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Abstract

Phytoplankton communities in the Eastern Bering Sea are a prime example of spring

blooms in high latitude environments. This project studies the role of changing light

responses in regulating spring bloom development.

Seasonality was observed in the light response curves of phytoplankton samples

taken in the Eastern Bering Sea shortly before and during the spring bloom. Under-

ice samples were found to have lower values of both the maximum nutrient uptake

rate vm and the initial slope α of the photosynthesis-irradiance curve. This trend

in α was also noted in a literature review. A trade-off is proposed linking α and

maintenance respiration such that below the compensation intensity EC it becomes

advantageous to decrease α. A seasonal NPZD model reflected this trade-off with a

seasonal transition from low to high α and µ0 , at the point where available light is

greater than EC . A parameter analysis found that with this seasonal plasticity the

model could accurately reproduce the timing and magnitude of the 2009 spring bloom

using parameter combinations within realistic ranges. Without this seasonality, no

parameter set could be found that reasonably reproduced the observations. Inter-annual

variations applying the model to 2014, 2015, and 2016, when the EBS experienced

warmer temperatures and significantly less ice cover. These results were compared with

2009. While changes in physical conditions, primarily ice cover and vertical mixing,

are strong drivers of inter-annual differences, their impact on bloom timing was greatly

reduced without seasonality in the photoparameters.

Seasonal light response has been experimentally observed in the Eastern Bering Sea

and is found to be an important factor for inclusion in numerical models that aim to

capture timing of the spring bloom.
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Chapter 1

Introduction

1.1 Aims of this Study

The purpose of this project is to explore seasonality of light response within the phyto-

plankton community of the Eastern Bering Sea and its relevance to, and implications

for, numerical models. A case study of high-latitude phytoplankton in seasonal light

environments provides insight into how these communities may respond or acclimate

to the changing Arctic and sub-Arctic conditions.

In particular, this study focuses on the modelling of spring blooms, examining how

seasonality within phytoplankton’s light responses impact the timing and magnitude of

these. This began with observational data of seasonality in light response curves during

the onset of a spring bloom. With a basis in observation and literature, seasonality of

light-response could be implemented in a numerical model of the study region.

This project used an NPZD model, a class of ecosystem model named for its bud-

geting of Nutrients, Phytoplankton, Zooplankton, and Detritus. This NPZD model,

with seasonal behaviour in phytoplankton light response, was used to investigate phy-

toplankton behaviour between cold years (defined by more extensive sea-ice in winter,

persisting longer into the year) and warm (defined by higher temperatures and earlier

retreat of ice). In total, this project surveys the influence and importance of plasticity

in phytoplankton communities’ light responses in a region undergoing substantial en-

vironmental change. The results suggest a need for more investigation of acclimating
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light responses, a reconsideration of heuristics on spring bloom timing, and recognition

of seasonality in phytoplankton parameters within numerical models.

1.2 Models & Ecosystems

Nelson Goodman noted “Few terms are used in popular and scientific discourse more

promiscuously than ‘model’ ” (Goodman, 1968). While Goodman was discussing the

broadest possible sense, encompassing any abstraction whether its in science or art,

even within the field of biology the word ‘model’ has been defined and re-interpreted as

anything from a set of axioms that isomorphically map to the real world, to abstractions

that mediate between theory and observation (Odenbaugh, 2008).

The focus of this thesis is a question not only of the behaviour of a particular

ecosystem, but a question of how to describe and study it. The following chapters

will unfold how models are formed based on observation, and the subsequent mismatch

between model behaviour and the observed data leads to new hypotheses and thus new

models. This process has benefits and risks, however. There are historical examples

of models being tinkered with in the light of new evidence to save them when they

shouldn’t be (Newtonian gravity as one example) and of models being adjusted and

added to in a way that reveals new information about reality (the cosmological constant

in Einstein’s equations, e.g.) (Carroll, 2019). These examples from physics are useful

reflection for an ecologist, as they raise the issue of falsifiability while simultaneously

demonstrating how successful but incomplete models can drive new discoveries (ibid.).

Ecosystems are themselves a type of model, a conceptual description of the arrange-

ments of physical and biological structures and the energy flows between them. Ecosys-

tems can be understood as descriptive tools for field biologists as well as mathematically

descriptive structures intended to (successfully or not) have predictive power (Peacock,

2008). On this latter point, there has been some criticism of the description of ecosys-

tems as structured systems following quantifiable laws, on the basis that connecting

these back to the real-world is often nebulous or open to interpretation (Sagoff, 2003).

This conceptual groundwork is important for considering how the numerical meth-

ods for modelling ecosystems can be developed and used. This thesis is concerned
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with an observation of phytoplankton behaviour within an ecosystem (the Eastern

Bering Sea). By taking the “models as mediators” approach (Cartwright et al., 1995;

Odenbaugh, 2008), we can test hypotheses within the limits of the model’s inherent

assumptions, and use the results to build on existing frameworks for understanding

the EBS and plankton dynamics in seasonal environments generally. What a model

can and cannot do within its constraints can rule out some space of hypotheses while

pointing toward a more complete picture of the reality that is being modelled (Carroll,

2019).

The method this thesis uses is the NPZD model, so-named for its description of an

aquatic ecosystem in terms of interactions between its components: Nutrients, Phy-

toplankton, Zooplankton, and Detritus. Each of those can be broken into multiple

compartments (for example, phytoplankton can be divided into small and large classes,

or nutrients could be separated into NO3 and NH4, etc). Principally, NPZD models

serve to break down plankton ecology into core interactions, where the losses from one

component either exit the system or become gains for another component (Gentleman,

2002).

Ultimately, however, all ecosystems on Earth connect in some way to each other.

One way of defining an ecosystem is the physical and biological systems and processes

that have feedbacks with each other, with external forcing being separate from any

feedback (Peacock, 2008). In the case of an NPZD model, we know marine ecosystems

are often more complex than the phytoplankton and zooplankton components. Thus

in analysing methods for constructing numerical models of marine ecosystems, we first

look at a global scale before resolving its components and addressing the limits and

advantages of different scales and levels of complexity.

1.2.1 Numerical Ecosystem Models

Even the most complex numerical ecosystem models, spanning the largest domains in

space and time, necessarily make assumptions and limit their scope. In the words of

some philosophers, they would be said to be not isomorphic with the real world (Oden-

baugh, 2008). However the aim of these large models is to try to capture more varied
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and generalised behaviour, encompassing processes often excluded from smaller models

which lack such broad scope.

MEDUSA is a plankton ecosystem model for the World Ocean. Incorporating two

classes of phytoplankton, separating the siliceous diatoms from non-diatoms, and two

classes of zooplankton, separated by size between micro- and meso- zooplankton. In

addition, MEDUSA tracks the chlorophyll content of all phytoplankton and the silica

content of diatoms (Yool et al., 2011, 2013). This level of complexity has a lot of

value in a large domain like the world ocean. Though as noted in Yool et al. (2011),

each additional component is a step toward realism at the cost of error associated with

parameterisation. This is a trade-off that has to be considered.

For example, a simplified NPZD model with minimal classes of nutrients, phy-

toplankton, etc will fail to reproduce ecological changes that fall along the lines of

those classes. Yool et al. (2011) give the example of increasing ocean stratification and

decreasing vertical nutrient supply to the surface. This could have a much stronger

negative impact on diatoms than other phytoplankton, since silicic acid is regenerated

deeper in the water column than, say, nitrogen or phosphorus. A complex biogeochem-

ical model that makes this differentiation will diverge from a model that ignores silicon

or combines it with other nutrients. On the other hand, where there is high uncer-

tainty, attempting to include it can lead to more error. As another example, MEDUSA

2.0 explicitly omitted a process (calcification) from the model on account of the high

uncertainty surrounding it (Yool et al., 2013).

Another layer of complexity to consider is dimensionality. The MEDUSA ecosystem

model is run within the physical ocean model NEMO, a fully three-dimensional global

model (Madec et al., 2019; Yool et al., 2011). The geometric increase in complexity of

a 3D model is often a necessary cost in exchange for being able to track organisms and

nutrients as they move horizontally between grid cells.

Earlier versions of NEMO could be run with either z or σ coordinates (Madec

et al., 2019). The z and σ coordinates are also known as “geopotential” and “terrain-

following” coordinates, respectively, and have (Griffies, 2004). Terrain-following co-

ordinates are thus named because the vertical coordinate σ is a dimensionless value
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between 0 at the ocean surface and −1 at the bottom. A z-coordinate model will not

monotonically map the water column, and ultimately discretises the seafloor based on

the vertical grid-size dz. That is, the seafloor is either above or below a grid cell and

does not run through it.

Global models do not resolve all the smaller processes that may be the focus of a

study. On a smaller scale are regional models which can focus on local phenomenon

and resolve them more clearly. BIOMAS (Biology/Ice/Ocean Modeling [sic] and As-

similation System) is a pan-Arctic 3D biophysical model incorporating a sea-ice model,

an ocean circulation model, and a biological model (Zhang et al., 2010a, 2014, 2015), an

extension of the earlier BESTMAS which did not include biological components (Zhang

et al., 2010b). Likewise, SINMOD is another pan-Arctic physical-chemical-biological

model (Slagstad & McClimans, 2005; Wassmann et al., 2006). While often used for

studies of the Barents Sea, SINMOD has portability, and has been applied in other re-

gions such as fjords and seas around New Zealand (Jiang et al., 2015). For its primary

purpose, the Arctic seas and in particular the Barents Sea, SINMOD is capable of high

resolution of coastal areas, such as Norway’s famously complex coastline. BESTMAS

and SINMOD have computational advantages over global models in that they can have

a higher resolution of their study area since the full domain is smaller.

So far the discussed models have taken an empirical approach, tracking the cy-

cling of nutrients through trophic levels based on ecological processes derived from

ecosystem-level observations. There are also models that start with equations of the

mechanistic behaviour of phytoplankton. For example, in the paper introducing the

mechanistic model Eco3M, Baklouti et al. (2006a) lay out the different approaches and

the merits and demerits of both. Just as was noted for nutrient selection in MEDUSA,

the choice between empirical biogeochemical models and the mechanistic models is of-

ten contingent on which is the greater unknown. Some cellular processes are relatively

well understood but at there still many uncertainties. A mechanistic approach is inher-

ently more complex, accounting for more processes than need be described at a lower

resolution. However as Baklouti et al. (2006a) ague, when implemented carefully this

approach breaks down parameters that previously needed tuning to observation into
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parameters that could be better constrained by the taxa of the individual species, po-

tentially making the model more portable. Though the authors also note the difficulty

in such fine measurements of physiological behaviour can lead to high uncertainties in

those parameters as well.

Another perspective on constructing phytoplankton ecosystem models is the trait-

based approach. An adaptive-trait approach varies model parameters during the run

according to trade-off functions and selective advantages. This allows for a model

to capture such potential changes as evolutionary adaptation, changes in community

structure, or plastic acclimation (Litchman et al., 2013; Merico et al., 2009).

The above examples each have unique approaches to ecosystem modelling but many

of their approaches can be applied broadly. Adaptive trait-based models can be NPZD

models (Merico et al., 2014), and mechanistic approaches can be applied on any scale.

It is the trade-offs that have to be considered. A full mechanistic approach increases the

complexity and number of equations quite substantially, and thus may not be suitable

in a model already dealing with a large spatial domain and multiple nutrient categories

at a high resolution. This is all to say that for a highly specified research question

within a well-studied system, the simpler approach is often the best starting point. We

must then discuss the details of the basic NPZD model and how it works.

1.2.2 NPZD Models

Precisely how these interactions and exchanges function is highly variable. In the ear-

liest attempts to mathematically describe and model planktonic ecosystems (e.g. Riley

& Von Arx, 1949), the lack of computing power limited the complexity of equations.

Non-linear rates of nutrient uptake or predation could not be usefully incorporated

before the 1970s (Gentleman, 2002), but today can be incorporated throughout the

model, greatly expanding the space of possibilities (Gentleman et al., 2003; Heinle &

Slawig, 2013b).

The choice of functional forms and parameterisation can have a substantial impact

on model behaviour, and the more components and dependencies, the more variation

is possible (Gentleman, 2002; Heinle & Slawig, 2013a; Murray & Parslow, 1999). To
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quote Tett & Wilson (2000), “marine ecologists have achieved no consensus about a

way to model system dynamics”. As those authors note, many processes and their pa-

rameters have high degrees of uncertainty, and including them would propagate their

errors. For example, one reason for the multitude of descriptions of zooplankton grazing

behaviour is that different species exhibit different preferences for food sources (Gen-

tleman et al., 2003). More data on the specific zooplankton, and their options for food,

being modelled helps constrain the choice. The same is true for phytoplankton. Dif-

ferent taxa may have different strategies and subsequently different behaviours in their

photosynthesis and nutrient uptake.

What NPZD models today don’t commonly include is acclimation processes (Ke-

rimoglu et al., 2017), such as a specifically seasonal variation in parameterisation of

biological functions. One to do so is described in Banas et al. (2016), which applies

an NPZD model to the Eastern Bering Sea, with the light limitation of phytoplankton

switching from one parameterisation in winter to another in spring.

This thesis extends the NPZD model of that study by further exploring the season-

ality aspect, both in terms of how seasonal parameterisation affects internal dynamics

of the model as well as how it affects the accuracy of the model in reproducing obser-

vational data.

1.3 Eastern Bering Sea

As an example of the influence seasonal environments can have on ecosystems, the

Eastern Bering Sea (EBS) offers a useful case study due in large part to the seasonal

ice cover, which freezes in winter and thaws in spring (Sigler et al., 2014). The region

is also an example of the impending changes coming to the Arctic, as ice thins and

retreats northward in the EBS as a consequence of rising temperatures (Eisner, 2018,

2019; Stabeno et al., 2017).

The EBS can be divided into three domains: coastal, middle shelf and outer

shelf (Kinder & Schumacher, 1981a,b). Observational data described in later chapters

were primarily sampled from the mid- and outer shelf zones, where water depths range
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from 50 to 200 metres (Coachman, 1986). The onset of spring blooms in the Bering Sea

is influenced by many inter-related factors. Sea-ice limits light, but also protects the

water column from winter storms and thus strengthens stratification (Hunt, Jr et al.,

2002; Mordy et al., 2017). Winter mixing can also redistribute nutrients from deeper

layers (Ladd et al., 2018).

Years can be categorised as “warm” or “cold”, with cold years experiencing signifi-

cantly thicker ice cover that extends further south at its maximum and which persists

until later in the year. While the years 2007-2013 were cold years (Brown & Arrigo,

2013; Sigler et al., 2014), featuring extensive sea-ice which persisted later into the

year, beginning in 2014 the Eastern Bering Sea has been experiencing warm condi-

tions (Duffy-Anderson et al., 2017; Stabeno et al., 2017).

1.3.1 Spring Blooms in the EBS

Phytoplankton seasonality has long been understood to be an essential factor in tem-

perate and high latitude marine ecosystems. In spite of initial dismissal of planktonic

organisms in general as uninteresting “philosophical muck” by Johannes Müller in the

1830s (originally “philosophischen Dreck”, see Kortum, 2009; Smetacek, 1999), by the

early 20th century it was clear that phytoplankton were of fundamental importance for

the ecosystem (cf. Gray, 1931, which notes the relationship between ice-melt, diatom

growth, and whale migrations). By the mid-century, marine scientists began attempt-

ing to understand the driving factors of phytoplankton development and population

growth (Sverdrup, 1953). Spring blooms, the rapid increase of phytoplankton biomass

in late winter or early spring, are crucial for sustaining the rest of the food web, as

phytoplankton feed higher trophic levels (Hunt, Jr et al., 2018; Sigler et al., 2014).

Spring blooms are an annual occurrence in the Bering Sea, though the exact timing

can vary by months from late winter to early summer (Hunt, Jr et al., 2002). These

blooms are dominated by diatoms (Okazaki et al., 2005; Sambrotto et al., 1986; Taka-

hashi et al., 2002; Taniguchi, 1999). Diatoms are a siliceous group, and the region is

not silica limited (Honjo, 1990; Takahashi et al., 2000; Tsunogai et al., 1979). Over the

deep basins of the Bering Sea iron may be limiting, but surface waters over the shelf
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are iron-replete (Aguilar-Islas et al., 2007).

Higher trophic levels depend greatly on blooms in the EBS. One example is pollock,

a species of fish that is also the basis of one of the largest fishing industries in the United

States. Their ability to spawn and feed are connected with not just the magnitude of

a bloom but its timing as well, via the effects of both on the timing and magnitude of

zooplankton growth (Coyle et al., 2011).

One hypothesis about the controls on spring bloom timing is the Oscillating Control

Hypothesis (OCH) presented in Hunt, Jr et al. (2002). The OCH posits that sea-ice

shields the water column from winter storms which would otherwise mix surface water to

aphotic depths. This limits the fraction of incoming surface PAR that a phytoplankton

cell actually experiences during its mixing in the water column.

Therefore, one would expect that in warm conditions, parts of the EBS without

winter ice and where ice melts too early should have a later spring bloom than where ice

is persistent, as stratification takes longer to occur and greater day lengths are necessary

to give phytoplankton sufficient light. This is concordant with the critical mixing depth

hypothesis of Sverdrup (1953), which posits that if the mixed layer extends below a

critical depth, phytoplankton do not receive sufficient light for a bloom. This hypothesis

has been found to be consistent with blooms in the Pacific (Hunt, Jr et al., 2002; Kikuchi

et al., 2020) and Atlantic (Henson et al., 2006; Siegel et al., 2002), though it has its

share of caveats (Smetacek & Passow, 1990).

The importance of mixing is agreed on even in papers which question or contradict

the OCH. Brown & Arrigo (2013) used satellite data to study spring blooms and found

some years that did not accord with the OCH, however, they note that they could not

see under-ice blooms, and therefore may not have recorded a start date for the spring

bloom until much later than it had begun, after the ice melted. And Ladd et al.

(2018), in studying coccolithophore blooms in the EBS, suggest a distinction between

the middle and outer shelf zones in contrast with the inner shelf; specifically that in the

shallow inner shelf, deep mixing can help a bloom begin earlier by bring up nutrients

from the deep layers.
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1.3.2 Drivers of Seasonal Behaviour of Phytoplankton

Evolutionary adaptations and individual acclimation to changes in temperature, nutri-

ent concentration, turbulence, mixing depth, and light have all been scrutinised (Huis-

man et al., 2004; Litchman, 2000, and references therein), yet many of the mechanisms

behind spring blooms and phytoplankton over-wintering strategies, especially as re-

gards light response, remain not fully understood. For example, the light curves of

phytoplankton, measures of photosynthesis versus irradiance, are known to acclimate

to changing light conditions (Cullen, 1990; Litchman, 2000; Sambrotto et al., 1986, see

also the literature review in Chapter 2). This process is known as photoacclimation,

in contrast to photoadaptation, an evolutionary change in the genome of a popula-

tion (Moore et al., 2006).

Both the plastic response of photoacclimation and the population change of pho-

toadaptation affect how phytoplankton photosynthesise with changes in light. These

processes may have significant impacts on timing and magnitude of spring blooms. For

example, and as will be discussed in greater detail below, Banas et al. (2016) found

that in order to reproduce detailed observations of bloom timing and magnitude si-

multaneously, a model hind-cast of the Eastern Bering Sea required strong seasonal

variation in the parameter that defined the light response of phytoplankton.

Responses to changes in light have been studied mostly on very short time scales.

Many studies have explored how different phytoplankton respond to fluctuating light,

on time scales as short as minutes (Strzepek & Harrison, 2004), hours (Ban et al.,

2006; Fujiki & Taguchi, 2002), or days (Claustre et al., 2002; Cosper, 1982; Marra,

1978; Nicklisch, 1998). Typically, within these studies of short-term variation and

acclimation the response observed has been to increase photosynthetic efficiency as

light diminishes, though there are exceptions (Ban et al., 2006; Sakshaug & Slagstad,

1991).

In contrast, Sambrotto et al. (1986) observed a rapid, nearly ten-fold increase in

photosynthetic efficiency in the Southeastern Bering Sea during the onset of one spring

bloom: the opposite of what simple photoacclimation would be expected to produce

during a period of increasing light. Those results provided the motivation for imposing
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seasonality in the photosynthetic efficiency of the model in Banas et al. (2016), denoted

by the variable α.

Seasonal change in photosynthetic efficiency necessarily reflects the net effect of a

complex array of variable physiological processes. Changes in pigment concentration

have a non-linear effect on efficiency. After a threshold is reached, excess pigments self-

shade, creating what is known as the “package effect”, reducing efficiency (Brunelle

et al., 2012). Additionally, pigments require maintenance, and thus bear a metabolic

cost in the form of maintenance respiration. Many cells have been shown to increase

intra-cellular pigments as light decreases (Dubinsky & Stambler, 2009), but such trends

can be the opposite after a period spent in zero light, after which pigments decrease

again (Gibson, 1985). Peters & Thomas (1996) found that marine Antarctic diatoms

preserved and maintained their photosynthetic apparati in winter and could resume

assimilating carbon immediately upon the return of light after at least three months

of darkness. In contrast, Peters (1996) observed decreased photosynthetic potential

in temperate species, at higher temperatures, during long periods of darkness. This

complexity, and variety of strategies, shows it is therefore difficult to create a unified

theory of seasonality in photoresponse.

This study builds on the above with more recent data from the Eastern Bering

Sea, discussed in Chapter 3, which show lower values for both the maximum nutrient

uptake rate vm and α (the initial slope of the photosynthesis-irradiance curve) in under-

ice over-wintering samples compared with open-water samples in optimal spring bloom

conditions.

All the aforementioned adaptations and acclimation strategies connect photosyn-

thetic efficiency with metabolism and respiration, with literature establishing models

of respiration that depend on parameters of light response governing the efficiency of

photosynthesis. These “photoparameters” are defined in the next section.

While theories of respiration can provide explanations for why seasonality occurs,

the relevance and importance of seasonality is demonstrated in numerical models. In

this project, NPZD models are used to experiment with the above ideas, in Chapters 4

& 5 . To understand how light responses can be measured and modelled, it is necessary
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to first define the principal terms, such as the photoparameters, and discuss their

meaning both in mathematical and biological terms.

1.4 Photoparameters and Models of Light-Limited Pho-

tosynthesis

The relationship between photosynthesis (P ) and light availability (E) is often ex-

pressed in the form of photosynthesis-irradiance (P-E) curves. The irradiance E is

usually expressed in terms of photosynthetically active radiation (PAR), the fraction

of incoming light which chlorophyll can absorb and use for photosynthesis. The form

of P-E curves is initially linear or nearly linear at low irradiance, approaching some

maximum rate of photosynthesis, denoted Pm or Pmax, before the curve flattens (cf.

Jassby & Platt, 1976; Platt et al., 1980). When measurements are made at high light

levels, P-E curves can also show the process of photoinhibition, when increased light

causes a decrease in photosynthesis (Neale & Richerson, 1987; Powles, 1984).

Multiple mathematical models of this relationship exist, though no single expression

can be thought of as universal. Owing to the complex nature of photosynthesis, its many

external dependencies and wide array of different internal components, Steeman Nielsen

& Hansen (1959) speculated it was unlikely any equation would be able to describe

the P-E relation in an “unequivocal” way. Nonetheless, two of the most prominent

formulations are the Platt model (Platt et al., 1980, 1982):

P = Pm

(
1− e−αE/Pm

)
e−βE/Pm (1.1)

and the Smith model (Smith, 1936):

P =
αE√

α2E2 + P 2
m

(1.2)

These models are defined by four photoparameters: Pm, α, Ek, and in the case of

the Platt model: β.

Pm, sometimes written Pmax, is the maximum rate of photosynthesis, typically
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expressed in units of carbon per time (e.g. mg C h−1). Biomass specific photosynthesis,

normalised to amount of chlorophyll, is commonly denoted PBm .

β is the photoinhibition parameter of the Platt Model, and controls the extent to

which photosynthesis decreases at supra-optimal irradiance.

α is the initial slope of the P-E curve. Because of the quasi-linear nature of this

relationship at low irradiance, α is related to Pm via the parameter Ek, the saturating

light intensity:

α = Pm/Ek (1.3)

Ek is the irradiance at which photosynthesis saturates. Irradiance can be measured

in W/m2 or in µE/m2/s, where µE is a micro-Einstein, a micromole of photons. The

conversion between these units depends on the wavelengths being measured, as watts

are a unit of power and micro-Einsteins a count of the photons, however for PAR, being

in the 400-700 nm band, this conversion can be approximated as 1 W m−2 ≈ 4.57 µE

m−2 s−1 (Thimijan & Heins, 1983). Any changes between units in the rest of this thesis

use this approximation.

Specific growth rates of cells, often denoted with µ, measure the amount of uptake of

a nutrient relative to the internal concentration, and thus has units of 1/time. Difference

must be noted between the carbon-specific growth rate of a cell and photosynthesis.

Converting photosynthesis rates into growth rates requires assumptions about carbon

fixation and cell division that are not constant even within a single cell. Some amount

of carbon goes into storage compounds and not into growth or maintenance (Falkowski

& Raven, 2007). Hence it is important to distinguish which value is being measured

or discussed in any context. But specific growth rates can still be modelled with a

formulation similar to the Platt Model of photosynthesis (Falkowski & Raven, 2007; Li

et al., 2015)

µ = µ0

(
1− e−αE/µ0

)
(1.4)

The result of the above equation is that, in this context, α can also represent a
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Figure 1.1: Example µ-E curves using Equation 1.4, where α and µ0 vary with a fixed
Ek. Carbon-specific growth values used were µ0,high = 0.05 and µ0,low = 0.01 hr−1.
Initial slopes were αhigh = 3.1 · 10−4 and αlow = 0.62 · 10−4 hr −1 (µE m−2 s−1)−1.
The high µ0 value came from that use in the model of Banas et al. (2016). The high α
value came from data presented in Chapter 3.

relationship between specific growth and saturation intensity:

α = µ0/Ek (1.5)

It is common for carbon-specific growth to be labelled µC (Falkowski & Raven, 2007),

while the uptake rate for a nutrient such as nitrogen would be denoted with V or

v, although µ has also been used for nitrogen uptake (Li et al., 2015). Hence it is

important to clarify. In this thesis, v will primarily be used to refer to nitrogen uptake

unless otherwise specified, and µ will be used for carbon-specific growth. Specific

nitrogen uptake will be converted into carbon-specific growth rates in such cases where

a constant C:N is assumed (as will be expanded on in Chapter 4).

Figure 1.1 shows two examples of hypothetical curves of carbon-specific growth,

using the above model of the same form as the Platt Model of photosynthesis. Both

curves in the figure use the same Ek, but differ in α and µ0. By virtue of having the

same saturation intensity Ek, the curve with the smaller photoparameters not only
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has a lower maximum specific growth rate, but requires much higher irradiances to

approach it.

As α describes a quasi-linear relationship, a ratio of photosynthesis (or specific

growth) to irradiance, it can be thought of as a measure of photosynthetic efficiency.

In this sense, α can also be defined as the product of the chlorophyll-specific absorption

cross-section ā∗, and the maximum quantum yield φmax:

α = ā∗φmax (1.6)

The chlorophyll-specific absorption cross-section is a measure of the amount of

incoming PAR that can physically be absorbed by chlorophyll. An increased area of

chlorophyll increases ā∗, however after a threshold is reached, excess pigments overlap

and self-shade, creating what is known as the “package effect”, reducing the absorption

cross-section (Brunelle et al., 2012).

Maximum quantum yield (MQY, denoted φmax) is the maximum number of moles of

O2 evolved from the minimum number of photons absorbed (Nickelsen, 2015; Nickelsen

& Govindjee, 2011). In this sense, it is the maximum efficiency of oxygen production

from photon absorption.

In another sense, maximum quantum yield can be defined by the structure of the

photosystems. In photosynthetic reactions, the first protein complex is Photosystem

II (PSII), which captures photons and begins electron transport (Falkowski & Raven,

2007). The area over which the light harvesting proteins can absorb photons is the

absorption cross section. MQY can be expressed as the ratio of the absorption cross

sections of PSII to that of the the Photosynthetic Unit (PSU).

φmax =
σPSII

σPSU
(1.7)

The photosynthetic unit is not, strictly speaking, a physical structure or chemical,

but a representation of the whole system of processes from absorption of a photon to

production of O2. The “size” of the PSU can be represented as the ratio of chlorophyll

to evolved oxygen (Chl/O2) (Falkowski & Raven, 2007). The PSU accounts for the
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antennae and reaction centres of a photosystem, as well as the chlorophyll which carries

electrons between them. Thus, α can be derived from the fundamental biochemistry of

a given cell as in Equation 1.6, or from the other photoparameters as in Equation 1.5.

Important to note is that the above models, the Platt model and the specific growth

equation, so far do not account for any losses due to respiration. They are descriptions

of gross rates (of µ or P ), and not net. Net growth rate is determined by subtracting

specific respiration R (in units of 1/time) from the gross specific growth rate. When

respiration losses are greater than gains from growth, net growth becomes negative

(which can be thought of, in a model, as representing mortality).

µnet = µ0

(
1− e−αE/µ0

)
e−βE/µ0 −R (1.8)

In the case of the Platt model of photosynthesis, or any model of P or µ solely

as a function of light, when respiration is accounted for then below an irradiance EC

respiration dominates and the net carbon uptake rate is negative. This is known as

the compensation intensity, or compensation irradiance or point. This limit is thus

named because it is the irradiance at which carbon losses due to respiration balance

any gains, so the net for photosynthesis or specific growth is zero (Falkowski & Raven,

2007; Geider & Osborne, 1989).

1.5 Outline

The following chapters will sequentially build on the above to create an overview of

phytoplankton seasonality in the EBS across multiple perspectives.

Chapter 2 presents a literature review which demonstrates that a difference can be

seen between photoacclimation strategies on short time scales (less than 30 days) and

those on the scales of months or more. While a decrease in α during winter months is

a counter-intuitive response, it will be shown that this is established in prior literature

of high latitude phytoplankton.

Chapter 3 examines observational data from the EBS that sampled sites which were

still ice-covered and those which were already in peak bloom conditions. These data,
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from the cold year of 2009, show the same seasonal trend in α as seen in the literature

review. This chapter also proposes a trade-off mechanism as an explanation for this

behaviour, linking α to maintenance respiration costs.

In Chapter 4, the seasonal pattern observed in the data was then used as the basis

for seasonal photoparameters in an NPZD model of the EBS. This model was tuned

using observational data from 2009, a cold year, and compared with a model that lacked

seasonal light response.

In Chapter 5 the NPZD model, with its seasonal photoparameters, was applied to

the warm year of 2015. These runs were used to study the interplay between ice, light,

and mixing as influences on the spring bloom.

Finally, Chapter 6, the Conclusion, we summarise the case for including seasonality

in models of phytoplankton. From the observational evidence of this process to its

effectiveness in the model experiments, we conclude future modelling approaches in

highly seasonal environments like the EBS ought to consider photoacclimation, and we

present perspectives that may inform these future studies as well as the prospective

data that may harmonise theory with observation.
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Chapter 2

Literature Review

As stated in Chapter 1, prior research already implied the seasonality of photoparame-

ters in phytoplankton of the East Bering Sea. Two in particular were the initial impetus

for the investigation this thesis is about. In Sambrotto et al. (1986), photoparame-

ters were measured in winter and spring and detected a lower α in the over-wintering

samples. In Banas et al. (2016), an NPZD model of the spring blooms in the EBS

necessitated the use of seasonal α, lower in winter than in spring, to produce a model

output that matched observational data.

A literature review was conducted to establish whether these results could be gener-

alised or be otherwise indicative of a pattern. The literature on short term acclimation

(from minutes to days) in marine phytoplankton is vast, dating back at least as far as

the 1930s (Steemann Nielsen, 1937), despite the difficulties in making measurements

at the time. Attention to the role of light in photoacclimation and seasonal ecology

increased significantly from the 1950s, laying the groundwork for today’s studies (Stee-

man Nielsen & Hansen, 1959; Sverdrup, 1953).

The primary focus of this study is high latitude, marine phytoplankton experiencing

prolonged periods of darkness on the time scale of months, and as such the literature

on short-term acclimation was sampled primarily to demonstrate the high variability

of results. Many strategies exist for coping with short-term changes in irradiance, and

these cannot always be said to be viable for longer periods.

For long term acclimation, studies where samples of high-latitude phytoplankton
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which had 30 days or more to acclimate to light were specifically sought out. Decades

of research into photoacclimation and photoadaptation have used a variety of methods

and measured many different parameters. The papers surveyed here reflect the diversity

of study methodology and phytoplankton strategy.

Tables 2.1 and 2.2 present a summary of some of the literature on adaptations of

α in response to decreases in light over time scales less than 30 days (Table 2.1) and

longer than a month (Table 2.2, designated as ‘seasonal’.), along with the impact of

photoacclimation on chlorophyll-specific absorption ā∗ (see Equation 1.6). Table 2.1

is not meant to be comprehensive, only illustrative of the large variance in observed

relationships between irradiance and light response, and irradiance and photochemistry.

2.1 Short Term Photoacclimation

In many cases for short-term acclimation, cells increase the initial slope of the P-E curve

α (Ikeya et al., 2000) and potentially even maximum growth rate µ0 as well Sakshaug &

Slagstad (1991). This strategy reflects the need to do more with the decreasing amount

of light available, if it is possible. Changes in α are not consistently uni-directional.

Ban et al. (2006) experimented with lab cultures of Chaetoceros gracilis, and found

that samples grown at 20 µE m−2 s−1had higher values of α than those grown at 350

µE m−2 s−1. However, the samples growing under 3 µE m−2 s−1had lower values of

α than the 20 µE m−2 s−1samples. However, the maximum relative Electron Transfer

Rate (rETR) positively correlated with irradiance.

From another perspective, we see a complex picture in the biochemistry as well.

In Fujiki & Taguchi (2002) and Obata & Taguchi (2009), both studying photoacclima-

tion on a time scale of hours, ā∗ increased at high irradiance, which Obata & Taguchi

attribute to the package effect. In Sakshaug & Slagstad (1991), while ā∗ decreased in

the samples that had undergone photoacclimation over a period of days, αB and Pm

stayed approximately the same, and yet φmax had increased at the lower irradiance.

While increased efficiency when light is scarce (as in Ban et al., 2006) may appear

to be the logical response, as the next section demonstrates this is not necessarily the

case when the scarcity persists for long periods on the order of months. Furthermore,
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this literature review and Chapter 3 will explore whether such a strategy would even

be viable for such a timescale.

2.2 Seasonal Photoacclimation

As noted, in the Eastern Bering Sea, Sambrotto et al. (1986) found different values of

α for pre-bloom and spring bloom samples taken in May 1981, with αsummer = 0.16

(W m−2)−1 day−1 and αwinter = 0.01 (W m−2)−1 day−1. In the units used below,

this corresponds to 3.0×10−2 (µE m−2 s−1)−1 hr−1 (summer) and 1.9×10−3 (µE m−2

s−1)−1 hr−1 (winter).

Previous literature demonstrates how the photoparameters cannot be taken as con-

stants. For example, a meta-analysis by Smith Jr. & Donaldson (2015) of observations

in the Ross Sea found that the photoparameters were sensitive to changes in irradiance.

Moreover, prior studies have shown not only seasonal variability of photoparameters

such as α and ā∗ (likely the direct result of seasonality in irradiance, as will be discussed

below), but also variability in photoacclimation strategies (see Table 2.2).

As an overview of some of the variability: Two papers reporting α observations for

marine phytoplankton over a seasonal time scale (Platt & Jassby, 1976; van Hilst &

Smith, Jr, 2002) found lower values of both α and Pm associated with a lower light

regime. However another paper found the reverse trend for freshwater diatoms in a

permanently ice-covered Antarctic lake (Morgan-Kiss et al., 2016). Sambrotto et al.

(1986) compared light response between samples from Subsurface Chlorophyll Maxima

(SCMs) and the overlying lower chlorophyll, higher light layers, and found larger α in

the SCM. Palmer et al. (2011) found higher α and Pm in open water samples than

in under-ice conditions in Franklin Bay, particularly for large cells, but no significant

difference in Darnley Bay. Palmer et al. (2013) also found no significant difference

between open water and under ice in the Chukchi and Beaufort Seas. Rochet et al.

(1986) found high variation in observed α from April to May, such that while the final

measurement was lower than the maximum in mi April, the trend in the data was weak.

Variation in ā∗ on a seasonal time scale was reported in Matsuoka et al. (2011), which

found a decline in ā∗ going from spring to summer and then a rise again into autumn.
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And Matsuoka et al. (2009) found a slight increase between October and November.

Brunelle et al. (2012) found a decrease from summer to autumn in the Amundsen Gulf

at all depths. In summation, field observations of phytoplankton communities that are

expected to have been acclimated to seasonal light changes have shown considerable

variability in the response of photoparameters.

Long term lab studies using cultures taken from field samples (Wulff et al., 2008),

and experiments on lab cultures (Wu et al., 2008) also showed lowered α in lower light

conditions. Though van Hilst & Smith, Jr (2002) found lower α in lower light in their

field measurements, samples cultured in the lab and tested later with an acclimation

period of 13 days had the reverse trend: higher α in lower light. Four studies looked at

the response to decreasing light or total darkness (Matsuoka et al., 2009; Morgan-Kiss

et al., 2016; Wu et al., 2008; Wulff et al., 2008), while three examined the response to

an increase in light (Brunelle et al., 2012; Matsuoka et al., 2011; Rochet et al., 1986;

van Hilst & Smith, Jr, 2002).

The diverse observations on the interaction of phytoplankton light response with

the seasonal physical oceanographic changes in temperate and polar regions is strong

motivation for revisiting the interpretation of these parameters that are important

to marine productivity. Here, this study builds on these field observations with an

expanded, more recent data set from the ice edge environment of the Eastern Bering

Sea (EBS) along with a model representation of this phenomenon for a more mechanistic

perspective.
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Source Location Taxonomy Timescale ∆α
Pm

/ µ0
Ek Notes

Short-Term Acclimations
Steeman
Nielsen &
Hansen
(1959)

Arctic, Davis
Strait

Community
Depth
profile

∼ + + Measuring net photosynthesis

Platt et al.
(1982)

65-80◦N Baf-
fin Bay

Community
Depth
profile

+ ∼B ∼
Late summer comparison of
different depths of mixed
layer.

van Hilst &
Smith, Jr
(2002)

Ross Sea Community
Depth,
50% vs 1%
light level

−B −B +
Uncertainty for Ek ad Pm val-
ues overlapped

Ikeya et al.
(2000)

44◦N, Brack-
ish Lagoon

Chaetoceros sp. Hrs –B ∼ +

Fujiki &
Taguchi
(2002)

Lab Culture
Chaetoceros
gracilis

Hrs
Increase in ā∗ and photopig-
ments at higher light

Obata &
Taguchi
(2009)

44◦C
Saroma-
Ko Lagoon

Diatom dominated
thing-ice algae

Hrs ∼ Increase in ā∗ at higher light

Sakshaug
& Slagstad
(1991)

∼ 80◦N, Bar-
ents Sea

T. nordenskioeldii
& C. furcellatus

Days ∼B +B +
Decrease in φmax at higher
light, but increase in a∗.

Ban et al.
(2006)

Lab culture
Chaetoceros
gracilis Days

– +

α was lowest at max irra-
diance, 350, but peaked at
20 before decreasing again at
3µE m−2 s−1. ETR corre-
lated with light

P. tricornutum − +
ETR correlated with irradi-
ance

van Hilst &
Smith, Jr
(2002)

Ross Sea
Phaeocystis
antarctica

13 dys +B +B +

Pseudonitzschia sp. 13 dys –/+ +B +
α highest at middle irradi-
ance, lowest at lowest irradi-
ance

Table 2.1: Directional change of PE parameters acclimating to changes in light on short
time scales (less than 30 days). A plus (+) indicates a higher value for the parameter
was measured at the higher light level(s), a minus (–) indicates the reverse, and a ∼
indicates no significant difference. “B” indicates the study reported values of αB, i.e.
α normalised to biomass.
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Seasonal Acclimations
Source Location Taxonomy Timescale ∆α µ0 Ek Notes
Platt & Jassby
(1976)

Costal Nova Scotia
Years: July ’73 –
March ’75

+B +B

Sambrotto et al.
(1986)

EBS
Diatom dom-
inated (in
spring)

Spring bloom tran-
sition

+ +

This study EBS
Centric diatom
dominated (dur-
ing bloom)

Under-ice vs.
open-water; spring-
bloom transition

+ + ∼

Rochet et al.
(1986)

∼ 55◦30’S Hudson
Bay

Diatom domi-
nated (in May)

Months (March to
May)

∼B –

van Hilst &
Smith, Jr (2002)

76◦30’S, Ross Sea
Phaeocystis
dominated

Months (spring to
summer)

+B +B –

Wu et al. (2008) Lab culture

Microcystis
aeruginosa and
Scenedesmus
quadricauda

30 dys + +
ETR decreased
at higher light

Wulff et al.
(2008)

62◦15’S
Diatoms, ben-
thic (5-7 m
depth)

64 dys + +
ETR increased
at higher light

Palmer et al.
(2011)

Darnley Bay Subsurface Chl
Maximum

Open water vs.
under-ice

∼
Franklin Bay +B +B

Palmer et al.
(2013)

Chuckchi & Beau-
fort Seas

Community
Open water vs.
under-ice

∼ ∼ ∼

Morgan-Kiss
et al. (2016)

77◦S, permanently
ice-covered lake

Diatoms
31 Dys (Feb to
March)

–B +B +

Table 2.2: Directional change of PE parameters acclimating to changes in light on long
time scales (more than 30 days). A plus (+) indicates a higher value for the parameter
was measured at the higher light level(s), a minus (–) indicates the reverse, and a ∼
indicates no significant difference. “B” indicates the study reported values of αB, i.e.
α normalised to biomass.
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2.3 Taxonomy of Photoacclimation Strategies

While it is appealing, and even tempting, to look for a simple hypothesis linking tax-

onomy with the strategy of winter reduction in photosynthetic efficiency, none was

apparent from this literature review. Further, a question remains whether the varia-

tion in PE parameters for a whole community represent intra-cellular photoacclimation,

or a shift in community composition.

Matsuoka et al. (2011) propose changes in community composition from larger

to smaller cells as the driving factor behind decreases in ā∗ , as the package effect

decreases with cell size. Decreases in α may be replicable as the result of decreased

ā∗ in regions where spring blooms are dominated by diatoms with larger cell sizes than

winter communities, such as the EBS in the next chapter as well as Sambrotto et al.

(1986, 2015), the Ross Sea in van Hilst & Smith, Jr (2002), or the Amundsen Gulf

in Palmer et al. (2011, 2013).

As for whether specific taxa have common strategies of photoacclimation, Jochem

(1999) distinguishes two types of long-term dark response in global phytoplankton:

those which decrease metabolic activity (Type I) and those which do not (Type II).

Type II populations require a period of replenishing when re-illumination begins before

cells can divide again. The same study found three subjects (Brachiomonas submarina,

Pavlova lutheri, Chrysochromulina hirta) to be Type I and three more (Prymnesium

parvum, Bacteriastrum sp. and an unidentified pennate) to be Type II.

Peters & Thomas (1996) reported that several marine polar diatoms maintain their

photosynthetic apparati in winter, as indicated by rapid growth responses upon re-

illumination and measures of Chl-a. (It should be noted the darkness in that study

lasted only to a maximum of 12 days). Still, Peters & Thomas (1996), Jochem (1999),

and Dubinsky & Stambler (2009) all cite literature attesting to other diatom species

which decrease metabolism over winter, suggesting a blanket strategy based on taxon-

omy may not be possible to formulate.
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Chapter 3

A Trade-off Model of Seasonal

Light Response in Eastern Bering

Sea Phytoplankton

This chapter will present observational data collected in the EBS (Eastern Bering

Sea) and the photoparameters derived from it. As hypothesised after the literature

review presented in the previous chapter, these photoparameters exhibited different

light responses at different irradiances, having undergone photoacclimation.

Photoacclimation was observed in both the maximum carbon- and nitrogen- specific

growth rates, and the initial slope of the P-E curve. For consistency, v will be used for

uptake rates in general, and µ will always indicate carbon processes. As before, the

initial slope is denoted with α. These photoparameters had lower values in the samples

from sites taken to represent over-wintering phytoplankton. It was thus inferred that

this represented seasonal photoacclimation. The seeming disadvantage of lowering α

in winter, at low irradiance, is indicative of a trade-off. A model of maintenance

respiration as a function of α will be laid out to explain this counter-intuitive behaviour.

The premise for this model is that for extremely low irradiances that persist for a long

period of time, phytoplankton find an advantage in reduces the energetic costs inherent

in high values of α.
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Figure 3.1: Location of the sample sites in the Eastern Bering Sea. Open circles
represent open water sampling sites, and closed diamonds represent sites that were at
least partially ice-covered at the time of sampling.

3.1 Observational Data of Photoparameters

Data were collected in the Eastern Bering Sea in spring 2007, 2008 and 2009 as part

of the BEST-BSIERP field campaign on the USCG Healy (Sambrotto et al., 2015).

The sample sites were in the mid- and outer shelf, with water depths ranging from 50

to 200 metres (Coachman, 1986). Figure 3.1 shows the sampling locations, labelled

according to ice-cover at the time of sampling. The region experiences seasonal ice

cover. Samples were collected before and after ice retreat during each cruise. Each

vertical profile covered depths from the surface down to a light level of 1% of the

surface value. A four-day-average light level Eabove ice was calculated from the daily

averages of incident light on the deck of the ship on the day of sampling and for the

three days prior.

Uptake rates of NO3 and inorganic C were measured in the same incubation bottle

using a dual-label approach with a combination of the stable isotope tracers 15NO3

and H13CO3 (Sambrotto, 2001; Sambrotto et al., 2008). Samples were taken from
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the euphotic zone (100, 55, 30, 17, 9, 5 and 1.5% of maximum submarine light) and

collected in 2.2-L PET bottles. The original light levels were simulated with layers of

black screen and the bottles were incubated for 24 hours in on-deck incubators cooled

with surface seawater pumped from the ship’s sea chest. Complete details of sampling

and measurement procedures can be found in Sambrotto et al. (2015).

The photoparameters are denoted with v for uptake rates in general, mu0 for carbon-

specific growth, α as the initial slope, Ek the saturation intensity, and β as the pho-

toinhibition coefficient. These were derived by fitting the carbon uptake data with

the Platt Model as defined in Equation 1.1. Here, µ0 is the maximum specific carbon

uptake rate (derived from the uptake rates in Sambrotto et al., 2015), Ek is the sat-

uration light intensity, and β is the photoinhibition parameter. The parameter α, the

initial slope of the PE curve, often referred to as photosynthetic efficiency, is defined

in this formulation as in Equation 1.5. Though β was fit with the other parameters, it

only impacts the Platt Model at higher light levels than were relevant to the present

study. Therefore, in the theoretical discussions below regarding the Platt model and

photoacclimation, the β component of the equations is ignored for the sake of clarity.

A more realistic version would include photoinhibition, but the overall trends would be

the same.

Measured values of v , α, and Ek are shown in Figure 3.2 as a function of the light

at the water surface surface, Esurf . As mentioned, a three-day average irradiance was

measured from the deck of the ship and taken as the above-ice light level. Under ice

light values had to be corrected for attenuation by the sea ice. This attenuation is

highly dependent on factors which were not measured, including ice thickness, density

of ice algae, and snow thickness (Kauko et al., 2017). The value of Esurf below the

ice was estimated as a linear function of the deckboard-measured light and percent ice

cover C, as without more data a more complicated model of attenuation could not be

justified. The linear form used here was fit such that in areas with complete ice cover,

it was assumed that no light reached the water surface:

Esurf = Eabove ice

(
1− C

100

)
(3.1)
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The assumption of there being no transmittance at maximum ice cover is reflective of

observations and studies showing that ice and snow cover in winter can dramatically

decrease transmittance (Assmy et al., 2017; Kauko et al., 2017). The possibility and

implications of this approach under-estimating light transmittance is discussed in the

results below.

Figure 3.2 shows observed values of the three relevant PE parameters vm, α, and

Ek plotted against PAR at the water surface (Esurf as defined in Equation 3.1). In

Figure 3.2, middle row, two clusters appear in the data for α. Open water samples have

a mean α = (3.1±1.3)×10−4 (µE m−2 s−1)-1hr-1. In under ice samples, values of α are

generally lower than in open water populations, with a mean of α = (1.3± 2.0)× 10−4

(µE m−2 s−1)-1hr-1. One outlier stands out in the α values for under ice samples

shown in Figure 3.2, at Esurf = 43.2 µE m−2 s−1. Given the complex wind-driven

transport of sea ice in the area, it is possible that this or other samples taken from

locations identified as ice-covered may have previously been in open water, such that

their phytoplankton could have already acclimated to open-water conditions and higher

light levels. This is only a speculation regarding this particular outlier, but it should

be noted that without it, the under-ice values of α have a mean of (0.65± 0.4)× 10−4

(µE m−2 s−1)-1hr-1.

A one-tailed Mann-Whitney U test was conducted to establish the significance of

the observed difference. Including the outlier in the under-ice data, Uunder ice = 17 and

Uopenwater = 111, indicating that the under-ice values are significantly lower than open

water (p < 0.01). The same pattern is found even when normalised to chlorophyll,

that is αB = α C
Chl . Here, a one-tailed Mann-Whitney U test also shows statistical

significance for the hypothesis that αBunder ice is less than αBopenwater (p < 0.05).

A similar but less dramatic pattern appears in the data for vm. The mean for under-

ice values was 0.014±0.016 hr-1, while open water samples, vm,avg = 0.026±0.015 hr-1.

The difference is also significant (p < 0.05) by a one-tailed Mann-Whitney U test where,

including the outlier, Uunder ice = 31. Values of Ek do not appear to differ significantly

between under-ice and open-water conditions. For under-ice samples, Ek = 120 ± 60

µE m−2 s−1. Open-water samples had Ek = 100± 80 µE m−2 s−1.
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Figure 3.2: Photoparameters plotted against surface PAR. Open circles are data from
open-water sampling sites, closed diamonds are data from sites that were at least par-
tially ice-covered at the time of sampling.
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3.2 Growth Model with Respiration

As noted by Platt & Jassby (1976), the commonly used form of the Platt curve rep-

resents gross rates, not net. In terms of µ (see also Cullen, 1990), the gross specific

growth rate µgross is the sum of net growth rate µnet and dark respiration RD, such

that

µnet = µgross −RD (3.2)

where RD > 0. Thus, Cullen (1990) rewrote the model to explicitly include respiration

by

µnet = µ0

(
1− e−αE/µ0

)
−RD (3.3)

It has also been show that dark respiration is a linear function of growth rate µ:

RD = rµgross +RM (3.4)

where r > 0 is a species-specific slope, and RM is maintenance respiration which occurs

even when there is no growth (Baklouti et al., 2006a; Falkowski & Raven, 2007; Geider

et al., 1986). Combining Equations 3.4 and 3.3 and solving for µnet gives

µnet = (1− r)µ0

(
1− e−αE/µ0

)
−RM (3.5)

Although the actual complexity of photochemistry does not behave so simplistically, it

is often assumed that r is constant and therefore Equation 3.4 is linear (Geider, 1992;

Geider & Osborne, 1989; Geider et al., 1986). This would make (1− r) also constant,

and thus replace (1 − r)µ0 with a new µ0 representing the maximum growth rate for

the new growth altogether.

Maintenance respiration can be expressed as a product of α and the compensation

intensity EC , i.e. the light level at which respiration and gross growth rates balance

and net growth is zero (Langdon, 1988; Siegel et al., 2002). Langdon related RM to αP ,

the initial slope of the photosynthesis-irradiance curve, rather than the slope of the the
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growth-irradiance curve (which is the α used here), such that:

RM = αPEC (3.6)

As with µ, α can be approximately estimated by multiplying αP with the carbon to

chlorophyll ratio. We can thus say, assuming an approximately constant C:Chla ratio,

that

RM ∝ αEC (3.7)

Not also that this is the logical consequence of the linearisation of the models for

small E, because at low irradiance µ ≈ αE, and the compensation irradiance is where

µ(EC) = RM (cf. Siegel et al., 2002). This relation expresses the idea that an increase

in α necessitates an increase in photosynthetic machinery and thus a higher energy

cost to maintain, which has been shown empirically to approximately follow the linear

relation shown above. Inserting this formulation into equation 3.5 gives:

µ = µ0

(
1− e−αE/µ0

)
− αEC (3.8)

Based on EBS observations, the variation in Ek appears to vary weakly with seasonal

changes if at all. But µ0 and α exhibit the same seasonal pattern. Thus if it is assumed

Ek is not seasonal, then it can be taken as constant with respect to time, or with respect

to seasonal parameters, e.g. ∂Ek/∂α = 0. And since µ0 = αEk, then ∂µ0/∂α = Ek.

Under this assumption the dependence of net growth on α becomes

∂µ

∂α
= Ek

(
1− e−E/Ek

)
− EC (3.9)

In conditions where ∂µ/∂α > 0, i.e. where the partial derivative of µ with respect

to α is positive, increased α leads to an increase in net growth µ. Yet where ∂µ/∂α < 0,

a reduction in α becomes energetically beneficial, as every positive ∆α translates into

a negative ∆µ. The threshold light level, E∗, which marks the boundary between these
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regimes, is that which makes ∂µ/∂α equal to zero,

E = E∗ ≡ Ek ln

(
Ek

Ek − EC

)
(3.10)

The Taylor expansion for E∗(EC) around EC = 0 is:

E∗ ≈ E∗(0) + Ek
∂

∂EC

[
ln

Ek
Ek − EC

]
· EC +O(E2

C)

= 0 + Ek
1

Ek
EC +O(E2

C) (3.11)

where O(E2
C) denotes terms of the second and higher orders. These terms are increas-

ingly vanishingly small for small values of EC , and can be ignored. The first order

approximation (ignoring the errors of higher order) yields

E∗ ≈ EC (3.12)

for small values of EC . As with the relationship between α and RM , this result is also

to be expected from the near-linearity of the model for small E..

Below the compensation intensity, respiration is greater than growth and can be

minimised by decreasing α. It is therefore energetically advantageous to shift from low

to high α as the light level experienced by the community increases above EC .

Figure 3.3 demonstrates this model’s behaviour with two hypothetical curves. The

values of µ0 and α for one curve was the average of the open water samples of Figure 3.2,

the other using the average from under-ice samples. The curve using open water data,

having higher values of maximum growth and a higher initial slope, reaches a higher

maximum more quickly, However, this curve also extends much more into the negative

below the compensation intensity (arbitrarily chosen to be 20 µE m−2 s−1for illustrative

purposes here).

32



Figure 3.3: Demonstration of the trade-off model. Hypothetical carbon-specific growth
curves given by the model given in Equation 3.8 using the mean values of observed α
for open water and under-ice samples and the average µ0 for open-water samples (see
Figure 3.2 and Section 3.1). As Ek was assumed to be constant, its value was calculated
from the open water values of µ0 and α, and the result was used to calculate µ0 for the
under ice curve based on Equation 1.5. Above the compensation point (here arbitrarily
chosen to be EC = 20 µE m−2 s−1), larger α is clearly advantageous, however below
this point respiratory losses dominate and a lower α leads to lower loss.
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3.3 Threshold Light Level

As demonstrated above and shown in Figs 3.2 and 3.3, the compensation intensity

EC is the threshold below which it is more advantageous to have a decreased α and

thereby decrease losses due to respiration. Therefore by estimating EC and comparing

with the observed transition light level, the model can be tested for consistency with

the Eastern Bering Sea data. This required establishing the mean PAR experienced by

the sampled phytoplankton, a function of mixing depth, turbulence, surface PAR, and

ice cover. In the mixed layer, individual cells move up and down from the surface to

near darkness, and the average light experienced by one cell is significantly less than

the maximum. With insufficient data to establish more realistic estimates, mean PAR

was approximated by applying a single correction factor to the surface PAR, such that

Emean = cEsurf . This correction factor c was estimated to be 0.2, based on observations

in environments with similar mixed-layer depths (Diehl et al., 2002; Long, 2010). This

approximation also matches the biophysical model of Banas et al. (2016, cf. Figure 7

in that study), and corresponds to uniform mixing of a 40 m euphotic zone.

The cruise data is re-plotted in Figure 3.4 as a function of this estimated Emean

as opposed to Esurf . A range for EC of 5–25 µE m−2 s−1was estimated based on the

wide ranges of measurements in the literature (cf. Langdon, 1988; Quigg & Beardall,

2003; Siegel et al., 2002). These values may not reflect the reality of Bering Sea phyto-

plankton, but were a range of measured phytoplankton compensation intensities that

encompassed several measurements for multiple species of phytoplankton.

The estimated EC range as well as the corresponding range of E∗ values, lie across

the domain between total darkness and spring-bloom light levels. As mentioned in Sec-

tion 2, the actual transmittance through the ice was not known. Higher transmittance

would shift all the under-ice points toward higher PAR in the figure.

The EBS data are thus broadly consistent with the energetic model above, or rather,

as consistent as they might be expected to be given the uncertainty surrounding the

exact light environment and light history of the sampled plankton patches.
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Figure 3.4: Observed α plotted against the approximate mean PAR cells would expe-
rience in the mixed layer. See Figure 3.2, middle row, for the plot of α against surface
PAR. The rectangular boxes indicate the estimated range of EC and subsequent range
of E∗ using Equation 3.11 and the mean values of Ek (see Section 3.1). As was shown
in Equation 3.12, E∗ deviates only very slightly from EC , the offset being negligible
when Ek � EC .
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3.4 Discussion

All other things being equal, within the Platt model and related models of growth,

higher α means higher rates of photosynthesis and growth. Such a model alone does

not predict why over-wintering cells would decrease α. Expressing α in terms of a

respiration cost (Equation 3.7) provides such an explanation.

Although the data presented from the 2007-2009 cruises were sampled in different

regions at similar times of year, there are good reasons to believe they represent sea-

sonal change. Spatially, the under-ice and open water regions were close, with surface

currents exchanging water between them (Stabeno et al., 2016). Therefore it is unlikely

that the distances spanned represent substantially different ecosystems or communities.

Additionally, prior observations of this seasonality in the EBS (Sambrotto et al., 1986)

and elsewhere (see Tables 1 and 2 in the prior chapter) have been more explicitly

seasonal in their time scales. The observations of Sambrotto et al. (1986) and the mod-

elling experiments of Banas et al. (2016) both point to seasonality in this region. As

spring blooms tend to begin at the ice edge during the thaw (Sigler et al., 2014), using

under-ice versus open-water as proxies for pre- and post-bloom is not unreasonable.

Past literature has also considered this (Palmer et al., 2011, 2013).

Taken altogether, the data presented in this chapter reinforce the larger picture of

seasonal behaviour, with the photoparameters µ0 and α being lower in winter under

near-total darkness. That the photosynthetically available light in these conditions

is below estimates of the compensation intensity lends credibility to the trade-off hy-

pothesis. This has implications for modelling efforts which seek to use light-limitation

models of phytoplankton growth across seasonal time scales.

3.4.1 Comparison with Other Growth Functions

Multiple models of P and µ as functions of E have similar efficacy at describing observed

relationships (Lederman & Tett, 1981). Similar to the functional form of µ(E) in

Equation 1.4 following the Platt model, the model in Smith (1936) has also been used
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for specific growth rates (e.g. in Banas et al., 2016):

µ =
αE√

α2E2 + µ2
0

(3.13)

As with Platt, functions of light that follow the above relationship will be referred to as

the “Smith model”, even though it was originally devised for rates of photosynthesis.

Mathematically, both Platt and Smith both reduce to nearly linear equations at

low irradiances and approach asymptotic limits at high irradiances. It is therefore no

surprise that when given the same parameters, the equations follow each other closely

(see Appendix B for a full discussion, and in particular Figure B.1 for an illustration of

this similarity). One important distinction is that the full Platt model of photosynthesis

P accounts for photoinhibition at high irradiances through the parameter β, shown in

the full form in Equation 1.1 (also fully discussed in Appendix B). The similarity

between Smith and Platt means both reproduce the seasonal behaviour of the observed

P -E data. For modelling purposes, though there can be small quantitative offsets

between them in addition to differences in interpretation, especially in the absence of

photoinhibition the two models are both valid approaches and will exhibit the same

patterns of behaviour (see, again, Appendix B and the discussion of multiple models

in Lederman & Tett, 1981).

3.4.2 Perspectives for Modelling

Quantifying seasonal phytoplankton values, including the photoparameters, remains a

challenge. Many difficulties abound for measuring over-wintering phytoplankton. There

are technical challenges in sending ships to sample under-ice communities during the

polar night, as well as preserving their dark acclimation when samples are brought

deckboard. Uncertainties are high when attempting to measure extremely low values

of photosynthesis, with simply accounting for the total amount of phytoplankton in

a winter sample being a challenge. Large errors in measurements of photosynthetic

ability mean much uncertainty about natural variability (McKee et al., 2014; Neeley

et al., 2015).
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As a result, much remains to be explored here, in finding more accurate measure-

ments of the threshold light level, in the compensation intensity for the different species

in the EBS, and the nature of the transition between low and high photoparameters.

Despite these uncertainties and open questions, the data presented here further demon-

strates the case for seasonality and illustrates the need for further research to target

this area.

Modelling studies are, on the one hand, limited by the uncertainties in the parame-

ters. Yet on the other hand, they offer a space to explore possibilities. As Banas et al.

(2016) discovered the need for a seasonal α to produce an accurate spring bloom, on

the basis of the limited data of (Sambrotto et al., 1986), so can the data in this chapter

guide modelling investigations. With the evidence presented, the minimal expectation

is that a model with higher µ0 and α in spring, after crossing a threshold E∗ close

to the compensation intensity EC , should produce realistic spring bloom behaviour.

That the data strongly suggest this seasonality exists and the evidence this chapter has

shown for their being a biological justification for it strengthens the expectation that

including this seasonality could even improve a model’s accuracy. The next chapters

will therefore use an NPZD model to explore the ramifications of seasonality in spring

bloom dynamics.
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Chapter 4

Seasonality in an NPZD Model of

the Eastern Bering Sea

In this chapter, an existing NPZD model of the Eastern Bering Sea (EBS) is adapted to

test the importance of seasonal light response in the timing of the spring bloom. This

was done by changing the photoparameters to be seasonal. In this case, we use the

initial slope α and the maximum specific uptake of nitrogen, denoted µ0. Specifically,

and in accordance with the previous chapter, below the threshold light level E∗, the

model used lower values for the photoparameters.

Previous use of this model only had seasonality in α, based on data from Sambrotto

et al. (1986). Incorporating seasonality in µ0 as well brings the model in line with more

recent observations (see Chapter 3), as well as providing a mechanistic basis for the

model’s behaviour. Further, this allowed for a more comprehensive exploration of model

behaviour with respect to varying degrees of seasonality in the photoparameters, and

a thorough investigation of the potential parameter space that firmly established the

necessity of seasonality.

Using 2009 as a case study, this version of model was verified against observa-

tional data, through a parameter analysis that explored the space of possibilities for

key parameters including the photoparameters. The spring bloom of 2009 was par-

ticularly well documented, with measurements before, during, and after the bloom of

nitrate concentration as well as specific uptake rates and biomass for phytoplankton and
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zooplankton. The multiple methods of measurement make for a robust, well-defined

bloom. This case study, designated the IEB60 test-bed, allowed for a well constrained

cost-function in the parameter analysis.

The next sections will describe the structure of the one-dimensional NPZD model.

The physics was extracted from a biophysical model by way of tracking particle trajec-

tories. These trajectories provided the physical forcing applied to the one-dimensional

model, effectively simulating the flow of the water column along a trajectory. The

results of the model runs and parameter analysis found parameter values that best fit

observations using versions of the model with and without seasonality. Comparison

between these two fits will then show how increasing the strength of the seasonality

enhances model accuracy.

4.1 Structure of the Ecosystem Model

An existing NPZD model hind-cast, developed for the EBS (Banas et al., 2016) and

using a nitrogen budget, was modified into two versions: a model with seasonality in

vm and α and a model without seasonality (i.e. constant photoparameters throughout

the year). The components of the model are diagrammed in Figure 4.1 and outlined in

detail below.

This ecosystem model is one-dimensional, but is able to capture advection as a

flow-following water column. This flow is simulated by tracking particle trajectories in

an existing 3-D physical model, BESTMAS (Bering Ecosystem Study Modelling and

Assimilation System) model, described and validated in Zhang et al. (2010b).

Physical forcing was extracted from BESTMAS along particle trajectories which

follow the 0–35 m depth-average currents and which intersect with the region of interest

in time and space. Thus, at every time step, the ecosystem model is fed the physics of

the next point in the trajectory. Further details are given in Section 4.2.

The model has a six-compartment nitrogen budget, tracking phytoplankton biomass

B, micro-zooplankton biomass Z, small and large detritus DS and DL, and the nutri-

ents nitrate (NO3) and ammonium (NH+
4 ). Phytoplankton nitrate uptake rates v is

a function of irradiance and concentration of NO3 and NH+
4 , with loss terms from
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Figure 4.1: Structure of the ecosystem model, reproduced from Figure 4 in Banas et al.
(2016). Solid arrows denote growth for the compartments being fed into, with the
exception of the solid arrows from detritus which are losses from the system. Dotted
arrows denote regeneration pathways.

micro-zooplankton ingestion I, mortality mP and aggregation magg. The model uses

a nitrogen budget as nitrogen is the most limiting nutrient in the EBS, especially as

it pertains to spring blooms (Aguilar-Islas et al., 2007; Mathis et al., 2010; Sambrotto

et al., 1986; Strom & Fredrickson, 2008).

The model equations governing the evolution of phytoplankton biomass B, zoo-

plankton biomass Z, small detritus DS , large detritus DL, ammonium concentration

[NH+
4 ], and nitrate [NO3], are a system of ODEs.
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dB

dt
= qPµ(E,NO3,NH+

4 )B − qzI(B)Z − qRmPB − qPmaggB
2 + mixing (4.1)

dZ

dt
= εqzI(B)Z − qzmzZ

2 + mixing (4.2)

dDS

dt
= (1− ε− fex)qzI(B)Z + qRmPB − qRrreminDS + sinking + mixing (4.3)

dDL

dt
= qPmaggP

2 − qRrreminDL + sinking + mixing (4.4)

d[NH+
4 ]

dt
= -

ϕNH+
4

NH+
4

Ntot
`qPµ0B + fexqzI(B)Z

+ qRrremin(DS +DL)− qRrnitrateNH+
4 + mixing (4.5)

d[NO3]

dt
= -

NO3

Ntot
`qPµ0B + qRrnitrateNH+

4 + mixing (4.6)

All parameters above are defined with values and sources in Table 4.1. A brief

description and summary of the terms and equations follows here, addressing the com-

ponents of each equation and defining the sources and sinks of each component of the

model.

4.1.1 Phytoplankton

Phytoplankton evolution in Equation 4.1 is a nitrogen budget, with an uptake term that

combines temperature dependence qP with the nitrogen uptake rate v. This uptake

rate depends on light E and the availability of the nutrients NO3 an NH+
4 . Specifically,

nutrient limitation depends on the effective total nutrient concentration Ntot:

Ntot = NO3 + ϕNH+
4 (4.7)

where ϕ < 1 represents the reduced preference for ammonium relative to nitrate, and

kmin is the minimum half-saturation for NO3. The resulting equation for nutrient
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limitation v, following Smith et al. (2009), is

v(E,Ntot) =
Ntot

kmin + 2
√
kminNtot +Ntot

v(E) (4.8)

where v(E) is the light-limited nitrogen uptake. The model assumes a constant C:N

ratio within the phytoplankton, and sets C:N=9 as suggested by data for the Eastern

Bering Sea in Sambrotto et al. (2016). This entails that any uptake in carbon must

be balanced by a proportional uptake in nitrogen. Therefore, v(E) can be derived

by dividing photosynthetic carbon fixation by the constant C:N, allowing the model

to include a light-limited component in its nitrogen uptake that is also affected by

seasonality of photoparameters, and the equation for v becomes:

v(E,Ntot) =
Ntot

kmin + 2
√
kminNtot +Ntot

· P

C : N
(4.9)

The Smith (1936) model describes photosynthesis P as a function of irradiance E:

P (E) =
αE√

α2E2 + P 2
m

Pm (4.10)

As noted in prior chapters, Pm = αEk, and thus the Smith model can be simplified to

the form:

P (E) =
E√

E2 + E2
k

Pm (4.11)

In the previous chapter, values of Ek changed little between pre-bloom and bloom

samples. Therefore this model assumes a constant Ek, with seasonal variation in the

Smith model being expressed through changing Pm.

As was discussed in previous chapters (see Sections 1.4 and 3.4.1) the Smith model

has a very similar shape to the Platt model without photoinhibition. The differences

in parameterisation are very small, especially compared to the proposed differences

between winter and spring parameters.

The more significant distinction is the lack of photoinhibition. Part of the reason

is before and even partly into the spring bloom, phytoplankton cells in the mixed layer
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experience on average less light than the saturating intensity Ek, and are not subject

to supra-optimal intensities until later in or even entirely after the bloom peak. The

high-irradiance, nitrogen-deplete environment of the post-bloom summer months are

expected to exacerbate photoinhibition in phytoplankton, especially diatoms, (Loebl

et al., 2010), but are beyond the scope and focus of this study. Further discussion on

the effects of photoinhibition are found in Appendix B.

Once again considering the assumption of constant C:N, Pm can be rewritten as a

maximum nitrogen uptake vm multiplied by C:N. Similarly, we can convert between

specific growth for both nitrogen and carbon, and so shall use µ to represent specific

nitrogen uptake in the model as it is also our means of tracking growth. The full

equation for nitrogen uptake µ as a function of light and nutrient concentration can

now be written as

µ(E,Ntot) =

 E√
E2 + E2

k

( Ntot

kmin + 2
√
kminNtot +Ntot

)
µ0 (4.12)

The amount of light experienced by a cell in the water column was defined with

respect to light at the water surface E0, attenuation by sea-water attsw, and the ratio

of vertical diffusivity κ to the time-scale of phytoplankton nutrient uptake µ0:

Eeff = E0 exp

(
−attsw

√
maxκ

µ0

)
(4.13)

The dimensions of κ are length-squared over time.

The saturation irradiance Ek is assumed to be constant, based on data presented

in the previous chapter. As such seasonality is defined by the variation in µ0 and by

extension α. Once Eeff exceeded the compensation intensity EC , winter values for

µ0 and α switched to higher summer values. For both parameters, the transition was

defined by a hyperbolic tangent function:

µ0 = µ0,win +
1

2
(µ0,sum − µ0,win)

(
1 + tanh

Eeff − EC
∆E

)
(4.14)

The choice of hyperbolic tangent allowed for a continuous yet narrow transition.
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Equation 4.1 also includes a temperature term, qP , which is a function given by

qP (T ) = Q
T/10C
10,P , where Q10,P is the temperature coefficient (Q10) for phytoplankton.

Thus, every 10◦C increase in temperature is an exponential increase in qp. The choice

of Q10,P reflects a common value in the modelling literature. It should be noted this

study focuses on the transition from winter to spring and the onset of the bloom, which

occurs over a narrow temperature range, rarely exceeding 3◦C until late spring and late

into the bloom (see next section). Within that range, the difference between a Q10 of

1.5 (a lower estimate such as found in Sherman et al., 2016) and a Q10 of 2 could alter

qP by as much as 10%, though this again would be more of an issue later in the bloom.

At the latest stages of the bloom and into summer, the choice of Q10 becomes ever

more significant.

The combination of temperature, light, and nutrient availability leads to a combined

positive term for dB/dt.

dB

dt
= qP (T )

 E√
E2 + E2

k

( Ntot

kmin + 2
√
kminNtot +Ntot

)
µ0 − losses (4.15)

Losses come from grazing by zooplankton through ingestion I (also temperature

dependent through qZ), and a generic mortality term mP . Mortality due to aggregation

and sinking is encompassed by the term magg.

The general mortality mp represents general loss terms and therefore accounts for,

in part, losses due to respiration. Respiration is typically defined as the production and

release of CO2, and is therefore a loss term for the carbon budget (Falkowski & Raven,

2007). Nitrate uptake would therefore be affected by changes to uptake parameters

and an increase in mortality due to respiration, but respiration itself would not be

considered a loss term for the nitrogen budget with this definition.

Considering then only loss terms for nitrogen, there are pathways for excretion,

primarily as nitrite (NO−
2 , cf. Anderson & Roels, 1981; Lomas & Lipschultz, 2006) but

also ammonium (Kamp et al., 2011; Lomas et al., 2000). Estimates of how this excretion

affects external nitrogen budgets and nitrate-uptake kinetics vary depending on taxa

and environment (Collos, 1982; Glibert et al., 2016; Lomas & Glibert, 2000; Sciandra
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& Amara, 1994), making an estimation for a community (whose bloom is dominated by

diatoms but pre-bloom is more diverse) difficult in a model. Therefore this model does

not attempt to represent this variability in the effect of respiration on nitrogen loss in

any detail, opting instead for a crude tuning parameter of phytoplankton mortality,

mP .

4.1.2 Zooplankton

Zooplankton are governed by ingestion I, which is a function of phytoplankton B, but

is tempered by grazing efficiency ε < 1, excretion fex < 1, and temperature dependence

qz = Q
T/10C
10,Z . As with phytoplankton, the choice of Q10,Z represents an approximate

value based on averages from the literature (Hansen et al., 1997), bearing in mind the

small temperature range explored within the model’s boundaries.

4.1.3 Nutrients, Detritus, and Recycling

Nitrate concentrations were determined as a function of water-column depth H. First

the surface and bottom NO3 concentrations were calculated as a function solely of H:

NObottom
3 = (42mmol m−3)

H2

(116m)2 +H2
(4.16)

NOsurface
3 = (24mmol m−3)

H2

(86m)2 +H2
(4.17)

Then both were used in setting the initial NO3 depth profile as follows:

NOinitial
3 (z,H) = − z

H
NObottom

3 +
(

1 +
z

H

)
NOsurface

3 (4.18)

All three equations were used in the initial study (Banas et al., 2016) as they are

presented above. The values 42 and 24 mmol m−3 in the equations for top and bottom

nitrate were fit by Banas et al. to observation data from bottle samples within 10 metres

of the bottom and 2 metres of the surface taken in the spring 2009 BEST cruise (Mordy

et al., 2012). These equations also result in a decrease in nitrate in surface waters

along the inner shelf approaching the coast, consistent with observations of low nitrate
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concentrations and low replenishment in the coastal waters (Kachel et al., 2002; Mordy

et al., 2017; Stabeno et al., 2010).

The nutrient fields were then evolved according to the ODEs above. Both have loss

terms from phytoplankton uptake, moderated by light limitation ` (see Equations 4.11

and 4.12). Phytoplankton have a preference for nitrate over ammonium denoted by ϕ.

Nitrate is regenerated in part from nitrification of ammonium, which in the model

is regulated by the term rnitrate, with a temperature dependence qR. Ammonium is

regenerated in part by excretion by zooplankton, a fraction of ingestion denoted by fex.

Ammonium is also regenerated by remineralisation rremin of detritus D.

Small detritus derives from the inefficiency of zooplankton ingestion as well as zoo

plankton excretion, encapsulated in the term (1− ε− fex)qzI(P )Z. Small detritus also

increases from phytoplankton mortality mP , which has its temperature dependence qR.

Large detritus results from aggregation and sinking of phytoplankton cells, accounted

for in the term magg. Both detritus types have losses due to remineralisation rremin

which converts them into ammonium. And both are affected by sinking through their

sinking rates wS and wL which shifts their positions in the water column.

4.1.4 Mixing

All components are affected by mixing, determined by the one-dimensional diffusion

equation with diffusivity κ being a non-constant function of z:

∂u

∂t
=

∂

∂z

(
κ(z)

∂u

∂z

)
(4.19)

where u stands in for any of the components of the model (B, Z, the detritus and

nutrients).
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Parameter Symbol Value Units Source

Fixed Parameters

Phytoplankton C:N ratio 9 mol:mol Spring ’09 observations,
(Sambrotto et al., 2016)

Chlorophyll:N ratio 2.2 mg:µM
Minimum half-saturation for NO3 kmin 0.16 µM N Collos et al. (2005)
Preference for NH+

4 ϕNH4 2
Grazing half-saturation K 1 µM N
Microzooplankton growth efficiency ε 0.3 Hansen et al. (1997)
Fraction of grazing excreted to NH+

4 fex 0.35
Microzooplankton mortality mz 1.5 day−1

Small detritus sinking rate wS 3 m dy−1

Large detritus sinking rate wL 100 m dy−1

Detrital remineralization rate rremin 0.05 day−1

Nitrification rate rnitr 0.03 day−1 Banas et al. (2016),
cf. Zhang et al. (2010a)

Temperature Coefficients (Q10):
Q10 for phytoplankton Q10,P 2 Bissinger et al. (2008)
Q10 for zooplankton Q10,Z 2.8 Hansen et al. (1997)
Q10 for bacterial respiration Q10,R 2.8

Width of µ0,win − µ0,sum transition ∆E 5 W m−2

Subject to Parameter Analysis in
Section 4.3

Initial
Value

Maximum N uptake rate, winter µ0,win 1.2 dy-1 Zeeman & Jensen (1990)
& summer µ0,sum

Initial growth-light slope, winter αwin 0.01 (W m-1)-1 dy-1 Banas et al. (2016)
& summer αsum 0.16 Sambrotto et al. (1986)

Threshhold light level E∗ 30 W m−1 Banas et al. (2016)
Phytoplankton mortality mP 0.03 dy-1 ibid.
Phytoplankton loss via aggregation magg 0.009 (µM N)-1dy-1 ibid.
Light attenuation by seawater attsw 0.05 m-1 ibid.
Light attenuation by phytoplankton attP 0.006 m-1µM N-1 ibid.
Max microzooplankton ingestion
rate

I0 2.4 day−1 Sherr et al. (2013)

Initial Conditions

Integrated phytoplankton B 6 µM N m prebloom chl, spring
2009, Lomas et al.
(2012)

Integrated microzooplankton Z 0.4 µM N m prebloom C biomass,
spring ’09, Sherr et al.
(2013)

Small detritus DS

Large detritus DL

Nitrate NO3 Eq. 4.18
Ammonium NH+

4 0 Mordy et al. (2012)

Table 4.1: Parameters of the NPZD model. The majority follow Banas et al. (2016),
with ten parameters subject to analysis described in Section 4.3 in order to test the
hypothesis of this chapter: that seasonality of α and µ0 are effective in ecosystem
modelling.
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4.2 Particle Tracking and Physical Forcing

4.2.1 IEB Testbed

The tuning of the two model versions was done by randomly varying the model pa-

rameters in 50 000 different runs (see Section 4.3). These runs were then compared

with observational data taken in spring and summer 2009 in the mid-shelf region of the

EBS, referred to here and in the prior paper as the “IEB60” case, the boundaries of

which are shown in Figure 4.2.

The IEB60 data resolved an ice-edge spring bloom near 60◦N in late April to early

May, 2009, from BEST/BSIERP observations (Lomas et al., 2012; Mordy et al., 2012;

Sambrotto et al., 2016; Sherr et al., 2013; Stabeno et al., 2012; Stoecker et al., 2013).

These included concentrations of NO3, phytoplankton and micro-zooplankton biomass,

specific growth rates determined from dilutions as well as 14C, 13C, and 15N uptake

experiments.

In the prior paper, the model already contained seasonality in α that was enabled

by an arbitrary critical light level. When the effective light, Eeff experienced by a phy-

toplankton cell in the mixed layer exceeded this critical light level, the model switched

from low pre-bloom winter α to a high summer α. This transition was defined by

a hyperbolic tangent function. Here this critical light level is replaced by the com-

pensation light intensity EC . As both the present model, and the prior model it was

adapted from, are nitrogen based and not carbon, the maintenance respiration cost (as

in Equation 3.8) is not explicitly defined.

4.2.2 Particle Trajectories

As mentioned above, the NPZD model is a one-dimensional Eulerian model which

approximates a Lagrangian approach by taking particle trajectories as inputs. This

is an approximation as the ecosystem model is constructed in an entirely static, 1-D

form, only moving with currents if those inputs represent movement. These trajectories

contain the physical forcing including ice cover, surface PAR, and depth profiles of

temperature and vertical diffusivity. Thus the one-dimensional water column of the
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Figure 4.2: Location of the “IEB60” case-study. Black region indicates the boundary
of the CTD data used in validation of the model. Blue hatched region indicates domain
from which particle trajectories were extracted (see Section 4.2).

ecosystem model follows a specified trajectory. These trajectories were creating by

tracking particle paths in the BESTMAS model described and validated in Zhang

et al. (2010a,b, 2012). BESTMAS models the Northern Hemisphere from 39 ◦N across

the Arctic Ocean. That its physics, especially sea-ice, were validated against data over

this whole region made it a useful source of physical forcing for the NPZD model in

the EBS, which is highly influenced by its neighbouring regions.

Particles trajectories started on the first of January of 2009, one per horizontal

grid cell. Tracking was done in two-dimensions by averaging the velocities over the

top 35 metres of the water column, using a time step of one day. The necessary

trajectories for this experiment were those which intersected with the study region

(see Figure 4.2), all other trajectories were discarded. The trajectories are mapped in

Figure 4.3. Their corresponding physical variables are plotted in Figure 4.4, showing ice

cover, temperature, surface PAR, and vertical diffusivity over time for each trajectory.
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Figure 4.3: Map of particle trajectories, with the CTD data boundary denoted by the
black dash-dot rectangle.

4.3 Parameter Analysis

The parameter analysis was conducted with respect to ten parameters (shown in Ta-

ble 4.2). These parameters were selected on the basis of observational uncertainty (i.e.

there was justification for considerable flexibility in their values) and their relevance to

the new model (i.e. α and µ0 would necessarily need re-tuning in a model that argued

for their change, as would related terms such as EC). Four were the photoparameters

whose seasonality was in question, µ0 for winter and summer, and α for winter and

summer. The compensation intensity EC was also an unknown, both its value and its

degree of influence on model performance.

In addition to phytoplankton specific uptake rate, the maximum ingestion rate by

zooplankton, I0, was included in the analysis because uncertainty in its value also meant

previous fits of this parameter that were based on different values of phytoplankton

growth may be incorrect. Similarly, the high degree of uncertainty of the loss terms–

phytoplankton mortality mP and phytoplankton loss via aggregation magg– meant their

values needed re-evaluation as well. Finally, as this study is focused on the role of

light limitation, the final two parameters of the analysis were the attenuation factors.
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Figure 4.4: Physical variables along each trajectory. At each time step, the physics were
extracted from the BESTMAS model at the corresponding points for each trajectory.
The NPZD model was then run as a one-dimensional ecosystem model following the
paths mapped in 4.3 and experienced the ice concentration, temperature, surface PAR,
and vertical diffusivity plotted here.
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Attenuation by sea-water attsw and by phytoplankton cells attP represented two more

uncertainties directly related to light limitation.

These parameters were randomly varied over the course of 50 000 model runs. In

each run, each of these parameters was assigned a random value from a wide range

that encompassed prior observations. This range was a factor of 3 above and below the

parameters used in Banas et al. (2016). The exception was for EC , whose range was

from 0 to 25 W m−2, a rough estimate based on prior literature (Langdon, 1988; Quigg

& Beardall, 2003). Effectively, this was a brute-force approach to searching a broad

parameter space for possible good fits. Because it was assumed that Ek was constant,

once αsum and µ0,sum were selected, Ek was fixed. As a result, the tenth parameter,

αwin was fixed by the selection of µ0,win, as a result of

αwin = µ0,win
1

Ek
= µ0,win

αsum
µ0,sum

(4.20)

The results of each run were also compared with the IEB60 data: NO3 concentrations,

phytoplankton and micro-zooplankton biomass (B and Z were converted to g C m−2

by assuming constant C:N), f -ratio, and the specific N uptake rate µ and grazing rates

I of phytoplankton and micro-zooplankton, respectively.

A cost c was then calculated from the mean-squared error between the model out-

puts mi and the observed data points oi.

c =
1

n

∑
i

(
oi −mi

σi

)2

(4.21)

The values of oi correspond to averages of each metric (e.g. NO3 concentration) at

a specific phase in bloom development. The four phases considered were pre-bloom,

early bloom, late bloom, and summer. For each metric, an average was taken of the

observational data and the model outputs within each of the four phases, producing

four points for each metric representing different periods in time. This averaging was

done to eliminate potential sampling bias that might give more weight to one time

period over the others. The term σi reflected a heuristically determined range of error

for each metric, such that the model was not constrained to get as close as possible to
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Parameter Search Bounds Best Fit Range Units
Max phyto growth rate (Summer) µ0,sum 0.6 – 5 2.6 – 3.6

d-1

Max phyto growth rate (Winter) µ0,win 0.002 – µ0,sum 0.2 – 0.4

Initial growth-light slope (Sum) αsum 0.034 – 0.16 0.10 – 0.14
(W m-2)-1 d-1

Initial growth-light slope (Win) αwin µ0,win · (αsum/µ0,sum) 0.008 – 0.012

Compensation intensity EC 0 – 25 13 – 17 W m-2

Max ingestion rate I0 1 – 7 1.1 – 1.9 d-1

Phytoplankton mortality mP 0.001 – 0.03 0.01 – 0.03 d-1

Phyto loss via aggregation maggr 0.003 – 0.015 0.005 – 0.015 (µM N)-1 d-1

Light attenuation, sea-water attsw 0.002 – 0.08 0.05 – 0.07 m-1

Light attenuation, phytoplankton attP 0.002 – 0.09 0.002 – 0.009 m-1 µM N-1

Table 4.2: Parameters varied and the ranges of values providing the best fits to obser-
vation data. Without seasonality, µ0 and α were constant. “Search Bounds” indicates
the minimum and maximum values of the parameter space, with αwin being related to
αsum by the same ratio as the two µ0s, due to the assumption of Ek being constant.

the actual points, but within a wide range.

The parameter combinations which yielded model runs that minimised c for the

model without seasonality were compared with those for the model with seasonality.

As this was a random sampling without direction, there was no cutoff or target value

for c, both the seasonal and nonseasonal models were given 50 000 runs each in the

tuning process. The lowest cost results were then compared for their ability to capture

key observations such as the timing and magnitude of the phytoplankton bloom and

the corresponding rapid decrease in NO3 concentration.

4.3.1 Measure of Seasonality

The strength of seasonality was quantified by the variable s:

s = 1− µ0,win

µ0,sum
= 1− αwin

αsum
(4.22)

The ratio µ0,win/µ0,sum is equal to αwin/αsum because Ek was taken to be constant.

A higher value of s indicates a smaller ratio of winter to summer values, i.e. a greater

increase in both µ0 and α in spring/summer relative to winter. For each of the model
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Variable Time Period Mean Obs. Value

NO3, top 35 metre average
[µM N]

10–11 Apr (pre-bloom) 16.5
26–30 Apr (early bloom) 7.7
6–7 May (late bloom) 1.9
26 June – 6 July (summer) 4.3

Integrated phytoplankton P
[g C m−2]

10–11 Apr 0.86
26–30 Apr 34
6–7 May 47
26 June – 6 July 2.0

Integrated
microzooplankton Z [g C
m−2]

10–11 Apr 0.0028
26–30 Apr 0.066
6–7 May 0.18

Phytoplankton specific
growth rate µ [day−1]

10–11 Apr 0.091
26–30 Apr 0.38
6–7 May 0.19
26 June – 6 July 0.22

Specific grazing rate I
[day−1]

10–11 Apr 0
26–30 Apr 0.15
6–7 May 0.17
26 June – 6 July 0.24

f -ratio
26–30 Apr 0.94
6–7 May 0.71
26 Jun – 6 July 0.31

Table 4.3: Target values for model runs from IEB60 data, spring to summer 2009 (Cross
et al., 2012; Lomas et al., 2012; Mordy et al., 2012; Sambrotto et al., 2016; Sherr et al.,
2013; Stoecker et al., 2013).
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runs in the parameter analysis, the cost c and seasonality s were recorded. This way,

any relationship between c and s could be tracked across the parameter space.

4.4 Results

The best fit model runs with the lowest costs c are show in Figure 4.6, plotted with the

observational data. While noticeable errors still remain at specific points, the model

run with seasonality performs substantially better.

The IEB60 data show nitrate declining rapidly as phytoplankton biomass and up-

take rates increase. It should be noted in July many measurements recorded an increase

in NO3. One source of this error could be a pycnocline shallower than 35 m, with the

high concentration mostly being below the pycnocline but increasing the 0–35 m depth

average. It may also be the result of the limits of the one-dimensional approach used

here, as it does not fully reproduce patchy wind mixing, which may be a source of

intermittent resupply of nitrate (Eisner et al., 2016).

Without seasonality, the best fit runs were unable to reproduce the magnitude of

the spring bloom in terms of phytoplankton biomass. As can be seen in Figure 4.6,

there is a slight increase in phytoplankton biomass around the correct date, but is an

order of magnitude below the observed peak. More importantly, even if the magnitude

is increased through an increase in α or µ0, a spurious early bloom becomes increasingly

pronounced. When the other observational metrics are ignored and only the error for

B is used in the cost function, the magnitude of the bloom can be replicated but also

occurs a month or more too early.

With seasonality, however, stronger fits are found. While the lowest cost for the

nonseasonal model was cmin,nonseasonal ≈ 1.771, the model with seasonality was able

to reduce the minimum cost by over two thirds, with cmin,seasonal ≈ 0.496, and no

spurious bloom. Many low cost (c < 0.7) fits for the seasonal model still have spurious

early blooms, however, and these are shown in Figure 4.6 for completeness.

Caveats for the success of the model include that the highest values of error exist

for the micro-zooplankton grazing rates and biomass. The parameter ranges for these

fits are shown in Table 4.2, with I0 being less than half the value used in Banas et al.
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Figure 4.5: Cost function of the seasonal model (Eq. 4.21) versus seasonality s, the
measure of seasonality defined above (Eq. 4.22). The full range of costs spanned orders
of magnitude from 10−1 to 104. The ranges for each parameters which had an order of
magnitude of 10−1 are presented in Table 4.2

(2016) of 3.4 day−1 (derived from Sherr et al., 2013). This may be due in part to

the original model having higher µ0 year round, which would then need a higher I0 to

balance phytoplankton in the lead-up to the bloom. EC remains the most uncertain

parameter. As there is limited data for comparison, more investigation would need to

be done to help constrain its value.

The relationship between the cost function and seasonality is shown in Figure 4.5.

While any given value of s can have a range of costs, a strong constraint is immediately

evident. Low cost fits only begin to be found above a seasonality of 0.85, with hundreds

of low cost points occurring in the vicinity of s = 0.9.
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Best Fit Model Runs, No Seasonality Best Fit Model Runs, Seasonal µ0 and α

•• Standing stock measurements of phyto-, microzoo- plankton.

◦ Microzoo. dilutions − Areal means from dilution experiments

◦ 14C, 13C, 15N uptake

Figure 4.6: The best fitting model results, as determined by the cost function using ob-
servational data, for the NPZD model without seasonal photoparameters (left column)
and the NPZD model with seasonal α and µ0.

58



4.5 Discussion

While Banas et al. (2016) fit a transition from low winter α to high summer α, at a

threshold light level, in an ad-hoc manner by tuning to observations, this chapter has

presented a model that a priori includes such behaviour. Equation 3.8 implies the

need for seasonality. The nature of the winter to summer transition is yet uncertain,

and more data are needed from this range to clarify, however it was still possible to

generalise the trend in the model.

The results above strongly suggest seasonality in light response is necessary to

fully explain bloom dynamics in the EBS. In Banas et al. (2016), seasonality of α was

a necessity for the model to accurately reproduce observed data. Here it has been

shown through multiple runs of the model and a search through parameter space that

an alternative parameterisation which lacks strong seasonality cannot account for the

timing, magnitude, and rapid development of the spring bloom.

Questions of interpretation still remain, however. We must discuss the limitations

and the advantages of the present model design to fully understand its usefulness for

exploring the question of photo-seasonality. Many modelling approaches were intro-

duced by way of examples in Section 1.2.1, and we must first consider comparisons and

contrasts with other model designs before we can assess the performance of the one

presented here.

4.5.1 Model Complexity: Physics, Nutrient Budgets, and Behaviour

Biogeochemical models are often 3-dimensional, as noted in the examples in Sec-

tion 1.2.1. This is true for the global models such as MEDUSA as well as regional

such as SINMOD. This chapter’s model is given its physical forcing from BESTMAS, a

3D regional physical model, but that physics is extracted along trajectories to permit

a 1-Dimensional NPZD to follow currents. The ecosystem model is therefore less com-

putationally demanding and can run in minutes or hours, which facilitated the tens of

thousands of parameterisations run in this chapter.

As noted in Section 1.2, NPZD models can also be limited by any manner of nu-
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trients including nitrogen and phosphorus. This model was a nitrogen budget because

of its limiting role in the EBS compared with other nutrients, both macro- and micro-

(Aguilar-Islas et al., 2007). Some biogeochemical models (such as that described in

Baklouti et al., 2006a,b) also include carbon budgets as part of an broader approach of

mechanistic models as discussed in Section 1.2.1. A major distinction is, while carbon

is generally not a limiting nutrient in the oceans, explicitly tracking net carbon uptake

necessitates accounting for losses due to respiration (Baklouti et al., 2006a; Cullen,

1990; Cullen et al., 1993). Respiration is not explicitly addressed in this model be-

cause it is a nitrogen budget, however as noted in the prior chapter we hypothesise

that the respiration cost of high α is one factor in the seasonality of photoresponse,

and it is known that nitrogen uptake is affects by the metabolic cost of maintenance of

photosystems (Li et al., 2015).

While more recent developments are highlighting the advantages of models with

variable stoichiometry, it is common for models, even those which have both carbon

and nitrogen budgets, to assume a constant C:N (Moloney & Field, 1991). In the

case of a model with constant C:N, the maximum uptake rate for one is capped by

the limits of the other. Where nitrogen is more limiting, carbon fixation cannot ex-

ceed nitrogen uptake, and vice versa. Two recent papers explore models with variable

C:N (cf. Anugerahanti et al., 2021; Kerimoglu et al., 2021) suggest that this improves

the portability of models, though this can also limit model performance by introducing

more room for error.

In the case of the EBS, across the decades the limiting role of nitrogen in controlling

the end of the spring bloom is well established (Banas et al., 2016; Sambrotto et al.,

1986; Stabeno et al., 2012). A nitrogen budget is therefore a necessity. With a constant

C:N, carbon fixation can be approximated from nitrogen uptake. One drawback is the

lack of explicit respiration loss in a nitrogen budget. But while Chapter 3’s trade-off

hypothesis provides a potential causal explanation for the community-level behaviour,

the model in this chapter (and the next) is designed to test only the impact of season-

ality on the whole community’s dynamics. Thus explicit carbon is not needed for this

purpose, and the model was kept with only nitrate and ammonium.
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It is worth noting when considering nutrient budgets that photoparameters may

also be affected by nutrient limitation. In experiments documented by Smith Jr. &

Donaldson (2015), nutrient limitation was not relevant until the bloom was fully initi-

ated. The focus of these experiments was on the run-up to the spring bloom and the

timing of its onset, all periods wherein the model nutrients were saturated. In other

scenarios or models this may not be the case, and could be a confounding factor.

4.5.2 Community Structure

The model used only one class of phytoplankton and one of zooplankton. Mesozoo-

plankton were not included in the model due to the constrained focus on the timing and

peak magnitude of the spring bloom. Mesozooplankton in the EBS have been found to

primarily prey on microzooplankton, with phytoplankton less than 10% of their prey in

ice-edge bloom regions (Campbell et al., 2016), compared to the high grazing rates of

microzooplankton (Sherr et al., 2013). While this may have ramifications for microzoo-

plankton population numbers, and may be more significant for phytoplankton grazing

over the whole year, for the study at hand these effects were found to be negligible in

the model of Banas et al. (2016) and hence excluded here.

Many of the studies cited in this thesis not only demonstrate changes in phyto-

plankton community composition during spring blooms, but also measured α on a

community level and not separately by species (see Table 2.2). It is possible that with

2 phytoplankton classes, or more, that for each class smaller variations in α or even

none at all are sufficient to provide a good fit to data, if the classes with higher α

become dominant in spring.

Yet the literature summarised in Chapter 2 still show individual cells can experi-

ence seasonal α, making seasonal light response at a minimum something to consider in

model development, even with multiple phytoplankton classes. The pressing implica-

tion for model design from this chapter is the sensitivity of the spring bloom to seasonal

photoacclimation.
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4.5.3 Model Performance

With the caveats and contrasts with other models in mind, the results of this chapter

have shown the potential of photoparameter seasonality. Figure 4.6 shows this clearly.

As was noted in Section 4.4, setting the photoparameters high enough to match the

observed peak magnitude of phytoplankton biomass can’t occur too early, essential

making the non-seasonal model unviable from the start.

In Section 1.2 we established that model complexity can be measured by more than

just geometry, and all forms of complexity carry their own trade-offs. When Kerimoglu

et al. (2017) noted how uncommon it was for models to include photoacclimation,

they suggest that adapting and developing models to improve realism should consider

physiology as well as geometry or dimensionality. More recent work has also found

improved model performance when photoacclimation is added to a fixed-stoichiometry

model (Anugerahanti et al., 2021). The results of this chapter therefore concords with

other studies modelling photoacclimation.

While numerous complicated factors have been expounded upon above, and new

degrees of freedom increase flexibility generally, the fundamental change of the model

from a static light response to one which can in a very short time switch from slow

to rapid growth fundamentally enables a rapid bloom. Importantly, while the rapid

bloom can be captured with the nonseasonal model, the threshold light level used in

the seasonal model allows for a tuning of the timing of the bloom, making it possible

to match both timing and magnitude together.
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Chapter 5

Inter-annual Variation Between

Cold and Warm Years

This chapter presents a case-study in applying the model, as it was developed in the

previous chapter with its final parameterisation, to multiple years with large inter-

annual differences in the physical environment. The results were then used to examine

how the physical changes in the EBS affect the model bloom phenology.

The previous chapter demonstrated the success of the seasonal NPZD model in a

specific case study. The IEB60 test-bed represented an exceptionally well documented

spring bloom during which many measurements were taken. This year, 2009, was also

representative of a cold year, in which low temperatures led to thicker ice the maximum

extent of which reached southerly latitudes of the Eastern Bering Sea.

In this chapter, the implications of seasonality within this model will be explored

on an inter-annual scale, looking between 2009 as a representative cold year, and 2015

as a representative warm year, with 2014 and 2016 also included as warm years. The

impact of including seasonality is quantified and compared with the effect of inter-

annual variations in the physical environment.
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5.1 Introduction

Chapter 1 laid out the stark impact warming temperatures have had on sea-ice, leading

to a decrease in the extent and thickness of ice. While year-to-year variability continues,

annual ice cover in the Arctic and sub-Arctic seas continues a downward trajectory over

the multi-decadal trend of global warming (Bliss et al., 2019; Kwok, 2018; Stroeve &

Notz, 2018), driven by the changing temperatures (Olonscheck et al., 2019).

This has a profound impact on the light regime in the Bering Sea, both through the

direct attenuation of light by snow and sea-ice (Kauko et al., 2017) and the influence

of ice on stratification and the depth of the mixed layer (Brown & Arrigo, 2013). Prior

chapters (specifically the introduction in Chapter 1 and literature review in Chapter 2)

have discussed the relevance of mixed layer depth to phytoplankton blooms.

Now, with a model of photoresponse seasonality set out in Chapters 3 and 4, the

question remains how well this model can be applied to changing light regimes and

physical environments in the test area. While the previous chapter focused on winter

to spring 2009, categorised as a “cold year” in the Bering Sea and featuring extensive

ice cover, recent years have seen a return of warm conditions, with substantially less

ice (Kikuchi et al., 2020; Stabeno et al., 2017).

Figure 5.1 demonstrates the difference in ice cover between 2009 and 2015, using ice

cover from the biophysical model BIOMAS (Zhang et al., 2010a). This stark difference

is also highlighted in observation data such as in Stabeno et al. (2017). The years

2014 through 2016 exhibited higher temperatures and substantially less ice cover than

cold years such as 2009 (ibid). For an inter-comparison of the model’s efficacy across

multiple environmental regimes, 2009 and 2015 were chosen. Given the role of ice in

limiting light in the IEB60 case study of the prior chapter, the question then arises

how the model will fare under the warm year conditions. Less ice would mean more

incoming surface light E0, and an Eeff influenced by altered vertical mixing.

It should be noted that the relationship between vertical mixing and phytoplankton

growth is complex. Hunt, Jr et al. (2002) proposed that sea-ice’s effects on mixing is

a significant control on inter-annual variability in spring blooms, via what they named
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Figure 5.1: Map of ice concentrations at points in the biophysical BIOMAS model for
2009 and 2015, on the day of greatest ice extent by total area covered. The BIOMAS
model is described in Zhang et al. (2010a), and is plotted here as its outputs will provide
the physical forcing in this chapter’s model runs, and thus provide a clear picture of
the environment the NPZD model will be operating in. These model data compare
well with observations in warm years (Stabeno et al., 2017).

the Oscillating Control Hypothesis (OCH). The OCH posits that ice cover protects the

water column from being mixed by winter storms, allowing for early stratification and,

in accordance with the critical depth hypothesis of Sverdrup (1953), setting the condi-

tions for a bloom once the ice retreated. Conversely, the authors hypothesised that in a

year without ice cover, the resultant winter mixing would delay a bloom as compared to

a cold year, as stratification would come later in the year. Note also that Hunt, Jr et al.

(2002) acknowledge other factors are involved, and available observational data are not

inherently clear cut, as is also shown in discussions of inter-annual bloom dynamics

in Stabeno et al. (2001).

Thus, this case-study in applying the model to different (physically and temporally)

years has to contend with the rather large array of potentially relevant variable, inter-

actions, and systems, and the paucity of data for them. Assessing the reasonableness

or validity of results takes these issues into consideration.
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5.2 Data & Methods

5.2.1 Cruise Data for Warm Years

Similar to the data presented in Chapter 3, data were obtained from research cruises

undertaken by the USCGC Healy in 2014, 2015, and 2016. The cruises followed the 70-

metre isobath in late spring, and took samples from multiple depths at each sampling

site, as described in Lomas et al. (2020). The map in Figure 5.2 shows the location

of sampling sites in 2015 along with the location of key moorings and the 70-metre

isobath.

Measurements were made of nitrate and chlorophyll-a concentrations. Samples were

also incubated to measure carbon and nitrogen uptake rates. The 2015 depth-integrated

values for nitrate concentration, carbon uptake rates, chlorophyll-a concentration, and

nitrate uptake rates are presented in Figure 5.3.

These cruises were designed around mooring recovery and the data cover a handful

of days for each year. The minimal number of data points, and the lack of any visible

directional trend, makes it difficult to draw any conclusions about the spring bloom in

this year.

Using fluorometry data from the moorings M2 and M4 on the 70m isobath in the

Bering Sea, Stabeno et al. (2017) show that M2 experienced a clear chlorophyll peak

in the latter half of May 2015, with M4 having multiple peaks from late April to early

June 2015 (cf. Figure 5 in the paper). Mooring data also show a mid-May peak in

2014 at M4, and a wide peak beginning mid-April and continuing at high levels into

April for M2 in 2016. Thus we can infer from Stabeno et al. (2017) that the cruise data

in Figure 5.3 are insufficient to capture the latter half of the bloom or the post-bloom

phase, if they even properly represent the peak at all.

Sigler et al. (2014) provide data on spring bloom maxima for multiple years between

1995 and 2011, across the Bering Sea encompassing moorings M2, M4, M5, and M8.

These were compared with the dates of ice retreat at different locations. For years with

early ice retreat, the bloom maximum could be as late as June at M2 and M4.

Thus from a historical perspective, it is unclear where in the bloom development
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Figure 5.2: Map of sampling sites of 2015 cruise data, indicated by solid diamonds.
At each site, samples were taken across multiple depths, the vertically integrated data
present in Figure 5.3. Moorings indicated by crosses. Mooring data provide a reference
for bloom dynamics in prior years (Sigler et al., 2014) and 2015 in particular (Stabeno
et al., 2017), see text for details.
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Figure 5.3: Depth-integrated data calculated from measurements taken during cruises
of the USGCG Healy in the Eastern Bering Sea in late spring of 2014, 2015, and 2016.
Each spring cruise took place at roughly similar times of year.

the cruise data might lie, and they cannot be used as test data. Accordingly, bloom

phenology is studied for its sensitivity to seasonality and inter-annual variation in phys-

ical conditions. Ranges for potential bloom timings, based on location and ice extent,

derived from literature are used to aide analysis (Brown & Arrigo, 2013; Sigler et al.,

2014; Stabeno et al., 2017).

5.2.2 Physical Forcing for NPZD Runs in Warm Years

As with the IEB60 case, physical forcing was taken from an existing 3D model, which

coupled a sea-ice model, an ocean circulation model, and a biological model. The

particle tracking method was the same as described in the prior chapter, section 4.2.

For this chapter, particles were tracked in outputs from the BIOMAS model, details of

which can be found in (Zhang et al., 2010a).

Particle trajectories were extracted along the 70 metre isobath of the EBS, a repre-

sentative region for the middle shelf and along which are several mooring stations. The

extraction was limited to trajectories which began anywhere between 60◦ N and 80◦
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Figure 5.4: Map of initial NO3 in the top 35 metres. For all years, [NO3] was determined
by Equations 4.16, 4.17 and 4.18.

N, at locations with maximum depths between 60 and 80 metres. Given the prevailing

currents in the region, these trajectories predominantly follow the 70 metre isobath in

its northwest direction around the coast of Alaska.

As in the previous chapter, physical forcing was derived by extracting the physics

at each point in time and two-dimensional space along a trajectory in the BIOMAS

model. These were values of maximum depth H, temperature T , surface light E0,

vertical diffusivity κ, and ice concentration.

5.2.3 NPZD Runs for Warm Years

Using the trajectories, the NPZD model was initially run for the years 2009 and 2015.

The parameter values used were those determined from the previous chapter’s optimisa-

tion. This meant that these initial runs exhibited seasonality in their photoparameters

µ0 and α, where low winter values transition to high spring values after the effective

light Eeff exceeds a threshold E∗.

The 2009 IEB60 case-study was a particularly well studied bloom, with multiple

measurement methods of more than 6 variables recorded before, during, and after the

bloom. Such data are difficult to obtain in the best of circumstances, and the blooms of
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2014-16 were not so well resolved, and much of the time series data on variables such as

nutrient and chlorophyll concentrations were limited to the moorings (see Section 5.2.1).

Lacking enough data in nitrate, phytoplankton, and zooplankton, the warm year runs

could not be reliably compared against data. Instead, the model was studied for its

response to changing physical conditions, to better understand the role of seasonality

in modulating inter-annual variation.

Initial nitrate profiles were calculated using the same functions as in the prior

chapter, described in Equations 4.16,4.17, and 4.18. As before, the model assumes no

carry-over of nitrate from the previous autumn, effectively resetting the nitrate each

winter. This was a necessary assumption lacking validated data for inter-annual nitrate

variation in the particular years studied here. A map of initial nitrate distribution in

the top 35 metres of the water column is shown in Figure 5.4. The discretisation of the

NO3 field arises in part because NO3 profiles are functions of z and H. The model grid

is taken from BIOMAS, which has discrete intervals for the water depth H. The low,

near-zero nitrate concentrations on the inner shelf, close to the coast, are consistent

with observation data for this region (cf. Kachel et al., 2002; Stabeno et al., 2010).

As described in the previous chapter, within the model Eeff is explicitly defined as

a function of vertical diffusivity κ, attenuation by seawater attsw, surface PAR E0, and

the growth rate µ0:

Eeff = E0exp

(
−attsw

√
max(κ)

µ0

)
(5.1)

One result of the Chapter 4 was the sensitivity of bloom timing to the strength of

seasonality in the photoparameters µ0 (maximum growth rate) and α (initial slope of

the light response curve, a proxy for photosynthetic efficiency). That chapter defined

seasonality s as

s = 1− µ0,win

µ0,sum
= 1− αwin

αsum
(5.2)

That is, where there is no seasonality and winter values equal summer, then sea-

sonality s is equal to 0, with the strongest possible seasonality being 1, where winter

values are zero. The effect of changing seasonality was studied by fixing all parame-

ter except µ0,win and αwin. Degrees of seasonality were applied to µ0,sum to calculate
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µ0,win, and both terms were used along with αsum to calculate αwin, in accordance with

Equation 4.14 and the assumption that Ek is constant. The timing of the bloom was

calculated for the same region around the 70 metre isobath. For each trajectory, the

bloom start was considered to be the date at cumulative phytoplankton biomass up to

that point was equal to 15% of the sum total. This metric is used in such past work

as Greve et al. (2005) and Brody et al. (2013).

This experiment in varying s, while keeping other parameters fixed, was repeated

for 2014 and 2016 as well, to ensure any trends in 2015 are consistent with other warm

years. The earliest date of initiation for any trajectory within the specified region was

taken as the beginning of the bloom for the whole region.

5.3 Results

5.3.1 Trajectories and Physical Forcing

The warm temperatures of 2015 contributed to a smaller area covered by ice at the

maximum extent, only reaching as far south as 58 ◦N, and an earlier thaw. In addition,

2015 also saw the formation of the ice much later in the winter season. In 2009, ice

had already formed at the most northerly latitudes in early December, while in 2015

ice formation began in January. Figure 5.5 shows the average ice concentration at each

latitude in the study region from the beginning of the year into mid-summer. The

cold of 2009 allowed for ice to extend further south, barring a brief ice retreat in late

February and early March which was discussed in the previous section.

The forcing fields are shown in Figures 5.6 and 5.7, along with a map of the trajecto-

ries in the EBS. Trajectories all begin in the immediate vicinity of the 70m isobath. In

both years trajectories head in many directions with a general trends to follow the 70m

isobath northward. In 2009 trajectories don’t reach north of 64◦N, while several paths

extend much further north in 2015. However, the large majority of 2015 trajectories

remain in the same region. Regarding ice cover, only in the most northerly trajectories

does ice persist as long into 2015 as in 2009. Most 2015 trajectories begin, if not remain

entirely, further south than the southernmost extent of ice. However those trajectories
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Figure 5.5: Scatter plot of trajectory points by latitude and time, coloured by ice
concentration. In 2009, trajectories even south of 58◦N experience thick ice cover. In
2015 ice not only forms later in the year and never extends as far south. Both years
experience a brief retreat in ice in their most southerly regions in early March.

which continue north toward the Bering Strait experience ice cover late in the year.

Trajectories in both 2015 and 2009 generally begin with higher temperatures then

move northward with currents to colder regions. In 2015 trajectories that begin in open

water may move toward an ice covered region, but some do not and remain at higher

temperatures. All trajectories have a lower bound nearly -2◦ C, being the freezing point

of sea water. All trajectories’ temperatures increase as they continue into spring.

Surface light, PAR0, increases steadily across most trajectories in 2015 as there is

no ice attenuation. Those that do flow under ice can be seen in the plots as having a

delayed increase in light. In 2009 changes in ice cover cause some variation, but as ice

retreats in both years PAR0 increases.

Greater mixing is evident in the early months of 2015 as shown in the plots of κ in

Figure 5.7. By late April in both years there is a reduction in κ which can be taken

as evidence of stratification. Therefore we see that stratification occurs in both years

around the same time. Early in the year, more trajectories in 2009 experience low

values of κ. Conversely, in 2015, κ stays high into late April, when most trajectories

experience a decline in this factor.
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Figure 5.7 also plots the effective PAR Eeff at each point in the trajectories. Ef-

fective PAR is a function of the physics (ice, mixing, and incoming surface light). A

jump in effective PAR in 2009 corresponds to ice retreat and stratification, although

a steeper increase among several 2015 trajectories can also be seen to correspond with

stratification.

5.3.2 Model Outputs

Figure 5.8 shows the results for nitrate, phytoplankton biomass, and phytoplankton

carbon-specific growth rates along each trajectory in both years. As in the previous

chapter, the nitrogen budget model was converted into carbon assuming a constant

C:N. Nitrate concentrations are generally lower in 2015, and have a wider distribution.

Most 2009 trajectories being with nitrate between 6 and 12 µM, with just one trajectory

quickly rising to nearly 14. But in 2015 trajectory starting points have nitrate between

2 and just over 10 µM. As trajectories were selected based on whether they cross the

70-metre isobath, despite having the same initial field of nitrate concentrations (see

Figure 5.4), the differences in currents resulted in different trajectory starting points

in both years and thus rather different nitrate conditions.

The onset of the bloom is consistent with the model’s light threshold, as the increase

in phytoplankton biomass in Figure 5.8 follows an increase in effective PAR, which can

be seen in Figure 5.7. In 2009, this increase in PAR corresponds to ice retreat. In 2015,

the southernmost trajectories are absent ice and so light-limitation is primarily driven

by mixing. Consequently, bloom timing in 2015 corresponds to the decrease in mixing.

In 2015, the southernmost trajectories reach optimal conditions for a bloom slightly

earlier in the year, resulting in a wider spread of bloom peaks as the bloom moves

northward. Out of 143 trajectories, more than half (83) experience blooms after mid-

May. Less than one tenth (9) occur in mid to late June, well after the latest for 2009. A

substantial fraction (39 trajectories) experience earlier blooms than the earliest blooms

in 2009. Overall, bloom initiation spans from early May to the start of June for 2009,

and from mid-April to late June for 2015. For both years, the majority of blooms begin

in mid to late May. Thus while for the whole region, the spring bloom begins earlier
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in 2015, much of the bloom occurs around the same year-day as in 2009.

The bottom row of Figure 5.8 shows the phytoplankton growth rates. While a

handful of 2015 trajectories experience very high rates of growth by comparison to

2009, nearly reaching the maximum growth rate µ0, the majority stay within the same

range, below 1 day−1. Much like with the integrated biomass, growth rates in 2015 are

more spread out over time, while in 2009 have a sharp increase and peak immediately

following ice retreat.

Figure 5.9 uses an example trajectory from 2015 to illustrate the transition to

spring conditions using the threshold light model. Blooms begin when the effective

light increases above the threshold light level, with the bloom peak occurring on the

order of days after the transition.
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Figure 5.6: Particle trajectories for 2009 (left) and 2015 (right). Top row: Map of
trajectories in the EBS. Middle row: Ice concentration over the trajectories. Bottom
row: Surface temperature T0 across trajectories.
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Figure 5.7: Physical forcing along the extracted trajectories. Top row: Surface PAR.
Middle row: log10 of average vertical diffusivity κ. Bottom row: Effective PAR experi-
enced by a cell mixed through the water column.
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Figure 5.8: Model runs for 2009 and 2015 trajectories along the 70m isobath: Top
row: Nitrate in the top 35 m. Middle row: Phytoplankton biomass. Bottom row:
Phytoplankton specific growth rate.
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Figure 5.9: Illustration of the threshold light level model using one trajectory from the
2015 model run. The left y-axis shows effective PAR, the blue curve being the model
output and the horizontal line being the threshold light level E∗. The right y-axis show
phytoplankton biomass, plotted in the orange curve. The intersection between Eeff
and E∗ occurs as biomass begins to increase, with the peak of the bloom days after.
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5.3.3 Seasonality and Bloom Phenology

Spring bloom start dates for each trajectory were determined as the day at which cu-

mulative phytoplankton biomass was 15% of the total across the time space (cf. Ferreira

et al., 2014). Dates for bloom maxima were also calculated for each trajectory. These

were calculated for model runs with varying strengths of seasonality. The seasonality

s (see Equation 4.22) was varied between no seasonality (s = 0) and maximum sea-

sonality (s = 1) by varying µ0,win between 0 and µ0,sum. Using the assumption of a

constant Ek from Chapter 3, winter α was the same fraction of its summer counter-part

as µ0,win was of µ0,sum.

In Figure 5.10, the start date of the model spring blooms are plotted against sea-

sonality, including model runs for 2009, 2014, 2015, and 2016. Figure 5.10a takes the

earliest bloom initiation out of all trajectories, while Figure 5.10b averages all trajec-

tories’ starting dates. Figure 5.11 plots the average dates for bloom maxima against

seasonality. Also included are the approximate dates for the maximum at the mooring

M4 in 2014 and 2015 shown in Figure 5b of Stabeno et al. (2017), as well as average

dates from years with early and late ice retreats shown in Table 1 of Brown & Arrigo

(2013).

These results align well with those shown in the previous chapter for the cold

year (2009), where it was shown that incorporation of seasonality was necessary to

avoid spurious formation of early blooms. Here we see evidence that the high mixing

of the early months in the warm years (see again Figure 5.7) is also insufficient to

delay a bloom without a seasonal factor. More concisely, without seasonality, either

winter photoparameters values are high enough to initiate a bloom on the minimal light

received at the start of the year; or summer values are too low to initiate a bloom at

all later in the year.

Increasing seasonality from 0 to 1 delayed the average bloom initiation date by 63

days for 2009, 71 days for 2014, 72 days for 2015, and 68 days for 2016. Start dates

at maximum seasonality were later than those at minimum seasonality by 35 days for

2009, 39 days for 2014, 38 days for 2015, and 28 days for 2016. Inter-annual variation,

at maximum seasonality, accounted for at most 20 days difference for the state date
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between 2009 and a warm year (the largest difference being with 2016), and 21 days

difference for the date of the maximum (comparing 2009 with both 2014 and 2016).

Figure 5.10: Timing of the spring bloom by year-day plotted against the seasonality
s. Start date of the spring bloom was determined as the day at which cumulative
phytoplankton biomass was 15% of the total across the whole time span. Seasonality
was varied by varying µ0,win between 0 and µ0,sum, which αwin being recalculated
assuming constant Ek. Other parameters were the same for each run.
Left: The earliest single-trajectory bloom initiation date for each year and value of s.
Right: The average across all trajectories of bloom initiation dates for each s.
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Figure 5.11: Timing of the spring bloom maximum by year-day plotted against the
seasonality s. The dates of each trajectory’s maximum were averaged for one overall
point per year. Seasonality was varied by varying µ0,win between 0 and µ0,sum, which
αwin being recalculated assuming constant Ek. Other parameters were the same for
each run. The dash-dot line is an approximation of the maximum for 2014 and 2015 at
M4 shown in Figure 5b in Stabeno et al. (2017). The two dash-dash lines are averages
for years with early and late ice retreats from Brown & Arrigo (2013), taken from Table
1 in that paper, specifically “Region 2”, a comparable geographic partition of the study
region.
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5.4 Discussion

5.4.1 Physical Controls of Bloom Timing

Sea-ice has the potential to be an important control on the timing of the spring bloom

in the EBS. Later melts can aid earlier blooms, as without sea-ice the sea is exposed to

winter storms, which can drive the mixed layer deeper than the critical depth (Sverdrup,

1953), thus delaying the bloom until stratification increases. This mechanism is the

previously mentioned OCH, or Oscillating Control Hypothesis (Hunt, Jr et al., 2002).

Ice directly attenuates incoming light, the light which passes through to reach the

water column being PAR0. Ice also influences vertical mixing by shielding the water

column from wind. The effective light experienced by phytoplankton is then a function

of the amount of mixing throughout the water column and the surface PAR.

Surface light and mixing are themselves functions of more than ice cover, however

it is through these factors that ice impacts effective light. As a direct impact, ice

attenuates incoming light before it reaches the water surface. Indirectly, ice is one

control on vertical mixing.

As Hunt, Jr et al. (2002) acknowledge, sea-ice may shield the water column from

winter storms, but the strength of winter storms and how late they persist in the year

is also variable. When also considering how changes to currents outside the region can

impact inflow and outflow of nutrients and plankton, and the authors specify that the

OCH is not a guarantee, but rather an expectation under specific assumptions. This

has also been acknowledged in other literature. In Sigler et al. (2014), the negative

correlation between ice retreat and spring bloom time in the southeastern Bering Sea is

shown to be weaker than the OCH may suggest. Brown & Arrigo (2013) and Stabeno

et al. (2010) report wind-driven mixing can decrease for periods in winter. And Ladd

et al. (2018) adds an additional complexity in the impact of mixing on nutrient dis-

tributions on the inner shelf. While this study has focused on the middle shelf, on a

larger scale the timing of blooms on the inner shelf can impact the rest of the EBS.

Many confounding factors arise from a more highly resolved picture of the EBS
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ecosystem. Also noted in Brown & Arrigo (2013) is variation with latitude. The

authors divided the eastern Bering Sea into four regions from north to south, with

regions 3 and 4 being centred on the moorings M4 and M2, respectively. For the most

southerly regions, late ice retreat corresponded to earlier blooms, in line with the OCH,

but in the northern regions where ice persists later into the year, the earlier ice retreat

corresponded with an earlier bloom on average. Returning to impact of the physics

on light, seasonal light response continues to have a strong influence even relative to

inter-annual variation, as discussed next.

5.4.2 Effects of Seasonality & Inter-annual Variation

The differences in bloom timings between the non-seasonal and high-seasonality runs

were greater than the difference from inter-annual variation. Bloom initiation varied

more than three times as much due to increasing seasonality as from inter-annual varia-

tion. And the date of the maximum of the bloom had larger variation from seasonality

than inter-annual differences as well, though not as strong. That the bloom peak didn’t

vary as much with seasonality as initiation may be related to the fact that at lower

seasonalities, bloom peaks were wider, and trajectories could have multiple peaks. As

a result, initiation would be registered as being much earlier while taking many days

to reach the overall maximum.

Looking at the variations in physical conditions between warm and cold years helps

elucidate the linkage between the cell-level perspective of photoacclimation discussed in

Chapter 3 and the annual and inter-annual ecological perspectives of this chapter and

Chapter 4. The extreme light limitation that necessitated seasonal photoacclimation

discussed in Chapter 3 becomes relevant on the ecosystem level when the system ex-

periences large scale ice cover, vertical mixing, and the dark winters of high-latitudes.

While the incoming light above ice will not experience significant inter-annual vari-

ation, warming temperatures will lead to more change in mixing and ice cover. As

the above has shown, both factors need to be considered when predicting changes to

phytoplankton blooms.

For example, the OCH predicts the reduced ice cover in a warm year would delay
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the onset of the spring bloom. Yet this is only as a result of how ice can protect the

water column from deep mixing in winter. This coupling of mixing and light is the

same mechanism used in the NPZD model here. As such, the results from the NPZD

model don’t disagree with the OCH in terms of its ecological mechanisms, but these

results could reflect what happens when winter mixing is weak. The phytoplankton

in the model respond to the effective light, which regulates the timing of the bloom.

Therefore estimates of mixing, ice, and surface PAR can be used to predict the timing

of a spring bloom through the calculation of Eeff .

Ice cover is as an appealing proxy for spring bloom timing as it is one of the easiest

physical factors to measure. However, ice alone is not the most reliable proxy. The

model did not produce delayed blooms in the warm year because in spite of the lack

of ice protection, winter mixing was weak and stratification appeared early. Note as

well the geographic dependence. As mentioned above, in Brown & Arrigo (2013) the

predictable pattern of the OCH is detected at the lower latitudes of the EBS, around

moorings M2 and M4. Further north, later ice retreat is associated with a slightly

later bloom than for earlier ice retreat. The average latitudes for all trajectories was

approximately 60◦N, with many trajectories running north toward mooring M8 (at

62.194◦N) and beyond.

Stabeno et al. (2017) presents chlorophyll time series for 2014 and 2015 at M4, and

2015 and 2016 at M2. An estimate of M4 bloom initiation (based on Figure 5b in

that paper) is plotted with the model runs in Figure 5.11, as M4 (located at 57.895◦)

is closer to the average trajectory locations. The start date of the blooms could not

be estimated from this paper as the data were not presented, and only the maximum

date could be roughly approximated from the plot. However this provides for some

comparison. This intersects with 2015 at s > 0.4 and roughly matches the 2014 and

2016 model runs above s = 0.6. Stabeno et al. (2017) also note in figure 5d and the

text that 2016 had an anomalously early bloom at M2, beginning in mid to late April,

which is slightly earlier than the model predicts.
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5.4.3 Implications for Modelling

Seasonality in photoparameters can have a strong control over model blooms, with

seasonality alone able to account for weeks of difference in bloom timing. While inter-

annual variation can account for substantial variation on its own, this analysis suggests

seasonality can be even more influential and thus merits consideration in modelling

studies.

Within the limited scope of this study, many factors were controlled that might, in

a real ecosystem, dominate the system. For example, on an ecological level, the average

α and µ0 for a whole community glosses over the inter-species differences. A change in

the composition of a community can account for a change in average α.

Oh a physical level, there remain open questions that need to be addressed in a

model, if not explicitly accounted for in the equations then excluded with justification.

In Sigler et al. (2014), the negative correlation between ice retreat and spring bloom

time in the southeastern Bering Sea is shown to be weaker than the OCH may suggest.

And this is because, as discussed in Brown & Arrigo (2013) and Stabeno et al. (2010)

wind-driven mixing can decrease for periods in winter. Here, the physical forcing is

derived from a model that incorporates surface winds. The variability of winter winds,

their influence on the variability of mixing, and thus their influence on bloom phenology,

is important to understanding the results in the regional context. While there is a

correlation between temperature, winter storms, surface winds, and ice, the relations

between each are complex and additionally all are influenced by other factors. As a

result, a simplified prediction of spring bloom dynamics using ice retreat as a proxy,

but not accounting for factors such as winds, will not necessarily yield accurate results.

The implication for modelling spring blooms is therefore strict scrutiny toward

factors regulating Eeff , and to acknowledge vertical mixing is not simply coupled to

ice cover. By following this approach it becomes possible to understand how the timing

of blooms in the northeastern Barents sea can deviate from the predictions of the OCH.

Revisiting the question of how an NPZD model with seasonal light response behaves

in a warm year, the results presented here (summarised in Figs. 5.8–5.11) suggest

that seasonality is not only as important for warm year bloom phenology as in a cold
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year, but that seasonality can have as much an impact as physical variation in the

environment.

Looking to a warming future, whether or not to account for seasonality in an ecosys-

tem model will need to consider all of the above, including the caveats. Yet it is safe to

say that seasonal variation in photoresponse, whether at the intra-cellular or commu-

nity level, has the potential to act as a significant regulator of bloom development even

in the face of large inter-annual changes. Knowing from previous chapters that plastic

photoresponse exists at both levels, and seeing in this chapter how that translates into

bloom phenology, phytoplankton models in similar conditions would do well to address

this mechanism.
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Chapter 6

Conclusion

Numerical ecosystem models expand our conceptual understanding of ecosystems by

following assumptions and hypotheses, codified in mathematical equations, to their nat-

ural conclusions. Models are never exact analogues to reality (see again Section 1.2),

nor do we always want them to be. Validating a model requires asking specific ques-

tions, and the problems in a model (such as its outputs not matching observations,

or matching observations but using contradictory or impossible physics) can point to

knowledge gaps or re-affirm expectations. That is the space in which this thesis has

explored the dynamics of a regional NPZD model. Establishing the numerically signif-

icant change in model performance with seasonal photoacclimation furthers the case

for seasonality and dynamic parameterisation, while also providing more insights into

our understanding of the modelled ecosystem.

In a previous study of small region within the EBS (the IEB60 test-bed of Banas

et al., 2016, see also Chapter 4), it was established that seasonality in α needed to

be accounted for to reproduce observed data. This thesis has provided evidence that

this seasonality can be seen in the data gathered from Bering Sea communities (as

well as other high-latitude environments, cf. Table 2.2). That this model performs

well when considering seasonality in both α and nitrogen-specific uptake rates and

cannot accurately reflect the data without seasonality (Chapters 4 & 5) fits well with

the observation of seasonality shown in the data (Chapter 3). While many ecosystem

models do not account for seasonality in these parameters, this study has provided
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evidence that such seasonality may well be essential for accuracy of bloom timing and

magnitude. This study has also provided a simple mechanistic explanation and a means

of implementing seasonality with minimal alterations to the model, further justifying its

inclusion in model experiments not simply as a hack or a cover for unresolved issues but

as an actual biological process that needs to be accounted for (or, if left out, justified).

Questions of interpretation still remain, however, both in terms of 1) the physiologi-

cal interpretation of the seasonal variation in photoparameters; and 2) how intra-cellular

and inter-species variation in photoparameters should be coordinated within models.

Many of the studies cited in this thesis not only demonstrate changes in community

composition during spring blooms, but also measured α on a community level and not

separately by species (see Chapter 2). Finer questions can also be asked about how sea-

sonal photoacclimation fits into the pre-existing understanding of the EBS, especially

in regards to the Oscillating Control Hypothesis, as discussed in Section 5.4.

On top of that, we can look for lessons with modelling methods generally, and for-

mulate new hypotheses regarding phytoplankton ecology based on the model results.

Therefore we can group conclusions for this thesis as being within the realm of mod-

elling, within the realm of ecology, and the intersection of the two. Of course, the

strongest conclusions pertain to the narrow focus of the above models: of seasonal

phytoplankton photoacclimation and how to model highly seasonal marine ecosystems.

But it is worth considering how these conclusions relate to research fields beyond the

narrow.

Thus we must look back at the implications this thesis has for the physiological

and ecological bases for photosynthetic seasonality, the implications these would have

for model design generally, and then what we can learn about the Eastern Bering

Sea. Finally, this thesis will conclude with a note on the limitations across all these

categories, and what future research in the high latitudes should consider.

6.1 The Role of Photoacclimation in Seasonality

Chapters 2 and 3 make the case for a biological basis in seasonality at least at a

community level if not the level of individual cells. For a cell, there are many factors
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which can lead to a decrease in α. In the case of over-wintering in polar ecosystems,

the need for efficiency in low light regimes must be balanced with the respiratory costs

of maintaining photosynthetic apparati. The association of α with RM in Langdon

(1988) and Siegel et al. (2002) was derived from a fit to experimental data, yet the

physical underpinning of this relationship can be seen in Equation 1.6, expressing α

as a function of chlorophyll-specific absorption cross-section ā∗ and maximum quantum

yield φmax.

Chlorophyll-specific absorption cross-section ā∗ is a measure of the amount of PAR

absorbed by chlorophyll-a, normalised to the amount of chlorophyll-a. Increases in

chlorophyll-a arranged in a thin layer or shell increase the amount of surface area to

absorb light and therefore cause an increase in ā∗ . Excessive pigment depletion can

lower the absorption cross section, thereby reducing α (Dubinsky & Stambler, 2009).

However, in a three-dimensional cell, chlorophyll can self-shade. This self-shading is

known as the “package effect”, and it causes an effective decrease in absorption cross

section while increasing the total amount of chlorophyll-a, causing a decrease in ā∗ (Ro-

chet et al., 1986). Thus either an increase or decrease in chlorophyll can cause a decrease

in ā∗ and therefore α, generally speaking. Both phenomena have been observed in polar

phytoplankton (Jochem, 1999).

Another layer of complexity is added by the diversity of pigments. While ā∗ may

decrease as a result of decreased chlorophyll, an increase in other pigments mean the

cell may still darken and the overall absorption remain the same or even increase (Mat-

suoka et al., 2011, 2009). In that sense, ā∗ is not always a proxy for α, and the whole

photosystem must be considered, a helpful parameter being φmax, a function of ab-

sorption cross sections of Photosystem II and the Photosynthetic Unit as shown in

Equation 1.7.

Thus the maintenance respiration cost associated with α could be the effect of any of

several of the molecular mechanisms of photosynthesis: the amount of chlorophyll-a, or

the amount of reaction centres or other pigments in the antennae. Chlorophyll concen-

tration needn’t necessarily decrease for α to decrease either, as the package effect yields

a reduction in ā∗ . Many diatoms are known to increase their pigments and darken as
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light decreases (Dubinsky & Stambler, 2009). Moreover, adding to the complexity is

the fact that antennae and reaction centres can be regulated independently (Falkowski

& Raven, 2007). Decreasing reaction centres increases the “size” of the PSU by de-

creasing the amount of evolved O2 per amount of chlorophyll, effectively increasing

σPSU and therefore decreasing φmax while saving respiration costs. Morgan-Kiss et al.

(2016) describe possible processes of down-regulating this activity in freshwater Antarc-

tic communities.

The implication of these multiple regulatory processes is that the hypotheses of this

thesis– that over-wintering phytoplankton communities at high latitudes have lower

values of µ0 and α, at least in part to reduce maintenance respiration costs– may be

too simple to fully explain the high degree of variation that is noted in the litera-

ture on a purely mechanistic basis. Yet despite both uncertainty as well as known

variability in cellular-level mechanistic controls, there does appear to be a large scale

trend that can be modelled as a community seasonality in the photoparameters. That

this improves model performance points to community-wide ecological implications for

seasonal photoparameters.

6.2 Ecology of α and Model Design

As mentioned in the literature review (Chapter 2), there does not appear to be a

consistent hypothesis regarding the taxonomic scope of the strategy of reduced light

responses over winter. Nevertheless, community composition is an important question

to explore in this regard. If Matsuoka et al. (2011) are correct (see brief summary in

Section 2.3), then the above models of dynamic community-level photoacclimation in

the EBS may be more accurately seen as the result of the increase in the proportion

of large-celled diatoms. The NPZD model used in this thesis is a 1-P model, in that

there is only one type of phytoplankton with a single set of parameters (whether those

parameters are constant or not, there is only one value per parameter at each time). It

is, therefore, a model of the whole community.

Considering further the possibility that the better fitting of the seasonal model is
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more to do with extra degrees of freedom, the model used here is also a 1-P case.

It is possible that with 2 phytoplankton classes, or more, that for each class smaller

variations in α or even none at all are sufficient to provide a good fit to data, if the

classes with higher α become dominant in spring. Yet the literature review (Chapter 2)

still shows individual cell lines can experience seasonal α and maximum photosynthesis

Pm and specific growth rates µ0. While every model, regardless of how many classes

of phytoplankton are included, necessarily aggregates and conglomerates a myriad of

different species into each phytoplankton class, the impact of cell-level acclimation on

community-wide photoparameters may need consideration.

While the rapid nature of the bloom’s onset can be captured with the nonseasonal

version of the model, the threshold light level used in the seasonal model allows for

accurately timing the bloom, making it significantly easier to match both timing and

magnitude together. Because the model is using a threshold light level to determine

the switch from one regime to another, there is an implicit assumption in the text of

the thesis, the model code, and even the naming of variables that this is the crux of

the issue of photoacclimation. Yet the mathematics remains the same even with the

interpretation that greater α represents an increase in the proportion of taxa with high

α in the community. A 2-P-class model would add equations to make this interpretation

explicit.

A non-seasonal model with multiple phytoplankton classes would still need a mech-

anism for preventing those classes with inherently higher α and µ0 from blooming too

early. The work of this study suggests the threshold light level is an effective tool and

the literature review suggests a biological basis. We might therefore conclude that mod-

els with more phytoplankton categories find themselves in need of the same solution to

the problem.

In Section 1.2.1 other approaches were presented. Trait-based approaches with

adaptive dynamics vary traits according to a fitness function. And while this is os-

tensibly done for the purposes of capturing evolutionary processes (cf. Abrams et al.,

1993; Merico et al., 2009), in which mutations across generations are filtered through

natural selection based on some relative fitness, the equations do not themselves entail
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adaptation. Variation in a trait between generations (or simply time-steps, depending

on the model set up) can also be interpreted as acclimation. This poses an interesting

possibility for seasonal photoacclimation, be it occurring at the cellular or community

level. Without more information, there is much left unknown about the upper and

lower limits of α and the shape of the function between winter and summer values,

or whether it is even continuous. The model here assumes a sharp transition because

a two-domain framework could be demonstrated in observation, further assumptions

were beyond the scope of this thesis. Nevertheless, much like more complex models

with more compartments could hold value for future projects with seasonality, so too

might an adaptive dynamical approach.

6.3 Between First Principles Models and Observations of

the EBS

The pressing implication for model design from this study is the sensitivity of the spring

bloom to seasonality of light response. While numerous complicating factors have been

expounded upon above, and new degrees of freedom increase flexibility generally, the

fundamental change of the model from a static light response to one which can in a

very short time switch from slow to rapid growth fundamentally enables a rapid bloom.

Exploring the model further led to a comparison of its output in a cold year, 2009,

and three warm, 2015–2016, as shown in Chapter 5. As noted, the data available for the

warm years was not comparable to that for 2009, in which the spring bloom was well

defined across phytoplankton, zooplankton, and nitrate measurements. Data which

were available included approximate bloom timings at multiple locations in the Bering

Sea for multiple years (Brown & Arrigo, 2013; Stabeno et al., 2017) The experiments

subsequently conducted explored the theoretical landscape of the model and tested the

sensitivity of bloom timing to the strength of seasonality.

One question was whether the model would replicate the OCH (Oscillating Control

Hypothesis, see Hunt, Jr et al., 2002), i.e. whether ice cover would make for a good

predictor of spring bloom timing, and whether the agreement between the cell-level
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and ecosystem-scales would hold. The result was the model developing a bloom in

2015 around the same year-day as 2009 in spite of the earlier retreat of ice.

Looking back to the physical trajectories, it became clear why this was. Vertical

mixing decreased rapidly in 2015 just before the bloom began. This enabled an increase

in Eeff . Which triggered a spring bloom, consistent with the light-limited perspective

of the model and prior theories such as Sverdrup’s critical depth (Sverdrup, 1953).

Light limitation was upheld in spite of the counter-intuitive bloom timing in 2015.

While it has been noted that mixing can control nutrients as well as light, especially

in the shallower coastal areas (Brown & Arrigo, 2013; Ladd et al., 2018), on average

over the EBS in spring nutrient limitation is not as strong a control. The physics of

the light environment is therefore crucial to underpinning an accurate model of spring

bloom dynamics in this region.

6.4 Future Perspectives for a Warming Arctic

Even as ice retreats further north, the southeastern Bering Sea will continue to be a

highly seasonal environment. This northward ice retreat will cause strong seasonality

in the ice cover of regions that previously experienced stable, consistent ice cover.

Seasonality in phytoplankton behaviour and parameterisation is therefore important for

accurate models and will continue to be so. Arguments can be made for including these

processes from the start, such as in the mechanistic model of (Baklouti et al., 2006a),

or adding photoacclimation to existing models (Anugerahanti et al., 2021; Banas et al.,

2016, and this study) but regardless the conclusion seems strong that it is a necessary

consideration at some stage.

While the changing climate will have far wider impacts across high latitudes, this

project has made the case for the necessity of studying and understanding light re-

sponse as a means of understanding ecology in the EBS and similar regions. Melting

ice means a changing light environment, the impacts of which still have much to be

studied. Little is known about how phytoplankton over-winter in high-latitudes, on

account of the difficulty of sampling, compounded with the difficulty of detecting cells

in such low concentrations, compounded even further by the difficulty and high errors

93



in measurements of such low values of irradiance and photosynthesis. Yet as ice retreat

increases light availability, the ability of phytoplankton to adapt and bounce back from

winter depletion will be dependent on their over-wintering strategies. It is therefore

important to try to better understand phytoplankton behaviour in such light-limited

regimes, to be in the best position for predicting impending community changes.

Finally, while this project looked only at a 1-phytoplankton model, and has demon-

strated the prevalence of photoacclimation within cells, future work with two or more

phytoplankton classes may provide even more insight into the changing Arctic. While

photoacclimation is known to occur, it is also known that different species have different

photoparameters, and therefore changes in community composition can also account

for ecosystem-wide changes in α.

What is certain, in a dynamic and rapidly changing environment, is that phyto-

plankton seasonality can have a strong effect on the dynamics of the whole ecosystem.

While uncertainties in photoparameters, especially during winter, may have led to a

gap in understanding of this process, going forward it appears ever more important

to account for this behaviour as a fundamental process of high latitude phytoplankton

behaviour.
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Appendix A

Correction

Shortly before submission, a bug was discovered in the NPZD model code, in which

microzooplankton grazing rate was not calculated properly. Instead of using net grazing

rate (accounting for inefficiency in uptake and losses from excretion), gross grazing was

used for the change in microzooplankton biomass at each time step.

The model calculated fluxes at every time step, then added the change over that

time step to the associated variables. Microzooplankton had a source term in grazing,

and a sink term in mortality mzoo. Grazing ought to be limited by its efficiency ε (losses

due to this term being a source for small detritus), and the excretion rate (which adds

to NH+
4 ).

The gross grazing flux Fgrazing was first calculated before the detrital and ammo-

nium fluxes were determined by

Feg = (1− ε− fex) · Fgrazing (A.1)

Fex = fex · Fgrazing (A.2)

The detrital flux Feg was then added as a source term to the small detritus, and the

ammonium flux Fex added to NH+
4 . However, the change to microzooplankton biomass

was only calculated as a result of losses from mzoo and gains from Fgrazing, without

accounting for Feg and Fex.

As a result, the model was not mass-balanced, and microzooplankton had incor-
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rectly high biomasses. While in the uncorrected model, microzooplankton biomass rose

above 3 g C m−2, trajectories in the corrected model peaked between 1 and 1.5 g C

m−2.

Phytoplankton growth was therefore more restricted than it ought to have been due

to the greater presence of zooplankton. The error therefore impacted bloom dynamics.

When the IEB60 case was run with the corrected fluxes, bloom timing was not

affected, however bloom duration was substantially longer, with the peak extended by

several days. The decline in phytoplankton biomass was also slower. In the uncorrected

versions, most trajectories went from above 40 to below 25 g C m−2 by the start of

June. This decline could take up to two and a half weeks longer in the corrected version.

For the inter-annual comparison, the effect of the bug on timing was calculated for

each year, for the different degrees of seasonality. For the highest two seasonalities (0.9

and 1), blooming timing was off by 1 day for the warm years and zero days for 2009.

For seasonalities between zero and 0.6 most year has error in blooming timing between

5 to 16 days. At the higher end, between s =0.6 and 0.8, there was more variance, with

2009 have one to two week errors, but the warm years 2014 and 2016 swiftly moving

down to less than 6 day offsets.
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Appendix B

Photoinhibition and Different

Models of P-E Curves

As mentioned in Sections 1.4 and 3.4, there exist multiple models of P and µ as func-

tions of irradiance. In Chapter 1 the complete Platt Model is shown to include a

photoinhibition parameter, and the NPZD model of Chapters 4 and 5 used the Smith

model, which also does not include photoinhibition. Figure B.1 demonstrates how the

Platt model without photoinhibition compares with the Smith model using the same

photoparameters. Both functions were developed to describe data that exhibit similar

behaviour and are thus very similar, though differences do exist both in interpretation

and quantitative results (Lederman & Tett, 1981).

This section will use data from the cruise discussed in Chapter 3 to discuss the

differences between these models and the impact of photoinhibition. These differences

are both quantitative and qualitative, and should be born in mind when interpreting

values of photoparameters.

In Chapter 3, photoparameters were presented that had been derived from fitting

the Platt model to data of carbon (and nitrogen) uptake versus irradiance. These data

points were measured in vertical profiles in the mixed layer. The photoparameters

discussed in Sections 3.1-3.3 and shown in Figure 3.2 were taken from these fits. These

fits also included the photoinhibition parameter β. Photoinhibition is a reduction in

photosynthetic rates at irradiances above the saturation point. It is both a function of
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Figure B.1: Comparison of the Platt et al. (1980) model without photoinhibition (solid
lines) with the Smith (1936) model (dashed lines) using the same photoparameters, the
averages of the spring and winter values from the data in Section 3.1.

the intensity and the duration of exposure, and increasing irradiance leads to ever more

decreased photosynthesis. As with α and other aspects of photosynthesis discussed in

Chapter 1, there are many chemical changes that can induce photoinhibition (Falkowski

& Raven, 2007). Figure B.2 shows the distribution of β with respect to surface PAR

for the same casts as used in Chapter 3.

Full vertical profiles were available for 9 different casts made on the same cruises

from spring 2008 and 2009 that were used in the prior sections. These profiles are

not the same as those used for the calculation of the photoparameters presented in

Chapter 3, as those were unavailable, therefore a direct comparison cannot be made

between those values and the ones here. Additionally, the profiles used here only

represent under-ice locations, where phytoplankton are expected to be in their over-

wintering state. Each profile included the irradiance and uptake rates of nitrogen and

carbon at each depth. As detailed in (Sambrotto et al., 2015), these were obtained

through 24-hour on-deck incubations.

For each available profile, three fits were made to both carbon and nitrogen uptake
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Figure B.2: The photoinhibition parameter vs surface PAR. Open circles are data
from open-water sampling sites, closed diamonds are data from sites that were at least
partially ice-covered at the time of sampling. Surface PAR was approximated using
the estimation of sea-ice attenuation in the Equation 3.1 applied to the irradiance
measurements from the ship deck.

data. One following the full form of Platt, including photoinhibition, one following Platt

without photoinhibition (equivalent to β being set to 0), and one of Smith. Figure B.3

shows these fits against the carbon uptake rate data. Figure B.6 in the appendices

shows the fits against the nitrogen uptake rates.

Figure B.4 shows how the best fit values of α and µ0 change when the fit is redone

including photoinhibition. That is to say, starting with fits without photoinhibition,

the plots show how much the parameters will change when photoinhibition is included,

with the x-axis being the value of the β fit.

Best-fit values of α decrease when redone with photoinhibition, except where pho-

toinhibition was weak or not present (cf. Figure B.3). This suggests a fit without

photoinhibition, such as with the Smith model, would over-estimated α. Best-fit values

of µ0 increased when redone with photoinhibition (again except where photoinhibi-

tion was weak or not present). Thus, a model such as Smith’s would generally, in the

presence of photoinhibition that it cannot capture, under-estimates µ0.

Referring again to Figure B.2, while the variance of β is higher for open water

samples, only six open water points are substantially lower than the cluster of β values
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for partially ice covered locations. Were all data to have been fit with a model without

photoinhibition, the majority of points both under ice and open water would be affected

to roughly the same degree, with only those six open-water points being less affected

by removal of β.

For the six open water points with β orders of magnitude smaller than the rest, the

effect would be weaker. The over-estimation of α and under-estimation of µ0 would be

less pronounced for these points. For these points specifically, seasonality may appear

less pronounced in the α data. These points in particular have lower µ0 and α values

for open water, and so their distance from the under ice µ0 values would decrease.

The same effects can be seen when redone with the data of nitrogen uptake, shown

in Figures B.7 and B.8.
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Figure B.3: Refits of cruise data using multiple models: The Platt et al. (1982) model
with and without photoinhibition (indicated by the photoparameter β, and the Smith
(1936) model.

101



Figure B.4: A comparison of α and µ0 values between the Platt model fits without
photoinhibition and the fits with. The y-axis represents the magnitude and direction
of change in a parameter when refit with photoinhibition, while the x-axis represents
the best fit value of β for that sample. Thus, we see that including photoinhibition
results in smaller α fits, though no change more than 50%, and higher µ0 ranging up
to 15x greater when fit with photoinhibition.

Figure B.5: Comparison of the fit values of µ0 and α using Platt with photoinhibition
versus the same parameters fit without photoinhibition. The dashed line marks the
1:1, indicating the values of µ0 are higher for fits with photoinhibition that without,
and the values of α are lower.
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Figure B.6: Refits of cruise data using multiple models: The Platt et al. (1982) model
with and without photoinhibition (indicated by the photoparameter β, and the Smith
(1936) model.
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Figure B.7: A comparison of α and µ0 values between the Platt model fits without
photoinhibition and the fits with. The y-axis represents the magnitude and direction
of change in a parameter when refit with photoinhibition, while the x-axis represents
the best fit value of β for that sample. Thus, we see that including photoinhibition
results in smaller α fits, though no change more than 50%, and higher µ0 ranging up
to 15x greater when fit with photoinhibition.

Figure B.8: Comparison of the fit values of µ0 and α using Platt with photoinhibition
versus the same parameters fit without photoinhibition. The dashed line marks the
1:1, indicating the values of µ0 are higher for fits with photoinhibition that without,
and the values of α are lower.
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ard, Andrew, Ethé, Christian, Iovino, Doroteaciro, Lea, Dan, Lévy, Claire, Lovato,
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