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Abstract

Quantifying the influence of heavy impurities upon plasma power balance, while
seizing the opportunities they offer for passive spectroscopy, requires generalised
collisional-radiative (GCR) population modelling to produce high-quality ionisa-
tion balances and cooling curves. ADAS provides a well-established framework of
codes and data for the GCR modelling of light species and has been applied exten-
sively to these scenarios. The extension of GCR modelling to medium and heavy-
weight elements within the ADAS framework imposes a number of updates and
modifications. First, a lift of the ADAS baseline atomic structure and collision
data is proposed using autostructure with the distorted-wave approximation,
configuration sets selected by optimising on radiated power, and a novel, algorith-
mic strategy for optimising the radial scaling parameters. The truncation error
of the configuration sets is bounded between an order of magnitude and 10%,
while three figures of merit prove that the scaling parameter optimisation has
eliminated the 20–30% structure error relative to the Cowan code. Second, fully
relativistic, partially radiation-damped, Dirac R-matrix calculations of the W44+

ion are performed to showcase the challenges of generating fundamental data for
heavy species. The calculations use a configuration interaction and close-coupling
expansion that opens up the 3d-subshell, yielding previously unexplored transi-
tion arrays, [3d104s2–3d94s24f] and [3d104s2–3d94s4p4d], which contribute 50% of
the total radiated line power coefficient (PLT ) near the temperature of peak
abundance. Third, collisional excitation by ion projectiles, not just electrons,
must now be considered. A broad baseline of ion-impact excitation data is ful-
filled by the restoration of a code, a2iratbt, that uses semi-classical, first-order
perturbative equations with a limiting function, to prevent transition probabil-
ity overestimates at intermediate energies, and a radial cutoff, which ensures the

xiv



infinite-energy Born limit is approached at high energies. The majority of the
error in this baseline comes from the neglect of close coupling, accounting for
≈ 20% in triplets and < 5% in doublets. Fourth, and most importantly, the res-
olution of GCR modelling must be moved to intermediate coupling. A prototype
is built upon the LS -resolved analogue, predominantly by statistically splitting
relevant quantities onto the intermediate-coupling manifold. Comparison to the
unresolved fractional abundances in the literature reveal density effects of over
an order of magnitude for the near neutrals, decreasing gradually towards com-
plete agreement for the highly ionised stages. The total radiated power function
and PLT s showed better agreement, generally within 50% for the higher quality
sources. Investigations into the effects of ion-impact excitation and resolution
upon the GCR results are performed, showing that neither can be ignored. Also,
a true set of metastable terms and levels is established. In the final analysis, the
real impact of this new model can only be completely assessed by applying its
results in subsequent plasma transport modelling.

xv



Acknowledgments

Like in the film and acting business, no substantial research work is ever achieved
without a great supporting cast. First and foremost, I would like to thank my
primary supervisor, Dr. Martin O’Mullane. Your technical expertise with all
things ADAS was essential at all points of my PhD work but in particular for the
culminating project on GCR modelling. I confess at times I started to believe
this piece might never reach a suitable stage of presentation, but your consistent
video conversations and emails while I completed the work remotely from Canada
helped me reach the finish line. My gratitude also extends to my secondary
supervisor, Prof. Hugh Summers, who was the mastermind behind the overarching
direction of my thesis work, and whose sage advice helped to right the ship more
than a few times.

On a practical level, the work in this thesis would not have been possible
without the funding provided to me by the National Science and Engineering Re-
search Council (NSERC) of Canada and the Scottish University Physics Alliance
(SUPA). I would also like to acknowledge my examination committee, Dr. Bengt
Eliasson, Dr. Kevin Ronald, and Prof. Roger Hutton, all of whom contributed to
an engaging and productive discussion of my thesis work.

The first eight months of my PhD were spent in Glasgow at the University
of Strathclyde under the supervision of Prof. Nigel Badnell. I am grateful to
you for sharing your vast technical knowledge in the area of electron-atom colli-
sions and supporting me towards my first peer-reviewed journal article. Dr. Luis
Fernández-Menchero was my office mate in the Colville building and provided a
number of helpful theoretical explanations for some of my questions as a bud-
ding atomic physicist. I am also indebted to the High-Energy Laser Plasmas
Group at Strathclyde who effectively adopted me because of the diminuitive size

xvi



of the ADAS group, aleviating the dreary Scottish winter with some much needed
comraderie. In particular, Dr. Robbie Wilson deserves explicit mention for his
friendship and assitance with the administrative task of submitting the first ver-
sion of my thesis.

The remainder of my PhD was spent at the Culham Centre for Fusion Energy
(CCFE), and this opened a new vista for collaborations. Dr. Stuart Henderson
was an astute and patient teacher on many occasions, and the work we collabo-
rated on, which figures prominently in this thesis, was engaging and rewarding.
Dr. Alessandra Giunta made the trek from RAL Space on an number of occasions,
and our side projects were enjoyable and valuable. My office mates created a re-
laxed yet stimulating environment in which to work, and my appreciation goes
out to you all: Dr. Matthew Leyland, Dr. Jamie Beal, Dr. Alisdair Wynn, Nick
Maasen, László Horváth, and Carmen Makepeace. In addition, the community
of PhD students at CCFE was vibrant both academically and socially. Lunch
time conversations, the weekly student meeting, and football sessions were events
that undoubtedly provided me with a fuller PhD experience. There are too many
peers to mention, but a few stand out: Dr. David Thomas, Dr. Sam Murphy-
Sugrue (my fellow fearless leader of the CCFE Student Meetings), Dr. Jack Lovell,
Tom Farley, Alistair McGann, Fred Thomas, Dr. Jonathan Shimwell, and Charlie
Vincent.

Outside of the academic setting, I was fortunate to have a series of incredi-
ble roommates-cum-friends while I lived in Oxford: Anna, George, Claire, Pam,
Bas, Koosje (Lindy Hop buddy!), Arnaud, Rose, Caitlin, Timo, and Claudia.
Dr. Vincent Tobin deserves special mention as one of my closest friends, invalu-
able confidante, and morale supporter. Scott, Lynn, Mike, Brandon, and Mitch
provided valuable support from across the pond, and it was always a highlight
to visit them when I went home. The most welcome late addition to a PhD that
I could have imagined was Katarina. You already well know my time in Oxford
and life is infinitely richer for you, and the emotional support you provided helped
me perservere through that final, extended home stretch. There truly ain’t no
mountain high enough. Thanks for the proofreading too!

To my parents, David and Heather, there is not much to say that I haven’t
said before, and you both already know none of this would have been possible

xvii



without you. Nontheless, I must profess my deepest and sincerest gratitude for all
of the love, support, and guidance you have unreservedly provided to me over the
past five years. It is hard to overstate your importance in words. My brothers,
Chris and Will, played the important role of comic relief and were invaluable
friends while I wrote up from home. Finally, a shout to my aunt, Suzanne, who
was a clinch proofreader when I needed it most.

xviii



Previously Published Work

The content of Section 2.3.1 was previously published in Henderson S S et al.
2017 Plasma Phys. Control. Fusion 59(5) 055010. The author of this thesis
contributed to the discussion at group meetings, where that work was sequentially
developed and guided. In particular, the author assisted in the understanding of
how electron-exchange, spin-changing collision strengths affect the PLT at closed
shells and why cowan PWB calculations in ic can alleviate this deficit at higher
effective ion charges. Furthermore, the author provided ion-impact excitation
rate coefficients used to test the sensitivity of the configuration selection to these
quantities, particularly at close shells.

The content of Sections 2.3.2 and 2.4 will soon be submitted to an appropriate
journal, likely Atomic Data and Nuclear Data Tables (ADNDT), to house the
radial scaling parameters that have been produced.

The content of Chapter 3 was previously published in Bluteau M et al. 2015
J. Phys. B. 48(195701) 18. The author of this thesis was the primary author
of that work. As such, this author executed the codes to perform the structure
and collision calculations, analysed the data, created the plots, and wrote the
manuscript under the guidance of the other two contributors to that paper.

xix



To Anatole, Salvador, and Fergus, canines of days past

xx



Chapter 1

Introduction

In recent years, the subject of heavier, high-Z0 ions entering laboratory fusion
plasmas has garnered increased attention from both plasma and atomic physics
communities. This is primarily because a main obstacle that the International
Thermonuclear Experimental Reactor (ITER) and future magnetic confinement
fusion (MCF) devices must overcome is balancing the resilience of their plasma-
facing components (PFCs) with the impact that species from the PFC materials
will have upon the fusion plasma. At the moment, the high heat loads predicted
for ITER favour more resilient PFC materials, which tend to be heavy metals.
Tungsten (Z0 = 74) is currently a top candidate, owing to its advantageous
thermo-mechanical properties: a high melting point of 3 000 ◦C, a large heat-
load capacity, a low sputtering rate [1], and a low rate of tritium co-deposition
compared to carbon-based PFCs [2]. Indeed, ITER will now only use a full-
tungsten divertor [3–5], a decision based on favourable trials of tungsten PFCs
at the Joint European Torus (JET) [6, 7] and the Axially Symmetric Divertor
Experiment Upgrade (ASDEX-U) [8, 9]. Molybdenum is another high-Z0 species
(Z0 = 42) that has been used as a PFC material in tokamaks like Alcator C-
Mod and NSTX-U, although it has a higher sputtering rate and so is a less likely
candidate for future devices [10].

Thus, high-Z0 elements like tungsten will invariably enter the fusion plasma
by physical sputtering or evaporation [11], and the consequences can be mixed.
With its large atomic number, tungsten has the potential to achieve high residual
charge states—z = Z0−N where N is the number of electrons—that can persist

1
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into the core of tokamak plasmas. Because of the (z+1)4 scaling of dipole, ∆n > 0

radiative rates, tungsten ions have an increased propensity to undergo radiative
transitions compared to low-Z0 species in the same isoelectronic sequence. In
other words, high-Z0 impurity ions are efficient at radiating their energy and can
greatly contribute to radiative power loss from the plasma: the coronal model
yields a Z0

3 scaling of the core power loss function [12]. The spatial region of this
radiative power loss is decisive because a power imbalance in the core can readily
lead to the loss of energy confinement and the quenching of all-important fusion
reactions. Rough estimates [10] place the maximum tolerable concentration of
tungsten in the core at cmax

W = 5 × 10−5. On the other hand, radiation power
loss near the divertor is an essential process in neutralising the plasma of the
divertor scrape-off layer (SOL), causing the main plasma to become effectively
detached from the divertor targets and thus reducing heat loads on and impurity
particle fluxes from the strike points, processes controlled by the degree of electron
conduction and convection [13, 14]. The seeding of impurity species, such as argon
and krypton, shows promising signs towards achieving these ends [12, 13], raising
the prospect of medium-weight species being present in the plasma. A precise
definition of “medium-weight” is provided in Section 1.1.

Significant modelling efforts are necessary to quantify and understand the
impact of radiation losses due to these medium and heavy-weight species. More-
over, heavier species offer a rich landscape of possibilities for passive spectroscopy
and plasma diagnostics. Both areas require some form of atomic population
modelling, and Atomic Data Analysis Structure (ADAS) [15] is the preeminent
framework used at fusion laboratories internationally. Within ADAS and more
generally, the state-of-the-art approach is generalised collisional-radiative (GCR)
modelling, which correctly treats the metastables of an atomic system as the
dominant, time-varying populations. The total of the metastable populations
for a particular atomic species approximates that atomic species’ density, and
these populations evolve on similar time scales to the plasma parameters. GCR
modelling is applicable to finite-density, optically-thin plasmas found in both fu-
sion and astrophysical conditions. The theoretical and practical basis for this
modelling has already been laid out for lighter, low-Z0 species [16], so this thesis
instead focuses upon the modifications needed for extending GCR modelling to
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medium and heavy species.

1.1 Resolution and Coupling in GCR Modelling

The most fundamental modification of GCR modelling relates to the resolution
of the atomic states being modelled. For lighter species, it is known that the
atomic populations are well described at LS term resolution, and this is what
defines the classification of light elements used herein. Fine-structure splitting
of the levels within a term is small, so collisions are able to establish local ther-
modynamic equilibrium (LTE) amongst these levels. Thus, even if J-resolved
levels are required by spectroscopy, the population of the emitting level in a light
species can be readily derived from its subsuming term using statistical balance.
These assumptions hold for 1 < Z0 / 18. However, as Z0 increases, relativistic
effects—viz. the spin-orbit interaction—cause the fine-structure splitting of the
J-levels in a term to increase, making it increasingly less likely that LTE will
be established amongst them. As a result, the level populations deviate from
statistical balance and must be explicitly tracked in the population model. This
separates light from medium elements, and as will be demonstrated in Chapter 5,
this dividing line occurs at approximately argon.

A short aside on coupling schemes is needed to distinguish between medium
and heavy-weight elements. From the perspective of atomic structure, J-resolved
levels are not unique to a single angular momentum coupling scheme. Whether an
LSJ-coupled basis set with the Breit-Pauli Hamiltonian is used or a jj-coupled
basis set with the Dirac Hamiltonian, both will produce J levels. However, the
resultant eigenstates will never be composed of a single basis state, and the al-
lowance for eigenstates to be admixtures (i.e. complex linear combinations) of
basis states is known as intermediate coupling (ic). Note that ic it is not a
coupling scheme in the usual sense because it is not dictating how orbital mo-
mentum vector quantities should be combined. ic is the only physically accurate
way to represent fine-structure levels, and so J resolution and ic are synonymous
in a sense. Terms like “ic resolution” and “ic-resolved” are used as convenient
misnomers throughout this thesis to indicate J resolution obtained through the
ic scheme. Both medium and heavy-weight elements require ic, and although
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classifications are somewhat arbitrary, heavy is used in this thesis to describe ele-
ments for which a fully-relativistic treatment involving jj-coupled basis states is
required. An LSJ basis is composed from non-relativistic theory and, even with
relativistic corrections, it will eventually become insufficient. The onset of heavy
elements is around the lanthanides, so Z0 ' 70 is specified.

In the context of GCR modelling, a move to ic resolution involves much more
than simply representing the metastable set, which includes the ground state in
ADAS parlance, and the ordinary levels of the daughter ion as J levels.1 For con-
sistency, the parent metastables, Jν , must share this resolution as they are the
initial states for recombination and final states for ionisation. This has implica-
tions for the other resolutions used in the population model, shown in figure 1.1.
Lower resolutions are used to include the contributions from more highly-excited
states, but these too must be built upon the ic-resolved parent: (Jν)nl for con-
figuration average (ca) and (Jν)n for Rydberg n-shell (ry). Consequently, the
low-resolution population code in ADAS needs to be reworked because it operates
with (LνSν)nS states (bundle-nS). This task—denoted as Part 6 in figure 1.2—is
not addressed in this thesis, but some more detailed comments for moving for-
ward are presented in Section 6.1. Once the change in modelling resolution is
achieved, there is the practical question of what constitutes the proper set of ic-
resolved metastables upon which the model is built. Can this set of metastables
be built from those at other resolutions—i.e. LS or ca metastable sets? Will the
set of metastables be constant along an isoelectronic sequence? Some answers
are provided in Chapter 5.

1.2 Modifications for Medium-Weight GCR

Many updates and modifications will be required to transition from the frame-
work of light-weight GCR to that suitable for medium-weight elements and be-
yond. Figure 1.2 presents the primary conceptual blocks that are required for
a complete implementation of medium and heavy-weight GCR modelling within
ADAS, evincing the vast scale of a project that is clearly outside the remit of a

1Refer to Appendix C for the definitions of daughter and parent ions if this terminology is
unfamiliar.
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Figure 1.1: Partition of the levels of the atom into zones of collisionality and angular resolution.
The diagram indicates bundled levels as narrow rectangles. Appropriate truncation of high
levels at higher resolutions must be done to keep population calculations within computational
bounds. With Jν denoting the ic parent state of the z + 1 ion, configuration average (ca)
indicates states of the form (Jν)nl, and Rydberg n-shell (ry) indicates (Jν)n.

single thesis. Instead, the black typeface components will be treated in the con-
text of a prototype to achieve some important steps towards the final objective.

Parts 1–5 in figure 1.2 express the essential need for fundamental atomic data
in GCR modelling. Recombination and ionisation (Parts 4 and 5) are briefly
treated in Chapter 5, but they are not the focus of this thesis. Also, Part 1 is
not essential for a functioning GCR model, and it is left as a future task (see
Section 6.1). Rather, atomic structure and collision data for medium and heavy-
weight elements is prioritised. Part 2 handles electron-impact excitation (EIE)
collision data for the low-lying, highly-resolved level set, of which there are two
types. First, with the number of ionisation stages steadily increasing for each
heavier element, a broad coverage of data is required, necessitating a baseline
strategy that properly addresses the unique challenges associated with medium
and heavy-weight species, namely relativistic effects and complex configuration
interaction (CI) expansions. Chapter 2 details a lift to the present ADAS-EU
baseline through novel techniques for configuration selection based on the opti-
misation of power coefficients and for atomic structure improvement via a radial
scaling parameter (λnl) optimisation strategy based on freezing these parameters
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for inner core closed shells. Both of these features are absent or incomplete in all
previous baselines, but like the ADAS-EU baseline dataset, this lifted baseline
uses autostructure (autos) with the distorted wave (DW) approximation,
a strategy that adequately handles relativistic effects to fairly high Z0. Sec-
ond, high-quality EIE collision data is to be preferred wherever possible, but as
one moves to truly heavy elements, relativistic effects and CI selection become
even more important and must be treated more carefully so these sophisticated
and resource-intensive calculations remain tractable. Chapter 3 presents fully-
relativistic, partially radiation damped, Dirac R-matrix calculations of the W44+

ion as an example of techniques and considerations required to treat these com-
plex systems.

Part 3 in figure 1.2 raises another corollary of the move to ic-resolved pop-
ulation modelling: the need to include ion-impact excitation (IIE) collisions. It
is well-known that IIE plays a central role in establishing the collisional LTE
within LS terms but, because populations can be yielded by statistical balance
assumptions, there is no need to include IIE collisions in the model. However,
with the disruption of statistical balance and tracking of ic levels described above
for medium and heavy-weight elements, these collisions must now be explicitly
included. Chapter 4 commences the exploration of the parameter space where
IIE is relevant from the perspective of atomic physics. In particular, it is the
fine-structure, electric-quadrupole (E2) transitions within metastable terms that
are most pertinent for population modelling. The chapter goes on to establish
the theoretical and practical foundation for a baseline quality code, a2iratbt,
for generating IIE data. It uses a semi-classical, first-order perturbative (SC-
1) method with high energy and transition probability cutoffs and is shown to
compare well with other methods from the literature. The parameter space for
IIE is refined in Chapter 5 through population modelling, and the prospect of
different ion projectiles is raised. For experimental fusion reactors, a variety of
fuel ions and low-Z0 impurities are candidates for inducing IIE. The bare nuclei
of hydrogen (H), deuterium (D), tritium (T), and helium (He) are the primary
fuel and ash ions present in tokamak plasmas, called protons, deuterons, tritons,
and α-particles respectively. The relevant ions of impurity species will depend
on the device, but beryllium, carbon, nitrogen, and neon are typically present at
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Figure 1.2: Schematic of principal code blocks for medium and heavy-weight GCR. The grey
font color denotes segments that will not be treated in this thesis, and vice versa for the black
font. Part 1 addresses the need for experimentally measured atomic energy levels wherever
possible, something more relevant for spectroscopic purposes. Parts 2–5 address the primary
atomic processes that connect the levels of the population model in finite-density, optically thin
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two required coupling resolutions.
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significant concentrations. In astrophysics, only proton projectiles are relevant.
Above all, the main thrust of this thesis is the elaboration of a prototype for

ic-resolved GCR that pulls together all of the pieces from figure 1.2 in an ap-
proximate manner and allows Part 7 to be implemented. The parts of figure 1.2
that have not been directly treated in this thesis (grey font) can either be safely
neglected with this prototype (Part 1, subtopics of Parts 4 and 5) or have been
been incorporated in an approximate manner (Part 6). This, in turn, facilitates
a quick and accurate validation of the novel components involved in modelling
medium-weight elements, particularly IIE and resolution effects, while avoiding
the potential pitfalls of a complete implementation. Chapter 5 details this pro-
totyping strategy and applies it to the case study of argon, producing the first
ic-resolved ionisation balance to date.



Chapter 2

Baseline Atomic Data for

Metastable and Low-lying Levels

2.1 Introduction and Motivation

The elementary unit of GCR modelling is the low-lying, highly resolved states
of an atom and any processes connecting them, for it is the radiative emission
from these levels that will yield the spectroscopically observed lines and also
the majority contribution to the radiated power loss. Moreover, the metastable
levels1, which possess the majority populations of each atomic species and so
dominate the ionisation balance calculations, will almost always be encapsulated
in this set for the plasma conditions relevant to this thesis. The data needed to
represent this elementary unit of atomic states and processes are eigenenergies,
Einstein A coefficients (Aij or A-values), and temperature-dependent effective
collision strengths (Υij), which are internally converted to rate coefficients (qi→j)
in ADAS. These quantities are stored by the adf04 file format. Necessarily,
these data must be provided in the appropriate resolution to suit the physical
scenario being modelled, a topic elaborated upon in Chapter 5. It has already
been noted that moving to medium and heavy-weight species, Z0 > 18, will
require ic resolution in the population model itself, as opposed to the current
framework that only accommodates LS . From a cursory perspective, this is not
in itself difficult to achieve for this particular class of levels. Indeed, it has been

1Recall that metastables include the ground states for ADAS purposes.
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known for many years that ic is required for spectroscopic comparisons even for
some light elements, and so a large portion of existing data and codes satisfy this
requirement to a partial degree. Rather, it is the objective of complete coverage
that proves troublesome: ADAS seeks to provide the capability of modelling
arbitrary ions or groups of ions. This entails a vast breadth of data given the
number of elements in the periodic table and all of their respective ionization
stages.

Ideally, the source of all required quantities would be experimental observa-
tion, and the largest repository is the National Institute of Standards and Tech-
nology (NIST) Atomic Spectra Database.2 Although an invaluable and quite
extensive resource, NIST falls well short of universal coverage, and it does not
supply collisional excitation rates. Consequently, atomic data must be sourced
from theoretical calculations to fill the gaps. Great strides have been made in
the field of computational atomic physics, and the accuracy of more sophisticated
methods can approach that of observation. For example, the atomic structures
produced by the multiconfigurational Hartree-Fock (MCHF) and multiconfigura-
tional Dirac-Fock (MCDF) methods, to which the General-purpose Relativistic
Atomic Structure Package (grasp0) belongs, can achieve incredible fidelity of
energy levels and A-value to experiment, in many cases to less than a few percent
error. Similarly for inelastic scattering, the R-matrix method and convergent
close-coupling (CCC) method are the state of the art with similar levels of ac-
curacy possible. But again, this option suffers from some ultimately fatal flaws.
First, the codes that implement these methods generally require a high degree
of expertise and human time investment to execute, which is demonstrated in
Chapter 3. Second, the operational parameter space of the codes is not univer-
sal: convergence issues and catastrophic failure of certain approximations will
inevitably crop up. Thirdly, even once the codes are running, the CPU time and
physical memory required to complete the calculations can be enormous, on the
order of supercomputers. On-the-fly execution is therefore out of the question,
and broad data coverage is in the remit of international collaborations. Such
organisations have existed, see the Iron Project [17], the Opacity Project [18, 19],
and ADAS-EU [20], but even so the literature of high quality results is insufficient

2https://www.nist.gov/pml/atomic-spectra-database

https://www.nist.gov/pml/atomic-spectra-database
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for the current demands since there is no guarantee that results will exist for any
particular ion.

This scattered and incomplete state of affairs demands a broad baseline of
theoretical atomic data, albeit of lesser quality than the sources just described.
The highest accuracy data are not always required depending upon the applica-
tion. Spectroscopic comparisons and predictions will always require the highest
quality data available, and the sources above should be drawn upon when pos-
sible, but radiated power studies, like [21] that aims to produce cooling factors
for modelling ITER and the DEMOnstration Power Station (DEMO), are not
so demanding. The accuracy of individual line wavelengths is not so influential,
but the primary dipole transitions must still be within an acceptable tolerance.
This is a pervasive theme in ADAS: suiting various characteristics of the data to
the physical requirements of the situation, whether these characteristics be the
coupling resolution or actual accuracy of energies and transition quantities. Also,
if the baseline has been generated using a consistent method, then this internal
consistency permits confidence in any interpolation or scaling of this data, making
it more flexible and extensible than a patchwork of experimental and theoretical
data.

2.1.1 Baseline Criteria

Having justified the utility of a baseline set of atomic data, the criteria for a good
baseline must be specified. First, the primary criticism of other data sources up
to this point has been their lack of coverage and consistency, so a baseline should
provide for a broad range of ions and use a uniform method throughout. Second,
the codes used to generate the baseline should be robust and user-friendly so that
non-experts can produce their own data if it has not been done in advance. Third
and related to the latter, the total time to run the baseline code for individual
ions, which includes pre-processing and CPU time, must be on the order of a day
so as to be both convenient for on-the-fly production and manageable for batch
production. For modern codes, the paramount input for achieving accuracy is
the selection of an appropriate set of electron configurations; however, this also
tends to be the most time-consuming user task, so a strategy to automate or
assist configuration selection is essential. Fourth, the baseline should be modular
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in nature such that higher quality atomic data from aforementioned sources can
be seamlessly substituted when it is available. This is more so a restriction upon
the ADAS framework than the baseline data itself, but it affirms that the final
outputs must conform to the adf04 file format. Fifth and last, it is compulsory
that the baseline exceed some threshold level of quality so that comparison with
experiment is tenable, and this quality should be superior to any existing base-
line. Quantifying the errors and thus the quality of atomic data is a notoriously
challenging task, rife with ambiguities. ADAS contains some preliminary efforts
towards categorising and standardising the consideration of errors in adf04 data,
but these have not been broadly implemented. The rudimentary convention in
the atomic physics community is to compare the relative differences of energy
levels, A-values, (effective) collision strengths between data sets. Therefore, the
average relative differences achieved by comparing the present baseline to the
more sparse high-quality data (experimental or theoretical) should be smaller
than the average achieved by previous baselines, within ADAS or otherwise.

There are also specific baseline criteria due to the current goal of progressing
towards ic-resolved GCR. Tautologically, the adf04 files produced need to be in ic
resolution and, as previously noted, this does not impose much of a restriction on
modern structure and excitation codes. Additionally, moving to heavier species
with large Z0 means that relativistic effects must be considered in all aspects
of the atomic problem. And last, because increasingly complex atoms will be
encountered with increasing Z0, the issue of configuration selection becomes even
more troublesome and therefore essential to solve. A further consequence of this
complexity is that the issue of metastable levels and terms will become even
more prominent. The issue of IIE amongst the fine-structure levels of metastable
terms is discussed at length in Chapter 4, but attention is warranted to the spin-
changing transitions that typically connect metastable terms and levels. Although
negligible for lower Z0 species, these collision strengths can become substantial in
relativistic systems—refer to the Collision Strength Approximations Paragraph
of section 2.3.1.2 for an example of how this can influence the total radiated line
power coefficient (PLT ).
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2.1.2 Previous and Proposed Baselines

Previous baseline strategies already exist within ADAS. The theses of White-
ford [22] and Foster [23] describe the use of the Cowan Code, ADAS801 (cowan)
to generate baseline structure and collisional excitation data. The primary weak-
nesses of these baselines are that development of cowan is effectively frozen
and the plane-wave Born (PWB) method is used for calculating EIE quantities.
PWB calculations are known to be inaccurate at low incident electron energies,
and they do not produce spin-changing results because electron exchange is ne-
glected. So, these baselines are of low quality, but the work of Foster introduces
the important feature of configuration selection through the optimisation of pro-
motion rules. This offers marked progress towards the complete automation of
configuration selection, and an improved implementation is fully described in the
coming section 2.3.1.

These baselines have been supplanted by the extensive work performed within
the ADAS-EU Project [20]. In the third scientific theme report [24], a lifting of the
baseline from cowan with the PWB approximation to autos with the recently
added DW approximation [25] is described. The DW method for producing EIE
data improves upon PWB through the use of partial wave resolution, the ability
to enforce unitarity, and the provision of spin-changing transitions. Furthermore,
autos is still actively developed and, like cowan, has many existing applications
within ADAS, notably for state-selective dielectronic recombination data stored
in the adf09 format. However, there is a subtle shortcoming of this lift in that no
optimisation of the atomic structure was performed. An example of this deficit
is exposed in section 2.3.1, and a proposed solution via the optimisation of the
λnl is prescribed in section 2.3.2.

So to recapitulate, a further universal lift of the ADAS adf04 baseline is pro-
posed along the following lines. The autos code with its implementation of
the DW approximation will be exploited to generate the required atomic struc-
ture and collision data. Some further information about the code along with
comparison to the previous baseline code, cowan, is provided in section 2.2.1.
The main improvements effected by this baseline are described in section 2.3.
Subsection 2.3.1 explains the enhanced and automated method of configuration
selection based on the optimisation of promotion rules, and Subsection 2.3.2 spec-
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ifies a novel strategy for a generic atomic structure optimisation through variation
of the λnl in the TFDA potential (VTFDA). A comprehensive evaluation of the
λnl optimisation strategy is performed in section 2.4 using three newly defined
figures of merit. In the end, it will be revealed that this proposed baseline fulfills
all of the criteria outlined in section 2.1.1.

2.2 Baseline Codes

Although the use of autos for the proposed baseline has been firmly justified
and motivated, it is important to place the code in a broader context of other
codes so that one can develop an awareness of the expected quality of the gen-
erated data. It was noted previously that the quantities involved in the GCR
modelling of the low-lying levels derive from both atomic structure and collision
calculations, each of which autos can perform. However, the atomic structure
calculation assumes a position of elevated significance because the collision calcu-
lation inherently depends upon it. The calculation of atomic structure underpins
the entire description of radiating species within a plasma, and so it must be
addressed first.

Table 2.1 provides a coarse, overarching comparison of some common struc-
ture codes but is by no means exhaustive. The codes presented can loosely be
divided into two categories: those that use a nonrelativistic Hamiltonian with
Breit-Pauli corrections (autos and cowan) and those that use a fully relativis-
tic Dirac Hamiltonian—Hebrew University Lawerence Livermore Atomic Code
(hullac), Flexible Atomic Code (fac), and grasp0. This distinction becomes
relevant at the extremes of the periodic table where heavy-ion cores are truly
relativistic and jj-coupling is nearly perfect or, oppositely, where the Coulomb
term dominates in light elements and LS -coupling is optimal. Even so, most
species of interest sit inside these two endpoints, where the eigenstates have an
intermediate behaviour matching neither a jj nor LS basis, hence intermediate
coupling (ic). In this regime, it is the effects of CI that predominate, and so the
configuration expansion included in the codes must be selected carefully. Accom-
modating multiple configurations is a minimum condition for any structure code,
and autos is no exception. Moreover, it is observed from table 2.1 that nearly
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all codes can achieve a similar level of precision if the configuration expansion
has been crafted to properly account for CI. So again, the primacy of configura-
tion selection has been raised, further motivating the semi-automated selection
procedure described in section 2.3.1.

Table 2.1: A comparative review of the popular atomic structure codes relevant to the
present work, sourced from [20]. %Ei and %Aj→i are the relative errors for energy eigenval-
ues and A-values, respectively.

Code Method Application Precision
(%Ei, %Aj→i)

Comments

autos Multi-config, Breit-
Pauli, Thomas-
Fermi and Slater-
type parametric
potential

General + Auger
rates + Born inte-
grals

(∼ 2, ∼ 5), depen-
dent on CI scope

Recently extended to multiply-
occupied f-shells. Extended expe-
rience of use up to M-shell. Limited
coupling scheme information. Spe-
cially tuned for dielectronic recombi-
nation and radiative recombination.
Can separate term and level resolu-
tion calculations. A preferred code for
ADAS.

cowan Multi-config, Breit-
Pauli, Hartree-
Fock potential

General + Auger
rates + Born inte-
grals

(∼ 2, ∼ 5), depen-
dent on CI scope
and tuning

Handles multiply-occupied f-states.
Extended experience in many complex
systems. Flexible coupling scheme
information. Easy access to configu-
ration average information. Executes
level resolution calculation and aver-
ages to terms. A preferred code for
ADAS

hullac Multi-
configuration,
Dirac Hamiltonian;
jj-coupled basis,
Breit and QED

General, but ex-
tensive use with
EBIT measure-
ments

(∼ 2, ∼ 5), depen-
dent on CI scope

Proprietary code package; structure
code part matched to DW collision
code and CR modelling.

fac Same as for hullac General, but
mostly astro-
physics

(∼ 2, ∼ 5), depen-
dent on CI scope
and tuning

Public domain variant of hullac. Use
and experience increasing.

grasp0 Multi-config,
Dirac/Breit Hamil-
tonian; MCDF or
parametric po-
tential; various
couplings and
optimizations

General (< 1, < 3), with
extensive core/va-
lence CI

High grade code, but MCDF not al-
ways able to converge on potential.
Tuned to darc fully relativistic ver-
sion of R-matrix method collision
code. A preferred code for ADAS
level 2 in relativistic region.

Atomic structure codes are also discriminated by how the radial factors in the
basis set are determined. Forming these factors proves difficult because of the
mutual electron repulsion contribution to the potential energy, 1/(|ri−rj|), in the
radial equations and the consideration of electron exchange therein. autos uses
the TFDA potential (VTFDA) with optimisation of radial scaling parameters (λnl),
while most other codes, including cowan, use some variant of the Hartree-Fock
(HF) method derived from the variational principle. A more detailed comparison
of these methods will be given in section 2.2.1, but suffice it to say here that VTFDA
is an inferior approximation, and improving its default performance will be the
objective of the λnl optimisation strategy in section 2.3.2. Nevertheless, this
does not prevent autos achieving precisions similar to other codes if sufficient
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manual manipulation is performed. It should be noted that all structure codes will
struggle to represent neutral and near-neutral species because the mutual electron
repulsions are of a similar magnitude to the attractive potential that a single
electron will experience. Numerically, this causes issues with many techniques.

Extensive experience has established that atomic structures produced by au-

tos can serve as a sound basis for subsequent collision calculations. Again, it
is wise to situate the capabilities of autos in the proper context of available
collision codes, which is the purpose of table 2.2. The main distinguishing factor
between the codes is whether they use a perturbative or close-coupling approach.
The plane-wave Born (PWB) and distorted wave (DW) approaches are pertur-
bative and so generally less precise but broader in scope. A deeper comparison
of these perturbative methods will be given in the next section. In contrast,
the CCC and time-dependent, close-coupling (TDCC) methods must solve the
Schrödinger equation directly, using interaction potentials that couple interme-
diates states included in the close-coupling (CC) expansion. They can achieve
impressive precision but are limited in their application to simple systems with
few electrons. The R-matrix methods, one of which is used in Chapter 3, stand
out for their ability to handle much larger atomic systems while still retaining
the essential close-coupling treatment of resonances and achieving manageable
computational loads. Of course, this comes at the slight cost of some precision
compared to the fully close-coupled approaches, but the benefit of obtaining data
for a much broader category of atomic systems far outweighs this. It is for these
reasons that R-matrix data forms the majority of the high quality inputs for
ADAS. However, these close-coupled variants require extensive user knowledge
and attention, meaning they have not reached a level of automation appropriate
for baseline mass production. It is of note that autos provides the basis for a
number of different collision methods, including R-matrix but itself only has the
ability to perform PWB or DW type calculations.

In summation, autos is a flexible and versatile code that can achieve modest
accuracy in both structure and collision calculations relative to its contempo-
raries. It is therefore an ideal candidate to provide baseline data; however, the
quality of this baseline relies upon the improvements described in section 2.3.
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Table 2.2: A comparative review of the popular atomic collision codes relevant to the
present work, sourced from [20]. %Ωij is the estimated relative error of the collision strength
(refer to Appendix A) produced by the given code or method. Within ADAS, “level 1” is used
to refer to atomic data of baseline quality, and “level 2” for high-quality data.

Code Method Application Precision
(%Ωij%Ωij%Ωij)

Comments

autos /
cowan

Born with modified
threshold region

Low–moderately high z (< 40) Very general, stable and enabled by
all structure codes with a free elec-
tron wave-function generator. No spin
change. LS and ic coupling. Used for
previous ADAS baselines.

CCC(-R) convergent close-
coupling (CCC); vari-
ous codes

Low–moderately high
z; 1–2 valence electrons

(< 5) Highest precision, inefficient for very
many energies and delimiting reso-
nances. Limited ion scope. Currently
being extended to Dirac relativistic.

darc /
DRMPS

Relativistic R-matrix
method close-coupling
/ with pseudo-states

Low–high z (∼ 5− 10) Very high precision, tuned to GRASP
structure and shared algebra. Reso-
nances included. Recent pseudo-state
extension adds heavy element near
neutral scope and ionization capabil-
ity. ic. Suitable for ADAS level 2 at
low and high z.

hullac / fac Relativistic DW Medium–high z (∼ 20) ic. Includes spin change, but no res-
onances. Efficient algebra, and now
used universally. Matched to hullac
structure part.

RM /
RMPS

R-matrix method
close-coupling / with
pseudo-states

Low–medium z (∼ 5− 10) LS-coupling. High precision, tuned to
autos and shared algebra. Resonances
included. Pseudo-states allows ioniza-
tion. Implemented for isoelectronic
sequences with scripts. Parallelized
versions. Suitable for ADAS level 1
and 2, medium-scale mass production.

RM-ICFT /
RM-II

R-matrix method close-
coupling with ic frame
transformations / with
ic inner region

Medium–moderately
high z

(∼ 5− 10) RM-ICFT as for RM, but extends
to higher z ions in ic. Suitable for
ADAS level 1 and 2 medium-scale
mass production. RM-II gives im-
proved higher z treatment. Suitable
for ADAS level 2 and benchmarking
of RM-ICFT.

RM-RD /
darc-RD

R-matrix method close-
coupling with radiation
damping

Medium–high z (∼ 5− 10) As for RM, but extends to high z ions
with significant radiative or Auger
branching of resonances. Suitable for
ADAS level 1 and 2.

TDCC Time-dependent, close-
coupling

Low z; 1–2 valence
electrons

(< 5) Highest precision. Benchmark for
low-z ionization. Used for ADAS level
2.

UCL-DW /
JAJOM

LS DW with ic trans-
formation

Medium–moderately
high z

(∼ 20) Matched to autos. Extension to ic
via algebraic transformation. Includes
spin change. No resonances. Can
isolate calculation of cross sections
starting with selected metastables.
Falling out of use because it is ineffi-
cient in comparison with RM.
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2.2.1 The Cowan Code versus autostructure

A more detailed comparison between cowan and autos is merited because these
are the baseline codes of choice for ADAS. Later analysis will require a deep
understanding of two. Table 2.3 outlines some important aspects of any structure
calculation and provides the relevant details for each code, but for a complete
reference see [25–29] for autos and [30, 31] for cowan.

The basis set is foundational to any structure or collision code since it de-
termines the matrix elements of the Hamiltonian to be diagonalised and the
coupling resolution of the final eigenstates. In the ic scheme relevant to autos

and cowan, specifying the basis set can effectively be partitioned into two sepa-
rate problems—angular and radial—since spin is trivial. The angular portion is
a closed algebraic problem with exact solutions, and so differences in techniques
matter little in this respect: the correct solution should be obtained regardless
of how it was arrived at. So, whether it is the approach of autos with Slater
states and non-hierarchical vector coupling coefficient or that of cowan with LS-
coupled states and hierarchical Racah algebra, the result of the angular problem
will be the same. Conversely, the radial portion requires approximate numeri-
cal solutions since the radial equations are not exactly soluble, so differences in
techniques emerge here.

As noted in table 2.3 and [26], autos obtains its radial factors by solving a
homogeneous radial equation involving the TFDA potential (VTFDA):{

d2

dr2
− l(l + 1)

r2
+ 2VTFDA(r) + εnl

}
Pnl(r) = 0 (2.1)

subject to the boundary and normalization conditions,

Pnl(0) = 0 (2.2)

lim
r→∞

Pnl(r) = 0 (2.3)∫ ∞
0

Pnl(r)Pn′l′ = δnn′δll′ . (2.4)

VTFDA is a central potential based on the assumption that the negative charge
density of the electrons is distributed continuously and spherically symmetrically
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within r0, the boundary of the ion. The underlying details for the implementation
used in autos are given by Gombás [32]. This central potential approximately
accounts for electron repulsion and exchange, and is determined from the combi-
nation of an expression for the mean potential produced by the N electrons and
a factor derived from Poisson’s equation and the charge density, ϕ(x):

VTFDA(r) =
Z0

r
ϕ(x) +

Z0 −N + 1

r0

− 5κ2
a

12κk
, (2.5)

where κa and κk are measures for the exchange and kinetic energy of the electron
gas respectively, (−N + 1)/r0 is the potential due the other N − 1 electrons at
r0, and ϕ(x) is given by the differential equation,

d2ϕ(x)

dx2
=

1√
x
ϕ(x)3/2, (2.6)

with x = r/µ and µ = 0.8853 · Z0
−1/3 (N/(N − 1))2/3. Its performance can be

improved through the introduction of radial scaling parameters (λnl):

x =
r

λnlµ
. (2.7)

These λnl can then be varied to minimize a weighted sum of LS term energies, thus
enacting a form of the variational principle. Term energies are used instead of level
energies for expediency, and it is unlikely that working in this coarser resolution
will invalidate the accuracy of the final levels relative to baseline requirements.
autos does have the capability of determining the λnl by instead minimising
term or level energy differences with measured or high-quality theoretical results,
but this is impractical for mass production because, as stated before, these results
are sparse.

The variation of the λnl is necessary because VTFDA only approximates the
effects of electron correlation, and so these free parameters allow for any miss-
ing physics to be accounted. However, varying the scaling parameters for all
orbitals at once frequently yields unphysical and poor results, especially for com-
plex atoms. Section 2.3.2 presents a novel solution to this problem by algorith-
mically determining a set of optimised λnl for arbitrary electron configurations.
The default setting for running autos within ADAS is to set all of the relevant
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λnl to unity. From the perspective of a single orbital, a λnl of one signifies that
the assumptions underlying VTFDA are exactly true: the electron in this orbital
sees a potential that would be produced by a continuous and spherically sym-
metric distribution of the other N − 1 electrons combined with the corrections
for exchange and mutual repulsion. This physical situation is most accurate for
orbitals of singly occupied valence shells or closed cores. It is well known that
valence electrons tend to see a closed core as a spherically symmetric and uni-
form charge distribution, as guaranteed by the summation rules for the spherical
harmonics that compose the angular factors in the basis set. The same applies
to the electrons in the closed core themselves. Independently, as one moves to
high Z0 (& 36), the effects of electron correlation become small perturbations and
hence any error introduced by VTFDA becomes marginal, meaning no variation of
the λnl is needed. But this point is moot because the high-Z0 limit is also where
the relativistic effects dominate, and the non-relativistic or even semi-relativistic
radial equation is insufficient.

In contrast, cowan determines its radial factors from the HF equations, which
are directly derived from the variational principle. Specifically, the code uses con-
figuration average (ca) expressions for the energy and an iterative, self-consistent
field (SCF) procedure to solve the resulting equations. The complete details
are found in Chapter 7 of [31], but the important message is that the exchange
interaction and mutual repulsion of electrons are inherent to this method. No
approximations are made incorporating this physics. As a result, solutions of the
HF equations in their various forms tend to achieve more highly accurate struc-
tures by default than the solutions of homogeneous equations. In this regard,
autos is slightly deficient compared to cowan, but again, it will be shown in
section 2.3.2 how this can be resolved with a new optimisation strategy for the
λnl in autos.

Moving to heavier atomic species, the consideration of relativistic effects in
atomic structure becomes increasingly important. Both codes incorporate one-
electron relativistic corrections, i.e. the mass-velocity and Darwin contributions,
within the radial wave functions by including κ-averaged terms in the differential
equations for the radial problem, where κ is the relativistic quantum number
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defined by

κ =

li, j = li − 1/2

−li − 1, j = li + 1/2.
(2.8)

This approximation allows the codes to retain the simpler algebra of the non-
relativistic structure problem. Both codes include the one-body, spin-orbit term
in their Breit-Pauli (BP) Hamiltonians, but autos additionally includes the two-
body terms as described in [28] and the post-diagonalization, Breit and QED
energy corrections. The preceding reference also raises the subtle point that
although these remaining Breit-Pauli corrections should, in theory, be evaluated
using nonrelativistic wave functions, this is outweighed by the benefits of using
the semi-relativistic, κ-averaged radial functions throughout the solution.

Further differences between the codes arise when considering the problem of
collisional excitation, and it is here that the advantage of using autos becomes
most apparent. In its current state within ADAS, cowan can only calculate
collision quantities using the PWB approximation whereas autos can perform
calculations in both the PWB and DW approximations. Both approximations are
made upon similar foundations [33–35]; the problem to be solved is stipulated by
the nonrelativistic, time-independent Schrödinger equation for N + 1 electrons:

HN+1Ψ = EΨ, (2.9)

where

HN+1 =
N+1∑
i=1

(
−1

2
∇2
i −

Z0

ri

)
+

N+1∑
i>j=1

1

rij
(2.10)

and E is the total energy of the collision system.3 This can be solved approxi-
mately with a truncated, antisymmetric expansion of the total wave function:

Ψ(XN+1) = A
M∑
i

Φi(XN)Fi(xN+1), (2.11)

3Like with the structure problem, just because the nonrelativistic Schrödinger equation is
being used does not mean a fully nonrelativistic Hamiltonian also needs to be used in the scat-
tering problem. The BP Hamiltonian is equally well applied as an approximation for relativistic
effects here. However, the additional terms do cause the subsequent mathematics to become
slightly cluttered, so in the interest of clarity, it is the plain nonrelativistic Hamiltonian that
has been used to demonstrate the various approximations to the scattering problem.
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Table 2.3: Comparison of the atomic structure and collision attributes of autos and cowan.
Recall that for magnetic transitions there is no monopole (M0), so magnetic contributions only
exist for k ≥ 2 in the notation of this table.

Attribute autos cowan
basis set non-determinantal Slater

states composed of κ-
averaged semi-relativistic
orbitals (see text surround-
ing equation 2.8 about
relativistic corrections)

κ-averaged semi-relativistic
orbitals combined via coef-
ficients of fractional parent-
age to make LS-coupled, an-
tisymmetric basis functions

radial solution Homogeneous radial equa-
tion incorporating VTFDA
with λnl optimised by min-
imising the weighted sum of
term energies

HF equations derived from
the variational principle and
solved using an iterative,
SCF procedure

angular solution non-hierarchical uncoupled
Slater state representation
with subsequent coupling
via vector-coupling coeffi-
cients defined by Eissner and
Nussbaumer [26]

hierarchical Racah algebra
angular momentum coupling
scheme with factorisation

Hamiltonian Breit-Pauli with one and
two-body terms

Breit-Pauli with one-body
spin-orbit term only

energy correc-
tion

Breit and QED electron correlation

coupling
schemes

ic and LS ic and LS

multipoles,
Ek/Mk−1

k = 0, 1, . . . , 6 k = 1, 2, 3

scattering PWB and DW PWB; DW possible but not
implemented in ADAS
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where xj ≡ rjσj, j = 1, . . . , N + 1, represent the space and spin coordinates of
the N + 1 electrons; XK ≡ x1, . . . ,xK ; Φi are the bound target eigenstates with
energies Ei; Fi the eigenstate of the scattering electron with energy k2

i /IH ; IH
is the ionisation potential of Hydrogen in whatever energy units other terms of
the expression possess, a way of specifying that the final quantity is in atomic
units; and A is the antisymmetrization operator that ensures each term in the
expansion is antisymmetric with respect to the interchange of xj for any pair of
the N + 1 electrons. As mentioned, the summation in 2.11 is over a truncated set
of the bound target eigenstates, presumably obtained from a prior structure cal-
culation, and in contrast, the exact solution would be over an infinite set of these
states along with continuum target states. Plugging 2.11 into the Schrödinger
equation 2.9 and forming the inner products with 〈Φi|, one obtains a set of coupled
second-order partial differential equations:

(∇2
i + k2

i )Fi(xN+1) =

2
∑
j

[
Vij(xN+1)Fj(xN+1) +

∫
Kij(xN+1,x

′
N+1)Fj(x

′
N+1)dx′N+1

]
, (2.12)

where

Vij(xN+1) =

〈
Φi(XN)

∣∣∣∣∣
N∑
i=1

1

riN+1

− Z0

rN+1

∣∣∣∣∣Φj(XN)

〉
(2.13)

defines the potential matrix and Kij(x,x
′) is the exchange kernel arising from

the permutation component of A and accounts for the phenomenon of electron
exchange in the collision. The task now is to solve 2.12, and it is at this point
that the various approximations are made.

The Born approximation invokes the assumption that the scattering electron
and target do not interact significantly, which is only valid at high collision en-
ergies or for lower-charged targets. As a result, the scattering electron can be
represented throughout the collision by an incoming plane wave, hence the PWB
as an abbreviation, and the target will be in its ground state. The equation for
the total wave function 2.11 becomes

Ψ(XN+1) = Φn(XN)eikn·rN+1 , (2.14)
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having utilised Fn = eikn·rN+1 and Fi = 0, i 6= n. Significantly, there is no
longer a sum of bound target eigenstates nor an antisymmetrization operation,
so electron exchange and resonance contributions are not included. The exchange
kernel term in equation 2.12 is therefore dropped, and upon substitution of 2.14,
an expression for the differential cross section can be obtained:

dσij
dΩ

=
M2|kj|
|ki|

∣∣∣∣∫ Vij(xN+1)eiK·rN+1dxN+1

∣∣∣∣2 , (2.15)

where ki and kj are the vectorized wavenumbers of the incoming and outgoing
electron, respectively, K = ki − kj is the momentum transfer, and Ω represents
the solid angle instead of the collision strength like elsewhere in this thesis. The
primary advantage of the PWB method is that the quantities it requires can eas-
ily be obtained from atomic structure calculations, making the determination of
cross sections and collision strengths very efficient. But this comes at the cost
of limited scope of accuracy and applicability: for arbitrary z, PWB calculations
only have guaranteed validity at high collision energies, where resonances and
electron exchange are unimportant. In fact, the PWB approximation becomes
exact in the limit of infinite projectile energy, an important trait that will be
used in the scattering calculations of Chapters 3 and 4. The valid range of scat-
tering energies is somewhat extended approaching neutral targets because the
assumption of no interaction between target and projectile is largely true. How-
ever, the improved performance of the collision calculation is moderated by the
difficulties encountered in the structure calculation for neutral and near-neutral
species. Since these structure issues tend to be more severe than the breakdown
of the Born approximation for higher z, PWB calculations are generally of higher
quality for species with a larger residual charge. Moreover, the PWB approxi-
mation cannot produce results for transitions that only proceed through electron
exchange, such as spin-changing transitions under pure LSJ coupling: ∆S > 0

is forbidden by selection rules. As will be discussed in section 2.3.1.2, the use of
ic partially mitigates this limitation, but not generally.

In contrast, the DW approximation is obtained by replacing the electrostatic
interaction terms of 2.10 with a mean central-field potential, which for autos

is VTFDA from the structure calculation (equation 2.5). Following this modifica-
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tion through, the Vij term of equation 2.12 will become VTFDA, thus losing its
dependence on the radial coordinates of any atomic electrons. Consequently, the
system of scattering equations specified by 2.12 become decoupled, allowing a set
of independent radial equations for the free-electron wave functions to be isolated:{

d2

dr2
N+1

− l(l + 1)

r2
N+1

+ 2VTFDA(rN+1) + k2
i

}
Fi(rN+1) = 0. (2.16)

This is nearly identical to equation 2.1 of the structure problem; however, k2
i > 0

is enforced whereas εnl can be positive (continuum state) or negative (bound
state). Note that VTFDA in the structure problem of equation 2.1 applies to N−1

atomic electrons while in equation 2.16 it applies to all N atomic target electrons
and so will have a slightly different form. Ostensibly, the scattering problem is
now solved since the scattering matrices should be determined by the asymptotic
form of these free-electron wave functions; however, this only yields results for
elastic scattering. Rather, one must use the Kohn variation principle [36, 37]:

KK
ii′ = −〈Ψi |HN+1 − E|Ψi′〉t , (2.17)

where t refers to trial functions, Ψi = AΦi(XN)Fi(xN+1) is one of the terms
from the full expansion in 2.11, and the index i is said to denote the scattering
channel, i ≡ (ΓSLπ)T kl = (SLπ)T. T indicates the target and T the total
of the target coupled with the scattering electron, kl. As noted in footnote 3
above, the N + 1 electron Hamiltonian can take various forms, and autos uses a
version of the BP Hamiltonian to include relativistic effects in this fundamentally
nonrelativistic framework.

Because only elastic scattering effects are considered directly in the wave
functions, the salient feature of DW approximation is that the inelastic, off-
diagonal terms of the reactanceK-matrix must be comparatively small—typically
1/2 is an acceptable threshold above which the DW approximation should no
longer be trusted or used. This is generally true for ions over a few times ionized.
Making this assumption, the transmission matrix can be determined by neglecting
terms quadratic in K,

Tii′ =
−2iKK

ii′

1− iKK
ii′
≈ −2iKK

ii′ , (2.18)
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and subsequently the collision strength determined:

Ωii′ = (2S + 1)(2L+ 1) |Tii′ |2 = (2S + 1)(2L+ 1)4
∣∣KK

ii′

∣∣2 . (2.19)

The main advantage of DW over PWB calculations is that electron exchange
is included via antisymmetrization of the trial wave functions, and so transitions
that are normally “forbidden” by selection rules become calculable—e.g. the spin-
changing transitions mentioned above. This can prove decisive in the context
of excited metastable states that cannot undergo radiative decay to the ground
or have comparatively small A-values; introducing a collisional connection be-
tween such metastables and the ground can have a measurable impact upon the
population distribution and GCR coefficients such as the PLT , cf. section 2.3.1.

Like the PWB approximation, DW calculations neglect any coupling be-
tween scattering channels, so there are no resonance contributions to the col-
lision strengths or cross sections. Resonances tend to influence rates only in the
low-temperature domain, which can loosely be defined as lying well below the
ionization potential of the particular ion under consideration. For fusion plasmas
and any plasma in ionization equilibrium, the temperatures at which a given ion
exists tend to peak above one half of the ionisation potential (χ(z)), usually out-
side the low-temperature regime in which resonances are important. Thus, DW
results are expected to be suitably accurate for baseline purposes. Moreover, the
DW approximation should track the background collision strength of any fully
close-coupled method, and then resonances can be superposed, post hoc, by other
techniques similar to a dielectronic recombination (DR) calculation. This is yet
another advantage over PWB, which will not match the true background until
the high energy regime.

As noted above, the DW approximation is only valid when the inelastic, off-
diagonal elements of the K matrix are small compared to the elastic, diagonal
ones. This is most problematic for neutral targets where the elastic collision
strength is zero, and so the underlying assumption of the approximation neces-
sarily collapses. Interestingly, this is the exact opposite scenario to that of the
PWB approximation, in which the collision portion of the calculation actually
performs better for neutral targets. However, the previous qualifying statements
about the problem of structure calculations for near neutrals still stand, and this
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is independent of any approximations made in the collision calculation. Therefore,
any improvements garnered by using PWB over DW for neutral or near-neutral
targets is likely marginal. Overall, it can be concluded that the DW approx-
imation implemented in autos marks a definite improvement over the PWB
implementation of cowan or autos’s own PWB.

2.3 Baseline Improvements

Up to this point, no improvements upon the previous baseline implemented by the
third scientific theme of the ADAS-EU project [24] have been suggested (hence-
forth, ADAS-EU baseline). It too used autos with its DW approximation to
mass produce atomic structure and collisional excitation data in the adf04 for-
mat. As detailed in the previous section 2.2.1, this offers a definite improvement
over the baselines of Whiteford [22] and Foster [23] because these both use the
PWB approximation to solve the inelastic scattering problem. However, the
ADAS-EU baseline is deficient for two reasons.

First, although it does incorporate the configuration sets determined from
the automated promotion-rule method of Foster, this method is itself incomplete
and in some cases inaccurate. Crucially, the version of ADAS808 used by these
previous baselines does not properly consider metastable configurations, and in
some cases important metastables can be omitted because their inclusion can
decrease the functional being maximised4 even though they have an obvious in-
fluence upon the population balance. Therefore, the promotion-rule and PLT
optimisation technique of Foster must be applied to all metastable configurations,
and strategies must be developed to handle the merging of the configuration sets
determined from the independent operation of the code upon these metastable
bases. The details of this implementation are provided in section 2.3.1.

Second, no optimisation of the atomic structure within autos is performed:
the λnl defined in section 2.2.1 are all set to unity. In some cases, this can lead to
unsatisfactory atomic structures, and the errors are propagated to other quanti-
ties. A concrete example is presented in the configuration selection section 2.3.1
where the atomic structure errors of autos give rise to inaccurate PLT coeffi-

4The details of the optimisation procedure are provided in the following section 2.3.1.
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cients; in fact, it is this consistent effect upon the PLT that spawned the drive
to improve the atomic structure in an autos baseline. Of course, autos can
internally vary all of the λnl and iteratively approach a solution by minimising
the weighted sum of term energies; however, such a technique is not reliable and
dilutes the correlations between important configurations. Therefore, a method
to determine better default λnl is described in section 2.3.2.

2.3.1 Configuration Selection

The content of this section was originally published in [21]. © IOP Publishing.
Reproduced with permission. All rights reserved.

It has been noted previously in sections 2.1.1 and 2.2 that the selection of the
target electron configuration set is not only one of the most difficult inputs but
also the primary determinant of accuracy in the ic regime. The difficulty of select-
ing an appropriate set of configurations inevitably derives from the fact that an
atomic target is fully represented by an infinite number of excited configurations,
both bound and continuum. Consequently, any finite set used in a computer code
will necessarily introduce a truncation error. This can be partially alleviated by
the introduction of pseudostate expansions to account for the continuum states,
but the neglect of important bound configurations tends to be the largest error.
The source of this error is twofold: first, configuration mixing is a pivotal factor
in the atomic structure problem, but the major contributions usually come from
small groupings of bound configurations, partitioned according to parity in this
ca picture. Selecting the correct configurations can therefore capture the major-
ity of the physics. Secondly, it is usually only a small set of bound configurations
that dominate the contribution to the radiated power: these are configurations
that possess strong radiative decay pathways to the ground and corresponding
collisional excitation pathways populating them from the ground. Usually these
two factors go hand in hand, but it is not obvious ab initio what this essential set
of configurations involved in configuration mixing and large power emission will
be. Thus, the imperative cannot be overstated for an automated algorithm to de-
termine configuration sets that encapsulate the essential physics of the structure
and collision problem.

The discussion above suggests a way forward for selecting the most impor-
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tant bound configurations of an atomic target. It is the radiated power from an
atomic species that provides an holistic grounding in observation because this
measures not only the radiation from all possible transitions in the atom but also
the population distribution of the excited states. Moreover, the quantification of
radiative power loss from impurities has become a topic of concern for the devel-
opment of ITER baseline scenarios and conceptual DEMO tokamak designs [38].
For example, the steady-state heat loads predicted for current baseline designs
of ITER are well above tolerable limits for metallic divertors [39, 40], and the
seeding of noble gases and nitrogen to produce radiative cooling is being explored
for both DEMO and ITER [13, 14]. However, the negative effect of introducing
these impurities is that the plasma core power balance is also affected, which in
turn affects the fusion power yield. As a result, accurate theoretical cooling fac-
tors are needed; these are a combination of the ionisation balance, f (z), and the
total radiated line power coefficient (PLT ). Although both invariably depend
upon the resolved low-level set of the ionic species under consideration, it is the
PLT that measures the power contribution due to collisional excitation and is
directly dependent upon the energy level differences and A-values. Furthermore,
the PLT is a quantity for which seeking an extremum makes sense and so can
be optimised. Each configuration in the infinite set that represents an atom will
make some positive contribution to the radiated power, however infinitesimally
small that might be: the PLT will asymptotically approach a finite limit as more
highly excited configurations are added because each of these will have less and
less population. Therefore, determining the finite configuration set that max-
imises the PLT will achieve a representation that is closest to reality according
to this metric. The same cannot be said about the ionization balance. The other
coefficients needed to construct f (z) in the generalised, metastable-resolved pic-
ture are known collectively as GCR coefficients within ADAS, and they include
ionisation and recombination components. The details of these quantities will be
discussed further in the context of extending GCR modelling to ic resolution in
Chapter 5. A consistent set of ionisation, recombination, and PLT coefficients
for elements up to W have been generated by Pütterich using the techniques de-
scribed in previous studies [41, 42], and it will provide the main comparison in
the following sections. The PLT s are generated using atomic data from cowan,
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and the configuration sets for each isoelectronic sequence are the same as those
for the W isonuclear work. It is this assumption about the configuration sets
that can be improved: in general, the important configurations for one ion of an
isoelectronic sequence will not be the same as those for another ion.

One could conceivably also select configuration sets based upon observed spec-
tral lines, and indeed this is the approach most detailed theoretical studies adopt.
Although this may be necessary to achieve the accuracy required for the lines of
interest, it can also bias the atomic structure to such a degree that it is no longer
useful in more generic studies. Furthermore, such a technique is not easily au-
tomated and more prone to the omission of configurations that might not be
observable but have a large impact via configuration mixing: refer to the work
on W44+ in Chapter 3 and [43].

2.3.1.1 Selection Methodology

The selection of configurations is automated by varying a set of rules that define
excited configurations to be built on an initial ground or metastable configuration.
For example, the rules dictate the allowed change in the n and l quantum numbers
when promoting electrons from valence and closed shells. A full specification of
each rule is given in table 2.4 and discussed in detail by Foster [23]. The optimal
set of rules for an initial metastable configuration, σ, is the one that maximises the
value of the normalised PLT coefficient associated with this base configuration:

P(z)
LT,σ =

Nσ

Ntot

∑
j>i

∆EijAj→iF
(exc)
jσ [Wm3], (2.20)

where i and j represent the lower and upper levels spanning the atomic energy
levels defined in the electron configuration sets, ∆Eij is the j → i transition
energy, Aj→i is the spontaneous emission coefficient, F exc

jσ is the component of
the population of the jth level associated with excitation from level σ divided by
the electron density, and Nσ and Ntotal represent the metastable/base and total
population of the ion, respectively.

The code, called ADAS808 in ADAS, works as follows. First, as input, the
code requires a reference electron temperature Te and density Ne, the element and
ionisation stage, and the driving configuration. Te and Ne are set equal to the
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Table 2.4: Promotion rules used to define configuration sets.

Rule Description Rule Description
#1 Number of valence shells #14 Promote closed shells (y/n)
#2 Max ∆n (1st valence shell) #15 Max ∆n promotion (closed shell)
#3 Min ∆n (1st valence shell) #16 Min ∆n promotion (closed shell)
#4 Max ∆l (1st valence shell) #17 Max ∆l promotion (closed shell)
#5 Min ∆l (1st valence shell) #18 Min ∆l promotion (closed shell)
#6 Max ∆n (2nd valence shell) #19 Add configs. of same complex (y/n)
#7 Min ∆n (2nd valence shell) #20 Shift valence electron to
#8 Max ∆l (2nd valence shell) unfilled 4f as extra ground
#9 Min ∆l (2nd valence shell) #21 Add all nl configurations of
#10 Max n (closed shell) outer valence shell (y/n)
#11 Min n (closed shell) #22 If #21 add opposite or both
#12 Max l (closed shell) parities to valence shell
#13 Min l (closed shell) #23 Cowan specific rules

ionisation potential χ(z) of the ion and a density of 1013 cm−3 (typical of fusion
plasmas), respectively. Here, χ(z) is used as a substitute for the temperature of
peak ion abundance, T (pk.). It is desirable to specify a temperature near T (pk.) for
reasons explained in section 5.3.1.1: under ionisation equilibrium conditions, ions
will only exist in substantial fractions near T (pk.), so this temperature is taken as
the input to the population model. It is not possible to restrict the density in a
similar manner, hence why a representative tokamak value must be selected. This
deficiency is mitigated because Ne tends to be more spatially uniform, except near
the divertor. Although the temperature of peak ion abundance is lower than χ(z),
optimising at Te = χ(z) ensures that the PLT coefficient is in the temperature
domain where it plateaus rather than where it has a large gradient.

Next, each rule is initialised to zero except for rule #1 and rules #10 to #13.
The former is set to unity, while the code loops around different values for the
latter, gradually opening each inner shell. Within each of these loops, the code
progresses iteratively by sequentially performing a set of rule changes (defined
in table 2.5). If the rule change produces a new valid set of configurations5,
then the PLT coefficient from equation 2.20 is determined. The atomic energy
levels, spontaneous emission coefficients and collision strengths are calculated
using cowan in ca mode. After all rule changes have been attempted, the change
producing the largest PLT coefficient is chosen as the reference case if it remains
within a set of pre-defined level count, configuration count, and power threshold

5If cowan fails to converge, then the given set of electron configurations are deemed invalid.
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limits, so the calculation must also be performed in ic resolution at this point.
For this analysis, a small configuration set (cs) is defined with a level count limit
of 1000, configuration count limit of 30, and a power threshold of 0.001%. Large
configuration sets (cl), which only adhere to the power threshold limit, are used
to estimate the top-up corrections discussed in section 2.3.1.2. The optimisation
process then continues using the new rule set as the initial conditions for the next
set of changes.

Table 2.5: Rule change sequence during each iteration of the optimisation code ADAS808. #
numbers correspond to the defined rules given in table 2.4.

Iteration 1 Iteration >1
1: #4=-1 6: #6=1 10: #17=-1 1: #2=#2+1 #22=1

#5=-1 #7=1 #18=-1 2: #3=#3-1 15: #21=1
2: #2=1 #8=-1 11: #17=1 3: #4=#4+1 #22=0

#3=1 #9=-1 #18=1 4: #5=#5-1 16: #20=1
#4=-1 7: #8=1 12: #15=1 5: #6=#6+1 17: #2=#2+1
#5=-1 #9=1 #16=1 6: #7=#7-1 #4=#4+1

3: #4=1 8: #6=1 #17=1 7: #8=#8+1 18: #6=#6+1
#5=1 #7=1 #18=1 8: #9=#9-1 #8=#8+1

4: #2=1 #8=1 13: #21=1 9: #15=#15+1 19: #15=#15+1
#3=1 #9=1 #22=1 10: #16=#16-1 #17=#17+1
#4=1 9: #17=-1 14: #21=1 11: #17=#17+1
#5=1 #18=-1 #22=0 12: #18=#18-1

5: #8=-1 10: #15=1 13: #19=1
#9=-1 #16=1 14: #21=1

The optimisation of the C-like Ar12+ and Ca-like Kr16+ configuration sets is
shown in figure 2.1. The level and configuration count limits were relaxed allowing
the code to run until either the change in the power was below 0.001% or until
the rule changes produced no further valid configuration sets. A convergence in
the PLT coefficient according to the 0.001% threshold is found for both ions
despite the linear increase in levels at the end of each iteration. For less complex
structure calculations, such as the C-like ground configuration, this convergence
occurs within a total level count set by computational restraints. More complex
ions with an open 3d-, 4d-, or 4f- shell, such as the Ca-like case, typically require a
far higher number of levels before convergence in the PLT coefficient is achieved.
Moreover, this convergent behaviour substantiates earlier claims that the majority
of the atomic physics is encompassed by a set of lower-lying configurations/levels.
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Figure 2.1: Convergence of optimisation of the (a) C-like Ar12+ 2s2 2p2 ground configuration
and the (b) Ca-like Kr16+ 3s2 3p6 3d2 ground configuration. The (blue) triangles show the
radiated line power selected at the end of each iteration, and the (red) diamonds indicate the
associated number of levels. The radiated power is calculated using Te = χ(z) and Ne = 1013

cm−3.

Metastable Optimisation A highly populated metastable configuration can
(but not always) act to decrease the ground configuration PLT coefficient due
to the factor N1/Ntotal in equation 2.20, causing this configuration and its asso-
ciated promotional rule to be omitted from the final set. However, metastable
configurations can offer new pathways for electron promotion and will invariably
have a large impact upon the population model. As a result, the optimisation
procedure detailed in the previous subsection is automatically carried out for each
metastable driving configuration, ensuring all such configurations are included in
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the final set. The set of metastables for each ion in each isoelectronic sequence
has been manually curated and most have been tested with small-scale popula-
tion calculations; the full list can be found in the isonuclear adf54 files. A similar
strategy of using population models to define metastables is planned as a means
of standardising the metastable sets used across ADAS at all relevant angular-
momentum resolutions. It is supported by the finding that metastable configu-
rations vary along an isoelectronic sequence—see figure 2.2—and the analogous
finding of the multi-resolution GCR model in sections 5.2.2 and 5.3.2. Trends
in metastability are useful here: the ratio of the metastable and ground con-
figuration populations versus ion charge are shown in figure 2.2 for ions with a
Be-like, Mg-like, and V-like ground configuration. Typically, the ratios drop be-
low ≈ 10−3 when the ion charge z > 5. A similar behaviour is seen for ic levels:
the maximum metastable level decreases with increasing z, but the relationship
is not linear like for ca, cf. section 5.3.1.1.
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Figure 2.2: The ratio of the metastable and ground configuration populations for ions in the
Be-like (red curve, diamond markers), Mg-like (green curve, square markers), and V-like (blue
curve, triangle markers) iso-electronic sequences calculated using the ADAS collisional-radiative
model.

This logically raises the question of how metastability relates to resolution.
In particular, the configuration-selection procedure is performed in ca resolution
with metastables defined accordingly, but the ultimate goal is a baseline in ic: is
there a possibility that by working in the coarser ca approximation some config-
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urations that contain metastable levels might be inadvertently omitted? From
the extensive empirical evidence amassed by running the codes, the answer is
that when an ic level is metastable, it is almost always true that the parent con-
figuration is also metastable. The inverse requires some qualifiers: a metastable
configuration will almost certainly contain at least one metastable ic level, but not
all of the constituent levels need be metastable.6 However, there are exceptions.
For some closed shells and subshells, particularly where first valence promotion
is to a d or f-shell, metastability will arise in some levels but not the source con-
figuration. An archetype is Pd-like W28+, which has the ground configuration
[Kr]4d10, resulting in the single ground level, 1S0. The first excited configuration
is [Kr]4d94f, which spawns a multitude of levels with J > 1 that are effectively
isolated from the ground level and so become metastable. However, from the ca
perspective the [Kr]4d94f → [Kr]4d10 transition is a dipole one, so this config-
uration does not exhibit metastability. This issue is alleviated by the very fact
that this is a dipole transition, meaning this excited configuration is included in
the initial optimisation with the ground; the other closed shell anomalies tend to
share this saving feature as well. Section 5.3.2 will extend these comments when
comparing metastability between ca and LS or between LS and ic.

Having determined the appropriate metastables, the act of adding together
all of the configurations derived from the promotion rules associated with each
metastable will usually raise the number of levels above the original level limit
(even after removing any duplicate configurations). In extreme cases, cowan

will fail to converge with the large number of configurations included in the
calculation. Therefore, two additional steps are required to reduce the number of
configurations. When cowan fails to converge, the optimisation code removes all
configurations with quantum number n > ngrd + 2, where ngrd is the maximum
quantum number of the ground configuration. If this condition is not met, then
the highest quantum number n, even parity configurations promoted from the
metastables are removed. The parity condition is removed if a convergence is still
not reached.

With a valid configuration set, a further reduction is performed to keep the
6A metastable configuration with no metastable levels has not been observed in the course

of this work.
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calculation within the (cs) limits. First, the ground and metastables are included
along with the first excited configuration (of opposite parity) to ensure that the
metastable is tied to at least one other configuration. Next, a collisional-radiative
population calculation is carried out to determine F (exc)

j1 , and then the configura-
tion transition pairs are arranged in descending order in terms of their individual
contribution to the total power, ∆EijAj→iF

(exc)
j1 . The configuration pair is in-

cluded if the calculation remains within the calculation limits. After the addition
of a configuration pair, the dominant (de-)populating configurations associated
with the upper configuration are included. Without these additional configura-
tions, all of the radiative decay will falsely be channelled back down the same
path as the collisional excitation. This can lead to an artificially high radiation
estimate.

The inclusion of metastables can have a varied effect on the ground PLT
coefficient that is recalculated following the merging of all configuration sets
from metastable bases as described above. On the one hand, the addition of
a metastable configuration will cause a reduction in the PLT coefficient because
of the normalisation factor, Nσ/Ntotal, in equation 2.20. The magnitude of this
effect will depend upon how large the population of this metastable is relative to
the ground population. On the other hand, including a metastable may increase
the ground PLT because it opens up additional excitation pathways, which can
then lead to radiative decay to the ground. The magnitude of this effect is more
difficult to predict from underlying variables and will inherently depend upon
the distribution of the atomic levels and what excitation and decay pathways are
possible. Generally speaking, any collisional excitations to levels that have direct
dipole transitions to the ground will dominate the contributions to this extra
power. Overall then, the net impact of adding metastables will be a balance of
these two effects, which are themselves related and not decoupled, meaning an
increase or decrease of the ground PLT is possible but hard to predict.

Take as an example the isoelectronic sequences between Ca-like and Ni-like:
these have the ground configuration 3di and the two metastable configurations
3di−1 4s and 3dī−2 4s2 with 1 ≤ i ≤ 10 and 2 ≤ ī ≤ 10. We wish to determine the
effect that adding these metastables have upon the final ground PLT . Starting
from the near-neutral species of these sequences, it is observed that a strong
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excitation-decay pathway is available from the 3di−1 4s metastable to the ground,
proceeding through the 3di−1 4p excited configuration:

3di−1 4s EIE−−→ 3di−1 4p rad. decay−−−−−→ 3di (2.21)

Therefore, this 3di−1 4s metastable is typically included in the initial ground
optimisation step because of this significant contribution to the PLT . The ad-
dition of 3dī−2 4s2 in the secondary metastable optimisation step only causes
a slight decrease to the PLT from re-normalisation, so the overall effect of the
metastables is to increase the ground PLT in this case. Moving to slightly higher
ion charges, the balance shifts: the extra excitation pathway introduced by the
3di−1 4s metastable no longer outweighs the normalisation, and the net effect
of adding the metastable configurations is to decrease the PLT by as much as
20 − 30%. Finally, entering the highly charged regime, the balance shifts again.
The metastables hardly exhibit metastability anymore, supported by figure 2.2,
and so the re-normalisation is inconsequential. However, because the metastable
populations are comparatively small, the additional contributions to the power
through new pathways is also small, and so the net result is ≤ 5% increase of the
PLT s.

2.3.1.2 Accuracy and Errors

It now remains to prove that the automated method described above achieves the
desired result of minimizing errors associated with the selection of configurations.
Accuracy hinges upon the essential bound configurations that contribute most to
configuration mixing and radiated power being identified and included.

Top-up Estimate For the present purposes, the entire problem of configura-
tion selection reduces to what truncated set of configurations, bounded by com-
putational resources, best describes the infinite set of the actual atomic system.
Therefore, it is essential to estimate this truncation error, or equivalently, the
amount needed to “top-up” derived quantities like the PLT so as to cover their
omissions. Using the projection matrices of GCR theory [16] is the ideal estimate
of the excluded line power, but the required data is only available for isonuclear
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sequences up to neon and only in LS -term resolution. Consequently, a simpler
estimate of the top-up is adopted:

PLT tot = PLT ic(cs)PLT ca(cl)

PLT ca(cs)
, (2.22)

where (cs) denotes the small configuration set size, and (cl) the large. The result-
ing corrected coefficients are presented in figure 2.3 along with the temperatures
of peak abundance at which they are calculated. The truncation error itself is
estimated by the fractional quantity in 2.22, but it is more convenient to analyse
a ∆ factor,

∆(y1, y2) =
max ({y1, y2})
min ({y1, y2})

− 1, (2.23)

where y1 and y2 denote the two quantities that are under examination.
Of course, the comparison of PLT ca(cl) and PLT ca(cs) coefficients will only

accurately estimate the truncation error if other forms of error are constant be-
tween the two cases. For ca calculations, the other primary source of error is that
introduced by the coarseness of level bundling, i.e. resolution error. Recall, it is
necessary to calculate the top-up estimate in ca resolution because the (cl) cal-
culation will either fail or take too long in ic. As the name suggests, ca averages
over all of the levels belonging to a particular configuration, neglecting the finer
details of level resolution and the influence this can have upon the population
calculation. The errors introduced by working in ca resolution are addressed in
section 3.2 of [21]: a full discussion is outside of the current scope because the
goal is strictly an ic-resolved baseline. To summarise, significant resolution error
is observed around most closed shell ions (e.g. Pd-like, Kr-like, and Ar-like) due
to the existence of ic metastables that are not part of a metastable configuration.
This effect is clearly observed for the tungsten PLT results in figure 2.4 where
the PLT tot values are on average reduced by 30% relative to the PLT ca(cl) ones
at a few of the shell boundaries. However, / 10% error occurs for the remaining
sequences, suggesting that the resolution error should not greatly affect the se-
lection of configurations. In addition, this resolution error is almost exclusively
restricted to low-lying levels where fine-structure energy splitting is more pro-
nounced; for configurations with high-n valence electrons, j and l sublevels are
nearly energy degenerate, and so grouping levels into configurations is a good
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Figure 2.3: (a) The temperatures of peak abundance for each ion found using the ionisation
and recombination coefficients defined by Pütterich [44] and (b) the corresponding PLT tot
coefficients (see text, equation 2.22) at each temperature given in (a) determined using cowan.

approximation. As a result, the magnitude of resolution error across the ca(cs)
and ca(cl) configuration sets is about equal, and hence comparing PLT ca(cl) and
PLT ca(cs) should offer a good estimate of the truncation error.

Figure 2.5 plots the ∆ values using the PLT ca(cl) and PLT ca(cs) coefficients
for W, Kr, and Fe as input. There arise some difficulties in deducing the trun-
cation error directly from the ∆ values of this plot. Large ∆ values are observed
for the highly-charged, heavy species with an open p-shell of more then two free
holes or with an open d-shell of more than two electrons and more than two free
holes. For the open p-shell case, a significant proportion of line power comes from
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transitions involving the opening of closed inner n-shells. The small configuration
sets have omitted including configurations of these types because they produce
unexpected and strange behaviour in the results of the ic calculation: e.g. incor-
rect dipole limit behaviour and poor energy levels. Until further investigation is
possible and because the calculations are sensible for ca, it was decided to keep
these configurations in the ca(cl) set. This explains the majority of the discrep-
ancy found for these highly charged ions of W and Kr, and thus these should
not be seen as representative of the truncation error. Further investigation into
the source of this phenomenon, ideally with other codes, is needed. Conversely
for lower charged species in this domain, less power is generated through these
troublesome inner shell transitions because these excited configurations lie well
above χ(z) and the lower temperatures at which these lower-z species exist is not
sufficient to populate them. Much of the difference between the (cl) and (cs) sets
is eliminated, and the remaining difference can be identified with the truncation
error. In the other case of high-z species with open d-shells, the majority of power
emanates from the 4f → 3d transition, and this transition is excluded from the
(cs) configuration sets because of the large number of levels spawned by the 4f
shell. Again, this largely accounts for the increased ∆ values, but here this can be
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associated with the truncation error. However, as the charge of isoelectronic ions
decreases, the metastability will increase like in figure 2.2, which will shift power
from the 4f → 3d transitions to those driven by excitation from the metastables.
These metastable configurations tend to involve fewer levels and are therefore
more likely to be included in the (cs) sets.

Figure 2.5: Comparison of PLT ca(cl) and PLT ca(cs) coefficients using ∆ across the W, Kr,
and Fe isonuclear sequences. These representative values were obtained using the temperature
of peak abundance for each ion found using the ionisation and recombination coefficients defined
by Pütterich et al. [41].

Overall, the truncation error is best described as being bounded by the Fe
and W cases in figure 2.5 with the caveat of W being unrepresentative for open
p-shells. Furthermore, the comparison between the PLT ca(cl) result for tungsten
with that from Pütterich in figure 2.4 gives an estimate of the truncation error
for previous baseline data. Increases of more than 50% relative to the previous
baseline are observed for lowly ionised stages on the left end of the plot. More
modest increases of between 20% and 10% are seen for the remaining ionisation
stages. Nonetheless, these results suggest a definite presence of truncation error
in previous baselines that has now been accounted for with this new baseline
technique. Therefore, it is safest to always include a top-up correction with the
ADAS808 (cs) configuration sets, and the strength of this method is that the
error has now been quantified and corrected.



CHAPTER 2. BASELINE ATOMIC DATA 42

Collision Strength Approximations Another potential source of error for
the configuration selection method is that the PWB approximation is being used
to generate the collision data. The deficiencies of PWB calculations relative to
DW ones have already been detailed in section 2.2.1, so the question is raised
about why autos with DW has not been used as the code to generate atomic
data in the context of this work. cowan with PWB has been selected primarily
to limit computation time, but a second equally important reason pertaining to
atomic structure error is revealed in the next section.

In practice, the shortcomings of the PWB approximation are mitigated to
some degree. It is electric dipole transitions that influence the PLT most, and
this is especially true for situations where the total population of a configuration
is similar for both ic and ca resolutions. As shown in figure 2.4 and explained in
section 2.3.1.2, ic and ca populations agree for the majority of cases. Because of
the large magnitude of strong dipole collision strengths, the PWB approximation
will usually introduce a smaller relative error. Even so, PWB collision strengths
can still be in error of ≈ 40% at low energies relative to those from DW. But
this problem is alleviated for heavier elements with higher z since the ionization
balance pushes these ions to higher temperatures relative to the lighter ions of the
same isoelectronic sequence: at higher temperatures, the higher energy portions
of the collision strengths are selected by the convolution with the Maxwellian
distribution, and this is where the PWB approximation converges. Correspond-
ingly, for low ionization stages, the threshold region matters more, but even DW
collision strengths are in error here because resonances are neglected. A close-
coupled technique—section 2.2—should be employed, so it is less worthwhile to
discuss the advantage of using DW in these cases.

In contrast, when the configuration population differs significantly between ic
and ca calculations, the inclusion and quality of non-dipole and forbidden tran-
sition data matter. Again referring to the Metastable Optimisation paragraph
of section 2.3.1.1, the most influential differences between ic and ca will occur
for metastable levels and configurations, and the discrepant cases arise at shell
and subshell boundaries. The deficit of PWB collision strengths in such cases is
that electron exchange between bound and free electrons is not included, meaning
no values are present for forbidden transitions that are known to be important
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Figure 2.6: Comparison of the Ar-like PLT ic(cs) coefficients at Ne = 1019 m−3 generated with
and without spin-changing transitions. The spin-changing collision strengths are generated from
autos in DW mode and supplement the cowan adf04 .

for these scenarios. The impact of neglecting these transitions upon the PLT
is shown in figure 2.6. Two trends are apparent: first, the impact of adding the
spin-changing transitions appears to be larger for smaller ion charges, z, since
the ∆ values increase going from W56+ to Xe36+ to Kr18+ across most of the tem-
perature range. The reason for this is that relativistic corrections in the target
Hamiltonian, which scale as (αZ0)2, cause spin-system breakdown: final eigen-
states can have components from basis states of different spin but equal parity
and total angular momentum. Therefore, connections between spin systems are
already present for high-Z0 species, and so the addition of spin-changing transi-
tions has a smaller effect. Secondly, the effect of adding spin-changing transitions
diminishes with increasing temperature for all of the isoelectronic ions. This is a
direct consequence of the 1/ε2 decrease at high energies for the collision strengths
of forbidden, exchange transitions. In the end, the Kr18+ case proves that the
inclusion of spin-changing transitions can be essential, further justifying the move
towards a complete DW baseline.

Another form of transition that has been neglected in this work is IIE. Of
particular concern are the transitions between fine-structure metastable levels in
the ic(cs) calculation, especially when these level populations begin to deviate
from statistical balance around shell boundaries. This specific category of IIE
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transition will serve to redistribute the metastable level populations, altering the
normalisation factor, Nσ/Ntot, but nothing else in equation 2.20. However, results
in section 5.4 appear to suggest that IIE has a negligible effect upon the power
coefficients. Further investigation is required since IIE does have a noticeable
impact upon the fractional abundances, which should be propagated to Ptot.

Atomic Structure Error It was observed in the preceding section that it
would be most efficient to conduct the configuration selection work with autos

in DW mode since electron exchange transitions are automatically included; how-
ever, there is a decisive shortcoming of autos. If autos is run with the default
strategy of setting all λnl for the target to 1, then unsuitable and altogether in-
accurate atomic structures can result. This has direct implications for the PLT
as shown in figure 2.7(b), where the PLT ic(cs) coefficients from both autos and
cowan are compared for Ar-like Fe8+. Substantial differences are apparent, and
at the temperature of peak ion abundance, there is a difference of ≈ 20 − 30%

that is directly attributable to variation in the atomic structure. This can be con-
cluded because both the autos and cowan results in figure 2.7 use the PWB
approximation for the collision calculation, leaving only the atomic structure data
as a point of difference. Moreover, the ∆ factor in pane (b) is not constant with
temperature, which means this is not simply the shift of the energy levels being
directly propagated to the PLT but also some influence of the collisional and
radiative rate coefficients in the population model. Figure 2.7(a) proves that it
is the autos calculation that is in error relative to cowan because the cowan

energies are in far better agreement with those from NIST. This should be no sur-
prise given the extensive comparison of autos and cowan given in section 2.2.1.
cowan tends to achieve better atomic structures because the HF equations are
derived from the variational principle but also because there are a set of tuning
parameters originally set by Cowan [31] that assist with the final structure.

2.3.2 Scaling Parameter Optimisation

It is intended that the following work will soon be published in ADNDT.
Section 2.3.1.2 clearly demonstrates the inadequacy of the default structure

produced by autos in certain circumstances: discrepancies of 20–30% in the
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Figure 2.7: (a) Comparison of level energies from NIST (green), cowan (blue), and autos
(red) for the metastable configuration 3s23p53d. Ip is the ionisation potential of Ar-like Fe8+
which is −233.586 eV. (b) Comparison of the PLT ic(cs) coefficients calculated using cowan
and autos for Ar-like Fe8+. The number of the transitions in the autos calculation has been
reduced to match that of cowan for a true comparison. Both use the PWB approximation.
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PLT just above were attributed directly to the atomic structure. This situation
must be rectified if autos is to fulfill the requirements for the present baseline
outlined in section 2.1.1 and if the advantages of using DW collision strengths are
to be fully realised. The λnl were introduced in section 2.2.1 as adjustable param-
eters for each nl orbital that can be used to improve the potential term, VTFDA,
in the radial equation 2.1 of autos. Moreover, these λnl can be varied through
an internal optimisation procedure that minimises the weighted sum of all the LS
term energies (by default), with the intention of producing better atomic struc-
tures. However, optimising every λnl over every term included in the calculation
can dilute the correlations between subsets of terms and λnl, leading to anoma-
lous and even unphysical λnl values. The remedial strategy adopted here involves
fixing the inner core λnl to pre-determined, optimised values whilst optimising the
λnl of the valence orbitals [45]. Then, isoelectronic trends can be used to smooth
out any anomalous values that persist. These isoelectronic trends are compelling
and present for the vast majority of calculated ions across all isoelectronic se-
quences; moreover, VTFDA varies smoothly with Z0, so it stands to reason that
the modifications to this potential, i.e. λnl, should also vary smoothly. The iso-
lated and rare nature of these anomalous values combined with this information
leads to the strong suspicion that these anomalous values are produced by the
minimisation procedure finding local minima rather than the global minimum.

For each isoelectronic sequence, the configuration basis set is determined us-
ing the same algorithmic power-based technique from the preceding section 2.3.1.
The rules were adjusted for this study to limit the electron promotions from the
metastable configurations to ∆n ≤ 2 and to include the ground complex con-
figurations. These configuration sets were sufficient to account for configuration
interaction, whilst not significantly diluting the minimisation. In this analysis,
the same configuration basis set is used for all ions in a sequence with tung-
sten as the optimising element. This simplification did not significantly change
the isoelectronic scaling parameter trends shown later in figure 2.8. Again, the
configuration sets as determined by ADAS808 for all ions are available as supple-
mentary data in adf27 files, and these configurations sets are unique to each ion
of an isoelectronic sequence.

To determine the optimised values of the inner core λnl of a particular ion, it
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Table 2.6: Prescription to determine the first iteration λnl for the novel autos structure
optimisation. N ≡ the number of target electrons. For each isoelectronic sequence N , the
λnl sets are determined for a range of nuclear charges up to 74W: N ≤ Z0 ≤ 74. Thus, the
notation, {nl}N=X , designates the λnl value for the species in the isoelectronic sequence X
with an atomic number Z0. All λnl for orbitals up to nl = 4f are set for each case, and some
n = 5 parameters are introduced above Mg-like (N = 12).

Sequence Fixed λnl Variable λnl Tied λnl Fixed
λnl = 1

0 < N < 4 none 1s, 2s, 2p 3s=2s, 3p=2p 3d–4f
4 ≤ N < 13 none 1s, 2s, 2p, 3d 4s=3s=2s,

4p=3p=2p, 4d=3d
4f

13 ≤ N < 37 {1s, 2s, 2p}N=12 3s, 3p, 3d, 4f 4s=3s, 4p=3p, 4d=3d 5s
37 ≤ N < 47 {1s, 2s, 2p}N=12, {3s,

3p, 3d}N=36

4s, 4p, 4d, 4f 5s=4s, 5p=4p, 5d=4d,
5f=4f

5g

is necessary to first assess the isoelectronic sequences with an open 1s shell, then
those with an open 2s shell, and so on up to the ground orbital of the ion. The
assumption in this systematic approach is that closed-shell λnl values do not vary
from one isoelectronic sequence to another. Note that the λnl are still varied for at
least two sequences after becoming core orbitals to demonstrate this assumption.
In addition to fixing the inner core λnl in the minimisation, it is also possible to
tie together scaling parameters of equal l and thus set λnl ≡ λl; this matches the
original description in [26]. In this work, nl-dependent λnl values are used for
the fixed inner core orbitals, and then tied for equal l for the remaining ground
and valence orbitals. An overview of the optimisation setup for all isoelectronic
sequences is given in table 2.6.

Sequences from Li-like to Mg-like are first investigated. The results of the
optimisation for the λ1s, λ2s, and λ2p are shown in figure 2.8a–c. Along an
isoelectronic sequence with increasing Z0, a decay towards unity is found for λ1s

in (a). In contrast, the 2s and 2p cases are largely independent of Z0. There is a
slight decrease of λ2s with increasing Z0 in (b) along the isoelectronic sequences
plotted. The λ2p values exhibit the opposite, slightly increasing with Z0 except for
the B-like sequence which rises dramatically. Currently, the cause of the latter
trend is unclear; however, it could be explained in terms of the sensitivity of
the Thomas-Fermi-Dirac-Amaldi (TFDA) potential to λnl. As Z0 increases, the
Coulomb potential dominates and therefore bigger changes to λnl are required to
have an effect. This assumption is discussed in the following section.

Most significantly, as the isoelectronic sequence increases (i.e. more electrons
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Figure 2.8: Optimised radial scaling parameters as a function of element charge for different
isoelectronic sequences. In (a−c), the 1s, 2s, and 2p orbital scaling parameters are shown for
sequences: B, N, F, Na, and Mg -like. The n = 3 and 4f orbital scaling parameters are shown
in (d−f) and (g), respectively for sequences: Si, Ar, Fe, Br, and Kr -like. The inner orbital
scaling parameters in d−g are set to those values shown for the Mg-like sequence in a−c, as
prescribed in table 2.6.
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are added) the λnl values begin to converge. In other words, the isoelectronic
lines overlap. For the λ1s, λ2sand λ2p values, this occurs at Na-like and Mg-like as
shown by the red and green curves in figure 2.8a–c, and the phenomenon continues
for higher sequences. These λnl values are therefore fixed to their Mg-like values
for all subsequent isoelectronic sequences, as indicated in rows three and four of
table 2.6.

Optimised λnl values for a selection of the lower isoelectronic sequences (Be,
B, F, Ne, and Mg)-like have been previously documented [46–50]. Reasonable
agreement between the previous literature and the study presented here is found
at low nuclear charge; however deviations are found at higher nuclear charge.
This deviation occurs because the previous studies focus on R-matrix collision
calculations and therefore only include relativistic Breit-Pauli correction terms
perturbatively, whereas this study uses the κ-averaged semi-relativistic radial
equation. For heavy species, relativistic effects can no longer be treated as a
perturbation.

The next set of isoelectronic sequences from Al-like to Kr-like are used to in-
vestigate the λ3l parameters with a fixed inner core determined from the previous
set of sequences. The optimised λ3l values are shown in figure 2.8d–f, and the
λ4f in figure 2.8g. These λnl display even less Z0 dependence than that found for
λ2l. The overlap of the λ3l values occurs for Br-like and Kr-like and therefore
these values are fixed as the inner core, in addition to those from Mg-like, for the
sequences from Rb-like onwards. The overlap of the Si-like and Ar-like curves is
coincidental and not exploitable. For Rb-like to Xe-like, the optimised λ4l values
all have approximately the same values as those shown in 2.8g for Br-like and
Kr-like; Fe-like is an anomalous case that requires further investigation.

The strategy outlined above is first carried out with λnl = 1 as the starting
conditions in the minimisation. Once a full set of optimised parameters have been
determined for every ion, a second iteration of the optimisation is then performed.
This time, the starting λnl values are set to those obtained from the first iteration,
and the prescription outlined in table 2.6 is again carried out. Finally, a spline fit
of the scaling parameters along an isoelectronic sequence is used to identify and
correct any anomalous parameters obtained from the initial minimisation. The
λnl for all explicitly calculated ions will be stored in an adf54 file in ADAS, and
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reading routines that handle interpolation will be provided so that the λnl values
for an arbitrary ion can be queried.

There is a physical basis for this strategy that is worth elaborating upon.
The stability and spherical symmetry of closed quantum shells and subshells
causes a clear distinction between electrons that occupy the orbitals in these
closed shells and those that do not—viz. valence electrons. It proves useful in
atomic physics to think about the core electrons being effectively independent
of the valence electrons: they are a negligible perturbation from the perspective
of one of the core electrons since it will interact much more strongly with the
other core electrons. However, the converse is certainly not true. For instance,
Palmeri et al. [51] show that for complex species the effects of core polarisation
and penetration upon the valence electrons cannot be neglected. Thus, it is to be
expected that a set of consistent core orbital λnl can be found moving between
isoelectronic sequences that share the same core. On the other hand, the valence
electrons will be quite sensitive to the particular isoelectronic sequence, and so
they must always be free for optimisation so a unique set of λnl can be determined
for the specific ion. Moreover, tying λnl of the same l has a physical basis. Spatial
probability densities of electrons in orbitals of the same l but different n will share
the same shape but be scaled in radial size. As a result, these electrons will tend
to “see” or “experience” a similar potential, VTFDA(nl) ∼ VTFDA(n′l), and it is on
this basis that the higher n valence orbitals are coupled by l to lower n valence
orbitals.

2.4 Evaluation of Scaling Parameter Optimisation

Whether the new strategy for λnl optimisation yields measurable improvements
overall must now be determined. Because of the complexity of atomic structure
and the need for concurrent improvement of both structure and power measures,
there is no single figure of merit to assess the efficacy of the λnl optimisation. The
typical comparators for atomic structure in the literature are energy level eigen-
values, radiative data (e.g. transition probabilities, oscillator strengths, etc.), and



CHAPTER 2. BASELINE ATOMIC DATA 51

variation between the radiative data calculated using different gauges.7 Stud-
ies in atomic structure tend to amass data of this sort from various theoretical
and often sparse experimental sources with which to compare the calculations
being presented. Methods of comparison are fairly ad hoc, and there is little
consensus on how to measure the degree of agreement between structures from
different sources. Consequently, studies of atomic structure are time consuming
and difficult to automate: for the detail required by spectroscopic analysis, this
will undoubtedly remain the state of play for some time. Moreover, the effects
on power emission measures are almost never investigated. A new approach is
needed for the present purposes.

Fortunately, the standard of comparison required for evaluating the new base-
line is less demanding than for the spectroscopic analysis of ions. Only generic
indicators of structure and power improvement are needed, not cogent arguments
for why one theoretical calculation is superior to another. Therefore, the follow-
ing three-pronged approach has been adopted for assessing the merit of the new
λnl optimisation strategy (shorthand opt) versus the default strategy of setting
all λnl to 1 (shorthand def ). The isonuclear ions, K-like Fe7+ and C-like Fe20+,
will be used as examples throughout to showcase instances where our new optimi-
sation strategy does and does not offer improvements according to the figures of
merit. Structure calculations with autos (def and opt) and cowan were done
with the following configuration sets:

Fe7+: [Ne] + {3s23p63d, 3s23p64s, 3s23p64p, 3s23p64d,
3s23p64f, 3s3p63d2, 3s23p53d2}

Fe20+: [He] + {2s22p2, 2s22p3s, 2s22p3p, 2s22p6p, 2s22p6d,
2s22p7p, 2s22p7d, 2s2p3, 2s2p23s, 2s2p23p,
2s2p23d, 2s2p24s, 2s2p24p, 2s2p24d, 2s2p25p,
2s2p25d, 2s2p26p},

and the λnl for the opt case:
7In this context, a gauge refers to the specific operator that is used to calculate the electric

matrix elements. Refer to equations 2.24–2.26
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Ion 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f

Fe7+ 1.362 1.118 1.066 1.123 1.111 1.116 1.123 1.111 1.116 1.116

Fe20+ 1.362 1.399 1.396 1.399 1.396 1.000 1.399 1.396 1.000 1.000

These λnl values may be slightly different from those in the final adf54 that
eventually enters central ADAS because the analysis that follows was performed
before some final tweaks of the λnl optimisation work. These recent modifica-
tions do alter the atomic structures slightly, but they do not change the gross
conclusions of the ions that are investigated here as case studies.

2.4.1 δk Figure of Merit

It was briefly mentioned that the variation in radiative data caused by using dif-
ferent gauges can be an effective figure of merit for atomic structure. Considering
only dipole radiative transitions in the nonrelativistic limit for the moment, there
are three gauges that the electric dipole matrix elements are commonly calculated
in: 〈

γJM

∣∣∣∣∣∑
i

ri

∣∣∣∣∣ γ′J ′M ′
〉
, (2.24)

2(E ′ − E)−1

〈
γJM

∣∣∣∣∣∑
i

∇i

∣∣∣∣∣ γ′J ′M ′
〉
, (2.25)

2(E ′ − E)−2

〈
γJM

∣∣∣∣∣∑
i

∇iV

∣∣∣∣∣ γ′J ′M ′
〉
, (2.26)

defining the length, velocity, and acceleration gauges, respectively. In these equa-
tions, E and E ′ are the energies (Ryd) of the states γJM and γ′J ′M ′, V is the
central-field potential energy (Ryd), and i indexes the electrons in the atom. In
theory, the results of each gauge should be identical to each other; that is to say,
the dipole matrix element is gauge invariant. However, when approximate wave
functions are used, which is always the case for multi-electron atoms, differences
will arise between the gauge results: the derivatives involved in the velocity 2.25
and acceleration 2.26 gauges cause the most worry. But this is not simply an issue
of the numeric precision of the wave function representation, and one can appreci-
ate this by considering the construction of the electric dipole transition operator,
M e

LM , which is used in forming the dipole matrix elements. The complete details
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of forming this operator from the electromagnetic potentials whilst incorporating
the generality of gauge transformations are mathematically involved and outside
the scope of this thesis (see Grant [52, 53]), but the broad-brush argument can
be distilled as follows. Making a quick transition to relativistic mechanics, the
transition operator, M e

LM , corresponding to transverse oscillations of the electro-
magnetic field has the same selection rules as the longitudinal transition operator,
M l

LM , so the most general form must be a coherent linear combination:

M e
LM(GL) = M e

LM +GLM
l
LM . (2.27)

The arbitrary coefficient, GL, effectively selects the gauge: GL = 0 for L = 1

corresponds to the Coulomb gauge, which yields the velocity operator in the non-
relativistic limit, and GL =

√
(L+ 1)/L corresponds to the Babushkin gauge,

which yields the length operator in the nonrelativistic limit. For the gauge in-
variance of this expression to hold, M l

LM must vanish, and it can be shown that

M l
LM ∝ ΦLM

(
∂ρ

∂t
+ ∇ · j

)
, (2.28)

where ΦLM is the scalar multipole potential, and ρ and j are the electron charge
density and current. The expression in brackets on the right side of 2.28 is
identified as one side of the continuity equation, ∂ρ/∂t + ∇ · j ≡ 0. It is the
adherence of the continuity equation that is not guaranteed for approximate,
multi-electron wave functions derived from variational or perturbation methods:
although charge conservation is built into the wave equation, the non-local nature
of commonly used potentials means that charge conservation becomes something
much more complicated.

Given this context, there has been ample discussion in the literature about
the correct gauge to use in the calculation of the electric dipole matrix elements:
contributions from Starace and Grant dominate [52, 54–56], but it is Kobe [57]
who provides the final solution. Hata and Grant [58] produce a condensed expla-
nation: whatever gauge is selected for calculation of the dipole matrix elements, it
must match the gauge used in producing the wave function basis and interaction
potentials. This seems to fly in the face of gauge invariance, but arises because
one is typically not at liberty to select the phase factors of the wave function basis
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and because approximate wave functions are in use. Yet, this misses the aim of
the present investigation: the main concern is to obtain some measure of atomic
structure quality with which a comparison of the opt and def λnl optimisation
strategies can be implemented. Rewinding slightly, it will be recalled that the
reason for a lack of gauge invariance in equation 2.27 was the violation of the
continuity equation (∂ρ/∂t + ∇ · j 6= 0), which is only avoided by exact wave
functions. Therefore, approximate wave functions that more closely obey the con-
tinuity equation will exhibit a reduced dependence upon M l

LM in equation 2.27
and so approach the gauge invariance of the exact wave functions. It is in this
sense that an equalisation of the various gauge results indicates a convergence of
the wave functions upon the exact forms that they approximate, and it is from
this that a figure of merit can be derived.

Nevertheless, approximate gauge invariance is not a perfect measure, as Grant [53]
states: “It is now generally accepted that a weak dependence of radiation ma-
trix elements on GL [in equation 2.27] is one indicator of wave function quality
in many-electron systems, although it is insufficient on its own to guarantee the
physical correctness of numerical radiative transition rates.” In other words, an
agreement between the radiative emission measures calculated in different gauges
does not guarantee that these values will be close to actual observations. This
is similar in many respects to the concepts of accuracy versus precision, which is
synonymous with “wave function quality” here, yet it would be incorrect to claim
that approximate gauge invariance offers no indication of atomic structure accu-
racy. Rather, it is most correct to state that the approximate gauge equalisation
described above is a necessary, but not sufficient, condition for the convergence of
approximate wave functions upon their exact, physically accurate forms. There-
fore, any figure of merit derived from the concept of gauge invariance should be
used in conjunction with other independent benchmarks if one is seeking to gain
an absolute measure of atomic structure quality: this is the motivation for the
additional atomic structure figure of merit defined in section 2.4.2. Otherwise,
when used on its own, a gauge invariance figure of merit is best suited for relative
comparisons: e.g. providing evidence for whether one calculation is better than
another. It is this interpretation upon which the figure of merit in this section is
to be based.
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There still remains the question of which gauges should be considered, since
theoretically there are an infinite number from which to choose. In practice, only
the length, velocity, and acceleration gauges introduced in equations 2.24–2.26 are
used. The acceleration gauge is widely acknowledged to be of dubious accuracy
because it weights the integrand towards small-r, the region where the wave
function is least well known due to approximations for many-electron interactions.
As a result, this gauge is rarely ever considered in the literature let alone computed
as an output from computer codes, so it will be ignored for the remainder of
this section. This leaves the length and velocity gauges as the ingredients for
measuring gauge invariance.

The deviation between the length and velocity gauges has been quantified
with the following function:

δk =
|gf (len)

ij − gf (vel)
ij |

max(gf
(len)
ij , gf

(vel)
ij )

, (2.29)

where gfij is the weighted oscillator strength for transition i → j, (len) and
(vel) denote the length and velocity gauges respectively, and k is an index for
the transitions with one-to-one mapping, k 7→ ij. The (len) and (vel) forms of
gfij are both available outputs from autos for electric dipole transitions. A
significant flaw of this measure is that it treats all transitions equally, whereas
in atomic population modelling the behaviour of a particular system is almost
always determined by a small group of the strongest dipole transitions: certainly
this is the case for radiated power. The most obvious solution is to attach weight
factors, wk, to each δk, and a suitable definition for the present purposes is

wk =
A

(opt)
ij + A

(def)
ij

2
, (2.30)

where Aij is the spontaneous transition probability (s−1). An average of the Aij
from the def and opt cases ensures that a symmetric weight factor is applied to
the respective δk from each case: namely, the wk applied to δ(def)

k will be identical
to the wk for δ(opt)

k . This simplifies the statistical analysis to follow.
Weighted population statistics of the δk can now be calculated; these are direct
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Table 2.7: Weighted statistics of δk for the E1 transitions of K-like Fe7+. The descriptor
“all” denotes that all possible E1 transitions have been considered, while “ground” denotes that
only the E1 transitions terminating at the ground level have been included. N represents the
number of transitions. The p-value is the critical p-value from the statistical equivalence test;
see text for more details.

Description δ̄w σ2
w σw

def, all 0.459 662 0.016 634 0.128 973
opt, all 0.408 749 0.009 810 0.099 045
def, ground 0.482 142 0.016 819 0.129 687
opt, ground 0.420 755 0.009 018 0.094 964

Nall = 586
Nground = 32
p(crit.) = 0.611 880

Table 2.8: Weighted statistics of δk for the E1 transitions of C-like Fe20+. The descriptor
“all” denotes that all possible E1 transitions have been considered, while “ground” denotes that
only the E1 transitions terminating at the ground level have been included. N represents the
number of transitions. The p-value is the critical p-value from the statistical equivalence test;
see text for more details.

Description δ̄w σ2
w σw

def, all 0.066 396 0.007 920 0.088 997
opt, all 0.097 825 0.011 901 0.109 091
def, ground 0.084 806 0.013 743 0.117 230
opt, ground 0.062 200 0.008 568 0.092 561

Nall = 38 135
Nground = 77
p(crit.) = 9.5× 10−211

analogues of the usual statistics:

δ̄w =

∑
k wkδk∑
k wk

=
∑
k

w′kδk, (2.31)

σ2
w =

∑
k wk(δk − δ̄w)2∑

k wk
=
∑
k

w′k(δk − δ̄w)2, (2.32)

where w′k = wk/
∑

mwm are the normalised weight factors. The δk for the electric
dipole (E1) transitions of Fe7+ and Fe20+ have been calculated, and the weighted
statistics are presented in tables 2.7 and 2.8.

For Fe7+, table 2.7 shows a definite differentiation between the def and opt
cases. The weighted mean, δ̄w, is lower for the opt case than for the def case.
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Referring to equations 2.29 and 2.31, a small δ̄w is a direct indication that the
difference between the length and velocity gauge values of gfij is on average
small, and because this is a weighted mean, this difference must be small for the
strongest transitions also. Again, this is a proxy for wave function and overall
structure quality, hinting that some improvement has been made by our novel λnl
optimisation strategy.

But the statistical significance of this result would ostensibly be invalidated
by the sizes of the weighted standard deviations, σw.8 Both means are within
1σ deviation of each other; however, this simplistic approach neglects critical
information relating the two cases and is overly conservative even if each δk dis-
tribution was treated independently. The def and opt data sets are correlated
perfectly by transition, k 7→ ij, so this is an instance of paired data. To determine
if the means of each sample differ by a statistically significant amount, the differ-
ence between each paired value, Dk = δ

(def)
k − δ(opt)k , is assessed, reducing this to

a problem of a single randomly distributed variable. In keeping with prioritising
the important transitions, it is the weighted mean of the Dk sample distribution,
D̄w, that will be tested, with a confirmed hypothesis of D̄w = 0 indicating that
the δ(opt)

k and δ
(def)
k distributions do not differ substantially. Oppositely, a con-

firmed hypothesis of D̄w 6= 0 would indicate that the two δk distributions are
statistically different, and it is the main objective of this section to determine if
the new λnl optimisation strategy (opt) has garnered improvements compared to
the default (def ) case.

There are two approaches for constructing a statistical hypothesis test for
such a scenario. First, one can assume that the weighted mean of the paired
differences population, µD, is zero (H0 : µD = 0) and test for the significance of
the this quantity being different from zero (Ha : µD 6= 0). In practice, this involves
the familiar two-sided Student’s t-test. Second, one starts by instead assuming
that µD is substantially different from zero (H0 : µD 6= 0) and then test for the
significance of it being equivalent to zero (Ha : µD = 0)—this is what is known
as equivalence testing. Although this approach is simply the logical negation of
the first, its implementation is notably different and more suited to the current

8The weighted standard deviation does not have a unique definition, and so its interpretation
as the definitive measure of deviation about the weighted mean is somewhat uncertain. A full
discussion of alternatives is outside the current scope.
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scenario. One can only appreciate why equivalence testing is more appropriate by
describing the implementation itself. There is no single distribution that applies
to µD 6= 0, so to construct a test statistic for the null hypothesis, H0, one must
quantify what is meant by substantially different. Setting a tolerance, ∆, within
which one would expect µD to lie is the most straightforward, and the hypotheses
become

H0 : |µD| > ∆, Ha : |µD| < ∆. (2.33)

The test of Ha is then a compound of two, one-sided Student’s t-tests:[
Ft,n−1

(
t1 =

D̄w −∆

σD,w/
√
n

)
< α

]
∧
[
1− Ft,n−1

(
t2 =

D̄w + ∆

σD,w/
√
n

)
< α

]
, (2.34)

where Ft,n−1(x) =
∫ x
−∞ ft,n−1(u)du is the cumulative t-distribution function with

n−1 degrees of freedom, and α is the significance level, set to 0.05 for the present
testing. Thus, the two location-scaled t-distributions are centred respectively at
the boundaries, ∆ and −∆, and the “sidedness” of the tests is inwards towards
zero: i.e. the upper tail of the t-distribution centred at −∆ and the lower tail of
the t-distribution centred at ∆. The critical p-value for the overall equivalence
test is defined as follows. If both of the constituent conditions in equation 2.34 are
false, then the critical p-value is the lesser of the two p-values from the one-sided
t-tests, otherwise it is the greater of the two p-values. In other words, whichever
component p-value is closest to causing the overall equivalence test to either fail
or succeed.

Why is the second approach of equivalence testing superior to the single two-
sided t-test? For many of the ions to be presented, the sample sizes, n, are
large, causing the standard error (σD,w/

√
n) to be very small. Consequently,

the location-scaled t-distributions are narrowly peaked, and setting a significance
level, α, as a determinant of proximity is no longer meaningful. Introducing
the ∆ tolerance in equivalence testing affords a higher degree of flexibility in
determining what “close enough” means while still maintaining the rigour of a
statistical hypothesis test. The magnitude of ∆ depends upon the variable being
tested, and for the present purposes, it is set to 0.05: since δk is effectively a
relative error, see equation 2.29, and D̄w is the weighted mean of the arithmetic
difference between the two cases, ∆ = 0.05 roughly corresponds to an allowance
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of a 5% error in either direction on average.
Returning to Fe7+ and the results of table 2.7, the large p(crit.)-value, which

exceeds the selected significance level, α = 0.05, indicates that the null hypothesis
of the equivalence test must be accepted: the assumption that the weighted
means, δ̄(def)w and δ̄(opt)w , are significantly different is correct, and it is very unlikely
the means are equivalent. Furthermore, this provides strong evidence for the
initial suspicion that the opt case is better than the def case from the perspective
of atomic structure; it can be concluded that δ̄(opt)w is smaller than δ̄(def)w .

On the other hand, the results for Fe20+ in table 2.8 display the opposite. The
weighted means appear to be quite close, which is confirmed by the diminutive
p(crit.)-value that is well below 0.05: the null hypothesis of differing δ̄w must be
rejected, and the alternative hypothesis of equivalent δ̄w accepted. Statistically
speaking, then, there is no difference between the def and opt case for Fe20+.
Another notable observation is that in addition to the weighted means being
equivalent, they are both smaller in magnitude than in the Fe7+ case. Therefore,
it can be suggested that not only has the structure difference between the def and
opt cases been eliminated but also much of the absolute structure error. However,
as mentioned above, one cannot definitively comment on physical correctness
solely from the evidential basis of gauge invariance of radiative matrix elements.
Physical arguments supporting the increased accuracy of highly ionized cases,
like Fe20+, are made towards the end of this section while referencing figure 2.13,
but inevitably, a final conclusion must be delayed until supplementary analysis
in section 2.4.2.

Another lens by which to assess the gauge variation across optimisation cases
is by observing the cumulative distribution of the δk. Again, it is critical to
account for the relative importance of transitions, and this can be done by par-
titioning the cumulative distributions into bands based on the weighting factors
from equation 2.30. The selection of the banding is somewhat arbitrary, but the
following three categories tend to produce coherent pictures: wk > wmax/102 for
the strongest transitions, wmax/103 < wk < wmax/102 for intermediate strength
transitions, and wk < wmax/103 for the weakest transitions. The cumulative
distributions for Fe7+ are displayed in figures 2.9 and 2.10, and for Fe20+ in fig-
ures 2.11 and 2.12. When interpreting these plots, there is one critical feature
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that must be determined: where is the nonstationary inflexion point of the cu-
mulative distribution curve located? The reason being that the derivative of the
cumulative distribution curve yields the actual δk distribution, and so a nonsta-
tionary inflexion point will yield the maximum derivative and hence peak of the
δk distribution. For normally distributed δk distributions, an assumption which
underpins most of this analysis and generally does hold, the peak of the distribu-
tion also corresponds to the arithmetic mean. The cumulative distribution has
been used instead of the more direct distribution itself because it improves the
ability to distinguish between multiple cases on a single plot: overlapping nor-
mal distributions are harder to differentiate between than their corresponding “S”
shaped cumulative distributions.

The conclusions from these plots are similar to those obtained from the
weighted statistics, as should be expected. Figures 2.9 and 2.10 for Fe7+ show
a clear distinction between the opt and def cases in the top two panes, which
correspond to the top two weighting bands and so encompass wk > wmax/103.
There is little notable difference between the ground E1 and all E1 transition
categories. The inflexion point of the δ(opt)k cumulative distribution is located
at a lower δk value than that of δ(def)k . This is direct visual confirmation of the
weighted statistics analysis that the important dipole transitions tend to have
lower δk values on average for the opt case than for the def case. Moreover, these
inflexion points are located around δk = 0.4, in accord with the values of table 2.7.
However, the bottom pane of these figures does not match this behaviour: the
opt and def cumulative distributions lie nearly on top of each other and there
is no difference of the inflexion point. This is not a problem because this pane
corresponds to the weakest transitions, wk < wmax/103, so these transitions af-
fect a minimal if not negligible impact upon the weighted statistics. Regardless,
it is still worthwhile showing this weighting band to monitor how the weakest
transitions are behaving.

Once again, Fe20+ provides an example where the optimisation strategy has
not improved the structure noticeably, although this is not so apparent from
figures 2.11 and 2.12. The symmetric “S” shape is absent from the cumulative
distributions in both figures, indicating the underlying distributions are no longer
truly normal but skewed. Thus, the the mode of the underlying distribution (i.e.
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Figure 2.9: Cumulative distribution of δk for all dipole transitions of K-like Fe7+. The
histograms of the cumulative distributions have been partitioned by weighting factor values, wk
defined in equation 2.30, and the title of each legend defines the range of weighting factor values
applicable to the associated δk values for that histogram. For example, the top pane shows the
cumulative distribution composed of all δk values that have wk > wmax/100, where wmax is the
largest weighting factor of all transitions considered. The weighting factors are indexed with
i ≡ k. A cumulative distribution is shown for each λnl case: colour lines for opt and black lines
for def.
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Figure 2.10: Cumulative distribution of δk for dipole transitions to the ground state of K-like
Fe7+. See caption of figure 2.9 for description of plots.
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Figure 2.11: Cumulative distribution of δk for all dipole transitions of C-like Fe20+. See
caption of figure 2.9 for description of plots.
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Figure 2.12: Cumulative distribution of δk for dipole transitions to the ground state of C-like
Fe20+. See caption of figure 2.9 for description of plots.
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the steepest slope) may no longer be synonymous with the mean. Even so, it
is still useful to observe how the modes of these distributions compare. The top
pane of figure 2.11, corresponding to wk > wmax/102, show essentially overlapping
steepest slope points very near to δk = 0, and the cumulative distributions are
only slightly discrepant at higher δk. This is in line with the findings from the
weighted statistical analysis: both δ̄w are close to zero and statistically equivalent.

The preceding two case studies of Fe7+ and Fe20+ have proved useful for detail-
ing the mechanics of the δk figure of merit analysis and also provide archetypes
for the two possible outcomes when comparing the opt and def cases. But as
with most work in this study and ADAS, generality is sought, so isonuclear and
isoelectronic studies must be performed. Weighted statistics and cumulative dis-
tribution plots have been generated for a number of ions in the iron isonuclear
sequence to complete the picture that was initiated with the preceding two ions.
Drawing from these examples, the primary outputs from the statistical analysis
are the weighted means, δ̄(opt)w and δ̄(def)w , and the corresponding equivalence test,
all conducive to graphical representation; the cumulative distribution histograms,
however useful, provide congruent information and are not space efficient, so they
have been omitted. Results have also been generated for the argon isonuclear se-
quence, an element of particular interest for Chapter 5.

Figure 2.13 assembles the results of the weighted statistical analysis for the
iron isonuclear sequence. A clear trend is observable. Iron ions below approxi-
mately 13-times ionised have statistically significant lower δ̄(opt)w than δ̄(def)w , signi-
fying the new λnl optimisation strategy, opt, has improved the atomic structure of
all ions in this regime. Conversely, above 13-times ionised the δ̄w’s are equivalent
according to the equivalence test: the opt case does not offer an improvement
over def. Moreover, there is an overall trend of decreasing δ̄w with increasing
ionisation stage for both cases. All of these trends can be explained by the same
physical reason. The λnl are part of the TFDA potential used in the calcula-
tion of the Hamiltonian in autos, equations 2.5–2.7. The purpose of the TFDA
potential is to allow for a initial approximation of Ψ to be obtained that still
accounts for the mutual repulsion of electrons, and the λnl enable flexibility in
bending the nl-orbitals into more optimum shapes that account for this repul-
sion. As the ion charge increases and the number of electrons decrease, the effects



CHAPTER 2. BASELINE ATOMIC DATA 66

0 5 10 15 20 25
Ion Charge, z+

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

W
ei
gh
te
d
S
am

pl
e
M
ea
n,
δ̄ w

Ha: |µD| < ∆

def
opt

Ne-like

Ar-like

Figure 2.13: δ̄(opt)w , δ̄(def)w , and corresponding equivalence test along the Fe isonuclear sequence.
The filled yellow boxes around paired δ̄w points indicate that the alternative hypothesis (Ha :

|µD| < ∆) is accepted at a significance of α = 0.05, and so δ̄(def)w and δ̄(opt)w are equivalent for
the ion under question.

of electron repulsion and exchange decrease, becoming small perturbations, and
therefore the orbitals that compose Ψ more closely resemble hydrogenic ones.
Consequently, the need to “bend” the orbital basis functions and indeed the need
of the TFDA potential itself is diminished; however, this does not mean that the
λnl determined through the optimisation strategy will approach unity for high-z
cases. Indeed, a number of the λnl for iron and argon below are relatively far from
unity in instances where the opt and def cases are statistically equivalent—see
figure 2.8. Rather, high-z cases can be classified as insensitive to the exact values
of λnl, meaning that the variance of these scaling parameters does not influence
the atomic structure much. Here, “high-z” is quantified using the ratio, Z0/N ,
and the cutoff varies depending on the weight classification of the species un-
der consideration; more details will be provided in the future publication of this
work. Overall, this supports the hypothesis that smaller δ̄(def)w and δ̄

(opt)
w values

for higher-z species indicates more accurate structures have been obtained, but
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corroborating evidence from proceeding sections is required before definitively
concluding on the matter.
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Figure 2.14: δ̄
(opt)
w , δ̄(def)w , and corresponding equivalence test along the argon (Ar) isonu-

clear sequence. The filled yellow boxes around paired δ̄w points indicate that the alternative
hypothesis (Ha : |µD| < ∆) is accepted at a significance of α = 0.05, and so δ̄(def)w and δ̄(opt)w are
equivalent for the ion under question.

Similar characteristics are observed for the two δ̄w results along the argon
isonuclear sequence presented in figure 2.14. For z ≥ 7, the δ̄w’s of the two
cases are statistically equivalent, and vice versa for z < 7. This provides strong
evidence that the new baseline adf04 files for argon used in Chapter 5 are an
improvement upon the previous autos baseline. Further analyses of isonuclear
sequences will be made in a future publication and are omitted here for brevity:
the primary purpose of this subsection was to establish a viable figure of merit to
judge the new λnl optimisation strategy, not investigate a broad range of specific
examples.
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2.4.2 ∆rE Figure of Merit

It was mentioned in the previous section that the δk figure of merit, which is
based upon the principle of gauge invariance, should be supported by additional
performance metrics when assessing atomic structure accuracy. To recapitulate,
a minimal dependence of the radiative matrix elements upon the gauge of calcu-
lation is an indicator of wave function quality, but this alone does not ensure the
physical accuracy of the radiative transition rates or atomic structure. A figure
of merit that more directly relates to the observables of the atomic structure is
therefore warranted. Moreover, the δk figure of merit cannot directly assess ef-
fects upon radiated power from the atomic system under examination, and so a
benchmark that transparently relates to the power measures is also desirable.

There are two atomic structure observables that match these criteria: energy
eigenvalues of the atomic states, Ei, and radiative transition rates between these
states, e.g. Ai→j, gfij, and Sij. A figure of merit based on the Ei is preferable for
the present circumstances because it more directly influences the radiated power.
This can be appreciated by considering the low density limit of the ground state
PLT ,

lim
Ne→0

PLT,1 =
∑
i

(∆E1i) q
(e)
1→i (2.35)

Of course, the EIE rate coefficient, q(e)
1→i, does have an indirect dependence upon

the radiative transition rate, viz. Gaunt factor representations, and the radiative
transition rates will influence the finite density atomic population model, but all
of this adds an unnecessary layer of complexity. Moreover, transition energies,
and hence Ei, are much simpler and less ambiguous to measure experimentally
than radiative transition rates. Consequently, measured values of Ei are much
more abundant and possess lesser uncertainties. This is a valuable trait for further
validation, even though these experimental values will not be used as the reference
in the systematic analysis to follow; the reasons for this are given directly below.

Contrary to the δk analysis, the theory behind an eigenenergy figure of merit is
relatively simple: the eigenenergies of the calculation under consideration should
be as close as possible to whatever reference eigenenergies have been selected.
For the present purposes of generating an improved baseline, evidence of broad
agreement amongst all calculated eigenenergies is sought since it is a general com-
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parison of the def and opt cases that is of interest. Unlike studies focussing on
spectroscopic applications, the aim is not to determine whether a small subset of
transition energies achieve the best possible accuracy. It then remains to quantify
what “close” means for eigenenergies and to specify which values are to be used
as a reference. It has been stated that the standard reference for atomic data
within ADAS is the NIST Atomic Spectra Database [59] and that although it is
expansive, there is no guarantee of coverage for a given ion. Moreover, even the
data present for an arbitrary ion can be sparse in terms of energy levels reported,
and this can complicate the task of energy level or term matching. The most con-
venient solution is to use the eigenenergies produced from another computer code
as a reference because then the configuration expansion can be matched to the
present autos calculations, guaranteeing completeness and greatly simplifying
the task of term and level mapping.

Cowan is the obvious option for reference: it is robust, it has an large ex-
perience base within ADAS, and it constitutes the previous ADAS baseline, fa-
cilitating a vital comparison. Admittedly, there is a glaring potential issue: how
can the physical correctness of cowan be guaranteed so that it merits use as
a reference source? In other words, might differences observed between cowan

and autos indicate that cowan is in error rather than the inverse? The honest
answer is that such a guarantee cannot be made, but it is possible to suggest
that cowan may offer improved physical accuracy of eigenenergies over autos.
Although the VTFDA potential with λnl optimisation offers a reliable approach to
atomic structure calculations, it tends to be outperformed by the variational HF
method available in cowan, and this proposition is further substantiated in sec-
tion 2.2.1. Furthermore, first-hand experience in the ADAS community has been
that cowan comes closer to reproducing NIST eigenenergies than does autos.
These comments justify the use of cowan as a reference source; however, it will
be important to periodically benchmark results with those available from NIST
to ensure improved accuracy is actually being achieved.

To measure the accuracy of eigenenergies, a relative difference formula is
adopted,

∆rEi,(case) =
Ei,(case) − Ei,Cowan

Ei,Cowan
, (2.36)

where (case) is either (opt) or (def) and i indexes the atomic eigenstates to which



CHAPTER 2. BASELINE ATOMIC DATA 70

the eigenenergies belong. The resolution of the eigenstates for which these differ-
ences are calculated is open to selection. For the following analysis, LS -coupling
is used primarily to reduce the number of eigenenergies that must be considered
and because analysing the fine structure is excessive for the present goals. In
addition, LS terms simplify the task of mapping the eigenstates between the au-

tos and cowan calculations, and although this seems like a somewhat technical
note, the step of mapping eigenstates is absolutely essential for meaningful rela-
tive differences to be calculated. A development version of the offline ADAS code,
ADAS7#5, was used to perform the term matching, but further developments
are required before robust performance and reliability can be guaranteed for gen-
eral consumption. Moreover, this is one of the components that will need to be
included in a complete implementation of medium-weight GCR so that matching
to experimental NIST values can be performed—refer to figure 1.2.

Like in the previous section 2.4.1, a complete statistical analysis of the ∆rEi

distribution could be performed to determine whether the opt and def cases
differ substantially according to this quantity. Since the relative differences can
be negative, an ordinary mean of |∆rEi| would be appropriate or perhaps a
mean weighted by the radiative transition rate of the corresponding eigenstate
to the ground state. However, at the time of writing, this is envisioned as a
future implementation task that is not central to the present conclusions; a quick
confirmation of the δk figure of merit results is sufficient.

The ∆rEi values for both opt and def cases can be readily presented in the
form of a bar chart on a per ion basis, and this has been done for the example ions
from section 2.4.1, Fe7+ and Fe20+, in figures 2.15 and 2.16, respectively. Both
figures appear to support the conclusions of the δk analysis. For Fe7+, figure 2.15
plainly shows an improvement of the term eigenenergies of the opt case over the
def case, and this is true relative to both cowan and NIST reference values. The
opt term energies are all within 2% of their cowan counterparts (unfilled blue
bars), while the def term energies have relative errors (light green bars) starting
at approximately 8% for i = 2 and decreasing linearly to about 2% by i = 31. The
sparse ∆rEi values relative to NIST are all below 6% for opt whereas the opposite
is true in the def case. These observations corroborate the conclusion that the
new optimisation strategy of λnl has resulted in a measurable improvement of the
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atomic structure of Fe7+. Of particular note is that all of the def ∆rEi values are
positive while the opt values are more equally distributed between the positive
and negative ranges. This indicates a systematic error is present in the def case,
and the absence of this error in the opt case is revealing of the physical reasons for
why this new strategy is successful. Determining the source of the systematic error
requires recalling the comparison made between the atomic structure calculations
of autos and cowan in section 2.2.1. Table 2.3 summarises this comparison and
dictates three possible sources of difference between the codes. CI effects do not
factor into this discussion because the same configuration expansion is used by
all codes and cases.
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Figure 2.15: Bar chart of relative energy difference values, ∆rEi, versus def, energy-ordered
LS term index, i, for Fe7+.

First, for the baseline processing relevant to this thesis, the Hamiltonian op-
erator used in autos includes two-body relativistic terms and further relativistic
considerations are made: consideration of the small component of the wave func-
tion, inclusion of the Breit interaction, and QED corrections. Cowan also uses
the Breit-Pauli Hamiltonian but does not include these additional relativistic
corrections. autos was run in def mode but without its additional relativistic
settings so as to match the relativistic approach of cowan in order to determine
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whether this might be a source of systematic error. The resulting relative errors
were on the order of 10−4, which supports the position that additional relativistic
corrections are not influential in this instance.

Second, cowan includes an electron correlation correction to the configuration
average energies while autos does not. The correlation correction has a weak
dependence on the specific configuration to which it is applied, so in principle it
can affect the relative term and level energies calculated for an atom. However,
this effect is truly minor, producing approximately a half of a percent correction
to the relative energies for Fe7+. So again, this cannot account for the systematic
difference observed in figure 2.15. The true role of the correlation correction is
obtaining better agreement of the absolute eigenenergies, and it can primarily be
viewed as a shift applied to all of the eigenenergies from a calculation.

Thirdly, the two codes differ in their approach for solving the radial portion
of the Shrödinger equation. With the previous two options eliminated, this then
must be the source of the systematic error present in the def case, an unsurpris-
ing fact given that the opt case does not exhibit such systematic errors and the
only variation between the two is the optimisation of the λnl—i.e. a variation in
the solution of the radial problem. The task of answering why a systematic error
is present for the def ∆rEi and what this indicates about our λnl optimisation
strategy effectively reduces to a comparison of the potential energy terms in the
radial equations and the solution procedures as per table 2.3 and the subsuming
section 2.2.1. Briefly, the HF equations used in cowan minimise the configura-
tion average energies out of necessity because the equations are derived from the
variational principle, and electron repulsion and exchange are accounted for in a
central-field, spherically averaged model of the atom. In contrast, autos min-
imises a weighted sum of term energies by varying the λnl, and the energies are
derived from a set of homogeneous radial equations (equation 2.1) that contain
VTFDA. As noted in section 2.2.1, the TFDA atomic potential is a cruder approx-
imation of mutual electron repulsion and exchange than the inherent terms that
arise in the HF equations, and one must vary the λnl to arrive at better solutions.

It is in this context that the systematic error of the def ∆rEi can be under-
stood. Setting all of the λnl to a fixed value, unity or otherwise, eschews the
determination of an optimised solution, so in all likelihood a complete consid-
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eration of electron repulsion and exchange is neglected. There is of course the
possibility that the optimised solution will also correspond to all λnl = 1, and
this can be valid under circumstances to be explored shortly, but for the present
example of Fe7+, this is emphatically not the case. Rather, one is led to the
conclusion that the systematic error present in the def case relative to cowan

is due to an improper treatment of electron repulsion and exchange, which is a
direct result of λnl = 1 yielding a poor description from VTFDA in this instance.
And further, because the def autos eigenenergies are systematically larger than
the cowan ones, indicated by the positive def ∆rEi values in figure 2.15, it must
be deduced that VTFDA with λnl = 1 overestimates the electron repulsion and
exchange effects. The exchange interaction of fermions manifests as an effective
repulsion between the electrons, and hence contributes positively to the potential
energy of the atomic states, just like the electrostatic Coulomb repulsion does. A
corollary of the above is that the λnl from the opt case must produce a VTFDA that
better accounts for electron exchange and mutual repulsion; this is the fundamen-
tal physical reason behind the initial observation that the new λnl optimisation
strategy has improved the atomic eigenenergies of Fe7+.

Another interesting observation of figure 2.15 is that the def case has a few
anomalous upward spikes deviating from the linear downward trend, and the
terms to which these relative error spikes belong have been labelled. The com-
mon feature to each of these spikes is that the configurations involve a closed
3p-shell with a 4l orbital on top. All of the other terms belong to the configu-
ration 3p54s2. Why then does the def case perform comparatively poorly for a
closed versus open 3p-subshell and the opt case not? Following the reasoning from
the systematic error investigation above, the cause of the present phenomenon
must too be attributed to some aspect of the λnl optimisation: no other differ-
ences between the codes are significant in this instance and the only variation
between the opt and def cases is the λnl values. The pivotal observation is that
the electric potential experienced by an electron in a closed subshell is notably
different than when the subshell is open, and so the orbital that describes this
electron, here the 3p, must also be different between the closed and open subshell
configurations. The HF procedure naturally accounts for this because there is a
separate set of equations for each configuration, and so a separate set of radial
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orbital components, Pnl(r), specific to each configuration. On the other hand,
autos produces a single set of Pnl(r) and corresponding λnl, and both open and
closed subshell configurations are composed from these. The variation of the
λnl assists in reconciling the disparity that orbitals from different configurations
would exhibit, producing a single set of orbitals that are effectively an optimal
balance of the behaviours across all configurations. Moreover, the new λnl opti-
misation strategy inherently considers the critical behaviour of closed (sub)shells,
and this is further substantiated by the lack of any disparity between the closed
and open 3p-subshell configurations for the opt case in figure 2.15. In the ab-
sence of such optimisation, like in the def case, it is highly unlikely that a balance
is achieved, meaning pronounced differences between closed and open subshells
should be expected, explaining the spikes in figure 2.15.
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Figure 2.16: Bar chart of relative energy difference values, ∆rEi, versus def, energy-ordered
LS term index, i, for Fe20+.

Dissimilarly, figure 2.16 displays a high level of agreement amongst all the
sources of term energies for Fe20+. The ∆rEi relative to cowan (bars in figure)
are mostly under 2% except for the terms in the ground configuration (i < 10)
which reach as high as 20% relative error. It is a similar story for the ∆rEi val-
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ues relative to NIST, although marginally better agreement is observed for the
ground configuration terms. Furthermore, both the def and opt cases achieve sim-
ilar ∆rEi values for each term energy relative to either reference source. These
observations suggests that both the opt and def cases provide suitable and phys-
ically correct atomic structures and that the two cases have converged upon each
other. Such conclusions are a direct corroboration of the conclusions from the
δk figure of merit analysis in section 2.4.1: the close δ̄w values and the rejection
of the statistical equivalence test null hypothesis also recommended that the opt
and def cases yielded equivalent structures for Fe20+. Moreover, the suspicion
and delayed conclusion from the δk analysis of Fe20+ can also be resolved. It was
suspected that the small absolute values of the δ̄w might also indicate an im-
proved physical correctness and accuracy of the atomic structure, and the results
of figure 2.16 certainly support this.

The physical reason behind the concord of figure 2.16 is invariably the same as
for the results from the δk analysis in the preceding subsection. Quoting from that
section, “[a]s the ion charge increases and the number of electrons decrease, the
effects of electron repulsion and exchange decrease, becoming small perturbations,
and therefore the orbitals that compose Ψ more closely resemble hydrogenic ones.
Consequently, the need to ‘bend’ the orbital basis functions and indeed the need
of the TFDA potential itself is diminished”. As a result, there is little discernable
need for the variation of the λnl, meaning not only that the opt and def cases
should converge but also that they will converge upon the physically accurate
result.

2.4.3 PLT Figure of Merit

The results of the previous two sections provide convincing evidence that our new
λnl optimisation strategy has yielded measurable improvements to certain facets
of the atomic structures of interest. However, it was asserted at the beginning of
the subsuming section 2.4 that the PLT must also be monitored to ensure amelio-
ration of the impurity radiated power. This, after all, was the original motivation
to search for a λnl optimisation strategy first mentioned in section 2.3.2 and [21];
errors in the autos PLT results were directly attributed to the relatively poor
atomic structure, and so the minimization of the atomic structure error should
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improve the radiated power description as well. But this is not a guarantee. Al-
though the δk and ∆rEi figures of merit measure facets of the atomic structure
that will influence the PLT , viz. energy levels and wave function quality, the
relationships connecting them are complex. Thus, it must be explicitly checked
that an improvement in the atomic structure has also produced improvements in
the PLT and radiated power.

The zero density limit of the PLT , equation 2.35, was used in section 2.4.2
to motivate the use of the energy level differences as a figure of merit, but the
finite density expression is used here in practice:

PLT = P(z)
LT,σ =

∑
j>k

∆EkjAj→kF
(exc)
jσ , (2.37)

where F (exc)
jσ is the effective contributions to the excited populations, j, due to

collisional excitation from the metastables, σ,

F (exc)
jσ = − 1

Ne

O∑
i=1

C −1
ji Ciσ. (2.38)

A complete derivation and description of these quantities is presented in [15]
and [60], and a résumé is provided in Appendix C. Evidently, a population calcu-
lation is required to determine the PLT , and therefore, data for collisional pro-
cesses is needed in addition to the structure calculations analysed above. From a
technical standpoint, little additional information is needed to drive the collision
calculations, but there is a significant increase in computation time. The popu-
lation calculation that yields the PLT s is performed by the ADAS208 code, and
this is done in a simplified form. Only the single ionization stage is considered
with no processes connecting to adjacent stages included; therefore, it is solely
direct collisional and radiative processes amongst the low-lying, highly resolved
ordinary and excited states that are considered. The influence of higher, more
coarsely bundled levels are not condensed and then projected onto this picture,
nor is ionization or recombination considered. This simplified approach is ac-
ceptable for the present analysis because the detailed atomic calculations being
compared affect only these same low-lying, highly resolved states of the atom.
The other neglected processes involved in a more complex population calculation
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can be seen as a constant external variable that will not alter the findings of the
present relative comparison.

Like in the previous section, the question of identifying a reference source of
data must be resolved before a meaningful comparison of the opt and def case
PLT s can be performed. Once again, cowan recommends itself as the most
suitable candidate primarily because it is was the source of the fundamental data
used in the context of the ADAS808 code, which automates the preparation of
the driver datasets required for large-scale, off-line production of ADAS baseline
atomic data for complex atoms [15]. Moreover, as stated before, the goal is
to prove that the replacement of cowan by autos as the source of baseline
fundamental atomic data is warranted. To do this, it must be shown that autos

can reproduce the previous baseline PLT results to a satisfactory degree. Once
this is achieved, one can be more confident that the advantage of spin-changing
transitions introduced by using autos with DW scattering calculations is not
compromised by any atomic structure errors.

The above implies a need to compare like with like. Since cowan uses the
PWB approximation for calculating collision quantities, so too should autos

when juxtaposing results from the two. Furthermore, the actual set of levels and
the collisional-radiative processes amongst these levels should also match as much
as possible so that the population models can be unambiguously compared. The
adf04 files, which contain the specific ion atomic data presently under discussion,
must then nearly match in terms of the atomic states and transitions present,
although the numeric values will differ. While this may seem to be a trivial
requirement, the implications can be quite significant, as will be seen in the
following example.

Throughout the antecedent discussion about the figures of merit, the iron
isonuclear sequence has been the test bed for assessing the performance of our
new λnl optimisation strategy, opt. This narrative will now be culminated and
concluded. Fe7+ has provided a consistent example of an atomic system where
the opt case has produced a measurable improvement in the figures of merit, and
figure 2.17 likewise suggests that this is also true for the PLT , although this is
not immediately apparent. Inspecting the default “full” cases where all levels and
transitions have been retained, it would appear that the def result (solid blue
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line) agrees better with cowan (solid black line) than does the opt result (solid
red line). However, autos computes up to the k = 6 order of 2k-pole electric
and magnetic transitions, whereas cowan only includes E1 and E2/M1, and as
a result, there are many more transitions present in the autos adf04 files than
in the cowan one. Typically, these higher order multipoles above E2/M1 are
of little consequence because both the radiative and collisional components of
the transition are relatively weak, but exceptions are possible, especially when
moderate magnitudes of the transition quantities are achieved and previously
unavailable pathways involving metastables states are opened. Indeed, this is
the case here because the reduction of the autos transition set to match that
of cowan (labelled “reduced” in legend of figure) noticeably alters the autos

PLT s. In the opt case of figure 2.17, this action brings the PLT into better
agreement with the cowan result, moving the solid red to the thick-dashed red
line, whereas in the def case it eliminates the agreement, moving the solid blue to
the thick-dashed blue line. Therefore, the agreement initially observed between
the def case using the “full” transition set and cowan is completely fortuitous. It
would appear, then, that this is another confirmation of the new λnl optimisation
strategy, which compounds the conclusions derived from the other figures of merit.
The agreement between the “reduced” opt case PLT and that of cowan proves
that the previous baseline can be reproduced, and concomitantly, any errors due
to atomic structure error have been minimized.

On a physics note, the reason why the presence of additional higher multipole
transitions lowers the PLT in both the opt and def cases can be understood
through examination of the fine-hash, red curve from figure 2.17, labelled “AS
op, reduced + E3”. This curve corresponds to the case where the autos opt
transitions have first been restricted to match those of cowan, and then some of
the most important E3 transitions from those initially excluded have been added
back to the adf04 file. Upon closer scrutiny, it is observed that all but one of these
added transitions involve the metastable level 2, [Ar]3d 2D2.5, and crucially, these
transitions open up a direct path from the set of excited levels, {23, 25, 28, 29},
to this metastable that was previously unavailable. In fact, these excited states
had no direct connections to either of the 2D ground term metastable levels
1 and 2 prior to the inclusion of E3 transitions, and consequently, they were
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Figure 2.17: PLT of the ground state, 1, versus electron temperature, Te, for K-like Fe7+ at
Ne = 1013 cm−3. An expanded description of the curve labels are as follows. The solid black,
“ADAS801 (Cowan)” line is for the cowan result, which only includes E1/M2 transitions, and
is described further in the text. The solid, blue, “AS def, full” line denotes the def case autos
result, i.e. all λnl = 1, with all transitions included, while the dashed, blue, “AS def, reduced”
line is for the same case but with the transitions reduced to match those of cowan. There
are three separate curves for the opt case: the solid, red, “AS opt, full” line denotes the case
where all transitions output by autos are included; the dashed, red, “AS opt, reduced” line
is for the case where the transition set has been restricted to match that of the “ADAS801
(Cowan)” result; and the fine-hash, red, “AS opt, reduced + E3” line is same as the former “AS
opt, reduced” case, but a few influential E3 transitions from high J and L states have been
added (see text for further explanation). Finally, the dot-dashed, green, “R-matrix (Del Zanna
& Badnell)” result represents the R-matrix method calculation of Del Zanna and Badnell [61],
truncated to match the levels of the other calculations.

able to accumulate a fairly substantial population fraction on the order of 10−1

because the cascade from higher states is effectively trapped there. With the
addition of the E3 transitions predominantly to level 2, some of the population
is diverted from the cascade to the ground, thus reducing the PLT associated
with the ground level. At the temperatures and densities under consideration, it
is collisional de-excitation from these excited states that dominates.

In addition, a high-quality R-matrix result (Del Zanna & Badnell) exists for
K-like Fe7+. Across most of the temperature domain, this PLT is is lower than
all of the others, and the “AS opt, full” curve achieves the closes agreement with
it. This further supports the conclusion that the novel λnl optimisation strat-
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egy in combination with the DW approximation has produced a superior adf04
dataset compared to previous baselines. An important caveat is that the levels
in the R-matrix adf04 were truncated to match those in the other calculations of
figure 2.17. Without this step, the comparison would not be meaningful because
there is a substantial contribution to the PLT from these truncated, high-lying
levels that the other files neglect. The reason that this R-matrix result is lower
than the other DW and PWB results is likely because of additional transitions
made possible by CC. Just as with the E3 transitions discussed immediately
above, these additional transitions can divert some of the cascade that would
otherwise terminate at the ground state. However, further investigation is re-
quired to confirm this hypothesis.
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Figure 2.18: PLT of the ground state, 1, versus electron temperature, Te, for C-like Fe20+
at Ne = 1013 cm−3. An expanded description of the curve labels are as follows. The dash-
dot, black, “ADAS801(Cowan)” line is for the cowan PWB result, which only includes E1/M2
transitions and is described further in the text. The solid, blue, “AS def, reduced” line denotes
the def case autos PWB result, i.e. all λnl = 1, with the transitions reduced to match those
of cowan. The dashed, red, “AS opt, reduced” line denotes the opt case autos PWB result
with the transitions reduced to match those of cowan.

On the other hand, figure 2.18 displays a conformity between the Fe20+ PLT s
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of all cases upon matching of the transition sets. Once again, this affirms the
findings from the previous figures of merit: at this higher ionization stage, not
only have the opt and def cases come into accord with each other but also with
cowan. More PLT comparisons along the Fe isonuclear sequence should be
performed, but the process of matching transition sets to cowan is not yet fully
automated and so somewhat time consuming. It is reasonable from this vantage
to predict that the PLT behaviour will be split between the Fe7+ and Fe20+,
just as for the other two figures of merit. Overall, the success of the new λnl

optimisation strategy has been well substantiated by all three figures of merit.



Chapter 3

High-quality, Electron-impact

Excitation Calculations

3.1 Introduction

The content of this section was originally published in [43]. © IOP Publishing.
Reproduced with permission. All rights reserved.

Although the importance of an adf04 baseline dataset was well motivated and
justified in Chapter 2, there still remains an open admission from within that
chapter: higher-quality fundamental atomic data, when available, should almost
always be preferred. Therefore, attention must be devoted to the attainment of
these high-quality data for heavier species if effective GCR modelling is to be
done. Predictably, the production of such data becomes increasingly difficult the
higher one goes in atomic number for two reasons.

First, as the nuclear charge Z0 increases, the relativistic effects in the struc-
ture calculation become non-negligible. Even as low as Z0 ∼ 10, relativistic
corrections to energy levels are noticeable but can be introduced using pertur-
bative approaches like the Breit-Pauli Hamiltonian in autos, thus maintaining
the simplicity of nonrelativistic or semi-relativistic basis functions and algebra.
However, for Z0 & 30, relativistic effects on the wave functions themselves be-
come significant, signalling that perturbative methods are less and less accurate
and that the fully-relativistic Dirac equations should instead be solved. From the
perspective of the radial wave functions, there are four times as many equations

82
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to solve under the Dirac-Hartree-Fock technique as there are under the nonrel-
ativistic Hartree-Fock. Moreover, a single nonrelativistic electron configuration,
in general, corresponds to several relativistic ones as a direct consequence of jj-
coupling, and this means more energies must be determined.

Secondly, it is generally true that the more electrons in a configuration the
more complex will be the atomic structure and collision problem. For instance,
configurations containing partially filled d or f shells can easily spawn in excess
of 50 LS terms and perhaps thrice that in J levels. Isoelectronic sequences where
these class of configurations form the ground complex will quickly reach computer
memory limits when one attempts to include a suitable number of excited con-
figurations in the CI and CC expansions: the Hamiltonian matrix scales as N2

B

where NB is the number of basis functions in the respective coupling scheme. It
is the purpose of this chapter to provide a limited view of the techniques applied
to tackle these unwieldy problems.

Before proceeding, one should recall that the quantities sought are those con-
tained in the adf04 ADAS file format: eigenenergies, A-values, and temperature-
dependent collisional excitation data (Ωij or Υij). It is these quantities that define
the low-lying, highly resolved states of an atom and dominate the population dis-
tribution therein. Furthermore, the collisional excitation rates are those due to
EIE because this process dominates in nearly all spatial and temporal domains
of fusion plasmas, barring cases where charge exchange (CX) or ion-impact ex-
citation (IIE) are active. A detailed explanation is provided in Chapter 4 for
why this is true and where it does not hold in relation to IIE. In the interest
of completeness, the other fundamental data needed for GCR can be found in a
recent work on the ionization balance of the W isonuclear sequence by Pütterich
et al. [62], and some general comments are made in Chapter 5.

The exact methodology selected to generate data for medium to heavy species
will depend on a variety of factors such as computing resources, time available, ac-
cessibility to codes, and the preferences and familiarity of the producer therewith.
Consequently, there is a great deal of variability, and it proves most fruitful to
consider a specific example from which generalizations can be observed. The im-
portance of tungsten (W) as a PFC material has been motivated at the beginning
of Chapter 1, and W44+ is an ion of particular interest for spectral diagnostics
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on JET, being located in the core of the tokamak plasma. Spectral lines in the
soft x-ray region have been observed by the bent crystal spectrometer, KX1 [63].
For W44+, lines in this region are produced by transitions to the 3d-subshell.
In particular, the transitions in the [3d104s2–3d94s24f] and [3d104s2–3d94s4p4d]
transition arrays1 are dominant because the upper levels are populated directly
by excitation from the ground, as summarized in [64]. Lines for these transitions
have been observed experimentally using EBITs [64–67], and theoretical atomic
structure calculations by Fournier [68] and Spencer et al. [69] confirm large os-
cillator strengths. However, based on present literature searches, no collision
calculation or spectral modelling gives a complete consideration to both of these
obviously important, 3d-subshell transition arrays, so the present objective is to
rectify this shortcoming. Two wavelengths in particular appear to be relevant,
corresponding to particular levels within the transition array configurations: 5.76
Å and 5.94 Å.

The criteria for a new calculation of W44+ data are clear. To improve upon
the PWB and DW baseline calculations mentioned in section 2.1.2 and match the
literature, a full CC approach must be used, and due to the high residual charge
of W44+, z = 44, the radiation damping of resonances should also be considered
[70]. Moreover with Z0 = 74, tungsten exceeds the lower bounds for relativis-
tic effects established above, meaning some level of relativistic considerations is
necessary. Above all, the 3d-subshell transitions previously identified must be
included. Prior to the collision calculations presented here, no data in the litera-
ture satisfied all of these conditions. The present work seeks to fill this gap in the
W44+ EIE collision data by executing fully-relativistic, partially-damped, Dirac
R-matrix calculations with Dirac Atomic R-matrix Codes (darc), a code suite
further described in section 3.2.2. These calculations include configurations with
a 3d-hole so that the [3d104s2–3d94s24f] and [3d104s2–3d94s4p4d] transition arrays
are accommodated. autos was also employed in various capacities to support
these calculations, including its DW approach for generating EIE data.

There are previous EIE calculations for W44+ with which to benchmark and
thus assess the strengths and weaknesses of the new calculations. Relativistic

1A transition array consists of all possible radiative transitions between all sublevels of the
two specified configurations.
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R-matrix calculations have been performed by Ballance and Griffin [71] with ef-
fectively the same codes used here, so a comparison with their results is essential.
However, their calculations do not include any configurations involving excitation
from the 3d-subshell, which constitutes a serious shortcoming from the present
perspective and is the primary motivation for this study.2 Conversely, the Bal-
lance and Griffin calculations do include a full treatment of all types of radiation
damping, whereas the current study only contains a partial treatment. The rea-
sons for including only the core radiation of Rydberg resonances (type-I damping)
are detailed in section 3.2.2. Additionally, Das et al. have conducted fully rel-
ativistic DW calculations for W44+ and other W ions in [72]. Their study does
not satisfy the criterion of using a CC method, and more importantly, it omits
a crucial configuration, 3d94s4p4d, the effect of which is further investigated in
section 3.2.1. Consequently, comparison with their results has been omitted.

It was already noted in section 2.4 that the task of comparing atomic struc-
tures and collision calculations is complex and lacks a formal framework in the
literature. A bespoke and detailed analysis of eigenenergies, radiative emis-
sion rates, collision strengths, and effective collision strengths from all pertinent
sources is unavoidable for validating high-quality data and will be performed here.
Such an in-depth analysis largely obviates any benefit from using the coarser fig-
ures of merit from section 2.4. However, there is still value in using the PLT
and related coefficients like the photon emissivity coefficient (PEC) as a means
of comparing fundamental atomic data because they are connected to population
modelling. And ultimately, it is a proper population model of the W44+ spectrum
that is the goal for high-quality data like this. It is only in this way that a truly
accurate sense of the importance of the 3d-subshell transition arrays can be ob-
tained. The modelling behind the PLT and PEC results presented here is done
through ADAS routines but falls short of the ic-resolved GCR that is the primary
aim of this thesis; this work was carried out before that goal was achieved.

The remainder of the chapter is structured as follows. Section 3.2 describes
the calculation methodology, and it is divided into four subsections. First, sec-
tion 3.2.1 lists and explains the specification of the CI expansion, which is critical

2It should be noted that the importance of opening-up the 3d-subshell for diagnostic purposes
was not appreciated until a preliminary survey of what might constitute the main emission lines
was conducted.
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for an accurate investigation of the 3d-subshell transitions and differentiates the
present results from previous works. Second, section 3.2.2 provides the necessary
technical and physics details for the use of the darc and autos codes. Third,
section 3.2.3 discusses some important issues regarding infinite energy collision
strength limits. Lastly, section 3.2.4 roughly outlines the theoretical foundation
of the atomic population modelling performed as part of the subsequent analysis.
Section 3.3 presents the results of the present calculations along with the relevant
analysis in three sections: atomic structure, collision data, and atomic population
modelling.

3.2 Methodology

3.2.1 CI and Structure Determination

Consideration of the 3d-subshell transition arrays, [3d104s2–3d94s24f] and [3d104s2–
3d94s4p4d], requires the inclusion of configurations with a 3d-hole. Apart from
the 3d94s24f and 3d94s4p4d configurations, there are several other configurations
to consider due to the possibility of mixing, and it was not immediately obvious
which ones should have been included in the CI of the target structure calcula-
tion. One must be prudent in selecting the CI due to computer memory limits at
the collision calculation stage: a compromise between the number of J-resolved
levels and the overall accuracy of results must be reached. Two structure codes
were employed at this juncture: autos, which was introduced in section 2.2.1,
and grasp0 [73–76], which uses the many-electron Dirac Hamiltonian with the
Breit interaction included and a basis set of Dirac-Fock spinors. The further the-
oretical and practical details that underpin the implementation of grasp0 are
quite involved, and the broader field of relativistic quantum theory has been ex-
pertly presented in a monograph by Grant [53] to which the reader is directed.
In short, grasp0 approaches the problem from a fully-relativistic foundation and
thus satisfies the stipulations made about relativistic effects in section 3.1. The
comparison between the grasp0/darc results versus those of autos will partly
serve to show how important the relativistic effects are in this problem.

The final CI included 13 configurations and resulted in 313 LSJπ levels, all
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below the ionization limit:

3d104s2, 3d104s4p, 3d104s4d, 3d104s4f, 3d104p2, 3d104p4d,

3d104p4f, 3d104d2, 3d104d4f, 3d94s24p, 3d94s24d, 3d94s24f,

3d94s4p4d.

Emphasis must be placed upon the 3d94s4p4d configuration, which has not
been considered in either structure or collision calculations until now. In fact, it
is because of this omitted configuration that a proper modelling of the impor-
tant 3d-subshell transition arrays for W44+ has not been possible. The 3d94s4p4d
configuration mixes heavily with 3d94s24f, and the subsequent effect upon the
radiative data of the dominant 3d-subshell transitions is presented in table 3.1.
Observing the changes between row 1 and 2 clearly shows this effect, and no-
tably, the 3P◦1 to ground transition increases by three orders of magnitude. Thus,
comparison of the dominant 3d-subshell transitions between calculations is only
sensible if they both include the 3d94s24f and 3d94s4p4d configurations. No fur-
ther mention will be made of the Das et al. calculations for exactly this reason,
and preliminary comparison of this work’s collision data with theirs immediately
revealed large discrepancies. It should be noted that the effect of strong mixing
between adjacent configurations related by a promotion and demotion of l quan-
tum numbers has been well documented in previous cases, such as Sn10+ and
Pr21+ [77, 78]. Table 3.1 also shows some other candidate configurations that
were omitted due to their lack of influence on the radiative data: 3d104f2, 3d94p3,
and 3d94s4p2.

The primary comparison is with a calculation by Ballance and Griffin [71], so
it is important to rationalize the differences in the CI basis sets. Row 4 contains
the results for the union of the CI basis sets used in this work’s calculations,
and it can be observed that the addition of the 3d104l5l′ configurations do have
a moderate effect on the 3d-subshell transitions relative to row 2. Ideally, all of
these configurations should be included in the CI and CC expansions, but the
397 levels generated by these configurations is computationally inhibitive to the
subsequent collision calculation given available resources. Because the soft x-ray,
3d-subshell transitions are the focus of this study, the 3d104l5l′ configurations
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had to be omitted from the CI. However, further influence of these configurations
will be assessed in section 3.3.3 by merging Ballance and Griffin’s data for the
n = 5 levels into this work’s dataset and observing the effect upon the modelled
results.

This work’s grasp0 results closely mimic the autos results in table 3.1. An
extended average level (EAL) calculation, which optimizes a weighted trace of
the Hamiltonian matrix, was used for the grasp0 calculation. The target or-
bitals produced were used in the subsequent darc collision calculation, which
is described in section 3.2.2. In addition, comparisons are made in section 3.3.3
to modelled results derived from PWB calculations using cowan (refer to sec-
tion 2.2.1). The CI expansion for these calculations is slightly different, combining
configurations from this work and Ballance and Griffin’s:

3d104s2, 3d104s4p, 3d104s4d, 3d104s4f, 3d104s5s, 3d104s5p,

3d104s5d, 3d104s6s, 3d104s6p, 3d104s6d, 3d94s24d, 3d94s24f,

3p53d104s24p, 3p53d104s24d.

The aim of this CI basis set was to achieve more breadth of excited-state coverage.

3.2.2 darc and autostructure Execution

The Dirac R-matrix, partially damped EIE results presented in this study were
generated using the darc suite, developed by Norrington [76] and modified to
incorporate parts of the parallel R-matrix codes [79–81]. The present calculation
procedure is almost identical to that described in [82]; however, the present work
does not perform a fully damped calculation, as mentioned earlier, so the outer
region portion is slightly different.

If all possible types of radiation damping are to be accounted for, the bound
(N +1)-electron eigenvalues, eigenvectors, and dipole matrix elements need to be
handled, which is a computationally expensive task. Moreover, because configu-
rations with an open 3d-subshell are included in the CI and CC expansion, the
number of levels in the calculation is nearly doubled compared to Ballance and
Griffin: 168 levels in their calculation versus 313 in the present one. As a con-
sequence, the computational demand of the present problem is greater initially,
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Table 3.1: Summary of autos radiative data produced for W44+ while varying the CI basis
set. Aki is the Einstein A-coefficient (transition probability); Sik is the line strength; and gifik
is the weighted oscillator strength. The base 13 configurations are those listed in section 3.2.1
but with 3d94s4p4d replaced by 3d104f2. All subsequent entries are for the configurations that
have been added or removed from this basis. BG07 refers to the configurations used in Ballance
and Griffin’s W44+ calculations [71].

CI k i Aki (s−1) Sik(au) gifik (−1)π(2Sk + 1) Lk Jk k conf. Lvs
base 13 126 1 1.31E+14 0.040392 2.07237 -3 2 1 3d94s24f 134

134 1 4.25E+14 0.118734 6.28700 -1 1 1 3d94s24f
116 1 1.16E+11 0.000038 0.00189 -3 1 1 3d94s24f

+3d94s4p4d 288 1 1.11E+14 0.030694 1.63157 -3 2 1 3d94s4p4d 326
304 1 1.42E+14 0.038086 2.04257 -1 1 1 3d94s24f
308 1 1.13E+14 0.030244 1.62454 -3 1 1 3d94s4p4d

+3d94s4p4d 275 1 1.09E+14 0.030123 1.60008 -3 2 1 3d94s4p4d 313
–3d104f2 291 1 1.38E+14 0.037198 1.99348 -1 1 1 3d94s24f

295 1 1.18E+14 0.031645 1.69855 -3 1 1 3d94s4p4d
+3d94s4p4d 359 1 1.05E+14 0.030072 1.58174 -3 2 1 3d94s4p4d 397
+BG07 (4l5l′) 374 1 1.11E+14 0.030929 1.64053 -1 1 1 3d94s24f

388 1 1.15E+13 0.003136 0.16751 -3 1 1 3d94s4p4d
+3d94s4p2 182 1 1.31E+14 0.040416 2.06936 -3 2 1 3d94s24f 190

190 1 4.21E+14 0.117906 6.24096 -1 1 1 3d94s24f
172 1 1.16E+11 0.000037 0.00189 -3 1 1 3d94s24f

+3d94p3 151 1 1.31E+14 0.040400 2.06867 -3 2 1 3d94s24f 172
168 1 4.22E+14 0.117990 6.24569 -1 1 1 3d94s24f
136 1 1.16E+11 0.000037 0.00189 -3 1 1 3d94s24f

and it is not practical to further expand the calculations by including all forms of
radiation damping at this point in time. However, the outer region code indepen-
dently has the capability to include type-I damping via Multichannel Quantum
Defect Theory (MQDT) [83] at minimal computational cost. Type I damping
constitutes the radiative transition of a core, non-Rydberg electron starting from
an intermediate, (N + 1)-electron resonance; type-I damping tends to dominate
because of the 1/n3 scaling of autoionization and Rydberg radiation rates. This
is supported by the results in section 3.3.2, and so the limited damping approach
seems to be a suitable approximation. The outer region calculations were run
both with and without type-I damping to facilitate subsequent comparison.

The relevant physics parameters for the problem are as follows. The CI and
CC expansions both incorporate all configurations determined in section 3.2.1 re-
sulting in 313 LSJπ levels. Moreover, although the calculations are already split
into exchange and nonexchange components at the spatial R-matrix box bound-
ary, they can be further partitioned in angular momentum space, since exchange
effects reduce at high angular momentum values. Thus, a large J value for the
symmetries is selected above which electron exchange effects can be neglected
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even in the inner region; in the present case, full close-coupling equations were
solved for 0.5 ≤ J ≤ 16.5 and the nonexchange versions for 17.5 ≤ J ≤ 35.5.
The actual R-matrix boundary is selected automatically such that all the bound
orbitals have probability densities below an arbitrary threshold of 10−3; these
settings resulted in an R-matrix radial boundary of 1.33 a0. When specifying
the generation of continuum-electron orbitals, one should ensure that the energy
range of these orbitals for each angular momentum exceeds the intended range
of scattering electron energies by approximately a factor of 1.8 in practice. A
maximum scattering energy of 1100 Ryd was used for these calculations to match
Ballance and Griffin, and so the maximum energy eigenvalue of the continuum-
electron basis orbitals for a given angular momentum value should exceed ≈ 1800

Ryd. For the exchange case, this required 34 basis orbitals per angular momentum
value, and for the non-exchange case this required 30 basis orbitals per angular
momentum.

The features of EIE collision strengths are dominated by intermediate reso-
nances in the energy range defined by transitions between target levels. These
resonances manifest as sharp and narrow peaks, meaning the collision strengths
need to be evaluated on a fine energy mesh in this region. The mesh parameters
used for the outer region code are summarized in table 3.2. One will also note
from table 3.2 that a further division has been introduced within the exchange
case. Only for JΠ symmetries with J ≤ 8.5 was the full fine mesh employed in
the resonance region. MXE = 48000 was chosen for this fine mesh in order to
closely mimic the number of points used in the previous darc calculations by
Ballance and Griffin [71]. From visual inspection, this number of mesh points
appears to correctly resolve the sharply spiked resonances. Furthermore, the ef-
fective collision strengths are nearly invariant compared to those calculated from
collision strengths on a mesh with half as many points, indicating a convergence
of the mesh.

In the interest of having more collision data for comparison, autos runs
were also conducted using the same CI as for darc/grasp0. The isolated target
structure calculation used an ic scheme with semi-relativistic, κ-averaged orbitals.
Multi-electron interactions are included through the Thomas-Fermi-Dirac-Amaldi
model potential with scaling orbital parameters, λnl, determined through a vari-
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Table 3.2: Summary of mesh cases and parameters for pstgf. MXE is the number of points
for the outer region energy mesh, and EINCR in the step size of the mesh in Ryd/z2. The
resonance region is enclosed by the range, [E2 −Eincr, E313 +Eincr] and the high energy region
by (E313 + Eincr, 1100 Ryd]. Ei is the energy eigenvalue of the ith excited level relative to the
ground in Rydbergs: E2 = 6.34789294 Ryd and E313 = 1.61979116× 102 Ryd

Case Resonance Region High Energy Region

Exchange 0 ≤ J ≤ 8.5 MXE=48000 EINCR=6.701E-06 MXE=720 EINCR=0.0002562

9.5 ≤ J ≤ 16.5 MXE=360 EINCR=0.0002252

Nonexchange 17.5 ≤ J ≤ 35.5 MXE=1008 EINCR=0.0002636

ational method of all possible orbitals: 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 4f. The
scattering problem is solved using a Breit-Pauli distorted wave (BPDW) approach
as described in section 2.2.1. These autos calculations were performed prior to
and thus independently of the new autos baseline described and evaluated in
Chapter 2.

3.2.3 Born Limits

It is important to give attention to the infinite energy limits of collision strengths3

since their values correlate strongly with those of the background collision strengths
over a wide range of energies. This will become even more apparent in the context
of the IIE calculation in Chapter 4. A limitation of the darc/grasp0 suite is
that these infinite energy limits are only calculated for the electric dipole-allowed
transitions: ∆J = ±1 and parity change.

To rectify this absence of data, the numerical values of the non-dipole collision
strengths are extrapolated during convolution with the Maxwellian to produce
the respective Υij. Because transitions with Born limits and those truly forbid-
den by selection rules cannot be differentiated, it is assumed the highest energy
calculated collision strength, Ω(Ef ), has nearly reached the infinite energy limit,
and so Ω(Ef ) is extrapolated as a constant. Although this is usually a good ap-
proximation, it relies on calculating the collision strengths to an arbitrarily high
energy. Alternatively, the Born limits may be obtained from a different program
and spliced into the collision strengths file; a linear interpolation involving this

3The infinite energy limit refers to the asymptotic behaviour of the collision strength as the
scattering electron energy approaches infinity.



CHAPTER 3. ELECTRON-IMPACT EXCITATION 92

point can then be used. However, because two different structure calculations
are being effectively combined, one must question how close the structure calcu-
lations are and whether it even makes sense to combine the results from different
theories.

In the present case, the possibility of using the Born limits from the autos

calculation was explored since Ballance and Griffin used Born limits from autos

for their calculations [71]. The only potential metric for determining the suit-
ability of the autos Born limits is a comparison of the (electric) dipole-allowed
transition limits from grasp0 and autos. In practice, this is simply a com-
parison of the line strengths—see Burgess & Tully [84]. A linear comparison of
the line strengths from the two codes reveals that only 24% of the transitions
lie within 20% of each other, with a mean percent difference of 6185% and a
weighted mean percent difference of 11%. The weighting factors, wik, are defined
as

wik =
rik∑
j,l rjl

; rjl = log(Sjl/Smax) . (3.1)

Based on this weighting scheme, the large discrepancy between the weighted and
unweighted means suggests that the differences between line strength values tends
to be relatively larger at lower magnitude line strengths. Indeed, this supposition
is supported by the observation of a linear scatter plot of the line strengths
(grasp0 Sij versus autos Sij), and it is a trend one might expect to see. Thus,
the amount of agreement between the darc and autos dipole limits depends
on how much importance one places upon the low and high magnitude values
separately.

There is no reason to doubt that this behaviour would not also extend to the
Born limits; however, the effect would likely be exacerbated since the average
magnitudes of the infinite energy limits decreases by approximately an order of
magnitude for each subsequent multipole order. In the absence of any Born limits
from grasp0 with which to compare, this less than conclusive evidence from
the dipole limits comparison does not resolve the issue of whether any accuracy
might be gained from splicing the autos Born limits. Given this uncertainty, it
is not believed the effort of manually tampering with the collision strength files is
worthwhile, and so the default behaviour of extrapolating the high energy collision
strengths as constants for transitions without E1 dipole limits is retained.
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3.2.4 Atomic Population Modelling

The total emissivity in a spectrum line, i→ k, is given by

εi→k = NiAi→k, (3.2)

where Ni is the population density of the upper state, i, in ionization stage z
and Ai→k is the radiative transition rate from i to the lower state, k. The Ai→k
values are straightforward to obtain from the structure calculation for an ion;
however, the Ni’s require some form of atomic population modelling. Since the
fundamental atomic data forms the input to whatever model is constructed, it is
through the population structure of the Ni’s that the collision data will influence
any observable quantities. In other words, the atomic population model is what
connects the collision data to observable quantities, emphasising the model’s piv-
otal role as a tool to compare different fundamental datasets. Just as for the EIE
cross-section data, full atomic population modelling that incorporates the 3d-
subshell transitions is limited in the literature for W44+. Clementson et al. [66]
present the calculated spectrum for W44+ in an electron-beam ion trap (EBIT)
plasma environment using a collisional-radiative (CR) model based on fundamen-
tal data from fac. However, these results are not applicable for laboratory fusion
plasmas because a mono-energetic electron beam is assumed and the densities
are slightly too low at around 5× 1011 cm−3. This deficit in the W44+ modelled
spectrum will be addressed by using the new fundamental atomic data that in-
corporates the dominant 3d-subshell transitions along with an atomic population
model produced at suitable plasma conditions.

The modelling of the Ni’s employed here is a restricted form of the GCR the-
ory that is described in Appendix C: the assumption is made that the lifetime
of solely the ground state is far greater than any of the excited states’ lifetimes,
including any potential metastable states. This was determined based on pre-
liminary modelling that revealed collisional excitation from the metastable levels
of W44+ does not have a significant effect on excited state populations until an
electron density of Ne ≈ 1016 cm−3, far outside the parameter space of current
MCF devices and the proposed ITER limits [11]. It is the large energy separation
amongst the metastables and ground, caused by the large residual charge, z = 44,
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that is responsible for the absence of density effects in the current context. As a
result, all atomic levels of W44+ will be in quasi-static equilibrium relative to the
ground state, which dominates the description of the ion’s population.

The population density of the ground is denoted by N1, and the rate of pop-
ulation density change of an excited state, j, is

dNj

dt
= Cj1N1 +

∑
i

CjiNi . (3.3)

The Cji are elements of the collisional-radiative matrix and are defined by

Cji = Ai→j +Neq
e
i→j, (3.4)

where qe
i→j is the electron-impact excitation or de-excitation rate coefficient de-

pending on the energy ordering of i and j, and Ai→j = 0 if j > i. Enforcing the
quasi-equilibrium condition on the excited states (dNj/dt = 0) and isolating for
Ni in (3.3), one obtains

Ni = −
∑
j

(Cij)
−1Cj1N1 . (3.5)

This suggests the definition of the effective population contribution coefficient for
excitation:

F (exc)
i1 =

∑
j(Cij)

−1Cj1

Ne

. (3.6)

Hence, the line emissivity can be expressed as

εi→k = NeN1PEC(exc)
1,i→k , (3.7)

where the definition for the excitation PEC has been used:

PEC(exc)
1,i→k ≡ F (exc)

i1 Ai→k . (3.8)

The PEC is a useful derived data type, and one can obtain a more intuitive
sense of it by considering the low density limit where collisional (de-)excitation
between excited levels is neglected. Thus, recalling (3.4), the collisional coupling
coefficients between excited levels become Cij = Aj→i, and from the ground
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Ci1 = Neq
e
1→i. Accordingly, the low density limit for the excitation PEC is

PEC(exc)
1,i→k =

qe
1→iAi→k∑
j<iAi→j

. (3.9)

So in the low density limit, the excitation PEC is given by the product of the EIE
rate coefficient from the ground and the branching ratio of the radiative decay.
This reaffirms the assumptions that have been made: the excited state levels
are populated solely by collisional excitation from the ground and subsequently
de-populated by spontaneous emission to any possible lower level. Therefore, the
PEC is an effective quantity for estimating the diagnostic importance of a tran-
sition because it accounts for the population distribution of levels, a conclusion
that equally applies in the more complex, finite density scenario.

It is the finite-density version of the excitation PEC in equation 3.8 that will
be used by routines in ADAS for this analysis. These routines use effective colli-
sion strengths produced in the manner described above and stored in the adf04
file format. Additionally, relativistic effects can cause classically weak, higher
order electric and magnetic radiative transitions to approach similar magnitudes
as the typically dominant dipole (E1) transitions; therefore, accurate atomic
population modelling requires inclusion of at least some non-dipole transition
probabilities, Aj→i, for high z ions. pstgf only produces E1 data derived from
the dipole long-range coupling coefficients, so E1, E2/M1, and E3/M2 radiative
data from grasp0 was substituted into the final adf04 file: there is no problem
of consistency between codes here, in contrast to the infinite energy Born limits.
Comparison with the A-values in the adf04 file of Ballance and Griffin revealed
that they only include radiative transitions up to the quadrupole (E2/M2). The
extra E3 data is included because of the overlapping selection rules and compara-
ble magnitudes with M2. Further comparison of the radiative data is conducted
in section 3.3.1.
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3.3 Results and Discussion

3.3.1 Structure Data

A portion of the energy level results are summarised in table 3.3 along with com-
parison to other experimental and theoretical values. Errors relative to the NIST
compiled experimental values are given in brackets for all theoretical calculations.
The theoretical results are from the following calculations: the grasp0 and au-

tos results from this study, Ballance and Griffin’s grasp0 [71], and Safronova
and Safronova’s relativistic many-body perturbation theory (RMBPT) [85]. It
is noted that a recent calculation by Spencer et al. [69] has been omitted from
the detailed comparison to follow. Although their calculation includes the impor-
tant 3d9 core configurations, it uses non-relativistic radial orbitals. The authors
themselves note that their largest error is likely due to unaccounted relativistic
effects, and so detailed comparisons are restricted to methods that use fully or
kappa-averaged relativistic radial orbitals. It is briefly observed that this work’s
structure results have a similar degree of agreement with Spencer et al. as the
other fully relativistic results in their study.

From a qualitative observation of the errors in table 3.3, it is evident that
the Safronova and Safronova (S&S) theoretical results are closest to the experi-
mental NIST results. Moreover, the present grasp0 and Ballance and Griffin’s
grasp0 results appear to be of similar accuracy, while the autos results perform
comparatively the worst but objectively still quite well. This ordering can be pre-
dicted somewhat since one would not expect the autos calculations that use the
κ-averaged Dirac equation to outperform the fully κ-dependent Dirac equation
used in the other calculations. For the lower levels being considered, the grasp0

values should be quite similar since they are from the same code and CI effects
from the different, higher lying configurations will not extend down this far. The
S&S values derive from a paper that focussed exclusively on the atomic structure
problem and thus did not need to balance time and computational resources with
a corresponding collision calculation.
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Table 3.3: Lowest 50 energy level eigenvalues of W44+. All values are in cm−1. The bracketed values to the right of some theoretical values
denote the absolute and percent difference with the experimental NIST values, respectively. The jj-term assignment is strictly for the present
grasp0 calculations; equivalence of levels between different results is determined on a symmetry (Jπ) and energy (E) mapping. The subscripts
have the following meanings. NIST denotes the NIST experimental values compiled from various sources [65]; GR denotes the present grasp0

results; AS denotes the present autos results; BG07 denotes the Ballance and Griffin results [71]; and SS10 denotes the Safronova and Safronova
results [85].

i jj-term J ENIST EGR EAS EBG07 ESS10

1 4s2 (1/2,1/2) 0 0 0 0 0 0
2 4s4p (1/2,1/2)◦ 0 695000 696599(-1599\0.23%) 680476(14524\2.09%) 697338(-2338\0.34%) 696870(-1870\0.27%)
3 4s4p (1/2,1/2)◦ 1 752560 754900(-2340\0.31%) 738077(14483\1.92%) 756118(-3558\0.47%) 752290(270\0.04%)
4 4s4p (1/2,3/2)◦ 2 1494400 1510410(-16010\1.07%) 1500353(-5953\0.40%) 1511424(-17024\1.14%) 1505330(-10930\0.73%)
5 4p2 (1/2,1/2) 0 1588000 1610234(-22234\1.40%) 1598341(-10341\0.65%) 1603286(-15286\0.96%) 1589470(-1470\0.09%)
6 4s4p (1/2,3/2)◦ 1 1641230 1654698(-13468\0.82%) 1645076(-3846\0.23%) 1657295(-16065\0.98%) 1641860(-630\0.04%)
7 4p2 (1/2,3/2) 1 2345700 2370326(-24626\1.05%) 2367366(-21666\0.92%) 2364982(-19282\0.82%) 2347790(-2090\0.09%)
8 4p2 (1/2,3/2) 2 2362700 2380945(-18245\0.77%) 2380127(-17427\0.74%) 2375598(-12898\0.55%) 2359810(2890\0.12%)
9 4s4d (1/2,3/2) 1 2782700 2807138(-24438\0.88%) 2826740(-44040\1.58%) 2801178(-18478\0.66%) 2781700(1000\0.04%)

10 4s4d (1/2,3/2) 2 2809500 2835916(-26416\0.94%) 2854715(-45215\1.61%) 2829810(-20310\0.72%) 2809010(490\0.02%)
11 4s4d (1/2,5/2) 3 2943800 2980289(-36489\1.24%) 3007602(-63802\2.17%) 2974581(-30781\1.05%) 2952430(-8630\0.29%)
12 4s4d (1/2,5/2) 2 2988500 3025731(-37231\1.25%) 3047061(-58561\1.96%) 3019918(-31418\1.05%) 2997790(-9290\0.31%)
13 4p2 (3/2,3/2) 2 3210900 3244954(-34054\1.06%) 3254573(-43673\1.36%) 3239406(-28506\0.89%) 3211110(-210\0.01%)
14 4p2 (3/2,3/2) 0 3249000 3283304(-34304\1.06%) 3288983(-39983\1.23%) 3277012(-28012\0.86%) 3251480(-2480\0.08%)
15 4p4d (1/2,3/2)◦ 2 3542869 3548176 3536793 3516410
16 4p4d (1/2,3/2)◦ 1 3686507 3685971 3679726 3649830
17 4p4d (1/2,5/2)◦ 3 3793159 3802977 3786985 3759910
18 4p4d (1/2,5/2)◦ 2 3795417 3804873 3789273 3760590
19 4s4f (1/2,5/2)◦ 3 4296920 4306386 4292056 4268490
20 4s4f (1/2,7/2)◦ 2 4324408 4333915 4319207 4293610
21 4s4f (1/2,5/2)◦ 4 4354514 4375712 4349717 4324560
22 4s4f (1/2,5/2)◦ 3 4381359 4401322 4376049 4347880
23 4p4d (3/2,3/2)◦ 2 4383000 4422045(-39045\0.89%) 4431516(-48516\1.11%) 4416368(-33368\0.76%) 4385180(-2180\0.05%)
24 4p4d (3/2,3/2)◦ 0 4443019 4451669 4437256 4406260
25 4p4d (3/2,3/2)◦ 1 4453869 4463503 4448129 4415630
26 4p4d (3/2,3/2)◦ 3 4458000 4501932(-43932\0.99%) 4512851(-54851\1.23%) 4495374(-37374\0.84%) 4460510(-2510\0.06%)
27 4p4d (3/2,5/2)◦ 4 4505300 4547619(-42319\0.94%) 4564787(-59487\1.32%) 4541971(-36671\0.81%) 4511020(-5720\0.13%)
28 4p4d (3/2,5/2)◦ 2 4587583 4604286 4582203 4549230
29 4p4d (3/2,5/2)◦ 1 4711801 4729592 4705746 4667050
30 4p4d (3/2,5/2)◦ 3 4667000 4720344(-53344\1.14%) 4738811(-71811\1.54%) 4712765(-45765\0.98%) 4669890(-2890\0.06%)
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Table 3.3: (continued)

i jj-term J ENIST EGR EAS EBG07 ESS10

31 4p4f (1/2,5/2) 3 5106504 5099115 5101065 5069120
32 4p4f (1/2,5/2) 2 5149812 5139452 5144560 5110970
33 4p4f (1/2,7/2) 3 5174655 5178086 5169893 5135570
34 4p4f (1/2,7/2) 4 5175709 5179078 5169835 5136020
35 4d2 (3/2,3/2) 2 5671068 5684603 5662259 5621680
36 4d2 (3/2,3/2) 0 5746101 5759234 5732092 5690100
37 4d2 (3/2,5/2) 3 5808133 5826269 5801275 5762150
38 4d2 (3/2,5/2) 4 5816599 5831429 5810323 5772640
39 4d2 (3/2,5/2) 2 5843017 5861428 5834560 5794100
40 4d2 (3/2,5/2) 1 5877633 5898701 5866642 5823700
41 4p4f (3/2,7/2) 4 5917488 5934565 5912767 5876050
42 4p4f (3/2,5/2) 3 5927978 5932078 5922956 5884140
43 4p4f (3/2,5/2) 2 5957126 5961349 5951431 5910810
44 4p4f (3/2,7/2) 5 5970835 5983185 5965829 5926610
45 4p4f (3/2,5/2) 1 5971049 5970842 5966743 5927040
46 4p4f (3/2,7/2) 3 5986398 5999033 5981863 5941010
47 4p4f (3/2,5/2) 4 5991059 6004943 5983469 5938830
48 4d2 (3/2,3/2) 2 6007925 6028552 6000992 5958400
49 4p4f (3/2,7/2) 2 6114914 6137006 6105042 6055560
50 4d2 (5/2,5/2) 4 6137752 6158685 6126041 6072960
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Because of extensive comparison with the Ballance and Griffin (B&G) results,
it is important to obtain an overall concept of how the energy levels compare be-
tween the two calculations, something difficult to grasp from raw data tables.
Accordingly, figure 3.1 provides an illustrative graphic of the energy ranges of
the configurations included in the two calculations. Below approximately 8× 106

cm−1, the configuration energy ranges visually match to a small degree of error.
This is quantitatively substantiated by the proximity of the energy levels in ta-
ble 3.3 and a mean percent difference of 0.13% for all intersecting levels. However,
above this threshold, the energy ranges are completely discrepant owing to the
differences in the CI expansions. In the present calculations (left), there is an
energy gap between the first open 3d-subshell configuration (3d94s24p) and the
highest closed 3d-subshell configuration (4d4f). On the other hand, the 3d104l5l′

configurations, which B&G include, coincidently and neatly fill this energy gap.
The implications of this gross difference in energy level distribution will be inves-
tigated throughout the remainder of the paper, especially in relation to the CC
expansion and effect upon the collision data.

Additionally, a sample of the radiative data from this work’s grasp0 struc-
ture is presented in table 3.4. Apart from wavelengths, negligible experimental
radiative data is available, and so only theoretical results are supplied for compar-
ison. The theoretical results are from the same calculations as in the energy level
table 3.3, excepting the addition of Fournier’s ab initio calculations [68] and the
omission of the present autos results for brevity. The Fournier gf values for the
212–1 and 290–1 transitions are discrepant because the 3d94s4p4d configuration
was not included in that calculation, and as demonstrated in section 3.2.1, the
3d94s4p4d configuration mixes heavily and greatly changes the radiative data of
these 3d-subshell transitions. Consequently, comparison of these transitions with
calculations that do not include this configuration are not meaningful. Otherwise,
the Fournier gf values tend to agree well with the corresponding grasp0 results,
except for the rather weak transitions 129–6 and 73–10 that differ by about a
factor of three.

The B&G grasp0 results also appear to be in close agreement with this work’s
grasp0 results in this particular sample, except in instances where the magnitude
of the gf value is small or the velocity to length ratios are not close to unity. In
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Figure 3.1: Energy ranges of the configurations included in the present darc calculations
and the Ballance and Griffin calculations. Non-relativistic configuration specifications are used
for brevity with the understanding they encompass multiple relativistic sub-configurations.
The energy ranges are determined by assigning each jj-coupled level to the corresponding
configuration which contributes the dominant component the level’s state vector. This method
can be ambiguous in cases where strong configuration mixing is present.

both cases, this is to be expected when comparing calculations with different
CI expansions. A full scope but necessarily more coarse comparison with this
work’s results was conducted using scatter plots analogous to those in figure 3.3.
Neither the dipole line strengths, Sik, nor the radiative transition probabilities up
to quadrupole order revealed any systematic differences between the calculations,
and 73% of the values agree within 20% relative error of each other, meaning there
is reasonable accord overall. The dipole line strengths are directly proportional to
the infinite energy limits of the corresponding EIE collision strength, and so this
information will be relevant for the analysis of the collision data in section 3.3.2.

On the other hand, the S&S radiative data exhibit a binary behaviour: they
either agree well with the present results or disagree by a few orders of magnitude.
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Based on the energy level values quoted by S&S, it is concluded with a high degree
of certainty that this disagreement is not due to a level mismatching by the present
work; however, significant differences in the wavelength values for these conflicting
transitions was observed. Upon further investigation, the wavelengths given by
S&S do not agree with their own energy level values. Thus, it is suggested that
there has been a labelling error in their work. To confirm this hypothesis, further
investigation with autos was performed to provide a corroborative third party
result. The relevant results from using the CI expansion in section 3.2.1 already
existed, and an additional run was conducted using the CI from the S&S work.
In both cases, the autos results agreed well with the present grasp0 results,
supporting the validity of the present work and pointing to a labelling error in
the S&S results.
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Table 3.4: Radiative data: weighted oscillator strength (gf) and wavelength (λ) values for W44+. GR denotes the present results generated
using grasp0; F98 denotes the results from Fournier [68]; BG07 denotes the results from Ballance and Griffin [71]; and SS10 denotes the results
from Safronova and Safronova [85]. The autos results are not presented for the sake of brevity. The level specifications are for the present
results, and mapping of levels between the different calculations was determined by matching symmetry (Jπ) and energy (E), as in the case of
the energy level table. Conversion from Aki values to gf values for the BG07 data was necessary for comparison, and their calculated energies
are used to do so. For compactness, ? = (3d9(2D5/2)4s1/2)◦24p3/2. All results are in the length gauge, and v/l denotes the ratio of the velocity
gauge to the length gauge. Values presented in the format X.XXX±YY represent scientific notation in base 10: X.XXX× 10±YY.

i k jj-coupled CSF of k Ji Jk gfGR v/lGR gfBG07 v/lBG07 gfF98 gfSS10 λGR (Å)
1 295 (?)◦

7/2
4d5/2 (7/2,5/2)◦ 0 1 9.028−01 0.89 − − − − 5.7330

1 290 3d9(2D3/2)4s24f (3/2,5/2)◦ 0 1 1.610+00 0.90 − − 5.844+00 − 5.7438
1 275 (?)◦

1/2
4d3/2 (1/2,3/2)◦ 0 1 1.894+00 0.91 − − − − 5.7917

1 212 (?)◦
3/2

4d5/2 (3/2,5/2)◦ 0 1 3.820−01 0.89 − − 1.954+00 − 5.9485
1 208 (?)◦

5/2
4d3/2 (5/2,3/2)◦ 0 1 4.201−01 0.91 − − − − 5.9616

1 207 (?)◦
3/2

4d5/2 (3/2,5/2)◦ 0 1 4.923−01 0.92 − − − − 5.9655
1 81 3d9(2D3/2)4s24p (3/2,3/2)◦ 0 1 2.912−02 0.91 − − 2.800−02 − 6.9483
6 129 3d9(2D3/2)4s24d (3/2,3/2) 1 0 5.017−04 0.00 − − 1.292−03 − 6.9367
1 78 3d9(2D5/2)4s24p (5/2,3/2)◦ 0 1 2.562−01 0.91 − − 2.379−01 − 7.2056
1 75 3d9(2D3/2)4s24p (3/2,1/2)◦ 0 1 1.519−01 0.91 − − 1.412−01 − 7.3524
4 83 3d9(2D3/2)4s24p (3/2,3/2)◦ 2 2 1.580−04 0.90 − − 1.488−04 − 7.7453
4 82 3d9(2D3/2)4s24p (3/2,3/2)◦ 2 3 1.303−04 0.01 − − 1.237−04 − 7.7580
2 74 3d9(2D3/2)4s24p (3/2,1/2)◦ 0 2 9.193−05 2.20 − − 8.710−05 − 7.7670
3 74 3d9(2D3/2)4s24p (3/2,1/2)◦ 1 2 1.301−04 8.70 − − 1.294−04 − 7.8015
6 82 3d9(2D3/2)4s24p (3/2,3/2)◦ 1 3 1.875−04 0.08 − − 1.738−04 − 7.8462
4 79 3d9(2D5/2)4s24p (5/2,3/2)◦ 2 3 1.999−04 0.01 − − 1.839−04 − 8.0730
4 77 3d9(2D5/2)4s24p (5/2,3/2)◦ 2 2 7.144−05 0.91 − − 6.886−05 − 8.0880
4 76 3d9(2D5/2)4s24p (5/2,3/2)◦ 2 4 4.136−04 0.01 − − 3.961−04 − 8.0991
2 72 3d9(2D5/2)4s24p (5/2,1/2)◦ 0 2 1.379−04 0.88 − − 1.313−04 − 8.0998
3 73 3d9(2D5/2)4s24p (5/2,1/2)◦ 1 3 3.229−04 0.01 − − 2.998−04 − 8.1327
3 72 3d9(2D5/2)4s24p (5/2,1/2)◦ 1 2 8.764−05 3.00 − − 8.684−05 − 8.1380
6 77 3d9(2D5/2)4s24p (5/2,3/2)◦ 1 2 1.469−04 0.04 − − 1.494−04 − 8.1840

11 76 3d9(2D5/2)4s24p (5/2,3/2)◦ 3 4 1.940−04 2.00 − − 3.014−04 − 9.1878
10 73 3d9(2D5/2)4s24p (5/2,1/2)◦ 2 3 3.580−05 2.90 − − 1.389−04 − 9.7800
3 12 4s4d (1/2,5/2) 1 2 8.387−02 1.00 7.694−02 − 8.768−02 7.500−02 44.2929
3 10 4s4d (1/2,3/2) 1 2 1.775+00 1.00 1.795+00 − 1.776+00 1.689+00 48.2882
1 6 4s4p (1/2,3/2)◦ 0 1 1.095+00 0.83 1.139+00 0.99 1.099+00 1.060+00 60.6907
3 8 4p2 (1/2,3/2) 1 2 7.290−01 0.99 7.460−01 − 7.256−01 − 61.6827
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Table 3.4: (continued)

i k jj-coupled CSF of k Ji Jk gfGR v/lGR gfBG07 v/lBG07 gfF98 gfSS10 λGR (Å)
6 13 4p2 (3/2,3/2) 1 2 2.351+00 1.00 2.393+00 − 2.404+00 2.244+00 63.0756
4 12 4s4d (1/2,5/2) 2 2 6.591−01 1.00 6.753−01 − 6.882−01 6.350−01 66.2383
6 12 4s4d (1/2,5/2) 1 2 4.271−01 1.00 4.199−01 − 3.878−01 − 73.2493
1 3 4s4p (1/2,1/2)◦ 0 1 1.364−01 0.59 1.415−01 1.00 1.376−01 1.320−01 132.4223
3 4 4s4p (1/2,3/2)◦ 1 2 5.643−05 1.00 5.873−05 − 5.637−05 − 133.6916
1 16 4p4d (1/2,3/2)◦ 0 1 2.185−04 1.50 1.484−04 0.99 − − 27.1909
1 29 4p4d (3/2,5/2)◦ 0 1 1.598−04 0.95 3.392−04 1.10 − − 21.3138
1 59 4d4f (3/2,5/2)◦ 0 1 3.357−05 0.01 4.694−05 0.91 − − 13.8487
1 71 4d4f (5/2,7/2)◦ 0 1 1.885−04 0.08 2.402−04 1.00 − − 13.3697
2 7 4p2 (1/2,3/2) 0 1 5.135−01 1.00 5.191−01 0.99 − − 59.9089
2 9 4s4d (1/2,3/2) 0 1 6.148−01 1.00 6.249−01 1.00 − − 47.6077
2 40 4d2 (3/2,5/2) 0 1 3.898−05 0.81 5.350−05 0.79 − − 19.3960
2 45 4p4f (3/2,5/2) 0 1 6.580−05 1.10 9.251−05 1.20 − − 19.0480
8 19 4s4f (1/2,5/2)◦ 2 3 6.398−01 1.00 6.714−01 − − − 52.5430
4 11 4s4d (1/2,5/2) 2 3 1.860+00 1.00 1.887+00 − − − 68.3293

75 129 3d9(2D3/2)4s24d (3/2,3/2) 1 0 2.243−01 0.87 − − − − 40.5992
20 45 4d2 (3/2,5/2) 2 1 7.047−01 0.87 − − − 9.000−01 60.9793
7 25 4p4d (3/2,3/2)◦ 1 1 7.485−01 1.00 − − − 7.140−01 48.2905
8 28 4p4d (3/2,5/2)◦ 2 2 5.357−03 1.00 − − − 8.350−01 45.6454
8 26 4p4d (3/2,3/2)◦ 2 3 1.071+00 1.00 − − − 6.550−01 47.4473

10 17 4s4f (1/2,5/2)◦ 2 3 3.092−02 0.97 − − − 2.490+00 104.8515
17 38 4p4f (3/2,5/2) 3 4 1.973+00 1.00 − − − 4.389+00 49.7191
29 39 4p4f (3/2,7/2) 1 2 4.511−02 0.94 − − − 1.614+00 88.8178
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3.3.2 Collision Data

Moving now to the collision problem, a sample of the data from this work’s
darc and autos DW calculations is provided in figures 3.2 and 3.4, and figure
3.2 also contains data from the Ballance and Griffin (B&G) calculations [71] for
comparison.4 This data is provided in the form of collision strengths and effective
collision strengths. The dimensionless collision strength, Ωij, for the transition
between atomic states i and j, is related to the cross-section, σ(i→ j), by

σ(i→ j) =
πa2

0IH

gik2
i

Ω(i, j) , (3.10)

where gi is the statistical weight of the initial state, ki the wavenumber of the
incident electron, a0 denotes the Bohr radius and IH is the ionization potential
of the hydrogen atom in the units used for k2

i .
The effective collision strength, Υij, is the thermal average of the collision

strength, typically a Maxwellian average such as that used in the present work:

Υij =

∫ ∞
0

Ω(i, j)e(−εj/kTe)d(εj/kTe) (3.11)

where εj is the final energy of the scattering electron, Te the electron tempera-
ture, and k denotes Boltzmann’s constant. The Maxwell-Boltzmann distribution
is non-relativistic, and relativistic effects become significant for Te & 20 keV
≈ 2.3× 108 K, relevant to the electron temperatures expected at ITER. In keep-
ing with ADAS convention, no relativistic corrections are applied to the electron
distribution functions used to produce the Υij values in this work. The rela-
tivistic Maxwell-Jüttner distribution only requires the application of a simple
multiplicative factor to the Maxwell-Boltzmann Υij values.

Damping effects are apparent in both the collision strengths and effective
collision strengths in figure 3.2, and the present autos DW results are always
less than the darc results. This should be expected since DW calculation does
not include resonance contributions to the effective collision strengths, which are
certainly present for these transitions. However, the high energy behaviour of

4The energy levels, radiative rates, and effective collision strengths from the present work
are available in the adf04 file format on the OPEN-ADAS website: http://open.adas.ac.uk/
detail/adf04/znlike/znlike_mmb15][w44ic.dat

http://open.adas.ac.uk/detail/adf04/znlike/znlike_mmb15][w44ic.dat
http://open.adas.ac.uk/detail/adf04/znlike/znlike_mmb15][w44ic.dat


CHAPTER 3. ELECTRON-IMPACT EXCITATION 105

the DW results does approach that of the darc results as would be expected.
Figures 3.2(b) and 3.2(f) display transitions that would be forbidden under LS se-
lection rules, and as such they have infinite energy limits of zero. All calculations
shown tend towards this limit and become close in an absolute sense. Conversely,
the transition in subfigure 3.2(d) would be a strongly allowed dipole under LS
selection rules, and so it exhibits the divergent behaviour at high energies typical
of that category.

There are obvious differences in the damped effective collision strengths be-
tween the present results and the B&G results for transitions 1–2 and 1–24,
figures 3.2(b) and 3.2(f) respectively. Both of these transitions are non-dipole
(J = 0 → 0) and comparatively small in magnitude; therefore, damping effects
and any differences in the CC expansion tend to be more pronounced. The lack
of a full damping treatment in the present work could explain the discrepancies;
however, one must first compare the undamped data to resolve the true origin
of any differences. Unfortunately, the undamped B&G results are only presented
in graphical form in their paper and the original data files are not available [86].
Furthermore, only data for the damped effective collision strengths are available,
not the damped collision strengths. A visual comparison with the plots in the
Ballance and Griffin paper is still useful. Comparing the undamped Υij with
those of B&G, one still observes large differences: this work’s results are larger
by about the same factor as in the damped case. Any differences in the undamped
Υij must be due to differences in the resonant structure of the undamped Ωij.
Indeed, comparing the collision strengths in figures 3.2(a) and 3.2(e) with the
B&G collision strengths plotted in their paper, there are intensity peaks present
in this work’s results that are not present in the B&G results, a direct indication
that there are additional intermediate resonances in the present CC expansion.
For example, transition 1–2 will have the resonance 3d94s24pnl available in this
work’s calculations but not in B&G’s. Combining this and the observation that
the relative amount of damping in the present results is comparable to the B&G
results—inferred again from visual inspection—it is reasonable to conclude that
the differences observed here are most likely due to the differences in the CI and
CC expansions and not differences in the treatment of radiation damping. More-
over, discrepancies due to varying resonant enhancement between calculations
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should be less pronounced in strong dipole allowed transitions, and this is exactly
what is observed for the dipole 1–3 transition in figures 3.2(c) and 3.2(d).

Since these are only two cases, it is not possible to apply this conclusion in
general, and it would be impractical to analyze every transition in this manner:
there are 2843 intersecting transitions for the two calculations. However, a slightly
larger subset of about 15 transitions was analyzed in similar detail, and the same
conclusion was reached: the present damped Υij tend to agree quite well with
those of B&G for strong transitions, but weaker transitions display variable levels
of agreement. Still, this is not enough evidence to extrapolate the conclusion, so a
broader scope technique must be used. The approach was to select temperatures
of interest and then compare the damped Υij values from the two calculations
for all intersecting transitions. Graphically, this results in the comparison scatter
plots presented in figures 3.3(a) and 3.3(c), one at a temperature near that of peak
abundance for W44+ (≈ 3 × 107 K) and the other at a lower temperature. The
intersecting levels involved in these transitions have an index cutoff of i = 71,
corresponding to the last 3d104d4f level. Figure 3.1 displays that above this
configuration, the energy level distributions do not intersect, and therefore there
are no overlapping transitions involving levels above this cutoff.

The limited damping treatment of this work compared to B&G means the
present collision data should be systematically larger, and this would manifest
as a statistically significant number of points lying below the y = x line. How-
ever, figures 3.3(a) and 3.3(c) display the exact opposite: what appears to be
a significant number of points above the y = x lines and so a systematic trend
towards this work’s Υ values having comparatively smaller magnitudes. Because
the density of points in the vicinity of the y = x line is not readily estimated,
it cannot be immediately concluded that this is a statistically significant trend.
Calculating the fraction of points within an uncertainty region of 20% around
the y = x line can elucidate the situation, and the results of this calculation are
presented in the caption of figure 3.3. The values of 63% and 44% for the all
transitions cases indicate that although there is reasonable agreement between
most points at these temperatures, a significant portion do lie outside the uncer-
tainty region. Additionally, plotting the ratio of the effective collision strengths,
R = ΥBG/Υpresent, versus a relevant independent variable as in figures 3.3(b)
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Figure 3.2: Collision strength, Ω, and effective collision strength, Υ, results for the three
transitions presented by B&G in [71]. Figures (a), (c), and (e) display the convolution of
the present Ω data with a 2.205 Ryd (30 eV) Gaussian function; this ‘smoothes’ the dense
resonance peaks while still retaining the information about where the peaks are strongest,
making interpretation and viewing easier. The dashed (red) line is for the undamped data, and
the solid (blue) line for the damped data. Figures (b), (d), and (f) show the present Υ data
(DARC pres and DARC pres damp) along with the present autos DW (AS DW) results and
the corresponding Ballance and Griffin (BG) results [71]. Refer to the legend in (b) for the line
styles corresponding to each data set.
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Figure 3.3: Comparison — (a) and (c) — and ratio — (b) and (d) — scatter plots of effective
collision strength values, Υ, from the two primary calculations: Ballance and Griffin’s (B&G)
fully damped darc versus the present, partially damped darc. The temperature at which the
Υ values are being sampled is indicated by the boxed value on each plot. For the comparison
plots, (a) and (c), the (blue) triangles denote dipole transitions, and the (green) squares denote
non-dipole transitions. The dotted lines demarcate the 20% error region around the y = x line,
and the percentage of points within the error regions are as follows: (a) all = 63%, dipole =
82%, non-dipole = 56%; (c) all = 44%, dipole = 68%, non-dipole = 35%. For the ratio plots, (b)
and (d), the binary positive or negative behaviour of the ratio is defined by R = ΥBG/Υpresent

if ΥBG > Υpresent or R = −Υpresent/ΥBG if ΥBG < Υpresent. The ratio is plotted versus the
upper level, i, of the transition in each case.
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and 3.3(d) can reveal important systematic trends. Both of these plots show a
clear asymmetry of higher Υij values from the B&G calculations. Hence, the
significance of the systematic trend is supported.

Since the systematic trend is the opposite to what was expected, there must
be another, more significant systematic effect involved other than the limited ra-
diation damping treatment. From the observation of no systematic deviation of
the dipole line strengths in section 3.3.1 and the proximity of energy levels in
table 3.3, it is deduced that the systematic difference cannot be caused directly
by differences in the atomic structure. Several indicators suggest that this other
systematic effect must be additional resonant enhancement for low to intermedi-
ate scattering energies in the B&G calculations. Firstly, the comparison plots in
figures 3.3(a) and 3.3(c) both show that the trend towards larger ΥBG values is
relatively greater for weaker transitions. The non-dipole transitions, because they
tend to be weaker, display a greater susceptibility to the trend, supported by the
lower error region percentages and a visibly larger spread of values. Juxtaposing
figures 3.3(a) and 3.3(c), which only differ by the sampling temperature, reveals
that the trend of larger ΥBG values is enhanced at lower electron temperature, an
observation that is also true for figures 3.3(b) and 3.3(d). The preceding observa-
tions support the claim of additional resonant enhancement because resonances
tend to affect weaker, non-dipole transitions to a larger degree and even more so
at lower Te.

Secondly, it is seen from the ratio plots in figures 3.3(b) and 3.3(d) that
the ΥBG values are increasingly large compared to this work as the index of the
upper level, i, increases. The upper level is relevant for resonant enhancement
considerations because it restricts the possible levels that can be involved in the
intermediate (N+1) resonant states. As the upper level of a transition approaches
the level intersection cutoff of i = 71 (E ≈ 8 × 106 cm−1 in figure 3.1), the
transition will increasingly only have access to resonances involving levels that are
discrepant between the calculations. Consequently, the tendency for Υ values to
disagree more at higher i that is observed in figures 3.3(b) and 3.3(d) is consistent
with the proposition of discordant resonant enhancement.

However, this now begs the question why it is that the B&G results have
systematic, additional resonant enhancement, especially when the present calcu-
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lations include a larger number of levels. The answer must derive from the dif-
fering structure of the CC expansions and thus the differing atomic energy level
distribution that is summarized in figure 3.1. The non-intersecting, n = 5 energy
levels in the B&G calculation are immediately above the dashed-line threshold;
hence, these levels will be more accessible for resonance formation if the electron
distribution functions peaks close to the excitation energy of the transition under
consideration. In contrast, the 3d-hole configurations lie ∼ 60 Ryd higher, as do
resonances with the same n-value. Furthermore, 3 of these 4 configurations have
a strong dipole 4p, 4f → 3d type-I radiation damping transition. Finally, some
common initial configurations—4p2, 4p4f, 4d2, and 4d4f—have no single electron
promotions to 3d-hole resonances, unlike B&G where resonances can be formed
by promotion to n = 5.

One point should be clear from the preceding discussion: it is the composition
of the CI and CC expansion that most influences the behaviour of the collision
data being compared. Indeed, it is still possible that the present calculations
neglect a large amount of damping, which would be hidden by the cancellation of
the two systematic effects; however, this is unlikely given the analysis of figure 3.2.
The objective of including consideration of the soft x-ray, 3d-subshell transitions
has necessarily shaped the CI/CC expansion used in the present calculations,
and so differences with other calculations should be expected. In the end, a true
assessment of the merits of these two primary calculations can only be obtained
through the application of the data in the atomic population modelling to follow.

Figure 3.4 shows the collision data for the strongest three 3d-subshell tran-
sitions. Because of the strength of these E1 transitions, resonances appear to
be unimportant and the behaviour due to direct Coulomb excitation dominates.
Such observations are supported by a sharp jump in the collision strengths at the
energy threshold of each transition. The limited number of resonance peaks is
due to the fact that the upper levels in these transitions are close to the highest
energy level included in the present calculation, meaning there are comparatively
few intermediate resonant states available. Furthermore, good agreement is ob-
served between the autos DW results and the darc effective collision strengths.
Again, this can be accounted for by the relative sparsity and small magnitude of
resonances for these transitions. One might be tempted to conclude that it would
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be simpler and less time consuming to have only used the DW results; however, it
is difficult to predict whether the results will still be similar following atomic pop-
ulation modelling. So it is prudent to carry all available results—present darc,
autos DW, cowan PWB, and B&G darc —forward and assess any differences
following the final analysis.

3.3.3 Atomic Population Modelling

As noted in section 3.1, determination of the total radiated power loss from W44+

is one of the desirable outputs from atomic population modelling, which can
double as a comparative measure of the fundamental data. The excitation line
power coefficient for a transition, j → k, is defined by

PL,1,j→k = ∆EjkPEC(exc)
1,j→k = ∆EjkAj→kF

(exc)
j1 , (3.12)

which has units of (W cm3) and is simply the relevant PEC multiplied by the
energy difference between the levels involved, ∆Ejk. The total excitation line
power coefficient, P(z)

LT,σ ≡ PLT , is the sum of the PL,1,j→k over all possible
transitions, as defined in (2.37), and is directly proportional to the total radiated
power loss of the ionization stage. Although the PECs and power coefficients give
much of the same information, PECs are preferred in spectroscopic applications
while power coefficients are needed for estimates of radiated power loss. Both
are employed in the subsequent analysis and are largely interchangeable in cases
where general conclusions about a transition are being sought.

The total excitation line power coefficients from the various calculations are
plotted versus electron temperature in figure 3.5(a), along with a selection of
relevant, contributing PL,1,j→k from the present darc work. Observing the in-
dividual PL,1,j→k values, the dominant transition across most of the Te range is
unsurprisingly the dipole allowed 6–1 (60.93 Å) transition; however, towards lower
Te the VUV 3–1 (132.88 Å) transition is stronger due to its lower energy differ-
ence. Most importantly for this work, the strongest line from the open 3d-subshell
transition arrays is the highlighted 275–1 (5.77 Å) transition. It is the value of
the power coefficient at peak abundance temperatures that is of most concern
(see section 5.3.1.1), and a critical observation is that the 275–1 3d-subshell line
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Figure 3.4: Present results for the dominant 3d-subshell transitions in the transition arrays,
[3d104s2–3d94s24f] and [3d104s2–3d94s4p4d]. In contrast to figure 3.2, (a), (c), and (e) are the
‘raw’ Ω data sets that have not been convoluted; no convolution is required for these transitions
because of the limited resonance structure. Again, the dashed (red) line is for the undamped
data, and the solid (blue) line for the damped data. Figures (b), (d), and (f) display the Υ data
for both the darc and autos DW calculations. Refer to the legend in (b) for the corresponding
line styles. In the level specifications, the substitution, ? ≡ (3d9(2D5/2)4s1/2)◦24p3/2, is used.
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contributes an equal amount to the total radiated power as does the VUV 3–1
line in this region.

The salient feature of the PLT lines in figure 3.5(a) is the departure of the
B&G result from the other calculations at high Te, commencing just before the
demarcated region of peak abundance. What causes this behaviour is evident
from the individual PL,1,j→k lines, just discussed: the 275–1 (5.77 Å) line, which
is not included in the Ballance and Griffin calculations, rises to a 50:50 power
contribution with the strong VUV 3–1 (132.88 Å) transition in the peak abun-
dance region. Omission of this line along with others of comparable magnitude
in the [3d104s2–3d94s24f] and [3d104s2–3d94s4p4d] transition arrays leads to the
relative reduction in the PLT seen in the B&G results. Otherwise, the PLT
values from the other calculations, both of which include at least some of the
important 3d-hole configurations, agree well across the given Te domain with no
relative errors over 50% and convergence at high Te, notably in the shaded region
of peak abundance. This reiterates a common theme: the primacy of the config-
urations included in the collision calculation and subsequent modelling. Without
appropriate consideration of the 3d-subshell transitions, a large contribution to
the radiated power from W44+ will be missed, reaffirming the decision to focus
attention on these transitions.

Figure 3.5(b) provides a more detailed point of comparison between the calcu-
lations by showcasing the PECs for the same transitions as the individual PL,1,j→k
lines in figure 3.5(a). Although the PECs and PL,1,j→k only differ by an energy
factor, it is interesting to note the effect that this has upon the importance of the
275–1 (5.77 Å) line; the PL,1,j→k values are comparatively higher because of the
large energy difference between level 275 and 1. Agreement between the theories
in figure 3.5(b) is quite good for the strong dipole allowed transitions (3–1, 6–1,
275–1), and the moderate discrepancy between the darc and DW results for the
3–1 line can be explained through application of the zero density limit expression
in (3.9). This provides a good approximation in the present circumstance because
density effects on level populations are largely absent until Ne ≈ 1016 cm−3. The
dominant A-value in the sum of (3.9) is A3→1 by many orders of magnitude,
and so the A3→1 in the numerator will be effectively cancelled. Thus, it must
be variation in the excitation rate coefficient, qe

1→3, that causes differences in the
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Figure 3.5: PLT , PL,1,j→k, and PEC values derived from the relevant fundamental datasets
for W44+ versus electron temperature, Te. The shaded vertical bar represents the Te range
where the fractional abundance of W44+ in the coronal equilibrium approximation is greater
than 0.1. (a) shows the total excitation line power coefficients, PLT , as the enveloping (black)
lines, and these have been calculated for the four Υij datasets with line styles indicated in the
figure: the Ballance and Griffin darc and the present darc, autos DW, and cowan PWB.
A sample of the strongest and most relevant contributing individual lines from the present
darc work have been emphasized (coloured) and labelled. (b) displays the PEC lines for the
corresponding PL,1,j→k lines in (a). The line styles denote different datasets as labelled in the
figure: Ballance and Griffin’s darc and the present darc and autos DW. Note: there are
no Ballance and Griffin results for the 275–1 (5.77Å) PEC line. The indices from this work’s
grasp0 calculation are used—refer to tables 3.3 and 3.4.

PEC values—recall, excitation from the ground dominates in the zero density
limit. Indeed, the autos DW Υ1→3 values are systematically lower than the
corresponding darc values because of the absence of resonant enhancement; this
explains why the DW PEC is also lower across the temperature range.

On the other hand, the spin-changing, M1, 4–3 transition displays notable
differences between all of the calculations, but the PEC values do eventually
converge at high Te. Again, these differences can be understood through the use
of the zero density limit for the PEC, and just as above, the contributions from
the radiative transition probabilities cancel due to the dominance of the A4→3

value. The Υ1→4 values for the various calculations reproduce the ordering of the
4–3 PEC lines in figure 3.5(b): the autos DW Υ1→4 are less than both of the
darc results because of the absence of resonances, and this work’s darc Υ1→4

are larger than B&G’s for less obvious reasons. The trend of relatively larger
B&G Υ values observed in section 3.3.2 in no way means that this work’s Υ
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values for a particular transition cannot be larger as is the case here; however,
the cause of this is indeterminable without the ability to look at the B&G Ωij

data.
There are several conclusions relevant to radiated power loss from the obser-

vations of figure 3.5. First, the importance of the soft x-ray 3d-subshell transi-
tions: the PLT lines from figure 3.5(a) clearly show that neglecting the [3d104s2–
3d94s24f] and [3d104s2–3d94s4p4d] transition arrays will greatly reduce predictions
of radiated power loss from W44+. Thus, these transition arrays must be included
in the collision calculations upon which any effort to model radiated power loss
is built. Second, there is evidence that the omission of transitions involving the
3d104l5l′ configurations (henceforth, n = 5 transitions) has little effect upon the
PLT values. B&G collision data for the n = 5 transitions was merged into the
present darc data, and a negligible effect upon the modelled quantities in fig-
ure 3.5 was observed. The PECs still agreed to within a few percent except for
the 4–3, M1 transition which agreed within 10%. Even though this merging is
not a replacement for a full calculation with all of the relevant configurations, it
strongly indicates that the n = 5 transitions are not essential for radiated power
loss considerations in general and therefore also for the 3d-subshell transitions. As
discussed in section 3.3.2, the n = 5 configurations do provide additional resonant
enhancement for lower level transitions, and the effect of this in the context of
population modelling will require further investigation outside the current scope
of the present study.

Thirdly, the overall proximity between the present darc, cowan PWB, and
autos DW results in figure 3.5(a) propounds the suitability of the non-close cou-
pling theories as baseline descriptions of the radiated power from W44+. However,
this statement in no way recommends that the more intensive darc calculations
are unnecessary. From a detailed spectroscopic perspective, one must assess the
suitability of a particular dataset on a transition-by-transition basis, and the small
number of transitions presented in figure 3.5 do not allow any generalizations to
be made. Another technique is required.

Because W44+ is a heavy and relatively complex species, there are so many
transitions that describing it with individual line emissivities is overwhelming
and lacks an overarching perspective: one cannot see the forest for the trees. In
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response, envelope lines are produced and defined by a vector of feature photon
emissivity coefficients (F -PECs), that are composite features of many PEC lines
over a wavelength region. Suppose the spectral interval of interest, [λ0, λ1], is par-
titioned by Np elements of the set, {λi ≡ λ0 + i(λ1 − λ0)/Np : i = 0, . . . , Np − 1},
then the envelope feature photon emissivity coefficient vector is defined as

F -PEC(exc)
1,i =

∑
j,k;λj→k∈[λ0,λ1]

PEC(exc)
1,j→k

∫ λi+1

λi

ϕj→k(λ)dλ (3.13)

where ϕj→k(λ) is the normalized emission profile of the spectrum line j → k that
defines the line broadening.

The spectral features resulting from the F -PEC vectors of the various W44+

datasets are plotted in figure 3.6; portions of soft x-ray and VUV regions are
represented. As might be expected, the intensities of the features which envelop
strong transition lines agree well—the peaks labelled by 6–1 & 8–3 (∼ 61 Å) and
3–1 & 4–3 (∼ 132 Å). However, the 6–1 feature does display some wavelength
discrepancy. The cowan PWB result overestimates slightly compared to the
two darc results. For features of less intense lines, the disagreements are larger:
the cowan PWB result differs from the two darc results by nearly an order
of magnitude for both the 12–4 & 11–4 (∼ 66 Å) and 12–6 (∼ 73 Å) features.
Additionally, the 10–3 & 9–2 (∼ 48 Å) peak exhibits both intensity and wave-
length discrepancies between all the calculations. Overall, figure 3.6 also clarifies
the wavlength coverage of these three datasets. Of most relevance for this work
is that there is no B&G result for the 275–1 & 290–1 (∼ 7 Å) feature, which
is the third most intense. Again, this corresponds to the dominant soft x-ray,
3d-subshell transitions that have been of concern throughout, and the present
darc result is in close agreement with the cowan PWB. In addition, this darc

work has no data between 10 Å and 20 Å corresponding to where the n = 5–4

lines lie.
The underlying message from the observations of figure 3.6 is that there are

enough differences between the CC and non-CC calculations such that appli-
cations in detailed spectroscopy could produce disparate results—for example,
when calculating the line emissivity, εi→k, from (3.2). However, the two darc re-
sults do agree very well for overlapping spectral intervals. This further supports
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Figure 3.6: The envelope feature photon emissivity coefficient (F-PEC) vectors for various
W44+ calculations plotted versus wavelength at Te = Ti = 3.5keV, where Ti is the ion tem-
perature. The calculations shown are those indicated in the top right, colour-coded legend:
Ballance and Griffin’s darc, and the present darc and PWB based on Cowan’s code(cowan).
The Doppler broadening by the velocity distribution of the radiating ions has been applied
using the default Maxwellian distribution with Ti = Te. In addition, the results were convolved
with an ideal spectrometer instrument function with a FWHM of 1.5 Å. The vertical labelling
of the peaks denotes the transition(s) for the dominant excitation PEC(s) within the feature;
the indices from this work’s grasp0 calculation are used—refer to tables 3.3 and 3.4.

the conclusion above that the neglect of the n = 5 transitions has not signif-
icantly affected the modelled results. A possible criticism of this conclusion is
that only strong emission lines are being considered in figure 3.6 and that differ-
ences between the datasets might become more apparent for weaker lines. But
this point is self-defeating: the fact that these lines are weak and not part of this
spectrum means they unlikely to be observed and so are less important from an
experimental standpoint. Therefore, for both spectroscopic and radiated power
applications, it is recommended that this work’s darc adf04 file with the merged
n = 5 transition data from B&G be used.



Chapter 4

Baseline-quality Ion-impact

Excitation Calculations

4.1 Introduction

An implicit assumption has been made in both Chapters 2 and 3 that electron pro-
jectiles dominate the collisional excitation of impurity species in relevant plasma
environments. In fact, this is a common assumption in the fields of atomic and
plasma physics, and the literature abounds with work pertaining to fundamental
EIE collision data and its application to CR models, exclusive of any other colli-
sion mechanisms. However, there is a whole other class of charged particles in a
plasma that can function as collision projectiles: the positive ion species, whether
fuel ions, fusion products, or impurity species. Compared to EIE, there are far
fewer literature sources for ion-impact excitation (IIE), and they tend to be less
sophisticated. This can be explained almost entirely by classical mechanics, even
though collisional excitation is fundamentally quantum, because of Ehrenfest’s
Theorem and the Correspondence Principle.

For EIE, the classical analogue is two spheres of equal mass colliding elasti-
cally, representing the free electron projectile and one of the bound target elec-
trons with which it interacts. Classical mechanics specifies that these types of
collisions result in large relative energy transfers. In the extreme case of a head-
on collision, the projectile will transfer all of its energy to the target. Large
changes in energy translate to changes in the principal quantum number, n, of

118
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the bound electron. It is these n-changing transitions that are central to popula-
tion modelling and line emission power. On the other hand, for IIE the classical
analogue is two spheres of vastly different mass colliding elastically, representing
the ion projectile (mi) interacting with one of the bound atomic electrons (me)
and mi � me. In this case, classical mechanics dictates that there are small
energy transfers from the projectile to the target, but changes in direction of
the target are more pronounced. This causes changes in the angular momentum,
which translates to variation of the l and j quantum numbers of the atomic elec-
tron. Therefore, IIE transitions tend to be restricted within ry configurations and
LS terms of the highly-resolved, lower-energy states. Because the energy differ-
ences are small, these collisions are particularly efficient for light species, resulting
in the well-known effect that ry states and LS terms have an internal statistical
balance of their respective sub-states. However, precisely because a statistical
balance can be assumed, there is no need to explicitly include IIE transitions in
the model, thus explaining the neglect of this process compared to EIE.

Although this classical differentiation between IIE and EIE is useful for a pre-
liminary sense of the problem, more precision is required for a serious study. To
this end, the cross section schematics for an arbitrary transition have been cre-
ated in figure 4.1 using more detailed information about the respective collision
processes. By way of juxtaposition, they compactly summarise the effects of the
different projectiles and how these differences propagate to the final rates used in
the population model. The cross sections are plotted versus the initial, relative
projectile speed, up = u, as opposed to the relative energy since this provides a
more intuitive, physical representation; after all, the rate coefficient is formed by
the product of the cross section and relative projectile speed, qi→j = 〈upσi→j(up)〉.
The following facts were used to compose these schematics. First, the cross sec-
tions for both EIE and IIE tend to peak at the same velocity for a given transition,
up ∼

√
2∆Eij. The underlying reason is that once the projectile has sufficient

energy to excite the transition, it is the nature of the perturbing potential that
determines the excitation cross section. This potential is dependent upon the
magnitude of the projectile charge—not the sign—and the collision time, which
is directly related to the relative projectile speed. Technically, the integrals in-
volved in the cross section or collision strength are dependent on a dimensionless
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parameter, ξ, which is the ratio between the atomic frequency, ∆Eij/~, and the
collision time. More discussion about this informative parameter is provided in
section 4.4.1.1. More generally, the parameters used throughout this chapter are
defined in table 4.2, and most are also defined in the glossary.

ve /αc
~ (kT/IH)1/2

σ/πa0
2

electron impact

(𝚫E/IH)1/2 ~(2𝚫E/IH)1/2

(a)

vi /αc(me/M)1/2

~ (kT/IH)1/2(me/M)1/2

σ/πa0
2

ion impact

(𝚫E/IH)1/2

~(2𝚫E/IH)1/2

(b)

Figure 4.1: Schematic graphs of EIE, (a), and IIE, (b), cross sections versus relative projectile
speed, vp, for an arbitrary transition, i → j. The red or shaded bars represent the speed
domains where the Maxwell-Boltzmann distribution would peak at a temperature, T ≡ Te ≡ Tp.
Divisions by IH indicate the use of Rydberg energy units, while division by αc or πa20 indicate
the use of atomic units.

Secondly, the excitation thresholds—left dotted lines in figure 4.1 (a) and (b)—
are determined by the transition energy, so in energy space ε(thr.)

i = ∆Eij. Con-
verting to speeds,1 the EIE threshold is u(thr.)

p =
√

∆Eij whereas the IIE threshold
is u(thr.)

p =
√

∆Eij/M . Of course, the speed threshold for EIE is also scaled by
1/
√
M , but since me = 1 in atomic units, M = mt

mt+1
≈ 1 for mt >> 1. Thus, the

mass scaling has the effect of greatly reducing the IIE speed threshold relative to
that of EIE: compare sub-figure 4.1(a) to (b).

Thirdly, at threshold, the IIE cross section is suppressed towards zero due to
the repulsive and adiabatic nature of the interaction. The descriptor, adiabatic,
is used in the quantum and not the thermodynamic sense here, and a complete
definition is given in section 4.4.1.1. Briefly, a perturbation is adiabatic if it is
slowly varying and so smoothly transports the atomic wave function between
a well-defined initial and final state of the same quantum numbers. Hence, no
transition occurs. In contrast, the EIE cross section is finite at threshold as

1When using Rydbergs for the transition energy but retaining atomic units for the speed,
the kinetic energy equality becomes Mu2p/2 = ∆Eij/2, so Mu2p = ∆Eij .
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a result of the attractive interaction and the quantum phenomenon of electron
exchange: the incoming electron is readily drawn into the target and a transition
is possible right at the threshold.

Finally, consider the other component of how the rate is formed: the Maxwellian
speed distribution. Assuming the equipartition theorem holds, the average kinetic
energies of electrons and any ion species in a plasma will be equal, meaning their
energy distributions will be the same. Consequently, the peak region of the ion
speed distribution at a given temperature will be scaled by a mass factor of
M−1/2 relative to the electron speed. This results in the simple, well-known phe-
nomenon that positive ions in a plasma travel at lesser speeds than the electrons
when both species are in mutual thermodynamic equilibrium. Although slow rel-
ative ion speed is often quoted as the sole reason why IIE rates will be negligible,
this is not the whole story. Figure 4.2 clearly shows that the peak domain of
the Maxwell-Boltzmann distribution also becomes narrower as the relevant mass
increases, which can have serious implications for the formation of rates.

0 1 2 3 4 5 6 7 8
v

0.0

0.5

1.0

1.5

2.0

2.5
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f(
v)

m = 10
m = 100
m = 1000

Figure 4.2: The Maxwell-Boltzmann probability density function, f(v), versus speed, v, for
different particle mass values, m. A common temperature of kT = 25 Ryd has been set.

A more precise qualitative explanation for why EIE has dominated the subject
of collisional excitation in plasmas can now be offered. Recalling that the excita-
tion rate is formed by the thermal average of the cross section and speed product,
one can estimate the magnitude of a rate by determining the relative domains
where the Maxwellian speed distribution—the vertical, red bars in figure 4.1—
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and excitation cross section have their respective peaks. If these peak domains
overlap, then one can expect a larger rate than if these domains overlap to a
lesser degree or do not intersect at all. Furthermore, because of the Maxwellian
narrowing effect displayed in figure 4.2, this relative location of peaks is more
influential when determining IIE rates than EIE ones: an ion speed distribution
will be more selective of the speeds relevant to the formation of the rate than the
electron distribution.

Again, it is useful to refer to both schematics in figure 4.1 since they provide
a visual summary of the situation. Starting with the electron-impact case of fig-
ure 4.1(a), it is assumed that the plasma temperature, T , is such that the electron
speed distribution peaks near the peak of the excitation cross section, σi→j, for
this arbitrary transition, and so a substantial excitation rate should result. That
this is a good assumption in general remains to be shown, but the present aim is
simply to demonstrate that for a transition with a significant EIE rate at a given
temperature, the corresponding IIE rate will likely be inconsequential. Moving
to ion-impact in figure 4.1(b), it is known from the previous observations that
the excitation threshold and speed distribution peak will be scaled by M−1/2 rel-
ative to the electron-impact analogues, but the cross section peak will remain at
largely the same up. Combining these effects with that of the suppression of the
IIE cross section at threshold explains what figure 4.1(b) visually represents: the
Maxwellian peak tends to lie on a portion of the IIE cross section that is closer
to the threshold than to the peak, and so it lies on a portion that is nearly zero
in magnitude. As a result, it is reasonable to estimate that the IIE rate will be
small and even negligible compared to that of EIE. It is notable that if the peak
of the IIE cross section was also scaled byM−1/2, then this contrast would not be
so dramatic, although the suppression at threshold would still likely ensure the
comparatively small magnitudes of IIE rates.

4.1.1 IIE Rules of Thumb

Recall that the parameters used in this section are defined in table 4.2. All of
the preceding observations comparing EIE to IIE produce what might be called
an archetype that is broadly applied to dismiss the need for IIE in population
models. However, this need not always be case, and the first step towards com-
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prehending alternate excitation scenarios is determining the conditions needed
for more pronounced IIE rates. Referring again to figure 4.1(b), the aim of hav-
ing the cross section peak as close to the red bar as possible can be achieved
through two mutually compatible mechanisms. First, a small transition energy,
∆Eij, will result in a cross section peak at lower projectile speeds; and second, the
Maxwellian peak itself can be shifted to higher speeds by increasing the plasma
temperature: u(pk)

p = (2kTp/M)1/2.
For an individual transition, it is straightforward to make an order of magni-

tude estimate of whether the IIE rate will be significant relative to the EIE rate.
The discussion so far has clarified that only two parameters in this rough approx-
imation are responsible for determining the magnitude of a rate: the projectile
temperature, Tp, and the transition energy, ∆Eij. Thus, it simply remains to find
a relation between these variables that defines the condition for when the peaks
of the Maxwellian distribution and the cross section are approximately aligned.
Following the reasoning of [87], one can estimate that the peak of the EIE cross
section will occur at a reduced projectile energy somewhere in the range of 1 to
10 times the transition energy,

∆Eij . ε
(e)
i . 10∆Eij. (4.1)

Converting to velocity using the expression for kinetic energy of a reduced particle
measured in Rydbergs, εp = Mu2

p, with M ≈ me = 1, the range becomes

√
∆Eij . ue .

√
10∆Eij. (4.2)

Now, as stated above, the EIE and IIE cross sections peak at approximately the
same relative projectile velocity, u(pk)

e ≈ u
(pk)
i , so using 4.2 and the kinetic energy

of a reduced particle in the centre-of-mass (COM) frame, one can obtain the
estimated reduced energy range for the peak of the IIE cross section:

M∆Eij . ε
(i)
i . 10M∆Eij. (4.3)

As an example, if the projectile is a proton (i.e. 1H nucleus) thenM ≈ mp ≈ 2 000,
and so one would expect the cross section for an arbitrary transition to peak at
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an incident energy of somewhere between 2 000 and 20 000 times ∆Eij, or more
simply ε(i)

i � ∆Eij.
Now, in order to maximize the resulting rate coefficient for the transition of

interest, the peak of the Maxwellian distribution function should overlap that of
the cross section: kTi ≈ ε

(pk)
i . Thus, a range of the most relevant temperatures

for IIE can be established:

M∆Eij . kTi . 10M∆Eij. (4.4)

SinceM is typically quite large for IIE cases, it is more succinct to say ∆Eij � kTi.
Furthermore, when an equilibrium ionization balance of a particular element is
established—which is often the case—the temperature at which each ion species
of the isonuclear sequence will peak in abundance can be fairly well approxi-
mated by the ionisation potential of that species: kT (pk)

i ≈ χ(z). Putting this all
together, one gets the most practically useful equation for estimating whether a
transition will have a significant IIE rate:

∆Eij ≈ kT (pk.)/M ≈ χ(z)/M . (4.5)

So, it is transitions with a small ∆Eij relative to the plasma temperature
or the ionisation potential for which IIE can produce large rates. Indeed it has
already been mentioned that for low-Z0 species, it is large IIE rates and not EIE
rates that are responsible for establishing statistical balance amongst the nearly
degenerate, fine-structure levels. In such circumstances, it is not necessary to
explicitly include IIE rates in any CR modelling. However, as higher-Z0 species
are considered, the degeneracy and hence statistical balance of fine-structure lev-
els breaks down, but the IIE rates can be substantial with ∆Eij � χ(z) ≈ kT (pk.)

still holding true. Under these circumstances, IIE rates should be included, but
it is only through CR modelling that one can judge the impact and necessity of
including IIE or not. The exploration of the plasma parameter space where IIE
must be explicitly included in CR models will be done in section 5.3.1.
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4.2 Literature Review

Given that IIE collision will be needed in certain plasma scenarios, the broad
categories of calculation approaches are introduced in this section. As with EIE
in Chapter 3, the trade-off between accuracy and computational resources must
ultimately be balanced when selecting a technique. Moreover, the limitations
and inherent assumptions of a technique need to be considered in the context of
the input parameters for the scattering problem to be solved. For instance, the
Born approximation becomes exact in the limit of infinite projectile energy, but
it grossly overestimates the IIE collision strength at low energies because it does
not account for the repulsive nature of the interaction, only the magnitude of
the charge. Therefore, this is an ideal technique for extremely high temperature
plasmas because the Born approximation is computationally inexpensive, but it
is inaccurate under other conditions regardless of the computational resources
used.2

Both EIE and IIE are fundamentally quantum processes, so an approach to
IIE based on quantum mechanics is required. Yet the applicability of classical
mechanics to the scattering problem should not be ignored, especially if it reduces
the computational load. Classical mechanics has been evoked frequently, for good
reason, in describing certain collision phenomena since even the atomic target
itself can be accurately described semi-classically in some circumstances—viz.
Gaunt factors close to unity. The degree to which classical approximations can be
introduced will depend on the physical conditions and is quite a subtle point that
forms a recurring theme in this review. To start with, the quantum nature of the
scattering event is determined by the possible interaction between the projectile
and target wave functions. This can be quantified by considering the de Broglie
wavelength of the projectile, λ̄ = 1/p = 1/(Mup), in relation to some dimension
of the scattering event relative to the target. Alder and Winther [88] choose half
the distance of closest approach for a head-on collision, a = zpzt/(Mu2

p), and they
define the dimensionless ratio of a to λ̄ as a parameter that measures the degree

2The importance of the Born approximation in the context of the semi-classical method used
in this work is explored in sections 4.2.1 and 4.3.1
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of interaction between wave functions:

η =
a

λ̄
=
zpzt
up

. (4.6)

If η � 1, then λ̄� a, and the projectile wave function will have little opportunity
to overlap the target wave function because its physical extent is small compared
to how close it approaches the target. Therefore, the projectile motion can be
accurately approximated by a compact wave packet travelling along a classical
trajectory. There are two potential differences between IIE and EIE by the mea-
sure in equation 4.6. First, larger zp ion projectiles will result in larger η values
and thus a more “classical” scattering compared to EIE where zp = 1. Second,
ion projectiles tend to have slower relative speeds, up, than electron projectiles
because of the mass factor in the distribution function, and this is another factor
that produces preferentially larger η values for IIE over EIE.

Yet, there is another manner in which IIE is more conducive to a semi-classical
treatment. From the perspective of a fully quantum calculation, highly oscillatory,
continuum wave functions of ion projectiles are computationally expensive to
represent, and the number of partial waves, l, needed in the collision strength
sum, Ω =

∑
l Ωl, scales as

√
M . So, ions are less tractable in a quantal treatment

than electrons are, which is a mathematical corollary of the physical fact that
the relatively large mass of ion projectiles (mi � me) leads to small de Broglie
wavelengths and therefore a less wave-like character. This is not to say that
classical approximations for EIE are not appropriate; for instance, Seaton [89]
describes an effective method to calculate optically allowed, EIE cross sections
using the impact parameter method. However, it must be acknowledged that EIE
reactions are fundamentally more “quantum”, which explains why so much effort
has been devoted to topics like close-coupling and electron exchange for this type
of scattering.

Combining the classical approximation of hyperbolic projectile trajectories
with a quantum method for the excitation of the target results in a semi-classical
approach to the scattering problem—one that has been historically popular for
IIE calculations. Such an approach is advantageous because the neglect of any
projectile-target wave function interaction greatly reduces the computational ex-
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pense of the scattering calculation. There is an implicit assumption here that
the projectile is without any internal quantum states and so cannot be itself
excited—i.e. it is a structureless classical object. Another advantage is that ac-
curate results are guaranteed when η � 1, which is true over a large parameter
space for ion projectiles. There are two subclasses of semi-classical approaches.
If first-order perturbation theory is applied to quantify the excitation of the atom
under the influence of the perturbing projectile potential, then one has the semi-
classical, first-order perturbative (SC-1) method, which is described further in
section 4.2.1. On the other hand, if the time-dependent Schrödinger equation is
solved directly under the influence of the classically determined perturbing po-
tential, then one has the semi-classical, close-coupled (SC-CC) method, which is
discussed in section 4.2.2. The SC-1 method has been selected for the production
of IIE data in this thesis and for the ADAS baseline. The purpose of the following
literature review will be to place the SC-1 method in its proper context.

Returning to equation 4.6, if η � 1 then λ̄� a, and the Born approximation
applies. The extent of the projectile wave function is so large compared to the
classical distance of approach that the target will “see” an incident planar wave.
In between this limit and η � 1, neither semi-classical methods nor the Born
approximation are completely accurate, and more sophisticated quantum meth-
ods must be used. A short résumé of the quantal methods applicable to IIE is
provided in section 4.2.3 to complete the literature review, and a central question
will be assessing how these compare to the semi-classical treatments. Indeed, the
semi-classical approaches can be extended and improved with various modifica-
tions involving cutoffs and limits to achieve greater agreement with the quantal
treatments. The infinite-energy Born limit, Ωij

(inf), can be directly related to one
of these cutoffs, providing a link between the extreme η limits and thus ensuring
the validity of the modified semi-classical approach across the entire parameter
space. Much of the subsequent discussion will centre on these modifications since
the applicability of the semi-classical approach depends on them.

Another pivotal aspect of any approach to the scattering problem is the in-
teraction term used. It will take a fundamentally different form in quantum and
semi-classical approaches and thus is intertwined with the themes raised above.
Recalling the conclusions from section 4.1.1, the fine-structure transitions within



CHAPTER 4. ION-IMPACT EXCITATION 128

terms are most susceptible to IIE, so the electric quadrupole (E2) component of
the interaction is the dominant term of the interaction.3 Furthermore, it is com-
mon for semi-classical approaches to adopt a long-range approximation of the
quadrupole interaction potential to simplify the calculation, and this is also done
for the present work. The validity of these assumptions in the context of more
advanced techniques will be investigated further in the following review sections.

In summary, there are three primary questions that this literature review
must answer in relation to the modified SC-1 technique that will eventually be
implemented:

1. Is a fully quantal treatment required for calculating IIE collision data?

2. What forms and approximations of the interaction potential are appropriate
for baseline data?

3. Is a close-coupled method required for IIE collision data, or will first-order
perturbation theory suffice?

As hinted at the beginning of this section, the answers to these questions will
depend upon one’s objectives and constraints. For the present purposes, an ex-
peditious achievement of ic-resolved GCR is the foremost goal, and this requires a
broad coverage of IIE collision data generated rapidly. Therefore, baseline-quality
data is the objective like in Chapter 2, and it must achieve an accuracy within
acceptable error bounds of high-quality data. Section 4.2.4 will conclude on this
matter.

4.2.1 SC-1 Methods

In the limited field of IIE studies, the SC-1 approach is undoubtedly the most
popular because of its simplicity yet remarkable accuracy. The lineage of the var-
ious implementations is traced in figure 4.3, and they all derive from Seaton [90],
henceforth S64. Given its foundational role, this source warrants a thorough
summary of its methodology. S64 itself derives from the semi-classical approach

3The magnetic dipole term is also allowed by selection rules, but its contribution is far
smaller because the magnetic field of the bombarding particle is only of order up/c as compared
with the electric field.
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applied to nuclear excitation by Alder et al. [91], and this is the true seminal work
on the subject. Applying the nuclear excitation equations to atomic excitation is
ostensibly quite straightforward, but a number of complications arise. First, since
the physical extent of a nucleus is vastly smaller than an atom, the possibility of
the projectile penetrating the target is not covered in [91], but this proves to be
an important phenomenon for atomic excitation. Second, the condition of η � 1

holds far better for nuclear excitation, so perturbation theory tends not to break
down, but the same cannot be guaranteed for atomic excitation.

Nuclear Analogue

SC-1 Type

SC-CC Type

Alder et al., 1956

Winther and de Boer, 1966 Burgess and Tully, 2005

Walling and Weisheit, 1988

Seaton, 1964

Seaton, 1962

Bely and Faucher, 1970Works by
Kastner and Bhatia

Bahcall and Wolf, 1968

Landman, 1973aSahal-Brechot, 1974

Stancalie et al, 2007

Reid and Schwarz, 1969

Masnou-Seeuws and 
McCarroll, 1972

Landman, 1973
1975

Figure 4.3: Lineage of popular SC-1 and SC-CC IIE implementations within the literature.
Red bubbles indicate erroneous implementations, while yellow indicates a suspicion of flaws but
insufficient evidence in the paper to confirm this. The arrows point towards the source or basis
of a given calculation. Each arrow originates from a more recent calculation and points to a
previous calculation, upon which the recent calculation is based or derives from.

S64 addresses these problems by partitioning the projectile energy space into
three physically motivated regimes:

(a) Low Energies—Referring back to equation 4.6, η � 1 will be ensured
for low values of up, so there is negligible interaction of the projectile and
target wave functions. In other words, the Coulomb repulsion keeps the ion
projectile far away from the target atom. The transition probabilities from
first-order perturbation theory, P (1)

ij , are small and accurate in this weak
interaction regime, and the cross section is given by

σi→j =

∫ ∞
0

P
(1)
ij (b)2πb db, (4.7)
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where b is the impact parameter. The interaction potential used in deter-
mining P (1)

ij is given by the quadrupole (λ = 2) term from an expansion of
|rp − r|−1:

1

|rp − r|
≈ P2(r̂p · r̂)

r2

r3
p

, (4.8)

where rp is the projectile coordinate, r is the atomic electron coordinate,
P2 is the Legendre polynomials of order two, and this expression is strictly
valid for rp > r—hence the concern about penetrating trajectories. In
the present regime, the distance of closest approach, ρ(b), is greater than
the average radius of the target atom, r0, for any b, so rp > r is always
guaranteed.

(b) Intermediate Energies—The condition η � 1 no longer applies, and in-
teraction between the projectile and target wave functions is possible. Con-
sequently, P (1)

ij begins to overestimate the transition probability for some
b, so a cutoff, b1, is introduced such that P (1)

ij (b1) = 1/2, and it is assumed
P

(1)
ij (b) = 1/2 for b < b1. Thus, the cross section becomes

σi→j =
1

2
πb2

1 +

∫ ∞
b1

P
(1)
ij (b)2πb db. (4.9)

This is accurate as long as ρ1 > r0 such that the approximation for the
interaction potential does not break down. ρ1 is the distance of closest
approach for the cutoff impact parameter, b1.

(c) High Energies—At this point, the projectile has sufficient energy to pen-
etrate the target for a number of its trajectories, and the approximation in
equation 4.8 breaks down. More precisely, the distance of closest approach
for the first cutoff at intermediate energies, ρ1, will now be less than r0,
so a new cutoff, b0, is introduced such that ρ(b0) = ρ0 = r0, and the cross
section is now

σi→j = πb2
0P

(1)
ij (b0) +

∫ ∞
b0

P
(1)
ij (b)2πb db. (4.10)

These modifications to the calculation of IIE cross sections entirely capture the
physical nature of the scattering problem, and this is evinced by the remark-
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able agreement achieved by S64 [90] with more sophisticated techniques—see
figure 4.5. But there are two shortcomings. First, S64 deliberates on the some-
what arbitrary nature of selecting P (1)

ij (b1) = 1/2 for the cutoff at intermediate
energies. This choice corresponds to a strong coupling collision in which the final
state is equally likely to be the upper or lower atomic level, yet it is probably
more physically accurate that the result of a strong coupling transition should be
determined by the statistical weights of the upper and lower levels. Second, the
use of the mean atomic radius, r0, as the cutoff for high energies does not guar-
antee the exact high energy scaling of the cross section.4 Put another way from
the perspective of collision strengths, this cutoff cannot ensure that the correct
infinite energy Born limit, Ωij

(inf), will be reached. Both of these problems will
be addressed by reference [92], henceforth BT05, at the end of this section.

Proceeding chronologically, Bely and Faucher [93] implement a similar version
of the SC-1 approach but, instead of partitioning the energy space, they use a
different functional form for the transition probability that automatically guards
against the overestimates of P (1)

ij as described above:

P
(II)
i→j =

P
(1)
ij(

1 + P
(1)
ij /4

)2 . (4.11)

This is exactly the result one would obtain from considering the transition matrix
of a two-state system and is borrowed from the quantal, Coulomb-Bethe theory
of [94]. Indeed, this eliminates the need to distinguish between the low (a) and
intermediate (b) energy regimes because P (II)

i→j ≈ P
(1)
ij for P (1)

ij → 0, but it does
not safeguard against the effects of penetrating collisions at high energies (c)
where the long-range form of the quadrupole interaction in equation 4.8 breaks
down. BT05 [92] provides the details of why this is the case in their section
6: the limiting function 4.11 mitigates the divergence of the collision strength
at high energies, but it does not completely eliminate it. As a result, the high
energy behaviour of rate coefficients from [93] will be incorrect, even though they
confusingly state the correct scaling of qi→j ∝ T−1/2.

Landman [95] also emulates S64 [90] with some minor modifications to the
4This cutoff does ensure that σi→j ∝ u−2p as would be expected for a quadrupole order

transition, but the full solution would also give the constant of proportionality in this expression.
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transition probability. The intermediate energy (b) cutoff is determined by con-
sidering the transition probabilities at a particular impact parameter, b1, for all
transitions in a configuration, not just an individual transition:

∑
j P

(1)
ij (b1) =

1/2. Then, P (1)
ij of the individual transition under consideration is given by,

P
(2)
ij =


P

(1)
ij (b) if b ≥ b1,

2 b
b1

(1/2− gi)− (1/2− 2gi) if 1
2
b1 ≤ b ≤ b1,

gi if b < 1
2
b1,

(4.12)

where gi is the ratio of the statistical weight for level i to that of the entire
configuration it is a part of:

gi =
ωi∑
k ωk

. (4.13)

So, instead of setting P (1)
ij (b) = 1/2 for b < b1, it linearly varies P (1)

ij from 1/2 at b1

to gi at b1/2, below which it stays at gi. This method has the apparent advantage
that transitions, which are forbidden by E2 selection rules (and so have no tran-
sition probability at first order) but proceed through close-coupling channels, can
be calculated. But this is crude, and fairly large disagreement by about a factor
of three is presented in the paper for the 3s23p2 3P0→1 transition when compared
to a SC-CC calculation [96]. Moreover, implementing this type of functionality
adds considerably to the complexity of the code implementation, negating some of
the advantage that a SC-1 approach has through simplicity. Thus, if these types
of transitions are required—an open question still—it is likely more worthwhile
to go through the effort of implementing a proper SC-CC code. Apart from this
assessment, there are a number of real problems with the implementation. The
author notes that instead of calculating the weight and cutoff over the whole con-
figuration, doing so over an LS term would likely be more accurate. Reciprocity
will be violated here since P (1)

ij should be proportional to 1/ωi not ωi. Above all,
the author commits the same mistake as in the previous reference [93]: the high
energy regime (c) is not explicitly handled, so the possibility remains that b1 < r0

will arise, yielding inaccurate results.
The work by Sahal-Bréchot [97] proceeds in a similar manner to Landman [95]

but avoids some of the pitfalls. First, for the intermediate energy (b) cutoff, it
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uses b1 such that
P

(1)
ij (b1) =

ωj∑
k ωk

, (4.14)

where k varies over the levels of the encompassing LS term. This expression does
not violate reciprocity like the preceding case, but the b1 determined is no longer
common to the set of transitions in the term. As such, it uses an average of the
b1’s from the “allowed” transitions within a term and applies this to determine any
transitions that only proceed through collisional coupling: 3P0→1 is the recurring
example. This purely close-coupled component is given by

σi→j =

(
ωj∑
k ωk

)
πb̄2

1. (4.15)

As before, the author admits this is a fairly crude estimate of these close-coupling
transitions, and the overhead to implement this functionality does not appear to
be worthwhile. And again, this source falls foul and neglects the high energy (c)
regime, although it at least openly admits to doing so and justifies that the ener-
gies relevant to their study do not result in ρ1 < r0. Any cross sections produced
in this manner will not be appropriate, in general, for producing rate coefficients
because of the necessary sampling at high energies when convolving with the
Maxwellian distribution. The work does go on to calculate rate coefficients, and
these data should be used with caution at higher temperatures.

A series of papers by Kastner, Bhatia, and various collaborators [98–101]
attempt to present an even more simplified version of the SC-1 approach than
in S64; however, they make several pivotal mistakes as pointed out in a review
article [102]:

For high energies, their cross section is based on an expression given by
Bahcall and Wolf (1968) which erroneously has an E−1/2 behaviour.
Since they do not consider any approximation for intermediate ener-
gies, their cross sections have an unrealistic cusp where their high and
low energy approximations meet.

Although the high energy behaviour is corrected in one of the subsequent pa-
pers [99], the neglect of the intermediate energy (b) regime is a persistent feature,
inevitably leading to overestimates. Therefore, this body of work does not merit
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further mention.
A significant résumé and improvement of the SC-1 technique is made by

Walling and Weisheit [103], henceforth WW88. Their methodology closely follows
that of S64 [90], but they extend the method to E1 and E3 multipole orders, so
the scope of this work is comparatively broad. They use the same P (1)

ij (b1) = 1/2

cutoff at intermediate energies but, for some reason, opt to not use symmetrised
kinematic variables in the cross section expression—i.e. they do not account for
the inelastic nature of the collision. This is not a fatal flaw, but it certainly
impairs their methodology to some degree. On the other hand, they take the im-
portant step of fitting the high energy cutoff of bullet (c), b0, such that the cross
section obtained from equation 4.10 will asymptotically approach the infinite en-
ergy limit of a quantal calculation. In WW88, the Bethe approximation is used
to obtain an EIE cross section that is then scaled by zp2 to obtain an estimate
of the IIE cross section,5 and it is this cross section that is applied to determine
r0 and hence b0. Although setting r0 to the mean atomic radius seems to have a
sound physical basis, it was already noted that this prescription does not guaran-
tee the exact high energy behaviour of the cross section, whereas this new fitting
technique does. Of course, there is an underlying assumption being made that
the infinite energy limit used in fitting is also accurate. The Bethe approxima-
tion is not exact at high energy and itself requires a cutoff: WW88 handle this
by assuming the radial integrals are hydrogenic, thus obviating the troubles with
the Bessel functions. So, there is undoubtedly a large degree of uncertainty for
these results, likely 30% or greater. In contrast, the current implementation takes
results from the Born approximation, which is exact in the infinite energy limit,
and uses those in its determination of r0, elmininating much of this uncertainty.
More on this topic will follow. Independent of these deficiencies, WW88 makes
an astute general observation about the importance of IIE collisions for atomic
population modelling; it is concluded that a verdict on the influence of IIE upon
an atom’s population model must be done on a case-by-case basis. This largely
echoes the pending discussion and conclusions in section 5.3.1.

Culminating the SC-1 method is the work by Burgess and Tully [92], already
5This scaling by zp2 applies directly to the cross section size, while the mass scaling discussed

in section 4.1 will apply to the energy or velocity axis.
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abbreviated to BT05. By all accounts, this work identifies and rectifies all of
the mistakes and limitations of the previous SC-1 attempts detailed above, and
so it is judged to be the most complete and accurate version of the method. As
such, BT05 is used as the basis for the present implementation in this thesis. The
creation of the new code, a2iratbt, was necessary because the one described by
BT05 appears to have been lost.6 The details of implementation will be presented
in section 4.3.1, but it is helpful to summarise the primary differences with the
other literature sources. Again, the reasoning and partitioning of the problem is
quite similar to S64:

(a) Low Energies—No changes are required because P (1)
ij stays small and

first-order perturbation theory holds.

(b) Intermediate Energies—As before, P (1)
ij > 1 must be guarded against

in this regime for any trajectory so that charge conservation is maintained.
BT05 uses a more flexible and arguably more accurate manner of limiting
P

(1)
ij than S64, similar in spirit to reference [93]. Instead of the simplistic
P

(1)
ij (b1) = 1/2, a modified transition probability is given by

P
(2)
ij = Pubφ

(
P

(1)
ij /Pub

)
, (4.16)

where φ is some function such that φ(x) ≈ x as x→ 0, and φ(x) ≤ 1∀x ≥ 0,
ensuring P

(2)
ij never exceeds a specified upper bound, Pub. Here, x is a

dummy variable. Some options for φ and Pub are given in BT05 section 5,
all of which maintain symmetry reciprocity of the transition probability and
collision strength, unlike [90, 95]. One option results in P (2)

ij → ωj/(ωi + ωj)

when P
(1)
ij becomes large, which is what one would expect for a strong

coupling collision for the strict two-state problem, absent from collisional
coupling to any other states. This is better than S64, but it does not go
as far as reference [97] which uses the weights for the entire encompassing
LS term, thus allowing it to calculate quantities for transitions that only
proceed through close coupling. However, as already argued above, the in-
accuracy of the resulting cross sections along with the extra effort required

6The paper claims the code is accessible through the relevant IOP website, but there are
no attached files. Moreover, the authors themselves are no longer capable of retrieving these
resources.
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for implementation leads to the conclusion that an SC-CC method should
be implemented if these transitions are required. Consequently, it is pro-
posed that the present implementation is the best compromise for the SC-1
method.

(c) High Energies—BT05 determines the cutoff to prevent penetrating tra-
jectories in a manner similar to WW88: the cutoff r0 is determined such
that the collision strength matches the Born approximation asymptotically
at infinite energy, Ωij

(inf). The details are provided around equations (16)
and (17) of BT05 [92], followed by explanations of why other implementa-
tions in the literature fail. Thus, the correct high energy behaviour of the
IIE collision strength and cross section is guaranteed to a greater degree
for BT05 and the present implementation than in WW88, assuming Ωij

(inf)

from the Born approximation is of a better quality than from the Bethe ap-
proximation, which should always be the case. Moreover, implementations
like S64 and a number of the SC-CC ones in what follows, although they get
the functional form of the high energy behaviour correct, do not ensure that
the collision strength will approach Ωij

(inf)—or equivalently, that the cross
section falls off with the correct constant of proportionality, σi→j = Cu−2

p .
Overall, this technique provides a reliable anchor rooted in quantum me-
chanics in the η � 1 limit where the semi-classical assumption is no longer
valid, quite apart from the failings of the long-range quadrupole interaction
term for penetrating collisions. Thus, this fitting to Ωij

(inf) should be seen
as more of a necessity rather than some improvement of the methodology.

4.2.2 SC-CC Methods

The SC-CC method, like its SC-1 sibling, makes the same assumption of classi-
cal hyperbolic trajectories for the projectile: it assumes there is no interaction
between the projectile wave function and that of the atomic system, meaning
the projectile can be treated as a structureless charged object. Correspondingly,
it has the same domain of applicability defined by η >> 1 from equation 4.6.
However, instead of invoking first-order perturbation theory to calculate transi-
tion probabilities, this method solves the time-dependent Schrödinger equation
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directly through appropriate manipulation and taking the inner product with the
final state 〈J ′M ′|. This results in a coupled set of differential equations:

ȧJ ′M ′(t) = i
∑
J,M

aJM(t) 〈J ′M ′ |HE2(t)| JM〉 e−i(EJ−EJ′ )t, (4.17)

where HE2(t) is the electric quadrupole interaction. The form of this interaction
depends upon the approximations made, if any, and so it is specific to the partic-
ular implementation; however, the most common approach in the literature is to
use the long-range quadrupole interaction term as specified by equation 4.8 in the
context of the SC-1 method. Substituting this assumption, the matrix element
in equation 4.17 will abide by the proportionality,

〈J ′M ′ |HE2(t)| JM〉 ∝ −〈r
2〉
r3
p

, (4.18)

which again is only valid for rp > r, meaning some form of cutoff must be en-
forced. The choice of interaction term and any cutoffs in relation to it is one
of the open questions of this literature review, and it will be discussed in rela-
tion to each source given below. A useful summary of the interaction terms in
the literature are given in table 4.1. Solving equation 4.17 yields the transition
probabilities, PJM→J ′M ′ = |aJ ′M ′(t =∞)|2, which can be substituted into the im-
pact parameter expression for the cross section, equation 4.7, as with the SC-1
method. The primary advantages of this method over SC-1 are twofold. At inter-
mediate energies, the transition probabilities calculated here will not suffer from
the breakdown of first-order perturbation theory. Also, transition probabilities
for collisions that proceed exclusively through close coupling can be calculated
depending on the CC expansion used, whereas by default these are not handled by
SC-1 methods—although there are rudimentary techniques for estimating their
magnitude in section 4.2.1. The effect of these advantages over the SC-1 method
will be assessed in section 4.2.4.

Like the SC-1 method, the original application of an SC-CC approach was
for nuclear excitation [104], henceforth WD66, as seen in figure 4.3. A num-
ber of works dealing with atomic excitation draw directly or indirectly from the
corresponding code. It uses the long-range form of the E2 interaction term (equa-
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tion 4.18), but because penetrating trajectories are unimportant in the parame-
ter space of nuclear excitation, they do not consider how to appropriately guard
against the collapse of this term. Also, the kinematic variables and equations are
symmetrised, but this involves a more complex technique because a trajectory
no longer corresponds to a single quantum transition. The loss of energy associ-
ated with the inelastic excitation process has the greatest effect upon the cross
section at low energies, exactly where this quantity is highly suppressed by the
adiabaticity—see section 4.4.1.1. As a result, this symmetrisation step is quite
often neglected in the SC-CC literature, although for the best accuracy it should
be included.

The earliest application of the SC-CC method to atomic excitation was made
by Bahcall and Wolf [105]. The implementation is the same as WD66 [104], but
symmetrisation is neglected. Moreover, the issue of penetrating collisions at high
energies is deferred because the authors say such energies are not relevant to their
study. Although this may be the case, it is unsafe to calculate rate coefficients
from cross sections or collision strengths that are limited in this manner. Fur-
thermore, the authors attempt to mitigate this shortcoming by applying a fitting
formula to a few data points generated from the explicit solution of equation 4.17,
thus allowing them to extend their cross sections to higher energy. Unfortunately,
they derive the incorrect asymptotic for the cross section in their fitting formula:
the cross section should go as ε−1

i at high energy but their formula yields ε−1/2
i .

This source will be neglected in subsequent comparisons for these reasons.
Another early and much cited implementation is Masnou-Seeuws and Mc-

Carroll [106]. The authors make the important observation that the problem
is most accurately handled using a molecular basis to calculate the matrix ele-
ments, but then they revert to the long-range, atomic form of the E2 interaction
(equation 4.18) for their actual calculations. This molecular representation is
adopted by some of the quantal, close-coupled (Q-CC) sources in the following
section 4.2.3. Similar to Bahcall and Wolf [105], the authors claim that the prob-
lem they address does not go to sufficiently high energies for penetration to be
an issue and, therefore, no cutoff is imposed to mitigate the breakdown of the
long-range interaction term. Although the avoidance of penetrating trajectories
does not invalidate these results, this practice is unsound for the purposes of
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this thesis where a broad temperature and energy range for the collision data is
sought. However, comparisons with this work are still useful. There is a sign
error in the formation of the matrix elements for the p2 3P transitions, which was
caught by reference [107]. Therefore, only the sp 2P results are appropriate for
comparison.

A foundational SC-CC source is Reid and Schwarz [108], henceforth RS69,
from which a myriad of other implementations derive. Its implementation largely
follows that of WB66 [104], but it is the first SC-CC source to implement a
cutoff at high energies. This is achieved by setting the interaction term (equa-
tion 4.18) to a constant for rp . 〈r2〉1/2. Although this is slightly different than
the high energy cutoffs for the SC-1 methods, it achieves largely the same effect.
In addition, this source opts against symmetrising the differential equations and
variables, which should be a minor error but a deficiency nonetheless.

The following works derive directly from the RS69 implementation [108] but
add minor modifications that are now listed. References [109–112] alter the inter-
action matrix element by replacing the RHS of equation 4.18 with

〈
min (r, rp)

2 /

max (r, rp)
3〉. The functions “min” and “max” return the minimum and maxi-

mum of their arguments, respectively. This expectation value is calculated in
an analytic but approximate manner by using scaled hydrogenic orbitals in the
effective charge of the ion. Moreover, this form of the matrix element should
ensure a physically meaningful form of the interaction even for trajectories that
penetrate the ion—i.e. rp < r. However, one must keep in mind that this is an
approximation, so the correct high energy limit is not guaranteed, unlike our SC-1
implementation. These sources claim to achieve 10% accuracy in the worst-case
scenario based on the findings from references [113, 114], which will be explained
fully in section 4.2.4. Briefly, there should be a negligible difference between us-
ing a SC-CC versus Q-CC approach, and the neglect of additional contributions
to the interaction term like polarisation should cause at most 10% variation be-
low the high energy regime. Reference [115] makes this SC-CC implementation
symmetrised, but this is a more difficult task than in WB66 [104] because of the
new form of the interaction term just described. It is found that the effect of
symmetrisation is at most 9% at the lowest energy calculated in this study, and
it diminishes quickly as the energy increases. Then, references [116–120] pur-
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port to further enhance this SC-CC implementation by mimicking the inclusion
of a polarisation potential from the molecular Q-CC approaches. This has the
effect of introducing virtual dipole-coupling to accessible states in the CC ex-
pansion, and the authors present results that show a consequent 60% decrease
of the cross sections in the peak region compared to previous iterations in this
RS69 heritage. However, this is in direct contradiction to the conclusions above
about an estimated 10% error for these previous iterations. As will become clear
through the remainder of this literature review, it is strongly suspected an error
in implementation has been made while introducing this polarisation potential.

Landman and his collaborators provide the final significant SC-CC method
that merits discussion in this review: [107, 121–124]. This implementation is
effectively a copy of WB66 [104], but unlike a number of its contemporaries, it
does modify this approach to handle the issue of penetrating collisions at high
energies. In the same fashion as S64 [90], it sets the transition probability to a
constant for impact parameters below a certain cutoff defined by a dimension of
the atom. More technically, P (1)

ij (b) = P
(1)
ij (b1) for b ≤ b1, and b1 is defined by

ρ(b1) = r0. For these sources, r0 is set to the expectation value of the atomic radial
coordinate, 〈r〉, obtained from wave functions in the literature. Once again, one
should recall that this strategy does not guarantee the correct high energy limit
of the collision strength, but it does guard against incorrect limiting behaviour.
A distinguishing feature of this work is that intermediate-coupled eigenstates are
used in forming the CC expansion, whereas all of the previous SC-CC sources
use LSJ-coupled eigenstates. This lifts the restriction of strict LS selection rules
for a number of transitions, and so spin-changing, inter -multiplet transitions can
be calculated. However, these transitions will generally be low in magnitude,
and it is already known that these types of transitions—between terms—are not
favoured by IIE. Rather, it is the effect of this additional close-coupling upon
the intra-multiplet transitions that is more significant, and variation of between
15–20% is claimed [107, 124].

4.2.3 Fully Quantal Treatments

Moving to the quantal, close-coupled (Q-CC) class of methods, the assumption of
classical trajectories is no longer made as with the semi-classical treatments, so
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the complete wave function of the target atom and projectile must be handled in
the time-dependent Schrödinger equation. This results in a more complex set of
coupled, second-order differential equations that are numerically difficult to solve
because of the highly oscillatory nature of the radial equations: small step sizes
to resolve these oscillations translate to more points for evaluation. That there
are few Q-CC calculations for IIE in the literature is less so because of the com-
putational expense and more so that this extra expense does not yield significant
gains in accuracy over the semi-classical counterparts. This point will be fully
justified in the next section. Q-CC methods have the distinct advantage that one
no longer needs to worry about whether η from equation 4.6 is of an appropriate
value for the problem; however, this does not obviate all of the concerns for the
high energy regime because part of this is contingent on the interaction term
used. It so happens that the Q-CC implementations in the literature have used
relatively sophisticated forms for the interaction potential, and so short-range ef-
fects that become important at high energies are handled accurately. But this is
a product of decisions made by authors in the literature rather than an inherent
feature of the Q-CC method. The presentation of Q-CC approaches is necessary
because they offer the most accurate theoretical results and so are essential for
benchmarking more approximate methods. Two classes of Q-CC methods in the
literature are now briefly described.

The first application of a Q-CC method was by Faucher in [125], hence-
forth F75, for Fe12+. It relies on an atomic basis set that explicitly considers
the Coulomb nature of the relative radial motion of the projectile and target
ions, keeping the problem fairly similar to the SC-CC formulation. However,
F75 draws attention to the substantial computational difference between the
two methods. It selects an interaction term given by the expectation value of
min (r, rp)

2/max (r, rp)
3 as in reference [109, 110] but, in this case, no approxi-

mate hydrogenic forms are used to simplify the expression and the expectation
value is calculated exactly. As mentioned above, this form of the interaction
potential will ensure there are no singularities for small values of rp.

Second, Heil et al. [114, 126] present a version of Q-CC that uses a self-
consistent field, quasi-molecular basis set, meaning the projectile and atomic
target are treated as a single molecular entity—e.g. the proton impact of O3+ is
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represented by the OH2+ molecule. The interaction energy is quantified by two
adiabatic potentials for the molecular states, 2Π and 2Σ, which is the most com-
plete and accurate representation to date. Not only is the short-range interaction
handled correctly, but the long-range asymptotic expansion of the interaction
produces a polarisation term that follows the usual quadrupole term:

VΣ − VΠ ∼ −
3 〈r2〉
5r3

p

+
αΠ − αΣ

2r4
p

+ . . . , (4.19)

where αΠ and αΣ are the perpendicular and parallel polarisabilities of the ion.
The finding by Heil et al. most relevant to other calculations, quantal or otherwise,
is that this polarisation term can have a significant effect on the final IIE cross
sections, estimated at about 10% variation below the high energy regime. This
will be true for the F75 [125] work, which only includes the electric quadrupole
term of the Coulomb interaction.

4.2.4 Comparative Analysis

Having briefly described the major contributions to the SC-1, SC-CC, and Q-CC
literature, it is now possible to answer the questions posed at the beginning of
this review. First, is a fully quantal (Q-CC) treatment required for calculating
IIE collision data? In fact, this question is directly addressed in reference [113],
which compares the Q-CC approach of F75 [125] with the SC-CC approach of
Landman [107, 121]. Therein, it is concluded that there is no difference be-
tween the quantal and semi-classical treatment of IIE for Fe12+, as long as the
same interaction term is used in both treatments. This was determined by using
the same long-range, electric quadrupole interaction in the Q-CC calculation as
in the SC-CC calculation, resulting in nearly identical transition probabilities—
and hence cross sections—for the two. The applicability of this conclusion can
safely be extended to ions of similar and higher charge because η of equation 4.6
will have similar values, but as with so many phenomenon in atomic physics, it
cannot be guaranteed for near-neutral systems. Also, the Q-CC results of Heil
et al. [114, 126] support this conclusion. The Q-CC cross sections for Al-like
Fe13+ (figures 4.5 and 4.6) and B-like O3+ (figure 4.7) show good agreement with
the SC-1 and SC-CC contemporaries. Only the foster1997 [118] calculation of
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O3+, a RS69 descendent, uses the same interaction potential as the Q-CC calcu-
lations, explaining the near perfect agreement in figure 4.7. Hence, the variation
between the Q-CC heil1983 result for Fe13+ and the semi-classical ones is due to
differences in the interaction potential and not any discrepancy between a semi-
classical and quantal treatments. Reference [102] verifies this by recalculating
the SC-CC masnou-seeuws1972 [106] result using the same atomic data as for
the heil1983 [114] calculation. Following this critical step, the Q-CC heil1983
calculation, made using the long-range quadrupole coupling, displays excellent
agreement (< 5%) with the SC-CC result.

Therefore, it can be confidently resolved that the hypothesis and supporting
theoretical reasoning from the beginning of section 4.2 have been vindicated: it
is demonstrably true that ion projectiles are well described by a classical hyper-
bolic orbit, and this assumption can be applied to the scattering problem with
negligible loss of accuracy to the result. Furthermore, it should be noted that
the scarcity of Q-CC results in the literature, along with the significant computa-
tional expense of this type of calculation, makes it a wholly inadequate method
for the baseline objective currently sought. A semi-classical approach will more
than suffice.

In the above conclusions, it was a necessary presupposition that the same in-
teraction potential be used when comparing calculations, leading logically to the
second question: what form of the interaction potential is appropriate for baseline
data? Since the long-range, electric quadrupole term of the Coulomb interaction
is most common in the literature—and used in the present implementation—this
question reduces to answering whether this approximate form of the interaction
potential is sufficient for a baseline calculation. The crux of this question is iden-
tified by the review in reference [102], which points to an apparent contradiction
between the conclusions of Heil et al. [114] and Faucher and Landman [113] in re-
lation to the effects of different interaction potentials. However, [102] does not re-
solve the ostensible conflict, and providing the correct explanation has the added
benefit of answering the question at hand. Table 4.1 outlines the distinguishing
features of the interaction potentials used by the calculations under discussion,
and the indexing established in the first column is used for shorthand in the text
to follow. The primary conclusions from the two papers under examination are
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now summarised.
Faucher and Landman [113]:

1. There is no difference between a quantal and semi-classical, close-coupled
approach for the case of Fe12+ when both approaches use the same interac-
tion term.

2. The cause of the difference between calculations B and C (table 4.1) thus
resides in the interaction term. The long-range quadrupole term used in
B becomes inaccurate at small impact parameters when compared to the
complete electrostatic quadrupole term used in C, and this manifests at
“high” energies (' 50 Ryd ≈ 680 eV), as would be expected. However, the
magnitude of the relative differences are quite minor, as can be observed in
figure 4.4 (figure 1 of original reference [113]).

Heil et al. [114]:

1. The neglect of short-range components of the interaction term has little
impact except at ‘high energies’—i.e. the long-range form is quite accurate
over most of the energy range, but ‘high energies’ is never explicitly defined.

2. Rather, the polarisation component of the interaction term constitutes the
larger correction over the more important intermediate part of the energy
range (for this ion, Fe13+), yielding ∼ 10% variation.
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Table 4.1: Feature comparison of relevant close-coupled, IIE calculations.

Index Description Quantal (Q)
or Semiclassi-
cal (SC)

Interaction Term Penetrating Collisions

A Masnou-Seeuws
and McCar-
roll [106]

SC Derived from molecular potential but with only the

long-range quadrupole component: VΣ = − 2
5

〈r2i 〉
R3 and

VΠ = 1
5

〈r2i 〉
R3 , where R is the projectile radial coordinate

and ri is the target electron radial coordinate

Penetrating collisions in the high energy
regime will not be handled correctly due
to the approximation of the long-range
interaction term

B Landman [121] SC Long-range, quadrupole:

V2(r, ri) = 4π
5

∑2
m=−2

r2i
r3
Y2m(r̂)Y2m(r̂i)

A cutoff in the high energy regime en-
sures the correct functional form of the
cross-section and ensures no violations by
the interaction term

C Faucher [125] Q Coupling potential given as: Vγiγj (r) = Y0(r)δij + νijY2(r),
r is the projectile radial coordinate, but unfortunately the
exact forms of Y0 and Y2 are in Faucher (1974), a thesis
difficult to retrieve. Reid [102] claims that this potential
reduces to:

〈
r2
</r

3
>

〉
Regardless of the accuracy of Reid’s
claims, it appears as though this inter-
action term should be valid for small r
corresponding to penetration of the elec-
tron cloud; however, the term appears to
only be the quadrupole component.

D Faucher [125] Q Long-range, quadrupole:

V2(r, ri) = 4π
5

∑2
m=−2

r2i
r3
Y2m(r̂)Y2m(r̂i)

Unclear whether a cutoff in the high
energy regime was used, but it can be
assumed given good agreement with B.

E Heil et al., fig. 1,
curve I [114]

Q ‘Full interaction’ in a molecular basis representation with
the Lippman-Schwinger equation (mathematical represen-
tation outside current scope)

Although never shown explicitly, this
interaction is claimed to give appropriate
treatment of penetrating collisions. These
should be the most accurate calculations
of all those considered.

F Heil et al.,
mentioned in
text [114]

Q Long-range (asymptotic) form with quadrupole
and polarisation components (molecular basis still):
εΣ(R) = 13

R
− q
R3 − αΣ

2R4 and εΠ(R) = 13
R

+ q
2R3 − αΠ

2R4

As these are long-range (asymptotic)
forms, penetrating collisions will not be
treated correctly; no indication is given
whether a cutoff is attempted (assumed
not).

G Heil et al., fig. 1,
curve II [114]

Q Long-range (asymptotic) form with quadrupole compo-
nents only (molecular basis still): εΣ(R) = 13

R
− q
R3 and

εΠ(R) = 13
R

+ q
2R3

As these are long-range (asymptotic)
forms, penetrating collisions will not be
treated correctly; no indication is given
whether a cutoff is attempted (assumed
not).
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The potential contradiction that Reid [102] identifies is between the second
items above. Although Faucher and Landman [113] admit that the deviations only
become important at high energies, Reid seems to think that the graphs show dif-
ferences at intermediate energies: “Faucher and Landman (1977). . . inferred that
the cross sections are altered even at intermediate energies when the long-range
quadrupole interaction is modified by use of the expectation value of r2

<r
−3
> ” and

“[i]n the cross sections, these differences have a significant effect for energies in
and above the region where the cross sections are maximum” (emphasis added).
If these assertions are true, then indeed they would be in contradiction to the con-
clusion of Heil et al. [114] that it is the inclusion of the polarisation term and not
the complete consideration of the Coulomb interaction at short-range that leads
to the most variation at intermediate energies. However, the confusion is caused
by the lack of a clear definition of the energy domains to which intermediate and
high refer.

Consulting figure 4.4, it is true that the larger discrepancy for transition
J : 0 → 2 does occur around the peak of the cross-section. It has been noted
multiple times in the literature that the peaks of cross-sections tend to lie in the
intermediate energy range defined by S64 [90] in section 4.2.1, explaining why
Reid claims that the results in figure 4.4 support the conclusion that penetrating
collisions can influence cross-sections even in the intermediate energy range. Yet,
where the intermediate energy range is actually located requires further scrutiny.
Recall that the definition of the high energy regime in S64 is simply where ρ(b1) <

r0 occurs, but the b1 parameter only applies to SC-1 calculations, and it is a SC-
CC calculation (B) that is being considered here. Fundamentally, the onset of the
high energy regime for an SC-CC calculation is different than that for an SC-1
one: a degree of agreement and consistency between the two can be expected, but
Reid’s blanket application of S64’s definition is technically incorrect. Rather, a
universal definition of the high energy regime is where the cross section obtained
using a long-range quadrupole potential begins to deviate from the result obtained
with the complete quadrupole potential, indicating that short-range contributions
within the physical extent of the atom are no longer negligible. So, the deviation
of the cross sections in figure 4.4 that starts at approximately 50 Ryd is itself the
definition of the onset of the high energy regime, since the only material difference
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between the two curve styles is the use of the long-range versus the complete form
of the quadrupole interaction term (B versus C).

The transition probabilities in figure 3 of Faucher and Landman [113] provide
further support. Inspecting curve (3) in figure 3b [113], corresponding to E = 50

Ryd and thus nearly the peak of the J : 0 → 2 transition, one can see that the
transition probabilities due to calculations B and C begin to deviate substantially
at an impact parameter of approximately 0.75a0, which yields a distance of closest
approach ρ ≈ 1.03a0, corresponding in turn to a penetration of about 5% of the
ions charge density distribution. For its high energy cutoff, the SC-CC calculation
B uses r0 = 〈r3p〉 = 0.706a0, but Faucher and Landman [113] comment that this
is likely an underestimate exactly because the transition probabilities begin to
differ at ρ values larger than this. Once again, therefore, the issue of the best
high energy cutoff has been raised. Here, the authors are suggesting that the
use of an average radial coordinate is problematic. It seems to underestimate
the radial cutoff, and as a solution, these authors propose a cutoff related to the
charge density distribution. For instance, the cutoff could be set to the atomic
radius at which 90% of the atomic charge distribution is within the associated
sphere defined by that radius. Radii that capture a high percentage of the charge
distribution tend to be larger than the average atomic radius. Larger cutoffs
mean that trajectories will penetrate the atom at lower energies, consistent with
the high energy regime for this study occurring at a lower energy than expected.
Of course, the strategy of matching the asymptotic limit of the collision strength
to the Born approximation avoids all of this uncertainty.

There are some further holes in Reid’s assessment that are worthy of com-
ment. First, no mention is made of the fact that different ionic systems are being
compared, and that the energy regimes for Fe12+ will differ from those of Fe13+,
the ion addressed by Heil et al. [114]. Some sense of this can be gained by noting
the difference between the onset of the high energy regime under the S64 prescrip-
tion: ∼ 7.5 keV for Fe13+ and ∼ 2.0 keV for Fe12+. Although these are certainly
overestimates in light of the comments above, it should still hold that the “true”
high energy regime of Fe12+ lies well below that of Fe13+. This largely explains
why the peaks of the cross sections for Fe13+ in figure 1 of Heil et al. [114] are
far removed from the onset of the high energy regime while those of Fe12+ in fig-
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Figure 4.4: Proton-impact excitation of Si-like Fe12+. The dashed lines are the SC-CC result
from Landman [121], B in table 4.1. The solid lines are the Q-CC result from Faucher [125], C
in table 4.1, and the semi-transparent regions surrounding these lines represent a 5% error. All
transitions are within the 3P term. In J → J ′ notation, green is 1→ 2; red is 0→ 2; and blue
is 0→ 1, which is forbidden under E2 selection rules.

ure 4.4 of this thesis are not. Second, Reid makes no mention of the fact that Heil
et al. [114] employs the conclusions of Faucher and Landman [113] to reinforce
their own analysis. Both papers agree on the conclusion that the asymptotic (i.e.
long-range) form of the interaction potential does not significantly compromise
the scattering problem until high energies—with all of the antecedent caveats that
descriptor entails. Heil et al. [114] can then freely make the assertion that polar-
isation is the largest correction at intermediate energies without any possibility
of contradiction.

Thus, Reid’s confusion about the validity of the long-range potential at inter-
mediate energies has been resolved, and along the way an important point was
made clear; the inaccuracies of the long-range interaction potential will only be-
come significant at high energies, but this high energy regime can occur near the
peaks of excitation cross sections. This conclusion bears weight because many
authors in the literature have dismissed the need to account for penetrating or-
bitals based on average atomic radii that likely underestimate the proper cutoff.
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As such, the problem of correctly dealing with the high energy cutoff is shifted
to lower energy regimes than might be expected, making it pivotal for getting
the cross section right at its most influential values. This bolsters our strategy
of matching to the exact Born approximation in the infinite energy limit, avoid-
ing any of the deficiencies of the long-range potential in this regime while still
permitting its general application to reap the associated computational savings.

On the other hand, the effect of the polarisation interaction potential will
occur across the intermediate energy range, and it should account for less than
10% variation based on the cases observed in the work of Heil et al., although
this will depend on the specific application. For the objective of baseline IIE
data, such a level of error is acceptable, especially since implementing a polarisa-
tion correction in the current framework is nontrivial. However, the most recent
descendants of the RS69 SC-CC method [116–120] claim that the inclusion of a
polarisation term can cause up to a 60% reduction of the cross section near its
peak compared to previous versions of their SC-CC method. This claim must be
addressed because it jeopardises the simplifying assumption that the polarisation
term can be neglected. Only the results of Heil et al. [114, 126] also include the
effects of polarisation via their molecular potential, so these two sources offer
the sole points of comparison and validation. Luckily, Al-like Fe13+ is one of
the most studied ions in the IIE literature, so there are many calculations with
which to juxtapose. Figure 4.5 displays the cross section for Heil et al. [114]
(heil1983 ) alongside a selection of others from the literature. None of the other
calculations include the polarisation term, and they represent a mix of SC-1 and
SC-CC methods, which confounds the analysis. Although some of the SC-1 cal-
culations differ by around 50% (some of our own a2iratbt calculations along
with bely1970 and sahal-brechot1974 ), most of this variation is due to differences
in the atomic data—more details to follow. Also, there is the as yet unquantified
factor of CC effects; therefore, it is really comparison with the SC-CC calculations
in this graph that should be considered—masnou-seeuws1972 and landman1973.
Both of these results exhibit only about 20% difference with the heil1983 cross
section, and some of the variation is attributable to differences in atomic data.
However, the point is that nowhere near a 60% variation is observed like that
claimed by the RS69 descendants. The results for B-like O3+ in figure 4.7 tell a
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similar story. A 25% reduction of the SC-1 a2iratbt result is seen relative to the
other two calculations that include polarisation effects. Again, some of this de-
rives from differences in the atomic data, and interestingly, the SC-1 result from
WW88 [103] achieves incredible agreement (< 5%) with the more sophisticated
calculations because it uses, purportedly, the same atomic structure data. The
principal takeaway is that nothing close to a 60% reduction is observed. Conse-
quently, this suggests there is an error in the RS69 descendants, so it is bizarre
that the foster1997 cross section in figure 4.7 agrees well with the heil1982 one.
If a calculation erroneously claims that 60% variation is observed because of the
inclusion of the polarisation term, then it would not be expected that this same
calculation then achieves good agreement with another similar calculation that
also includes the polarisation term but does not make claims of 60% variation. In
the absence of further cases for testing, this must be left as an open problem, but
there is undoubtedly great uncertainty surrounding the claim of 60% reduction
caused by polarisation. Hence, the neglect of polarisation in the present imple-
mentation is confidently retained. In summary, it is completely appropriate to
use the long-range electric quadrupole interaction in IIE baseline calculations.

It remains to pose the third question of this review: is a CC method re-
quired for IIE baseline data, or will first-order perturbation theory suffice? In this
case, the answer is less straightforward because the degree of collisional coupling
is highly dependent upon the target system and its atomic structure. Broadly
speaking, the effect of close coupling is to reduce the cross section of any transi-
tions allowed at first-order and increase any that are forbidden by selection rules,
assuming the lower level is collisionally coupled to at least some other states in
the CC expansion. This coupling is much less important in a two-state dou-
blet term, like the 2P inspected above, which is usually quite isolated from other
states, whereas it will be more noticeable in a three-state triplet like 3P where
the J : 0→ 1 transition proceeds exclusively through close coupling. So, the two-
state assumption of first-order perturbation theory unsurprisingly applies better
to two-state doublets versus three-state triplets. However, it is not possible to
say anything quantitative without recourse to specific examples. References pre-
senting SC-CC methods are quick to dismiss the validity of the SC-1 method,
saying it is wholly inadequate at intermediate energies where first-order pertur-
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Figure 4.5: Proton-impact excitation of the 3s23p 2P1/2 → 2P1/2 transition in Al-like Fe13+.
The legend gives the line styles for the following sources. Those prefixed with a2iratbt belong to
the present ADAS baseline implementation of the SC-1 a2iratbt code but with different atomic
data: suffix bt2005 indicates use of the atomic data from BT05 [92], nist from NIST [127], and
walling1988 from WW88 [103]. The other curves are from the literature and are described
in the text: bely1970 [93], heil1983 [114], landman1973 [95], masnou-seeuws1972 [106], sahal-
brechot1974 [97], seaton1964 = S64 [90], walling1988 = WW88 [103].

bation breaks down, but as will be seen, they often go on to show comparisons
with SC-1 calculations that agree quite well. Of course, they are stating nothing
that is not already known to the producers of the SC-1 calculations: unmodified
first-order perturbation theory is wholly inadequate, but the point missed is that
modified versions of SC-1 approaches fare remarkably well if the modifications are
grounded in physical justification. By inspecting a variety of comparisons in the
literature, it is possible to make a more informed conclusion based on inference.

Again, the example of Al-like Fe13+ in figure 4.5 is instructive because so
many calculations from different methods exist. It is now analysed from the
perspective of contrasting SC-CC and SC-1 methods. Before proceeding, it is
necessary to account for the variation of the input atomic structure data. In par-
ticular, the discrepancy between the walling1988 and a2iratbt-walling1998 curves
is unsettling because of the similarity of the underlying methods. WW88 uses
Sij

(2) = 0.243 and cites [128] for the wave functions that produce this value,
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but BT05 also claims to use the wave functions of [128] and instead arrives at
Sij

(2) = 0.1619. S64 uses a similar value of Sij(2) = 0.162 derived from slightly
different wave functions. It is believed that WW88 has incorrectly reported its
Sij

(2) value because upon using Sij(2) = 0.1619 with the a2iratbt code and set-
tings to match the WW88 cutoffs (a2iratbt-walling1988-3 ), the result perfectly
agrees with the WW88 (walling1988 ) cross section in figure 4.6. However, there
is a deeper issue that the a2iratbt calculation with the NIST line strength,
Sij

(2) = 0.21995, results in the curve that is farthest from the Q-CC result of Heil
et al. (heil1983 ). Similar to the discrepancy with WW88, the majority of this
gap can be attributed to differences in the atomic data because heil1983 uses
the wave functions of [128] that produce Sij(2) = 0.1619. Upon using this value,
the a2iratbt calculation falls to the a2iratbt-bt2005 curve in figure 4.5, agreeing
much better with the heil1983 result. Now the question becomes which Sij

(2)

value is correct? Ultimately, the reason for this discrepancy must be resolved
by atomic structure physicists, but the NIST value [129] has been independently
verified by an experimental measurement [130] and a separate grasp0 calcula-
tion [131]. Therefore, Sij(2) = 0.21995 should be accepted as the definitive value
for this transition in Fe13+.

With the atomic data input now a controlled variable, it is possible to assess
the differences between the SC-CC and SC-1 attempts in figure 4.5. The SC-
1 results, seaton1964 and walling1988, achieve remarkable agreement (< 5%)
with the two SC-CC results, landman1973 and masnou-seeuws1972, across most
of the energy range, but the masnou-seeuws1972 curve dips at higher energies
with an incorrect-looking falloff. It is suspected this is because of the use of
a long-range potential without a proper cutoff. The SC-1 result from the new
a2iratbt code with similar atomic data to the other results (a2iratbt-bt2005 )
achieves slightly less good agreement (< 10%) arising from the difference in how
P

(1)
ij is limited: seaton1964 and walling1988 use the cutoff described for S64 in

section 4.2.1 while a2iratbt-bt2005 uses that from BT05 with φ(x) = tan (2x)/2.
Further discussion on how these limiting strategies affect the collision data is
contained in section 4.4.1.4. Overall, because such good agreement is observed
between these SC-1 and SC-CC results, it must be concluded that the effect of
close coupling is fairly minor in this case.
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Figure 4.6: Proton-impact excitation of Al-like Fe13+ as in figure 4.5 but with aligned atomic
data. Legend entries prefixed with a2iratbt belong to the present ADAS baseline implementation
of the SC-1 a2iratbt code but with different atomic data: suffix walling1988-1 indicates use
of the atomic data from WW88 [103], walling1988-2 also from WW88 but with the cutoff
and limiting function to match WW88, walling1988-3 from BT05 [92] and with the cutoff and
limiting function to match WW88. The literature sources bt2005 and walling1988 are the same
as in figure 4.5.

Next, consider the example of B-like O3+ in figure 4.7, which was already
mentioned in the investigation of the polarisation interaction. It was concluded
therein that most of the variation between the CC results, heil1982 and fos-
ter1997, and the a2iratbt SC-1 result comes from atomic data differences be-
cause the WW88 result achieves close agreement (< 5%) by purportedly using the
same inputs. A similar third period analogue ion, Al-like S3+, was first studied
by RS69 using the SC-CC method without polarisation corrections. The SC-1
approach of BT05 [92] achieves a fairly constant variation of approximately 13%
with this result, and WW88 does even better with < 5%. Therefore, it is con-
cluded that close coupling is a fairly minor effect for these transitions occurring
between the two levels of a 2P term.

The previous three examples have all been for transitions between the two
levels of a doublet term, where it is was acknowledged earlier that the degree of
close coupling will be smaller. A triplet term is more susceptible to CC effects, and
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Figure 4.7: Proton-impact excitation of the 2s22p 2P1/2 → 2P1/2 transition in B-like O3+.
The legend sources are [118], a descendant of the SC-CC RS69, for foster1997 ; [126], a Q-CC
result, for heil1982 ; [103], a SC-1 result, for walling1988 = WW88; and the new SC-1 ADAS
code, a2iratbt.

transitions within the ground 3P term of Si-like Fe12+ offer a well studied example.
WW88 [103] compares its SC-1 result to the Q-CC result of F75 [125] using the
same input atomic data. It achieves quite good agreement for the J : 1 → 2

transition of at worst 10% around the maximum of the cross section. Recall that
there should be little difference between a semi-classical and quantal treatment.
The disagreement at higher energies is due to the different interaction terms
used—asymptotic versus complete—because WW88 can achieve better agreement
by using a r0 cutoff that matches the Born calculation of F75. The agreement
for the J : 0→ 2 transition is not as good, peaking at about 25%. Although the
different interaction terms will account for some of this, the dominant effect is the
loss of flux through close coupling to the first-order forbidden 3P0→1 transition.
In addition, the SC-1 [95] and SC-CC [121] results of Landman display a fair
level of consistency for this ion. Like before, the J : 0 → 2 transition displays a
larger CC suppression than the J : 1 → 2, only about 10% in this case, but an
SC-1 estimate is also produced for the forbidden J : 0 → 1 transition, and this
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exhibits a larger discrepancy of approximately 25%. As previously concluded in
section 4.2.1, the extension of the SC-1 technique to treat forbidden transitions
is likely too crude for the additional effort involved. It must also be kept in
mind that these forbidden transitions tend to be of smaller magnitude and so less
influential in the context of a population model.

A comparison of rate coefficients in a triplet term is performed by WW88
for 2s2p 3P of Be-like Ne6+ against the SC-CC calculation of [109], a descendent
of RS69. The level of agreement is quite high in this case, approximately 5%
for the two allowed transitions, with the SC-1 slightly overestimating relative to
the SC-CC because of the neglect of close coupling to the forbidden transition,
J : 0 → 1. Later when comparing IIE data relevant to modelling argon in
section 4.4.2, the Be-like isoelectronic analogue is compared for the present SC-1
a2iratbt result against another SC-CC RS69 descendent [110] in figures 4.22
and 4.25. Correcting for the atomic data input, disagreement of less than 20%
is observed for both allowed transitions. The third result (ryans1998 ) is ignored
because of the uncertainty surrounding the implementation of the polarisation
correction.

In conclusion, the results from correctly implemented SC-1 methods tend
to attain high fidelity with those from SC-CC methods after correcting for any
atomic data or interaction term variation. The best cases (< 5%) are transi-
tions within doublet terms that closely emulate a true two-state system, whereas
less agreement (≈ 25%) is witnessed for higher order multiplets because of the
stronger CC effects through intermediate states within the term. For the pur-
poses of an expeditious baseline, these CC effects on allowed transitions can safely
be neglected at the moment. However, the impact of neglecting forbidden tran-
sitions remains an open question, although it is suspected to be small. Overall,
it is concluded from this literature review that the SC-1 method implemented in
a2iratbt should be more than adequate for the present baseline purposes. The
use of the long-range quadrupole potential with fitting to the Born approximation
asymptote will avoid any deficienies from neglecting short-range effects, and the
polarisation correction should be negligible. A semi-classical approach introduces
no significant error compared to a quantal one, and the effects of close coupling
can be safely deferred to a later update of the baseline.
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Table 4.2: Parameter definitions for IIE scattering calculations in this chapter. Unless other-
wise stated, all energy quantities are in Rydberg units (Ryd) throughout this chapter, while all
other quantities are in atomic units (au).

zt target charge number Sij
(2) quadrupole atomic line strength (au)

zp projectile charge number ωi statistical weight of target level, i

mt target mass (au) ωj statistical weight of target level, j

mp projectile mass (au) εi initial kinetic energy of reduced projectile in COM frame
(Ryd)

M reduced mass (au) =
mpmt
mp+mt

εj final kinetic energy of reduced projectile in COM frame
(Ryd)

∆Eij atomic transition energy (Ryd) ε geometric mean kinetic energy in COM frame (Ryd) =

(εiεj)
1/2

4.3 Methodology

It was explained in section 4.2.1 that the work of BT05 [92] represents the most
complete and correct formulation of the SC-1 method in the literature and should
form the basis of any subsequent implementation. However, it was also noted that
the accompanying computer code has been lost to the abyss. Consequently, the
replacement of this code was a priority, and it is achieved with the new ADAS
code, a2iratbt. This code will be used to provide baseline quality IIE data
within ADAS for the foreseeable future. The basic details of the methodology
and implementation are provided in section 4.3.1, but a detailed account of the
code is provided in a reference manual that will soon be placed in central ADAS.
Subsequently, a new ADAS data format, adf06, is introduced in section 4.3.2 to
hold the IIE collision data produced by a2iratbt.

4.3.1 A New ADAS Code: a2iratbt

Proceeding along the lines established by BT05 [92], S64 [90], and Alder et al. [91],
the ion projectile is treated as a classical particle with position vector, rp, trav-
elling along a hyperbolic trajectory determined by the electrostatic Coulomb po-
tential of the target ion, zt/rp. The differential excitation cross section is then
simply the product of the Rutherford differential cross section and the transition
probability:

dσi→j = P
(1)
ij (θ) · 1

4π

(ztzp
ε

)2

csc4(θ/2)dΩ. (4.20)
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In turn, the transition probability is obtained through first-order perturbation
theory, which states

P
(1)
ij =

1

ωi

∑
MiMj

|bij(t =∞)|2 , (4.21)

where
bij = −i

∫ +∞

−∞
〈j |H(t)| i〉 eiωtdt. (4.22)

The interaction Hamiltonian, H(t), is given by the Coulomb interaction energy,

H(t) =

∫
γ(r)ϕ(r, t)dτ , (4.23)

where γ(r) is the atomic charge density, r is the position vector of the atomic
electron, dτ is the spatial volume element, and

ϕ(r, t) =
zp

|r − rp|
− zp
rp

(4.24)

is the interaction potential. Notice the second term that is subtracted represents
the interaction between the centres of mass, which determines the scattering
trajectory but does not influence the excitation. As already explained in sec-
tion 4.2.1, the first term of the interaction potential is expanded in multipole
components:

1

|rp − r|
=
∞∑
λ

Pλ(r̂p · r̂)
rλ

rλ+1
p

. (4.25)

For the fine-structure transitions germane to IIE in this thesis, the quadrupole
(λ = 2) term is the first non-zero and also dominant one in this expansion, and it
is assumed that only this term should be retained, recovering equation 4.8. After
a great deal of algebra and manipulation, one arrives at an expression for the
unmodified transition probability,

P
(1)
ij (ε, θ) =

4MBE2ε
3

zp2zt4
sin4(θ/2)

dfE2

dΩ
(θ, ξ), (4.26)
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where BE2 = (15/(8π))Sij
(2)/ωi is the reduced radiative transition probability,

and ξ is the dimensionless adiabaticity parameter defined by

ξ =
zpzt
√
M |∆Eij|

ε(
√
εi +
√
εj)

. (4.27)

This yields expressions for the cross section in atomic units, [a2
0],

σi→j =
πzp

2zt
2

2εiε

∫ π

0

P
(1)
ij (ε, θ) csc4(θ/2) sin θdθ

=
2πMBE2εj

zt2

∫ π

0

dfE2

dΩ
(θ, ξ) sin θdθ

=
MBE2εj
zt2

fE2(ξ),

(4.28)

and the collision strength, [dimensionless],

Ωij = Mεiωiσi→j

=
πMωizp

2zt
2

2ε

∫ π

0

P
(1)
ij (ε, θ) csc4(θ/2) sin θdθ

=
2πM2BE2ωiε

2

zt2

∫ π

0

dfE2

dΩ
(θ, ξ) sin θdθ

=
M2BE2ωiε

2

zt2
fE2(ξ).

(4.29)

The differential excitation cross section function, dfE2/dΩ, is an important quan-
tity defined, for the E2 case, by

dfE2

dΩ
(θ, ξ) =

3π

200

[
I2

2,−2 +
2

3
I2

2,0 + I2
2,2

]
csc4 (θ/2), (4.30)

where I2,µ are classical orbit integrals involving hypergeometric functions. The
symmetrised adiabaticity parameter, ξ, is addressed at length in section 4.4.1.1.
Evaluating these integrals can be an arduous task, so BT05 [92] developed a
convenient strategy involving straight line orbit approximations, (dfE2/dΩ)st,
that quickly and accurately yields values of dfE2/dΩ. A two-dimensional data
array of the ratio, Λ(θ, ξ) = (dfE2/dΩ)/(dfE2/dΩ)st, is generated on a fairly fine
mesh in advance and stored. This ratio is advantageous for interpolation because
Λ is slowly varying and Λ(0, ξ) = Λ(θ, 0) = 1. Values of dfE2/dΩ are retrieved by
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interpolating Λ and then multiplying by (dfE2/dΩ)st. Details of the straight line
orbit approximations and this ratio are provided in the Appendix of BT05 [92].
Extensive reference to Appendix II E.4 of Alder et al. [91] is made therein.

Equations 4.26, 4.28, and 4.29 constitute the unmodified expressions for the
SC-1 approach to the inelastic scattering problem, but it has been pointed out
many times already that these are wholly inadequate for producing accurate
collision data in any regime except at low energies. Therefore, a number of
modifications must be made to these expressions before they can be properly
exploited. Proceeding according to the energy regimes identified by S64 [90], it
is noted:

(a) Low Energies—No changes are required because P (1)
ij stays small and

first-order perturbation theory holds.

(b) Intermediate Energies—To ensure that P (1)
ij ≤ 1 for all trajectories, the

modified transition probability is given by

P
(2)
ij = Pubφ

(
P

(1)
ij /Pub

)
, (4.31)

where φ is some function such that φ(x) ∼ x as x→ 0, and φ(x) ≤ 1,∀x ≥
0, ensuring P

(2)
ij never exceeds a specified upper bound, Pub. Here, x is

a dummy variable. The choice of φ and Pub are to some extent arbitrary,
but symmetry reciprocity of the final transition probability should be main-
tained. Some options for φ are listed by equation 4.50, but outside of the
parameter variation studies in section 4.4.1.4, the default used in a2iratbt

is φ(x) = tanh (2x)/2, effectively a smooth version of the P (1)
ij (b1) = 1/2

cutoff used in S64.

Selecting Pub is less ambiguous. Since P (1)
ij ∝ 1/ωi, P

(2)
ij must be as well

if reciprocity is to be maintained. Consulting equation 4.31, the simplest
option is to make Pub ∝ 1/ωi and ensure φ

(
P

(1)
ij /Pub

)
is symmetric. An

advantageous option is the definition,

Pub =
H(ωi, ωj)

ωi
=

2

ωi−1 + ωj−1

1

ωi
=

2ωj
ωi + ωj

, (4.32)

where H(x1, x2, . . . , xn) is the harmonic mean. Not only does this sym-
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metrise the ratio, P (1)
ij /Pub and guarantee P (2)

ij ∝ 1/ωi, but if φ → 1/2

when P (1)
ij becomes large, then P (2)

ij → ωj/(ωi +ωj). In other words, strong
coupling transitions (P (1)

ij large) will have a transition probability deter-
mined by the statistical weights of the levels involved in the transition.

(c) High Energies—A radial cutoff, r0, centred on the atomic target is set
just as in S64. For trajectories with ρ(θ) < r0, the transition probability is
set to its value when ρ(θ0) = ρ0 = r0. More succinctly, P (2)

ij (θ) = P
(2)
ij (θ0)

for ρ(θ) < r0. After adjusting the collision strength expression, it can be
shown—see the beginning of section 6 in BT05—that the infinite energy
limit, Ωij

(inf), has the form

lim
εj→∞

Ωij =
4

5

(
Mzp
r0

)2

Sij. (4.33)

Then, Ωij
(inf) is obtained from the Born approximation of autos, allowing

r0 to be solved for in equation 4.33. With r0 set in this manner, Ωij is
guaranteed to approach Ωij

(inf) given by the Born approximation, which is
exact in this limit.

Incorporating these modifications, equations 4.28 and 4.29 become

σi→j =
zp

2zt
2

2εiε

[∫ θ0

0

P
(2)
i→j(ε, θ) sin−4(θ/2) sin θdθ

+P
(2)
i→j(ε, θ0)

∫ π

θ0

sin−4(θ/2) sin θdθ
] (4.34)

Ωij =
Mωizp

2zt
2

2ε

[∫ θ0

0

P
(2)
i→j(ε, θ) sin−4(θ/2) sin θdθ

+P
(2)
i→j(ε, θ0)

∫ π

θ0

sin−4(θ/2) sin θdθ
] (4.35)

with θ0 = 2 arcsin (zpzt/εr0 − zpzt), the COM scattering angle at which ρ(θ0) =

r0. The important effects that these changes have upon the collision data is
investigated in section 4.4.1.4. Practically, it is convenient to use a change of
variable:

u =
ε

zpzt
sin(θ/2). (4.36)
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BT05 explains why this is beneficial, and equations (10)–(13) from [92] are the
final ones used in the a2iratbt calculations.

Typically, it is the rate coefficient (qi→j) or effective collision strength (Υij)
that is required for processing in ADAS, and these are obtained through the usual
relations:

Υij =

∫ ∞
0

Ωije
−sds (4.37)

with s = εj/(kT ), and

qi→j =
2
√
πa2

0αc

ωiM3/2

(
IH
kTe

)1/2

exp(−∆Eij/kTe)Υij. (4.38)

For the integration in equation 4.37, it is convenient to partition the energy space
into two intervals, each with a different integration technique. The partitioning
energy, εb, is determined by an iterative scheme that ensures it is beyond the
peak of the integrand. In the interval [0, εb], the 1-D adaptive Gaussian integrator
technique, dqags, from the SLATEC numeric library7 is used, while for [εb,+∞]

Gauss-Laguerre integration is used. The dqags routine is also applied to the
integrals in equation 4.35.

The input to a2iratbt is simple, but some of the atomic data required can be
difficult to source. The transition energy (∆Eij), quadrupole line strength (Sij(2)),
and Born limit (Ωij

(inf)) for the transition of interest are all taken from a precur-
sor autos run in the proposed ADAS framework for mass production, which is
orchestrated through Perl scripts in the offline ADAS subcategory, adas1#2. The
IIE calculations for Chapter 5 use the enhanced baseline features of Chapter 2 in
this precursor autos run, and it is envisioned this will be the default behaviour
for mass production. However, there is flexibility, and the producer is able to
specify arbitrary input for autos in this framework.

4.3.2 A New ADAS File Format: adf06

Storing the IIE collision data produced by a2iratbt raises a practical problem
within ADAS. Since EIE only ever involves an electron projectile, there is no field
to store projectile parameters in the existing file format for specific ion excitation

7http://www.netlib.org/slatec/index.html

http://www.netlib.org/slatec/index.html
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data, adf04. The objective within ADAS is the capability to exploit IIE data
involving an arbitrary structureless projectile—it is not simply proton-impact
that is of concern. Therefore, the adf04 file format is inadequate, and a new
file format, adf06, has been developed. As shown in figure 4.8, the adf06 format
is almost identical to the adf04 format except that the collision data is broken
into blocks specific to each projectile. The header lines of these blocks give the
necessary information about the projectile for use in other ADAS routines. In
accordance with ADAS requirements, reading routines in both Fortran and IDL
have been concurrently developed to facilitate the exploitation of this data.

AR+14        18        15   6900249.1595    
    1 521522            (1)0( 0.0)              0.0000
    2 521512513         (3)1( 0.0)          228325.3642
    3 521512513         (3)1( 1.0)          235707.0860
    4 521512513         (3)1( 2.0)          252879.3245
    5 521512513         (1)1( 1.0)          466512.2918
    6 521523            (3)1( 0.0)          605484.2636
    7 521523            (3)1( 1.0)          615821.2708
    8 521523            (3)1( 2.0)          629433.8480
    9 521523            (1)2( 2.0)          697151.5107
   10 521523            (1)0( 0.0)          853534.8926
   -1    287.101 62.8778 59.3488 26.8287 25.8506 25.1603 14.8163 14.4148
15.00    3       2.25+04 4.50+04 1.12+05 2.25+05 4.50+05 1.12+06 2.25+06 4.50+06 1.12+07 2.25+07 4.50+07 1.12+08 2.25+08 4.50+08 
/mt = 3.99480e1 /zp = 1.00e0 /mp = 1.00794e0 / 1^H  impact /
   8   1 1.42+02 2.37-98 2.12-64 7.85-36 6.20-22 1.23-13 3.62-07 3.42-04 3.33-02 1.72+00 1.25+01 4.95+01 1.60+02 2.80+02 3.98+02 5.88+02
   9   1 6.20+03 0.00+00 1.47-65 5.66-36 1.35-21 4.64-13 2.08-06 2.71-03 3.45-01 2.36+01 2.02+02 9.11+02 3.35+03 6.28+03 9.41+03 1.52+04
   4   2 1.10-03 8.87-25 6.26-15 1.12-06 8.34-03 2.79+00 3.06+02 2.54+03 9.37+03 2.48+04 3.68+04 4.55+04 5.21+04 5.45+04 5.57+04 5.68+04
   4   3 4.15-04 8.68-21 3.37-12 5.01-05 1.13-01 1.75+01 1.06+03 7.01+03 2.31+04 5.73+04 8.32+04 1.02+05 1.17+05 1.22+05 1.25+05 1.28+05
   5   3 2.34+00 5.64-67 4.37-43 5.12-23 6.37-14 8.74-08 6.44-03 7.72-01 1.37+01 1.18+02 3.00+02 5.25+02 7.82+02 9.08+02 9.77+02 9.94+02
   5   4 5.75-01 2.07-65 3.46-42 1.04-22 7.19-14 6.52-08 3.43-03 3.56-01 5.73+00 4.57+01 1.11+02 1.89+02 2.75+02 3.16+02 3.38+02 3.42+02
   8   6 1.01-03 1.73-24 9.71-15 1.45-06 9.87-03 3.11+00 3.25+02 2.64+03 9.65+03 2.54+04 3.76+04 4.66+04 5.33+04 5.59+04 5.71+04 5.83+04
   9   6 3.55-05 7.13-49 8.41-32 4.83-18 1.61-11 3.01-07 7.68-04 2.19-02 1.52-01 5.94-01 1.01+00 1.34+00 1.59+00 1.68+00 1.71+00 1.69+00
   8   7 1.27-04 9.62-19 7.72-11 2.66-04 3.02-01 2.99+01 1.31+03 7.64+03 2.37+04 5.68+04 8.17+04 9.99+04 1.14+05 1.19+05 1.22+05 1.24+05
   9   7 3.14-02 1.82-43 5.25-27 4.98-14 8.43-08 1.00-03 2.00+00 5.78+01 4.08+02 1.55+03 2.54+03 3.28+03 3.81+03 3.97+03 4.04+03 4.02+03
   9   8 8.53-02 1.91-39 4.47-24 4.95-12 3.11-06 1.91-02 2.26+01 5.27+02 3.30+03 1.14+04 1.81+04 2.28+04 2.59+04 2.69+04 2.73+04 2.73+04
  10   8 2.16+01 1.19-65 5.10-42 3.55-22 3.52-13 4.12-07 2.71-02 3.11+00 5.31+01 4.45+02 1.11+03 1.91+03 2.82+03 3.25+03 3.49+03 3.54+03
  10   9 2.10+02 4.39-55 2.41-34 3.50-17 2.94-09 5.53-04 7.91+00 4.31+02 4.59+03 2.84+04 6.56+04 1.11+05 1.62+05 1.87+05 2.01+05 2.07+05
/mt = 3.99480e1 /zp = 1.00e0 /mp = 2.00000e0 / 2^H  impact /
   8   1 1.42+02 0.00+00 4.84-74 4.19-41 1.86-25 4.24-16 7.11-09 2.19-05 5.51-03 7.48-01 9.54+00 5.84+01 2.90+02 6.43+02 1.09+03 2.21+03
   9   1 6.20+03 0.00+00 1.24-75 1.79-41 2.90-25 1.08-15 2.57-08 1.20-04 4.27-02 8.30+00 1.31+02 9.45+02 5.54+03 1.35+04 2.45+04 5.69+04
   4   2 1.10-03 2.20-28 6.36-17 1.57-07 4.24-03 3.24+00 6.29+02 6.23+03 2.52+04 7.41+04 1.18+05 1.56+05 1.87+05 2.00+05 2.07+05 2.13+05
   4   3 4.15-04 1.20-23 7.38-14 1.16-05 7.98-02 2.51+01 2.47+03 1.86+04 6.51+04 1.74+05 2.70+05 3.51+05 4.19+05 4.48+05 4.63+05 4.79+05
   5   3 2.34+00 8.84-77 2.78-49 2.99-26 9.42-16 9.20-09 2.63-03 5.65-01 1.54+01 2.04+02 6.61+02 1.39+03 2.44+03 3.08+03 3.49+03 3.73+03
   5   4 5.75-01 6.80-75 3.58-48 8.74-26 1.25-15 7.78-09 1.54-03 2.81-01 6.85+00 8.24+01 2.54+02 5.13+02 8.74+02 1.08+03 1.22+03 1.28+03
   8   6 1.01-03 4.90-28 1.04-16 2.10-07 5.14-03 3.68+00 6.75+02 6.52+03 2.60+04 7.58+04 1.21+05 1.59+05 1.92+05 2.05+05 2.12+05 2.19+05
   9   6 3.55-05 2.09-55 5.95-36 5.48-20 1.45-12 1.13-07 8.09-04 3.47-02 3.18-01 1.59+00 3.07+00 4.46+00 5.70+00 6.19+00 6.41+00 6.36+00
   8   7 1.27-04 3.13-21 2.73-12 8.21-05 2.57-01 4.87+01 3.26+03 2.12+04 6.86+04 1.75+05 2.67+05 3.44+05 4.09+05 4.37+05 4.51+05 4.67+05
   9   7 3.14-02 1.18-49 5.14-31 7.31-16 9.29-09 4.34-04 2.50+00 1.09+02 9.88+02 4.59+03 8.34+03 1.15+04 1.40+04 1.48+04 1.52+04 1.51+04
   9   8 8.53-02 3.81-45 1.27-27 1.07-13 4.56-07 9.97-03 3.16+01 1.08+03 8.47+03 3.52+04 6.07+04 8.09+04 9.59+04 1.01+05 1.03+05 1.02+05
  10   8 2.16+01 2.47-75 3.91-48 2.39-25 5.54-15 4.57-08 1.16-02 2.37+00 6.19+01 7.87+02 2.49+03 5.13+03 8.88+03 1.11+04 1.25+04 1.33+04
  10   9 2.10+02 2.31-63 1.40-39 1.02-19 9.84-11 1.08-04 5.65+00 4.97+02 6.90+03 5.39+04 1.47+05 2.91+05 5.03+05 6.33+05 7.16+05 7.79+05
/mt = 3.99480e1 /zp = 2.00e0 /mp = 4.00260e0 / 4^He impact /
   8   1 1.42+02 0.00+00 0.00+00 2.38-64 3.14-40 2.04-24 8.66-13 1.36-07 3.97-04 3.86-01 1.29+01 1.56+02 1.45+03 4.51+03 9.76+03 3.22+04
   9   1 6.20+03 0.00+00 0.00+00 9.67-66 1.16-40 2.81-24 2.20-12 5.01-07 2.21-03 3.34+00 1.46+02 2.17+03 2.48+04 8.68+04 2.06+05 8.31+05
   4   2 1.10-03 6.66-45 4.50-27 5.92-13 2.92-06 6.89-02 2.18+02 7.26+03 5.93+04 2.95+05 6.29+05 1.07+06 1.75+06 2.22+06 2.58+06 3.11+06
   4   3 4.15-04 6.80-38 2.43-22 3.26-10 2.11-04 1.28+00 1.37+03 2.89+04 1.82+05 7.56+05 1.50+06 2.47+06 3.94+06 4.99+06 5.78+06 6.99+06
   5   3 2.34+00 0.00+00 2.22-76 1.07-41 4.99-25 1.44-14 6.49-06 4.43-02 9.05+00 5.19+02 3.18+03 1.00+04 2.46+04 3.63+04 4.54+04 5.44+04
   5   4 5.75-01 0.00+00 2.08-74 9.60-41 1.49-24 1.94-14 4.92-06 2.59-02 4.48+00 2.24+02 1.28+03 3.84+03 9.00+03 1.30+04 1.59+04 1.87+04
   8   6 1.01-03 2.15-44 1.00-26 9.20-13 3.91-06 8.34-02 2.42+02 7.77+03 6.19+04 3.03+05 6.43+05 1.10+06 1.78+06 2.27+06 2.64+06 3.19+06
   9   6 3.55-05 7.40-84 2.45-54 7.19-30 1.04-18 2.42-11 2.58-05 1.30-02 5.34-01 7.86+00 2.39+01 4.55+01 7.10+01 8.36+01 9.05+01 9.28+01
   8   7 1.27-04 4.46-34 6.23-20 7.51-09 1.47-03 4.09+00 2.35+03 3.86+04 2.11+05 7.94+05 1.52+06 2.46+06 3.88+06 4.89+06 5.66+06 6.81+06
   9   7 3.14-02 1.02-76 1.53-48 3.73-25 1.41-14 1.55-07 8.87-02 3.98+01 1.65+03 2.36+04 6.80+04 1.22+05 1.79+05 2.04+05 2.17+05 2.20+05
   9   8 8.53-02 3.29-70 5.61-44 3.41-22 2.08-12 7.61-06 1.68+00 4.56+02 1.36+04 1.61+05 4.46+05 8.02+05 1.19+06 1.36+06 1.45+06 1.49+06
  10   8 2.16+01 0.00+00 6.71-75 1.31-40 4.02-24 8.51-14 3.11-05 1.96-01 3.78+01 2.06+03 1.22+04 3.77+04 9.04+04 1.32+05 1.63+05 1.94+05
  10   9 2.10+02 7.06-99 1.36-62 9.18-33 1.83-18 1.59-09 4.11-02 6.06+01 3.87+03 8.17+04 3.43+05 9.65+05 2.61+06 4.50+06 6.60+06 1.14+07
     .
     .
     .
  -1
  -1 -1
c-------------------------------------------------------------------------------
c  Autostructure / a2iratbt production of adf06 datasets
c
c
c  Script  : /home/mbluteau/svn_adas/adas_dev/adas1#2/branch/mbluteau/scripts/
c            process_ion_irat_adf27_to_adf06.pl
c
c  Codes   : /home/adas/offline_adas/adas7#1/bin/as24.x
c            /home/mbluteau/svn_adas/adas_dev/adas1#2/branch/mbluteau/bin/a2iratbt.x
c  Driver  : /home/mbluteau/svn_adas/adas_dev/adas1#2/branch/mbluteau/adas/adf27/irat/belike/copmmb#be/ar14.dat
c  Outputs : /home/mbluteau/svn_adas/adas_dev/adas1#2/branch/mbluteau/adas/adf06/copmmb#be/ic#ar14.dat.
c
c  Producer: mbluteau
c  Date    : 2-11-2017
c
c-------------------------------------------------------------------------------

temperatures (K)

orbital energies 
header line

level spec

Born limiteff. charge and 
file type

transition data 
(𝛶)

projectile block 
header

file comments

Figure 4.8: An example of the new adf06 file format for Be-like Ar14+. This for-
mat holds IIE collision data in blocks specific to each ion projectile. It is identi-
cal to the adf04 format except for these blocks. The block headers give the infor-
mation, /mt = [target mass in amu] /zp = [projectile charge] /mp = [projectile
mass in amu] / [human-readable projectile tag]. Effective collision strengths (Υij ’s)
have been shown here in accordance with the type specifier 3.
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4.4 Results and Discussion

4.4.1 Parameter Variation Studies of IIE

Although the theory behind IIE scattering has been detailed in section 4.3.1, a
critical practice in many fields of physics is determining how physical quantities
depend on their parameters, both explicitly and implicitly. Insight about the
parametric dependence of a quantity yields manifold benefits. First, it can assist
in establishing scaling laws that can extend the results into parameter spaces
where direct calculation may not be possible or feasible. Second, it can provide
an independent means of validating certain aspects of the calculations: either
unexpected or missing parameter dependence can indicate deficiencies in the un-
derstanding of the applied theory or errors therein. Third, understanding how
a quantity varies with its parameters grants one a deeper physical intuition and
understanding about the quantity itself. The purpose of the parametric studies
in this thesis will be to reap the latter two benefits, which will prove particularly
helpful when analysing the effects of projectile variation upon the GCR model of
argon in section 5.3.1.2.

All parametric studies must begin with a firm grounding in the equations used
to calculate the quantities of interest. Of course, this has already been done in
section 4.3.1, but it is useful to restate the concluding equations and make a clear
distinction between the equations for the unmodified and modified, SC-1 theories.
The unmodified form displays the influence of the physical parameters, whereas
the modified form emphasises the impact of technical parameters. In this context,
physical parameters are defined as those parameters that depend directly upon
the fundamental physical characteristics of the system: mass, charge, radiative
line strength of the atomic transition, etc. On the other hand, technical param-
eters are defined as those parameters that relate to the particular method being
used, e.g. any cutoff used in integration or limiting behaviour enforced upon the
transition probability. The differentiation of physical and technical parameters
is in no way meant to suggest that the technical parameters have no physical
basis, but rather this classification is made to emphasise the distinction between
parameters that are universal to any applied method (physical) and those that
arise solely because of the particular method being used (technical). Indeed, it is



CHAPTER 4. ION-IMPACT EXCITATION 164

frequently the case that technical parameters are introduced to make the method
more physically accurate, as the results of section 4.4.1.4 should prove.

The unmodified, first-order equations for the transition probability, cross sec-
tion, and collision strength from section 4.3.1 are restated here:

P
(1)
i→j(ε, θ) =

4MBE2ε
2εj

zp2zt4
sin4(θ/2)dfE2/dΩ (4.39)

σi→j =
2πMBE2εj

zt2

∫ π

0

dfE2/dΩ sin θdθ =
2πMBE2εj

zt2
fE2(ξ), (4.40)

Ωij =
2πM2BE2εiεjωi

zt2

∫ π

0

dfE2/dΩ sin θdθ =
2πM2BE2εiεjωi

zt2
fE2(ξ). (4.41)

These equations have been simplified as much as possible in an attempt to clearly
display the explicit physical parameter scaling; however, it is not possible to give
the explicit scaling of dfE2/dΩ due to the complexity of its analytic integral repre-
sentation. Notwithstanding this, simpler expressions for dfE2/dΩ and its integral,
fE2(ξ), can be obtained in both the high and low energy limits—corresponding to
low and high ξ limits, respectively. These limiting behaviours and the parameter
dependence of fE2(ξ) are investigated in section 4.4.1.1 where the adiabaticity
parameter, ξ defined by equation 4.27, is used as a proxy for the other physical
parameters. Once the ξ dependence of fE2(ξ) is known, the approximate scaling
of the collisional quantities relative to the physical parameters can be determined
from equations 4.39–4.41. Investigating the physical parameter dependence of
IIE collision quantities introduces an extra dimension compared to the equiva-
lent exercise for EIE because the projectile can now assume a range of mass and
charge values, {mp ∈ R, zp ∈ N}, as opposed to zp = 1 and mp = me = 1 for an
electron. Therefore, the physical parameters have been subdivided into projectile
and target categories, investigated in sections 4.4.1.2 and 4.4.1.3, respectively.
The physical parameters are listed in table 4.3.

Since the parameter dependence of a variety of collision quantities will be
investigated, figure 4.9 provides a visual summary of how these quantities are re-
lated and which parameters enter at each step. As a reminder, the rate coefficient,
qi→j, is related to the effective collision strength, Υij, by equation 4.38.

The parameter dependence ascertained from equations 4.39–4.41 will not cor-
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∆Eij

mp ∆Eij

zp mp

mt mt

zt Ωij

∫
εj

Υij qi→j

Sij P
(2)
ij

∫
θ

ωi

ξ

Figure 4.9: Parameter dependence and interrelation of collision quantities. The green,
rounded-corner boxes contain the collision quantities of interest; the blue circles contain the
parameters; and the grey boxes contain integration steps. The collision quantities are built
from left to right as indicated by the flow of arrows.

respond exactly to the results of the current IIE calculations since a modified form
of the SC-1 method is used. In most cases, the unmodified and modified forms
will agree with each other, especially if one is only seeking to determine parame-
ter scaling where a lesser degree of accuracy and precision is required. Even so,
at higher energies the unmodified SC-1 method suffers serious errors and should
not be used for any purpose. As a result, the effects of the modifications need to
be elucidated along with their dependence upon the technical parameters.

The modified, SC-1 equations for the transition probability, cross section, and
collision strength are:

P
(2)
i→j(ε, θ) = Pubφ

(
P

(1)
i→j/Pub

)
(4.42)

σi→j =
zp

2zt
2

2εiε

[∫ θ1

0

P
(2)
i→j(ε, θ) sin−4(θ/2) sin θdθ

+P
(2)
i→j(ε, θ1)

∫ π

θ1

sin−4(θ/2) sin θdθ
]

(4.43)
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Table 4.3: Parameters involved in IIE, SC-1 calculations.

Category Parameters

Physical
Projectile mp, zp

Target mt, zt, ∆Eij, Sij, ωi

Technical r0, φ(x), Pub

Ωij =
Mωizp

2zt
2

2ε

[∫ θ1

0

P
(2)
i→j(ε, θ) sin−4(θ/2) sin θdθ

+P
(2)
i→j(ε, θ1)

∫ π

θ1

sin−4(θ/2) sin θdθ
]

(4.44)

with θ1 = 2 arcsin (zpzt/εr0 − zpzt). Therefore, the technical parameters of in-
terest for the modified SC-1 method are the effective target radius, r0, and the
transition probability limiting function, φ(x). The neglect and variation of these
parameters will be investigated in section 4.4.1.4.

The complete set of parameters considered in this section are listed in table 4.3
according to their relevant subcategories.

4.4.1.1 The Adiabaticity Parameter, ξ

Self-evidently, the adiabaticity parameter, ξ, measures the adiabaticity of a colli-
sion: large ξ corresponds to a highly adiabatic collision, and small ξ to a diabatic
collision. However, the meaning of the term adiabatic for quantum processes is
different than perhaps the more familiar thermodynamic definition. The quan-
tum meaning of adiabatic derives from the adiabatic theorem, which was stated
originally by Born and Fock as follows:

Definition 4.1. A physical system remains in its instantaneous eigenstate if a
given perturbation is acting on it slowly enough and if there is a gap between the
eigenvalue and the rest of the Hamiltonian’s spectrum [132].

In more modern times, it has been shown that the requirement of a discrete
eigenvalue spectrum is actually unnecessary. The utility of the theorem is appar-
ent in slightly more technical language:

Definition 4.2. Suppose the Hamiltonian of a system changes gradually from
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some initial form H i to some final form Hf ; thus, the time of action, τ = tf − ti,
is large (τ →∞) and ∂H/∂t is small (∂H/∂t→ 0). Then, the adiabatic theorem
states that if the particle was initially in the |n〉 eigenstate of H i, it will be carried
under the Schrödinger equation into the |n〉 eigenstate of Hf [133].

So, an adiabatic, quantum process is one where a perturbation, large or small,
acts slowly enough (τ � 1) that the eigenstate index, n, is unaltered. To be more
precise, the variation time of the Hamiltonian, τ , is “slow enough” if it is much
greater than the characteristic time for change of the state’s wave function, τa.
The ratio, τ/τa, is then a discriminator between adiabatic (τ/τa � 1) and di-
abatic (τ/τa → 0) processes. Although the functional form of the eigenstate
may change (ψn(x, ti) 6= ψn(x, tf )), this change is well defined in terms of a se-
quence of singular eigenstates of the time-varying Hamiltonian for each instant in
time. Conversely, a diabatic, quantum process is defined by a large, instantaneous
change in the system’s Hamiltonian: ∂H/∂t → ∞ and τ → 0. As a result, the
spatial probability density does not have time to adapt, |ψ(x, ti)|2 = |ψ(x, tf )|2,
but there is typically no eigenstate of the final Hamiltonian that matches the
functional form of the initial eigenstate. Therefore, the final state must be a lin-
ear combination of the final Hamiltonian eigenstates, and so no unique quantum
number can be assigned.

Such terminology is readily applied to quantum scattering: the modification
to the Hamiltonian is caused by the incoming projectile, and the rapidity of the
modification is determined by the transit time of the projectile relative to the time
scale of the atomic state. Linking with the characteristic quantities defined above,
τ will be associated with the projectile transit time, which can be estimated for
classical orbits by

τ ≡ ttransit =
a

v sin(θ/2)
=

zpztε

Mv2
i · vi

=
zpzt
√
Mε

ε
3/2
i

, (4.45)

where a = zpzt/(Mv2
i ), vi is the initial projectile velocity, and ε = 1/ sin(θ/2) is

the eccentricity of the orbit. When considering an individual transition excited
by a collision, τa will be defined by the atomic period of the transition, Ta = 2π/

ωa = 2π~/∆Eij [SI] = ∆Eij
−1 [au]. Therefore the adiabatic discriminator, τ/τa,
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is the ratio between the collision time and the atomic period:

τ

τa
=
ttransit

Ta
=
zpzt
√
Mε

ε
3/2
i

·∆Eij = ξε. (4.46)

This ratio is in fact the origin of the adiabaticity parameter’s definition. An
adiabatic collision will be classified by ξε � 1, and a diabatic by ξε ≈ 0, but
since the collision quantities of interest integrate over θ, one frequently omits
ε from these expressions and imposes these conditions upon ξ to stipulate the
degree of adiabaticity. The adiabaticity parameter is not a parameter in the strict
mathematical sense because it depends on a variable input, the projectile collision
energy, in its various forms: ε, εi, εj. Moreover, it depends on more fundamental
physical parameters, zp, zt, M , and ∆Eij—see equation 4.27. Hence, there are
many ways a collision can be made more or less adiabatic. The collision energy
enters into the denominator of ξ, so small energies will correspond to a more
adiabatic collision (ξ large) and large energies a more diabatic collision (ξ small).
Physically, a small collision energy means a long collision time (ttransit large in
equation 4.45), so the changes in the Hamiltonian caused by the projectile can
be much slower than the characteristic time of the atomic state: τ/τa � 1. The
inverse is of course true for large collision energies.

All of the physical parameters are contained in the numerator of the expression
for ξ, equation 4.27, so any increase in zp, zt, M , or ∆Eij will result in a more
adiabatic collision. The physical basis for these parameter dependencies is evident
from equations 4.45 and 4.46. The particle charges, zp and zt, determine the
magnitude of the electrostatic potential that the projectile travels through and
hence the distance of closest approach, 2a, which enters into equation 4.45. Larger
charges mean a greater electrostatic force, a larger distance of approach, and a
longer path length overall. This leads to a greater collision time, ttransit, and hence
greater adiabaticity. The transition energy, ∆Eij, is inversely proportional to the
period of atomic oscillation, Ta, analogous to how the difference in frequencies of
acoustic waves determines the envelope ‘beat’ frequency of the resulting sound
wave. Therefore, a larger ∆Eij leads to a smaller characteristic time of change for
the atomic system, τa, and consequently a more adiabatic collision. At a given
fixed energy, an increase in M will cause a decrease in velocity, and hence an
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increase of the transit time of the reduced particle.
What is the consequence of a collision being adiabatic or diabatic upon the

collision quantities? Consider an adiabatic collision first and apply the adiabatic
theorem. If modification to the atomic Hamiltonian caused by the projectile is
gradual, then the theorem states that system will remain in the eigenstate |n〉 of
the slowly varying Hamiltonian throughout the collision. The extreme states of a
collision are specified with the projectile at an infinite distance from the target,
so the initial and final Hamiltonians must be equal, H i = Hf , meaning the initial
and final eigenstates will not only have the same quantum number but the same
functional form as well: |nti〉 = |ntf〉. So for a perfectly adiabatic collision, an
atom that starts in eigenstate |n〉 of the isolated-atom Hamiltonian will end up in
this exact same eigenstate after the collision: no atomic transition can occur and
the transition probability is zero. The cross section and collision strength must
also be zero at collision energies satisfying adiabatic conditions. The adiabatic
perspective goes part of the way to explaining why IIE cross sections and collision
strengths tend towards zero as collision energies approach the transition energy
threshold. Similarly, the rate coefficient and effective collision strength will tend
to zero for temperatures that have distribution functions peaking at adiabatic
energies.

Now consider a diabatic collision: the modification to the initial Hamiltonian,
H i, occurs rapidly so that at any intermediate time during the collision, tm, the
target state must be some linear combination of the eigenstates of Hm, |n(tm)〉 =∑∞

i ci |ni(tm)〉. Even though Hf = H i for collisions and ostensibly the initial
and final target states should be the same, the intermediate situation means that
there is some probability of a transition. Obtaining an approximation of what
this probability might be is outside the scope of this thesis, and one is referred
to discussions of the sudden approximation in the literature.

All of the preceding comments have been derived solely from the adiabatic
theorem; therefore, these predictions can be used as an independent verification
of the SC-1 calculations once the ξ scaling of the SC-1 equations has been de-
termined. The adiabaticity parameter only enters into the collision equations
through dfE2/dΩ and its integral fE2(ξ), so ascertaining their scaling will also
set the ξ scaling of the collision quantities overall.
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Simplified forms of the Coulomb trajectory functions, dfE2/dΩ and fE2(ξ),
which directly display the scaling dependence, can be obtained in the extrema
domains of ξ. The primary results are presented here, and further details are
contained in Appendix A of [103] and section II E.6 of [91]. In the limit of
ξ ' 1, one can express the Coulomb trajectory functions in terms of the power
series of Whittaker functions. From this, the main variation of dfE2/dΩ goes
as ∼ e−ξ(2ε+π), and when integrated over θ, this leads to a main variation of
∼ e−2πξ for fE2(ξ). The exponential decrease of both quantities with increasing ξ
is plainly observable in figures 4.10–4.12. dfE2/dΩ decreases by about 5 decades
as ξ increases from 0 → 2 in figure 4.10, and this is corroborated by figure 4.11
where A(ξ = 0) = 1.8 and A(ξ = 2) = 1.5 × 105. Similarly, fE2(ξ) declines
sharply in figure 4.12, starting around ξ = 0.5. As a result, all of the collision
quantities in equations 4.39–4.41 will exhibit this exponential decrease towards
zero in the regime of large ξ. This agrees perfectly with the general predictions
of the adiabatic theorem. The probability of transition will tend to zero the more
adiabatic a collision is (i.e. the greater ξ is), and the results from a2iratbt in
figure 4.13 also reflect this scaling.
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Figure 4.10: Three dimensional wire plot of dfE2/dΩ for observation of ξ dependence. This
is the classical approximation of this function. Function values were obtained through numeric
integration of the orbit integrals.

In the opposite extreme of ξ = 0, the exponential terms containing ξ are
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Figure 4.11: Angular distribution of the classical dfE2/dΩ at specified ξ values. The function
value has been normalised to unity at θ = π, resulting in the normalisation coefficients, A,
which multiply the entire curves so that similar magnitudes are achieved for ease of plotting.

eliminated from the orbit integrals that compose dfE2/dΩ, so these integrals can
be performed explicitly with analytic, elementary functions:

dfE2

dΩ
(θ, 0) =

π

75

{
1 + 3

[
1−

(
π − |θ|

2

)
tan (|θ|/2)

]2

sec4(θ/2)

}
, (4.47)

fE2(0) =
8π2

25

(
π2

16
− 1

3

)
≈ 0.8954. (4.48)

Because there is no longer any ξ dependence in these expressions, the Coulomb
trajectory functions of order E2 will tend to a constant as ξ → 0. This is most
clearly demonstrated in figure 4.12 where the fE2(ξ) curve levels off to a constant
value at the low ξ end of the plot. The underlying reason for this is that the dfE2/

dΩ curve along θ quickly approaches the shape and magnitude of dfE2

dΩ
(θ, 0), which

is demonstrated by the sequential curves ξ ∈ {0.4, 0.2, 0} of figure 4.11. With this,
the collision quantities of equations 4.39–4.41 must also tend to constant values
for ξ → 0. Is this congruent with the predictions of the adiabatic theorem? For
highly diabatic collisions (ξ small), the theorem as stated here simply predicts that
a transition is possible, so a constant transition probability or collision strength
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certainly satisfies this loose condition. It is worthwhile noting that the Coulomb
trajectory functions only approach constant values for ξ → 0 when λ > 1, because
in the dipole case, fE2(ξ) diverges as ln(1/ξ).

𝜉

𝑓 𝐸
𝜆
(𝜉

)

Figure 4.12: The integral Coulomb trajectory functions, fEλ(ξ), plotted versus ξ. No inner
cutoff has been applied during integration, so the use of these quantities in equations 4.40
and 4.41 yield the unmodified SC-1 collision quantities. Reprinted figure 3 from Physics Reports,
162, R. S. Walling and J. C. Weisheit, “Bound-state Excitation in Ion-ion Collisions”, 1–43,
©(1988), with permission from Elsevier.

The last requisite piece to fully investigate the parameter scaling of the IIE
collision quantities is now in place. These conclusions about the ξ scaling of the
collision quantities, in conjunction with equations 4.39–4.41, will be applied in the
subsequent sections to both validate and explain the changes caused by indepen-
dently varying the physical parameters from table 4.3. In addition, equation 4.33
for the infinite energy limit is needed. Some notes on the method used: validat-
ing the scaling behaviour with an individual parameter requires first a qualitative
prediction using the tools just mentioned and then a check against the actual re-
sults from the a2iratbt code. It was found that the easiest manner for checking
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the expected behaviour was to generate plots of each collision quantity (Ωij, σi→j,
Υij, qi→j) versus εj or Tp as appropriate, and each plot would contain multiple
curves corresponding to the variation of the relevant input parameter. Practi-
cally, the results are generated by taking the set of inputs from a base case and
varying the parameter of interest independently of the others. The base case used
in the results below is the proton impact of B-like Ar13+, yielding the following
initial parameter values:

zt = 13 zp = 1

mt = 72820.75 au mp = 1836.15 au

∆Eij = 0.190869 Ryd Aj→i = 1.30× 10−3 s−1

ωi = 2 ωj = 4

Ωij
(inf) = 1.195× 105 au.
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Figure 4.13: The transition probability for an arbitrary E2 transition at various ξ values,
produced by the a2iratbt code.

4.4.1.2 Projectile Parameters

As noted above, the scaling with the projectile parameters offers two additional
dimensions compared to the EIE problem, but even within the literature of IIE
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calculations, the subject is not well studied. Anticipating the application of these
rates in the CR modelling of laboratory devices containing various fuel and im-
purity ions, an understanding of the influence that different projectiles have upon
the underlying collision quantities will be essential. The work of WW88 [103],
detailed in the literature review section 4.2.1, also presents some limited physical
parameter variation studies in its section 4, so these findings will provide a useful
and independent verification of the conclusions to be made.

Consider first the projectile mass, mp. Although this is truly an independent
variable, the quantity that is actually used in the scattering equations and codes is
the reduced mass,M , so it is best to assess the chain of influence in a step-by-step
manner. Typically mp � mt, and so

M =
mpmt

mp +mt

≈ mp. (4.49)

Therefore, the value of M is more sensitive to the projectile mass than the target
mass for most purposes, at least until the two masses become of similar mag-
nitude. A comparison of figures 4.14 and 4.16 proves that this assertion is also
reflected in the results from the code. Increasing mt from one to one hundred
times the mass of argon in figure 4.16 causes little effect upon any of the collision
quantities because a larger mt only reinforces the approximation of equation 4.49.
Thus, M is effectively constant in this regime, meaning none of the parameters in
the scattering equations are changing and the results must be the same. It is only
when mt is reduced by two orders of magnitude (and thus approaches mp) that
any significant change in the collision quantities is observed. This explains why
the effect of target isotopes is not a concern. In contrast, figure 4.14 displays all
of the collision quantities varying noticeably with comparatively small increases
of mp. Again, it is critical to emphasise how this differs from EIE where M ≈ me

always holds, so the variation of collision quantities with either projectile or target
mass never occurs.

With the understanding that M ≈ mp for most cases, it is possible to pre-
dict the effects of varying mp upon the collision quantities more precisely. At
low energies and temperatures meaning ξ > 1, it is the exponential decrease of
dfE2/dΩ and fE2(ξ) with ξ in equations 4.39–4.41 that dominates the behaviour
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of the collision quantities: even though there is also an explicit factor of M in
these equations, it will not overcome the exponential influence of ξ at low ener-
gies. Since a factor of M

1
2 is in the numerator of ξ (equation 4.27), increasing

mp will cause ξ to also increase, enhancing the suppressive adiabatic nature of
the collision. Consequently, the collision quantities should all decrease with in-
creasing mp at low energies and temperatures, which is observed in figure 4.14.
At the opposite limit of high energies and thus ξ → 0, fE2(ξ) tends to a constant
indicating an insensitivity to ξ, and it is rather the asymptotic infinite energy
limit of 4.33 that will determine the scalings. The factor of M2 in this expression
dictates that an increase of mp should induce an increase in the collision quanti-
ties as well. All of the collision quantities produced by a2iratbt in figures 4.14
reflect this behaviour at high energies and temperatures. Overall then, the scaling
with mp (and thus M) is mixed: mp is positively correlated with Ωij and σi→j

(Υij and qi→j) at high energies (temperatures) but negatively correlated at low
energies (temperatures), and so logically at some intermediate energy there is an
inflection point where these opposing effects nearly cancel out.

Next, consider the projectile charge, zp. A factor of zp in the numerator
of ξ implies that a higher projectile charge produces a more adiabatic collision
at a given εj. Again, it is at low energies that the exponential suppression,
fE2(ξ) ∼ e−2πξ, takes over and for which changes in ξ will be most influential.
Thus, the increase in ξ caused by an increase in zp should lead to a decrease of
the collision quantities at low energies or temperatures. Observing figure 4.15,
this behaviour is replicated by the a2iratbt results on the left side of the plots
where a stark suppression of the collision quantities manifests with increasing zp.
For high energies, equation 4.33 shows that there is an explicit factor of zp2 in
the infinite energy Ωij limit, so the collision quantities should positively correlate
with zp in this regime. Such is the observation for the curves at high energies
and temperatures in figure 4.15, confirming that the a2iratbt results behave as
predicted. As with mp, the scaling behaviour of the collision quantities with zp
is non-uniform.

These findings for the scaling with mp and zp completely agree with observa-
tions in WW88 around their figure 13. The same inflection point effect is observed
for their cross sections, with a negative correlation at low energies, switching to
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Figure 4.14: Variation of collision quantities with the projectile mass, mp

positive correlation at high energies. Moreover, the sensitivity to mp and zp of
the IIE collision quantities opens up the possibility for projectile isotope effects
to be observed in laboratory plasmas, and this is explored further via ic-resolved
GCR modelling in section 5.3.1.2, Chapter 5.

4.4.1.3 Target Parameters

Parameters associated with the target in the inelastic scattering problem have
enjoyed more attention because they equally apply to EIE; nonetheless, they
require analysis here to validate the present results. Briefly recall the target mass,
mt. Its influence was already partially discussed in conjunction with that of mp

because both parameters are symmetric inputs to the reduced mass, M . There
it was noted that the collision quantities are fairly insensitive to mt because of
the simple fact that mt � mp leads to M ≈ mp—figure 4.16 portrays this clearly
relative to the higher sensitivity in figure 4.14. In rare circumstances, the ion
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Figure 4.15: Variation of collision quantities with the projectile charge, zp

projectile mass may approach or even exceed the target mass, allowing for a
greater sensitivity to mt; an example would be impurity species that are excited
by ions in the same isonuclear sequence, but concentrations tend to be so low
that this is a negligible process. Regardless, the scaling of the collision quantities
with mt should mimic that of mp, and this is reflected in figure 4.16.

Next, consider the target charge, zt. Like the projectile charge, it has a linear
factor in the expression for ξ, 4.27, meaning increased adiabatic suppression for
increased zt, but in this case there is an additional zt−2 factor in equations 4.40
and 4.41. Note that this zt−2 factor agrees with the scaling typically quoted for
EIE Ωij. Thus, the suppression of the collision quantities at low energies and
temperatures should be quite prominent with increasing zt, and this is indeed
reflected in figure 4.17. Unlike all previous parameters, the infinite energy limit,
equation 4.33, does not contain an explicit dependence on zt; however, the line
strength, Sij, inherently depends upon zt, and it is present in equation 4.33.
Because Sij is another input parameter that is explored in the following and, for
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Figure 4.16: Variation of collision quantities with the target mass, mt
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the sake of simplicity, the indirect variation of Ωij
(inf) with zt is not considered

here. In other words, the covariance of any input parameters is neglected in
preference of a purely independent, but artificial, variation of each parameter.
Consequently, there will be no variation of the collision quantities with zt at high
energies, and this forced behaviour is visible in each plot of figure 4.17, with all
curves converging at high energy or temperature.
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Figure 4.17: Variation of collision quantities with the target charge, zt

The scaling with transition energy, ∆Eij, is superficially similar to that with
zt. Both have a linear factor in the expression for ξ, leading to the enhanced sup-
pression at low εj or Tp, and both have no explicit influence on Ωij

(inf), although
once again Sij will indirectly depend on ∆Eij. The similarity of figure 4.18 to
figure 4.17 confirms that the a2irabt result also abides by these statements.
However, one must appreciate that these similarities are mathematically super-
ficial and fortuitous since the physical basis of their influence on the collision
quantities is quite different. Take the adiabaticity of the collision: ∆Eij directly
determines the atomic frequency and thus the time period of the atomic system,
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while zt influences the transit time of the projectile. Of course, the two are not
independent of each other, but that complexity is neglected here. Again, these
observations agree with those of WW88 [103] in the vicinity of their figure 12.
They explain the relative insensitivity of the cross section peak for the smaller
∆Eij: for ξ < 0.1 (i.e.very diabatic transitions achieved with small ∆Eij) fE2(ξ)

becomes insensitive to ξ, and thus the transition probabilities tend to converge,
leading to similar peaks of the cross sections.

It is worthwhile to note that as ∆Eij → 0 for zt = 0 (i.e. the excitation of
nearly degenerate levels in a neutral atom), the results from a2iratbt should ap-
proach those from impact-parameter methods and codes that assume straight
projectile trajectories and energy-degenerate, l-changing collisions like in ref-
erences [134–136]. However, comparison is not currently possible because the
straight-trajectory codes used in those references address only dipole transitions
while a2iratbt is restricted to quadrupole.
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Figure 4.18: Variation of collision quantities with the transition energy, ∆Eij

Finally, there is the atomic transitions probability, Aj→i, that is internally



CHAPTER 4. ION-IMPACT EXCITATION 181

converted to the line strength, Sij. The two are directly proportional to each
other if all other parameters are constant, so they can be treated interchangeably
here. Equations 4.39–4.41 and that for Ωij

(inf) (4.33) contain a simple linear
factor of Sij, and there is no dependence of ξ upon this purely atomic parameter.
Therefore, the collision quantities should vary in a positive linear fashion with
Aj→i or Sij, uniformly across energy and temperature. Figure 4.19 shows that
the a2iratbt results reproduce this exact behaviour. An increase of the A-value
produces an increase of all the collision quantities, and vice versa for a decrease.
The constant of proportionality is not quite unity across the plotted domains,
but it does become so at high energies and temperatures.
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Figure 4.19: Variation of collision quantities with the transition probability, Aj→i
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4.4.1.4 Technical Parameters

A brief investigation of the technical parameters is merited because they have been
introduced to purportedly improve the physical accuracy of the results: this must
be proven. It is recalled that two modifications to the pure SC-1 methodology
have been introduced according to [92], the details of which are in sections 4.2.1
and 4.3.1. First, in equation 4.42 the first-order perturbative transition probabil-
ity, P (1)

ij , is limited by the combination of an upper bound parameter, Pub, and a
function, φ(x). The selection of these parameters is somewhat arbitrary, so there
is room for exploration, but any selection should abide by reciprocity conditions
(i.e. the time reversed transition probability should be numerically the same).
This effectively fixes Pub to the definition adopted in equation 4.32 because of an
additional advantage that P (2)

ij becomes the mean of the statistical weights for
strongly coupled transitions, as would be physically expected (see neighbouring
comments of that equation). Therefore, φ(x) will be considered as the changeable
parameter, and a number of possible cases are explored here:

φ(x) =



tanh(2x)/2 if Case 1,

min(x, 1/2) if Case 2,
x

(1+x/4)2 if Case 3,

sin2(
√
x) if Case 4,

x if Case 5.

(4.50)

These all have physical justifications. Case 2 is the form selected in the pioneer-
ing work of Seaton on the impact-parameter method [89, 90]; the reasoning is
that P (1)

ij becomes increasingly unreliable as it approaches unity, and 1/2 is a
fairly conservative point at which to cut off and stop trusting values any higher.
Although this sounds fairly crude, it produces remarkable agreement with most
fully-quantal results as was seen in section 4.2.4. Case 1 is basically a smoothed
out version of Case 2, and it is the default selection for the a2iratbt code. Cases
3 and 4 are obtained by generalizing from a simple two-state, close-coupled tran-
sition matrix, the details of which can be found in section 5 of [92]. Case 3
was originally used by Bely and Faucher [93], and both cases yield similar re-
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sults. Lastly, Case 5 sets P (2)
ij = P

(1)
ij , lifting any restrictions on the transition

probability used.
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Figure 4.20: Variation of Ωij with the selection of different φ(x) limiting functions.

All of these cases have been plotted for the base example of B-like Ar13+ in
figure 4.20. The greatest deviation between the cases is observed at intermediate
energies where it is to be expected. At these intermediate energies, perturbation
theory begins to break down for most atomic systems, but the energies are not
so high that projectile trajectories impinge upon the atom itself, meaning the
effective target radius safeguard is not yet involved. Indeed, this energy regime
was the motivation for a curtailment of P (1)

ij in the first place, and so it is no
surprise that a change of how this restriction is applied via φ(x) will cause the
most variation here. Convergence at high εj is guaranteed by the consideration
of the effective target radius, r0, that is still used here via equation 4.44, and con-
vergence at low energies is ensured by the fact that the weak coupling assumption
holds, leading to φ(P

(1)
ij /Pub) ∼ P

(1)
ij /Pub as P (1)

ij → 0. Cases 1–4 are more tightly
grouped together, although Case 2 exhibits a strange kinked behaviour at higher
εj and aligns with Case 5 right before all of the Ωij converge. This is likely a
result of the kinked nature of the φ(x) function itself for Case 2, but further
investigation is warranted. However, the salient observation from figure 4.20 is
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that Case 5 overestimates Ωij at intermediate energies because P (2)
ij = P

(1)
ij and

P
(1)
ij is an overestimate.
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Figure 4.21: Variation of Ωij with the neglect of the effective target radius, r0.

Secondly, an effective target radius, r0, was introduced to avoid the blow
up of the long-range potential involved in calculating P (1)

ij , equation 4.35. This
becomes relevant at high εj where a substantial number of trajectories are able to
penetrate the boundary of the atom. Section 6(i) and (ii) in reference [92] show
that if no cutoff is introduced in the integral equation that determines Ωij (cf.
equation 4.44), then the collision strength will diverge as ε2

j if P
(1)
ij is used directly

or ε1/2
j if P (2)

ij is used. These divergences at varying powers of εj are observed in
figure 4.21 for Cases 1 and 5 of φ(x). Recall that Case 5 corresponds to using P (1)

ij

directly, and hence why this case displays the quicker ε2
j divergence compared to

Case 1 where P (2)
ij somewhat mitigates the breakdown. The effect of neglecting

any cutoff is replicated by setting r0 = 0 within the code.8

8The setting of r0 = 0 must be done internally because it is not an input parameter. r0 is
instead determined from equation 4.33, so Ωij

(inf), along with the other input parameters, will
determine the effective target radius.



CHAPTER 4. ION-IMPACT EXCITATION 185

4.4.2 IIE Data for Argon

The correct operation of the a2iratbt code has now been well justified through
comparisons with the literature in section 4.2 and the parameter variation studies
immediately above. Its first application will be to provide the IIE rate coefficients
needed for the ic-resolved GCR modelling of argon in Chapter 5. Although there
is IIE collision data for a fair number of argon ions in the literature, the coverage
is not complete, which once again highlights the need for the present a2iratbt
baseline. To further validate the baseline data, some comparisons with literature
sources of the IIE of argon ions are provided below. Unless otherwise stated,
the a2iratbt calculation uses atomic data produced by autos, and the relevant
quantities can be found in adf06 files in the ADAS database.
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Figure 4.22: Proton-impact excitation cross sections for transitions within the 2s2p 3P term
of Be-like Ar14+. The line colours specify the relevant fine-structure transition according to
the legend, where the notation J → J ′ corresponds to the transition 3PJ → 3PJ′ . Recall that
a2iratbt cannot calculate results for the 0→ 1 transition because it proceeds entirely through
CC channels and is therefore forbidden under first-order perturbation theory. The line styles
give the source of the calculation, again according to the legend. a2iratbt denotes the present
ADAS baseline implementation of the a2iratbt code, a SC-1 method; ryans1998 is the SC-CC
calculation from reference [119]; and doyle1987 is the SC-CC calculation from reference [110].

Be-like Ar14+ provides an interesting but also archetypal case of IIE collision
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Figure 4.23: Proton-impact excitation cross sections for transitions within the 2s2p 3P term
of Be-like Ar14+. The line colours specify the relevant fine-structure transition according to
the legend, where the notation J → J ′ corresponds to the transition 3PJ → 3PJ′ . Recall
that a2iratbt cannot calculate results for the 0 → 1 transition because it proceeds entirely
through CC channels and is therefore forbidden under first-order perturbation theory. The line
styles give the source of the calculation, again according to the legend. a2iratbt denotes the
present ADAS baseline implementation of the a2iratbt code, a SC-1 method; the atomic data
used as input has been matched to the other literature calculations in this plot in contrast to
figure 4.22. ryans1998 is the SC-CC calculation from reference [119], and doyle1987 is the
SC-CC calculation from reference [110].

data. Cross sections for proton and α-particle impact are presented in figures 4.22
and 4.24, respectively. At face value, the disagreement is quite large between
all three calculations presented. The SC-1 a2iratbt results exceed the SC-CC
ryans1998 results by a factor of two or more and are greater than the SC-CC
doyle1987 results by about 40% relative to the latter. However, the two SC-CC re-
sults disagree with each other by about 50% relative to ryans1998, and even more
so for the J : 0 → 1 transition. This discrepancy was discussed in section 4.2.4
in the context of the polarisation correction, since it is the only significant differ-
ence between the two SC-CC calculations. There is sufficient doubt surrounding
the ryans1998 result that its disagreement with the other two results can be
safely couched for the moment. Diving further into the disagreement between
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the a2iratbt and doyle1997 results, the first port of call is always the atomic
data input to the codes. The a2iratbt calculation uses Sij(2) = 5.495× 10−3 for
the 0 → 2 transition, which agrees quite well with a NIST MCDF calculation9,
while the doyle1987 calculation uses a 〈r2〉2p value in forming the matrix elements
that would result in Sij(2) = 4.641×10−3. A ∼ 20% reduction of the line strength
causes the a2iratbt cross sections to be reduced by the same proportion, which
can be observed in figure 4.23, and brings this result into much closer agreement
with doyle1987. The remaining 20% disagreement is attributable to the neglect
of close coupling in the SC-1 a2iratbt result and is acceptable for baseline pur-
poses. It is a similar story for the 1→ 2 transition along with the rate coefficients
in figure 4.25. On a tangential note, the α-impact cross sections for a2iratbt

increase by a factor of three compared to proton-impact (figure 4.24 versus 4.22),
while the ryans1998 result does not even achieve a factor of two increase. Given
the extensive parameter variation study of section 4.4.1, it is contended that the
scaling of the a2iratbt result is more substantiated and thus trustworthy, fur-
ther fuelling doubt in the ryans1998 result and other recent descendants of the
RS69 [108] code that include a polarisation correction.

Next, consider the adjacent ion, B-like Ar13+, and the associated IIE cross
sections in figure 4.26. Perhaps surprisingly, the disagreement between the SC-1
a2iratbt calculation and the SC-CC foster1997 calculation, which does include
a polarisation correction, is not nearly as bad as seen for Be-like Ar14+. The error
of the proton-impact cross sections is 50% relative to the foster1997 result, in-
creasing to 55% for the α-impact cross sections. This marginally better agreement
is caused by less CC flux losses in this doublet transition and the atomic data
input for each calculation agreeing to a larger degree—only 10% variation in the
line strength is seen. However, the still fairly substantial size of the disagreement
is somewhat dubious given the previous discussion about suspected errors in the
polarisation correction; moreover, the α-impact cross section for foster1997 has
a somewhat strange shape that does not bolster confidence in their technique.

Switching now to some comparisons with an SC-CC method of slightly differ-
ent heritage, the SC-1 proton-impact cross sections from a2iratbt are compared
against those from the SC-CC method of Landman (landman1979 ) for Mg-like

9https://nlte.nist.gov/MCHF/Elements/Ar/Be_18.40.MCDHF-ai-lin.dat.mp

https://nlte.nist.gov/MCHF/Elements/Ar/Be_18.40.MCDHF-ai-lin.dat.mp
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Figure 4.24: α-impact excitation cross sections for transitions within the 2s2p 3P term of
Be-like Ar14+. The line colours specify the relevant fine-structure transition according to the
legend, where the notation J → J ′ corresponds to the transition 3PJ → 3PJ′ . Recall that
a2iratbt cannot calculate results for the 0→ 1 transition because it proceeds entirely through
CC channels and is therefore forbidden under first-order perturbation theory. The line styles
give the source of the calculation, again according to the legend. a2iratbt denotes the present
ADAS baseline implementation of the a2iratbt code, a SC-1 method; ryans1998 is the SC-CC
calculation from reference [119].

Ar6+ in figure 4.27. The agreement is not particularly good: 50% and 40% re-
ductions relative to the a2iratbt result are observed for the 0 → 2 and 1 → 2

transitions, respectively. Yet again, ensuring consistent atomic data input is es-
sential: the wave functions used by landman1979 come from reference [128], as
with a few other literature sources above, and they produce a line strength that is
about 20% lower than that used for the a2iratbt calculation. Correspondingly,
the a2iratbt calculation will be reduced by approximately 20% if the lower line
strength value is used, and this places both results within a more reasonable de-
gree of error for the baseline. Because this is a triplet system, it is expected the
remaining discrepancy is caused by CC effects.

Finally, take S-like Ar2+ in figure 4.28, for which the literature source is again
an SC-CC calculation in the Landman heritage. Disagreement between the two
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Figure 4.25: Proton-impact excitation rate coefficients for transitions within the 2s2p 3P term
of Be-like Ar14+. The line colours specify the relevant fine-structure transition according to the
legend, where the notation J → J ′ corresponds to the transition 3PJ → 3PJ′ . Recall that
a2iratbt cannot calculate results for the 0→ 1 transition because it proceeds entirely through
CC channels and is therefore forbidden under first-order perturbation theory. The line styles
give the source of the calculation, again according to the legend. a2iratbt denotes the present
ADAS baseline a2iratbt code, a SC-1 method; ryans1998 is the SC-CC calculation from
reference [119]; and doyle1987 is the SC-CC calculation from reference [110]. The temperature
range for doyle1987 is quite limited because the calculation focussed on an astrophysical regime
of interest.

calculations is similar to that for Mg-like and unsurprising since both deal with
transitions in 3P terms. Note that the ordering of the J levels in this triplet is
inverted relative to the others in this section. A 30% reduction relative to the
SC-1 a2iratbt result is observed for the 2→ 1 transition, and 50% for the 2→ 0

transition, in keeping with the increased close coupling this transition will have
to the 1 → 0 transition. Again, the alignment of the atomic data input does
much to reconcile these disparities. Although landman1980 [124] does not quote
the line strength or 〈r2〉 value used, it is indicated that the wave functions from
reference [128] have again been used. In every other instance, these wave func-
tions produced line strengths that underestimated by approximately 20% those
produced by autos for the a2iratbt calculation. Therefore, a 20% reduction of
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Figure 4.26: Proton and α-impact excitation cross sections for the 2s22p 2P1/2 → 2P3/2

transition of B-like Ar13+. The line colours specify the ion projectile: red for protons and blue
for α particle. The line styles give the source of the calculation according to the legend. a2iratbt
denotes the present ADAS baseline a2iratbt code, a SC-1 method. foster1997 is the SC-CC
calculation from reference [118].

the a2iratbt cross sections should result from using the same line strength as
the landman1980 calculation, bringing the SC-1 results into an acceptable error
margin with the SC-CC results.

Overall, the SC-1 a2iratbt results tend to overestimate the cross section
and rate coefficient of E2-allowed transitions compared to SC-CC results in the
literature. This is to be expected given the two-state assumption and neglect of
CC implicit to the SC-1 method, as explained at length in section 4.2.4. However,
some of this overestimate is attributable to a systematic difference between atomic
line strengths produced by autos and those used in the SC-CC calculations. All
of the autos line strengths assessed here were larger than the values used in
the SC-CC calculations, and in two cases—Be-like Ar14+ and Al-like Fe13+—
comparison with higher-quality NIST results showed that the autos result was
closer. Because many of the SC-CC calculations source atomic data from similar
sources, it is likely these collision results are actually underestimates because the
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Figure 4.27: Proton-impact excitation cross sections for the transitions within the 3s3p 3P
term of Mg-like Ar6+. The line colours specify the relevant fine-structure transition according
to the legend, where the notation J → J ′ corresponds to the transition 3PJ → 3PJ′ . Recall
that a2iratbt cannot calculate results for the 0 → 1 transition because it proceeds entirely
through CC channels and is therefore forbidden under first-order perturbation theory. The line
styles give the source of the calculation, again according to the legend. a2iratbt denotes the
present ADAS baseline a2iratbt code, a SC-1 method. landman1979 is the SC-CC calculation
from reference [123].

atomic data seems to be underestimated. But further investigation is required to
establish whether the underestimated line strengths constitute a systemic trend
throughout the SC-CC results. This also misses the salient point: one must
always correct for the atomic data when comparing collision calculations, and
once this was done with the ions analysed here, the SC-1 data produced errors
relative to the SC-CC data well within the limits for a baseline. What can be said
is that the “true” collision data will lie somewhere between the SC-1 a2iratbt

baseline data and the SC-CC literature results. Where these literature results
exist, an easily quantifiable error region can be established and appropriately
handled by ADAS routines and data structures; however, the details are outside
the present scope. In the end, it can firmly be concluded that the a2iratbt

baseline is suitable for widespread use in ADAS and also for the specific task of
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Figure 4.28: Proton-impact excitation cross sections for the transitions within the 3s23p4 3P
term of S-like Ar2+. The line colours specify the relevant fine-structure transition according to
the legend, where the notation J → J ′ corresponds to the transition 3PJ → 3PJ′ . Notice that
the level ordering is inverted compared to the other 3P terms investigated, with 3P2 now the
ground level. Recall that a2iratbt cannot calculate results for the 1→ 0 transition because it
proceeds entirely through CC channels and is therefore forbidden under first-order perturbation
theory.The line styles give the source of the calculation, again according to the legend. a2iratbt
denotes the present ADAS baseline a2iratbt code, a SC-1 method. landman1980 is the SC-CC
calculation from reference [124].

ic-resolved GCR modelling of argon ahead.



Chapter 5

Prototyping ic-Resolved GCR

Modelling with Argon

5.1 Introduction

The need for ic-resolved GCR modelling was motivated in Chapter 1, and the
requisite machinery to practically demonstrate the effects of this finer resolution
is described here. Preceding chapters have laid the foundation. Chapter 3 show-
cased one of the prominent techniques for producing high-quality EIE collision
data for heavy species and the specialist considerations required therein. Chap-
ter 4 introduced the SC-1 method for calculating IIE collision data, which will
be needed to accurately model fine-structure levels that deviate from statistical
balance. And Chapter 2 established an enhanced fundamental atomic data base-
line that will be integral in modelling heavy species, for which high-quality data
is invariably patchy in coverage. Now these pieces must be assembled.

Prototype machinery for the ic-resolved GCR model is constructed as a fully
functional first cut at the problem, but also serves to uncover any issues for a
future, more complete implementation. The following section 5.1.1 substanti-
ates why argon is a fitting case study and test bed, and section 5.1.2 introduces
the time-saving approximations made when implementing GCR modelling in ic
resolution.

193
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5.1.1 Argon Case Study

First and foremost, argon (Ar) is a ripe testing ground for GCR modelling be-
cause it is suspected to be the lowest Z0 element (Z0 = 18) that can no longer
be considered a light species. The qualifier “light” is being used here as defined
in section 1.1: to classify low-Z0 species for which LS coupling yields accurate
atomic populations in GCR modelling. Argon lies close to the boundary between
light and medium species, so deviations from statistical balance of fine struc-
ture levels within LS terms should be apparent. This hypothesis can be formed
because of the fairly substantial residual charges that are possible with a Z0 of
18; for example, Be-like Ar14+ in figure 5.15 exhibits a clear CR regime, and
the separation of its fine-structure levels in the 3P metastable term should lead
to violations of statistical balance. Ultimately, the truly appropriate resolution
for argon can only be determined by comparing the GCR modelling results at
different resolutions.

Second, argon is an element that is relevant to both laboratory and astro-
physical plasmas. For instance, in future fusion burning devices like ITER and
DEMO, the seeding of impurity species will be necessary to produce sufficient
radiative cooling so that divertor heat loads are within acceptable regimes [13],
while at the same time not compromising the power balance of the core. Argon is
a candidate for such a purpose that has been and is being used on current devices
like JET and ASDEX-U [137–139], so there is immediate demand for fundamental
and derived atomic data required to model the radiative cooling by argon. It will
be the objective of this chapter and case study to provide an improved estimate
of the argon cooling curve through the novel approach of ic-GCR.

In solar astrophysics, several argon lines will be observed by the SPICE spec-
trometer on the future Solar Orbiter mission [140, 141]. These lines will be used
to derive the composition and First Ionisation Potential (FIP) maps in the so-
lar upper atmospheres that will be connected to the particle composition at the
spacecraft, derived from in situ measurements. Linking these two types of mea-
surements across spatial domains is important for tracking coronal mass ejections
and the solar wind as they travel towards Earth. Moreover, argon lamps are used
for the ground calibration of SPICE and other solar spectrometers, with lines from
near-neutral stages recorded. Both of these tasks will benefit from an ic-resolved
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version of the GCR model.
Third, argon does not lie much above silicon, which is the heaviest element

to have been given the full GCR treatment prior to the current work [60]. Since
fundamental atomic data is typically generated along isoelectronic sequences,
the sources for DR and electron-impact ionisation data used in silicon GCR can
almost wholly be used for argon up to Si-like. It then remains to cover the
four ionisation stages from P-like Ar3+ to neutral argon. Introductory remarks
on fundamental data are presented in 5.1.3, and some further details for each
isonuclear ion are provided in Appendix B.

One criterion for which argon slightly misses the mark is relativistic effects;
a Z0 of 18 is simply not large enough for the atomic structure to show large
discrepancies [31]. Thus, a test of the influence of relativistic corrections or even
a fully relativistic approach in GCR modelling will not be possible. But the
other conclusions from Chapter 3 are still pertinent: high-quality R-matrix EIE
data with carefully selected configuration interactions are needed for all GCR
efforts. Comparisons with the baseline data from Chapter 2 can substantiate this
claim while simultaneously giving an estimate of the baseline error. A limited
investigation on this point is done in section 5.4.3.

5.1.2 GCR Theory and Approximations

The extension to LSJ/ic-resolved GCR is built directly upon the metastable LS -
term resolved GCR methodology detailed by Summers et al. [16] and Giunta [60],
and the reader is referred to these sources for the fundamentals of GCR modelling
framework. More generally, the reader is referred to the ADAS manual [15] for
details about any ADAS routines or file formats mentioned henceforth. A brief
synopsis of terminology and relevant equations is provided in Appendix C. The
purpose of this section is to briefly identify the main theoretical and practicalmod-
ifications needed to extend LS -resolved GCR modelling (henceforth LS -GCR) to
LSJ/ic-resolved GCR (henceforth ic-GCR). In keeping with a prototype, the
modifications described in this section involve a number of approximations. In
particular, the primary prototyping approximation is to split LS -resolved quan-
tities onto the respective ic-resolved manifold using the statistical weights of the
relevant terms and levels; of course, this is only necessary when J-resolved data
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is unavailable or a particular code would require a substantial overhaul to achieve
J resolution.

The modifications and approximations for each component of this ic-GCR
prototype are as follows.

5.1.2.1 Low-lying Ordinary and Metastable Levels

The lowly-excited ordinary and metastable levels of an atom constitute the ele-
mentary unit of population modelling in plasmas, and so a set of isonuclear adf04
data files are required when modelling the ionisation balance or cooling curve
of a particular element. Evidently, the coupling resolution of these files must
match the resolution of the intended GCR modelling, and there is no modifica-
tion needed in this instance because the adf04 format already handles LSJ/ic
atomic data. Availability of this data, then, is ostensibly the only issue, and the
state of affairs for argon, ic-resolved adf04 data is discussed in section 5.1.3.1.

However, there is an additional, subtle problem relating to the handling and
identification of metastables in these adf04 files. Whereas the energy order of LS
metastables for isoelectronic sequences ranging over the light elements is fairly
uniform and fixed, this cannot be said about medium and heavy element classes.
Firstly, the fanning of fine-structure levels leads to the possibility that levels
from one term can become interspersed with levels from another, and this will
vary depending on Z0 and N , the number of electrons. Secondly, even though the
energies of fine-structure levels within a term tend to be positively correlated with
J , this is not always guaranteed and negative correlations can arise. Consequently,
the identification and matching of metastables in adf04 and other relevant file
types must be more flexible and robust under ic conditions. The heavy-lifting in
this case is done by ADAS807.

Additionally, there is an implicit assumption being made in the above that
all fine-structure levels of a metastable term will themselves be metastable and
that all metastable levels belong to a corresponding metastable term: this is
likely not true. The question was already explored for the different case of ca
versus ic resolution in the Metastable Optimisation discussion of section 2.3.1.1.
There it was concluded that a metastable configuration must contain at least one
metastable level, but certainly not all levels in a metastable configuration are
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guaranteed to be metastables themselves nor will all metastable levels necessarily
derive from a metastable configuration. So, there are definite discrepancies in
the parameter space, and there is no reason this would not also apply to the
metastables when comparing ca versus LS or LS versus ic. It is unlikely that
metastable levels unrelated to a metastable term or configuration will arise for
argon, because it was noted earlier that this tends to happen for high-J levels
resulting from d and f shell promotions of a closed shell or subshell configuration.
In the end, the only way to make definitive conclusions about metastability in
both ic and LS resolution is to actually carry out the population modelling and
look at the behaviour of the various state populations. This is done for LS in
section 5.2.2 and for ic in section 5.3.2.

5.1.2.2 Ionisation

In general, the dominant ionising process between adjacent isonuclear ions is the
direct, electron-impact ionisation from the daughter metastables, Xz+

σ , to the
parent metastables, X(z+1)+

ν : S(direct)
σ→ν . Therefore, ic metastable-resolved ionisa-

tion data is required, but unlike the case of adf04 data, very few such theoretical
calculations exist owing to the increased complexity of the problem. Such data
is not widely available at LS -term resolution, so this is a problem common to
both forms of GCR modelling. One approximate solution in LS resolution was
proposed by Summers and Hooper [142] and is based on creating fractionation
formulae using the semi-empirical equation of Burgess and Chidichimo [143]. The
formulae can then be normalised to higher-quality ca ionisation rates, and the
procedure has been automated in ADAS as described by [60]. In other words,
a less sophisticated technique is used to determine the splitting ratios (i.e. frac-
tionation) that produce resolved ionisation rates from unresolved ones. Then,
these splitting ratios are applied to the unresolved ionisation rates obtained from
a more sophisticated technique. A detailed discussion of the merits of this par-
ticular approximation are outside of the current scope, and this topic is handled
at length in reference [60].

Although this method could in principle be extended to ic resolution, the
gain in accuracy is questionable. The fractionation approach is already a crude
approximation at LS resolution, and so the error on rates will be larger than any
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marginal improvement in accuracy by extending to ic.
As a result, it is advantageous to statistically split the LS -resolved ionisation

rates onto the ic manifold for the present case study:

S
(direct)
LσSσJσ→LνSνJν =

2Jν + 1

(2Lν + 1)(2Sν + 1)
S
(direct)
LσSσ→LνSν . (5.1)

Here, (2Lν+1)(2Sν+1) =
∑

Jν∈Lν⊕Sν (2Jν+1) is the total statistical weight of the
final term. This formula equally applies to other asymmetric collision quantities,
like the cross-section; however, symmetric quantities like Ωij and Υij require an
additional, analogous fraction for the initial level and term on the right-hand side
of 5.1. A new IDL procedure within ADAS, stat_split_adf07.pro, has been
written to perform this splitting of LS -resolved rates stored in the adf07 format.

Although the metastable-to-metastable ionisation described above is essential
for calculating a metastable-resolved ionisation balance, it is also necessary to
consider ionisation from the ordinary daughter levels, Xz+

i , to the parent metasta-
bles, X(z+1)+

ν : S(direct)
i→ν . These rates are needed for determining the quasi-static

equilibrium of the excited states through loss terms, and they contribute step-
wise components to the direct ionisation from the metastables. Presently for
LS -GCR, these rates adopt the Exchange Classical Impact Parameter (ECIP)
procedure from [144], which is most appropriate for Rydberg states. As above,
this is an approximation for LS -resolved rates, so again is most prudent and
expeditious to statistically split these rates according to equation 5.1. The im-
plementation is quite different in this case and enacted through modifications
within ADAS807.

5.1.2.3 Recombination

As with ionisation of the lowly-excited states, ic resolution of recombination rates
is required, going from the recombining parent, Jp levels to both the ordinary
and metastable levels of the recombined daughter. Unlike ionisation though,
there are two physical processes that contribute to the overall phenomenon of
recombination: DR and radiative recombination (RR). Whereas RR only really
contributes to transitions terminating in the lowly-excited states, DR is involved
in both these transitions and the populating of highly-excited and collisional
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redistributed levels that are encompassed by the bundle-n calculation. Therefore,
DR is also mentioned in the context of section 5.1.2.4.

DR data is stored in the adf09 format, and like the adf04 format, it already
accommodates ic-resolved parents and daughters. The standard adf09 file con-
tains final, recombined daughter states in both resolved (LS or ic) and Rydberg
(n) forms. The former is evidently needed for the inclusion of DR rates in the low
level set population model, while the latter constitutes an important supplement
to the bundle-n population model. Fortunately, this standard data is already
available up to the Al-like recombining sequence, but above this the calculation
becomes unwieldy, and another approach must be adopted. For this argon case
study, bespoke DR data has been generated for the Si-like to Cl-like recombining
sequences, the details of which are provided in section 5.1.3.3. The sources of the
standard file data up to Al-like is also given in that section.

Although RR data is available in ic-resolved adf48 files up to Al-like as a
byproduct of the DR project [145], the inclusion of these files in the GCR workflow
has not been streamlined. So, RR data is generated using ADAS211, which only
operates in LS . The RR rates in ADAS211 are calculated using bound-free Gaunt
factors, and in principle, these expressions can be extended to any resolution
including ic. However, as the ADAS manual notes [15], resolution to LSJ is
likely over precise. Thus, the practice of statistically splitting the LS -resolved
RR rates is applied here as well. This is similar to the splitting of the ionisation
rates, but now the splitting fraction involves the daughter (recombined) level and
term weights (index i) as opposed to the parent (recombining) weights (index ν),
because recombination is in the reverse direction, and it is the final state that
determines these splitting factors. So, equation 5.1 becomes

αrr
zd,LνSνJν→LσSσJσ =

2Jσ + 1

(2Lσ + 1)(2Sσ + 1)
αrr
zd,LνSν→LσSσ , (5.2)

where strictly speaking the index, σ, only applies to daughter metastables but
here extends to any lowly-excited daughter state. In practice, this splitting opera-
tion is implemented in a less direct manner through ADAS807 and its automated
creation of template adf08 files that drive the ADAS211 calculation.
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5.1.2.4 Bundle-n Population Calculation

The preceding sections have addressed the population model of the highly-resolved,
low level set and the implications of moving to ic resolution, and now it remains
to extend this to the population model of the highly-excited but low-resolution
states and their influence via condensation and projection. Because the parent
states are now in ic resolution, these highly-excited states should now take the
form, (γpJp)n, i.e. a Rydberg electron built upon a J-resolved core, where γp is
a unique index for levels of the same J within or between terms. This is the
true bundle-n model, and in many ways it is simpler than the bundle-nS model
selected for LS -GCR. However, there is a practical problem: the code that han-
dles this high level population model, ADAS204, can only perform the bundle-nS
style calculation. The move to a bundle-n calculation is an undertaking that is
outside the scope of this case study and thesis, but it will be a central feature of
any future upgrade to ic-GCR—cf. section 6.1.

Once again, the solution involves the statistical splitting of LS -resolved quan-
tities. ADAS204 will still be used to produce a projection matrix in bundle-nS
form, which can then be used in the low-level population model. Under LS -GCR,
the mapping of this projection data onto the LS manifold is done with n-shell
normalised weights and fractional parentage coefficients, and it is fairly trivial
to further split these statistically. The n-shell normalised weight for a particular
daughter term, i, which is part of the spin system, S, built upon the parent,
ν ≡ LpSp, is given by

ωLi,ν,nS =
2Li + 1∑

j∈{ν∩nS} 2Lj + 1
, (5.3)

where {ν ∩ nS} denotes the set of all terms belonging to the nS bundle built
upon the parent ν. The ic analogue is obtained by simply substituting Li with
Ji:

ωJi,ν,nS =
2Ji + 1∑

j∈{ν∩nS} 2Jj + 1
. (5.4)

The second component of splitting the projection matrices is the fractional
parentage coefficients, which measure what fraction of a spin system is allocated
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to a particular metastable parent, ν. In LS , these coefficients are given by

FLpSp,S =
2Sp + 1∑

ρ∈{S∩ν′} 2Sρ + 1
, (5.5)

where {S∩ν ′} denotes the set of all parent terms that connect to the recombined
spin system, S. And the ic coefficients easily follow:

FLpSpJp,S =
2Jp + 1

(2Lp + 1)(2Sp + 1)
FLpSp,S. (5.6)

All of these quantities are stored in the cross-referencing file subclass adf18/-
a17_p208, and little modification is necessary to store the ic versions. The
automated creation of these files by ADAS807 is where the equations above are
implemented, and so this is a modification that was made to this portion of the
GCR workflow.

5.1.2.5 IIE

Finally, the most novel aspect of the new ADAS machinery needed for ic-GCR
is that related to the proper consideration of ion-impact excitation (IIE). As
noted already in sections 4.1.1, ion projectiles are most likely to influence transi-
tions with relatively small energy differences (∆Eij � χ(z)), such as quadrupole
transitions amongst fine-structure levels of metastables terms or the dipole tran-
sitions that assist in l redistribution of the highly-excited (γpJp)n states. Chap-
ter 4 provided the requisite details behind the production of IIE rates for electric
quadrupole transitions and an extensive analysis of their underlying behaviour
along with comparison to the literature. Only the quadrupole transitions have
been addressed because these are most likely to impact the population model.

Practically, there are two ways that IIE rates could be added to the GCR
workflow. First and most obviously, since IIE Υij’s are the same collision quan-
tity as the EIE Υij’s that are stored in adf04 files, it seems natural to also include
this IIE data in these files. In fact, such functionality already exists for proton-
impact excitation through P-lines. These are identical to the lines holding EIE
Υij’s except prepended by a ‘P’: the differentiation is necessary because the driv-
ing population of proton-impact excitation is obviously protons (Np) rather than
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electrons (Ne), and so the pre-multiplier will be different for each case. However,
the inclusion of P-lines has not been extended to the code that actually conducts
the advanced population model in GCR, ADAS208, and the functionality is lim-
ited to only proton projectiles—each ion projectile requires a separate density
specification.

Rather, there is an alternate and more economical route to the inclusion of
IIE rates. A careful analysis of the system of linear population equations reveals
that the only GCR coefficient where transitions amongst metastable levels arise
is the effective metastable cross-coupling coefficient (Qcd):

Qcd
σ→ρ =

(
Cρσ − CρjC−1

ji Ciσ
)
/Ne, (5.7)

where Cρσ = Aσ→ρ+Neq
(e)
σ→ρ+Niq

(i)
σ→ρ for ρ 6= σ and Aσ→ρ = 0 for ρ > σ—refer to

Appendix C for the derivation of the Qcd. None of the other CR matrix elements
in equation 5.7 contain the intra-metastable, IIE rate coefficient, q(i)

σ→ρ, so this
contribution can easily be separated from the rest of the expression for which the
collisional processes are only EIE:

Qcd
σ→ρ = Qcd

σ→ρ
(e) +

∑
i

Ni

Ne
q(i)
σ→ρ, (5.8)

where an explicit sum has now been included over the possible ion colliders. Put
simply, the contribution of intra-metastable IIE transitions can be incorporated
as a simple supplement to the Qcd, after the primary population calculation is
executed. A new ADAS IDL procedure, supp_qcd_iie.pro, has been created to
implement this post-processing step, pulling in the IIE rates from the appropriate
adf06 files and using a user specified mix of ion projectiles.

5.1.3 Fundamental Data for GCR

The accuracy of GCR modelling, like any form of modelling, depends strongly
on the quality of the data input. Discussion at the beginning of Chapter 2
addressed the important point that the quality of the data should be tailored
to the accuracy required by the application. The purpose of GCR modelling is to
produce the most complete and accurate description of an atomic element under
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dynamic plasma conditions, such that applications to spectroscopy are possible
and the highest quality ionisation balance is produced. Consequently, the best
quality atomic data must be sought from all possible sources, experimental or
theoretical. There is an additional criterion for the present goal of achieving
ic-GCR: fundamental data is required in both LS and ic resolution, and there
must be a consistency between the two (e.g. the same configuration sets should be
used in producing the datasets). This will allow for the effects of resolution upon
the population model to be unambiguously isolated and identified when making
comparisons—all other variables are fixed.

It is no small task to collect the complete set of fundamental data needed
for GCR modelling, but the use of centralised databases is of great assistance.
Indeed, a central purposes of ADAS is to assemble the highest quality atomic
data from a range of sources for precisely this type of modelling. Most of the
data for argon used herein was already present in the ADAS database and so in
an immediately (or nearly) useable format for the analysis computer programs.
However, there are invariably gaps along an isonuclear sequence perhaps because
there is a delay incorporating new sources into the database or more likely the
data simply does not exist. Argon is no different. A complete literature search
for all ions of an element is essential, but if there is still a deficient data class for
an ion, then the missing data must be generated following a baseline calculation
methodology, like that for adf04 data in Chapter 2.

Four classes of fundamental atomic data are required for ic-GCR and three
for LS -GCR, each associated with an ADAS data format:

1. Energy levels, radiative transition probabilities (A-values), and effective
collision strengths (Υij) associated with the low-lying, highly-resolved (LS
or ic) level set—adf04 data

2. Metastable-resolved, zero-density ionisation rate coefficients—adf07 data

3. Parent-metastable and final-state resolved, zero-density DR rate coefficients—
adf09 data

4. Fine-structure resolved, IIE rate coefficients for ic-GCR—adf06 data

Each data class is separately addressed in the subsections that follow. Also, the
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primary source of a particular datum is cited, where practical, in preference to
the database in which it is found.

5.1.3.1 Energy Levels, A-values, and Effective Collision Strengths—

adf04

The collection and pre-processing of the quantities that constitute the adf04 data
is the most painstaking stage of atomic population modelling because even though
all of the data may be present in the database, the highest quality version of each
component is rarely in one file. Energy levels in theoretical collision calculations
are not shifted to experimental values as a rule, so mapping and merging to the
NIST adf04 stubs must be done; orbital energies needed for the bundle-n calcu-
lation are rarely provided, so a complementary cowan run must be performed to
provide these; filtering and stricter formatting must also be enforced; etc. More-
over, self-consistent files in both LS and ic resolution need to be obtained, but
from the perspective of collision calculations, such results are almost never pre-
sented. To cope with this limitation, the strategy adopted herein is to acquire
an adf04 file from a high-quality, ic-resolved collision calculation where possi-
ble, supplement it as above, and then use ADAS routines to bundle this file to
LS resolution, ensuring the desired consistency between the different resolution
files. More detailed steps of this pre-processing are given in Appendix B, and
the original sources that have been spliced are listed in table 5.1. Some broad
observations about each sub-class are possible from this table.

Energy Levels The gold standard for energy levels values come from experi-
mental studies, and shifting to these values is essential for line identification in
spectroscopy. The largest resource of experimental and high-quality theoretical
energy levels is the NIST Atomic Spectra Database (ASD), for which adf04 stubs1

already exist. Table 5.1 shows that the database has taken nearly all of the energy
levels for argon ions from a single primary source, Saloman [146]. This source is
itself a compilation of many experimental and some theoretical results, as indi-
cated in column four of table 5.1, and the reader is referred to it for any further
details on an individual ion basis. Naturally, these compiled values still do not

1These stubs contain level information only; no transition data is included.
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Table 5.1: The sources of adf04 data used for the GCR modelling of argon in this case study.
Unless otherwise stated, the resolution of the files is LSJ/ic, which is then bundled to LS as
explained in the text. The fractions in the “Coverage” column give the number of NIST levels
that have been matched to the theoretical levels of the collision calculation in the numerator
and the total number of levels in the final adf04 in the denominator. Some levels in the original
adf04 from the collision calculation had to be removed because of being over the ionisation
potential or because of the restriction of n < 6 for the population calculation; these cases are
indicated by †.

adf04 sources
Seq. Ion Energy Levels Type Coverage Υ Values Type

H 17+ Saloman [146] theor. complete Ludlow et al. [147] BP R-matrix
He 16+ " theor. 27/31 (4f) Whiteford et al. [148] ICFT R-matrix
Li 15+ " exp. 18/24 (4f, 5f, 5g) Liang and Badnell [149] ICFT R-matrix
Be 14+ " exp. 16/166 † Fernández-Menchero et al. [49] ICFT R-matrix
B 13+ " exp. 27/204 Liang et al. [48] ICFT R-matrix
C 12+ " exp. 34/198 Ludlow et al. [147] BP R-matrix
N 11+ " exp. 41/186 Ludlow et al. [147] BP R-matrix
O 10+ " exp. 38/228 Ludlow et al. [147] BP R-matrix
F 9+ " exp. 68/195 Witthoeft et al. [46] ICFT R-matrix
Ne 8+ " exp. 89/131 † Liang and Badnell [47] ICFT R-matrix
Na 7+ " exp. complete † Liang et al. [150] ICFT R-matrix
Mg 6+ " exp. 68/206 † Fernández-Menchero et al. [50] ICFT R-matrix
Al 5+ " exp. 41/155 Ludlow et al. [147] BP R-matrix
Si 4+ " exp. 45/203 † Ludlow et al. [147] BP R-matrix
P 3+ " exp. 57/181 Ludlow et al. [147] BP R-matrix
S 2+ " exp. 124/174 † Munoz Burgos et al. [151] ICFT R-matrix

Griffin et al.(2007) [152] LS RMPS
Cl 1+ " exp. 95/143 † new ic, λnl opt DW
Ar 0+ NIST sources [127] mix complete Arnold et al. [153] BP RMPS

provide complete coverage of all the levels present in the corresponding collision
calculations, which can be observed from the fractions given in column five. But,
by the very fact these levels are not present in experimental studies, they are
likely unimportant from a spectroscopic perspective, so any loss of accuracy is
presumed negligible.

A-values Similar to energy levels, experimental results for the A-values are
desirable, and the NIST ASD is once again a valuable resource. However, the
data for transition probabilities tend to be much more scarce and possess far
greater uncertainties. From H-like Ar17+ to Na-like Ar7+, A-value data is nearly
non-existent in the database, and even until singly-ionised argon, the coverage
is quite patchy. The preponderance of these experimental values carry a C and
D quality rating, loosely representing a 25% and 50% uncertainty, respectively.
Consequently, the preference within ADAS is for a consistent set of data from a
reliable structure code—this principle loosely applies to all sparse data types that
ADAS collects. A spot-check of theoretical values from the collision calculations
of table 5.1 showed that these values all agreed within measurement uncertainty
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of the C and D quality NIST A-values. Furthermore, no ADAS routine currently
exists to automatically merge these external A-values nor is there an ADAS data
format to hold them. A possible route forward would be to add the A-values to
the already existing NIST adf04 stubs and concurrently extend the adf04 merging
program in offline ADAS, ADAS7#5, so that it can merge the A-values from the
stub into the transition lines of the collision calculation adf04 with which the stub
is presumably being merged. It was deemed that the benefit of merging these
A-values into the collision data for the argon ions up to S-like Ar2+ was marginal
and far outweighed by the additional effort to do so. The default A-values from
the theoretical collision calculations are used for all of these ions in this study.

On the other hand, ArI and ArII must be treated as special cases because
the spectra of these species have been extensively studied and, consequently,
more reliable experimental data exists. In particular, NIST hosts a subset of its
database in what is called the “Handbook of Basic Atomic Spectroscopic Data”,
which provides the most persistent and spectroscopically important lines of neu-
tral and singly-ionised elements [154]. Comparing these A-values to those from
the collision calculations cited in column 5 of table 5.1, it was found that the
two sources differed by an average relative error of ≈ 42%. This was deemed
significant enough to warrant manually merging the NIST database values into
the adf04 files of ArI and ArII.

Effective Collision Strengths GCR modelling requires excitation rate coef-
ficients over a wide range of temperatures2, so correspondingly the cross sections
or collision strengths are needed over a large range of energies to facilitate the
Maxwellian convolution. Furthermore, excitation rates are needed for as many
transitions amongst levels in the low-lying set (i.e. those in the adf04 ) as se-
lection rules will allow. These requirements prove infeasible for experiments to
fulfill: measurements of cross sections can typically only be made over a limited
energy range and for a few transitions within an ionic system [155–157]. There-
fore, experimental results are most valuable for validating theoretical results that

2A wide temperature range is not necessarily needed so that the model itself is applicable
over a more sweeping parameter space (although indeed this helps), but more precisely because
it assists with extrapolation and interpolation of the coefficients for smooth operation of the
various codes.
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supply the Υij’s used in the GCR models.
The theoretical collision data for all argon ions are cited in column six of

table 5.1. These are almost uniformly R-matrix method calculations in ic res-
olution, considered high quality (level 1 or 2) data within ADAS based on the
classifications of table 2.2 in section 2.2. There are two classes of R-matrix cal-
culations for argon: Breit-Pauli (BP) and intermediate coupling frame transfor-
mation (ICFT). The BP type uses a level-resolved basis set with corresponding
Breit-Pauli Hamiltonian, and carries this resolution through the entire machin-
ery of the R-matrix method. This is the most complete form of semi-relativistic
R-matrix calculation possible, but as a result it can become intractable because
of large Hamiltonian matrices that must be diagonalised.3 In response to this
limitation, the intermediate coupling frame transformation (ICFT) approach to
R-matrix calculations was developed [158]. It works by forming the unphysical
scattering K-matrix in LS coupling, which is less expensive computationally, and
then transforms these matrices into intermediate coupling (ic). Despite being
an approximation relative to the BP type, ICFT R-matrix calculations achieve
remarkable fidelity, especially when compared to other transformation methods
that proceed directly through the physical K and S matrices. Depending on the
assiduity of the producer, ICFT results can achieve somewhere above baseline
quality and just below the highest quality.

5.1.3.2 Ionisation Rate Coefficients—adf07

It was already noted in section 5.1.2.2 that the most important contribution to
ionisation is the direct rates between metastables of adjacent stages but that
such data is effectively non-existent in the literature. This naturally led to the
strategy outlined therein to split unresolved ionisation data to the required res-
olution. Unresolved rates themselves are available from a variety of theoretical
and experimental sources or a mix thereof through semi-empirical formulae. For
argon, unresolved rate coefficients are taken from [159]: this work is both a com-
prehensive review of available unresolved ionisation data and a presentation of
new theoretical calculations to fill in any gaps. Its primary methodology is to

3However, with advances in High Performance Computing, this restriction is nowadays less
of a issue.
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compare the available measured cross sections along an isoelectronic sequence
with the corresponding theoretical results from fac [160] to assess their accuracy
and appropriateness. These comparisons are facilitated by a novel scaling law,
similar in many respects to Burgess and Tully’s for excitation [84], that conve-
niently compresses the energy and cross section axes, causing the cross section
to tend towards a limiting function at high z along an isoelectronic sequence;
this in turn enables parameterized fits of the cross sections. The fac calculation
uses the Coulomb-Born-exchange approximation of a relativistic DW approach
for the direct ionisation and includes excitation-autoionisation contributions by
explicitly calculating excitation and autoionisation rates also in the relativistic
DW approach. The spline fits are then made in two manners:

1. For neutral and singly-ionised species, the fac calculation tends to be less
accurate, while measurements are naturally smoothed out; therefore, spline
fits are made to the scaled, experimentally measured cross sections.

2. For the remainder of ions, the calculated cross sections—fac or otherwise—
are more accurate, while measurements tend to be more erratic; therefore,
spline fits are made to the scaled, theoretical cross sections, which are vali-
dated against the measured ones.

Finally, rate coefficients are obtained through the usual Maxwellian convolution
and then formatted to the adf07 standard.

5.1.3.3 DR Rate Coefficients—adf09

The changes to the production of DR rates for both LS and ic-resolved GCR have
already been outlined in section 5.1.2.3 and [161]. These modifications required
a collaborative effort over many years and published articles, of which [161] is
the introduction to the series and its methodology. Autos is the computer code
underpinning the DR project, and it implements the independent processes and
isolated resonance using distorted waves (IPIRDW) method. The raw autoioni-
sation and radiative rates are mostly produced by autos, but a post-processing
step by adasdr (ADAS702 in ADAS) to supplement radiative transitions be-
tween highly-excited Rydberg states and create the partial rates is needed. In
addition, experimentally measured energies are added at the post-processing stage
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to ensure accurate positioning of the resonances, a requisite condition for the cor-
rect low-temperature behaviour of the recombination rates.

The output from the codes is stored in a version of the adf09 file format tai-
lored specifically to the new requirements of finite density population modelling:
partial rates to level (or term) and bundle-n resolved final states, the summed
total rates, and the important recombining parent are stored. Separate files are
produced for different “core excitations” of the recombining parent. For example,
consider a possible dielectronic capture to the Li-like ground state:

1s22s[2S1/2] + e− → 1s23l[2LJ ]nl′. (5.9)

This would be classified as a n = 2 → n′ = 3 core excitation because the 2s
electron of the parent target was excited to a 3l in the intermediate resonance
on the right, which would then radiatively stabilise to complete the DR process.
The individual source of the adf09 DR data for each argon ionisation stage up
to P-like Ar3+ is given in table 5.2 along with the available core excitations that
are considered.

Below the Al-like recombining sequence towards neutral, no DR project datasets
are available because of the increasing size of the data produced as more atomic
electrons are added. Although recent calculations of ic and LS parent-resolved
DR rate coefficients have been published for these particular argon ions [177],
these are totals and so not resolved by final states, as required for GCR mod-
elling.

In the absence of appropriate DR data for these ionisation stages, a strategy
was devised that involves partitioning the problem into two parts, resulting in
two separate adf09 files. First, the Tungsten DR project has created an accel-
erated and compacted “hybrid” variant of autos for DR, which retains ic/LS
resolution of initial parent and final core states but ca and ry resolution for the
outer electron. The resulting adf09 data are reduced in size but retain the repre-
sentative n-shell rates, so they are compatible as the supplement to the ADAS204
bundle-nS population calculation. They are denoted as “hybrid” in table 5.2. The
configuration sets and adf27 driver file templates for the production of this new
data are also taken from the Tungsten DR Project [162]. Both hybrid and stan-
dard files were produced by that work, but only the ground state was considered
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Table 5.2: The sources of argon adf09 data used for the GCR modelling in this case study.
Unless otherwise indicated, the DR data are available in both LS and ic resolution. The core
excitations are given in the format n–n′, where n is the principal quantum number of one of
the parent core electrons and n′ is that electrons principal quantum number in the intermediate
resonance (more details in the text). The core excitations marked with ? are cases where the
adf09 data had to be regenerated so that the representative n-shell grids matched between files;
the same driver adf27 files are used but for this minor tweak. The new MOM17 calculations
are described in the text: configuration sets and adf27 driver files of [162] are used.

adf09 Information
Recombining Recombined Type Source Core excitations

H-like Ar17+ He-like Ar16+ standard Badnell (2006) [163] 1–2
He-like Ar16+ Li-like Ar15+ " Bautista and Badnell (2007) [164] 1–2, 2–2, 2–3
Li-like Ar15+ Be-like Ar14+ " Colgan et al. (2004) [165] 2–2, 2–3
Be-like Ar14+ B-like Ar13+ " Colgan et al. (2003) [166] 2–2, 2–3
B-like Ar13+ C-like Ar12+ " Altun et al. (2004) [167] 2–2, 2–3 ?
C-like Ar12+ N-like Ar11+ " Zatsarinny et al. (2004) [168] 2–2, 2–3 ?
N-like Ar11+ O-like Ar10+ " Mitnik and Badnell (2004) [169] 2–2, 2–3 ?
O-like Ar10+ F-like Ar9+ " Zatsarinny et al. (2003) [170] 2–2, 2–3 ?
F-like Ar9+ Ne-like Ar8+ " Zatsarinny et al. (2006) [171] 2–2, 2–3 ?
Ne-like Ar8+ Na-like Ar7+ " Zatsarinny et al. (2004) [172] 2–3
Na-like Ar7+ Mg-like Ar6+ " Altun et al. (2006) [173] 2–3 ?, 3–3, 3–4
Mg-like Ar6+ Al-like Ar5+ " Altun et al. (2007) [174] 2–3, 3–3, 3–4
Al-like Ar5+ Si-like Ar4+ " Abdel-Naby et al. (2012) [175] 3–3, 3–4 ?

hybrid Kaur et al. (2017) [176] 3–3, 3–4
Si-like Ar4+ P-like Ar3+ standard (truncated) MOM17 3–3, 3–4

hybrid MOM17 2–3, 3–3, 3–4, 3–5
P-like Ar3+ S-like Ar2+ standard (truncated) MOM17 2–3, 3–3, 3–4, 3–5

hybrid MOM17 2–3, 3–3, 3–4
S-like Ar2+ Cl-like Ar1+ standard (truncated) MOM17 2–3, 3–3, 3–4

hybrid MOM17 3–3
Cl-like Ar1+ Ar-like Ar0+ standard (truncated) MOM17 3–3

as a recombining parent. Therefore, the driver files and production scripts have
to be modified to cope with multiple metastable parents. There already exists
a DR project hybrid file for the Si-like recombining sequence, but otherwise this
data must be generated anew.

The second part of generating this low-stage DR data involves the standard
variant of autos for DR, described immediately above as part of the DR project.
It is executed without looping over the ca and ry states of the outer, recombining
electron that result when a core electron radiates from the intermediate capture
state. Thus, only partial rates to the lowly-excited final states are generated,
saving computation time; these truncated standard adf09 files are compatible
with the supplementation of recombination rates into the low-lying level set of an
adf04 file (i.e. “R-line” creation), and they are denoted by “standard (truncated)”
in table 5.2. Because this technique neglects a whole class of final states, the
total DR rate coefficients are inaccurate and unsuitable for further use. All novel
DR data generated as part of this work is indicated by “MOM17” in the source
column of the table.
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Since these DR data are novel, some form of validation is needed. A compar-
ison of the total DR rate coefficients with those from the literature is presented
in figure 5.1. The most sophisticated calculations are ostensibly those from refer-
ence [177] mentioned above (ATLAB15 in plot), and results from the ic parent-
resolved hybrid files of the novel strategy (MOM17 ic) compare quite favourably
for all ions. Agreement is best at higher temperatures with larger discrepancies
apparent at low temperatures, especially for Ar3+ and Ar4+. This is to be ex-
pected since the effect of resonances is most prominent at low temperature, and
the lower resolution of the hybrid files will be deficient in this respect. However,
the fractional abundances in figures 5.4 and 5.5 suggest that the most relevant
temperatures for these stages will lie outside of these low temperature domains
where the DR rate coefficients disagree most. Moreover, it is obvious that the
MOM17 ic and LS results are more accurate than the widely-used data from
reference [178] (MMCV98).

5.1.3.4 IIE Rate Coefficients—adf06

All relevant details for the production of IIE, E2-order rates have already been
specified in section 4.3. To summarise, the primary input for an individual ion
is contained in an adf27 driver file for autos, and then the relevant atomic
parameters to drive the a2iratbt calculation are taken from the output olg file.
A sample adf27 used in this study for the IIE rates of an N-like Ar11+ target is
shown in figure 5.2. The configuration sets and λnl parameters (last line of figure)
for all of the argon ions are the same as those used in the optimisation work of
section 2.3.2. Because only transitions between metastable levels are needed,
the adf06 output is truncated compared to the full adf04 output that results
from the configuration sets above. For this work, the truncation was performed
based on where the last level belonging to an LS metastable term is located, with
the metastable LS terms being taken from the current standard ADAS list—see
table 5.4. The limitations of this list and further discussion about ic metastables
is contained in sections 5.2.2 and 5.3.2. The unique λnl values for the argon
isonuclear sequence are provided in table 5.3.
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Figure 5.1: Comparison of total DR rate coefficients for Ar1+ to Ar4+. The totals for the
novel strategy of the present work (MOM17) are from the hybrid-type adf09 files, and two
resolutions for the recombining metastable parent are shown, LS and ic. ATLAB15 denotes
the ic parent total from reference [177], while MMCV98 designates the unresolved total from
reference [178].

5.2 LS -resolved GCR Model

Although the ultimate objective of this chapter is investigating the ic-resolved
GCR model of argon, the LS -resolved results are novel because argon is the
heaviest element to have been treated thus far, so they too need validation. Re-
sults from the LS -GCR model are presented in section 5.2.2, and comparisons
with the literature are made in section 5.2.3. Another consequence of shifting to
heavier species is that some of the existing procedures for performing the GCR
model become cumbersome and impractical, so an update to the implementation
is discussed in section 5.2.1.
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A.S. n-like structure - energies + radiative rates + a2irat adf06
&SALGEB CUP=’ICR’ RAD=’E2’ BORN=’INF’ KCOR1=1 KCOR2=1 MXCONF=14 MXVORB=9

NMETAJ=15 KUTSS=-9 KUTSO=0 KUTOO=1 &END
2 0 2 1 3 0 3 1 3 2 4 0 4 1 4 2 4 3
2 3 0 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0
2 2 0 1 0 0 0 0 0
2 2 0 0 1 0 0 0 0
2 2 0 0 0 0 0 1 0
2 2 0 0 0 0 0 0 1
1 4 0 0 0 0 0 0 0
1 3 1 0 0 0 0 0 0
1 3 0 1 0 0 0 0 0
1 3 0 0 1 0 0 0 0
1 3 0 0 0 1 0 0 0
1 3 0 0 0 0 1 0 0
1 3 0 0 0 0 0 1 0
0 5 0 0 0 0 0 0 0

&SMINIM NZION=18 NLAM=10 IREL=2 IBREIT=1 QED=1 ORTHOG=’NO’ MSTEP=12 &END
1.392 1.306 1.267 1.306 1.267 1.240 1.306 1.267 1.240 1.000

Figure 5.2: Example of an adf27 driver file to produce IIE collision data for N-like Ar11+. This
file drives the autos run, and the output is used by a2iratbt to calculate the E2 excitation
rates.

5.2.1 Implementation Update

Prior to this work, the GCR coefficients, produced as adf10 fragments by ADAS208,
were aggregated into isoelectronic adf10 files on a unified z-scaled (reduced) tem-
perature and density grid by ADAS403. Subsequently, isonuclear adf11 files were
generated by ADAS404 through interpolating the isoelectronic adf10 files onto a
single unscaled temperature and density grid for practical exploitation. A draw-
back of this implementation is that the metastable-resolved coefficients require a
separate adf10 file for each possible metastable-to-metastable connection. Mov-
ing to heavier species and especially ic resolution, the number of files quickly
increases and handling becomes problematic.

As a result, a new implementation has been devised that skips the intermedi-
ate step of isoelectronic adf10 files. An unscaled temperature and density grid is
provided as input, and the new IDL procedures drive the ADAS208 calculation
for each isonuclear ion on this same grid. Consequently, the task of merging the
adf10 fragments into final adf11 files is, in principle, more straightforward. How-
ever, there is a technical problem worth noting. In its current form, ADAS204
only operates safely in the reduced temperature domain Te > 5 × 103 K/z2,
restricting the temperatures at which the projection matrix can be generated.
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N Z0/N 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f
1 18.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 9.00 1.459 1.223 0.935 1.223 0.935 1.000 1.000 1.000 1.000 1.000
3 6.00 1.459 1.422 1.542 1.422 1.542 1.000 1.000 1.000 1.000 1.000
4 4.50 1.448 1.472 1.250 1.472 1.250 1.401 1.472 1.250 1.000 1.000
5 3.60 1.417 1.431 1.370 1.431 1.370 1.413 1.431 1.370 1.413 1.000
6 3.00 1.407 1.371 1.334 1.371 1.334 1.309 1.371 1.334 1.309 1.000
7 2.57 1.392 1.306 1.267 1.306 1.267 1.240 1.306 1.267 1.240 1.000
8 2.25 1.376 1.236 1.195 1.236 1.195 1.143 1.236 1.195 1.143 1.000
9 2.00 1.361 1.172 1.130 1.172 1.130 1.088 1.172 1.130 1.088 1.000

10 1.80 1.340 1.112 1.069 1.112 1.069 1.007 1.112 1.069 1.007 1.000
11 1.64 1.351 1.125 1.079 1.125 1.079 1.100 1.125 1.079 1.100 1.000
12 1.50 1.355 1.118 1.068 1.160 1.054 1.087 1.160 1.054 1.087 1.395
13 1.38 1.355 1.118 1.068 1.101 1.087 1.099 1.101 1.087 1.099 1.283
14 1.29 1.355 1.118 1.068 1.120 1.117 1.139 1.120 1.117 1.139 1.285
15 1.20 1.355 1.118 1.068 1.126 1.130 1.149 1.126 1.130 1.149 1.288
16 1.12 1.355 1.118 1.068 1.119 1.123 1.185 1.119 1.123 1.185 1.240
17 1.06 1.355 1.118 1.068 1.106 1.117 1.202 1.106 1.117 1.202 1.171
18 1.00 1.351 1.308 1.268 1.085 1.055 1.030 1.008 1.050 1.030 1.000

Table 5.3: Radial scaling parameters (λnl) used in autos runs for the argon isonuclear ions.
These are found below the SMINIM namelist in the adf27 driver files, and they apply to both
the production of IIE data with a2iratbt and DW EIE data as part of the improved baseline
described in Chapter 2. Values given here may differ slightly from those that enter central
ADAS because of minor tweaks in the methodology that occurred too late for inclusion in the
present work. It is not anticipated that this will result is materially significant effects upon the
final structure or collision data.

One attempted solution was to generate the projection matrix in the restricted
temperature domain and then extrapolate it onto the universal unscaled tem-
peratures at which the ADAS208 calculation was performed under the new IDL
procedures, but this proved unstable and unworkable. In the end, it was found
that the most robust strategy was to restrict the reduced temperature grids of
both the ADAS204 and ADAS208 calculations and then extrapolate the adf10
fragments onto the final temperatures requested within the new IDL procedures.
The approach of extrapolation is justified and not as risky as usual because the
GCR coefficients have fairly well defined limiting behaviour at extreme temper-
atures. In fact, this type of extrapolation is already treated extensively within
ADAS404, and the implementation here is a simplified version of the one within
that routine.

The high temperature behaviour is straightforward for all cases and at all
densities, but the low temperature behaviour can be problematic since it may
depend on the density. This is particularly true for the αcd’s where three-body
recombination only becomes relevant at high densities and low temperatures.
In these cases, the reduced temperature limit defined above can cause trouble
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because the αcd coefficient
The implementation (GCR17) has been benchmarked against the previous Si

GCR work [60] that is present in central ADAS under the tag, GCR96. Figure 5.3
shows that there is nearly perfect agreement between the two implementation
styles in terms of the effective recombination coefficients (αcd) and effective ion-
isation coefficients (Scd) presented; however, there are some deviations at lower
temperatures due to extrapolation differences, and also some discrepancies at
higher densities. This work has also uncovered flaws in the Si GCR data for a
few ions not presented in figure 5.3, but corrections bring those results to a similar
level of agreement.
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Figure 5.3: Benchmarking of effective recombination (ACD, red) and ionisation (SCD, blue)
coefficients for silicon. The colored lines denote the results from the new IDL procedures
(GCR17), and the black lines represent the results in central ADAS (GCR96) from [60]. The
different line styles indicate the relevant electron density, Ne, as specified by the legend.

This new implementation will be included in a future ADAS release. The
restrictions imposed by ADAS204 can be mitigated by the suggestions for future
development in section 6.1.
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5.2.2 Results

The two primary results of interest from any atomic population model are the
ionisation balance—stage or metastable resolved—and cooling curve. These are
presented for argon using the GCR implementation update applied to the LS -
resolved model: figures 5.4, 5.5, and 5.6. Extensive comparison of the unresolved
fractional abundances and radiated power with the literature is made in the fol-
lowing section 5.2.3, so comment of those results is reserved until then. The
metastable, LS -resolved fractional abundances in figure 5.5 appear, superficially,
quite similar to the unresolved fractional abundances of figure 5.4. Indeed, the
T (pk.) points in the bottom pane show that the metastable peak abundances tend
to clump around the peak abundance for their subsuming stage. The most no-
table exception is Ar2+ which has significant metastable populations with peak
abundances that are separated in temperature. But this comparison lacks rigour,
and the only true way to directly quantify the impact of modelling atomic popu-
lations at different resolutions is through subsequent plasma-transport modelling
at these varying degrees of resolution. However, some hints of resolution effects
are covered in section 5.2.3.1 and the ic results of section 5.3.

Another relevant observation about figure 5.5 is that many of the metastable
fractional abundances are quite small across the temperature range, and some
do not even make it above the 10−4 cutoff in the top pane. This raises the
question of whether all of the selected metastables actually merit their name
and whether some might be better classified as ordinary states. Distinguishing
between metastable and ordinary states is not straightforward, in part because
of how metastability is defined. Ultimately, it is the lifetime of a state relative
to the plasma timescales that determines whether this state is metastable or
not. However, determining these lifetimes requires dynamic population modelling
under transient ionisation-recombination conditions, something that is outside
of the current scope and overkill for considering the plasma globally. Rather,
equilibrium solutions for the ionisation balance are most commonly used and
with great success. Under equilibrium conditions, all potential metastables are
in a steady-state, so they do not have lifetimes—the lifetimes are infinite in fact.
Instead, it is the steady-state population density that will determine the influence
of a particular state and thus whether it can be considered metastable. ADAS405
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Figure 5.4: Unresolved fractional abundances for argon derived from the LS -resolved model
at Ne = 1012 cm−3. The top pane displays the fractional abundance curves, and the bottom
pane gives the temperature of peak abundance, T (pk.), for each ionisation stage. Ionisation
stages are demarcated according to color.

is used in this work to produce equilibrium fractional abundances, which are
directly proportional to the population densities. For the present purposes, it is
therefore sufficient to define a cutoff (i.e. threshold) condition directly upon the
fractional abundances of the relevant states to separate between metastable and
ordinary ones.

There are two meaningful approaches that can be adopted for implementing
the fractional abundance cutoff, and the simplest is to enact a global cutoff across
the relevant temperature range for the element, selecting only those states that
attain fractional abundances above this level to be designated as true metastables.
The other strategy is to take T (pk.) of the dominant state for each ionisation stage,
and then add up the metastable fractional abundances in decreasing order at this
temperature until one reaches 98% of the stage fractional abundance. Only states
that contribute to the sum are retained as metastables. Although slightly more
sophisticated than the former, this strategy yields nearly the same result, except
it does not report the 1S term of Ar2+ as being metastable. Since this is a minute
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Figure 5.5: LS -resolved metastable fractional abundances for argon at Ne = 1012 cm−3. The
top pane displays the metastable-resolved fractional abundance curves, and the bottom pane
gives the temperature of peak abundance, T (pk.), for each metastable. Ionisation stages are
demarcated according to color, while the LS metastables within each stage are differentiated
by line style (top pane) or marker style (bottom pane).

difference that does not affect the subsequent interpretation or likely the final
modelled results, these two approaches are considered equivalent in what follows,
and the global cutoff has been used in the subsequent analysis. Although other
implementations might be possible, these are the most physically meaningful that
were devised for this study.

The results from the global cutoff method with 10−2 as the threshold are
shown in the fifth column of table 5.4 (Global Cut), having used Ne = 1012 cm−3

as input to the ADAS405 calculation. For all argon ions, the metastables reported
by this technique are fewer or equal to those from the ADAS standard list (column
four). There are three reasons for this discrepancy. First, the standard ADAS list
of LS -term metastables has been deduced from a mix of selection rules, intuition,
and experience. It serves as a guideline for what the term metastables will likely
be for an arbitrary ion under pure LS -coupling conditions. On the other hand,
the LS data used in the current model and global cutoff result has been bundled
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Table 5.4: LS -term metastables for argon from two different sources. The column titled
“ADAS” contains the standard list of LS -term metastables used as a rough guide within ADAS.
The column titled “Global Cut” contains the metastables according to the threshold procedure
applied to the GCR model fractional abundance results, as described in the text. This was
performed at Ne = 1012 cm−3. A simplified, non-superscript notation for the LS terms has
been employed for succinctness: [2S + 1][L] ≡ (2S+1)L.

Seq. Ion Config. ADAS Global Cut

Ar 0 3s23p6
3s23p54s

1S
3P

1S

Cl +1 3s23p5
3s23p43d

2P
4D

2P

S +2 3s23p4
3s23p33d

3P 1D 1S
5D

3P 1D 1S

P +3 3s23p3 4S 2D 2P 4S 2D 2P
Si +4 3s23p2

3s3p3
3P 1D 1S
5S

3P 1D 1S

Al +5 3s23p
3s3p2

2P
4P

2P

Mg +6 3s2
3s3p

1S
3P

1S
3P

Na +7 3s 2S 2S
Ne +8 2s22p6

2s22p53s
1S
3P

1S

F +9 2s22p5
2s22p43s

2P
4P

2P

O +10 2s22p4
2s22p33s

3P 1D 1S
5S

3P 1D

N +11 2s22p3 4S 2D 2P 4S 2D 2P
C +12 2s22p2

2s2p3
3P 1D 1S
5S

3P 1D

B +13 2s22p
2s2p

2P
4P

2P

Be +14 2s2
2s2p

1S
3P

1S

Li +15 2s 2S 2S
He +16 1s2

1s2s
1S
3S

1S

H +17 1s 2S 2S
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from ic-resolved adf04 files, so pure LS coupling is not replicated. Ar-like is an
instructive example and archetype. Under LS coupling, there is no spontaneous
emission from the 3p54s 3P term to the 3p6 1S ground term because it would be
spin-changing, and this accounts for why the 3P term is predicted to be metastable
by the ADAS list. However under ic, the 3P1 → 1S0 radiative transition has
a moderately strong A-value, producing a strong A-value in the corresponding
LS adf04 file of 4.4 × 107 s−1. This is sufficiently large that the 3P term will
not be metastable, accounting for the discrepancy with the ADAS list. Further
discussion of discrepancies between pure LS coupling and the quasi-LS conditions
achieved with the bundled adf04 files of the current LS -model is also raised in
section 5.3.1.1. An important point is that pure LS conditions are rare and not
necessarily a desirable target.

The second reason that the ADAS list and global cutoff results differ is because
the ADAS list implicitly assumes the metastable states will be constant along an
isoelectronic sequence. In reality, the z scaling of term energies and A-values will
cause the metastables to vary, and an assessment of metastable trends along iso-
electronic sequences will be necessary to produce a global list of metastable states
for all elements. Third, metastability is inherently dependent on the electron den-
sity, adding another layer of complexity to this question. For example, performing
the global cutoff method at Ne = 104 cm−3 yields only the ground (lowest energy)
term for each argon ion, in accordance with the coronal model. So, although the
list of metastables in table 5.4 should now be considered the recommended one for
subsequent transport modelling, this recommendation only applies in the vicinity
of Ne = 1012 cm−3. A more robust solution for determining the true metastables
would be to perform an ADAS406 calculation to yield the fractional abundances
under transient ionisation-recombination conditions and thus definitively reveal
the time scale over which each proposed metastable evolves; however, this is out-
side of the current scope. Overall, these observations suggest that the current
LS -GCR model produces a more accurate list of term metastables, and looking
ahead to section 5.3.2, the analysis of ic-level metastables confirms this conclu-
sion. Ultimately, ic is the truer representation of reality, and its verdict matters
most.

In addition, it is interesting to assess metastability from the perspective of ca
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versus LS resolution, just as ca versus ic was compared in section 2.3.1.1. The
adf54 files from the configuration selection work show that only the ground config-
uration is considered a metastable state across the argon isonuclear sequence—the
top configuration in each ion row of table 5.4. Juxtaposing with the global cut-
off results, nearly all of the terms selected as metastable fall within the ground
term, indicating a high level of consistency between these resolutions. There is
one anomalous case where the 3P term from the 3s3p first-excited configuration
of Mg-like is found to be metastable. This happens because the A-value for the
3P → 1S transition is small enough (2.38× 105 s−1) that the upper term achieves
metastability, in contrast to the structurally similar Ar-like case discussed im-
mediately above. Thus, the conclusions from comparing ca and ic metastability
extend to this scenario also: if a configuration is metastable, then it must con-
tain a metastable term, but not all terms of a metastable configuration need
be metastable, e.g. O-like and C-like in the table. Moreover, there are rare cir-
cumstances around shell boundaries where metastable terms can arise but the
associated configuration is not metastable: the case of Mg-like above. However,
the same cannot be said for the LS metastables from the standard ADAS list. Far
from being a rare occurrence, metastable terms that don’t belong to a metastable
configuration appear across the isonuclear sequence, not just at shell boundaries.
It follows that the pure LS account of metastability is not consistent with that
of ca.

Lastly, the radiated power coefficients in figure 5.6 possess a few notable fea-
tures. Except at low and high temperatures, the total radiated power function
(Ptot) from the unresolved and LS -resolved models are nearly identical. The
difference at low temperatures is likely due to extrapolation differences. Contri-
butions from the PRB are only significant near the extrema of the temperature
domain, and there are only marginal differences between the unresolved and LS
form of the PRB. So, it is the PLT that will dominate in most instances, and
more comparisons are made in section 5.4.

5.2.3 Models of Argon in the Literature

For the present case study, two aspects can be tested with a literature review.
First, the more practical modifications of the GCR implementation outlined above
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Figure 5.6: Cooling curves (total radiated power function) from the LS -resolved model for
argon at Ne = 1012 cm−3. The top pane shows Ptot from the unresolved (GCR17 UR)
and LS -resolved (GCR17 LS ) forms of the model, along with the respective recombination-
bremsstrahlung-cascade radiated power coefficient (PRB) contributions to the totals. The bot-
tom pane displays the relevant ratios from the top pane.

are checked for applicability outside of previously studied ions. The simple act
of increasing Z0 and the associated shifts in temperature and density scales can
cause even the most robust techniques to eventually fail. Second, the LS -GCR
model for argon, upon which the extension to ic-GCR is based, needs to be
validated. Of course, this will be limited to some extent because the LS -GCR
model itself supersedes all previous attempts in terms of sophistication: two steps
forward are being made, and both require assessment.

The radiated power loss from an impurity species can be split into two parts,
and there are a number of literature sources that only address one or the other.
The first part is to determine the fractional abundances of metastable-resolved
or stage (unresolved) populations for an element, and the literatures sources for
these data are detailed in the following section 5.2.3.1. In the literature, the unre-
solved fractional abundances of the ionisation stages are collectively referred to as
the ionisation balance or charge state distribution (CSD). Second, the radiative
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processes associated with each stage or metastable that actually lead to power
loss must be described, and this topic is handled near the end of this chapter in
section 5.4.1. It is important to note that this is somewhat of a false division and
these parts are not truly independent. The degree to which they can be consid-
ered independently ultimately depends upon the model selected. Evidently, in a
GCR model all of the underlying coefficients are intertwined and determined by
the same set of input data.

5.2.3.1 Fractional Abundances

Depending on the plasma conditions, an equilibrium or transient solution of the
fractional abundances might be required, but the equilibrium solution is most
often quoted because of its simplicity and fairly broad applicability. In both
cases, it is the ionisation and recombination processes between states that are
the determining factors, and differences between approaches enter by how the
rates of these processes are determined and the resolution of the states that
are considered. The approaches for argon that are considered in this review
loosely fall into three categories: coronal ionisation equilibrium (CIE) models,
ADAS models, and Average Ion Models (AIMs), all of which are resolved by
ionisation stage (i.e. stage-to-stage). In contrast, the present work will be the
first metastable-resolved (LS or ic) ionisation balance to our knowledge. The
metastable-resolved and stage-unresolved fractional abundances are defined by
the ratios N (z)

σ /Ntot and N (z)/Ntot, respectively, where

Ntot(Ne, Te) =

Z0∑
z=0

Mz∑
σ=1

N (z)
σ (5.10)

is the number density of all ions belonging to element X, N (z)
σ is the population

density of metastable σ within ionisation stage z, and N (z) =
∑

σN
(z)
σ is the

number density of the ionisation stage z.

CIE Models Overwhelmingly, the most prevalent model for producing frac-
tional abundances is the CIE model, especially in astrophysics where the concept
of coronal plasma conditions originated. In the context of fractional abundances,
the implications of the CIE model are that only the ground states of each ion
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need to be tracked and that the ionisation and recombination coefficients are un-
influenced by the excited populations (i.e. density effects), meaning zero-density
coefficients can be used. Thus, the problem of establishing the unresolved frac-
tional abundances is reduced to finding appropriate zero-density ionisation and
recombination coefficients between all relevant stages. To wit, in the CIE limit,
the ratio of adjacent stage populations is given by

N (z+1)

N z
=
Sz→z+1

αz+1→z
. (5.11)

The ionisation and recombination coefficients referenced here are the same quan-
tities needed for the input to the GCR model, except metastable resolution is
required for the latter as was discussed in sections 5.1.3.2 and 5.1.3.3. Compar-
isons are made below for each source in the CIE model category.

Although somewhat dated, Arnaud and Rothenflug [179], henceforth AR85, is
still one of the most popular references for obtaining unresolved fractional abun-
dances in the CIE limit. It provides a collection of the requisite zero-density
ionisation and recombination coefficients for a wide range of elements including
argon, along with the resulting coronal limit CSDs. In terms of methodology,
it mirrors a similar effort in [180], and the recombination coefficients, both RR
and DR, are primarily taken from there. These, in turn, can be traced back
through a series of papers by Jacobs et al. [181] that extend the Burgess General
Formula (GF) [182] to include contributions of autoionisation to excited recom-
bining states. These DR coefficients are of an inferior quality to those from the
DR project [161] used in the present study (see table 5.2). The main focus of
the work is improving the calculation of collisional ionisation, for which it uses
a parameterized expression from [183] for the exchange Coulomb-Born method,
and the parameters are adjusted to fit experimental data where available. This
yields the direct ionisation (DI) contribution, and the excitation autoionisation
(EA) contribution is taken from a variety of literature sources too numerous to
give here. This approach likely yields an improvement over the much used (and
abused) semi-empirical Lotz formula [184]. Again, both are of lesser quality com-
pared to the data from [159] used in the current study: that source directly
calculates the exchange Coulomb-Born and EA contributions in fac and com-
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pares to vastly extensive measurements that have been made in the time elapsed
since the work in [183].

There are a series of works that, in effect, update AR85 but are still worth
mentioning. Sutherland and Dopita [185] extend the ionisation rates from [183]
into non-equilibrium regimes and also improve the consideration of DR for H-like
ions by reviving more complicated expressions from the works of Seaton. Maz-
zotta et al. [178] collect a large number of updates to DR rate calculations across
a range of isoelectronic sequences up to the year 1998; this has an appreciable
effect upon the ionisation balance, and correspondingly this is a frequently ref-
erenced source. Two papers from groups at Auburn University [177, 186] make
their own improvements to the argon DR data, yielding marked changes in the
fractional abundances. Reference [177] was used to validate the new DR data
from this study in section 5.1.3.3.

Fournier et al. [187], hereafter FCMG98, is another work that largely shares
the same heritage, but it focusses exclusively on argon and therefore merits further
detailing. The DR data is taken from Mazzotta et al. [178], while the RR data is
generated through the assumption of detailed balance applied to photoionisation
cross sections from a Hartree-Slater computer code; this approach is materially
the same as [180], which is used in all sources above. The DI contribution to
ionisation employs the Lotz formula [184], making it somewhat less advanced
than AR85 and progeny. However, it couples this with a contemporaneously novel
approach to EA that the same group of authors present in a separate paper [188].
It differs most significantly from the EA approaches in previous sources because
it does not assume a unitary branching ratio for autoionisation from continuum
levels and so must calculate both autoionisation and radiative rates. It is unclear
whether the combination of this approach to EA and the DI formula of Lotz
marks an improvement over previous approaches to ionisation estimates.

Finally, the most advanced effort in the category of argon CIE models is
Bryans et al. [189], hereafter BLS09. It draws upon a number of substantial
advances in the area of ionisation and recombination rate calculations compared
to the previous sources. In fact, it uses largely the same zero-density coefficients
that are employed in the current GCR model. Ionisation rates are taken from
Dere [159], which is described in section 5.1.3.2. DR rates come from the DR
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Project [145], described at length in section 5.1.3.3, and any missing rates are
filled in using Mazzotta et al. [178], namely for Ar0 through Ar3+ recombined
ions. As a reminder, this gap is addressed in the present work by generating new
DR data (see section 5.1.3.3); accordingly, it is assessed to be of a higher quality
than the DR data used in BLS09 [178]. RR rates are also taken from [178], which
are in turn generated from the detailed balance of photoionisation cross sections
in [180]; large differences with the current study are not expected for RR. Because
of the similarities in fundamental zero-density data, BLS09 will be an important
work with which to compare, since it functions as an independent zero-density
limit for the present GCR model.

Average Ion Models Much of the content in this thesis should prove that
modelling atoms at term or fine-structure resolution is a complex task, requiring
significant computing resources and databases only available quite recently. Prior
to these modern developments, approximations in the modelling techniques were
necessary, and one popular option was the Average Ion Model (AIM). As the
name suggests, the finer complexities of the ionic systems are averaged over in
some way. At one extreme of simplicity, all the ions of an element can be lumped
together and considered as a single averaged ion. This is the approach taken by
the popular works of Post et al. [190, 191], hereafter P77. The average ion itself
is modelled with Rydberg n-shell (ry) states, P̄n:

P̄n =

Z0∑
i=0

f(i)Pn(i) (5.12)

where Pn(i) are the ry populations of each ionisation stage, i, and f(i) are the
fractional abundances, neither of which are actually tracked in this model. The
P̄n are solved from a set of rate equations with the loss and growth rates being
determined by hydrogenic expressions for recombination, ionisation, and excita-
tion. These rates and the representative energy levels are themselves determined
by the P̄n, so these equations must be solved iteratively, with the initial condition
provided by the Saha-Boltzmann equation. However, because the f(i) are not
tracked, the AIM is only really useful for providing radiative power loss or mean
charge state estimates for an element. It is discussed further in the following sec-
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tion 5.4.1, but it should be apparent from the extensive discussion on resolution
and coupling that this version of AIM is quite a coarse approximation

One step up in complexity is achieved by considering the ionisation stages
individually but retaining the ry resolution of each stage. FLYCHK is one code
suite that adopts this method [192], and the AIM it employs is discussed here. All
ions of an element are treated hydrogenically with appropriate screening effects.
The set of Pn(i) are solved with rate equations and rates similar to those immedi-
ately above, but now with a far greater number of dimensions and no necessity for
an iterative approach, because the energy levels and rates for each ion are in prin-
ciple immediately known from analytic, hydrogenic expressions. An equilibrium
solution of fractional abundances can be obtained in this version by imposing a
global steady state condition on all populations of all ions, although FLYCHK of-
fers many different modes corresponding to different plasma conditions. In some
respects, this AIM is more sophisticated than the CIE model because it does not
assume that only the ground state is dominant, meaning CR density effects can
manifest. Of course, this is tempered by the fact that the rates underpinning the
model are of a fairly low quality. Compared to a GCR model with projection,
the AIM will neglects some high n effects. Any AIM will encounter truncation
effects because some cutoff in n must invariably be enforced to keep the problem
tractable: FLYCHK uses n ≤ 10 for each ion. This shortcoming is mitigated by
the fact that FLYCHK targets high-density plasmas where the collisional limit
is lowered, so DR from high n is suppressed. Above all, the dominant flaw is
the low resolution of this AIM: DR through ∆n = 0 inner electron excitations
is neglected and the statistical balance that makes bundling by n possible will
break down even more severely and sooner than the much discussed breakdown in
LS . Although not relevant to the discussion of fractional abundances and power
coefficients in this section, it should also be noted that such low resolution is also
not appropriate for spectroscopy.

ADAS Models Finally, there are two preexisting results for argon fractional
abundances within ADAS. Both are stage-to-stage resolved. The first is denoted
by the year 85 within the ADAS nomenclature, and it takes the zero-density co-
efficients and CIE model of AR85 [179] and scales that to a bundle-n calculation,
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thus approximately accounting for density effects. It lies somewhere in between
the CIE and AIM approaches above. Secondly, the JET baseline denoted by the
year 89 is also available. This is effectively a ry atomic model for each ionisa-
tion stage with rates similar to those in AIMs, but a coronal assumption is also
made so that only the ground state is tracked for the fractional abundances. This
should be considered the lowest quality data available.

Comparisons The most relevant comparison for the LS -GCR model is with
the CIE model of BLS09 [189] because the result from that model should serve
as the zero-density limit of the LS -GCR result. In other words, for low densities,
any GCR model should asymptotically approach the CIE model, so if the same
underlying zero-density recombination and ionisation rate coefficients have been
used, the outputs of the two models should, in theory, be identical. A comparison
of the unresolved fractional abundances at a finite density for the GCR model
(Ne = 1012 cm−3) is presented in figure 5.7(a), which exhibits large differences
between the two models, as might be expected. These differences are especially
prominent for the near-neutral stages but persist through the middle ionisation
stages until agreement is observed at high temperatures for the highly-ionised
stages. However, it must be justified whether the entirety of this variation can
be attributed to the density effects that are included in the GCR model. To this
end, the comparison has been reproduced at a very low density of Ne = 104 cm−3

in figure 5.7(b), and under this condition, all density effects will be absent.
First, consider the near neutrals. These are brought into much closer agree-

ment in figure 5.7(b), suggesting that the majority of the difference observed in
figure 5.7(a) is indeed attributable to the influence of ordinary and highly-excited
states through collisional excitation at finite density—i.e. density effects. Is this
reasonable? A closer inspection of the αcd’s and Scd’s for these stages reveals
that most have a fairly modest density dependence, but Ar0 has an Scd that
is greatly enhanced with increasing density. This accounts for the substantially
lower fractional abundance of Ar0 in figure 5.9 compared to BLS09, and this deficit
propagates to the abundance fraction of subsequent stages. The enhancement of
the Ar0 Scd comes almost entirely from the projected influence of the bundle-
nS calculation; a pure bundle-nS (ADAS204) calculation confirms the sensitivity



CHAPTER 5. PROTOTYPING IC-GCR 229

0

1

2

3

4

5

6

7

8

9 10

11

12

13

14

15

16
17

18

0

1

2 3

4 5

6

7

8

9
10

11

12

13

14

15

16

17

18

10−4

10−3

10−2

10−1

100

f(z
)
=

N
(z

)

N
to

t

GCR17 LS
BLS09

100 101 102 103 104

Te (eV)

10−2

10−1

100

101

102

G
C

R
17

LS
/B

LS
09

(a)

0

1
2

3

4
5

6 7

8

9
10

11

12

13

14

15

16
17

18

0

1

2 3

4 5

6

7

8

9
10

11

12

13

14

15

16

17

18

10−4

10−3

10−2

10−1

100

f(z
)
=

N
(z

)

N
to

t

GCR17 LS
BLS09

100 101 102 103 104

Te (eV)

10−2

10−1

100

101

102

G
C

R
17

LS
/B

LS
09

(b)

Figure 5.7: Comparison of unresolved fractional abundances for argon: present work using
unresolved coefficients derived from LS -resolved run (GCR17 LS ) versus Bryans et al. [189]
(BLS09) at (a) Ne = 1012 cm−3 and (b) Ne = 104 cm−3. The small numbers in circles that lie
on the fractional abundance curves (top panes in a and b) denote the ionisation stage z.
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of the Scd to density, suggesting that this is a real phenomenon. Once a new
bundle-n code is created, this result should be verified. However, even though
these near-neutral stages are in better agreement at low density, the differences
are not completely eliminated. This is partly because the DR rate coefficients
used in BLS09 are ic parent-resolved, whereas for the LS -GCR model they are
in LS resolution. There are subtle differences between these two resolutions of
DR rate coefficients, as seen in figure 5.1, but more significant are the differences
between the MMCV98 data used by BLS09 and the MOM17 data used for the
present result.
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Figure 5.8: Unresolved, effective ionisation and recombination rate coefficients for Ar10+ from
(a) LS and (b) ic-resolved models. Ar10+ is the ionizing and recombined system for the Scd

and αcd, respectively. The zero-density ionisation and recombination rate coefficients are shown
with solid lines, and the GCR coefficients are shown at varying densities, denoted by the line
styles in the legends. The use of grey lines in the legend indicate that these line styles apply to
both the αcd (red) and Scd (blue) coefficients.

Discrepancies are also observed at low density for some of the middle ionisation
stages—Ar8+ through Ar14+—in figure 5.7(b). The source of this discrepancy is
that the low-density αcd’s do not approach the zero-density total rate coefficients
as shown in figure 5.8, which applies to both the LS and ic-resolved models. It was
confirmed that this behaviour manifests in previous GCR models for silicon and
neon. The difference between LS and ic parent-resolved DR rate coefficients is
marginal at the relevant temperatures, and the BLS09 fractional abundances use
the same DR project data excepting this negligible difference in resolution. The
ionisation data is the same, and any differences between RR data is also negligible.
Moreover, a check of the LS -resolved fractional abundances at Ne = 104 cm−3

shows that no significant metastable populations, other than the ground, were
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present. Thus, the only remaining explanation is that the definition of the αcd

does not guarantee it will align with the total, zero-density recombination rate
coefficient in the low density limit—though in many cases this does occur. BLS09
uses the total, zero-density recombination rate coefficient from the ground parent
level (ν), which is defined as

α(z+1)+
ν =

∑
i

(
αdr
ν→i + αrr

ν→i
)
, (5.13)

where the index, i, encompasses all bound final states of any resolution. Similarly,
the definition of αcd in equation C.10 shows a summation over the final-state-
resolved recombination rates, riν ≡ αdr

ν→i+α
rr
ν→i, but now with CRmatrix elements

involved. It is not obvious that this expression will reduce to a simple sum of the
riν , suggesting the discrepancy in definitions arises because of the fundamental
CR assumption that the target states will have a population, however small.
Further investigation on this point is required.
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Figure 5.9: Comparison of unresolved fractional abundances for argon: present work using
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(FCMG98) [187]. The GCR17 LS model was calculated at an electron density of Ne = 1012

cm−3. The small numbers in circles that lie on the fractional abundance curves (top pane)
denote the ionisation stage z.
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Comparison with another important CIE model literature source, FCMG98
[187], yields a similar result as with BLS09: see figure 5.9. This is unsurprising
given the similar heritage of the ionisation and recombination rate coefficients
used in FCMG98, BLS09, and their ancestor, AR85 [179]. Disagreement of the
fractional abundances is worst for the near neutrals at this finite density, improv-
ing marginally with increasing ionisation stage until convergence is reached for
He-like and beyond. Once again, reproducing this comparison at a low density
of Ne = 104 cm−3 improves the agreement, but similar discrepancies remain for
Ne-like Ar8+ to B-like Ar14+. The reason is the same as when comparing with
BLS09: the αcd’s do not approach the zero-density, total recombination rate coef-
ficients. Lingering differences of the near neutral fractional abundances can also
be attributed to fundamental discrepancies in the DR rate coefficients used. The
other literature sources under the AR85 lineage—Sutherland and Dopita [185]
and Mazzotta et al. [178]—all share these comparative features because they are
quite similar. They have therefore been omitted from explicit comparison.
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Figure 5.10: Comparison of unresolved fractional abundances for argon: present work using
unresolved coefficients derived from LS -resolved model (GCR17 LS ) versus FLYCHK [192].
Both models were calculated at an electron density of Ne = 1012 cm−3. The small numbers in
circles that lie on the fractional abundance curves (top pane) denote the ionisation stage z.
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Next, consider the comparison with the AIM-type model of FLYCHK in fig-
ure 5.10. Similar trends to the above are apparent in the ratios of the bottom
pane. Differences between the fractional abundances is worst for near neutral
stages at low temperature but slowly improves until convergence is achieved at
high temperatures for the highly-ionised stages. However, the average relative
differences in this case are larger than for any of the CIE models. This is to be
expected since the FLYCHK AIM is fundamentally a high-density model that
relies on the corresponding statistical balance within n-shells in these domains.
Results at Ne = 1012 cm−3 lie at the lower bound of this model’s applicability.
Furthermore, the FLYCHK results on the web4 do not allow for the temperature
grid to be set, resulting in a poor logarithmic spacing of points at low tempera-
tures, but the trend is clear.

Finally, consider the two lower-quality ADAS models, ADAS85 and ADAS89,
in figures 5.11(a) and 5.11(b), respectively. Again, the ratios in the bottom panes
reveal similar trends to the previous comparisons, but now the agreement for
the middle ionisation stages, Ne-like Ar8+ to B-like Ar14+, is much better. This
suggests that there is an internal consistency within ADAS for the definition
of the αcd, and the disagreement with literature sources likely comes down to
differences in this definition. Moreover, these baseline data perform quite well in
the context of the other literature sources, with no gross errors evident.

4For unregistered users https://www-amdis.iaea.org/FLYCHK/ZBAR/csd018.php

https://www-amdis.iaea.org/FLYCHK/ZBAR/csd018.php
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Figure 5.11: Comparisons of unresolved fractional abundances for argon: present work using
unresolved coefficients derived from the LS -resolved model (GCR17 LS ) versus (a) the year 85
GCR coefficients in ADAS (ADAS85) and (b) the year 89 GCR coefficients in ADAS (ADAS89).
All models were calculated at an electron density of Ne = 1012 cm−3. The small numbers in
circles that lie on the fractional abundance curves (top panes in a and b) denote the ionisation
stage z.
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5.3 First ic-resolved Ionisation Balance

The culmination of this chapter and thesis is an intermediate-coupled ionisation
balance. This section presents the ic-resolved metastable fractional abundances
for argon, a first for any element within ADAS and, it is believed, the literature.
Figure 5.12 displays the result at Ne = 1012 cm−3, and the cluttered nature of
the metastable fractional abundances shows that handling these data in modelling
codes will bring challenges. The energy-ordered ground level is always represented
by a solid line within an ionisation stage, so an intriguing observation from this
figure is that the dominant metastable level is not always the ground level. Some
spread in T (pk.) for the metastables in a stage are possible, as seen in the bottom
pane, but by and large, they cluster around T (pk.) of the ionisation stage, just like
the LS case in figure 5.5.
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Figure 5.12: Ic-resolved metastable fractional abundances for Ar from the novel GCR model
at Ne = 1012 cm−3. The top pane displays the metastable-resolved fractional abundance curves,
and the bottom pane gives the temperature of peak abundance, T (pk.), for each metastable.
Ionisation stages are demarcated according to color, while the ic metastables within each stage
are differentiated by line style (top pane) or marker style (bottom pane). No IIE rates have
been included.

Because this is the first result of its kind, no direct comparisons are possible,
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but there are other avenues to validation. The effects upon the power coeffi-
cients and cooling curves are explored in section 5.4. A means of qualifying the
differences between fractional abundances in different resolutions is explored in
section 5.3.3. Also, the ic-resolved GCR model needs to explicitly include ion-
impact excitation (IIE) between the fine-structure metastables, and section 5.3.1
assesses this novel topic. Another important question is whether all of the fine-
structure levels within a metastable term will themselves also be metastable.
Section 5.3.2 distinguishes between genuine and superfluous ic metastables using
the newly generated fractional abundances and compares these to the analogous
results that were generated from the LS -GCR model in section 5.2.2. However,
the ultimate test of the atomic population model resolution will be through sub-
sequent application in transport and plasma modelling.

5.3.1 Influence of IIE

An important question to answer is where the inclusion of IIE rates in population
modelling is necessary. Section 4.1 outlined some “rules of thumb” for predicting
where IIE rates would be significant in the parameter space of an atomic system.
The culmination was equation 4.5 from which it was concluded that only transi-
tions with extremely small energy differences relative to the ionisation potential
or ion temperature are affected by IIE. Then, the observation was made that this
readily applies to fine-structure levels and is of particular importance for levels
belonging to metastable terms since these will dominate the atomic population
model. From this line of reasoning, it was concluded that IIE rates between fine-
structure metastables must be explicitly included in any ic-resolved GCR model.
These rules have been constructed purely from an atomic physics basis, but the
behaviour of an atom in a plasma is described by an atomic population model
that connects the atomic physics of the constituent with the plasma physics of
the macroscopic whole. The true influence of IIE will only be apparent through
the lens of GCR modelling.

The bulk of studies in the literature have neglected a consideration of collisions
with positive ions in their models, often for justifiable reasons: light elements are
modelled well with LS -term populations, which implicitly assume the collisional
mixing of IIE produces a statistical balance amongst the sub-levels. But there
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are some noteworthy exceptions that address IIE explicitly when analysing emis-
sion line ratios. Here, an emission line that is sensitive to either the electron
temperature or density is compared to a line that is relatively insensitive to the
independent variable. Density or temperature dependent emissions lines tend to
be correlated with forbidden transitions because the collisional rates (excitation
and de-excitation) associated with the upper level actually have a chance to be of
a similar magnitude as the smaller A-values in the CR regime of densities. How-
ever, forbidden lines are necessarily quite weak in intensity, so the only observable
ones tend to be those associated directly with or fed by metastable levels of a
substantial population. So, these forbidden lines are often the same fine-structure
metastable transitions that have been focussed on throughout this thesis.

In solar spectroscopy, it has long been known that collisional excitation by
protons must be incorporated in population models for a variety of line inten-
sity ratios. One of the earlier examples is the coronal green line [90] of Fe13+,
3s23p 2P3/2 → 3s23p 2P1/2, along with the Fe12+ spectrum [193] and the spectra
from number of Be-like ions [87, 194]. Forbidden lines are also relevant for labo-
ratory, and particularly tokamak plasmas, because their long wavelengths emit in
the visible region where the light can be relayed via fibre optics and the calibra-
tion of spectrometers is simple [101, 195–199]. Also, Doppler broadening is more
visible at these long wavelengths. However, these line ratio studies treat the ratio
of two lines within a single ionisation stage, which removes the need to determine
the abundance of that ionisation stage, and so a single-stage atomic popula-
tion model is completely sufficient for most cases.5 These models are mostly of
a simplified nature, considering only collisional (de)excitation and spontaneous
emission rates in LSJ or ic resolution. Furthermore, these studies only consider
protons as the projectile species rather than other fuel ions. Therefore, this class
of work is effectively orthogonal to the present objectives of determining radiated
power loss and the associated precursor of fractional abundances.

Notwithstanding these comments, special mention of [196] is merited because
5Of course, there will be a loose dependence of the excited state populations upon the

adjacent ionisation stages, meaning the relative abundance of these stages would in theory need
to be determined. However, the variation this causes amongst the highly-resolved, low-level
set from which these emission lines originate will almost always be negligible; indeed, this is
what justifies the quasi-static equilibrium assumption and allows for the influence of the excited
populations to be condensed and projected upon the metastables.
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this work presents the metastable populations of the second period sequences
B-like through F-like (ground configuration 2s22pk, k = 1 . . . 5) both with and
without proton-impact excitation for Cr, Fe, and Ni. Although the CR model
is quite simple, the results unambiguously show that the inclusion of proton-
impact excitation is significant: depending on the sequence, variations of 10%
to 20% can be expected, with differences as high as a factor of 2 observed in
some cases. Another notable study is [199] that looks at the intensity ratio of
the EUV emission lines, 114.412 Å [1s22s2p2 2P3/2 → 1s22s22p 2P3/2] / 117.144 Å
[1s22s2p2 2P1/2 → 1s22s22p 2P1/2], produced by the Fe21+ ion in both EBIT and
stellarator plasmas. Contrary to the rest of the literature, it applies a fairly so-
phisticated ic-resolved CR model that accounts for ionisation and recombination
processes in addition to collisional (de-)excitation and radiative decay; however,
the source of its ionisation and recombination data is not disclosed, and given the
extensive attention that was required for a proper consideration of these processes
in the context of the present GCR model, it is suspected that these processes are
handled in an unresolved manner. Moreover, nothing is said of the influence of
highly-excited states. Even so, this result is undeniably more advanced than its
contemporaries, and it still makes largely the same finding: proton-impact exci-
tation must be included in the CR model if a correct physical interpretation of
the measured intensity ratios is to be formed. Interestingly, it was found that the
variation of the proton to electron density ratio by injection of an iron pellet also
caused the intensity ratio to vary measurably. The injection of an iron pellet can
affect the plasma temperature and energy confinement in addition to the density
ratio, so it must be finely tuned to avoid disrupting the plasma.

Reference [200] is a study that does not fall into the same category as the
above. It has the same objective as the present work: to estimate the radiated
power loss from tokamak plasmas caused by impurity species. It is unique be-
cause it includes contributions from proton-impact excitation within the power
loss estimate. A coronal model is used but with a second temperature parameter
included to simulate deviations from equilibrium, and no mention is made of ion-
isation and recombination data. Also, it seems like only the total excitation line
power loss is considered, since no mention is made of the recombination-cascade-
bremsstrahlung contribution. New calculations for proton-impact excitation cross
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sections are presented, but with a simple technique to incorporate the physics.
Their findings show that even at coronal equilibrium, protons are responsible for
about 30% of the total radiative loss involving iron ions at Te = 2–3 keV. The
accuracy of this claim is open to interpretation given the numerous approxima-
tions used and the fact that the total radiated power function is found to not
vary with IIE in section 5.4.2 of this work. Regardless, this source can be cited
as an example for the potential influence of IIE in atomic population modelling.

In total, these previous works address a number of specific or isolated cases
where IIE must be included in the population model if a valid result or correct
intepretation is to be produced. However, they do not attempt a general con-
clusion, which is the aim of the present work. Moreover, the majority of these
works have assumed an equality between electron and ion densities based on
quasi-neutrality: Ne =

∑
iNi. Although this is broadly true, it can be violated

under non-equilibrium conditions. Furthermore, most studies only consider pro-
ton projectiles, meaning Ne ≈ Np is assumed, which can breakdown if there are
significant concentrations of other positive ions. As noted above, reference [199]
finds that the variation of the Np : Ne ratio is possible by introducing heavy impu-
rities, and this variation noticeably influences the line ratios. The new ic-resolved
GCR implementation allows the ion projectile densities to be set explicitly and
without restriction—see section 5.1.2.5. Similarly, Te = Ti is usually assumed,
but because of the slow thermalisation time scales for ion projectiles, there are
many non-equilibrium plasma scenarios where the ion temperature can be greater
than the electron temperature, sometimes by as much as a factor of two. At the
moment, the consideration of separate ion temperatures is not handled by the
ic-resolved GCR model, but a straightforward modification of the IDL routine
mentioned in section 5.1.2.5 is all that should be necessary to achieve this.

5.3.1.1 Metastable Scans

Prior to the ic-GCR results, a general parameter-space scan was performed to
find plasma conditions influenced by IIE effects. In equilibrium balance, each
ionisation stage will only be present in a substantial quantity over a fairly limited
temperature range. Under such conditions, the temperature at peak abundance
of an ion, T (pk.), is taken as representative of the temperature input for rates
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when modelling the ion. Knowing T (pk.) requires the ionisation balance to have
already been determined, but baseline data such as the 89 series ADAS data or
the ionisation potential (χ(z)) are sufficient to estimate T (pk.). Ions are not bound
to any particular density range, and the plasma density will be determined by the
operational constraints of the experimental device or astrophysical environment,
which can vary widely. Thus, it is possible to limit the temperature domain but
not the density domain for a particular ion. The only remaining independent
variable from this simplified standpoint is the impurity element and the array of
ions it spawns.

This investigation tracks the dominant metastable level populations along
a selection of isoelectronic sequences to see how these populations vary with
and without IIE. For each ion, the population model is simple: they are for
a single stage, only include collisional and spontaneous emission rates for the
low-lying states, and do not consider the projected influence from highly-excited
states—the topic of projection is briefly explained at the end of Appendix C.
This corresponds to running ADAS205 or ADAS208 with the minimum adf04
input. Ultimate accuracy is not the objective here, so the neglect of these facets
is justified: a rough sense of where IIE is influential will still be possible. The
requisite adf04 files are taken from the previous autos DW baseline created
under ADAS-EU [24]. The IIE Υij’s in the adf06 files were added directly to the
corresponding transitions in the adf04 files. This procedure produces the same
result as adding the IIE rate coefficients to the Qcd coefficients that was described
in section 5.1.2.5. An electron density of 1013 cm−3 was selected as a typical
value for JET plasmas, and two temperature cases were used in line with the
above: Te = Ti = T (pk.) obtained from the stage-to-stage ionisation equilibrium
calculation of ADAS405 with 89 series input data, and Te = Ti = χ(z)/k, with
the ionisation potentials sourced from NIST.
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Figure 5.13: The maximum metastable population population ratio, Nmax/Ng, with and without IIE along the Al, Ar, Be, Cl, F, and Si-like
isoelectronic sequences. Only protons were considered as ion projectiles. Temperature case 1 (completely opaque) uses Te = Tp = χ(z)/k, and
case 2 (semi-transparent) uses Te = Tp = T (pk.) obtained from ADAS405 with the 89 series baseline data. Subfigures (a) and (b) plot Nmax/Ng
versus ion charge excluding IIE (solid lines, circle markers) and including IIE (dashed lines, square markers) at these two temperatures. All
markers (circle, square, triangle) denote the ions where an ADAS208 population calculation was performed. Subfigures (c) and (d) give the two
temperatures used in the population models of the ions in the respective subfigure directly above. Case 1 is denoted by the opaque, downward
pointing triangles, and case 2 by the semi-transparent, upward facing triangles. Ne = Np = 1013 cm−3 was used for all calculations.
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Figure 5.13 depicts the results of this investigation. In subplots (a) and (b),
the ratio of the maximum metastable population to the ground state, Nmax/Ng,
is used as a proxy for all of the metastable populations of the particular ion.
Therefore, it is the variation of this quantity with the inclusion or exclusion of
IIE that is of primary interest and will indicate how influential IIE is upon the
population calculation. Figure 5.14 presents the relative difference,

∆N =

∣∣∣N (iie)
max −N (no iie)

max

∣∣∣
N

(no iie)
max

=

∣∣(Nmax/Ng)
(iie) − (Nmax/Ng)

(no iie)
∣∣

(Nmax/Ng)(no iie) , (5.14)

caused by this binary consideration of IIE. The behaviour of Nmax/Ng along an
isoelectronic sequence can broadly be split into two categories represented sepa-
rately by figures 5.13 (a) and (b). First, subplot (a) shows this ratio decreasing
as z increases, meaning the metastability in these systems decreases at higher
z. Further, the inclusion of IIE (dashed lines) causes the ratio to increase above
approximately z = 10, and figure 5.14 displays fairly large relative changes asso-
ciated with the Al, F, and Si-like isoelectronic sequences. Of course, because the
absolute value of Nmax/Ng is decreasing along these sequences, the importance
of the relative changes also diminishes, but nonetheless the results are meaning-
ful. This type of behaviour is associated with isoelectronic sequences that have
a ground term with multiple levels. Both Al-like and F-like have a doublet 2P
ground term that splits into two levels (J = 1/2, 3/2), and Si-like has a triplet 3P
ground term that splits into three levels (J = 0, 1, 2). The IIE transitions that
are included in these cases will connect the ground level (J = 1/2 or 0) to the
other excited levels in the term, enhancing the populations of these metastables,
and thus accounting for the increase of Nmax/Ng. The insensitivity to IIE at low
z can be explained by the fact that LS -coupling holds well in this regime and
the density selected means these states are already in LTE without the help of
IIE rates. What role IIE plays in the context of LS resolution is explored more
below. Another observation is that all of the relevant quantities in this cate-
gory of behaviour are insensitive to the two temperatures chosen. For ions that
lie in the CR regime, the two temperatures fall where the collisional rates have
largely plateaued; however, at high z this may no longer be true because the two
temperature cases converge anyway, as seen in figure 5.13(c).
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Figure 5.14: The relative difference of the maximum metastable population, ∆N , caused
by the inclusion of IIE along the Al, Ar, Be, Cl, F, and Si-like isoelectronic sequences. This
relative difference is calculated according to equation 5.14 and the input values are derived
from figures 5.13 (a) and (b). Note that because a modulus operation is used in equation 5.14,
information about whether the inclusion of IIE causes an increase or decrease to the maximum
metastable population is lost here in comparison to figure 5.13. Temperature case 1 is repre-
sented by the lower, more opaque, completely filled polygons, while case 2 is represented by
the more transparent, cross-hatched polygons “on top” of those from case 1 (i.e. the case 2 ∆N
values are stacked on those from case 1). Again, Ne = Np = 1013 cm−3 was used.

A second type of behaviour is observed in figure 5.13 (b). Here, Nmax/Ng is
comparatively constant along the isoelectronic sequences, and the inclusion of IIE
causes the ratio to drop, in contrast to the previous category of behaviour. Fig-
ure 5.14 confirms that these are significant relative changes. The Cl-like sequence
is anomalous because although the ratio plateaus along z, it does see an increase
rather than a decrease upon adding IIE, unlike the two other cases in this cate-
gory. For the two characteristic cases of Ar-like and Be-like, the atomic structure
features a 1S ground term and level (J = 0) and a 3P metastable term with the
usual three levels. In this scenario, the IIE transitions that are supplemented
are only between the levels of the 3P metastable term since transitions from the
ground would not be of order E2: recall, IIE rates should be most substantial for
intra-metastable term transitions not inter -metastable term transitions. So, IIE
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transitions will redistribute the populations of the 3P levels internally rather than
enhance these populations from the ground level. In ic, the 3P1 level will have
an A-value to the ground level, and so the redistributive effect of IIE amongst
the 3P levels will actually provide the J = 0, 2 levels with additional pathways
to the ground, thus suppressing them and explaining the corresponding drop in
Nmax/Ng. Similar to the previous behaviour category, the effects of IIE are neg-
ligible at low z for all of the sequences; however, there is more sensitivity to the
two temperature cases. In relation to only Nmax/Ng, this is most evident for
the near neutral states of Ar-like and Be-like in figure 5.13, but differences can
be discerned across the z range. This sensitivity to temperature also extends to
the differences introduced by IIE; figure 5.14 shows notable differences between
the ∆N values at moderate ion charges for the two temperature cases. In this
z range, T (pk.) and χ(z) still differ significantly (plots (c) and (d) of figure 5.13),
and moderately large z values are amenable to creating the conditions for CR
regimes.

Coupling resolution and density effects are inextricably bound. In regimes
where LS coupling is appropriate, the inclusion of IIE transitions are essential
for establishing LTE and the associated statistical balance amongst levels of the
LS terms. An implicit assumption is being made here: if one is working at J
resolution in a regime also appropriate to LS , while using the typical approach
that only considers EIE and spontaneous emission, then the only missing physics
will be IIE. This assumption holds under LSJ coupling where the inclusion of IIE
will recover the LS term populaitons, but it is inaccurate for ic. Namely, strict
LS selection rules do not apply in ic, since state eigenvectors are no longer pure
basis set vectors. As a result, there will be radiative transitions with significant
A-values between some sublevels of two distinct terms but no spontaneous emis-
sion between the terms themselves. This can alter the atomic population greatly,
and some examples are provided below. In general, one should not expect to
recover the results of an LS -resolved model by adding IIE rates to an ic-resolved
one if the fine-structure effects are significant for the atom in question. Indeed,
this is the main reason why a switch to ic is desirable, and further discussion
in the context of different modelling regimes is made surrounding figures 5.15
and 5.16. On the other hand, where fine-structure effects can be neglected, like
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with light species, then ic will approach LSJ coupling, and the inclusion of IIE
should bring an ic-resolved model into closer agreement with an LS -resolved one;
that is, IIE should hasten the onset of LTE conditions for the term levels. But
this is not observed for either of the two Be-like ions presented. Rather for the
lighter C2+ case in figure 5.18, one observes the onset of LTE at a lower density
but this is independent of IIE being considered.

There are practical implications related to these coupling considerations be-
cause the LS -resolved adf04 files for the present Argon Case Study (section 5.1.3.1)
have been produced by bundling ic-resolved adf04 files. Because of the forbidden
transitions that are present in the ic files, the resulting LS files will be fundamen-
tally different than those produced from pure LS calculations, with observable
consequences for the resulting term populations: compare the LS populations for
Be-like Ar14+ in figure 5.15 against figure 5.16. The same occurs for C2+ below,
and discrepancies were also found in section 5.2.2 when analysing the metastable
terms predicted by the standard ADAS list which used pure LS selection rules
versus those predicted by the LS -GCR model that uses bundled adf04 files. Al-
though the results in this section suggest that the pure LS data achieves closer
agreement with the ic data, a look ahead to section 5.3.2 shows that metastables
of Be-like are an anomalous case, and in general, the bundled LS data achieves
better agreement with ic. Pure LS conditions are rare in reality, and the ADAS
database contains few pure LS calculations. Rather, the past success in mod-
elling light elements with term populations has been predicated on LS -resolved
data with mixed state vectors bundled in.

The density domain was investigated for individual ions because of the com-
plexity involved in interpretation. The population models that follow are con-
structed as described at the beginning of this section for figures 5.13 and 5.14,
now with a wide range of densities using the ADAS208 program A correspond-
ing LS -resolved calculation is also performed. The Be-like sequence was judged
as a suitable test case because of the rich behaviour observed in figure 5.13(b).
Then, Ar14+ was selected as an example of a moderate z ion in this sequence that
should have measurable fine-structure effects and is definitely influenced by IIE at
least at the density of 1013 cm−3 and T (pk.) ≈ 300 eV used in the previous step.
Figure 5.15 shows the density-scaled population ratio, Ni/(NeN1), at different
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resolutions for the 3P term with the level populations including IIE compared
to LS term populations with no IIE. In the coronal regime, the population to
ground ratio, scaled by Ne, is flat because Ni/N1 ∝ Neq1→i, while at LTE, it will
decrease linearly because Ni/N1 ∝ ω1/ωi, a constant.
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Figure 5.15: Scaled metastable population ratios, Ni/(NeN1), for Be-like Ar14+ across all
density domains, indicated by vertical bands with labels. The term considered is 3P, the first
excited above the 1S ground, and the sub-levels are distinguished by colour as specificed in
figures 5.16 and 5.17. Only proton-impact exciation is included for the “iie” case.

For Ar14+ at Te = 388 eV, which is near its T (pk.), the low density coronal
regime extends to approximately Ne = 1011 cm−3. Justification is provided by
table 5.5 where in the Ne = 108 cm−3 block, all of the A-value to collision rate ra-
tios are large numbers, except from transition 2→ 4. Consequently, spontaneous
emission dominates the population distribution both within the 3P metastable
term (columns 6 and 7) and from the ground (column 8). Also, this explains
why IIE has no effect upon the population distribution in the coronal regime:
collisions, whether by electrons or ions, are dominated by the radiative decay of
these levels. It is here too that differences between LS -coupling and ic are most
prominent. In figure 5.15, the LS data has been produced by bundling the ic
data, so there is an A-value present for 3P → 1S, meaning this term effectively
loses its metastablility and behaves like an ordinary term: this manifests as the
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Table 5.5: Collisional and radiative quantities for Be-like Ar14+ at Te = 388 eV. The indices
in the transition column are for the levels, 1 : 1S0, 2 : 3P0, 3 : 3P1, 4 : 3P2.

Transition Aj→i q
(e)
i→j q

(p)
i→j q(p)/q(e) Aj→i

(Neq(e))

Aj→i

(Neq(e+p))

A3→1

(Neq(e+p))

Ne = 108

1→ 3 2.610+06 3.217−11 — — 8.113+08 — —

2→ 3 6.830+00 9.540−11 — — 7.160+02 — 2.736+08

2→ 4 9.190−04 8.319−11 5.307−10 6.379+00 1.105−01 1.497−02 4.252+07

3→ 4 5.640+01 1.016−10 4.381−10 4.312+00 5.551+03 1.045+03 4.836+07

Ne = 1013

1→ 3 8.113+03 — —

2→ 3 7.160−03 — 2.736+03

2→ 4 1.105−06 1.497−07 4.252+02

3→ 4 5.551−02 1.045−02 4.836+02

Ne = 1022

1→ 3 8.113−06 — —

2→ 3 7.160−12 — 2.736−06
2→ 4 1.105−15 1.497−16 4.252−07
3→ 4 5.551−11 1.045−11 4.836−07

horizontal, solid, black line on the left hand side of the figure in the coronal and
collisional-radiative regimes. Contrarily, the LS data in figure 5.16 comes from
a true LS -coupled structure and collision calculation, so there is no A-value for
3P → 1S, and therefore the 3P term maintains is metastability—the scaled ratio
decreases approximately linearly with density. This “true” LS case comes closer
to reproducing the ic results in the coronal regime, but there are still sizeable dif-
ferences if one compares the individual level populations. The reason is because
only level 2 (3P0) is truly metastable in the ic-resolved model, while the other two
levels behave as ordinary levels, depleting the summed population of the term.
As a result, the real behaviour of the term and its sublevels, as predicted by the
ic model, is actually in between the pure and imitated LS models.

At the opposite end of the density domain is the LTE regime, which occurs
for Ne & 1017 cm−3 for Ar14+. Observing the Ne = 1022 cm−3 block of table 5.5,
this regime is typified by universally small ratios, Aj→i/qi→j , confirming that
collisions dominate the rate equations for these metastable levels. Once again,
IIE rates have no impact upon the populations even though they are the larger
collision rate for two of the transitions considered here. Under LTE conditions,
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the dominance of collisional excitation and de-excitation leads to a statistical
balance of these processes and the corresponding establishment of Boltzmann
distributions, Nj/Ni = ωi/ωj exp (−(Ei − Ej)/kTe), for the relative populations
of all levels, which are independent of the collision rates themselves. This is the
physical reasoning behind the mathematical occurrence of Ne becoming the dom-
inant term in the rate equations, not qi→j, leaving only the statistical weights.
This explains why the LS -resolved model exactly agrees with the ic-resolved one
in this regime: the weights of the levels, ωi, are used to split the LS term popu-
lation, which is what Boltzmann statistics prescribes. Both figure 5.15 and 5.16
display the behaviour at high Ne, so the LTE regime is independent of how the
LS data is prepared.
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Figure 5.16: Scaled metastable population ratios, Ni/(NeN1), for Be-like Ar14+. The term
considered is 3P, the first excited above the 1S ground, and the sub-levels are distinguished by
colour as indicated in the legend. The LS -term population has been calculated using pure LS
data in this instance. Only proton-impact excitation has been included.

The final modelling regime for Ar14+ is the intermediate density CR regime.
From figure 5.15, it is seen to exist in the density range, 1011 cm−3 . Ne .

1017 cm−3 for this particular ion. As its name suggests, it is characterised by
comparable collisional and radiative rates, and the Ne = 1013 cm−3 block of
table 5.5 shows a balance of ratios: the ratios for transitions within the 3P term
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(columns 6 and 7 excluding the 1→ 3 row) tend to be about 10−2, indicating the
prominence but not total dominance of collisions, whereas the 1 → 3 transition
and comparisons to its radiative rate (column 8) are around 103 in magnitude,
demonstrating that this radiative decay is also still important. Because of this
intermediate nature, the behaviour of the population model is necessarily more
complex and cannot be described with simple mathematical expressions like in
the previous two regimes. However, these are precisely the conditions where the
population model is most sensitive to the values of the collisional rates, explaining
why it is in this regime that the level populations are influenced by the inclusion
of IIE. Figure 5.17 depicts a zoomed view of the scaled population ratio in this CR
density regime, with 15–20% variation of the J = 0, 2 level populations apparent
because of IIE. For the case of an excited 3P term above a 1S ground, the enhanced
redistribution amongst the 3P levels caused by the IIE transitions will lead to
a suppression of the metastable levels because of the 3P1 → 1S0 spontaneous
emission that provides additional pathways to the ground.
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Figure 5.17: Scaled metastable population ratios, Ni/(NeN1), for Be-like Ar14+ in the CR
density regime. The term considered is 3P, the first excited above the 1S ground, and the sub-
levels are distinguished by colour, as indicated in the legend. Only proton-impact excitation
has been included.

Now consider the example of a low-z ion in the Be-like sequence: the analogous
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scaled population ratio results for C2+ are presented in figure 5.18. There are
important differences. First, there is no apparent variation caused by the inclusion
of IIE in any of the density domains. This seems to occur because of the equally
important observation that there is no CR regime present for these levels. This is
not to say that there will be no CR regime for other levels or at term resolution.
Consulting table 5.6, it is noted that collisional rates dominate the transitions
within the 3P term across all of the density blocks, in contrast to Ar14+, where
the coronal regime experienced a near complete control by spontaneous emission.
So, LTE is established by collisions amongst the levels of the 3P term across
all densities. But below 1012 cm−3, the “forbidden” 1→ 3 spontaneous emission
depletes the population of level 3 far faster than the collisions can, making it
behave as an ordinary level, and thus accounting for the difference with the
LS results at these lower densities. Moreover, there is no “sweet spot” where
a balance between this relatively large radiative decay (it is small in absolute
terms) and the collisions within the term is achieved. Therefore, at no point
is the population model particularly sensitive to the collisional rate coefficients,
explaining the independence from IIE effects; this problem is compounded by the
fairly low T (pk.) which suppresses the IIE rate coefficient more so than the EIE one,
supported by the fairly low ratio of these quantities in table 5.6. Overall, most
of this behaviour can be explained by the small energy differences between these
levels which allows for collisions to be so much more significant than spontaneous
emission.

In summary, there are a number of factors that must align to produce a
noticeable influence of the IIE rates upon the dominant metastable populations
and thus the population model in general. First and foremost, the impurity ion
must be one for which a CR regime specific to the metastable levels exists. This
criterion is typically satisfied by moderately charged ions (z ' 10) because they
produce an appropriate degree of fine-structure splitting that allows radiative and
collisional rates to be comparable but still small enough for IIE to be significant.
These effects can persist to more highly charged ions but tend diminish with
increasing z. Second, Te must lie outside of the steeply suppressed region of the
IIE collisional rates for the metastable level transitions of interest. Lastly and
self evidently, Te and Ne must lie within the region delineated by this CR regime.
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Figure 5.18: Scaled metastable population ratios, Ni/(NeN1), for Be-like C2+ across a broad
density range. The term considered is 3P, the first excited above the 1S ground, and the sub-
levels are distinguished by colour, as indicated in the legend. Only proton-impact excitation
has been included.

Whether this is satisfied will be determined by the operational constraints of the
plasma.

5.3.1.2 Influence of IIE on Argon Fractional Abundances

The analysis of Be-like Ar14+ in the preceding section suggests that at least one
of the isonuclear argon ions will have metastable populations that are sensitive
to IIE. So, the effect of IIE upon the ic metastable fractional abundances is now
examined, using the technique from section 5.1.2.5 of directly supplementing the
Qcd’s.

The top pane of figure 5.19 presents the ratios of ic-resolved fractional abun-
dances that include proton-impact excitation to those that do not for all argon
ions. Nearly a third of ionisation stages possess metastables with fractional abun-
dances that are affected positively or negatively by ≈ 10% in the vicinity of their
respective T (pk.): S-like Ar2+, Mg-like Ar6+, O-like Ar10+, N-like Ar11+, C-like
Ar12+, and Be-like Ar14+. Above the T (pk.), these variations caused by proton
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Table 5.6: Collisional and radiative quantities for Be-like C2+ at Te = 3.88 eV. The indices in
the transition column are for the levels, 1 : 1S0, 2 : 3P0, 3 : 3P1, 4 : 3P2.

Transition Aj→i q
(e)
i→j q

(p)
i→j q(p)/q(e) Aj→i

(Neq(e))

Aj→i

(Neq(e+p))

A3→1

(Neq(e+p))

Ne = 102

1→ 3 6.140+01 2.444−09 — — 2.512+08 — —

2→ 3 2.310−07 3.932−08 — — 5.875−02 — 1.562+07

2→ 4 8.030−14 2.493−08 1.181−08 4.739−01 3.221−08 2.186−08 1.671+07

3→ 4 1.390−06 3.453−08 9.074−09 2.627−01 4.025−01 3.188−01 1.408+07

Ne = 106

1→ 3 2.512+04 — —

2→ 3 5.875−06 — 1.562+03

2→ 4 3.221−12 2.186−12 1.671+03

3→ 4 4.025−05 3.188−05 1.408+03

Ne = 1013

1→ 3 2.512−03 — —

2→ 3 5.875−13 — 1.562−04
2→ 4 3.221−19 2.186−19 1.671−04
3→ 4 4.025−12 3.188−12 1.408−04

impact tend to increase, and one of the metastables of Ar14+ achieves the largest
deviation of ≈ 30% at about three times its temperature of peak abundance. Be-
low T (pk.), all of the variations decrease quickly, returning the ratios to one. This
is consistent with the behaviour of IIE described in Chapter 4 and in particular
the discussion of the adiabaticity parameter (ξ) in section 4.4.1. All IIE collision
quantities are suppressed at low temperature or energy because the transition
becomes more adiabatic, explaining why the variations of the fractional abun-
dances with IIE also approach zero below their T (pk.). On the other hand, IIE
collisions tend to benefit from increased temperatures and energies because of the
mass factor that enters into the high energy limit of Ωij—see equation 4.33. This
explains why the fractional abundance variations increase above T (pk.).

Figure 5.19 also shows that the inclusion of IIE does not alter T (pk.), but
the magnitude and distribution of the metastables within an ionisation stage
are changed. This is a direct consequence of the fact that only the Qcd’s are
being supplemented with IIE rates: the Qcd’s tend to affect the distribution of
metastable populations within an ionisation stage because they are the effective
rates between these metastables. Unless one of those metastables has an increased
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Figure 5.19: Ratios of ic-resolved fractional abundances that include proton-impact excitation
(GCR17 ic + p-impact) to those that do not (GCR17 ic) for argon. The legend provides the
ionisation stage that corresponds to each line colour, and the different line styles denote the
separate metastable levels within each stage. The bottom pane provides the analogous ratio of
the temperature at peak abundance, T (pk.), for each ic metastable.

propensity to ionise or recombine to adjacent stages, this redistribution is kept
within the stage under consideration.

Figures 5.20 and 5.21 present the Qcd’s for a sample of argon ions. A subset of
Qcd’s for S-like Ar2+ are shown in figures 5.20(a) and (b), and these display some
contrasting behaviour that summarises the situation for this ion. In figure 5.20(b),
the Qcd’s shown are exclusively for the transitions amongst the levels of the 5D
metastable term. These levels are quite tightly packed between 144885–144911

cm−1, corresponding to a maximum energy difference that is 0.1% of kT (pk.) for
the entire ionisation stage. Therefore, IIE inclusion has a substantial magnitude
for these transitions according to the rules of thumb constructed in section 4.1.
A number of transitions in this figure have Qcd’s that are noticeably enhanced
at or near T (pk.), and the fractional abundances associated with the metastable
levels of the 5D term show the greatest variations due to adding proton-impact
collisions. Some metastable fractional abundances in this term are enhanced
while others are suppressed, indicating that the change in the Qcd’s caused by
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IIE redistributes populations predominantly within the term itself. However,
it was determined in section 5.2.2 that the 5D term is not actually metastable
according to the results of the LS -GCR model; therefore, a discussion about the
importance of these variations is somewhat irrelevant. In contrast, theQcd’s of the
3P term in figure 5.20(a) do not show a notable enhancement by IIE near T (pk.),
although there is some minor variation at higher temperatures for transitions
1 → 2 and 1 → 3 between levels of the 3P ground term. For these cases, the
energy separation is just slightly too large: about an order of magnitude more
than the separations between the 5D levels. This is also the case for all of the
other transitions in this system involving the 1D2 and 1S0 levels. Consequently,
all true metastable levels of Ar2+ exhibit very little variation of their fractional
abundances with the addition of IIE in figure 5.19. The curves referred to here
are the yellow ones (consult legend for shade), excluding the three outliers that
deviate most from one. Again, these outer curves correspond to levels of the 5D
term that was determined to not be a true metastable.

100 101 102 103 104

Te (eV)

10−12

10−11

10−10

10−9

10−8

10−7

Q
C
D
(c
m
3
s−

1
)

Ar2+
1×1012 cm−3

No IIE
1H+

1→9
1→4
1→10
1→2
1→6
1→5
1→7
1→8
1→3

103 104 105 106 107
Te (K / z21)

(a)

100 101 102 103 104

Te (eV)

10−11

10−10

10−9

10−8

10−7

10−6

Q
C
D
(c
m
3
s−

1
)

Ar2+
1×1012 cm−3

No IIE
1H+

6→8
6→9
6→10
7→9
7→8
7→10
8→10
8→9
9→10

103 104 105 106 107
Te (K / z21)

(b)

100 101 102 103 104

Te (eV)

10−12

10−11

10−10

10−9

10−8

10−7

10−6

Q
C
D
(c
m
3
s−

1
)

Ar5+
1×1012 cm−3

No IIE
1H+

1→5
1→2
1→4
1→3
2→5
2→4
2→3
3→5
3→4
4→5

103 104 105 106
Te (K / z21)

(c)

100 101 102 103 104

Te (eV)

10−10

10−9

10−8

10−7

10−6

Q
C
D
(c
m
3
s−

1
)

Ar5+
1×1012 cm−3

No IIE
1H+

2→1
3→2
3→1
4→2
4→3
4→1
5→3
5→1
5→4
5→2

103 104 105 106
Te (K / z21)

(d)

Figure 5.20: Qcd coefficients for Ar2+, (a) and (b), and Ar5+, (c) and (d), with proton-impact
excitation supplemented (dashed lines) and without (solid lines). The left column contains the
Qcd’s corresponding to excitation, while the right column contains those for de-excitation.
T (pk.) ± 5% for the ionisation stage is indicated by the yellow vertical bar.
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Al-like Ar5+ is an example where IIE does not influence the metastable-
resolved fractional abundances. Figure 5.20(c) presents the Qcd’s associated with
excitation for this ion. The group of larger magnitude Qcd values at the top
half of the plot correspond to intra-term transitions, i.e. within the 2P and 4P
metastable terms, while the lower grouping of Qcd’s correspond to inter -term
transitions, i.e. between the 2P and 4P terms. The intra-term transitions involve
levels of the same parity and |∆J | < 3, so E2 selection rules are satisfied, and the
energies are relatively small (≈ 1%) compared to kT (pk.), which accounts for the
minor enhancement by proton impact at higher temperatures; however, condi-
tions simply are not aligned for this enhancement to occur at or near T (pk.) itself,
explaining why none of these metastable levels show a substantial deviation of
their fractional abundance in figure 5.19. The inter -term transitions involve a
parity change in this case, so E2 order contributions are not possible, and hence
why no modification by proton impact is observed. All of these observations
equally apply to the complementary de-excitation Qcd’s in figure 5.20 with the
one exception that the two groupings of intra and inter -term transitions have
swapped in magnitude; the inter -term de-excitation Qcd’s are of a higher mag-
nitude than their intra-term counterparts, an asymmetry because of statistical
balance and Boltzmann statistics that are used to convert between excitation and
de-excitation rates.

The tightly packed stages between F-like Ar9+ and Be-like Ar14+ are where
the greatest variations of the fractional abundance with IIE are observed in fig-
ure 5.19. The Qcd’s for N-like Ar11+ and Be-like Ar14+ are shown as representative
examples in figure 5.21. Those associated with the excitation transitions of Ar11+

are in figure 5.21(a), where some rates show a noticeable enhancement of be-
tween 15% and 30% due to proton impact at T (pk.). The transitions that are
most affected are those connecting levels 2, 3, 4, and 5 in all permutations. They
belong to the 2D term (levels 2 and 3) and 2P term (levels 4 and 5) that are
situated above the ground 4S in this order. Unlike the two cases in figure 5.20, it
is the inter -term transitions, 2 → {4, 5} and 3 → {4, 5}, that show the greatest
enhancement compared to the intra-term transitions, 2 → 3 and 4 → 5. The
A-values for these inter -term transitions are greater than the intra-term ones,
and this effect more than compensates for the fact that the energy differences for
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the inter -term transitions are relatively larger, an effect that typically suppresses
IIE collisions—see figure 4.18. The maximum energy difference for one of these
inter -term transitions (2→ 5) is 4% of kT (pk.), so they are within the appropriate
region for influence by IIE. E2 IIE transitions involving the ground level, 4S3/2,
do exist, but their values are suppressed because the dominant components of the
state eigenvectors have different spins for these transitions: selection rules do not
apply to spin in ic, but spin-changing transitions are still likely to be suppressed,
and their influence on the Qcd values is negligible. Overall, the behaviour of the
metastable-resolved fractional abundances for Ar11+ seen in figure 5.19 is consis-
tent with the Qcd behaviour. The enhancement by proton impact of the Qcd’s
from levels 2 and 3 (2D term) to levels 3 and 4 (2P term) causes a transfer of pop-
ulation between these groups, which in turn leads to the fractional abundances
of levels 2 and 3 being suppressed (ratio lower than 1) and those of levels 4 and 5
being enhanced (ratio greater than 1) as observed in figure 5.19. The fractional
abundance of the ground level (solid line) is also slightly enhanced because level
5 has a fairly large A-value to ground, so the extra population shifted from the
2D term levels to level 5 will also indirectly feed the ground level.

For Be-like Ar14+, figure 5.21(c) gives the Qcd’s associated with excitation,
and the group of larger magnitude coefficients correspond to transitions within
the 3P metastable term (levels 2, 3, and 4). E2 transitions with the ground level,
1S0, are not possible because of the change in parity, and also transition 2→ 3

cannot have an E2 transition because J = 0→ 1 is forbidden. Therefore, only
transitions 2→ 4 and 3→ 4 exhibit any enhancement by proton impact, each by
about 40% at T (pk.). This is a much smaller percentage than if the comparison
was with the corresponding unaltered EIE rate coefficient for these transitions,
as seen in table 5.5 where the proton-impact excitation rate coefficients are about
a factor of five larger that the EIE ones near T (pk.). The Qcd accounts for the
total flux between the levels according to the population model, so it will differ
from the value of the pure EIE collisional rate. The variation of the metastable-
resolved fractional abundances for Ar14+ in figure 5.19 are explained by these
Qcd results and the influence of IIE therein. The enhancement by IIE of some
Qcd values for transitions within the 3P term will lead to a quicker redistribution
of population amongst these levels and then a suppressive effect because of the
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Figure 5.21: Qcd coefficients for Ar11+, (a) and (b), and Ar14+, (c) and (d), with proton-
impact excitation supplemented (dashed lines) and without (solid lines). The left column
contains the Qcd’s corresponding to excitation, while the right column contains those for de-
excitation. T (pk.) ± 5% for the ionisation stage is indicated by the yellow vertical bar.

3P1 (level 3) → 1S0 spontaneous emission that provides additional pathways to
the ground. Hence, the lower abundances for these levels (dashed lines) in fig-
ure 5.19 with IIE. The variation of about 10–15% observed here is consistent with
the variation in figure 5.17, which used a more rudimentary implementation.

As shown, proton-impact excitation alters the level-resolved fractional abun-
dances, but for fusion plasmas in particular, protons are not the only ions present.
Little attention has been given to non-proton projectiles in population modelling,
as revealed by the review in section 5.3.1. One example is bare helium-4 nuclei
(4He2+), henceforth alpha particles, which is a primary fuel ion in certain tokamak
scenarios. Figure 5.22 presents ratios of the level-resolved fractional abundances
including alpha-impact over those including proton impact; in both cases, the
ions make up 100% of the positive ion density. The difference near T (pk.) for each
metastable level is within about 5%, a fairly minor correction.

For S-like Ar2+ only transitions within the 5D term—figure 5.23(b)—are af-
fected by any form of IIE, whether protons or alphas. In general, IIE tends to
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Figure 5.22: Ratios of ic-resolved fractional abundances that include 100% alpha-impact
(4He2+ impact) to those that include 100% proton impact (p-impact) for argon. The legend
provides the ionisation stage that corresponds to each line colour, and the different line styles
denote the separate metastable levels within each stage. The bottom pane provides the analo-
gous ratio of the temperature at peak abundance, T (pk.), for each ic metastable.

affect the same group of transitions, regardless of the projectile involved, mean-
ing new transitions will not be brought into play simply if new projectiles are
considered. However near T (pk.), these 5D intra-term Qcd’s exhibit a discernible
difference for the various ion projectile cases considered. The Qcd’s supplemented
with alpha IIE rate coefficients have larger values in this temperature regime
than those with proton impact, both of which are larger than the unaltered “No
IIE” case. The “mix 1” projectile case results in Qcd values that are slightly
larger than the proton projectile case. This ordering is consistent with the pro-
jectile parameter variation studies in section 4.4.1.2, which showed that above a
certain temperature or energy, increases in mp and zp will cause an increase in
the relevant IIE collision quantity. T (pk.) for Ar2+ is above the rate coefficient
intersection point seen in the mp and zp scaling plots for this set of transitions—
figures 4.14(d) and 4.15(d). Where T (pk.) lies in relation to this “intersection
point” is what determines the order of variation of the Qcd’s and, in turn, the
fractional abundances.
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For proton impact, the increase of the Qcd values caused a number of the
5D levels to be enhanced at the expense of one other level relative to the “no
IIE” case in figure 5.19. Larger values of the Qcd’s due to alpha-impact amplifies
this redistributive effect, meaning those metastable levels that were larger under
proton impact will be further so and vice versa: compare figure 5.19 for protons
and figure 5.22 for alphas. Likewise, the level that had its fractional abundance
reduced by proton impact is even more suppressed by alpha impact in figure 5.22.

A different type of behaviour is observed for the fractional abundances of
N-like Ar11+. Inspecting figure 5.23(c) and (d), one sees at T (pk.) that the Qcd

values with alpha-impact supplementation are less than those with proton im-
pact. The excitation by alphas makes a negligible modification to the EIE driven
Qcd’s (solid lines). This dissimilarity between Ar11+ and Ar2+ is due to the criss-
crossing behaviour of the zp and mp scaling of IIE collision quantities. The Ar2+

IIE transitions had a T (pk.) that lay above the “intersection” point of figures 4.15
and 4.14, whereas the transitions for Ar11+ are such that T (pk.) lies below the
“intersection” point where increases in mp or zp cause the rate coefficient to de-
crease. Therefore, the changes to the fractional abundances due to alpha-impact
are depressed, almost back to the point of the purely EIE-driven Qcd, rather than
amplified as in the proton case. This shows that using an accurate projectile mix
is important in ionisation balance modelling—one cannot get away with using
proton-impact as representative of IIE in the population model.

Finally, Be-like Ar14+ and the similar, by atomic structure, Mg-like Ar6+

show an interesting criss-cross behaviour for the fractional abundance ratios in
figure 5.22. Figure 5.23(e) and (f) show that T (pk.) for Ar14+ lies close to the
point at which the Qcd’s from different projectile cases are crossing over. Below
this intersection point, the Qcd’s supplemented with alpha impact are lower than
those supplemented with proton impact, and vice versa above the intersection
point. The switch in behaviour is a direct result of the same criss-crossing seen
for the scaling of the IIE rates with zp and mp and was already discussed for the
previous two cases. This mixed, criss-cross behaviour in the Qcd’s propagates to
the ratio of the fractional abundances as well.
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Figure 5.23: Qcd coefficients for Ar2+ (a and b), Ar11+, (c and d), and Ar14 (e and f) with
different mixes of ion projectiles supplemented, distinguished by line styles in the legends. “mix
1” is 98.8% D1+, 1.1% 9Be4+, and 0.1% 12C6+. The left column contains theQcd’s corresponding
to excitation, while the right column contains those for de-excitation, except (b) which has the
excitation Qcd’s for the 5D term of Ar2+. T (pk.) ± 5% for the ionisation stage is indicated by
the yellow vertical bar.

5.3.2 Determining Genuine Metastable Levels

Given that there are more levels in ic resolution than terms in LS , determining
which of these low-lying levels are the “true” ic metastables is important. By
applying the global threshold procedure to the ic-resolved metastable fractional
abundances across the temperature domain, as in section 5.2.2, a more realistic
set of metastables can be determined. Results are presented in column four
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of table 5.7, and as with the LS -metastables, a more sophisticated approach
does not alter this set. Additionally, the predicted LS metastables in table 5.4
can be extended to LSJ resolution by using the simple vector model of angular
momenta addition. The simple ADAS list (column 2) again labels too many
levels as metastable. However, there is a remarkable agreement between the LS
and ic-resolved models in terms of the predicted metastable levels. A tentative
conclusion is that if an LS -term is metastable, according to a GCR model built
upon bundled ic adf04 file, then in all likelihood, the ic levels of this term will
also be metastable.

For Mg-like Ar6+ and Be-like Ar14+, both having a 1S ground term and a 3P
metastable term sitting immediately above, there is a difference between the LS
and ic classification of metastables. The ic-model omits 3P1 as a metastable level,
and from the analysis of the previous section, it is known that this level typically
has a fairly strong A-value to the ground under ic conditions, even though this
transition is forbidden under LS selection rules. The values are 7.13×105 s−1 and
2.90× 106 s−1 for Mg-like and Be-like respectively, and this comparatively strong
radiative pathway depletes the 3P1 level such that it does not exhibit metastability
in either case. Figures 5.16 and 5.17 further support this assessment for Be-like
Ar14+. The LS model does not report the 3P term as a metastable for Be-like
because of spin breakdown in the bundled LS data, meaning there is an A-value
for 3P → 1S that would not be present under pure LS conditions, and in the case
of Be-like, this A-value is sufficiently large that the metastability of the 3P term
is lost.

Section 5.3.1 showed that many of the metastable populations in the argon
isonuclear sequence are sensitive to the inclusion of IIE, and applying the same
global cutoff procedure to ic-resolved metastable fractional abundances with IIE
included produced only one difference compared to the result without IIE. The
3P0 level of Be-like Ar14+ is no longer metastable when IIE is included—marked
with a † in table 5.7. Therefore, IIE does not significantly alter the metastability
for argon ions, but whether this is a general conclusion remains to be seen. Results
from more medium and heavy-weight species are needed to determine this.

To summarise, if a LS term is metastable according to GCR modelling with
bundled adf04 data, then at least one of its levels will also be metastable at
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Table 5.7: Ic-level metastables for argon from three sources. The column titled “ADAS”
contains the ic-level metastables according to the simple, standard ADAS list currently in
place. The column titled “LS Global Cut” contains the ic-level metastables according to the
global threshold procedure applied to the LS -GCR model fractional abundances, as described
in section 5.2.2. The levels are obtained by taking all possible levels produced by the simple
vector model of momenta addition with the LS terms. The column titled “ic Global Cut”
contains the ic-level metastables according to the global threshold procedure applied to the
ic-GCR model fractional abundances. Both models were executed at Ne = 1012 cm−3. The
level marked with a † is not present if proton-impact excitation is included in the ic-GCR
model. A simplified, non-superscript notation for the dominant LSJ component of the ic
levels has been employed for succinctness: [2S + 1][L]([J ]) ≡ (2S+1)LJ .

Ion ADAS LS Global Cut ic Global Cut

0 1S(0) 3P(0,1,2) 1S(0) 1S(0)
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ic resolution, with the tendency towards all levels of a metastable term being
themselves metastable. Metastable levels that do not belong to a metastable
term are rare but can occur around shell or subshell boundaries (e.g. Be-like
Ar14+ in table 5.7). Both of these conclusions are consistent with those from
section 5.2.2 and 2.3.1.1, which also treated the consistency of metastability at
different resolutions. Moreover, the results here have confirmed the ca to ic
comparison of metastability by extension.
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5.3.3 Influence of Resolution Upon Fractional Abundances

Many transport codes in fusion operate on the unresolved, i.e. stage-to-stage,
description of impurities. Figure 5.24 compares the unresolved fractional abun-
dances generated from the LS and ic-resolved models. At the two densities pre-
sented, there are discernable differences between the results of these two models,
particularly for the near-neutral and third period ionisation stages. The peak
regions agree fairly well, and the largest discrepancies, of an order of magnitude,
tend to occur near the tails of the fractional abundance curves. So, the underlying
resolution of the population model does affect the final unresolved results. This
point was not so clear from the literature comparisons in section 5.2.3.1. Yet the
effects of density and resolution are necessarily intertwined: shifting between the
two densities in figures 5.24(a) and (b), one observes that the differences between
the two resolutions also change. In fact, the discrepancy between the LS -resolved
model and the ic-resolved model appears to be greater at the coronal-regime
density of 104 cm−3 than at the higher, CR-regime density of 1012 cm−3. From
figure 5.15, it is clear that the largest discrepancies between LS and ic-resolved
metastable populations occurred in the coronal regime, because increasing the
density moves the conditions closer to the LTE regime and thus statistical bal-
ance of the populations where there is no difference in the predictions of ic or
LS -resolved models. Furthermore, the inclusion of IIE in the ic-GCR model
has no influence upon the unresolved fractional abundances, a consequence of
the observation in section 5.3.1.2 that modifying the Qcd’s will redistribute the
metastable populations within a stage but not between stages.

An alternate comparison is to form LS abundances by summing the ic-resolved
metastable fractional abundances according to the LS terms that they belong to:

f
(z)
LS =

∑
L′S′J ′∈L⊕S

f
(z)
L′S′J ′ , (5.15)

where ⊕ is used here to represent the vector-model addition of total spin and
angular momenta, producing a set of LSJ levels. The ratios of the LS -resolved
metastable fractional abundances are presented in figure 5.25. The differing res-
olution of the two models has a notable effect upon the metastable fractional
abundances. The peak regions usually agree to within 10%, but outside of this,
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Figure 5.24: Comparison of the unresolved fractional abundances for argon from the LS
(GCR17 LS) and ic-GCR (GCR17 ic) models. The two plots contain results for different
electron densities: (a) Ne = 1012 cm−3 and (b) Ne = 104 cm−3.
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Figure 5.25: Ratios of the LS -resolved metastable fractional abundances for argon from the
LS (GCR17 LS) and ic-GCR (GCR17 ic) models. The two plots contain results for different
electron densities: (a) Ne = 1012 cm−3 and (b) Ne = 104 cm−3.
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Figure 5.26: Ratios of LS -resolved fractional abundances for argon from the ic-GCR model,
with (GCR17 ic+p→ LS) and without (GCR17 ic→ LS) proton impact. The legend provides
the ionisation stage that corresponds to each line colour, and the different line styles denote the
separate metastable levels within each stage. The bottom pane provides the analogous ratio of
the temperature at peak abundance, T (pk.), for each LS metastable.

variation between 10% and an order of magnitude is possible. Although the un-
derlying data for the LS model is bundled from ic calculations, the results here
reveal that the remaining differences between the ic and LS model should not be
underestimated. Assessing the effects of density, it appears that metastable frac-
tional abundances differ more at the higher, CR-regime density (figure 5.25(b))
than they do at the coronal-regime density (figure 5.25(b)), contradicting the
conclusion made about the unresolved results above. However, the largest devi-
ations at Ne = 1012 cm−3 occur for metastables that are not the dominant ones
within a stage. So, the deviations depicted at Ne = 104 cm−3 are actually larger
for the metastables that matter most, agreeing with the previous conclusions
about how resolution effects depend on density. Unlike the unresolved case, how-
ever, the inclusion of IIE in the ic-GCR model does influence the LS -resolved
metastable fractional abundances, but figure 5.26 shows that this constitutes a
minor correction relative to the effect of resolution.

Finally, the unresolved fractional abundances from the ic-GCRmodel are com-
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Figure 5.27: Comparison of unresolved fractional abundances: present work using unresolved
coefficients derived from ic-resolved model (GCR17 ic) versus Bryans et al. 2009 (BLS09) [189].
The GCR17 ic model was calculated at an electron density of Ne = 1012 cm−3.

pared to the zero-density, CIE-model abundances of BLS09 [189] in figure 5.27.
This exhibits essentially the same features seen previously in figure 5.7(a) when
analysing the LS -GCR model. Differences are largest for the near neutrals and
gradually decrease until convergence is achieved for highly-ionised states, but in
this case, the discrepancies are slightly larger than in the LS case. Moving to
low density removes most of the disagreement of the near neutrals, but the same
differences linger for the middle ionisation stages due to the discrepancy in the
definitions of the αcd and zero-density, total recombination rate coefficient.

5.4 Radiated Power of Argon

A high-quality cooling curve for argon is one of the primary objectives for the
ic-resolved GCR model that has been described hitherto. The radiated power
coefficients are also a pivotal point of validation for any atomic population model.
Section 5.4.1 compares the power coefficients of this work with those available in
the literature. The effect of resolution upon the power coefficients produced by
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the GCR models is investigated in section 5.4.2. Lastly, the present results, built
upon high-quality atomic data, offer the best means with which to assess the new
baseline datasets from Chapter 2, which were explicitly designed to optimise the
radiated power. Section 5.4.3 performs this assessment.

5.4.1 Power Coefficients in the Literature

The total radiated power function, used to calculate total radiated power loss
from a plasma, is defined by

Ptot =

Z0∑
z=0

Mz∑
σ=1

[
P(z)
LT,σ

(z) + P(z)
RB,σ + (NH/Ne)P(z)

RC,σ

] (
N (z)
σ /Ntot

)
, (5.16)

where P(z)
LT,σ

(z) is the total radiated line power coefficient already defined in equa-
tion 2.37, P(z)

RB,σ is the recombination-bremsstrahlung-cascade power coefficient,
P(z)
RC,σ is the charge exchange power coefficient, and the SI units of Ptot are the

same as all the power coefficients, W cm3. Ptot is sometimes called the cooling
curve. The charge exchange power coefficient is not considered in this study
because it depends on the neutral hydrogen density (from NBI heating) and is
negligible on a global scale. The free-free (bremsstrahlung) contribution to P(z)

RB,σ

is fairly uniform across the literature because it is the simplest part of the prob-
lem. There is more variation seen in the free-bound (DR and RR) contribution,
but part of this is already determined by the rates selected to establish the ionisa-
tion balance in the previous section: zero-density DR rates are typically used to
calculate the emission from stabilisation. The remainder of the problem is bound
up with the following remarks about line emission.

It is the PLT that is typically the dominant contribution in equation 5.16
because line emission from levels in the low-lying set is the strongest photon
emission. Therefore, the model of the low-lying atomic levels becomes the key
differentiator between estimates of the cooling curve. As was discussed in sec-
tion 5.1.3.1, this portion of the atomic model is shaped by the data for A-values,
energy levels, and collision strengths. The resolution of these quantities deter-
mines the resolution of the final model. How these quantities are then combined
defines the approach of the model: i.e. are CR effects considered or is CIE being
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assumed? How is the cascade portion of the recombination power coefficient han-
dled? A variety of sources of the total radiated power function will be assessed
on these points. They are split into two categories: highly-resolved models that
consider atoms in ic, LS , or ca resolution with varying levels of CR effects, and
lower-resolution models like AIMs.

A direct comparison of Ptot from different sources is complicated by the con-
flation of the power coefficients with the fractional abundances in its definition
(5.16). Consequently, it is difficult to determine whether discrepancies of Ptot are
caused primarily by differences in the fractional abundances or power coefficients.
If a separate ionisation balance is provided, then some of this ambiguity can be
removed, but ultimately it is a comparison of the power coefficients themselves,
PLT and P(z)

RB,σ, that offers the clearest interpretation. Unfortunately, these
quantities are rarely given in the literature.

Highly-resolved Models FCMG98 [187] calculates various measures of power
emission for argon in addition to its CIE fractional abundances given in sec-
tion 5.2.3.1. For line emission power loss, it uses a CR model for each ion built
upon J-resolved atomic data from hullac, a DW code that is comparable to
the new elevated baseline with autos. It is the only work that employs any
form of CR model in the literature, although it is limited in comparison to the
GCR model of the present work. The FCMG98 model only includes collisional
excitation and radiative decay between levels. So its metastable model is con-
fined to excitation from each metastable within the isolated ion system. Indirect
contributions from highly-excited states are not considered. Also, the influence
of ionisation or recombination processes upon either the excited or metastable
states in this model is omitted. Estimates of the DR and RR contribution to the
radiated power are calculated using expressions from the AIM of [190] but with
improved rates and energies. Ptot and separate PLT values are given for each
ion.

A more recent work by Schure et al. [201] presents Ptot values for a number
of solar relevant elements including argon, calculated using the SPEX code [202].
This code uses the CIE fractional abundances from AR85 [179] but with recom-
bination data updated to [178], and although details are not given, it is assumed
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the power coefficients are produced from a coronal model of each ionisation stage.
This is a zero-density model that should begin to show substantial deviations from
our GCR model at electron densities probed in the present work. Energy levels
and oscillator strengths are taken from the literature or cowan otherwise, and
collision strengths are mostly sourced from the Zhang and Sampson group or
hullac. This fundamental atomic data is estimated to be of moderate quality,
below that of the present work. The line emission is specifically tuned to the X-
ray spectral region for the purposes of solar astrophysics. No details were found
on how the recombination or bremsstrahlung power coefficients were estimated.

Finally, Gnat and Ferland [203] present summed power coefficients (P(z)
LT,σ +

P(z)
RB,σ) produced by the Cloudy code (v10.00) for each ion of argon amongst

other elements of astrophysical relevance. A CIE model is used for calculating
both the fractional abundances and line emission power coefficients, but their ap-
proach of embedding data as part of the overall code package presents difficulties
when comparing models. It is omitted in the comparisons to follow.

Average Ion Models The AIM approach of P77 [190, 191] is a popular source
of cooling curves for a number of fusion-relevant elements including argon. Its
foundation was described in the previous section 5.2.3.1, and once the populations
of the average ion, P̄n, reach a steady state solution, they are used to determine
all of the quantities required for the various radiated power loss expressions.
Line emission, RR, DR cascade, and bremsstrahlung power loss are all estimated
through hydrogenic forms. This is evidently a coarse result, but an important
baseline with which to benchmark.

The FLYCHK code offers a more nuanced and advanced AIM result for ra-
diated power loss. The ry states populations for each ionisation stage, P (z)

n , are
solved in the same manner as for the fractional abundances: a global steady state
condition is imposed, and no self-consistent radiation field is assumed. These
populations can then be substituted into expressions very similar to those in P77
to yield the radiated power coefficients, P(z)

LT,σ and P(z)
RB,σ. Ptot can also be pro-

vided by combining these coefficients with the fractional abundances according
to equation 5.16.
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Comparisons Figure 5.28 displays a comparison of Ptot curves from a variety
of literature sources against the present, ic-resolved GCR result (GCR17 ic),
which we consider to be the best quality to date. A density of 1012 cm−3 has
been used for any non-zero-density model. FCMG98 is closest to the GCR17 ic
cooling curve. The worst agreement is at lowest temperature, reaching a factor
of 5, while over the rest of the temperature domain, the relative difference is
within 50%. FCMG98 also provides PLT values used in forming Ptot, and a
sample of these are compared to in figure 5.29. For the ions shown, there is
some variation between the FCMG98 and GCR17 ic PLT s, but nothing close
to the 50% on average observed for Ptot. The PLT only includes contributions
to the radiated power from collisional excitation of the relevant metastable, and
this is separate from the more elaborate GCR effects that get bundled into the
fractional abundances. Therefore, the ionisation balance is the primary source of
the difference in Ptot, and figure 5.9 confirms that the significant differences of
the unresolved fractional abundances observed at Ne = 1012 cm−3 are reflected in
the cooling curve. FCMG98 supports what has long been known in ADAS: it is
possible to construct a CR model that produces fairly accurate PLT s by using
moderate quality atomic data. However, one should should not underestimate
the importance of the ionisation balance in forming the final Ptot values.

The P77 data shows a slightly worse level of agreement for Ptot in figure 5.28,
but this is impressive given the rudimentary nature of the AIM model. However,
this result does not go below 30 eV, because AIMs cannot describe the structure of
the contributing ions. Due to the nature of this AIM model, Ptot is not separable
into its PLT and fractional abundance components, so a more precise attribution
of the differences with GCR17 ic cannot be made. The more sophisticated AIM
result from FLYCHK achieves a similar degree of agreement with GCR17 ic in the
temperature domain that P77 is present, but it becomes notably worse for lower
temperatures, nearing an order of magnitude discrepancy. Note that because of
the severe disagreement with the fractional abundances produced by FLYCHK
in figure 5.10, it was decided that the ionisation balance from GCR17 ic should
replace that of FLYCHK itself in forming Ptot. Therefore, the differences in
Ptot are entirely attributable to differences in the PLT and PRB coefficients. It
does not appear that increased sophistication of the FLYCHK AIM garners much
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Figure 5.28: Literature comparison of the total radiated power function (Ptot) for argon.
The sources are described in the text: schure2009 [201], P77 [190], FCMG98 [187], and FLY-
CHK [192]. GCR17 ic is the result from the current ic-resolved GCR model without any
IIE. The FLYCHK cooling curve uses the fractional abundances from GCR17 ic, and the other
sources use their own. The bottom pane displays the ratio of the literature sources with GCR17
ic.

improvement over that of P77.
Finally, the result of Schure et al. [201] differs markedly from the others. This

is somewhat surprising given the ostensible similarities it shares with FCMG98.
The unsuitability of the CIE model at this density has been established, but this
cannot alone account for the level of disagreement seen, so there must be another
explanation. Unfortunately, their fundamental atomic data are not available for
comparison.

5.4.2 Resolution Effects

In section 5.3.3, it was shown that resolution can have a important effect upon
the ionisation balance produced by the GCR model. Figure 5.30 shows that
some variation is present between the unresolved and resolved versions of the
LS and ic-GCR models of Ptot: as much as 80% variation is seen at very low
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Figure 5.29: Comparison of PLT coefficients for (a) Ar1+, (b) Ar6+, and (c) Ar10+. GCR17
UR ic is the unresolved result from the current ic-GCR model. SSH41 is the new cowan PWB
baseline used in the configuration selection work of section 2.3.1. FCMG98 [187] is described
in the text.
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temperatures and another peak of 30% near 70 eV. However, the majority of
the temperature domain exhibits disagreement of under 20%, so a comparable
magnitude of changes seen in the ionisation balances are not translated here.
Ptot is not a terribly sensitive diagnostic. Since it is formed by the sum over all
ionisation stages and their metastables (equation 5.16), effects that operate on a
per ion or per metastable basis tend to get washed out. A similar damping was
observed between the fractional abundances and Ptot for the FCMG98 result in
the previous section, where the variation of the fractional abundances relative to
GCR17 ic were much larger than the variation observed for Ptot.
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Figure 5.30: The total radiated power function for argon at all resolutions of the current
GCR model (GCR17). UR stands for unresolved, and “+ He-impact” indicates that alpha-
impact excitation has been added to the ic-resolved model. The ratios relative to the GCR17
ic result are displayed in the bottom pane. Ne = 1012 cm−3 has been used in the model.

Moreover, variability in the PLT s due to resolution will have an influence
on Ptot, but figure 5.31 displays a high amount of agreement between the un-
resolved PLT s from the LS and ic-GCR models, at least at T (pk.). There are
two exceptions. Ar0 possess a large discrepancy between the PLT from different
resolutions, and this contributes to the divergence of the Ptot curves at low tem-
perature in figure 5.30. Second, Ne-like Ar8+ also exhibits a substantial deviation
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of its PLT s, and this accounts for a great deal of the variation of Ptot near 100 eV,
which is approximately equal to T (pk.) for this ion. That these notable discrepan-
cies occur at shell boundaries mirrors the similar result found when comparing ic
to ca PLT s in section 2.3.1 with the configuration selection work. Therefore, it
can be concluded that resolution—ca, LS , ic—affects PLT s the most at or near
shell boundaries.
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Figure 5.31: PLT coefficients from the LS and ic-resolved GCR models at T (pk.)across the
argon isonuclear sequence. UR stands for unresolved. The temperatures at peak abundance
have been taken from the GCR17 UR ic result. Ne = 1012 cm−3 has been used in the model.

An unexpected result from figure 5.30 is that the inclusion of IIE in the
ic-GCR model does not cause a perceptible change in Ptot—“GCR17 ic + He-
impact”. Any influence of IIE upon Ptot will enter through the fractional abun-
dances, but even with the dilution effects discussed above, it is strange that the
alterations in figure 5.22 are not propagated to Ptot. This will need to be inves-
tigated further to judge its validity.

Considering the fair agreement amongst the results from different resolution
models, the GCR17 ic result is adopted as representative of the GCR models
when comparing with other data.
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5.4.3 New Argon Power Coefficients

The radiated power is a good fitness function for optimising the configuration
set because it is an observable that provides an unbiased and global view of the
atomic system. This is the basis upon which the new baseline data in Chapter 2
was developed. Figure 5.32 compares the Ptot curves from two new ADAS baseline
datasets to the new ic-GCR standard, and broadly good agreement is observed.
SSH41 is the ic-resolved, cowan PWB calculation using the power-optimised
(cs) configuration sets described in section 2.3.1 and the associated paper [21].
SSH17 is the ic-resolved, autos DW calculations using the power-optimised (cs)
configuration sets and the λnl from the novel optimisation strategy. This is the
lifted ADAS baseline adf04 data that are the primary product of Chapter 2. A
slight modification has been made in producing SSH17 to include some missing
configurations in the ground complex, an issue to be handled once the mass-
production procedures for this baseline data have been established. For both
SSH41 and SSH17 results, it is only the PLT s that can be generated from their
undecorated adf04 files, so the other GCR coefficients needed for modelling—i.e.
those that form the ionisation balance—are taken from the GCR17 ic data. The
difference in figure 5.32 is therefore purely due to the PLT s. Also, the top up
from equation 2.22 has been applied to the PLT s of SSH41 and SSH17. The
PLT comparisons in figure 5.33 are unresolved. Metastable-resolved PLT s from
these sources are possible but unnecessary to assess their quality.

The comparison of PLT s in figure 5.33 resembles the comparison based on
resolution in figure 5.31. The largest differences are observed for the closed-shell
states, Ar-like and Ne-like, along with some of the near neutrals. This leads to
the low temperature discrepancies of Ptot, and the slightly elevated discrepancy
around 100 eV where Ne-like has its T (pk.). That the differences in the PLT s
occur near closed-shells is well established from the work in section 2.3.1 which
identified resolution, metastability, and approximations in the collision calcula-
tions as factors that tend to influence the PLT most at these shell boundaries.
The SSH17 baseline achieves a better agreement of the PLT s with GCR17 ic for
the near-neutral stages, corresponding to better agreement of Ptot at low temper-
ature. Over the remainder of the ions and temperature domains, the difference
between SSH17 and SSH41 is modest. The optimisation strategies of SSH41 and
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Figure 5.32: Comparison of the argon total radiated power function between the ic-GCR
model (GCR17 ic) and the new ADAS baselines. SSH41 is the new cowan PWB baseline used
in the configuration selection work of section 2.3.1. SSH17 is the new autos DW baseline, which
uses the configuration sets optimised on power and the algorithmic strategy for optimising the
λnl. The bottom pane shows the ratio of the Ptot relative to GCR17 ic. Ne = 1012 cm−3 has
been used in the model.

SSH17 have therefore been validated by comparing to the ic-GCR results for
argon.
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baseline, which uses the configuration sets optimised on power and the algorithmic strategy for
optimising the λnl. UR stands for unresolved. The temperatures at peak abundance have been
taken from the GCR17 UR ic result. Ne = 1012 cm−3 has been used in the model.



Chapter 6

Conclusion

The extension of GCR modelling to medium and heavy species in optically-thin,
collisionally-excited plasmas has required progress in a number of areas. Baseline
data is pivotal in the modelling of impurity species, and it was discovered that
previous baselines are insufficient in the new regimes. Chapter 2 has established
the foundations for a new adf04 baseline using autos with the DW approxima-
tion, power-optimised configuration sets, and optimised radial scaling parameters
(λnl) from a novel algorithmic strategy. This constitutes a lift in quality over the
antecedent ADAS-EU [20] baseline. With higher Z0, relativistic effects in atomic
structures become prominent and must be treated. Autos is fundamentally
a non-relativistic code, but it incorporates relativistic corrections through the
Breit-Pauli Hamiltonian and κ-averaged, semi-relativistic radial wave functions.
Numerous results from the literature, including the previous ADAS baselines,
show this to be an accurate and broadly applicable approach, which is further
supported by the favorable comparison between autos and darc for W44+ in
Chapter 3. In addition, more atomic electrons in heavier species produce complex
atomic structures with large degrees of CI, making the task of automated config-
uration selection a priority. The new baseline uses configuration sets determined
by applying electron promotion rules to base metastable configurations and op-
timising these rules on the PLT from a ca-resolved cowan PWB calculation
(Section 2.3.1). No previous baseline dataset considers the problem of config-
uration selection except that of Foster [23], but that treatment is flawed since
only the ground configuration is used as the base upon with promotion rules are

279
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applied, meaning important metastable configurations are inadvertently omitted.
The updated configuration selection procedure proves that configuration sets, in-
cluding metastables, will not remain constant along isoelectronic sequences, and
the list of metastable base configurations can be found in the adf54 promotion
rule files. Those metastables were verified with small atomic population models,
but it raises a thematic problem: an ion-specific list of metastables at LS and
ic resolution is needed in ADAS. In the end, the improvement garnered by this
automatic configuration selection can be judged by looking at the variation in
the PLT caused by moving between the small (cs) and large (cl) set sizes in
figure 2.5. The bounding values of truncation error are an order of magnitude
difference for tungsten when it has open p-shell configurations and 10% observed
for Fe. A potential limitation of this work is that PLT s were calculated using
cowan in ca resolution; however, this was necessary to reduce computation time
and because of the reasons below that made autos unsuitable at the time. A top
up to the PLT was another outcome of this work, and comparison with the PLT s
from the ic-GCR model—figure 5.33—shows the improvement this garners.

A coincidental discovery during the configuration selection work has been
the import of resolution when determining metastable states. The discrepancies
between ca and ic populations and metastables were seen most commonly near
shell and sub-shell boundaries for many-electron atoms, but it is not believed
that any important ic metastables were omitted because of this. Even if this
was the case, the flexibility of the automated procedure allows a configuration
that contains important ic metastables to be added with relative ease. Spin-
changing transitions that proceed through electron exchange along with higher
multipole transitions (> E1) have proven to be influential in these scenarios:
refer to figures 2.6 and 2.17. As such, the necessity to employ the more accurate
DW approximation in autos over the PWB approximation in cowan has been
further emphasised because these spin-changing and higher-order transitions can
be included.

Another related discovery was that errors in the default structure produced
by autos (λnl = 1) could propagate to produce errors of 20–30% in the PLT ,
possibly eliminating any benefit derived from using the DW approximation—
figure 2.7. Therefore, a novel algorithmic strategy for optimising the λnl of au-
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tos was developed to improve the atomic structure produced, grounded in the
physical understanding of orbitals becoming effectively frozen once they consti-
tute part of the core of an atom—Section 2.3.2. The final output was a subclass
of the adf54 file format containing the λnl for ions on a regular grid within each
isoelectronic sequence, facilitating interpolation to obtain the λnl of any ion de-
sired. Three figures of merit were introduced in Sections 2.4 to evaluate the
improvements made, if any, by optimising the λnl in this manner. All three sup-
ported the conclusion that statistically significant improvements by optimisation
of the atomic structure were achieved more frequently for the lowly charged ions
of an isonuclear sequence, while the default and optimised structures appeared
to converge at higher charges—e.g. figure 2.13. It is presently unknown whether
these optimised λnl are strongly coupled to the particular settings used within
autos, in particular if these values will only apply when κ-averaged radial wave
functions are used.

Although baseline adf04 and EIE data is important in the context of GCR
modelling, it is ultimately the highest-quality EIE collision data that is desired
wherever available, and the generation of this data for medium and heavy ele-
ments poses unique obstacles. Chapter 3 has used the example of W44+ to show-
case the difficulties in generating high-quality EIE data using fully-relativistic,
partially radiation damped, Dirac R-matrix calculations with the grasp0/darc

suite. From the perspective of collision calculations in the literature, the most
novel aspect of this work was to incorporate both of the spectroscopically im-
portant transition arrays, [3d104s2–3d94s24f] and [3d104s2–3d94s4p4d], which had
not been considered before, including in the most recent and similar calcula-
tion by Ballance and Griffin [71]. Considering the configurations that open the
3d-subshell required compromises to be made in the CI and CC expansions; con-
figurations 3d104lnl′ for n > 4 were excluded due to computational restrictions.
Comparing to Ballance and Griffin [71], this difference in the CI and CC ex-
pansions leads to a systematic difference between the Υij datasets which is likely
caused by an increase in resonant enhancement of the Ballance and Griffin results,
rather than being due to target structure or radiation damping variation.

In the end, evaluation of the differences in fundamental collision data was
performed through its application in atomic population modelling. From the
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perspective of radiated power loss, it is clear from the P(z)
LT,σ and PL,1,j→k lines

in figure 3.5(a) that the effect of the 3d-subshell transitions was far greater than
any effects due to the neglect of the n = 5 transitions. Moreover, the non-CC,
semi-relativistic calculations (autos DW and cowan PWB) provide a suitable
baseline estimate of the radiated power loss estimates. This supports the con-
clusions from Chapter 2 that only certain observables require the highest quality
data and that the requirements for predicting radiated power loss is adequately
served by baseline quality data. Moreover, it seems that these semi-relativistic
approaches hold up quite well for this fully-relativistic ion, supporting a broad
scope for the new baseline described above. On the other hand, differences in the
F -PEC spectra (figure 3.6) demonstrate that a R-matrix calculation is necessary
for detailed spectroscopic applications. The close agreement of our darc results
with those of Ballance and Griffin further supports the conclusion that omitting
the n = 5 transitions does not have a large effect upon the modelled results.
Rather, it is the inclusion of the 3d-subshell transitions, which create a relatively
strong spectral feature, that is of greater import. Thus, for heavy species and
W44+ in particular, the selection of configurations to include in the CI and CC
expansions appears to be the most influential and important input to the struc-
ture and collision calculation, echoing the premise for why configuration selection
was automated in Section 2.3.1 when designing the new ADAS baseline.

The explicit inclusion of IIE collisions in population modelling is an addi-
tional consequence of shifting towards medium and heavy species, explained by
the rule of thumb specifying that small ∆Eij transitions are most susceptible:
∆Eij ≈ kT (pk.)/M ≈ χ(z)/M for M � 1 (Section 4.1.1). This imposed the
requirement for baseline-quality IIE collision data within ADAS with specific
attention given to the E2-order transitions between fine-structure metastable
levels. Chapter 4 has provided the theoretical and practical basis for a base-
line dataset using the SC-1 approach through the new code, a2iratbt. It uses
symmetrised, first-order perturbative equations with a limiting function, φ(x),
to prevent transition probability overestimates, and at high energies, a cutoff,
r0, is enforced that relates directly to the Born approximation limit, ensuring
the collision strength asymptotically approaches Ωij

(inf) (Section 4.3.1). In ad-
dition, a new ADAS file format, adf06, was required to hold the IIE collision
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data (Section 4.3.2). The literature review of Section 4.2 has revealed that the
SC-1 method is suitable for producing baseline quality data. There is no dis-
cernible error introduced by using a semi-classical versus fully-quantal technique,
and use of the long-range quadrupole interaction term is well justified, since the
r0 cutoff prevents the inaccuracies of this term at high energies. However, there
is some unresolved uncertainty about the amount of error caused by neglecting
the polarisation correction; Heil et al. [114, 126] place the error at about 10%
while descendants of Reid and Schwarz [108] claim it can cause variation of 60%.
CC effects are minimal for transitions within a doublet term (< 5%) but grow
for higher multiplicities, although not outside the acceptable limits of a baseline
(≈ 20%).

In addition, extensive parameter variation studies of the IIE collision quanti-
ties were performed that confirmed the correct operation of the a2iratbt code
(Section 4.4.1). The variation of the projectile parameters, zp and mp, produced
a characteristic “crossing-over” or inflective behaviour in the collision quantities
where larger zp or mp produce lower values below the energy (temperature) in-
flection point but then higher values above it—figures 4.14 and 4.15. The target
parameters caused the collision quantities to scale as expected, and significantly
there was a nearly linear positive correlation with the line strength—figure 4.19.
A reoccurring theme of comparisons with the literature was the imperative to
match atomic structure inputs when comparing IIE transitions, which revealed
that many sources use line strengths or 〈r2〉 values that are underestimated by
about 20% on average, leading to a corresponding underestimate of the cross
section or other relevant collision quantity. Furthermore, it was shown that if no
φ(x) function is used then the collision strength will be severely overestimated
(figure 4.20), while the neglect of r0 causes the collision strength to incorrectly
diverge at high energies (figure 4.21).

Culminating all of these various developments is Chapter 5, which has suc-
cessfully established a prototype of ic-resolved GCR modelling applied to argon,
the first in this resolution for any element. The overarching strategy was to
build directly upon the foundation of the LS -GCR implementation and then
split the relevant LS -resolved quantities onto the ic-resolved manifold using the
appropriate statistical weights of the levels or terms involved (Section 5.1.2).
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Crucially, a shortcut was made by adding the IIE rate coefficients between fine-
structure metastable levels directly to the relevant Qcd coefficients without loss of
accuracy—equation 5.8. However, this tactic can only be applied to transitions
between metastable levels, so future applications that wish to add IIE rate co-
efficients to arbitrary levels will require a more integrated approach. Otherwise,
the sourcing of data for the ic-GCR calculation is similar to that of LS -GCR
with one exception: a consistent set of both LS and ic-resolved adf04 files were
required in this instance to facilitate a meaningful comparison between the final
outputs of the different resolution models—see Appendix B.

Comparing the LS and ic models against the unresolved results in the liter-
ature yielded some important conclusions—Sections 5.2.3 and 5.4.1. The stage-
to-stage fractional abundances from both models showed substantial differences
at finite densities with the various zero-density models in the literature. Notably,
the ionisation balance of Bryans [189] displayed order of magnitude differences for
near neutrals, decreasingly gradually to perfect agreement for the highly ionised
stages. Most of this is explained by density effects and differences in DR data,
but a discrepancy in the defintions of the αcd and total recombination coefficient
caused lingering differences for Ne-like Ar8+ to Be-like Ar14+. On the other hand,
comparisons of Ptot showed better agreement, generally within 50% for the higher
quality CR result of Fournier et al. [187]. The PLT s from this source also com-
pare favourably to within 20%. These comparisons are strong evidence that the
present GCR model is valid, particularly the extension to ic resolution.

One of the more significant and novel aspects of this work is that it has given
the most accurate depiction to date of how IIE rates affect the population mod-
els of medium and heavy species. Although there are a number of ic-resolved
CR models in the literature that include IIE rates [87, 90, 101, 193–199], they
only apply to single ion stages and are strictly concerned with determining line
ratios. They do prove IIE can have a defining influence upon the interpretation
of the models, but this is in a much more limited sense than the objectives of
this thesis dictate. Nonetheless, the similarly limited IIE study in Section 5.3.1.1
has produced the valuable notion of a “sweet spot” for IIE influence that loosely
defines the bounding parameter space. First, the ion must be one for which it
is possible to have a CR regime specific to the metastables; this tends to be
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achieved for moderately charged ions, z ' 10, because they produce an appro-
priate degree of fine-structure splitting that allows radiative and collisional rates
to be comparable. Second, Te and Ne must actually reside in this CR regime;
if ionisation equilibrium is assumed, then Te will be determined by T (pk.), while
Ne will depend on the operational parameters of the relevant plasma environ-
ment. Third and last, Te must lie above the steeply suppressed region of the
IIE rate coefficient, something that can again be estimated by the rule of thumb
in equation 4.4. Also, the study has found that it is not reasonable to expect
the inclusion of IIE rates in an ic-resolved model to cause agreement with an
LS -resolved model at any density other than in the LTE regime, regardless of
whether the species is light, medium, or heavy. These conclusions were mirrored
in the ic-resolved fractional abundances for argon produced by the GCR proto-
type upon supplementing the Qcd’s with IIE rate coefficients (Section 5.3.1.2).
When adding only proton-impact rates, the metastable level fractional abun-
dances that were most influenced belonged to ionisation stages above z = 10, al-
though S-like Ar2+ saw substantial alteration of its resolved fractional abundances
related to fairly anomalous behaviour of the 5D term—figure 5.19. The inclusion
of proton-impact could either increase or decrease the fractional abundance of
a metastable depending on how the populations are fed and their pathways to
the ground. Higher temperatures tended to increase the deviation caused by IIE,
agreeing with the general conclusions from Chapter 4 and clearly expressed in the
supplemented Qcd’s of figures 5.20 and 5.21. A surprising discovery was that in-
ter -multiplet transitions can have Qcd’s substantially altered by IIE and that this
translates to the fractional abundances—see N-like Ar11+ in figure 5.21. However,
intra-multiplet transitions are still generally more susceptible to IIE transitions.
Varying the ion projectile has produced noticeable differences in the resulting frac-
tional abundances (figure 5.22) with the characteristic “criss-crossing” behaviour
of the IIE rate coefficients propagating through in some instances. Three null
results are of note: T (pk.), unresolved fractional abundances, and Ptot were found
to be insensitive to IIE.

The resolution of the GCR model also affected the results for argon. Com-
paring the unresolved fractional abundances from the LS and ic models showed
fair agreement of about 50% near the peaks but order of magnitude differences



CHAPTER 6. CONCLUSION 286

on the tails. Interestingly, the agreement is worse at low densities, where coronal
conditions produce the most discrepancy between the LS and ic pictures. Ptot

also displayed sensitivity to resolution, but to a lesser degree of < 20% across
the majority of the temperature domain. However, the PLT differed by factors
of 3–5 around closed shells because of resolution, causing some limited regions
of ≈ 50% difference for Ptot. Ultimately, however, the true impact of the move
to ic resolution can only be judged through the use of these results in transport
modelling.

Finally, definitive lists of LS -term and ic-level metastables for argon were
determined—tables 5.4 and 5.7, respectively. In both cases, the simple ADAS
list overestimates the number of metastable states for argon. For LS , the main
reasons were the isoelectronic scaling of term energies and that pure LS data
differs compared to data bundled from ic calculations. This bundled LS data
was found to be more realistic because it reproduced the ic-level metastables
with high fidelity, the only exceptions being Mg-like Ar6+ and Be-like Ar14+.
Overall, these results suggest the imperative of using population modelling to
determine metastable sets that can vary isoelectronically.

6.1 Future Work

Thesis work, like any research endeavour, is never really completed but only
pushed forward, awaiting further progress. There are a number of areas in this
thesis to which the adage readily applies.

The components of a new adf04 baseline for ADAS, outlined in Chapter 2,
are present in the development space of ADAS, but mass production will require
a final processing chain to be constructed, linking all of these parts seamlessly to-
gether. It was raised above that the λnl determined in the manner of Section 2.3.2
will inherently depend upon the autos settings used during optimisation; the
precise sensitivity of the λnl to these settings and whether they will yield im-
provements under all circumstances is yet to be determined. A number of kinks
in the isoelectronic λnl and some strange divergence issues for the 2p value are
other areas that merit attention in the future. At the moment, it is posited that
the rise in 2p values along an isoelectronic sequence is caused by the structure
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becoming increasingly insensitive to the 2p λnl values because the TFDA poten-
tial itself is dominated by the Coulomb term. But this is by no means definitive
and requires more substantiating evidence.

An obvious improvement of the W44+ EIE work would be to extend the CI/CC
expansions of the calculation presented in Chapter 3 to include the 3d104l5l′

configurations so as to unequivocally resolve the effect of the additional resonant
enhancement upon the lower-lying transitions. Of course, this will require a
larger computing facility. However, it turns out that some collaborators at QUB
have already made progress towards this goal [204]. A cursory inspection shows
good agreement between their new calculations and those presented here, but a
full comparison is left to their future publication that is in production [205]. In
addition, updating comparisons to use the new autos baseline would be useful
to confirm that it maintains fidelity with the high-quality result.

Presently, the a2iratbt code only handles E2-order transitions, and the most
pressing development is to extend it to E1 (dipole). This would facilitate the
calculation of l-changing transitions that redistribute levels within higher-lying
n-shells, something that a fully-integrated bundle-n population code will need to
consider. One might also consider borrowing one of the techniques from the liter-
ature for estimating the cross section or collision strength of transitions that only
proceed through collisional coupling; however, it was concluded in Section 4.2
that the benefit of this is not worthwhile. Rather, the progression towards an
SC-CC method should be prioritised if an increase in baseline quality is desired.
Concurrently, a definitive ruling on the importance of the polarisation correc-
tion should be obtained, which can only be done by implementing it, given the
ambiguity in the literature.

The implementation of ic-resolved GCR presented here can confidently stand
on its own for broad use within ADAS. Even so, it is still a prototype, and as
one moves to heavier elements with higher Z0, some of the assumptions made
will become less and less accurate. In particular, the bundle-nS representation of
the highly-excited ry states is no longer tenable: spin-system breakdown at high
n shells is a well-known phenomenon that occurs even for light elements and is
compensated by adding spin-changing autoionisation rates to the ADAS204 cal-
culation in those cases. Rather, the proper treatment of the low-resolution pop-
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ulation calculation is a bundle-n or bundle-nl representation built on J-resolved
parents: (γνJν)n or (γνJν)nl. In many ways, this representation is more straight-
forward than bundle-nS, but nonetheless it requires an entirely new code because
ADAS204 is wholly unsuited to the task. Ironically, this will be achieved by re-
verting to an ancestor of ADAS204 [206] that uses a bundle-nl model and then
rebuilding from there. During the course of this ancestor’s development into
ADAS204, much of its versatility was lost, particularly the stability of the high
nl solution with interpolation in n and l, and safe performance at low reduced
temperatures. Because of the need to put all GCR coefficients on the same en-
ergy and temperature grid in adf11 files, this low reduced temperature limitation
caused a number of problems while developing the prototype ic-GCR model. Al-
though this will be a new code, the logic of how the highly-excited populations
are condensed and then projected onto the low-lying set remains the same, so
no new machinery is needed there, and the ic-resolved adf18/a17_p208 files pro-
duced for the prototype should work seamlessly. Moreover, this new population
code should account for the E1 l-changing collisions that redistribute the nl pop-
ulations once a2iratbt has been extended to handle these transitions. A code
that will require updating is ADAS211 so that it produces ic-resolved radiative
recombination rates. The theoretical framework is already present in the ADAS
manual [15], but any improvement in accuracy is questioned there.

Finally, there are a few tasks logically set by the work of Chapter 5. First,
it must be proven that the method of adding IIE rate coefficients directly to the
Qcd coefficient (equation 5.8) is equivalent to supplementing the EIE Υij’s in the
adf04 files. Regardless, the capability to directly handle adf06 files should be
added to the highly-resolved population codes (ADAS205 and ADAS208) so that
IIE can be arbitrarily included in the population model. Second, the capability
to set a separate ion temperature, Ti, should be added. A number of physical
circumstances are known where Ti 6= Te because of the slow thermalisation time
for heavier positive ion species; this usually results in elevated Ti, something that
would certainly benefit the effect of IIE. Third, an ion-specific list of metastables
should be created within ADAS, and the imperative for such information was mo-
tivated by the baseline work in Chapter 2 and the move to ic-GCR in Chapter 5,
which highlighted that not all levels in a metastable LS term will themselves be
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metastable.



Appendix A

Definitions for ADAS Codes:

Collision Quantities

The following is an update to the definitions used in ADAS for the various collision
processes of excitation and ionisation. Crucially, sections have been added to
address processes involving ion projectiles. A slightly different notation is used
here in keeping with other ADAS documentation.

A.1 Electron-impact excitation (EIE)

For the reaction
A z+
i (Ei) + e(ε′i)→ A z+

j (Ej) + e(ε′j)

where ε′i + Ei = ε′j + Ej, ∆Eij = Ej − Ei, Ei is the excitation energy of state
i, and ε′i is the energy of the incident (i) or scattered (j) reduced particle in the
COM frame. The COM frame is effectively equivalent to the LAB frame for EIE
because me � mt.

The reaction is described by the cross section, σi→j(εi), which is only energet-
ically possible if εi ≥ ∆Eij.

Define X = εi/∆Eij where X ∈ [1,∞]

The collision strength is dimensionless and symmetrical between initial and
final states,

Ωij = gi(Ei/IH)(σi→j(εi)/πa
2
0) = gj(Ej/IH)(σj→i(εj)/πa

2
0)

290
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with gi and gj the statistical weights and IH the Rydberg energy.
To convert (measured/calculated) cross sections (sigma) to collision strengths

(omega ≡ Ωij) which are tabulated against incident energy,
omega = gi * (delta_e * X / 109737.26) * (sigma / 8.7972e-17)

where X is defined by the user and sigma (cm2) is interpolated for X * delta_e.
A type 1, adf04 file tabulates Ωij as a function of X.
The Maxwellian distribution function for the relative motion of two sets of

free particles in thermodynamic equilibrium is:

f(vr) = 4π

(
M

2πkT

)3/2

v2
r exp(−mv

2
r

2kT
)

f(ε′i) = 2π

(
1

πkT

)3/2

ε′i
1/2 exp(−ε′i/kT )

where M = mpmt/(mp + mt) is the reduced mass, T the temperature, and∫∞
0
f(vr) dvr = 1. Note that v2

r = 2ε′i/M and dvr = 1/(2Mε′i)
1/2 dε′i. Again,

because M ∼ me for EIE, these expressions effectively become those for free
particles:

f(v) = 4π
( me

2πkT

)3/2

v2 exp

(
− v2

2kT

)
f(E) = 2π

(
1

πkT

)3/2

ε1/2 exp(−ε/kT ).
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The excitation rate is then

qi→j(T ) = 〈vi σi→j(vi)〉

=

∞∫
∆Eij

f(vi) vi σi→j(vi) dvi

= 4π
( me

2πkT

)3/2
∞∫

vi(∆Eij)

v2
i vi exp(−mev

2
i /2kT )σi→j(vi) dvi

= 4π
( me

2πkT

)3/2
(

2

me

)3/2(
1

2me

)1/2
∞∫

∆Eij

εi exp(−εi/kT )σi→j(εi) dεi

=
2
√

2√
π

(
1

kT

)3/2(
1

me

)1/2
πa2

0IH
gi

∞∫
∆Eij

Ωij(εi) exp(−εi/kT ) dεi

where the cross section is replaced by the collision strength.
When the integral is further transformed from εi to εj (εi = εj + ∆Eij), and

noting that αc = (2IH/me)
1/2, the excitation rate coefficient for electron impact

excitation becomes

qi→j(Te) = 2
√
πa2

0αc

(
IH
kTe

)1/2
1

gi
exp(−∆Eij/kTe)Υij

where Υij is the effective collision strength,

Υij =

∞∫
0

Ωij(εj) exp(−εj/kTe) d(εj/kTe).

The limits reflect that this integral is defined over electron energies, εj, with
respect to the final, excited state. However Υij is symmetrical between excitation
and de-excitation concordant with the collision strength.

A type 3, adf04 file tabulates Υij as a function of Te .
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De-excitation and excitation rates follow:

qj→i(Te) = 2
√
πa2

0αc
1

gj

(
IH
kTe

)1/2

Υij

=
gi
gj

exp(∆Eij/kTe) qi→j(Te)

and 2
√
πa2

0αc = 2.1716× 10−8cm3s−1.
The offline code adas7#3/adf04_om2ups.x can convert a type 1 to a type 3

adf04 file. The reverse process is not possible.

A.2 Ion-impact excitation (IIE)

The collision strength is the ratio of the cross section to the squared de Broglie
wavelength, and the generalised form is

Ωion
ij = Mgi(εi/IH)(σi→j(εi)/πa

2
0) = Mgj(Ej/IH)(σj→i(εj)/πa

2
0)

where M is the reduced mass of the target-projectile system,

M =
mtmp

mt +mp

in atomic units (me = 1). The energies (εi, εj) are those of the incident and
scattered reduced projectile. As noted in the previous section, M → me ≡ 1 for
electron impact, where the target is considered massive compared to the electron
projectile. This is not the case where the projectile ion is a proton or a heavier
particle, so the reduced mass must be carried through all of the relevant collision
expressions.

The threshold parameter X = εi/∆Eij is defined the same way as for the
electron impact case.

A type 1, adf06 file tabulates Ωion
ij against X.

The effective collision strength for ion impact is defined identically as the
electron impact version, but the relative speed Maxwellian distributions and the
reduced mass must be tracked throughout:
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qi→j(T ) = 〈vr σi→j(vr)〉 [a2
0αc]

=

∞∫
vr(∆Eij)

f(vr) vr σi→j(vr) dvr

=

∞∫
∆Eij

f(εi)

(
2εi
M

)1/2

σi→j(εi) dεi

= 2π

(
1

πkT

)3/2(
2

M

)1/2
∞∫

∆Eij

ε
1/2
i exp(−εi/kT )ε

1/2
i σi→j(εi) dεi

= 2

(
1

kT

)3/2(
2

πM

)1/2
∞∫

∆Eij

εi exp(−εi/kT )
πΩij(εi)

Mgiεi
dεi

=
2
√
π

gi

(
2

kT

)1/2(
1

M

)3/2
∞∫

∆Eij

Ωij exp(−εi/kT ) d(εi/kT )

Converting again to εj and using Ryd units for energy,

qioni→j(Tion) =
2
√
π

gi

(
IH
kTion

)1/2(
1

M

)3/2

exp(−∆Eij/kTion)Υion
ij [a2

0αc].

Notice the reduced mass factor, M−3/2, compared to the analogous expression
for electron-impact excitation. A type 3, adf06 file tabulates Υion

ij against Tion.
There is no ADAS code to convert between a type 1 and type 3 adf06 file.

Consider developing adas7#3/adf06_om2ups.x

A.3 Electron impact ionization

The reaction
Az+γ + e→ A(z+1)+

p + e+ e

where the ion in its initial state, γ, is ionised to a residual state p. The final state
may be metastable but often is not specified, being the sum over all possible
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final states. This direct ionisation may be augmented by indirect auto-ionisation
channels which are manifest as steps in the cross section.

An electron impact ionisation collision strength is defined in the same way as
for excitation:

Ωionis
γp = gγ

E

IH

σionisγ→p
πa2

0

where E is the energy of the impacting electron and gγ the statistical weight of
the ionising level.

To convert (measured/calculated) cross sections (sigma) to collision strengths
(omega_s ≡ Ωionis) which are tabulated against incident energy,

omega_s = gi * (ip * X / 13.6) * (sigma / 8.7972e-17)

where X is defined by the user, ip is the energy of the level–parent gap (in eV,
equivalent to ionisation potential for ground state ionisation) and sigma (cm2) is
interpolated for X * ip. Any steps, due to auto-ionisation, in the cross section
are not scaled separately so the collision strength will retain the energy resolved
structure of the cross section.

A type 1, adf04 file tabulates Ωionis
ij as a function of X = E/Iionis.

The ionisation rate coefficient, for a Maxwellian distribution, is:

Sionisγ→p = 2
√
παa2

0

1

gγ
exp(−Iionis/kT ) Υionis

γ→p

where Iionis = Ip(m)−Ei with Ip(m) being the ionisation potential of the parent
metastable and Ei is the energy relative to ground of the level being ionised. The
effective collision strength (Υγ→p) is defined the same way as the excitation case.

The type 3 adf04 file stores a scaled version of the ionisation rate as a function
of temperature. The S-line in the file is defined:

Sscaledγ→p = exp(Iionis/kT )Sγ→p

where S is the ionisation rate coefficient (cm3 s−1) and not the ‘ionisation effective
collision strength’.
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A.4 Ion impact ionization

The reaction,
Az+γ + p→ A(z+1)+

p + p+ e

where the ionising particle projectile, p, can be a proton or a heavier ion.
The ion impact collision strength for ionisation is defined as:

Ωion;ionis
γp = Mgγ(E/IH)(σγp(E)/πa2

0)

where M = mtmp/(mt +mp) is the reduced mass of the target-projectile system,
in atomic units.

The threshold parameter, X = E/Iionis with Iionis = Ip(m) − Ei with Ip(m)

being the ionisation potential of the parent metastable and Ei is the energy
relative to ground of the level being ionised.

The type 1 adf06 file tabulates Ωion;ionis
γp as a function of the threshold param-

eter, X.
The ionisation rate is formed in a similar way as the electron impact rate with

a mass scaling factor:

Sion;ionis
γ→p (Tion) = 2

√
πa2

0αc
1

gγ

(
IH
kT

)1/2

exp(−Iionis/kT )

(
1

M

)3/2

Υion;ionis
γp

The type 3 adf06 file tabulates a scaled, mass-free, rate coefficient with ion
temperature,

Sion;ionis,scaled
γ→p = M3/2 exp(Iionis/kT )Sion;ionis

γ→p .

A.5 Comments

To calculate ion impact excitation and ionisation rates from the data in the type
3 adf06 file requires that a mass factor is applied (simple multiplication) when
forming the rate from the effective collision strengths. For ionisation this is in-
consistent with the definition of the electron impact ionisation S-line in the adf04
file. However the expectation should be that the way of forming the excitation
and ionisation rates from one file, whether adf04 or adf06, should be consistent.
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Formally the two formats are consistent since the electron S-line has an implicit
mass factor of 1.



Appendix B

Fundamental Data for Argon GCR

Modelling

Some of the details related to the fundamental atomic data used in Chapter 5
have been moved here in the interest of maintaining the focus on the results of the
GCR modelling rather than the nitty-gritty technicalities. Nonetheless, correctly
sourcing and understanding the atomic data is as essential aspect of the modelling
process: it underpins the accuracy and validity of the result.

B.1 Preprocessing of adf04 Data

Before adf04 data from a literature source can be used with the ADAS GCR
codes, they must be preprocessed to ensure a number of criteria are met. More-
over, the provision of ensuring consistency between the LS and ic-resolved files
adds to the complexity of the task. A strategy was developed to fulfill these crite-
ria and is outlined in the following steps. The order of the sequence is important,
but it should be noted that these steps must be tailored based on the incoming
data: some steps may not be needed, or additional ones may have to be added.
As much as possible, any anomalies are given in section B.2.

1. Ensure compliance of ic input file (ICIN) with adf04 format in ADAS man-
ual [15]. ICIN for each ion is specified in table 5.1. This step usually entails

298
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modifying the configuration string format to standard ADAS notation:

n1l1q1 n2l2q2 . . . niliqi (B.1)

where i indexes the shell, n is the single character principal quantum number
(n > 9 goes alphabetically), l is the orbital angular momentum quantum
number in spectroscopic notation (e.g. s, p, d, . . . etc.), and q is the single
character electron occupancy of the shell. For example, 1s2 2s2 2p6 3s1

is the ground configuration of Na-like.

2. Perform cowan calculation in LS and ic resolution with the same config-
uration as those in ICIN.

• cowan is executed with the offline ADAS Perl script and the appro-
priate configurations contained in the adf34 driver file:

$> /home/adas/offline_adas/adas8#1/scripts/run_adas8#1 \

<adf34> <rcn2_inst> <pp_file>

• The resolution of the calculation is controlled in the post-processing
file pp_file.

• The LS adf04 output contains a map between the two resolutions that
is used in a subsequent step.

• Orbital energies needed for the ADAS204 calculation are also produced
here and used in a subsequent step.

3. Adjust ICIN energy levels to NIST values, producing the intermediate file
NMI.

• The NIST energy values are contained in adf04 stubs in the ADAS
database: /home/adas/adas/adf04/nist#18/ic#ar<z>.dat

• First, attempt to use the offline ADAS program adas7#5.for to per-
form a merge of ICIN with the NIST energy level adf04 file. The
driver file contains the following:

<NIST_adf04_filename>

<ICIN_adf04_filename>
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<merged_output_adf04_filename>

<log_filename>

.true.

.false.

• Check the log output to ensure a sensible match has been achieved.

• If not, manually merge the NIST energy values into ICIN to produce
NMI.

• Otherwise, use the merged adf04 output from adas7#5.for as NMI.

4. Filter and append orbital energies to produce final ic file.

• FilterNMI from previous step using the utility program, filter04.x.
This utility puts levels in energy order, removes any levels above the
ionisation potential (no autoionising levels should be present as they
are considered elsewhere), and zeroes any unphysical A-values.

• Add the orbital energies produced by the cowan calculation in Step
2.

• Add comments to the bottom of the file documenting the steps above.

5. Create map from ic-resolved NMI indices to LS bundled indices.

• Use adas7#5.for to match the NMI file to the ic, cowan adf04 file
from Step 2. The map between the indices of the two files is contained
in the log file output.

• Take the map between the ic and LS cowan files from Step 2.

• String together the two maps to get a final LS bundling map:
NMI 7→ ic cowan 7→ LS

6. Perform LS bundling of NMI file using ADAS IDL program, bundle_adf04.pro,
and the map generated from step 5.1

7. Repeat Step 4 but on the intermediate LS produced in Step 6.
1There is a small inconsistency in the present work at the bundling step. Some of the LS

files were generated by bundling the final ic file rather than NMI. It is not likely this will be
a significant effect.
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Sequence Ion Configurations Levels Transitions

H-like Ar17+ 1s–5g 25 300
He-like Ar16+ 1s2, 1s(2s–4f) 31 465
Li-like Ar15+ 1s2(2s–5g), 1s2s2, 1s2p2, 1s2s(2p–4f), 1s2p(3s–4f) 204 19 086
Be-like Ar14+ 1s22s2, 1s22s2p, 1s22p2, 1s22s(3s–5g,6s–6d,7s–7d), 1s22p(3s–

5g,6s–6d,7s–7d)
238 28 203

B-like Ar13+ 2s22p, 2s2p2, 2p3, 2s2(3s–4f), 2s2p(3s-4f), 2p2(3s–3d) +
2p2(4s–4f), 2s3l3l′, 2p3s3l in CI

204 20 710

C-like Ar12+ 2s22p2, 2s22p(3s–4f), 2s2p3, 2s2p2(3s–3d), 2p4 198 19 503
N-like Ar11+ 2s22p3, 2s22p2(3s–5s), 2s2p4, 2s2p33s, 2p5 186 17 205
O-like Ar10+ 2s22p4, 2s22p3(3s–5s), 2s2p5, 2s2p43s, 2p6 228 25 878
F-like Ar9+ 2s22p5, 2s2p6, 2s22p4(3s–4f), 2s2p5(3s–3d) 195 18 915
Ne-like Ar8+ 2s22p6, 2s22p5(3s–5g, 6s–6d, 7s–7d), 2s2p6(3s–5g) +

2s22p4(3s–3d)(3s–5g) in CI
209 21 738

Na-like Ar7+ 2p6(3s–6h), 2p5(3s–3p)(3s–3d) 161 9 397
Mg-like Ar6+ 3s2, 3s3p, 3s3d, 3p2, 3p3d, 3d2, 3s(4s–5g), 3p(4s–5g), 3d(4s–

5g)
283 39 903

Al-like Ar5+ 3s2(3p–5s), 3s3p(3d–5s), 3p3, 3p23d 155 11 935
Si-like Ar4+ 3s23p2, 3s23p(3d–5s), 3s3p3, 3s3p23d, 3p4, 3s3p3d2 220 24 090
P-like Ar3+ 3s23p3, 3s23p2(3d–5s), 3s3p4, 3s23p3d2 181 16 290
S-like Ar2+ 3s23p4, 3s3p5, 3p6, 3p53d, 3s23p3(3d–5s) 186 17 205

LS 3p5, 3s3p6, 3p4(3d–5p) + 3p4(5d–12g) pseudo 40 + 412 pseudo 780
Cl-like Ar1+ 3p5, 3s3p6, 3p4(3d–5p) 147 10 731
Ar-like Ar0+ 3p6, 3p5nl, 3s3p4nl; nl = 3d–5p + 5d–14g pseudo 57 + 393 pseudo 1 596

Table B.1: The configuration sets of the Ar adf04 data used in GCR modelling. The sources
of the actual adf04 files are given in table 5.1.

B.2 Collision Data Sources

Some additional details and synopses of the adf04 sources for argon in table 5.1
are provided here. These collision data constitute the primary input to the pre-
processing steps elaborated in the preceding section B.1. The data sources have
been grouped according to methodology and the code used because many of them
share the same provenance; thus they share the same limited description provided
here with any relevant difference also noted. The configurations used in the CI
and CC expansions of the various collision calculations have been consolidated in
table B.1.

B.2.1 Parallelized BP rmatrix i

The adf04 sources Ludlow et al. (2010) [147] and Munoz Burgos et al. (2009) [151]
fall into this category. They cover the ions Ar(17+,12+,11+,10+,5+,4+,3+,2+) corre-
sponding to (H, C, N, O, Al, Si, P, S)-like, respectively. Munoz Burgos et al.
(2009) only addresses S-like Ar2+, but it is the progenitor to the extensive isonu-
clear work in Ludlow et al. (2010). For the structure calculation, autos is used.
The BP Hamiltonian with only one-body operators is diagonalized, and the or-
bital basis set is formed from the TFDA statistical potential (with λnl) in the
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radial wave equation—see section 2.2.1 for more details about autos. In Lud-
low et al. (2010), the λnl are are optimized by hand based on agreement with
NIST energy levels for Ar17+ through Ar5+, but for the remaining ions, a singular
value decomposition code developed in Burgos Munoz et al. (2009) is employed
to further tune the λnl by iterating through matrix operations towards closer
agreement of the energies and Sij from NIST. An average percent difference of
1.8% is achieved across these isonuclear ions relative to NIST energy level values.

The scattering calculation is performed with a suite of parallel R-matrix codes
derived from the Belfast atomic R-matrix code, rmatrix i [207], capable of
solving the inner-region problem in LS or ic. A non-exchange version, rmatrix

nx, is detailed in [208]. The modifications needed to modernise the codes for
massively parallel computers are traced through [80, 81, 209] and the parallel
version of the outer-region, asymptotic problem in [210]. The cases presented
here conduct the problem in ic resolution by including one-body BP operators in
the Hamiltonian, hence the abbreviation to BP R-matrix. These codes can also
accommodate the inclusion of pseudo-states in the target, but such measures are
only necessary for near-neutral species, so discussion of this subject is deferred
to the section addressing neutral and singly-ionised argon: section B.2.3. Refer
to table B.1 for the configurations included in the CI and CC expansions of each
ion calculation. Some comments specific to the ions treated by these calculations
are now made.

H-like Ar XVIII Radiation damping is considered for this highly-charged ion
using the optical potential approach [211, 212]. Also, because of the high degree
of energy degeneracy amongst hydrogenic levels and terms, the H-like system is
only appropriately handled in ry resolution (i.e. bundling by n-shell). This is not
a pre-processing step, but rather done after the GCR processing and “decoration”
of the input adf04 file. Bundling is handled by ADAS209 instead of the IDL
routine used in the preprocessing because it retains R and S-lines.
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B.2.2 RmaX Sequence Work

A number of the adf04 sources for argon were produced by the UK RmaX/A-
PAP Network2 as part of its work to generate high-quality R-matrix data along
entire isoelectronic sequences. Those in this category are He-like Ar16+ [148],
Li-like Ar15+ [149], Be-like Ar14+ [49], B-like Ar13+ [48], F-like Ar9+ [46], Ne-like
Ar8+ [47], Na-like Ar7+ [150], and Mg-like Ar6+ [50]. As in the previous category,
autos is used at the structure code with one-body BP operators in the Hamilto-
nian and the TFDA statistical potential including λnl in the radial equation. The
determination of the λnl is not consistent throughout the publications, and the
various techniques are documented for each ion below. Notwithstanding this, a
comparison of these λnl with those from the optimisation work presented in this
thesis is given in section 2.3.2.

The codes used to solve the scattering problem have the identical origin to
those from the previous section: rmatrix i [207]. However, the calculation is
instead initially performed in LS , and ic-resolved data is generated using the
ICFT method [158], described in the Effective Collision Strengths paragraph of
section 5.1.3.1. Comment was made therein that ICFT R-matrix calculations
produce a remarkably close approximation to the full BP analogue, and it is in
this context that the data from this isoelectronic sequence work is preferred over
the intersecting cases of BP R-matrix data in the previous section B.2.1. Put
simply, there is always a trade-off in collision calculations between the sophisti-
cation of the approximation and the size of the CC expansion. Working along an
isoelectronic sequence is efficient because the CI and CC expansions only need to
be set once for all of the ions calculated. Thus, more time can be allocated to
ensuring that these expansions provide the optimal size for the Hamiltonian ma-
trix and encompass the most important configuration mixing effects. In contrast,
working along an isoelectronic sequence means that this step must be repeated
for each ion, and invariably the consideration of each N -electron problem will be
more constrained by the time available to the producer. For all the overlapping
cases of argon ions, the ICFT RmaX works have larger CC expansions than the
full BP R-matrix calculations of Ludlow et al. (2010) [147], and it is believed
that this more than compensates for any loss of accuracy comparing ICFT to BP

2http://amdpp.phys.strath.ac.uk/UK_RmaX

http://amdpp.phys.strath.ac.uk/UK_RmaX
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R-matrix.
The final adf04 files produced by this series have non-dipole A-values and

infinite energy Born limits supplemented from the autos calculation because
these are not provided by the R-matrix codes. Again, the configurations included
in the CI and CC expansions for these calculations are found in table B.1. Now,
some finer details for each ion are made.

He-like Ar XVII The λnl have been determined by the automatic procedure
within autos that minimises the weighted sum of the term energies. It is not
clear from the paper, but presumably all terms resulting from the CI are included
in the energy functional. Further manual manipulation of the λnl was not nec-
essary because the initial energy levels agree with those from NIST within 1.8%.
Furthermore, the variation between the fij’s calculated in the length and velocity
gauges is also within approximately 10%. Like with the H-like Ar17+ ion, the high
z of this ion means that radiation damping must be considered, and again the
optical potential approach is used. Technically, this ion is not part of the RmaX
sequence work, but the methods and codes used are effectively identical, barring
some missing parallelization of the codes.

Li-like Ar XVI A number of inner core excited levels, 1s2lnl′, are included
in this calculation, but they lie well above the ionisation potential. As a result,
they are filtered out during preprocessing. In addition, both radiation and Auger
damping were considered.

Be-like Ar XV The λnl are determined automatically by autos, but some
fairly extreme trends with Z0 result—refer to section 2.3.2. Nevertheless, agree-
ment with NIST energy levels is within 1.5%. No radiation damping is included
after this ion because it is predicted to be negligible.

B-like Ar XIII More attention was devoted to the determination of the λnl
here. First, all terms belonging to the 1s22sx2py (x+ y = 3) configurations were
included in the weighted energy sum, and the scaling parameters associated with
the 1s, 2s, and 2p orbitals were varied and all others fixed. Then, the energies of
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the 1s22s3l and 1s22s4l configurations were separately minimized by varying the
3l and 4l orbital parameters.

F-like Ar X The λnl are determined automatically by autos; however, because
of the more complex configurations involved, agreement with NIST energies is
only within approximately 5%, and so marginally worse than the other cases.
Recall that NIST energies are supplemented in the preprocessing steps, so the
propagation of this error is mitigated in the GCR modelling.

Ne-like Ar IX Similar to B-like, a manual, two part optimisation of the λnl
was performed. First, the energy of the ground level 2s22p6 1S0 was minimized
by varying the λnl of the 2s and 2p orbitals. Next, the energy functional for the
14 terms of the 2s22p53l configurations was minimized by varying the 3l orbital
scaling parameters. All other λnl were set to one.

Na-like Ar VIII The λnl were determined automatically by minimising the
weighted sum of all LS terms included in the CI. Agreement with NIST energies
is within 1%. The adf04 in the ADAS database includes inner core excitations,
but the published work does not refer to this. Once again, however, these inner
electron excited states lie well above the ionisation potential, so they are filtered
out during the preprocessing steps of section B.1.

Mg-like Ar VII The λnl were determined automatically by minimising the
weighted sum of all LS terms included in the CI. Agreement with NIST energy
levels is within 1.5%.

B.2.3 RMPS

The accurate calculation of neutral and singly-ionised ions is notoriously difficult
for many reasons that have been addressed in this thesis: approximations made in
both structure and collision calculations tend to collapse or become inappropriate
in this regime. In particular, the physical phenomenon of bound states coupling
to the continuum is more pronounced with the smaller ionisation potentials of
neutral and singly-ionised species. One approach to dealing with this effect is
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to introduce pseudo-states into the structure and collision calculation. Pseudo-
states are an effective way of compactly representing high-lying Rydberg states
and into the continuum. If this is combined with the R-matrix method, then
the R-matrix with pseudo-states (RMPS) approach results, and the sources for
neutral argon [213] and Cl-like Ar1+ [214] both use it. Once again, the computer
code that implements this methodology [215] has a very similar heritage with
those from the previous two sections: a parallelized version of rmatrix i [80, 81,
207, 209]. An important step is orthogonalizing the (N+1)-electron continuum
orbitals relative to the pseudo-orbitals of the target. Furthermore, autos handles
the structure problem in both of these sources, and further details are provided
in the separate sections below.

Cl-like Ar II For the structure calculation, autos is again used with one-body
BP operators in the Hamiltonian, but in the radial equation an nl-dependent
Hartree potential is evaluated with Slater-Type Orbitals (STOs), which are sub-
sequently orthogonalised. Non-orthogonal, Laguerre pseudo-orbitals were gener-
ated for subshells 5p–12g. Table B.1 gives the number of resulting “true” states
and pseudo-states. Critically, both the structure and collision calculation are
performed in LS coupling, meaning this is the only argon ion for which there is
no high-quality data directly available in ic resolution.

Accordingly, some additional steps were required for the preprocessing of the
adf04 file from this source [214]. The strategy adopted here was to “unbundle” the
LS data using the program ADAS210 to produce an ic-resolved file. This program
requires an ic template file onto whic the LS source file is unbundled, and an adf04
from the improved baseline dataset described in Chapter 2 was used for this
purpose. It is yet another example of how universal baseline data can be useful.
As a reminder, the improved baseline adf04 dataset is generated using autos

with the DW approximation for the scattering problem, optimised λnl to improve
the structure, and power-optimised configuration sets. The strict requirements of
ADAS210 meant that the ic template file had to be truncated quite severely both
in terms of levels and temperatures, and a number of the A-values in the output ic
file were set to zero because of LS selection rules. To cope with these limitations,
the ic output of ADAS210 was used to supplement the original, improved baseline
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adf04 from which the template file was derived. This was achieved with the
ADAS IDL routine, merge_adf04.pro, and the resulting file had all of the missing
A-values recovered and any truncated levels and transitions restored. Therefore,
the adf04 for Ar1+ must be interpreted a mix of the baseline and R-matrix with
pseudo-states (RMPS) data, and so not of the same quality as the other sources
for argon.

With a suitable ic-resolved file produced, the complete procedure outlined in
the preceding section B.1 can be performed like for all other cases. Because of the
importance of neutral and singly ionised species from the perspective of emission
in laboratory plasmas, experimental radiative data for these stages is more readily
available, and the identification of persistent or dominant lines possible. Hence,
A-values from the NIST “Handbook of Basic Atomic Spectroscopic Data” [154]
were added manually to the NMI file in between Steps 3 and 4.

Ar-like Ar I The complete details of the structure and collision calculation
are provided in reference [213], which bases itself on the LS RMPS calculation
in [216]. For the structure, autos is used with one-body BP operators in the
Hamiltonian, and the spectroscopic radial orbitals are calculated using the TFDA
potential with scaling parameters. Non-orthogonal, Laguerre pseudo-orbitals
were generated for subshells 5d–14g, and these were subsequently orthogonal-
ized amongst themselves and the spectroscopic orbitals. This resulted in a total
of 749 states for the target. Favourable comparisons with measured results are
achieved: energy levels have an average relative difference of 0.26% and A-values
have 12.16% relative to the NIST reference values. Regardless of this fact, sub-
sequent spectra modelling revealed that shifting the energy levels and A-values
to the NIST values is necessary, and this has been done in the final adf04 file.
The collision calculation uses the RMPS theory with the code cited above in ic.
Because of the computational expense of this method, the number of target states
included in the CC expansion had to be truncated below the ionisation potential.
This resulted in the number of states listed in table B.1.



Appendix C

GCR Theory

The purpose of this appendix is to establish some of the notation and equations
pertinent to the theory of GCR modelling used in this thesis. It is intended for the
convenience of the familiar reader, not as a complete description of GCR theory.
For example, it avoids any serious discussion of time scales, taking as a given
that metastable states will dominate the populations of a stage and so must be
tracked separately. Rather, the reader is referred to references [15, 16, 60, 217].

Consider an ion, Xz+, with metastable populations indexed by the Greek
letter ρ, N z+

ρ , and ordinary excited populations indexed by the Roman letter i,
N z+
i . The adjacent stage z+ 1 is the recombining or parent ion with metastables

N
(z+1)+
ν , while the present stage z is the ionising or daughter ion. This terminol-

ogy can be extended to any two adjacent ionisation stages, such as z − 1 which
would be the ionising ion relative to the recombining z ion. The statistical bal-
ance equations for the ordinary levels below the continuum, 1 ≤ i, j ≤ ∞, with

308
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all processes relevant to optically thin, low-density, thermal plasmas, are

dN z+
i

dt
=
∑
ν

NeN
(z+1)+
ν

(
αrr
i + αdr

i +Neα
3-b
i +

(
NH

Ne

)
αcx
i

)

+Nj

[∑
j>i

(
Neq

e
j→i +Npq

p
j→i + Aj→i

)
+
∑
j<i

(
Neq

e
j→i +Npq

p
j→i
)]

−Ni

[∑
j>i

(
Neq

e
i→j +Npq

p
i→j
)

+
∑
j<i

(
Neq

e
i→j +Npq

p
i→j + Ai→j

)
+
∑
ν

(
Nesi→ν + Aaut

i→ν
)]
.

(C.1)

The recombination rate coefficients, αi, are distinguished by their superscripts:
“rr” is for radiative recombination, “dr” for dielectronic recombination, “3-b” for
three-body recombination, and “cx” for charge exchange. In this thesis, the contri-
bution from charge exchange is ignored. The collisional-excitation rate coefficient,
qi→j, is included for electron (e) and ion (p) projectiles. Ion projectiles are typi-
cally indicated by “i” in other sections of this thesis, but “p” has been used here to
avoid confusion with the ordinary level index i. For simplicity, the sum over pos-
sible ion projectiles has also been omitted. NH is the density of hydrogen atoms
in the neutral beam, which is ignored going forward. si→ν is the electron-impact
ionisation rate coefficient, and Aaut

i→ν is the autoionisation rate coefficient.
Evidently, manipulating equation C.1 is tedious, especially since a second

set needs to be tracked corresponding to the metastables. Therefore, a matrix
representation has been developed with the following collisional-radiative matrix
elements,

Cij = Aj→i +Neq
e
j→i +Npq

p
j→i (C.2)

−Cii =
∑
j 6=i

Cji +
∑
ν

si→ν (C.3)

riν = αrr
ν→i + αdr

ν→i + α3-b
ν→i (C.4)

Sνi = Nesi→ν + Aaut
i→ν , (C.5)

where Cii is the total loss rate from the level i. Thus, the population equations
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of z and its adjacent ionisation stages become

d
dt


N

(z−1)+
µ

N z+
ρ

N z+
i

N
(z+1)+
ν

 =


Cµµ′ NeRµσ 0 0

NeSρµ′ Cρσ Cρj Nerρν′

0 Ciσ Cij Neriν′

0 NeSνσ NeSνj Cνν′



N

(z−1)+
µ′

N z+
σ

N z+
j

N
(z+1)+
ν′

 (C.6)

Repeated indices imply summation, so CijN z+
j is its own sub-matrix. Some of

the elements are intentionally typeset in different font—e.g. Cµµ′ is calligraphic
versus Cij which is the default math font. The calligraphic font is used to indi-
cate that the influence of the ordinary populations has been condensed upon the
metastables of the relevant stage. This essential process of condensation is now
explained.

An assumption of quasi-static equilibrium is made which means the ordinary
populations are treated as being in instantaneous statistical equilibrium with the
relevant metastables of their stage, in turn implying dN z+

i /dt = 0 in equation C.6.
Therefore, 

N
(z−1)+
µ′

N z+
σ

N z+
j

N
(z+1)+
ν′

 =
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0 1 0

0 −C−1
ji Ciρ −NeC

−1
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0 0 1
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 , (C.7)

and then

d
dt
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N
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 . (C.8)

Moreover, the effective GCR coefficients can be defined from equation C.8:

Qcd
σ→ρ ≡ Cρσ/Ne =

(
Cρσ − CρjC−1

ji Ciσ
)
/Ne (C.9)

αcd
ν′→ρ ≡ Rρν′ = rρν′ − CρjC−1

ji riν′ (C.10)

Scd
σ→ν ≡ Sνσ = Sνσ − SνjC−1

ji Ciσ , (C.11)
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named the effective metastable cross-coupling coefficient, the effective recombi-
nation coefficient, and the effective ionisation coefficient, respectively. The su-
perscript “cd” denotes “collisional-dielectronic”, which is a historic synonym for
“collisional-radiative”. This abbreviation is used for ADAS naming conventions
of the corresponding adf11 data: e.g. ACD for αcd. Formally, there is also an
addition to the Cνν′ element of equation C.8, called the parent metastable cross-
coupling coefficient:

Xcd
ν′→ν = −(SνjC

−1
ji riν′) . (C.12)

The topic of projection is raised in the text. It refers to the procedure of
condensing the bundle-n calculation, removing the direct couplings between n

states in the low-level set, and then expanding the indirect coupling matrix onto
the more highly resolved, low-level manifold. This results in terms added to the
CR matrix elements in equations C.2–C.5, but does not change the formalism of
the low level population model.



Acronyms and Abbreviations

ADAS Atomic Data Analysis Structure.

AIM Average Ion Model.

ASDEX-U Axially Symmetric Divertor Experiment Upgrade.

autos autostructure.

BP Breit-Pauli.

ca configuration average.

CC close-coupling.

CCC convergent close-coupling.

CI configuration interaction.

CIE coronal ionisation equilibrium.

COM centre-of-mass.

cowan ADAS801, descendant of the Cowan Code.

CR collisional-radiative.

CSD charge state distribution.

CX charge exchange.

darc Dirac Atomic R-matrix Codes.

DEMO DEMOnstration Power Station.
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DI direct ionisation.

DR dielectronic recombination.

DW distorted wave.

EA excitation autoionisation.

EBIT electron-beam ion trap.

ECIP Exchange Classical Impact Parameter.

EIE electron-impact excitation.

fac Flexible Atomic Code.

GCR generalised collisional-radiative.

grasp0 General-purpose Relativistic Atomic Structure Package.

HF Hartree-Fock.

hullac Hebrew University Lawerence Livermore Atomic Code.

ic intermediate coupling.

ICFT intermediate coupling frame transformation.

IIE ion-impact excitation.

ITER International Thermonuclear Experimental Reactor.

JET Joint European Torus.

LS Russell-Saunders coupling of total angular momentum, L, and total spin, S.

LTE local thermodynamic equilibrium.

MCDF multiconfigurational Dirac-Fock.

MCF magnetic confinement fusion.
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MCHF multiconfigurational Hartree-Fock.

NIST National Institute of Standards and Technology.

PFC plasma-facing component.

PWB plane-wave Born.

Q-CC quantal, close-coupled.

RMPS R-matrix with pseudo-states.

RR radiative recombination.

ry Rydberg n-shell.

SC-1 semi-classical, first-order perturbative.

SC-CC semi-classical, close-coupled.

SCF self-consistent field.

STO Slater-Type Orbital.

TDCC time-dependent, close-coupling.

TFDA Thomas-Fermi-Dirac-Amaldi.



Symbols

αcd
ν′→ρ Effective recombination coefficient.

Aj→i Einstien A coefficient, also commonly referred to as the A-value, transition
probability, or spontaneous emission rate (s−1).

∆Eij Atomic transition energy from level j to i (Ryd).

dfE2

dΩ
(θ, ξ) Differential excitation cross section function of multipole order E2.

fE2(ξ) excitation cross section function, fE2(ξ) =
∫
dfE2/dΩ.

fij Oscillator strength (dimensionless).

F-PEC Feature photon emissivity coefficient (photons cm3 s−1).

IH Ionisation potential of Hydrogen (Ryd).

χ(z) Ionisation potential (eV or Ryd).

λnl radial scaling parameters.

M Reduced mass of the scattering system (au).

mp Projectile mass (au).

mt Target mass (au).

ωi Statistical weight of lower atomic level, i; equal to 2Ji + 1.

ωj Statistical weight of upper atomic level, j; equal to 2Jj + 1.
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Ωij Collision strength (dimensionless).

PEC Photon emissivity coefficient (photons cm3 s−1).

P(z)
LT,σ Total radiated line power coefficient (W cm3).

P(z)
RB,σ Recombination-bremsstrahlung-cascade radiated power coefficient.

Ptot total radiated power function.

Qcd
σ→ρ Effective metastable cross-coupling coefficient.

qi→j Excitation rate coefficient (cm3 s−1).

r0 Effective target radius cutoff (a0).

Scd
σ→ν Effective ionisation coefficient.

Sij Atomic line strength (au).

Υij Maxwell-averaged effective collision strength (dimensionless).

VTFDA the TFDA atomic potential.

ξ Dimensionless adiabaticity parameter.

z Effective ion charge = Z0 − (# of electrons).

Z0 Nuclear charge = atomic number.

zp Projectile charge number.

zt Target charge number.
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