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Abstract

Phytoplankton spring blooms fertilize the highly productive Puget Sound fjord. How-

ever, the mechanism of phytoplankton spring bloom in Puget Sound is not yet fully

understood. The main basin of Puget Sound fjord has been undergoing environmental

changes to which climate change is one of the major causes. Climate change has been

shown to have a prominent influence on altering the timing and magnitude of phyto-

plankton blooms. Thus, it is important to understand the response of phytoplankton

to changes in climate. The study, first, identifies an adequate biophysical model for

the main basin Puget Sound (1-D NPZD model). Then, the study employs the model

to explore and classify possible climate-induced drivers and pathways that effect main

basin Puget Sound phytoplankton spring blooms. The study investigates phytoplank-

ton spring blooms in metrics of (i) annual primary production, (ii) bloom date. The

study also examines (iii) phytoplankton concentration during juvenile salmon (chinook

and steelhead) outmigration, and (iv) duration nutrient limitation in summer as part

of Puget Sound marine survival rate decline hypotheses.

Previous studies in Puget Sound plankton suggested that phytoplankton spring

blooms are controlled by light environment. Thus, to describe underwater light field,

the study analyses two light-related data sets: Secchi disk depth and beam trans-

missometer. The analysis results in similar regressions of light attenuation (kd) and

phytoplankton concentration (Chla). The regression that uses Secchi disk depth yields

slightly better model good fit to observations. The regressions obtained from both Sec-

chi disk depth and beam transmissometer could not distinguish effect of river inputs

(represented by salinity) and background water on total underwater light attenuation.
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This is probably due to rivers run into Puget Sound basin come from diverse watersheds

with distinctive sediment properties.

Undefined biological parameters in the Puget Sound biophysical model are identified

by using parameterisation and sensitivity approaches. Particle swarm optimizer, an

opimisation algorithms, proposes numerous parameter sets that produce equal model

goodness-of-fit. Among these parameter sets, there are some with contrasting dynamics.

Sensitivity analysis is then carried out to classify parameters into the most, moderate

and minor impact on model performance. The sensitivity analysis also compares model

good fit produced by optimized parameter sets and existing parameters to conclude the

new biological parameter set for Puget Sound plankton.

Once the Puget Sound biophysical model defined, it is used to explore all possible

climate-induced drivers-pathways which are selected based on previous studies of Puget

Sound plankton. The study’s outcomes highlight the predominant role of light limi-

tation over nutrient limitation driving spring bloom timings and magnitude. Cloud

cover (via light intensity) and riverflow (via mixing mediated by stratification, and also

via light attenuation) are suggested to be the first and second order climate drivers of

Puget Sound phytoplankton production and bloom date. Processes influencing dura-

tion nutrient limitation in summer, however, are more complex. To this metric, nutrient

limitation via mixing caused by stratification and riverflow is the major leading mecha-

nism. Moreover, there is a large number of mechanistic pathways (e.g., light limitation

via cloud cover, light intensity, via riverflow, stratification, mixing, via riverflow, light

attenuation; nutrient limitation via exchange flow, vertical advection) producing the

same scale of variation in number of days nutrient is limited in summer.
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Chapter 1

Introduction

1.1 Motivation for Puget Sound phytoplankton study

Humans have relied on the ocean as an important source of proteins throughout the

history of humankind. Globally, seafood consumption has continuously increased, and

is projected to continue (Watson et al., 2015). In 2010s, marine fisheries were estimated

to provide 80Mt of protein and micronutrient rich food for human consumption per year,

contributed US$230 billion to the global economy, and offered livelihood support to 8%

of the world’s population (Barange et al., 2014). In future, the food security of the

majority may depend on the ocean (Watson et al., 2015). However, the production

of marine fishes is limited (Watson et al., 2014). The annual harvest from the global

marine fishery has been static or in decline since the 1990s (Ye and Cochrane, 2011;

Sayer , 2019).

Puget Sound fjord, U.S, like many coastal ecosystems worldwide, is in serious decline

(Ocean Policy , 2004; Ruckelshaus and McClure, 2007; Heinz , 2008). Puget Sound is one

of the world’s most productive salt water environments (Strickland , 1983), and is unique

by virtue of both high salmon species richness and high natural salmon productivity

(Lombard , 2006). Despite once being the most productive salmon areas along the

Pacific Coast, marine survival rate of juvenile salmon (especially Chinook salmon) has

shown a sharp decline over last 30 years for reasons that are yet unknown (Figure 1.1).
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Chapter 1. Introduction

Figure 1.1: Marine survival rate of Chinook and Coho over time in Puget Sound com-
pare to its outer coast [the graphs are reproduced from The Salish Sea Project]

Among numerous factors influencing fish production (e.g., over-fishing, environmen-

tal or ecological changes, and inadequate fishery management), primary production is

arguably the most important and fundamental (Chassot et al., 2010; Pauly and Chris-

tensen, 1995; Barange et al., 2014). Evidence has noted a strong link between primary

production and fish production (Larkin and Northcote, 1969; Cushing , 1982). The

reason is that final production and biomass of many fish with planktonic larvae are
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Chapter 1. Introduction

determined by the success of juvenile stages feeding low in the food chain; either on

zooplankton or on phytoplankton directly (Harris, 2012).

In Puget Sound, although the phytoplankton seasonal cycle is well described (Winter

et al., 1975; Strickland , 1983; Newton and Van Voorhis, 2002), quantitative estimation

of local phytoplankton bloom timing and magnitude (or production) as well as the

impact of environmental variation during the year are not. Therefore, this study aims

to gain better understanding of what controls the phytoplankton bloom onset and

production in the Puget Sound, and how these are likely to be impacted by factors

which are driving changes in the Puget Sound.

1.2 Plankton related hypotheses about declining marine

survival rate of Puget Sound salmon

The health of the Puget Sound marine ecosystem, same as many coastal ecosystems

worldwide, is facing serious decline (Ocean Policy , 2004; Ruckelshaus and McClure,

2007; Heinz , 2008). Much of the ecological capital (large salmon runs, mature forests,

coastal wetlands, clean water) that supported extractive industries in the late 19th

century have been exploited and degraded (Quinn, 2010). Water quality is increasingly

threatened by non-point sources of contamination. There are increased number of

species listed as endangered. Some iconic species such as chinook salmon, and steelhead

salmon are among those endangered mostly by human related activities in the region.

In addition, climate changes have occurred in the Puget Sound region in the past

century, and the next several decades will likely see even greater changes (Ruckelshaus

and McClure, 2007). Puget Sound waters warmed substantially, especially in the period

since the early 1970s. As a consequence of regional warming in the 20th century, spring

time snow pack has decreased markedly at many sites in Puget Sound, the timing of

river and stream flow shifted with significant reductions in snowmelt runoff in May-

July, thus reduced summer stream flows. These changes are likely to negatively impact

4



Chapter 1. Introduction

salmon production (Mote et al., 2003). For example, warmer ocean temperatures affect

the migration behavior of Fraser River sockeye by diverting them to the northern

entrance to the Strait of Georgia rather than by the Juan de Fuca entrance (Groot

and Quinn, 1987), which dramatically alters commercial fisheries in northern Puget

Sound.

Salmon population strongly depend on its living environmental conditions, which

is influenced by natural and anthropogenic drivers. Naturally, Puget Sound salmon

ecosystems are embedded within a trans-Pacific ocean and climate system which are

regulated by oscillations of El Niño-Southern Oscillation (ENSO) and Pacific Decadal

Oscillation (PDO). Thus, the ecological conditions that the individuals in a salmon

population might encounter in a particular year may vary considerably depending on

the climate and its interactions with regional and local scales of variation (Bottom

et al., 2008). However, Puget Sound salmon has steadily declined over last thirty

years. Hence, direct natural causes are not likely the major declining drivers.

The life cycle of salmon requires specific conditions within the chain of connected

environments of rivers, estuaries, and ocean. Salmon in Puget Sound use the estuary

to make the transition from rivers to the ocean. Although salmon spend only a part

of their life cycle in estuarine environments, these habitats are critical to the survival

of salmon populations. There is increasing evidence suggesting the survivability of ju-

venile salmon, when they first enter marine water, is dependent upon productivity of

the sea, and the time spent in these nutrient rich waters (Thomson et al., 2012; Araujo

et al., 2013; Phillips, 2015). Having abundant, high-quality food resources during the

sensitive early marine phase allows for rapid growth and lipid storage, which generally

means healthier fish with enhanced predator avoidance, winter survival, and greater

reproductive success (Cushing , 1990; Beamish and Mahnken, 2001). The occurrence

of large and productive zooplankton and phytoplankton blooms has been shown to be

highly variable in the region, a result of a combination of biophysical factors such as

ocean temperature, wind speed, cloud cover, and ocean surface stratification caused by

5



Chapter 1. Introduction

riverine inputs (Allen and Wolfe, 2013; Mackas et al., 2013). This variability creates

a large opportunity for a timing mismatch between the spring bloom and early marine

entry of juvenile salmon when mortality can be quite high (Beamish et al., 2012; Preik-

shot et al., 2012). During the past 50 years, energy-transfer processes in Puget Sound

have gone through major transformations (Ruckelshaus and McClure, 2007).

Placed at the base of the marine food web, phytoplankton production is hypothesized

to have cascade effects to higher trophic levels (bottom-up control) and may be a pos-

sible cause of the observed salmon decline in Puget Sound. The bottom-up hypothesis

is stated as:

Circulation and bottom-up processes hypothesis: changes in circulation and

water properties have altered phytoplankton and zooplankton production

in ways that degraded salmon food-webs in the Salish sea from the 1970s

to 2000s (Beauchamp et al., 2012).

In addition, increased appearance of harmful algae blooms (HABs) is a possible

link to salmon decline. Harmful blooms of dinoflagellates Alexandrium catenella have

increased in Puget Sound over the last half-century (Moore et al., 2011). Alexandrium

catenella is known to produce powerful neurotoxins that lead to paralytic shellfish

poisoning (PSP). Thus, HABs in relation to the salmon decline is hypothesised as:

Harmful algae directly affect salmon survival through acute or chronic mor-

tality and may adversely affect prey availability by food web impoverish-

ment (Beauchamp et al., 2012).

Overall, the two hypotheses can be examined through phytoplankton bloom dynamics

and species composition.
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1.3 Puget Sound’s phytoplankton dynamics

Pelagic phytoplankton in Puget Sound consist of mainly large-sized phytoplankton of

two major groups: diatoms and dinoflagellates, with diatoms accounting for most of the

biomass (Ruckelshaus and McClure, 2007). Phytoplankton abundance and distribution

are highly heterogeneous or “patchy,” both spatially and temporally, and are linked

to the degree of stratification, light availability, turbidity, and nutrient availability in

particular areas (Ruckelshaus and McClure, 2007).

Winter et al. (1975) is one of the earliest attempts to quantify the relationship be-

tween the growth of phytoplankton and climatic conditions and circulation in Puget

Sound. This study, by using approximate circulation analysis and simplified formulation

of phytoplankton kinetics, demonstrated that phytoplankton growth in Puget Sound

is closely coupled to the seasonal variation and circulation characteristics. Accord-

ing to Winter et al. (1975), the annual cycle of phytoplankton growth was dominated

by several intense diatom blooms between early May and September, then shifted to

smaller dinoflagellates in late summer and early autumn. Winter et al. (1975) noted

that during blooming seasons Chla rarely exceeds 15 mg Chla/m3 despite high nu-

trient concentrations and photosynthetic rates. Also, Winter et al. (1975) suggested

phytoplankton seeds supplied from depth is the source of bloom initiation.

On factors controlling bloom formation and disappearance in Puget Sound, Winter

et al. (1975) highlighted incident light, freshwater runoff, and tidal ranges as the most

useful factors. A later study by Alexander J. Chester et al. (1980) proposed that wind

stress is also a useful predicting variable. Sinclair (1978), who reinterpreted data from

(Winter et al., 1975), showed a high correlation of primary production and stratifica-

tion, however biomass itself is not as highly correlated with density stratification. This

latter point of Sinclair (1978) suggested that the processes influencing the variable den-

sity stratification has a strong impact on production processes themselves, the dynamic

aspects of phytoplankton growth, rather than being just a physical aggregation effect.

This correlation was also observed by MacCready and Banas (2016) when analysing
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long-term climatological data. Boss et al. (1998) confirmed Winter et al. (1975) sug-

gestion of large concentration of pigments (not separate Chla and pheopigments) are

associated with bottom water renewal processes. However, Boss et al. (1998) also ob-

served that more than 80% of the Chla concentration disappeared from the bottom

waters within a week, an indication of the rapid consumption and/or sinking of the

pigments in the deep-water intrusion. Thus, this finding of Boss et al. (1998) did not

seem to support Winter et al. (1975) conclusion on supply of phytoplankton seeds from

depth.

Since then, Puget Sound-wide model development efforts have ranged from simplified

box models (Friebertshauser and Duxbury , 1972; Hamilton et al., 1985; Cokelet et al.,

1990; Babson et al., 2006) to vertical 2-D models (Lavelle et al., 1991) and to fully

3-D baroclinic numerical models (Khangaonkar et al., 2011; Sutherland et al., 2011;

Yang and Khangaonkar , 2010; Nairn and Kawase, 2002). However, these models have

mainly focused on hydrodynamics and physical processes (Khangaonkar et al., 2012).

Recent studies on phytoplanton dynamics are often enclosed in this study of wa-

ter quality. Few efforts from the Washington State Department of Ecology described

plankton dynamics as sideline results of water quality studies. For example, Newton

and Van Voorhis (2002) analysed two years of monthly data which mostly agreed with

the dynamics described by Winter et al. (1975) and emphasised that primary produc-

tion in central Puget Sound is predominately controlled by light availability in winter.

However, Newton and Van Voorhis (2002) observed earlier (and therefore longer) phy-

toplankton growing season, which was from March to September. The growing season

was characterized by a spring bloom, followed by distinct low levels of production, then

subsequent summer and autumn blooms. Strong variation between stations in Puget

Sound highlighted in Newton and Van Voorhis (2002) indicated a very dynamic environ-

ment in terms of conditions affecting phytoplankton such as light, nutrient availability,

mixing, and grazing pressure. Roberts et al. (2008) developed a biogeochemincal model

of South Puget Sound to simulate dissolved oxygen as a proxy of phytoplankton pri-
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mary production. Khangaonkar et al. (2012) showed the first offline 3-D water quality

model of the entire Salish Sea (which includes Puget Sound, Strait of Juan de Fuca

and Strait of Georgia (Figure 2.1)) with a focus on the Puget Sound region. Although,

Khangaonkar et al. (2012), one year study of dissolved oxygen in Puget Sound, suc-

cessfully showed phytoplankton growth and die-off, succession between two species of

algae, nutrient dynamics, this study was not able to describe forcing drivers, and their

variability to regulate plankton dynamics. On going development of LiveOcean, a 3D

biogeochemical model, incorporated a biological model of the outer coast (Davis et al.,

2014), which covers the entire Salish Sea still need to be improved on Puget Sound

phytoplankton dynamics (McCready, per. comm).

Hence, development of quantitative phytoplankton models in Puget Sound have been

limited (Khangaonkar et al., 2012). Therefore, development of such a quantitative

model is needed.

1.4 Study aims

Figure 1.2 summarizes current understanding of drivers and possible pathways by

which regional climate can drive phytoplankton bloom (timing and magnitude) in Puget

Sound. The diagram is a pre-selection based on past research in the system (e.g.

Winter et al. (1975); Newton and Van Voorhis (2002); MacCready and Banas (2016)).

Generally, in addition to temperature, phytoplankton growth is also regulated by light

and nutrient availability. Light limitation is determined by incoming radiation, water

transparency, vertical mixing and advection. The underwater light attenuation varies

strongly with watershed inputs. Vertical mixing and advection contribute to light

limitation by controlling the depth range over which phytoplankton cells are exposed

to light. Nutrient limitation in the photosynthetic zone is also controlled by vertical

mixing and advection, and potentially by changes in the concentration of nutrients in

incoming ocean water. In other estuaries, changes in river-derived nutrients would be of

first-order importance as well, but nutrients in Puget Sound are overwhelmingly ocean-
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derived (Banas et al., 2015). All these drivers are directly influenced by the regional

climate, which has seen changing conditions (Ruckelshaus and McClure, 2007).

Figure 1.2: Selected possible environmental drivers and pathways regulate phytoplank-
ton bloom dynamics (annual primary production and bloom timing), affect young
salmon survival through visual search for food disruption (phytoplankton concentra-
tion during outmigration), and enable opportunity of harmful alage blooms (HABs)
development through nutrient limitation in summer.

This study investigates Puget Sound phytoplankton blooms through metrics of (1)

the annual primary production, (2) timings of spring blooms, (3) spring and sum-

mer phytoplankton concentrations, and (4) the occurrence or non-occurrence of strong

nutrient limitation in summer. Metrics (1) and (2) are focused on potential bottom-

up control effect of phytoplankton to higher trophic levels, which may contribute to

the decline of salmon over the past 30 years (the bottom-up hypothesis). Metric (3)

aims to analyze patterns of spring and summer phytoplankton concentrations, which

is motivated by a non-trophic hypothesis: dense phytoplankton blooms during critical
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outmigration times potentially change the underwater light field in a way that dis-

rupts visual search. The non-trophic hypothesis is based on evidence that vision is a

dominant modality involved in the formation, maintenance and distribution of visual

predators in the water column (Hunter , 1968; Lehtiniemi et al., 2005; Dupont and Ak-

snes, 2011). Finally, metric (4) investigates the occurrence or non-occurrence of strong

nutrient limitation in summer as a proxy to examine the occurrence of Alexandrium

HABs (the HABs hypothesis). The strong nutrient limitation proxy is chosen as nu-

trient limitation under warm, high light conditions has long been taken to encourage

dinoflagellate blooms over diatoms, including toxin-producing taxa like Alexandrium

(Kudela et al., 2010; Moore et al., 2011, 2015; Brandenburg et al., 2017). Moreover,

there is no detailed historical record in Puget Sound that directly supports a local link

between nutrient limitation and Alexandrium HABs.

To identify key drivers and pathways from Figure 1.2, this study will develop a

coupled circulation/lower trophic level (NPZD) model to investigate phytoplankton

dynamics and its quantitative responses to the listed physical drivers, and finally to

answer questions:

1. Which parameter set represents Puget Sound phytoplankton bloom dynamics?

2. What are the most important mediators and pathways between climate and pri-

mary production?

3. How do changes in those mediators drive primary production in the region?

1.5 Thesis structure

Examining the drivers and pathways outlined in Figure 1.2 requires the development

of a new mathematical model of plankton dynamics for Puget Sound. This is the subject

of chapter 2. Chapter 2 describes and examines observations in supporting physical

model selection. A biological model is then described following the selection of a suitable

physical model. Model configuration, assessment and preliminary exploration are given
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in chapter 3. Chapter 4 investigates light limiting factors on phytoplankton growth.

This is motivated by suggestions that spring blooms in Puget Sound are predominately

controlled by light availability in winter. Since there is not always sufficient data

to define or constrain all biological parameters, parameterisation is a necessary step

to identify missing parameters values. Chapter 5 will use optimization approach to

quantify undefined parameters. After that parameters sensitivity analysis will be also

carried out to identify which parameters in the Salish Sea biophysical model (LiveOcean

model) really need to change in order to represent Puget Sound plankton. Once the final

model is defined in chapter 5, chapter 6 will use the model for numerical experiments

(or forcings sensitivity analysis) to define critical drivers and pathways that influence

Puget Sound phytoplankton growth (see figure 1.2 ). Finally, summary and conclusion

are given in chapter 7.
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Chapter 2

A model of Puget Sound

plankton dynamics

This chapter introduces a new model of Puget Sound phytoplankton dynamics.

Models of low trophic levels (e.g. phytoplankton) in Puget Sound have been limited

(Khangaonkar et al., 2012) despite a number of efforts on model development which

range from 2-D box models (Hamilton et al., 1985; Cokelet et al., 1990; Babson et al.,

2006) to fully 3-D numerical models (Sutherland et al., 2011; Khangaonkar et al., 2011).

LiveOcean, one of the rare 3-D coupled physical-biogeochemical models, has been de-

veloped to cover the U.S. Pacific Northwest outer coastal region and Salish Sea which

includes Puget Sound, Strait of Juan de Fuca and Strait of Georgia. Although the

model adequately simulated total nitrogen distribution and the magnitude and timing

of phytoplankton blooms on the outer coast (Davis et al., 2014), its depiction of Puget

Sound plankton dynamics still needs to be improved (McCready, University of Wash-

ington, pers. comm.). To improve the quality of the biogeochemical model in Puget

Sound, a 2-D biophysical model was suggested as a first step to systematically explore

Puget Sound plankton dynamics (MacCready and Banas, 2016). However, Winter et al.

(1975) demonstrated that a 1-D biophysical model might be applicable when variation

of phytoplankton along the Puget Sound channel is negligible.
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Chapter 2. A model of Puget Sound plankton dynamics

To decide on suitable model to this study, the chapter starts with a brief description

of the Puget Sound estuarine circulation (Section 2.1), and then describes monitor-

ing programs and observations available in Puget Sound (Section 2.2). Section 2.3.1

provides evidence resulted from observations analysis to support selection of an appro-

priate physical model for the purpose of the study. Section 2.3.2 presents a biological

model (or NPZD model) with a focus on phytoplankton dynamics. Conclusions of the

new Puget Sound plankton model are given in section 2.4.

2.1 Brief description of Puget Sound estuarine circulation

Puget Sound is a deep, fjord-like estuary carved by retreating glaciers at the end

of the last ice age 11000 - 15000 years ago (Kruckeberg , 1995). The Puget Sound

estuarine system is a complex composite of several basins connected by a system of sills

(Cannon et al., 1983). The Main Basin of Puget Sound is separated from the others

by two sills (Figure 2.1), which strongly influence hydrodynamics of the Main Basin

(Figure 2.2) and consequently its biological processes. The first sill located at Admiralty

Inlet is around 30 kilometers long and about 64 metres deep. The sill connects Puget

Sound to the Pacific Ocean via Strait of Juan de Fuca (Cannon and Laird , 1978). The

second sill is at Narrows, of 44 meters deep separating main basin Puget Sound from

a southern basin (Cannon and Laird , 1978). The main basin in between the two sills

is approximately 50 km long and 3-5 km wide (Cannon and Laird , 1980) with average

depth around 62 m and maximum depth at 280 m. There are numerous rivers entering

the Puget Sound system. However, the Skagit River entering in the north supplies more

than 60% of the freshwater, about half of which flows southward toward the main basin

(Ebbesmeyer et al., 1977; Cannon and Laird , 1980). Puget Sound’s main basin averages

approximately 90% oceanic water and 10% fresh-water. Despite the small fresh-water

content, the input of the Skagit River and other rivers drive the estuarine circulation

of the region. The estuarine circulation is then subject to wind stress and strong tidal

mixing (Sutherland et al., 2011), which characterize the behaviour of Puget Sound as a

partially mixed estuary (Phillips, 2015). The estuarine circulation is known to support
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high productivity of the region because the deep inflow is enriched by nutrients due to

upwelling off the Washington coast (Strickland , 1983). Thus, a close approximation of

estuarine circulation is vital to reproduce biological observations in Puget Sound.

Figure 2.1: Puget Sound estuary includes 5 basins: Main Basin, Admiralty Inlet, South
Basin, Whidbey Basin, and Hood Canal
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Figure 2.2: A diagram of Puget Sound estuarine circulation

2.2 Monitoring programs and observational data

Currently, there are three major marine monitoring programs and data sets in Puget

Sound, namely Department of Ecology (DoE), King County (KC), and Puget Sound

Regional Synthesis Model (PRISM). These three programs were set up based on dif-

ferent interests in the Puget Sound marine environment.

The Washington State Department of Ecology (DoE) was first initiated under con-

cerns over dangers of supertankers oil spill to marine life, when Puget Sound was the

main route of transporting crude oil from Alaska to the continental U.S. In the 1970s,

DoE started an extensive study of shoreline organisms (Marine Waters Monitoring),

and then expanded it to a monthly sampling program. However, consistency in mea-

surement systems, and hence good quality in situ monthly data, are only available

from autumn 1989 onwards (Newton et al., 2003; Moore et al., 2008). During a sam-

pling cruise, a rosette of Niskin bottles was deployed at each station. The Niskin bottles

collected water at pre-defined depths (mostly at 0, 10, and 30 m depth), which were ana-

lyzed for chemicals (e.g. nitrate, phosphate) and biological variables (e.g. chlorophyll-a

(Chla), E. Coli). Physical parameters such as temperature, salinity, dissolved oxygen,

pH were measured at the same time by CTD sensors attached to Niskin bottles. The

CTD records data throughout the water column, in many cases deeper than 200 m.
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In an ongoing effort to maintain and improve Puget Sound’s water quality, the King

County’s (KC) routine marine monitoring program focuses primarily on water quality

within King County’s borders (https://green2.kingcounty.gov/marine/ ). King County

collects monthly in situ water column profiles at its offshore monitoring stations (Fig-

ure 2.3) using a CTD. A multi-sensor array CTD measures dissolved oxygen, salinity,

temperature, density (calculated), transmissivity, photosynthetically active radiation

(PAR), and fluorescence (as a measure of Chla). The CTD also triggers the closure of

the 5-liter Niskin bottles at pre-programmed depths to collect discrete water-column

samples for laboratory analysis of additional parameters (e.g., fecal coliform and en-

terococcus bacteria, Chla and pheophytin pigments, solids, and nutrients (ammonia,

nitrite/nitrate nitrogen, total Kjeldahl nitrogen, total phosphorus, and silica)).

The Puget Sound Regional Synthesis Model Program (PRISM) started in 1998 to

better understand the oceanographic conditions of the region. PRISM collected samples

twice a year (often in June and December) at around 40 stations within greater Puget

Sound, including each of its major sub-regions (Central Basin, South Sound, Hood

Canal, Whidbey Basin, Admiralty Inlet, Strait of Juan de Fuca (Figure 2.1)). The

PRISM data set is used for research, education, and regional planning regarding Puget

Sound by University of Washington. PRISM uses similar sampling methods as in the

DoE program (http://www.prism.washington.edu/story/PRISM+Cruises).

Figure 2.3 shows all sampling stations from the three monitoring programs.
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Figure 2.3: Sampling stations of PRISM (blue circle), KC (red triangle), and DoE
(green square) programs. (left panel) sampling stations all over Puget Sound. (right
panel) selected sampling stations in Main Basin Puget Sound

As three sampling monitoring programs were designed around different interests (ma-

rine resources (DoE), water quality (KC), and oceanographic conditions (PRISM)),

measured parameters, periods and sampling frequency taken vary between the moni-

toring programs (Figure 2.4). Among the three, the KC program has the fewest pa-

rameters measured and shortest sampling period, while DoE and PRISM have similar

monitoring parameters and period of sampling.

Among parameters sampled, ammonium, nitrate, Chla, fluorescence, phaeopigment,

transmission, and photosynthetically active radiation (PAR) are often used in studies

of patterns and/or interannual variability of the plankton cycle; while density, tem-

perature, and salinity commonly represent the water column properties. Within those
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parameters, obviously, KC does not have much data both in number of parameters and

sampling periods in comparison to the DoE and PRISM data sets (Figure 2.4).

Figure 2.5 displays the number of samples per station per day of named parameters

above. Over 22 years of sampling (1989 – 2011), there are around 150 days with data.

KC program again does not show sufficient data that might be useful to this study.

Between DoE and PRISM, DoE’s monthly observations are more valuable to explore

biological processes, while PRISM’s large number of monitoring stations along Puget

Sound channel (Figure 2.3) makes it a useful data source in addition to DoE data set

for better picturing Puget Sound physical processes.

2.3 A model of Puget Sound plankton dynamics

The earliest quantitative study on Puget Sound phytoplankton, Winter et al. (1975),

and a recent, more sophisticated 3-D biogeochemical model, LiveOcean, are chosen as

model references for this study. Winter et al. (1975) employed a 1-D biophysical model

with biological processes resolving around phytoplankton. Despite the model’s simplic-

ity, Winter et al. (1975) adequately reproduced the principal features of phytoplankton

concentrations observed during 75 days and 35 days in the springs of 1966 and 1967,

respectively. LiveOcean, on the other hand, is a coupling of an NPZD model and a Re-

gional Ocean Modelling System (ROMS) ocean circulation model. LiveOcean works a

lot like a weather forecast and predicts currents, salinity, temperature, chemical concen-

trations of nitrate, oxygen, carbon, and biological fields like phytoplankton, zooplank-

ton, and organic particles (https://faculty.washington.edu/pmacc/LO/LiveOcean.html).

Although the two referenced studies have different resolution for physical processes

(1D and 3D, respectively), their representations of phytoplankton include similar pro-

cesses such as phytoplankton growth, grazing by zooplankton, mortality, and sinking.

Thus, this study uses Winter et al. (1975) and Davis et al. (2014) as a baseline to build

a new biophysical model for Puget Sound. Further model description is given in the

following sections.
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2.3.1 Physical processes

A laterally–averaged equation for a trace can be written as

∂C

∂t
= [biogeochemical processes] + uadv

∂C

∂x
+ wadv

∂C

∂z
+

∂

∂z

(
κv
∂C

∂z

)
(2.1)

By assuming x derivative of phytoplankton concentration is negligible throughout

the length of the inlet segment, Winter et al. (1975) represented estuarine circulation

by vertical advection in his phytoplankton model. The 1-D biophysical model included

vertical advection and mixing in Winter et al. (1975) was able to reproduce satisfac-

torily not only the general Chla level but also many of the details of the spring bloom

phytoplankton dynamics in both 1966 and 1967 observational periods.

The success of 1-D model in Winter et al. (1975) invites this study to examine

magnitude of fluxes in equation 2.1 for supporting evidence of 1-D physical processes

employment. To compare horizontal and vertical advection fluxes, this study needs

to quantify: (i) horizontal and vertical velocity (uadv and wadv); and (ii) derivative

of phytoplankton (Chla), nitrate (NO3) and salinity concentration along the channel

(
∂C

∂x
) and depth (

∂C

∂z
).

Horizontal and vertical velocity. In estuarine circulation, conversation of mass

requires water transported to upper layer equal to flow out, hence: w ·B ·L = u ·B ·H

or w · L = u · H where u, w horizontal and vertical velocity, respectively, B is the

channel width, and H is the upper layer thickness. The main basin Puget Sound length

is around 26 km (Winter et al., 1975; Sutherland et al., 2011), and the thickness of

upper layer is 50 m (Cannon et al., 1983; Babson et al., 2006). Hence, ratio of w and

u is

w

u
=
H

L
= 2× 10−3

This ratio is similar to ratio of average upper layer horizontal and vertical advection

obtained from Winter et al. (1975)’s figure 14.
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x-derivative and z-derivative. Secondly, the gradient of phytoplankton, nitrate,

and salinity along channel are performed on DoE and PRISM data sets. The gradient,

cij between two adjacent stations of the same monitoring program is calculated as

follow:

cij =
|cj − ci|
|xj − xi|

where:

cij is gradient between two adjacent stations in the same monitoring program (e.g.

PRISM or DoE). The cij is placed at position of station j after the calculation.

ci, cj monthly average measurements over upper-layer of a parameter at station i,

j (e.g. salinity). The upper-layer (Hul in Figure 2.2) is assumed to be 50 m thick

(Cannon et al., 1983; Babson et al., 2006).

xi, xj : positions of station i, j in the main basin

The z-gradient of phytoplankton, nitrate and salinity at each station is a division

of the difference between monthly average at surface and bottom of the upper layer by

the upper layer depth (Hul) (Figure 2.7). On average stations and time, x-variation

of conservative tracer, salinity, is around 4× 10−3 (psu km−1), while non-conservative

tracers, nitrate and Chla, are 5× 10−2 (µMN m−3 km−1) and 5× 10−2 (µgm−3 km−1)

(Figure 2.6). Similarly, variation in z direction of salinity, nitrate and Chla are 5 ×

101 (psu km−1), 3 × 102 (µMN m−3 km−1) and 4 × 102 (µgm−3 km−1), respectively.

Then, horizontal and vertical advection fluxes present in table 2.1.
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Salinity Nitrate Chla

wadv

uadv
2× 10−3 2× 10−3 2× 10−3

∂C

∂x
4× 10−3 5× 10−2 5× 10−2

∂C

∂z
5× 101 3× 102 4× 102

wadv
∂C
∂z

uadv
∂C
∂x

25 12 16

Table 2.1: Comparison of horizontal and vertical advection fluxes

Table 2.1 shows that in the main basin Puget Sound vertical variation is more than

10 times larger than along channel variation. Along channel variation is therefore

negligible in comparison to vertical variation.

Answering the questions outlined in section 1.4 requires a fast running test-bed, which

allows intensive parameter investigation. Extensive searches through parameter spaces

are needed for identification of a biological parameter set that is able to reproduce the

observations. Several hydrodynamic models have been developed to describe Puget

Sound estuarine circulation. However, higher hydrodynamic model resolution often

comes with expensive computing cost and time. LiveOcean model, which is based on

ROM model for ocean circulation, takes a day for a month simulation when running

on a cluster of 196 computers (McCready, University of Washington, pers. comm.).

Thus, due to the expensive cost of computing and time, fine resolution of existing

hydrodynamic model are not suitable for extensive parameter space exploration. Given

the success of Winter et al. (1975) on capturing phytoplankton dynamics and Collins

et al. (2009) in defining the role of wind in the timing of the spring bloom in the

Strait of Georgia by using 1-D physical model, and given the fact that variation of
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Figure 2.6: Gradient of salinity, nitrate and Chla along main basin Puget Sound channel
(green square: DoE stations, blue circle: PRISM stations)
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Figure 2.7: z-variation of salinity, nitrate and Chla at each station upper 50 m layer
(green square: DoE stations, blue circle: PRISM stations)
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phytoplankton, nitrate and salinity are small along the main basin channel, this study

follows Winter et al. (1975) and Collins et al. (2009) to use 1-D physical model as the

base for biological processes.

Study site

Although data sets from DoE and PRISM monitoring program have similar variables

and sampling periods, PRISM sampled only in June and December, which makes it

not suitable to capture bloom timings varying from March to May (Winter et al., 1975;

Newton and Van Voorhis, 2002). Monthly basic sampling of DoE data set is therefore

more appropriate for exploring phytoplankton spring bloom onsets and annual primary

production. Among three stations of DoE, station number 2 and 8 (Figure 2.3) are

near to sills at both ends, thus they are strongly affected by hydrodynamics caused by

sills and can not be used to represent the hydrodynamic properties of the main basin

Puget Sound. Hence, station number 5 positioned in middle main basin is most suitable

for further investigation. In addition, station number 5 is close to this study site used

in Winter et al. (1975) and is one of the stations in Newton and Van Voorhis (2002)

study.

Vertical advection

In general, the vertical velocity associated with the estuarine circulation is zero at the

surface, then increases with depth and reach its maximum at mid water column (e.g.

the bottom of upper-layer Hul as in figure 2.8a). After this point, vertical velocity

decreases with depth until being zero again at the seabed (Geyer and MacCready ,

2014). The maximum velocity at the mid water column is defined by solving the mass

conservation equation.

The conservation of mass in case of incompressibility (i.e. density ρ=constant) is

given as ∇ · −→u = 0 or
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (2.2)
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where u, v, w (ms−1) are velocity in direction of x (along channel), y (cross channel),

and z (water depth).

Taking integral both sides of equation 2.2 by variable y, where B is channel width,

the equation 2.2 becomes

B
∂u

∂x
+ [vleftshore − vrightshore] +B

∂w

∂z
= 0 (2.3)

and again integral both sides of equation 2.3 with respect to z over Hul depth

BHul
∂u

∂x
+Bw |0−Hul

= 0 (2.4)

The equation 2.4 finally results in

∂Q

∂x
= Bw[−Hul]

or

w[−Hul] =
1

B

∂Q

∂x

In the Main Basin Puget Sound, upper-layer Hul is around 50 m (Cannon et al.,

1983; Babson et al., 2006). The channel width B is about 5 km (Winter et al., 1975).

The yearly average difference of transported water in upper layer between cross sections

MB M and MB S (Figure 2.1) was 3500 m3s−1 (∆Q = 3500 m3s−1), and the distance

between the two sections was 26 km (L = 26 km) (Sutherland et al. (2011), figure

12). Hence, the vertical velocity at Hul is w[−Hul] = ∆Q L−1 B−1 = 2.9× 10−05ms−1.

In summary, the vertical velocity profile at station 5 is now 0 ms−1 at the surface

and bottom, 2.9 × 10−05ms−1 at around 50 m depth (Figure 2.8a). Stiff changes

in vertical velocity often cause numerical issues (Burchard et al., 2005) which affect

model performance. Hence, to avoid model instability due to abrupt changes in vertical

velocity, a polynomial fit is applied on the vertical velocity profile (Figure 2.8a) to
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smooth the profile. The smoothed velocity profile is shown in figure 2.8b.
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Figure 2.8: Yearly average vertical velocity profile calculated (a) and smoothed (b) in
the main basin Puget Sound

Mixing

Next, the model requires a simple but realistic representation of mixing. The mixing

process at station 5 is represented by mixing coefficient (or diffusive coefficient – κv),

and is taken from output of Modeling the Salish Sea model (MoSSea, a predecessor

to LiveOcean model). MoSSea created the first ever high-resolution, realistic hindcast

simulations of the physical circulation in the entire Salish Sea region, whose details and

extensive validation is documented in Sutherland et al. (2011) for year 2005 and 2006.

For this study, κv in year 2006 is extracted hourly from the MoSSea model grid of width,

depth and time. The hourly κv is tidally averaged by using 24-24-25 Godin filter before

being daily averaged (Garnier (2020), in preparation). The daily and tidally averaged

κv is then extracted at station 5 for this study. The κv is then organized against depth

and days (figure 2.9). The yearly κv (blue line) and monthly (black circle) averages

are similar during the months preceding spring blooms (February to April). Therefore,

to be consistent with our use of yearly vertical advection profiles, this study employs
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yearly average mixing profiles in 1-D physical model.

Figure 2.9: Diffusive coefficient κv (m2s−1) against depth [m], with gray circles for all
daily data, black circles for monthly average at each depth, and blue square line yearly
average at each depth

To implement vertical advection and mixing at station 5, the water column at station

number 5 of roughly 200 metre deep is divided into thirty layers, with thinner layers

near the surface and thicker layers at the bottom. The thinnest layer at the surface is

around 2 metres, and the thickest layer at the bottom is around 11 metres. Vertical

advection and mixing (Figure 2.8(b) and 2.9 – blue line) are linearly interpolated to the

model grid. Within this grid, the model consists of a set of coupled ordinary differential

equations, each one a component of the biological model, which will be shown in the
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next section

dC

dt
= [biogeochemicalprocesses] + wadv

dC

dz
+

d

dz

(
κv
dC

dz

)
(2.5)

2.3.2 Biogeochemical model

To continue previous studies as well as to contribute to ongoing research on Puget

Sound plankton, this study adopts Davis et al. (2014)’s biogeochemcial model, which

is currently incorporated in the 3-D model LiveOcean of Salish Sea, with Puget Sound

included. The Puget Sound NPZD model (Figure 2.10) is slightly different from Davis

et al. (2014) model in dividing the dissolved inorganic nutrient pool into nitrate (NO3)

and ammonium (NH4) fractions (to match available observations) and omitting nu-

trient exchange flux to the bottom (benthic zone). Thus, the Puget Sound NPZD

model includes 6 compartments, namely P (phytoplankton), MZ (microzoplankton),

N (nutrient, which is divided in nitrate (NO3) and ammonium (NH4)), and detritus

(D, includes large (LD) and small (SD)). All six stocks are measured in mmol nitrogen

m−3 (or µMN). The model is in nitrogen-based unit as phytoplankton growth in Puget

Sound is mainly limited by nitrogen compounds (e.g., nitrate, ammonium) and not by

other nutrients (such as phosphate, silicate) (Bernhard and Peele, 1997). A system

of ordinary differential equations (ODEs) for each compartments in the Puget Sound

NPZD model is presented as following.
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Figure 2.10: A diagram of NPZD model

P - Phytoplankton

Phytoplankton population dynamics are the result of a balance between growth and

losses, and is influenced by physical (e.g. turbulence, wind, tide, light), chemical (e.g.

nutrient), and biological (e.g. life cycle) variables (Cloern, 1996; Brussaard , 2004).

Generally, reproduction strongly ties to irradiance, temperature, nutrient availability,

and uptake of nutrient (Dortch, 1982; Dortch et al., 1984; Sommer , 1994; Tilman et al.,

1981). Phytoplankton losses are commonly caused by natural mortality (or cell lysis),

grazing by zooplankton, and transport (sinking and dispersion).

dP

dt
= µ(E,NO3, NH4)P − I(P )Z −mPP −maggP

2 (2.6)

where µ(E,NO3, NH4) [d−1] is phytoplankton growth rate as a function of irradi-

ance E, nitrate and ammonimun; I(P ) [d−1] is grazing rate by microzooplankton, mP

[d−1] is natural mortality, and magg [d−1] is aggregation rate.
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Phytoplankton growth rate. The dependency of phytoplankton specific growth

rate (µ) on different environmental variables (e.g. light (E), NO3 or NH4) is com-

plicated and not fully understood. In many marine ecosystem models, phytoplankton

growth rate is commonly expressed as function of light and nutrient. The two functions

are similar in their characteristics, starting from zero (no light or no nutrients) and ap-

proaching saturation at some high light and at replete nutrient concentration. Three

approaches are generally found in marine ecosystem models to limit algal growth by

photosynthesis and nutrient uptake. The first is to apply Blackman’s law (Blackman,

1905), assuming that growth is reduced by the most limiting factor, either by light

or by nutrient availability (e.g., Hurtt and Armstrong (1996); Oschlies and Garçon

(1999); Klausmeier and Litchman (2001)). The second is to multiply both limitation

functions (e.g., Evans and Parslow (1985); Fasham et al. (1990)). The third approach

leads to more complex representations of growth limitation, as they account for inter-

relations between cellular C:N (or N:C) ratio, N-uptake and the photoacclimation state

of the algae (e.g., Geider et al. (1998); Pahlow (2005); Armstrong (2006); Wirtz and

Pahlow (2010)). Whether the first, second or third approach is considered, they can

be expected to affect estimates of the associated parameter values. Following (Davis

et al., 2014), the growth rate function in our model takes the form of multiplying both

limitation functions.

µ(E,NO3, NH4) = µ0(
Ntot

kmin + 2
√
kminNtot +Ntot

)(
αE√

α2E2 + µ20
) (2.7)

where µ0 [d−1] is maximum growth rate of phytoplankton and is often treated as con-

stant in the model, Ntot [µMN ] is total effective nutrient, kmin [µMN ] is minimum half-

saturation for nutrient uptake (Optimal uptake model, Smith et al. (2009)). Smith et al.

(2009) developed the optimal uptake kinetics to explain variations of half-saturation

constant in Michaelis – Menten nutrient uptake equation, which enables models ability

to predict the response of marine ecosystems to changes in environmental conditions.

Optimal uptake kinetics assumes a physiological trade-off between the efficiency of nu-

trient encounter at the cell surface, and the maximum rate at which a nutrient can be
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assimilated. The key idea is that phytoplankton alter the number of their surface up-

take sites, which determine the nutrient encounter time scale, versus internal enzymes,

which assimilate the nutrients once encountered (Smith et al., 2009). α [(Wm−2)−1d−1]

is initial growth-light slope, E [Wm−2] is photosynthetically active radiation (PAR).

The first bracket of equation 2.7 express nutrient limitation, while the second represents

light limitation.

Total effective nutrient – Ntot. The inhibition of nitrate (NO3) uptake by presence

of anmmonium (NH4) is widely known, although the mechanisms behind this NO3 –

NH4 interaction remains still unclear (Dortch, 1990). The simplistic view that nitrate

uptake is reduced to zero if ammonium exceeds 1 µMN would often result in large

underestimates of nitrate uptake and new production (Dortch, 1990). Hence, here we

do not use threshold on NO3 uptake in the presence of NH4 but instead introducing a

weight (ϕNH4) on NH4 to take into account the fact that nitrate is uptaken more slowly

in the presence of ammonium (NH4). Thus, the total effective nutrient is Ntot (where

Ntot = NO3 + ϕNH4NH4). The value of ϕNH4 (ϕNH4 = 2) is picked as an analogy

with a common formulation of grazing on multiple prey types (Gentleman et al., 2003;

Banas et al., 2016).

Minimum half-saturation for nutrient uptake – kmin. Recent NO3 uptake kinetic ex-

periments over the range of ambient NO3 concentrations showed that half-saturation

rate varies with nutrient concentration, for example, half-saturation rate is actually

higher in open ocean (poor nutrient), and lower in coastal estuarine water or autotrophic

water (rich nutrient) (Laws, 2013). Thus, the application of the classical kinetics

formula of Michaelis-Menten with half saturation rate independent of environmental

nutrient concentration seems to underestimate phytoplankton growth under nutrient

transient condition (Flynn, 2003; Smith et al., 2009, 2014, 2015; Franks, 2009). The

use of kmin (Smith et al., 2009) is one way to overcome the drawback of the Michaelis-

Menten classical kinetics form in nutrient changing conditions. kmin + 2
√
kminNtot in

equation 2.7 plays role of half-saturation rate in Michaelis-Menten model, which results

34



Chapter 2. A model of Puget Sound plankton dynamics

in similar growth rate to Michaelis-Menten model when nutrient is abundant and larger

when nutrient is low (Smith et al., 2009; Bonachela et al., 2011). As nutrient levels in

surface layer of Puget Sound change during the year (e.g. high in winter and low in

summer) the use of kmin is more appropriate. Based on experimental data and Smith

et al. (2009)’s model, Davis et al. (2014) found kmin = 0.1 (µMN).

Light limitation. Light limitation is caused by light level and mixing. Light level

directly affects the photosynthesis, while effects of mixing is indirectly affected through

controlling light level phytoplankton receive by maintaining depth within or outwith

well-lit zone. Effect of mixing on the amount of light that phytoplankton is exposed

to is taken into account by vertical mixing when coupled to physical model (Equation

2.5). Following mainly focus on light level in relation to phytoplankton photosynthesis.

Photosynthesis effectiveness is expressed by photosynthetic efficiency, or α ((Wm−2)−1d−1)

which is derived from photosynthesis–irradiance (P-I curve) measurements (Platt and

Jassby , 1976; Peterson et al., 1987; Platt et al., 1992). Measurements of α are typi-

cally normalised to Chla concentrations (Schartau et al., 2017). α is often taken as

constant in many nitrogen-based model (e.g., Fasham et al. (1990); Sarmiento et al.

(1993); Doney et al. (1996); Gunson et al. (1999)), although it is known to be sensitive

to species due to difference in phytoplankton’s cellular Chla content, as well as intra-

cellular photoacclimation (Sloughter et al., 2019). Values of α were found to vary by

a factor of three (Côté and Platt , 1983) during a three month period, which can be

attributed to changes in phytoplankton community structure as well as to photoaccli-

mation. Platt and Jassby (1976) reported an even larger range over a one year period,

from 0.03 to 0.63 mgC (mgChla)−1h−1W−1m2 within the upper ten metres.

E is photosynthetically active radiation (PAR), and is a function of depth z, PAR

at water surface (PAR0), and light attenuation in the water column (Equation 2.8

(Davis et al., 2014)). Light attenuation, in turn, depends on various water optical

properties, which are commonly influenced by water molecules (attbg), rivers (attfw)
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and self-shading by phytoplankton (attP).

E(z) =E0exp(−(attbgz + attfw

∫ surface

z
(Salinity(z

′
)− 32)dz

′

+ attP

∫ surface

z
P (z

′
)dz

′
))

(2.8)

where Ez is PAR at depth z, E0 is PAR at surface, attbg is light attenuation caused

by optical properties of a water column itself which accounts for changes in quantity

and quality of light at increasing depth (Cushing and Walsh, 1976), attfw presents light

attenuation caused by turbidity and CDOM from river inputs. Salinity is also often used

as a proxy of turbidity. Here, effects of rivers on optical properties of the water column

is quantified by the salinity difference between Puget Sound salinity observations (i.e.,

(Salinity(z
′
)) and oceanic salinity level (at 32 psu, Davis et al. (2014)). Finally, attP

is self-shading by phytoplankton growing in a water column.

Phytoplankton loss. Phytoplankton losses are commonly caused by natural mor-

tality, zooplankton grazing, and aggregation, which later are brought to the bottom

of the sea. In most models, natural phytoplankton mortality and aggregation are di-

rectly proportional to phytoplankton population. Here, natural mortality loss shows a

linear relationship, while aggregation follows a quadratic form. Sheldon et al. (1972),

a first approximation of the world’s ocean particle size distribution, showed that the

distribution were well described by a power law (Burd and Jackson, 2009). The fac-

tors regulating aggregation are still unclear, however, according to coagulation theory,

aggregation of phytoplankton results from the repetitive collision of cells and their sub-

sequent attachment to form larger aggregates (Ackleh et al., 1994; El Saadi and Arino,

2006). The quadratic form chosen in this study allows rapid aggregation when a bloom

happens. Phytoplankton grazed by microzooplankton depends on the grazing rate,

which is represented in a number of functional forms (e.g., Ivlev (1955); Mayzaud and

Poulet (1978); Holling (1959)). These functional responses have a large influence on

modelled dynamics (Holling , 1965). Among these forms, the Holling Type 3 lets the
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model reach a stable steady state for a wide range of parameter values (Gentleman and

Neuheimer , 2008) and allows microzooplankton to keep up with increasing of phyto-

plankton when it blooms. Thus, a sigmoidal Holling type 3 (equation 2.9) was used in

the model.

I(P ) = I0
P 2

K2
0 + P 2

(2.9)

where I0 (d−1) is microzooplankton maximum ingestion rate, K0 is microzooplankton

grazing half-saturation [µMN ].

MZ - Microzooplankton

Microzooplankton population is governed by assimilation rate (ε) over food obtained

from phytoplankton by grazing (equation 2.9), mortality rate (mMZ) (grazed by other

predators or natural mortality).

dMZ

dt
= εI(P )MZ −mMZMZ2 (2.10)

where ε is gross growth efficiency, which presents the efficiency of food utilization to

growth (after taken out metabolic losses or respiration), andmMZ is mortality rate. The

mortality followed a quadratic form, as the damping effect of a quadratic form allows

the predators’ clearance rates to increase when microzooplankton biomass increases,

thereby enabling the predators to rapidly respond to any changes in microzooplankton

in an analogous manner to what was mentioned above for microzooplankton feeding on

phytoplankton (Gentleman and Neuheimer , 2008).

D - Detritus: small (SD) and large (LD)

The detritus compartment is divided into small and large detritus. Small detritus is

defined as comprising dead phytoplankton and microzooplankton and fecal materials,

while large detritus consists of phytoplankton aggreation. Detritus is then recycled

to ammonium through a remineralization process. Detrital sinking is modelled by
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specifying simple sinking rates, and is exported to the seabed.

dSD

dt
=(1− ε)(1− fex)I(P )MZ +mPP +mMZMZ2 − rreminSD + wsSD

dSD

dz

(2.11)

dLD

dt
= maggP

2 − rreminLD + wsLD

dLD

dz
(2.12)

where fex fraction of grazing excreted to NH4, rremin (d−1) detrital remineralization

rate, wsSD (ms−1) and wsLD (ms−1) are small and large detritus sinking rate, respec-

tively.

N - Nutrients: ammonium (NH4) and nitrate (NO3)

The nutrient pool includes ammonia and nitrate compartment. Ammonia is built up

by excretion from microzooplankton and remineralization of small and large detritus.

Ammonium loss happens through two processes, one is nitrification, which transforms

ammonium to nitrate; and another is uptake, in which phytoplankton utilize ammonium

for photosynthesis. The nitrate gain is mainly through nitrification of ammonium, and

loss through uptaken by phytoplankton.

dNH4

dt
=(1− ε)fexI(P )MZ + rremin(SD + LD)− ϕNH4NH4

Ntot
µ(E,NO3, NH4)P

− rnitrNH4

(2.13)

dNO3

dt
= rnitrNH4 −

NO3

Ntot
µ(E,NO3, NH4)P (2.14)

where rnitr (d−1) is nitrification rate.
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2.4 Conclusions

This chapter introduced over 20–year data sets from 3 monitoring programs – De-

partment of Ecology (DoE), King County (KC), and Puget Sound Regional Syn-

thesis Model Program (PRISM) (Figure 2.3). From data coverage analysis (Figure

2.4 and 2.5), KC data set is not suitable for the purpose of this study – exploring

climate-linked drivers and pathways that drive phytoplankton bloom – due to in-

frequent sampling, and limited number of variables; PRISM data set might provide

useful information on hydrodynamic processes as a result of measuring physical vari-

ables along Puget Sound channel; and DoE data set is the most appropriate for this

study purposes given its sampling frequency, biological and physical variables mea-

sured, even though the monthly sampling might easily miss a bloom. High-resolution

Chla observations from an ORCA buoy deployed in the Main Basin Puget Sound

(https://nwem.apl.washington.edu/about proj ORCA.shtml) would be capable of accu-

rately capturing spring blooms. However, the ORCA Chla time series are only available

for few years (e.g., 2011). Thus, the ORCA data is not yet useful to this study.

Further analysis on DoE and PRSIM data sets demonstrated that variation of Chla,

nitrate and salinity concentration along the main basin channel is insignificant (Figure

2.6). The minor change in tracer (salinity, phytoplankton, nitrate) gradient along the

Main Basin Puget Sound channel invited this study approximating tracer budgets as a

vertical balance by a yearly average vertical advection and mixing (Figure 2.8 and 2.9).

The 1-D physical model of Puget Sound phytoplankton model, PS–1D, forms a base for

a fast-running test-bed, which allows extensive exploration of parameter spaces as well

as investigation into the climate-linked drivers and pathways which govern the Puget

Sound phytoplankton bloom (Chapter 5 – 6).

Biological processes around phytoplankton of the PS–1D is mostly based on Davis

et al. (2014) biological model with adjustments on benthic fluxes (i.e., omitting nutrient

exchange flux to the seabed) and dividing the dissolved inorganic nutrient pool in to

nitrate and ammonium. This study follows Davis et al. (2014) model as it currently

39



Chapter 2. A model of Puget Sound plankton dynamics

is incorporated in 3-D LiveOcean model, which predicts biophysical characteristics

(e.g., nitrate, phytoplankton, zooplankton concentration) for the entire Salish Sea,

which includes Puget Sound. In addition to gaining an understanding of Puget Sound

phytoplankton bloom dynamics, this study also expects to improve the performance

of the biological part in the LiveOcean model, i.e., by proposing parameters values,

and/or biological processes that might need to be adjusted. Thus, a biological model

close to the one in 3-D LiveOcean, or Davis et al. (2014) model, would be applicable

in the context of ongoing Puget Sound phytoplankton study.

In the following chapter, we will examine the performance of Davis et al. (2014)

parameters in the PS-1D model to diagnose potential parameters and/or processes

that would need to change to improve the model goodness-of-fit.
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Exploration of a PS–1D model

baseline

This chapter describes configuration on parameter values, initial and boundary condi-

tions, and validation data for the PS-1D model (Section 3.1). The model performance

against observations is assessed by index of agreement Willmott Skill Score (WSS),

which is detailed in Section 3.2. The model is then executed, and preliminary results of

the model are presented in Section 3.3. Finally, discussions and conclusions are given

in section 3.4.

3.1 Model configuration

3.1.1 PS-1D parameters values

The PS-1D model uses a parameter set from (Davis et al., 2014) (Table 3.1) as a

starting point to examine the PS-1D model performance to identify possible parameters

and processes that are likely to improve the model goodness-of-fit.

3.1.2 Initial, boundary conditions and forcings

Observations from Department of Ecology (DoE) (Section 2.2) in December are ex-

tracted for the PS-1D initial and boundary conditions. The study takes observations
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Chapter 3. Exploration of a PS–1D model baseline

in December as the water column is often homogeneous at this time of the year. Field

observations of Chla (generally assumed to represent the phytoplankton standing stock

and compared to the model phytoplankton), NO3, and NH4 in December are averaged

out at each sampling depth to get vertical profiles, and used as initial conditions for

the PS-1D model (Figure 3.1). These profiles are then linearly interpolated into the

model grid (as in section 2.3.1). Chla observational profile is in µg/L which is not in

the same unit of phytoplankton compartment (µMN) in the model. Hence, a conver-

sion factor is needed to convert between µg/L and µMN . The conversion from Chla

(µg/L) to phytoplankton (µMN) and vice verse is problematic, since the intracellular

ratios of Chla to nitrogen are known to vary considerably (Yentsch and Vaccaro, 1958).

The ratio varies not only for different species but also due to changes in environmental

conditions, e.g., differences in the ambient nutrient or light climate (Yentsch and Vac-

caro, 1958). Thus, many studies rely on a constant average conversion ratio. Here, the

PS-1D model adopts r Chla N value suggested by Davis et al. (2014) (table 3.1).

It is a common assumption that the number of microzooplankton is relatively low in

winter in Puget Sound, as their preys (phytoplankton) grow marginally. Hence, micro-

zooplankton is set as constant for the whole water column at a value of 0.001 (µMN).

Similarly, detritus is considered close to zero in winter, thus the initial condition of

both small and large detritus are set at 0 (µMN).

In the Main Basin Puget Sound, nutrient-uptake measurements showed no depen-

dence on nitrate in the observed range 7 – 33 µMN (Collias and Lincoln, 1977). Sum-

mer surface-layer nitrate concentrations are reported usually > 10 µMN , but briefly

and occasionally dip to 1 – 5 µMN (Winter et al., 1975; Collias and Lincoln, 1977),

while average nitrate in winter observations, the highest level of the year, is around 27.5

µMN (Figure 3.1). Thus, the nitrate level in the main basin Puget Sound does not

seem to affect nutrient-uptake. Therefore, the study sets nitrate boundary condition

at its level in winter of 27.5 (µMN).
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Chapter 3. Exploration of a PS–1D model baseline

Figure 3.1: Initial values of Chla, NO3, and NH4 as median (black triangles) of Decem-
ber observations (gray points) (Data source: DoE)

Apart from external forcings of vertical advection and mixing in 1-D physical model,

light and salinity forcings are needed for light function in phytoplankton equation. This

study does not have measured data on light, thus this study takes a comparable model

output, downward shortwave radiation (SWdown) from MoSSea model in year 2005

– 2006, for light forcings. SWdown time series is extracted hourly from the MoSSea

model grid and only at the surface. The SWdown time series is tidally averaged using

24-24-25 Godin filter (Garnier (2020), in preparation). The SWdown is then taken

around this study site, hours with zeros are subtracted from the rest of the day and

remaining hours are averaged out over the day. SWdown at this study site is then

converted to photosynthetically active radiation (PAR) using result of Papaioannou

et al. (1993), where it approximated that half of the total SWdown is PAR. To convert

between energy (Wm−2) and number of photons (µEinm−2s−1), a conversion factor

for the average energy for PAR wavelengths (4.6 µEinJ−1) was applied (Equation

3.1). Figure 3.2 shows PAR calculated from SWdown following equation 3.1. The PS-

1D models were run with typical year PAR data (Figure 3.2) and climatological year

(or an artificially smoothed curve) result in just 3 day difference in bloom date (results
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Chapter 3. Exploration of a PS–1D model baseline

are not shown here), thus the typical year of PAR data is used as light forcing for the

PS-1D model.

PAR = 0.5 ∗ SWdown ∗ 4.6 (3.1)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

50

100

150

200

W
/m

2

Figure 3.2: Photosynthetically active radiation (PAR0) of a typical year. PAR0 is
calculated from SWdown output of MoSSea model

Although field observations of salinity were available, combining salinity observations

over 22 years of sampling does not cover a full year of data (Figure 3.3). High interan-

nual variation in salinity observations makes it not straightforward to use these data as

forcing. Here, this study chooses to use salinity from MoSSea model output (Figure 3.3)

for the forcing, as modelled salinity considerably reflects its observations over upper 30

m, the layer which comprises most of phytoplankton biomass (see Figure 3.4). There

is certain bias in salinity range between model and observations (e.g., cumulative plots

of Figure 3.3). However, the bias is mostly due to high values of salinity in bottom

layer (e.g., below 50 m depth). In addition, salinity forcing taken from MoSSea model

is consistent with vertical mixing and advection, light forcings which are also extracted

from MoSSea model.

The model was run with 2 time steps: the physical time step is a day, and the

biological time step is around 30 minutes (0.02 d, or 50 biological steps per physical
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Chapter 3. Exploration of a PS–1D model baseline

step). Two different time steps are used as phytoplankton life cycle (days) is shorter

than the estuarine circulation cycle (months). The state variables (N, P, Z, D) are

saved in day interval.

3.1.3 Validation data

Observations of Chla, NO3, and NH4 (Figure 3.4 to 3.7) from Department of Ecology

(DoE) monitoring program at station 5 are used to validate the PS-1D model perfor-

mance. The 22-year sampling data of DoE are folded on top of each other to yield

an annual cycle of Chla, NO3, and NH4. The Chla annual cylce comprises roughly

160 profiles, while NO3 and NH4 have 130 profiles each (Figure 3.4). Figure 3.5 to

3.7 are produced from figure 3.4 by taking the daily average of integrated Chla, NO3,

and NH4 over euphotic depth. The euphotic depth, the layer in which photosynthesis

is active, at station 5 reported a range from around 8 m to 46 m depth (Newton and

Van Voorhis, 2002), while Khangaonkar et al. (2012) reported photosynthetically active

layer varies between 5 – 20 m in thickness. Here, this study defines euphotic depth by

taking a value at 90 percentile of euphotic depths given in Newton and Van Voorhis

(2002), which is around 30 m depth.

Observational data showed that Chla concentration is rarely over 15 (µgL−1) (Figure

3.4 and 3.5) which was also observed in (Winter et al., 1975). Thus, magnitude of spring

blooms seem fundamentally unchanged in main basin Puget Sound since Winter et al.

(1975) study. According to observations, phytoplankton growing season is between the

months of April to September. The growing season is characterized by an intensive

spring bloom, followed by a distinct low in production, then subsequent summer and

fall blooms. The spring bloom often appears in early May and ceases around the end

of July although early spring bloom onsets are also noticed in March and April or even

in February in several years. However, it is worth noting that monthly sampling might

easily miss a bloom. Thus, the picture of phytoplankton bloom dynamics might slightly

differ from what is described here. NO3 data shows a sharp decline from around 30

(µMN) to 10 (µMN) in May, which responds to observed intensive spring blooms of
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Chapter 3. Exploration of a PS–1D model baseline

phytoplankton. NO3 is then kept at this level or below during period of May – July,

while NH4 increase. This reflects the regeneration of nutrient in euphotic zone, and

this source of nutrient (NH4) seems to keep supporting the phytoplankton population

during bloom period.
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Figure 3.5: Daily average of integrated Chla over euphotic depth (from surface to 30
m depth)
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Figure 3.6: Daily average of integrated NO3 over euphotic depth (from surface to 30
m depth)
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Figure 3.7: Daily average of integrated NH4 over euphotic depth (from surface to 30
m depth)
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3.2 Model skill assessment

Model performance can be qualified in a number of ways such as univariate, multivariate

comparison of predictions and observations, multivariate pattern evaluation, and binary

discriminator tests (Stow et al., 2009; Gregg et al., 2009). Here, to assess the PS-1D

model performance, this study uses Willmott skill score (WSS) (Willmott , 1981) as

an index of agreement. In addition to WSS mean square error (WSS MSE, equation

3.2), which was used in Davis et al. (2014), this study examines the usage of WSS

mean absolute error (WSS MAE, equation 3.3), a refinement of WSS MSE (Willmott

et al., 2012). Both WSS MSE and WSS MAE range from 0 to 1, with values close

to 1 indicating a close match between model predictions and observations. Willmott

et al. (2012) recognized that WSS MSE can be dominated by a small proportion of

extreme values due to squaring the errors, prior to summing. Indeed, larger errors,

when squared, over-weighted the influence of those errors on the sum-of-squared error,

which resulted in WSS MSE approaching 1 (good fit) faster. The WSS MAE was

considered to be able to overcome the problem in WSS MSE (Willmott et al., 2012).

WSS MSE = 1−
1
N

∑i=N
i=1 (mi − oi)2

1
N

∑i=N
i=1 (|mi − ō|+ |oi − ō|)2

= 1− MSE
1
N

∑i=N
i=1 (|mi − ō|+ |oi − ō|)2

(3.2)

WSS MAE = 1−
1
N

∑i=N
i=1 |mi − oi|

1
N

∑i=N
i=1 (|mi − ō|+ |oi − ō|)

= 1− MAE
1
N

∑i=N
i=1 (|mi − ō|+ |oi − ō|)

(3.3)

where m is model output, o is observation, N is number of pair of model–observation,

and ō is observations averaged.

3.3 Results

The PS-1D model with initial, boundary conditions, time step described above and

parameters given in table 3.1 (or parameters from Davis et al. (2014) study) is run for
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a period of 25 months starting in December. The first 13 months (December and the

following year) is discarded as spin-up. Trial model runs (not shown here) show that

the model is stable and repeats its annual cycle after 3 months. Thus, a model over a

period of 25 months with 13 month spin-up is appropriate to obtain an annual cycle of

phytoplankton. The model outputs (phytoplankton biomass, NO3, and NH4) of the

last year are taken out for validation. Phytoplankton biomass (µMN) is converted to

Chla (µgL−1) by conversion factor r Chla N before further calculation.

Model outputs of Chla, NO3, NH4 are plotted against depth and time in the same

way as observations (figure 3.8). The figure shows model outputs and observation

from surface to 50 m depth as most phytoplankton growth happens in the top 30 m

layer (see section 3.1.3), and below 50 m depth concentration of Chla, NO3, and NH4

vary insignificantly with depth. The model shows spring bloom onset in late January

which lasts until November. This does not agree well with observations. Also, NH4

does not show an increase in concentration during summer as observed in observations.

Although NO3 from model shows a decline in summer, the period of NO3 shortage

seems longer than observed. Daily average of integrated over euphotic zone (layer of 30

m thickness) of model outputs of Chla, NO3, and NH4 (Figure 3.9 to 3.11) also show a

weak agreement between model and observations. For example, timing and magnitude

of the bloom are not well captured in the model, also summer NO3 minimum and NH4

maximum are not reproduced.
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Figure 3.9: Daily average integral of Chla over the upper layer of 30 m depth. The
PS-1D model run with Davis et al. (2014) parameters of the outer coast

 0  1  2  3  4  5  6  7  8  9 10 11 12
0

5

10

15

20

25

30

35

N
O

3[
M

N
]

Observations
Model output

Figure 3.10: Daily average integral of NO3 over the upper layer of 30 m depth. The
PS-1D model run with Davis et al. (2014) parameters of the outer coast
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Figure 3.11: Daily average integral of NH4 over the upper layer of 30 m depth. The
PS-1D model run with Davis et al. (2014) parameters of the outer coast

Table 3.2 presents WSS MSE and WSS MAE of Chla, NO3 over the top 20 m

depth and the whole water column (or all data); and comparison between WSS MSE

of main basin Puget Sound and the outer coast at the top 20 m depth. Between the

two regions, the outer coast and main basin Puget Sound, WSS MSE is similar at

the top 20 m. It implies that biological parameters of the outer coast are adequate

to use in main basin Puget Sound upper layer. However, this seems not applicable to

the whole water column, where WSS MSE shows a lower value for Chla, and a much

lower value for NO3. In the main basin Puget Sound, WSS MAE are quite different

from WSS MSE, with the former being consistently lower. The reason again might

lie in the drawback of WSS MAE which is discussed above. This result suggests that

WSS MSE likely overestimates a model good-fit.
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Top 20 meter All data

Chla NO3 Chla NO3

Outer coast WSS MSE (taken
from Davis et al. (2014))

0.58 0.83 0.73 0.93

Puget Sound WSS MSE 0.52 0.76 0.64 0.56

Puget Sound WSS MAE 0.32 0.42 0.48 0.41

Table 3.2: Comparison between WSS MSE and WSS MAE in main basin Puget
Sound top 20 m depth and whole water column; and comparison between WSS MSE
of main basin Puget Sound and the outer coast at the top 20 m depth.

3.4 Discussions and Conclusions

Evidence suggests that parameters taken from Davis et al. (2014) study of the outer

coast are not capable of capturing both phytolankton bloom onset and magnitude as

well as NO3 and NH4 annual patterns (Figure 3.9 to 3.11). This may mean that this

study needs to re-parameterise certain biological processes, independent of the physical

processes. This study will explore this possibility in chapter 5. But alternatively, it

might be explained by the difference in physical forcings between the outer coast and the

main basin Puget Sound. The parameters in the outer coast study were tuned based

on 3-D hydrodynamics model, which described physical processes in greater details

compared to the simplified 1-D physical model of Puget Sound. The yearly profile of

mixing in PS-1D results in a constant mixed depth layer and is therefore thought to be

the cause of the intensive blooms throughout the year as observed in the model.

Some might argue that salinity bias between model and observations (Figure 3.3)

overestimates light level, which leads to the bloom appearing early in the model. This

study is well aware of the salinity bias. However, it might not be a problem in the

model compared to other issues (i.e., mixing). The largest difference between salinity

modelled and observation point-to-point is not over 2 (psu). Given the light attenuation

coefficient of freshwater (table 3.1) is around 6× 10−3 m−1 psu−1, bias in salinity can

lead to light level overestimation at order of 0.01 m−1, which is considerably small

compared to light attenuation coefficient of the water column itself (0.05 m−1) and
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self-shading effect by phytoplankton (0.03 m−1(µMN)−1).

Overall, this chapter has suggested that parameters from Davis et al. (2014) study do

not capture phytoplankton blooms in the main basin Puget Sound well, and the index

of agreement WSS MAE which overcomes drawback of WSS MSE might be a better

metric for model assessment. The model results using Davis et al. (2014)’s parameters

also imply that there might be significant differences in environment conditions and/or

biological processes between main basin Puget Sound and the outer coast. Hence, at

least one (or more) parameters in the Davis et al. (2014) parameter set might need to

be changed to allow the parameter set to represent Puget Sound environment.

Puget Sound estuarine circulation brings deep oceanic water from the outer coast

into Puget Sound fjord, thus both regions have similar condition on nutrient levels.

It is likely that light limitation is the factor that distinguishes phytoplankton growth

between the main basin Puget Sound and the outer coast. Therefore, effects of under-

water light field on Puget Sound phytoplankton spring bloom will be examined in the

next chapter.
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Chapter 4

Underwater light field in Puget

Sound

Light intensities under water vary depending on the amount of light entering the wa-

ter column, water transparency, and depth (Smith and Mobley , 2008). Solar radiation

penetrating the water column depends on position of the sun, cloudiness, and surface

conditions (Kirk , 1994). If sun rays do not reach water surface at a straight angle, then

part of it is reflected to the atmosphere, and the remaining enters the water column

(Kirk , 1994). Once in the water column, light intensity decreases with depth (i.e., it

is attenuated) as it gets absorbed and scattered by suspended matters. Absorbed light

is primary source of energy for photosynthesis by phytoplankton and aquatic plants,

as well as is being converted to heat when absorbed by water molecules. Scattered

light is deflected into new directional paths and moves around in the water column be-

fore eventually being either absorbed or directed upward and out of the water. Water

molecules, dissolved salts, organic substances, and suspended particles all combine to

affect water transparency and cause solar radiation to decrease with depth (Smith and

Mobley , 2008).

Light intensity, a crucial driver of phytoplankton photosynthesis, is known to decrease

with depth. It is therefore vital to accurately represent the light environment in the

model of phytoplankton growth. In Davis et al. (2014) model, the outer coast light
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attenuation was a function of phytoplankton concentration and salinity, where the

function coefficients were determined by using observations. Here, this chapter aims to

define a light attenuation function in the main basin Puget Sound by using available

optical data. This chapter starts by giving a brief overview of methods to observe water

optical properties, which are used to estimate light intensity (Section 4.1). Section 4.2

then presents optical data available at the study site, along with empirical formulas

to derive light attenuation from the optical data. Afterwards, statistical analysis of

light attenuation and its drivers followed by model examination on light functions of

phytoplankton growth are given in section 4.3. A discussion and conclusions finally are

provided in section 4.4.

4.1 Description of ocean optical measurements

4.1.1 Brief overview of ocean optical instruments development

Moffione (2001) provides a thorough review of measuring ocean optical properties.

The earliest quantitative observations of ocean optical properties are believed to have

begun in the early 19th century when a Russian naval officer, O.E. Kotzebue, who in

1817 observed the depth at which a piece of cloth attached to a rope disappeared below

the surface. This method was later refined by replacing the cloth with a flat back and

white disk, and named as Secchi disk (1866) after the Italian astronomer. Recordings

of the Secchi depth constitute the longest historical record of water optical properties

in existence, which make them scientifically valuable for mainly this reason. Even after

the development of opto-electronic light sensors, Secchi depth measurements continued

nearly unabated, mainly by biologists, and even continue to this day. The early 20th

century marked the development of new instruments, underwater radiometers and opto-

electronic sensors. Development of photographic film allowed Murray and Hjort in 1912

and Knudsen in 1922 to build underwater radiometers, the first means for objectively

recording spectral irradiance and radiance distributions. At the same time, in 1922,

Shelford and Gail introduced application of photoelectric cell to measure underwater

light and determine optical properties. It was a then optoelectronic instrumentation,

59



Chapter 4. Underwater light field in Puget Sound

the first of this genre with internal light sources, developed and introduced by Petters-

son during the brief period from 1934 to 1938. The instrument without need of sunlight

measured basic optical properties which provided the empirical underpinnings for a the-

oretical understanding of light and its interaction with ocean water. The 1960s opened

the age of laser (Light Amplification by Stimulated Emission Radiation) in measuring

light intensities under water. Laser, due to its possibility of projecting controlled and

measurable light beams through ocean water, had a profound effect on this study of

light and its interaction with ocean water. The laser technique provided a strong boost

in the development of instruments and methods for measuring ocean optical properties.

Commercial, in situ ocean optical instrumentation (e.g., beam transmissometer) began

to appear in the late 1970s. The device provided many oceanographers with the first

widely available and affordable optical tool for routinely measuring an ocean optical

property in situ.

In Puget Sound, Secchi disk and beam transmissometer are used to measure the

water optical properties. Hence, the following sections further describe Secchi disk and

beam transmissometer measuring methods.

4.1.2 Secchi disk and diffuse attenuation coefficient

Secchi disk is a black and white disk of diameter 20 – 30 cm. The depth at which the

disk is no longer visually observed as it is lowered into the water is recorded as Secchi

depth. Although replaced by modern instruments, Secchi depth measurements are still

of interest because of the ease of measurement and the large historical observations

going back over a century. A major drawback of Secchi depth is that it cannot measure

how the quantity and quality of light change with depths, in other words water optical

properties implied from Secchi depth remain constant over the layer of that depth.

Diffuse attenuation coefficient, kd (m−1), derived from Secchi depth measurements,

is commonly used to characterize optical properties of the water. kd is yielded by the
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Secchi depth in metres divided by a constant (Equation 4.1, (Poole and Atkins, 1929)).

kd =
c

ZSecchi
(4.1)

The constant c varies by regions, with the range reported in between 1.27 and 1.8

(Poole and Atkins, 1929; Holmes, 1970; Idso and Gilbert , 1974; Gallegos et al., 1990,

2011; Koenings and Edmundson, 1991; Zhang et al., 2012; Lee et al., 2018). A constant

value of 1.7 was suggested by many authors above, and indeed used by Winter et al.

(1975) and Newton and Van Voorhis (2002) to quantify light attenuation in Puget

Sound water.

The light extinction coefficient, kd, then is applied in Beer-Lambert’s law

Ez = E0e
−kdz

to estimate the intensity of light Ez at depth z from the radiation at the ocean surface

(E0). This method gives no indication of the attenuation change with depth or the

attenuation of specific wavelengths of light, which is a main disadvantage of the Secchi

disk method (Shannon, 1975). The magnitude of kd, in addition to being dependent on

the absorption and scattering properties of water, varies with physical and geometrical

properties of the disk. For these reasons, kd is often described as an apparent optical

property of water.

4.1.3 Beam transmissometer and beam attenuation coefficient

A detailed description of a general beam transmissometer can be found in Moore

(2001). A basic transmissiometer (Figure 4.1) consists of a collimated light source

projected through an in-water beam path and then refocused on a receiver detector.

Typically single-wavelength transmissiometers employ a light-emitting diode coupled

with an optical band-pass filter as the source. Source light is often split so that a portion

of the beam impinges upon a reference or compensation detector that is either used

in numerical processing of the data or integrated into a source stabilization feedback
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circuit. The source output is often modulated and the lamp and receiver detector

samples are in phase with the source modulation. This greatly reduces ambient light

detection by the receiver from the sun or other unwanted sources. Path lengths (r) are

fixed with distances typically ranging from 5 cm to 25 cm depending upon the waters

in which the sensors are used. The receiver detector converts radiant flux into current

and its output is thus proportional to the radiant energy passed through the water.

Electronics subsequent to the detector amplify and rectify the signal for digitisation

or direct output as a direct current (DC) voltage level. This signal is known as the

instrument transmittance (T).

Figure 4.1: Conceptual beam transmissometer ( Figure reprinted from Shannon (1975))

Beam attenuation coefficient, commonly called λ (m−1), derived from beam trans-

missometer measurements, is often used to characterize water optical properties. Beam

attenuation coefficients are calculated from transmission following equation 4.2 (Trans-

missometer Manual)

λ = −(
1

r
)ln(

%Tr

100
) (4.2)

where r is beam path length (m), r = 25(cm) = 0.25(m), and %Tr measured beam

transmission of light in percent.

Theoretically, the beam attenuation coefficient λ is related to the absorption and

scattering coefficients. Hence, λ is considered to be an inherent optical property of wa-

ter. It is independent of light beam orientation or the existing light conditions within
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the medium. Ideally, the measurement of λ is also independent of such geometric con-

siderations as instrument size, configuration, and receiver acceptance angle. However,

the practical measurement of λ is complicated by the problem of distinguishing unscat-

tered light from light which has been scattered into very small angles. This problem

is particularly significant because small angle scattering dominates the total scattering

phenomenon in natural waters (Shannon, 1975). This contamination yields a mea-

sured value of transmittance slightly higher than the true value; hence, the value of λ

calculated from such a measurement is slightly lower than the true value.

Although measurements from Secchi disk and beam transmissometer yield light at-

tenuation, kd and λ respectively, they refer to different types of optical properties of

water, apparent and inherent, correspondingly. kd is used directly to calculate light

intensity at certain depth (i.e., in Beer-Lambert law equation), whereas λ needs to be

converted to kd before it can be used to estimate light intensity. Shannon (1975) while

analysing measurements of kd and λ from wide range of water turbidity suggested an

empirical expression of kd and λ as follows:

kd = 0.2λ+ 0.04 (4.3)

where 0.11 ≤ λ ≤ 1.6 for empirical relationship exists between these two optical prop-

erties.

4.2 Puget Sound optical measurements

4.2.1 Secchi depth

Newton and Van Voorhis (2002) study, which includes roughly 3 year measurements

of Secchi observations (Figure 4.2) and Chla concentration (Figure 4.3) might be a

satisfactory data source to obtain a light attenuation function that takes into account

changes in surrounding water environment.

63



Chapter 4. Underwater light field in Puget Sound

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0

5

10

15

20

25

30

35

40

45

50S
ec

ch
i d

ep
th

-d
er

iv
ed

 e
up

ho
tic

 d
ep

th
 [m

]

Figure 4.2: Euphotic depth (blue dots) against year day at station 5, reported in Newton
and Van Voorhis (2002) study over period of 1999 – 2001. The euphotic depth was
calculated from Secchi disk depth. Measurements were taken every 2 – 6 weeks, with
42 samples in total. The blue line is the monthly average euphotic depth.
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Figure 4.3: Average of integrated Chla over euphotic depth reported in Newton and
Van Voorhis (2002). Black circles are for observational data, while the dot line is fitting
to the circles by using loess filter.

As stated in Newton and Van Voorhis (2002), at a sampling cruise, euphotic depth

was defined by first measuring Secchi depth. kd was then derived from measured Secchi

depth according to equation 4.1 with c = 1.7. Afterwards, kd was applied into the Beer-

Lambert law equation (E(z) = E0e
−kdz) to define the depth at which light is 1% of the

surface irradiance, a conventional definition to define euphotic depth (Zeu). Thus, Zeu

in Newton and Van Voorhis (2002) was calculated as follow:

Zeu = − ln(0.01)

kd

This procedure is reverted to get Secchi depth from euphotic depth
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ZSecchi = − 1.7

ln(0.01)
Zeu

and then reverted ZSecchi are monthly averaged.

Figure 4.4 shows a close agreement between monthly average of 30-year Secchi depth

(black line, provided by Julia Bos, Department of Ecology, Washington) and monthly

average of Secchi depth reverted from 3-year euphotic depth (blue line). This close

agreement means that the 3-year Secchi depth adequately represents longer Secchi

depth series, and this also means Newton and Van Voorhis (2002) data on Secchi depth

(figure 4.2) and Chla (figure 4.3) might sufficiently produce light attenuation function

as presented in section 4.3.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0

5

10

15

[m
]

(1) (2)

Figure 4.4: (1): approximate 30-year monthly average of measured Secchi disk depth
(provided by Julia Bos, Department of Ecology, Washington) and (2): monthly average
Secchi disk depth calculated back from euphotic depth as in figure 4.2.
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4.2.2 Beam transissionmeter

A beam transimissometer (a 25 cm Sea Tech Transmissometer interfaced with CTD)

was used to measure transmission of light in main basin Puget Sound (at station 5)

since 1999. Over period of 1999 – 2017, in total, there are 191 transmission profiles

measured (Figure 4.5), and consequently the same number of beam attenuation profiles

obtained by using equation 4.2 (Figure 4.6).

Almost all of the light transmission data fall in the range of 60% to 100%. Transmis-

sion data shows strong turbidity which often appears near the water surface, probably

due to river influence. The most turbid period is in May, which agrees with Secchi depth

measurements (figure 4.4). Subsequently, almost all beam attenuation coefficients fall

in the range of [0 – 2].

4.3 Statistical analysis and model examination of light

functions

4.3.1 Light function obtained from Secchi observations

Secchi observations (Figure 4.2) and Chla data (Figure 4.3) from Newton and Van Voorhis

(2002) presented in section 4.2.1 allows this study to derive light attenuation (kd) as

a linear relationship with Chla (i.e., kd = attPChla + attbg, where attP is light atten-

uation caused by phytoplankton (or self-shading effect) obtained from the regression’s

slope, and attbg is the regression intercept accounting for light attenuated with depth).

The regressions are performed on seasonal data (i.e., spring, summer, autumn, and

winter), and on all data that excludes the winter season (Figure 4.7). The regression

coefficients and R2 for each case are given in table 4.1.

It can be seen that regressions in spring, summer, autumn and in all three season

combined are fairly well agreed with each other. The regression in winter presents a

completely different relationship. Very low Chla concentration, and high turbidity due
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All Spring Summer Autumn Winter Exclude

data winter

attP 0.02 0.02 0.03 0.026 0.54 0.026

attbg 0.19 0.17 0.17 0.13 0.16 0.15

R2 0.38 0.76 0.64 0.64 0.03 0.7

p-value 1.6e-05 3e-04 1e-03 3e-03 0.3 1e-09

Number of
observations

42 11 12 10 9 33

Table 4.1: Diffuse attenuation coefficients derived from Secchi disk measurements (New-
ton and Van Voorhis (2002)’s data set), which are outcomes of regressions showed in
figure 4.7. attP corresponds to the regression slope, while attbg is the regression inter-
cept. The coefficients are referred as coefficients derived from euphotic depth.

to storms in winter might be the reason for the different trend observed. However,

winter is not considered active growing season of phytoplankton in Puget Sound (i.e.,

Chla concentration is considerably minor in winter, Figure 4.3). Hence, the use of

light attenuation function that excludes the winter data would not noticeably affect

modelling of phytoplankton spring bloom. Thus, the regression on seasons that exclude

the winter appears to be applicable to present light attenuation (kd) in Puget Sound.

4.3.2 Light function obtained from beam transmissometer’s measure-

ments

Beam attenuation λ (Figure 4.6) calculated from transmission data (Figure 4.5) is

used to calculate kd according to empirical kd – λ relationship (Equation 4.3, Shannon

(1975)). Together with transmission data, there are observations of Chla (Figure 3.4),

turbidity (Figure 4.8), and salinity (Figure 3.3), all of which are sampled by Department

of Ecology (DoE). Turbidity commonly represents water transparency under influence

of suspended matters, which mainly come from freshwater. Thus, salinity is also often

used as a proxy for turbidity. Here, freshwater is expressed as the difference between

salinity measured in main basin Puget Sound and salinity of oceanic water from the

outer coast (also water at the bottom layer of Puget Sound). Average salinity of the
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outer coast oceanic water is reported at 32 psu (Davis et al., 2014). Following, this

study explores light attenuation as function of Chla and turbidity (kd = attPChla +

attturTurbidity + attbg) or freshwater (kd = attPChla+ attfwFW + attbg) to examine

contribution of Chla concentration (or self-shading effect), freshwater and turbidity to

total light attenuation. In addition, this study inspects light attenuation as a function

of Chla only (kd = attPChla+ attbg), which is suggested by the relationship of kd and

Chla obtained in the section 4.3.1 above. Figure 4.9 presents all the regressions with

coefficients given in table 4.2.

kd ∼ kd ∼ kd ∼ Chla

Chla+ Turbidity Chla+ Freshwater

attP (m−1(µMN)−1) 0.024 0.023 0.0243

atttur (m−1NTU −1) 0.014 - -

attfw (m−1 psu−1) - -0.01 -

attbg (m−1) 0.09 0.07 0.093

R2 0.64 0.64 0.61

Table 4.2: Diffuse attenuation coefficients derived from DoE transmissometer data,
which were outcomes of regressions performed in figure 4.9. The coefficients are referred
as coefficient derived from transmission

It can be seen that kd regressions that contain turbidity and kd freshwater yield

comparable attP coefficient and the same level of correlation (R2). The similarity be-

tween kd regression involving turbidity and freshwater means that freshwater (expressed

through salinity) can be interchangeable with turbidity to account for the influence of

rivers on underwater light. Given freshwater is a common variable in biogeochemical

models, following, the regression of kd with freshwater will be further examined instead

of the regression with turbidity. The kd regression included freshwater results in neg-

ative attenuation coefficient of freshwater (attfw = -0.01). This is within this study

expectation. As freshwater is formulated as the difference between observed salinity

and saltier oceanic water, freshwater results in negative number of psu. Thus, a neg-

ative value of attfw is expected to elevate total attenuation under influence of rivers
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suspended matters. The regression of kd without freshwater (kd ∼ Chla) is akin to it

with freshwater (kd ∼ Chla+Freshwater), which implies that self-shading effect (attP )

plays dominant role on kd in comparison to attenuation caused by river inputs (attfw).

Thus, for simplicity, kd as a function of Chla (kd ∼ Chla) is referred to represent light

extinction in the main basin Puget Sound water.

4.3.3 Comparison of light functions

This section presents three light attenuation functions (kd = attPChla+attfwFreshwater+

attbg) that possibly represent Puget Sound underwater light. The first is from Davis

et al. (2014), the second and third are regressions obtained from (Secchi-derived) eu-

photic depth (Figure 4.7) and beam attenuation data set (Figure 4.9), respectively.

Coefficients (attP , attfw, and attbg) of the three functions are summarized as in table

4.3.

(Davis et al.,
2014)

Secchi observations Beam transmissometer
observations

attP 0.03 0.026 [0.02 – 0.033] 0.0243 [0.0239 – 0.0248]

attfw -0.0065 NA 0

attbg 0.05 0.15 [0.12 – 0.18] 0.093 [0.092 – 0.094]

R2 - 0.7 0.61

Table 4.3: Set of potential light attenuation functions for station 5, main basin Puget
Sound. [a – b] is 95% confidence levels.

It can be seen that light attenuation caused by phytoplankton (attP ) is simi-

lar in function derived from Secchi observations and beam transmission (i.e., attP is

0.026 m−1(µMN)−1 and 0.024 m−1(µMN)−1, respectively), while light attenuation

caused by phytoplankton at the outer coast is not significantly different (attP = 0.03

m−1(µMN)−1). Light attenuation caused by freshwater at the outer coast is rather

low (attfw = −0.0065 m−1 psu−1), which could be considered equally to transmission-

derived attfw. The most difference between the three function lies in light attenuation

of water background (attbg), with attbg from Davis et al. (2014) is a third or a half
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of Secchi or transmission derived. This suggests Davis et al. (2014) attbg is underesti-

mating the underwater light field in Puget Sound, and it might be a reason for early

observed bloom in chapter 3. attbg derived from transmission is lower than that of

Secchi, which might be due to technical problem of beam transmissometer. Difficul-

ties in distinguishing unscattered light from light which has been scattered into very

small angles might result in a value of beam attenuation that is slightly lower than

the true value (see section 4.1.3), which subsequently produces lower light attenuation.

In general, light attenuation functions derived from (Secchi-derived) euphotic depth

and transmission are seemingly agreeance with each other. Between the two functions,

while the transmission-derived has tighter confidence bounds on coefficients and more

data, the euphotic depth-derived has stronger correlation (i.e., higher R2).

4.3.4 Model examination of light functions

To decide on the most applicable light attenuation function to incorporate in to

the PS-1D model, this study set up 2 runs of PS-1D model with light attenuation

coefficients (attP , attfw, and attbg) derived from Secchi observations and transmission

(beam transmissometer measurement) (Table 4.3). The setup of PS-1D model is similar

to the setup in the chapter 3 except coefficients in the light function of Davis et al.

(2014) (Equation 2.8) are correspondingly replaced with coefficients derived from Secchi

depth and beam transmissometer, respectively. Model skill assessment, WSS MAE

on Chla, NO3, and NH4 are calculated for each run in the upper layer of 30 m depth

and the whole water column (Table 4.4).
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PS-1D runs with potential light Top 20 meter All data

attenuation functions Chla NO3 NH4 Chla NO3 NH4

- taken from (Davis et al., 2014) 0.32 0.42 0.21 0.48 0.41 0.37

- derived from transmissometer 0.36 0.5 0.28 0.51 0.46 0.42

- derived from Secchi observa-
tion

0.41 0.58 0.35 0.53 0.5 0.44

Table 4.4: Comparison of PS-1D performance on potential light attenuation functions
(table 4.3) by Willmott Skill Score mean absolute error (WSS MAE). Remaining PS-1D
parameters are as in table 3.1

Table 4.4 shows that light attenuation coefficients derived from Secchi depth and

beam transmissometer present better model performance than the outer coast coeffi-

cients of Davis et al. (2014). This suggests a difference in underwater light field between

the outer coast and Puget Sound fjord. Thus, light attenuation coefficients probably are

the first and foremost parameters that need to be changed in outer coast parameter set

so that it can better reproduce Puget Sound phytoplankton bloom. As a consequence

of change in the amount of light available for photosynthesis, parameters closely related

to photosynthesis such as the slope of phytoplankton growth and irradiance curve (P–I

curve) or λ, are also likely to be different. Between attenuation coefficients derived

from Secchi depth and beam transmissometer, the former yields slightly higher model–

observation agreement score, even though the latter contains higher data resolution.

In comparison to the run with Davis et al. (2014) attenuation coefficients, Secchi ob-

servations coefficients considerably improve model goodness-of-fit of Chla and NO3 on

the top 20 metre layer to 22% and 28% and to whole water column are 9.4% and 18%

respectively.

Figure 4.10 and 4.11 illustrate the PS-1D model outputs running with Secchi depth

derived light attenuation coefficients. In figure 4.10, Chla model output does not show

high concentration (or bloom) around the end of January as observed in the model run

with Davis et al. (2014) coefficients (Figure 3.8) although an intensive bloom is still ob-

served throughout spring to autumn. Similarly, NO3 does not show intensive shortage
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in comparison to figure 3.8. Figure 4.11 restates the model improvement by showing

average of integrated of Chla over 30 m depth approximately inline with observations

comparing to the run with Davis et al. (2014) parameter set (Figure 3.9) although it

still cannot capture the bloom magnitude. The Chla graph shows a potential bloom

onset around mid-February, and consistent high phytoplankton concentration appears

around mid-March and lasts until September. The bloom timing seems to closely agree

with what is reported on Puget Sound blooms (Section 1.3). The improvement can

also be seen in NO3 graph, where modelled NO3 is getting closer to observations.

Thus, from evidence of the data analysis and model experiments, light attenuation

in main basin Puget Sound is satisfactorily expressed as a simple function of Chla:

kd = attPChla+ attbg (4.4)

where attP = 0.026 (m−1(µMN)−1) and attbg = 0.15 (m−1). The effect of high turbid-

ity in Puget Sound is expressed through a high value for attbg, rather than through an

explicit, additional term. Subsequently, light function (Equation 2.8) in phytoplankton

growth equation now becomes:

E(z) =Eoexp(−(attbgz + attP

∫ surface

z
P (z

′
)dz

′
)) (4.5)

4.4 Discussion and Conclusion

Analysis on available measurements of underwater light in main basin Puget Sound

show evidence that light attenuation coefficients from the outer coast parameter set

(Davis et al. (2014) coefficients) likely underestimate light attenuation in Puget Sound

water (i.e., the outer coast light attenuation coefficients yielded lower attenuation than

coefficients derived from Puget Sound water optical measurements). Given primary

production in main basin Puget Sound are predominately controlled by light availability

in winter (Newton and Van Voorhis, 2002), this underestimation of light attenuation

of Davis et al. (2014) coefficients might respond to the early bloom observed around
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the end of January in chapter 3. Thus, it is probably that these Davis et al. (2014)

attenuation coefficients are most likely to need changed to improve the performance of

the outer coast model in Puget Sound water.

Strikingly, the analysis on optical measurements yields relatively simple light atten-

uation function of Chla variable (Equation 4.4). The linear regression is not able to

differentiate effects of freshwater from the water background in the Puget Sound under-

water light (Figure 4.9). Nevertheless, there is evidence to support contribution of rivers

to Puget Sound water transparency (e.g., air photos of river plumes in Puget Sound

water from Eyes over Puget Sound program (Eyes over Puget Sound)). Puget Sound

fjord receives freshwater inputs from around 15 local rivers, however, total freshwater

content in Puget Sound are highly non-local in spring and summer, with distant, large

rivers (the Fraser and Skagit) accounting for a large fraction of total freshwater (Banas

et al., 2015). Loos et al. (2017) showed optical properties of Fraser river rapidly atten-

uated (high kd) mostly due to suspended inorganic particles (through back-scattering)

and colored dissolved organic matter (CDOM, through absorption). The diversity of

freshwater inputs suggests that a salinity indicator alone might not be a sufficient proxy

to evaluate the contribution of rivers to optical properties of Puget Sound water. A re-

cent study in the North Sea showed that reduced water transparency might have caused

up to 3 weeks delay in the spring bloom (Opdal et al., 2019). Given the complexity of

river inputs and potential delay in spring blooms due to reduced water transparency,

future study of Puget Sound water hydrological structure might be needed to fully

quantify the influence of river on Puget Sound water transparency.

Interestingly, light attenuation coefficients (attP , attenuation caused by self-shading

effect of phytoplankton, and attbg, attenuation caused by water column itself) derived

from a simple method of Secchi disk (Newton and Van Voorhis (2002) data set) and

modern laser technique (beam transmissometer) agree well with each other, with Secchi

observations coefficients resulting in slightly better model (PS-1D) performance (Table

4.4). This highlights that despite the simplicity of Secchi disk measurement, Secchi
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depth might remain a satisfactory approach to define light attenuation.

It is arguable that the attenuation coefficient varies with depth as a result of the

changing properties of the irradiance field (Anderson et al., 2015). Indeed, based on a

complex treatment of submarine light of Morel (1988), Anderson (1993) suggested an

approach to take into account the depth-variation of attenuation coefficient for Case 1

water (or open ocean water) and general circulation models. However, this approach

was not examined in this study as Puget Sound is Case 2 water (Matsushita et al., 2012)

and 1-D physical model was used. Nevertheless, consistent attenuation coefficients

obtained from different data sources (Secchi disk depth and beam transmissometer)

would ensure the optical properties of Puget Sound water accurately represented.

Overall, this chapter proposes a simple light attenuation function of Chla (Equa-

tion 4.4), and accordingly alters light function in the phytoplankton growth equation

(Equation 4.5). Although the influence of rivers on total light attenuation is dismissed

in equation 4.4 and consequently equation 4.5, there is evidence supporting the poten-

tial contribution of river input to underwater light. Thus, it is worth noting that attbg

in equation 4.4, which was resulted from a regression (Figure 4.7), indeed accounts for

the effect of both water column and river inputs. During a phytoplankton spring bloom

(e.g., phytoplankton concentration around 15 µgL−1 (Winter et al., 1975; Newton and

Van Voorhis, 2002)), phytoplankton self-shading effect might account for up to 55% of

total light attenuation, which implies that self-shading effect potentially suppresses the

bloom.

Changes in Puget Sound underwater light, as a consequence, likely lead to a change

in other biological parameters, especially those related to photosynthesis (e.g., initial

growth-light slope, α). There is no further data to allow the determination of values

for the remaining parameters. The next chapter therefore employs a parameterisation

approach to explore the parameter space in order to identify a parameter set that

adequately reproduces Puget Sound phytoplankton blooms under the constraint of
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data availability.
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Chapter 5

The PS-1D model

parameterisation and sensitivity

analysis

Unlike atmospheric and hydrodynamic models, which are based on sound physical

laws such as the Navier-Stokes equations, the ultimate governing equations for marine

biogeochemical models have not been devised (Fennel et al., 2001; Jones et al., 2010).

Consequently, processes in marine biogeochemical models are highly parameterised and

often based on empirical studies (Miller , 2009). However, laboratory experiments to

define parameters are mostly conducted on a single species under controlled conditions

which makes its application to in situ conditions questionable (Fennel et al., 2001). An

alternative is to use parameter optimisation (Fennel et al., 2001; Dowd , 2011).

Given the lack of relevant observations to define remaining parameters in the PS-

1D, this chapter thus opts for a parameter optimisation approach accompanied by

sensitivity analysis to estimate the undefined parameters. The chapter is organized

as follows. Section 5.1 introduces the parameter optimization technique - Particle

Swarm Optimizer (PSO) algorithm, and the way the PSO algorithm is incorporated

into the PS-1D model. The PS-1D parameter set obtained from the PSO execution is
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then presented in section 5.2. Sensitivity analysis follows afterwards to examine the

sensitivity of the parameter set (Section 5.3). Finally, discussions and conclusions are

drawn in section 5.5.

5.1 Particle Swarm Optimizer (PSO) and the PS-1D model

parameter optimization setup

Among the 18 biological parameters of the PS-1D model (Table 3.1), 3 parameters

associated to light intensity (attP , attfw, and attbg) have been defined from observations

(Chapter 3). Out of the 15 remaining parameters, microzooplankton growth efficiency

(ε) and fraction of grazing excreted to ammonium (fex) are assigned common values of

0.3 (d−1) and 0.5 (dimensionless) respectively. This is because at early trial and error of

tuning parameters, varying ε and fex did not show influence on the PS-1D performance

(WSS MAE remained unchanged). As a result of the optimal uptake model (Smith

et al., 2009) and observations at the outer coast of Puget Sound (Davis et al., 2014),

minimum half-saturation for nitrate (kmin) is fixed at value of 0.1 (µMN). Preference

for ammonium (ϕNH4) is placed at 2 (dimensionless) as an analogy with a common

formulation of grazing on multiple prey types (Banas et al., 2016; Gentleman et al.,

2003). Afterwards, there are 11 parameters left to be defined.

Parameter optimization has widely been used in marine ecosystem modelling to op-

timize poorly known model parameters. Essentially, the optimization is done by fitting

the model output to observed data by subjective tuning of the parameters. The param-

eters are varied until the misfit between the dynamical model and the observed data,

often termed the cost function, is minimized, with the model equations fulfilled exactly

(Fennel et al., 2001). However, due to the strong nonlinearity of marine ecosystem

models, it is likely that a cost function has multiple minima (Kawamiya, 2002). Thus,

the search for a minimized cost function might easily be trapped in a local mimima,

which is a common drawback to the above techniques. Hence, it is obviously more

desirable to have techniques that are able to identify the global minimum. Global opti-
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misation can be achieved using a number of techniques including simulated annealing,

genetic algorithms and particle swarm optimisation. A direct advantage in using formal

optimization techniques is that it can be fairly sure that it is the model structure itself

that should be improved when a model does not yield a satisfactory result (Kawamiya,

2002).

5.1.1 Particle Swarm Optimizer

A variety of optimization methods used in marine ecosystem modeling (e.g., Gener-

alized Likelihood Uncertainty Estimation (GLUE, Beven and Binley (1992), Simulated

Annealing (SA, Kirkpatrick et al. (1983), Markov Chain Monte Carlo Metropolis et al.

(1953)) have been summarized in Houska (2017). Particle Swarm Optimizer (PSO) is

such a technique which has now attracted the interest of researchers around the globe

(Poli et al., 2007). The PSO was first introduced in 1995 by Kennedy (a social psy-

chologist) and Eberhart (an electrical engineer) when they explored analogues of bird

flocks searching for corn. Since then, the PSO technique has been continually modified,

improved and developed into a powerful optimization method. A thorough history on

development, deployment and improvement as well as variants of the PSO can be found

in Poli et al. (2007); Garcia-Gonzalo and Fernandez-Martinez (2012); Sengupta et al.

(2019).

The PSO algorithm can simply be explained through an analogy of a process using

boats to measure the deepest part of a lake. To start, imagine a large lake whose depth

needs to be recorded. It is nearly impossible to complete this task with one boat. A

more reasonable approach is to use multiple boats, and importantly these boats need

to communicate to each other on their measurements. To tackle the given task above,

at the first step, for example, two boats A and B are positioned randomly at opposite

edges of the lake. They both then measure depths at their first placements, record them

as personal (A’s and B’s) deepest, and inform each other about their measurements.

Supposing at the first measurement, A is deeper than B, then A’s measurement is

recorded as the global deepest. Next to the second step, A stays where it is as A

85



Chapter 5. The PS-1D model parameterisation and sensitivity analysis

possesses the global deepest, while B moves toward A by a predefined distance to a

new position in the lake. B again measures the new position depth. B then compares

the new depth with its personal deepest, and updates the personal deepest if the new

depth appears to be deeper. Afterwards, B exchanges its updated personal deepest

with A, and updates the global deepest if B’s personal deepest is now deeper. Then,

the one with the deepest stays and the other moves. This process is repeated until

A and B meet (converge) at the same place (the deepest point in the lake). Boats

assembles a swarm, in which each boat is a particle of the swarm. The deepest position

represents cost function. Clearly, it takes less iterations (time) to find the deepest when

there are more boats used.

As the PSO is well reviewed by Poli et al. (2007); Garcia-Gonzalo and Fernandez-

Martinez (2012); Sengupta et al. (2019), the algorithm given below is followed Poli et al.

(2007) with an adjustment on bound condition which was suggested by A. Hunter (pers.

comm.)

Algorithm. Mathematically, the algorithm is presented as in figure 5.1. A particle

i of the swarm at time t is characterized by vector position
−→
Xi(t), vector velocity

−→
vi(t), and its personal cost

−→
Pi(t). The swarm at time t records its best (global) cost

−→
G(t). Movement of particle i from time t to time (t+1) at velocity

−→
Vi(t + 1) needs

to take into account its current vector velocity, personal cost and the global (swarm)

cost to reach position
−→
Xi(t + 1) that is closer to the swarm best position. Thus, the

particle i first moves parallel to its current velocity vector (
−→
vi(t)), then parallel to

vector connecting current position (
−→
Xi(t)) to personal best (

−→
Pi(t)), and finally parallel

to vector connecting current position (
−→
Xi(t)) to the global best (

−→
G(t)). The addition

of these three vectors from the beginning of first vector to the end of third vector is its

new velocity (
−→
Vi(t+ 1)). As the particle i new position is decided by using the previous

experience of the particle itself and of the whole swarm, the new position is considered

the better location for the particle i to be. When every particle in the swarm follows

these rules, they will cooperate to find the best location in the search space, hence the
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best solution possible. The algorithm is implemented as follows.

Figure 5.1: Particle swarm optimization algorithm. A particle i of the swarm at time t is

characterized by vector position
−→
Xi(t), vector velocity

−→
vi(t), and its personal cost

−→
Pi(t).

The swarm at time t records its best (global) cost
−→
G(t). The particle i approaches to the

global best by first moving parallel to its current velocity vector (
−→
vi(t)), then parallel to

vector connecting current position (
−→
Xi(t)) to personal best (

−→
Pi(t)), and finally parallel

to vector connecting current position (
−→
Xi(t)) to the global best (

−→
G(t)). The addition

of these three vectors from the beginning of first vector to the end of third vector is its

new velocity (
−→
Vi(t+ 1)).

1. Initialize a population array of particles with random positions and velocities

on D dimensions in the search space rescaled to the (0, 1) interval. Particles’

personal costs calculated from initialized positions and velocities are assigned to

their pbest.

2. loop

3. For each particle, evaluate the desired optimization fitness function in D variables.

4. Compare particle’s fitness evaluation with its pbesti. If current value is better

than pbesti, then set pbesti equal to the current value, and ~pi equal to the current

location ~xi in D-dimensional space.

5. Identify the particle in the neighborhood with the best success so far, and assign

its index to the global variable pg.
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6. Change the velocity and position of the particle according to the following equa-

tion (see notes below)


~vi ← χ

(
~vi + ~U (0, φ1)⊗ (~pi − ~xi) + ~U (0, φ2)⊗ (~pg − ~xi)

)
,

~xi ← ~xi + ~vi

(5.1)

where

• χ is “constriction coefficients” to control the convergence of the particle

χ =
2

φ− 2 +
√
φ2 − 4φ

(5.2)

where φ = φ1 + φ2 > 4. φ is commonly set to 4.1, and φ1 = φ2. φ1 and φ2

are often called acceleration coefficients, which determine the magnitude of

the random forces in the direction of personal best (pbest) and global best

(g).

• ~U (0, φi) represents a vector of random numbers uniformly distributed in

[0, φi], which is randomly generated at each iteration and for each particle.

• ⊗ is component-wise multiplication.

• each component of ~vi is kept within the range [−Vmax,+Vmax] so that par-

ticles will not go out of searching spaces. The optimal value of Vmax is

problem-specific, but no reasonable rule of thumb is known. For this study,

Vmax is half of max of the search space or 0.5.

7. When the v(x + 1) potentially places x(t + 1) out of its defined search space,

the out-of-bounds particle needs to be carefully repositioned. Imagine a ball (a

particle) moving between 2 walls (search space) with velocity v. When the ball

hits one of the walls, it bounces back to a position between the 2 walls. To present

this, choose the “damping” value that controls energy loss of the bouncing ball,

to be something like 0 < β = 0.8 < 1 (fairly close to 1). When the particle crosses

the lower bound, then reposition the particle as x(t + 1) = r · β · x(t), where r

is a random number uniformly distributed between 0 and 1. So the particle has
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been randomly relocated somewhere between its original position and the lower

bound (but damping ensures it’s not too close to its original position). If the

particle crosses the upper bound then the same bouncing ball analogy applies,

but reposition as x(t + 1) = 1 + r · β · (x(t) − 1). (Note that, this assumes that

parameter search space has been rescaled to the (0, 1) interval). The velocity of

an out-of-bounds particle should also be reset. The reset velocity vector should

point away from the boundary, towards the original position x(t). Sticking with

the bouncing ball analogy: velocity decreases with distance bounced away from

the floor. So if the new position x(t+1) is far from the boundary then the velocity

is small. Thus, velocities can be reset as: v(t+ 1) = (r · β− 1) · v(t), which works

for particles crossing either the upper or lower bounds.

8. If a criterion is met (usually a sufficiently good fitness or a maximum number of

iterations), exit loop.

9. end

5.1.2 Implement the PSO to the PS-1D model

The remaining undefined 11 parameters of the PS-1D model form the PSO algorithm

dimensions (D). The parameter search spaces are practically defined by halving and

doubling values of Davis et al. (2014) parameter values (µ0, α, K0, I0, and mMZ).

When there is no associated PS-1D parameters in Davis et al. (2014)’s model (e.g.,

maggr), or parameter ranges produced by halving and doubling Davis et al. (2014)’s

values are too large or small, this study uses plankton model literature to define the

search spaces (mP , maggr, wsinkLD
, wsinkSD

, rremin, and rnitr). The search spaces are

then rescaled to the (0, 1) interval. The swarm population consists of 30 particles,

which lies in the common empirical range of 20 – 50 for the population size (Poli

et al., 2007). The cost function is to maximize the total index of model – observation

agreement (WSS MAE, section 3.2) on Chla, nitrate and ammonium combined. The

PSO algorithm stops after 300 iterations. The number of iteration is decided based on

try and error given constraint on convergence and time.
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At the initial step, each particle is positioned randomly in the search space. The

random position is sampled in its uniformly distributed space. Each particle attributed

by a parameter set is then passed into the PS-1D model to compute Chla, nitrate,

and ammonium concentration in time and depth, and to evaluate the cost function

WSS MAE. The WSS MAE is recorded as the particle best cost. Comparison

between particles’ best costs result in the global best cost. After the initiation, the

PSO algorithm enters the loop of 300 iterations to explore the search space in a manner

described in the algorithm section (Section 5.1.1). As stated in the previous section, a

common drawback of the technique is to be trapped at a local mimima, to avoid this,

the swarm is periodically disturbed after each 50 iterations (except at the 250th iteration

to ensure the algorithm converges) to allow particle to move out of the current local

minima. The disturbance is done through resetting swarm particles to high velocities

which allow particles to jump far way from their current position. Accordingly, the

position recorded as global best at the last PSO iteration is assumed to be the parameter

set (the best PSO parameter set) that give model – observation best fit given the

available data and chosen model functions.

5.2 Parameter optimization results

Figure 5.2 presents index of model – observations agreement (WSS MAE) against

the PSO iteration. On the left are the indices for each fitting variable stacked upon

each other with the total model index placed at the top. On the right, the figure

provides greater details of the model fitness variation throughout iterations. The left

axis is WSS MAE of each variable (Chla, nitrate and ammmonium) and the right axis

denotes the whole model WSS MAE. It can be seen that the model shows a better fits

to nitrate and chlorophyll, with nitrate WSS MAE slightly higher. The right figure

suggests the PSO converged after roughly 50 iterations, although small variation is still

observed on the left figure. This means that parameter sets recorded as PSO global

best at 50th iteration onwards can equally yield a similar model goodness-of-fit. The co-

existence of many equally good parameter sets is possible and has been recognized as an
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expected outcome when simultaneously optimizing too many unconstrained parameters

given limited available data, which is the classical problem in marine biogeochemical

model parameter fittings (Anderson, 2010).

Figure 5.2: Model assessment skill WSS MAE against Particle Swarm Optimizer (PSO)
iteration. The bar stacked graph denoted WSS MAE contribution of each variable
(Chla, NO3, and NH4) on the model total WSS MAE (blue line). The line graph
denoted WSS MAE variation of each variable as well as the whole model, the left y-
axis is WSS MAE for Chla, NO3, and NH4, while the right is of the whole model (is
sum of WSS MAE of Chla, NO3, and NH4).

Regarding the PSO convergence, figure 5.3 shows that almost all particle velocities

approach zero, which is evidence that almost all particles utimately reach the same

solution. The convergence is clearly observed in the particle velocities of α, mP , maggr,

Rremin, and Rnitr. Fluctuation during convergence is largely seen in µ0, I0, and mMZ .

This is because there are many possible combinations of these parameters that yield

similar model goodness-of-fit, which is also recognized in figure 5.2. Similarly, figure

5.4 illustrates the paths that parameters move along in each parameter space search.

Again, prominent fluctuation is observed in µ0, I0, and mMZ .
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Figure 5.3: Velocity of swarm particles against iteration. The velocity is reduced after
each iteration to ensure the algorithm converges. To prevent the algorithm from being
trapped in local minima, swarm particles velocities are disturbed periodically after each
50 iterations (except at the iteration of 250). The disturbance repositions particles away
from local minima and allow broad searching for the global minimum.
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Figure 5.4: Moving paths of swarm particles at their personal best cost (gray dots) and
global (or swarm’s) best cost (black dots) in parameter spaces over searching iterations.
Blue lines mark iteration 70, 220, and 300
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Among many equally good parameter sets, this study focuses specifically on 3 pa-

rameter sets. The first is extracted at the 70th iteration, which is the start of the PSO

convergence. The second is at the 220th iteration, where the total model WSS MAE

variation is unnoticeable. Finally the third is the global best parameter set at the last

iteration (the PSO best parameter set). Regarding WSS MAE, the second and the

third are almost akin, and they are just slightly higher than the first one. However,

the first parameter set presents a highly contrasting dynamic system in comparison the

second and the third. The first parameter set indicates low turnover production rate

(i.e., low in µ0, I0), while the second and the third demonstrate high turnover rate (i.e.,

high in µ0, I0) (Figure 5.4).

Figure 5.5 to 5.8 depict the PS-1D model outputs of Chla, nitrate and ammonium

of the three parameter sets outlined above. The second (at 220th iteration) and third

(at the last iteration) parameter sets expectedly result in almost identical distributions

of Chla, nitrate, and ammonium in depth and time (Figure 5.5 and 5.6), which con-

sequently yield similar average of integrated variables over euphotic depth (Figure 5.7

and 5.8). Despite distinguishing system dynamics (e.g. low – high turnover production

rate), the first parameter set (at 70th iteration) paints rather similar patterns to the

second and third, with variable concentrations just slightly lower (Figure 5.6 and 5.8).

Noticeably, all three parameter sets capture the same bloom timing and sharp decline

and rise in nitrate and ammonium, respectively. This means that the large difference

in the system dynamics does not influence the ability to capture bloom onset of the

PS-1D model, which is a major metric this study chooses to describe phytoplankton

bloom (Section 1.4). Also, none of the three parameter sets adequately produces bloom

magnitude (Figure 5.7 and 5.8).

Finally, it is obvious that parameter sets proposed by the PSO indicates consider-

able improvement of the model – observation agreement in comparison to Davis et al.

(2014)’s parameter set (Figure 3.8 to 3.11) or Davis et al. (2014)’s parameter set re-

placed with observation-derived light attenuation (Figure 4.10 and 4.11).
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Figure 5.6: The PS-1D model run with parameters extracted at the PSO iteration of
70th (the first) and 220th (the second). Compare to figure 5.5, right-hand panels
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Figure 5.7: Average integral of the PS-1D model state variables over euphotic depth
against time. The PS-1D outputs (blue line) in comparison to observations (grey dots.
The PS-1D is run with the best PSO parameter set.)
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Figure 5.8: Average integral of state variables over euphotic depth from PS-1D outputs
(blue line) in comparison to observations (grey dots). The PS-1D model run with
parameters extracted at the PSO iteration of 70th (the first) and 220th (the second)

According to Winter et al. (1975), maximum phytoplankton growth rate (µ0) in

Puget Sound was possibly in range of 2.8 d-1 to 6.4 d-1. This range seems rather high

in comparison to typically observed values from laboratory data reported by Eppley
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(1972); Bissinger et al. (2008) and Chen and Laws (2017). However, it is worth to note

that a major limitation of this laboratory data is that experimental conditions were

not always replete and maximum growth rates were not always achieved (Bissinger

et al., 2008). Strickland (1983) stated that Puget Sound is considered to be a highly

productive system, which was in line with high phytoplankton growth rate reported by

Winter et al. (1975). Thus, given evidence from Winter et al. (1975) and Strickland

(1983), as well as no clear difference is observed in bloom timing between parameter sets

despite distinguishable system dynamics, the best PSO parameter set (global best at

the last PSO iteration, in which µ0 = 4 d-1), which represents high turnover production

rate is chosen for further parameter sensitivity analysis in the next section.

5.3 Sensitivity analysis

As PSO suggested numerous parameter sets that produce an equally good-fit of the

model to observations, sensitivity analysis is an additional necessary step to provide

further insight into the system dynamics. By doing sensitivity analysis, this study will

distinguish between strong and weak constrained parameters, and hence gain added

evidence to support the final parameter set selection.

The same parameter search spaces given in the optimazation procedure are used to

explore the parameter sensitivity. Each parameter range is divided into twenty equal

spaces. One at a time, the PS-1D model is set up and run for each parameter variation.

After the run, WSS MAEs are calculated for each state variable (Chla, nitrate, and

ammonium) and total model (by taking sum of all state variables). Finally, the index

of agreement of WSS MAEs are exported and plotted against the parameter range

along with the base case (red line) and the Davis et al. (2014) value (blue line) (Figure

5.9).

Figure 5.9 shows WSS MAE in response to parameter variation. The distance of red

and blue line represent difference/similarity between the best PSO parameter values

and the Davis et al. (2014) values. The sensitivity analysis again confirms that the
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Chapter 5. The PS-1D model parameterisation and sensitivity analysis

PSO best parameter set is the one that yields highest model goodness-of-fit. Figure

5.9 suggests that I0, mMZ , wsink LD do not affect the PS-1D model performance given

their parameter ranges. Among all the parameters, α stands out as the most sensitive

parameter that considerably influences model fitness. Indeed, table 5.1, which displays

WSS MAE difference between the PSO best and the Davis et al. (2014) parameter set,

points out that the contribution of α to model improvement is far greater than all other

parameters combined. (0.38 compare to 0.194, respectively). Given light is one of the

vital factors controlling phytoplankton growth rate, and chapter 4 denoted considerable

change in the main basin Puget Sound underwater light, it is understandable that initial

growth-light slope (α), a light-related parameter, turns out to be highly influential.

One would expect that the parameters that vary most in PSO would turn out to be

insensitive parameters. This is the case for I0, mMZ , K0, but µ0. The reason is that

I0, mMZ , K0 are direct parameters controlling microzooplankton (MZ) biomass, while

µ0 indirectly influences MZ biomass through phytolankton biomass. As observations

of MZ biomass are not available, MZ-direct parameters are free to move in their spaces

or are insensitive. µ0, on the other hand, is controlled by phytoplankton biomass

observations, thus compensating the model performance (or its sensitivity to the model)

for its free movement.
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Parameter WSS MAE difference

wsSD 1.3 · 10−4

mMZ 5 · 10−4

wsLD 5.6 · 10−4

I0 2.4 · 10−3

maggr 4.1 · 10−3

Rremin 0.021

Rnitr 0.036

µ0 0.037

K0 0.05

mP 0.05

α 0.38

Table 5.1: WSS MAE (index of model – observation agreement) difference between
model runs with PSO-optimized parameters and parameters from the outer coast model

5.4 Selecting final parameters

To examine how each parameter in the best PSO parameter set influences the PS-

1D model behaviour (via WSS MAE) in comparison to corresponding Davis et al.

(2014)’s parameter and vice verse, Davis et al. (2014)’s parameter values are put back

in the PS-1D model in the order shown in table 5.1. Table 5.2 presents WSS MAE

of Chla, nitrate (NO3), ammonium (NH4) and of the whole model at each parameter

replacement. As can be guessed from previous results, parameters: small detritus

sinking rate (wsSD), microzooplankton mortality (mMZ), large detritus sinking rate

(wsLD), microzooplankton maximum ingestion rate (I0), and phytoplankton loss via

aggregation (magg) do not change the PS-1D model performance, thus these parameters

can remain as given in Davis et al. (2014).

Table 5.3 again clearly restates notable model enhancement with the PSO best pa-

rameters when comparing the PS-1D performance between usage of the PSO best
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parameter set and Davis et al. (2014) on the top layer of 20 meter and the whole water

column.

In summary, table 5.4 presents the final PS-1D parameters for the main basin Puget

Sound in comparison with the Davis et al. (2014) parameters. The parameters that

potentially improve model performance are highlighted.

Substitue
WSS MAE

% worsen
Chla NO3 NH4 Total

parameters found
0.6 0.622 0.543 1.765 -

by optimization

wsSD 0.6 0.621 0.544 1.765 -

mMZ 0.6 0.621 0.544 1.765 -

wsLD 0.6 0.62 0.544 1.764 5.7e−2

I0 0.599 0.619 0.546 1.764 5.7e−2

magg 0.6 0.619 0.545 1.764 5.7e−2

rremin 0.601 0.62 0.523 1.744 1.2

rnitr 0.601 0.609 0.508 1.718 2.7

µ0 0.597 0.611 0.504 1.712 3

K0 0.582 0.564 0.5 1.646 6.7

mP 0.585 0.559 0.507 1.651 6.5

α 0.513 0.501 0.438 1.47 16.7

Table 5.2: The PS-1D model performance worsens when PSO-proposed parameters are
substituted one at a time with parameters from the outer coast model.

PS-1D runs with parameters
Top 20 meter All data

Chla NO3 NH4 Chla NO3 NH4

- taken from (Davis et al., 2014) 0.32 0.42 0.21 0.48 0.41 0.37

- as a result from parameteriza-
tion and sensitivity analysis

0.59 0.78 0.53 0.6 0.62 0.55

Table 5.3: Comparison of PS-1D performance using PSO and sensitivity analysis pro-
posed parameters (or final PS-1D parameters, table 5.4, figure 5.5 and 5.7) to param-
eters taken from Davis et al. (2014)’s study. The model performance is evaluated by
Willmott Skill Score mean absolute error (WSS MAE)
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5.5 Discussions and Conclusions

The PS-1D parameterisation restates a classical problem of parameter underdeter-

mination in marine biogeochemical modelling. Often, there are too many parameters

to be adequately constrained by the available data in marine ecosystem models, which

commonly results in many parameter sets that fit chosen observations equally well (An-

derson, 2010). Here, the PS-1D parameterized by the PSO produces numerous parame-

ter sets that yield a similar index of agreement with observations (i.e., WSS MAEs are

almost unchanged from around the 50th iteration onwards (Figure 5.2), while fluctua-

tion in parameters is still observed (Figure 5.4)). Among these equally good parameter

sets, noticeably perhaps parameter sets obtained at iterations of 70th and 220th (Figure

5.6 and 5.8) which yield rather contrasting dynamics. The former represents a system

of low turnover rate, while the later illustrates a fast turnover system (i.e., phytoplank-

ton growth rate (µ0), microzooplankton maximum ingestion rate (I0) of the former are

lower than the later). This is possible as standing stock (e.g., Chla biomass) is not an

ideal proxy for a system’s production, as a system of high input – high turnover rate

– high production could produce the same standing stock as a system of low input –

low turnover rate – low production. This suggests further studies are needed to con-

straint highly fluctuating parameters (e.g., µ0, I0), and therefore to define the system

dynamics.

Among fairly good parameter sets proposed by the PSO, decision on the appropriate

parameter set might need to be carefully considered. For instance, despite representing

opposite production dynamics, the two parameter sets discussed above do not show

noticeable difference in bloom timing and nutrient, and just slight variation in bloom

magnitude (Figure 5.6 and 5.8). Thus, it is might not matter which of the two pa-

rameter sets outlined above should be employed in the PS-1D model given that this

study selects bloom timing and bloom magnitude as majors metrics to describe bloom

dynamics. However, it would not be the case if this study investigated interaction

between trophic levels and/or carbon export (or biological bump) as these processes
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are largely influenced by the ecosystem production (Figure 5.10). Hence, extra caution

is needed to apply the PS-1D to examine the trophic level dynamics and/or carbon

export of the region.

Tightly coupled ecological parameters to environment need to be taken into account

when examining the optimization outcomes. The ecological variables depend largely

on the physical forcing conditions, while in terms of the parameter estimation proce-

dure, prescribing the physical forcing is equivalent to the assumption that the forcing is

correct. Thus, the optimized parameters are adjusted in such a way that they correct

for any errors related to physical forcing conditions that influence the ecological state

variables. For example, in Puget Sound, large freshwater inputs during summer po-

tentially influence the hydrological structure of the region, which consequently affects

underwater light environment and mixing. These are suggested as major drivers of

Puget Sound plankton dynamics. The PS-1D model is represented by yearly vertical

advection and mixing, which clearly cannot produce changes in mixing in summer, and

therefore results in an overestimate of phytoplankton biomass during this season. Or in

other words, the PS-1D parameterized by PSO cannot reproduce observed pattern of

bloom succession (i.e., decline of first bloom in summer and formation of second bloom

in autumn). The bloom succession might be captured by time-varying mixing. How-

ever, the PS-1D built upon available observations is not designed for that purpose. A

more effective approach is to apply the PS-1D biological parameters to well-presented

Puget Sound hydrodynamics of 2D or 3D models.
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Figure 5.10: Differences in dynamics between the two parameter sets which produce
similar model goodness-of-fit. The first and third parameter sets are taken at the 70th

and 220th iteration of PSO. The figure shows clear difference in carbon transfer between
trophic levels (via grazing) and carbon export (via sinking) between the two parameter
sets.
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Sensitivity analysis classifies the influence of parameters to total model performance.

The ranking names initial growth-light slope (α) as the strongest constraint parameter,

which might be a consequence of light environment complexity. The analysis ranks phy-

toplankton natural mortality (mP ) and microzooplankton half-saturation rate (K0) as

moderate constraints. Phytoplankton maximum growth rate (µ0) and remineralization

rates (rremin and rnitr) continue the ranking as potential influence parameters, and re-

maining parameters are listed as weak to non-constraint parameters. It is worth noting

that weak constraint parameters might not be a robust conclusion as freedom in these

parameters (e.g., I0, mMZ , wsinkLD
) might again result from a lack of observations on

unconstrained processes.

Our parameter sensitivity ranking differs from Khangaonkar et al. (2012), whose rank

listed the most sensitive as maximum photosyntheic rate (µ0), grazing loss rate, settling

rates (wsSD and wsLD), and half saturation constants of nutrient uptake (equivalent to

kmin + 2
√
kminNtot in PS-1D model). The difference in ranking perhaps comes from

model structures of and observations used in the two studies. First, the PS-1D employs

1-D vertical physical processes against the 3-D FVCOM model in Khangaonkar et al.

(2012) study. Clearly, 3-D model would present the complex hydrodynamics of Puget

Sound in greater details than simlified 1-D model. Second, model evaluation of the

PS-1D model is based on 22-year monthly observations, while monthly observations

of year 2006 is presented in Khangaonkar et al. (2012) study. Although the authors

particularly reproduced phytoplankton succession in typical year of 2006, they might

leave out the general dynamics, which emerges over long-term data and is often dif-

ferent from a typical year pattern. Newton and Van Voorhis (2002) study observed

strong spatial and temporal variation in Puget Sound primary production, which sug-

gests longer-term observations would be necessary to explain key features of the Puget

Sound phytoplankton dynamics. Thirdly, a biogeochemical model (NPZD model) is de-

scribed in the PS-1D, while CE-QUAl-ICM was desmonstrated in Khangaonkar et al.

(2012). The two models deploy notably different light and nutrient functions, hence

the photosynthesis. Finally, differences in model assessment skills might largely influ-
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ence model goodness-of-fit estimation. The PS-1D performs Willmott Skill Score mean

absolute error (WSS MAE), whereas Khangaonkar et al. (2012) used root mean square

error (RMSE). Willmott et al. (2012) pointed out a problem of RMSE is that it possibly

over-weights the influence of larger errors, when squared, on the sum-of-squared error,

which results in a smaller RMSE, hence mistakenly yield higher model goodness-of-fit.

While parameterisation suggests phytoplankton growth rate (µ0), and microzoo-

plankton maximum ingestion rate (I0) might need to be accurately constrained to

define system dynamics, sensitivity analysis highlights initial growth-light slope (α) is

the most sensitive parameter to the model performance. This is consistent with find-

ings in chapter 4, which drew significant influence of underwater light environment to

the PS-1D model performance. Phytoplankton mortality (mP ) and microzooplankton

grazing half-saturation (K0) moderately affect model goodness-of-fit, while phytoplank-

ton growth rate (µ0), nitrification rate (rnit), and remineralization rate (rremin) show

slight control on the model performance (Table 5.2).

Overall, parameterisation and analysis propose the parameter set that greatly im-

proves fitness of the PS-1D model to observations (e.g., on Chla, nitrate and ammo-

nium) in comparison to the outer coast (or Davis et al. (2014)) parameters (Table 5.3).

The proposed parameter set captures bloom timing well along with the sharp change in

nutrient (decline in nitrate, and increase in ammonium) happening in the second half

of April (Figure 5.7). However the parameter set underestimates bloom magnitude as

well as nutrient shortage in summer. The underestimation of bloom magnitude might

be due to the lack of microzooplankton observations to constrain microzooplankton

population. The shortage of nutrients in summer, on the other hand, is due to 1-D

physical model limitation, whereas the yearly vertical mixing easily overestimates the

summer mixed layer depth. Although the proposed parameter set undervalues bloom

magnitude, it is worth noting that blooms where Chla concentration is over 15 µgL−1

are rarely observed (just 3 events of Chla concentration over 15 µgL−1 in total 160 Chla

profiles over 17 year observations). Almost all blooms are at Chla concentration below
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15 µgL−1 which is reported by the PS-1D model (Figure 5.5 and 5.6). Turning back

to question what parameters in Davis et al. (2014) parameter set improve the outer

coast model goodness-of-fits in main basin Puget Sound, initial growth-light slope (α)

evidently is the first and foremost parameter which needs to be adjusted to significantly

improve the outer coast model performance in main basin Puget Sound (Table 5.2).

Further parameters that should be adjusted might depend on compensation between

the model performance improvement needed and processes willing to be changed.

This study has extensively explored the PS-1D parameter space and proposed the

parameter set (Table 5.4) that adequately captures bloom timing, one of important

metrics to describe phytoplankton bloom. This finding also answers the first question

stated in this study aims (Section 1.4). The next chapter will employ this parameter set

to further investigate climate-linked drivers – pathways (section 1.4) to finally answer

the remaining questions.
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Climate-linked drivers and

pathways regulate Puget Sound

phytoplankton bloom

Although the Puget Sound plankton seasonal cycle is well described, quantitative es-

timation of the regional phytoplankton bloom timing and magnitude (or production),

as well as the impact of environmental variation during the year, are not. This chap-

ter employs the PS-1D model which was built from previous chapters to explore what

controls the phytoplankton bloom onset and production in the Puget Sound, and how

these are likely to be impacted by factors which are driving changes in the Puget Sound.

At the same time, the exploration of phytoplankton bloom onset and magnitude also

examines: potential changes in underwater light that may disrupt juvenile salmon vi-

sual search due to high phytoplankton concentration, and a period of strong nutrient

limitation in summer as a proxy to Alexandrium HABs occurrence. Thus, the chap-

ter begins by introducing numerical experiments which include environmental forcings

range and interpretation of the experiments (Section 6.1). Outcomes of the numerical

experiments are then presented in the next section (Section 6.2). Finally, discussions

and conclusions are given in section 6.3.
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6.1 Numerical experiments set up

As stated in section 1.4 and figure 1.2, this study investigates Puget Sound phytoplank-

ton blooms through metrics of (1) the annual primary production, (2) spring bloom

timings, (3) spring and summer phytoplankton concentrations, and (4) the occurrence

or non-occurrence of strong nutrient limitation in summer. These metrics are examined

through light and nutrient limitation, and temperature variation. While temperature

is a direct regional climate factor, light and nutrient limitation are regulated by mixing,

vertical advection, underwater light, and deep nutrient, which in turn are influenced

by regional climate such as river flow, wind stress, and cloud cover.

6.1.1 Investigated forcing ranges

Variability of mixing, vertical advection, temperature, photosynthetic active radia-

tion (PAR), nutrient and light attenuation background (attbg as in equation 4.4) are

defined based on the values defined in the PS-1D model in the last chapter (the base

case).

Mixing. Mixing in the main basin Puget Sound is driven by tides at the bottom,

and by wind and stratification at the surface. Garnier (2020), in preparation, proved

that wind and stratification play a dominant role on mixing in comparison to tide.

Indeed, figure 2.9 showed mixing changes mostly in the top 20 metres. Thus, variation

of mixing is estimated through its variation in the top 20 m. Integral of mixing from

MoSSea model over the top 20 m is averaged (namely κ0−20m). Then, mean (κ̄0−20m)

and standard deviation (κ̂0−20m) are calculated over time. The possible range of mixing

is then defined [(κ̄−2κ̂), (κ̄+ 2κ̂)] or [1.2 ·10−04, 2.6 ·10−04 (m2s−1)]. Upon this range,

κ0−20m is equally divided into 20 spaces. These values are then scaled by κ̄0−20m to

generate mixing profile variation (Figure 6.1).
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Figure 6.1: Mixing profile variation (gray) with black profile showing yearly average as
given in figure 2.9

Vertical advection. Vertical advection variation is defined through water trans-

ported in and out the central Puget Sound in a similar way to determine vertical

advection as given in section 2.3.1. This study estimates vertical advection variation

through change of velocity at bottom of upper layer, Hul (Figure 2.2). From personal

communication with P. MacCready, University of Washington, average transported wa-

ter (Qin) flowed into the main basin Puget Sound through Ad.Inlet (Figure 2.2) was

29000 (m3s−1) and its standard variation (Q̂in) was 7000 (m3s−1) (data of 2018). As-

suming vertical advection variation is proportional to variation of transported water,

results in

∆̂Q =
Q̂in

Qin
·∆Q

where ∆Q = 4000 (m3s−1) according to Sutherland et al. (2011) (Section 2.3.1). As a

result ∆̂Q = 950 (m3s−1). Or variation in vertical advection at bottom of the upper

layer Hul is ŵHul
= ∆̂Q/(B ·L) = 0.7 · 10−05 (ms−1). Thus, possible range of wHul

was
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[wHul
− 2ŵHul

, wHul
+ 2ŵHul

] = [1.5 · 10−05, 4.3 · 10−05] (ms−1). Over the range, wHul

is equally divided in 20 spaces. Vertical advection variation is defined in a similar way

to the mixing profile variation given above (Figure 6.2).
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Figure 6.2: Vertical advection profile variation (gray) with black profile showing yearly
average as given in figure 2.8

Temperature. As the global temperature is projected to be 3°C higher by the end

of the century (IPCC , 2018), this study defines temperature range +3 and -3 around

the mean temperature of the top 20 m. The range is then divided in to 6 equal spaces.

PAR and deep nutrient. PAR annual cycle (Figure 3.2) is varied in between half

and double of its annual average, while variation of deep nutrient lies in a range of half

and double a value at the bottom of nutrient profile (Figure 3.1).

One at a time, the PS-1D model is run for each driver upon its range of values given

above. After a model run, metrics of (1) annual primary production Ptot, (2) bloom

date tbloom, (3) phytoplankton during outmigration (spring and summer) of two major
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salmon species, Chinook P chinook
outmigr and Steelhead P steelhead

outmigr , and (4) number of days that

nutrient is in short supply ∆tnut, are calculated. Further details on the four metrics,

with metric (3) subdivided, are given as follows:

1. Total annual primary production PPtot, converted to units of gCm−2yr−1 assum-

ing a C:N ratio of 106:16 mol:mol;

2. Date of the spring bloom tbloom, defined as the day of the year when cumulative,

vertically-integrated phytoplankton biomass reached 15% of its annual total;

3. Phytoplankton concentration during the seasonal period and depth layer associ-

ated with steelhead outmigration (P steelhead
outmigr ), mid April–first week of June (year-

days 109–159), and 0–2 m depth;

4. Phytoplankton concentration during chinook outmigration in summer P chinook
outmigr,

first week of June–mid September (yeardays 159–258), 0–15 m depth;

5. Incidence of strong nutrient stress in summer ∆tnut, defined as the count of days

on which surface nutrient concentration is less than 3 µMNm−3 (or mmolNm−3).

6.1.2 Experimental Interpretation

The primary timescale of analysis is interannual variation in seasonal averages. Table

6.1 presents seasonal averages (i.e. spring: April – June or summer: July – September)

across a number of years (e.g. mixing, deep nutrient, temperature, surface PAR).

In some cases, it is not possible to calculate interannual variation in this way. For

example, variation in exchange flow (and hence vertical advection) has been calculated

across one annual cycle in LiveOcean (MacCready et al., 2020, in prep), but never

across a useful ensemble of years. In these cases, event-scale (10 day) variation is

interpreted as a high upper bound on the unknown interannual variation (e.g. vertical

advection, background light attenuation). Also, in some cases, it is not clear whether

seasonal averages are indeed the timescale on which the environment drives variation

in phytoplankton dynamics. For instance, weak to nonexistent correlations between
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stratification and Chla on the monthly scale and longer were observed in a 3-year

high resolution profiling buoy in Carr Inlet, South Puget Sound (Banas et al., 2019).

Thus, event-scale (10 day) variation for select quantities (e.g. mixing, surface PAR)

are reported to support interpretation.

Relating these scales of variability in drivers to the associated variability in phyto-

plankton metrics is done through multiplication and the chain rule. For example, the

variability in spring bloom date tbloom in relation to interannual variability in spring

riverflow Qr, via the effect of riverflow on stratification and consequently on mixing

(Figure 1.2), is given by

∆tbloom = ∆(log10Qr) ·
∂(log10 ρ)

∂(log10Qr)
· ∂(log10 κv)

∂(log10 ρ)
· ∂tbloom
∂(log10 κv)

(6.1)

where ∆(log10Qr) is given in table 6.1,
∂(log10 ρ)

∂(log10Qr)
, and

∂(log10 κv)

∂(log10 ρ)
as in table 6.2,

while
∂tbloom

∂(log10 κv)
will be calculated from the numerical experiment outputs. The vari-

ation of phytoplankton metrics (e.g., tbloom) to environmental forcings (e.g., log10 κv)

will be given in the next section (section 6.2) and table 6.3.

6.2 Results

Figure 6.3 – 6.7 present variation of four phytoplankton metrics upon drivers’ range

around the base case (red dot is the PS-1D model run with parameters concluded in

chapter 5). It can be seen that surface PAR is consistently the driver that causes the

highest variation in most metrics (apart from period nutrient limitation in summer),

mixing κv is the second most influential parameter. On other side of the variation

spectrum, temperature seems to have the smallest influence, and deep nutrient produces

almost unnoticeable variation in bloom date.

To obtain sensitivity of phytoplankton metrics to physical drivers (e.g.,
∂tbloom

∂(log10 κv)
),

slopes of tangents to the base case values (at red dots) on each metric and its cor-
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Sensitivity of mixing to
stratification

∂(log10 κv)

∂(log10 δρ)
-0.89 ± 0.37 Garnier

(2020)

Sensitivity of mixing to
wind stress

∂(log10 κv)

∂(log10 τ)
0.67 ± 0.29

Sensitivity of stratification
to riverflow

∂(δρ)

∂Qr

1.87 spring Garnier
(2020)1.14 summer

Table 6.2: Sensitivity of mixing to stratification and wind stress, and of stratification
to riverflow

responding physical driver are calculated (Table 6.3). The signs present direction of

phytoplankton metrics’ changes in relation to variability in physical drivers.

Table 6.4 presents variability in phytoplankton metrics associated to scales of vari-

ability in drivers given in table 6.1 and followed equation 6.1. The mark ** indicates

the most influential process for each metric, while * denotes other potentially impor-

tant (second order of importance) mechanisms. Table 6.4 allows this study to reduce

all possible climate-induced drivers – pathways given in figure 1.2 into a focused di-

agram, figure 6.8, of leading and potentially important mechanisms (marked with **

and * respectively in table 6.4). At a first look, the table 6.4 and figure 6.8 again con-

firm the important role of PAR on interannual variation across most metrics. Further

discussions on the role of drivers on each metric will be provided in the next section.
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Figure 6.3: Responses of bloom date (metric i) to environmental forcings, where the
red dot represents the base case (PS-1D runs with parameters concluded in chapter 5)
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Figure 6.4: Responses of primary production (metric ii) to environmental forcings,
where the red dot represents the base case (PS-1D runs with parameters concluded in
chapter 5)
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Figure 6.5: Responses of phytoplankton concentration at Steelhead outmigration (met-
ric (iii)) to environmental forcings, where the red dot represents the base case (PS-1D
runs with parameters concluded in chapter 5)
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Figure 6.6: Responses of phytoplankton concentration at Chinook outmigration (metric
(iii)) to environmental forcings, where the red dot represents the base case (PS-1D runs
with parameters concluded in chapter 5)
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Figure 6.7: Responses of duration nutrient limitation in summer (metric (iv)) to en-
vironmental forcings, where the red dot represents the base case (PS-1D runs with
parameters concluded in chapter 5)
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6.3 Discussions and Conclusions

6.3.1 Primary production

Annual primary production shows the clearest results, the strongest separation be-

tween major and minor effects. Variation in light limitation overrides variation in

nutrient limitation. Seasonally-averaged incoming PAR appears to be sufficient to

drive around 15% variation in annual primary production (table 6.4). Variation in

background light attenuation, i.e. all effects of water-mass variation and freshwa-

ter influence, excluding self-shading by phytoplankton, is on the same scale (attbg =

0.15 ± 0.03 m−1, table 6.1) and varying attbg on this scale in the PS-1D model also

leads to 15% changes in PPtot, however much of this variability in attbg might average

out on seasonal timescales.

It’s worth noting that the PS-1D model does not include photoacclimation by indi-

vidual cells, or succession of phytoplankton populations as environmental conditions

change, and either mechanism would be expected to level out the response to variations

in light conditions. Thus, the sensitivity of PPtot in the analysis is likely to be a high

estimate.

Strikingly, variations in mixing and circulation have very small effects on PPtot on

interannual timescales. This may be due to changes in mixing have opposite effects in

spring (via light) and summer (via nutrient supply), or because while turbulent mixing

shows intense variation on short time and spatial scales, it is almost constant in seasonal

averages.

6.3.2 Spring bloom timing

Variation in surface PAR (via variation in cloud cover) again appears as a crucial

influence on variation in spring bloom timing in the main basin Puget Sound. Historical

variation in seasonally-averaged E0 is sufficient to explain perhaps a 15 day range of

spring bloom date (±2s.d.), while event scale (10 day) variation in E0 is several times
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larger (table 6.4) and leads to more than 2-month variation in tbloom in PS-1D (±2s.d.).

It is unclear about the actual historical variation in tbloom in the Main Basin, since

monthly DOE sampling could easily miss the bloom entirely and high-time-resolution

ORCA chlorophyll time series are only available for a couple of years. However, the

assessment is close to the longer model-based estimates by Newton and Van Voorhis

(2002) (spring bloom March - May, 1999 - 2001) and also close to observed spring-bloom

variability over 60 years in the southern Strait of Georgia (Collins et al., 2009; Allen

and Wolfe, 2013).

Accordingly, this study finds that wind mixing may have measurable effects on bloom

date but appears to play a minor role compared with E0, whereas river flow-driven

variation in stratification and mixing has the same scale of effect as E0 in seasonal

averages. This ranking is consistent with the finding that in the Main Basin, river flow

variability has stronger effects on mixing in spring than does wind stress.

Deep nutrient appears not to influence bloom date (figure 6.3, and table 6.4), which

is clear evidence to support the fact that spring bloom onset in the Main Basin is

controlled by light limitation (Newton and Van Voorhis, 2002).

6.3.3 Conditions during salmon outmigration

The subsurface light environment is a major determinant of feeding behaviour and

vertical distribution of visual predators (Dupont and Aksnes, 2011; Wilson and Heath,

2019). Here, this study considered variability in phytoplankton standing stock during

the presumed period of juvenile steelhead and chinook outmigration, as an indication of

possible changes in the light environment during a critical life stage for these fish. This

study speculates that the effect of a dense phytoplankton bloom on visual refuge and

predation during this period would come through light scattering, not through light

attenuation. Thus, this study can not directly compare the changes in the underwater

light field that would result from the phytoplankton changes to the changes in light

that drive the phytoplankton dynamics; however, this comparison would have to be
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made by studies that attempted to follow on from the results here. Overall, this study

finds predicted changes in phytoplankton concentration, P steelhead
outmigr and P chinook

outmigr, to be

quite small, on the order of 10%. This might suggest that variation in P steelhead
outmigr and

P chinook
outmigr is not attributable to physical drivers in seasonal as well as event scale. The

variation perhaps is due to biological processes (i.e., phytoplankton grow rapidly when

light and nutrient are sufficient). Thus, if phytoplankton blooms have an effect on

visual predation by and on juvenile salmonid, it is mainly through intense, localised

blooms, not through seasonal-average conditions. Surface PAR and underwater light

are again major drivers of phytoplankton concentration during salmon outmigration.

6.3.4 Nutrient stress in summer

Although the PS-1D model does not resolve phytoplankton succession, the incidence

of days in which nutrients become severely limiting can provide a clue to likely com-

positional changes during summer. The metric ∆tnut counts the days in which surface

NO3 and NH4 is less than 3 mmolm−3 in the PS-1D model a threshold that identifies

an extreme but regularly occurring level of nutrient stress: its base-case value is 8 days

per year.

Historical variation in seasonally-averaged surface PAR and in riverflow effects on

stratification and mixing are both sufficient to drive variation in ∆tnut between ap-

proximately 2 - 3 times its base-case value (Table 6.4). Near-surface temperature and

wind mixing do not appear likely to explain year-to-year variability but may well drive

dramatic long-term trends (towards more frequent or sustained nutrient stress in the

case of temperature, and also toward higher nutrient stress if the prevailing northerly

summer winds increase in strength: table 6.4 and Moore et al. (2015)). Changes in the

exchange flow and background light attenuation could potentially also drive nutrient-

stress changes of the same magnitude as the other mechanisms mentioned, but without

a better quantification of seasonal-average patterns in these processes this study can

not be sure.
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For ∆tnut and to a lesser extent tbloom, new temperature effects beyond the range

of historical variability seem likely to emerge over the next few decades, if they have

not already. It is worth noting that the effect of warming on nutrient stress in general,

as discussed here, is likely to be accompanied by an independent effect of warming on

Alexandrium growth rate and seasonal window of opportunity (Moore et al., 2015).

The numerical experiment was repeated with the PSO 70th iteration parameter set

(see Chapter 5), which has lower phytoplankton maximum growth rate (µ0 = 1.71 d-1).

To this experiment, when the same nutrient limitation threshold (at 3 µMN) was used,

it resulted in no nutrient shortage in summer (or number of days nutrient fall below

the threshold is 0), which is contradict to observations in Puget Sound. Apart from

the difference in nutrient limitation threshold, the numerical experiment on parameter

set with lower growth rate (not shown in details) resulted in the same conclusions as

the one with higher growth rate shown above. This meant that the growth rate did

not change the dynamics of the system represented by chosen metrics. The difference

in nutrient limitation level observed between the two growth rates probably lay in the

simple 1-D model that could not resolve complexity of the Puget Sound fjord estuarine

circulation, and/or chlorophyll might not be a good constraint in parameterisation to

determine growth rate.

Overall, the numerical experiments result in relatively simple pictures of interannual

variation in bloom timing and primary production in the Main Basin Puget Sound

(Figure 6.8). Light intensity (via cloud cover) is the dominant driver of all metrics

(primary production, phytoplankton bloom timing, biomass, and duration nutrient

limitation in summer). Riverflow (via stratification and mixing, and via turbidity and

light attenuation) and vertical advection (via exchange flow) are both of the second

order of importance. The results show more complex pictures for changes in duration

of strong nutrient stress in summer (∆tnut), in which a large number of mechanistic

pathways all seem capable of producing variations in phytoplankton dynamics on the

same scale. This process complexity, in addition to the imcompleteness of available
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observations, may explain why simple correlative approaches to Puget Sound spring

bloom have never resulted in a clear picture (MacCready and Banas, 2016).

The mu0 satisfies Eppley and Bissinger resulted in no nutrient limitation, which is

contradicting with observations. Experiment to run with the lower growth rate, the

mechanism observed the same, but the nutrient limitation increase to 9 otherwise no

nutrient limitation. Probably physical processes, or lacking data to constraint free

parameters. Contradict to decide.
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Summary and Conclusions

7.1 Summary

Exploration of the PS-1D model (Chapter 3 – 5), which was built upon an exist-

ing model used in Puget Sound (LiveOcean with Davis et al. (2014) biological model)

(Chapter 2), shows that changes should be made on light attenuation (caused by phy-

toplankton attP , by water background attbg) and initial growth-light slope (α) to sig-

nificantly improve model performance. Changes in other parameters (e.g., mP , K0, µ0,

rnitr, rremin) depends on trade-off between model performance of the Puget Sound and

other regions as well as the entire Salish Sea. The exploration also shows evidence that

model skill assessment of WSS MSE might overestimate model fitness, and suggests

WSS MAE may be a better model skill assessment. The study came to this conclusion

as follows

Investigation into underwater light field (Chapter 4) revealed unexpected complexity

in the light environment. Statistical regressions between light attenuation and salinity-

represented freshwater strikingly resulted in a weak correlation. However, the weak

correlation does not mean there is no effect of freshwater on light attenuation, but

rather that salinity is not a good proxy to represent freshwater influence on light en-

vironment. This is possible as Puget Sound basin receives freshwater from numerous

rivers, which originate from a real diversity of watershed types and therefore sediment
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load type (Cuo et al., 2009, 2011). The diversity of river inputs, with the most dominant

effects from distant rivers (e.g. Fraser and Skagit) (Banas et al., 2015), complicates op-

tical water properties in Puget Sound, which could not be predicted by salinity only. In

addition, the analysis on underwater light field shows a significant difference between

light attenuation coefficients (caused by phytoplankton, particulates,and CDOM) in

Puget Sound and the outer coast environment. Puget Sound light attenuation coef-

ficients deduced from observations measured by different techniques (Secchi disk and

beam transmissometer) resulted in consistent values, hence these coefficients are con-

sidered to closely reflect Puget Sound light environments. Adjustment of underwater

light field to these coefficients improves PS-1D model goodness-of-fit over 20% at the

top 20m layer for Chla and nutrients (nitrate and ammonium).

The particle swarm optimizer (PSO), one of parameterisation algorithms, was used

to determine undefined parameters of the PS-1D model (Chapter 5). The PSO out-

come proposes numerous parameter sets that significantly improve model goodness-of-

fit (over 46% improvement on index of agreement WSS MAE for Chla and nutrients

at the top 20 meter layer) as well as capturing spring bloom onset and nitrate pattern.

Notably, this study recognized parameter sets with opposite dynamics (high turn-over

rate against low turn-over rate) resulted in similar model goodness of fit. However, the

contrasting dynamics do not result in clear differences in bloom onset and magnitude

– major metrics that this study chooses to examine phytoplankton bloom in Puget

Sound. Thus, these parameter sets would adequately and equally suit the purpose of

this study. However, it would not be the case when other phytoplankton dynamics

are investigated (e.g., trophic levels, carbon export). It is also worth noting that the

optimization process could produce inappropriate results. One possible explanation is

that the optimizer might adjust parameters in such a way that they correct for any

errors related to physical forcing conditions that influence the biological state variables

(Fennel et al., 2001). This study is also aware that PS-1D model is 1-dimensional

with yearly average of mixing and advection profiles, which is clearly a simplification

of the partial mixed fjord of Puget Sound. Further, incompleteness of available obser-
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vations on several processes (e.g. grazing, sinking) might result in the free movement

of parameters in those unconstrained processes.

In general, the numerical exploration on response of phytoplankton growth to envi-

ronmental changes suggests that light limitation outweighs nutrient limitation on most

metrics (except the count of days nutrient limitation in summer, ∆tnut). Cloud cover

(via light intensity E0) and riverflow (via background water light attenuation (attbg),

and mixing (κv) mediated by stratification) are the first and second order climate

factors regulating light limitation. The underlying mechanisms of duration nutrient

limitation in summer (∆tnut), or the window of opportunity for Alexandrium HAB to

develop, however, is more complex. The complexity in ∆tnut variation is due to a large

number of possible climate-induced drivers – pathways that produce impact in similar

scale.

7.2 Conclusions

In summary, this study proposes a parameter set for the biogeochemical model of

Puget Sound (the PS-1D) and key drivers – pathways influencing phytoplankon bloom

dynamics in Puget Sound. This study finds that the complexity of underwater light

field can not be simply explained in term of salinity. Among biological parameters,

initial growth-light slope (α) has the greatest impact on the model performance. Some

parameters (e.g., sinking rate, microzooplankton mortality) are insensitive, which might

be due to incompleteness of available observations (e.g., lack of data on microzooplank-

ton). This study indicates variation in incoming light, i.e. variation in cloud cover

and riverflow (via light attenuation and mixing), as key climate-induced drivers on

phytoplankton dynamics in Puget Sound.

The merits of this study is to quantify the response of phytoplankton bloom, namely

timing and annual primary production, to changes in environment. This study draws a

clear simple picture of drivers (light limitation outweights nutrient limitation) and path-

ways (via cloud cover and riverflow-driven mixing) influencing phytoplankton spring
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bloom date (tbloom) and annual primary production (Ptot). A large number of potential

climate-linked drivers and pathways can be classified as minor effects in comparison

to others (e.g., cloud cover – underwater light field – light limitation) (Figure 6.8).

However, climate-induced drivers and pathways for the count of days of strong nutrient

stress in summer, ∆tnut, is rather complex. There are a large number of mechanistic

pathways which all seem capable of producing variations in ∆tnut on the same scale.

The limitations of this study lie in the simplification of 1-dimensional model with

yearly profile of mixing and advection, which clearly does not fully resolve the com-

plexity of partial mixed fjord properties of Puget Sound. The simplification of hydro-

dynamic properties might also partly be a cause of numerous equally good parameter

sets, and the co-existence of two opposite system dynamics observed in parameterisa-

tion due to parameterisation (e.g., PSO) works in such a way that it corrects errors

occurring in physical processes. Also, standing stock (e.g., Chla biomass) probably is

not an ideal proxy for a system’s production, which resulted in a wide range of value for

maximum growth rate. Although, the PS-1D could capture spring bloom, and nitrate

pattern, it could not produce succession of phytoplankton bloom. This again might

be due to yearly profiles of mixing and advection in the PS-1D model, which result

in overestimation of light and nutrient availability in summer. Or, it might be due to

the fact that a single phytoplankton group described in the PS-1D is not satisfactory

to resolve the bloom dynamics that involve large contribution of nanoplankton to the

phytoplankton community during late August (90%) and early September (92%) (Feely

et al., 2012). This study also suspects that the complexity of the light environment

could lead to different strategies phytoplankton use for adaptation, for which a single

growth – light response function in the PS-1D could not explain.

For future work, this study suggests further investigation into underwater light field.

Although this study found an underwater light model that satisfactorily produces un-

derwater light observations, it could not resolve the complexity of the Puget Sound

underwater light field (e.g., differentiate light attenuation caused by riverflow from the
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background water). This study pointed out that light significantly improves the phy-

toplankton model performance (Chapter 4), and is the largest driver of variability in

primary production timing, magnitude, and nutrient limitation in Puget Sound (Chap-

ter 6). Thus, a detailed study of what watershed characteristics link hydrology to the

marine underwater light environment, and hence to effects on primary production, is

needed to advance understanding of Puget Sound phytoplankton dynamics.
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