The simplified Pareto solutions of HCPSO without learning 
 

Index Generation Hs KG Lim. Time (h) 
1 42 4.67835 14.9112 84 
2 42 4.92334 14.9112 84 
3 42 4.70002 14.9112 84 
4 42 5.17285 14.8712 84 
5 43 4.78847 14.9110 87 
6 43 5.16283 14.8707 87 

 

The results of Table 8.8 are shown in Figure 8.14 using green colour while the 

original training data is represented by blue colour. The virtual expert E1, which has 

been created in chapter 7, is employed to make an evaluation on new solutions. From 

Figure 8.14, the results in different areas, which are divided by lines will be given as 
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different expert opinions. The distinguishing method has been explained in section 

7.5. The proposed system will transfer these opinions to fuzzy numbers automatically. 

The linguistics term and their corresponding fuzzy numbers and membership 

function are shown in Table 8.12, which is conversed from Figure 7.4. The 

attribute’s properties and weights of attributes and the values by experts are given in 

Table 7.3. The evaluations of virtual expert E1 are listed in Table 8.13.  

 

 

Figure 8. 14 Pareto solutions of HCPSO without learning on virtual expert E1 
 

The results of evolutions of Pareto solutions of HCPSO without learning on virtual 

expert E1 are listed in Table 8.12.  
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Table 8. 12 Linguistics term and their corresponding fuzzy numbers and 

membership functions 

Linguistic terms Abbreviation Corresponding Fuzzy Number 

Bad B Trap(0.1,0.3,0.3,0.5) 

Good G Trap(0.5,0.7,0.7,0.9) 

 

Table 8. 13 Results of evolutions of Pareto solutions of HCPSO without learning on 

virtual expert E1 

 

 

The evaluations of virtual experts E2 and E3 are shown in Figure 8.15 and Figure 

8.16 together with the results listed in Table 8.14 and 8.15.   
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Figure 8. 15 Pareto solutions of HCPSO without learning on virtual expert E2 

 

 

Table 8. 14 Results of evolutions of Pareto solutions of HCPSO without learning on 

virtual expert E2 
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Figure 8. 16 Pareto solutions of HCPSO without learning on virtual expert E3 

 

Table 8. 15 Results of evolutions of Pareto solutions of HCPSO without learning on 

virtual expert E3 

 

 

Then the proposed system will automatically deploy the LMFMADM which is 

introduced in Chapter 7. Here, the main procedure in the system will be explained for 

further understanding. It should be kept in mind that in the proposed system, these 
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calculations can be done by the system itself. The detailed algorithm is provided in 

appendix B.  

 

Table 8.16, 8.17 and 8.18 calculate the aggregation of all three subjective attributes 

including the degree of agreement (or degree of similarity) (S), average degree of 

agreement (Aamodt), Relative degree of agreement (RA) and Consensus degree 

coefficient (CC).  

 

Table 8. 16 Aggregation under the fourth attribute (A4) 
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Table 8. 17 Aggregation under the fifth attribute (A5) 
 

 

 

Table 8. 18 Aggregation under the sixth attribute (A6) 
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After aggregation calculations, aggregation matrices for homo/heterogeneous group 

of experts can be constructed easily as shown in Table 8.19.  

 

Table 8. 19 Aggregated matrices for homo/heterogeneous group of 

experts

 

 

The assessments have been transformed into standardized trapezoidal fuzzy numbers 

and then aggregated under each subjective attribute. In order to rank the alternatives, 

aggregated matrices’ fuzzy elements should be defuzzified. Defuzzified values for 

the homo/heterogeneous group of experts are shown in Table 8.20 and 8.21. 
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Table 8. 20 Defuzzified values, (weighted) normalised ratings for Homogeneous 

group of experts 
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Table 8. 21 Defuzzified values, (weighted) normalised ratings for Heterogeneous 

group of experts 

 

 

Determination of the positive-ideal solution can easily be made by taking the largest 

element for each benefit attribute and the smallest element for each cost attribute. 

The negative-ideal solution is just the opposite formation of the positive-ideal 

solution. Positive and negative ideal solutions are given in Table 8.22 for 

homo/heterogeneous group of experts. 
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Table 8. 22 Positive and negative ideal solutions for homo/heterogeneous group of 
experts 

 

 

Table 8.23 and 8.24 show the values of separation measures and relative closeness to 

the positive-ideal solution for homo/heterogeneous group of experts. For 

homogeneous group of experts, the preference order is: 

Solution 6 > Solution 4 > Solution 3 > Solution 5 > Solution 1 > Solution 2 

 

Similarly, for heterogeneous group of experts, ranking is  

Solution 3 > Solution 5 > Solution 1 > Solution 2 > Solution 4 = Solution 6 

 

It should be kept in mind that if one may admit that the various experts are not 

equally important (or reliable), it is called heterogeneous (nonhomogeneous) group 

of experts and, otherwise, is named homogeneous group of experts. 

 

Table 8. 23 Values of separation measures and relative closeness to the positive-

ideal solution for homogeneous group of experts 

 

 Solution 1 Solution 2 Solution 3 Solution 4 Solution 5 Solution 6

si
* 0.03513 0.039808 0.050147 0.058892 0.035165 0.058866

si
- 0.034407 0.038739 0.049643 0.059295 0.034442 0.059268

Ci
* 0.4948 0.4932 0.497475 0.501703 0.49481 0.501705

Rank 5 6 3 2 4 1 
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Table 8. 24 Values of separation measures and relative closeness to the positive-

ideal solution for heterogeneous group of experts 

 

 Solution 1 Solution 2 Solution 3 Solution 4 Solution 5 Solution 6

si
* 0.0618296 0.0605111 0.0602027 0.0507326 0.0615654 0.0507331

si
- 0.0624119 0.0610021 0.0608005 0.0509716 0.0621502 0.0509721

Ci
* 0.5023432 0.5020206 0.5024703 0.5011747 0.5023632 0.5011747

Rank 3 4 1 5 2 5 

8.3 Case Study 2 --- Structure optimization  

In this case study, the structural optimisation on the midship section of a bulk carrier 

was carried out. The objectives of this practical optimisation focus on the structural 

17 weight controls and fatigue coefficients. The optimisation constraints are set 

according to common structural rules (CSR) of international association of 

classification societies while the stress and fatigue evaluation is also processed 

according to the methods in CSR.  

 

Rigo (Rigo 2003) published a detailed state of the art paper in 2003 on structural 

optimisation research field. He introduced the concept and development of ship 

structure optimisation from the 1960s to 2003. In the same paper, Rigo introduced an 

optimisation software LBR-5 while Richir et al. (Richir, Caprace et al. 2007) used 

software LBR-5 (Rigo 2003) to solve three objectives optimisation problem. The 

production cost, weight and moment of inertia were selected as objectives and a two–

stage local search heuristic approach (CONLIN) was accepted as an optimisation 

algorithm. Zanic et al. (Zanic, Andric et al. 2007) introduced a decision support 

methodology including optimisation for a multi-deck ship structure. Klanac (Klanac 

and Jelovica 2009) proposed vectorisation and constraint grouping approaches to 

enhance a fast ferry structure optimisation. Klanac (Klanac, Ehlers et al. 

2009)introduced a two-stage optimisation approach to collision simulation. Eamon 

and Rais-Rohani (Eamon and Rais-Rohani 2009) presented a reliability-based 

optimisation method to a composite advanced submarine sail structure. Jang (Jang, 

Ko et al. 2009) employed a multi-objective genetic algorithm (MOGA) to solve a 
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two objectives optimisation problem. Sekulski (Sekulski 2009) used a genetic 

algorithm to solve the problem of weight minimization of a high speed vehicle-

passenger catamaran structure.  

 

This study will use the hybrid algorithm of HCPSO and Q-learning to provide a new 

and fast optimisation method for structural designs.  

8.3.1 The ship model used in this study 

A bulk carrier is selected as the case study and the mid-ship structural will be 

optimisation according to new CSR rules. The main dimensions of this ship model 

are listed in Table 8.25. There are two objectives in this optimisation: weight control 

and fatigue. These objectives will be explained in section 8.3.3.  

 
Table 8. 25 Main dimensions of proposed bulk carrier 

 
Main Dimensions 

Length 180 m 

Breadth 30 m 

Depth to Up. Dk. 16 m 

Design Draft 10.8 m 

Scantling Draft 12.2 m 

CB 0.85  

Speed 14 kn 
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Figure 8. 17 The design variables of mid-ship structure 
 

Figure 8.17 shows the design variables of mid-ship structure. There are 34 design 

variables while the design variables from x1 to x15 are the size of longitudinal 

stiffeners and from x16 to x34 are the shell thicknesses in mm. The Table 8.26 lists 

the minimum and maximum of design variables together with the changing 

increments. The upper bound of the longitudinal is 400mm and the lower bound is 

100mm. The increment is 20 mm. The upper bound of the shell thickness is 10mm 

and the lower bound is 30mm. The increment is 1 mm.  
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Table 8. 26 Optimisation variables with types, bounds and increment 

 
Boundaries 

Design variables 
Lower (mm)Upper (mm)

Increment 
(mm) 

Original 
Design 

x1 longitudinal stiffener 150 350 10 220 
x2 longitudinal stiffener 200 400 10 300 
x3 longitudinal stiffener 150 350 10 240 
x4 longitudinal stiffener 200 400 10 300 
x5 longitudinal stiffener 200 400 10 340 
x6 longitudinal stiffener 150 350 10 280 
x7 longitudinal stiffener 100 200 10 150 
x8 longitudinal stiffener 100 200 10 150 
x9 longitudinal stiffener 200 400 10 320 
x10 longitudinal stiffener 200 400 10 320 
x11 longitudinal stiffener 200 400 10 340 
x12 longitudinal stiffener 200 400 10 260 
x13 longitudinal stiffener 200 400 10 320 
x14 longitudinal stiffener 200 400 10 300 
x15 longitudinal stiffener 100 200 10 150 
x16 shell thickness 10 30 1 25 
x17 shell thickness 10 30 1 25 
x18 shell thickness 10 30 1 22 
x19 shell thickness 10 30 1 22 
x20 shell thickness 10 30 1 22 
x21 shell thickness 10 30 1 25 
x22 shell thickness 10 30 1 25 
x23 shell thickness 10 30 1 22 
x24 shell thickness 10 30 1 22 
x25 shell thickness 10 30 1 22 
x26 shell thickness 10 30 1 15 
x27 shell thickness 10 30 1 15 
x28 shell thickness 10 30 1 15 
x29 shell thickness 10 30 1 15 
x30 shell thickness 10 30 1 15 
x31 shell thickness 10 30 1 15 
x32 shell thickness 10 30 1 15 
x33 shell thickness 10 30 1 15 
x34 shell thickness 10 30 1 22 
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For this calculation, the professional CAE software ABAQUS is utilised to simulate 

and evaluate the designs while computer language JAVA is used as bridge to link the 

ABAQUS and optimisation algorithm. The CAE model is built in ABAQUS (as 

shown in Figure 8.18 ).  

 

 

Figure 8. 18 The design variables of mid-ship structure 

8.3.2 The simulation and calculation process 

8.3.2.1 Objective 1 weight control 

There are twenty-four situations, which need to be checked against the Common 

Structural Rules (CSR). The direct strength analysis will use a probability level of 

810 , and the structure also will take into account of static loads but not dynamic 

loads. In this study, the standard density of steel is to be taken as 7.85 3/t m  

according to CSR. The Flowchart of FE analysis procedure follows the requirement 

of CSR as shown in Figure 8.19.  
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Figure 8. 19 FE analysis procedure (taken from CSR) 

8.3.2.2 Objective 2 fatigue damage  

The fatigue objective selects the joint part of bottom longitudinal and transverse 

bulkhead, which is also one of the key points of ship bulk carrier as the checking 

point. In this part, the new rules of common structural rules for bulk carriers of 

international association of classification society, which is effective from July 2009, 

is accepted. For simplified calculation, only one point as hot point is selected in this 

study. The cumulative fatigue damage D calculated for the combined equivalent 

stress should comply with the following criteria: 

1.0j
j

D D   

Where  

jD : Elementary fatigue damage for each loading condition “j”.  
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8.3.2.3 Constraints in structural optimisation 

Boundary conditions 

The boundary conditions are simply supported in both ends of the model according 

to Table 8.27 and Table 8.28.  

 

Table 8. 27 Rigid-link of both ends (taken from CSR) 

 

 

Table 8. 28 Support condition of the independent point (taken from CSR) 

 

 

6
SW_S_H1 full load 1.5 10    kN mM     

 

6
WV_S_H1 full load 1.56 10    kN mM     

 

Other constraints are accepted from CSR.  

8.3.3 Runs and results 

The Parameters setting in case study for NSGAII and learning based NSGAII is set 

according to Table 8.29. 

 

 

 

 

 

 

6
WV_H_H1 full load 1.48 10    kN mM   
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Table 8. 29 Parameters setting in case study for NSGAII 

 
NSGAII Parameters Setting 

Parameters Name Parameters Value 
SBX (Simulated binary crossover) 10 

polynomial mutation 20 
crossover probabilities 0.9 
mutation probabilities 0.1 

Population 30 
Generation 100 

 

The optimization algorithm is realized via JAVA computer language. The Figure 

8.20 is the intermediate state of calculation in ABAQUS.  

 

Figure 8. 20 The calculation in ABAQUS 
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Table 8. 30 Optimisation variables with their types, bounds and results 

Boundaries Design 
variablesLower (mm) Upper (mm)

Increment 
(mm) 

Original 
Design 

NSGAII 
Learning 
based 
NSGAII

x1 150 350 10 220 200 180 
x2 200 400 10 300 280 280 
x3 150 350 10 240 200 220 
x4 200 400 10 300 350 320 
x5 200 400 10 340 320 320 
x6 150 350 10 280 240 220 
x7 100 200 10 150 140 160 
x8 100 200 10 150 160 160 
x9 200 400 10 320 280 300 
x10 200 400 10 320 260 260 
x11 200 400 10 340 260 270 
x12 200 400 10 260 240 220 
x13 200 400 10 320 280 260 
x14 200 400 10 300 280 280 
x15 100 200 10 150 140 140 
x16 10 30 1 25 22 20 
x17 10 30 1 25 22 20 
x18 10 30 1 22 18 19 
x19 10 30 1 22 18 18 
x20 10 30 1 22 18 19 
x21 10 30 1 25 23 22 
x22 10 30 1 25 22 20 
x23 10 30 1 22 18 19 
x24 10 30 1 22 18 19 
x25 10 30 1 22 17 18 
x26 10 30 1 15 16 15 
x27 10 30 1 15 16 16 
x28 10 30 1 15 15 15 
x29 10 30 1 15 15 14 
x30 10 30 1 15 15 16 
x31 10 30 1 15 17 16 
x32 10 30 1 15 15 15 
x33 10 30 1 15 15 14 

x34 10 30 1 22 20 20 

Objective 1: Weight 45.78 32.17 31.89 

Objective 2: Fatigue 0.812 0.723 0.704 
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The optimisation is performed using a PC (Dual Core 2.4GHz, 3 GB RAM) 

environment. At the end of this run, using proposed method, 3000 different designs 

are obtained in the design space with 812 of them being unfeasible designs. 

Therefore 2188 (=3000-812) feasible designs are filtered in design space of learning 

based NSGAII to obtain only the designs that belong to the Pareto front when for 

NSGAII, 2262 feasible designs are obtained. The selected solutions of the learning 

based NSGAII and NSGAII are listed in Table 8.30 together with the original design. 

From Table 8.30 it can be seen that the weight of the structure has been decreased 

significantly (more than 25%) while the fatigue coefficient decreased at the same 

time. More importantly, for the real design case application, compared to NSGAII, 

learning based NSGAII converges faster and reduces the computing, and hence the 

design time significantly. It is the same as for the stability calculation that the 

improvement between NSGAII and learning based NSGAII is not obvious but 

computation time changes significantly. In ship design, most of the computing time 

is not consumed on the optimisation approach, but rather on the naval architectural 

calculations using third party software. It is important to note that it takes sometimes 

hours for one fitness calculation. In this study, the solution begins converging from 

the 62th generations in learning based NSGAII, while the NSGAII begins 

converging from 84th generations in NSGAII. This means the proposed method 

takes 25% less time in looking for Pareto solutions compared to NSGAII. In a more 

complex environment, such as a real ship application with many objectives, this 

provides an advantage in terms of completing the design faster and thus cheaper. 

8.4 Discussion  

A subdivision design problem is selected as case study to evaluate this learning based 

support system. SOLAS is selected and three objectives are selected for optimisation. 

The study shows the system can draw experience from prior work and make a 

successful optimisation design. The final result has better performance comparing to 

original design. 

 

With regards to the real ship design case, structural optimisation of a bulk carrier, 

with two conflicting objectives (weight and fatigue), is carried out. For the operation 
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platform, a JAVA based optimisation system and ABAQUS has been integrated into 

optimisation framework.  

 

The proposed algorithm provides improved design compared to the original design in 

every chosen objective with a significant margin and demonstrates the value of this 

method. In this design case, the proposed algorithm displays better performance both 

in speed and final results. The proposed algorithm is structured via a multi-agent 

system and every agent works remarkably well. It can be concluded that the 

proposed approach has shown great potential and can be applied to similar and even 

more complex optimisation problems in ship design, as well as to related areas 

within the maritime industry. 
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Chapter 9 

 

 

Discussions and Conclusions 

 

9.1 General 

In this study, a systematic learning based decision support system is proposed and 

developed for ship decision practice. The research focuses on solving gaining 

experience /learning problem in the ship design work. The nature of ship design 

raises a requirement for sharing the experience. Current approaches for decision 

support system are based on simulation and performance evaluation of ship design 

but do not include gaining experience or learning in ship design. As a complex 

systematic engineering field, the design work depends largely on the experience of 

experts. This means that the quality of design is decided, to a great extent, by the 

specialists’ personal skills. This makes it difficult for the development of a design 

support system and fast design. In this thesis, the design decision support system, 

which deploys the learning method to help the system to gain experience from 
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previous cases is developed. The system can automatically apply these experiences 

to the design process and make predictions for the design problem.           

 

In this thesis, many learning approaches including decision tree, CBR, Q-learning, 

SVM etc. are studied together. All of these approaches are composed of a systematic 

method for dealing with the learning problem in the ship design process. The 

research focuses on the experience database building, advanced algorithms on 

optimisation, learning based real time controlling in optimisation process and 

learning based decision making process. The research of the learning ability of ship 

design decision support system presented in this thesis is the first and it is expected 

to pave the way for future studies in this field. In view of the study undertaken the 

discussions are divided into several sections. In this chapter, the contributions and 

novelties are discussed while the encountered difficulties are presented. In the 

recommendation, the suggestions of design practice are discussed while a number of 

recommendations and further work considerations are suggested.  

9.2 Key contributions and novelties  

This study is the first to propose to deploy the machine learning method to assist the 

experience sharing in ship design. The different machine learning approaches are 

applied on different cases of the proposed system in ship design. 

 

The proposed system changes the ship data storing model. It uses a hybrid database 

model which analyses the relationships and stores these relationships in order to 

replace the traditional data storing model. This new database model improves the 

efficiency of data utilization when it greatly reduces the task of designers.  

 

A new optimisation method HCPSO is created. The HCPSO has excellent 

performance on both numerical functions and practical design with very easy 

parameter setting which leads to faster convergence. This research studies the 

performance of this new algorithm and presents the setting of the usual parameters of 

this algorithm. 
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In the proposed system, the Q-learning approach is to be applied for the first time 

onto the real time ship design optimisation. The run time of optimization is further 

reduced via intelligently predicted solution space. This study also presents the 

examples of combining the Q-learning with GAs and HCPSO. 

 

This study successfully improves the traditional decision making method. It solves 

the automatic updating and the algorithm no longer depends on manual calculation 

and EXCEL tools, and the proposed system will calculate automatically. The Support 

Vector Machine is successfully imported into the decision making method in order to 

solve the issue of a lack/unavailability of expert.  

 

The multi-agent idea is applied into the proposed system and a platform is developed 

for linking different third party software.  

9.3 Discussions 

In the light of the objectives outlined in Chapter 1, the research presented in this 

thesis focuses on the development of the learning based ship design decision system. 

The multi-agent framework is deployed to realize this system in a JAVA 

environment. The learning function of the system has been studied from theory to 

practice.  

 

The SDLL as a new type of experience database is the basis of the whole system. 

The SDLL extends the function of storing the data to discovering all kinds of 

knowledge including implicit relationships from the previous cases. The attributes of 

the cases have been divided into two classes: numerical and linguistic. The 

corresponding learning approaches are given. The decision tree is selected to deal 

with the numerical attribute. The numerical attribute is created before it is 

determined and the tree is produced by the system together with the final results, 

when it is applied on real cases. 

 

The CBR is employed to deal with the linguistic attribute, which would not be 

analyzed until the system needs to use it. In the study, a new method is created to 
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measure the distance between different linguistic attributes. The linguistic attributes 

are divided into different parts for calculating the distance. XML is the data format of 

SDLL, which can automatically analyze the relationships of every attributes and 

mining these relationship as the design regulations.  

 

The optimisation approaches in ship design are studied and a new HCPSO algorithm 

has been proposed and realized via a multi-agent framework. The HCPSO is one of 

the hybrid algorithms based on PSO and has a much quicker convergence rate than 

most other algorithms. For the optimisation in ship design, one of the most important 

application problems is the time cost. Since the evaluation of fitness function is 

processed via a third party software, this process will cost a lot of time. However, 

fast design is one of the main development directions for marine design, therefore it 

is necessary to have a new algorithm which can cost much less time to run and 

provides good interface for the learning method. The PSO algorithm has less 

parameters and better convergence than GA algorithm. The HCPSO inherits this 

performance of PSO and the less the number of parameter settings easier the 

controlling and embedding for the learning model.   

 

The real time learning has been realized via Q-learning algorithm in this system. The 

discrete character of ship design is fully utilized into Q-learning algorithm. The 

system develops the real time learning as an independent module, so the optimisation 

algorithm can deploy it to improve the performance of different optimisation 

approaches. The combined applications of learning model and HCPSO, and Learning 

model and NSGAII have been introduced in Chapter 6. The comparison of original 

optimisation and optimisation approach with learning ability has been processed to 

show the advantages of the learning model. The results have shown that the 

optimisation with the learning model had a quicker convergence rate. Different look-

up tables have been tested for comparing the efficiency. 

 

The new integrated fuzzy multiple attribute decision-making (FMADM) approach 

with learning ability has been developed for the support system. The decision-

making approach is rebuilt via a multi-agent framework. The new agent can deal 
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with the problem independently and collaborate together to solve the .decision 

making problem. What is more, the rebuilding of approach makes this approach 

suitable for modularization. This makes the updating of the approach also very easy. 

The new integrated approach can deploy a different ranking model to improve the 

efficiency of ranking.   

 

The specialist committee and technology manager are the key factors of the 

FMADM and decide the using efficiency of this method. This support system builds 

the virtual specialist committee and technology manager via learning approach to 

replace the human beings. The virtual specialist committee and technology manager 

can give the evaluation to the design solutions via the learning approach when the 

human specialists are absent. The SVM method was employed to deal with the small 

samples situation. The prior evaluations as examples are analyzed and used to find 

the relationships, and then when the new case comes, the system can give the 

prediction. The virtual specialist committee and technology manager can also reduce 

the time of decision making by calling human specialists, if they are available.  

 

The JAVA language and multi-agent system framework are deployed to realize the 

whole support system. The smart environment was created via JAVA to simplify the 

system. The agent and agent group in the system are independent and there is no 

chief agent to control other agents. The agents make dialogue and information 

sharing via smart environment. The conflict solving follows the previous work.  And 

the multi-task and parallel computing have been taken into account. It is proven that 

the system is suitable for concurrent engineering.  

 

The subdivision design problem, one of the important design problems, was selected 

to evaluate the system. The system successfully found the solutions to the 

optimisation. The NAPA software as fitness function calculation tool is employed to 

make evaluations. A RORO ship was selected and new SOLAS 2009 was applied as 

design standards.  



 230

9.4 Recommendations 

In the design and application of this learning based ship design decision support 

system, there are some discussions and considerations raised that will benefit the ship 

designers. These recommendations are also useful for the developers of support 

system for future research as well. 

 

The partition of linguistic attributes should not be too small. On the other hand too 

large a span will reduce the practicality of the system on example cases. The distance 

of every attribute is systematically considered by the system. If there are weights for 

the attributes, the system can give correct evaluation to these attributes, but most of 

the time, there are no weights. So the designers should be more careful for linguistic 

attributes. 

  

The initial value settings are important for the optimisation of PSO and GAs. In these 

study cases, all the applications are given in a random selection of design values. For 

the real ship design problems, the initial values were also selected via initial design. 

This means that the system selected the initial design and these randomly selected 

other designs via different design variables. In the engineering application area, there 

is another way to give initial values according to fitness function, and the different 

initial values would cause a big difference for optimisation results especially in 

engineering applications. One of the reasons is the engineering application 

sometimes can not get final Pareto global optimal solutions. Therefore the initial 

values play an important role on the outcome of the final optimisation solutions. The 

ship designers should try different initial values and select the best solutions. 

 

The other problem is the running time and parameter settings. The GAs and PSO are 

all heuristic methods, which mean the performance depends on the population and 

generation. Different population and generation will cause different results. The 

parameter setting is very important for heuristic algorithm. For different optimisation 

problem, the parameters setting should be adjusted. The HCPSO provides the 

principles of selecting the parameters and for other approaches reader should refer to 
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related literature. In summary, the improvement of running time via different 

parameter settings is a good way for finding the good solutions.   

 

The link of this system and NAPA software is MACRO language. The MACRO 

language is the bridge and calls every calculation model. The output media of this 

bridge is text and text is also the input file media of the system in which the text file 

is the window of the application. Most results are shown in text files and therefore if 

the designers want to check the running process, checking the text file is a good 

choice. 

9.5 Future Work 

The learning based decision design support system successfully solved the 

experience sharing problem in the design support area. The following aspects need 

further study in order to improve the learning ability together with increasing the 

efficiency of design decision support system.  

 

a. The linguistic attribute operations in SDLL need further study for finding a more 

effective approach for better classifying. In this study, the lazy method is 

employed to avoid useless treatments for the linguistic and leaves it to operate 

until the new case needs this information. If a more effective method can be 

found to treat the linguistic before it is used, it will further reduce the system’s 

run time. 

b. The data format of SDLL can be updated. In SDLL, XML is accepted to 

represent the data. XML language is simple and easy to understand but it is not 

powerful enough to operate large scale data. Moreover, one of the advantages of 

XML is the online function, which is also the developing direction of this system. 

However in current research, this direction is not studied fully. 

c. The systematic optimisation method should be developed to give more choices 

for the designers. In this study, the HCPSO, NSGAII is integrated into the system. 

This system also gives the interface to the third party software Model Frontier. 

But the detailed comparison of every approach from full ranges including initial 

value, parameter setting etc. should be processed to improve the calculation 
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ability of the system.  

d. The conflict solving is an important research field from prior work to current 

research. This is also the important and very popular research area of multi-agent 

system. In this study, the simplified method was deployed and has been proven 

that it was effective. However for more complex society learning, the system 

method needs to be applied to this system. Currently, the research of society 

learning is at the starting stage and when new approaches are mature or 

developed, further study should be promoted to improve the performance of the 

system.  

e. Q-learning approach in this study uses the look-up table which is effective for 

finite and discrete environment. When a more complex design environment is 

developed, a more effective approach should be utilised.  

f. The examples used for HCPSO are unconstrained test functions. But there are 

always a large number of constraints in practical work of ship design. So the 

constraint test functions should be considered in future studies. When these test 

functions are tested, in addition to comparison of the generation numbers, the 

comparison should also include CPU time to demonstrate the high effectiveness 

of test functions.  

 

More design problems should be tested in order to evaluate further this support 

system to extend the application ranges. More software such as ANSYS, CATIA 

should be employed to test the interface. As a design decision support system, it 

needs to be extended to different tasks to test the efficiency. 

9.6 Conclusions  

The aim of this research work is to develop a multi-agent ship design decision 

support system with learning ability, which can automatically improve the design 

according to the experience gained from the agents’ self-determination for learning. 

There have been several conclusions derived from this research, however, the main 

conclusions emerging from this thesis are detailed as follows: 
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The HCPSO displays excellent performance with simple parameters setting, 

compared to other optimisation approaches such as NSGAII. For both generic 

optimisation functions and ship design applications, it improves significantly the 

accuracy as well as the computing time (run time)  

 

However, these swarm optimisation and genetic algorithms are all sensitive to the 

parameters setting. When the population and generation in engineering optimisation 

are limited, the different parameters setting have a great influence on the final results. 

Therefore there is a huge risk by simply accepting random parameters without proper 

analysis The numerical analysis is necessary before engineering application. 

 

When the learning function is combined with the optimization approach, it improves 

the quality of design as well as the design time. In some practical applications, it may 

have limitations on improving the quality of solutions further but the runtime will be 

reduced greatly. A significant part of the total run time is taken up by the third party 

software, in comparison to the optimisation process which only takes up a small part 

of the run time. Therefore in order to reduce the time, focus should be on reducing 

the call frequency of third party software in optimisation. In decision based ship 

design process, the Q-learning approach as reinforcement learning is very suitable 

for practical application. The integrated optimisation methods with the Q-learning 

module greatly improve the speed of convergence whilst the accuracy of the solution 

is maintained. The reduced time greatly improves the efficiency of the proposed 

system as well as the suitability for the practical design applications.  

 

The independent agent structure of Q-learning increases the robustness of real world 

application and extends the adaptability of the methodology which means that this 

method can be applied properly to any optimisation approaches.  

 

A multi-agent system can improve the efficiency of the system. The communication 

among the agents and environments is important to run the multi-agent system. In 

order to improve the system efficiency further, the conversation mechanism should 

be prioritized. The multi-agent system structure, adopted in this study, fits exactly to 
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the nature of concurrent engineering on ship design. The multi-agent system better 

describes the design process and it is very easy to understand when this system is 

applied in practical design.  

 

When the multi-agent system is utilised for parallel processing of ship design, it 

changes the traditional linear design to group design, which means every design 

process employs agents to operate different tasks. The intelligent environment takes 

charge of the communication among agents. This mode greatly improves the 

efficiency of the proposed system. What is more, the multi-agent structure makes the 

replacement of agents easier and the up-to-date knowledge can be used quickly.  

 

In the decision making after optimization, the training samples are sensitive for 

machine learning methods. Before application, the training samples should be 

revised by the designers carefully. The machine learning based decision making 

solves the absence of experts using the previous experience to replace the human 

experts. This method successfully solves the problem of the final selection from 

Pareto solutions after optimisation. In traditional approaches; this selection is 

dependent on the choice of human experts each time, thus making the selection 

difficult. This improvement makes the proposed system suitable for fast design of 

ships. The designers can get the final solution directly and immediately without 

waiting for the evaluations from human experts. 
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Appendix A 

 
 

Case Study for SDLL 

A Ropax ship design is selected to evaluate this new integrated learning approach. 

The aim of this case study is to solve the problem of selection of attributes in ship 

design, as this is a common problem in concept design. In most situations, the ship 

owner provides several basic requirements and the naval architects should provide 

the range of detailed attributes according to previous design cases. The difficulty of 

this design problem is that naval architects have to use the past experience to select 

the best design case on the balance of other attributes.  

 

The operation of this case study is organized according the process which is 

presented in Figure A.1.   

 

Pre-treatment Stage 

 

The aim of this stage is to introduce the previous design instances, as in this step, 

these design instances are simply stored in the system without any category.  

 

There are fourteen Ropax ships with six attributes including five numerical attributes 

and one linguistic attribute as shown in Table A.1. The requirement of ship owner is 

to design a new Ropax ship with speed higher than 20 knots and very good cargo 
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capacity. So the designers and design decision support system should select the 

ranges of other attributes.  

 

Figure A.1  Workflow of case study of Ropax ship 

 

Stage 1 distinguish numerical or linguistic 

 

The aim of stage 1 is to distinguish the different categories (numerical or linguistic) 

of six attributes.  

 

From Table A.1, Length, Breadth, Design Draft, Deadweight and Speed are 

numerical attributes and these attributes will be entered into the decision tree part. 

The ability of Capacity belongs to linguistic form and will be directly entered into 

the data warehouse  which means that it will not be operated until application stages.  

 

Stage 2 Find root node 

 

The aim of stage 2 is to find the root node for the whole decision tree, which is the 

most important step for building this decision tree. 
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In order to find the root node, a classification is necessary to tell the design decision 

support system which instances are good and which instances are bad for this 

situation. The training examples can be classified into two groups according to the 

speed (20 knots): 

 

Less than 20 knots (8): No 1, 2, 4, 5, 6, 9, 10, 13， 

More than 20 knots (6):  No 3, 7, 8, 11, 12, 14 

 

Because the new design requires that the speed is higher than 20 knots, this study 

will define the cases with more than 20 knots as YES and others as NO. So there are 

eight training examples belonging to YES and six training examples belonging to 

NO. According to definition and explanation given in section 4.4.2, Equation (4.1) 

can be rewritten as Equation (A.1): 

 

2 2( ) log ( ) log ( )
p p p p

Entropy S
p p p p p p p p

   

       

  
   

       (A.1) 

In this example: 

2 2( ) (6 /14) log (6 /14) (8 /14) log (8 /14)

                   0.9852

Entropy S   

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Table A. 1 The training sets of fourteen ROPAX ships 
 

Att. 
Length     

m 
Breadth   

m 
Design Draft 

m 
Deadweight 

t 
Speed    
knots 

The ability 
of Capacity

Type of 
Att. 

numerical numerical numerical numerical numerical linguistic 

Case No       

1 169.00 25.60 6.70 11843 14.60 good 

2 150.43 23.40 5.60 6200 19.20 normal 

3 166.75 23.40 5.80 6170 22.00 normal 

4 183.00 28.70 6.80 9005 18.70 very good

5 126.40 21.00 6.00 5238 18.00 normal 

6 142.50 23.20 5.00 4888 18.00 normal 

7 264.60 32.26 10.70 39087 20.60 good 

8 197.00 25.90 7.00 9000 21.10 very good

9 141.26 21.00 6.00 4500 19.20 excellent 

10 183.40 25.20 7.50 12500 18.00 normal 

11 152.00 23.60 6.30 7200 20.00 normal 

12 157.96 25.20 6.50 7666 22.30 normal 

13 193.00 26.00 6.60 10090 18.00 normal 

14 255.72 35.97 8.99 21133 24.00 excellent 

 

Then, the gain of every attribute will be calculated for analysis. In order to determine 

the gain, the intermediate value is calculated. The Table A.2 shows the intermediate 

value of every attributes. 

 

Table A. 2 The intermediate value and calculation point of selected attributes 
 

Att. 
Length   

m 
Breadth  

m 

Design 
Draft   
  m 

Deadweight 
t 

Type of Att. numerical numericalnumerical numerical 
The calculation point 195 25 6.5 8000 
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In Table A.2, the calculation point is the dividing point to separate this attribute into 

different range. This point can be decided by the designers according to rules, 

regulations and experience. For example, in this study, the calculation point is 

decided by experience on Ropax ships.  

 

1. Length (m)  

Table A.3 Gain of length attribute in level 1 

 

 

The Table A.3 shows the gain value of length attribute in the root node calculation. 

The column I is the amount of ships with the length less than 195 m and column II is 

the ship with the length more than 195 m. The ‘AI’ is the ship cases with speed more 

than 20 knots in column I and ‘BI’ is the ship cases with speed less than 20 knots in 

column I. The ‘AII’ is the ship cases with speed more than 20 knots in column II and 

‘BII’ is the ship cases with speed less than 20 knots in column II. The ‘AI’ and ‘BI’ 

are used to calculate 195( )Entropy S  according to Equation A.1, which is the basic 

part for Gain calculation. The ‘AII’ and ‘BII’ are used to calculate 195( )Entropy S . 

( 195, 195)

195 195

( , ) ( ) ( )

11 3
                          ( ) ( ( ) ( ))

14 14

Values L L

Sv
Gain S Length Entropy S Entropy Sv

S

Entropy S Entropy S Entropy S

  

 

 

  


 

195 2 2( ) (3 /11) log (3 /11) (8 /11) log (8 /11)

                       0.8454

Entropy S   


 

195 2 2( ) (3 / 3) log (3 / 3) (0 / 3) log (0 / 3)

                       0

Entropy S   


 

So Gain can be obtained from Equation 4.2: 
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195 195

11 3
( , ) ( ) ( ( ) ( ))

14 14
11 3

                          0.9852 ( 0.8454) ( 0)
14 14

                          0.3210

Gain S Length Entropy S Entropy S Entropy S   

    



 

The Max-Gain has been explained in section 4.4. According to the explanation, this 

gain means the smallest expected size of the sub-trees of this node. Here the gain is 

calculated on the information theory and the aim of this calculation is to compare 

with other gains of the attributes to decide the root node.  

 

2. Breadth (m) 

Table A.4 Gain of Breadth attribute in level 1 

 B1 (<25) B2 (≥25) B 
Yes (Speed≥20) 2 4 6 
No (Speed<20) 4 4 8 

Sum 6 8 14 
 

25 2 2( ) (2 / 6) log (2 / 6) (4 / 6) log (4 / 6)

                        0.9183
BEntropy S    


 

 

25 2 2( ) (4 / 8) log (4 / 8) (4 / 8) log (4 / 8)

                        1
BEntropy S    


 

( 25, 25)

25 25

( , ) ( ) ( )

6 8
                          ( ) ( ( ) ( ))

14 14
6 8

                          0.9852 ( 0.9183) ( 1)
14 14

          

Values B B

B B

Sv
Gain S Breadth Entropy S Entropy Sv

S

Entropy S Entropy S Entropy S

  

 

 

  

    



                0.0202

 

 

 

 

3. Design Draft 
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Table A.5 Gain of Draft attribute in level 1 

 D1 (<6.5) D2 (≥6.5) D 
Yes (Speed≥20) 2 4 6 
No (Speed<20) 4 4 8 

Sum 6 8 14 
 

6.5 2 2( ) (2 / 6) log (2 / 6) (4 / 6) log (4 / 6)

                        0.9183
DEntropy S    


 

 

6.5 2 2( ) (4 / 8) log (4 / 8) (4 / 8) log (4 / 8)

                         1
DEntropy S    


 

( 6.5, 6.5)

6.5 6.5

( ,Design Draft) ( ) ( )

6 8
                          ( ) ( ( ) ( ))

14 14
6 8

                          0.9852 ( 0.9183) ( 1)
14 14

 

Values D D

D D

Sv
Gain S Entropy S Entropy Sv

S

Entropy S Entropy S Entropy S

  

 

 

  

    



                         0.0202

 

 

4. Deadweight 

Table A.6 Gain of Deadweight attribute in level 1 

 DW1 (<8000) DW2 (≥8000) D 
Yes (Speed≥20) 3 3 6 
No (Speed<20) 4 4 8 

Sum 7 7 14 
 

 

 

 

8000 2 2( ) (3 / 7) log (3 / 7) (4 / 7) log (4 / 7)

                            0.9852
DWEntropy S    


 

8000 2 2( ) (3 / 7) log (3 / 7) (4 / 7) log (4 / 7)

                            0.9852
DWEntropy S    


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( 8000, 8000)

8000 8000

( , ) ( ) ( )

7 7
                                   ( ) ( ( ) ( ))

14 14

                                   0.98

Values DW DW

DW DW

Sv
Gain S Deadweight Entropy S Entropy Sv

S

Entropy S Entropy S Entropy S

  

 

 

  





7 7
52 ( 0.9852) ( 0.9852)

14 14
                                   0

   



 

The gain of attribute is equal to zero. This means that this node has merely to divide 

the cases into tow parts equally. In other words, this node is not the good node to 

divide the cases. 

 

All the gain values of attributes are collected in Table A.7. 

 

Table A.7 Gain of attributes in level 1 

No Gain Name Value 
1 Length 0.3210 
2 Breadth 0.0202 
3 Design Draft 0.0202 
4 Deadweight 0 

 

According to the results on gain measure, the Length attribute has the max-gain, 

which means it provides the best prediction of the target attribute over the training 

examples. So Length is selected as the decision attribute for the root node. After the 

update, the new calculation will be performed to decide the sublevel. 

 

Stage 3 Find children node 

The aim of stage 3 is to make clear the children node of level 1. The level 1 means 

the root node level.  

 

Because the Length has been selected as root node, only three node candidates are 

left: Breadth, Design Draft and Deadweight. 

 

 

Stage 4 Find sub-root node 
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The aim of stage 4 is to find the second level root node.  

 

Because Length is selected as the root node, the training cases will be divided into 

two parts the ships with length less than 195 m and the ships with length more than 

195 m.  

 

Part 1 The length less than 195 m (as shown in Table A.8) 

 

Table A.8 The training set of the length less than 195 m in level 2 

Att. 
Length     

m 
Breadth   

m 
Deign 

Draft   m
Deadweight 

t 
Speed    
knots 

The ability 
of Capacity

Type of 
Att. 

numerical numerical numerical numerical numerical linguistic 

Case No       

1 169.00 25.60 6.70 11843 14.60 good 

2 150.43 23.40 5.60 6200 19.20 normal 

3 166.75 23.40 5.80 6170 22.00 normal 

4 183.00 28.70 6.80 9005 18.70 very good

5 126.40 21.00 6.00 5238 18.00 normal 

6 142.50 23.20 5.00 4888 18.00 normal 

9 141.26 21.00 6.00 4500 19.20 excellent 

10 183.40 25.20 7.50 12500 18.00 normal 

11 152.00 23.60 6.30 7200 20.00 normal 

12 157.96 25.20 6.50 7666 22.30 normal 

13 193.00 26.00 6.60 10090 18.00 normal 

 

Except for the attribute of Length, there are three attributes and they are calculated as 

follows.  

 

In this part,  

Ships with the speed less than 20 knots (8): No 1, 2, 4, 5, 6, 9, 10, 13 

Ships with the speed more than 20 knots (3):  No 3, 11, 12 
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2 2( ) (8 /11) log (8 /11) (3 /11) log (3 /11)

                  0.8454

Entropy S   


 

 

1. Breadth (m) 

Table A.9 Gain of Breadth attribute in level 2 

 B1 (<25) B2 (≥25) B 
Yes (Speed≥20) 2 1 3 
No (Speed<20) 4 4 8 

Sum 6 5 11 
 

25 2 2( ) (2 / 6) log (2 / 6) (4 / 6) log (4 / 6)

                        0.9183
BEntropy S    


 

 

25 2 2( ) (1/ 5) log (1/ 5) (4 / 5) log (4 / 5)

                       0.7219
BEntropy S    


 

( 25, 25)

( , ) ( ) ( )

6 5
                          0.8454 ( 0.9183) ( 0.7219)

11 11
                          0.0164

Values B B

Sv
Gain S Breadth Entropy S Entropy Sv

S  

 

    





 

 

2. Design Draft 

Table A.10 Gain of Draft attribute in level 2 

 D1 (<6.5) D2 (≥6.5) D 
Yes (Speed≥20) 2 1 3 
No (Speed<20) 4 4 8 

Sum 6 5 11 
 

6.5 2 2( ) (2 / 6) log (2 / 6) (4 / 6) log (4 / 6)

                        0.9183
DEntropy S    


 

6.5 2 2( ) (1/ 5) log (1/ 5) (4 / 5) log (4 / 5)

                        0.7219
DEntropy S    


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( 6.5, 6.5)

6.5 6.5

( ,Design Draft) ( ) ( )

6 5
                          ( ) ( ( ) ( ))

11 11
6 5

                          0.8454 ( 0.9183) ( 0.7
11 11

Values D D

D D

Sv
Gain S Entropy S Entropy Sv

S

Entropy S Entropy S Entropy S

  

 

 

  

    



219)

                          0.0164

 

 

3. Deadweight 

Table A.11 Gain of Deadweight attribute in level 2 

 DW1 (<8000) DW2 (≥8000) D 
Yes (Speed≥20) 3 0 3 
No (Speed<20) 4 4 8 

Sum 7 4 11 
 

8000 2 2( ) (3 / 7) log (3 / 7) (4 / 7) log (4 / 7)

                            0.9852
DWEntropy S    


 

 

8000 2 2( ) (0 / 4) log (0 / 4) (4 / 4) log (4 / 4)

                            0
DWEntropy S    


 

( 8000, 8000)

8000 8000

( , Deadweight) ( ) ( )

7 4
                          ( ) ( ( ) ( ))

11 11
7 4

                          0.8454 ( 0.9852) (
11 1

Values DW D

DW DW

Sv
Gain S Entropy S Entropy Sv

S

Entropy S Entropy S Entropy S

  

 

 

  

   



0)
1

                          0.2185





 

 

Table A.12 Gain of attributes on the range of the length less than 195 m in lever 2 

 
No 

Gain Name Value 

1 Breadth 0.0164 

2 Design Draft 0.0164 

3 Deadweight 0.2185 
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According to the results on gain measure in Table A.12, the Deadweight attribute has 

max-gain. So, the Deadweight attribute is selected as one of the nodes of level 2. 

 

Part 2 The length more than 195 m (as shown in Table A.13) 

 

Table A.13 The training set of length more than 195 m in level 2 

Att. 
Length   

m 
Breadth   

m 
Deign 

Draft    m

Lane 
length    

m 

Deadweight 
t 

Speed    
knots 

The ability 
of Capacity

Type of Att. numerical numerical numerical numerical numerical numerical linguistic 
Case No        

7 264.60 32.26 10.70 6100 39087 20.60 good 
8 197.00 25.90 7.00 2820 9000 21.10 very good 
14 255.72 35.97 8.99 7200 21133 24.00 excellent 

 

In this part, the speeds of all examples are more than 20 knots. So they will not be 

analysed. This means the length more than 195 corresponds to the speed more than 

20 knots indicating that this node (length more than 195) can directly be used as sub-

root-node. The ship with the length more than 195 has the character of speed over 20 

knots.  

 

So in the level 2, there is one node: Deadweight attribute for the length less than 195 

m.  

 

Stage 5 Find sub-children node 

 

The aim of stage 5 is to find the left attributes for the next level. When Deadweight 

has been decided as root node of level 2 with Length is the root node of level 1, there 

are only two attributes being left: Breadth and design draft. 

 

Return to Stage 4 Find sub-root node 
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The calculation will be continued to decide the nodes in level 3. So the calculation 

returns to stage 4. According to stage 5, there are two attributes: Design draft and 

Breadth which will be taken in to account. 

 

Part 1 in level 3 (Deadweight less than 8000t and length less than 195 m)  

 

Table A.14 The training set of Deadweight less than 8000t, 

Length less than 195 m in level 3 

Att. 
Length     

m 
Breadth   

m 
Deign 

Draft   m
Deadweight 

t 
Speed    
knots 

The ability 
of Capacity

Type of 
Att. 

numerical numerical numerical numerical numerical linguistic 

Case No       

2 150.43 23.40 5.60 6200 19.20 normal 

3 166.75 23.40 5.80 6170 22.00 normal 

5 126.40 21.00 6.00 5238 18.00 normal 

6 142.50 23.20 5.00 4888 18.00 normal 

9 141.26 21.00 6.00 4500 19.20 excellent 

11 152.00 23.60 6.30 7200 20.00 normal 

12 157.96 25.20 6.50 7666 22.30 normal 

In this part, 

Ships with the speed less than 20 knots (5): No 2, 5, 6, 9, 11 

Ships with the speed more than 20 knots (2): No 3, 12 

 

2 2( ) (5 / 7) log (5 / 7) (2 / 7) log (2 / 7)

                  0.8631

Entropy S   


 

 

2. Breadth (m)  

Table A.15 Gain of Breadth attribute in level 2 

 B1 (<25) B2 (≥25) B 
Yes (Speed≥20) 2 1 3 
No (Speed<20) 4 0 4 

Sum 6 1 7 
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25 2 2( ) (2 / 6) log (2 / 6) (4 / 6) log (4 / 6)

                        0.9183
BEntropy S    


 

 

25 2 2( ) (1/1) log (1/1) (0 /1) log (0 /1)

                       0
BEntropy S    


 

( 25, 25)

( , ) ( ) ( )

6 1
                          0.8631 ( 0.9183) ( 0)

7 7
                          0.0760

Values B B

Sv
Gain S Breadth Entropy S Entropy Sv

S  

 

    





 

 

2. Design Draft 

Table A.16 Gain of Draft attribute in level 2 

 D1 (<6.5) D2 (≥6.5) D 
Yes (Speed≥20) 2 1 3 
No (Speed<20) 4 0 4 

Sum 6 1 7 
 

6.5 2 2( ) (2 / 6) log (2 / 6) (4 / 6) log (4 / 6)

                        0.9183
DEntropy S    


 

 

6.5 2 2( ) (1/1) log (1/1) (0 /1) log (0 /1)

                       0
DEntropy S    


 

( 6.5, 6.5)

6.5 6.5

( , Design Draft) ( ) ( )

6 1
                          ( ) ( ( ) ( ))

7 7
6 1

                          0.8631 ( 0.9183) ( 0)
7 7

     

Values D D

D D

Sv
Gain S Entropy S Entropy Sv

S

Entropy S Entropy S Entropy S

  

 

 

  

    



                     0.0760

 

Table A.17 Gain of attributes on the range of Deadweight less than 8000t, 

Length less than 195 m in level 3 

 
No 

Gain Name Value 

1 Breadth 0.0760 

2 Design Draft 0.0760 
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From the Table A.17, it can be seen that the gains of Breadth and Design Draft are 

the same. This means If any one of these two attributes can be selected as nodes, the 

size of sub-tree are same, in other words, these two attributes have no difference 

whether they are dominate or non-dominate.  

 

The reason for this situation can be studied by analysing the data in Table A.14. In 

Table A.14, if design draft is more than or equal to 6.5 m (only instance 12 satisfies 

this condition in Table A.14), the speed is more than 20 knots (the speed of instance 

12 is more than 20knots) and if breadth is more than 25 m (still only instance 12 

satisfies this condition in Table A.14), the speed is also more than 20 knots. So the 

instance 12 is the different instance for other instances. Other instances can not be 

classified according to current information. In the programming of proposed system, 

if all gains are the same, the system will randomly select one of the attributes as root 

node. Here, in this case, the breadth is selected as node. The instances with Breadth 

attribute of less than 25 m are classified as speed less than 20.  

 

But from Table A.14, there are two instances (instance 3 and 11) which are not 

correct according to this classification. In an ideal state, all the instances can be 

correctly classified using calculation point. But in practice, there are error points 

which can not be correctly classified in decision tree. The reason is that the 

calculation point is decided by experience or rules and it sometimes can not be 

correct for all design situations. If the system thinks these errors are big enough to 

effect the classification, it will automatically revise the dividing point. In this case, 

two error instances can be accepted. So it is normal to have error points and the 

decision tree will be modified in the following run which will revise these error 

points.  

 

Part 2 in level 3 (Deadweight more than 8000t and length less than 195 m) 
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Table A.18 The training set of Deadweight more than 8000 t, 

Length less than 195 m in lever 3 

Att. 
Length     

m 
Breadth   

m 
Deign 

Draft   m
Deadweight 

t 
Speed    
knots 

The ability 
of Capacity

Type of 
Att. 

numerical numerical numerical numerical numerical linguistic 

Case No       

1 169.00 25.60 6.70 11843 14.60 good 

4 183.00 28.70 6.80 9005 18.70 very good

10 183.40 25.20 7.50 12500 18.00 normal 

13 193.00 26.00 6.60 10090 18.00 normal 

 

As it can be seen in Table A.18, the speeds of all the examples are less than 20 knots. 

So there is no need for further analysis. 

 

 

Stage 6 Build decision tree 

 

The Figure A.2 is the final decision tree according to above analysis.   
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Figure A. 2 The final decision tree 
 

The Figure A.2 displays the whole decision tree in this case. In the practical ship 

design process, the experience is important for the creative objective. For example, in 

the optimisation process of ship design, the boundaries and steps are very important 

for optimisation. If the wrong or unsuitable boundaries and steps are used, the quality 

of the optimisation will be greatly reduced. Normally, the optimisation will select 

rules as the boundaries but this selection is fuzzy measurement and for some design 
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variables, there are no clear definition in rules and regulations. Therefore, how to use 

the experience to assist the range of design variables has to become a critical 

problem. Over wide range will effect the feasible of design when narrow range will 

limit the optimisation results. The designers have to check many of previous cases to 

obtain experience.  

 

This SDLL provide a good selection for the above situation. From Figure A.2, if the 

designers want to design a new ship which speed is more than 20 knots, they can 

select the length more than 195m or the length less than 195m but breadth more than 

or equal to 25 m. When the length is limited to less than 195m, the breadth will be 

more than or equal to 25 m. 

 

The design aim is a new ROPAX ship with speed higher than 20 knots and very good 

cargo capacity. According to Figure A.2, there are two ways to select the design. One 

is the length more than 195 m. The other is the length less than 195 m but 

deadweight less than 8000 t and breadth more than 25 m. In this study, the designer 

selects length more than 195m (calculation point). The corresponding instances are 

listed in Table A.19.  

 

Stage 7 Retrieve cases 

 

The aim of stage 7 is to find previous instances which satisfy the selection standard 

according to the decision tree built in stage 6.  

 

The requirement of very good cargo capacity is taken into account and CBR method 

used to select solutions from Table A.19.  
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Table A.19 The examples with length than 195m 

Att. 
Length     

m 
Breadth   

m 
Deign 

Draft   m
Deadweig

ht   t 
Speed    
knots 

The ability 
of Capacity

Type of 
Att. 

numerical numerical numerical numerical numerical linguistic 

Case No       

7 264.60 32.26 10.70 39087 20.60 good 

8 197.00 25.90 7.00 9000 21.10 very good

14 255.72 35.97 8.99 21133 24.00 excellent 

Stage 8 Reuse cases 

 

The aim of stage 8 is to use the instances in Table A.19 to provide a new design.  

 

In this study, simple relationship between fuzzy numbers and linguistic attributes are 

provided as shown in Table A.20: 

 

Table A.20 The relationship of linguistic attributes and fuzzy numbers 

linguistic Bad Normal Good 
Very 
Good 

Excellent

Fuzzy number 1 2 3 4 5 
 

The distance of linguistic attributes via Euclidean Distance can be calculated as: 

 

2( , ) ( )A A A

A

d x y w x y   

 

Ax  is the value of attribute A for example x; 

Aw  is a nonnegative real valued parameter that specifies the relative weight of 

attribute A; 

In this calculation, 1;Aw   

2(7, ) (3 4) 1;d y     

2(8, ) (4 4) 0;d y     
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2(14, ) (5 4) 1;d y     

 

Stage 9 Give the result 

 

From the above calculation, (8, ) (7, ) (14, )d y d y d y  , instance 8 is the best 

instance for this design and recommended to the designer.  

 

Table A.21 The recommended instance for new design 

Att. 
Length     

m 
Breadth   

m 
Design 

Draft   m
Deadweig

ht   t 
Speed    
knots 

The ability 
of Capacity

Type of 
Att. 

numerical numerical numerical numerical numerical linguistic 

8 197.00 25.90 7.00 9000 21.10 very good

 

Stage 10 Modified by designer 

 

The aim of stage 10 is to define the final design by introducing the revision of 

designers. The design decision support system provides instance 8 as reference case. 

This stage is processed by designers 

 

Stage 11 New design  

The final new design can be designed according to Figure A.2 and Table A.21.  

 

Stage 12 Modify the old tree and Stage 13 use new tree to replace old tree 

 

The decision tree can be revised according to new design.  

 

Stage 14 retain new case 

 

The new design will be stored in Table A.1 as No 15 for next design.  
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Appendix B 

 
 

Loads Calculation of CSR 

 
The loads in this case study are selected according to the CSR of IACS and the 

original design data. If the original design data provides the detailed values of loads, 

the case will use these values, and if not, the case will calculate according to CSR. 

For reducing the complexity of the calculation, only case H1 of CSR is considered in 

this case study. For weight control, the loading is corresponded to probability level 

10-4 and for fatigue coefficient, it is 10-8.  

B.1 Hull girder loads 

Still water bending moment 

 

Still water bending moment calculated via CSR: 

 , ( )SW HM CSR =1006547 kN m  

, ( )SW SM CSR =924006 kN m   

Still water bending moment calculated in design proposal: 

, ( )SW HM design =1700000 kN m  

, ( )SW SM design =1500000 kN m  
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The still water bending moment should be bigger one, so it will be the values in 

design proposal.  

, , ( )SW H SW HM M design =1700000 kN m  

, , ( )SW S SW SM M design =1500000 kN m  

Still water shear force 

The still water shear force is provided by the design proposal:  

4( / ) 8.5920 10SWQ     kN  

Wave loads 

Vertical wave bending moments 

The vertical wave bending moments in intact condition are calculated via CSR: 

,WV HM =1481161 kN m  

,WV SM =1563702 kN m  

Vertical wave shear force 

( / )WVQ   =16585 kN  

Horizontal wave bending moment 

WHM  =1124902 kN m  

Wave torsional moment 

WTM  =285838 kN m  

B.2 External pressures 

Hydrostatic pressure 
10045 (11.1 )     11.1

0                               11.1s

z z
p

z

  
  

 

In this study, ABQUAS is employed to simulate the loading case. Hydrostatic 

pressure can be directly realized in ABQUAS, but A FORTAN coding is created for 

assist to simulate for combining with other loads.  

 

Hydrodynamic pressures 

For Load case H1: 

1H l p HFp k k p   
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In this case: 

3

3

240
1 (1 ) 0.5         0.0 /180 0.5

17 15 180

2120
1 (3 ) 0.5         0.5 /180 1.0

17 15 180

l

l

y x
k for x

y x
k for x


     





     


 

8

4

0.9   for the probability level 10

1.0   for the probability level 10

nl

nl

f

f








 

 

 

So 

2125
3 1HF p nl

LCi i

yL z
P f f C

L T B

   
   

 
 

Because this section is the midship, the LCiT and iB  are the midship value. 

8

4

1.0    for the probability level 10

0.5    for the probability level 10

p

p

f

f





 



 

 

8

4

2
30.5022 1    for the probability level 10

11.1 30

2
16.9457 1    for the probability level 10

11.1 30

HF

HF

yz
P

yz
P





  
    

  


     
 

 

So  

For 8for the probability level 10   and    0.0 /180 0.5for x   ,  

3

1

2 90 2240
(1 (1 ) 0.5 ) (0.37cos 0.63) 30.5022 1

17 15 180 180 11.1 30H

y x yx z
p

    
            

   
8for the probability level 10   and     0.5 /180 1.0for x    

3

1

2 2 90 2120
(1 (3 ) 0.5 ) (0.37cos 0.63) 30.5022 1

17 15 180 180 11.1 30H

y x yx z
p

    
            

   
4for the probability level 10   and    0.0 /180 0.5for x    

3

1

2 90 2240
(1 (1 ) 0.5 ) (0.37 cos 0.63) 16.9457 1

17 15 180 180 11.1 30H

y x yx z
p

    
            

   
 

2 90
0.37cos 0.63

180p

x
k

  
  

 

1 0.6 1 203.04LC
H

S

T
L

T


 
   

 
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4for the probability level 10   and     0.5 /180 1.0for x    

3

1

2 2 90 2120
(1 (3 ) 0.5 ) (0.37 cos 0.63) 16.9457 1

17 15 180 180 11.1 30H

y x yx z
p

    
            

   
In this part, the detailed calculation of other case loads is processed Here, the results 

will be provided.  

 

Correction to hydrodynamic pressures 

For the positive hydrodynamic pressure at the waterline 

, ,

,

( ),    

0                                  
W C W WL LCi LCi W LCi

W C W LCi

p p g T z T z h T

p z h T

     
   

 

Where，  

,W WL
W

p
h

g
  

For the negative hydrodynamic pressure at the waterline 

,W C Wp p  without being taken less than ( )LCig z T    

 

B.3 Internal pressures and forces 

1. Dry bulk cargo pressure in still water 

Step 1 Calculate ch  

12.5 mch   

Hl : Length, in m, of the compartment 

( )CS C C C DBp gK h h z    

31 t/mC   

29.81 m/sg   

1.8 mDBh   
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Figure B.1 The Kc values of Dry bulk cargo pressure in still water 

 
Figure B.1 shows the Kc value of Dry bulk cargo pressure in still water. 

So 

1 9.81 (14.3 );CS Cp K z      

1 9.81 (14.3 );CSp z     

2 10.71 (14.3 );CSp z     

3 17.56 (14.3 );CSp z     

4 0;CSp    

5 0;CSp    

6 17.56 (14.3 );CSp z     

 

2. Dry bulk cargo pressure in still water 

 

For load case H: [0.25 ( ) ( )]CW C X G C Z C DBp a x x K a h h z      

31 t/mC  ； 

sinX XG XS surge XP pitch xa C g C a C a     

For H1： 
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1;   0.8;   1;XG XS XPC C C     

4
960

P
B

V
f

L C
   

 

pf  : Coefficient corresponding to the probability level, taken equal to: 

1.0 for strength assessments corresponding to the probability level of 10-8 
0.5 for strength assessments corresponding to the probability level of 10-4 

180 m;L   

14 knV   

0.85BC   

So 

4
960 14

1.0
180 0.85

   =10.7442 

 

0 2

2.4 34 600
(1.58 0.47 )( ) 0.4123P Ba f C

L LL
      

00.2 0.2 0.4123 9.81 0.81surgea a g      

 

10.8
0.6 1 0.6 1 180 203.61

12.2
LC

S

T
L

T


           
  

 

2 2 203.61
11.42

9.81PT
g

  
    

 min , min 9.4,8 8
4 2 2

LCTD D
R z z z

        
 

 

 

2
2

10.7442 ( 8) 0.05676( 8)
180 11.42pitch xa z z
 


      
 

 

1 9.81 sin(10.7442) 0.8 0.81 1 0.05676( 8)

    1.1808 0.05676( 8)
Xa z

z

       
  

 

（2）Calculate Za  

Z ZH heave ZR roll z ZP pitch za C a C a C a     



 269

0.6 ;   0;   1;LC
ZH ZR ZP

T
C C C

T
    

 

For H1, 0.6;   0;   1;ZH ZR ZPC C C    

 

 

2
2

180roll z
R

a y
T

 

 
  

 
 

2.3 2.3 0.35 30
12.7279

0.12 30
r

R

k
T

GM

 
  


 

 

0.1081roll za y   

2

2

2
( 0.45 )

180

3.14 2 3.14
         10.7442 ( 0.45 180)

180 11.42

         0.05676 ( 81)

pitch z
P

a x L
T

x

x

 

 
  

 

     
 

 

 

0.6 4.0447 1 0.05676 ( 81) 2.4268 0.05676 ( 81)Za x x         

 

1 1 [0.25(1.1808 0.05676( 8))( 80) 1 (2.4268 0.05676 ( 81) )(12.5 1.8 )]

        0.25(0.7267 0.05676 )( 80) (2.4268 0.05676 ( 81) )(14.3 )

CWp z x x z

z x x z

           

      

2 1 [0.25(1.1808 0.05676( 8))( 80) 1.0918 (2.4268 0.05676 ( 81) )(12.5 1.8 )]

        0.25(0.7267 0.05676 )( 80) 1.0918(2.4268 0.05676 ( 81) )(14.3 )

CWp z x x z

z x x z

           

      

3 1 [0.25(1.1808 0.05676( 8))( 80) 1.7897 (2.4268 0.05676 ( 81) )(12.5 1.8 )]

        0.25(0.7267 0.05676 )( 80) 1.7897(2.4268 0.05676 ( 81) )(14.3 )

CWp z x x z

z x x z

           

      

4 5 1 [0.25(1.1808 0.05676( 8))( 80)

                      0.25(0.7267 0.05676 )( 80)
CW CWp p z x

z x
      

  

6 1 [0.25(1.1808 0.05676( 8))( 80) 1.7897 (2.4268 0.05676 ( 81) )(12.5 1.8 )]

        0.25(0.7267 0.05676 )( 80) 1.7897(2.4268 0.05676 ( 81) )(14.3 )

CWp z x x z

z x x z

           

      

3. Shear load due to dry bulk cargo 

90Gx 

9000(1.25 0.025 )

( 75)

9000(1.25 0.025 12.7279) 1 1
   25.4230

(30 75)

R p bT f k

B










   

 


0 0.4123 9.81 4.0447heavea a g   
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Still water: 

(1 )( )

tan
C C DB

CS S C

K h h z
p g



  
  

2

(1 1.0918)(12.5 1.8 )
1 9.81

0.57735
         1.5598(14.3 )

CS S

z
p

z



  
  

  
 

In Wave  

For load case H, R and P: 
(1 )( )

tan
C C DB

CW S C Z

K h h z
p a



  
  

For load case F: 0CW Sp    

So in this case 

2

(1 1.0918)(12.5 1.8 )
1 (2.4268 0.05676 ( 81) )

0.57735
          0.159(2.4268 0.05676 ( 81) )(14.3 )

CW S

z
p x

x z



  
    

    
 

 

0.75CW S C X Cp a h   

0.75 1 (1.1808 0.05676( 8)) 12.5

         11.07 0.5321( 8)
CW Sp z

z
      
  

 

0.75CW S C Y Cp a h   

sinY YG YS sway YR roll ya C g C a C a     

For case H1 0, 0, 0YG YS YRC C C    

0Ya   

0CW Sp    

25BSp   

4. inner bottom plating 

In the longitudinal direction in waves 

For load case H1: 0.75CW S C X Cp a h   

5. lateral pressure due to liquid 

Pressure due to liquid in still water  

( 0.5 )
max

( ) 100
L TOP AP

BS
L TOP PV

g z z d
p

g z z P




 
   
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In this case, for fatigue strength assessment,  

( )BS L TOPp g z z  ; 

 

In this case, the inertial pressure due to liquid is not considered. 
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Appendix C 

 

 

Concepts of optimisation  

C.1. Basic concepts in multi-objective optimisation problem 

In this research, most of ship design and production process are seen as optimisation 

process. The design problems are formulated as multi-objective optimisation 

problems and a new optimisation method has been created when some algorithms 

have been employed for comparison. In this appendix, the basic concepts in multi-

objective optimisation problem are introduced in both descriptive form and 

mathematical expression for better understanding the optimisation problem.  

 

First of all, the definition of multi-objective optimisation problem is introduced as 

follows: 

 

Multi-objective Optimisation Problem (MOP): “a vector of decision variables 

which satisfies constraints and optimizes a vector function whose elements represent 

the objective functions. These functions form a mathematical description of 

performance criteria which are usually in conflict with each other. Hence, the term 

“optimize” means finding such a solution which would give the values of all the 

objective functions acceptable to the decision maker.” (Coello Coello 2007) 
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In optimisation subject, mathematical expression is more helpful to understand the 

theory and mechanism of existing algorithms and develop new approaches. In this 

research, most algorithms provide mathematical model and numerical test functions. 

So a mathematical definition is provided.  

 

General Multi-objective Optimisation Problem (GMPO): “A general MOP is 

defined as minimizing (or maximizing) 1( ) ( ( ),..., ( ))kF x f x f x  subject to 

( ) 0,   {1,..., }ig x i m  , and ( ) 0,   {1,..., },   x  .jh x j p   An MOP solution 

minimizes (or maximizes) the components of a vector ( )F x  where x  is a n-

dimensional decision variable vector 1( ,..., )nx x x  from some universe Ω. It is noted 

that ( ) 0ig x   and ( ) 0jh x   represent constraints that must be fulfilled while 

minimizing (or maximizing) ( )F x  and Ω contains all possible x  that can be used to 

satisfy an evaluation of ( )F x .” (Coello Coello 2007) 

 

 

In multi-objective optimisation, finding a direct and unique solution for optimisation 

is very difficult and the Pareto solutions usually are selected as final solutions. 

Furthermore, many modern GA algorithms compare the candidate solutions to decide 

solution space of next step. So, the concepts of Pareto dominance and Pareto 

optimality are important for optimisation. These concepts were originally in 

economic research area and have been introduced into optimisation area for seeking 

a set of solutions to multi-objective optimisation.  

 

Pareto Optimality: “A solution x  is said to be Pareto Optimal with respect to 

  if and only if there is no x  for which 1( ) ( ( ),  . . . , ( ))kv F x f x f x     

dominates 1( ) ( ( ),  . . . , ( ))ku F x f x f x  . The phrase Pareto Optimal is taken to 

mean with respect to the entire decision variable space unless otherwise specified.” 

(Coello Coello 2007) 
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In Pareto optimality, the notion of ‘optimality’ is different from single objective 

optimisation. The good compromise solutions are more reasonable than a single 

solution.  

 

Pareto Dominance: “A vector 1( ,..., )ku u u  is said to dominate another vector 

1( ,..., )kv v v  (denoted by u vp ) if and only if u is partially less than v , 

   1,... , 1,... , ;i k ui vi i k ui vi      ” (Coello Coello 2007) 

 

 

Pareto Optimal Set: “For a given MOP, ( )F x , the Pareto Optimal Set, * , is 

defined as: * : { | '  ( ') ( )}x x F x F x     p ” (Coello Coello 2007) 

 

Pareto Front: “For a given MOP, ( )F x , and Pareto Optimal Set, *P , the Pareto 

Front *PF  is defined as: * *: { ( ) | }PF u F x x P   ” (Coello Coello 2007) 

 
 

Weak Pareto Optimality: “A point *x   is a weakly Pareto optimal if there is 

no x such that *( ) ( )i if x f x , for 1,... .i k ” (Coello Coello 2007) 

 

 

Strict Pareto Optimality: “A point *x   is a strictly Pareto optimal if there is 

no x , *x x  such that *( ) ( )i if x f x , for 1,... .i k ” (Coello Coello 2007) 

 

C.2. Basic concepts in Evolutionary Algorithm (EA) 

In this research, many concepts and operations are mentioned for proposed system. 

This part will explain the commonly used concepts in EA. 

 

Individual is a solution to optimisation. In EAs, an individual is often expressed by a 

string which is coded according to the knowledge of biological genotype in computer 
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environment. One or more chromosomes compose a genotype and a given set of 

chromosomes is termed a population. In most of EAs, an individual is represented by 

one chromosome and the set of individuals is a population. The Generation normally 

is the EA iteration which means the algorithm successively creates a new population.   

The Parent in EA means the all the members of current generation when Children 

(or Offspring) represents the members in the next generation.  The relationships of 

these concepts are shown in Figure C.1 and Figure C.2.  

 

Figure C.1 Generalized EA Data Structure and Terminology  

(taken from(Coello Coello 2007) ) 

 

In EA application, the algorithm often uses two functions: objective and fitness 

function. These two functions are different in theory. The Objective function is a 

feature function of the optimisation and the fitness function tell the degree of 

matching of a solution to the optimisation problem. However, in numerical test 

functions and practical applications, they are usually, in principle, identical. 
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Figure C.2 EA components (taken from (Coello Coello 2007)) 
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Appendix D 

 

Fuzzy multiple attribute decision-

making (FMADM) method 

D.1. Introduction  

The FMADM algorithm deployed in this study is proposed by Olcer in 2005. The 

whole method can be divided into the following three major states: 

1. Rating state, 

2. Attribute based aggregation state, 

3. Selection state. 

 

In rating state, the expert provides the opinions (or performance ratings) to 

alternatives according to relative subjective attribute of these alternatives. The ratings 

given by the expert can be linguistic terms or verbal assessments which are easy to 

be modelled by fuzzy numbers. Then these data will be converted into standardised 

positive trapezoidal fuzzy numbers. 

 

In attribute based aggregation state, attribute based aggregation method for 

homogeneous and heterogeneous (homo/heterogeneous) group of experts is accepted. 
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In most of situations, the various experts have different importance degree for 

different practical problem. So heterogeneous (nonhomogeneous) group of experts 

problem is named for these situations and homogeneous group of experts problem 

represents that the importance of every expert is same. The degree of importance of 

experts can be assigned when the weights of attributes are given.  

 

In selection state, all fuzzy elements of the aggregated decision matrices for 

homo/heterogeneous group of experts are defuzzified. The result of this phase should 

be a decision matrix with only crisp (or non-fuzzy) data. Then these alternatives will 

be ranked by selection algorithm.  

D.2 Rating state 

The aim of this state is to establish the decision matrix for each expert. The estimates 

of experts of a subjective attribute for an alternative involve subjectiveness, 

imprecision, and vagueness. 

D.2.1 Converting fuzzy data to standardised fuzzy numbers 

The linguistic terms in the decision matrix should first be transformed into fuzzy 

numbers. In this method, the numerical approximation system introduced by Chen 

and Hwang (Chen 1992) is selected to convert linguistic terms to their corresponding 

fuzzy numbers. The brief introduction of this system is provided as following: 

 

Experts’ fuzzy opinions will be represented as trapezoidal fuzzy numbers. Let U be 

the universe of discourse where [0, ].U m  A quadruplet 1 2 3 4( , , , )A a a a a  can be 

used to define the trapezoidal fuzzy number. The membership function is 

 

1 2 1 1 2

2 3

4 4 3 3 4

( ) / ( )   for  ,

1                             for  ,
( )

( ) / ( )   for  ,

0                             

A

x a a a a x a

a x a
x

a x a a a x a

otherwise



   
       


 

With 1 2 3 4a a a a    
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Assume that each expert ( 1,2,..., )kE k M  constructs a positive trapezoidal fuzzy 

number ( , , , )k k k k kR a b c d  to represent the estimated rating for an alternative with 

respect to a subjective attribute, where 0 k k k ka b c d m     . 

 

Translate each trapezoidal fuzzy number ( , , , )k k k k kR a b c d  into standardised 

trapezoidal fuzzy number * ( 1,2,..., )kR k M , where 

 

* * * * *( / , / , / , / ) ( , , , )k k k k k k k k kR a m b m c m d m a b c d   

 

where m is the maximum value of non-standardised trapezoidal fuzzy numbers given 

by experts for the same attribute. 

D.2.2 Attribute based aggregation state 

The aim of this state is to create an algorithm to combine a homo/heterogeneous 

group of experts’ opinions to form a group consensus pinion. In this approach, the 

study proposed in Hsu and Chen (Hsu 1996) is employed. 

 

Assume that the degree of importance of expert ( 1, 2,..., )kE k M  is [0,1]kwe   and 

1

1
M

k
K

we


 . 

 

The aggregation algorithm for homo/heterogeneous group of experts is introduced as 

follows: 

 

(a) Calculate the degree of agreement (or degree of similarity) ( , )uv u vS R R  is the 

degree of agreement of the opinions between each pair of experts uE  and vE . where 

( , ) [0,1],   1 ,  1  and ;uv u vS R R u M v M u v       
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let A and B be two standardised trapezoidal fuzzy numbers, 1 2 3 4( , , , )A a a a a  and 

1 2 3 4( , , , )B b b b b  where 1 2 3 40 1a a a a      and 1 2 3 40 1b b b b     . Then 

the degree of similarity between the standardised trapezoidal fuzzy numbers A and B 

can be measured by the similarity function S, 

1 1 2 2 3 3 4 4( , ) 1
4

a b a b a b a b
S A B

      
   

where ( , ) [0,1];S A B   

 

(b) Construct the agreement matrix (AM), after all the agreement (or similarity) 

degrees between experts are measured: 

 

12 1 1

1 2

1 2

1 ... ...

... ... ... ...

... ...

... ... ... ...

... ... 1

v M

u u uv uM

M M Mv

S S S

AM S S S S

S S S

 
 
 
 
 
 
  

 

 

where ( , ),uv u vS S R R  if u v  and 1,uvS   if u v . 

 

(c) Calculate the average degree of agreement ( )uAA E  of expert ( 1,2,..., )uE u M  by 

using the AM of the problem, where 

1

1
( ) ( , ).

1

M

u u v
v
v u

AA E S R R
M 




   

 

(d) Calculate the relative degree of agreement ( )uRA E  of expert ( 1,2,..., )uE u M , 

where 

1

( )
( ) .

( )

u
u M

u
u

AA E
RA E

AA E





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(e) Calculate the consensus degree coefficient ( )uCC E  of expert ( 1,2,..., )uE u M , 

where 

( ) (1 ) ( ).u u uCC E we RA E   g g  

where   is a relaxation factor of the proposed method. 

 

(f) Finally, the aggregation result of the fuzzy opinions is AGR  as 

1 1 2 2 ,( ) ( ) ... ( )M MRAG CC E R CC E R CC E R        

where operators   and   are the fuzzy multiplication operator and the fuzzy 

addition operator, respectively.  

D.2.3. Selection state 

After all experts’ ratings for each alternative under each subjective attribute, the 

algorithm needs to rank the alternatives of the problem. All aggregated trapezoidal 

fuzzy numbers should be defuzzified, so that all components of the aggregated 

decision matrix are all crisp numbers and any classical MADM method can be used. 

The selection state consists of two major phases: Defuzzification, and Ranking 

phases. 

 

(a) Defuzzification phase 

In this phase, the fuzzy scoring approach proposed by Chen and Hwang (Chen and 

Hwang, 1992) is employed to transform all the aggregated fuzzy numbers into 

numeric ratings. The fuzzy maximising set and minimising set should be first 

obtained, which are defined as: 

max

,    for 0 1,
( )

0,    otherwise,

x x
x

 
 


 

min

1 ,    for 0 1,
( )

0,          otherwise,

x x
x

  
 


 

Then, the right score of fuzzy number B can be determined using 

max( ) sup[ ( ) ( )].R B
x

B x x     

The left score of B can be determined using 
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min( ) sup[ ( ) ( )].L B
x

B x x     

Given the left and right scores of B, the total score of B can be computed using 

( ) [ ( ) 1 ( )] / 2.T R LB B B      

(b) Ranking phase 

In the ranking phase of the selection state, classical MADM methods can be utilised 

to determine the ranking order of the alternatives. 
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