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Abstract 

Abstract 

This Ph.D. thesis explores the strength and applicability of machine learning-based classifiers 

within the context of business analytics for data-driven decision making. The focus is on 

supervised binary classification on structured datasets, which are vastly present in relational 

databases across all enterprises. Advanced analytics has become indispensable for today’s 

corporate world and it is demonstrated that predictive analytics is one of the major contributors 

to capture business value across the financial services value chain. To test this hypothesis 

different models as Generalized Linear Models, Random Forest, Gradient Boosting, and 

Artificial Neural Networks were tested, compared, and combined to test their predictive 

strength and robustness in different scenarios and use cases. The results indicate the 

superiority of Gradient Boosting when it comes to structured datasets compared to all other 

classifiers. This is a major reason why the diffusion of Deep Learning within business analytics 

is lacking behind. Also, the ensemble learning method stacking – which uses several base 

learners to create a more powerful super learner – proved to be a viable tool to consistently 

improve upon the accuracy of even the most powerful candidate models – including Gradient 

Boosting. Automated Machine Learning (AutoML) was benchmarked against manually tuned 

models and proved to be a valuable tool to democratize predictive analytics for small to 

medium-sized corporations and to tackle the skill shortage for ML experts. AutoML has the 

potential to completely automate the predictive modeling process, but it is mainly concerned 

with model tuning and selection while ignoring steps at the beginning and end of the pipeline. 

Also, an ML pipeline setup is suggested that would – once it is automated – be able to reach 

human expert-level prediction accuracy for binary classification on structured datasets. All 

those models were tested and applied in the context of different business analytics use cases 

– with a focus on financial services – to solve problems in credit risk management, insurance 

claims prediction, and marketing and sales. All use cases demonstrate improvements in 

prediction accuracy and hence offer direct value gains. Throughout the thesis, there is a 

consideration of the advantages and constraints when it comes to the use of ML models in the 

industry including a translation into managerial implications. Also, general economic and 

business implications are discussed to understand how the field will evolve in the future. 
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Chapter 1: Introduction 
1 Introduction 

1.1 Digital Transformation 

The world is becoming digital. More global, and corporations are increasingly subject to 

competition in an ultra-fast marketplace. In the last decade, there has been an astonishing 

increase in connectivity, stored data, and advanced analytics. New businesses found their way 

into the economy and challenged the status quo of many incumbents. The time we are currently 

witnessing has been referred to as Industry 4.0 (Reinhard, Jesper, & Stefan, 2016), The Fourth 

Industrial Revolution (Schwab, 2016), or The Second Machine Age (Brynjolfsson & Mcafee, 

2016). New entrances in the form of innovative start-ups are often global and the natural 

barriers to only local competition gradually cease to exist. So-called digital natives (e.g. 

Amazon, Alphabet, Facebook, etc.) started to dominate the market with new business models 

(e.g. platform companies) that proved to be superior to the old ways of doing business (Parker, 

Van Alstyne, & Choudary, 2016). It is a time where many traditional companies realized the 

value of digital technologies to create strategic business value and are faced with the pressure 

to transform or die (Siebel, 2019). 

Having a look at the leading indices across the world we can observe a non-trivial rebalancing 

w.r.t. to market capitalizations. The most valuable companies used to be traditional companies 

like Exxon Mobile, General Electric, Microsoft, Gazprom, and Citigroup, but this has changed 

over the last years. On 28th January 2020, the most valuable companies of the S&P 500 were 

all digital including Amazon, Microsoft, Apple, Alphabet, and Facebook (Levi & Konish, 2020). 

Several fortune 500 companies have become bankrupt, where acquired in M&A activities, or 

developed themselves into digital enterprises with a changed business scope and focus. It is 

forecasted that within the next 10 years more than 40% of the existing companies today will 

cease to exists in its current form (Siebel, 2019). This is a worldwide phenomenon. In Germany, 

Wirecard, a FinTech firm specializing in global payment solutions has replaced Commerzbank 

from the DAX 30 in 2018, which has been the second-largest Bank in Germany and one of the 

founding members of the index (Storbeck, 2018). Similar developments can be observed in 

China with digital leaders like Alibaba, Tencent, Baidu, and JD.com (Candelon, Yang, & Wu, 

2019). All those born-digital companies are also at the forefront of AI research. 

 

Nevertheless, those changes are a normal occurrence that can be observed several times 

during history. New disruptive forces tend to emerge from time to time and put tremendous 

pressure on the existing economy until a new equilibrium is reached. This usually occurs due 
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to scientific breakthroughs that have enough power to fundamentally transform the world 

economy. Technological transformations and disruptions emerge from the sciences, but there 

is always a point in time when they start to gradually diffuse into the world economy and get 

adopted by different businesses. This leads to gradual or abrupt changes due to shifts in the 

job and labor markets, horizontal or lateral integration of businesses, or the formation of 

completely new enterprises and products, which facilitate a new wave of innovation (Siebel, 

2019). 

In light of those market shifts, customer expectations are changing rapidly. As the world 

becomes fully digital, physical stores lose continuously in value and transactions between most 

counterparties have moved online and become entirely digital. This can be observed around 

the globe and across several industries. The best example is retail as consumers continuously 

move their shopping activities online. Traditional bank branches are shut down and offers are 

exclusively placed in an online or mobile banking environment. Also, social media enables 

consumers to be more connected and informed, which makes quality and customer service 

increasingly important. Those shifts in market dynamics have led to more market power for 

consumers across the globe and the need to become a customer-centric, flexible, and adaptive 

enterprise has become mandatory.  

Companies increasingly gravitate towards advanced analytics, machine learning, and artificial 

intelligence to compete in this new environment. It seems that the so-called digital native 

companies have the upper hand and incumbents struggle to transform their legacy systems 

into a modern big data/digital infrastructure. The advantage of those digital natives is an 

enterprise architecture build specifically for the modern environment, which is naturally 

superior compared to old legacy systems that require a complete transformation (Henke et al., 

2016). 

The need for corporations to survive led to a huge wave of digital transformation (DT) projects 

across all major industries as incumbents tried to restructure their enterprises into a modern 

version of themselves. What do we mean by digital transformation?  

Hess, Matt, Benlian, & Wiesböck (2016) describe it in the following way: “Digital transformation 

is concerned with the changes digital technologies can bring about in a company’s business 

model, which results in changed products or organizational structures or in the automation of 

processes”. And it occurs according to Verhoef et al. (2019) “in response to changes in digital 

technologies, increasing digital competition and resulting digital customer behavior.” It is the 

current struggle or restructuring of old business models towards a modern digital enterprise. 
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This happens on a global scale and not all incumbent corporations will “survive this current era 

of mass extinction” (Siebel, 2019). 

What portfolio of technologies constitutes digital transformation seems to be quite fluid. The 

main drivers commonly associated with it are big data, artificial intelligence (AI), cloud 

computing, robotics, the Internet of Things (IoT), and more recently blockchain. Overall, DT is 

an ongoing process that has no end and a strict limitation towards certain technologies seems 

inadequate. There is no reason not to incorporate further technological advances into the 

definition of what it means to be digital (Chanias, Myers, & Hess, 2019; Warner & Wäger, 

2019). 

1.2 Big Data and Artificial Intelligence 

Several underlying reasons led to those strong shifts in market dynamics, which introduced 

new and disruptive business models. Big data was the first buzz word in business that was 

associated with the importance of data. Comments as “data is the new oil” and “data science 

is the sexiest job in the 21st century” in major business magazines as Harvard Business Review 

made everyone realize that the status quo in business and the base for the competition is about 

to change.  

The 21st century started with the new word “Big Data” and moved gradually to the world of Data 

Science. The era of big data is characterized by the availability of different (old and new) data 

sources and is the origin of the first wave of digital transformation (Baesens, Bapna, Marsden, 

Vanthienen, & Zhao, 2016; Henke et al., 2016). By now, we live in a world with an immense 

deluge of data from different sources which increase exponentially every year (Henke et al., 

2016).  

For business analytics, data sources can be categorized into (1) traditional databases, (2) web-

data, and (3) mobile and sensor-based data (Chen, Chiang, & Storey, 2012). Rapidly 

advancing information technology, storage capabilities, and general hardware improvements 

have made it possible to store and process those huge amounts of structured as well as 

unstructured data across all domains. Corporations became huge silos of information 

imprisoned in large databases and the surge in data availability naturally led to the need to 

gain insights from these volumes of data (Henke et al., 2016). Besides, cloud infrastructures 

and world-wide connectivity gave us direct access to those data pools on a global basis, which 

gives corporations fast and direct access to information and increasing flexibility in their 

execution (Gampfer, Jürgens, Müller, & Buchkremer, 2018; Zimmermann et al., 2018). 
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A second development that can be considered a close follower to the big data revolution was 

the rise of artificial intelligence, which triggered the second wave of digital transformation 

(Bughin et al., 2017; Henke et al., 2016). Artificial intelligence (AI) became an active field of 

research due to the advances of artificial neural networks. The breakthrough that drives the 

current AI revolution is called Deep Learning. Deep learning did not only help AI to increase its 

popularity, but also increased the scale and scope of possible applications, and is seen as one 

of the most disruptive technologies since the inception of the internet itself (Goodfellow, et al., 

2016). DL is responsible for many aspects of the world that seem by now familiar and usual 

and it has the potential to further drive technological advances across all sciences and 

industries. It improved many tasks and brought breakthroughs in text, speech, image, video 

and audio processing (LeCun, et al., 2015). AI and DL are currently at the peak of the Gartner 

hype cycle (Columbus, 2019), but investments are strong and are still flowing towards AI 

(Bughin et al., 2017). The consensus is that we have moved from fundamental progress to the 

application of AI across various sciences, businesses, and governments (Stadelmann et al., 

2018). 

The field of economics has also picked up on the technological development of AI and tries to 

explain how AI will translate into economic changes. Agrawal, Gans, & Goldfarb (2019) and 

Brynjolfsson, Rock, & Syverson (2019) have introduced the concept of AI as a GPT due to its 

widespread application possibilities and its general nature to make predictions across domains 

and fields. A GPT has the following characteristics (Jovanovic & Rousseau, 2005): (1) 

Pervasiveness – should be able to have an impact on most sectors. (2) Improvement – should 

become more capable over time and more affordable. (3) Innovation – should have a positive 

and accelerating impact on the invention of new products and processes. 

The initial fear that AI will lead to job losses across many industries as discussed by Pannu 

(2015) has by now been countered by arguments that every new GPT technology results in a 

shift in the labor market (Agrawal et al., 2019). While certain positions will find a fast 

replacement by AI, others will gradually appear, often requiring a different set of skills than 

earlier positions. This will lead to a slight disruption of the labor market, but not in vast job 

losses as this was indicated in earlier studies (Agrawal et al., 2019). We can observe that – 

while there are still warning voices out there – most papers are optimistic about the current 

development of AI and point towards a bright future. 

Overall, AI has emerged as new General-Purpose Technology (GPT) for decision making and 

will have huge impacts across all industries and sciences. It will foster data-driven decision 
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making by enabling completely automated end-to-end decision processes. It will also foster 

innovation and hence drive growth in general due to its nature to be sector overarching. 

1.3 Data-Driven Decisions 

The era of big data and artificial intelligence led to a change in corporate decision making. At 

the heart of those developments lies business analytics, a function that drives data-driven 

decision making by translating raw data into insights. Management has always used data to 

generate information and insights. Mainly with the help of enterprise resource planning (ERP) 

and business information systems (BIS). This is not new. What has changed is how we come 

up with a decision. The earlier, more intuitive decision-making approach from executives was 

replaced by evidence-based decision making based on advanced analytics and machine 

learning (Brynjolfsson & Mcelheran, 2019; Delen & Ram, 2018). This had an impact on 

information technology and IT Strategy, which increased in importance and gradually moved 

into boardrooms, employing new executive members as the “Chief Digital Officer”. 

The number one reason for this cascade of events is the possibility of increased productivity 

for profit-driven entities in our economy. Data-driven decisions can capture value for 

corporations in our competitive environment and will gain importance over time. Brynjolfsson, 

Hitt, & Kim (2011) analyzed whether a focus on data and business analytics aka data-driven 

decision making (DDD) has a positive impact on corporate performance. Concrete, the authors 

analyzed 179 listed companies and concluded that the adoption of business analytics results 

in a 5-6% productivity gain. Further, it seems that the successful utilization of business 

analytics also impacts other measures as asset utilization, return on equity, and market value. 

In a more recent study, Brynjolfsson & Mcelheran (2019) finds that early adopters had the most 

advantages by adopting a DDD strategy. The type of analytics that has a positive impact on 

the bottom line shifts according to the authors during the study and the latest key driver was 

predictive analytics. 

Grover, Chiang, Liang, & Zhang (2018) think the value proposition of business and data 

analytics for corporations is less clear but ultimately concluded that it can create value if certain 

other factors are in place as skilled labor and sound strategic positioning. The authors further 

argue that those things are crucial as the ability to capture value through analytics is heavily 

dependent on the required skill-sets that can leverage those analytics capabilities. 

Overall, the realization that data-driven decisions and especially predictive analytics have the 

potential to drive performance by directly impacting the bottom-line started a new wave of 
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business analytics research. Business analytics and business intelligence constitute a quite 

long chain of different analytics, which includes retrospective as well as prospective analysis 

of relevant data. It usually starts from a point of analysis that is descriptive and moves gradually 

towards methods that offer deeper insights in the form of predictive and prescriptive analytics 

(Delen & Ram, 2018). Other names, which describe a similar subset of models and activities 

are data mining, business intelligence, data science, and operations research. The purpose of 

those functions is on a fundamental level the same. All combine the goal of converting raw 

data into actionable business insights by utilizing different analytics methods. 

Business Analytics is vital in today’s world shaped by digital disruption and global competition. 

Recognizing patterns based on historical data is one of the most useful skills for managerial 

decision making. Advanced analytics has become indispensable for today’s corporate world 

and predictive analytics has been one of the major contributors to capture business value 

across all industries. Machine Learning algorithms help us to analyze massive amounts of 

data, including unstructured and nontraditional data like text and images. Nevertheless, the 

most economic value is coming from supervised learning on structured data (Ng, 2018). 

Corporations hold massive amounts of structured data in relational databases and many 

industries and/or business functions rely heavily on predictive modeling to derive valuable 

business insights from those data pools. 

1.4 Scope of the Research 

The objective of this Ph.D. thesis is to explore the strength and applicability of machine learning 

and business analytics for data-driven decision making to analyze how AI can capture value 

within financial services. It will be shown that machine learning can contribute to and enhance 

the performance of several departments across the financial services value chain. To test this 

hypothesis the currently best performing classifiers (state-of-the-art) are identified and will be 

applied in different business analytics settings in finance and insurance. The use cases in this 

thesis cover credit risk management (FinTech), claim assessment (InsurTech), and marketing 

and sales (Digital Marketing). The technical scope of the thesis is supervised binary 

classification on structured datasets. See figure 1 for a graphical illustration of the general 

context and scope of this thesis. 
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Figure 1. The business analytics function, which utilizes predictive analytics to steer data-driven 

decision making should be seamlessly integrated into the formal corporate structure using an agile 

approach to remain flexible to adapt to new demands from the different business functions as well as 

the management board. The scope of the thesis is supervised binary classification on structured 

datasets. 

 
The following gaps were identified and will be addressed in this thesis. 

Deep Learning vs Gradient Boosting: The realization that there exist different opinions about 

the performance of tree-based ensembles and deep learning will be further investigated in 

chapter 3 “Deep Learning vs Gradient Boosting”. Research Question: Which ML model is the 

best performing binary classifier for structured data in the context of credit scoring? 

Deep Learning in Business Analytics: According to the literature review are AI and DL use 

cases, especially when it comes to business analytics functions across the value chain still in 

its infancy. This is surprising given the astonishing media attention and perceived capabilities 

of deep learning in academia and industry. This topic will be further investigated in chapter 4 

“Deep Learning in Business Analytics”. The use case focus here is extended and instead of a 

pure focus on credit risk, two additional uses cases will be taken into account. Insurance claims 

prediction and marketing and sales. Research Question: What is or are the concrete reasons 

for the slow adoption rate of deep learning in the context of business analytics? Does DL offer 

advantages over traditional ML models as tree-based ensembles and GLM’s for predictive 

analytics tasks in business analytics? What are the managerial implications of those findings 

in the context of digital transformation and digital strategy? 
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Super Learning in FinTech and Credit Risk: FinTech and technology-driven financial 

markets require strong and accurate predictive analytics. Chapter 5 “Super Learning in 

FinTech and Credit Risk” will have a look at the current state-of-the-art models for predictive 

analytics and introduces a way to improve upon those best-performing classifiers. Research 

Question: Is it possible – in the context of credit risk and lending – to consistently improve 

upon the best binary ML classifiers as identified in the earlier experiments (chapter 3) by 

utilizing the fusion method stacking? If yes, can a recommendation w.r.t to model configuration 

be derived that is generally applicable? What about the practical limitations of stacking? 

AutoML in Business Analytics: The importance of data-driven / evidenced-based decision 

making is indispensable in today’s global and competitive market place. The talent gap when 

it comes to analytics functions is still prevalent and seems to grow over the coming years. A 

way to solve the skillset shortage and also to help experts with faster prototyping are automated 

machine learning solutions that promise to completely automate the predictive modeling 

process. Automated machine learning or AutoML will be further investigated in chapter 6 

“AutoML in Business Analytics. Research Questions: What are the current possibilities of 

AutoML and what is the predictive strength of AutoML compared to manually tuned classifiers 

by a human expert? What are the future implications of AutoML for Business Analytics based 

on those findings? What further research is necessary to reach a full end-to-end decision 

engine that can serve as a complete off-the-shelf ML model for business analytics use cases? 

Enterprise AI: Towards an End-to-End Data-Driven Decision Engine: The major goal of 

this chapter is to synthesize the contributions of the earlier chapters into a coherent whole by 

discussing the status quo of AutoML in light of those earlier findings. Research Questions: Is 

it possible to create an automated end-to-end predictive analytics process that is on par with a 

manually tuned system? What are the current limitations and gaps regarding such a prediction 

engine? What are the necessary further research directions required to reach a complete end-

to-end decision engine for business analytics? 

Stakeholder Implications: This last chapter will draw upon the findings of the earlier content-

analysis which spans across all the papers and also on the results of the experimental studies 

to discuss implications for different stakeholders. The major focus is on the three areas, which 

were present throughout the thesis – namely credit risk management, insurance claims, and 

sales and marketing in a financial services context and how machine learning can enhance the 

performance in those business units. This chapter clearly explains how those models can be 

applied and where exactly the value contribution can be found, also by leveraging synergies 
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between different departments. There will also be a discussion on AI as a general-purpose 

technology (GPT) and how the field will evolve in the future. 

A focused introduction, literature review, and gap analysis can be found at the beginning of 

each chapter. See figure 2 for an overview of the ML methods covered in each part. 

 

Figure 2. The flow of the thesis gradually evolves using more complex ML methods. Chapters 3 and 4 

use exclusively single classifiers and standard ensembles as LR, RF, GBM, and DL. Chapter 5 extends 

the portfolio with the ensemble method stacking (super-learning), chapter 6 is concerned with the 

capabilities of AutoML in comparisons to manually tuned models, and chapter 7 combines the findings 

of the earlier chapter and proposes a fully automated ML pipeline. 

 
The chapters within this thesis are largely individual papers (Chapter 3-6) and can be read as 

such. The introduction of each chapter contains a focused literature review that is directly 

relevant to the following analysis and discussion, which increases readability and reduces 

unnecessary jumping around between chapters. The last two chapters before the conclusion 

are somewhat unique. Both take the form of synthesis and a slight extension. Chapter 7 

focuses more on the technical aspects and discusses the earlier findings in the context of a 

complete end-to-end ML pipeline for business analytics. Chapter 8 before the conclusion is 

business focused and will discuss stakeholder implications and how business functions can 

leverage ML to achieve direct value gains, including a discussion on the economic long-term 

implications of AI. The conclusion chapter will give a summary of all the findings. 

Over the next decade, we have an amazing opportunity to build an AI-powered society and I 

am glad to contribute slightly to this new technological movement. I genuinely hope you will 

enjoy reading this thesis. 
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1.5 Contributions 

Research question:  

Is it possible to capture value through machine learning applications across the financial 

services value chain? 

This central question was answered through more granular questions as:  

• What is the best ML model for credit scoring? 

• What are the reasons for the slow adoption of DL in BA? 

• Is it possible to consistently improve upon the best ML classifiers by utilizing the fusion 
method stacking? 

• Does AutoML reach the predictive strength of manually tuned classifiers by a human 
expert? 

Contributions: 

• Gradient Boosting Machine does outperform Deep Learning in binary classification on 

structured data in the context of credit scoring. 

• In addition to the usual arguments as computational complexity, transparency issues, 

lacking infrastructure, and skill-shortage, tree-based ensembles as Random Forest and 

Gradient Boosting Machine beat DL on structured datasets, which offers a logical 

explanation of why DL adoption is lacking behind expectations. 

• It is possible to consistently improve upon the best Machine Learning classifiers by 

utilizing the fusion method stacking, which trains a so-called super learner by combining 

several candidate models into one single and more powerful classifier. 

• The H2O AutoML framework does not reach the accuracy levels of a manually tuned 

ML model, but the performance difference is only marginal and AutoML proved to be a 

powerful method for fast prototyping. It also has the potential to bridge the gap between 

the skill-set shortage in the field. 

• A framework is presented on how to extent AutoML solutions towards a complete end-

to-end ML pipeline for business analytics. 
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The following chapter summaries give a good first impression of what to expect in the following 

pages. 

---- 

Chapter 3 - Deep Learning vs. Gradient Boosting: 

Benchmarking state-of-the-art classification algorithms for credit scoring 

Credit Risk Management is an essential part of financial institutions. In light of the changing 

lending market structure, advanced analytics has become vital to remain competitive in our 

fast-paced business world shaped by global competition. The two models currently competing 

for the pole position are Deep Learning and Gradient Boosting Machines. This paper will 

benchmark those two algorithms in the context of credit scoring using three distinct datasets 

with different features to account for the reality that model choice/power is often dependent on 

the underlying characteristics of the dataset. This study has shown that – for structured 

datasets – GBM tends to be slightly more powerful than DL and also has the advantage of 

lower computational requirements. This makes GBM the winner and choice for most problems 

within credit risk. But it was also shown that the outperformance of GBM is not always 

guaranteed and ultimately the concrete problem scenario or dataset will determine the final 

model choice. 

---- 

Chapter 4 - Deep Learning for Business Analytics:  

A Clash of Expectations and Reality 

Our fast-paced digital economy shaped by global competition requires increased data-driven 

decision making based on advanced analytics and Machine Learning. The first wave of digital 

transformation based on big data and analytics is now gradually replaced by AI, which 

becomes the driving force behind new digital transformation initiatives. The benefits of Deep 

Learning (DL) over traditional analytics are manifold, but it comes with limitations that have – 

so far – interfered with widespread industry adoption. This paper conveys an accurate picture 

of the current deployment of DL in business analytics. The paper contains three case studies 

of different business use cases and benchmarks DL against traditional machine learning 

models. The adoption of Deep Learning is not only affected by computational complexity, 

lacking big-data architecture, lack of transparency (black-box), and skill shortage, but also by 

the fact that DL does not outperform traditional ML models in case of structured datasets with 

fixed-length feature vectors as usually present in relational database systems. It is shown that 
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DL does not show superior performance for classification problems on structured data across 

several domains. DL does not achieve higher performance as Gradient Boosting Machine and 

Random Forest. These results are consistent across all three use cases presented in this 

study, which offers a logical explanation of why DL adoption is lacking behind expectations. 

DL should be regarded as a powerful addition to the existing body of ML models instead of a 

one fits it all solution. 

---- 

Chapter 5 - Super Learning in FinTech and Credit Risk:  

In search of maximum prediction accuracy 

Artificial intelligence and machine learning are gradually changing the lending market structure 

towards full automation. Advanced predictive analytics helped FinTech firms to develop 

modern lending businesses that foster financial inclusion due to high prediction accuracy, 

which opens the possibility to disregard collateral as a safety net. This is a big step towards 

the democratization of debt markets. In search of maximum prediction accuracy, this paper is 

going to train different configurations of a stacked ensemble model that combine the most 

powerful baseline models into a so-called super learner. Thereby proving that super learning 

can improve upon the performance of even the best models currently available. In addition, the 

observed outcomes were used to derive concrete configuration steps that are generalizable to 

reach the highest possible prediction accuracy. The four models used as a baseline in this 

experiment are Logistic Regression, Random Forest, Gradient Boosting Machine, and Deep 

Learning. The experiment was implemented on three real-world-datasets from the credit risk 

domain. Also, this experiment is placed in a discussion on financial inclusion and the future of 

FinTech to convey the importance of ML and AI applications for financial services. 

---- 

Chapter 6 - AutoML in Business Analytics: 

Towards a fully automated predictive analytics process 

The realization that data-driven decision-making is indispensable in today’s fast-paced and 

ultra-competitive marketplace has raised interest in industrial machine learning (ML) 

applications significantly. The current demand for analytics experts vastly exceeds the supply. 

One solution to this problem is to increase the user-friendliness of ML frameworks to make 

them more accessible for the non-expert. Automated machine learning (AutoML) is an attempt 

to solve the problem of expertise by providing fully automated off the shelf solutions for model 



Chapter 1: Introduction  20 

 
    

 
 
 

choice and hyperparameter tuning. This paper analyzes the potential of AutoML for 

applications within business analytics, which could help to increase the adoption rate of ML 

across all business functions. The H2O AutoML framework was benchmarked against a 

manually tuned model on three real-world datasets to test its performance, robustness, and 

reliability. The used AutoML framework trains several base learners and combines them via 

ensemble learning to a stacked super learner. The manually tuned model could reach a 

performance advantage on all three case studies used in the experiment. Nevertheless, the 

H2O AutoML package proved to be quite potent. It is fast, easy to use, and delivers reliable 

results, which come close to a professionally tuned ML model. The experiment proved that the 

H2O AutoML framework in its current capacity is a valuable tool to support fast prototyping 

with the potential to shorten development and deployment cycles. It can also bridge the existing 

gap between supply and demand for ML experts and is a big step towards fully automated 

decisions for business analytics functions. 

---- 

Chapter 7 - Enterprise AI: 

Towards an end-to-end ML pipeline for Business Analytics 

An end-to-end business analytics engine is essentially a comprehensive and automated ML 

pipeline. The major goal of this chapter is to synthesize the contributions of the preceding 

chapters into a coherent whole by proposing a complete ML-pipeline that consists of three 

distinct phases: Phase 1 - Data Preparation; Phase 2 - Model Tuning and Evaluation; and 

Phase 3 - Model Deployment and Monitoring. AutoML automates the second phase in the 

pipeline (model tuning and evaluation) and is a vital building block to automate the full pipeline. 

It is discussed how AutoML can be improved to reach state-of-the-art accuracy levels to fulfill 

its purpose as the heart of the pipeline. Alternatively, it can be used in its current form. 

However, to achieve an end-to-end prediction engine for data-driven decision-making 

extensions towards Phase 1 and 3 are required. Data preparation, which consists of several 

adjustments as cleaning and feature engineering are not yet automated. Also, there is no 

consideration of real-world constraints (size, speed, interpretability), and the model choice is 

purely based on prediction accuracy. Due to the lack of those functionalities, automated 

monitoring and adjustments are not possible. Those gaps result in clear future research 

directions which are also discussed in this chapter. 

 



Chapter 2: Research Methodology  21 

 
    

 
 
 

Chapter 2: Research Methodology 
2 Research Methodology 

The central idea of the thesis is to analyze the value contribution of modern AI for business 

analytics and financial services. Is it possible to capture value through machine learning 

applications across the financial services value chain? The scope of the research is binary 

classification on structured data. Structured data means tabular data with categorical and 

numerical variables. To answer this and all the more granular research questions defined in 

the preceding section a mix of qualitative and quantitative research was chosen as the most 

suitable approach. 

2.1 Qualitative: Content Analysis 

The qualitative research approach is based on a literature review and content analysis to 

identify the current status quo of machine learning in business analytics, including a general 

understanding of use cases, advantages, problems, and adoption speed of advanced analytics 

in business and economics. The literature review and content analysis took into account the 

following materials/sources: 

• Research papers from relevant scientific journals across all relevant sciences 

• Industry research and white-papers with a focus on world-leading consulting 

companies as McKinsey & Company, Boston Consulting Group, Deloitte, KPMG, 

Accenture, etc. 

• Reports from official organizations as International Monetary Fund (IMF), European 

Central Bank (ECB), Bank for International Settlement (BIS), etc. 

• Official Announcements and Agendas of Government Entities 

Due to the broad background of the topic, it was challenging to limit the relevant search terms 

utilized during the initial screening phase. The search terms used during the literature search 

were the following: 

• Search Terms for Analytics: Artificial Intelligence, Machine Learning, Digital 

Transformation, Digital Strategy, Business Analytics, Binary Classification, Predictive 

Analytics, Black-Box 

• Search Terms for Application Areas: Credit Scoring, Credit Risk Management, Lending, 

FinTech, InsurTech, Insurance, Finance, Digital Marketing, Marketing 
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Due to the fast development of the field, the focus of the analysis was only on sources going 

back to 2017. Older papers were included when identified as relevant during the content 

analysis. 

2.2 Quantitative: Experimental Study 

Once those state-of-the-art methods were identified an empirical study to verify the strength in 

comparisons to alternative methods was carried out. This was especially relevant as the 

conclusions regarding the concrete model choice differ based on the current literature and 

there is no consensus regarding optimal model choice. 

The idea of the quantitative experimental study is to produce generalizable knowledge about 

the application of state-of-the-art machine learning in business analytics. The study has been 

carefully designed to be representative of real-world business use cases in finance and 

insurance. The chosen datasets are all publicly available to facilitate reproducibility by other 

researchers. Internal validity is given, but external validity (generalization) is not clear. Many 

papers in this field only used 1 to 3 datasets to justify their findings. While this thesis contains 

5 datasets, it might still not be enough to generalize the findings. A description of the datasets 

can be found in section 3.3.1 and 4.2.2. Overall, the chosen datasets contain different numbers 

of features and observations and are hence diverse enough to answer the above-formulated 

research questions. 

The following section introduces the necessary building blocks of machine learning and 

predictive analytics, including the evaluation methods. A description of the datasets, data 

preparation steps, and the relevant software, can be found in the individual chapters. The same 

is true for a more detailed description of the individual ML algorithms. 

2.3 Quantitative Research Methods 

This part introduces the technicalities of machine learning and predictive analytics. Some parts 

of this chapter contain similarities to my Master’s thesis (Schmitt, 2016). However, the content 

was largely cut, extended and/or re-written, which results in a significant improvement to better 

serve the purpose of this Ph.D. thesis. For a mathematically exhaustive treatment of ML/DL, it 

is referred to the deep learning bible from Ian Goodfellow, Yoshua Bengio (2016) and to the 

statistically motivated exploration of machine learning written by Hastie, Tibshirani, & Friedman 

(2009). Books that give a good foundation about standard machine learning concepts are 

Murphy (2012) and Bishop (2006) for general ML and Russel & Norvig (2009) for a more 

comprehensive view on AI. For applied predictive modeling it is referred to Kuhn & Johnson 
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(2013). And finally, for a chronological rundown of ML, I would recommend Schmidhuber 

(2015). 

2.3.1 Machine Learning 

Machine learning (ML) – whether deep or shallow – can be split into three major categories: 

Supervised learning; Unsupervised Learning; and Reinforcement Learning. The last one would 

be semi-supervised learning, which is essentially a hybrid of supervised and unsupervised ML. 

Supervised learning (SL) requires labeled data to train a model, which will then be used to 

make predictions from new (unseen) data. In contrast, the idea of unsupervised learning is 

to gain information out of an unlabeled data-set. Also known as knowledge discovery. 

Examples are outlier detection and clustering problems (e.g. anomaly detection with 

autoencoders). Reinforcement learning (RL) is the machine-learning method that is closest 

to real artificial intelligence and mainly responsible (in combination with Deep Learning) for the 

hype and media attention. RL uses an intelligent agent which tries to optimize its decisions to 

get the highest reward, which consequently maximizes its value. The idea of a Markov-decision 

process and dynamic programming is used to optimize a value function at each decision step. 

RL is still in its infancy and there is still a lot to be done to build a fully autonomous agent 

(Sutton & Barto, 2017). Standard machine learning algorithms – once understood – are very 

straightforward in their application. RL instead is a complete system that uses several ML 

algorithms. RL breaks a complex problem into smaller problems that can be solved by either 

supervised or unsupervised learning. Only a few applications of RL in business do exist and 

the field is largely in its infancy. 

This thesis is mainly concerned with supervised learning problems where we have preexisting 

data-sets, that have a sufficient amount of feature sets consisting of input X and output Y pairs. 

The most common method deployed in the industry is supervised learning. The major reason 

for this is that supervised ML is the most important method for real-world predictive analytics 

uses cases and is hence the main driver in the industry to capture value for corporations (Gary, 

2018; Ng, 2018). 

2.3.2 Predictive Analytics 

The essential problem in supervised machine learning or predictive analytics is to find a model 

that predicts an output Y given an input X. This is done by creating an input-output mapping in 

the form of 𝑓: X → Y. The idea is to fit a model that for each observation (feature set) of inputs 

X𝑖 = 1, … , 𝑛  finds a corresponding output Y (Hastie, et al., 2009). Notations differ slightly due 

to the development in different scientific disciplines as classic statistics, pattern recognition and 
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computer science. See figure 3 for the different notations w.r.t. input and output variables 

(Hastie, et al., 2009). 

 

Figure 3. Due to the development in different fields as classic statistics, computer science and pattern 

recognition there exists a variety of names for the input and output variables. This table lists all the 

names which are frequently used in the machine learning literature. 

 
The type of output depends on the problem type. Within the domain of supervised learning 

regression and classification models can be distinguished. Classification problems have 

discrete outputs, where Y ∈ {0, … , n}, which are categorical. Regression models have real 

(continuous) outputs, where Y ∈ R, which are numerical. Input features could be anything from 

detailed customer data to predict the default probability of loan applicants (classification) to 

closing prices of a stock market index to predict future price movements (regression). In 

general, a predictive model takes the form of 

 
 �̂� ≈ 𝑓 (X; W) (1) 

 
with the additional parameters W, which are often referred to as weights. The primary goal is 

to find the model with the best predictive power for a given data set. 

Examples of ML models used within business analytics for prediction tasks are GLMs 

(Bertsimas & King, 2016) as Logistic Regression; Classification and Regression Trees (CART); 

their ensembles as Random Forest and Gradient Boosting; and more recently (Deep) Neural 

Networks (Kraus, Feuerriegel, & Oztekin, 2019).  

The rationale behind this is the following: Logistic regression is widely used in the industry 

and serves as a good general baseline for binary classification problems. Decision Trees are 

an all-time favorite, easy and explainable, but lack predictive power compared to their more 

complex ensembles as Random Forest and Gradient Boosting. Random Forest increases 

upon the accuracy of a single decision tree but remains a sufficiently simple model that is easy 

to use and delivers good results. Gradient Boosting is currently dominating the benchmarks 

for structured data sets and generally seen as one of the most powerful ML models currently 

Input (𝑋1,...,𝑋𝑛)

• independent variable

•feature

•attribute

•predictor

Output (Y)

•dependent variable

•target

•response variable

•class
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available. Finally, the relatively new Deep Learning offers more flexibility due to its strong 

performance on unstructured data sets. A more detailed description of the relevant ML 

methods can be found in the corresponding chapters 3 to 6. 

To assess the predictive ability of machine learning models a method to quantify the deviation 

of the predicted value �̂� ≈ 𝑓 (X; W) to the true observation value, Y is required. This is done 

with a so-called loss function. The loss function 

 

 𝐽(𝑊) =  ∑ ℒ(𝑓(𝑋𝑖; W); 𝑌𝑖

𝑛

𝑖=1

) (2) 

 
is also frequently referred to as cost or objective function, where n is the number of samples 

and 𝑓(𝑋𝑖; W) the estimation of 𝑌𝑖. The objective is to choose the parameters 𝑊 (weights of 

coefficients) to minimize the loss/error. The loss function is the primary measure of predictive 

accuracy. 

As the predictive model adjusts the weights to determine the best parametrization to reduce 

the error produced by an objective/loss function, the whole idea of machine learning and 

predictive modeling, therefore, collapses to a single objective, which results in an optimization 

problem (Bertsimas & Kallus, 2019) in the form of 

 

 𝑤∗ = argmin
𝑤∈𝑊

1

𝑛
∑ ℒ(𝑓(𝑥𝑖; 𝑊) 𝑦𝑖)

𝑛

𝑖=1

 (3) 

 
The concrete choice of the loss function is motivated by the problem scenario/prediction task. 

The most common choices to train neural networks are (1) the mean squared error loss for 

regression problems where the outputs are continuous real numbers. 

 

 𝐽(𝑊) =
1

𝑛
∑(𝑦𝑖 − 𝑓(𝑥𝑖; 𝑊))

2
𝑛

𝑖= 1

 (4) 

 
And (2) cross-entropy for classification problems where the output is discrete. The cost 

function for the logistic regression (cross-entropy) is different from the mean squared error for 

linear regression and represented by 

 

 𝐽(𝑊) =
1

𝑛
∑ 𝐶(ℎ𝑤(𝑥), 𝑦),

𝑛

𝑖=1 

 (5) 
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Where 

 

 𝐶(ℎ𝑤(𝑥), 𝑦) = {
− log(ℎ𝑤(𝑥)),         𝑖𝑓  𝑦 = 1

−log(1 − ℎ𝑤(𝑥)),   𝑖𝑓  𝑦 = 0
. (6) 

 
𝐴𝑠 𝑦 ∈ {0,1}, this can also be written as 

 

 𝐽(𝑊) = − ∑[𝑦𝑖 log(ℎ𝑤(𝑥)) + (1 − 𝑦𝑖)(log(1 − ℎ𝑤(𝑥))]

𝑁

𝑖=1

. (7) 

 
This is the negative log-likelihood function, also referred to as the cross-entropy error function. 

Maximizing a likelihood function is equivalent to minimizing a loss function which is the reason 

for using a negative likelihood (Murphy, 2012). 

In summary, to fit a predictive model we have to find the optimal weights 𝑊 (parameterization) 

to minimize the cost function 𝐽(𝑊). In practice, this is done by using an optimization algorithm 

called gradient descent which can be written as 

Repeat { 

 

 𝑊𝑖 =  𝑊𝑖 − 𝛼 
𝜕

𝜕𝑊
𝐽(W) (8) 

 
}. 

The parameter 𝛼 is the learning rate. To minimize the cost function 𝐽(𝑊) the partial derivative 

of 𝐽(𝑊) with respect to each weight 𝑊 needs to be calculated. It then moves in the opposite 

direction to the gradient as the objective is to minimize the error (Raschka, 2015). The 

algorithm repeats its iterations and updates the parameters until it reaches a local minimum. 

Choosing 𝛼 is not an easy task. A small learning rate will result in a slow convergence as the 

algorithm only takes small steps. On the other hand, a very large learning rate might not 

converge at all as it will overshoot the minimum (Murphy, 2012). The learning rate is one of the 

most important hyperparameters for optimizing a machine learning model. 

Several ML algorithms as logistic regression, gradient boosting, and neural networks use the 

gradient descent algorithm to find the parametrization that minimizes the error of the objective 

function. Note that this method does not work with the random forest as this model is based 

on discrete instead of continuous outputs. 
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Once trained, the predictive power or strength of a machine learning model is measured with 

the help of an evaluation metric. Different types of those metrics exist and are explained in 

more detail in chapter 2.5. 

2.3.3 Modeling Process 

The workflow of predictive modeling can be seen in figure 4. It starts with the preparation, 

exploration, and cleaning of the data set. This includes the elimination of outliers, missing 

values, and feature scaling. Feature transformation requires a full understanding of the dataset 

and prediction purpose and usually requires significant domain expertise. If specific features 

are not particularly relevant for the response or redundant it is possible to merge those features 

or eliminate them. 

 

 

Figure 4. The predictive modeling process usually starts with the preparation, exploration, and 

cleaning of the data set. In the second step, the prepared input features are used to train the model. 

After that, the model will be used on new data to evaluate its accuracy. 

 
The second and third step would be the model training and evaluation. Initially, the data set is 

split into a training set and a test set. The training set is used to fit the predictive model. The 

model fitting process contains mainly the optimization of the different hyperparameters to reach 

the best model configuration for the underlying dataset. The training set might be further 

separated into different parts (training- and validation sets) with a frequently used method 

called cross-validation which helps the model to generalize better to unseen data. After the 

model has been trained the predictive accuracy can be tested on the previously hold-back data 

set. 

The necessity for excessive pre-processing and careful model tuning goes against the notion 

of an off-the-shelf solution, which is often favored in real-world business analytics and data 

mining scenarios. An off-the-shelf method is characterized by immediate applicability to a 

problem at hand. Off-the-shelf prediction models can be directly applied to a problem scenario 

without any significant domain knowledge or pre-processing of the datasets. Automated 

machine learning solutions (AutoML) are one way to streamline the predictive analytics 

workflow and will be discussed in chapter 6. Other issues that interfere with the off-the-shelf 

Prepare, Explore 
and Clean Data

Fit Predictive Model
Evaluate Model on 

new data
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property of ML algorithms are lack of interpretability (black-box) and computational complexity 

(speed), which will further be discussed in chapter 4. 

2.3.4 Learning Theory 

The problem of overfitting is often referred to as a bias-variance tradeoff, which means that 

a model needs to learn the representation of the training set, but just enough to generalize well 

to new (unseen) data. If a model overfits (high validation error) during the training process and 

turns out to be a pure representation of the training set (high variance), it will be useless for 

predictive tasks on data it has not seen before. If the model instead is kept as simple as 

possible it has low variance but a strong bias. High bias indicates a weak representation of the 

data, which means the model does not fit the training set very well and is subject to underfitting. 

It is called tradeoff as the optimum between bias and variance has to be found to produce a 

model with high prediction accuracy. 

See figure 5 for a graphical illustration and a good explanation of the connection between 

model complexity and prediction error. 

 

 

Figure 5 The Bias-Variance trade-off refers to the problem of overfitting. As model complexity 

increases the training error approaches zero but increasing variance after some optimal point will 

result in a loss of accuracy for predictions on unseen data sets. Over-fitted models do not generalize 

well to new data sets. K-fold cross-validation is a good method to tackle the problem of overfitting. 

 
To solve this problem datasets are split into 3 parts. A so-called training set, validation set, and 

test set. Now the parameters of the learning algorithm (predictive model) can be optimized with 

the training data and the validation set is used to get the test error. This allows an estimation 
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of the generalization ability of the model on a new currently unknown data, which the 

algorithm or ML model has not yet seen. 

One of the most powerful and widely used methods to prevent model overfitting to improve the 

generalization ability of the predictive model to unknown data is K-fold cross-validation. As 

can be seen in figure 6 the data set is simply divided into K equally sized parts, one of the K 

parts are chosen as a validation set, indicated here by the blue parts, and all the other K-1 

parts are used as a combined training set to fit the model. This is done for all the parts to 

receive K different results which are combined in the end to get a better overall predictor that 

generalizes well (Bishop, 2006). 

 

Figure 6 K-fold cross-validation divides the data set into K equally sized parts, chooses one of the K 

parts (blue) as the test set and uses all the other K-1 (grey) as a combined test set. This is done for all 

the parts to receive K different results which are combined to get a predictor that generalizes well to 

unseen data. 

2.3.5 Evaluation Methods 

To determine the predictive power of an ML model, an evaluation method is required. The 

performance matrices used in this thesis are Accuracy, AUC, F-score, and LogLoss.  Those 

performance measures (except LogLoss) are based on a concept called confusion matrix 

which is a contingency table and frequently used in binary classification problems. See figure 

7. 
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Figure 7. A confusion matrix is a basic ingredient for the ROC Curve. It shows the connection between 

true positives and negatives and false positives and negatives. 

 
True positives (TP) represent good observations that were classified as such, whereas false 

positives (FP) are observations that were incorrectly classified as good. The same logic applies 

to true negatives (TN), which represent the predicted values correctly classified as bad, 

whereas the false negatives (FN) represent observations incorrectly classified as bad. 

Accuracy: The model accuracy is the ratio of correctly classified outcomes over the total 

number of observations and is calculated as follows: 

 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (9) 

 
F-score: The F-score is the harmonic average of recall and precision. The range of the F-

score lies between 0 and 1. The best performance is reached at 1 indicating perfect precision 

and recall. 

 

 𝐹𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × Re𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (10) 

 
Where precision is defined as the ratio of true positives over the sum of true positives and false 

positives. 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝐹𝑃𝑅) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 
 (11) 

 
And recall is defined as the ratio of true positives over the sum of true positives and false 

negatives. 

 

 𝑅𝑒𝑐𝑎𝑙𝑙 (𝑇𝑃𝑅) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (12) 

 
AUC: In addition, the area under the receiver operating characteristics (ROC) curve (AUC) is 

used to measure the performance of the classifiers in this study. The closer the AUC comes to 

1 the stronger and more accurate is the model. The AUC as a comparison measure is only 

valid when the underlying distribution is uniform, which means the outcome of each class is 

equally likely (Flach, Hernández-Orallo, & Ferri, 2011). 

As can be seen in figure 8, the FPR represents the x-axis and the TPR represents the y-axis 

of the ROC plot. A perfect model would have a TPR of 1 and an FPR of 0. 



Chapter 2: Research Methodology  31 

 
    

 
 
 

 

 

Figure 8. The AUC of the ROC Curve is an accuracy measure for classification problems and will help 

to assess the predictive power of the classifiers. 

 
The models first predict the probability of default for every observation (customer) and based 

on a decision boundary assign a classification to the customer of either good (1) or bad (0). 

The default decision boundary for binary classification problems as in this case is 50% and is 

represented by a diagonal line from (0,0) to (1,1) of the ROC plot. Hence if we received an 

AUC of 50% or below our model would be purely random and therefore worthless. 

LogLoss: The last metric used is LogLoss. It is also referred to as the cross-entropy error 

function and is widely used as the objective function when dealing with binary classification 

problems. But it can also be used as a performance measure. See equation 13. 

 

 LogLoss (𝑦𝑖, ℎ𝑖) = −
1

𝑁
∑[𝑦𝑖 log(ℎ𝑖) + (1 − 𝑦𝑖)(log(1 − ℎ𝑖)]

𝑁

𝑖=1

. (13) 

 
The idea is to penalize bad predictions with a significant loss and reward perfect predictions 

with a loss of zero. A rejection that is positive by a huge margin difference gets severely 

punished by this evaluation metrics. The LogLoss is used to determine the reliability of the 

performance indicated by the other three performance measures. A very high LogLoss is a bad 

sign and indicates that some predictions are significantly out of line. 
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2.4 Software 

Data preparation and handling are managed in RStudio, which is the integrated development 

environment (IDE) for the statistical programming language R (R Core Team, 2019). R is one 

of the go-to languages for Data Science research as well as prototyping in practice. The 

machine learning models in this paper are developed with H2O, which is an open-source 

machine learning platform written in Java and supports a wide range of predictive models 

(LeDell & Gill, 2019). This makes experimentation and research easier. The high abstraction 

level allows the idea and the data to become the central part of the problem and helps to 

reduces the effort required to reach a solution. Also, H2O has the advantage of speed as it 

allows us to move from a desktop- or notebook-based environment to a large-scale 

environment. This increases performance and makes it easier to handle large data sets. R is 

connected to H2O by means of a REST API (Aiello, et al., 2016). 
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Chapter 3: Deep Learning vs. Gradient Boosting 
3 Deep Learning vs. Gradient Boosting 

Abstract 

Credit Risk Management is an essential part of financial institutions. In light of the changing 

lending market structure, advanced analytics has become vital to remain competitive in our 

fast-paced business world shaped by global competition. The two models currently competing 

for the pole position are Deep Learning and Gradient Boosting Machines. This paper will 

benchmark those two algorithms in the context of credit scoring using three distinct datasets 

with different features to account for the reality that model choice/power is often dependent on 

the underlying characteristics of the dataset. This study has shown that – for structured 

datasets – GBM tends to be more powerful than DL and also has the advantage of lower 

computational requirements. This makes GBM the winner and choice for most problems within 

credit risk. But it was also shown that the outperformance of GBM is not always guaranteed 

and ultimately the concrete problem scenario or dataset will determine the final model choice. 

Keywords: Credit Scoring, Classification, Deep Learning, Gradient Boosting 

3.1 Introduction 

The risk management unit is one of the most important business analytics functions within 

financial institutions. Two important metrics within credit risk management are the probability 

of default (PD) and the loss given default (LGD). The PD assesses the likelihood of a borrower 

not willing or able to repay the loan, while the LGD measures the exact loss (outstanding 

balance – collateral) that would occur in the event of default. 

Several developments in today’s society have led to a change in the market structure for 

lending businesses (Claessens, Zhu, Frost, & Turner, 2018), which led to the increased 

importance of prediction accuracy for credit assessments instead of only relying on post-

mortem protection in the form of LGD reduction through collateral. A pure focus on prediction 

accuracy has the advantage of cash-flow based lending without collateral requirements from 

borrowers (Frost, Gambacorta, Huang, Shin, & Zbinden, 2019). This can help to foster financial 

inclusion and is especially important for consumers in developing countries and small to 

medium-sized corporations, which have no collateral and had traditionally limited access to 

debt capital (Bazarbash, 2019). 

Overall, it would be of significant value for P2P lenders, FinTech’s, as well as traditional banks 

if they could increase the accuracy of the applicant’s default probability to assign a correct 
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credit score during the application process. The better a financial institution/lender can predict 

the default probability/credit score of certain applicants the better they can shield themselves 

from potential costly credit losses. Besides, misclassification also results in missed revenue if 

a potentially good customer is wrongly assumed to be of high credit risk. Machine Learning 

(Jordan & Mitchell, 2015) plays a fundamental role in achieving this goal as it counters the 

default problem at the origin which is the decision whether or not to take on a certain applicant. 

Statistical and machine learning models have been applied for years in credit risk 

management. Logistic regression has been the standard method for binary classification and 

is widely used in financial institutions to assign risk classes to applicants and has served as 

the main benchmark for years due to its simple application and accurate enough forecasts 

(Kraus, 2014). ML has been proven to achieve superior performance against generalized linear 

models very early (Keramati & Yousefi, 2011) and several models as decision trees, random 

forest, gradient boosting, support vector machines, and neural networks (NN) have gained 

popularity and are increasingly used in practice (Bazarbash, 2019). 

An analysis of the current literature reveals a clear trend showing that the models competing 

for the highest prediction accuracy are Gradient Boosting Machines (GBM) and Deep Neural 

Networks (DNN) aka Deep Learning (DL). 

Hamori et. al (2018) conducted an interesting empirical study analyzing the performance of 

ensemble learning in comparison to deep learning. The authors test different NN as well as DL 

configurations by switching activation functions (ReLU, Tanh) and come after 100 test runs – 

which are averaged – to the conclusion that GBM does outperform DL as well as NN. 

Those findings are in line with other papers as (Addo, Guegan, & Hassani, 2018), but there is 

also a body of literature that favors DL and comes to the conclusion that DNN or NN are 

superior in general (Kraus et al., 2019; Lessmann, Baesens, Seow, & Thomas, 2015). The 

literature seems to be conclusive and we can conclude that there are currently only two models 

that compete w.r.t to predictive accuracy in credit scoring: Deep Neural Networks and Gradient 

Boosting Machines. 

Surprisingly, there is not a single study exclusively focusing on DL and GBM when it comes to 

credit scoring. It is usually a mix of several machine learning models and there is a clear gap 

of a direct comparison of GBM and DL for assessing the correct default category of a loan 

applicant. Also, most studies within the credit risk domain have relied on only one dataset to 

benchmark different algorithms w.r.t to prediction accuracy (Addo et al., 2018; Hamori et al., 
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2018). Therefore, it might be that the correct model choice is dependent on the underlying 

dataset. 

The goal of this study is a direct comparison of GBM and DL in terms of prediction accuracy to 

correctly classify the default risk of a customer. Three distinct datasets with different features 

will be used to account for the possibility that model choice/power is based on the 

characteristics of the underlying dataset. In doing so this study will shed light on the predictive 

power and usefulness of both models for credit risk management within the lending market. 

The structure of this chapter is as follows. Section 2 “Theory and Methods” introduces the 

methods used for the following empirical study: Gradient Boosting Machine (GBM) and Deep 

Learning (DL). Section 3 “Experimental Design” introduces the datasets and the process of 

model tuning (hyperparameter optimization). Section 4 “Results and Discussion” analyses the 

findings and discusses their implications. The last section gives a conclusion and a future 

outlook. 

3.2 Theory and methods 

The two models compared in this study within the context of default categorization are Gradient 

Boosting Machines and Deep Learning and are introduced next. 

3.2.1 Deep Learning 

Recent advances in AI research have improved the capabilities of Artificial Neural Networks 

and the new paradigm Deep Learning was born (LeCun, Bengio, & Hinton, 2015). The three 

factors that helped DL to become mainstream are advances in data availability (Big Data), 

processing power (GPUs), and optimization algorithms (Goodfellow et al., 2016). One of the 

major advantages of DL is its ability to work with unstructured data-sets, which improved many 

tasks and brought breakthroughs in text, speech, image, video and audio processing (LeCun, 

et al., 2015). In 2014 the South Korean Go champion Lee Sedol was defeated by Deep Minds 

AlphaGo (Silver et al., 2016). This initial success of deep reinforcement learning was soon 

followed by AlphaGo Zero (Silver et al., 2017) and several other gaming-related multimedia 

appearances as StarCraft (Pang et al., 2019) and Dota 2 (Katona et al., 2019). Deep learning 

did not only help AI to increase its popularity, but it also has a wider range of possible 

applications and is seen as one of the most disruptive technologies since the inception of the 

internet itself (Goodfellow, et al., 2016). Soon, the business world picked up on those 

developments and DL was increasingly used to enhance existing business analytics functions, 

including credit risk management (Bughin et al., 2017; Chui et al., 2018) 
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Deep Learning comes with many architectures as feed-forward artificial neural networks 

(ANN), Convolutional neural networks (CNNs), as well as Recurrent Neural Networks (RNNs). 

The best architecture for transactional (tabular) data, which are not sequential – as in this study 

– is a multi-layer feedforward artificial neural network. Other, more complex architectures as 

RNNs do not possess any advantage in those cases (Candel & LeDell, 2019). 

The architectural graph of a feed-forward neural network can be seen in figure 9. The first 

column represents the input features and is called the input layer. The last single neuron 

represents the output where the final activation function is applied to. The two layers in the 

middle are called hidden layers. In case the neural network has more than one hidden layer it 

is called a deep neural network. A deep learning model can consist of several hidden layers 

and is trained with stochastic gradient descent and backpropagation (Goodfellow et al., 2016).  

 

 

Figure 9. The deep learning model used in this experiment is called a feedforward artificial neural 

network as the signal flow through the network evolves only in a forward direction. It is the most 

appropriate choice for problems based on structured datasets as used in this study. It contains one 

input as well as one output layer and various hidden layers. At each node, a linear combination of 

input variables and weights are fed into an activation function to calculate a new set of values for the 

next layer. 

 
A standard neural network operation consists of multiplying the input features by a weight 

matrix and applying a non-linearity (activation function). Input variables 𝑋𝑖 = (𝑋1, 𝑋2, … , 𝑋𝑛) are 

fed into the neural network, weights 𝑊𝑖  = (𝑊1, 𝑊2, … , 𝑊𝑛) are added to each of the inputs and 

a linear combination of ∑ 𝑋𝑖𝑊𝑖 =  𝑤𝑇𝑥 is calculated. This linear combination plus the bias term 

or interceptor serves as input for the activation function to calculate the output Y, which serves 
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either as input for the next layer or represents the final output/prediction. A neural network is 

trained with stochastic gradient descent and backpropagation. 

Applying a non-linearity in the form of an activation function is essential for neural networks to 

be able to learn complex (non-linear) representations of the input data-sets. The activation 

function transforms the output at each node into a nonlinear function. 

This study will build three different DL classifiers using the following activation functions for the 

hidden layers:  

• the rectified linear unit (ReLU): 𝑔(𝑧) = max(0, z)  ∈ [0, ∞), 

• the hyperbolic tangent function (Tanh): 𝑔(𝑧) =
𝑒𝑧−𝑒−𝑧

𝑒𝑧+𝑒−𝑧  ∈ [−1,1], and the 

• the Maxout function:  𝑔(𝑧) = max(𝑤𝑘𝑧 + 𝑏𝑘)  ∈ (−∞, ∞), 𝑘 ∈ {1, … , 𝐾} . 

The activation function most widely used (at the time this thesis was written) is the rectified 

linear unit (ReLU). As developments in DL are quite fast, I recommend checking the best/most 

common approaches w.r.t architectures as well as the concrete choice of the activation function 

to solve different problems regularly. 

As the scope of the research is binary classification on structured data the output activation 

function used is the sigmoid function 𝑠𝑖𝑔𝑚(𝑧) =  
1

1+ 𝑒−𝑧 =  
𝑒𝑧

𝑒z+1 
∈ [0,1] in line with the binary 

cross-entropy loss function. 

3.2.2 Gradient Boosting 

GBM is state-of-the-art when it comes to accuracy, especially for supervised learning problems 

on structured data-sets (Ng, 2018). The first boosting algorithm – AdaBoost – was introduced 

by Freund and Schapire (1997). Four years later Friedman (2001) introduced the Gradient 

Boosting Machine, which is a more general form of the earlier algorithm due to the possibility 

to switch the loss function, which makes the AdaBoost algorithm essentially just a subset of 

the GBM introduced by Friedman (2001).  

Boosting belongs together with bagging (Breiman, 1996a) and stacking (Caruana, Niculescu-

Mizil, Crew, & Ksikes, 2004) to the family of ensemble learning techniques and builds models 

in sequential order. The goal of ensemble learning is to combine multiple ML algorithms to 

achieve better predictive performance. The specific idea of boosting is to start with a so-called 

weak learner – a model only slightly better than random guessing – that gradually improves by 

correcting the error of the previous model at each step. See figure 10 below. 
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Figure 10. Gradient Boosting starts with a weak learner, typically a decision tree, and improves upon 

this initial learner iteratively at each step by correcting for the error of the previous model. GBM is 

one of the best performing ML models currently available. 

 
The most common form of boosting uses decision trees and sequentially ads one tree at a 

time. This step by step adjustment forces the model to gradually improve the performance and 

leads to higher accuracy (Hastie, Tibshirani, & Friedman, 2017). 

There are several different gradient boosting implementations out there. This study uses the 

gradient boosting version implemented by Malohlava and Candel (2019) which is based on 

Hastie et al. (2017). 

3.3 Experimental Design 

Financial institutions use credit risk models as scoring models to determine a client’s default 

probability. These estimates help to decide whether or not a certain customer should receive 

a loan or a credit card. The primary objective of this study is to benchmark the above introduced 

predictive models (Gradient Boosting and Deep Learning) to correctly classify the default 

category of a customer. Due to the difficulty of determining the best activation function choice 

three different DL configurations with different activation functions (ReLU, Maxout, Tanh) are 

run. Only the activations functions in the hidden layers are switched. Due to the research scope 

- binary classification on structured datasets - the loss function (binary cross-entropy) and 

output activation function (sigmoid) remain the same. Three distinct datasets containing 

detailed client data are used. 

3.3.1 Data and Preprocessing 

The rationale for the used datasets is its relevance for credit risk management. One part of 

credit risk management is concerned with assessing the likelihood that a counterparty (e.g. 

loan applicant) will not be able to repay its obligation in part or in full. For this purpose, the 
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output of credit risk models is either the probability of default or a credit score, which can be 

binary or multi-class depending on the specific use-case. Credit scoring in this thesis refers to 

the binary classification of loan applicants, and either a “good” or “bad” label is assigned to the 

counterparty. 

 

The datasets are from existing retail banks and have been widely used in earlier studies (Guo, 

He, & Huang, 2019; Hamori et al., 2018; Lessmann et al., 2015; Teng, He, Xiao, & Jiang, 2013; 

Yeh & Lien, 2009). The contained features resemble the typical information available to a retail 

bank and are therefore valid as real-world examples. See table 2 for a detailed description of 

the features contained in dataset 1 and 2. 

 

All three datasets are similarly structured and the prediction goal is the same. In earlier studies 

was often only one dataset used to test the strength of specific classifiers. More than one 

dataset allows for easier generalization of the results. Also, the best performing classifier could 

change based on the underlying dataset itself. 

 

The 3 datasets resemble real-world customer data, are all publicly available, and can be 

downloaded from the UCI Machine Learning Repositories, which makes the reproducibility of 

this empirical analysis possible. The datasets contain 23, 20, and 14 features respectively, 

which are historical client data and will serve as predictor variables to calculate the default 

category of each observation. All 3 datasets contain a target column that identifies whether or 

not the client defaulted. See table 1 for the details of each dataset including the resampling 

information. 

 
Table 1. Description of Datasets 

 

The empirical study is based on 3 data sets, each containing several features (predictors) including a 

target column containing the default information (response). The datasets have been resampled and 

balanced (equal ratio of good and bad clients) to avoid the tendency for the AUC metric to favour the 

majority class. 

 

Table X. Description of Datasets

Dataset Observations Good Bad Balanced 

(Experimental Setup)

Features

Taiwan 30,000 23,364 6,636 6,636/6,636 23

Germany 1,000 700 300 300/300 20

Australia 690 307 383 307/307 14
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Dataset 1 – Taiwan: The first dataset represents payment information from Taiwanese credit 

card clients. It was first used by Yeh and Lien (2009) and contains 30,000 observations where 

6,636 are flagged as defaults. The dataset contains mainly historical payment information. 

Each observation (or feature set) contains 23 features including a binary response column for 

the default information of the credit cardholder. 

Dataset 2 – Germany: The second dataset represents detailed customer-level data from a 

German bank and contains 1,000 observations where 300 are flagged as defaults. Each 

observation contains 20 features across a diver’s range of categories including a binary 

response column which indicates whether or not a particular client defaulted on their loan 

payments. 

Dataset 3 – Australia: The third dataset contains data for credit card applications for clients 

based in Australia. The dataset contains 690 observations where 383 are flagged as bad. Each 

observation contains 14 features including a binary response column indicating whether or not 

the person defaulted. The attribute names and values in this dataset have been changed to 

meaningless symbols due to confidentiality reasons. 

See table 2 below for a more detailed description of the specific features contained dataset 1 

and 2. No such description does exist for the third dataset due to confidentiality reasons. 
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Table 2. Detailed description of features contained in dataset 1 and 2 

 

The datasets were slightly adjusted to better serve the purpose of this study: 

Random under-sampling was used to create a balanced data set for this classification study. 

Imbalanced datasets can result in a bias towards the majority class. The accuracy measures 

used in this paper – Area under the curve (AUC) – is more reliable when the model is trained 

with a balanced dataset. Predictive models that strive for maximum AUC tend to gravitate 

towards a classification that overrepresents the majority category which results automatically 

in higher prediction accuracy. If the dataset would have an imbalance of 80 to 20, the ML 

algorithm could always achieve an 80% accuracy without having true predictive power. To 

address this problem the class distribution (the ration between the two categories good and 

bad) was adjusted and brought to a state of equilibrium. This is done by under-sampling the 

majority class and by doing so create an equal ratio of good and bad observations (categories). 

Dataset 1 - Taiwan Dataset 2 - German

Variable Description Variable Description

X1 Amount of the given credit X1 Balance of checking account

X2 Gender (1 = male; 2 = female) X2 Duration in months

X3 Education* X3 Credit history

X4 Marital status** X4 For what was the loan taken

X5 Age (year) X5 Credit amount

X6 Payment history September 2005 X6 Savings account plus bonds

X7 Payment history August 2005 X7 Duration of current employment

X8 Payment history July 2005 X8 Installment rate as % of income

X9 Payment history June 2005 X9 Marital status and gender

X10 Payment history May 2005 X10 Other debtors/guarantors

X11 Payment history April 2005 X11 Present residence since

X12 Amount of bill statement in Sep 2005 X12 Type of owned properties

X13 Amount of bill statement in Aug 2005 X13 Age of applicant

X14 Amount of bill statement in Jul 2005 X14 Housing (rent, own, free)

X15 Amount of bill statement in Jun 2005 X15 Credits at other banks

X16 Amount of bill statement in May 2005 X16 Existing credits at this bank

X17 Amount of bill statement in Apr 2005 X17 Employment/Level of qualification

X18 Amount paid September 2005 X18 The number of dependents

X19 Amount paid August 2005 X19 Registered telephone or none

X20 Amount paid July 2005 X20 Immigrant/foreign worker

X21 Amount paid June 2005

X22 Amount paid May 2005

X23 Amount paid April 2005

 * (1 = graduate school; 2 = university; 3 = high school; 4 = others)

** (1 = married; 2 = single; 3 = others)
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The subset of “good” observations (bad observations in case of the Australian dataset) was 

randomly drawn from the total population. 

Another important step during the preprocessing of the data is to replace categorical values 

with a numerical representation. For example, dataset 1 contains only three numerical values 

which can directly be used to fit the machine learning models. The other features are 

categorical and had to be transformed to factor variables to be processed. This is often done 

by a method called one-hot encoding. One-hot encoding is widely used for classifying 

categorical data and transforms categorical labels into vectors of zeros and ones. The length 

of the resulting vectors is equal to the number of categories where each element within the 

vectors corresponds to one of those categories. This method potentially results in a significant 

increase in the feature set depending on the number of categories as well as the number of 

elements within each category. This was done for dataset 2 and 3. Dataset 1 is already clean 

and consists of only numerical values. Significant preprocessing is not required. One last step 

– that was done for all data-sets – was to change the response variable from a numeric 

representation to a binary factor which is necessary for a classification problem. 

This study uses a training set, a validation set, and a test set. The first scenario which uses a 

training set size of 80% (80:10:10) is further referred to as 80:20 split while the second scenario 

using a training set size of 70% (70:15:15) is referred to as 70:30 split. 

3.3.2 Hyperparameter Settings 

Machine learning is an empirical process that involves trial, error, and experimentation. 

Hyperparameter optimization or model tuning describers the process of finding the optimal 

combination of hyperparameter for a machine learning algorithm. It is a multidimensional 

optimization problem and becomes more computationally demanding with an increasing 

number of parameters. 

All models were carefully tuned to reach a performance that is adequate for the comparison in 

this study. In the case of DL, three different models are trained each containing a different 

activation function in the hidden layers (ReLU, Tanh, and Maxout) while holding all other 

parameters constant. The H2O framework allows the user to choose the activation functions 

(ReLU, Maxout, Tanh) for the hidden layers, the appropriate loss function, and the response 

type. 

The H2O deep learning framework uses the above-specified activation function throughout the 

network (hidden layers) and based on the response column (binary) and loss function choice 
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(cross-entropy) determines the appropriate activation function (in this case sigmoid) for the 

final layer. 

Dropout has been shown to improve accuracy (Srivastava, Hinton, Krizhevsky, Sutskever, & 

Salakhutdinov, 2014); hence all 3 DL models use a dropout ratio of 0.50. The concrete 

hyperparameter settings for each dataset and model in the case of the 80:20 split can be found 

in table 3. 

Table 3. Hyperparameter setting of GBM and DL for the 80:20 split 

 

The hyperparameter settings of GBM and DL in the case of the 70:30 split can be found in 

table 4. 

Table 4. Hyperparameter setting of GBM and DL for the 70:30 split 

 

Dataset GBM - Parameters Value DL - Parameters Value

Taiwan ntrees 30 activation* ReLU, Tanh, Maxout

max_depth 5 hidden c(200, 200, 200)

min_rows 10 epochs 50

learn_rate 0,2 rate 0,2

Germany ntrees 400 activation* ReLU, Tanh, Maxout

max_depth 30 hidden c(200, 200)

min_rows 2 epochs 15

learn_rate 0,05 rate 0,01

Australia ntrees 10 activation* ReLU, Tanh, Maxout

max_depth 15 hidden c(200, 200)

min_rows 10 epochs 15

learn_rate 0,01 rate 0,003

*These are the activation functions for the hidden layers

Dataset GBM - Parameters Value DL - Parameters Value

Taiwan ntrees 30 activation* ReLU, Tanh, Maxout

max_depth 5 hidden c(100, 100)

min_rows 10 epochs 12

learn_rate 0,2 rate 0,2

Germany ntrees 390 activation* ReLU, Tanh, Maxout

max_depth 24 hidden c(200, 200)

min_rows 2 epochs 15

learn_rate 0,095 rate 0,01

Australia ntrees 11 activation* ReLU, Tanh, Maxout

max_depth 13 hidden c(200, 200)

min_rows 7 epochs 15

learn_rate 0,01 rate 0,003

*These are the activation functions for the hidden layers
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Searching the complete parameter space is computationally demanding. According to Bergstra 

and Bengio (2012) and Ng (2018), random search results in the best parameter choices 

compared to grid search and can be completed faster. Hence, an exhaustive grid search is not 

adequate considering the tradeoff between accuracy and training time. To tune the 

hyperparameters in this study a combination of random search, grid search, and manual 

adjustments was used. The random grid search was applied for 15 minutes. Afterward, a grid 

search was used around a small interval of the parameters determined by random search to 

further calibrate the models and to improved accuracy. Once this was completed, I have tried 

micro-adjustments of the hyperparameters to see whether there is a possibility left to enhance 

the accuracy levels. The manual changes were only done for one parameter at a time while 

holding all the others constant. Where this was possible it did only impact the accuracy levels 

slightly. No significant performance improvement could be reached at the final step and mainly 

the random search plus selective grid search resulted in maximum performance. 

In case the hyperparameter value is not mentioned in Table 3 or 4 the default value ascribed 

by H2O was used during the model training. Concrete advice on parameter choices in ML is 

subject to further research (Ng, 2018). 

3.4 Numerical Results 

Three datasets containing detailed customer-level data were used to benchmark Gradient 

Boosting Machine (GBM) against Deep Learning (DL). Table 5 shows the out-of-sample 

performance of the trained GBM and DL models and gives a complete summary of the results 

obtained during this study. It shows the AUC for each of the 3 datasets as well as the two 

training/test set splits. The AUC as accuracy measures should be diagnostically conclusive as 

the datasets were resampled and balanced before the model training. 
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Table 5. Model results separated by dataset as well as training/test set split 

 

3.4.1 Dataset 1: Taiwan 

In the case of the 80:20 split GBM achieved an AUC of 0.773 during the out-of-sample test. 

The best performing DL model used the ReLU activation function and achieved an AUC of 

0.765. See figure 11. 

 

 

Figure 11. Performance of GBM vs. DL with ReLU function on Taiwanese dataset and 80:20 split 

 
The 70:30 split has a slightly lower classification power in terms of the used metric, which 

shows an AUC of 0.771 for GBM and an AUC of 0.759 for the DL model, which was also used 

the ReLU as the activation function. See figure 12. 

 

Dataset Method AUC Method AUC

80:20 Split 70:30 Split

Taiwan Gradient Boosting 0.773 Gradient Boosting 0.771

DL + ReLu 0.765 DL + ReLu 0.759

DL + Tanh 0.744 DL + Tanh 0.741

DL + Maxout 0.761 DL + Maxout 0.754

Germany Gradient Boosting 0.885 Gradient Boosting 0.823

DL + ReLu 0.941 DL + ReLu 0.838

DL + Tanh 0.919 DL + Tanh 0.816

DL + Maxout 0.936 DL + Maxout 0.829

Australia Gradient Boosting 0.988 Gradient Boosting 0.989

DL + ReLu 0.964 DL + ReLu 0.961

DL + Tanh 0.961 DL + Tanh 0.943

DL + Maxout 0.974 DL + Maxout 0.965



Chapter 3: Deep Learning vs. Gradient Boosting  46 

 
    

 
 
 

 

Figure 12. Performance of GBM vs. DL with ReLU function on Taiwanese dataset and 70:30 split 

 
Overall, based on the first dataset GBM remains in terms of accuracy the superior model 

compared to DL. The DL model utilizing the Tanh activation function was at the lowest 

performance end at both training/test set splits. 

3.4.2 Dataset 2: Germany 

The results for Dataset 2 are surprisingly different from Dataset 1. In the case of the 80:20 split 

GBM achieved an AUC of 0.885 on the test data, which was significantly lower than the best 

performing DL which achieved an AUC of 0.941. See figure 13. 

 

 

Figure 13. Performance of GBM vs. DL with ReLU function on German dataset and 80:20 split 

 
The 70:30 split for dataset 2 has a slightly different classification accuracy with an AUC of 

0.823 for GBM and an AUC of 0.838 for the best DL model that uses again the ReLU activation 

function. See figure 14. 
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Figure 14. Performance of GBM vs. DL with ReLU function on German dataset and 70:30 split 

 
Overall, the position for the highest classification power is reversed in the case of the second 

dataset and DL was able to outperform GBM in terms of the accuracy metric AUC. In addition, 

all 3 DL models could represent the dataset better than GBM, while the DL model with the 

Tanh activation function takes the lowest spot w.r.t to classification accuracy. 

3.4.3 Dataset 3: Australia 

The out-of-the sample results obtained for Dataset 3 in case of the 80:20 split show an AUC 

of 0.988 for GBM, and an AUC of 0.974 for the best DL model, which was this time achieved 

by the Maxout activation function. See figure 15. 

 

 

Figure 15. Performance of GBM vs. DL with Maxout function on Australian dataset and 80:20 split 

 
In the case of the 70:30 split GBM achieved a similarly impressive AUC of 0.989 on the test 

data, while the best performing DL model which also uses the Maxout activation function 

achieved an AUC of 0.965. See figure 16. 
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Figure 16. Performance of GBM vs. DL with Maxout function on Australian dataset and 70:30 split 

 
Overall, the performance of GBM is superior to DL in terms of the AUC performance metric for 

both training/test set splits. Again, the DL model with the Tanh activation function had the 

lowest AUC among the DL models in both cases. 

3.5 Discussion 

The results of this study are clearly in favor of Gradient Boosting Machine (GBM) which is 

based on the results of this experiment superior in terms of accuracy to Deep Learning (DL). 

This is especially true in the case of dataset 1 and 3, which confirms the findings of Hamori et 

al. (2018) and Addo et al. (2018). Nevertheless, DL was able to outperform GBM on the second 

dataset, which suggests that the underlying structure of datasets is important and only slight 

variations might result in the need for a different model or at least a change in the model 

configuration. 

Given the observation that there exists a tendency to achieve higher prediction accuracy when 

increasing the number of observations within the training set, it is recommended to use as 

many observations in the training set as possible. However, the size of the two datasets 

Germany and Australia with only 1000 and 690 observations respectively are relatively small. 

Especially in combination with the additional resampling and balancing, which further reduced 

the number of observations to 600 and 614 made it difficult to go for a 90:10 split. The resulting 

number of observations in the test set would have been too small, which would have resulted 

in inadequate performance. 

The choice of the activation function for deep learning does indeed have an impact on model 

performance. Comparing the different DL models and activation function choices, it can be 

observed that the ReLU activation function performs the best, with the Maxout activation 
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function as a close follower. The Tanh activation function has shown a consistent 

underperformance across all the tested scenarios. 

The impact of the different training/test set splits (80:20 and 70:30) on model performance was 

quite trivial and did not alter the essential findings across all three datasets. Overall, the training 

process GBM is less complex and it is way easier to achieve a satisfactory prediction accuracy 

with Gradient Boosting Machine then with Deep Learning. Also, the space of hyperparameters 

for GBM is smaller and fewer variations have to be considered, which results in significantly 

faster training time for GBM compared to DL.  

Decisions have often to be done in real-time, which requires model adjustments to be carried 

out within minutes or maximum hours. If two or more models deliver more or less the same 

result the less complex model should be the preferred choice. This becomes particularly 

important for large datasets. Flexibility and fast reaction times are key in many business 

functions. Feature engineering and hyperparameter tuning over several days or weeks to arrive 

at a satisfactory result is not realistic, which is another reason why GBM should be favored 

over DL. 

There is an overall consensus that GBM is superior to DL when it comes to structured (tabular) 

data sets and DL is dominating tasks based on unstructured data-sets (Ng, 2018). The findings 

of this study are in line with the current literature but do not suggest a complete switch to GBM. 

However, papers who propose deep learning as the one-fit all solution seem not to represent 

reality. Machine learning remains an empirical process. It is therefore recommended to test 

different models for different datasets to find the one model that can best represent the 

information contained within the data. It is also advisable to reevaluate parameter settings and 

model choice after a non-trivial change in the fundamental dataset has occurred as this might 

result in different requirements w.r.t. model configurations. 

Overall, based on this study both algorithms can be considered state-of-the-art for binary 

classification tasks on structured datasets, while GBM should be the go-to solution for most 

problem scenarios due to easier use, significantly faster training time and also superior 

accuracy. 

To strengthen the above findings additional datasets can be used, but it is unlikely that the 

findings will be negatively challenged as results already indicate that there is no guarantee, but 

a strong tendency that GBM is the preferred choice for structured datasets in the case of binary 

classification. However, further research could successfully strengthen those findings and 

confirm that GBM is the best model available for structured datasets. 
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3.6 Conclusion and Future Research 

The global economy has changed significantly over the last years and new entrants in the form 

of FinTech companies are increasingly disrupting the current lending market structure. The 

usage of advanced analytics in this increasingly competitive market is essential. Gradient 

Boosting Machine (GBM) and Deep Learning (DL) are the two dominating forces currently 

shaping the business analytics landscape when it comes to supporting lending decisions. This 

study has shown that in the case of structured datasets, GBM tends to be superior in terms of 

prediction accuracy. It is easier to use and has also the advantage of computational speed. DL 

was able to beat GBM in one case, which shows that the outperformance of GBM is not always 

guaranteed. It seems the model choice is also dependent on the concrete problem scenario 

and underlying characteristics of the dataset and it might be wise to choose a predictive model 

that is best suited for the problem scenario at hand. Overall, DL and GBM, or in general 

advanced analytics are powerful models to support businesses operating in the lending market 

when it comes to the prediction of counterparty defaults. 

This study’s purpose was to analyze prediction accuracy for binary classification on structured 

data, but credit scoring could largely move away from using traditional data for the assessment 

of the default probability. Not only is it possible to utilize a vast array of new data sources that 

grow consistently in volume, but our ability to harvest and store those data for improved 

decision making has dramatically improved as well. 

Many FinTech companies have already started to use unstructured data (e.g. text mining and 

social media data) to further enhance the ability of correct default classification of customers, 

which could further restructure the lending market. Further research could focus on a better 

understanding of prediction accuracy and how to utilize the special characteristics of DL to use 

all kinds of unstructured data to support lending decisions. This seems especially relevant due 

to significant market changes in developing countries that drive forward non-traditional 

borrowing as peer to peer lending (C. Wang, Han, Liu, & Luo, 2019). Peer to peer lending and 

other FinTech’s might foster financial inclusion, but also tend to cannibalize the market share 

of incumbent institutions. 

Another area in need of further investigation is the current adoption rate of DL in business 

analytics functions. This seems to be especially relevant for incumbent corporations (Chui et 

al., 2018), but the adoption and utilization of DL in business are not easy. The necessary skill 

sets required to develop and deploy advanced prediction models are often not in place. The 
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questions why DL was not able to find its way into business analytics functions as expected 

due to the hype and attention it has received recently will be explored in the next chapter. 

New emerging models as AutoML could help to close this gap and further democratize ML. A 

comprehensive analysis of AutoML and its current capabilities in comparisons to manual model 

tuning can be found in chapter 6. 
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Chapter 4: Deep Learning in Business Analytics 
4 DL in Business Analytics: A Clash of Expectations and Reality 

Abstract 

Our fast-paced digital economy shaped by global competition requires increased data-driven 

decision making based on advanced analytics and machine learning. The first wave of digital 

transformation based on big data and analytics is now gradually replaced by AI, which 

becomes the driving force behind new digital transformation initiatives. The benefits of Deep 

Learning (DL) over traditional analytics are manifold, but it comes with limitations that have – 

so far – interfered with widespread industry adoption. This chapter conveys an accurate picture 

of the current deployment of DL in business analytics. It contains three case studies of different 

business use cases and benchmarks DL against traditional machine learning models. It is 

shown that the adoption of Deep Learning is not only affected by computational complexity, 

lacking big-data architecture, lack of transparency (black-box), and skill shortage, but also by 

the fact that DL does not outperform traditional ML models in case of structured datasets with 

fixed-length feature vectors as usually present in relational database systems. DL does not 

show superior performance for classification problems on structured data across several 

domains. DL does not achieve higher performance as Gradient Boosting Machine and Random 

Forest. These results are consistent across all three use cases presented in this study, which 

offers a logical explanation of why DL adoption is lacking behind expectations. DL should be 

regarded as a powerful addition to the existing body of ML models instead of a one fits it all 

solution. 

Keywords: Business Analytics, Predictive Analytics, Digital Transformation, Deep Learning, 

Ensemble Learning 

4.1 Introduction 

The last decade was shaped by huge improvements in data storage and analytics capabilities 

(Baesens et al., 2016; Henke et al., 2016). What started as the Big-Data revolution brought us 

the age of constant digital change, accelerating globalization, and the consensus that we are 

moving towards a digital world economy (Davenport, 2018; Warner & Wäger, 2019). 

Companies operating in today’s world have to deal with global competition in an ultra-fast 

market place (Davenport, 2018). 

Amidst all this formed a new paradigm called Deep Learning (LeCun et al., 2015) which 

emerged out of earlier research of brain-inspired neural networks. DL is part of ML and is one 
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of the major technologies responsible for driving the current digital revolution (Agrawal et al., 

2019; Bughin et al., 2017). DL is capable of learning complex hierarchical representations of 

data. It was able to outperform traditional methods and has predictive capabilities that come 

close or surpass human-level intelligence in different areas. The main reasons for the 

breakthrough of DL stem from developments in three different areas (Goodfellow et al., 2016): 

(1) Optimization algorithms allow the training of deep neural networks (Hinton, Osindero, & 

Teh, 2006); (2) The era of “Big Data” increased the amount of large structured, as well as 

unstructured data-sets, which are now ripe for harvesting (Chen et al., 2012); and (3) hardware 

improvements, especially GPU’s made it possible to train those highly power-hungry models 

with those huge data-sets. Stadelmann et al. (2018) give a good summary of current 

applications of DL across different domains. When it comes to image recognition (Krizhevsky, 

Sutskever, & Hinton, 2012; Szegedy et al., 2015), NLP (Devlin, Chang, Lee, & Toutanova, 

2018), and games (Silver et al., 2017; Vinyals et al., 2019), DL is the go-to solution. Accurate 

performance for unstructured high-dimensional data-sets became only possible due to the 

advances of DL, which significantly enhances the field of machine learning (Jordan & Mitchell, 

2015) to tackle further use cases and take over tasks that were initially only reserved for 

humans (Agrawal et al., 2019). 

We have entered the second wave of digital transformation and the deployment of advanced 

analytics in the form of machine learning has become a necessity to survive and thrive in this 

new environment where competitive advantage is mainly based on evidence-based or data-

driven decision making (Henke et al., 2016). The function responsible for converting raw data 

into valuable business insights is called business analytics. It is an interdisciplinary field 

drawing and combining expertise from machine learning, statistics, information systems, 

operations research, and management science (Sharda, Delen, & Turban, 2017). Business 

analytics constitutes a quite long chain of different analytics, which includes descriptive, 

predictive, and prescriptive analytics (Delen & Ram, 2018). ML operates mainly in the 

predictive sphere of Business Intelligence but has started to incorporate prescriptive analytics 

as well (Bertsimas & Kallus, 2019). 

Most analytics departments across the corporate value chain have traditionally been using 

predictive statistics and machine learning models as GLMs, CART, and ensemble learning. 

Those models are vital tools to help with several analytics tasks that directly impact the bottom-

line of firms and organizations (Siebel, 2019). We have moved from fundamental progress to 

the application of deep learning in various sciences, businesses, and governments (Lee, 2018; 

Stadelmann et al., 2018). Despite the huge success of DL, a closer investigation of the current 
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literature reveals that the adoption rate for DL in business functions for analytic purposes is 

quite low. 

Chui et al. (2018) analyzed 100 use cases to demonstrate the current deployment of AI/DL 

related models across industries and business functions compared to other models referred to 

as traditional analytics. The result is that while the adoption of DL starts to increase, it seems 

most units remain working with the older more established analytical models that have been 

successful already years ago. McKinsey (Chui et al., 2018) also distinguishes departments that 

have traditionally been using analytics as compared to departments that are foreign to 

quantitative decision enablers. McKinsey draws a clear picture that shows that the only areas 

where DL has been utilized so far are traditional analytics arms that have the natural 

capabilities and skillsets in place to work with modern AI, while technology foreign departments 

are reluctant to adopt DL models. But even in business units with traditionally strong links to 

analytics as risk management and insurance remains the utilization of DL quite low and 

traditional models are still the go-to solution. 

The latest paper on the topic confirmed this observation: “While deep learning is on the way to 

becoming the industry standard for predictive analytics within business analytics and 

operations research, our discipline is still in its infancy with regard to adopting this technology.” 

Kraus et al. (2019) has analyzed several papers across the major journals and concluded that 

DL does not prevail within business analytics functions as perceived due to the current hype 

and job descriptions. 

The main issues why it is not so easy to develop and deploy DL – especially for small to 

medium-sized corporations – can be partly mapped to the three reasons why DL found its 

breakthrough in recent years. The “content analysis” of the existing literature identified the 

following bottlenecks when it comes to the adoption of DL in business analytics functions: 

(1) Computational Complexity: The hardware necessary to train and validate DL models 

on large-datasets is tremendous, which makes infrastructure investments quite 

expensive. This stands in large contrast to the question, whether the development and 

implementation of those models will materialize and be reflected in a future value 

increase (Bughin et al., 2017). 

(2) Infrastructure: Companies need to be able to harvest a continuous flow of 

unstructured data to capture the value from DL, which is difficult if the necessary “Big 

Data” infrastructure is not in place (Bughin et al., 2017). 
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(3) Transparency: Another reason is the nature of DL itself. DL is mainly a black-box, 

which means it can predict correctly, but we lack a causal explanation of why it arrives 

at a certain decision (Samek & Müller, 2019). This makes it problematic for industries, 

which are subject to regulatory supervision. 

(4) Skill Shortage: Talent is required to implement those models as well as subject matter 

expertise to define use cases (Henke et al., 2016). The current supply and demand gap 

for ML experts makes it difficult for small- and medium-sized corporations to utilize 

advanced AI. 

Nevertheless, what many studies about the adoption of DL in business analytics seem to ignore 

is its general value contribution, which should come in the form of improved prediction 

accuracy. DL has to make a business case for itself to justify its adoption in functional areas, 

but this is not always given. Several standalone studies comparing the predictive ability of deep 

learning against traditional machine learning methods on structured data-sets have concluded 

that DL does not outperform tree-based ensembles (Addo et al., 2018; Hamori et al., 2018). 

This stands in contrast to the claim that DL offers performance improvements across the board 

as indicated by Kraus et al. (2019) and also to the general assumption that DL needs to be 

adopted in every business function (Chui et al., 2018). While the success of DL for unstructured 

data problems as image recognition and NLP is beyond doubt, the reality about DL for 

structured data within companies’ business analytics functions is less clear and is the main 

focus of this chapter. Structured data with fixed-length feature vectors are vastly present in 

many relational databases and standard business uses cases. 

Comments as “DL can be a simple replacement of traditional models” are too general and not 

always true. For structured data, tree-based ensembles as gradient boosting seem to be at 

least on par with DL across different domains. In support of this claim, an empirical test using 

three case studies based on real-world data is presented. Concrete, this chapter will contribute 

to the current body of literature in the following ways: (1) DL is compared to traditional machine 

learning models as GLMs, Random Forest, and Gradient Boosting based on three real-word 

use cases within the context of business analytics to verify the assumption that DL does not 

outperform traditional methods on structured datasets. (2) A comprehensive discussion on the 

bottlenecks of DL identified during the “Content Analysis” taking into account the findings of 

the empirical study including managerial recommendations will be given. (3) In the end, a 

roadmap for future research possibilities for deep learning and business analytics is presented. 

This chapter is structured as follows: Section 2 introduces the methods logistic regression and 

random forest. Second, the experimental design is presented, which includes an explanation 
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of the dataset, preprocessing steps, and the general setup. In section 3, the numerical results 

from the three case studies based on real-world data/business problems are presented. All 

three case studies show that in the case of structured data (tabular data) DL does not have a 

performance advantage over the tree-based ensembles Random Forest and Gradient 

Boosting Machine. Section 5 gives a discussion of the technical implications of these results, 

highlights managerial implications, and suggestions for future research while section 6 

concludes with a summary. 

4.2 Experimental Design 

4.2.1 Methods 

The ML models used and compared in this experiment are Logistic Regression (LR), Random 

Forest (RF), Gradient Boosting Machine (GBM), and Deep Learning (DL). 

The Logistic Regression (LR) belongs to the big family of generalized linear models (GLMs). 

GLMs are characterized by taking as input a linear combination of features and link them to 

the output with the help of a function where the output has an underlying exponential probability 

distribution like the normal distribution or the binomial distribution (Murphy, 2012). The LR is 

the standard method for binary classification and widely used in academia and industry. A 

linear combination of inputs and weights is calculated and applied by feeding 𝑤𝑇𝑥 into the logic 

or sigmoid function represented by 

 

 𝑠𝑖𝑔𝑚(𝑤𝑇𝑥) =  
1

1 +  𝑒−𝑤𝑇𝑥
=  

𝑒𝑤𝑇𝑥

𝑒𝑤𝑇𝑥 + 1 
. (14) 

 
The sigmoid function restricts the range of the output to be in the interval [0, 1]. 

The recursive partitioning algorithms Random Forest (RF) is part of the family of ensemble 

methods and operates very similar to decision trees with bagging. Bagging (Breiman, 1996a) 

chooses randomly different M subsets from the training data with replacement and averages 

these estimates. The random forest creates different decision trees and averages the results 

in the end to reduce the variance of the prediction model (Murphy, 2012). It is one of the most 

potent ML algorithms for classification and regression tasks out there. 

A description of deep learning and GBM can be found in chapters 3.2.1 and 3.2.2 respectively. 
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4.2.2 Data and Preprocessing 

This experiment is based on three datasets. The idea was to cover several application areas 

within financial services for supervised classification, hence the chosen datasets cover banking 

(credit risk), insurance (claims prediction), and marketing and sales for a retail bank. As banks 

and insurance companies have similar products – non-physical products or services – and 

therefore use similar distribution channels, the results based on those datasets can be easily 

generalized for most financial service companies. Insurance companies and banks tend to 

cooperate during sales activities and often bundle their products – e.g. bank accounts with 

insurance policies (bancassurance). 

All three use cases require the same ML method, which is supervised learning and binary 

classification and where used in earlier studies, which allows for easy comparison of classifier 

strength regarding earlier studies. To facilitate reproducibility and comparability the chosen 

data-sets are all publicly available and can either be downloaded from the UCI machine 

learning repository or from the public machine learning competition site “Kaggle”, which 

regularly offers access to high-quality datasets for experimentation. See table 6 for an overview 

of the case studies/datasets used in this study. 

Table 6. Description of Datasets 

 

Credit Risk: The first dataset represents payment information from Taiwanese credit card 

clients. It consists of 30,000 observations, of which 23,364 are good cases and 6,636 are bad 

cases (flagged as defaults). Each observation contains 23 features including a binary response 

column for the default information of the credit cardholder. The features within the dataset 

Table X. Description of Datasets

Business Area Description

Total y = 0 y = 1 Balanced* Features

Credit Risk 30,000 23,364 6,636 6636/6636 23
Prediction whether a customer is 

going to default on their loan payment

Insurance Claims 595,212 573,518 21,694 21694/21694 57

Prediction whether a policy holder will 

initiate an auto insurance claim in the 

next year

Marketing/Sales 45,211 39,922 5,289 5289/5289 16

Prediction whether a targeted 

customer will open a deposit account 

after a direct marketing/sales effort

*For the purpose of this study random under-sampling was used to bring the datasets in a balanced state

Observations
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contain mainly historical payment information, but also demographic information as gender, 

age, marital status, and education. 1 

Insurance Claims: The second dataset represents information about automotive insurance 

policyholders. It consists of 595,212 observations, of which 573,518 are non-filed and 21,694 

are filed claims. Each observation contains 57 features including a binary response column 

which indicates whether or not a particular policyholder has filed a claim. 2 

Marketing and Sales: The third dataset stems from a retail bank and represents customer 

information for a direct marketing campaign. It consists of 45,211 observations, of which 39,922 

were unsuccessful and 5,289 were successful (resulted in a sale). Each observation contains 

16 features including a binary response column indicating whether or not the person ended up 

opening a deposit account with the bank following the direct marketing effort. 3 

For a more detailed description of the features present in the datasets see section 3.3.1 (credit 

risk) and the Appendix (insurance and marketing). 

The experiment required several adjustments. All three datasets are highly unbalanced. For 

this study, random under-sampling was used to bring the good as well as the bad cases in a 

state of equilibrium. This can also be seen in table 5. Example: If highly unbalanced datasets 

with a ratio of 90:10 are trained it is very easy for the classifier to reach an accuracy of 90% by 

simply going for the positive observations in all cases. To counter this natural occurring 

gravitation towards the majority class resampling is used to better gauge the predictive ability 

of the classifiers. One drawback of under-sampling might be a loss of information, but can be 

neglected as the major purpose of the dataset is to benchmark the introduced ML classifiers. 

Before model construction can take place, several other common preprocessing steps have 

been performed. A required procedure in ML during preprocessing is to transform categorical 

values in a numerical representation. Especially the “Case Study 3 – Marketing and Sales” 

contains predominately categorical strings. Where necessary categorical features were 

transformed to factor variables with a method called one-hot encoding. H2O has a parameter 

 
 

1 The “Credit Risk” dataset can be accessed here: 
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients 
2 The “Insurance Claims” dataset can be accessed here: https://www.kaggle.com/c/porto-seguro-safe-driver-
prediction/data 
3 The „Marketing/Sales dataset can be accessed here: https://archive.ics.uci.edu/ml/datasets/Bank+Marketing 

https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
https://www.kaggle.com/c/porto-seguro-safe-driver-prediction/data
https://www.kaggle.com/c/porto-seguro-safe-driver-prediction/data
https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
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setting called one_hot_explicit, which creates N+1 new columns for categorical features with 

N levels. 

For this experimental study, all three datasets are separated into a training set and test set 

with a proportion of 80:20. To tune the model parameters the training set will be further divided 

into different training and validation sets using a method called cross-validation during the 

construction of the classifiers. Cross-validation is used to increase the generalization ability of 

the classifiers to unknown data and to avoid overfitting. This study uses 5-fold cross-validation. 

Model tuning in ML is a highly empirical and interactive process and is essentially based on 

trial and error. The methods commonly used to help with automating the model tuning process 

are grid search and random search. Grid search automatically trains several models with 

different parameter settings over a predefined range of parameters. Overall, this does not 

change the basic necessity of trying out different combinations of parameters that allow the 

classifier to adjust adequately to the underlying dataset. This study used a random search, 

selective grid search, and manual adjustments to arrive at the final parameter settings. 

To determine the predictive power of an ML model, an evaluation method is required. The 

performance metrics used are AUC, Accuracy, F-score, and LogLoss as described in chapter 

2.3.5. 

4.3 Numerical Results 

In this section, three different case studies: Credit Risk, Insurance Claims, and Marketing and 

Sales are presented to demonstrate that deep learning while being promoted as superior ML 

solution has difficulties to beat traditional machine learning methods in some cases. Concrete, 

Logistic Regression, Random Forest, Gradient Boosting Machine, and two different Deep 

Learning classifiers were trained on each dataset. The first DL model was built with the ReLU 

activation function whereas the second DL model was built with the Maxout activation function. 

The ReLU activation function is widely used and has shown to be superior in terms of accuracy 

and computational speed. The Maxout activation function has been developed to improve 

classification accuracy in combination with drop out (Goodfellow, Warde-Farley, Mirza, 

Courville, & Bengio, 2013; Srivastava et al., 2014) and is hence the second choice for this 

experiment. The Tanh function as used in chapter 3 has been dropped due to consistent 

underperformance in terms of prediction accuracy and time to completion. Several hyper-

parameters were adjusted during the model training process to improve the performance 

measured by the evaluation metrics AUC, Accuracy, F-score, and LogLoss. 
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4.3.1 Case Study 1: Credit Risk 

Numerical results for the credit risk business case to accurately predict the default category of 

an applicant. The performance of deep learning is compared to traditional machine learning 

classifiers via the four evaluation matrices AUC, Accuracy, F-score, and LogLoss. The best 

performance is highlighted in bold. 

Table 7. Numerical results for Case Study 1 - Credit Risk    

 

Table 7 shows clearly that GBM has the best overall performance with the highest AUC, 

Accuracy, and F-score of 0.774, 0.712, and 0.691 respectively, including a LogLoss of 0.572. 

RF comes as a close second with an AUC of 0.773 and the same LogLoss as GBM of 0.572. 

Both ensemble models achieve a better performance in the case of the credit risk dataset than 

the two DL models with an AUC of 0.760 and 0.762 respectively. The DL + Maxout model has 

a slightly higher AUC compared to the DL + ReLU, whereas the LogLoss is reversed, which 

results in a similar performance of the two DL models. 

A graphical presentation of the results of each model sorted by the evaluation measure can be 

found in figure 17. The best performing model GBM is highlighted via a callout text field, which 

shows the performance of each evaluation metric. 

Table X. Numerical results for Case Study 1 - Credit Risk

Method

AUC Accuracy F-score Logloss

Logistig Regression 0.712 0.671 0.653 0.623

Random Forest 0.773 0.711 0.688 0.572

Gradient Boosting Machine 0.774 0.712 0.691 0.572

Deep Learning + ReLU 0.760 0.700 0.646 0.592

Deep Learning + Maxout 0.762 0.703 0.687 0.599

Out-of-Sample Performance
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Figure 17. Graphical representation of the performance of each classifier for all 4 performance 

evaluation metrics for case study 1 - credit risk. Gradient Boosting Machine (GBM) achieves the 

highest accuracy according to those results. 

4.3.2 Case Study 2: Insurance Claims 

In table 8 the numerical results for the insurance case study are presented. The goal is to 

accurately predict whether a policyholder is going to file an insurance claim within the next 

year. The performance of deep learning is compared to traditional machine learning classifiers 

via the four evaluation matrices AUC, Accuracy, F-score, and LogLoss. The best performance 

is highlighted in bold. 

Table 8. Numerical results for Case Study 2 - Insurance Claims 

 

The results of table 8 are similar to the first case study. GBM is the clear winner in terms of 

performance with the highest AUC, Accuracy, and F-score of 0.640, 0.602, and 0.588 

respectively, including the lowest LogLoss of 0.664. RF takes the second place with an AUC 

of 0.773 and a LogLoss of 0.664. Both ensemble models achieve a better performance 

regarding the insurance case study than the two DL models. The DL + Maxout model with an 

AUC of 0.633 has a slightly higher AUC compared to the DL + ReLU with an AUC of 0.628. 

Table X. Numerical results for Case Study 2 - Insurance Claims 

Method

AUC Accuracy F-score Logloss

Logistig Regression 0.629 0.594 0.586 0.667

Random Forest 0.636 0.598 0.584 0.667

Gradient Boosting Machine 0.640 0.602 0.588 0.664

Deep Learning + ReLU 0.628 0.597 0.540 0.670

Deep Learning + Maxout 0.633 0.597 0.534 0.669

Out-of-Sample Performance
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A graphical presentation of the results of each model sorted by the evaluation measure can be 

found in figure 18. The best performing model (Gradient Boosting) is highlighted via a callout 

text field. 

 

Figure 18. Graphical representation of the performance of each classifier on all 4 performance 

measures for case study 2 - insurance claims. Also, in the second case study, Gradient Boosting 

Machine (GBM) achieves the highest prediction accuracy. 

 

4.3.3 Case Study 3: Marketing and Sales 

Table 9 shows the numerical results for the marketing and sales case study to accurately 

predict successful conversions based on a direct marketing effort. The performance of deep 

learning is compared to traditional machine learning classifiers via the four evaluation metrics 

AUC, Accuracy, F-score, and LogLoss. The best performance is highlighted in bold. 

Table 9. Numerical results for Case Study 3 - Marketing and Sales 

 

Based on table 9 the results for the third case study are slightly different from case study one 

and two. GBM shares the maximum AUC of 0.940 with RF. The RF classifier has also slightly 

higher Accuracy of 0.879, and also a higher F-score of 0.888 while GBM has still the lowest 

Table X. Numerical results for Case Study 3 - Marketing and Sales

Method

AUC Accuracy F-score Logloss

Logistig Regression 0.918 0.839 0.845 0.377

Random Forest 0.940 0.879 0.888 0.320

Gradient Boosting Machine 0.940 0.878 0.886 0.299

Deep Learning + ReLU 0.930 0.861 0.877 0.328

Deep Learning + Maxout 0.930 0.857 0.865 0.336

Out-of-Sample Performance
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LogLoss, which indicates the highest prediction reliability across the models. In line with 

previous results, both ensemble models achieve a better performance than the two DL models, 

which have both an AUC of 0.930. LR underperforms all classifiers by a significant amount. 

A graphical presentation of the results of each model clustered by the evaluation measure can 

be found in figure 19. It can be seen that GBM and RF perform better than the two DL models 

across all performance measures while logistic regression turns out the be the weakest 

classifier. 

 

 

Figure 19. Graphical representation of the performance of each classifier on all 4 performance 

measures for case study 3 – marketing and sales. Gradient Boosting Machine (GBM) is again the 

winner, but the results are less significant than before and Random Forest (RF) achieves a very similar 

performance. 

 

4.4 DL in Business Analytics: A Reality Check 

4.4.1 Discussion of Results 

To better understand the utility of Deep Learning for Business Analytics it was benchmarked 

against traditional ML models as GLMs, Random Forest, and Gradient Boosting Machine. 

Based on the four evaluation measures AUC, Accuracy, F-score, and LogLoss. The empirical 

results of all three case studies presented (Credit Risk, Insurance Claims, Marketing and 

Sales) suggest that DL does not have a performance advantage for classification problems 

based on structured data. Instead, the results are strongly in favor of tree-based ensembles as 

Random Forest and Gradient Boosting. GBM turns out to be the model with the highest utility 

for the type of problems analyzed in this study. 
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Kraus, et al. (2019) benchmarked several baseline models against their proposed embedded 

DNN model, which resulted in superior performance for DL. The authors recommend fostering 

the adoption of DL models within the field of Business Analytics and operations research. While 

the paper of Kraus et al. (2019) is an excellent overview of DL for Business Analytics and very 

insightful, the analysis does not include GBM as a baseline model in the comparison, which is 

widely used and known to deliver strong and robust predictions on structured datasets. 

Case study two in this chapter uses the same dataset as Kraus et al. (2019) and according to 

the results of the empirical results is GBM at least on par with the proposed deep architecture 

by Kraus et al. (2019). Other studies as from Hamori et al. (2018) and Addo et al. (2018) 

included tree-based ensembles as gradient boosting and came to the same conclusions as the 

results in this chapter. As the findings of this study are in line with several papers comparing 

the performance of DL against other ML models there is strong evidence that tree-based 

methods (GBM as well as Random Forest) do indeed outperform DL models (different 

configurations have been tested) on most problems containing structured data. Also, DL has 

several weaknesses as computational complexity, huge data requirements, transparency 

issues, and needs highly skilled labor, which makes it often difficult to develop and deploy 

those models at scale. Especially the computational complexity issue results in significantly 

longer training and validation times compared to all other ML models. 

The results strongly suggest that GBM can be seen as the go-to model for most business 

analytics problems. It is fast, not too complex and delivers for use cases based on structured 

data the best performance currently available. The results are clear and Business Analytics 

experts should carefully consider the type, characteristics, and volume of the data at hand to 

make a final decision about the correct model choice. 

4.4.2 Managerial Implications and Digital Strategy 

It has been proven that data-driven or evidence-based decisions are superior compared to 

pure intuitive business decisions and a comprehensive analytics strategy has become 

necessary for businesses across all industries to capture value at the bottom line. One of the 

challenges associated with becoming a digital enterprise is how exactly to leverage digital 

technologies and especially advanced analytics and AI. Current discussions about AI are 

strongly focused on the applications of DL, but this is not the best way to approach digital 

transformation. This focus resulted in the problematic assumption that DL adoption in business 

can be regarded as a benchmark in itself ignoring the question of utility that always needs to 

be asked before the deployment of any new method or technology. 
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The main explanation why DL has not found its way into the different business functions as 

expected is often explained with computational complexity, lacking big-data infrastructure, the 

non-transparent nature of DL (black-box), and a shortage of skills. But as was demonstrated 

in this chapter, an additional explanation for the lack of adoption in certain business analytics 

functions is that DL does not have performance advantages over traditional analytics when it 

comes to structured data use cases. 

For example, many departments that have been utilizing advanced analytics as risk 

management are perfectly capable of developing and deploying a DL model as the required 

skillset is identical. Also, the necessary infrastructure to leverage DL in these departments 

should be in place. The usually described problems cannot be the only reasons. The problem 

is that DL does not offer any advantage over certain tree-based ensembles for the data present 

in those departments. Also, the disadvantages as speed and transparency are still present, 

which makes it, in fact, unreasonable to use DL instead of traditional analytics. DL should be 

viewed as a valuable addition to the current body of ML that offers the possibility to create new 

use cases based on its strength instead of forcefully replacing models that are equally powerful 

and can easily coexist within advanced analytics. 

This realization triggers the second argument, which is related to the nature of the underlying 

dataset. The kind of data present in problems faced within business analytics can largely be 

divided into three groups (Chen et al., 2012): (1) Structured data from relational database 

management systems (DBMS), (2) unstructured data, which stem mainly from web-based 

activities (Social Media Analytics, etc.), and (3) sensor- and mobile-based content, which is 

largely untouched when it comes to research activities. Many problems in business analytics 

are indeed based on structured datasets and given that most business functions utilize exactly 

those kinds of data it should not come as a surprise that DL remains a rather scarce ML 

algorithm to support their decision making. 

The era of Big Data has brought tremendous amounts of data within a single data-set across 

several domains, which fulfills the requirement of empirical prediction based on deep learning. 

However, it is important to differentiate and use DL models mainly in line with their strength, 

which is the usage of vast unstructured datasets, which posed significant problems for 

traditional analytics. ML overall has been recognized as a General Purpose Technology (GPT) 

for decision making, which has just started to infuse our economy with the ability to replace 

mental tasks that were traditionally only reserved for humans (Agrawal et al., 2019). It has also 

the potential to create completely new business models (Siebel, 2019). Finding use cases that 

are in line with the strength of DL would help to foster the adoption of DL in business analytics. 
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And the major strength is unprecedented accuracy on unstructured datasets. Traditional ML 

models reach a performance plateau quite early and further data are not helpful to increase 

accuracy. DL has here an advantage as it gains predictive power with every additional data-

point (Ng, 2018). This makes DL extremely scalable and future proof, especially since 

hardware power and the amount of available data will increase continuously over the years. 

Also, DL eliminates the need for extensive feature engineering as this was usually present in 

the preprocessing stage of data mining and predictive analytics tasks (LeCun et al., 2015). The 

time required for preparing data-sets often amounts to 80% to 90% of overall task completion 

and is one of the major reasons why further advances in DL would indeed be welcoming news 

for all analytics functions. Overall, practitioners should avoid seeing DL as a simple 

replacement or enhancement of existing tools for predictive analytics tasks, but more of an 

opportunity to develop new application areas and use case for business analytics based on 

the strength of DL, which are predictions based on vast amounts of unstructured data. 

4.4.3 Problems and Solutions 

DL has several disadvantages. Before developing and deploying DL in a business analytics 

context the following 5 bottlenecks should be considered: 

Computational Complexity & Architecture: DL requires more processing power due to the 

requirement of large data sets and a complex hierarchical structure, which results in 

significantly higher model training and validation procedures compared to other ML models.  

The best solution for small to medium-sized businesses is software as a service (SaaS), which 

are cloud solutions that commercialize analytics capabilities and sell them to different 

customers. ML clouds are optimized back-ends that use distributed computing as well as 

parallel processing to provide maximum processing power. In this way, it is possible to 

outsource the model training to external platforms, which eliminates the need for a strong 

infrastructure. 

Black-Box: Understanding the underlying logic of predictive models is in certain business 

areas necessary and industries subject to regulatory scrutiny as finance and insurance tend to 

have problems with accepting black-box methods like DL. This is one reason why it is often 

difficult to justify the usage and deployment of "Black-Box" models for certain decisions, 

especially if the outcome of a decision is nontrivial and could have potential future impacts that 

face legal issues. The most appropriate solution for those scenarios is to simply avoid black-

box models. For an extensive discussion on this topic, it is referred to Rudin (2019). Another 

way would be to use methods that help to explain the prediction output. For a good overview 

of model transparency, it is referred to Weller (2019) and Samek & Müller (2019). Given the 
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broad interest from politics in AI, this seems to be one of the major areas where further research 

could yield substantial benefits (Miller & Stirling, 2019). Future Research about understanding 

the DL Black-Box would be of fundamental importance for many business functions to be able 

to incorporate those new models. 

Talent Gap: The McKinsey study about DL adoption in different departments reveals that 

skillsets are the major problem (Bughin, Seong, Manyika, Chui, & Joshi, 2018). Training DL 

models do not only require more processing power but are also more complex in terms of 

hyperparameter optimization during model tuning. Finding the right representations of the 

underlying dataset is not easy, and since out-of-the-box solutions as tree-based ensembles 

result often in higher accuracy, a justification to use DL, especially for small datasets is often 

not given. Besides, many industry professionals and also consulting corporations lack 

understanding of DL and ML technologies and their differences to fully determine where 

adoption of DL is necessary and where not (Henke et al., 2016). If an internal search for ML 

experts and also hiring initiatives are not successful the only option is to hire external 

consultancies with the right expertise to support the implementation of ML solutions. As ML 

solutions become more automated (see 4.4.4 future research) domain expertise will become 

equally important to implement and deploy business analytics solutions (Agrawal et al., 2019). 

Meaning that – to streamline business processes to capture the value through modern ML 

solutions – interdisciplinary specialists that speak both languages will be necessary to drive 

the integration of advanced analytics into the existing enterprise architecture. 

Prediction Accuracy: The last argument and the most important one is the fact that DL does 

not (as widely assumed) outperform traditional ML methods at all tasks. This chapter proved 

that Gradient Boosting, and also Random Forest outperform DL models on structured 

classification tasks. Also, traditional methods offer the advantage of easier parameter tuning 

and faster training time. And in most cases, better transparency. 

Overall, and in light of the other problems associated with prediction models based on deep 

neural networks, decisions w.r.t. to the usage and deployment of DL should only be considered 

when the concrete business case justifies the development and final deployment of a DL 

model. And this is mainly the case for business areas utilizing unstructured data sets. 

4.4.4 Future Research 

The following four key areas could be identified where further research is necessary to increase 

the utility and hence the adoption of DL in business analytics. 
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(1) Future research in business analytics could focus on identifying currently non-existing uses 

which are in line with the strength of DL. Due to its ability to handle huge amounts of 

unstructured data DL is in terms of future possibilities and new use cases more interesting than 

traditional analytics. DL possesses the ability to create completely new business models and 

ways of value generation. (2) Enhancing the prediction accuracy of DL for structured data 

would be a game-changing development for neural networks. DL has several advantages over 

traditional methods but has in its current capacity difficulties reaching the performance and 

accuracy levels of tree-based ensembles as Random Forest and GBM for predictions on 

structured data. A simple replacement makes hence no sense unless further research in this 

area realizes performance improvements for DL on structured classification tasks. 

Developments as dropout (Srivastava et al., 2014) and the Maxout activation function 

(Goodfellow et al., 2013), which were specifically developed to tackle classification problems 

are going into this direction, but as shown above, are not enough to reach accuracy levels to 

justify the replacement of tree-based ensemble models as RF or GBM. Further research could 

focus on enhancing the ability of DL models to consistently surpass traditional ML models. This 

would be a significant development, which could result in the extinction of all other ML models. 

(3) Another issue – especially in light of the skill shortage – is that hyperparameter tuning can 

be a quite complex undertaking requiring the right talent. A recent development are automated 

machine learning solutions called “AutoML”, which have started to gain traction and are an 

interesting field of research that can help to further democratize the use of DL models. AutoML 

will be further discussed in chapter 6. (4) As this study was in its core only concerned with 

binary classification it is important to extent it with tests on multiclass classification and 

regression. Especially regression is relevant for finance and insurance due to the presence of 

financial times series data in those fields. Several studies have shown that Deep Learning 

architectures as recurrent neural networks (RNN) and long short-term memory (LSTM) are 

strong candidates for time series data in finance and offer superior performance (Fischer & 

Krauss, 2018). 

4.5 Conclusion 

The progress and breakthroughs achieved by DL are undeniable as can be witnessed by a 

vast array of new real-world applications all around us. Despite this fact, the adoption rate and 

hence diffusion across business analytics functions has been lacking behind. This study 

employed a mix of content analysis and empirical study to explain the current lack of adoption 

of DL in business analytics functions. The content analysis suggested that the lack of adoption 

across business functions is based on the four bottlenecks computational complexity, no 
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existing big-data architecture, lack of transparency/black-box nature of DL, and skill shortage. 

Also, the empirical study based on three real-world case studies revealed that DL does not as 

widely assumed offer any performance advantage when it comes to predictions based on 

structured data sets. This has to be taken into account when using deep learning for data-

driven decisions within the context of Business Analytics and helps to answers the question of 

why analytics departments do not deploy those models consistently. Overall, ML as a GPT for 

data-driven prediction will further find its way into Business Analytics and keep shaping the 

field. An important realization is that DL is a valuable additional tool for the ML ecosystem and 

brought new possibilities to analyze data. But it is not yet possible to replace the other models. 

Especially tree-based models as Random Forest and Gradient Boosting are powerful 

classifiers when it comes to structured datasets. Practitioners should concentrate on creating 

new use cases that leverage the advantage of DL instead of forcing the replacement of 

traditional models. 
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Chapter 5: Super Learning in FinTech 
5 Super Learning in FinTech: In search of maximum prediction 

accuracy 

Abstract 

 
Artificial intelligence and machine learning are gradually changing the lending market structure 

towards full automation. Advanced predictive analytics helped FinTech firms to develop 

modern lending businesses that foster financial inclusion due to high prediction accuracy, 

which opens the possibility to disregard collateral as a safety net. This is a big step towards 

the democratization of debt markets. In search of maximum prediction accuracy, this chapter 

is going to train different configurations of a stacked ensemble model that combine the most 

powerful baseline models into a so-called super learner. Thereby proving that super learning 

can improve upon the performance of even the best models currently available. Also, the 

observed outcomes will be used to derive concrete configuration steps that are generalizable 

to reach the highest prediction accuracy. The four models used as a baseline in this experiment 

are Logistic Regression, Random Forest, Gradient Boosting Machine, and Deep Learning. The 

experiment was implemented on three real-world-datasets from the credit risk domain. Also, 

this experiment is placed in a discussion on financial inclusion and the future of FinTech to 

convey the importance of ML and AI applications for financial services. 

Keywords: Super Learning, Stacking, Classification, Credit Risk, Lending, FinTech 

5.1 Introduction 

The digital transformation of the world economy has led to an increased focus on data-driven 

decision making (Henke et al., 2016). Advanced analytics and machine learning play an 

increasingly important role in the current business landscape and have found several 

successful application areas within financial institutions, especially in risk management (Leo, 

Sharma, & Maddulety, 2019). The lending industry, which requires the assessment of the 

default probability or credit risk of a counterparty, is one of the most active users of machine 

learning-based predictive analytics. It was long dominated by universal banks but has recently 

been disrupted by P2P lending institutions and other FinTech firms (Cooper, 2019). This 

change in the lending market structure has led to a stronger focus on pure accuracy within 

lending since it directly affects the core business and hence competitive advantage of FinTech 

companies (Bazarbash, 2019). One downside is that the increased market penetration from 

disrupting FinTech’s is stripping away revenue from incumbent institutions. 
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The power of ML solutions seems to be out there and available for everyone. Why is it that 

FinTech’s started to disrupt financial markets and banks had difficulties to compete in the first 

place? The answer is regulations. The very system that was created to protect banks and act 

as a safety buffer ultimately made them more vulnerable to new entrances who can leverage 

advanced technologies like machine learning and artificial intelligence without taking into 

account regulations as capital requirements, fraud prevention, and other moral hazard 

reducing safety measures (Stulz, 2019).  

Nevertheless, despite the reality that tech startups are shaking up the lending market, FinTech 

firms do not pose an inherent threat to incumbents. History shows that banks, especially the 

world-leading organizations are quite adaptable, and usually provide those services quite soon 

on their own (Stulz, 2019). Or they simply end up buying an emerging FinTech start-up that 

has made major progress. In contrast, BigTech firms could turn out to be more dangerous than 

small FinTech startups and severely disrupt the financial systems. Companies that belong to 

this group are US firms like Amazon, Facebook, Google and Chinese firms like Alibaba and 

Tencent. They have already a customer base, a modern technology stack, and access to data, 

which gives them enough leverage to successfully compete with existing financial intuitions 

(Stulz, 2019).  

Yet, looking at the market capitalization of the big financial institutions there is no indication 

that they will soon be replaced by either FinTech firms nor BigTech firms. There were several 

predictions over the years that FinTech will lead to the extinction of banks, but none of those 

turned out to be true (Stulz, 2019). It is more likely that FinTech and BigTech bring numerous 

benefits and help to foster financial inclusion, and diversification through innovation (FSB, 

2019). Another factor is that many FinTech firms do not actively compete with traditional banks, 

but operate more like a new form of an intermediary (market maker/broker) that matches 

borrowers and lenders. Banks and hedge funds can act as counterparty here as well (Stulz, 

2019). FinTech firms often only leverage a digital infrastructure to connect customers and 

banks, which makes them a standard financial intermediary (Cooper, 2019). 

While those developments in financial markets are exciting. What hasn't changed over the 

years, is the need for advanced analytics to foster accurate decision making. Several studies 

over the last years have shown that ML models have advantages, but predictive accuracy 

depends heavily on the concrete ML algorithm used (Bazarbash, 2019). Incumbent 

corporations can improve their model accuracy by deploying state-of-the-art ML learning 

models. This is especially relevant in the light of increasing competition faced by FinTech firms 

and other technology giants, which increasingly enter the lending market (Frost et al., 2019).  
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In essence, can all market participants leverage progress in the field of machine learning and 

artificial intelligence, whether they are traditional banks, FinTech firms, or BigTech. All of them 

require predictive models to facilitate sound decision making. 

This chapter will focus on the predictive part of the lending process that assesses the 

probability of default and assigns a corresponding credit score, which is binary and either good 

or bad. A pure focus on prediction accuracy has the advantage of cash-flow based lending 

without collateral requirements from borrowers (Frost et al., 2019). This can help to foster 

financial inclusion and is especially important for consumers in developing countries and small 

to medium-sized corporations, which have no collateral and had traditionally limited access to 

debt capital (Bazarbash, 2019). 

There exists a wide literature when it comes to machine learning in banking risk management. 

For an exhaustive literature review it is referred to (Leo et al., 2019). One area where advanced 

analytics has been used for decades is credit scoring and binary classification. The default 

categorization of a counterparty is an indispensable part of many areas of the financial services 

industry and several different ML models are continuously used and evaluated due to their 

direct impact on profitability. Among them are traditional generalized linear models (GLMs) as 

logistic regression (Kraus, 2014), which has been used in credit risk already for several 

decades, but also more modern ML approaches as Support Vector Machines, Random Forest, 

Gradient Boosting Machine, and Deep Learning, which are increasingly used in practice (Addo 

et al., 2018; Bazarbash, 2019; Hamori et al., 2018; Lessmann et al., 2015). 

Given the large size of the lending market and the number of approved loans, Hand & Henley, 

(1997) argues that only tiny improvements in performance can have a substantial impact on 

the profitability of financial services provides operating in the lending business. A way to further 

enhance the predictive ability of classification models would be through stacking, which is also 

referred to as super learning (Van Der Laan, Polley, & Hubbard, 2007). It has been shown that 

the fusion of different standalone ML models can further enhance the prediction accuracy in 

different domains. Using data from healthcare (Kabir & Ludwig, 2019) has shown that super 

learning can improve the prediction accuracy of several base learners. Other papers proposed 

multi-stage classifiers, evaluated the predictive power of those ML ensembles within the 

context of credit scoring and were able to achieve robust performance improvements 

compared to several earlier studies within the field (Guo et al., 2019; Zhang, He, & Zhang, 

2019). Super learning itself can be used with different configurations. A so-called meta-

algorithm is required in the process, which is one of the baseline models. Surprisingly, there 
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exists no assessment of the impact of different choices of meta-learning algorithms on the final 

performance improvement. 

This article will demonstrate that there exists the possibility to further enhance classification 

accuracy within credit risk by utilizing a fusion strategy as stacking ensembles to create a super 

learning model. This is done by benchmarking state-of-the-art ML models within the context of 

credit scoring against three distinct configurations of super learners. Concrete, the chapter will 

contribute the following: (1) Train the currently dominating classifiers as Logistic Regression, 

Random Forest, Gradient Boosting Machine, and Deep Learning on three different publicly 

available datasets containing customer-level data for credit card and loan applications. (2) Use 

the most powerful base learners (single fully trained models) and combine them via stacking 

to a model referred to as super learning. Different configurations of the super learner will be 

assessed by finding the best combination of candidate models and by switching the meta-

algorithm used for the training of the super learner. Thereby proving that super learning can 

improve upon the performance of even the best models currently available. (3) The observed 

outcomes will be used to derive concrete configuration steps that are generalizable to reach 

the highest prediction accuracy currently available. (4) In the end, a future outlook for the 

lending market will be provided. 

The structure of this chapter is as follows. Section 2 “Super Learning” will introduce the fusion 

method stacking. Section 3 “Experimental Design” introduces the primary experimental setup. 

Section 4 “Numerical Results and Discussion” analyses the findings and discusses their 

implications. The last section gives a conclusion and a future outlook. 

5.2 Super Learning  

Super learning requires several pre-trained models, which can be combined via a fusion 

process to a more powerful super learner. See chapters 3 and 4 for a description of the base 

learners’ logistic regression, random forest, gradient boosting, and deep learning. 

Stacking or super learning is an ensemble method that combines different base learners into 

a so-called super earner. The goal of stacking is not a gradual improvement over weak learners 

as is the case for boosting, or the averaging of several outcomes as in bagging, instead, it 

takes several fully trained prediction models and combines them into a single more powerful 

learner. Stacking was initially introduced by Wolpert (1992) and later formalized by Breiman 

(1996b). The theoretical foundation was built by Van Der Laan et al. (2007) who proved that 

the model created through stacking - which they called super learner ensemble - represents 
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an asymptotically optimal system for learning The general setup to arrive at the super learner 

is shown in figure 20. 

 

 

Figure 20. The ensemble method stacking produces a super learner by combining several base 

classifiers into a single more powerful model. This is done by creating new so-called level one data 

which is a combination of all the predicted values of the base learners including the original response 

column. In a final step, the Meta Learner is trained on the new level one data. 

 
The fusion process of the different base classifiers into the super learner requires a similar 

usage of k-fold cross validation across all the base models. This comes in handy as it is also 

the best method to tackle the problem of overfitting. Once the base classifiers have been 

trained the predictions are combined with the original response to create the level one data, 

which is subsequently used for the training of the meta-learning algorithm. 

To generate the final predictions first the predictions of the base classifiers have to be 

produced. In a subsequent step, those predictions are fed into the meta learner to generate 

the final ensemble prediction. 

Diversification (different ML methods) is usually the better option to get the best results and 

one of the major advantages of a super learner, but it is possible to stack similar models as 

well. 

5.3 Experimental Design 

The primary objective is of this section is to introduce the experimental setup of this study. 

Three different publicly available datasets are used. The major goal of the experiment in this 

chapter is to verify the possibility to improve upon the accuracy attainable by the currently 

dominating ML algorithms identified in chapter 3 and 4 to shed light on the predictive power 

and usefulness of those ML models for credit scoring within the overall context of credit risk 

management and ultimately FinTech. This is done by combining several fully trained ML 
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classifiers to a so-called super learner using a method called stacking. Three different super 

learners will be created in this study to test the impact of the meta learner on the final accuracy. 

Once trained the new super learners will be benchmarked against the four base learners’ 

logistic regression, random forest, gradient boosting machine, and deep learning.  

Data: The empirical study is based on the same three publicly available data sets as in chapter 

3. A split of 80:20 which means 80% of the dataset will be used in the training process and the 

remaining 20% will be used to test the generalization ability of the trained classifier. The same 

k-fold cross-validation setup is necessary for the later fusion of the base learners into the meta 

learner. Hence, during the model training, 80% of the dataset will be split into different training 

and validation sets, which is done by cross-validation. 

Evaluation: The four evaluation methods AUC, Accuracy, F-score, and LogLoss as described 

in section 2.3.5 will be used to assess the performance of the super learner and the base 

learners. 

Setup: In the first step, the training and validation sets of both datasets were used to fully train 

the base learners, namely Logistic Regression, Random Forest, Gradient Boosting, and Deep 

Learning. The prediction results of those base classifiers served as input for the three super 

learners and also as a baseline to benchmark the performance of the final super learners. The 

hyperparameter settings for the base learners were chosen by random search and grid search 

over a predefined range of parameters, including a final manual adjustment. See the Appendix 

for the concrete hyperparameter values. To enable the following fusion of the models, each 

classifier was trained with 5-fold cross-validation. In a subsequent step, the predictions of the 

base learners were used to create the proposed stacked ensemble (as described in section 

5.2), which are referred to as SL1 (super learner 1), SL2 (super learner 2), and SL3 (super 

learner 3). Each super learner uses a different meta-learner algorithm. SL1 uses GLM, SL2 

uses DL, and SL3 uses GBM. The mix of models used for each super learner is based on the 

performance of the candidate models. 

5.4 Numerical Results and Discussion 

In this section, the numerical results of the experiments are presented to compare the 

performance of the proposed super learners against the four base learners Logistic 

Regression, Random Forest, Gradient Boosting Machine, and Deep Learning. This is done by 

the above introduced four evaluation metrics Accuracy, AUC, F-score, and LogLoss, 

implemented on 3 datasets. The Accuracy and F-score are reported at a 0.5 threshold level. 
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A complete overview of numerical test results in terms of the previously defined performance 

measures for each model and dataset can be found in table 10. The best performing base 

classifier (candidate model) and the strongest super learner are highlighted in black. 

Table 10. Numerical results for each classifier and dataset 

 

The performance of each classifier is depended on the characteristics of the underlying 

dataset. For the Taiwanese and Australian dataset, GBM has the upper hand in terms of 

prediction power followed by RF (tree-based methods). In the case of the German dataset, LR 

and DL reach the highest accuracy (those results are in line with the earlier findings in chapter 

3). During model training, all combinations of candidate models were tested. The performance 

of the proposed super learners varies strongly based on the choice of the underlying classifier. 

A super learner containing all four classifiers performed weaker on all three datasets compared 

to a super learner that combines only the two respectively three strongest classifiers available. 

Only the combinations with the highest accuracy in terms of the performance measures are 

presented in table 10.  

Also, the configuration of the super learner resulting in the highest overall performance is 

different for each dataset. SL2 for the Taiwanese dataset and SL3 for the Australian dataset 

were both trained with DL and GBM. SL2 for the German dataset was instead trained with LR 

and DL. Note that, even though RF is the stronger base classifier in both cases (Australia and 

Table X. Numerical results for each classifier and dataset

Dataset Classifier Candidate AUC Accuracy F-score Logloss

LR 0.712 0.671 0.653 0.623

RF 0.769 0.703 0.680 0.577

GBM 0.775 0.716 0.694 0.570

DL 0.759 0.693 0.716 0.600

SL1: GLM DL, GBM 0.779 0.721 0.713 0.566

SL2: DL DL, GBM 0.780 0.726 0.708 0.563

SL3: GBM DL, GBM, RF 0.776 0.711 0.694 0.569

LR 0.944 0.877 0.882 0.415

RF 0.900 0.800 0.800 0.484

GBM 0.886 0.776 0.776 0.426

DL 0.946 0.815 0.793 0.506

SL1: GLM DL, LR 0.946 0.846 0.839 0.470

SL2: DL DL, LR 0.947 0.846 0.839 0.360

SL3: GBM DL, GBM, RF 0.886 0.754 0.750 0.446

LR 0.970 0.882 0.871 0.257

RF 0.981 0.926 0.912 0.247

GBM 0.987 0.941 0.933 0.246

DL 0.980 0.897 0.885 0.256

SL1: GLM DL, GBM 0.988 0.912 0.900 0.202

SL2: DL DL, GBM 0.989 0.853 0.783 0.386

SL3: GBM DL, GBM 0.987 0.941 0.926 0.198

Taiwan

Germany

Australia
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Taiwan) DL turned out to be the better fit for the combination with the GBM classifier. One 

explanation for why the combination DL and GBM result in a better super learner compared to 

RF and GBM is the difference of the models itself. GBM and RF are both tree-based algorithms 

and hence quite similar, while DL can add new information. It seems that the candidate models 

(base learners) to be trained by the meta-algorithm to become a super learner need to be 

sufficiently diverse and the findings in this experiment suggest that the different properties of 

DL and GBM fulfill those requirements. 

Table 11 shows the best performing base classifier, the best performing super learner, and the 

performance differences via the delta based on the evaluation metrics. 

Table 11. Comparison of the best baseline model with the best super learner for each dataset 

 

The super learner based on DL in the case of the Taiwanese dataset is superior to the best 

performing base learner GBM. The AUC delta is 0.005, the Accuracy delta is 0.010, the F-

score delta is 0.014, and the LogLoss delta is -0.007. A similar outcome can be observed for 

the German dataset. The super learner could achieve an easily observable and significant 

edge in performance. The AUC delta is 0.001, the Accuracy delta is 0.031, the F-score delta 

is 0.046, and the LogLoss delta is -0.146. The performance of the super learners based on 

table 10 for the Australian dataset is not as obvious. Not a single super learner was able to 

outperform the best performing base classifier on all evaluation metrics. However, the super 

learner based on GBM reached the highest prediction accuracy for the Australian dataset with 

DL and GBM as candidate models and seems to be the best choice. The rationale for this 

conclusion is the following. There is no delta for AUC and Accuracy, which makes the F-score 

and the LogLoss the deciding factors. The F-score is with -0.007 slightly lower for the super 

learner, which is not optimal, but the LogLoss difference of -0.048 is very good and indicates 

a reliable and robust classifier. 

Table X. Comparison of the best baseline model with the best super learner for each dataset

Dataset Classifier AUC Accuracy F-score Logloss

GBM 0.775 0.716 0.694 0.570

SL2 - DL 0.780 0.726 0.708 0.563

Delta ∆ 0.005 0.010 0.014 -0.007

DL 0.946 0.815 0.793 0.506

SL2 - DL 0.947 0.846 0.839 0.360

Delta ∆ 0.001 0.031 0.046 -0.146

GBM 0.987 0.941 0.933 0.246

SL3 - GBM 0.987 0.941 0.926 0.198

Delta ∆ 0.000 0.000 -0.007 -0.048

Taiwan

Germany

Australia
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Interesting to see at this point are the different outcomes for all super learners. The meta-

learner algorithm had a significant impact on the performance measured by the four evaluation 

metrics. The super learners using DL as meta-algorithm tends to have the best performance, 

but this is not guaranteed as the outcome for the Australian dataset shows. So, the concrete 

choice of the meta-algorithm has to be evaluated for each situation and dataset individually. 

What are the implications of those findings w.r.t. model choice? Based on those results the 

candidate model with the highest prediction accuracy should be chosen first, followed by either 

the classifier with the second-highest prediction accuracy or by a model that offers the biggest 

fundamental difference compared to the first choice (e.g. DL and GBM). Other classifiers can 

be included in the model mix as well to test whether a higher accuracy can be achieved, but 

this needs to be tested individually. Mixing all existing classifiers, especially models that are 

weaker than the already included predictors tend to dilute the model mix, which leads to lower 

performance and does not help to reach higher accuracy levels. Overall, regardless of the 

outcome of the base learners, it is possible to improve upon the base model performance. This 

was observed across all three datasets. 

Overall, three things need to be considered to reach maximum prediction accuracy in terms of 

the four evaluation measures AUC, Accuracy, F-score, and LogLoss: 

(1) It is necessary to focus on the initial training of the base classifiers as the performance 

of the super learner is highly dependent on a strong selection of base models. Since 

the outcome of the final super learner is highly dependent on the base classifiers it is 

important to push the base learners towards the best possible performance during the 

initial training process. To reach the highest prediction accuracy the strongest base 

classifiers need to be taken into account while ignoring weak models as they will only 

help to dilute the performance of the final classifier ensemble. 

(2) The choice of the meta-algorithm has a significant impact on the final performance of 

the classifier. There is no single configuration of the stacked ensemble learner to reach 

maximum performance that is the same for the three different datasets. Overall, the 

usage of DL as a meta-algorithm has shown the best performance in this study. 

(3) Using all pre-trained candidate classifiers does not result in higher accuracy. It dilutes 

the model mix and reduces performance. Instead, it is recommended to choose only a 

subset of the best performing candidate models available.  
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5.5 Conclusion and Future Outlook 

The current lending market is shaped by technology giants, disruptive startups, and global 

competition. While FinTech firms are unlikely to lead to the distinction of financial institutions 

as predicted several years ago, it will lead to significant changes in financial market structure. 

As we move towards mostly automated digital financial markets, which will foster financial 

inclusion and sustainable balanced development on a global scale (Hudon, Labie, Szafarz, & 

Venet, 2019), the deployment of advanced analytics in the form of machine learning has 

become a necessity to survive in this new environment. Overall, the financial markets shift 

towards complete digitalization has just begun, but is poised to develop and finally be 

completed in the coming years. Within this climate, the need for data-driven decision making 

in the form of predictive analytics has become increasingly important. One area where 

predictive analytics has been applied excessively is consumer lending and credit risk 

management in general. The major purpose of predictive analytics here is to calculate the 

probability of default of a counterparty. 

It has been proven that even tiny improvements in prediction accuracy can result in increased 

business values for lending corporations (Hand & Henley, 1997). Especially when those 

models are employed at scale on strong platforms. This is even truer today as globalization 

drives increasingly economies of scale and large portfolios of customers are the norm. This 

could lead to leaders take-all situations, where a de-facto monopoly has the potential to take 

large portions of the market in case it can maintain a technological advantage over its peers. 

In search of maximum prediction accuracy this study has shown that combining different 

candidate models to a stronger classifier ensemble – a so-called super learner – is a potent 

strategy to improve upon the model performance of already existing single classifiers or tree-

based ensembles as boosting and bagging. The candidate models used were logistic 

regression, random forest, gradient boosting machine, and deep learning. Three different real-

world credit scoring datasets were employed in this experiment. 

Similar to the findings in chapter 3, the results suggest that the performance of the candidate 

ML classifiers is dependent on the underlying dataset. Also, and this could be shown in all 

three cases, it was possible to improve upon the performance of those candidate models by 

combining them via the ensemble method stacking to a so-called super learner. As a general 

rule the following steps can be regarded as a reasonable guideline to achieve good prediction 

results: (1) Choose classifiers that have already a high prediction accuracy; (2) Choose 

classifiers that are sufficiently distinct from each other to provide additional information not 
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present in the other classifier (e.g. DL and GBM). (3) Avoid weak classifiers as they only tend 

to dilute the performance of the stacking ensemble. 

Overall, it was shown that regardless of the outcome of the base learners, it is possible to 

improve upon the base model performance. This was observed across all three datasets. 

Whether the performance improvement justifies the computational complexity that comes with 

creating a classifier ensemble depends on the degree of improvement and the concrete 

business case. 

ML-based lending will enhance the overall retail banking system by improving efficiency and 

effectiveness, improving scale and scope of lending as well as its fairness and hence foster 

financial inclusion of low income / developing country workers and will also shift the customer 

base towards FinTech utilizing corporations. Overall, FinTech based lending as well as 

underwriting is already a reality and causes significant shifts in the consumer lending market. 

Several studies have indicated that the trend described here will continue in the coming years, 

and further AI-based disruption of the lending market are yet to come. Also, this is not purely 

lending specifically. These kinds of digital disruptions are currently occurring on a global scale 

and can be observed in every industry. When it comes to the underlying principles of financial 

intermediation nothing has changed over the years. Technology just makes things often a bit 

easier for everyone. The developments will be positive and steer the financial markets towards 

more inclusion, fairness, and sustainable balanced development across the globe (Hudon et 

al., 2019). 
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Chapter 6: AutoML in Business Analytics 
6 Automated Machine Learning in Business Analytics 

Abstract 

The realization that data-driven decision-making is indispensable in today’s fast-paced and 

ultra-competitive marketplace has raised interest in industrial machine learning (ML) 

applications significantly. The current demand for analytics experts vastly exceeds the supply. 

One solution to this problem is to increase the user-friendliness of ML frameworks to make 

them more accessible for the non-expert. Automated machine learning (AutoML) is an attempt 

to solve the problem of expertise by providing fully automated off the shelf solutions for model 

choice and hyperparameter tuning. This chapter analyzes the potential of AutoML for 

applications within business analytics, which could help to increase the adoption rate of ML 

across all business functions. The H2O AutoML framework was benchmarked against a 

manually tuned model on three real-world datasets to test its performance, robustness, and 

reliability. The used AutoML framework trains several base learners and combines them via 

ensemble learning to a stacked super learner. The manually tuned model could reach a 

performance advantage on all three case studies used in the experiment. Nevertheless, the 

H2O AutoML package proved to be quite potent. It is fast, easy to use, and delivers reliable 

results, which come close to a professionally tuned ML model. The H2O AutoML framework in 

its current capacity is a valuable tool to support fast prototyping with the potential to shorten 

development and deployment cycles. It can also bridge the existing gap between supply and 

demand for ML experts and is a big step towards fully automated decisions for business 

analytics functions. 

Keywords: AutoML, Business Analytics, Predictive Analytics, Data-Driven Decision Making, 

Digital Transformation 

6.1 Introduction 

The era of struggle towards a modern enterprise has been termed digital transformation. 

“Digital transformation is concerned with the changes digital technologies can bring about in a 

company's business model, which results in changed products or organizational structures or 

in the automation of processes” (Hess et al., 2016). It occurs in response to changes in digital 

technologies and increasing digital competition, which changes customer behavior and 

expectations (Verhoef et al., 2019). The major advantage of the last wave of digital 

transformation was the buildup of a robust infrastructure, which can be built upon to employ 

new AI-related techniques (Bughin et al., 2017). The new wave of digital transformation will 
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foster disruptive forces that will exceed the last wave, which was known as "Big Data" 

revolution and characterized by storing data sets that are larger, more complex, and 

unstructured in nature, compared to older relational databases systems (Baesens et al., 2016; 

Chen et al., 2012; Henke et al., 2016). 

The increased relevance of information technology and analytics for businesses in every 

industry makes the separation of IT and business strategy no longer viable and a "fusion" of 

both into the term "Digital Strategy" has been suggested (Bharadwaj, El Sawy, Pavlou, & 

Venkatraman, 2013). The realization that data-driven decisions have the potential to drive 

performance directly impacting the bottom-line of corporations (Brynjolfsson et al., 2011; 

Brynjolfsson & Mcelheran, 2019) led to the renaissance of business analytics research 

(Davenport, 2018). Data-driven decision-making is indispensable in today’s global, fast-paced, 

and ultra-competitive market. All major industries and sciences have started to pick up on these 

developments. Predictive analytics is one of the major dominos to facilitate this new way of 

decision making. It is part of the complete business analytics chain, which is a complex process 

involving descriptive, diagnostic, predictive, and prescriptive tools (Delen & Ram, 2018). 

The necessity to adopt sophisticated predictive models to make intelligent decisions is without 

question, but the ability to capture value through analytics is heavily dependent on employees 

with the required skill-set to leverage those analytics capabilities (Grover et al., 2018). Even 

though initiatives towards data science education have started to manifest itself (Clayton & 

Clopton, 2019), the huge demand for talent that makes sense of data and provides useful 

insights remains tremendous. The use of non-experts when it comes to ML algorithms is 

problematic as extensive knowledge is required to successfully tune ML models. 

Automated machine learning solutions called “AutoML” have started to gain traction, which is 

a method to automatically tune and compare different algorithms to find the best 

hyperparameter combination (Feurer et al., 2015). The preceding task of pre-processing and 

feature engineering of the dataset is only partly supported (Balaji & Allen, 2018), but the end 

goal of AutoML research is focused on automating the complete predictive modeling process. 

AutoML could help to fill the existing supply and demand gap when it comes to ML experts. It 

has also the potential to democratize ML across less quantitative academic disciplines and 

functional business areas to foster the creation of new research questions and business use 

cases. Several different AutoML solutions were introduced during the last years. The major 

goal of the literature review was to choose the best suitable open-source AutoML framework 

for this study. 
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Gijsbers et al. (2019) offer an up-to-date comparison of the most mature open-source AutoML 

frameworks currently available: Auto-WEKA, auto-sklearn, TPOT, and H2O AutoML. The 

research itself is open-source and accessible online. It receives also regular updates upon the 

release of a new version. H2O AutoML is one of the top-performing models in this study. 

Truong et al. (2019) analyzed the existing body of AutoML frameworks in terms of robustness 

and reliability taking into account a vast list of open-source and commercialized AutoML 

solutions. While there is no clear winner across all test cases, H2O managed to outperform all 

other models for regression and classification tasks. 

This chapter will zoom in on the predictive part of business analytics and analyses whether 

AutoML solutions can enhance the adoption rate of ML across business functions. Based on 

the literature review is the H2O AutoML framework the best choice for classification tasks and 

is hence the go-to framework for the following empirical study.  

The objective of this study is to test whether the AutoML off the shelve frameworks have a 

similar performance and/or can beat manually trained ML models. This is important to further 

drive the adoption of ML solutions across business functions and domains as deep technical 

knowledge to develop new ML and DL models will require significant theoretical and technical 

training often not present in corporations. AutoML could speed up the development cycle and 

counteract the current skill shortage within the area and is the first step towards a full end-to-

end decision engine for business analytics.  

The H2O AutoML framework is benchmarked against a manually created ML model to 

compare predictive ability, robustness, and ease of use. Also, these findings will be used to 

discuss managerial implications for digital strategy. At last, a roadmap for future research will 

be presented. Overall, the goal is to expand the discussion in the hope to trigger new 

conversations, and ultimately convince more researchers to think about how to incorporate ML 

models within business processes. 

The rest of the chapter is organized as follows. Section 2 introduces the AutoML framework 

used. Section 3 describes the general experimental setup. Section 4 describes the outcome of 

the experiment and presents the performance of the H2O AutoML framework against the 

manually adjusted ML models. Section 5 discusses the numerical results, managerial 

implications for digital strategy, and derives future research possibilities based on the findings 

in this study. Section 6 concludes with a summary. 
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6.2 AutoML 

Automated Machine Learning or AutoML is a method for automating the predictive analytics 

workflow. Depending on the concrete AutoML solution it might contain preprocessing, feature 

engineering, as well as model tuning. The current body of AutoML solutions does not handle 

the pre-processing very well (Truong et al., 2019) and the primary goal of this study is an 

assessment of the hyperparameter optimization and model choice. Based on the existing 

literature, is the H2O AutoML framework one of the most mature AutoML solutions currently 

available and achieves superior performance on classification and regression tasks according 

to several recent benchmark studies (Gijsbers et al., 2019; Truong et al., 2019). How does it 

work? See figure 21 below. 

 

 

Figure 21. The H2O AutoML framework trains several base learners and in a subsequent step 

combines those to two different super learners. One super learner is based in all previously trained 

classifiers, the other takes only into account the best classifier of each ML family (LR, RF, GBM, DL). 

H2O AutoML automatically ranks the outcomes based on the chosen evaluation metrics. 

 
H2O’s AutoML framework (H2O.ai, 2019) creates different candidate models as GLM’s, 

Random Forest, Gradient Boosting, and Deep Learning during an initial training phase and 

creates via stacking two different super learners. One super learner is based on all the pre-

trained candidate models while the other is only an aggregation of the best model out of each 

family. The major parameters required for the AutoML solution are the feature columns x, the 

response column y, the training_frame, and the validation_frame. Also, the parameters 

max_models and max_runtime_secs are used to either specify the maximum number of 

models trained or the maximum time allowed for the process of model optimization. The H2O 

AutoML framework uses a random search as the optimization method. 



Chapter 6: AutoML in Business Analytics  85 

 
    

 
 
 

Algorithm 1 Pseudocode for Automated Machine Learning (AutoML) 

 Input: labeled test dataset Dt, labeled training dataset D1, number of cross-validation sets k, 
time to completion t, choice of meta-learner algorithm M 

  

 Step 1: Train Logistic Regression Classifier 

 Step 2: Train Deep Learning Classifier 

 Step 3: Train Gradient Boosting Machine Classifier 

 Step 4: Train Random Forest Classifier  

 Step 5: Use all pre-trained base classifiers to create super learner 1 

 Step 6: Use only the best classifier per category to create super learner 2 

 Step 7: Repeat steps 1-5 until the maximum number of models or time specified has been 
reached 

  

  
Output: A list of classifiers build during the run-time in descending order based on their 
prediction accuracy on the test dataset Dt 

  

6.3 Experimental Design 

The primary goal of this study is to benchmark the H2O AutoML framework against a manually 

trained super-learning ensemble. 

Data: The experimental study uses the same three real-world datasets as chapter 4 (credit 

risk, insurance claims, and marketing). See section 4.2.2 for a description of the datasets and 

also the preprocessing steps. The chose split is 80:20, which means 80% of the dataset will 

be used in the training process and the remaining 20% will be used to test the generalization 

ability of the trained classifier. The same 5-fold cross-validation setup is necessary for the later 

fusion of the base learners into the meta learner. Hence, during the model training, 80% of the 

dataset will be split into different training and validation sets, which is done by cross-validation. 

Evaluation: The four evaluation methods AUC, Accuracy, F-score, and LogLoss as described 

in section 2.3.5 will be used to assess the performance. 

Setup: The inner workings of the AutoML solution offered by H2O train the 4 base-classifier 

Generalized Linear Model (LR), Random Forest, Gradient Boosting Machine, and Deep 

Feedforward Neural Networks. In a subsequent step, it applies the ensemble method stacking 

to fuse all of those pre-trained candidate models to a super learner to increase the accuracy 

levels. The best model is automatically selected based on a chosen evaluation measure. To 

test the strength of this setup I have recreated the inner workings of the H2O AutoML solution 

by manually training the base-models and combining them via stacking to a super learner. 
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Overall, the comparisons are between two separately configured super learners. One 

automatically generated by the H2O AutoML solutions and one manually tuned and configured 

similarly as already described in the earlier section 5.2 about super-learning/stacking itself. 

6.4 Numerical Results 

In this section, the experimental results are presented. The manually tuned stacked ensemble 

learner is compared against the AutoML solution from H2O. Why stacking? This was necessary 

to recreate the inner workings of the H2O AutoML procedures, which relies on training several 

different base classifiers, and then combines those pre-trained models for the final ensemble 

model based on stacking. Three real-world case studies from the business functions credit risk, 

insurance claims, and marketing were used in this experiment. The four evaluation matrices 

AUC, Accuracy, F-score, and LogLoss were used to benchmark the H2O AutoML solution 

against a manually optimized super learner. The Accuracy and F-score are reported at a 0.5 

threshold level. The experiment was structured as follows: 

In the first step the three baseline models Random Forest, Gradient Boosting Machine, and 

Deep Learning were carefully trained. To tune the hyperparameter settings of the base models’ 

traditional methods as grid search and random search over a pre-defined range of parameters, 

as well as manual adjustments, were used during the training process. 

Table 12 shows the numerical results for the base classifiers for each dataset. Gradient 

Boosting obtained the highest overall performance, followed by Random Forest. Deep 

Learning has the lowest performance scores. This is consistent across all three datasets. 

Table 12. Numerical results of optimized base classifiers for all three case studies 

 

In the second step, the candidate models were combined to a so-called super learner via the 

ensemble method stacking that has been proven to deliver asymptotically optimal 

Table X. Numerical results of optimized base classifiers for all three case studies

Case Study Method AUC Accuracy F-score Logloss

Random Forest 0.769 0.708 0.683 0.574

Gradient Boosting 0.775 0.716 0.694 0.570

Deep Learning 0.758 0.703 0.686 0.609

Random Forest 0.636 0.598 0.584 0.667

Gradient Boosting 0.640 0.598 0.586 0.663

Deep Learning 0.633 0.597 0.534 0.669

Random Forest 0.940 0.877 0.885 0.318

Gradient Boosting 0.940 0.878 0.886 0.299

Deep Learning 0.933 0.864 0.871 0.322

Credit Risk

Insurance Claims

Marketing and Sales
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improvements upon a set of base classifiers. For each case study, all three base models (RF, 

GBM, DL) were used to create the super learner. All three combinations of the baseline models 

for the stacked ensemble were tested and the best performance could be achieved by using 

RF, GBM, and DL as input for the super learner for all three case studies. This is not always 

the case. 

In the last step, the stacked super learner created in step two serves as a benchmark for the 

AutoML solution from H2O to evaluate its performance, robustness, and reliability. Table 13 

shows the final comparison of the H2O AutoML solution and the trained super learner. 

Table 13. Comparisons of the super learner benchmark model and AutoML for all three case studies 

 

Overall, the results are surprisingly consistent and the stacked Super Learner was able to 

outperform the AutoML model on all three datasets with an AUC difference of 0.002. 

While performance deltas for the other matrices are not identical, the stacked ensemble 

outperformed the AutoML solution here as well in most cases. For the credit risk case study, 

the difference is 0.003 for Accuracy, 0.003 for F-score, and 0.002 for LogLoss. The 

performance difference in the case of the insurance dataset is 0.004 for Accuracy, 0.002 for F-

score, and 0.001 for LogLoss. The performance difference for the marketing case study is -

0.001 for Accuracy, -0.002 for F-score, and 0.001 for LogLoss. AutoML slightly outperformed 

the stacked ensemble only on the marketing case study in terms of Accuracy and F-score. 

Overall, the manually tuned stacked ensemble shows superior performance compared to the 

AutoML solution for all three case studies. 

6.5 Discussion 

The purpose of the experimental study presented in this chapter was to test the performance 

of the H2O AutoML framework compared to a manually tuned ML model in terms of the four 

evaluation measures AUC, Accuracy, F-score, and LogLoss. This section has three parts: 

First, the results of the empirical study will be discussed to assess the overall performance of 

the tested AutoML solution. Second, the findings will be discussed w.r.t. to business analytics 

Table X. Performance comparisosn of the super learner benchmark model and AutoML for all three case studies

Case Study Method AUC Accuracy F-score Logloss

Stacked Ensemble 0.778 0.717 0.698 0.565

AutoML 0.776 0.714 0.695 0.567

Stacked Ensemble 0.642 0.603 0.592 0.662

AutoML 0.640 0.599 0.590 0.663

Stacked Ensemble 0.944 0.883 0.889 0.299

AutoML 0.942 0.884 0.891 0.300

Insurance Claims

Marketing and Sales

Credit Risk
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to better understand the managerial implications for digital strategy. And last, a roadmap for 

future research is provided. 

6.5.1 Discussion of Results 

Based on the findings of the empirical analysis, which is based on three real-world case studies 

from credit risk, insurance, and marketing, the H2O AutoML model was not able to outperform 

the manually tuned classifier. 

The AutoML package has difficulties to reach the quality of a manual setup in two ways: (1) 

The underlying models do not reach the same prediction accuracy as the manually tuned 

versions. Increasing the running time did not result in a performance improvement either. This 

was tested on the smaller datasets as credit risk and marketing and higher running time did 

not have a significant impact on the final output. (2) The H2O AutoML package chooses two 

stacked ensemble combinations. One based on all the trained models and the other based on 

the best model for each category. It does not test whether another combination of the candidate 

models (e.g. smaller subset) results in better performance. This is important as adding weaker 

models to the pool of models for the stacked ensemble unnecessarily sabotages the 

performance. Guo et al. (2019) demonstrated that only the best baseline models should be 

taken into account for the super learner and additional classifiers tend to dilute the performance 

by adding non-optimal information that results in a reduction of prediction accuracy. The results 

in chapter 5 are also in line with those findings. 

However, the performance delta is not very strong and the AutoML solution provided by H2O 

is a potent model tuning engine that can significantly speed up prototyping or help practitioners 

less familiar with ML concepts to set up a powerful model. Nevertheless, for maximum 

prediction accuracy, careful model tuning and adjustments of hyperparameters done by a data 

scientist result in the best performance. Based on the small performance improvement it is 

questionable whether the small edge of manual adjustment as demonstrated by three case 

studies justifies the time-consuming model creation process when almost the same can be 

achieved with no knowledge and adjustment efforts. The answer to this question is mainly 

depended on the use case at hand, and whether a tiny performance improvement justifies the 

additional time required for manual model tuning. Also, given the strong performance of the 

AutoML solution created by H2O, it is almost certain that further research will result in 

prediction accuracy levels that are on par with models adjusted by ML experts.  

Overall, AutoML is an important first step towards complete end-to-end decision processes. 

Due to its relatively strong performance, and consistent results, AutoML has the potential to 
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become more capable as human engineers over time. This would significantly help to 

democratize ML for Business Analytics functions, especially for small to medium-sized 

businesses, which tend to have more difficulties to hire the appropriate talent. 

6.5.2 Managerial Implications 

Management has always used data to generate information for insights. Mainly in the form of 

business information systems. This is not new. What has changed is how we come up with a 

decision. The earlier more intuitive business approach gradually changed towards a more 

evidence-based or data-driven decision making (Brynjolfsson & Mcelheran, 2019; Delen & 

Ram, 2018). 

This development is also reflected in the current skill demands across all industries (Clayton & 

Clopton, 2019). This hyperconnected and fast-paced business environment requires 

employees that are familiar with technology as a business enabler and value generator. The 

outdated view of IT as a pure cost function needs to be dropped. Older incumbent corporations 

are often still reluctant to change their mindset when it comes to this new reality. 

Business Intelligence and Business Analytics are vital in today's world shaped by digital 

disruption and global competition. Business Analytics is about converting data to insights to 

improve management decisions across the complete corporate value chain. It traditionally 

used different analytic methods to transform data into digestible information to steer corporate 

decision making. 

Companies should strive for digital maturity. This is necessary to remain competitive, but it is 

not easy for everyone. Not every industry can capture the value associated with superior 

analytics similar to another. Industries that have traditionally used analytics due to vast 

amounts of data as banking were able to adapt way faster to the current landscape, but still 

face significant competition from new startups (Chui et al., 2018). While some of those startups 

were able to sustain their independence and be listed on the big exchanges, others were 

swallowed during M&A strikes (Siebel, 2019). Newborn corporations that belong to the 

categorization of digital natives have a significant advantage as their foundation has been built 

to facilitate future employment of advanced analytic capabilities and is scalable. They also tend 

to be more attractive for the young and technology-savvy crowd (Henke et al., 2016). 

AutoML might create a new level playing field by democratizing ML solutions across industries 

and business lines. Even though the findings in this study prove that AutoML does not yet beat 

careful human engineering when it comes to model tuning, it could help to support the adoption 

of ML solutions by helping to fill the talent gap. In addition, it is useful to support the skilled 
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data scientist with fast prototyping and benchmarking. AutoML can be used as a valuable tool 

to support the predictive modeling process by speeding up prototyping, which helps to 

accelerate the development cycle and final deployment. 

The rapid development of cloud-based open-source and automated ML solutions will 

democratize the technology space. ML interfaces to TensorFlow like Keras (Falbel & Allaire, 

2019) or ML frameworks as H2O (H2O.ai, 2019) helped to increase the level of abstraction 

and enabled users to better focus on the problem and solution. AutoML is the next step in this 

process towards higher adoption in the industry by completely automating several key 

processes in the predictive analytics chain. This will help to foster further adoption of ML in 

business units and hence accelerate the diffusion of this General-Purpose Technology (GPT) 

across the economy.  

As these developments continue it is very likely that domain knowledge and subject matter 

expertise will be more important to develop and implement end-to-end AI solutions compared 

to expertise in machine learning. Agrawal et al. (2019) argue that domain expertise cannot be 

commoditized, but ML as a GPT can and will be commoditized in different ways. Furthermore, 

ML will get less cost-intensive over time due to continued innovation within the field itself as 

well as due to hardware improvements, better software, APIs, and UIs. It can also be perfectly 

delivered by using cloud solutions to leverage a centralized capable Machine Learning / AI 

platform (e.g. MS Azure, SAP Hana, etc.). 

AutoML is a big first step and might gradually evolve and extend to a fully automated decision 

engine. Fully automated ML solutions pose the potential to democratize analytics across 

several industries and business functions but final realizations remain difficult. AutoML is still 

not able to automatically preprocess complex datasets, which is one of the most time-

consuming steps in the data science process. The same is true for the need to move from pure 

predictive outputs to concrete actionable steps in the form of prescriptive analytics. Until the 

last steps towards a complete end-to-end process are not solved corporations need to rely on 

hiring data science experts or external consultants to help them drive the current digital 

transformation initiatives. 

6.5.3 Future Research 

Further research is required at both ends of the predictive analytics process. AutoML needs to 

be able to handle data preprocessing to further automate the ML pipeline. Also, at the end 

when it comes to deriving actual actions from those predictions there is room for improvement. 

See figure 22. 



Chapter 6: AutoML in Business Analytics  91 

 
    

 
 
 

 

 

Figure 22. This graphic shows the current capabilities of AutoML and points towards further research 

necessary to completely automate the predictive analytics workflow to finalize the notion of complete 

off-the-shelf ML solutions for data-driven decision making. 

 
Current research mainly focuses on predictive tasks and results have to be interpreted by 

human decision-makers. One of the most interesting questions in Business Analytics is how to 

move from predictive analytics to a complete end-to-end decision engine that provides 

managerial decision-makers with concrete actions that can be acted upon. So far, ML and also 

DL are predominately used for predictive analytics. There are already attempts to combine ML 

methods with Operations Research/Management science to move from pure prediction to 

actual decisions, but how to go from a good prediction to a good decision is poorly understood. 

The major problem is to account for uncertainty in the decision-making process (Bertsimas & 

Kallus, 2019). Looking at recent studies as Alphastar show that this is possible and that deep 

reinforcement learning (DRL) is able to reach human-level decision power in an uncertain 

environment, and this in real-time (Vinyals et al., 2019). Studies on DRL for prescriptive 

analytics and managerial decision-making in an uncertain environment do not yet exist and 

would open several new research questions within the field of data and management science. 

This is a domino that needs to fall to reach full end-to-end decision processes within business 

analytics. 

6.6 Conclusion 

The first wave of digital transformation was triggered by big data and is now gradually replaced 

by Machine Learning and Artificial Intelligence, which has become the new driving force behind 

the move towards a digital enterprise. This resulted in an increased demand for ML experts 

and a corresponding skill-shortage, which slowed down the adoption of ML methods for 

business analytics. AutoML frameworks are expected to be a solution for this current talent 

gap and could also accelerate the predictive analytic process. It was demonstrated that the 

H2O AutoML framework in its current capacity does not reach the full prediction accuracy that 

is possible by careful manual adjustment of the models for two reasons. First, it does not reach 

(1) Preprocessing

• Currently poorely 
handelled by AutoML, 
further reserach necessary

(2) Hyperparameter 
Tuning, Model 
Choice, and 
Evaluation

• AutoML performs already 
quite good and close to 
expert level tuning

(3) Actual Decision 
(Prescriptive 
Analytics)

• AutoML is only concerned 
about predictive analytics, 
further research necessary
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a higher accuracy on the baseline or candidate models than the benchmark model. Second, it 

has a fixed way to combine the baseline models with ensemble learning. To reach maximum 

performance an optimal combination of the baseline models has to be determined in each 

individual case. Despite those findings, this study has shown that AutoML can be a powerful 

tool. First, it can be used as a baseline during prototyping for ML experts, which can help to 

accelerate the development and deployment cycles of ML projects; second, it makes ML 

models more accessible to non-expert users as it further increases user-friendliness by moving 

the level of abstraction higher; and third, AutoML can be considered as a big step towards a 

full end-to-end decision engine, which is the ultimate goal of AI in Business Analytics. 
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Chapter 7: Enterprise AI 
7 Enterprise AI: Towards an End-to-End Data-Driven Decision 

Engine 

Abstract 

An end-to-end business analytics engine is essentially a comprehensive and automated ML 

pipeline. The major goal of this chapter is to synthesize the contributions of the preceding 

chapters into a coherent whole by proposing a complete ML-pipeline that consists of three 

distinct phases: Phase 1 - Data Preparation; Phase 2 - Model Tuning and Evaluation; and 

Phase 3 - Model Deployment and Monitoring. AutoML automates the second phase in the 

pipeline (model tuning and evaluation) and is a vital building block to automate the full pipeline. 

It is discussed how AutoML can be improved to reach state-of-the-art accuracy levels to fulfill 

its purpose as the heart of the pipeline. Alternatively, it can be used in its current form. 

However, to achieve an end-to-end prediction engine for data-driven decision-making 

extensions towards Phase 1 and 3 are required. Data preparation, which consists of several 

adjustments as cleaning and feature engineering are not yet automated. Also, there is no 

consideration of real-world constraints (size, speed, interpretability), and the model choice is 

purely based on prediction accuracy. Due to the lack of those functionalities, automated 

monitoring and adjustments are not possible. Those gaps result in clear future research 

directions which are also discussed in this chapter. 

Keywords: Machine Learning Pipeline, Artificial Intelligence, Business Analytics, Data-Driven 

Decisions, Enterprise AI 

7.1 Introduction 

The preceding parts have made it clear that business analytics has become mandatory for all 

industries. The need for data-driven decision making in corporations has developed into a 

critical necessity to survive in the economy of the 21st century (Siebel, 2019).  

The initial chapters 3 and 4 were mainly concerned with finding the strongest prediction models 

for supervised learning on different structured data sets, while also discussing real-world 

constraints. Then, chapter 5 introduced and discussed super learning as a reliable method to 

enhance the performance of those models. And the previous chapter 6 “AutoML in Business 

Analytics” has introduced the notion of an automated predictive analytics process that does 

not require any human input during the model tuning and selection process. 
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This chapter uses the above findings to discuss the status quo in business analytics when it 

comes to a completely automated decision engine for data-driven decision making. Also, it will 

be discussed how ML – in theory – can be automated and applied at scale, including ideas on 

how to translate that silo wise prove of concepts into scalable solutions in an enterprise. 

Due to the recent development of AutoML models (Halvari, Nurminen, & Mikkonen, 2020), the 

idea of a completely automated ML end-to-end solution is within our reach. However, literature 

regarding a complete end-to-end ML pipeline for business analytics seems not to exist, but 

several authors are suggesting steps towards this direction (Agrawal et al., 2019; Thomas, 

2019). However, Google has recently - March 2020 - announced a beta version of its cloud-

based AI Platform Pipeline, which is a very promising project and perfectly captures the idea 

of a cloud-based scalable end-to-end ML solution. It offers different functionalities as data 

ingestion, data preparation, feature engineering support, model tuning and evaluation, and 

deployment (Ramesh & Unruh, 2020). 

The remainder of this chapter is structured as follows: The first section briefly introduces the 

notion of an ML pipeline to kick-start the discussion. Section two discusses AutoML as the 

heart of the pipeline as it automates the model tuning and evaluation process. This is done by 

synthesizing the ideas of chapters 3 to 6. Third, necessary AutoML extensions will be 

discussed that are required to further progress to complete automation. Fourth, we will discuss 

how one could evaluate such an ML pipeline. Fifth, I will explain how AutoML models can be 

applied in its current capacity, go over challenges, and limitations as the issue of explain-ability.  

At last, I will point towards future research to fill the necessary gaps to reach the initial idea of 

a completely automated prediction engine that does not require human input. Gaps are 

prediction accuracy (described in earlier findings) for phase two, and also missing research 

regarding the automation of phase one and phase 3. 

7.2 Proposed Pipeline Setup: 3 Phases 

The question remains how it will be possible to fully/seamlessly integrate a complex machine 

learning end-to-end decision system within the enterprise architecture to capture the value of 

data-driven decision making to its full extent.  

This will be a complex and interdisciplinary undertaking requiring the effort of a huge team of 

experts across business lines and technical specialists responsible for providing domain 

expertise to provide the functional specification, requirement engineering, prototyping, large-
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scale development, and final deployment and maintenance (Agrawal et al., 2019; Bughin et 

al., 2017). 

An end-to-end business analytics engine is essentially a comprehensive and automated ML 

pipeline, which consists of three distinct phases: Phase 1 - Data Preparation; Phase 2 - Model 

Tuning and Evaluation; and Phase 3 - Model Deployment and Monitoring. See figure 23. 

 

 

Figure 23. The proposed ML pipeline consists of the three phases Data Preparation, Model Selection, 

and Model Deployment & Monitoring. AutoML sits at the heart of the ML pipeline and is mainly 

responsible for model tuning and evaluation. However, if we talk about reaching a fully automated 

business analytics engine for decision making, AutoML needs to extend its capacities towards phases 

1 and 3. 

 
An alternative to complete automation is a human in the loop approach, referred to as 

augmentation (Davenport, 2018). Due to several current limitations, augmentation is likely to 

precede the full automation of the ML pipeline (Thomas, 2019). See section 7.5.4 and 7.6 for 

a discussion on limitations and future research. 

7.3 The Heart of the Pipeline - Phase 2 

AutoML automates the second phase in the pipeline (model tuning and evaluation) and is a 

vital building block for a full ML pipeline. It is not enough to just automate the process, but also 

assure that the performance of the final model choice can be considered state-of-the-art. The 

following considerations should therefore to be taken into account. 

7.3.1 Candidate Models 

As the most important part of every ML task is selecting the right candidate model(s), we will 

start by discussing the findings regarding optimal model choice. In the earlier chapters’ different 
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single classifiers and ensembles thereof were tested for accuracy on several distinct datasets. 

Based on those earlier findings it is difficult to determine a single candidate model that 

outshines all the others as model performance tends to depend on the underlying 

characteristics of the data itself. Overall, the earlier results suggest that Gradient Boosting and 

Random Forest or more general tree-based ensembles tend to be the best choice for 

classification problems based on structured data. Deep Learning with a feed-forward 

architecture turned out to be a powerful model as well and takes the second place. Manual 

model configuration and parameter tuning were necessary to optimize those ML classifiers to 

optimally represent the dataset. Also, the model selection process was purely manual after the 

training phase. This goes against the notion of an off-the-shelf solution for business analytics. 

See Chapters 3 and 4 for more details. 

As shown in chapter 6 AutoML solves this problem by automating the tuning and model 

selection phase. It has been shown that H2O AutoML (H2O.ai, 2019) is a reliable tool that 

offers quite good performance, but it does currently only use a random grid search during 

model optimization, which does not guarantee maximum performance. The only constraint at 

this point would be the run-time. Given enough time AutoML could test every possible 

configuration of the setup to assure the selection of the best base-learner parameterization 

possible to reach maximum prediction accuracy for a given candidate model. However, the 

time requirement is not very serious and H2O AutoML offers fast convergence of approximately 

15 minutes to reach optimal performance (Truong et al., 2019). 

Overall, H2O AutoML is fast and can adequately train and identify the best performing ML 

model for each dataset during the tuning and selection process. However, there is a further 

possibility to optimize the predictive modeling process in terms of classification accuracy by 

utilizing the ensemble method stacking. 

7.3.2 Post-Processing via Stacking 

The findings presented in chapter 5 clearly showed that the different characteristics of GBM 

and DL can be utilized to improve prediction accuracy beyond the individual algorithms by 

combining them via the ensemble method stacking (Van Der Laan et al., 2007). It is possible 

to combine both (or several) of those base models to leverage the fundamental difference of 

how they represent the dataset, which opens a consistent way to improve upon the base 

classifiers and guarantees a stronger predictor. The results were consistent across all different 

test cases, which makes stacking a reliable method to post-process fully trained predictors to 

improve upon their accuracy levels. Further research taking into account new datasets could 

either strengthen those findings or weaken it.  
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The only limitation here was that the concrete selection of the base classifiers cannot be 

generalized according to the results and is based on the initial training and performance of the 

base learners, the specific combination of those base learners, and the concrete meta-

algorithm applied during the fusion to the super learner. See the discussion in chapter 5 for 

more details. 

Those things naturally require time, which is often a major constraint in a fast-paced business 

environment and the need for fast prototyping that leads to fast deployment of new solutions 

or adjustments of already implemented ones can be a major competitive advantage.  

Overall, stacking is a reliable performance enhancer, but whether it is a viable tool to use 

depends ultimately on the computational limitations and concrete business case. 

7.3.3 AutoML 

In chapter 6 automated machine learning was presented as a solution to streamline the 

predictive analytics workflow. Concrete, I benchmarked the H2O AutoML framework against a 

manual setup to test its utility for the ML pipeline. AutoML should be able to select the best 

candidate model and combine it via stacking into a more powerful super learner. H2O AutoML 

proved to be a robust and reliable automated ML solution for model tuning and selection that 

offers strong prediction performance.  

However, it was not able to outperform the manual setup of training the base-learners 

individually, plus the combination with stacking to a super learning ensemble with different 

configurations. What is missing at this point is a mechanism to select the best stacking setup. 

To arrive at the maximum possible prediction performance that is possible based on the 

underlying dataset an optimal selection of the base-learners and meta-algorithm is necessary. 

As described in section 6.2.2 H2O AutoML trains the candidate models and uses stacking over 

the best classifiers from all different models to produce the super learner, which tends to 

produce suboptimal outcomes - see chapter 6 for further details.  

The better AutoML can replicate careful manual tuning and final model selection the better. To 

achieve similar results as the manual setup AutoML needs to optimize the choice of base 

learners included in the fusion process and drop classifiers that would contribute to a reduction 

in performance. Guo et al. (2019) introduced an optimization setup for stacking, which chooses 

the best base models with the help of Bayesian optimization. Using an optimization algorithm 

as suggested by Guo et al. (2019) would solve this problem and there would be no reasons 

why AutoML cannot reach similar accuracy levels as a manually tuned version. All possibilities 

regarding hyperparameter optimization and stacking configuration would be reproduced by the 

AutoML setup. 
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Overall, AutoML in its current form is a powerful model that can be used in various business 

analytics use cases. If the goal is maximum accuracy it is recommended to used stacking in 

combination with AutoML as a benchmark to reach maximum accuracy while sacrificing 

transparency and speed. As the H2O AutoML does not select the best base-learning 

combination it is recommended to build the setup manually and use AutoML as a baseline to 

improve upon. This will result in superior performance as the current AutoML solution is already 

quite strong. This setup is simple to execute and results in state-of-the-art prediction results 

for binary classification problems within business analytics. 

The H2O AutoML framework in its current capacity is a valuable tool to support fast prototyping 

with the potential to shorten development and deployment cycles. It can also bridge the existing 

gap between supply and demand for ML experts and is a big step towards fully automated 

decisions for business analytics functions. However, AutoML needs slight improvements to 

guarantee state-of-the-art performance. Also, it is necessary to extend its capabilities towards 

phase 1 and phase 3 of the ML pipeline to resemble the complete ML workflow. 

7.4 Necessary AutoML Extensions 

If the goal of AutoML is complete automation in the form of a fully automated end-to-end ML 

workflow, several extensions are required. Data acquisition and pre-processing, as well as 

deployment and monitoring, are important parts of a complete ML pipeline. If we want to fully 

automate the ML workflow, we need to extend the capabilities of AutoML towards phase 1 and 

phase 3. 

7.4.1 Data Preparation – Phase 1 

The preparation of input data, sometimes called data wrangling is an important step 

(Konstantinou et al., 2019). AutoML sits at the heart of the ML pipeline and is mainly 

responsible for model tuning and evaluation and – as mentioned in Chapter 6 – data pre-

processing is only partially provided by current AutoML solutions. The necessity for excessive 

pre-processing and careful model tuning of those more complex models goes against the 

notion of an off-the-shelf solution, which is often favored in real-world business analytics and 

data mining scenarios. Off-the-shelf prediction models can be directly applied to a problem 

scenario without any significant domain knowledge or pre-processing of the datasets (Hastie 

et al., 2017).  

Pre-processing steps and data-preparation become even more important when we talk about 

a centralized Business Analytics core system, which needs to be able to identify data schemas 
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and possible use cases automatically. Otherwise, a human user has to tell the system via a 

frontend input the necessary information to configure the ML setup. 

Another problem is feature engineering. Feature engineering seems to be often the deciding 

factor why manual model tuning is largely superior to off-the-self-solutions (Thomas, 2019). 

This will still be the case, even though all the recommended steps mentioned above are 

contained in an AutoML solution. If we want to reach a fully automated business analytics 

engine for decision making (full automation) AutoML needs to extend its capacities towards 

phase 1, which is a comprehensive and automated preparation of the dataset. 

7.4.2 Deployment and Monitoring - Phase 3 

First, the primary focus of AutoML is the prediction accuracy of the classifiers. It does not 

account for any real-world constraints at all. To make a reasonable final model suggestion by 

itself it is necessary to introduce this functionality in AutoML solutions. AutoML needs to be 

able to determine an adequate tradeoff between prediction accuracy and real-world constraints 

given the requirements of a concrete use case/application scenario. 

Second, based on the results of chapters 3 and 4 adjustments of the model choice or 

configuration can become necessary. The findings are clearly in favor of ensemble learning 

methods as GBM when compared to Deep Learning, but those results could not be 

generalized, which suggests that the underlying structure of a given dataset is important and 

only slight variations might result in the need for a different model or at least in a need to 

change the model configuration. Machine learning remains an empirical process and it is 

necessary to test various models for different datasets to find the one model that can best 

represent the information contained within the data. It is also advisable to reevaluate parameter 

settings and model choice after a non-trivial change in the fundamental dataset has occurred 

as this might result in different requirements w.r.t. model configurations. This might be the case 

due to new external input data or due to newly generated data by the ML model itself. See 

section 7.6.4 for further research directions. 

Hence, AutoML is required to build upon its existing capabilities and extend its functionalities 

towards phase 1 and phase 3 of the above introduced ML pipeline to reach the state of a 

largely autonomous system. 
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7.5 Further considerations 

7.5.1 Pipeline Evaluation 

The evaluation of the proposed automated ML pipeline cannot be done with a single measure. 

Rather, it should be divided into an objective measure (or measures) for each of the individual 

phases described in figure 25. 

• Phase 1 – Data Ingestion and Preparation: The ability of the model to accurately 

identify the data schema and the appropriateness of the pre-processing applied based 

on this analysis. 

• Phase 2 – Model Tuning and Selection: The major part is tuning, validating, and 

selecting an ML model or ensemble thereof. This step should be based on the usual 

ML performance metrics as AUC, Accuracy, F-score, and LogLoss. At this point, an 

array of the best performing models should be given to phase 3 to select them taking 

into account real-world constraints. 

• Phase 3 – Deployment and Monitoring: As this phase is mainly concerned with the 

successful deployment of the model in a real-world scenario, additional constraints 

have to be taken into account. This is especially important as the preceding model 

selection was only based on prediction accuracy while ignoring other variables. 

 

As a benchmark one could build a manual setup and compare the quality of the input data after 

preprocessing, the prediction accuracy of the selected model, and the external requirements 

and constraints required for deployment. 

7.5.2 H2O Driverless AI 

Open source tools as H2O AutoML focus mainly on the second step of the ML pipeline, which 

is hyperparameter optimization and model selection, combined with a combination via stacking 

to a super learner ensemble. To resemble a full ML workflow, an extension at both ends to 

phase 1 and 2 is necessary. Given the current importance of evidence-based decision making, 

it is almost certain that this visible limitation of open-source AutoML solutions will soon be filled. 

In contrast, commercial tools as H2O Driverless AI extend the pipeline functionality slightly and 

offer pre-processing steps as recognition of the data scheme as well as feature engineering. 

Differences also exist regarding hyperparameter search. It seems that the slightly more 

powerful commercialized version H2O Driverless AI has been optimized with a combination of 

random search and Bayesian optimization, whereas the open-source version is limited to a 

random search for parameter tuning. Using the overview of (Gijsbers et al., 2019) there is not 
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a single open-source AutoML solution currently available that uses a combination of random 

search and Bayesian optimization. H2O Driverless AI was not part of the evaluation, but it is 

relevant to mention that steps in this direction are already fruitful. The information was taken 

out of the official documentation on the website and was not verified in this study (H2O, 2020). 

7.5.3 Centralized BA Solutions (Cloud, SaaS) 

AutoML is a recent development but vital for further democratization of ML and also necessary 

for the roll-out and diffusion across business functions and the economy. As a prerequisite 

though, robust enterprise architecture is necessary to facilitate efforts towards advanced 

analytic capabilities (Henke et al., 2016). Research is aware of the current challenges and 

importance to be agile and adaptable in this new digital age and has realized correctly that the 

cloud is one of the most important areas for the future digital society (Siebel, 2019). 

Transforming GPT technologies like AI will only prosper at scale when the necessary 

distribution channels are present (Agrawal et al., 2019). Also, the need for a consistent stream 

of quality data needs to be assured to make the most of Machine Learning and AI (Bughin et 

al., 2017; Henke et al., 2016). 

Fully automated ML pipelines can be offered as versatile cloud solutions and hence as software 

as a service (SaaS). Once everything is done (pre-processing, model tuning, and model 

selection) the best model would be automatically returned for the final deployment. However, 

the produced model can also live in the cloud, which would completely outsource the ML 

pipeline to an external provider of analytics or a centralized in-house team. Whether this utility 

is acquired from an external service provider or built inhouse depends on the strategic 

importance of AI for the organization and also its current architecture and internal capabilities. 

The only sensible approach for long-term business solutions is cloud-based. Not only offers 

this the possibility to always use a centralized hardware center that offers the best processing 

power, but it also centralizes maintenance, updates, and monitoring of such a system (Siebel, 

2019). A perfect AutoML solution could ultimately replace many data science and ML experts, 

especially since SaaS cloud solutions could be offered at scale and with a central data science 

steering committee that maintains this prediction engine. 

7.5.4 The Black-box Challenge 

There is one constraint that is dominating all the others when it comes to the adoption of ML 

models in practice. It is the possibility to explain the reasoning behind the predictions. Decision 

trees or standard linear models do not come close to artificial neural networks or ensembles 

as bagging and boosting when it comes to prediction accuracy. Nevertheless, they belong still 
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to the favorite tools in business analytics departments. Model interpretability is often more 

important than pure predictive ability when it comes to real-world applications and simple 

models (e.g. decision trees, linear models) fulfill those requirements. In contrast, Deep 

Learning and Gradient Boosting are more or less black-box models that are not explainable 

and hence difficult to communicate. As discussed in chapter 4 the black-box nature of 

especially the most powerful models tends to prevent ML applications to further penetrate 

specific industries – especially if they are subject to regulatory scrutiny. Risk Management and 

Insurance – among others – are fields where model interpretability and the need for causal 

explanations are dominating pure predictive ability. 

There is a fundamental difference between causal explanation (understanding) and empirical 

prediction (practicality). I highly recommend the paper To explain or to predict? (Shmueli, 

2010). It is somewhat dated, but perfectly captures the essence of those competing 

philosophies better than any other resource. Both approaches can benefit from each other and 

a gradual convergence of the two approaches seems natural over time. Empirical prediction is 

useful to validate the strength of theoretical assumptions, while causal explanation helps us to 

understand why predictive models arrive at a certain decision. 

Nevertheless, there are also reasons why a complete paradigm shift towards explainable ML 

is questionable. Agrawal et al. (2019) are convinced that the major reason why ML has been 

able to develop faster and more powerful predictive models than statistics is the pure focus on 

empirical testing rather than time-consuming causal explanation. Overall, simple empirical 

prediction without the need for understanding or an explanation is easier than establishing a 

causal relationship that can be explained. The need for model understanding in fields as 

economics and business is important, but a shift away from pure prediction will only slowdown 

further progress. The best would be a gradual improvement of the explain-ability of black-box 

models, while research about pure predictive power is completely separate. In business, this 

problem could be solved by fast-paced prototyping and empirical testing in one department to 

arrive at an immediate decision, including another department responsible for ex-ante 

explanation and model validation. 

Rudin (2019) argues that we should avoid using certain Black-Box models in high-stakes 

industries and brings as example finance. This is a general statement and while it is true for 

certain parts of the financial industry, we cannot generalize this observation across the whole 

sector. We have to distinguish between different areas of finance. While certain areas in 

financial services are subject to regulatory supervision are highly constraint when it comes to 

the deployment of black-box models, other fields as trading have a natural inclination to use 
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anything under the sun to maximize their business objectives. Quantitative Hedge Funds as 

Bridgewater associates are at the forefront of applying state-of-the-art quantitative models of 

all kinds with the ultimate goal of improving the ROI of their trading activities. 

The asset management industry and all kind of facilitating intermediaries as custodians, 

brokers, exchanges, etc. traditionally have been very tech-oriented businesses and where 

always at the front of technological incorporation of the newest models and algorithms to 

improve efficiency and effectiveness across their functions with the ultimate goal of superior 

customer satisfaction. 

The major issue with interpretability is its nature as a hard constraint. Having the constraint of 

only explainable models would severely limit the range of model choice of AutoML, which 

makes the model tuning in phase 2 pointless. Overall, even though a detailed understanding 

of predictions might not be necessary in all cases it is without question that progress in this 

area would significantly accelerate the adoption rate of ML models in business, which ultimately 

would lead to a more widespread diffusion across the economy. See section 7.6.3 for a 

discussion on further research regarding the explain-ability problematic. 

7.6 Future Research Directions 

The coming years will utilize the tools that have enabled the global digital transformation of all 

major industries and will further help to develop the building blocks necessary to reach full 

automation. Nevertheless, the transition from a research environment to real-world 

applications poses several challenges. The requirement to deploy ML models at scale with 

immense amounts of data in a complex corporate setting makes the application of ML for 

business analytics a complex undertaking. This section briefly discusses the current limitations 

and constraints of AutoML/Machine Learning and points towards future research directions. 

Solving those last issues will help AutoML solutions progress towards and finally resemble a 

complete end-to-end ML pipeline for real-world business analytics applications. 

7.6.1 Data Preparation 

One of the major problems in supervised predictive analytics is the handling of the initial data. 

The first step is often regarded as the most important aspect of data science and takes up to 

80 or 90 percent of the required time. It consists of different kinds of data cleaning and 

adjustments, but also of transforming the feature space. Especially the fusion of existing 

features into more diagnostically conclusive (informative) features seems to be the most 

important aspect to squeeze out the last bit of performance. Online data science competitions 
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as Kaggle are often won by superior feature engineering, which indicates that this initial step 

can be more important than the model tuning process itself, especially when we have already 

reached the maximum amount of information that can be extracted based on the current 

characteristics of a given dataset. 

Research w.r.t to automated feature engineering exists (Nargesian, Samulowitz, Khurana, 

Khalil, & Turaga, 2017), however, machines do not possess the expertise of a domain expert 

and can often not semantically categorize related features. This poses the question whether it 

is necessary to completely automate this part, or whether human expert input at this stage is 

something to be desired as it allows for better control and feedback loops, which also helps to 

better understand ML models and their predictions. Konstantinou et al. (2019) for example, 

propose a data preparation architecture that automatically transforms the input based on an 

initial outcome description by the data scientist. Especially since augmentation instead of full 

automation seems to be the next frontier of digital transformation and AI initiatives in business 

analytics (Davenport, 2018) integrating domain expert knowledge at this initial step could turn 

out to be the most reasonable choice. 

7.6.2 Real-World Constraints 

The primary focus of AutoML is on maximum performance measured by a chosen evaluation 

metric such as AUC, Accuracy, F-score, or LogLoss. Applying predictive analytics in a real-

world setting poses additional challenges and one downside of AutoML in its current form is its 

exclusive focus on prediction accuracy based on one/several of those evaluation measures. A 

pure focus on performance and ignoring practical constrains is not optimal (Thomas, 2019). 

And indeed, most research (including this thesis) sees maximum accuracy as the single most 

important factor in ML. However, there exist many real-world constraints that AutoML does not 

account for at the moment and which are crucial for the final deployment in industry. For 

example, small performance improvements in terms of prediction accuracy do not necessarily 

justify the selection of a model as this often comes with higher computational resource 

requirements. This is especially relevant for real-time decision purposes as high-frequency 

trading and similar applications. However, this needs to be evaluated on a case by case basis 

taking into account the specific business requirements.  

Ultimately, especially if we want to achieve a 100% automated engine when it comes to model 

training and selection, it is for AutoML to be more flexible regarding hidden constraints as 

model size, computational complexity (speed), sparseness, and interpretability. Again, the 

most reasonable choice here could be to include a domain expert in the process to specify the 

necessary constraints and let the model use an optimization algorithm to balance the trade-off 
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between pure prediction accuracy (phase 2) and real-world constraints (phase 3). Overall, 

AutoML needs to become more flexible and take into account the concrete use-case 

requirements and deployment scenarios during phase 3 of the ML pipeline. 

7.6.3 Interpretability – Blackbox 

One of the most pressing challenges in data science and business analytics is the problematic 

of the explain-ability of complex ML models. Without the necessary trust, it becomes difficult 

to deploy and hence use ML models in practice. As discussed in chapter 4 one of the major 

reasons why advanced ML (especially Deep Learning) has not found its way into business 

analytics functions is their lack of transparency and interpretability. The black-box nature of 

strong algorithms as DL and GBM makes it difficult to communicate results to other 

stakeholders. In some cases - especially in industries subject to regulatory scrutiny - makes 

the deployment of black-box models outright illegal and hence impossible.  

Breakthroughs w.r.t. to interpretability and transparency issues would significantly help to 

increase the adoption of ML models for business analytics functions and hence foster faster 

diffusion across the economy. Research in this area has experienced increased momentum 

due to the rising interest and therefore funding from different stakeholders. 

Samek & Müller (2019) and Montavon, Samek, & Müller (2018) give a good overview of current 

attempts to solve the black-box issue. Also, research about model interpretability has already 

translated into software tools such as LIME to solve the black-box issue of certain ML models. 

LIME, which promises to “explain the predictions of any classifier” is an available solution to 

tackle the black-box issue of ML (Ribeiro, Singh, & Guestrin, 2016).  

Which solution ultimately wins remains to be seen. Further progress in this area is posed to 

emerge due to the current interest levels from important stakeholders around the world and we 

will hopefully see further breakthroughs here in the coming years. 

7.6.4 Monitoring and Adjustments 

The actual deployment of AutoML solutions started to become easier with commercialized 

tools as H2O Driverless AI, Google’s Cloud AutoML, etc. However, a complete ML pipeline 

needs to include continuous monitoring of the deployed ML models. As ML models introduce 

new data to the existing database, which ultimately will be used as input to train the model, the 

usage of an ML model itself could drive the need for an adjustment and retraining requirements 

of an already deployed model. ML predictors need to be assessed and changed if the data 

distribution (fundamental characteristic of the underlying dataset) has been changed. To reach 
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a completely automated ML pipeline this monitoring and adjustment in phase 3 need to be 

incorporated in the model. First approaches have already emerged. For example, Wilson et al. 

(2020) offer the first solution to this problem with a model that offers continuous self-evaluation 

and adaptations to new data, and the resulting concept drifts over time. 

7.7 Conclusion 

This chapter introduced the notion of a completely automated ML pipeline as a necessity to 

reach an end-to-end prediction engine for business analytics and it was shown that we are 

very close to a complete end-to-end predictive model that can reach state-of-the-art 

performance without human input. Fully automated ML pipelines could be offered as versatile 

cloud solutions (SaaS). Whether this utility is acquired from an external service provider or built 

inhouse depends on the concrete value for the business. 

AutoML in its current capacity can sit at the heart of the pipeline and carry out model tuning 

and evaluation. However, a full ML pipeline for business analytics needs also to be able to pre-

process data during phase one and to account for real-world constraints during model 

deployment. Also, continuous model monitoring would be required as adjustments to model 

configurations are necessary due to shifting data sets. Current problems are lacking 

functionality at the beginning and end of the pipeline. Data preparation is largely ignored by 

open-source AutoML and manual adjustments are required. Also, at the end of the pipeline, 

there is no appreciation of real-world constraints or steps for further monitoring and model 

adjustments. Currently, the main focus of model selection is based on prediction performance, 

usually taking into account only one performance measure. Computational speed, model 

sparseness, and interpretability might be more important for certain business use-case than a 

tiny improvement in classification accuracy. 

Filling those gaps and combining all those building blocks would result in a complete stand-

alone prediction engine that is capable of reaching state-of-the-art accuracy levels without 

human input. An automated predictive analytics model would be a significant step towards 

complete end-to-end data-driven decision processes. The ability to automate mental tasks 

allows us to move from standard robotic process automation based on a chain of if-then 

decisions to digital robotic process automation, which has the potential to replace or at least 

augment white color jobs in several industries.  

One problem that any business faces, when it comes to the adoption of complex machine 

learning, especially deep neural networks, is their black-box nature - non-explain-ability - that 
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makes it difficult to communicate the inner workings of the model. This is especially relevant 

as many real-world use cases require an understanding of the underlying logic of an applied 

method. If this prerequisite is not given, despite the predictive superiority - it will be impossible 

to justify commercial usage and deployment due to regulatory issues. Given the significant 

importance of AI for the real world the black-box nature has become one of the most important 

issues when it comes to the deployment of ML models.  

However, based on the importance of several stakeholders across domains research regarding 

the issues of interpretability, transparency, and explainability has gained momentum. Given 

the current interest of different stakeholders, we hopefully see further progress regarding a 

better understanding black-box model soon. Further research here would be vital for the 

democratization of ML and also necessary for the roll-out and diffusion across business 

functions and the economy. 
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Chapter 8: Stakeholder Implications 
8 Stakeholder Implications 

This part will discuss the relevance and implications of the above findings for different 

stakeholders. At the 2019 World AI Conference in China Elon Musk compared humanity with 

a boot-loader. The minimum effort that is required to start a computer, because it cannot start 

itself. He implied that humanity is the boot-loader for AI and once it's running, we are not 

required anymore. The founder of Alibaba Jack Ma rolled his eyes, replied, and suggested: 

"Ok, let's talk about something fun." 

The reality is that forecasting the future has always been difficult, especially when it comes to 

developments as AI in today's complex world. In a way, computers are already more capable 

of processing certain information and data as humans but are limited to operate in a defined 

environment – completely incapable of breaking out. Examples of these agents are current 

gaming-related implementations as AlphaGo Zero (Silver et al., 2017), AlphaStar (Vinyals et 

al., 2019), or AI bots for Dota 2 (Katona et al., 2019).  

That the current state-of-the-art of our predictive models does not resemble true AI is out of 

the question, but given the speed of technological development over the last years, it might 

very well be the foundation of the next generation of AI that comes very close to general AI, 

but for now, all we should be concerned with are the more realistic applications of AI and how 

we can utilize them to transform our society in the post-digital era towards a smart and 

automated economy. The following part discusses the managerial as well as economic 

implications of machine learning and AI. 

8.1 Managerial Implications of AI 

This part focuses on the managerial implications that can be derived from the earlier findings. 

It has been shown throughout the thesis that there are several application areas for machine 

learning in financial services and insurance and it was possible to further increase prediction 

accuracy by utilizing state-of-the-art machine learning models which indicates the possibility to 

capture value through machine learning across several business functions. 

It was shown that it is still possible to increase the accuracy levels of machine learning for 

credit risk, insurance, and marketing in the case of structured datasets by using gradient 

boosting machine (chapters 3 and 4). Also, it is possible to optimize accuracy levels further by 

creating a super learner (chapter 5). Given the huge volume of those markets, even tiny 

accuracy improvements can lead to competitive advantage through a more accurate 
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categorization of bad and good customers or more effective demographic targeting. This 

chapter will discuss these use-cases in more detail. Due to the increasing volume of available 

data ML applications are likely to become even more over time. 

Example: The ability to translate a stream of customer data into valuable business information 

will further increase in importance. A new form of banking called open-banking, which uses 

open APIs and a digital ecosystem to connect different market participants will give everyone 

increased access to data. Hence, the ability to use that information will be the key to a 

customer-centric digital business strategy. Customers’ expectations are changing rapidly and 

the old way of doing banking and insurance will soon be obsolete. Currently, only the older 

generations are still visiting physical bank branches, while internet banking is already standard, 

and the complete shift to mobile banking is the next step. 

Machine learning can help companies/departments to capture business value, but how can 

this be achieved? This part has three themes which will be discussed. (1) The first part focuses 

on how exactly machine learning can be leveraged and applied in the three functions presented 

in this thesis, namely, credit risk management, insurance claims prediction, and sales and 

marketing, including possible synergies. (2) The second part focuses on the value of a 

centralized business analytics function and complete automation. (3) Third, the impact of ML 

on operational task automation and strategic decision making is discussed. 

8.1.1 Counterparty Risk 

The first and also most detailed use case presented is the assessment of the credit worthiness 

of a customer. Due to the scope of the thesis, which is binary classification on structured data, 

the above cases are based on a binary credit score, which was defined as good or bad. 

However, in practice it is often better to use the probability of default directly. Both concepts 

have a different outcome when modelled directly, but are strongly related. The credit score or 

category (classification) can be calculated based on a probability of default (percentage 

prediction) including a decision threshold. 

Counterparty credit risk is one of the largest risk classes and highly relevant for corporations. 

However, the risk assessment of counterparties is twofold. 

The use cases presented are mainly concerned with FinTech lending, which means the credit 

assessment and direct decision whether a loan will be issued. Machine learning can help us 

to make the initial decisions whether to engage in a business activity/transaction with a 

counterparty in the first place. 
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Example: Many FinTech companies (e.g. Peer-to-Peer Lenders) do assess their customer's 

creditworthiness with ML models. Whether we call the outcome a credit score 

(category/classification) or a probability (percentage) is irrelevant for the logic behind this 

argument. In the end, we have to determine a concrete threshold level which disqualifies a 

counterparty. 

The idea is to only target customers, which are - based on our classification outcomes - not 

likely to result in a default over the lifetime of the loan. In case of insurance policy, we would 

assess the likelihood for a policyholder to file an insurance claim during the lifetime of the 

contract. Both scenarios are fundamentally the same. We do not want a negative event to take 

place and ML helps us to identify customer segments, which have a high likelihood to cause 

such an event. Once this segment has been identified we can further focus on a customer 

demography that is most likely to execute a final purchase (see marketing analytics). 

However, PDs are also used to calculate potential losses based on a credit portfolio to 

determine the capital requirements of a company. Capital requirements can be based on 

regulatory requirements or self-directed/imposed risk management. This is necessary to shield 

financial institutions from unexpected market events. The necessity to have a certain capital 

buffer to avoid bankruptcy during volatile periods is based on regulatory requirements. Banks 

and insurance companies pool risks in a portfolio and hold specific capital requirements. The 

need for concentration risk reserves is necessary as larger portfolio defaults are always 

possible due to systemic risks that cannot be captured by individual risk assessments as shown 

in the use cases above. Higher debt increases the overall ROI in case the total return on capital 

is higher than the cost of debt. This so-called leverage effect increases the incentive for 

companies to increase their debt financing. 

Correct assessment of the probability of default is one ingredient to achieve an optimal capital 

buffer, meaning the tradeoff between equity and debt in a corporation – a so-called capital 

structure puzzle from a corporate finance perspective. Increasing debt levels increase the risk 

of default in unexpected credit events, especially if they are subject to concentration risk. An 

accurate assessment of the PD has the potential to affect the capital requirements calculation 

for a company positively. Nevertheless, the likelihood of catastrophic events or tail risks in 

insurance and banking is first of all low, and second, it cannot be avoided by any company. 

However, these facts do not undermine the value of individual risk assessments for a specific 

counterparty as quality customers who achieve a high credit score and hence a low probability 

of default tends to be more resilient in unexpected tail risk events. 
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While advanced machine learning is in theory the optimal tool to support credit risk 

management in assessing the default probability of a counterparty it does have limitations in 

practice. First, while the models presented in this thesis have superior accuracy compared to 

more traditional assessments certain limitations prevent them to shine in the industry. The 

biggest barrier are regulatory bodies, which require quantitative models to be explainable. The 

general black-box nature of Deep Learning and Tree-Based Ensembles as Gradient Boosting 

makes those models unusable for many problems. Hence, most financial institutions subject 

to regulatory supervision cannot use these black-box models in many areas and therefore stick 

to more traditional approaches, which are very well known by the regulators. 

Second, the credit score or the concrete probability of default are both parts of credit risk 

management, but they are not the only important variables. Credit risk is mainly concerned 

with calculating the expected loss (EL), which is the product of the probability of default (PD), 

the loss given default (LGD), and the exposure at default (EAD). See equation 9. 

 
 𝐸𝐿 =  𝑃𝐷 ∗  𝐿𝐺𝐷 ∗  𝐸𝐴𝐷 (9) 

 
In case guaranteed collateral is present during a transactional agreement with a counterparty 

and this collateral covers a hundred percent of the potential exposure (EAD = 0), the PD in 

itself is not relevant for the expected loss (EL) calculation and capital requirements. 

However, ML can be used for internal risk assessments that are not subject to regulatory 

supervision, and as we will see in the next section it is the perfect tool for digital marketing. 

8.1.2 Marketing Analytics 

Another use case for AI, which was also presented earlier is predictive support for marketing 

and sales teams. The actual distribution channels for companies are of significant importance 

to bring the product to the market and ML has proven to be a valuable tool to improve actual 

conversion rates by estimating the probability of how likely a direct marketing effort translates 

into an actual purchase/business transaction. The AUC and Accuracy scores for the sales and 

marketing dataset are extremely high and show that ML can significantly support the sales 

process. 

Taking into account demographic data from customers to increase sales seems to be one of 

the best use cases for ML. Reducing the number of unsuccessful advertisement campaigns 

can have a significant impact on ads budget especially for social media advertisements as 

measured by clicks, views, or engagements, which should ultimately translate into a purchase 
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- high conversion rates. Companies using those models can reduce their advertising and 

marketing costs significantly as demographics which on average result in a negative return on 

investment (ROI) can be dropped. It is possible to run a targeted campaign by only showing 

ads to customer segments that exhibit the highest conversion rates. Machine learning makes 

it possible to spend the existing advertising budget in a targeted way and hence most 

effectively. It is also easier to monitor the performance and actual outcome of an advertising 

campaign or a direct marketing effort. Effective advertising efforts directly translate into bottom-

line results for the company and can be monitored in real-time or only with a slight delay. In 

contrast, the risk is more difficult to determine as default rates are a lacking indicator that only 

materializes once a customer in fact defaults on a loan or files an insurance claim, which could 

lie years in the future. 

It has been shown that ML can add value for the individual business functions, but the above-

introduced cases do not have to live in isolation. Combining the information gained from either 

credit risk or insurance claims assessment with the marketing and sales data allows 

determining specific demographics that offer low default rates (low business risk) and high 

conversions rates and up- and cross-sell possibilities (high business value). Using machine 

learning/advanced analytics in this way results in a strong competitive advantage due to 

significant cost reductions. In this case, the earlier discussed issue of the black-box nature is 

not relevant as sales activities and demographic targeting is not subject to regulations. This is 

an area where artificial intelligence and machine learning can be applied to its maximum value 

immediately and only the concrete outcome of a specific campaign is relevant. This can easily 

be captured by immediate KPIs as initial conversion rates and up- and cross-sell monitoring 

per customer. However, the adoption of those marketing analytics capabilities is still in its 

infancy as analyzed by various recent studies (Miklosik, Kuchta, Evans, & Zak, 2019). 

8.1.3 Centralized and Automated 

Overall, there are two possibilities to use those methods. The first and easier way is to remain 

at a functional level and develop the necessary tools only for a specific department. If the 

strategy here is aligned across the company, cross-functional collaboration would still be 

possible, but the knowledge and data transfer would be more manual and not automated. 

Increased automation of those advanced analytics capabilities would increase velocity and 

flexibility, which would make it easier to translate this enhanced prediction and decision power 

into tangible business value. It would also reduce adjustment times as analytic capabilities are 

centralized and maintained by an expert team or a hired service provider (see section 7.5.3). 

Also, an enterprise-wide solution would make it possible to capture interdependencies between 
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the different results (see figure 1 in section 1.4). An example of interdependencies between 

different departments is the risk assessment of customers (counterparty risk) and the 

willingness or likelihood of a customer to buy a certain product (conversion rate). Combining 

that information is necessary to achieve the maximum results from analytics efforts, which 

requires cross-functional execution instead of independent silo-wise utilization of those 

models. The best way to future proof an organization in the long run and to remain competitive 

is to develop integrated and automated analytics capabilities that operate in a cross-functional 

manner. 

8.1.4 Strategic vs Operational Automation 

Earlier general-purpose technologies (GPT) had a huge impact on productivity and tended to 

change the nature of how we do business. They changed the economic supply chain 

horizontally as well as vertically and brought rapid innovation and disruption of job markets due 

to new skill requirements. This is the same for general-purpose machine learning, but there is 

a slight distinction. Most earlier breakthroughs technologies tended to automate operational 

tasks using robotic process automation, which consists in its essence of simply adding "if-then" 

decisions after each other to automate existing and always recurring business processes that 

are necessary for the core business to be carried out consistently. This time is slightly different. 

This is the first time in the history of management science that the possibility to achieve 

automated corporate decision making due to technological advances is within our reach. It has 

been suggested several times in the past that technology could directly make strategy 

decisions, but this has never turned out to be true. Peter Ducker wrote several books on the 

topic of infusing management decisions with technology or completely automating them. While 

IT and technological progress had a huge impact on operational management and business 

processes the impact on strategic management (board-room) decisions have so far been 

limited or non-existent. ML significantly increases the scope of automation possibilities across 

business functions. So-called white color jobs fall under the umbrella of mental tasks and will 

gradually be taken over from ML-based systems. 

AI systems are only possible because of their constituents, which are ultimately single ML 

models. Machine learning routines are mainly used for predicting a certain output Y based on 

a data Input X. The model is trained on past data to predict the future or outcome of future 

scenarios, but it is only extrapolating the past into the future. The fields of business analytics, 

business intelligence, and data mining mainly utilize machine learning algorithms for predictive 

analytics to facilitate correct business decisions, but this is not enough to reach full automation 

of many complex tasks. It is necessary to combine those standard machine learning models 
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into a larger system, where each of them is carrying out a standard prediction task. The ML 

pipeline suggested in chapter 6 is the first step towards further automation for business 

analytics. Once this is completed, it will be easier to design and develop add-ons that include 

additional steps as concrete actions that might be able to replace high-level managerial 

decisions. However, complex AI systems put together based on standalone ML models all 

handling different aspects of decision-making tasks with a fusion of the different outcomes to 

a whole similar to what deep mind has done for Go and StarCraft might turn out to be difficult. 

Game environments are inherently limited and are indeed a very small entity when compared 

with the realities taking place in the real world. 

How far AI-enabled decision making will move up the corporate ladder remains to be seen. So 

far, it was not possible to help board room decisions with more than standard information as 

too many variables need to be taken into account, which is difficult to formalize. Dominos will 

all fall eventually, but every domino needs to fall for another one to continue the chain reaction. 

How do you eat an Elephant? One bite at a time. Most organizations will be able to slowly 

adapt by implementing those changes succinctly instead of immediately. 

8.2 AI as General Purpose Technology 

The field of economics has recently picked up on the strong developments of artificial 

intelligence. Agrawal et al. (2019) introduced AI as a new general-purpose technology (GPT), 

which will have a similar effect on the world economy as earlier breakthrough technologies like 

the steam engine, electricity, or the internet. As mentioned in the introduction – the 

characteristics of a GPT are according to Jovanovic & Rousseau (2005) pervasiveness, 

improvement, innovation. Mapping that to the current AI landscape – the major reasons why 

ML Systems can be considered as a GPT are the following (Agrawal et al., 2019): 

• External improvements: The breakthrough of AI in recent years can largely be 

attributed to improvements in data availability, software, and hardware improvements. 

CPU and other hardware improvements will make it faster as well, it can be delivered 

through cloud architectures to serve a broader audience across all scientific fields. DL 

can be improved by new scientific breakthroughs within the field itself, by improved 

hardware, or by better data-sets, or simply higher amounts of data. 

• Self-improvement: The very idea of ML is learning from data, which means it can 

improve upon itself. It can also improve itself by using a competing ML model, which 

gives AI superior improvement capabilities (Z. Wang, de Freitas, & Lanctot, 2016). A 

very good example is the current Alpha Go Zero, which keeps getting better by 
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continuously playing against itself, without the requirement of human knowledge (Silver 

et al., 2017). 

• Externalities: Another characteristic of a GPT is the effect it is having on the vertical 

supply chain within an industry. It will affect all levels within this vertical chain and force 

suppliers as well as customer-facing units at the end of the supply chain to adapt to this 

new technology. Examples are Nvidia, Google, and Tesla. All develop graphics 

processing units (GPUs) specifically for the parallel processing requirements of DL. 

• Geopolitical Power Dynamics: Leadership in artificial intelligence might lead to a shift 

in geopolitical power dynamics if the AI arms race keeps moving forward as it currently 

does. Several government agendas from the USA, China, and Europe indicate huge 

expectations regarding future AI applications. 

• Investments: Also the investments from governments all around the world, 

unprecedented venture capital, and private equity fundings, and complete AI hubs all 

around the world with the specific goal to drive advancements in this field will make 

sure that research and progress in AI will remain stable for years to come. 

 

For an exhaustive treatment of this topic, I highly recommend the book The Economics of 

Artificial Intelligence: An Agenda from Agrawal et al. (2019). It is the best currently available 

discussion on AI as a general-purpose technology and helps to understand the necessity of 

further research in this field. 

The diffusion of AI/ML as a GPT across the economy – even though it is accelerating – has 

just begun and will take time. First of all, it is normal that it takes time for new cutting-edge 

research to be translated into business use cases. And second, history shows that the general 

nature of a new GPT is often not easy to grasp and a lack of understanding of AI as technology 

makes it difficult for business decision-makers to incorporate those models within the business 

process (Agrawal et al., 2019). Nevertheless, huge investments from governments, venture 

capital funds, and corporations across all industries are in place and will facilitate the adoption 

and integration of AI systems within the corporate architecture. The overall cash injection for 

this wave of AI is unprecedented and will lead with a high likelihood to further progress in the 

coming years (Bughin et al., 2019; US Government, 2019). 

The next years will be dominated by further automation of business processes, which will keep 

the demand for highly skilled labor aka white color jobs very high. The complexity of this task, 

which requires business-understanding, model-understanding and data-understanding 

requires strong skills in data science and information technology, which has been mentioned 
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on several fronts to be lacking in most industries. Domain experts with several years’ of 

experience as well as automation experts with advanced degrees in relevant disciplines and/or 

several years of work experience in a matching or closely related environment or domain will 

be required. 
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Chapter 9: Conclusion 
9 Conclusion 

Advanced analytics and Machine Learning have found widespread applications across many 

business units and functions in all major industries. Within the research scope - binary 

classification on structured data - the overarching theme of this thesis was to prove that 

machine learning and business analytics can be used for data-driven decision making to 

capture value within financial services. Several distinct use-cases with real-world data sets 

have been utilized to test the hypothesis that ML can have a positive impact on enterprise 

value and competitive advantage. 

Based on the datasets a tendency towards the best suitable models and configurations can be 

inferred, but a complete generalization cannot be justified. Therefore, further research should 

- if possible - include additional datasets, datasets with more observations, and datasets 

containing more divers’ features to strengthen the findings of this thesis. Also, further studies 

could extend the scope and include multiclass classification and regression. Regression is 

relevant for financial time series data and different neural network architectures as recurrent 

neural networks and long short-term memory (LSTM) have shown to produce strong results. 

Nevertheless, it was shown that ML increases prediction accuracy and has the potential to 

increase operational performance, which translates to direct value gains in terms of cost 

reduction or increased conversion rates, which both contribute positively to the value of any 

corporation. 

This central conclusion was reached by answering more granular questions as:  

• What is the best ML model for credit scoring? 

• What are the reasons for the slow adoption of DL in BA? 

• Is it possible to consistently improve upon the best ML classifiers by utilizing the fusion 
method stacking? 

• Does AutoML reach the predictive strength of manually tuned classifiers by a human 
expert? 

The findings to those answers were combined and translated into concrete stakeholder 
implications. 

Concrete, to demonstrate the added value of artificial intelligence in business analytics various 

ML classifiers as Logistic Regression, Random Forest, Gradient Boosting, and Deep Learning 

were benchmarked on different business analytics use cases. The focus was on financial 
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services related applications in credit risk management, insurance claims prediction, and 

marketing and sales. The following results were reached. 

Gradient Boosting and Deep Learning: Gradient boosting is the best performing binary 

classifier for structured data in the context of business analytics for most use cases and 

datasets. These first results were important, as the existing academic literature turned out to 

be quite contradictory when it comes to identifying the best performing classifiers. Many papers 

are wondering why there is a lack of adoption when it comes to DL. The main reasons usually 

stated are computational complexity, no existing big-data architecture, lack of 

transparency/black-box nature of DL, and skill shortage. However, DL does not  - as widely 

assumed - offer any performance advantage when it comes to predictions based on structured 

data sets. This explains the current reluctance of established business analytics functions to 

replace working ML solutions with DL models that perform often weaker and exhibit other 

problems as a lack of speed and transparency. Nevertheless, DL offers proven advantages 

(e.g. unstructured data) and should be regarded as a valuable addition to the existing pool of 

ML models as it introduces more flexibility and a wider field of applications. 

Super Learning: It is possible to improve upon the best performing binary ML classifiers 

currently available (also gradient boosting) by utilizing the fusion method stacking. Given that 

only tiny accuracy improvements can translate into a competitive advantage this method 

should be taken into account whenever accuracy is the major variable in a business use case. 

However, stacking for performance enhancements introduces more complexity in the whole 

process, which makes it necessary to justifies the increase in accuracy for a specific use case 

when taking into account other real-world constraints as speed requirements, complexity, and 

model transparency, etc. 

AutoML: AutoML proved to be a valuable tool with the potential to completely automate the 

predictive modeling process and comes very close to professionally tuned ML models. AutoML 

has the potential to solve the currently existing skill-shortage. Also, it can help experts with 

faster prototyping and can be considered a big step towards a full end-to-end decision engine, 

which is the ultimate goal of AI in business analytics. 

ML-Pipeline: It was shown that an end-to-end business analytics engine can be created by 

integrating existing AutoML solution in a complete ML pipeline, which consists of the three 

distinct phases: (1) Data preparation, (2) model tuning and evaluation, and (3) model 

deployment and monitoring. AutoML automates the second phase in the pipeline (model tuning 
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and evaluation) and is a vital building block, but extensions towards phase 1 and 3 are required 

to complete the business analytics pipeline. 

Business Value: ML can not only increase business value, but it will soon be mandatory if 

companies want to survive in the current global digital ecosystem. Increasingly fast-paced and 

global competition is not subject to local borders and can easily enter markets without 

infrastructure investments. Also, consumer attitude is changing rapidly and especially the 

younger generation expects financial services to offer similar products as they are used to from 

Big Tech companies as Apple, Amazon, and Facebook. This is only possible by leveraging AI-

based analytics across the whole value chain in an automated a targeted way. The significant 

value of ML becomes clear during the discussion of the stakeholder implications and, 

surprisingly, diffusion does not occur at a faster pace. 

The use cases demonstrated the vast array of application areas of machine learning in financial 

services. It can be used to assess the default probability of a counterparty either for the sales 

decision itself (mainly FinTech and InsurTech) or for the calculation of capital requirements. 

Using state-of-the-art ML is an absolute necessity to compete in the lending market among 

other FinTech companies. Also, for the capital requirements calculations is maximum accuracy 

helpful to find the best risk-return tradeoff possible and hence be able to achieve the highest 

ROI. Whether the capital requirements are based on regulatory supervision or self-imposed 

risk steering is here secondary. 

Another application area is digital marketing. It is possible to run a targeted campaign by only 

showing ads to customer segments that exhibit the highest conversion rates. Machine learning 

makes it possible to spend the existing advertising budget in a targeted way and hence most 

effectively. It is also easier to monitor the performance and actual outcome of an advertising 

campaign or a direct marketing effort. Effective advertising efforts directly translate into bottom-

line results for the company and can be monitored in real-time or only with a slight delay. Most 

marketing and sales activities, which focus on maximizing shareholder value allow the usage 

of AI to its maximum extent and the black-box nature of ML is mostly irrelevant. 

Combining analytics capabilities across functions in a centralized unit would be best to 

leverage cross-functional synergies. Machine learning can reduce the overall risk of a company 

by avoiding unnecessary dangerous customer demographics, which would further optimize the 

advertising budget. For example, combining the risk assessment with the assessment of 

maximum conversion rates makes ML the perfect tool to maximize companies advertising 

budget in a targeted way by only focusing on low-risk demographics that are also highly likely 
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to engage with the product. It also offers the possibility to target customers, which are known 

to engage in additional buying activities (upsell and cross-sell), which can further increase 

revenue and hence ROI. 

All those findings helped to draw a clear picture of the way business analytics will develop in 

the future. The new position of the Chief Digital Officer is becoming more relevant every year 

indicating the increasing importance of becoming a digital enterprise on a global scale. The 

coming years will utilize the correct tools that have enabled the global digital transformation of 

all major industries, governments, and societies, and will further help to develop the building 

blocks necessary to reach full automation. The evidence is conclusive and machine learning 

will be lined up behind other technologies like computers, electricity, the internet, etc. and will 

have a continuous effect on many aspects of our lives for years to come. ML as GPT has 

become a reality and will slowly diffuse across the economy by providing for the first time in 

human history the possibility to automate mental tasks. ML as a GPT for data-driven prediction 

will further find its way into business analytics and keep shaping the field. Improvements in 

parallel processing, network infrastructure, and distributed systems, and research to improve 

the underlying principles of ML models itself will only help to improve the performance and 

capabilities further over time. The concrete scale and scope of the impact of AI in business 

analytics for data-driven decision making depend on the concrete industry, but it will cause 

significant changes in the horizontal as well as vertical supply chains across the economy. The 

diffusion of AI as a GPT will take time as the history of GPT’s shows, but the fire of digital 

transformation has been ignited and new technological disruptions along the way will keep the 

flame burning for years to come. The infrastructure has been built and in the post-digital era, it 

will not be a question of being digital anymore. Businesses reluctant to adopt a digital 

infrastructure will be wiped out of the current market and replaced by an agile and modern 

business that can continuously integrate advanced analytics and future technological progress 

into the existing infrastructure. Distributed ledgers are already on the rise and started to 

integrate with the existing DT technologies like big data, cloud, IoT, and AI. The current existing 

technologies are enough to completely restructure our world economy and society into a fully 

digital version of itself. The starting gun has been fired. Now, it is upon us to make the best out 

of it. 
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 Appendix 

Appendix 

Table 14. Feature Description for the Marketing/Sales dataset 

 

While more features in the case of marketing analytics might be helpful to sharpen the 

predictive model and increase accuracy levels, the existing features are sufficient to answer 

the research question. 

Feature Description Insurance dataset 

The dataset does not contain a detailed description similar to the marketing or credit risk 

datasets. The features are shortcuts (e.g., ind, reg, car, calc). The car shortcut indicates that 

the information contained here is related to the insured car: Type of car, age, etc. 

Also, the features have a postfix to indicate the type. 

• Feature with ‘bin’ represents a binary feature 

• Feature with ‘cat’ represents a categorical feature 

• Feature with ‘calc’ represents an extra calculated feature 

• All others are continuous or ordinal 

• -1 values represent missing values which have been already informed in the data 
overview. 

Variable Description

X1 age (numeric)

X2
job : type of job (categorical: 'admin.','blue-collar','entrepreneur','housemaid','management',

'retired','self-employed','services','student','technician','unemployed','unknown')

X3
marital : marital status (categorical: 'divorced','married','single','unknown'; 

note: 'divorced' means divorced or widowed)

X4
education (categorical: 'basic.4y','basic.6y','basic.9y','high.school','illiterate',

'professional.course','university.degree','unknown')

X5 default: has credit in default? (categorical: 'no','yes','unknown')

X6 housing: has housing loan? (categorical: 'no','yes','unknown')

X7 loan: has personal loan? (categorical: 'no','yes','unknown')

X8 contact: contact communication type (categorical: 'cellular','telephone')

X9 month: last contact month of year (categorical: 'jan', 'feb', 'mar', ..., 'nov', 'dec')

X10 day_of_week: last contact day of the week (categorical: 'mon','tue','wed','thu','fri')

X11 duration: last contact duration, in seconds (numeric). 

X12 campaign: number of contacts performed during this campaign and for this client (numeric)

X13
pdays: number of days that passed by after the client was last contacted from a previous campaign 

(numeric; 999 in case of no contact)

X14 previous: number of contacts performed before this campaign and for this client (numeric)

X15 poutcome: outcome of the previous marketing campaign (categorical: 'failure','nonexistent','success')
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The fact that the information is not detailed does not make it less relevant. The fact that it 

contains 57 different features makes it the most feature-rich dataset in this thesis and one that 

does simulate a real-world scenario. 

Table 15. Hyperparameter settings - Deep Learning in Business Analytics 

 

Table 16. Hyperparameter settings - Super Learning in FinTech (candidate models) 

 

 

 

Dataset

RF Value GBM Value DL Value

Credit Risk ntrees 50 ntrees 40 activation* ReLU, Maxout

max_depth 20 max_depth 7 hidden c(50, 50)

min_rows 3 min_rows 10 epochs 10

- learn_rate 0.2 rate 0.2

Insurance Claims ntrees 30 ntrees 60 activation* ReLU, Maxout

max_depth 10 max_depth 5 hidden c(200, 200)

min_rows 8 min_rows 10 epochs 5

- learn_rate 0.01 rate 0.005

Marketing/Sales ntrees 50 ntrees 60 activation* ReLU, Maxout

max_depth 20 max_depth 7 hidden c(100, 100)

min_rows 3 min_rows 10 epochs 9

- learn_rate 0.15 rate 0.005

*These are the activation functions for the hidden layers

Parameters

Dataset

RF Value GBM Value DL Value

Taiwan ntrees 50 ntrees 40 activation* ReLU

max_depth 20 max_depth 7 hidden c(50, 50)

min_rows 3 min_rows 10 epochs 10

- learn_rate 0.2 rate 0.2

Germany ntrees 40 ntrees 39 activation* ReLU

max_depth 15 max_depth 7 hidden c(200, 200, 200)

min_rows 4 min_rows 10 epochs 15

- learn_rate 0.2 rate 0.01

Australia ntrees 50 ntrees 29 activation* ReLU

max_depth 18 max_depth 15 hidden c(50, 50)

min_rows 5 min_rows 10 epochs 10

- learn_rate 0.01 rate 0.01

*This is the activation function for the hidden layers

Parameters
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Table 17. Hyperparameter settings - AutoML in BA (candidate models for super learning) 

 

Dataset

RF Value GBM Value DL Value

Credit Risk ntrees 50 ntrees 40 activation* ReLU

max_depth 20 max_depth 7 hidden c(50, 50)

min_rows 3 min_rows 10 epochs 10

- learn_rate 0.2 rate 0.2

Insurance Claims ntrees 30 ntrees 60 activation* ReLU

max_depth 10 max_depth 5 hidden c(200, 200)

min_rows 8 min_rows 10 epochs 5

- learn_rate 0.01 rate 0.005

Marketing/Sales ntrees 50 ntrees 60 activation* ReLU

max_depth 20 max_depth 7 hidden c(100, 100)

min_rows 3 min_rows 10 epochs 9

- learn_rate 0.15 rate 0.005

*This is the activation function for the hidden layers

Parameters


