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Abstract  

In this thesis, the influence of the periodic microstructure on the dynamic mechanical 

behaviour of geometrically similar heterogeneous samples, namely 2D beams and 3D plates, 

with different dimensions and boundary textures but constant aspect ratio has been 

numerically investigated. Beam samples of a representative material comprised of 2D unit-

cells were created using the conventional finite element analysis (FEA) to identify and 

quantify size effects existing in flexural modal frequencies when the scale of microstructure 

becomes comparable to the macroscopic dimensions. The unit cells were created so as to 

keep the overall properties of the material at the macroscopic scale constant despite 

variations in the void or inclusions volume fraction. The finite element numerical results 

were then compared against the analytical results obtained from the enhanced nonlocal 

Timoshenko beam which incorporates the Eringen small length scale coefficients, but the 

values obtained for the coefficient exhibited size dependency.  Accordingly, 2D analysis 

using a novel finite element method (MPFEM) or, alternatively, the control volume based 

finite element method (CVFEM) was carried out by incorporating micropolar constitutive 

behaviour into their formulation. The numerical predictions using either MPFEM or CVFEM 

were then matched with the FEA results to obtain additional constitutive parameters 

featuring in planar micropolar elasticity theory.  

The 2D models were then extruded to form square 3D plates as a straightforward 

progression. These samples demonstrated a moderate degree of anisotropy, which increased 

with volume fraction. Nevertheless, the 3D-MPFEM models which assume isotropy agreed 

with the dynamic behaviour of FEA nonhomogeneous models with low volume fractions, 

which were mildly anisotropic. Subsequently, to reduce the anisotropy, 3D square plate 

samples with a square-pyramidal geometry, or a body-centred cubic, arrangement of 

spherical voids and inclusions were modelled which demonstrated approximately isotropic 

characteristics for which the 3D-MPFEM results agreed with the finite element results at 

lower mode numbers. 
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1. Introduction   

1.1 Motivations  

In recent decades, technological advances in many areas such as in the biomedical and 

biomechanical, nanotechnology, bio-inspired and especially aero-space technologies have 

rapidly revealed the necessity of achieving in-depth knowledge in the application of micro-

scaled structures and materials. Structures in which their microstructural dimensions are 

comparable to the overall size make the classical deformation theories in mechanics invalid 

and inapplicable. This has created a whole new era for researchers to investigate the dynamic 

behaviour of structures where the classical theories of elasticity become increasingly invalid 

such as in the case of the flexural or transverse vibration of small-scale heterogeneous beams 

and plates.  

If materials are macroscopically examined and show that they consist of undistinguishable 

phases which are mechanically inseparable, they are then called homogeneous. Now, if the 

mechanical properties of a homogeneous material remain constant in all directions, the 

material is then classified as homogeneous isotropic, for example steel, aluminium and 

ceramics. Therefore, the static and dynamic behaviour of homogeneous isotropic materials 

can be explained by the classical deformation theories. These classical deformation theories 

applicable to 2D beams such as Euler-Bernoulli and Timoshenko theories provide 

formulations for a beam’s static and dynamic behaviour when undergoing small 

displacements. These theories are categorised as local because the strain at any given point in 

the material is only related to the stresses at that specific point and is independent of the 

stresses at all other points in the body which will be further discussed in chapters two and 

three where these theories are applied and solved for specific beam models. On the other 

hand, if the overall dimensions of the specimen reduced significantly, down to the 

microstructural scale, the material becomes inhomogeneous, and the significance of the 

changes of the material properties in different locations of the specimen becomes inevitable. 

These types of materials are therefore classified as heterogeneous.  Generally, heterogeneity 

is regarded as a discontinuity of physical properties of the material in either a specific 

direction or multi-directionally. The heterogeneity may consist of porosities, particles, fibres, 

polycrystalline, and so forth. Also, the specimen may consist of one or more isotropic or 

orthotropic materials.  



27 
 

The heterogeneity may also appear in a periodic manner. Four different heterogeneous 

materials are shown figure  1-1   as examples: 

 

Figure  1-1: Examples of heterogeneous materials 

 It is clearly evident that the heterogeneity is a microstructural characteristic of materials. 

Almost all solid materials are non-homogeneous at some scale: if they are measured and it is 

found that the overall dimensions of the material specimen under investigation become so 

small that the microstructure becomes a measurable dimension it is thus not ignorable. 

Therefore, there is no exact prescription to define when precisely a specimen is considered 

heterogeneous, but it is widely understood that when a material shows unusual size 

dependent static or dynamic behaviour at a certain size, then the specimen is categorised as 

non-homogeneous. One option is to model the specific microstructure of the specimen in 

complete detail such as voids, inclusions or impurities; the other option is to consider the 

material a continuous but heterogeneous mass and take advantage of more general 

deformation theories which can anticipate size effects in microscopic scaled specimens.  

Most research publications focus on beam or plate structures and the application of the more 

advanced and higher order deformation theories to justify the validity and usefulness of more 

generalised continuum mechanics, but there are always shortcomings especially the 

complexity of these higher order theories and the additional material constants they 

incorporate which make them less attractive. For instance, the micropolar theory, which will 

be discussed in more details in chapters two and four,  has long been studied and exploited in 

a variety of applications especially in two-dimensional static cases in which fewer 
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complications are involved. 2D micropolar elasticity incorporates two additional elastic 

constants while the 3D version contains four. But the question is whether this theory is 

adaptable to dynamic cases, specifically modal analysis? If yes, are the assumptions which 

are made in static cases also valid in dynamic cases? Are the micropolar elastic constants 

accurately obtained? How much are the results sensitive to the accuracy of the micropolar 

constants? Unfortunately, information is scarce and the material constants are not widely 

available for many material types. In recent decades, numerical methods and high 

performance computers have made it easier to find answers to these questions which were 

previously impossible to solve. This has inspired and motivated us to adopt a numerical 

approach in making the most out of technology and exploit the advanced and higher order 

mechanical deformation theories in a wider range of applications, specifically the vibration 

of plates and beams which while apparently a small step, is nonetheless significant. 

1.2 Research aim and objectives 

The primary goal of this thesis is to investigate, understand and quantify the size effects 

arising from the microstructure of heterogeneous materials, periodic voids and inclusions, in 

a dynamic regime namely modal analysis and determine whether more generalised 

continuum elasticity may or may not anticipate the size effect in such materials by using 

numerical methods. The following objectives are set to achieve the project goal: 

1) Size effects in dynamic behaviour, specifically modal analysis, of heterogeneous 

beams and plates will be quantified which could not be seen through applying other 

analytical or numerical methods e.g., size effect detected in beams or plates with 

same volume fraction and aspect ratio but varying depth; 

2) Limitations of the classical elasticity theories will be investigated; 

3) The applicability and relevance of modified theories such as the Eringen non-local 

theory in explaining size effect in the material models will be investigated and its 

shortcomings will be identified. 

4) The applicability of micropolar theory in the modal analysis of heterogeneous beams 

and plates will be investigated to reveal any shortcomings that may exist in the 

theory as applied to modal analysis and its advantage over other theories will then be 

highlighted. 
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1.3 Methodology 

1.3.1 General approach 

Finite element (FE) modelling was used as the prime method to model 2D beams and 3D 

plates for numerical analysis of dynamic behaviour of heterogeneous materials. The 

advantage of this method is that detailed microstructure of representative heterogeneous 

material can be modelled by constructing unit cells and repeated regeneration of the unit 

cells results in a complex heterogeneous beam or plate model. FE modelling provides 

versatility to model almost any nonhomogeneous solid material consisting of different 

isotropic materials. Modal analysis, as a means of dynamic analysis, with free boundary 

conditions in the absence of external loads with small displacements was used for both 

beams and plates.  

As the primary objective of this project was to see whether continuum elasticity can explain 

size effects in heterogeneous material, therefore, unconstrained 2D and 3D beam and plate 

structures were considered. This choice of boundary conditions eliminates the complications 

in the finite element analysis of constraining the structure, e.g., simply supported or clamped 

edges and the effect of these boundary conditions on the analysis are avoided. Other reasons 

are that in finite element analysis there are many ways to constrain 3D plates and choosing 

one method in preference to another would not help the objectives of this project. 

Correction to the material properties was carried out for each unit cell volume fraction. This 

facilitates the study of beams and plates of various sizes with varying void or inclusions 

volume fraction while keeping the overall homogenised properties of the material constant. 

In theory, this allowed the study of the dynamic behaviour of specimens and thereby 

identifies the size effect with respect to the variation of specimen size and the volume 

fraction of voids or inclusions.  Therefore, this method permits having a range of volume 

fractions in a specific specimen model while the overall properties of the sample are kept 

similar. This homogenisation concept used throughout this work as the basis for numerical 

analysis which is a novel methodology in modelling and FE analysis of heterogeneous 

materials because it reveals size effects in non-homogeneous beams and plate without 

changing their aspect ratio. Maintaining the homogenised properties provides a rational basis 

for normalising the predicted dynamic behaviour of the representative heterogeneous 

materials. The size effect was quantified based on the effects of changes that the specimen 

depths and volume fractions have on the extracted normalised modal frequencies, although 

the aspect ratio of the specimens remained unchanged. 
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Modal analysis by finite element method results in generating the full spectrum of 

frequencies such as longitudinal, transverse and torsion modes and thus it is not possible to 

perform a dynamic analysis by finite element to generate, for instance, transverse or 

longitudinal modes independently. Therefore post-processing and categorisation of the 

modal frequencies were conducted. For this reason a database comprising of an Excel 

spreadsheet was created to store modal frequencies and screen captures of mode shapes for 

further investigation.  Then modal frequencies were categorised into mode shape groups. 2D 

analysis for beams was used to isolate some of the modal frequencies and generate 

longitudinal and transverse frequencies. 2D modal analysis also helps to reduce the number 

of micropolar constants which makes it possible to identify them by analytical and numerical 

methods suitable for micropolar models. 

Analytical methods were used to develop a one-dimensional model for the free vibration of 

the nonlocal Timoshenko beam. Analytical methods were also used to derive useful 

equations to obtain characteristic length of bending using the primary modal frequency of 2D 

beams. The coupling number was obtained by an iterative method. The micro-inertia 

parameter is also derived and obtained analytically. A combination of numerical and 

iteration method was used to obtain the coupling number. Thus both analytical and 

numerical methods were employed to obtain the relevant micropolar constants. 

The micropolar theory was incorporated into conventional finite element method (MPFEM) 

as well as using the existing control volume based finite element method (CVFEM) to 

investigate the dynamic behaviour of two-dimensional heterogeneous beams. The MPFEM 

and its control volume counterpart, CVFEM, were implemented in MATLAB codes 

developed during the course of this research. For three-dimensional plates, only the finite 

element method incorporating micropolar elasticity was used. The applicability of the 

micropolar theory was investigated by comparing the modal frequencies resulted from the 

application of this theory with those obtained from the finite element analysis. 

1.3.2 Thesis overview 

In chapter two, the previous work in the beam theories were first reviewed before focussing 

on the review of literature in which the size effects on the mechanical behaviour of the 

heterogeneous beams and plates have been examined. 

In chapter three, specific beam models with voids and inclusions of various volume 

fractions were modelled using the finite element method, then the dynamic behaviour of the 

models were investigated which lead to quantifying size effect in heterogeneous beams. 
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Appropriate corrections were made to material properties while keeping the overall 

properties unchanged. Then non-dimensional modal frequencies (λ) of beams with free-free 

boundary conditions, in the absence of any external load, were investigated with regard to 

the influence of any size effect. The normalized frequencies (Λ) were also compared at each 

of the modal frequencies for particular beam models and volume fractions. 

The widely used non-local theory of Eringen was studied with the aim of identifying whether 

it could explain the influence of the size effect in the dynamic behaviour of non-

homogeneous beams. The Eringen non-local theory incorporates a length scale parameter in 

its formulation. Therefore, the Eringen non-local theory was considered and formulated for a 

Timoshenko beam with free-free boundary conditions. Then the results from FEA and 

Eringen non-local Timoshenko beams were compared, and shortcomings of non-local theory 

for the beam models considered in this work were highlighted. 

In chapter four, formulations based on micropolar theory were conducted for beam models, 

and a useful equation was derived which helps to identify one of the micropolar constants, 

namely characteristic length of bending, from the beams overall dimensions, and the primary 

modal frequency.  

In chapter five, the micropolar constituent parameters were incorporated into the 

conventional FE method, namely micropolar finite element method (MPFEM), and then an 

already existing control volume finite element method (CVFEM) was enhanced to provide 

an alternative procedure for the dynamic analysis of two-dimensional beams, with regard to 

the application of micropolar theory, and the difference between the two methods has been 

discussed. Then an iterative process was defined to identify the other micropolar constant, 

namely the coupling number. Then the effect of micro-inertia in micropolar theory in 

transverse modal frequencies of micropolar beams was investigated. The micro-inertia was 

analytically derived and numerically investigated, and the impact of changing the value of 

micro-inertia on the transverse modal frequencies of beams was investigated.  

In chapter six, the second micropolar constant namely coupling number was obtained for 

beam models and the results based on micropolar theory and dynamic analysis of Two-

dimensional beams were compared with FEA results. 

In chapter seven, the work, then, expanded to 3D models. The micropolar constituent 

parameters were incorporated into the FE method for three-dimensional dynamic problems 

(modal analysis) and two types of finite elements were employed and compared.  
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In chapter eight, detailed 3D plate models incorporating cylindrical shaped voids and 

inclusions were generated using commercial finite element software. Modal analysis was 

performed on all models for which the micropolar constants were available. The size effect 

was also investigated in detail for plates with unconstrained boundaries. The micropolar 

finite element procedure (MPFEM) was applied to some of the plate models for which the 

micropolar constants were available, and the results were compared with those from FEA. 

In chapter nine, analyses similar to those in chapter eight were conducted but plate models 

with spherical voids and inclusions were modelled, and detailed finite element analysis was 

carried out for the plate models. The FE results were then compared with the results obtained 

from the three-dimensional MPFEM. 

In chapter ten, Summary and Conclusions and further work are discussed. 

Appendices provide:  

 Dimensionless frequency parameter for various 2D beam and three-dimensional 

plate models with different surface conditions, volume fractions obtained 

numerically from finite element analysis and application of micropolar beam theory, 

 The first five longitudinal frequencies of 2D beam models, 

 Analytical solution for the local and nonlocal Timoshenko beams, 

 Finite element results in terms of dimensionless frequency parameter for various 

three-dimensional plate models with different surface conditions, volume fractions 

and corresponding results obtained from micropolar beam models. The numerical 

results include both plates with cylindrical and body-centred types of voids and 

inclusions. 

 

 



33 
 

2. Literature Review of Previous Work   

Beams and plates represent arguably the simplest but most fundamental mechanical 

structures for which the concept of the size effect can be studied, developed and expanded to 

more involved structures. Therefore, in this chapter, firstly previous work in the well-known 

beam theories such as Euler-Bernoulli and Timoshenko beams will be reviewed and then the 

focus will be on the review of literature in which the size effects on the mechanical 

behaviour of the heterogeneous beams and plates have been examined. 

2.1 Analytical methods and exact solutions for FF beam vibration 

Euler-Bernoulli beam theory provides reasonably accurate predictions of modal frequencies 

if the aspect ratio of the beam specimen is greater than 20 but less than 100, but this theory 

neither considers the shear deformation nor the rotary inertia. Rayleigh’s beam theory 

(RBT), on the other hand, considers rotary inertia but not shear deformation (Dolph 1954). 

The shear beam model takes into account the shear distortion but ignores the rotary inertia 

(Strutt and Rayleigh 1877). Timoshenko beam theory takes into account both shear 

deformation and rotary inertia and can be used for moderately thick beams with smaller 

length, L, to depth, d, aspect ratio , L/d, and is thus a more accurate beam theory when 

compared with the other theories (Dolph 1954; Stephen 1981; Stephen and Puchegger 2006; 

Elishakoff, Kaplunov, and Nolde 2015), but it is still a single layer (one-dimensional) theory 

and does not consider variation of properties and layers across the beam depth or along the 

length of the beam.  The methods to solve the above theories are provided in ref. (Han, S., 

Benaroya, and Wei 1999). 

2.1.1 Transverse Vibration of the Classical Beam Theory (CBT) 

Here, Euler-Bernoulli’s beam theory which is sometimes called Euler, Bernoulli, or classical 

beam theory is considered for free-free boundary conditions. Euler-Bernoulli beam theory in 

absence of external loads and damping can be stated as in equation (2.1): 

 
  

   

   
          

(2.1) 

                           (2.2) 
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where EI is the flexural rigidity; E is the modulus of elasticity, I is the second moment of 

area,   is the mass density, W is the transverse displacement and   is the linear mass or mass 

per unit length. 

The general solution for the equation (2.1) according to ref. (Avcar 2014) is: 

                                            (2.3) 

where “ ” is the transverse non-dimensional frequency. A, B, C and D are constants which 

depend on the initial and boundary conditions. 

Now to solve the above equation boundary conditions must be applied for a free-free beam 

where the second and third derivative of equation (2.3) equals zero as in equation (2.4) to 

eliminate bending moments and shear forces at the free ends: 

                                 (2.4) 

This leads to the following equation for a free-free beam flexural vibration Sawant (2013):  

                     (2.5) 

2.1.2 Transverse Vibration of Timoshenko beam (Timoshenko beam theory) 

Among all beam theories, the Timoshenko beam theory is the most widely used and 

thoroughly investigated by researchers as it includes both rotary inertia and shear 

deformation. The Timoshenko beam theory can be written in the following format in 

equations (2.6) to (2.7) as presented in references (Han, S., Benaroya, and Wei 1999; Wang, 

Zhang, and He 2007): 

  

  
      

   

    
 

(2.6) 

 

Thus:  
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   )    

   

   
 

(2.9) 

where   and   are the beam’s rotation and transverse deflection: 

                                                        (2.10) 

                                                          (2.11) 

while   is the bending moment,   is the shear force,    denotes the shear modulus of the 

beam,  ̂ (Kappa with hat) is the shear correction factor,   is the rotation,    is the rotary 

inertia,   is the cross section area of a rectangular beam and d is the beam’s depth,  

sometimes denoted by h in other literature. 

The fundamental difference between the Timoshenko and the classical beams with regard to 

the rotation of the cross section perpendicular to the bending line is shown in figure 2-1. As 

seen in the CBT the cross-section remains perpendicular to the mid-plane line after beam 

deformation while in the Timoshenko beam, the cross section also rotates and does not 

necessarily remain perpendicular to the mid-plane this being due to the shear deformation. 

 

Figure  2-1: Representation of the rotation and deflection in the CBT and Timoshenko beam cases 

Equation (2.8) and (2.9) can be written in the following forms: 
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  ̂  (

  

  
  )         (2.12) 

  ̂  
   

   
  ̂  

  

  
        (2.13) 

Equations (2.12) and (2.13) can be decoupled for W, x and t (Han, S., Benaroya, and Wei 

1999) to form:  

   
   

       
   

   
 (

   

 ̂ 
    )

   

      
 (

   

 ̂ 
)

   

   
    (2.14) 

The Timoshenko beam theory tends to be less reliable for cases were the transverse modal 

frequencies are higher than the first eleven modes or so, as the results of Stephen et al. 

(2006) show, but can identify the first few modes accurately. The reason is that as the 

wavelength approaches the beams height, the lower and the upper surface of the beam would 

not vibrate simultaneously and therefore they will not stay parallel as seen in the lower mode 

shapes. This phenomenon will be discussed further in chapter three. 

Méndez-Sánchez and Franco-Villafañe (2005; 2016) performed experiments on an 

aluminium beam with Length/height ratio of 19.841 and obtained normal-mode frequency 

percentage error for the first 24 modes. Their results show a dramatic and reverse shift in the 

modal frequencies after mode 11 and this shift in the results they obtained also depends on 

the value of ‘ ̂’, the Timoshenko shear correction factor, before and after this critical 

frequency and therefore they suggested that: ‘the value of  ̂ above the critical frequency is 

different from below it’. Critical frequency is the frequency at which the wavelength 

approaches the beam depth of homogeneous materials in beam models. In Timoshenko beam 

theory the cross sectional area is assumed to be planar
2
 and unchanged during beams 

deformation but this is not a valid assumption for higher mode frequencies. 

The surface morphology may also have a great impact on the results. This complicates the 

dynamic behaviour of the beam structures. 

In summary, the dynamic behaviour of the heterogeneous beams strongly depends to the 

following issues: 

                                                             
2
 In Timoshenko beam theory, the original cross-section of the beam remains straight although it does not necessarily remain 

vertical to the mid-plane after beam deformation (Stephen 1981; Garcea, Madeo, and Casciaro 2012; Dolph 1954; Asghari et al. 

2011). 
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 Beam/ plate’s aspect ratio (AR) 

 Mode numbers for which frequencies are obtained 

 Material discontinuity across the height and length of the structure 

 Structures surface morphology 

These issues are addressed in chapters 3 to 6. 

2.2 Continuum mechanics descriptions of heterogeneous beams 

In the literature, homogenisation methods are sought to represent the properties of materials 

comprised of periodic assemblies of a specified unit cell. Della and Shu (2006) used 

Eshelby’s equivalent inclusion method to investigate the vibration of piezoelectric beams, 

and their analytically obtained results indicate that a size effect arising from the size of the 

piezoelectric inclusions, their location in the structure of the beam and their volume fraction 

is anticipated in their dynamic behaviour. Rabboh et al. (2013) thus used the rule of mixtures 

to calculate the elastic constants and Poisson’s ratio for functionally graded material 

sandwich beams and investigated the effect of the functional grading on the beams’ dynamic 

behaviour. They also reported that increasing the thickness of the beam results in the 

increase of natural frequencies.  

Homogenisation methods also become increasingly problematic when the size of constituent 

materials such as inclusions and/or voids becomes comparable to the overall size of the beam 

structure. Modifications to classical elasticity theories are only useful when the internal 

length scale parameters associated with the microstructure are considered very small. The 

size-dependent behaviour of materials has been reported by many researchers (Groh and 

Weaver 2015), (Gherlone 2013), and (Schulze et al. 2012) in laminated beams. The results 

presented by Dasgupta et al. (2000) in modelling active damping of adaptive structures show 

how the beam’s time to decay varies as the device aspect ratio, inclusion shape, location and 

volume fraction are altered, and also show how changes in host stiffness result in changes in 

time to decay and electrical field. Timoshenko beam theory is regarded as nonlocal if 

Eringen’s small-scale effect (Wang, Zhang, and He 2007) is incorporated in the governing 

equations. In Eringen non-local elasticity (A. Cemal Eringen 1972)  ‘the stress state at a 

given point is a function of the strain states at all points in the body.’. Wang et al. (2007) , 

solved the nonlocal Timoshenko beam theory (NTB) incorporating the scale coefficient ‘ ’ 

in Nano-beams. In chapter three the NTB will be extended to the case of free-free beam 

models and examined against the FEA results for 2D heterogeneous beam.  
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The Eringen nonlocal theory of elasticity has also been used to analyse Euler-Bernoulli 

beams by researchers but it may show inconsistencies depending on whether the differential 

form or integral form of the theory is solved which has been reported by Fernández-Sáez et 

al (2016) in the investigation of size effects in static bending of heterogeneous Euler-

Bernoulli beams.  

C M Wang et al.
 
(2013) used a finite segments method to calibrate Eringen’s small length 

scale coefficient for initially stressed vibrating nonlocal beams and stated that ‘   does not 

depend on buckling or vibration modes’ where      is a constant specific to each material in 

non-local Timoshenko beam theory which  will be discussed in further details in chapter 

three. Available results on the presence of size effects in the deformation of heterogeneous 

materials reported by researchers show deviation from elastic theories in static loading cases 

when the beam or plate length, L, to depth, d, aspect or slenderness ratio ,L/d, reduces (A. 

Riahi Dehkordi 2008; Riahi and Curran 2009; Beveridge, Wheel, and Nash 2013b; 2013a; 

Frame 2013b; Waseem et al. 2013; M. a. Wheel, Frame, and Riches 2015) 

2.3 Higher order deformation theory of the micropolar (Cosserat) type 

The classical and local Timoshenko beam theories do not include asymmetry of shear 

stresses (Hassanpour and Heppler 2017). On the other hand, the Eringen micropolar theory 

as described by Lakes
 
(1996;

 
2003), which will be discussed further in chapter four to six, 

incorporates additional couple stresses and an associated additional degree of freedom, a 

micro-rotation, and thus accounts for material size effects but requires the specification of 

additional constitutive parameters including a characteristic length. 

The micropolar elasticity theory is just one member of a family of theories that incorporate 

additional degrees of freedom to account for higher order deformation. Other members 

include couple stress and micromorphic elasticity (Toupin 1964; Tekoğlu and Onck 2008; 

Hassanpour and Heppler 2017). 

In classical elasticity the stress-strain relations are given by: 

 
                     

(2.15) 

where    and    are the Lamé constants,     and     are strain tensors, and     is the force 

stress,              and   is the Kronecker delta which is equal to one if     otherwise it 
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is zero . However, in linear, three dimensional, micropolar elasticity the force stresses,    , 

and couple stresses,    , are related to the deformations by equations (2.16) and (2.17) as 

defined by Lakes (1996): 

 
                                         

(2.16) 

 
                            

(2.17) 

where   is the microrotation and   is the conventional macro rotation.              and   is 

again the Kronecker delta and      is the permutation tensor. For even permutation of    , 

       , for the odd permutation of ijk,         and otherwise zero.    ,  ,    and    

are the additional moicropolar elastic constants. 

Thus the equations (2.16) and (2.17) may be written in matrix form in a general equation as 

in equation (2.18) for the 3D cases: 

 
[
   

   
]  𝔻 [

   

    
] 

(2.18) 

Here 𝔻 is the matrix of the material properties of size 18 by 18: 

 

𝔻  [

                  [ ]    
                            
                           

 [ ]                      

] (2.19) 

The stresses and strains in equation (2.18) are related as follows: 

 [   ]  [
     
     

] [   ] (2.20) 

where matrices    and    are: 

 
   [

                                                                 

                                                                

                                                                 
] (2.21) 
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    [
        
       
        

] (2.22) 

and matrix    is: 

 
   [

                

               ] 
(2.23) 

In the 3D micropolar medium, assuming that the displacements and micro-rotations act 

independently, the matrix of the material properties will be of rank 18. The micro-rotation 

and macro-rotation are not considered as equal, and this is apparent in equations (2.18), 

(2.19), (2.22) and (2.23) when     . The shear stresses in equation (2.18),     when    , 

are also related to the derivatives of displacements and micro-rotation which will be later 

discussed in section 4.1 where the relations of macro and micro rotations will be addressed.  

Now matrix A3 in equation (2.23), relates the shear stress and strain in a 3-dimensional 

situation. 

Similarly: 

 [   ]  [
     
     

] [    
] (2.24) 

 

where matrices T1 and T2 are:  

 
   [

                                                                  

                                                                 

                                                                  
]  

 

(2.25) 

    [
        
       
        

] (2.26) 

 

and matrix T3 is: 

    [
    
    

]  (2.27) 
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The matrix of the material properties, 𝔻, in equation (2.18), is easily reducible to a 2D plane 

stress form (to form a matrix of the material properties of rank 6) in terms of four practical 

engineering constants which will be discussed in chapter four. Further, two more engineering 

constants which are applicable in 3D cases will be defined and used in chapter seven. 

Nakamura and Lakes (2003) used a two dimensional FE method to investigate the localised 

end loads applied on a strip sample and the influences of elastic constants, especially 

characteristic length and coupling number, were studied. They concluded that as the 

characteristic length increases, the rate of decay of stress and strain energy reduces. They 

also concluded that for a significantly small characteristic length (in comparison with the 

strip’s width), the rate of stress/or strain energy decreases as the characteristic length 

increases. In the dynamic case, this may be shown by wave dispersion. Their work 

predominantly included studying the models for various characteristic lengths and coupling 

numbers, N; but provide no method to determine them. However, in an earlier work by 

Lakes 
 
(1996), an extensive comparison was made between various theories, e.g. micropolar 

and Eringen’s nonlocal theories. This shows that the elastic constants can be obtained by 

means of a dynamic wave propagation method. Nevertheless, in any field or wave based 

method that relies on determining size effects, there are limitations concerning the smallest 

characteristic length. Also, caution is required when one of the practical engineering 

constants, the coupling number, N, is close to its lower and upper bound values of zero and 

one when performing numerical analysis otherwise errors in computation may result.  

Beveridge et al. (2013a) also studied the micropolar behaviour of perforated beams in the 

static 3 point bending case and determined the micropolar constants using 3 point bending 

test results and a control volume based finite element technique to inversely identify the 

constants by matching numerical predictions to experimental results. 

Waseem et al. (2013) investigated the influence of void size on the constitutive properties of 

circularly shaped samples containing voids (Perforated rings), and derived the final equation 

linking the stiffness to the specimen size by relating the diametrically applied loads, 

displacement and stored strain energy. They concluded that in models with smooth specimen 

surface (rings circumference), the stiffness changes linearly with sample size measure. 

McGregor (2014) provides the same conclusions. 

Wheel et al. (2015) studied the influence of model size in heterogeneous beams when loaded 

in 3 point bending. They investigated size effects in beams with voids and showed that 

sample stiffness relates to the beam sample size, as measured by the reciprocal of its depth 
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squared, in a linear manner. They also reported that there are both negative and positive 

effects of beam size depending on the beam boundary topology. The majority of previous 

work is confined to static loading cases.  

There are also other more generalised elasticity theories such as strain gradient theories in 

which the potential energy density depends on the gradient of the strain in addition to the 

strain (R. D. Mindlin and Eshel 1968). The strain gradient theory was first introduced by 

Touplin (1964) in a non-linear form. The strain gradient theories have been subject of 

studying size effects in materials, such as the work that has been done in (Lam et al. 2003; 

Tekoğlu and Onck 2008; Askes 2009; Neff, Jeong, and Ramézani 2009; Gitman et al. 2010; 

Aifantis 2011; Askes and Aifantis 2011; Trinh et al. 2012; Rafii-tabar, Ghavanloo, and 

Fazelzadeh 2016; Lurie and Solyaev 2018; Gortsas et al. 2018; Faghidian 2018; Apuzzo et 

al. 2018; Fu, Zhou, and Qi 2019). An excellent comparison between higher order theories 

incorporating additional degrees of freedom and additional gradients is given in (Tekoğlu 

and Onck 2008). 

2.4 Incorporation of micropolar theory in the finite element method 

As briefly discussed in section 2.3, micropolar elasticity had previously been applied to static 

mechanical problems by researchers incorporating the theory often into 2D but rarely in 3D 

finite element formulations. These studies mostly included stress concentration around a 

circular hole in a plate or beam under uniform tension applied to two opposite edges, or 

bending of 2D slender beams. Eremeyev et al. (2016) used an 8-node isoparametric finite 

element to analyse a contact problem and their numerically obtained results showed that 

couple stress appears almost in the vicinity of the contact zone. Although they included the 

micropolar elasticity in the finite element formulation, the 8-node element itself is not 

discussed in detail. Forest et al. (1998) replaced a heterogeneous Cauchy medium by a 

homogeneous micropolar (Cosserat) continuum and studied the deformation of a multi-

layered 2D cantilever beam and concluded that the Cauchy continuum is seen to give a poor 

prediction of the real deformation state and is not able to take the clamping conditions into 

account. On the contrary, the additional boundary condition in the Cosserat continuum in 

which micro-rotation is set to zero at one end of the specimen provides a more precise 

approach to the actual situation. They also stated that in the Cosserat computation, the free 

end of the specimen is also free of couples.  
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The micropolar elasticity model has also been used in models which represent rocks, blocks, 

granular, composite and layered materials as seen in (Vardoulakis 1989; S. Forest and Sab 

1998; Buhan et al. 2002; Pasternak and Mühlhaus 2005; Stefanou, Sulem, and I. Vardoulakis 

2008; Salerno and Felice 2009;Sulem, Stefanou, and Veveakis 2011; Veveakis et al. 2013), 

in biomechanics especially in the mechanical behaviour of bones (Park and Lakes 1986; 

Fatemi, Keulen, and Onck 2002; Goda, Assidi, and Ganghoffer 2014)  and in other 

microstructures such as in the description of biological tissues (Sanchez-Molina 2014).  

Hongxiang et al. (2016) utilised an eight noded finite element discretisation with the 

incorporation of the Cosserat continuum model for soil and implemented it to simulate the 

strain localisation phenomena due to strain softening or non-associated plasticity of the 

material. Their numerical results indicated that the classical continuum finite element may 

suffer from uncontrollable mesh dependence and may be incapable of completing the 

analysis of the whole failure process, while the Cosserat continuum finite elements possess 

better performance in preserving the well-posed problem of localization and in completing 

the simulation of the entire progressive failure process occurring in geotechnical engineering 

structures. 

Nakamura et al. (1984) developed a planar finite element method for orthotropic, micropolar 

solids using 3-node triangular plane stress and plane couple stress for computing the stress 

concentration around a hole in strips of isotropic and orthotropic micropolar elastic materials 

under tension. They used arbitrary micropolar constants in their analysis, and their work 

showed that the numerically and analytically predicted stresses were in agreement for 

circular holes smaller than the finite strip width. In another pertaining work, Nakamura et al. 

(1995) employed 4-node elements to investigate the decay of strain energy in a 2D strip and 

found that for the strip geometry a Cosserat solid exhibits slower stress decay than an elastic 

solid, and the rate of decline of strain energy becomes slower in a 2D strip as the micropolar 

characteristic length,   , is increased when the characteristic length sufficiently less than the 

strip width. Lei et al. (2004) used 2D 4-node and 8-node finite elements and numerically 

studied the scale effects in pure bending of very-thin beams. They also studied the stress 

concentration problem of a plate with a circular hole. Their study indicated that the bending 

stiffness of beams increased significantly when the beam’s thickness is close to the material 

characteristic length parameter. They also found that the stress concentration factor 

decreased when the radius of the hole is close to another of the engineering constants, the 

material characteristic length in bending,   . However, their research did not consider the 
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shear locking problem that is a ubiquitous phenomenon which may exist and can affect the 

results in bending using 4-node elements. 

Although the above literature survey shows that the micropolar theory has been applied to 

many mechanical problems using finite element analysis, the details of how exactly the 

formulation of micropolar theory exploited in the finite element procedure is only partially 

explained, and there is no procedure describing how the micro-inertia, in dynamic cases, 

would be included into the finite element code. Thus this lack of information would question 

the general applicability of such formulations to dynamic situations. 

Godio et al. (2015) utilised an eight-noded shell-type finite element discretisation with six 

degrees of freedom per node incorporating the Cosserat finite element that may be used for 

different applications in structural and materials engineering.  

Providas et al. (2002) also studied the stress concentration around a circular hole in a plate of 

an isotropic material under uniform tension and thus exploited both 3-node linear and 6-node 

quadratic triangular elements integrating micropolar elasticity. Their study shows that for a 

hole with a specific radius, the error between analytically and numerically obtained 

maximum stress at the circular hole increases by the ratio of radius to the characteristic 

length parameter. Wheel (2008) developed a numerical procedure for predicting 

deformations and stresses in a loaded 2D membrane which exhibited micropolar constitutive 

behaviour by employing a conventional finite element mesh together with a dual mesh of 

interconnected control volumes; the control volume based finite element method (CVFEM) 

which was then validated through a series of patch tests. The numerically obtained maximum 

stress at circular hole predicted by the CVFEM (M. A. Wheel 2008) was in good agreement 

with analytical and conventional FE results previously obtained by Lakes et al. (1984) and 

Providas et al. (2002). Beveridge et al. (2013b) also incorporated the micropolar elasticity 

into a higher order control volume procedure, which led to the development of a CVFEM 

code for static 3 point bending. However, their work includes static cases only. The 

algorithm for the stiffness matrix based on incorporating the micropolar theory in two 

dimensional cases using control volume finite element method (CVFEM) which was 

previously developed by Beveridge et al (2013b) showed satisfactory performance for static 

three-point bending. Therefore the readily available stiffness matrixes of CVFEM as well as 

the micropolar finite element method MPFEM, as detailed in chapter five, are both used for 

modal analysis in chapter six. In the control volume FE, a dual mesh is introduced which 

incorporates control volumes paved over a finite element mesh. Since an exact solution for 
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the transverse vibration of a 2D micropolar beam is not available, a 2D numerical method 

based on the CVFEM was developed. The difference between the two-dimensional MPFEM 

and CVFEM is that the MPFEM enforces equilibrium in a global sense only whereas the 

CVFEM enforces it locally to each control volume. The diagram in figure 2-2 represents the 

construction of the dual mesh around vertices of finite element nodes belonging to a six node 

triangular element: 

 
Figure 2-2: The construction of the dual control volume mesh around finite element nodes 

Thus control volumes are constructed around each node of six-node triangular finite 

elements. Discrete equilibrium equations are developed for each control volume by 

integrating the stress resultants around each volume to yield the stiffness matrix. The method 

was originally developed for predicting static deformations by Beveridge et al. (2013b) 

where full details of the derivation of the stiffness matrix are available. This work exploits 

the method used to derive the stiffness matrix since it is already validated for the static case 

by Beveridge et al. However, the method has now been significantly enhanced through the 

incorporation of mass and micro inertia matrices to facilitate the dynamic analysis of 

micropolar media. Micro inertia is an extra parameter in dynamic problems that must be 

considered in the governing equations of micropolar theory which were initially derived by 

Eringen (1966). Although the term micro inertia is frequently referred to in the literature, the 

value of micro inertia and how it was obtained remains ambiguous. Usually, in the literature, 

a minimal value is selected for micro inertia which eliminates the effect of it. However, de 

Borst et al. (1991) derived this additional material parameter analytically as a function of 

characteristics length of bending by introducing a micro-element. 

The micro-inertia is typically assumed to be of order of         e.g. a value for aluminium 

of              was used by Abadikhan et al (2015; 2017). However, there is no 
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extensive work on how the micro-inertia might be obtained or its influence on the coupling 

number. The effect of varying micro-inertia is considered in chapter 5. 

2.5 Heterogeneous plates 

Plates are also subject to vast research activity and the understanding of the dynamic 

behaviour of plates has become a significant area of research in recent years due to its 

importance in advanced technological structures within industries which exploit them 

especially when the overall size of the plates under dynamic loading becomes so small that 

the constitutive microstructure of the plate become comparable to the overall size. In some 

applications, researchers suggest a modification of the available theories such as introducing 

penalty factors into the governing equations when micro inertia is involved (Lombardo and 

Askes 2012; Askes, Nguyen, and Tyas 2011) or, alternatively taking advantage of less 

complicated theories for which the unknown elastic constants are limited to one or two, as 

for instance in the application of Eringen’s non-local theory in nanoplates, beams, and tubes. 

However, despite the simplicity and validity of these methods, they are limited to specific 

applications, and they are not necessarily valid for all situations (Hassanati and Wheel 2019). 

In this thesis, considerable effort has been made to understand the behaviour of 

heterogeneous plates from a dynamic perspective. 

Much of the work undertaken by researchers and reported in many scientific papers agree 

that the micropolar theory provides more accurate results compared to the classical theory of 

elasticity if micropolar elastic constants are available, however most work is restricted to 

static cases, and the means of identification of micropolar elastic constants are still 

questionable. Determination of micropolar elastic constants for the material is an active 

research area in itself. Despite suggestions that micropolar elastic constants can be obtained 

through bending and torsion in the static case or from wave dispersion in a dynamic case 

(Lakes 1996), the sources for such material elastic constants are rare (Hassanpour and 

Heppler 2017); especially if a dynamic method using 3D methods in combination with finite 

element methods is proposed. The static analysis of structures is usually limited to simple 

cases of bending, torsion, contact problems and so forth with known boundary conditions. 

Furthermore static analysis demands less computation.  This raises some fundamental 

questions regarding size effects such as: if the assumptions made to simplify the theories and 

the use of presumable constants resulted in promising and convincing outcomes in the static 

case, would they also be valid in a dynamic case to verify such a method?  
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In this work, unconstrained square plates with three types of heterogeneities and continuous 

or textured boundaries where investigated which are categorised in chapter eight. In fact, 

there are 21 different choices of boundary conditions, as defined by Kitipornchai (1998). 

Finally, the aim of this project is to study size effect in heterogeneous material in dynamic 

regimes rather than the influence of boundary conditions or modal frequency. Free, 

unconstrained boundary conditions at all plate edges in the absence of external load, provide 

a unique condition in which the size effect is not compromised by local loads or constraints, 

and therefore the applicability of the micropolar theory can be better studied and understood. 

Eremeyev et al. (2016) used 8-node isoparametric element to analyse a contact problem and 

used the micropolar constant of the polar ratio equal to 1.5 as obtained from Lakes work 

(1991). Their work showed that couple stress distribution appears in the contact zone of two 

elastic solids which can be explained by the micropolar elasticity. 

Since Mindlin plate theory was proposed by Mindlin (1955;1951;1986),  many researchers 

tried to solve the midline plate theory by the exact solution for various boundary conditions. 

However the exact solution for unconstrained boundaries (FFFF or all-edges-free boundary 

conditions) has not been found and if one edge is free, the neighbouring edges must be 

constrained such as in references (Xing and Liu 2009; Wu, Liu, and Chen 2007).  Shen et al. 

(2001)  used the Rayleigh-Ritz method and analysed the free vibration of Mindlin plate with 

FFFF edges but resting on Pasternak-type elastic foundations.   

Aksencer et al. (2011) incorporated an internal characteristic length in Eringen non-local 

plate theory, to obtain the governing equations for vibration analysis of Mindlin plates and 

considered size effect in nano-plates. The non-local theory has been applied to simple 2D 

beam cases and its validity in dynamic cases is investigated and discussed in chapter three as 

well as in reference (Hassanati and Wheel 2019). 

The size effect becomes even more influential when the plates aspect ratio (Length or width 

to thickness) decreases, and the specimen becomes a Mindlin plate. Thus in this work exact 

square plates were investigated with equal length and width, and aspect ratio of length to 

height at 8.083:1 for plates with cylindrical voids or inclusions and 7.071:1 for plates with 

spherical voids or inclusions.  

Liew et al. (1995) applied the Ritz energy method with boundary characteristics orthogonal 

polynomials (the transverse deflection function and the cross-sectional rotation functions are 

expressed in terms of sets of separable orthogonally generated polynomial functions) to 
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analyse the vibration of Mindlin plates for a variety of boundary conditions except for FFFF 

(all edges free and unconstrained) boundary conditions.  Lim et al. (1998;1998) also used an 

energy method to formulate  three dimensional thick plates into a two dimensional Mindlin 

domain. Liew et al. (1995) have done an extensive literature survey on various thick plate 

vibration  cases including rectangular plates. Considering the amount of work done on 

Mindlin plates with a moderate thickness in recent years, it is clear that there is no exact 

method available to perform modal analysis on square plate models when all plate edges are 

unconstrained. 

Shimpi and Petal (2006) used two-dimensional plate theory to avoid the use of shear 

correction factor such as , ̂, in Mindlin plate theory. Their work, despite the proposed 

refined plate theory, indicates that the percentage error of the non-dimensional frequency 

parameter compared with the values from exact theory increases for higher modes. 

According to the work of  Xing and Liu (2009) which covers the direct separation of 

variables and provides characteristic equations for various types of boundary conditions,  the 

characteristic equations for exact solution of Mindlin plate, when edges are unconstrained, 

are only available for cases where two opposite edges of the plate are constrained with 

simply supported boundary conditions. Xiang et al. (2010) developed and applied a DSC-

Ritz element  method for rectangular plates with mixed boundary conditions. They 

discretised a plate into the equal sectioned 5 by 5 grid and applied the DSC-Ritz method. 

This method is numerical, and therefore the accuracy of the method greatly depends on the 

grid size. 

Liu et al. (2017) modelled the plate’s boundary conditions by assuming spring-shaped 

supports for which the stiffness changes from zero to infinity and then used improved 

Fourier series to represent three displacements fields and then via Rayleigh-Ritz method 

derived an eigenvalue problem which was solved for various boundary conditions including 

unconstrained plate edges. By modifying the stiffness and mass matrix of this method to 

incorporate micropolar constants, this method has the potential to be modified to a numerical 

micropolar method as it has only previously been applied to the isotropic material and 

classical elasticity. However, the advantage of this method over finite element methods 

remains to be proven; that is one of the reasons, that in this work micropolar theory was used 

with the finite element method to represent the three-dimensional plates.  

There are numerous literature published in recent years showing the extensive work carried 

out to apply the micropolar theory into real plate problems most of which are related to static 
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and two-dimensional cases. Hassanpour (2017) has carried out an extensive survey  on 

micropolar  theory literature. The main problem is that there are 6 independent elastic 

constants in full 3D micropolar theory and for most materials, these constants are not 

available. The micropolar theory sounds promising with regard to the static problems such as 

bending, but due to unavailability of micropolar elastic constants, similar material constants 

are repeatedly used by researchers that were originally given by Lakes (1996).   

2.6 Summary 

Based on the literature review of previous work, as stated in this chapter, it has become clear 

that the influence of microstructure on the dynamic behaviour of materials, when the overall 

properties of the specimen are fixed but different at the microstructural level, in terms of 

material properties, has not been previously studied and this suggests that there is a gap in 

this research area which require further research. Therefore, in the next chapter, a set of 

beam models with periodic heterogeneities will be modelled, and the effects of beam size 

and volume fraction on their dynamic behaviour will be investigated, then more generalised 

higher-order theories such as Eringen nonlocal and micropolar theories will be investigated 

to see if they may explain any size effect that may exist in the dynamic behaviour of the 

representative heterogeneous beam models. 
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3 Investigation into the Effect of Size in Two-dimensional 

Heterogeneous Beam Structures 

In this chapter, first two widely used theories namely the classical or Euler-Bernoulli beam 

and the Timoshenko beam theories will be solved for homogeneous beam models and 

compared, then the focus will be on modelling a set of two-dimensional beams with detailed 

periodic heterogeneities comprised of one or two isotropic materials, and their dynamic 

behaviour will be investigated to study any effects that may arise from the microstructure of 

the specimens. Then the Eringen nonlocal theory will be examined to see if it may explain 

any identified size effect that may exist in the dynamic behaviour of the representative 

heterogeneous beam models. 

3.1 A comparison between CBT and local Timoshenko beam models 

3.1.1 Obtaining the frequency parameters for classical beam 

By solving equation (2.5) using the Newton-Raphson method, the first 10 flexural modal 

frequencies can be determined using an iterative sequence as listed in table 3-1 and non-

dimensionalised using equation (3.1): 

 

       √    
  

     
     (3.1) 

Since the units of   are          , this must be divided by    to get frequency, in Hz. 

Table 3-1: Frequency parameters for beams using the solution for the classical beam theory (Euler-

Bernoulli). The CBT frequency parameters are independent of the beams aspect ratio 

Mode 1 2 3 4 5 6 7 8 9 10 

CBT 4.73004 7.8532 10.9956 14.1372 17.2788 20.4204 23.5619 26.7035 29.8451 32.9867 

The mode shapes of an Euler beam may be obtained using equation (3.2): 

 
     (                )  [

                 

                
]        

           

(3.2) 

For a given   , equation (3.2) would produce a specific mode shape for that particular 

transverse modal frequency from      to    and from     to L. The first to fifth 
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mode shapes of a free-free beam based on the classical beam theory (CBT) are shown in 

figure 3-1: 

 

Figure 3-1: First to fifth mode shapes of a free-free beam based on the CBT 

 

These mode shapes are used to identify associated modal frequencies. 

3.1.2 Frequency parameters for Timoshenko beam 

The solution for the governing equation (2.14) for FF boundary conditions when moment 

and shear forces at each end of the beam are zero is provided in Appendix A which results in 

the polynomial equation below: 
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(3.3) 

where   is the square root of the second order form of the differential equation (2.14). 

Equation (3.3) is a polynomial equation of order 8 and it can be solved by iterative 

techniques. Here, by using the bisection method the non-dimensional parameters (λ) have 

been generated for the Timoshenko beam of aspect ratio 10.4 and these are provided below 

in table 3-2. 

Table 3-2: Frequency parameters for beams using the solution for the Timoshenko beam theory (TBT) 

Mode 1 2 3 4 5 6 7 8 9 10 

TBT 4.6530 7.5166 10.1714 12.5904 14.7956 16.8130 18.6676 20.3807 21.9687 23.4418 

Relative 

difference 

with CBT 

1.64% 4.38% 7.79% 11.57% 15.48% 19.38% 23.18% 26.86% 30.40% 33.83% 

 



52 
 

Figure 3-2 shows clearly that the CBT overestimates the modal frequencies after mode three 

and this indicates that the numerical beam models are Timoshenko beams. 

 

Figure  3-2: Frequency parameter for a homogenised beam with aspect ratio equal to10.4 and depth 

equal to 0.866 mm using CBT and Timoshenko. 

Although the Euler-Bernoulli beam theory (CBT) provides fairly acceptable forecasts of 

flexural modal frequencies for slender beams, for the short beams of L/d<20, it over 

estimates the frequency values especially for modes 3 and above.  

The shortcomings of the Timoshenko beam theory in modal analysis are as follow: 

a) Size effect is not anticipated; 

b) Only effective below the critical frequencies 

 

The critical frequency as described in section 2.1.2 occurs in beams’ transverse vibration 

when the wavelength approaches the beam depth of homogeneous materials. However, in 

heterogeneous materials, the critical frequency depends highly on the specimen’s 

microstructure and the beam’s boundary conditions; consequently it may occur at lower 

frequencies compared with homogeneous cases. 

3.2 Finite element modelling of 2D heterogeneous beams 

3.2.1 Unit-cells consisting of two isotropic materials 

In this chapter, the procedure for FE modelling of 2D heterogeneous beams is discussed. In 

homogenisation methods the ultimate aim is to model unit cells which have the following 

characteristics in order to be amenable to analysis and reveal any potential size effect in their 

dynamic behaviour:  
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1. The unit-cells must be large enough to contain all the material information in the 

specimen. 

2. The unit-cell must be small enough in order not to cause distortions in the stress 

gradient across the depth of the beam.  

However, there are some challenges involved which highlight the potential difficulties with 

the application of such methods. Firstly, when the smallest scale of specimen is intended to 

be studied, the second condition will not be satisfied as the depth of the beam might be as 

little as one unit-cell. Secondly, a variation of void or inclusion’s radius would affect the 

constituent materials volume fraction thus the overall properties of the specimens will 

consequently change which thereby undermines the identification of any size effect present 

in the specimen. Therefore, as the radius of the void or inclusion changes, so does the mass 

and stiffness of the unit-cell, correcting for this is discussed in section 3.3. In this research, 

three distinct types of 2D beams were modelled: 

 those with perforations (voids)  

 those with compliant inclusions 

 and those with a compliant matrix 

By considering two possible beam surface conditions, namely smooth, continuous surfaces 

and textured surfaces there will be six possible beam types as follows:  

I. beams with perforations (voids)  and continuous boundaries (BVOCB);  

II. beams with perforations (voids)  and textured boundaries (BVOTB); 

III. beams with compliant inclusions and continuous boundaries (BINCB)  

IV. beams with compliant inclusions and textured boundaries (BINTB) 

V. beams with compliant matrix and continuous boundaries (BCMCB) 

VI. beams with compliant matrix and textured boundaries (BCMTB) 

 

 ANSYS APDL version 16.2 was used to perform geometric modelling and finite element 

analysis (FEA) on each beam type.  Figure 3-3 shows the two unit-cell configurations 

containing either voids or inclusions that were used to construct individual beam models. 

The height of the modelled unit cell is 0.866 mm, and the length of the unit cells is 1mm 

respectively. The void or inclusion centres are thus located on an equilateral triangular array. 

Models containing various void/inclusion volume fractions were generated. For unit-cells 

containing inclusions rather than voids, the cells consist of two isotropic materials with the 

included material surrounded by matrix material.  
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Figure 3-3: Unit cell consisting of two isotropic materials r = 0.2 mm; the unit cell on the left is used 

in generating beams with continuous surfaces and the unit cell on the right is used for when inclusions 

intercept the surface of the beam. 

Figure 3-3 shows unit-cells with the inclusion of 0.2 mm in radius. For the unit cells used to 

generate beam models with continuous boundaries as seen in figure 3-3, left, a quarter unit 

cell was first modelled and then reflected appropriately to produce a full unit cell. Therefore, 

all sides of the matrix section are divided by 12 parts and mapped so that the sizes of 

elements decrease on approaching the inclusion’s border. The circular area containing the 

inclusion incorporates a squared area which is divided into a 12 by 12 element meshed area 

and the remaining area is divided into two concentric rings. 8-node solid elements were used 

for meshing the areas. 8-node solid element is a quadrilateral element with four corner nodes 

plus four mid-side nodes, and this element choice uses full integration that will not cause 

shear locking problems. By reflecting the quarter unit cell in both x and y-directions, a 

complete unit cell was created which contained 1920 elements and 6068 nodes. 

The beams with textured boundaries were modelled so that inclusions or voids were located 

at the centre of a hexagonal array as seen in figure 3-3, right. The hexagonal sides are 

divided into 12 equal parts. The diagonal lines connecting the hexagon’s vertices to the circle 

are divided into ten parts. Such a mesh arrangement provides 1260 elements and 3925 nodes 

per unit cell. 

Void or inclusion radius was varied from 0.1 to 0.3 mm in 0.05 mm increments. The 

corresponding void or inclusion volume fractions are listed in table 3-3 along with the 

equivalent radius normalised with respect to the unit cell height        , where    is the void 

or inclusion radius, and    is the height of the unit cell. Throughout this work, void or 

inclusions radius, volume fraction and normalised radius are used interchangeably. 
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Table 3-3: Changes in void or inclusion volume fraction with radius and/or normalised radius of void 
or inclusion 

Void/inclusion 

radius, r 
mm 

Void/inclusion 

volume fraction,     

% 

Normalised 

void/inclusion 

radius,       

0.1 4 0.12 

0.15 8 0.17 

0.2 15 0.23 

0.25 23 0.29 

0.3 33 0.35 

In order to create the macroscopic scale beam models, the unit cells were repeatedly 

regenerated to produce four different beam sizes consisting of one, two, three or four layers 

of cells through beam depth, NCy=1,2,3 and 4 e.g. when NCy=1 then d=1*0.866 mm and 

NCy=2 then d=2*0.866 mm and so forth. The length, L, to depth, d, aspect ratio, (L/d) was 

kept constant at 10.4:1 so that all four sizes of the beam of a given volume fraction remained 

geometrically similar. Two variants of each beam were created: those based on the first unit 

cell contained boundaries comprised continuously of matrix material, figure 3-4a and 3-4b, 

while those incorporating the second unit cell contained textured boundaries intersected by 

the voids or inclusions, as seen in  figures 3-4c and 3-4d. The successive layers of voids and 

inclusions are such that the center points of every three neighboring voids or inclusions 

forms an equilateral triangle aimed to minimise anisotropic characteristics of the material.  

 
Figure 3-4: Models showing the arrangement of unit cells in beams; (a) Beam size 1 with 9 unit cells 

with continuous boundaries (top, left); (b) Beam size 2 with 18 unit cells in length with continuous 
boundaries (bottom, left); (c) Beam size 1 with 9 unit cells with textured boundaries (top, right); (d) 

Beam size 2 with 18 unit cells in length with textured boundaries (bottom, right) 

A schematic of the beams overall dimensions is shown in figure 3-5. 

 

Figure 3-5: Schematic representation of the coordinates and dimensions on a homogeneous beam 
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3.2.2 Mesh convergence in modal analysis. 

To analyse the effect of mesh refinement, beams with 28, 156, 528, 898, 1920 and 7680 

elements per unit cell were modelled by changing the number of line divisions, and it was 

observed that the average error of the frequencies of each model for the first ten modes 

compared with the next model refinement in sequence are 5.6740E-03, 4.6611E-05, 

1.6991E-06, 1.1951E-06 and 1.1950E-06. Therefore,   beams with 1920 elements per unit 

cell satisfied the requirements for mesh convergence for the beams with continuous 

boundaries. Beams with textured boundaries and 108, 276, 1260 and 5040 element/Unit-Cell 

were modelled and the average error for the first ten modes reduced to 7.8101E-03, 2.1102E-

03, 6.2110E-04, 6.2102E-04 upon refinement. Therefore unit cells with 1260 elements have 

a 6.00E-06 difference comparing with unit cells containing 5040 elements. The choice of 

tolerance was set at 1E-5 for the first ten modal frequencies because in dynamic analysis, 

firstly the meshed models must represent an idealised geometry, secondly the average error 

increases for the higher modal frequencies. 

3.3  Adjusting the modulus of elasticity (E) and mass density (ρ) of the 

unit-cells 

When changing the volume fraction of each material, the homogenised mass and stiffness 

properties of the beam were kept fixed. This enabled the size effect on the free vibration to 

be identified for various volume fractions when the unit cell mass and overall homogenised 

properties were kept constant. 

The aim is to investigate the frequency changes for various beam sizes and void/or 

inclusions volume fractions for transverse vibration modes. Therfore, the ratio of modulus of 

elasticity of matrix to inclusion was set at 10:1 for the beams with compliant inclusions and 

1:10 for the beams with the compliant matrix. The modulus of elasticity at the macroscopic 

scale was fixed at 70 GPa, see table 3-4.  

The adjustment of the modulus of elasticity for each beam model has been done by 

conducting appropriate static tensile test simulations which involved constraining all degrees 

of freedom at one end of the beams like clamped conditions and applying a constant tensile 

force on the opposite end and then obtaining the changes in length which is then used to 

adjust modulus of elasticity. FEA made it possible to easily model various beam types with 

the volume fractions and material constants associated with the constituent unit-cells being 

altered while keeping the properties of the equivalent homogenized beam unchanged. This 
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approach resulted in identifying the influence of the size effect on the flexural frequencies in 

the beam models which would not be possible with other approaches such as practical 

experimental testing. Using corrected values of modulus of elasticity of matrix and inclusion, 

the beam models were again examined for the level of accuracy in comparison with the 

original assumption of the overall modulus of elasticity which is 70 GPa. Therefore the 

values in table 3-5 show the relative difference between the overall modulus of elasticity of 

heterogeneous beam models and the modulus of elasticity of corresponding homogeneous 

beams. As seen, in table 3-5, the relative difference for all beam models remains about or 

below 1E-3. 

The matrix and inclusion densities were also altered according to the void or inclusion 

volume fraction, as detailed in table 3-6 while keeping the mass density of the unit cells 

constant at 2700 kg/m
3
 as a strategy during analysis. For beams with voids, the mass of the 

matrix material was increased proportionally to its volume fraction. Therefore, the value of 

2700 kg/m3 was divided by the volume fraction of the matrix as the void’s radius increased, 

which resulted in creating beam models with an equal mass of the unit cell. For beams with 

inclusions, the mass of inclusions kept as 1/10 of the mass of the matrix, therefore achieving 

the overall density of 2700 kg/m
3
 for such beams required a nominal value of 2454.5 kg/m

3
 

to be divided by the volume fraction of the matrix. 

Although the matrix and inclusion’s density altered, the overall mass density of the beam 

models are very close to the homogeneous beam models and the relative difference remains 

below 1E-6, as seen in table 3-6. Poisson ratio,  , is equal to 0.3 throughout this work.  

 

Table 3-4: Correction of modulus of elasticity of beams matrix by void or inclusions radius for 

various beam models 

Void or inclusion 

radius, mm 

The modulus of elasticity of matrix,     

Perforated beams 
Beams with compliant 

inclusions 

Beams with compliant 

matrix 

Continuous 

boundaries 

Textured 

boundaries 

Continuous 

boundaries 

Textured 

boundaries 

Continuous 

boundaries 

Textured 

boundaries 

0 7.000E+04 7.000E+04 7.000E+04 7.000E+04 7.000E+04 7.000E+04 

0.1 7.796E+04 7.814E+04 7.590E+04 7.600E+04 6.679E+04 6.681E+04 

0.15 8.892E+04 8.915E+04 8.382E+04 8.394E+04 6.292E+04 6.295E+04 

0.2 1.064E+05 1.063E+05 9.600E+04 9.599E+04 5.775E+04 5.776E+04 

0.25 1.338E+05 1.328E+05 1.139E+05 1.135E+05 5.142E+04 5.142E+04 

0.3 1.796E+05 1.767E+05 1.404E+05 1.397E+05 4.412E+04 4.413E+04 
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Table  3-5: The relative difference of the overall modulus of elasticity of beams models provided in 

table 3-4 with the modulus of elasticity of the homogeneous beam 

Void or inclusion 

radius, mm 

The relative difference of the overal modulus of elasticity of the heterogeneous beams with 

homogeneous beam 

Perforated beams 
Beams with compliant 

inclusions 

Beams with compliant 

matrix 

Continuous 

boundaries 

Textured 

boundaries 

Continuous 

boundaries 

Textured 

boundaries 

Continuous 

boundaries 

Textured 

boundaries 

0 0 0 0 0 0 0 

0.1 3.394E-05 1.238E-04 1.096E-05 1.238E-04 1.096E-05 5.587E-05 

0.15 7.885E-05 1.687E-04 3.394E-05 1.238E-04 5.587E-05 1.096E-05 

0.2 5.587E-05 1.906E-04 7.885E-05 2.136E-04 7.885E-05 7.885E-05 

0.25 2.585E-04 1.457E-04 3.483E-04 2.803E-04 1.096E-05 7.885E-05 

0.3 6.179E-04 2.136E-04 4.382E-04 1.687E-04 1.008E-04 1.096E-05 

 

Table 3-6: Correction of density by void or inclusions radius   

Void or 

inclusion 

radius, mm 

The mass density of matrix and inclusions,     ⁄  

Perforated beams Beams with inclusions 

For matrix 

Relative difference 

with homogeneous 

beam 

For matrix For inclusions 

Relative difference 

with homogeneous 

beam 

0 2700.00 0 2700.00 N/A 0 

0.1 2801.64 1.852E-07 2546.94 6766.11 1.852E-07 

0.15 2939.97 1.852E-07 2672.70 3007.16 1.852E-07 
0.2 3158.29 1.852E-07 2871.18 1691.53 1.852E-07 
0.25 3491.67 1.852E-07 3174.25 1082.58 1.852E-07 
0.3 4008.87 1.852E-07 3644.43 751.79 1.852E-07 

 

The adjustment of modulus of elasticity and mass of the unit cells with the volume fraction 

of void and inclusions has the following benefits:  

 To identify any size effect within the structure of the heterogeneous models that may 

exist on the dynamic behaviour of specimens due to the changes in void or 

inclusion’s volume fraction as well as size effects due to changes in beam depths 

with a constant aspect ratio; 

 The effects of the size of the voids and inclusions near the boundaries on the 

dynamic behaviour of beams and also when they intercept the boundaries can be 

investigated; 

 This approach is particularly useful for studying the size of the voids and inclusions 

on the flexural frequencies in the heterogeneous beam models when experimental 

testing is not physically possible. 

This approach can be useful for future research studies mainly when two different materials 

with similar macroscopic geometries and overall observable properties but different in 

microstructural scale are studied. Consequently, the industrial application of such materials 

may be their functionality rather than overall similarities among them. 
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3.4 Modal analysis (Flexural vibration) 

3.4.1 2D model and boundary conditions choices 

In modelling the dynamic behaviour of the beams, two dimensional analyses were initially 

preferred rather than three dimensional, the main reason being that in a two dimensional 

analysis, the in-plane modes are only identified, such as in-plane transverse and longitudinal 

modal frequencies. In-plane modal analysis will automatically exclude torsional and out-of-

plane bending modes. This reduced the required computational time and resources for 

analysis. 

In this work the study of the size effect in nonhomogeneous materials was the primary goal 

and the effect of boundary conditions was of lesser importance. Therefore, free-free (FF) 

boundary conditions were chosen for the two dimensional modal analyses. This means that 

there are no bending moments or shear forces acting at either ends of the beam. The reason is 

that in the FF case the effect of boundary conditions are totally eliminated and, in addition, 

the mode shapes are distinctively recognisable for categorising. Thus, in order to categorise 

the transverse modes, it just requires counting the number of wave lobes and subsequently 

distinguishing the mode number, e.g. primary mode shape has one lobe, second mode shape 

has two opposite lobes, and so forth; see for example the five mode shapes shown in figure 

3-1. 

3.4.2 FEA Solver used, the number of modal frequencies, and the benefits of Block 

Lanczos  

In 2D FE modal analysis initially about 63 modal frequencies were extracted using the Block 

Lanczos solver. This solver is capable of extracting modes from a lower to a prescribed 

upper frequency and it is very reliable and would not omit any of the modal frequencies 

within the specified range. This solver is the preferred option when the number of DOF is 

less than one million. The main issue in modal analysis using finite element software is that 

it does not distinguish longitudinal from transverse frequencies and all the modal frequencies 

are produced in ascending order. Therefore, the mode shapes were investigated individually 

and divided into three categories: transverse modes, longitudinal modes and mixed modes. 

Transverse modal frequencies were distinctly recognisable below the critical frequency, 

before the wave length approached the beams depth. Therefore, to be certain, 10 transverse 

modal frequencies were identified along with 4 to 6 longitudinal frequencies. The majority 

of the modes above the critical frequency showed very complicated in-plane mode shapes in 



60 
 

which the bending modes were not clearly recognizable from the longitudinal ones; therefore 

they were separated and named mixed-modes. 

3.5 Finite element results and size effect predictions  

3.5.1 Beams with continuous boundaries 

The finite element results which are presented in this section and shown in figures 3-6 to 3-8 

and also tabulated in Appendix B, provide size effect information for beams with continuous 

surfaces. For this purpose, three types of beams listed in section 3.2.1 are modelled and 

analysed. 

Modal frequencies are nondimensionalised using the equation (3.4): 

              
   

   
     (3.4) 

where λ is the non-dimensional frequency parameter, L is the beams length; f is the 

numerically predicted flexural modal frequency in Hz; ρ is the mass density; E is the 

modulus of elasticity, and d is the depth of the beam. The values for λ for the first ten 

flexural modal frequencies of homogeneous beams           predicted using finite 

element analysis are compared to the analytically derived values based on Timoshenko beam 

theory in table 3-7. These frequency parameters are dimensionless and are used for 

normalisation of the flexural frequency values of all heterogeneous beams considered in this 

thesis. The procedure to obtain the dimensionless frequency parameters of Timoshenko 

beam is explained in section 3.1.2. However, Timoshenko beam theory proved to provide 

good predictions for the first ten flexural modal frequencies which are corroborated by the 

FEA results for homogeneous cases.  

 

 

 

 



61 
 

Table 3-7: The non-dimensional modal frequencies (λ) for homogeneous beams and with aspect ratio 
10.4:1 

Mode FEA Timoshenko 

Relative diff. of 

FEA with 

Timoshenko 

1 4.655455 4.653041 0.05% 

2 7.527076 7.516596 0.14% 

3 10.194069 10.171415 0.22% 

4 12.626892 12.590439 0.29% 

5 14.84537 14.795647 0.34% 

6 16.874623 16.813016 0.37% 

7 18.739625 18.667635 0.38% 

8 20.461702 20.380707 0.40% 

9 22.057553 21.968693 0.40% 

10 23.538186 23.441844 0.41% 

 

The normalised values (Λ) when presented in figure 3-6 to 3-14 were obtained by dividing 

the non-dimensional frequency parameter (λ) at each modal frequency by its corresponding 

non-dimensional frequency from column two of table  3-7, that is, the FEA derived values for 

λ.  

Figure 3-6 shows the normalised primary bending modal frequency of four beam sizes for 

beams with various volume fractions of voids and continuous boundaries (BVOCB). This 

behaviour is highly size dependent as seen in figure 3-6. The homogeneous case is 

represented by the blue lines (dotted lines with solid square markers) and the FE results show 

that in this case, the normalised modal frequency is size independent. For any given mode 

the size effect becomes more pronounced with diminishing beam size and is greatest for the 

smallest size of beams. The size effect is also more pronounced for beams with a higher void 

volume fraction. The non-dimensional frequency parameters (λ) information for the first ten 

transverse vibration modes of beams with voids is provided in table B-1 in Appendix B. 

Interestingly, the size effect is apparently mode dependent; there is a distinct change in its 

nature such that after mode three changes in void radius causes a decrease rather than an 

increase in normalised frequencies (Λ). Figure 3-7 shows how the normalised frequencies for 

the beams with voids and height of one unit-cells (First smallest beam sample) vary with 

mode number. 
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 Results in figure 3-8 show that beams with compliant inclusions behave similarly although 

the size effect appears to be slightly less pronounced. The smaller values of normalised 

frequencies for beams with compliant inclusions is because the matrix is less stiff in 

comparison with the perforated beam models which is related to the reduction of the flexural 

rigidity, EI, at any given cross-section of the beams. 

According to these results in figures 3-6 and 3-8, for the primary modes (first flexural mode), 

it appears that variations in the normalised frequencies have an approximately linear 

relationship with reciprocal size measure given by the inverse of the square of the depth of 

the beam       , except for the smallest beam sizes where the ratio of the radius of void or 

inclusion to overall beam thickness approaches the maximum. The smallest beam models 

lack the triangular arrangements of void or inclusions within the beam structures. Therefore 

the size effect not only increases dramatically but also deviates from the linear pattern as 

seen for the larger models. 

 

Figure 3-6: Normalised primary bending modal frequency of four beam sizes for beams with various 

volume fractions of voids and continuous boundaries (BVOCB) 
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Figure 3-7: The first ten normalised bending modal frequency of the smallest beam sample (NCy=1 or 

depth=0.866 mm) with various volume fractions of voids and continuous boundaries (BVOCB) 

 

Figure 3-8: Normalised primary bending modal frequency of four beam sizes for beams with various 
volume fractions of compliant inclusion and continuous boundaries (BINCB) 

The results for specimens with stiff inclusions and continuous surfaces, BCMCB, show an 

entirely different dynamic behaviour; Here, a distinctly different size effect indicating that 

increasing volume fraction causes a decrease in Λ at a given mode number for this sample 

size. Figure 3-9 shows the inverse size effect on normalised frequencies for the primary 

mode when the inclusions have a higher modulus of elasticity than the matrix. The size 

effect although inverted once more remains approximately linear across the three larger 

samples but again this does not extrapolate to the smallest sample size. Figure 3-10 shows 

changes in Λ with mode number for the beams with height of one unit-cell (the smallest 

beam sample). 
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The dynamic behaviour of the beam models with a compliant matrix as modelled in this 

chapter may seem counterintuitive because of the inverse size effects that they indicate. In 

structures with a matrix of a specific modulus of elasticity, stiffer inclusions are expected to 

make the entire structure stiffer. But here, on the contrary, the matrix material is not the same 

as the beams with compliant inclusions; here the matrix is more compliant than the previous 

models and reduces with volume fraction too. The second reason is that as the models are 

two-dimensional, only in-plane transverse vibrations are analysed, which is not in the 

direction of cylindrical shaped inclusions. The third reason is that in beam models with or 

less than four layers of unit cells in depth of the beams, the compliant matrix may dictate the 

overall behaviour of the structure and generates inverse size effects on normalised 

frequencies. Note that the matrix modulus of elasticity is ten times lower than the modulus of 

elasticity which was explained earlier in section 3.3 and shown in table 3-4. 

 
Figure 3-9: Normalised primary bending modal frequency of four beam sizes for beams with 

compliant matrix and continuous boundaries (BCMCB) 

 

Figure 3-10: The first ten normalised bending modal frequency of the smallest beam sample (NCy=1) 

with compliant matrix and continuous boundaries (BCMCB) 
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As seen in figures 3-7 and 3-10, the normalised frequency values are also mode related, and 

that means the frequency values change at any specific mode number which also depends on 

the void or inclusions volume fraction. If the void or inclusion’s volume fraction is reduced 

then the dynamic behaviour of the specimen becomes closer to a homogeneous case. The 

mode related frequencies show a clear pattern for the lower modal frequencies, e.g., mode 

numbers one to eight. As the frequency values approach the critical frequency, then a clear 

trend is not visible any longer since the wavelength approaches the beam depth, so mode 

shapes are not categorically distinguishable. This phenomenon is observed in FE results as 

seen in figure 3-11 for the transverse modes numbers 12, 13 and 14 for the beam with 0.2 

mm voids, depth equal to 1.732 mm, aspect ratio (Length to depth) equal to 10.4 and 

continuous boundaries. 

 
Figure  3-11: Mode Number: At modal frequency of Hz, beam sample with voids and continuous 

boundaries, depth =1.732 mm, R=0.2mm 

 

3.5.2 Beams with textured boundaries 

If the upper and lower boundaries of the beams are not continuously comprised of matrix but 

textured due to their intersection with the voids or inclusions, there is a significant difference 

in dynamic behaviour. Beams with voids or compliant inclusions and textured boundaries 

showed similar behaviour to the beams with compliant matrix and continuous boundaries 

already discussed in section  3.5.1 and therefore are not discussed any further in this section. 

Figures 3-12 and 3-13 show normalised flexural frequencies of beams with voids and 

textured boundaries.  
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Figure 3-12: Normalised primary bending modal frequency of four beam sizes for beams with voids 

and textured boundaries (BVOTB) for which the micropolar constants were not obtainable 

 
Figure 3-13: The first ten normalised bending modal frequency of the smallest beam sample (NCy=1) 

with voids and textured boundaries (BVOTB) for which the micropolar constants were obtainable 

 

Finally, beams with textured boundaries and a matrix comprised of compliant material with a 

lower modulus of elasticity exhibit a more conventional size effect with normalised 

frequency increasing as beam size reduces as seen in figure 3-14.  

The location of the inclusions concerning the boundaries of the specimens causes an inverse 

dynamic behaviour. As explained in section 3.5.1, for beam models with or less than four 

layers of unit cells in depth of the beams, the compliant matrix may dictate the overall 

behaviour of the structure. However, when the boundaries of the specimen are intercepted 

with stiff inclusions, the beams’ borders will be more rigid in general. Therefore, the actual 

cause of inverse size effects in beam models with textured boundaries is due to changes in 

the material properties in near the surface of the specimen. If voids or compliant inclusions 

intercept the models, then the near-surface area becomes less stiff than inner parts of the 

sample. On the contrary, if stiffer inclusions intercept the surface of the beam, then the near-
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surface area becomes stiffer than internal components of the specimen. Such dynamic 

behaviour will be maximised by reducing the total number of the constitutive layers across 

the beam depth to only one unit cell, as well as changing the shape of the void or inclusion’s 

which is not circular any longer. 

 
Figure 3-14: Normalised primary bending modal frequency of four beam sizes for beams with 

compliant matrix and textured boundaries (BCMTB) for which the micropolar constants were 

obtainable 

In summary, the numerical results shown in figures 3-6 to 3-14 and provided in tables  B-1 

to B-6 Appendix B indicate that the forecast size effect depends on: 

a) Beam depth 

b) Void/inclusions volume fraction 

c) The relative stiffness of matrix and inclusions 

d) Beam surface morphology 

The remainder of this chapter considers whether various theoretical beam models, especially 

models incorporating an intrinsic length scale in their formulations to account for size effects 

are capable of predicting these numerical results by means of analytical or numerical 

solution methods.  

3.6 An analytical nonlocal Timoshenko beam model and size effect 

In this section the characteristic equations for nonlocal Timoshenko beams will be derived 

and solved for free-free boundary conditions. The local and nonlocal Timoshenko beam 

mode shapes will also be discussed. In addition, the results will be compared with FEA 

results.   
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3.6.1 The nonlocal Timoshenko beam model 

In this section, the nonlocal Timoshenko (NLT) beam model is used to study the size effect 

in a Timoshenko beam by incorporating Eringen’s nonlocal theory. This approach has been 

widely used in nanotechnology because it can be solved analytically for various boundary 

conditions, e.g., (Wang, Zhang, and He 2007; Z. Zhang, Challamel, and Wang 2013; Zhen 

Zhang, Wang, and Challamel 2015). However, it must be noted that the Timoshenko beam 

theory is one dimensional and Eringen’s small-scale coefficient is only really applicable to 

the longitudinal direction. 

Here the work of Wang et al. (2007) is extended to include the free-free boundary condition: 

Axial normal stresses,     , can be stated in the following forms:  

         ̅ 
 
     

   
      (3.5) 

where the     is the corresponding strain. Equation (3.5) indicates that NLT is a gradient 

type nonlocal theory. 

The governing equations for nonlocal Timoshenko beam can be obtained by applying 

Hamilton’s principle and incorporating Eringen’s small-scale coefficient    ̅ into the 

Timoshenko beam model as defined by Wang et al.(2007): 
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where   is the rotation,   is the transverse displacement,   is the circular frequency,  ̂ is 

the Timoshenko’s shear correction factor,   is the shear modulus,   is the cross-section of 

the beam, I is the second moment of area, e0 is a constant specific to each material and  ̅ is 

the internal characteristic length in the NLT beam. In equation (3.5),    ̅ can be normalised 

and represented by α, alpha. After decoupling equations (3.6) and (3.7) and applying free-

free boundary conditions, the following equation (3.8) may be derived: 
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where: 
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with a, b and c being the usual quadratic formula constants. Finally: 

 

 
 ̂   

      ̂

 
   (3.17) 
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  (3.18) 

The parameters H1 to H4 are defined by C. M. Wang et al. (2007) while the derivation of 

equation (3.8) is entirely new. The full mathematical procedure to derive equation (3.8) is 

given in Appendix C.1. 



70 
 

The non-dimensional parameters used in the above equations are: 

 

 
                      (3.19) 

 

 
 ̂               (3.20) 

 

 
     ̅     (3.21) 

  ̂              (3.22) 

in which λ is the dimensionless frequency parameter,  ̂ is the shear deformation parameter, 

α is the scaling effect parameter,  ̅ is the internal characteristic length, and finally,  ̂ is the 

slenderness ratio.  

The equations (3.6) and (3.7) where solved with the assumption that    ̅ is effective in the 

axial, x, direction. The solutions to equations (3.6) and (3.7) with alpha effective in this 

direction, as shown in equation (3.5), and when Eringen’s nonlocal effect is also applicable 

in axial and transverse, y, directions are provided in the Appendices C.1 and C.2. 

Equation (3.8) can be solved by iteration which produces an infinite number of Eigenvalues 

giving the transverse frequencies for a free-free beam.   

It must be stated that small scale effects are considered when the overall length scales of the 

beam are comparable to the microstructural scale and thus appear to affect the resulting 

eigenvalues. Therefore, if ‘ ’ is taken as equal to zero, then the characteristic length is 

ignored and so the governing equations will be reduced to that of conventional local 

Timoshenko beams and the results from  equation (3.8) will be the exact results for a local 

Timoshenko beam where there is no small scale effect. 

3.6.2 Local and nonlocal Timoshenko beam mode shapes 

Having obtained the transverse frequencies, the Eigen vectors or mode shapes at each modal 

frequency can be determined by equation (3.23): 
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(3.23) 

where    and    are the position in the axial, x, and displacements in the transverse, y, 

direction normalised with respect to length, L. The full mathematical procedure to derive 

equation (3.23) is given in Appendix C.3. 

If the frequency parameter is known then the associated mode shape for a free-free beam can 

be depicted using the equation (3.23) for   between       knowing that    

 

 
       

 

 
 .  The first to fifth mode shapes of a free-free beam based on the Timoshenko 

beam theory (TBT) are shown in figure 3-15 which are the same for local and nonlocal 

Timoshenko beams: 

 

Figure 3-15: First to fifth mode shapes of a free-free beam based of the TBT, AR=10.4. The mode 

shapes are used to identify modal frequencies associated with each mode shape. 

3.6.3 Comparison with FE results to identifyα 

Equation (3.8) was solved by applying the bisection method to identify the normalised 

transverse modal frequencies for the first 37 modes of a beam with aspect ratio L/d=10.4:1. 

The results are provided in figure 3-17-a. By comparing the finite element results and these 

analytical NLT results, it is possible to obtain Eringen’s scale parameter for some of the 

heterogeneous beam models considered previously. Direct comparison between the results in 
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figure 3-17-a and the finite element results given in section 3.5 suggests that it is not always 

possible to determine α for all cases considered. However, by applying a constant shift: 

 

 

                                   [                           ] (3.24) 

where   ,    , is the mode number and    is the non-dimensional frequency of 

homogeneous beam obtained using ANSYS. The FE results for perforated beams with 

continuous boundaries could be compared with the results obtained from solving the Eringen 

non-local theory, as seen in figure 3-16. 

 

Figure  3-16:  Numerically obtained normalised frequency parameter vs. mode numbers 

Beam model: Perforated beam (BVOCB), Size 1(1/d^2=1.33), BC: Free-Free 

Equation (3.24) is only used to shift the FE normalised frequencies at any given volume 

fraction and fit them onto the NLT transverse frequency results to obtain  . Therefore, 

 λ λ             is the normalised frequency parameter of the      mode after shifting, 

 λ λ              is the normalised frequency parameter of the mode number     before 

shifting from the FE results and      is an empirical constant for the beam type and is equal 

to 1.2 which relates FE and NLT results. The value of      was obtained by curve fitting and 

changing the      value until the NLT beam results match those obtained from FE. Thus, by 

shifting the results below the line representing the homogeneous case, obtaining α for beams 

with either voids or inclusions is possible. 

The values for α obtained via this curve fitting method for beams with continuous surfaces 

show that for a given volume fraction α is not size independent as illustrated in figure 3-17-b 
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and therefore, it cannot be considered as a unique property of the material. For the samples 

with textured boundaries, it is not possible to identify α because of the inverted size effect.  

 

Figure 3-17: Results for perforated beam models with continuous boundaries and F-F boundary 

conditions using NLT beam theory; a) Normalised non-local Timoshenko frequency parameters for 

various α's. Eringen’s nonlocal parameter is influenced in only x directions (                ) 
(graph on the left); b) Scale Coefficient 'α' (Alpha), Obtained by curve fitting FE results with NLT and 

      is the normalised void radius changing from 0 to 0.35 (graph on the right). 

Further investigation into the nonlocal Timoshenko beam theory such as including the 

Eringen’s nonlocal parameter in both x and y directions in the formulations did not 

overcome this fundamental problem.  See figures 3-18-a, 3-18-b and the solution procedure 

in Appendix C.2. 

 
Figure 3-18: Results for perforated beam models with continuous boundaries and F-F boundary 

conditions using NLT beam theory (including the Eringen’s nonlocal parameter in x and y directions); 

a)Normalised non-local Timoshenko frequency parameters for various α’s for perforated beam models 

with continuous boundaries and F-F boundary conditions using NLT beam theory. Eringen’s nonlocal 

parameter is effective in x and y directions (                 ). b) Scale Coefficient 'α' 

(Alpha), Obtained by curve fitting FE results with NLT and       is the normalised void radius 

changing from 0 to 0.35 (graph on the right). 
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As seen in figures 3-17-b and 3-18-b, increasing the beam depth will require a different 

value of 'α' which indicates that the Eringen’s scale coefficient for the beam models with 

constant aspect ratio is thus size-dependent. This confirms that the NLT beam is not 

applicable for modal analysis in cases when increasing the beam depth is accompanied by an 

increase in number of unit cells across the beam depth. 

3.7 Conclusions:  

Geometrically similar beam samples of different sizes that contained periodic heterogeneities 

were modelled using finite element analysis, and modal analyses were performed to identify 

the unconstrained flexural natural frequencies. Contrary to the homogeneous case where 

these frequencies are size independent, the FE results indicate that in the heterogeneous case 

they are size dependent. Moreover, this size effect depends on both the specification of the 

periodic heterogeneity and its location relative to the sample boundaries.  

Eringen’s enhanced nonlocal Timoshenko beam was also solved analytically for FF 

boundary condition and mode shapes were extracted. For cases where the finite element 

results exhibit a consistent size effect, Eringen’s nonlocal Timoshenko beam (NLT) analysis 

was considered in attempting to explain the dynamic behaviour observed. However, the NLT 

appears to have shortcomings since the small-scale coefficient was not constant for all model 

sizes of the same aspect ratio.  The size dependency of the coefficient value thus implies that 

it cannot be interpreted as an independent constitutive property and, therefore, the Eringen 

nonlocal theory was not applicable for the models presented in this chapter. 

In the light of the above points which describe, in detail, the inability of the classical and 

non-local beam deformation theories to explain the dynamic behaviour of heterogeneous 

models, in the next chapter, the theory of micropolar elasticity will be studied and its 

applicability and abilities in explaining the dynamic response of the heterogeneous beams 

and plates will be investigated. 
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4 Application of Micropolar Theory to 2D Beams 

In chapter three, the Eringen non-local Timoshenko beam could not explain the dynamic 

behaviour of two-dimensional heterogeneous beams. Therefore a more suitable theory must 

be used which should be able to explain the size effect in the dynamic behaviour of the 

heterogeneous materials. The micropolar theory, as briefly discussed in chapter two, has an 

additional degree of freedom: a micro rotation vector which allows the constituent material 

particles to rotate individually.  Additional couple stresses, as well as the stresses, are taken 

into considerations in the micropolar theory (Lakes 1996) and orthogonal shear stresses may 

therefore be symmetric or asymmetric. In this chapter, two-dimensional plane-stress 

formulation of micropolar theory will first be discussed and one of the micropolar constants, 

namely the characteristic length of bending, will be analytically obtained. 

4.1 2D micropolar formulation 

Equation (4.1) defines the strain components,  , in terms of the displacements,  , and micro-

rotations,  , by (Hossein Abadikhah and Folkow 2015; Hassanpour and Heppler 2017): 

                    (4.1) 

The micro-rotation occurs due to the effects of asymmetric components of shear stresses on 

infinitesimal material particles which causes these material points to rotate individually and 

is different from the macro rotation when the slope of the displacement is considered. The 

micro and macro rotations are shown in figure 4-1. 

 

 

Figure 4-1: Representation of micro and macro rotations in a micropolar medium 
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The macro-rotation is: 

                    (4.2) 

The strain tensor in equation (4.1) is composed of symmetric and asymmetric strain tensors 

as in (Hassanpour and Heppler 2017): 

        
       

   
 (4.3) 

Thus: 

 
   
   

  
 

 
            

(4.4) 

 
   
     

 

 
(         )                      

(4.5) 

Therefore equation (4.1) can be expanded in a 2D matrix form in Cartesian coordinates with 

indices substituted i, j, k=x, y, and z as follows: 
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(4.6) 

In the dynamic case micro inertia also needs to be included into the equations of dynamic 

equilibrium for linear and angular momenta. Therefore the equations of equilibrium to 

satisfy the micropolar linear elasticity balance will be according to:  

 
       

    

   
 

(4.7) 

 
                    

    

   
 

(4.8) 

where     is the microinertia tensor. In the literature, the value of the micro-inertia is taken 

constant (Hossein Abadikhah and Folkow 2015) but in the next chapter, it will be shown that 
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the micro inertia depends on volume fraction through the characteristic length of bending 

and its influence on another constitutive parameter, the coupling number, will be discussed. 

In the plane stress case, the micro-rotation vector is only perpendicular to the plane and the 

shear stresses relating to z coordinates vanish. Therefore,         and          

               

The stress and strain tensors are define by: 

 
  [               ]

  
(4.9) 

   [               ]
  

 

(4.10) 

where T stands for transposed. 

Stress and couple stress are linked to the strain and curvature as follows: 
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(4.11) 
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] (4.12) 

where the material constitutive matrix “𝔻1” and “𝔻2” can be derived from equations (2.16) 

and (2.17) and reduced for a 2-D micropolar in plane stress case are given by Lake (2003) 

as:  
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 (4.13) 
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𝔻  [

         

             
] 

(4.14) 

Equations (4.13) and (4.14) may be written in terms of 4 independent engineering constants 

as defined by Lake (1996)
  
in a generalised plane stress form thus: 
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 (4.15) 
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(4.16) 

where the engineering constants relate to the micropolar constants as follows:  

 
   

                    

            
 

(4.17) 

 
   

  

            
 

(4.18) 

 
    

  
  

         
  

(4.19) 

 
   

  

        
  

(4.20) 

Here    is the micropolar modulus,    is the micropolar Poisson’s ratio and    is a length 

scale parameter termed the characteristic length in bending that should reflect the 

microstructural scale. N is the coupling number that quantifies the shear stress asymmetry.  

The characteristic length of bending,      in equation (4.16) can be obtained analytically for a 

slender beam which is now described in section 4.2. 

According to equation (4.15), the shear stress and strain relationship may be written in 

matrix form: 
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(4.21) 
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or 
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(4.24) 

indicating that the asymmetric components of the shear stress are controlled by N according 

to: 

 
                     

 

    
  

(4.25) 

 
                 

 

    
  

  

    
   

(4.26) 

This parameter can be identified from the higher order modes using an iteration method that 

will be described in chapter five since these involve increased shear deformation. 

The solid behaves in a classical homogeneous manner if          and    equal zero, while 

if N=1 and therefore, microrotation and macrorotation are not kinematically distinct 

implying that, they are equal, such that        and this limiting case is usually referred to 

as couple stress elasticity. 

4.2 Characteristic length in bending,    

As shown in equations (4.11), (4.12), (4.15) and (4.16), the couple stress tensors are related 

to the micro rotations which allow identification of one of the micropolar constants, namely 

the characteristic length of bending, analytically through the primary transverse frequency of 

slender beams.    and    can be determined from static tensile tests where no size effect is 

anticipated while    can be obtained from mode 1 dynamic behaviour as outlined here. 
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In a slender beam where       ,  the micro and macro-rotations actually become 

indistinguishable (Hadjesfandiari, Hajesfandiari, and Dargush 2016): 

                                   (4.27) 

The bending moment, M, is related to the internal force stress,   , and couple stress,   , 

thus: 

 
  ∫            

 

 

 
(4.28) 

Also, 

  

 
 

  

  
 

   

  
  

   

   
  

(4.29) 

where R is the radius of curvature and W is the transverse displacement. 

The in-plane couple stress     and the normal stress     are: 

 
       

   

  
 

(4.30) 

 
    

    

 
 

(4.31) 

where     is the micropolar flexural modulus which is assumed to be equal to the 

micropolar tensile modulus   . 

If          then: 

 
     

  

 
 

(4.32) 

The second moment of area is defined as: 

 
  ∫    

 

 

 
(4.33) 

where A is the cross-section of the slender beam: 
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(4.34) 

Substituting for 
 

 
  

   

    in the moment-curvature relationship: 

    

   
  

 

        
  

 

   
 

(4.35) 

 
                 

(4.36) 

where      is the micropolar flexural rigidity 

For an unloaded Euler-Bernoulli beam in the dynamic case: 

 
   

   

   
        

(4.37) 

where μ is the mass per unit length given by: 

 
     

(4.38) 

and 
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(4.39) 
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(4.40) 

Also,           in absence of any couple stress. 

The equations (4.33) and (4.34) may also be written as: 

 
  

   

  
 

(4.41) 
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(4.42) 

for a rectangular sectioned beam. By combining the equations (4.17) and (4.19) it follows 

that: 

 
   

     
 

  
  

(4.43) 

Note that parameter    (Beveridge, Wheel, and Nash 2013a) differs from the conventional 

characteristic length in bending,    , by a factor of 24. 

By substituting equations (4.41), (4.42) and (4.43) into equation (4.40): 
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(4.44) 

Rearrange the equation (4.44) regarding mass and frequency: 
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(4.45) 

Note that if    is taken as in the equation (4.16), the resulting characteristics length will be 

about √    or 4.3 times smaller. By applying    as it appears in equation (4.16), the equation 

(4.45) can be modified to: 
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(4.46) 

Equation (4.45) thus relates the characteristic length,   , non-dimensional frequency, λ, 

micropolar flexural modulus,    , and beam dimensions, to the product of beam’s mass, m 

(m without subscript is scalar and stands for mass), multiplied by squared frequency. Thus, if 

this product is determined for beams of various size and plotted against the beam’s 

reciprocal size measure,        , then it is possible to obtain     or λ from the intercept and 

the characteristic length from the slope. See table  4-1. Since equation (4.45) and (4.46) 

assume the beam is slender, they are only applied to mode one here where this assumption is 

presumed valid. 
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The FE results, as presented in chapter three, indicated that in some cases, the size effect 

appears to be consistent with more generalised continuum descriptions of dynamic 

constitutive behaviour such as micropolar elasticity in that an increase in frequency with 

reducing size is observed while in other cases the effect is contradictory. Therefore, Equation 

(4.45) was applied to all four sizes of sample to obtain results, the characteristic length of 

bending, listed in table  4-1 for the following beam types: 

1) Perforated beams with continuous boundaries 

2) Beams with compliant inclusions and continuous boundaries 

3) Beams with compliant matrix and textured boundaries 

Other beam types did not satisfy the micropolar theory since the size effect is not as 

anticipated. 

The characteristic length does not vary with beam size and only depends on volume fraction. 

See table  4-1 below: 

Table 4-1: Characteristic length changes with volume fraction,     . Based on all four sizes of beam 

model 

Void or 

inclusion 
vol.  

fraction 

   for beams with continuous boundaries, mm 
   for beams with textured 

boundaries, mm 

Perforated 

beams 
   

Beams with 

compliant 

inclusions 
   

Beams with 

compliant matrix 
   

4% 0.2717 98.99% 0.2555 99.99% 0.2218 99.70% 

8% 0.4139 99.77% 0.3612 99.97% 0.3126 99.76% 

15% 0.5432 99.78% 0.4681 99.95% 0.3829 99.91% 

23% 0.6522 99.88% 0.5621 99.94% 0.4379 99.95% 

33% 0.7334 99.83% 0.6367 99.93% 0.4759 99.91% 

The coefficients of determination, denoted    , in table 4-1 indicate the accuracy of the 

Polyfit approximation for in obtaining the values of characteristic length for various volume 

fractions. 

Beveridge et al. (2013a) identified the characteristic length of bending through static 

mechanical 3 point bending experiments on four slender beams of high mass density 

aluminium (HMD) with periodic perforations of radius equal to 3.5 mm, breadth 12.7 mm, 

depths of 12.7, 25.4, 38.1, and 50.8 mm and aspect ratio of 10:1. Although their test pieces 

were scaled up and that their results are available for only one volume fraction equal to 0.23, 

however, the normalised value of the characteristic length of bending that they identified is 

in good agreement with the value that was determined through dynamic procedure for the 

same volume fraction in this chapter, as seen in table 4-2: 
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Table  4-2: The normalised characteristic length of bending,    , for perforated beams of volume 

fraction equal to 0.23 

 
Void 

radius 

Unit-cell 

depth 

Normalised 

void radius 

The 
characteristic 

length of 

bending 

The normalised 
characteristic 

length of bending 

 
                               

This work,  

Modal FEA 
0.25 0.866 0.289 0.652 0.753 

Experimental, 

3 Point 

bending case,  

Ref: 
(Beveridge, 

Wheel, and 

Nash 2013a) 

3.5 12.7 0.276 8.750 0.689 

As seen in figure 3-6 and 3-8, the variations in the normalised frequencies have an 

approximately linear relationship with       , except for the smallest beam sizes where the 

ratio of the radius of void or inclusion to overall beam thickness approaches the maximum. 

Therefore, in this work, the three largest sizes of beam model were considered in identifying 

the characteristic length of bending, as given in table 4-3 to avoid complications relevant to 

the smallest beam sample. However, while the values change from table 4-1 to 4-3, they 

don’t change dramatically. Therefore, values listed in table 4-3 of were subsequently used to 

estimate the coupling number in chapter 5. 

Table 4-3: Characteristic length changes with    . Based on the three largest sizes of beam model 

Void or 

inclusion vol.  

fraction,     

    for beams with continuous boundaries, mm 

    for beams with 

textured boundaries, 

mm 

Perforated 
beams 

   

Beams 

with 
compliant 

inclusions 

   

Beams 

with 
compliant 

matrix 

   

4% 0.332 97.12% 0.254 99.99% 0.256 99.92% 

8% 0.464 99.64% 0.377 99.99% 0.32 93.76% 

15% 0.608 99.41% 0.496 99.99% 0.412 99.77% 

23% 0.709 99.55% 0.601 99.99% 0.455 99.04% 

33% 0.817 99.93% 0.684 99.99% 0.479 97.70% 
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Figure 4-2: Linear changes of the characteristic length void radius for beams with continuous 

boundaries. Based on the three largest beam models 

   may be obtained directly from the equation (4.46) or simply multiplying the values in the 

above table by 
 

√  
  or 0.233 and they are listed below in table 4-4. The  

   values here are exactly equal to those listed in table 4-3. 

 
Table  4-4: Characteristic length (  ) changes with volume fraction. Based on the three largest sizes of 

beam model 

Void or inclusion 

vol.  fraction 

   for beams with continuous boundaries, mm 
   for beams with textured 

boundaries, mm 

Perforated 
beams 

Beams with compliant 
inclusions 

Beams with compliant 
matrix 

4% 0.077 0.059 0.060 

8% 0.108 0.088 0.075 

15% 0.142 0.115 0.096 

23% 0.165 0.140 0.106 

33% 0.190 0.159 0.112 

4.3 Summary and conclusions 

The FE results presented in chapter 3 were used to estimate the characteristic length in 

bending. A useful equation was derived analytically which relates the beam’s primary modal 

frequency to the inverse of the depth squared and then used to obtain the characteristic length 

of bending. This result agrees with the results of Frame (2013b) that were obtained through 

FE analysis of statically loaded perforated beams. The characteristic length of bending      

was found to behave linearly, in proportion to the void and inclusions radius but it was 

noticed that the smallest sample with one layer of voids/inclusions departs slightly from 

linearity. It was also found that the inverse of beams depth squared varies approximately 
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linearly with the mass multiplied by the square of the frequency of the primary mode but it 

deviates from linearity for the smallest sample. 

Equation (4.45) only facilitates the identification of the characteristic length parameter from 

the first flexural natural frequency based on the assumption of slender beam behaviour for 

which shear deformation is negligible. 

Therefore, in order to have a more conservative approach towards deviation from linearity of 

length scale, the characteristic lengths based on the three largest sample models were 

obtained.  

As there was no analytical method available to relate the coupling number to modal 

frequency similar to the method used for obtaining the characteristic length, the coupling 

number may therefore be obtained with known parameters such as characteristic length of 

bending and the micro-inertia in an iterative process employing a numerical procedure as 

outlined in the next chapter. 
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5 Development of Algorithms for the Numerical CVFEM and 2D-

MPFEM and Investigation into the Effect of Micro Inertia on the 

CouplingNumber“N” 

5.1 Introduction 

Now that the characteristic lengths of bending for beam models have been identified, the 

linear isotropic micropolar theory will be incorporated into conventional finite element and 

control volume finite element methods (MPFEM and CVFEM) through a set of 

mathematical models and algorithms which facilitates the modal analysis of heterogeneous 

beam models. Therefore, the methods of construction of the main matrices, namely the 

stiffness, mass and micro-inertia matrices along with the step-wise algorithms needed for 

numerical analysis will be presented. These algorithms can be used in future to develop 

useful codes in any programing language for modal analysis. Besides this, another algorithm 

will be developed which is useful for the identification of the coupling number, N, which is 

named the “Parameter Identification Algorithm” will be described in details which benefits 

from the modelling and modal analysis of MPFEM or CVFEM and the linear regression 

method for the iteration process and obtaining the coupling number specific to the 

heterogeneous beam models. The parameter identification algorithm will be used later in 

chapter six to obtain the coupling number, N, for various beam types. The effect of micro 

inertia on the coupling number will also be described in section 5.5.  

5.2 Formulation of the numerical CVFEM (and 2D-MPFEM) 

In this section, the formulation which incorporates the micropolar theory into two different 

numerical procedures for dynamic analysis is discussed. Both the control volume finite 

element method (CVFEM) incorporating micropolar elasticity and two-dimensional 

micropolar finite element method (2D-MPFEM) used in obtaining the required stiffness 

matrix are described. Derivation of the mass and micro inertia matrices and solution process 

are explained in detail. The formulations will be later used in section 5.3 for development of 

algorithms which are used for modal analysis of micropolar beams. 

5.2.1 Modelling 6-node triangular element 

In a 6-node linear strain triangular element, figure 5-1, there are three nodes at the corners 

plus three mid-side nodes. In conventional, displacement-based finite element procedures, 

each node has two degrees of freedom but here nodes can also rotate independently as well 
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as undergoing displacement in the coordinates of the plane. Therefore, an extra degree of 

freedom called the micro rotation is associated with each node.  

 
Figure 5-1: The conventional mode numbering in a 6-node triangular element in Cartesian coordinates 

 

The displacements in 6-node triangular element are quadratic functions.    and    are 

assumed to be displacements in x and y directions. Therefore: 

           
                  

     (5.1) 

in which the polynomials are of the second order. 

The overall displacement field of the triangular element can be expressed in the following 

way: 

          {
 
 } 

(5.2) 

where   is the shape function of a specific node   ,          in the natural coordinate 

system in which internal location coordinates are defined based on the fraction of the sub-

triangles areas to the overall area of the triangular element; as seen in figure 5-2:   

 
Figure 5-2: The illustration of natural coordinate system for triangular element 

 



89 
 

5.2.2 Stiffness matrix based on micropolar elasticity (2D-MPFEM)  

The six-node triangular element is used in the development of a finite element code 

incorporating the aforementioned micropolar theory and each shape function is identified as 

  , for i=1,2,…6; Shape functions for six-node triangular element can be found in reference 

(Bathe 2006; Zienkiewicz and Taylor 2000; Vladimir and Tomic 2015; Kaltenbacher 2015) 

and are as follows:  

   [                                        ] (5.3) 

where 

         (5.4) 

By substituting equation (5.4) in (5.3), the shape functions may also be written as:  

   [                                                    
                            ]   

(5.5) 

The derivatives of the shape functions with regard to the area coordinates are:  

 

[

  
  

  
  

  
  

]  [
                                                        
                                                          
                                                        

] 
(5.6) 

For any point with coordinates (x, y) in the 6-node triangular and isoparametric elements we 

may write:  

 

  ∑       

 

   

 

(5.7) 

 

 

  ∑       

 

   

 

(5.8) 
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The derivatives of the shape functions in the Cartesian and natural coordinates are related 

according to equation (5.9): 

 
[
   

 

   
 
]  [

          

          
] [

   
 

   
 
]     [

   
 

   
 
] 

(5.9) 

where     represents the inverse of the Jacobian matrix and is used to transform the 

derivatives of shape functions from natural to Cartesian coordinates. The  Jacobian matrix 

can be calculated as follows(Zienkiewicz and Taylor 2000; Zienkiewicz, Taylor, and Zhu 

2013; Zienkiewicz and Taylor, n.d.; Bathe 2006):   
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∑     

 

 

   

    ∑     
 

 

   

∑     
 

 

   

    ∑     
 

 

   ]
 
 
 
 
 

 
(5.10) 

Thus 

        ̂ (5.11) 

i.e. 

           (  ̂) 

 

(5.12) 

where  ̂ is the area of the triangular element. 

Referring to equation (4.11), the strain field as described by [         
]
 

, can be related to the 

displacement field and micro rotation by matrix B, see equation (5.13). Let   ̅ represent the 

strain field and  ̅ represent the displacement and micro rotation vector: 

 [ ]̅  [ ][ ̅] (5.13) 

where: 
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 [ ̅]  [        ]
 

  (5.14) 

Knowing the derivatives of the shape functions   , the matrix B can be constructed as 

follows: 

 
[ ]  [

[  ]

[  ]
] 

(5.15) 

where the matrices P1and P2 are: 

 

[  ]  

[
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(5.16) 

 

 
[  ]  [

               
 

               
 
] 

(5.17) 

 

and   is the shape function of the 6-node triangular element at node i, where i=1, 2… 6 

Now the stiffness matrix for the 6-node triangular element,    , can be calculated: 

 
   ∫ ∫   𝔻    [ ]

   

 

 

 

     
(5.18) 

where    has the size of       . Equation (5.18) was solved by symbolic integration in 

MATLAB. T stands for transposed. 

5.2.3 Determination of mass and micro inertia matrices 

In this section a full description of the mass and micro-inertia matrices and how they actually 

were used to construct the element mass matrix is given. 
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5.2.3.1 Mass matrix for 6-node triangular element  

The mass matrix for a 6-node triangular element must be constructed such as to form an 18 

by 18 template mass matrix for a six-node triangular element which incorporates consistent 

and lumped mass matrices. The consistent mass matrix,      interpolates nodal masses 

within the area of the triangle while in the lumped mass matrix,   , the element mass is 

equally spread over all element nodes as lump masses. 

First a lumped mass matrix    was defined,  

 
   

  ̂

 
    [       ]      

(5.19) 

Then a consistent mass matrix was obtained for the 6-node triangular element using equation 

(5.20): 

 
   ∫        𝕍

 

 

 
(5.20) 

where   is the shape function, and T stands for transposed.   , the consistent mass matrix, 

is thus an integration of mass over the domain 𝕍 which is the area of a triangular element 

within the mesh, figure 5-1. 

In equation (5.20), the shape function   and its transpose have been multiplied as in equation 

(5.21):  

 

      

[
 
 
 
 
 
          
          
          

          
               
           ]

 
 
 
 
 

[

                
                

                

            
            

            

             
             

              

] 
(5.21) 

Note that   is the shape function and is different from the coupling number N associated 

with shear stress asymmetry. 

The elements in the third column of the first matrix and the third row of the second matrix in 

equation (5.21) are introduced to account for the mass which is associated with the micro-

inertia. The micro inertia is described in section 5.2.3.2.  The integration of equation (5.21) 

required the multiplication of the shape functions and integration over the area of the 

triangular element (Huebner et al. 2001) as follows: 
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∫     𝕍

 

𝕍

 ∫   
   

 
  
  𝕍

 

𝕍

 (5.22) 

where             and indicate the node numbers; and 𝕍 is the volumetric domain which 

becomes an area in the 2D case, thus the integration of the shape functions over the area 

coordinates, according to Stricklin (1968) and Eisenberg et al. (1973), are obtained using the 

equation (5.23): 

 
∫  

   
 
  
  𝕍

 

 

   ̂ (
      

          
) (5.23) 

Thus, for example: 

 
∫      ̂
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(5.24) 

The rest of the integrals are calculated accordingly and listed below:  

Table 5-1: Integration of the matrix elements of the area domain 

i j ∫      ̂

 

 

 i j ∫      ̂

 

 

 

1 2 
  ̂

   
 3 3 

 ̂

  
 

1 3 
  ̂

   
 3 4 

  ̂

  
 

1 4   3 5   

1 5 
  ̂

  
 3 6   

1 6   4 4 
  ̂

  
 

2 2 
 ̂

  
 4 5 

  ̂

  
 

2 3 
  ̂

   
 4 6 

  ̂

  
 

2 4   5 5 
  ̂

  
 

2 5   5 6 
  ̂

  
 

2 6 
  ̂

  
 6 6 

  ̂
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In order to have both the lumped,     and consistent masses considered, a template matrix  

   with a scaling coefficient   equal to 0.5 was introduced, see equation (5.25) and 

reference (Colorado 2010). Therefore, the template mass matrix is obtained for each element 

within the mesh using the equation below: 

                (5.25) 

According to Felippa et al. (2015), where the details of this method are discussed, as beams 

depth increases, the consistent mass matrix causes an overestimation of frequencies and, on 

the contrary, a diagonally constructed mass matrix underestimates frequencies. Therefore, a 

linear combination of the two mass matrices with   equal to 0.5 has been chosen to 

overcome these problems. 

The values in table 5-1 were used in equation (5.20) to determine the consistent mass matrix. 

Now that the mass matrix of a triangular element is defined according to equation (5.25), the 

micro inertia, which is described in section 5.2.3.2, needs to be incorporated into the mass 

matrix. In equation (4.8), the micro-inertia tensor,     is considered as equal in all directions 

for simplicity. Therefore, in order to include micro-inertia into the formulation, it must be 

assembled into the elements of an overall mass matrix that are associated with the micro 

rotation accelerations. Thus, the micro-inertia matrix is incorporated into the overall mass 

matrix. Deriving the micro-inertia matrix is explained in further detail in section 5.2.3.2. 

5.2.3.2 Micro-inertia matrix in the 2D field 

As referred in section 2.4, there is no extensive work on how the micro-inertia might be 

obtained or on its influence on the coupling number. In this work, periodic voids or 

inclusions are introduced into the representative material which requires a method for 

obtaining an appropriate micro-inertia value for the beam models.  In this section, the 

relation of the micro-inertia to the characteristic length of bending will be shown. The 

determination of micro-inertia in finite element applications is rather complex to visualise 

and understand as the FE elements do not undergo micro-rotation but the individual nodes 

presumably do. On the other hand, the nodes have no physically spatial dimensions and are 

defined as the point of masses and their mass are interpolated throughout the element.  

Therefore to quantify the micro-inertia the nodal mass must be multiplied by a value which 

represents the square of a length dimension and at the same time be independent of the 

dimensions of the triangular element.  
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In a pertinent work, de Borst et al. (1991) related the micro inertia density to the square of 

the characteristic length in bending by defining a microelement. In this work, a cubic micro-

element, not to be confused with a conventional finite element, is considered and it is stated 

that the rotational inertia depends on the shape and size of the microelement. However, in the 

finite element method elements are defined by nodes which are considered as the points of 

mass. As said, the finite element models in this chapter incorporate the linear isotropic 

micropolar elasticity using triangular finite elements, but they do not represent individual 

microelements that rotates independently as seen in other models such as, for example, 

materials with granular particles where micro-inertia can be directly identified by the mass 

and radius of the constituent particles. In fact, in the finite element method, the micro-inertia 

is applied to the models but independently from the mesh density and size or the type of the 

finite element, e.g., FE triangular or brick elements. Therefore the micro-inertia density will 

be constant for each material with a specific characteristic length in bending. 

If the micro-element dimensions, despite the shape of the element, approach zero, then the 

micro inertia becomes independent of the shape and dimensions of the micro-element and 

only depends on the characteristics length. Such a three-dimensional micro element is shown 

in figure 5-3.  

 

Figure 5-3: Representation of a cubic micro element 

 

 

If we consider the rotation of a cubic micro-element of edge length equal to d, in a 2D x-y 

plane, as identified in figure 5-3, then the rotational inertia per unit volume,    may be stated 

as: 

y 

x 
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(∫         
 

 
       )

    
 

(5.26) 

where   is the edge length of a cube element in which all edge lengths are equal.   and   are 

coordinates of any point in the x-y plane of the front face of the micro element which vary 

from      to    . Thus: 

 
  

   

 
 

(5.27) 

The bending moment for a cubic micro-element can be stated as: 

           (5.28) 

where 

 
  

 

  
    

  

  
 

(5.29) 

i.e. 

 
    

 

  
        

(5.30) 

where     is the curvature of the cubic micro-element and can be represented by the 

derivative of the micro-rotation: 

 
        

   

  
 

(5.31) 

The couple stress can be obtained by: 

 
    

   

 
 

    

  

   

  
  

(5.32) 

From the micropolar theory which was described in chapter four and equation (4.11) to 

(4.16) in particular, the couple stress is: 
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where 

Then since 

It follows that 

 

By substituting the equation (5.36) into equation (5.27): 

  
   

 
 

 
    

 

    
 

 

(5.37) 

Thus:  

 
  

   
 

      
   

(5.38) 

Note that in some literature    in equation (5.34) is taken equal to 
     

 

    
 and this will cause 

the micro-inertia to be doubled. It will be shown in the section 4.6 that the coupling number, 

N, will not be greatly affected by this. 

The micro-inertia term in equation (5.38), if assumed to be independent of the direction it 

applies to, will thus be a parameter which is related to the square of the characteristic length 

of bending.  

 
       

   

  
  

(5.33) 

        
  (5.34) 

     
 

    
 

    

  
 

(5.35) 

 
   

    
 

    
 

(5.36) 
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In section 5.5, a set of numerical trials have been performed to investigate the validity of the 

equation (5.38). 

5.2.4 Solution to eigen problem 

Having obtained stiffness and mass matrices for an element, assembly of global mass and 

stiffness matrixes can then be carried out by following standard finite element procedures. 

Finally, the eigenvalue equation below can be solved in the absence of external loads: 

           (5.39) 

to obtain the natural frequencies. Here    and    are the global stiffness and overall mass 

matrices respectively.  

By solving the eigenvalue problem, equation (5.39), ω
2
 will be an array comprised of the 

diagonal elements of the resulting matrix. The square root of the array elements provides the 

frequency spectrum. Once the modal frequencies are obtained the normalised displacement 

components can be extracted, and the mode shapes obtained. 

5.3 Algorithms used for modal analysis of micropolar beams 

In this section the mathematical formulations which were defined in section 5.2 are used to 

develop algorithms which are used to develop MATLAB codes for the modal analysis and 

they can also be used in future to create codes in any programing language. 

5.3.1 The 2D beam modelling process 

Straight-sided and equal-sized triangular elements were used for modelling the micropolar 

beams. The numbering of elements begins from left to right side of the beam, counting both 

triangles on a line division as seen in figure 5-4 for example: 
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Figure 5-4: An example of element counts in a beam with four and two line divisions in length and 

depth to generate one sample beam with sixteen elements 

The beam modelling procedure is conducted according to the following algorithm: 

Step 1: Start [Start of algorithm]; 

Step 2: Enter the overall dimensions beam model: e.g., beam depth, width; 

Step 3: Enter the number of layers (NCy), number of line divisions across the depth 

and length of the beam; 

Step 4: Enter the beam’s length to depth aspect ratio (AR); 

Step 5: Create and save Element-Node adjacency table (ENA);  

Step 6: Create and save the list of coordinates, nodal-coordinates (GNC), for all 

nodes in the beam in ascending order; 

Step 7: Generate a 2D plot representing the actual beam dimensions for visual 

confirmation; 

Step 8: Normalise the nodal coordinates by the maximum length and depth; 

Step 9: Save the number of elements (nel); 

Step 10: Save the number of nodes per element (nnel); 

Step 11: Save nodal degree of freedom (ndof); 

Step 12: Save the number of nodes (nnode); 

Step 13: Calculate the element’s degree of freedom edof=ndof*nnel; 

Step 14: Save the element’s degree of freedom sdof; 

Step 15: Calculate the system’s degree of freedom sdof= ndof*nnode; 

Step 16: Save the system’s degree of freedom sdof; 

Step 17: Stop [End of algorithm]; 

The beam mesh comprised of 2 and 18 element divisions through the depth and along the 

length respectively for the smallest sample size. Overall dimensions of each model 

correspond to the beam sizes used in chapter three for finite element models. For example, 

the second smallest sample size, which is comprised of two layers of unit cells, has NCy=2. 

Therefore its micropolar counterpart will consist of 4 and 36 element divisions across the 
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depth and along length of the beam model. Figure 6-3 shows the mesh assembled from 

triangular elements by the CVFEM or MPFEM analysis. So, every unit cell which was 

created through detailed finite element modelling in chapter three, are represented by eight 

triangular elements. 

5.3.2 Algorithm for constructing the element stiffness matrix 

Here the mathematical model in section 5.2.2 is presented in the form of an algorithm 

through which the stiffness matrix, mainly 2D-MPFEM, can be constructed and used for 

modal analysis. This algorithm can be implemented for beam modelling. Note that the 

difference between CVFEM and MPFEM is only in the construction of the element’s 

stiffness matrix. Therefore, if the CVFEM is intended instead of MPFEM, the already 

existing algorithm shall be used as briefly discussed in 2.4 and provided by Beveridge et al. 

(2013b). Thus, the general algorithm to derive the global stiffness matrix using the 2D-

MPFEM is defined as follows: 

Step 1: Start [Start of algorithm] 

Step 2: Entre the engineering micropolar constants:                

Step 3: Construct the matrix of the material properties, 𝔻, (matrix of material 

properties), using the micropolar engineering constants as in equation (4.12), 

(4.15) and (4.16) 

Step 4: Select the first element of the finite element model from section 5.3.1; 

Step 5: Select the nodal coordinates of all six nodes in the triangular element in 

Cartesian coordinate system e.g.,            and           ; 

Step 6: Calculate the nodal distances of the vertex nodes: 

           ) ;           );           ); 

          ) ;           ) ;           ) ; 

Step 7: Calculate the area of the triangular element:  

 ̂                 /2; 

Step 8: Calculate the matrix of derivatives of the shape functions, equation (5.3) 

with respect to area coordinates,          . According to the equation (5.6)  

Step 9: Calculate the Jacobian (Ĵ) and the inverse of the Jacobian matrix using the 

derivatives of shape functions and the coordinates from step 5 as in equation 

(5.10) and (5.11); or:  

For 2D analysis:              ̂ as in equation (5.12) 
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Step 10: Calculate the matrix of derivatives of the shape functions with respect to 

Cartesian coordinates                according to the equation (5.9) 

Step 11: Construct the matrix B using the derivatives of shape functions
3
 from step 10 

to generate matrix B of size      as in equations (5.15), (5.16), and (5.17) 

using the following pseudo code: 

B=sym (zeros (6, 18)); 

For n=1:6 

    B (1, (3*n-2)) = dNx (n); 

    B (2, (3*n-1)) = dNy (n); 

    B (3, (3*n-2)) = dNy (n); 

    B (3, (3*n))    = N (n); 

    B (4, (3*n-1)) = dNx (n); 

    B (4, (3*n))    = -N (n); 

    B (5, (3*n))    = dNx (n); 

    B (6, (3*n))    = dNy (n); 

End 

Step 12:  Calculate the element stiffness matrix using equation (5.18) and the 

following pseudo code: 

B1=substitute   with 1-   -    in B matrix; 

B2=𝔻*B1*(determinant of Ĵ); 

B3= multiply the inverse of B1by B2; 

k=integrate from B3 with respect to    from 0 to 1-  ; 

k= integrate from k with respect to   from 0 to 1;    Note: k will be a matrix 

of size         

Step 13: Insert the element stiffness matrix into the global stiffness matrix,   ; 

Step 14: Continue the steps (2) to (13) for the subsequent element till the last element 

stiffness matrix is included into the global stiffness matrix; 

Step 15: Stop [End of algorithm] 

5.3.3 Algorithm for constructing element mass and micro-inertia matrices 

The template mass matrix is a weighed combination of the lumped and consistent mass 

matrices as described in section 5.2.3. The mass matrix for the 6-node triangular element 

                                                             
3 B (Row, Column)= The shape function  or derivative of the shape function. 
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also incorporates the micro-inertia matrix. Thus, the general algorithm to derive the global 

mass matrix using the 2D-MPFEM is defined as follows: 

Step 1: Start [Start of algorithm] 

Step 2: Entre the material mass density,  ; 

Step 3: Select the first element of the finite element model;  

Step 4: Define the nodal coordinates of all six nodes in the triangular element in 

Cartesian coordinate system e.g.,            and           ;  

Step 5: Calculate the nodal distances of the vertex nodes: 

           ) ;           );           ); 

          ) ;           ) ;           ) ; 

Step 6: Calculate the area of the triangular element:  

                  /2  

Step 7: Calculate the volume of the triangular element; 

Step 8: Create an         identity matrix; 

Step 9: Multiply the element volume by its mass density and divide the product by 

6; 

Step 10: Multiply the product of step (9) to the identity matrix from step (8) to 

generate lumped mass matrix; 

Step 11: Generate an         matrix using equation (5.21) and the values in table 

4-1; 

Step 12: Multiply the element volume by mass density and the matrix from step (11) 

to generate the consistent mass matrix; 

Step 13: Having the lumped and consistent mass matrices obtained from steps (10) 

and (12), generate the template mass matrix using equation (5.25); 

Step 14:  Calculate the micro-rotation       
   

 

      
  from equation (5.38); and inject 

into the rows and columns and rows in the matrix generated from step (13) 

which represent the micro-rotations.  

Step 15: Insert the element mass matrix into the global mass matrix,   ; 

Step 16: Select the next element; 

Step 17: Continue the steps (4) to (16) for the subsequent element till the last element 

stiffness matrix is included into the global stiffness matrix; 

Step 18: Stop [End of algorithm] 
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5.3.4 Solution process to eigenvalue problem 

The solution process begins with defining the system matrices which are zero matrices for 

reserving memory spaces for stiffness, mass and forces based on the total number degrees of 

freedom of all nodes comprising the beam geometry. The next step in the process is to 

generate element stiffness, mass and micro-inertia matrices. The micro-inertia matrix will be 

merged into the element mass matrix. The element stiffness matrix is calculated based on the 

selection made between CVFEM and MPFEM by the operator. The matrices are then 

globalised and assembled into the system matrices. The process continues in a loop for all 

elements. The boundary conditions take effect in the global matrices by setting the selected 

rows and columns to zero as appropriate. Finally, the eigen problem is solved according to 

equation (5.39). Following the solution of the eigen problem, the list of eigen values,    , 

and the matrix of eigen vectors are saved for post-processing.  

The algorithm of the solution stage is as follows: 

Step 1: Start [Start of algorithm] 

Step 2: Call   , (the global mass matrix including micro-inertia matrix); 

Step 3: Call   , (the global stiffness matrix); 

Step 4: Solve the eigen problem by applying equation (5.39) using the pseudo code: 

 [Eigen vectors, Eigen values]=eig          

Step 5: Save eigenvectors; 

Step 6: Save eigenvalues;   

Step 7: Stop [End of algorithm]  

5.3.5 Post-processing of data for extracting the modal frequencies and mode shapes 

The frequency values are obtained by taking the square root of the eigen values and 

multiplied by    then arranged in ascending order. The normalised displacement of each 

node in the system in x and y directions is defined by identifying row and column number in 

the matrix of eigen vectors for that specific frequency and, after arranging them in ascending 

order, saving the values as vectors for x and y displacements for each node. The eigen vector 

values contain normalised values which could be zero, positive or negative. These eigen 

vector values are then added to the normalised GNC coordinates which result in mode shape 

coordinates. 

The algorithm of the post-processing stage is as follows: 

Step 1: Start [Start of algorithm] 
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Step 2: Take the square root of the eigenvalues; 

Step 3: Multiply the eigenvalues by    to obtain   values; 

Step 4: Arranged the in ascending order; 

Step 5: Extract corresponding row and column associated with each frequency from 

the matrix of eigenvectors; 

Step 6: Add the eigenvector to the normalised nodal coordinates obtained from Step 

(8) section 5.3.1;  

Step 7: Generate a 2D plot representing the mode shape for any of the specified 

modal frequency in step (5); 

Step 8: Stop [End of algorithm]  

Note that the use of these algorithms will result in generating the full frequency spectrum 

including both flexural and longitudinal modes. Therefore, to identify the flexural 

frequencies, every individual frequency and its corresponding mode shape must be visually 

investigated for categorisation of the modal frequencies. 

5.4 A parameter identification algorithm for obtaining the coupling 

number“N”usingCVFEM 

Before embarking on the investigation into the effect of micro-inertia on the coupling 

number, which will be discussed in section 5.5, a numerical method must be introduced to 

obtain the coupling number.  

N will be estimated through linear regression implemented in an iteration method.  This 

method was used by Beveridge et al (2013a) for the static three point bending problem. The 

linear regression is a fairly standard method and is used for curve fitting. Therefore an 

algorithm for identification of the coupling number, N, is used. For this purpose, the values 

of characteristic length of bending which were previously estimated for beam models in table 

4-3 will be used and then the iteration process will only be carried out to identify the 

coupling number for beams with specified volume fractions.  

The first two transverse modes are used in the process to iterate for coupling number, N, 

which, as a constitutive property, should satisfy all modal frequencies and all model depths.  

Therefore, the mass of each beam specimen is calculated, the higher flexural frequencies 

(modes 1 and 2) which were previously obtained through finite element analysis in chapter 

three will be selected and the values for     against     will be derived. As seen already 

the      values are on the same lines when plotted against    . Therefore, this line will be 
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set as the reference and the linear regression attempts to fit the      values using the 

numerical control volume finite element method (CVFEM) to those obtained from detailed 

FEA as best as possible. 2D-MPFEM can alternatively be used to derive     . The 

parameter identification algorithm is therefore linked to the algorithms described in section 

5.3 through the use of CVFEM or MPFEM methods to obtain      for micropolar beams. 

A value is specified for N as the initial guess which must be near but not equal to one such as 

N=0.95. A set of      are calculated for all required beam models (beam depth: NCy=2, 3 

and 4) and then the mean square value is calculated using the sequence of equation (5.40) to 

(5.46):  

 

 
               

 

(5.40) 

 
                   

 

(5.41) 

 
      

 

            
 ∑        

(5.42) 

 

 
                     

(5.43) 

 

 
                  

  
(5.44) 

 

The coefficient     which is used to check the necessity of repeating the iteration loop is: 

 
   

∑      ∑     

∑     
 

(5.45) 

 

If        , then the iteration stops, otherwise it repeats. At each iteration point, the value 

of the coupling number is updated as follows: 
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     {(

 

            
)∑

    

      
}     

(5.46) 

 

So the parameter identification algorithm attempts to find the best fit for the coupling 

number, N, by taking average values for beams with depths of two, three and four unit cells 

by iteration. Beams with one array of unit-cells were not considered for the reason of 

deviation from linearity seen with the beams of larger depths and shown in figure 3-6 

and 3-8. 

The above method is time consuming because the CVFEM is numerical and the above 

method uses iteration over the CVFEM outcome results. Therefore the mesh density used for 

meshing the beams in the process of parameter identification must be as low as reasonably 

possible. Three divisions in depth of the beam were found to satisfy the requirement of mesh 

density in this case.  

 

The parameter identification algorithm is as follows: 

Step 1: Start [Start of algorithm] 

Step 2: Entre the first and second flexural frequencies from FEA for the three largest 

samples with equal   ; 

Step 3: Construct matrix of modal frequencies against beam sizes    ; 

Step 4: Construct matrix square of frequencies    from step (3) 

Step 5: Specify    corresponding to the    in step (2); 

Step 6: Calculate the mass of each beam sample; 

Step 7: Construct matrix of      against beam sizes     for FEA models;  

Step 8: Save      values as      , (equation 5.40); 

Step 9: Calculate mean value,      , equation (5.42); 

Step 10: Entre the initial guessed value for N, equal to 0.95; 

Step 11: Go to algorithm for CVFEM or MPFEM described in section 5.3 to generate 

   for three largest beam depths; 

Step 12: Construct matrix of      against beam sizes     for CVFEM/ MPFEM 

models;  

Step 13: Save      values as        , equation (5.41); 

Step 14: Calculate error, equation (5.43); 

Step 15: Calculate Total, equation (5.44); 
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Step 16: Calculate the coefficient    , equation (5.45); 

Step 17: Stop if         , then the iteration stops, Go to Step (19); 

Step 18: Estimate new N, equation (5.46); Go to Step (11); 

Step 19: Report N; 

Step 20: Stop [End of algorithm] 

Now that the parameter identification algorithm has been defined, the effect of changing the 

micro-inertia value on the coupling number, N, and the validity of the equation (5.38) can be 

studied and is discussed in detail in section 5.5.  

5.5 The effect of micro-inertia on the coupling number “N” 

As described in chapter four, in order to perform a two-dimensional modal analysis using the 

micropolar theory, the material micropolar engineering elastic constants were identified 

except the coupling number N which is to be determined in chapter six but first the 

influencing parameters must also be investigated. In two-dimensional beam vibrations, the 

characteristic length of bending is not the only parameter which influences the coupling 

number. The other important influencing parameter is the micro inertia. Therefore, in this 

section the effect of micro-inertia on the coupling number will be investigated. The 

appropriate coupling numbers for the beam models will subsequently be obtained in chapter 

six.  

5.5.1 Validation of the analytically determined micro-inertia 

For the validation of the equation (5.38), the value of the micro inertia was varied from a 

small fraction of   
  to a much higher bound as follows: 

 

 
               

  
 

      
                    

  
 

      
 

(5.47) 

The multiplying coefficient,    , varied from a lower bound  
 

  
 to an upper bound    by 

doubling the value of    each time and evaluating the coupling number using the MPFEM 

procedure for different volume fractions of voids, three unit cells in depth and continuous 

boundaries. In figure 5-5 the value of N is drawn against       while in figure 5-6 the value 

of N is drawn against an arbitrary coefficient   . The values for coupling number with    

being equal to 2 are identified by a dotted rectangle in both graphs for which the equation 

(5.38) has been used to derive micro-inertia and consequently to identify the coupling 
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number, N. It can be readily seen that if     , then the coupling number become much less 

dependent on micro-inertia or the characteristic length and tends to remain constant. On the 

other hand for     , the value of the coupling number is highly affected by and sensitive to 

the micro-inertia and becomes unstable. Therefore, the derived micro-inertia appears to be a 

threshold above which the coupling number will be affected largely by the volume fraction. 

However, in the next section, two values of micro-inertia from the higher bound region are 

chosen, the related coupling numbers are obtained for two beam types with various volume 

fractions, see table 5-2, and the effect of using higher values of micro-inertia and on modal 

frequencies are discussed.  

 

 

Figure 5-5: The value of the coupling number, N, for different values of      and volume fractions. 

The beam has three unit cells in depth and continuous boundaries. 

(                                                      ) 
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Figure 5-6: The value of the coupling number, N, for different values of an arbitrary coefficient    and 

volume fractions. The beam has three unit cells in depth and continuous boundaries. (    

                                                  ) 

5.5.2 The effect of increased micro inertia on the coupling number 

In this section the effect of increasing the micro-inertia on coupling number and therefore the 

transverse modal frequencies is investigated. This, in fact, validated the analytical method 

which was used to define the micro-inertia in the MPFEM and the CVFEM algorithms and 

shows that increasing the micro-inertia beyond the values of the equation (5.38) will not 

improve the accuracy of the results. To do this, beams with continuous boundaries with 

voids or inclusions with three layers depth (NCy=3) were considered and the coefficient 

    equal to 36 and 44 have been tried using both MPFEM and CVFEM stiffness matrices in 

the parameter identification algorithm. So, a set of values for coupling number at different 

volume fractions were obtained to study how increasing the micro inertia, by increasing the 

value of    , will affect the coupling number and if these positively affect the modal 

frequency results. Thus, the values of coupling number corresponding to different volume 

fractions are obtained and listed in table 5-2 which indicate that the choice between MPFEM 

and CVFEM does not matter too much as the resulting coupling numbers are very close but 

the obtained coupling numbers become very sensitive to the volume fraction. 
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Table 5-2: Coupling number, N, if micro inertia increased by 36 and 44 times for a beams with 

continuous boundaries (Averaged over the three largest sample models) Sample size (NCy=3) 

  
     

 
 
  

               0.04 0.08 0.15 0.23 0.33 

Beams with 

voids and 

continuous 

boundaries 

    ,  mm - 0.332 0.464 0.608 0.709 0.817 

2D CVFEM 
36 

0.031 0.044 0.057 0.067 0.073 

2D MPFEM 0.032 0.044 0.056 0.066 0.074 

2D CVFEM 
44 

0.034 0.047 0.062 0.070 0.079 

2D MPFEM 0.034 0.048 0.060 0.070 0.080 

Beams with 

inclusions 

and 

continuous 

boundaries 

    ,  mm - 0.254 0.377 0.496 0.601 0.684 

2D CVFEM 
36 

0.024 0.036 0.046 0.057 0.065 

2D MPFEM 0.024 0.035 0.047 0.055 0.063 

2D CVFEM 
44 

0.028 0.039 0.051 0.061 0.067 

2D MPFEM 0.026 0.039 0.051 0.061 0.068 

 

Furthermore, to investigate how the changes in micro inertia affects the transverse modal 

frequencies, again a sample model of three unite cells in depth (NCy=3) was investigated 

with respect to the influence of the higher values of the micro-inertia equal to    =36 and the 

five transverse modal frequencies were extracted for beams with voids using both CVFEM 

and MPFEM. The primary analysis showed clearly that increasing the micro-inertia by 

altering the coefficient,   , has more influence on the primary mode rather than on the higher 

transverse modal frequencies. This suggests that, increasing the micro-inertia would only 

significantly affect the primary mode and provides results for the primary mode which 

approximately matched the values that were obtained by detailed FEA but the rest of the 

modal frequencies are less affected. Figure 5-7 show the micropolar CVFEM results 

(Primary normalised modal frequency) for a specimen with     equal to 36 which clearly 

shows the development of nonlinearity in anticipating the size effect and the coupling 

numbers become more sensitive to volume fraction as the values in table 5-2 confirm. The 

higher modes showed that increasing the     has less influence on the results with regard to 

anticipation of the size effect. Figure 5-7 also indicates that increasing the micro-inertia via 

increasing the     causes nonlinearity in normalised primary frequency changes with the 

inverse of beam depth squared. 
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Figure 5-7: Normalised primary frequency changes with the inverse beams depth squared for beams 

with voids and continuous boundaries and various volume fractions using CVFEM when       

(                                                     ) 

Using the 2D MPFEM also resulted in the same dynamic behaviour with increasing the 

micro-inertia by changing     to 36 which indicated that 2D-MPFEM produced results 

similar to the CVFEM  method and that increasing the micro inertia mainly affects the modal 

frequencies at mode one. Therefore the value of     is equal to 2 and the equation (5.38) is 

valid and, therefore, incorporated into the algorithms. Note that for this additional reason 

only the first two modal frequencies were used for iteration process to obtain the coupling 

number using the parameter identification algorithm. 

5.6 Summary and conclusions 

This chapter resulted in development of algorithms which incorporate the micropolar theory 

into a numerical method for dynamic analysis. However, in order to obtain the coupling 

number, N, a parameter identification algorithm has also been developed and described.  In 

two dimensional beam vibrations, the characteristic length of bending is not the only 

parameter which influences the coupling number. The other important influencing parameter 

is the micro inertia. Therefore, in this chapter, a procedure for obtaining mass and micro-

inertia matrices and the coupling number, N, were introduced and the effect of micro-inertia 

on the coupling number was investigated. 

The general conclusion is that the micro-inertia is very much related to the parameter of 

characteristics length of bending,   , mass density,  , and the Poisson ratio,   . As the mass 

density and Poisson ratio are considered constant, therefore, the only influencing parameter 

is the characteristic length of bending.  



112 
 

Now that the aditional micropolar constant, the characteristic length of bending and the 

micro inertia are detemined, and that the algorithm for parameter identification has been 

developed for obtaining the second additional micropolar constant namely coupling number, 

N, it is now possible to generate modal frequencies using either the CVFEM or MPFEM 

procedures and compare the results with those from detailed FE analysis from chapter three. 

Therefore, in chapter six, first the coupling number for some of the beam models will be 

obtaind using the parameter identification algorithm which incorporates micro-inertia as 

described in this chapter then three types of beam models, for which micropolar constants 

are available, will be modeled and modal frequencies will be obtained using both the 

CVFEM and 2D-MPFEM and the size effects will be compared with the detailed finite 

element results which were previously obtained in chapter three.  
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6 Two-dimensional CVFEM and MPFEM Results, Comparison 

with FEA Results, and Validation 

Recalling from chapter three, FEA was used for creating geometrically detailed beam models 

of a representative heterogeneous material, which are considered to exhibit realistic beam 

vibration modes, generating corresponding modal frequencies that can be used as the basis 

for comparison with suitable theory. Therefore, in this chapter, two-dimensional beam 

models are created using the CVFEM and MPFEM methods presented in the previous 

chapter to generate modal frequencies. The results will then be compared with the 

aforementioned FEA results. 

Note that for 2D beams modal analysis incorporating the micropolar elasticity, not only the 

characteristic length of bending is needed, but the coupling number value is also required for 

running the analysis. Therefore, in section 6.1, the coupling number will be identified for 

some of the beam models. 

6.1 Identification of the coupling number, N, for the representative 

material 

Previously in chapter four, an analytical method was introduced for obtaining the 

characteristic length in bending from the size dependency of the first natural frequency. Then 

in chapter five a parameter identification algorithm was developed which enables the 

coupling number to be identified by an iterative approach based upon matching multiple 

flexural frequency forecasts provided by the FEA results. In this section, the additional 

micropolar constant, coupling number, will be identified for the representative materials. 

6.1.1 Estimation of N for beams with continuous boundaries (BVOCB and BINCB) 

Using the CVFEM, and the parameter identification procedure which uses the linear 

regression as described in section 5.4, unique values for N were identified. In figures 6-1-a 

and 6-1-b, the FEA results and the results predicted for mode one and two by the CVFEM 

through the parameter identification procedure are compared after convergence of the 

iteration process with     being obtained within the range of N from 0 to 0.9. The first 

value represents the lower bound on N and corresponds to the classical case while the second 

value is an approximation to the upper bound on N of 1 corresponding to the constrained 

micropolar or so called couple stress elasticity case. Note that setting the upper bound for N 
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at 1 would give rise to numerical error. In figures 6-1-a and 6-1-b, the linear regression 

method was applied to the first and second modal frequencies (obtained from ANSYS finite 

element analysis) for all beam sizes and a void or inclusion volume fraction of 0.23.  

 

Figure 6-1: The variation of mω2 with beam size for beams with voids and continuous surface and 

volume fraction equal to 0.23; a) The variation of mω2 at flexural mode 1 (on the left); b) The 

variation of mω2 at flexural mode 2 (on the right). 

In theory, the more mode numbers used within the iterative identification, the more accurate 

the coupling number estimate should be, but as the frequency spectrum  which is identified 

by the CVFEM also includes longitudinal modes above  mode 2, only the first two modal 

frequencies were used in the iteration process. The second reason is that micropolar flexural 

frequencies approach the homogenised case frequencies after mode 3 or 4. 

The values of N identified in this way are given in table  6-1 for both beams with voids and 

compliant inclusions. The iteration process was similarly performed for all other inclusion 

volume fractions from 4% to 33%. This revealed that N changes only slightly with volume 

fraction. Waseem et al. (2013) have reported that the value of coupling number in perforated 

ring samples decreasing slightly as the void radius is increased but, here, for perforated beam 

models as can be seen in table  6-1, the value of coupling number, N, increases slightly with 

changes in volume fraction. 

The regression method was not useful for beams with continuous boundaries but compliant 

matrix and therefore the coupling numbers are not available for such beam types. This is due 
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to the fact that the value of     fall either below or above the values of     obtained with 

coupling numbers 0 and 1 and thus their behaviour is apparently not anticipated by 

micropolar theory. 

6.1.2 Estimation of N for beams with compliant matrix and textured boundaries 

(BINTB) 

When the boundary of the beam is intercepted by voids or inclusions, the coupling number 

could also not be identified by the iterative method because the values of     obtained from 

the finite element analysis exhibit a size effect that is not anticipated by the micropolar 

theory. While the size effect in beams with compliant matrix and continuous surfaces 

contradicts the micropolar theory, when the boundaries are textured by intersection with the 

stiffer inclusions the size effect is as expected. Thus for this type of beam, a value for the 

coupling number can also be identified by the linear regression based iterative procedure.  

Table 6-1 shows the coupling numbers estimated using CVFEM for various beam types and 

    equal to 2: 

Table  6-1: Coupling numbers obtained for various beam types by taking    
   

 

      
   

   0.04 0.08 0.15 0.23 0.33 

BVOCB 0.042 0.047 0.051 0.053 0.055 

BINCB 0.043 0.046 0.048 0.051 0.053 

BCMTB 0.0459 0.0460 0.0451 0.0452 0.0477 

 

The values in table 6-1 above are obtained by using the three largest sample sizes with the 

CVFEM to match the first two modes and averaging them (With    =2, as identified in 

chapter five). Therefore the coupling number values based on the CVFEM were also selected 

for 3D-MPFEM modal analysis in chapters eight and nine. Note that values in table  6-1 are 

smaller than those that other researchers usually assume for example in the work by 

Beveridge et al.(2013a), the value that has been identified for coupling number through static 

3 point bending is equal to 0.12. The coupling number values obtained are towards the lower 

bound of the anticipated range and thus show some agreement with those obtained 

previously for similar materials when undergoing static deformation (Frame 2013a). 

However, later in chapter eight, in three dimensional modal analysis of plates it will be 

shown that the major influencing parameter in modal frequencies is the characteristic length 
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rather than the coupling number and that increasing the coupling number affectes the 

primary modal frequency more significantly than the higher modes. 

6.2 Modelling 2D homogeneous beams with MPFEM and CVFEM 

Before using the constitutive parameters identified in section 6.1 to predict the full frequency 

spectrum of the representative heterogeneous materials in this section, both the MPFEM and 

CVFEM methods were first used to model 2D homogeneous beams. Thus four beam sizes 

were modelled and all with the aspect ratio of 10.4 similar to the overall beam dimensions as 

the FEA models with one, two, three and four unit-cells in depth as described in section 3.2. 

6.2.1 Applying the free-free boundary conditions in micropolar beam models 

In beams with free-free boundary conditions (FF), both changes in the moment and shear 

forces at each end of the beam are equal to zero; and in finite element analysis, it can be 

achieved by not constraining any of the nodes at each side of the beam and allowing them to 

move freely. Such condition is not completely achievable practically but using the finite 

element method, it is feasible and the CVFEM and MPFEM results for the full frequency 

spectrum can be generated and compared with the finite element results which supposedly 

represent realistic dynamic behaviour. 

6.2.2 Modelling beams and mesh convergence study of micropolar beam models 

By dividing the micropolar beam depth and length into subsections, it was possible to run a 

modal analysis for various DOF’s and investigate the mesh convergence of a meshed 

micropolar beam. The graph in figure 6-2 below shows that the smallest beam (NCy=1) with 

225 degrees of freedom converges with an error below 0.2 percent while the smallest sample 

model, which is modelled for modal analysis micropolar beams in this chapter, has 555 

degrees of freedom with the height of 2 and length of 18 divisions which satisfies the 

requirement of mesh convergence. This convergence study was conducted for the 

homogeneous case. In fact the unit-cells employed by FEA are here represented by a 2 by 2 

divisions which include eight 6-node triangular elements, see figure 6-3. 
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Figure 6-2: Mesh convergence for a homogeneous beam (NCy=1) using the CVFEM (    ,  ,    and 

                      

 

Figure 6-3: Micropolar beam model, NCy=1 

6.2.3 Non-dimensional transverse frequencies for homogeneous micropolar beam 

with N and the characteristic length of bending to zero 

In order to solve the micropolar beam for a homogeneous case, the parameters    ,  , 

  and     are set to zero. Therefore, the coupling number and the characteristic length of 

bending must also be taken equal zero. The results for a homogeneous beam model are used 

to first of all check the validity of the CVFEM and MPFEM methods and then to use these 

values for normalisation of the transverse modal frequency values of the results for the 

heterogeneous beam models presented later in sections 6.3.2.1 to 6.3.2.3. 

The FEA modal frequencies for homogeneous cases were already compared with the 

Classical, Timoshenko and non-local Timoshenko beams in chapter three. Here, in table 6-2 

the relative difference of the CVFEM and MPFEM results are given in comparison with the 

FEA and Timoshenko beam results for the homogeneous cases listed in chapter three 

table 3-7. 

While the dimensionless frequency parameters for the homogeneous beams with aspect ratio 

of 10.4:1, which are listed in table 6-2, are used to normalise the transverse modal 
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frequencies of the micropolar beams in the next sections, the longitudinal frequencies 

presented in section 6.3.1 are normalised by the frequency of the longitudinal modes of the 

homogeneous beam models. 

As can be observed in table 6-2 the relative difference between values for the primary modal 

frequency irrespective of the solution method is well below 0.1% although this difference 

increases slightly with mode number. However, even for the 10 modal frequencies the 

difference value still remains below 0.5% for the homogeneous beams. This therefore 

validates the performance of the code for the implementation of the CVFEM and 2D 

MPFEM algorithms. 

Table 6-2: Dimensionless frequency parameters generated for a homogeneous beam model using 

CVFEM and MPFEM (Based on beams with NCy=4) and the relative differences (absolute values) 

with FEA and Timoshenko values given in chapter three table 3-7 

   Transverse Modes 

Relative 
diff. of 

CVFEM 
with FEA 

Relative 

diff. of 
CVFEM 

with 
Timoshenko 

Relative 
diff. of 

MPFEM 
with FEA 

Relative diff. 
of MPFEM 

with 
Timoshenko 

Mode 

number 

Non-dimensional 

Frequency, λ 

CVFEM MPFEM 

1 4.649946 4.654824 1.18E-03 6.65E-04 1.36E-04 3.83E-04 

2 7.531761 7.525683 6.22E-04 2.02E-03 1.85E-04 1.21E-03 

3 10.20287 10.19205 8.63E-04 3.09E-03 1.98E-04 2.03E-03 

4 12.64783 12.62462 1.66E-03 4.56E-03 1.80E-04 2.71E-03 

5 14.85686 14.84335 7.74E-04 4.14E-03 1.36E-04 3.22E-03 

6 16.90657 16.87354 1.89E-03 5.56E-03 6.42E-05 3.60E-03 

7 18.79062 18.74023 2.72E-03 6.59E-03 3.23E-05 3.89E-03 

8 20.51416 20.4649 2.56E-03 6.55E-03 1.56E-04 4.13E-03 

9 22.12443 22.06447 3.03E-03 7.09E-03 3.14E-04 4.36E-03 

10 23.42212 23.55009 4.93E-03 8.41E-04 5.06E-04 4.62E-03 

6.2.4 Extracting the transverse and longitudinal mode shapes using CVFEM and 

MPFEM 

The transverse mode shapes below the critical frequency, are easily recognizable by the lobe 

(wave) counts on the beams surface so that a full wave length in mode two, generates two 

lobes, one positive and one negative ( or one up and one down). In order to create the mode 

shapes in 2D MPFEM or CVFEM, the eigen vectors are normalised by the corresponding 

maximum eigen vector value then each normalised value is added to the normalised 

coordinated of the same node. This method will result in generating mode shapes for further 

analysis. However, it must be noted that while the eigen vectors are useful for generating 
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mode shapes they do not provide any information regarding the actual displacement of the 

nodal points.  

Increasing the mode number is associated with an increase in frequency and the number of 

lobes is increased and the wave length decreases. When the length of the wave approaches 

the beams depth, then it is hard to distinguish the modal frequencies in the 2D plane and that 

is when the transverse modal frequency is approaching the critical frequency. Another point 

to note is that after mode numbers three or four, the CVFEM and/or MPFEM results do not 

show any size effect and, therefore, micropolar theory would not apply. The first fourteen 

mode shapes predicted by MPFEM (CVFEM) are shown in figures 6-4 to 6-17 which 

include ten transverse and 4 longitudinal mode shapes of a homogeneous beam with depth 

equal to two unit cells. 

 

Figure 6-4: Mode shape of beam with           , Mode 1, Transverse 1 

 

Figure 6-5: Mode shape of beam with           , Mode 2, Transverse 2 

 

Figure 6-6: Mode shape of beam with           , Mode 3, Transverse 3 
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Figure 6-7: Mode shape of beam with           , Mode 4, Longitudinal 1 

 
Figure 6-8: Mode shape of beam with           , Mode 5, Transverse 4 

 

 
Figure 6-9: Mode shape of beam with           , Mode 6, Transverse 5 

 
Figure 6-10: Mode shape of beam with           , Mode 7, Longitudinal 2 

 

 
Figure 6-11: Mode shape of beam with           , Mode 8, Transverse 6 
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Figure 6-12: Mode shape of beam with           , Mode 9, Longitudinal 3 

 

 
Figure 6-13: Mode shape of beam with           , Mode 10, Transverse 7 

 

 
Figure 6-14: Mode shape of beam with           , Mode 11, Transverse 8 

 

 
Figure 6-15: Mode shape of beam with           , Mode 12, Longitudinal 4 

 

 
Figure 6-16: Mode shape of beam with           , Mode 13, Transverse 9 
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Figure 6-17: Mode shape of beam with           , Mode 14, Transverse 10 

6.3 Full frequency spectrum modal analysis of 2D beams models using 

CVFEM and MPFEM incorporating identified micropolar constants 

In this section, both CVFEM and MPFEM were employed for modelling 2D beams 

exploiting the identified micropolar constants, N and    , to generate all modal frequencies. 

The results are then compared with the FEA results of chapter three, and the capabilities and 

shortcomings of the micropolar elasticity in predicting the size effects in heterogeneous 

beam models are discussed. 

6.3.1 Longitudinal modal frequencies of heterogeneous materials and size effects 

The finite element results for heterogeneous beam models also indicated the existance of size 

a effect in longitudinal modes, but unfortunately the micropolar theory is not capable of 

anticipating any size effects in longitudinal displacements because the characteristic length 

parameters,    and   , only influence the transverse and torsional displacements and thus 

have no influence on longitudinal displacement. The finite element results for the first two 

longitudinal frequencies for the perforated beams with continuous boundaries are provided in 

figure 6-18 and 6-19 confirming the existance of the size effect phenomenon in the 

heterogeneous beams for longitudinal modes. Other beam models showed similar size effects 

too. The first five longitudinal frequencies for beams with voids and compliant inclusions 

and continuous boundaries, and also beams with compliant matrix and textured boundaries 

are provided in tables D-1 to D-3 in Appendix D.1. Although the finite element results 

indicate that there is a longitudinal size effect, it is small compared to the flexural size effect. 

The results for other type of beams are not included because although the tabulated results 

for those beams confirm the existance of a size effect in longitudinal modes, the micropolar 

theory is again not capable of predicting these effects.  
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Figure 6-18: Normalised primary longitudinal frequency of four heterogeneous beam sizes for beams 

with voids and continuous boundaries from FEA 

 
Figure 6-19: Normalised 2nd mode longitudinal frequency of four heterogeneous beam sizes for beams 

with voids and continuous boundaries from FEA 

The CVFEM and MPFEM results for the longitudinal modal frequencies showed no size 

effect with beam thickness or volume fraction, Figure 6-20, and that is because the 

micropolar theory does not account for any size effect in the longitudinal direction, therefore, 

only the transverse (bending) modes have been extracted and investigated. This required 

checking every mode shape and selecting the transverse modal frequencies from the entire 

frequency spectrum up to the 33
rd

 modal frequency. 
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Figure 6-20: Normalised longitudinal frequency (for modes 1 to 5) of four beam sizes for beams with 

voids and continuous boundaries using MPFEM (                correspond 

to                     )  

6.3.2 Transverse modal frequencies of micropolar beams in comparison with 

heterogeneous F. E. models 

Based on the equation 4.46 and the iteration process which was introduced in section 5.4, the 

characteristic length of bending and the coupling number for various beam types are 

obtained and provided previously in tables  4-4 and 6-1. Having quantified the characteristic 

length parameter analytically and the coupling number numerically, the CVFEM and 

MPFEM procedures were used to predict the full frequency spectrum for all sizes of beams 

with inclusions or perforated by voids at all volume fractions considered. The only 

difference between CVFEM and MPFEM procedures is the process with which the stiffness 

matrix for the triangular element is obtained. These procedures showed significant 

agreement for lower mode numbers. 

6.3.2.1 Beams with voids and continuous boundaries (BVOCB) 

The discussions regarding the size effect which was provided in chapter three for finite 

element results are valid here too.  The MPFEM and CVFEM reasonably forecast the same 

explanation for size effect of beams with voids and continuous boundaries (BVOCB). 

In figures 6-21 and 6-22, the variations in normalised frequency, Λ, with size measure for 

the primary flexural modes are displayed.  According to these results, variations in the 

normalised frequencies have an approximately linear relationship with the inverse of the 

square of the depth of the beam        just the same as what had been observed from FEA 
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results in chapter three figure 3-6 and 3-8, except for the smallest beam sizes where the ratio 

of the radius of void or inclusion to beam thickness reaches the maximum.  The Λ value for 

the smallest beam sample size is slightly underestimated in comparison with the FEA results. 

Figure 6-23 and 6-24 shows how the first five transverse normalised frequencies for the 

beams with voids and height of one unit-cell vary with mode number and how the behaviour 

is highly size dependent, as seen in figures 6-21 and 6-22, for mode one. The CVFEM and 

MPFEM results
4
 show that the normalised modal frequency of the homogeneous beams is 

size independent.  

Tables D-4 and D-7 in Appendix D provide non-dimensional frequency parameter (λ) 

information for the first ten transverse vibration modes of beams with voids and continuous 

boundaries predicted using MPFEM and CVFEM procedures.  For any given mode the size 

effect becomes more pronounced with diminishing beam size and is greatest for the smallest 

size of beams. The size effect is also more pronounced for beams with a higher void volume 

fraction. 

Similar to the beam behaviour based on the FEA results; here too, the size effect is mode 

dependent; but the micropolar results do not provide much information regarding the size 

effect in modal frequencies for after mode 3 or 4. This issue must be investigated in future 

work but in the meantime, it appears to be one of the shortcomings of the micropolar theory. 

All of the CVFEM and MPFEM results provided in figures 6-21 to 6-31 are obtained using 

the characteristic length in bending,   , and the coupling number,  , from tables  4-4 and 6-1 

as input parameters which correspond to normalised void radius                      ⁄  in 

heterogeneous beam models using FEA. 

                                                             
4 Here on after it’s called micropolar beam when it meant either of CVFEM or MPFEM or both as a general expression.  
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Figure 6-21: Normalised primary bending modal frequency of four beam sizes for beams with voids 

and continuous boundaries using CVFEM (                                              ⁄ ) 

 

Figure 6-22: Normalised primary bending modal frequency of four beam sizes for beams with voids 

and continuous boundaries using MPFEM (                                              ⁄ ) 

 
Figure 6-23: First five normalised bending modal frequencies of the smallest beam sample with voids 

and continuous boundaries using CVFEM (                                              ⁄ ) 
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Figure 6-24: First five normalised bending modal frequencies of the smallest beam sample with voids 

and continuous boundaries using MPFEM (                                              ⁄ ) 

The results in figures 6-21 and 6-22 indicate that the MPFEM and CVFEM results show 

little difference for the beams with one layer in depth         although the frequency 

values obtained from using CVFEM are slightly higher.  

An overall comparison with the results from FE analysis, as shown in figure 6-25 for mode 

one, indicates that both CVFEM and MPFEM under estimate the normalised frequency 

values for the smallest sample size with the difference increasing as the volume fraction 

increases. For example for volume fractions above         in figure 6-25; the maximum Λ 

reads 1.15 for the smallest beam sample size with the highest volume fraction at mode one 

but the predicted value is only around 1.075. 

 

Figure 6-25: Primary normalised modal frequencies, mode 1, for beams with voids and continuous 

boundaries, BVOCB 
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6.3.2.2 Beams with inclusions and continuous boundaries (BCICB) 

As seen in the previous section, the choice between CVFEM and MPFEM does not alter the 

results significantly. Therefore, while all the CVFEM results have been tabulated in 

Appendix D, the MPFEM results are sufficient for investigating and making conclusions 

regarding the size effect in micropolar beams in dynamic cases. 

The dynamic behaviour of micropolar beams with compliant inclusions and continuous 

boundaries, as shown in figures 6-26 to 6-27, show similar size effect behaviour as beams 

with voids. However, the normalised frequencies are smaller and the graphs show a better fit 

with the FE results as seen in figure 6-28. Thus, according to figure 6-28, Λ reads 1.12 for 

the smallest beam sample size with the highest volume fraction at mode one which is smaller 

than the corresponding specimens in figure 6-25 for BVOCB.  

 
Figure 6-26: Normalised primary bending modal frequency of four beam sizes for beams with 

compliant inclusions and continuous boundaries using MPFEM 

(                                               ⁄ ) 

 
Figure 6-27: First five normalised bending modal frequencies (modes 1 to 5) of the smallest beam 

sample for beams with compliant inclusions and continuous boundaries using MPFEM (     

                                          ⁄ ) 
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Figure 6-28: Primary normalised modal frequencies, mode 1, for beams with compliant inclusions and 

continuous boundaries, BCICB  

6.3.2.3 Beams with compliant matrix and textured boundaries (BCMTB) 

Beams with compliant matrix and textured boundaries also show size effects consistent with 

micropolar theory but comparatively less pronounced than the previously discussed beam 

models, see figure 6-29. The normalised primary modal frequency is equal to 1.04 even for 

the largest volume fraction of 0.33              and this reduces with diminishing volume 

fraction, see figure 6-29 and 6-30. For example, the normalised frequency, Λ, for the 

smallest beam sample with             is about 1.01. 

 
Figure 6-29: Normalised primary bending modal frequency of four beam sizes for beams with 

compliant matrix and textured boundaries using MPFEM 

(                                               ⁄ ) 
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Figure 6-30: First five normalised bending modal frequencies (modes 1 to 5) of the smallest beam 

sample for beams with compliant matrix and textured boundaries using MPFEM 

(                                               ⁄ ) 

 

Figure 6-31: Primary normalised modal frequencies, mode 1, for beams with compliant matrix and 

textured boundaries, BCMTB 

According to the results shown in figure 6-31 above, the normalised frequency value, Λ 

reads 1.07 (using FEA) for the smallest beam sample size with the highest volume fraction 

for mode one which clearly indicates that the size effect in these type of beams are less 

marked in comparison with the size effect seen for both beams with voids and inclusions 

with continuous boundaries as shown previously in figures 6-25 and 6-28. 
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6.4 Summary and conclusions 

FEA was used for creating beam models of a representative heterogeneous material and 

generating modal frequencies and using them as the basis for comparison with those from 

CVFEM and MPFEM. This approach is different from the usual techniques in the literature 

but has some benefits. First of all, as shown in chapter three, the analytical methods in the 

literature were not applicable to those beam models. Secondly, changing the volume fraction 

in beam models with a periodic array of voids or inclusions, as described in detail in chapter 

three, required changing material constants such as modulus of elasticity in order to keep the 

overall dimensions and the properties of the homogenized equivalent beam unchanged which 

was achieved by performing tensile test simulations using finite element analysis while 

keeping each cell’s mesh configurations fixed. 

In studying the longitudinal modal frequencies category, the FEA results revealed that there 

is a smaller yet nevertheless identifiable size effect present in non-homogeneous beams 

which indicate that normalised frequencies decreases on increasing the modal frequency and 

this becomes more discernible in smaller beam samples. Nevertheless, the micropolar theory 

was incapable of predicting this size effect in such longitudinal modes for non-homogeneous 

beam models due to the fact that there is no length scale parameter in micropolar theory 

related to size effects in axial strain states associated with longitudinal displacement. 

In the flexural modal frequencies category of dynamic behaviour, when the micropolar 

predictions are compared to the results obtained from finite element analysis, a number of 

similarities and differences are evident. The MPFEM (CVFEM) modal analysis results 

indicate that in the micropolar beam, the modal frequencies decreased quickly and 

consequently after the first few modes the size effect is rapidly suppressed which thus limits 

the utility of the higher modes in the investigation of any size effect. On the other hand, the 

FEA results indicate that the size effect remains more pronounced and may even change in 

nature.  

Micropolar analyses were conducted for both beams with void and inclusions with 

continuous boundaries and beams with compliant matrix in which boundaries were textured.  

Micropolar analysis for other beam types are not obtained due to unavailability of the 

micropolar constants as explained in chapter four. For the beam types for which the 

constants were available, the values identified were subsequently for micropolar modal 

analysis to predict the full frequency spectrum covered by the FE results. Discernible 

differences were still present with these becoming more marked as frequency increased. 
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Thus, while micropolar theory appears to have some capacity to forecast the size effect at 

low frequencies of beams with lower volume fractions, its predictive ability becomes 

progressively compromised as the volume fraction increases or beam depth reduced to one 

unit cell or the frequency is increased towards the critical value. Comparable similarities and 

differences are seen in the cases where the beams contain compliant inclusions and where 

the inclusions, although more rigid, intersect the boundaries. Full numerical results are 

tabulated and presented in Appendices B and D. 

However, despite some shortcomings as stated above, the linear isotropic micropolar theory 

demonstrated good capabilities to:  

 capture size effect in beams with different sizes despite having the same length to 

depth aspect ratio; 

 forecast size effects for the first few flexural frequencies, especially modes 1 and 2, 

in some of the 2D heterogeneous beam models; 

 show that size effect also depends on the volume fraction similar to FEA results; 

 predict the flexural frequencies for beam models with low to moderate volume 

fractions; 

 Predict the flexural frequencies for beam models with more than one layer of unit 

cells across the depth of the heterogeneous beam models. 

 The above listed positive aspects of employing the micropolar theory raise the necessity to 

investigate the extent to which the theory is still applicable. Therefore, in the next three 

chapters the application of micropolar theory is extended to three-dimensional plate vibration 

to verify the existence of size effects in plate models and to identify and investigate size 

effects in three-dimensional representative materials as well. The three-dimensional 

heterogeneous plate models discussed in chapter eight will demonstrate some anisotropy but 

the more isotropic 3D micropolar plate presented in chapter nine is expected to be able to 

explain the dynamic behaviour of the heterogeneous 3D models with a lower degree of 

anisotropy. Therefore, in chapter seven the 3D micropolar theory will be formulated and 

introduced through a 3D MPFEM procedure for modal analysis which will later be used to 

generate the modal frequency data presented in chapters eight and nine. 
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7 Development of Algorithms for the Numerical 3D-MPFEM 

This chapter covers the incorporation of the linear isotropic micropolar theory in the 

conventional finite element method and its application to the three-dimensional (3D) context 

and the development of appropriate algorithms defining the 3D linear isotropic micropolar 

finite element method (3D-MPFEM) which will be used subsequently to extract eigenvalues 

of heterogeneous plates in chapters eight and nine. Thus, in the development of the 3D-

MPFEM algorithms, two types of solid elements, namely, 8-node and 15-node solid 

elements are formulated, and consequently their features are therefore discussed in some 

detail here. Therefore, from this section onward, the accuracy of micropolar theory in a 

specific dynamic problem, the free vibration of square plates with free-free-free-free (FFFF) 

boundary conditions, is investigated to see if the theory can also explain the size effect in 3-

dimensional plates
5
 in the dynamic case.  

7.1 Stiffness matrix for 3D micropolar plate 

As explained in chapter two, for the 3D cases, the stiffness matrix will be of rank 18, see 

equation (2.19). The strain components in the micropolar govering equations (2.16) and 

(2.17) can be related to micro rotation tensor,  , and the displacements tensor ,  , as in 

equation (4.1) while the strain tensors and the macro rotations in terms of displacements  are 

given in equations (4.2). Therefore the micro-rotation and macro-rotation are not taken as 

equal which is clearly seen in the above equations and also reflected in the matrix expansion 

of the equations as seen in equations (2.18) to (2.27).  

The extra engineering constants in 3D micropolar elasticity are   , the characteristics length 

of torsion (    reflect the microstructural scale similar to    but in torsion), and    is the polar 

ratio which is conceptually similar to Poisson ratio but now represents the ratio of orthogonal 

rotations. Energetically    may vary from zero to 1.5. In almost all literature, the value of   

is assumed to be 1.5; thus also throughout the analysis in this project. The characteristic 

length of torsion and the polar ratio are defined as: 

 
    

  
     

        
 

(7.1) 

                                                             
5
 Sign conventions are according to the figure 7-1. The Cartesian coordinates may also be indicated by integers 1, 2 and 3. 



134 
 

 
  

     

        
 

(7.2) 

If   approaches one, then    approaches zero which is necessary for the material to behave 

in a classical manner but not sufficient since for the material to behave classically, all of four 

additional micropolar constants          and    must each equal zero. In a special case 

when N=1 in equation (4.15), the material behaves as in couple stress theory where micro 

rotation and macrorotation become equal. 

The micropolar elastic constants may also be written as functions of the engineering 

constants by rearranging equations (4.17) to (4.20) and equations (7.1) and (7.2): 
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(7.8) 

In the dynamic analysis, the micro inertia tensor,      , must be included into the governing 

equations as given in the equations  of dynamic equilibrium (4.7) and (4.8). 
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7.2 Formulation of the 3D-MPFEM using 15-node wedge element for 

modal analysis 

In this section the 3D micropolar elasticity theory is incorporated into a finite element 

method which leads to development of algorithms for the 3-D MPFEM for modal analysis of 

heterogeneous plates. 

7.2.1 Formulation of stiffness matrix based on micropolar elasticity  

There are 15 nodes in a wedge element, and each shape function is identified as   , 

i=1,2,…15; Shape functions for 15-node wedge element are listed in table  7-1 which can be 

found in reference (Hanukah 2014): 

Table  7-1: Shape function of a 15-node wedge elements based on the node numbering in figure  7-1 

Node 

number 
Shape function 

Node 

number 
Shape function 

1                  9         

2 
                      

      
10                  

3                  11 
                  

      

4                12                  

5                13                

6          14                

7         15          

8                 

 

Figure 7-1 shows the node numbering in a 15-node wedge element in a natural coordinate 

system.   and   vary from zero to one and   varies from    to   . 
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Figure 7-1 : Representation of a 15-node wedge element in natural coordinate system. The Cartesian coordinates 

may also be indicated by integers 1, 2 and 3. 

The derivatives of the shape functions in the Cartesian and natural coordinates are related 

according to the equation (7.9): 

 [
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] (7.9) 

    represents the inverse of the Jacobian matrix and is used to transform the derivatives of 

shape functions from natural to Cartesian coordinates. The Jacobian matrix can be calculated 

as follows (Zienkiewicz, Taylor, and Zhu 2013; Kaltenbacher 2015): 
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 (7.10) 

Referring to equation (2.18), the strain field as described by [         
]
 
, can be related to the 

displacement field and micro rotation by matrix B, see equation (7.11). Let   ̅ represent the 

strain field and  ̅ represent the displacement and micro rotation vector: 

 
[ ]̅  [ ][ ̅]  

(7.11) 

where  
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 [ ̅]  [  ̅    ̅]
 
 ,  ̅              (7.12) 

Knowing the derivatives of the shape functions   , the B matrix can be constructed as 

follows: 

 [ ]  [
[  ]        [  ]

 [ ]        [  ] 
] (7.13) 

where the matrices Q1, Q2, and Q3 are: 
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 (7.14) 
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and  

 [  ]  
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  (7.16) 

  is the shape function of 15-node wedge element at node i, where i=1, 2… 15. 
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Now the stiffness matrix for the 15-node wedge element,    , can be calculated: 

 
   ∫ ∫ ∫   𝔻    [ ]      

  

 

  

 

  

  

 
(7.17) 

where    is the element stiffness matrix which has the size of        . A Gauss quadrature 

method with three integration points was used to calculate the element stiffness matrix 

numerically. T stands for transposed. 

7.2.2 Derivation of mass and micro inertia matrices 

Similar to the procedure described in chapter five, a template mass matrix was constructed 

for a 15-node wedge element incorporating both consistent and lumped mass matrices using 

the equation (5.25). A full and comprehensive procedure on obtaining consistent and lumped 

matrices is provided in (Colorado 2010; Felippa, Guo, and Park 2015). The consistent and 

lumped mass matrices were obtained from the equations 7.18 and 7.19: 

    ∫        𝕍
 

𝕍

 (7.18) 

    
 𝕍

  
    [       ]      (7.19) 

The consistent mass matrix using shape functions of nodes within the wedge element 

interpolates the nodal mass within the element by integration of mass over the volume 

domain 𝕍. 

The micro-inertia, as introduced in equation (4.8), now has components in x, y and z 

directions. In this thesis, it is assumed that the micro-inertia tensors are equal in all 

directions. In the finite element method, a node is considered as a point of mass. Therefore 

the micro-inertia of a node must be independent of the physical dimensions of the elements 

which can cause some confusion, but in micropolar theory, however, it can be related to the 

square of the characteristics length in bending. As described in chapter five, in 3D the micro 

inertia is assumed to be given by equation (7.20): 

 
                

   
   

      
 

(7.20) 

Thus the micro inertia matrix is considered as a 3 by 3 diagonal matrix: 
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              [

       
       
       

] 
(7.21) 

     in equation (4.8) has three components in spatial coordinates but, as seen in equations 

(5.38) and (7.20), these components are assumed to be      when i=j and zero otherwise. 

When the element mass matrix is constructed, it is possible to include the micro-inertia 

matrix into the mass matrix through those elements associated with the rotation of the nodes 

as in the 2D cases. 

7.2.3 Solution to eigen problem 

Finally the stiffness and mass matrices will be assebled in the global mass and stiffness 

matrixes,    and   , and the eigenvalue equation can be solved according to the equation 

(5.39). Similar to the algorithm for 2D eigen problem, the square root of the array of the 

diagonal elements of the resulting matrix provides the frequency spectrum, ω
2
.  

7.3 Algorithms used for modal analysis of 3D micropolar plates 

In this section the mathematical formulations which were defined in sections 2.3, 7.1 and 7.2 

are used to develop algorithms for modal analysis of three dimensional micropolar plates in a 

distinct process of 3D-MPFEM. 

7.3.1 Plate modelling using 3D-MPFEM 

The micropolar models are such that each plate unit-cell is represented by 8 wedge elements, 

figure 7-2 , and the modal frequencies of the primary mode for the plate shown in 

figure 7-4 shows that the number of elements (392 elements with 10350 DOF) satisfies the 

required mesh density for this, the smallest plate. 

 
Figure 7-2 : Representation of one micropolar unit cell consisting of 8 wedge elements.                 
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A micropolar plate model generated by 3D-MPFEM is provided in figure 7-3 which 

represents a plate with two layers of cells in depth. Note that in this work, free vibration with 

FFFF boundary conditions in the absence of external loads was exclusively investigated. 

This negates the problem of having to prescribe partially or fully constrained boundary 

conditions.  

 

 
Figure 7-3 : MPFEM plate model with height doubled and AR=8.083 

Figure 7-4  shows the reduction of the percentage of error with increasing DOF representing 

a micropolar plate albeit in a homogeneous test case in which all of the additional micropolar 

engineering parameters are each set to zero. 

 

 

Figure 7-4 : The influence of DOF in decreasing the percentage of error in the micropolar plate in comparison 

with detailed FEA homogeneous plate model ; height=0.866 mm, Length=7 mm, Width=7 mm, AR=8.083 ; the 

error percentage was calculated by       {|               |       }      
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The process of modelling the micropolar plate begins with entering the overall plate 

dimensions by requesting the number of layers across the depth of the plate, number of line 

divisions along the depth, width and length of the plate layers and aspect ratios in both mid-

plane directions. The micropolar constants are then required to be entered and finally the 

number of modal frequencies and mode shapes to be extracted which becomes important at 

post-processing stage as described in section 7.3.5. 

In the process of modelling by 3D-MPFEM, a matrix denoted ENA (element node adjacency 

or element node connectivity table) is generated in which each row represents a wedge 

element and columns define the node numbers (first to fifteenth node) in that particular 

element. Neither the element nor the node numbers are repeated. The numbering sequence of 

elements proceeds from the left to the right side of the plate in the length direction counting 

both wedge elements on a line division, then moving on to the next layer until one slice of 

the plate is completed. Then the successive plate slices in the direction of the plate’s width, z 

direction, will be generated until the plate model is completed.  

Then, a list of coordinates for all nodes used in constructing the plate in an ascending will be 

generated. Having the matrices for elements-nodes (ENA) and nodes-coordinates (GNC), a 

3-D plot representing the actual plate dimensions and showing the meshed plate model for 

visual confirmation will be generated. The nodal coordinates are also normalised by the 

maximum length, width and depth and saved to be used later in the post-processing stage in 

section 7.3.5. 

The plate modelling procedure is conducted according to the following algorithm: 

Step 1: Start [Start of algorithm]; 

Step 2: Enter the overall dimensions of the plate model: e.g., depth, width and 

length; 

Step 3: Enter the number of layers (NCy), number of line divisions across the depth 

of the plate; 

Step 4: Entre the number of unit-cells along the length and width of the plate model; 

Step 5: Enter the plates’s length to depth aspect ratio (ARx); 

Step 6: Enter the plates’s width to depth aspect ratio (ARz); 

Step 7: Create and save Element-Node adjacency table (ENA);  

Step 8: Create and save the list of coordinates, nodal-coordinates (GNC), for all 

nodes in the plate structure in ascending order; 
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Step 9: Generate a 3D plot representing the actual plate’s dimensions for visual 

confirmation; 

Step 10: Normalise the nodal coordinates by the maximum length, depth and width; 

Step 11: Save the number of elements (nel); 

Step 12: Save the number of nodes per element (nnel); 

Step 13: Save nodal degree of freedom (ndof); 

Step 14: Save the number of nodes (nnode); 

Step 15: Calculate the element’s degree of freedom edof=ndof*nnel; 

Step 16: Save the element’s degree of freedom sdof; 

Step 17: Calculate the system’s degree of freedom sdof= ndof*nnode; 

Step 18: Save the system’s degree of freedom sdof; 

Step 19: Stop [End of algorithm]; 

7.3.2 Algorithm for constructing the element stiffness matrix 

Here in this section the algorithm for obtaining the element stiffness matrix,   , in 3D-

MPFEM is developed based on the mathematical formulations provided in sections 2.3, 7.1 

and 7.2.1. This algorithm can be implemented for the construction of plate’s element 

stiffness matrix incorporating the micropolar theory into conventional finite element method 

and used in construction of the global stiffness matrix,   . Thus, the general algorithm to 

derive the global stiffness matrix, using the 3D-MPFEM is defined as follows: 

Step 1: Start [Start of algorithm] 

Step 2: Entre the engineering micropolar constants:               and  . 

Step 3: Convert the engineering micropolar constants to the original micropolar 

constants,                  , using equations (7.3) to (7.8). 

Step 4: Construct the matrix of the material properties, 𝔻, using the micropolar 

constants, defined in step 3, as in equation (2.19) to (2.27). 

Step 5: Select the first element of the finite element model from section 7.3.1; 

Step 6: Select the nodal coordinates of all 15 nodes in the wedge element in 

Cartesian coordinate system e.g.,            ,           and           ; 

Step 7: Entre the three Gauss points and weights; 

Step 8: Reserve a matrix of zeros of rank 90 for the element’s stiffness matrix,   ; 

Step 9: Begin numerical integration using Gauss integration to implement the 

equation (7.17) over the following steps 10 to 17; 
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Step 10: Calculate the matrix of derivatives of the shape functions, 15 equations in 

table 7.1, with respect to area coordinates,          .  

Step 11: Calculate the Jacobian matrix ,Ĵ, the Ĵ determinant and the inverse of the 

Jacobian matrix using the derivatives of shape functions and the coordinates 

from step 6 as in equation (7.10); 

Step 12: Calculate the matrix of derivatives of the shape functions with respect to 

Cartesian coordinates                     according to the equation (7.9) 

Step 13: Construct the partial matrix B using the derivatives of shape functions
6
 from 

step 12 as in equations (7.13) to (7.16), using the following pseudo code: 

For n=1 to 15      
B (1, (6*n-5))   = dNx (n);  

B (2, (6*n-4))   = dNy (n); 

B (3, (6*n-3))   = dNz (n); 

B (4, (6*n-4))   = dNx (n); 
B (4, (6*n))      = -N (n); 

B (5, (6*n-5))   = dNy (n); 

B (5, (6*n))      = N (n); 
B (6, (6*n-3))   = dNx (n); 

B (6, (6*n-1))   = N (n); 

B (7, (6*n-5))   = dNz (n); 
B (7, (6*n-1))   = -N (n); 

B (8, (6*n-3))   = dNy (n); 

B (8, (6*n-2))   = -N (n); 

B (9, (6*n-4))   = dNz (n); 
B (9, (6*n-2))   = N (n); 

B (10, (6*n-2)) = dNx (n); 

B (11, (6*n-1)) = dNy (n); 
B (12, (6*n))    = dNz (n); 

B (13, (6*n-2)) = dNy (n); 

B (14, (6*n-1)) = dNx (n); 
B (15, (6*n-2)) = dNz (n); 

B (16, (6*n))    = dNx (n); 

B (17, (6*n-1)) = dNz (n); 

B (18, (6*n))    = dNy (n);  
End; 

 

Step 14: Calculate     =   𝔻    [ ]
 
*(Gauss weight1)*(Gauss weight2)*(Gauss 

weight3); 

Step 15: Substitute the values in    matrix 

Step 16: Update the Gauss point and weight 

Step 17: Repeat the loop from step (9) till the    matrix of rank 90 is completed. 

Step 18: Insert the element stiffness matrix into the global stiffness matrix,   ; 

                                                             
6 B (Row, Column) = the shape function or derivative of the shape function. 
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Step 19: Continue the steps (5) to (18) for the subsequent element till the last element 

stiffness matrix is included into the global stiffness matrix; 

Step 20: Stop [End of algorithm] 

7.3.3 Algorithm for constructing the element mass and micro-inertia matrices 

The template mass matrix is described in section 7.2.2. The mass matrix for the 15-node 

wedge element also incorporates the micro-inertia matrix. Thus, the general algorithm to 

derive the global mass matrix for using in the 3D-MPFEM is defined as follows: 

Step 1: Start [Start of algorithm] 

Step 2: Entre the material mass density,  ; 

Step 3: Select the first element of the finite element model;  

Step 4: Define the nodal coordinates of all 15 nodes in the wedge element in 

Cartesian coordinate system e.g.,            ,           and           ; 

Step 5: Calculate the volume of the wedge element; 

Step 6: Create an         identity matrix; 

Step 7: Multiply the element volume by its mass density and divide the product by 

15; 

Step 8: Multiply the product of step (7) to the identity matrix from step (6) to 

generate lumped mass matrix using equation (7.19); 

Step 9: Generate an         matrix using      ; 

Step 10: Multiply the element volume by mass density and the matrix from step (9) to 

generate the consistent mass matrix as in equation (7.18); 

Step 11: Having the lumped and consistent mass matrices obtained from steps (8) and 

(10), generate the template mass matrix using equation (5.25); 

Step 12:  Calculate the micro-rotation       
   

 

      
  from equation (5.38); and inject 

into the rows and columns and rows in the matrix generated from step (11) 

which represent the micro-rotations.  

Step 13: Insert the element mass matrix into the global mass matrix,   ; 

Step 14: Select the next element; 

Step 15: Continue the steps (4) to (14) for the subsequent element till the last element 

mass matrix is included into the global mass matrix; 

Step 16: Stop [End of algorithm] 
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7.3.4 Solution of the discrete eigenvalue problem 

Equation 5.39 in chapter five is also valid here for 3D plate’s modal analysis and was solved 

by using a sparse matrix and parallel computation method
7
. The solution process

8
 begins 

with defining the system matrices which are zero matrices for reserving memory spaces for 

stiffness, forces (if applicable) and mass matrices based on the total number of degree of 

freedom associated with all nodes in the constructed plate (also called the plate system 

matrix). The boundary conditions take effect in the global matrices by replacing the 

appropriate rows and columns with zeros which is not applicable here as no constrains are 

applied but are considered for future work. Finally the eigen problem is solved according to 

the equation 5.39. Following the solution of the eigen problem, the list of eigenvalues,    , 

and the matrix of the eigenvectors are saved for post-processing. 

The algorithm of the solution stage is as follows: 

Step 1: Start [Start of algorithm] 

Step 2: Define the number of modal frequencies and mode shapes to be extracted, 

e.g., Ext_mode=10 means that the first ten modal frequencies are to be 

extracted; 

Step 3: Call   , (the global mass matrix including micro-inertia matrix); 

Step 4: Call   , (the global stiffness matrix); 

Step 5: Create sparse matrix from   ; 

Step 6: Create sparse matrix from   ; 

Step 7: Start a parallel pool for parallel solution; 

Step 8: Solve the eigen problem by applying equation (5.39) using the pseudo code: 

 [Eigen vectors, Eigen values]=eig                 ; 

Step 9: Save eigen vectors; 

Step 10: Save eigen values;   

Step 11: Delete the parallel pool; 

Step 12: Stop [End of algorithm] 

7.3.5 Post-processing of data for extracting the modal frequencies and mode shapes 

The frequency values are obtained by taking the square root of the eigenvalues and 

multiplied by    then arranged in ascending order. The displacement of each node in the 

                                                             
7 The sparse matrix and parallel computation was carried out in MATLAB. 
8 MATLAB was used as the numerical computing environment and all numerical codes in this project 

are developed in this language. 
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system in x, y and z directions is defined by identifying row and column number in the 

eigenvectors matrix for that specific frequency and after arranging them in ascending order, 

saving the values as vectors corresponding to x, y and z coordinates for each node. The 

eigenvector values contain normalised displacement values which could be zero, positive or 

negative values. These eigenvector values are then added to the normalised GNC coordinates 

which result in mode shape coordinates. 

The algorithm of the post-processing stage is as follows: 

Step 1: Start [Start of algorithm] 

Step 2: Take the square root of the eigenvalues; 

Step 3: Multiply the eigenvalues by    to obtain   values; 

Step 4: Arranged the in ascending order; 

Step 5: Extract corresponding row and column associated with each frequency from 

the matrix of eigenvectors; 

Step 6: Add the eigenvector to the normalised nodal coordinates obtained from Step 

(10) of the algorithm which is provided in section 7.3.1;  

Step 7: Generate a 3D plot representing the mode shape for any of the specified 

modal frequency in step (5); 

Step 8: Stop [End of algorithm]  

7.4 An alternative 8-node brick element and comparison with the 15-

node wedge element 

Here, in this section, an alternative but widely used solid element with fewer nodes (8-node 

brick element) is described which is simpler than a 15-node wedge element and, therefore, 

requires less computational time. The shortcomings of the 8-node brick elements and the 

advantages of using the 15-node wedge element in the modal analysis of plates are 

discussed. 

7.4.1 Modelling and shape functions using 8-node brick element 

The modelling process with the 8-node brick element is similar to the description that was 

provided in section 7.3 for the wedge element; the only difference is that the numbers of 

nodes are reduced to eight nodes per element. Note that two 15-nodes wedge elements 

construct a cuboid with 22 nodes in comparison with 8 nodes in a brick element. Another 

difference is there are no mid-side nodes in the 8-node brick elements. Therefore, the 

interpolation of dependent variables in the 8-node brick element is linear. 
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Figure  7-5 represents the node numbering in an 8-node brick element in a natural coordinate 

system.  ,   and   that vary from    to   .  

 
Figure  7-5: Representation of 8-node brick element in natural coordinate system 

The shape functions in the 8-nodes brick element are identified as   , i=1,2,…8; Shape 

functions for brick element are listed in table  7-2: 

Table  7-2: Shape function of 8-node brick elements based on the node numbering in figure  7-5 

Node 

number 
Shape function 

Node 

number 
Shape function 

1                   5                   

2                   6                   

3                   7                   

4                   8                   

7.4.2 Solution of plate problem with 8-node brick element 

The stiffness matrix for the 8-node brick element,    , can be calculated by equation (7.22): 

 
   ∫ ∫ ∫   𝔻    [ ]      

  

  

  

  

  

  

 (7.22) 

where    is the element stiffness matrix which has the size of       . A Gauss quadrature 

method with two integration points was used to calculate the element stiffness matrix 

numerically. T again indicates transposed. 

The mass and micro-inertia matrices are obtained as described in section 7.2.2 which also 

results in an overall mass-micro-inertia matrix of dimension      . 
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Equation (5.39) was again solved by using a sparse matrix and parallel computation and then 

modal frequencies and mode shapes were extracted as required. 

7.4.3 Comparing 15-node wedge element with 8-node brick element 

The numerical solution of plates with an 8-node brick element mesh is expected to be 

performed faster than those with 15-node wedge elements since the dimensions of the mass 

and stiffness matrices are smaller for the 8-node brick element. But numerical investigation 

of a homogeneous plate, see figure  7-6, showed that plates with 15-node wedge element 

display very good accuracy with fewer elements needed to mesh the plate in comparison 

with plates of the same dimensions modelled using 8-node brick elements. Figure  7-6 

indicates that the frequency results in a plate with wedge element and line division of 

      which consist of 98 wedge elements is significantly  more accurate than similar 

plate meshed with brick elements and a line division of           which consists of 1800 

brick elements. Therefore in order to achieve reliable results for plates using brick elements, 

the mesh density must increase substantially in all directions. The reason for the inaccuracy 

of the 8-node brick element when using a sparse mesh density is mainly due to the shear 

locking issue in the 8-node brick element which does not happen in the wedge element in 

which the interpolation of dependent variables is quadratic. The additional shear stress as a 

result of linearity of the brick element makes it stiffer than the actual plate model and 

therefore any given modal frequency of the plate increases. 

 

Figure  7-6: Normalised frequency of homogeneous plates with various line divisions and brick 

element in comparison with a plate with 15-node wedge element. Frequencies of five modes 

normalised to the frequencies obtained from FEA homogeneous plate with NCy=1, AR=8.083 and 

Sy=0.866 mm 

5 
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7.5 Validation of the 3D-MPFEM and 15-node wedge element 

A square homogeneous plate with the depth of 0.866 mm and the aspect ratio of 10 was 

modelled using the 3D-MPFEM in which the length and width of the plates were divided 

into 20 equal divisions and one division throughout the depth of the plate. This line division 

constitutes a plate with 400 elements (15-node wedge), and the first eight dimensionless 

modal frequencies were obtained for this plate with unconstrained boundary conditions, see 

table  7-3. Also, a plate with the dimensions mentioned above was modelled, and the first 

eight dimensionless modal frequencies were obtained by FEA with 334080 brick elements 

(20-node). 

As stated explicitly in chapter two, as yet there is not an exact solution available for a two 

dimensional Mindlin plate with FFFF boundary conditions, however, there are some limited 

results available in the literature which used the Ritz method that could be used for 

verification of the 3D-MPFEM. Eftekhari et al. (2013) used a method termed the mixed 

finite element differential quadrature formulation (Mixed FE-DQ) and derived the first eight 

non-dimensional frequency parameters for plates with different boundary conditions. They 

also provided results based on the Pb2-Ritz method that was previously developed by Liew 

et al. (1993) in which two-dimensional polynomials were used as the admissible 

displacement and rotation functions in this Rayleigh-Ritz based method. Table  7-3 provides 

the results for the homogeneous isotropic plate with aspect ratio equal to 10:1  in which the 

data in the second and third columns are extracted from the work of Eftekhari et al. (2013). 

Table  7-3: non-dimensional frequency parameters for an unconstrained square homogeneous plate 

with the aspect ratio equal to 10 using various numerical methods. 

     

Relative difference of 3D-MPFEM 

with 

Mode 

Number 
FE-DQ  Pb2-Ritz  

3D-Plate 

FEA 

3D-

MPFEM 
FE-DQ  Pb2-Ritz  

3D-Plate 

FEA 

1 1.2887 1.2887 1.2891 1.2877 -0.0008 -0.0008 -0.0011 

2 1.9194 1.9194 1.9205 1.9141 -0.0027 -0.0027 -0.0033 

3 2.3633 2.3633 2.3654 2.3588 -0.0019 -0.0019 -0.0028 

4 3.2343 3.2344 3.2376 3.2273 -0.0022 -0.0022 -0.0032 

5 3.2344 3.2344 3.2381 3.2280 -0.0020 -0.0020 -0.0031 

6 5.6082 5.6084 5.6222 5.5929 -0.0027 -0.0028 -0.0052 

7 5.6082 5.6084 5.6222 5.5951 -0.0023 -0.0024 -0.0048 

8 5.6449 5.6450 5.6557 5.6330 -0.0021 -0.0021 -0.0040 
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The relative difference of the values of the first eight modal frequencies, obtained by using 

3D-MPFEM, with the results from FEA, FE-DQ and Pb2-Ritz methods, which are provided 

in table  7-3, verify the accuracy of the 3D-MPFEM with an error of less than -0.0052. 

7.6 Conclusions 

A set of algorithms which incorporate the linear isotropic micropolar theory into the 

conventional finite element method were developed for modal analysis of 3D plates. In the 

development of the finite element algorithms, both 15-node wedge and 8-node brick 

elements were used in the implementation of the algorithms as described in this chapter, and 

the method was named 3D-MPFEM or MPFEM for short. The micro-inertia and mass 

matrices were then incorporated into the algorithms. The micropolar elastic constants in a 

heterogeneous plate facilitate investigating size effects in such plates and enable the 

comparison of the predicted modal frequencies with those of actual plates with various types 

of heterogeneities which will be covered in chapters eight and nine.  

Homogeneous plates modelled with 15-node wedge and 8-node brick elements were 

compared and the advantages of 15-node wedge element were discussed. The application of 

the wedge element was then favoured over the use of brick element because of its versatility 

and robustness in modelling and modal analysis. 

The application of the 15-node wedge element in modal analysis especially in heterogeneous 

plates has not been previously studied by researchers; therefore, the 3D-MPFEM is a novel 

approach in the dynamic analysis of such plates which is capable of forecasting the size 

effects anticipated in them. 

In the next two chapters, heterogeneous plates with cylindrical and spherical voids and 

inclusions will be modelled, and the modal frequencies acquired by FE modal analysis will 

be compared with the results which are generated using the 3D-MPFEM which uses the 

advantages of 15-node wedge element in modelling of nonhomogeneous plates.
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8 Size Effects in 3D Heterogeneous Plates with Cylindrical Voids 

or Inclusions  

In this chapter, the free vibration of unconstrained square plates is studied with specific focus 

again being on the size effect phenomenon in heterogeneous materials. Plates with 

cylindrical-type voids and inclusions were modelled, the cross section of which resemble 

beam categories similar to those studied in chapter three which are then extruded in the 

direction that is normal to the x-y plane. The general methodology of studying the size effect 

is unchanged which means that the overall properties of the plates such as modulus of 

elasticity, Poisson’s ratio and the mass density were kept unchanged for all plate types. 

Unlike the previous chapters, here the longitudinal and transverse modes were not 

categorically segregated or studied separately and therefore the full spectrum of the modal 

frequencies was investigated. The main reason is that the first eight mode shapes appear in 

sequence and only include transverse modes. The longitudinal modes, in horizontal 

directions (in x-z plane), parallel to the plane of the plate appear after the eighth modal 

frequency for which the micropolar theory is incapable of anticipating size effects correctly 

anyway. Secondly, in relation to the plate’s longitudinal vibration, the micropolar theory is 

again incapable of anticipating any size effect.  

 In fact, the beam models which were studied in chapter three, are extruded to construct three 

dimensional plate models which allows the use of two micropolar constants (   and  ) that 

were already obtained for the 2D materials thereby permitting the identification of the 

remaining micropolar constants (   and  ) and study the size effect in 3D heterogeneous 

materials. Therefore, going from 2D beams’ modal analysis to 3D heterogeneous plates’ 

modal analysis seems to be a logical progression. The other important point which must be 

addressed here is that in the application of the 3D-MPFEM, isotropic micropolar plates are 

created and analysed while FE method creates 3D plate models with cylindrical extrusions 

which are anisotropic, although this thesis has attempted to reduce the anisotropic effect to as 

minimum as practically possible. The issue of the degree of anisotropy of heterogeneous 

plate models with cylindrical voids and inclusions will be addressed in section 8.2.2. 
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8.1 Finite element modelling of plates with cylindrical voids or 

inclusions and mesh refinement 

Cylindrical type voids or inclusions were considered for modelling the heterogeneous plates. 

Therefore, plates with voids and one isotropic matrix material, plates with two isotropic 

materials comprised of stiff matrix but compliant inclusions, and finally plates with 

compliant matrix and stiff inclusions were all modelled. The surface conditions of the top 

and bottom surfaces of the plates were considered to be either continuous or textured. 

Therefore, six plate types in total were modelled as follows:  

1. Plates with cylindrical voids and continuous boundaries (CYVOCB) 

2. Plates with cylindrical voids and textured boundaries (CYVOTB) 

3. Plates with cylindrical compliant inclusions and continuous boundaries (CYCICB) 

4. Plates with cylindrical compliant inclusions and textured boundaries (CYCITB) 

5. Plates with cylindrical inclusions, compliant matrix and continuous boundaries 

(CYCMCB) 

6. Plates with cylindrical inclusions, compliant matrix and textured boundaries 

(CYCMTB) 

Referring back to chapters four to six, the micropolar constants were only obtainable for the 

first, third and sixth plates types of the above list which are distinguished as CYVOCB, 

CYCICB and CYCMTB. 

The FEA results are presented for all of the above categories while, in this chapter, the 3D-

MPFEM results for the plate types CYVOCB, CYCICB and CYCMTB are presented and 

discussed. 

8.1.1 Unit-cells with cylindrical void or inclusions 

For each plate type, specific three-dimensional unit cells were modeled using 20-node Solid 

element type with ANSYS APDL version 17, see the semi unit-cells (half sized) in 

figure  8-1. The line divisions are the same as the earlier beam models in their 2D forms 

presented in chapter three and the only difference is that the unit-cells are three-dimensional 

here, this being achieved by extruding the 2D plane models in the z direction with the 

extended lines in the direction of    being divided into 14 equal divisions. The sign 

conventions are according to figure 7-1. The Cartesian coordinates may also be indicated by 

integers 1, 2 and 3. By repeatedly regenerating the unit cells as needed, plate types of 

required thickness and aspect ratios were modeled. The height of the unit cells remained 
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unchanged at 0.866 mm, and the aspect ratio (length or width to height ratio) for all plates 

was 8.083:1 which resulted in modelling the smallest squared plate samples so that they 

contained seven cylindrical voids or inclusions along the plate edge and one unit-cell through 

the plate thickness which thus form a plate model with 49 unit-cells in total; and this is 

increased by eight times when the plate depth is multiplied by two for the second smallest 

plate and so forth. The length and width of unit cells were equal to 1 mm, and the successive 

layers of voids and inclusions were such that the center points of every three neighboring 

cylinders forms an equilateral triangle. This, as the heterogeneity arrangement, was aimed at 

reducing or avoiding the anisotropic characteristics of the material as much as practically 

possible. Voids and inclusions in plate models are unidirectional and normal to the length of 

the plates (they are extruded in z direction). Therefore, the plates are squared which 

eliminates the need for a separate investigation into the importance of cylinder orientation in 

a plane parallel to the mid-plane. Inclusion and matrix are of two isotropic materials with a 

matrix to inclusion stiffness ratio of 10:1 for the third and fourth plate types (CYCICB and 

CYCITB) and 1:10 for the fifth and sixth plates plate categories (CYCMCB  and 

CYCMTB).  

 
Figure  8-1: Representation of half unit cells of two isotropic materials with void or inclusion’s volume 

fraction 15%. The unit cell on the left is used to model 3D plates with continuous boundaries e.g., 

CYCICB (with inclusions) or CYVOCB (without inclusions) and the unit cell on the right-hand side is 

used for plates with textured boundaries (e.g., CYCMTB). 

8.1.2 Mesh refinement of the unit-cells 

Two plate models with continuous and textured boundary surfaces and containing compliant 

inclusions were studied and presented here to show that the plate models under investigation 

satisfy the requirements of mesh convergence. The modal frequencies of plates with      

 ,            ,            and                    with cylindrical inclusions 
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were studied for mesh convergence while changing the element density of the unit-cell as the 

average error are provided in tables  8-1 and  8-2: 

Table  8-1: Mesh convergence for the plate samples with compliant inclusions and continuous 

boundaries (CYCICB) and          

Number of 

elements in 

one unit-cell 

Number of 

nodes in one 

unit-cell 

Average error for the 

primary mode 

Average error for ten 

modes 

Average error for 33 

modes 

128 773 1.94E-04 2.63E-04 2.87E-04 

624 3141 2.94E-05 5.65E-05 4.97E-05 

3744 19980 4.90E-06 3.18E-05 2.39E-05 

10240 45077 3.27E-06 3.09E-05 2.23E-05 

34944 149405 1.50E-07 2.80E-06 2.20E-06 

Table  8-2: Mesh convergence for the plate samples with compliant inclusions and textured boundaries 

(CYCITB) and          

Number of 

elements in 

one unit-cell 

Number of 

nodes in one 

unit-cell 

Average error for the 

primary mode 

Average error for ten 

modes 

Average error for 33 

modes 

100 1124 7.65E-05 2.66E-04 3.56E-04 

288 2788 1.86E-05 1.23E-04 1.29E-04 

1734 12124 1.10E-06 2.95E-05 2.66E-05 

4431 26816 2.07E-06 1.28E-05 1.10E-05 

18270 94932 1.96E-06 1.35E-06 1.07E-06 

 

As seen in tables  8-1 and  8-2, plates with about 3000 to 10,000 elements per unit cells satisfy 

the mesh convergence for the primary and first ten modes. The FEA plate models were 

created so that they contained elements per unit cells as given in the fourth row of tables  8-1 

and  8-2. The average errors in these tables are small values but the relative error 

simultaneously increases with mode number which must be noted if higher mode numbers 

are to be investigated. 

8.2 Adjustingthemodulusofelasticity(E)andmassdensity(ρ)ofthe

unit-cells with cylindrical voids or inclusions 

Now that the heterogeneous plates are modelled, the matrix and inclusions Young’s modulus 

and material density must be adjusted so that the overall homogenised properties of the plate 

remain unchanged. However, by adjusting the material properties, some degree of anisotropy 

in plate properties will occur which are also noted and quantified in this section. 

8.2.1 Obtaining modulusofelasticity(E)andmassdensity(ρ) 

The cylinders’ radius varied from 0.1 to 0.3 mm, in 0.05 mm intervals, giving void or 

inclusions volume fractions of 4, 8 15, 23 and 33 percent respectively. In this chapter as 
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previously, volume fraction, void radius or normalised void radius are used interchangeably, 

and their relations are provided in table  8-3 for clarification.  

By regenerating and repeated reflection of the unit cells in x, y and z directions, plates with 

continuous and textured boundaries of minimum one to maximum of four unit cells in the 

plate depth were created.  This modelling procedure provides plates of four sizes and varying 

volume fractions for each of the three plate types as introduced earlier in section 8.1. This 

procedure was performed while keeping the overall material properties namely the mass of  

the unit cells and elastic modulus of the plates unchanged at 2700 kg/m
3
 and 7E10 Pa for 

density and Young’s modulus respectively. Therefore, it is believed that changing the 

volume fraction of each plate of any specified size or type won’t affect the overall 

homogenised material properties of the plate samples. The correction of elastic modulus was 

done by performing tensile test simulations using FEA, and the correction of density was 

done by keeping the mass and volume of the unit cells constant but changing the density of 

the constituent isotropic materials. The corrected materials properties are provided in 

table  8-4,  8-5 and  8-6.   Figure 8-2 illustrates the cross-section of example plates and the 

arrangement of unit cells for two plate types. 

 

 

Figure 8-2 : Models’ cross sections with periodically located cylindrical voids or inclusions showing 

the arrangement of unit cells in plates; a) Plate size 1 with 7 unit cells with continuous boundaries 

(top, left); b) Plate size 2 with 14 unit cells in length and width with continuous boundaries (bottom, 

left); c) Plate size 1 with 7 unit cells with textured boundaries (top, right); d) Plate size 2 with 14 unit 

cells in length and width with textured boundaries (bottom, right) 

Table  8-3: Volume fraction and normalised equivalent of cylindrical void or inclusions 

Void/inclusion radius, r, [mm] 0.1 0.15 0.2 0.25 0.3 

Cylindrical void or inclusion volume 

fraction, % 
4% 8% 15% 23% 33% 

Normalised radius,       0.12 0.17 0.23 0.29 0.35 



156 
 

Table  8-4: Corrected modulus of elasticity for plate’s matrix. Inclusions modulus is either 0.1 or 10 

times the values of this table depending on plate type. These FE plate types are those for which 

micropolar solutions were obtained 

 

The modulus of elasticity of matrix,     

Plates with Continuous boundaries Plates with Textured 

boundaries 

Cylindrical 

void or 

inclusion 

radius, mm 

Plates with 

cylindrical voids 

and continuous 

boundaries 

(CYVOCB) 

Relative diff. 

with the 

homogen-

eous beam 

Plates with 

cylindrical 

compliant 

inclusions and 

continuous 

boundaries 

(CYCICB) 

Relative 

diff. with 

the 

homoge-

eous beam 

Plates with 

cylindrical 

inclusions, 

compliant matrix 

and textured 

boundaries 

(CYCMTB) 

Relative 

diff. with 

the 

homoge-

neous 

beam 

0 7.00E+04 3.16E-05 7.000E+04 2.30E-05 7.000E+04 4.07E-05 

0.1 7.75E+04 8.36E-05 7.56E+04 5.33E-05 6.57E+04 7.40E-05 

0.15 8.80E+04 5.63E-05 8.31E+04 7.31E-05 6.12E+04 9.22E-05 

0.2 1.05E+05 9.27E-05 9.48E+04 7.31E-05 5.56E+04 8.92E-05 

0.25 1.31E+05 2.60E-05 1.12E+05 8.36E-05 4.91E+04 4.37E-05 

0.3 1.75E+05 3.16E-05 1.37E+05 2.30E-05 4.19E+04 4.07E-05 

Table  8-5: Corrected modulus of elasticity for plate’s matrix. Inclusions modulus is either 0.1 or 10 

times the values of this table. These FE plate types are those for which micropolar solutions were not 

obtained 

 

The modulus of elasticity of matrix,     

Plates with Continuous boundaries Plates with Textured boundaries 

Cylindrical 

void or 

inclusion 

radius, mm 

Plates with 

compliant matrix 

and continuous 

boundaries 

(CYCMCB) 

Relative diff. 

with the 

homoge-

neous beam 

Plates with 

cylindrical 

voids and 

textured 

boundaries 

(CYVOTB) 

Relative 

diff. with 

the 

homoge-

neous 

beam 

Plates with 

cylindrical and 

compliant 

inclusions and 

textured 

boundaries 

(CYCITB) 

Relative 

diff. with 

the 

homoge-

neous 

beam 

0 7.00E+04 4.38E-05 7.00E+04 1.25E-05 7.00E+04 8.36E-05 

0.1 6.59E+04 7.75E-05 7.77E+04 4.28E-05 7.57E+04 5.36E-05 

0.15 6.15E+04 5.16E-05 8.82E+04 1.25E-05 8.32E+04 2.60E-05 

0.2 5.60E+04 7.49E-05 1.05E+05 1.39E-05 9.47E+04 8.66E-05 

0.25 4.95E+04 8.01E-05 1.30E+05 2.30E-05 1.11E+05 8.31E-05 

0.3 4.22E+04 4.38E-05 1.72E+05 1.25E-05 1.37E+05 8.36E-05 

Table  8-6: Corrected density of the plate’s unit cell by void or inclusions radius 

cylindrical voids 

or inclusion 

radius, mm 

The mass density of matrix and inclusions,     ⁄  

Plates with cylindrical voids Plates with cylindrical inclusions 

For matrix For matrix For inclusions 

0 2700.00 2700.00 N/A 

0.1 2801.64 2546.94 6766.11 

0.15 2939.97 2672.70 3007.16 

0.2 3158.29 2871.18 1691.53 

0.25 3491.67 3174.25 1082.58 

0.3 4008.87 3644.43 751.79 

8.2.2 The effect of anisotropy in plates with cylindrical voids or inclusions 

The tensile test simulations on the plate models were carried out in x-direction based on 

which the modulus of elasticity of the matrix material was adjusted and provided in 

tables  8-4 and  8-5 for various volume fractions. The moduli of elasticity of inclusions were 

also assumed to be different from the modulus of elasticity of matrix material by a factor of 

ten depending on the plate model types. Although the macroscopic modulus of elasticity in 
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the x-direction, Ex , is unchanged and equal to 70E3 MPa, the corresponding modulus of 

elasticity in the z-direction, Ez , (perpendicular to the x-direction) for various volume 

fractions changes which indicate that the plate models will demonstrate some degrees of 

anisotropy. The degree of anisotropy (DA) was obtained by tensile test simulations in the z-

direction, and the relative difference of Ez to Ex was calculated for various volume fractions. 

However, the anisotropy in plate models varies with volume fraction as seen in table  8-7:  

Table  8-7: The degree of anisotropy in heterogeneous plate models with cylindrical voids and 

inclusions 

 
The relative degree of anisotropy [(Ez-Ex)/Ez] 

Volume 

fraction 

Plates with compliant 

inclusions and 

continuous 

boundaries 

Plates with voids and 

continuous 

boundaries 

Plates with compliant 

matrix and textured 

boundaries 

0.00 0.00 0.00 0.00 

0.04 0.04 0.06 0.20 

0.08 0.09 0.13 0.34 

0.15 0.15 0.22 0.46 

0.23 0.21 0.31 0.53 

0.33 0.28 0.41 0.58 

The values in table  8-7 indicate that the plates with void or compliant inclusions and volume 

fraction of less than 0.15 can be assumed to be relatively isotropic, and the plates with higher 

volume fractions as plates with a higher degree of anisotropy. On the contrary, the plates 

with a compliant matrix exhibit a higher degree of anisotropy even for lower volume 

fractions. Therefore, the dynamic behaviours of the heterogeneous plate models with a lower 

degree of anisotropy (DA) are expected to be explained by the results from 3D-MPFEM 

which only models isotropic micropolar plates. The results for heterogeneous plates are 

compared and discussed in section 8.5. 

8.3 Modal analysis procedure and mode shapes 

In finite element modal analysis, the PCG Lanczos solver and distributed memory were used 

for modal analysis of plates. This method is as accurate as Block Lanczos and is widely used 

for models with a large number of degrees of freedom. A detailed comparison between the 

two methods and their applicability are given in reference (Beisheim 2007). 

The first 8 mode shapes using finite element analysis are shown in figures  8-3-a to  8-3-h and 

as it can be seen every mode has its own distinct shape. The first mode is known as the twist 
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mode (figure  8-3-a), the second mode is known as the saddle type mode or hyperbolical 

surface (figure  8-3-b) and the mode shape in figure  8-3-c is known as the ellipsoidal surfaced 

type mode. The rest of modes show very distinct mode shapes in which the number of 

transverse lobes (waves) increases with the mode number. The twisting modes are shear 

deformation dominated such as in mode one where    is the key influencing parameter in 

their dynamic behaviour while modes two and three are bending deformation dominated in 

which    is the principal influencing parameter rather than   . Thus, from the transverse 

mode four onward, the dynamic behaviour of the plate models, both shear and bending 

deformations are the prevailing factors. However, the longitudinal modes in an FFFF 

boundary condition case appear usually after mode 8 which are therefore not presented in 

this chapter.  

The non-dimensional modal frequencies for homogeneous plates      which are given in 

table 8-8 and used for normalisation of the plate modal frequencies in the figures provided in 

sections 8.4 and 8.5, are derived using equation (8.1) as follows: 

   
   

  
√
  

 
 (8.1) 

where L is the plate length, W (=L) is the plates width, d is the plate depth which may also 

be shown by “h” while D is the flexural rigidity: 

 
  

   

[        ]
 (8.2) 

Table 8-8 : The non-dimensional frequencies     for homogeneous plates with AR=8.083:1 

Mode 1 2 3 4 5 6 7 8 

ANSYS 

FEA 
1.266325 1.889482 2.321783 3.138321 3.138415 5.388943 5.389036 5.395208 

MPFEM 1.265003 1.884909 2.317066 3.130562 3.130925 5.36872 5.369923 5.378121 

 

In this chapter, the finite element results are only presented when being compared to the 

predictions of 3D-MPFEM in the sections that follow. However, the FEA and 3D-MPFEM 

results are listed in Appendix E.1 and E.2. 
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a) Mode 1, Twist shape 

 
b) Mode 2, (hyperbolical surface) Saddle 

shape 

 
c) Mode 3, (ellipsoidal surfaced) Bending Type 

 
d)  : Mode 4 

 
e)  Mode 5 

 
f)  Mode 6 

 
g)  Mode 7 

 

 
h) Mode 8 

Figure  8-3: The first 8 mode shapes (a to h) of a sample plate with cylindrical inclusions of volume 

fraction equal to 0.15 and continuous boundaries (NCy=1) generated by FEA. Note that the first eight 

mode shapes of the homogeneous plate as well as other plate models with textured boundaries are 

similar to the mode shape figures here also. 

The mode shapes of the micropolar plates were also extracted using the 3D-MPFEM. As an 

example, the first eight mode shapes for a plate model with the depth of 2 unit cells;    

     ;         ;            ;         ,          ,      ,        ,      

        , corresponding to CYVOCB are provided in figures  8-4-a to  8-4-h. The 
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micropolar plate mode shapes generated were qualitatively similar to those in figures  8-3-a 

to  8-3-h for plates modelled using FEA which indicate that 3D-MPFEM identifies the first 

mode as twisting, second and third modes as bending and the rest of the transverse modes are 

dominated by both shear and bending deformation.  

 

 
a)  mode 1 

 

 
b) mode 2 

 
c)  mode 3 

 
d)  mode 4 

 
e)  mode 5 

 

 
f)  mode 6 

 
g)  mode 7 

 

 
h)  mode 8 

Figure  8-4: MPFEM extracted mode shapes for a plate model with the depth of 2 unit cells;     

     ;          ;            ;         ,          ,       ,        ,      

         , 
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8.4 Micropolar elastic constants  

Here, in the three-dimensional modal analysis, the micropolar Poisson’s ratio is assumed to 

be equal to 0.3, micropolar modulus of elasticity,   , equal to 7E10 Pa; the characteristic 

length in bending and the coupling number are as given in tables 4-3 and  6-1 and were 

obtained from the two dimensional plane stress case, the method of which is provided in 

chapters 4 and 5, and for greater accuracy, these two constants were obtained by considering 

only the beam models of depth 2, 3 and 4 array of voids or inclusions. Finally the polar ratio 

is assumed to be 1.5 as already indicated.  

The modal analysis of micropolar plates with three unit cells in height and cylindrical voids, 

as will be explained in section 8.4.1, indicates that the characteristic length of torsion must 

forecast the behavior of higher modes as well as the first mode which is twisting dominated. 

Therefore, three values for the characteristic length of torsion        ,       and          

had been tried and its influence on the frequency predictions are investigated and 

qualitatively illustrated. 

In modal analysis of a micropolar plate, small displacements in the absence of any external 

load with FFFF (unconstrained plate edges) boundary conditions are sought in order to 

investigate size effect predictions by micropolar theory when the microstructural dimensions 

are comparable to the overall size of the plate. It will be shown in the details given in this 

chapter and in chapter nine, that for specific non-homogeneous plates, the micropolar theory 

is capable of predicting size effect for the first few modal frequencies, that means the first 5 

to 8 modes, but the micropolar theory lacks the ability to be reliable in predicting the 

frequencies of higher modes. It will also be shown in section 8.4.1 that selecting a 

characteristic length of torsion,   , equal to twice the characteristic length of bending,    , as 

has been used in other literature (Hassanpour and Heppler 2017), where it may be a valid 

estimation in static cases, may also be valid for lower mode numbers in the dynamic case. 

As an extra verification of the characteristic length of bending which was identified through 

equation (4.46), by replacing the flexural rigidity, D, with      in equation (8.1), a very 

useful and alternative equation for calculating the characteristic length of bending in plates 

can be derived as: 

 

  
   

  
√

  

     
 

(8.3) 
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where       is termed the flexural rigidity of the micropolar plate here, which was first 

derived by Gauthier et al. (1975) to relate the curvature to bending in a micropolar plate with 

small displacement, and is identified with  ̿ here, and   is the depth of the plate. The extra 

micropolar term     reflects the effect of micropolar constituent parameter,  , in flexural 

rigidity of micropolar plates.   ̿ is reducible to   when    approaches zero for the flexural 

rigidity in a classical material. 

By replacing D from equation (8.2),    from equation (7.5) and knowing that        : 

 
 ̿  

    
 

[         ]
 (

     
 

    
)  

(8.4) 

Thus: 

 
 ̿  

    
 

[       
  ]

{          (
  
 

  
)} 

(8.5) 

in the context of a square plate in which: 

          (8.6) 

where    is the mid plane surface area of the plate. 

Note that h and d are used interchangeably throughout for the depth (or height) of the plate; 

Therefore, by replacing  ̿ from equation (8.5) and substituting into equation (8.3) and re-

arranging: 

 
      

       

              
{          (

  
 
)
 

} 
(8.7) 

Equation (8.7) thus relates the characteristic length of bending,    , non-dimensional 

frequency parameter of the plate (applicable to mode two only),  , micropolar flexural 

modulus,    , and plate dimensions, to the product of plate’s mass density, ρ, multiplied by 

the mid plane surface area of the plate and the squared frequency. Thus, if this product is 

determined for plates of various sizes and plotted against the plate’s reciprocal size measure, 

       , then it is possible to obtain     or   from the intercept and the characteristic length 

from the slope. Thus equation (8.7) generates the same characteristic length of bending as 

equation (4.46). 
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Note that the equation (8.7) is not reducible to equation (4.46) because here   is the 

transverse frequency of a rectangular plate and   is the non-dimensional frequency 

parameter of the plate. Therefore, equation (8.7) is only introduced and used as an alternative 

method to confirm the values obtained for the    . 

8.4.1 Qualitative illustration of the influence of    and    on modal frequencies 

As referred to in chapters 4, 5 and 6, and based on the method introduced in reference 

(Hassanati and Wheel 2018) for the determination of elastic constants in two-dimensional 

beam models,    and N where determined for various beam models and these material 

property constants of    and N were used for plate models in this chapter accordingly 

because the heterogeneous plate types in this chapter are created by extruding the 2D beam 

models which were previously modelled and presented in chapter three. 

The assumed values of    and  , appear to be satisfactory for static cases (Altenbach and 

Eremeyev 2009; V. a. Eremeyev, Lebedev, and Altenbach 2013; Kouhia and Niemi 2013; V. 

A. Eremeyev, Skrzat, and Stachowicz 2016a) or even modal analysis (Steinberg and Kvasov 

2015), but in this work, these assumptions have proved to have some shortcomings which 

are illustrated here. 

These maximum values of     and   qualitatively forecast the results for the first two modal 

frequencies, but are less reliable for the third mode and beyond. As is shown in 

figures  8-5,  8-6, and  8-7, by keeping the polar ratio at 1.5 but decreasing   , to the values 

listed below, some improvement is achievable for mode three but at the expense of other 

modal frequencies. As an example, the plate samples CYVOCB with       and volume 

fractions, 0.4, 0.15 and 0.33 were investigated with following constants: 

a)                  , see figure  8-5 

b)                 , see figure  8-6 

c)                    , see figure  8-7 

As seen in figure  8-5, by setting the value of         , the isotropic micropolar plate 

assumption leads to underestimating the modal frequencies at mode three compared with the 

FEA results for the heterogeneous plate models with higher volume fraction cylindrical 

voids which represent materials with a higher level of anisotropy.  Nevertheless, decreasing 

the value of    causes an increase in the modal frequency at mode three for isotropic 

micropolar plates but then underestimates the primary and second modal frequencies for all 

volume fractions, as seen in figures  8-6 and  8-7. 
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Figure  8-5: Changes of normalised frequencies of a micropolar plate (CYVOCB) with        , 

Ψ=1.5, NCy=3,          mm and AR=8.083 in comparison with corresponding FEA results 

(dotted lines). 

 

Figure  8-6: Changes of normalised frequencies of a micropolar plate (CYVOCB) with      , Ψ=1.5, 

NCy=3,          and AR=8.083 in comparison with corresponding FEA results (dotted lines). 

 

Figure  8-7: Changes of normalised frequencies of a micropolar plate (CYVOCB) with        , 

Ψ=1.5, NCy=3,          and AR=8.083 in comparison with corresponding FEA results (dotted 

lines). 
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In addition, a set of numerical analyses indicated that the smallest plate samples with higher 

volume fraction are more sensitive to the value of coupling number. The results in 

figures  8-8 and  8-9 indicate that the normalised frequencies produce more acceptable results 

for higher volume fractions  when the characteristic length of torsion is set to twice the value 

of   . However, at mode three, the frequency values are under estimated as shown previously 

in figure  8-5.   

 

Figure  8-8: The influence of    and N on the primary modal frequencies of plates with CYVOCB 

 

Figure  8-9: The influence of    and N on the second modal frequencies of plates with CYVOCB 
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8.5 Detailed results and discussions 

In this section, the finite element results and the size effect predictions for plates with 

cylindrical voids or inclusions are presented, these results are also compared with those 

obtained by 3D-MPFEM and the size effect predictions for plates are discussed.  

8.5.1 Plates with continuous boundaries 

8.5.1.1 Plates with cylindrical voids and continuous boundaries (CYVOCB) 

The modal frequencies obtained by finite element analysis were normalised by the values in 

table 8-8. Figure  8-10 shows the normalised modal frequencies for the primary mode of all 

four plate sizes, using FEA and indicates that the variation of normalised modal frequencies 

with the inverse of the squared sample depth, is approximately linear and this linear behavior 

is valid for all cylindrical void volume fractions. As the graph in figure  8-10 reveals, the size 

effect is highest for the smallest plate sample sizes, and thus more pronounced. The size 

effect reduces as the depth of the plate increases. This phenomenon is unique for every mode 

number and thus for every mode the gradient of the line varies which can be characterised as 

the behaviour of plates in such specific modal frequency.  Of course, as the void’s volume 

fraction increases, so does the gradient of the line which connects these normalised 

frequencies. This is precisely what was expected because adding more layers to the sample 

and reducing the void radius, will definitely reduce the sudden changes in stress gradients at 

each unit-cell throughout the depth of the plate and therefore, if one extrapolates the lines in 

the figure  8-10, the normalised frequency parameter of the plates will finally approach unity 

value and exhibit the behaviour of a homogeneous plate if the ratio of the volume fraction to 

the plate's depth is reduced to near zero. 

It must be noted here that the plates with one layer of voids are structurally different from 

other specimens with more than one layer in the depth of the plate. In the 3-dimensional 

plate modeling, as explained in the previous section, the arrangement of the cylindrical voids 

in the material are such that they form an equilateral triangle with     angle to avoid 

anisotropic behavior but the smallest samples lack this fundamental arrangement. For this 

very reason, at some modes where bending is involved (other than mode one which is the 

first twisting mode) the normalised frequencies for the smallest sized sample do not correlate 

with other larger samples. This inconsistency of the modal frequencies of the smallest 

samples occurs for the higher modes too. 
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Figure  8-11 shows the normalised modal frequencies for the primary mode of all four plate 

sizes, exploiting the micropolar theory with the micropolar constants identified (       ) or 

assumed (    ) previously. By comparing these data with the corresponding results in 

figure  8-10 for the finite element models, it can be concluded that for the primary modal 

frequencies: 

 Micropolar plate theory can anticipate the size effect although the micropolar results 

are not correlated on a straight line. 

 The normalised modal frequencies obtained for micropolar plates are slightly lower 

than the results from finite element modal analysis, 

 The micropolar theory underestimates the modal frequencies for the smallest 

samples in comparison with the finite element modal analysis and this is understood 

to be due to the structural characteristics of the void arrangements which do not form 

equilateral triangles as seen in plates with two or more layers.  

Figure  8-12 shows the FEA results for the first five normalised modal frequencies of five 

volume fractions which vary with mode number. The finite element predictions show that 

the homogeneous plates are not size dependent, as expected, these being represented by 

dotted lines with the value of unity. The results which were generated using the micropolar 

theory like the finite element results clearly demonstrate the size effect in a micropolar plate 

for only the first 2 modes, after which the normalised frequencies quickly reduced to near the 

homogenised case, see figure  8-13 . This suggests that the micropolar theory is not 

applicable to higher modal frequencies. It must also be noted that although mode shapes 

appear in sequential order, every modal frequency which is generated for the micropolar 

plate must be compared with the same mode number (mode shapes) of the FEA models 

because every modal frequency in the plate vibration is associated with a distinct shape. 
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Figure  8-10: Normalised primary modal frequency of four plate sizes for plates with cylindrical voids 

and continuous boundaries using FEA (CYVOCB).                                    

 
Figure  8-11: Normalised primary modal frequency of four plate sizes for plates with cylindrical voids 

and continuous boundaries using the micropolar theory (for CYVOCB). 

(                                               ) 

 
Figure  8-12: The first five normalised transverse modal frequencies of the smallest plate sample with 

voids and continuous boundaries using FEA.                                    
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Figure  8-13: The first five normalised transverse modal frequencies of the smallest plate sample with 

voids and continuous boundaries using the micropolar theory. 

(                                               ) 

In figure  8-14 and  8-15 the primary and second modal frequencies for all plate depths and 

void volume fractions using FEA and micropolar theory for plates with voids and continuous 

boundaries are compared directly which clearly indicate that as the void volume fraction 

increases and plate sample size (depth) reduces, so the difference between the FEA and 

micropolar results is accentuated. The values of DA listed in table  8-7 are directly related 

to   . Therefore, the increased difference between FEA and 3D-MPFEM results at higher    

is due to increasing anisotropy in the plate models. The results indicate clearly that the 

micropolar theory is able to predict modal frequencies in good agreement with FEA results 

for the first two modal frequencies and below volume fraction of 0.15 when the degree of 

anisotropy is low. 

The FEA and micropolar dimensionless parameters of eight modes are provided in the 

Appendix E. 



170 
 

 

Figure  8-14: Primary normalised modal frequencies, mode 1, for plates with voids and continuous 

boundaries, CYVOCB 

 

 

Figure  8-15: Second normalised modal frequencies, mode 1, for plates with voids and continuous 

boundaries, CYVOCB 

The numerical results (modal frequency of plates) for the first 8 normalised modal 

frequencies of four plate sizes with cylindrical voids and continuous boundaries for      

                              obtained using finite element for CYVOCB which are 

tabulated in table  E-1 in Appendix E and indicate that the size effects at higher modes are 

qualitatively similar to the FE results for the smaller sample, as seen in figure  8-12,  with 

considers the changes in volume fraction and the plate size. 
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8.5.1.2 Plates with cylindrical inclusions of compliant material (CYCICB) 

The finite element results for plates with cylindrical inclusions of a compliant material show 

similar behavior to plates with cylindrical voids although the normalised frequencies are 

different. The main difference is that the gradients quantifying the size effect seem to be 

smaller than the plates with voids. The numerical results for eight normalised modal 

frequencies of this type of plates are given in Appendix E and the explanations provided in 

section 8.5.1.1 also appear to be valid for plates with cylindrical compliant inclusions 

(CYCICB) as well.  The normalised modal frequencies presented in figure  8-16  indicate that 

the variation of frequency of the primary mode is linear with the inverse of the squared 

sample depth which is also valid for plates with cylindrical voids. The results for the primary 

mode also indicate that the gradient of the lines decreases with reducing volume fraction. 

This dynamic behaviour of plates with cylindrical and compliant inclusions has been 

observed already in the dynamic analysis of plates with cylindrical voids and continues 

boundaries; however, by direct comparison of the results in figure  8-16  and  8-10 it can be 

argued that the existence of inclusions in the plate models mitigates the size effect in 

comparison with plates with cylindrical voids. 

 
Figure  8-16: Normalised primary modal frequency of four plate sizes for plates with cylindrical 

compliant inclusions and continuous boundaries using FEA (CYCICB).                      

              

The modal analysis results obtained by applying the micropolar theory show similar dynamic 

behaviour for the three largest plate samples for the normalised primary frequency values of 

the plate with cylindrical compliant inclusions and continuous boundaries (CYCICB) with 

the micropolar constants assumed or identified previously, as seen in figure  8-17. The size 

effect in the primary modal frequency of the plate samples using 3D-MPFEM is in close 

agreement with those obtained by finite element analysis except for the smallest plate model. 
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Figure  8-17: Normalised primary modal frequency of four plate sizes for plates with cylindrical 

compliant inclusions and continuous boundaries using MPFEM (CYCICB). 

(                                               ) 

Once again, similar to the results derived for plates with voids (CYVOCB), the 

underestimations in normalised values for the smallest plate sample, as shown in figure  8-17, 

are due to the void arrangements which do not form equilateral triangles as seen in plates 

with two or more layers. Thus, the normalised frequency values do not form a straight line 

and show underestimations in normalised frequency values which were obtained by using 

3D-MPFEM. 

The values of normalised modal frequencies of the first five normalised transverse modal 

frequencies of the smallest plate sample with compliant inclusions and continuous 

boundaries using FEA do not show sensitivity to mode number for the first three modal 

frequencies, as seen figure  8-18. 

 
Figure  8-18: The first five normalised transverse modal frequencies of the smallest plate sample with 

compliant inclusions and continuous boundaries using FEA.                                    
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The normalised frequency values obtained by applying the micropolar theory were not able 

to predict size effect at higher mode numbers beyond the second and tend to reach unity, see 

figure  8-19. 

 
Figure  8-19: The first five normalised transverse modal frequencies of the smallest plate sample with 

compliant inclusions and continuous boundaries using MPFEM. 

(                                               ) 

Note that, the micropolar plates which are modelled and analysed by 3D-MPFEM are 

isotropic while the representative plates which are modelled by FEA are not isotropic despite 

arranging the cylindrical inclusions in an equilateral triangles form. However, the first two 

normalised frequencies, which were obtained by using the available micropolar constants, 

show some agreement with the FEA results and the size effect is clearly forecast. 

Figure  8-20 shows the primary normalised modal frequencies for plates with compliant 

inclusions and continuous boundaries, which indicate that the micropolar plate models 

significantly under-estimates the normalised frequency values predicted by FEA for the 

smallest sample size when the volume fraction is greater than 0.15. Again, as explained in 

the previous section, the increased difference between FEA and 3D-MPFEM at higher    is 

due to increasing anisotropy in the plate models with compliant inclusions and continuous 

boundaries. However, the 3D-MPFEM results here are in better agreement with the FEA 

results because the degree of anisotropy, as provided in table  8-7, is lower compared with 

plates with voids. 
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Figure  8-20: Primary normalised modal frequencies, mode 1, for plates with compliant inclusions and 

continuous boundaries, CYCICB 

The first 8 normalised modal frequencies of four plate sizes with cylindrical inclusions and 

continuous boundaries for                                   using finite element 

analysis (CYCICB) are tabulated in table E.2 in Appendix E and indicate that the size effect 

at higher modes for the three larger sizes are qualitatively similar to the FEA results for the 

smaller sample, as seen in figure  8-18. 

8.5.1.3 Plates with cylindrical inclusions of stiff material but compliant matrix 

(SYCMCB) 

Plates with cylindrical inclusions of stiff material but compliant matrix, (SYCMCB), show a 

different size effect in modal frequencies in comparison with plates with voids and /or 

compliant inclusions, as the gradient of the lines which connect the normalised modal 

frequencies at each volume fraction is negative, as seen in figure  8-21. This type of size 

effect could not be predicted by the micropolar theory either because the micropolar constant 

the coupling number, N, could not be obtained for a material with such heterogeneities using 

the analytical method which was provided in chapter five.  

 Figure  8-21 shows the normalised primary modal frequency of four plate sizes for plates 

with cylindrical inclusions, compliant matrix and continuous boundaries (CYCMCB) using 

FEA. The negative slope of the lines indicates that increasing volume fraction causes a 

decrease in Λ at a given mode number for larger sample sizes with more than two unit-cells 

across the depth of the plates. However, the size effect although inverted nevertheless 

remains approximately linear across the plate samples.  
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Figure  8-21: Normalised primary modal frequency of four plate sizes for plates with cylindrical 

compliant matrix and continuous boundaries using FEA (CYCMCB).                      

              

Increasing the volume fraction in plates with cylindrical inclusions, compliant matrix and 

continuous boundaries (CYCMCB), as seen in figure   8-22, does not always have an inverse 

effect on the normalised frequencies as can be seen for volume fractions greater than 0.15. 

 

Figure  8-22: The first five normalised transverse modal frequencies of the smallest plate sample with 

compliant matrix and continuous boundaries using FEA.                                    

The opposite scale effect in the dynamic behaviour of the plate sample with compliant 

matrix and continuous boundaries could be due to the material’s matrix which is more 

compliant than the previous models, in sections 8.5.1.1 and 8.5.2.1, and that in beam models 

with or less than four layers of unit cells in depth of the beams, the compliant matrix may 

dictate the overall behaviour of the structure and generate inverse size effects on normalised 

frequencies. This phenomenon has also been seen in the 2D beams with similar material 

properties, Figure 3-9 and 3-10. Therefore, it must be noted that the plates with similar 
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macroscopic properties may demonstrate different dynamic behaviour due to their micro-

structurally related size effects.  

8.5.2 Plates with textured boundaries  

8.5.2.1 Plates with textured boundaries and voids (CYVOTB) 

The FEA results for the plates with cylindrical voids and textured boundaries showed a 

specific size effect for which 3D-MPFEM results are again not available for comparison 

because of the negative gradient in the graph for normalised frequency against the inverse of 

the plates depth squared as seen in figure  8-23. This figure shows how the normalised 

frequency changes with the plates sample size while figure  8-24 provides the five normalised 

modal frequencies of the smallest CYVOTB plate. 

 

Figure  8-23: Normalised primary modal frequency of four plate sizes for plates with cylindrical voids 

and textured boundaries using FEA (CYVOTB).                                    

 

 
Figure  8-24: The first five normalised transverse modal frequencies of the smallest plate sample with 

voids and textured boundaries using FEA.                                    
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Similar to the dynamic behaviour of the beams with textured boundaries as presented in 

chapter three, opposite scale effects in specimens with textured edges may occur in 

heterogeneous plate models because the material near the surface region of the sample is 

compromised. Also, as has already been explained in the previous section, the compliant 

matrix may dictate the overall dynamic behaviour of the plate structure when there are four 

or less than four layers of unit cells are present across the depth of the specimen. However, if 

the structure’s boundary is intercepted by voids or compliant inclusions (See also section 

8.5.2.2), the near-surface region becomes even more compliant, and this compromises the 

rigidity of the plate’s boundaries. On the contrary, the near-surface area becomes stiffer than 

internal sections of the specimen if more rigid inclusions intercept the surface of the plate, 

(See section 8.5.2.3). The samples with one layer of unit-cells across the depths of the plate 

models show even more pronounced response because the microstructural arrangements of 

the inclusions will be no longer present. 

8.5.2.2 Plates with textured boundaries and compliant inclusions (CYCITB) 

Plates with compliant inclusions and textured boundaries showed similar dynamic behaviour 

as the plates with voids as explained in the previous section for which the micropolar 

constants cannot be identified. Therefore, the micropolar results are once again not available 

for comparison with the FEA results. In figure  8-25 the results include the normalised 

primary modal frequency values of four plate sizes for plates with cylindrical compliant 

inclusions and textured boundaries using FEA (CYCITB) which indicate that the size effect 

also inverts  at a specific plate depth ( here plate with NCy = 2) but remains linear across the 

samples. 
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Figure  8-25: Normalised primary modal frequency of four plate sizes for plates with cylindrical 

compliant inclusions and textured boundaries using FEA (CYCITB).                      

              

The FEA numerical results for the first eight non-dimensional bending modal frequencies of 

four plate sizes for plates with compliant inclusions and textured boundaries (CYCITB) are 

provided in Appendix table  E-5 which also confirm the inversion of size effect at this 

specific plate depth. As an example, the first five normalised modal frequencies of the 

smallest plate sample with compliant inclusions and textured boundaries using FEA are 

provided in figure  8-26, which show that the normalised frequencies are all below unity 

values for the smallest plate sample. 

 

Figure  8-26: The first five normalised transverse modal frequencies of the smallest plate sample with 

compliant inclusions and textured boundaries using FEA.                                    

8.5.2.3 Plates with textured boundaries and compliant matrix (CYCMTB) 

Unlike the plates with compliant inclusions or voids and textured boundaries, the micropolar 

constants can be obtained for the plates with textured boundaries and compliant matrix 

according to the methodology given in chapter five.    
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The finite element results for plates with textured boundaries and compliant matrix 

(CYCMTB) are provided in figure  8-27 to  8-29 and in table  E-6 in Appendix E.  

The FEA results for plates with stiff cylindrical inclusions and compliant matrix (CYCMTB) 

show similar behavior as plates with cylindrical voids or inclusions but continuous 

boundaries. However, here the plate models demonstrated lower size effect in comparison 

with CYVOCB or CYCICB. The results in figure  8-27 indicate that the gradient in the 

primary normalised frequency results for CYCMTB plates are slightly smaller than the 

results for CYCICB and CYVOCB. The normalised modal frequencies presented in 

figure  8-27 indicate that the variation of normalised modal frequencies of the primary mode 

is approximately linear with the inverse of the squared sample depth. The results for the 

primary mode also indicate that the gradient of the lines decreases with reducing the volume 

fraction. 

 
Figure  8-27: Normalised primary modal frequency of four plate sizes for plates with compliant matrix 

and textured boundaries using FEA (CYCMTB).                                    

The values of normalised modal frequencies of the first five normalised modal frequencies of 

the smallest plate sample with compliant matrix and textured boundaries generated using 

FEA demonstrate a great deal of sensitivity to mode number as seen in figure  8-28 which 

remains pronounced for higher modes too. This figure indicates that there is an increase in 

normalised frequency at modes three and five compared to CYCICB and CYVOCB. Note 

that figure  8-28 provides normalised frequencies at five different modes for the smallest 

plate sample and is not showing the gradient of changes at any specific mode for all plate 

sizes as seen in figure  8-27. 
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Figure  8-28: The first five normalised transverse modal frequencies of the smallest plate sample with 

compliant matrix and textured boundaries using FEA.                                    

As mentioned earlier in this chapter, the linear isotropic micropolar theory is not applicable 

for calculating the modal frequencies at higher mode numbers because, as said, the 

micropolar plate models are isotropic in contrast with the anisotropic models which were 

generated by FEA. However, the first two normalised frequencies, which were obtained by 

using the available micropolar constants, are in close agreement with the FEA results and the 

size effect is forecast. Figure  8-29 shows the primary normalised modal frequencies for 

plates with compliant matrix and textured boundaries, CYCMTB, which again indicate that 

the micropolar theory under-estimates the normalised frequency values for the smallest 

sample size when the volume fraction is higher than 0.15. In this figure, the 3D-MPFEM 

results are in better agreement with FEA results although the plates are more anisotropic, 

nevertheless this might be due to inverse effect of the plate’s textured boundaries. 
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Figure  8-29: Primary normalised modal frequencies, mode 1, for plates with compliant matrix and 

textured boundaries, CYCMTB 

8.6 Conclusions 

In this chapter, six types of heterogeneous plate models were created using FEA as listed in 

section 8.1. The models were generated such that the sizes of the microstructures were 

comparable to the overall size of the plates. The size effects due to these microstructures 

were investigated by their effect on modal frequencies in the free vibration of plates with 

FFFF boundary conditions (unconstrained edges) in the absence of external loads. 

Using the results from the finite element analysis, two of the micropolar constants, the 

characteristic length of bending and coupling number, were obtained from the dynamic 

behaviour of beams in a 2-dimensional case as discussed in chapters 4 and 5. The modulus of 

elasticity values were obtained from the tensile analysis. The polar ratio was considered 

constant and equal to 1.5, and the characteristic length of torsion was kept as twice the value 

of the characteristic length of bending throughout the entire modal analysis of the micropolar 

plates. However, the effect of changes in polar ratio or characteristic length of torsion was 

briefly investigated and it was concluded that reducing the ratio of        to e.g. 0.5 may only 

correct the underestimation of the modal frequency of mode three to some extent, but it 

causes severe under estimation in the value of the primary modal frequency of the plate. The 

under estimation of the normalised frequency parameters, especially at mode 3, by the 3D-

MPFEM, may well be due to the orientation of the cylindrical voids or inclusions in one 

direction of the square heterogeneous plates which might indicate the effect of anisotropy in 

the material. If this is the case, then next chapter describes the influence of spherical voids or 
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inclusions in modal frequencies of the square plates which indeed negates the anisotropy 

issues associated with the direction of the cylindrical voids or inclusions. 

The three-dimensional micropolar finite element approach, incorporating the micropolar 

theory was used to model a set of micropolar plates corresponding to the previously 

modelled non-homogeneous plates using FEA. Using the 3D-MPFEM algorithms, modal 

frequencies were generated for the micropolar plates. The size effects in micropolar plates 

were investigated. The results of the 3D-MPFEM analysis were in approximate agreement 

with FEA results for the first five modal frequencies though the degree of agreement 

appeared to decrease as    increased and the plate became more anisotropic. 

In general, the micropolar theory was capable of anticipating size effect qualitatively in non-

homogeneous plates in modal analysis, and the accuracy of the results greatly depends on the 

precise values of micropolar constants used in the analysis and the degree of anisotropy 

(DA) of the plate properties. The heterogeneous plate models, as explained in section 8.2.2 

showed some degree of anisotropy which is also related to the volume fraction. Plates with 

lower volume fractions were considered to be mildly anisotropic, and therefore the dynamic 

behaviour of such heterogeneous plates could be better explained by the isotropic plate 

models generated by applying the micropolar theory. 

Although the size effect can be anticipated by micropolar theory, nevertheless, for the 

smallest sample models where the structural depth of the plates was comprised of just one 

unit cell, the frequencies were underestimated and the reason may be, for example, that for 

such models, despite unit-cell similarities, the equilateral triangle arrangements for the 

neighbouring voids or inclusions was removed indicating that in such structures the strain 

gradient through the depths of the plate changes more abruptly than anticipated which thus 

affect the results. 

In the next chapter, the heterogeneous models will include plates with spherical voids or 

compliant inclusions in which the effect of the material anisotropy is expected to be reduced 

and the application of the linear isotropic micropolar theory to such plates will be 

investigated accordingly. Therefore, the linear isotropic micropolar theory is also expected to 

answer the question of the underestimation in the value of the modal frequencies at mode 

three observed in this chapter. 
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9 Size Effects in 3D Heterogeneous Plates with Spherical Voids or 

Inclusions  

In the previous chapter, the study of plates with cylindrical-type voids or inclusions showed 

some underestimation in calculating the normalised values of the modal frequencies of 

heterogeneous plates especially at mode three despite the anticipation of noticeable size 

effects. These underestimations, however, were presumed to result from the orientation of 

the voids or inclusions being in one direction which caused some anisotropy effects in the 

plate models that also increased with volume fraction. In this chapter, the free vibration of 

unconstrained square plates with spherical-type voids and inclusions is investigated. 

Modelling these non-homogeneous plates with spherical voids or inclusions is intended to 

decrease the degree of anisotropy (DA) which justifies the application of the linear isotropic 

micropolar theory to analyse such plate models. The degree of anisotropy of these plates are 

obtained and discussed in section 9.2.2. 

The plates were modelled so that the centre point of any particular void or inclusion is 

located at the same distance from all neighbouring spheres in a square-pyramidal geometry 

or a so called body-centred cubic arrangement when there are at least two unit-cells included 

in the depth of the plate models. Like the previous chapters, the general methodology of 

studying size effects is unaltered which means that the overall properties of the plate’s 

material are kept unchanged for all plate types. The plates with compliant matrix and stiff 

inclusions where not included here because this chapter is only investigating spherical 

heterogeneity types to find answers to some of the questions raised in the previous chapter; 

the other reason is that the plate models with cylindrical inclusions, complaint matrix and 

textured boundaries showed smaller size effects compared to the other plate types. 

9.1 Finite element modelling of plates with spherical voids or inclusions 

Spherical type voids or inclusions were considered for modelling the plates. Therefore, 

plates with voids consisting of one isotropic material forming the matrix and plates with two 

isotropic materials comprising the stiff matrix and compliant inclusions were modelled and 

numerically analysed. The surface conditions of the top and bottom faces of the plates were 

considered to be either continuous or textured. Therefore, four plate types, in total, were 

studied as follows:  

a) Plates with spherical voids and continuous boundaries (SPVOCB) 
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b) Plates with spherical voids and textured boundaries (SPVOTB) 

c) Plates with spherical compliant inclusions and continuous boundaries (SPCICB) 

d) Plates with spherical compliant inclusions and textured boundaries (SPCITB) 

FEA results are presented for all of the above categories while the micropolar results for the 

plate types SPVOCB and SPCICB are presented and discussed because the micropolar 

constants were only identifiable for plates with continuous boundaries. 

9.1.1 Unit-cells in construction of plates with spherical voids or inclusions 

For each plate type with spherical voids or inclusions, specific three-dimensional unit-cells 

were modelled using 20-node Solid elements of tetrahedron type; see the semi unit-cells in 

figure 9-1 and a full sized plate with continuous surfaces in figure  9-2 along with a full sized 

plate with textured boundaries in figure  9-3. In the smallest plate samples, there are five unit-

cells along the plate edge and one unit-cell through the plate thickness which form a plate 

with 25 unit-cells in total; and this is increased by eight times when the plate depth is 

multiplied by two for the second smallest plate and so forth. 

 

Figure  9-1: Representation of half unit cells of two isotropic materials with void or inclusion’s volume 

fraction of 4.7%. The unit-cell on the left is used to model 3D plates with continuous boundaries, e.g., 

SPCICB (with inclusions) or SPVOCB (without inclusions) and the unit cell on the right-hand side is 

used for plates with textured boundaries (e.g., SPCITB). 
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Figure 9-2: A completed plate model with compliant inclusions            and continuous 

boundaries (e.g. top and bottom surfaces are not textured), NCy=2, d=0.7071*2 mm, AR=7.072 

 
Figure 9-3: A completed plate model with compliant inclusions            textured boundaries 

(e.g. top and bottom surfaces are textured), NCy=2, d=0.7071*2 mm, AR=7.072 

Similar to the models presented in chapter eight, the void or inclusion radius varies from 0.1 

to 0.3 in 0.05 mm intervals but for the spherical type void and inclusions within unit-cells, 

this, when compared with cylindrical type voids, generated lower volume fractions ranging 

between 0.6 and 16%. 

At first, for both plate types (with continuous or textured boundaries), a quarter-sized unit-

cell was modelled which was then repeatedly reflected to form a complete unit-cell. The 

unit-cell was then regenerated in all coordinate directions as required to form a full plate 

model with desired heterogeneity and dimensions. A completed plate model is arranged such 

that the voids or inclusions construct a uniform arrangement in which every five spheres 

(four spheres in one layer and one from the next layer) form a pyramidal, body-centred cubic 

arrangement where the spheres are located at the vertices. In order to achieve such 
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arrangements, the depth of the unit-cell is set at 0.7071mm and the plate aspect ratio at 

7.072. The length and width of unit-cells were equal to 1 mm. This heterogeneity 

arrangement attempted to minimise the anisotropy of the material. 

In modelling the quarter unit-cell for the plates with textured boundaries, the quarter circle 

arcs and the lines together with the circle edge lines were segmented into six element 

divisions, and the remaining lines were divided into 3 to 5 divisions as shown in figure 9-1 

on the right. Then, using tetrahedron elements, the whole quarter cell was meshed. The same 

method was used to model the quarter unit cells for the plates with continuous boundaries 

except for one difference, that is to generate solid brick elements on one side of the quarter 

cell, as shown in figure 9-1 on the left, due to element connectivity when regenerating next 

layer of unit-cells. Therefore, a six by six area meshed with three divisions of brick in depth 

was utilised. The sizes of the three divisions in depth vary as the radius of the void or 

inclusion increase, as seen in figure  9-4: 

 
Figure 9-4: A quarter cell for plates with compliant inclusions and continuous boundaries 

By repeatedly regenerating the unit-cells as needed, plate types of required thickness and 

aspect ratios were modelled. 

In the case of plates with inclusions, similar to previous models, inclusion and matrix are 

both of two isotropic materials with a matrix to inclusion stiffness ratio of 10:1.  

9.1.2 Mesh convergence in modal analysis 

Two plate models with continuous and textured boundary surfaces and containing compliant 

inclusions with spherical geometries were studied and presented here to show that the plate 

models under study satisfy the requirements of mesh convergence. The modal frequencies of 

plates with       ,            ,              and                     with 
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spherical inclusions were numerically investigated for mesh convergence while changing the 

element density of the unit-cell (mesh density) as follows: 

Table 9-1: Mesh convergence for the plate samples with spherical compliant inclusions and 

continuous boundaries (SPCICB) and          

Number of 

elements in 

one unit-cell 

Number of 

nodes in one 

unit-cell 

The average error 

for the primary 

mode 

The average error 

for ten modes 

The average 

error for 33 

modes 

1216 2261 1.25E-03 1.61E-03 2.34E-03 

3016 5341 1.49E-04 1.09E-04 2.85E-04 

9128 14421 1.58E-04 7.38E-05 8.15E-05 

18464 29061 1.27E-04 5.67E-05 4.33E-05 

136424 136424 1.25E-05 2.46E-06 3.25E-06 

 

Table 9-2: Mesh convergence for the plate samples with spherical compliant inclusions and textured 

boundaries (SPCITB) and          

Number of 

elements in 

one unit-cell 

Number of 

nodes in one 

unit-cell 

The average error 

for the primary 

mode 

The average error 

for ten modes 

The average 

error for 33 

modes 

1604 2727 3.35E-03 2.74E-03 2.87E-03 

2312 3981 1.37E-03 1.09E-03 1.17E-03 

4892 8015 4.33E-04 3.57E-04 3.82E-04 

14752 22371 2.98E-04 2.39E-04 2.57E-04 

121916 175922 1.13E-05 1.00E-06 1.26E-06 

 

As seen in tables  9-1 and  9-2, SPCICB and SPCITB plates with 18,464 and 14572 elements 

per unit cells provide convergence error of less than 0.03% and, therefore, used for meshing 

the plate models. Although the average error in these tables are small values, as explained in 

the previous chapter, section 8.1, the relative error simultaneously increases with mode 

number which must be noted if higher modes numbers are investigated. 

9.2 Adjustingthemodulusofelasticity(E)andmassdensity(ρ)ofthe

unit-cells in plates with spherical voids and inclusions 

9.2.1 Obtaining the modulusofelasticity(E)andmassdensity(ρ) 

The sphere radius within the unit-cells varied from 0.1 to 0.3 mm, in 0.05mm intervals, to 

account for void or inclusions volume fractions of 0.6, 2, 4.7, 9.3 and 16% respectively. The 

volume fraction, void radius or normalised void radius,      ⁄ , are as previously used 

interchangeably, see table  9-3. 
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Having modelled and meshed the unit-cells, complete plate models were created by 

regenerating and repeated reflection of the unit-cells in x, y and z directions similar to the 

methodology of chapter eight. The overall material properties such as the mass of the unit-

cells and elastic modulus of the plate remained unchanged and set at            and 

          for density and Young’s modulus respectively. The correction of elastic 

modulus was therefore done by performing FEA static tensile test simulations, and 

correction of the density was done by keeping the mass and volume of the unit cells constant 

but changing the density of the constituent isotropic materials. The materials corrected 

properties of the plate models are provided in table  9-4 and  9-5.  

Table  9-3: Volume fraction and normalised equivalent of spherical void or inclusions 

Void/inclusion radius, r, [mm] 0.1 0.15 0.2 0.25 0.3 

Spherical void or inclusion volume 
fraction, % 

0.59% 2.00% 4.74% 9.26% 15.99% 

Normalised radius,       0.14 0.21 0.28 0.35 0.42 

 

Table 9-4: Corrected modulus of elasticity for plate’s matrix. The young modulus is 0.1 times the 

values of the matrix for plates with compliant inclusions 

 

The modulus of elasticity of matrix,     

Plates with Continuous boundaries Plates with Textured boundaries 

Void or 

inclusion 

radius, 

mm 

Plates 

with 

SPVOCB 

Relative 

diff. with 

homogene

ous beam 

Plates 

with 

SPCICB 

Relative 

diff. with 

homogene

ous beam 

Plates 

with 

SPVOTB 

Relative 

diff. with 

homogene

ous beam 

Plates 

with 

SPCITB 

Relative 

diff. with 

homogene

ous beam 

0 7.00E+04 0 7.00E+04 0 7.00E+04 0 7.00E+04 0 

0.1 7.08E+04 1.94E-04 7.07E+04 4.39E-06 7.08E+04 2.60E-04 7.07E+04 2.60E-04 

0.15 7.29E+04 1.61E-04 7.23E+04 1.69E-04 7.29E+04 5.90E-04 7.23E+04 9.46E-05 

0.2 7.70E+04 3.67E-04 7.57E+04 4.66E-04 7.70E+04 9.46E-05 7.57E+04 4.58E-04 

0.25 8.44E+04 4.99E-04 8.16E+04 5.65E-04 8.44E+04 4.91E-04 8.15E+04 8.87E-04 

0.3 9.72E+04 3.67E-04 9.13E+04 7.96E-04 9.71E+04 4.99E-04 9.12E+04 9.20E-04 

 

Table 9-5: Corrected density of the plate’s unit cell by spherical void or inclusions radius   

Spherical voids or 

inclusion radius, 

mm 

The mass density of matrix and inclusions,     ⁄  

Plates with voids Plates with inclusions 

For matrix 

Relative difference 

with homogeneous 

beam 

For matrix For inclusions 

Relative difference 

with homogeneous 

beam 

0 2700 0 2700.00 N/A 0 

0.1 2716.09 1.85E-07 2469.17 41434.61 1.85E-07 

0.15 2755.08 1.85E-07 2504.62 12276.92 1.85E-07 

0.2 2834.32 1.85E-07 2576.66 5179.33 1.85E-07 

0.25 2975.41 1.85E-07 2704.91 2651.81 1.85E-07 

0.3 3214.08 1.85E-07 2921.89 1534.62 1.85E-07 
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9.2.2 The effect of anisotropy in plates with spherical voids or inclusions 

Although the voids and inclusions are modelled such as to decrease the degree of anisotropy 

(DA) of the plates, the plate models might still be considered as non-homogeneous and the 

degree of anisotropy of such plate models must therefore be investigated. The method of 

obtaining the DA of the plate models considered here are analogous to what was explained in 

section 8.2.2 for plates with cylindrical voids or inclusions in chapter eight. Therefore, the 

degree of anisotropy (DA) was obtained by tensile test simulations in the z-direction, and the 

relative difference of Ez to Ex was calculated for various volume fractions as provided in 

table  9-6:  

Table  9-6: The degree of anisotropy in heterogeneous plate models with spherical voids and 

inclusions 

 The relative degree of anisotropy (DA)          

[(Ez-Ex)/Ez] 
 

Volume fraction 
Plates with compliant 

inclusions 
Plates with voids 

0.00 0.000 0.000 

0.006 0.001 0.001 

0.020 0.003 0.001 

0.047 0.005 0.002 

0.093 0.010 0.003 

0.160 0.020 0.018 

 

The values of DA, as seen in table  9-6, are minimal and indicate that the anisotropy in these 

plate models is practically negligible even for high volume fractions of 0.16 and therefore 

the plates may be considered as isotropic even though they are still heterogeneous at the 

macroscopic scale. Consequently, the application of the isotropic 3D-MPFEM to the 

investigation of the dynamic behaviour of non-homogeneous plates with spherical void and 

inclusions seems logical. 

9.3 Modal analysis procedure and mode shapes of plate models 

The PCG Lanczos method and distributed memory were again used for the modal analysis of 

plates. The first 8 mode shapes are shown in figures  9-5-a to  9-5-h. Mode shapes of plates 

with spherical voids and inclusions are similar to those of cylindrical shaped voids and 

inclusions shown in figures  8-3-a to  8-3-h in chapter eight. Thus similarly, the first mode is 

distinctively the twisting mode which is shearing deformation dominated where the 
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influencing parameter in the dynamic behaviour of the plate is the characteristic length in 

torsion,    . The second and third are bending dominated modes in which the determining 

micropolar constant is    . After mode three, some mode shapes appear in pairs with very 

close frequencies, but opposite mode shapes, and some does not. For example modes four 

and five are similar in which the plate’s dynamic behaviour is influenced by both     and    ; 

modes six and seven are again bending deformation dominated; mode eight which is both 

bending and shear deformation dominated.  

The non-dimensional modal frequencies     for homogeneous plates are provided in 

table 9-7 and used for normalisation of modal frequencies (see figures 9-6 to 9-26) which are 

derived using the equation (8.1). 
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a)  Mode 1, Twist shape (Shear dominated) 

 
b)  Mode 2, (hyperbolical surface) Saddle 

shape 

 
c) : Mode 3, (ellipsoidal surfaced) Bending 

Type 

 
d)  Mode 4 

 
e)  Mode 5 

 
f)  Mode 6 

 
g)  Mode 7 

 
h)  Mode 8 

Figure  9-5: The first 8 mode shapes (a to h) of a sample plate with spherical inclusions of volume 

fraction equal to 0.05 and textured boundaries (NCy=1). Note that the first eight mode shapes of the 

homogeneous plate as well as other plate models with continuous boundaries are similar to the mode 

shape figures here also. 

Table 9-7 : The non-dimensional frequencies     for homogeneous plates with AR=7.072:1 

Mode 1 2 3 4 5 6 7 8 
ANSYS 

FE 
1.2483145 1.8623777 2.2832388 3.0602078 3.060611 5.1799099 5.203043 5.207992 

MPFEM 1.2466034 1.8571328 2.2792083 3.0502382 3.0508554 5.1773338 5.181014 5.183083 
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9.4 Results and size effect forecast for plates with spherical voids or 

inclusions 

The numerical results for the plates with continuous and textured boundaries using FEA and 

the linear isotropic micropolar theory are tabulated and provided in Appendix F which 

includes the eight modal frequencies for the plate models. The isotropic micropolar plate 

models (referred to as 3D-MPFEM models) contain eight 15-node wedge elements per unit-

cell as described in the section 7.3.1 of chapter 7, so the mesh densities of the plates are the 

same. The height of the unit cells remained unchanged at 0.7071 mm, and the aspect ratio 

(length or width to height ratio) for all plates was 7.072:1 which resulted in modelling the 

smallest squared plate samples such that they contained 10 divisions along the plate edges 

(x-z plane) and one division through the plate thickness thus forming a plate with 200 wedge 

elements in total. This is increased by eight times when the plate depth is multiplied by two 

for the second smallest plate and so forth. In the next sections, the normalised frequency 

values,  , of the plates with spherical voids and inclusions which are obtained by using both 

FEA and 3D-MPFEM are presented, compared and discussed accordingly. 

9.4.1 The micropolar constants for the plate models 

To identify some of the micropolar constants, three-dimensional slender beams with 

spherical voids and inclusions were modelled with one unit-cell in depth and ten unit cells in 

length representing the smallest beam sample with twice the aspect ratio of the plates 

          using FEA. Then beams with two, three and four unit cells in depth were created 

with the same aspect ratio. The unit-cells geometry, mesh density and the material properties 

are the same as the plate models which are already discussed in sections 9.1 and 9.2 but 

instead of plates, 3D beam models were generated. The reason is to obtain the lateral modal 

frequencies in the x-y plane of beams with spherical voids and inclusions, and subsequently 

use these frequencies to identify the    and   by applying the methods in chapters 4 and 5. 

The algorithm for identifying the coupling number, N, as described in chapter 5, is only 

capable of estimating the coupling number by matching the first two flexural frequencies of 

beams obtained through FEA with two-dimensional micropolar beam models and using the 

linear regression methods. Therefore, the first two bending modal frequencies were used to 

obtain the characteristic length of bending,    , using equation (4.46). The characteristic 

lengths of bending was then compared with those obtained from using equation (8.7) at 

mode two (because mode one of the plates is a twist mode). Interestingly, the characteristic 

length using either equations (4.46) or (8.7) show approximately similar values as seen in 
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table 9-8. However, the values obtained from beam models and equation (4.46) appear to 

vary more linearly with the void radius and, therefore, are used for the plate analysis.  

Table 9-8: Characteristic length of bending for plates with spherical voids and inclusions 

Specimen Equation R=0.1 , mm R=0.15 , mm R=0.2 , mm R=0.25 , mm R=0.3 , mm 

SPVOCB (8.7) 0.017 0.034 0.044 0.062 0.076 

BVOCB (4.46) 0.017 0.032 0.048 0.064 0.078 

SPCICB (8.7) 0.016 0.029 0.041 0.050 0.060 

BCICB (4.46) 0.017 0.029 0.043 0.061 0.067 

The micropolar Poisson’s ratio, micropolar modulus of elasticity and the polar ratio,  , were 

all kept constant at 0.3,           and 1.5 respectively. The coupling number, N, was 

obtained by the iteration method as described in chapter five and values were found to be 

insensitive to void or inclusion radius, being 0.030 and 0.031 for SPVOCB and SPCICB 

plate models respectively. The low values of the coupling number are due to the shape and 

arrangements of the spherical voids and inclusions in the vicinity of the plate matrix. Finally 

the value of the characteristics length of torsion,    , is chosen as equal to twice the value of 

characteristics length of bending. It must be remembered that this value of    might influence 

the modal frequencies differently especially the primary mode which is dominated by shear 

deformation.  

As an example, the plate samples SPVOCB with       and volume fractions, 0.01, 0.05 

and 0.16 were investigated and compared with 3D-MPFEM results with input parameters of 

       and various values of    equal to    ,      ,    and      . This is aimed to 

qualitatively illustrate the influence of the changes of    on the primary mode in particular 

(the twist mode) and then see the outcome of such changes in    on the higher frequencies. 

As seen in figure  9-6, by setting the value of         , micropolar theory overestimates the 

modal frequencies of mode one compared to the FEA results for the heterogeneous plate 

models even though the level of anisotropy in plate models is low.  Although, decreasing the 

value of    causes a decrease in the modal frequency at mode one for isotropic micropolar 

plates but then underestimates the second modal frequency and overestimates the third 

modal frequencies for all volume fractions, as seen in figures  9-7 and  9-8 while, on the other 

hand, the value of          provides better agreement with the finite element results at mode 

two and three. 



194 
 

 
Figure  9-6: The overestimation of the normalised primary frequencies of SPVOCB plates using FEA 

and 3D-MPFEM for the plate with NCy=3 when       . 

                                                                    

 

Figure  9-7: The normalised frequencies of the second mode of SPVOCB plates with NCy=3 using 

FEA which show better agreement with the 3D-MPFEM results when        . 

                                                                    

 

Figure  9-8: The normalised frequencies of the third mode of SPVOCB plates with NCy=3 using FEA 

which show better agreement with the 3D-MPFEM results when        . 

                                                                    



195 
 

For further clarifications, the results in figures  9-9 to  9-12 show the changes of the 

normalised frequency with mode number and indicate that the 3D-MPFEM produces more 

acceptable results for higher volume fractions when the value of    is set to equal    . 

However, at mode one and especially the highest volume fraction, the frequency values are 

overestimated. 

 

Figure  9-9: The normalised frequencies of SPVOCB plates using FEA and 3D-MPFEM for the plate 

with NCy=3, Ψ=1.5, d=0.866mm and AR=8.083. ANSYS results reduction at mode three are similar 

to MPFEM when       . 

 

Figure  9-10: Changes of normalised frequencies of a micropolar plate (SPVOCB) with           , 

Ψ=1.5, NCy=3,            and AR=8.083 in comparison with corresponding FEA results. 
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Figure  9-11: Changes of normalised frequencies of a micropolar plate (SPVOCB) with      , Ψ=1.5, 

NCy=3,            and AR=8.083 in comparison with corresponding FEA results. 

 

Figure  9-12: Changes of normalised frequencies of a micropolar plate (SPVOCB) with           , 

Ψ=1.5, NCy=3,            and AR=8.083 in comparison with corresponding FEA results. 

9.4.2 Plates with continuous boundaries 

Now that the plate models and micropolar constants for the heterogeneous plates with 

continuous boundaries are defined, the modal frequencies are to be obtained using FEA and 

compared to 3D-MPFEM results in this section. The comparison of the results aims to 

answer some of the questions surrounding the shortcomings which were raised in chapter 

eight, especially the underestimation of modal frequency at mode three.  

9.4.2.1 Plates with spherical voids and continuous boundaries (SPVOCB) 

The size effect governing the changes in normalised modal frequency values for the plates 

with spherical voids and inclusions rapidly diminishes as the plate’s depth increases, but is 

still pronounced for the smallest plate samples. This is, indeed, due to the square pyramidal 

void and inclusion geometrical configuration, or body-centred cubic, which is not present in 
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the smallest plate sample. Despite the somewhat smaller size effects in the dynamic 

behaviour of the plate models of thickness of two or more unit cells, the rate of changes of 

the normalised frequencies with size remains approximately linear, except at the largest 

volume fraction, and the gradient remain positive which is an indication of the applicability 

of micropolar theory to this case; see figure 9-13 and 9-14. The 3D-MPFEM results for the 

corresponding SPVOCB plates showed convincing agreement with the FEA results except in 

the high volume fraction cases for the smallest plate samples; see figure 9-15. It must be 

remembered that the primary modal frequency is associated with a twist mode which is shear 

deformation dominated and therefore different to the bending modes. The 3D-MPFEM 

results for the second mode, which is a saddle type mode and therefore predominantly 

bending, showed an even better agreement with the FEA results but the difference at the 

highest volume fraction for the smallest plate models remains quite marked; see figure 9-16. 

In fact the second mode is influenced by the value of characteristic length of bending,   , for 

identification of which an analytical method was developed and     was obtained  according 

to equation (4.46) which was also confirmed by equation (8.7),  where the     values are 

believed to be accurate. On the contrary, the primary frequency is merely influenced by the 

value of the characteristic length in torsion,   , for which a value of     is assumed. 

In general, the results obtained by the micropolar plate simulations for the SPVOCB 

representative plate models, compared with the results of the CYVOCB plates presented in 

Chapter 8, in figures 8-14 and 8-15, are more in agreement with the FEA results, due to the 

presence of a lower degree of anisotropy in the plate models containing spherical void. 

 

Figure 9-13: Normalised primary modal frequency of four sizes of plates with spherical voids and 

continuous boundaries using FEA (SPVOCB).                                 
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Figure 9-14: Normalised primary modal frequency of four sizes of plates with spherical voids and 

continuous boundaries using 3D-MPFEM (SPVOCB). 

(                                   
 
          ) 

 
Figure 9-15: Primary normalised modal frequencies, mode 1, for plates with spherical voids and 

continuous boundaries, SPVOCB 

 
Figure 9-16: Second normalised modal frequencies, mode 2, for plates with spherical voids and 

continuous boundaries, SPVOCB 
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The FEA results indicated that the size effect for the smallest plate samples is more 

pronounced than in the larger samples, especially for the plates with higher void volume 

fraction, as explained. The FEA results, figure 9-17, show a gradual decline in normalised 

modal frequencies as the mode number increases while the 3D-MPFEM results at mode 

three show an inverted size effect, see figure 9-18. This is believed to occur because the 

characteristic length of torsion,   , is taken as equal to twice the value of   . A lower value of 

   would compensate this shortcoming but would then affect the other modal frequencies 

more significantly and would thus result in their severe underestimation. However, the 3D-

MPFEM results for the plates with more than one unit-cell in depth show similar dynamic 

behaviour to the FEA, as previously shown in figure  9-9 for the normalised frequencies of 

SPVOCB plates with NCy=3.   

 

Figure 9-17: The first five normalised flexural modal frequencies of the smallest plate sample with 

voids and continuous boundaries using FEA.                                 

 

Figure 9-18: The first five normalised flexural modal frequencies of the smallest plate sample with 

voids and continuous boundaries using 3D-MPFEM. (                                   
 
 

         ) 
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9.4.2.2 Plates with spherical inclusions of compliant material (SPCICB) 

The numerical results using the FEA and 3D-MPFEM procedure for the plates with spherical 

compliant inclusions show plate dynamic behaviour similar to the plates with voids. The 

results also indicate that plates with SPCICB show slightly lower normalised frequencies in 

comparison with those for plates with SPVOCB, as seen in figures 9-19 to 9-23. Thus the 

explanations regarding the dynamic behaviour of plates with voids and continuous 

boundaries in section 9.4.2.1 are valid for the plate models considered in this section as well. 

The normalised modal frequencies in figure 9-19 indicate that the size effect rapidly 

diminishes as the plate’s depth increases, but is still pronounced for the smallest plate 

samples. This is, indeed, due to the fact that firstly the degree of anisotropy (DA) in SPCICB 

plates is minimal thus ignorable. Secondly, the body-centred geometrical configuration of 

inclusions (pyramidal arrangements of inclusions) is not present in the smallest plate sample.  

The FEA results, with an exception of the plates with largest volume fraction as seen in 

figure 9-19, for SPCICB plates indicate that size effect in plates with two or more unit cells 

in depth is somewhat smaller yet readily discernible, thus the micropolar theory is 

applicable, see figure 9-20. 

The numerical results indicated that size effect for the smallest plate samples is more 

pronounced than expected especially for the plates with higher void volume fraction, as 

explained. 

 

Figure 9-19: Normalised primary modal frequency of four plate sizes for plates with spherical 

compliant inclusions and continuous boundaries using FEA (SPCICB).                      
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Figure 9-20: Normalised primary modal frequency of four plate sizes for plates with spherical 

compliant inclusions and continuous boundaries using 3D-MPFEM (SPCICB). 

(                                   
 
          ) 

The FEA results, figure 9-21, show a gradual decline in normalised modal frequencies as the 

mode number increase which indicates that the first five modal frequencies are less sensitive 

to the actual mode numbers while the 3D-MPFEM results show an inverted size effect at 

mode three, see figure 9-22. However, the 3D-MPFEM results for the plate with more than 

one unit-cell in depth show similar dynamic behaviour to the FEA results as previously 

shown in figure  9-9 for plates with voids. 

 

 

Figure 9-21: The first five normalised flexural modal frequencies of the smallest plate sample with 

compliant inclusions and continuous boundaries using ANSYS.                      

           

It must be noted that the 3D-MPFEM results do not show any size effect in normalised 

modal frequencies above mode five, therefore are not shown here. However, the first eight 
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non-dimensional modal frequencies predicted for the plates with SPCICB are provided in 

Appendix F, table  F-2. 

 
Figure 9-22: The first five normalised flexural modal frequencies of the smallest plate sample with 

compliant inclusions and continuous boundaries using MPFEM. 

(                                   
 
          ) 

The 3D-MPFEM results for the corresponding SPCICB plates showed convincing agreement 

with the FEA results except in the high volume fraction cases for the smallest plate samples; 

see figure 9-23. However, the results obtained by the micropolar plate simulations for the 

SPCICB plate models are more in agreement with the FEA results, due to having a very low 

degree of anisotropy in the plate models containing spherical inclusions. 

 

Figure 9-23: Primary normalised modal frequencies, mode 1, for plates with spherical compliant 

matrix and continuous boundaries, SPCICB 
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9.4.3 Plates with textured boundaries  

The plate models with texture boundaries and spherical voids or inclusions show a different 

size effect for which the micropolar constants were not available; therefore 3D-MPFEM 

results are not obtained, but the size effect of such plate models is discussed in this section. 

Furthermore, the first eight non-dimensional modal frequencies of plates with textured 

boundaries were obtained using FEA and these are provided in Appendix F. 

9.4.3.1 Plates with textured boundaries and voids (SPVOTB) 

Figure 9-24 shows the inverse size effect on normalised frequencies for the primary mode of 

plate specimens with spherical voids and textured boundaries, SPVOTB, when the voids 

intersect the plate surfaces. The size effect clearly inverts but its variation remains 

approximately linear across the three larger samples. Figure 9-25 shows changes in Λ with 

mode number for the plates with the depth of one unit-cell. Here, a distinctly different size 

effect indicating that increasing volume fraction causes a decrease in normalised frequency, 

Λ, at a given model number is seen for this plates size. 

 

Figure 9-24: Normalised primary modal frequency of four plate sizes for plates with spherical voids 

and textured boundaries using FEA (SPVOTB).                                 
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Figure 9-25: The first five normalised flexural modal frequencies of the smallest plate sample with 

voids and textured boundaries using FEA.                                 

9.4.3.2 Plates with textured boundaries and compliant inclusions (SPCITB) 

Plates with spherical compliant inclusions and textured boundaries, SPCITB showed similar 

behaviour as the plates with spherical voids and textured boundaries, as summarised in 

figure 9-26.  

 
Figure 9-26: The first five normalised flexural modal frequencies of the smallest plate sample with 

compliant inclusions and textured boundaries using FEA.                                 

9.5 Conclusions 

In this chapter, two types of heterogeneous plate models were created using the finite 

element method. The models were generated for plates with spherical voids or compliant 

inclusions and with both textured and continuous boundaries. The size effects due to the 
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various microstructures were investigated by its effect on modal frequencies in the free 

vibration of plates with FFFF boundary conditions in the absence of external loads.  

Using finite element modelling capabilities, the spherical type void and inclusions in a body-

centred arrangement were located in the plate models so that it causes a considerable 

reduction in the overall plate material’s anisotropy which resulted in a more convincing 

agreement with the 3D micropolar results for beams with either voids or compliant 

inclusions in which the surfaces were continuous. However, the micropolar constant 

(Coupling number), N, could not be obtained for plates with textured surface configurations 

using the parameter identification algorithm as described in chapter five; therefore, the 3D-

MPFEM procedure was not applied to such plate models. The crucial point in the analysis of 

plates with spherical void or inclusions is that although the observed size effects were 

attenuated in most cases, particularly plates with two or more unit cells in depth even at 

relatively low heterogeneity levels, there is still noticeable size effect which can be 

anticipated.  

A set of three-dimensional beams with spherical voids and inclusions were also modelled by 

using finite element modelling and the transverse flexural modal frequencies of the beams 

were used to estimate the characteristic lengths which were then validated with the values 

which were obtained with a corresponding equation for plates in chapter eight, see equation 

(8.7). The coupling number was obtained from the dynamic behaviour of beams in a two-

dimensional case. The modulus of elasticity values were obtained from the simulated static 

tensile analysis. The polar ratio was kept at equal to 1.5, and the characteristic length of 

torsion was kept as twice the value of the characteristic length of bending throughout all 

modal analyses. 

In chapter eight, the underestimation of the normalised frequency parameters, especially at 

mode 3, by the 3D-MPFEM, which was understood to be due to the unidirectional 

orientation of the voids or inclusions within the square plates was still present for plate 

models in this chapter but it diminished quickly upon increasing the plate’s depth. 

Using 3D-MPFEM method, modal frequencies were generated for the micropolar plates. The 

size effects in micropolar plates were investigated. The results of 3D-MPFEM analysis were 

in qualitative and approximate quantitative agreement with the FEA results for the first five 

modal frequencies. The analysis of size effects in plates with spherical voids or inclusions in 

this chapter had two significant benefits. Firstly, the study showed the size effects in the 
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dynamic behaviour of heterogeneous materials declines with reducing the anisotropy of 

material due to changes in the geometry of the constituent unit-cells. Secondly, the size 

effect analysis made it possible to present the extent to which the linear isotropic micropolar 

theory applies to the heterogeneous materials. 

In general, the micropolar theory was qualitatively capable of anticipating size effects in 

non-homogeneous plates with spherical voids or inclusions in dynamic analysis and this 

suggests that the micropolar theory is applicable to such problems in heterogeneous plates 

with a small degree of anisotropy (DA) below 0.15. Nevertheless, the 3D-MPFEM algorithm 

can be improved by modifying its element stiffness matrix to account for heterogeneous 

plates with higher DA and this is suggested for future research work. 

The disagreement between the FEA and 3D-MPFEM results was still present for the smallest 

plate models. This might well be because the smallest plate models were comprised of one 

unit-cell in depth. Therefore, the body-centred cubic arrangement of the voids and inclusions 

did not exist for the smallest plate models which caused such disagreement between the 

results. 

The mode shapes were also categorised and distinguished from each other based on their 

deformation knowing that in some modes the dynamic behaviour was predominantly 

controlled by shear deformation; therefore, the characteristic length of torsion is the 

determinative parameter in such cases. As an example mode one was categorised as the twist 

mode. On the contrary, mode two and three, as tangible examples, showed a tendency of 

being influenced by the characteristic length of bending rather than torsion. Clearly, there 

were some modes whose modal frequency was greatly influenced by both shearing and 

bending deformation e.g., modes four and five. 

In summary, the numerical results indicate that the forecast size effect depends on: 

 Plate depths 

 Void/inclusions volume fraction 

 The relative stiffness of matrix and inclusions 

 Plate surface topology 

These conditions are similar to the conclusions which were made in studying the beams with 

voids and inclusions as well as the plates with cylindrical voids and inclusions. 
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10 Summary and Suggestions for Future Work 

10.1 Modelling specimens with heterogeneities and analysis approach  

In order to study and quantify the size effect in the dynamic behaviour of nonhomogeneous 

materials, modal analysis of 2D beam and 3D plate models with unconstrained boundary 

conditions and small displacements was selected as a consistent approach to the problem. In 

this project, unlike the conventional approach by researchers, the models were created so that 

changing the depth of the specimen caused no changes in the aspect ratio of the specimens. 

Maintaining constant aspect ratio is important because in the homogeneous case all sizes of 

sample exhibit the same frequency spectrum while in heterogeneous case, in contrast, 

normalised frequency values not only exhibit sensitivity to the volume fraction of voids and 

inclusions but also to the sample’s size as quantified by its depth. So the changes in volume 

fraction and the specimen size were both used to quantify size effects while the overall 

homogenized material properties of specimens were maintained. This yields a novel analysis 

approach which is not readily achieved by laboratory based methods and thus the best tool 

for doing this was indeed through finite element modelling and numerical analysis. 

Consequently, the results are very useful in understanding the size effect in the dynamic 

behaviour of nonhomogeneous materials. Another importance of this work is that unlike 

most previous studies of size effects which involve static loading, here an extensive 

investigation into size effects has been carried out in dynamic cases. The finite element 

models represented simple though realistic heterogeneities with various types of physical 

material configurations, void and inclusions, their shape and location within the specimen 

and also cases where they were exposed at the specimen’s exterior surfaces. 

The finite element analysis results revealed novel types of size effects which were not 

conventionally forecast by existing theoretical means. Initial numerical analysis indicated 

that 2D beams with voids or compliant inclusions and continuous boundaries exhibited 

similar dynamic behaviour and size effects while the beams with similar heterogeneities but 

textured boundaries behaved in a completely opposite manner and the size effect actually 

reversed.  

3D square plate models with cylindrical voids and inclusions were modelled and analysed 

numerically by the finite element method and confirmed the same dynamic behaviour and 

size effects as seen in the 2D beam models. However, since the direction of the cylindrical 
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voids or inclusions in these plates was identified as a source of anisotropy within the material 

of the plates despite their square shape, additional more isotropic models with spherical 

voids and compliant inclusions were modelled and analysed which once again confirmed the 

size effect in their dynamic behaviour.  

As the classical theory of elasticity for beams, namely Euler-Bernoulli and Timoshenko 

beams theories, failed to explain any size effect in 2D heterogeneous beam models, the 

Eringen non-local Timoshenko beam theory, a more advanced model with inherent length 

scale, was thus used to investigate size effect in the beam’s dynamic behaviour. However, 

the analytically obtained results of the Eringen non-local Timoshenko beam theory again 

failed to explain the size effects which are exhibited by beam models. Consequently, the 

micropolar theory of Eringen, a higher order and more advanced theory, was chosen to 

investigate if the size effect in the dynamic behaviour of beams and plates can be explained 

by such more generalised continuum mechanics and, if so, to what extent is the theory 

applicable and can it capture the size effect. 

10.2 Micropolar theory and size effect 

The Eringen micropolar theory had been previously applied to the investigation of size 

effects in heterogeneous beams in the static case of three points bending by incorporating the 

theory into a CVFEM which showed satisfactory agreement with the FEA and laboratory test 

results. Therefore, the already available CVFEM stiffness matrix, as well as the mass and 

inertia matrices, were taken into account and incorporated into the calculations for modal 

analysis and obtain mode shapes. The micropolar theory was also incorporated into the 

conventional finite element method as an alternative procedure, namely 2D-MPFEM, which 

was used to confirm the CVFEM results. The traditional finite element method is 

computationally faster than the control volume finite element method. Therefore the study of 

3D heterogeneous plates has been conducted by the micropolar finite element method alone. 

Useful equations were analytically derived which can estimate the characteristic length of 

bending by knowing only the overall 2D beam dimensions and the primary modal 

frequencies of four beam sizes. The coupling number was then obtained numerically by 

iteration, and this was only possible for beams with voids or compliant inclusions and 

continuous boundaries as well as beams with a compliant matrix and textured boundaries. 

So, the micropolar theory was capable of being used to obtain the characteristic length of 

bending and coupling number in the 2D modal analysis and forecast the size effect in certain 
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cases for example, the coupling number is not obtainable by the iteration procedure, as 

described in chapter five, for beam models with voids or compliant inclusions and textured 

boundaries or models with compliant matrix and continuous boundaries. 

The numerical iteration process for obtaining the coupling number considers only the first 

two modal frequencies. However, the values of coupling number did not show severe 

sensitivity with changes in volume fraction and are about 0.05 for 2D beams and plates with 

cylindrical voids or inclusions for which it was also obtainable. The coupling number values 

obtained are in broad agreement with statically obtained values determined previously. The 

coupling numbers obtained from 2D iterative analysis were used in subsequent 3D analysis. 

A shortcoming of the micropolar theory is that the size effect actually seen in longitudinal 

modal frequencies though smaller is not anticipated at all.  

Turning to the different plate types, in the three-dimensional micropolar finite element 

method, 3D-MPFEM, 8-nodes brick element or 15-node wedge element were uses for 

meshing along with the micropolar theory in the dynamic analysis of 3D plate models which 

has not been attempted for modal analysis before and is the novelty of this method. 

The finite element results for the plates with spherical voids or compliant inclusions showed 

size effects which confirmed the dynamic behaviour as seen in previous heterogeneous 

models of 2D beams. Because of the geometrical shape and arrangement of the spheres in 

the plate models which suppressed the effect of any material anisotropy, the size effect was 

also reduced but nonetheless is still identifiable. The coupling numbers for these plate 

models were obtained by modelling 2D micropolar beams with the same void distribution 

and using the numerical iterative method. Lower values for coupling number of about 0.03 

were obtained for such beams. The 3D-MPFEM results satisfactorily anticipated the size 

effects seen in the plates although the issue with the smallest plate models was still present 

and this was caused by the fact that in the smallest plate samples the body-centred cubic 

arrangement of the voids or inclusions was not really present. 

The polar ratio and the characteristic length of torsion were not obtained numerically for two 

reasons. Firstly, modal analysis and iteration for N for the three-dimensional micropolar 

models are not expedient as it takes significant computational time and resources. Secondly, 

if the values of the characteristic length of torsion are based on the previous micropolar 

constants and another iteration process, in addition to numerical difficulties, any under or 

overestimation of the previous micropolar constants will be reflected and amplified for the 
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polar ratio and the characteristic length of torsion. Therefore, the values of these remaining 

micropolar constants    and   were taken from the literature as equal to     and 1.5 

respectively. The influence of these assumed values of the micropolar constants in predicting 

the FEA results is closely related to the mode number at which the modal frequency is 

compared. For example, the frequency at mode one which is shear dominated is more related 

to the value of coupling number where the optimum value for the polar ratio is 1.5. At modes 

two to five, when the characteristic length of torsion is set to twice the value of    , the 

predictions of micropolar theory were in good agreement with the FEA results especially if 

the degree of anisotropy of the plate materials remains below 0.15, particularly at mode three 

which is highly sensitive to the degree of anisotropy.  

10.3 Project achievements and future work 

The finite element and micropolar results helped greatly in investigating the size effect in the 

dynamic behaviour of materials through modal analysis of 2D beams and 3D plates with free 

boundary conditions in the absence of external loads. However, this paves the way to extend 

future work for other type of boundary conditions and constrained specimen edges as well as 

applying external load and studying the modal analysis. However, it must be noted that 

prescribing boundary conditions may not be mathematically straight forward. The 

complexity of partial constrains which are present in static cases are eliminated in 

unconstrained boundary condition cases involving dynamic behaviour.  

The equations derived for obtaining the characteristic length of bending via modal 

frequencies of beams and plates are very useful and may be beneficial for research activities 

in future work. Moreover, the benefit of these equations is that by only obtaining the first 

modal frequency of slender beams or plates, the characteristic length of bending of the 

sample will be determined and can be used as a benchmark for verification of results for 

future work. 

The coupling numbers for the specimens were obtained by numerical iterations based on the 

first two modal frequencies of 2D beam models. The values for the coupling number remain 

to be further studied and be analytically obtained independently from other constants as it is 

evident that the coupling number plays a significant role in the outcome of the analyses. 

The results indicate that the micropolar type theories do not apply to the specimens with 

textured boundaries; therefore alternative advanced theories are required. 
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The algorithms for micropolar finite element method are defined for dynamic analysis of 2D 

beam and 3D plate models and are excellent candidates to be modified, improved and 

adapted for static problems such as 3D bending and also for other types of dynamic analysis 

such as forced vibration with a combination of boundary conditions.  

The matrix of material properties which is termed as 𝔻 matrix in this work is based on the 

isotropic micropolar theory which can be used for the isotropic and mildly anisotropic 

materials. However, the 𝔻 matrix could be modified for application of orthotropic and highly 

anisotropic materials which expands the applicability of the 3D-MPFEM greatly. 

The FEA results for both 2D beams and 3D plates form an invaluable database of results:  

  Against which the predictions of other more generalised continuum theories can be 

tested; 

 Which can be used for future investigation into the dynamic behaviour of 2D beams 

and 3D plates at higher modes because considerable time and HPC resources were 

used in obtaining the modal frequency data and archiving them  including mode 

shapes for future use;  

 The FEA data base can be expanded to additionally include results for dynamic 

cases with other type of boundary conditions and static cases as well;  

 The FEA results provide a lot more information than experimental results with 

regard to the frequency spectrum, mode shapes, and variety of sample models which 

are useful in terms of reducing research time and the economic allocation of 

resources. 

As further recommendations, from the theoretical and practical point of views this work can 

be expanded to investigate and study: 

 Other more generalised continuum theories and their applications in predicting size 

effect in heterogeneous materials and compare the results with the already existing 

FEA results, for example investigation of the influence of the samples’ surface 

conditions using other continuum theories;  

 Other material and sample models with different type of heterogeneities such as in 

predicting the dynamic behaviour of foam core materials used in the construction of 

sandwich panel materials;  

 The dynamic behaviour of highly anisotropic materials; 

 The dynamic behaviour of other practical loaded heterogeneous materials; 
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 The influence of various types of boundary conditions in the dynamic behaviour of 

heterogeneous materials. 
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Appendix A 

A) Exact Analytical Solution of the Timoshenko beam theory 

with FF boundary conditions by separation of variables 

The Timoshenko beam theory in terms of transverse deflection   can be written as in 

equation A.1, see references (Han, S., Benaroya, and Wei 1999), (Carcorze-soto 2010), 

(Manevich and Zbigniew 2011): 
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     (A.1) 

Note that equation (A.1) can be stated in terms of beam rotation,  , by simply replace   

with  . The abovementioned equation is a fourth order differential equation which may also 

be stated in form of a quadratic equation form. Thus, the following characteristics equation is 

derived as in (Han, S., Benaroya, and Wei 1999; Carcorze-soto 2010): 
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According to (Doschoris 2016) the roots of the equation (A.2) are: 
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(A.3) 

The solutions of equation (A.1) may also be written in form of displacement or rotation as in 

equations A.4 and A.5: 
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where   is the square root (√ ) of the second order form of the differential equation (A.1) 

and    is constant for time function.            are interrelated in following forms: 
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(A.8) 

The boundary conditions for a free-free beam must be so that to satisfy the end conditions at 

x=0 and x=L so moment and shear force at both ends must equal zero: 
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(A.9) 
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(A.10) 

This is the same as stating that second and the third derivatives of the displacement function 

W must be equal zero at x=0 and x=L. 
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  or in matrix form we get the  

following equation:   
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(A.11) 

 

The above determinant consists of both real and imaginary parts. After solving the above 

4by4 determinant and applying lengthy but simple multiplications and collection of 

variables, the real portions of the final equation will cancel each other out and only the 

imaginary parts will remain as follows: 
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Appendix B 

B) FEA Numerical Results (Transverse Frequencies) for 2D Beams with Voids and Inclusions 

Table B-1: FEA results for the first ten non-dimensional bending modal frequencies, λ,  

of four beam sizes for beams with voids and continuous boundaries. 

Vr/Sy 1/d
2
 Mode 1  Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10 

0.12 

1.33 4.76955 7.68132 10.35591 12.76693 14.93788 16.88913 18.61605 19.99604 22.62761 23.77287 

0.33 4.68729 7.57493 10.25310 12.69255 14.91404 16.94335 18.80583 20.52301 22.11161 23.58229 

0.15 4.66959 7.54856 10.22110 12.65790 14.87917 16.91035 18.77657 20.49923 22.09501 23.57460 

0.08 4.66333 7.53907 10.20920 12.64431 14.86449 16.89507 18.76115 20.48404 22.08054 23.56148 

0.17 

1.33 4.90166 7.84884 10.51240 12.87028 14.94866 16.75620 18.25124 19.27956 23.33800 24.05576 

0.33 4.72757 7.63200 10.31759 12.75624 14.97082 16.98881 18.83670 20.53666 22.10554 23.55362 

0.15 4.68756 7.57440 10.25109 12.68880 14.90873 16.93700 18.79930 20.51731 22.10779 23.58129 

0.08 4.67318 7.55331 10.22584 12.66164 14.88138 16.91078 18.77521 20.49630 22.09079 23.56949 

0.23 

1.33 5.06288 8.02794 10.63599 12.87575 14.78071 16.35164 17.54079 18.26429 22.58100 22.85800 

0.33 4.78076 7.70206 10.38746 12.81145 15.00121 16.98756 18.79922 20.45959 21.98596 23.38806 

0.15 4.71149 7.60675 10.28491 12.71812 14.92935 16.94617 18.79525 20.49900 22.07450 23.53231 

0.08 4.68620 7.57108 10.24467 12.67837 14.89384 16.91758 18.77564 20.48990 22.07746 23.54905 

0.29 

1.33 5.22486 8.15349 10.61435 12.65910 14.31213 15.59849 16.50500 17.02099 20.76968 21.14741 

0.33 4.83872 7.76881 10.43623 12.82049 14.95620 16.87921 18.62170 20.20869 21.65796 22.97855 

0.15 4.73769 7.63848 10.31101 12.72910 14.91850 16.90907 18.72915 20.40219 21.94600 23.37150 

0.08 4.70036 7.58842 10.25926 12.68512 14.88911 16.89905 18.74183 20.44008 22.01115 23.46609 

0.35 

1.33 5.35391 8.14392 10.37197 12.11473 13.47552 14.48776 15.17417 15.55343 18.77221 19.31754 

0.33 4.89192 7.80981 10.42461 12.72609 14.76084 16.57268 18.19838 19.66493 20.99083 22.18467 

0.15 4.76152 7.65909 10.31068 12.69310 14.83683 16.77533 18.53948 20.15453 21.63943 23.00600 

0.08 4.71287 7.59915 10.25851 12.66461 14.84301 16.82350 18.63439 20.29934 21.83652 23.25743 
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Table B-2: FEA results for the first ten non-dimensional bending modal frequencies, λ, 

 of four beam sizes for beams with compliant inclusions and continuous boundaries. 

Vr/Sy 1/d
2
 Mode 1  Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10 

0.12 

1.33 4.75123 7.66769 10.35911 12.79741 15.00668 17.01499 18.84630 20.49177 22.19597 23.59273 

0.33 4.68110 7.56720 10.24600 12.68789 14.91294 16.94646 18.81348 20.53531 22.12848 23.60351 

0.15 4.66748 7.54630 10.21966 12.65800 14.88127 16.91468 18.78318 20.50804 22.10581 23.58711 

0.08 4.66249 7.53830 10.20903 12.64515 14.86659 16.89853 18.76588 20.49005 22.08768 23.56959 

0.17 

1.33 4.84870 7.79438 10.48399 12.89362 15.05104 16.97843 18.66707 19.97418 22.70293 23.81555 

0.33 4.71030 7.60966 10.29603 12.74053 14.96462 16.99474 18.85674 20.57241 22.15847 23.62528 

0.15 4.68058 7.56559 10.24292 12.68337 14.90744 16.94082 18.80887 20.53297 22.12978 23.60976 

0.08 4.66978 7.54912 10.22220 12.65969 14.88186 16.91418 18.78177 20.50613 22.10393 23.58594 

0.23 

1.33 4.96849 7.94033 10.61103 12.96234 15.02517 16.80993 18.27300 19.25911 23.40805 23.92484 

0.33 4.74841 7.66251 10.35388 12.79499 15.00981 17.02668 18.87283 20.57082 22.13765 23.58338 

0.15 4.69778 7.58987 10.27030 12.71048 14.93192 16.96124 18.82433 20.54298 22.13400 23.60783 

0.08 4.67937 7.56279 10.23785 12.67553 14.89668 16.92727 18.79279 20.51494 22.11055 23.59024 

0.29 

1.33 5.09188 8.07596 10.70363 12.96512 14.89632 16.50033 17.72840 18.48490 22.82080 23.10764 

0.33 4.78987 7.71682 10.40761 12.83679 15.03172 17.02332 18.84050 20.50669 22.03927 23.44780 

0.15 4.71681 7.61537 10.29664 12.73282 14.94694 16.96665 18.81872 20.52549 22.10404 23.56488 

0.08 4.69009 7.57735 10.25318 12.68902 14.90650 16.93228 18.79233 20.50866 22.09828 23.57190 

0.35 

1.33 5.19900 8.18027 10.75120 12.91266 14.70869 16.14526 17.19202 17.80838 21.86749 22.21757 

0.33 4.82774 7.76310 10.44718 12.85702 15.02368 16.98069 18.75855 20.38153 21.86718 23.22472 

0.15 4.73465 7.63768 10.31667 12.74478 14.94674 16.95144 18.78654 20.47502 22.03434 23.47507 

0.08 4.70048 7.59047 10.26515 12.69652 14.90715 16.92448 18.77513 20.48139 22.06051 23.52323 
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Table B-3: FEA results for the first ten non-dimensional bending modal frequencies, λ, 

 of four beam sizes with compliant matrix and textured boundaries 

Vr/Sy 1/d
2
 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10 

0.12 

1.33 4.72946 7.63167 10.31391 12.74914 14.96101 16.97705 18.82349 20.52080 22.08456 23.51864 

0.33 4.67474 7.55630 10.23092 12.66928 14.89158 16.92312 18.78891 20.51027 22.10379 23.58024 

0.15 4.66415 7.54046 10.21133 12.64735 14.86851 16.90006 18.76707 20.49073 22.08789 23.56936 

0.08 4.66041 7.53475 10.20404 12.63884 14.85907 16.88991 18.75639 20.47983 22.07692 23.55855 

0.17 

1.33 4.79981 7.73649 10.44016 12.88522 15.09868 17.11120 18.95153 20.64153 22.19873 23.62610 

0.33 4.69361 7.58611 10.26980 12.71521 14.94282 16.97809 18.84626 20.56862 22.16152 23.63539 

0.15 4.67256 7.55394 10.22929 12.66920 14.89381 16.92850 18.79839 20.52477 22.12430 23.60763 

0.08 4.66512 7.54233 10.21420 12.65134 14.87374 16.90666 18.77518 20.50069 22.09963 23.58306 

0.23 

1.33 4.86778 7.83361 10.54994 12.99331 15.19525 17.19013 19.00983 20.67820 22.21484 23.62362 

0.33 4.71272 7.61511 10.30545 12.75433 14.98271 17.01645 18.88109 20.59805 22.18360 23.64764 

0.15 4.68105 7.56693 10.24559 12.68764 14.91352 16.94881 18.81879 20.54492 22.14375 23.62573 

0.08 4.66980 7.54951 10.22324 12.66163 14.88488 16.91839 18.78735 20.51312 22.11233 23.59574 

0.29 

1.33 4.92902 7.91767 10.63896 13.07209 15.25356 17.22171 19.01125 20.64896 22.15520 23.53770 

0.33 4.73121 7.64217 10.33705 12.78652 15.01227 17.04078 18.89797 20.60541 22.17930 23.62915 

0.15 4.68972 7.57979 10.26091 12.70387 14.92945 16.96357 18.83174 20.55554 22.15156 23.63006 

0.08 4.67484 7.55698 10.23220 12.67124 14.89453 16.92768 18.79602 20.52104 22.11932 23.60152 

0.35 

1.33 4.97450 7.97691 10.69532 13.11107 15.26453 17.19681 18.94450 20.53606 21.99261 23.32542 

0.33 4.74526 7.66210 10.35901 12.80674 15.02757 17.04848 18.89564 20.59065 22.14966 23.58161 

0.15 4.69628 7.58920 10.27154 12.71418 14.93820 16.96979 18.83470 20.55444 22.14572 23.61878 

0.08 4.67845 7.56215 10.23804 12.67693 14.89946 16.93139 18.79821 20.52143 22.11778 23.59761 
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Note: Micropolar theory does not apply to the FEA results which are provided in the next three tables A-4 to A-6. 

Table B-4: FEA results for the first ten non-dimensional bending modal frequencies, λ, 
 of four beam sizes for beams with voids and textured boundaries.(BVOTB) 

Vr/Sy 1/d
2
 Mode 1  Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10 

0.12 

1.33 4.46441 7.24540 9.85519 12.26018 14.47163 16.50739 18.39289 20.12539 21.73600 23.21958 

0.33 4.60562 7.44731 10.08676 12.49434 14.68954 16.69718 18.54218 20.24584 21.82513 23.29161 

0.15 4.63202 7.48910 10.14213 12.56149 14.76677 16.78308 18.63534 20.34500 21.92897 23.39882 

0.08 4.64149 7.50434 10.16279 12.58724 14.79742 16.81836 18.67507 20.38892 21.97680 23.45007 

0.17 

1.33 4.27663 6.96480 9.51273 11.88429 14.08302 16.11926 18.00429 19.74958 21.35540 22.80511 

0.33 4.56247 7.37419 9.98165 12.35565 14.51631 16.48902 18.29906 19.96798 21.51278 22.94510 

0.15 4.61224 7.45512 10.09246 12.49481 14.68218 16.67992 18.51339 20.20437 21.77018 23.22299 

0.08 4.62983 7.48425 10.13333 12.54755 14.74686 16.75653 18.60175 20.30415 21.88082 23.34353 

0.23 

1.33 4.04846 6.61526 9.07218 11.38240 13.54270 15.55583 17.42541 19.15406 20.73298 22.13102 

0.33 4.51730 7.29154 9.85333 12.17503 14.27896 16.19256 17.94243 19.55080 21.03488 22.40625 

0.15 4.59282 7.41882 10.03480 12.41198 14.57147 16.53972 18.34305 20.00390 21.54037 22.96538 

0.08 4.61897 7.46373 10.10043 12.49993 14.68284 16.67507 18.50235 20.18680 21.74599 23.19222 

0.29 

1.33 3.78355 6.19944 8.53137 10.74385 12.82918 14.78308 16.60534 18.28903 19.82041 21.16942 

0.33 4.47136 7.19942 9.69922 11.94638 13.96812 15.79559 17.45799 18.97892 20.37611 21.66117 

0.15 4.57417 7.38000 9.96771 12.30975 14.42940 16.35513 18.11472 19.73186 21.22556 22.60968 

0.08 4.60907 7.44257 10.06307 12.44213 14.60163 16.56870 18.36993 20.02824 21.56182 22.98364 

0.35 

1.33 3.48557 5.72363 7.89873 9.97832 11.95237 13.81322 15.55441 17.16643 18.63458 19.88314 

0.33 4.42469 7.09477 9.51141 11.65692 13.56704 15.27907 16.82599 18.23326 19.51922 20.69549 

0.15 4.55550 7.33585 9.88499 12.17779 14.24130 16.10705 17.80524 19.36103 20.79465 22.12091 

0.08 4.59927 7.41832 10.01628 12.36601 14.49158 16.42196 18.18530 19.80557 21.30176 22.68774 
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Table B-5: FEA results for the first ten non-dimensional bending modal frequencies, λ, 

 of four beam sizes for beams with compliant inclusions and textured boundaries.(BINTB) 

Vr/Sy 1/d
2
 Mode 1  Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10 

0.12 

1.33 4.51605 7.31346 9.92525 12.32020 14.51296 16.52368 18.37101 20.07825 21.65362 23.10773 

0.33 4.62023 7.46881 10.11317 12.52394 14.72092 16.72917 18.57365 20.27577 21.85259 23.31579 

0.15 4.63989 7.50100 10.15721 12.57900 14.78618 16.80380 18.65686 20.36677 21.95054 23.41972 

0.08 4.64696 7.51275 10.17367 12.60016 14.81200 16.83433 18.69210 20.40672 21.99502 23.46844 

0.17 

1.33 4.38917 7.12858 9.70687 12.09052 14.28881 16.31732 18.19235 19.93034 21.53995 23.02279 

0.33 4.59087 7.42067 10.04633 12.43873 14.61784 16.60902 18.43752 20.12493 21.68840 23.13980 

0.15 4.62722 7.47983 10.12715 12.53970 14.73738 16.74548 18.58920 20.29018 21.86562 23.32748 

0.08 4.64006 7.50115 10.15704 12.57818 14.78444 16.80109 18.65318 20.36220 21.94526 23.41396 

0.23 

1.33 4.24250 6.90973 9.43976 11.79736 13.98606 16.01594 17.89808 19.64316 21.25236 22.71077 

0.33 4.55888 7.36509 9.96417 12.32776 14.47681 16.43768 18.23620 19.89442 21.42958 22.85352 

0.15 4.61286 7.45437 10.08864 12.48650 14.66840 16.66021 18.48755 20.17250 21.73271 23.18058 

0.08 4.63166 7.48616 10.13421 12.54645 14.74312 16.74971 18.59164 20.29067 21.86418 23.32400 

0.29 

1.33 4.10052 6.69304 9.16710 11.48629 13.64945 15.66161 17.52834 19.25456 20.83378 22.23871 

0.33 4.53107 7.31325 9.88238 12.21129 14.32302 16.24554 18.00582 19.62655 21.12520 22.51347 

0.15 4.60140 7.43215 10.05220 12.43293 14.59577 16.56743 18.37441 20.03931 21.58029 23.01028 

0.08 4.62554 7.47396 10.11375 12.51586 14.70108 16.69548 18.52494 20.21162 21.77315 23.22181 

0.35 

1.33 3.98470 6.51302 8.93458 11.21201 13.34051 15.32128 17.15460 18.84169 20.37054 21.71070 

0.33 4.50910 7.26928 9.80900 12.10299 14.17684 16.06054 17.78247 19.36602 20.82885 22.18260 

0.15 4.59236 7.41294 10.01850 12.38116 14.52356 16.47363 18.25860 19.90183 21.42191 22.83222 

0.08 4.62075 7.46328 10.09433 12.48530 14.65772 16.63844 18.45375 20.12634 21.67416 23.10977 
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Table B-6: FEA results for the first ten non-dimensional bending modal frequencies, λ, 

 of four beam sizes for beams with compliant matrix and continuous boundaries.(BCMCB) 

Vr/Sy 1/d
2
 Mode 1  Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10 

0.12 

1.33 4.61383 7.47353 10.14126 12.58521 14.82253 16.87804 18.78383 20.71425 21.76321 23.53297 

0.33 4.64432 7.50988 10.17193 12.60087 14.81635 16.84333 18.70668 20.42775 22.02311 23.50382 

0.15 4.65070 7.51966 10.18426 12.61496 14.83147 16.85889 18.72219 20.44272 22.03715 23.51663 

0.08 4.65276 7.52278 10.18824 12.61963 14.83670 16.86457 18.72822 20.44895 22.04354 23.52292 

0.17 

1.33 4.55692 7.38608 10.03265 12.46490 14.69803 16.75459 18.66406 20.56475 21.67034 23.43582 

0.33 4.63126 7.48793 10.14103 12.56132 14.76882 16.78869 18.64621 20.36279 21.95542 23.43536 

0.15 4.64474 7.50934 10.16924 12.59501 14.80651 16.82899 18.68752 20.40367 21.99423 23.47059 

0.08 4.64938 7.51694 10.17967 12.60816 14.82223 16.84705 18.70767 20.42549 22.01731 23.49433 

0.23 

1.33 4.49132 7.28276 9.90045 12.31340 14.53530 16.58635 18.49186 20.33557 21.59447 23.28639 

0.33 4.61766 7.46393 10.10556 12.51390 14.70954 16.71840 18.56605 20.27438 21.86057 23.33626 

0.15 4.63864 7.49819 10.15218 12.57135 14.77586 16.79121 18.64278 20.35213 21.93648 23.40755 

0.08 4.64596 7.51066 10.17003 12.59467 14.80461 16.82512 18.68142 20.39501 21.98266 23.45596 

0.29 

1.33 4.42665 7.17754 9.76069 12.14632 14.34703 16.38025 18.26414 20.01883 21.59575 23.10994 

0.33 4.60665 7.44292 10.07226 12.46671 14.64790 16.64239 18.47642 20.17232 21.74750 23.21389 

0.15 4.63395 7.48873 10.13647 12.54816 14.74441 16.75106 18.59380 20.29446 21.87053 23.33409 

0.08 4.64343 7.50553 10.16136 12.58175 14.78687 16.80226 18.65327 20.36154 21.94411 23.41255 

0.35 

1.33 4.36876 7.07890 9.62276 11.97163 14.13677 16.13128 17.96091 19.58367 21.71911 22.96106 

0.33 4.59933 7.42714 10.04481 12.42512 14.59054 16.56852 18.38565 20.06448 21.62267 23.07231 

0.15 4.63134 7.48230 10.12432 12.52869 14.71644 16.71377 18.54664 20.23714 21.80307 23.25671 

0.08 4.64233 7.50251 10.15534 12.57171 14.77211 16.78225 18.62765 20.33008 21.90677 23.36949 
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Appendix C 

C) Solution to Small scale effects on Non-Local Timoshenko beam 

for free-free boundary conditions: 

C.1    Eringen Nonlocal Effect In x Direction 

A modified Timoshenko beam theory based on Eringen’s nonlocal theory has been used in 

nanotechnology in recent years. Wang et al. (2007) incorporated the Eringen small scale 

coefficient    ̅ into the moment in the Timoshenko beam model.  Here, the work of Wang et 

al., which was briefly discussed earlier in chapter two, is extended to include the free-free 

boundary condition: 

Normal and shear stresses can be stated in following forms:  

 

 
        ̅ 

 
     

   
      

(C.1) 

 

          (C.2) 

where     ̅  has the dimension of length and referred to as    Alpha  which stand for small 

length scale parameter;      is the small length scale coefficient which is dimensionless;   ̅  

is internal characteristic length. Wang et al did not consider the nonlocal effect into shear 

constitutive relations. However, the influence of the Eringen’s nonlocal small length scale 

parameter,  , in both horizontal and vertical stress components will be discussed in appendix 

C.2 and the nonlocal Timoshenko beam will be solved for such assumptions. 

The term   can be identified by the curve fitting methods. However, the constituent terms in 

  such as  ̅ or    have their mechanical definitions too. For example   ̅  as the internal 

characteristic length can be related to molecular bonds or granular size or distance in 

materials. Some researchers have attempted to obtain    analytically. In a very recent work 

Wang et al modelled a beam by dividing it into finite rigid elements (segments), elastic 

rotational springs and lumped masses where the segments join together and by applying 
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Hamilton principle to their model, they were able to obtain the small length scale coefficient 

     by analytical method and showed that    is approximately equals to 0.408 or 
 

√ 
 for 

vibration of nonlocal Euler beams when there is no load applied on the beam eg. Initial axial 

stress ratio is zero
  

 ̌ 
⁄   , and for initial stress ration from -1 to +1, e0 changes from 0.5 

to 0.289 and found that    is independent from vibration modes (Z. Zhang, Challamel, and 

Wang 2013),(Zhen Zhang, Wang, and Challamel 2015). 

The shear force and bending moment with taking the effect of the Eringen small length scale 

parameter in x coordinates may be stated as in (Wang, Zhang, and He 2007): 

 
   ̂  (  

  

  
) 

(C.3) 

 
    

  

  
     ̅ 

            
  

  
  

(C.4) 

Thus the governing equations of nonlocal Timoshenko may be modified as: 

 
  

   

   
  ̂  (  

  

  
)            ̅ 

 (    
  

  
     

   

   
)    

(C.5) 

 
 ̂  (

  

  
 

   

   
)          

(C.6) 

Considering the following non-dimensional parameters: 

  
 

 
    

 

 
            

  
    λ is frequency parameter.  ̂  

  

 ̂    
 Shear deformation 

parameters,      ̅   as scaling effect parameter and finally   ̂  
 √ 

√ 
 which is the 

slenderness ratio. 

Thus according to Wang et al  (2007) the Timoshenko governing equations for beams can be 

rewritten in a non-dimensional form as follows:  

  ̂ (  
    

  ̂ 
)
   

  
  (

   ̂

  ̂ 
  )  (     ̂   )

  

  
   (C.7) 
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 (
  

  
 

   

  
 )     ̂    (C.8) 

The equations (C.7) and (C.8) can be decoupled in term of     and   as follows: 

 
(  

    

  ̂ 
)
   

  
    ( ̂  

   ̂    

  ̂ 
   )

   

  
    (
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  ̂ 
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(C.9) 

 

 
(  

    

  ̂ 
)
   

  
    ( ̂  

   ̂    
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   )

   

  
    (

   ̂

  ̂ 
  )    

(C.10) 

The solutions of the above equations are: 

                                             (C.11) 

                                             (C.12) 

where: 

 
  (  

    

  ̂ 
)      ( ̂  

   ̂    

  ̂ 
   )          (

   ̂

  ̂ 
  ) 

(C.13) 

  

 
(
 
 
)   

   √      

  
     

(C.14) 

 

According to Wang et al.  (2007) the constants            are not independent and related as 

follows:  



226 
 

       ̂  (C.15) 

       ̂  (C.16) 

       ̂  (C.17) 

        ̂  (C.18) 

 
 ̂   

      ̂

 
 

(C.19) 

 
 ̂  

      ̂

 
 

(C.20) 

Wang et al.  (2007) have provided the solutions of the above equations for various boundary 

conditions except for beam model with free-free boundary conditions. To apply the boundary 

conditions for free-free beam, the bending moment and shear forces at either edges of the 

beam must be equal to zero as follows: 

   
  

  
 (  

    

  ̂ 
)

  

  
            at                 (C.21) 

 

   
 

 ̂  
    

  

  
     at                 

(C.22) 

 

 

Thus the eigenvalue problem for a free- free beam can be solved as follows:  
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[
 
 
 
 
 
 
                                                                                            

                                                                                     
                                                                                       

  
                                                        

                                    
                                                         ]
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   (C.23) 

 

         (
    

  ̂   )   ̂  (C.24) 

         (
    

  ̂   )   ̂  (C.25) 

     ̂    (C.26) 

     ̂    (C.27) 

In order to make sure that both sides of equation (C.23) equal zero then the determinant of 

the matrix must equal zero: 

 |

|

                                                                                                     
                                                                                               

                                                                                              
  

                                                                   
                                    

                                                                       

|

|

 

|
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|
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(C.28) 

Solution of the above equation equals: 

                        [      
        

 ]             (C.29) 

 

               [      
        

 ]                    

   
(C.30) 
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C.2    The Effect of Eringen Small Length Scale parameter,  , in both 

Normal and Shear Stress Components (x and y components of 

stresses) 

In this appendix section the Eringen’s nonlocal effect assumed also considered to influence 

in y direction too. Hosseini et al.  (2013) has influenced the Eringen’s material constant 

    ̅  in shear stress as well as the normal stress in an investigation of surface Effects on free 

vibration of Nano beams. Reddy (2007) has also referred to the stress resultant in x-y as 

shear forces. Thus, the shear stress and strain relationship which was previously defined in 

equation (C.2) may be written with nonlocal effect as:  

         ̅ 
 
     

   
            (C.31) 

Bending moment and shear forces are:  

   ∫       
 

 
          [N.m] (C.32) 

   ∫      
 

 
            [N] (C.33) 

So, by multiplying equation (C.1) by     and integrating over the cross section of the beam, 

A:  

 
      ̅ 

 
   

   
   

  

  
 

(C.34) 

Therefore, constitutive equations must be obtained and solved for this new assumption 

accordingly. Thus the Timoshenko governing equations can be written as:  

  

  
          

(C.35) 

 

  

  
      

   

   
 

(C.36) 
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Or: 

   

  
         

(C.37) 

And 

   

  
         

(C.38) 

Therefore:  
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(C.39) 

Thus: 

 
    

  

  
     ̅ 

 (           
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(C.40) 

So: 

 
    

  

  
     ̅ 

 (          
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(C.41) 

 

Now by integrating equation (C.31) over area, A: 

 
∫   
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 ∫
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(C.42) 
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(C.43) 

Thus  
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)      ̅ 

 
   

   
 

(C.44) 

 

Taking derivatives from both sides of equation (C.38) with respect to x: 

 

    

   
      

  

  
 

(C.45) 

Now (C.45) into (C.44):  
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(C.46) 

 

Taking derivatives from equation (C.41) with respect to x:  
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(C.47) 

Taking derivatives from equation (C.46) with respect to x:  
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)      ̅ 
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) 

(C.48) 

Now by substitution equations (C.47) and (C.48) in the equations (C.37) and (C.38), the 

Timoshenko constitutive equations can be written as:  
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(C.49) 

 
 ̂  (

  
  

 
   

   
)           ̅  (     

  

   
)    

(C.50) 
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Now by normalisation we derive:  

  ̂ (  
    

  ̂ 
)

   

    (
   ̂

  ̂   )  
  ̅̅̅

  ̅
 = 0 (C.51) 

   

  ̅
 (       ̂)
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  ̅ 
    ̂ ̅̅̅    

 (C.52) 

Equations (C.51) and (C.52) then decoupled in term of     and   as follows: 

 

 
(        ̂  

     ̂   

  ̂ 
 )

   ̅̅̅

  
    ( ̂  

    ̂    

  ̂ 
   )

   ̅̅̅

  
 

   (
   ̂

  ̂ 
  )  ̅̅̅    

(C.53) 

And in terms of rotation: 
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(C.54) 

Thus the general solutions for the above decoupled equations are: 

                                             (C55) 

                                             (C.56) 

The solution of either of the above equations a set of new variables are defined which are 

different from Appendix C.1 but the rest of procedure is the same and final equation will be 

similar to the equation (C.30). Therefore, equation (C.30) should be used with the following 

parameters: 
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     ̂          ̂   (C.69) 

And 

     ̂          ̂   (C.70) 

C.3    Extracting the Timoshenko Beam Mode Shapes  

The mode shapes for the modal frequencies in both local and nonlocal Timoshenko beam 

will be the same (Wang, Zhang, and He 2007). Thus the displacement and the three 

consecutive derivatives of it are as: 

                                             (C.71) 

 

  
 
                                                  (C.72) 

 

  
  
       

             
             

        

    
         

(C.73) 

 
 

   
       

             
             

        

    
         

(C.74) 

 

From the equations (C.71) to (C.74), at x=0 then the second and third derivatives must also 

be equal to zero:          and          . Thus, in other to achieve such conditions then: 

             (C.75) 

And, 
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             (C.76) 

The variables    to    in equations (C.75) and (C.76) can be derived from equations (C.23) 

to (C.27) as the final equation can be used to obtain the mode shapes in either local or 

nonlocal Timoshenko beams. Thus: 

    
  

  
   (C.77) 

And, 
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And so at x=L or     ,  
  
           

   
      

  
  
       

            
            

           
        =0 (C.79) 

Sunstituting     and     into equation (C.79): 
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Thus 
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Substitute (C.77) and (C.78) into the equation (C.71): 

                         
   

  
          

  

  
          (C.83) 

By rearranging equation (C.83): 
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Thus  
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       ] (C.85) 

For         in equation (C.82) and replacing     ⁄  in equation (C.85): 
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(C.86) 

The mode shapes at each modal frequency of a Timoshenko beam with a defined aspect ratio 

can be extracted using the equation (C.86). 
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Appendix D 

D) Numerical Results (Longitudinal and Transverse) for 2D 

beams Using MPFEM and CVFEM 
 

D.1)   Longitudinal Modal Frequencies Using MPFEM in Comparison 

with FEA Results 

Table D-1: Longitudinal frequency of beams with voids and continuous boundaries using MPFEM 
with corresponding FEA results 

  Longitudinal Frequency, ω, [Rad/s] of Beams With Voids 

and Continuous Boundaries Using MPFEM 

Longitudinal Frequency, ω, [Rad/s] of Beams With Voids 

and Continuous Boundaries Using FEA   

Vr/Sy 1/d
2
 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

0 

1.33 1775482 3547265 5310760 7060279 8785975 1776747 3549673 5314249 7064185 8789925 

0.33 887740.6 1773582 2655268 3529714 4351582 888373 1774836 2657121 3532105 4394956 

0.15 591996 1182027 1768671 2349671 2896848 592249 1183224 1771418 2354737 2929969 

0.08 444360.4 886747.8 1326985 1762730 2184207 444187 887418 1328561 1766053 2197481 

0.12 

1.33 1775484 3547360 5310805 7060403 8786580 1776206 3545099 5297398 7018695 8682608 

0.33 887741 1773589 2655292 3529779 4392354 888310 1774284 2655161 3527217 4384821 

0.15 591827 1182389 1770183 2353147 2928101 592228 1183042 1770771 2353160 2926752 

0.08 443870 886791 1327634 1764849 2196043 444175 887330 1328247 1765286 2195923 

0.17 

1.33 1775484 3547354 5310816 7060433 8786700 1775069 3535542 5261715 6919986 8443910 

0.33 887742 1773591 2655298 3529797 4392406 888166 1773159 2651316 3517723 4365174 

0.15 591828 1182390 1770188 2353160 2928132 592180 1182690 1769596 2350307 2920977 

0.08 443871 886792 1327637 1764859 2196066 444153 887167 1327719 1764004 2193341 

0.23 

1.33 1775485 3547380 5310825 7060459 8786802 1773209 3519614 5201478 6751597 8042289 

0.33 887742 1773592 2655304 3529812 4392447 887952 1771437 2645309 3502782 4334116 

0.15 591828 1182391 1770192 2353171 2928158 592118 1182181 1767818 2345959 2912137 

0.08 443871 886793 1327640 1764867 2196088 444128 886947 1326940 1762107 2189495 

0.29 

1.33 1775485 3547404 5310831 7060475 8786864 1770501 3496473 5112980 6501714 7457890 

0.33 887742 1773593 2655307 3529821 4392474 887663 1769087 2637065 3482223 4291290 

0.15 591828 1182392 1770194 2353177 2928176 592029 1181465 1765368 2339959 2899929 

0.08 443871 886793 1327642 1764873 2196100 444085 886620 1325840 1759436 2184098 

0.35 

1.33 1775485 3547430 5310836 7060489 8786915 1766505 3461463 4975208 6090417 6550472 

0.33 887742 1773574 2655310 3529829 4392498 887255 1765707 2625203 3452598 4229696 

0.15 591828 1182393 1770196 2353183 2928190 591900 1180416 1761723 2331005 2881682 

0.08 443871 886794 1327644 1764877 2196111 444025 886130 1324131 1755239 2175553 
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Table D-2: Longitudinal frequency of beams with compliant inclusions and continuous boundaries 
using MPFEM with corresponding FEA results 

  

Longitudinal Frequency, ω, [Rad/s] of Beams With 

Compliant Inclusions and  Continuous  Boundaries Using 

MPFEM 

Longitudinal Frequency, ω, [Rad/s] of Beams With 

Compliant Inclusions and  Continuous  Boundaries 

Using FEA 

Vr/Sy 1/d
2
 Mode 1  Mode 2 Mode 3 Mode 4 Mode 5 Mode 1  Mode 2 Mode 3 Mode 4 Mode 5 

0 

1.33 1775482 3547265 5310760 7060279 8785975 1776747 3549673 5314249 7064185 8789925 

0.33 887740.6 1773582 2655268 3529714 4351582 888373 1774836 2657121 3532105 4394956 

0.15 591996 1182027 1768671 2349671 2896848 592249 1183224 1771418 2354737 2929969 

0.08 444360.4 886747.8 1326985 1762730 2184207 444187 887418 1328561 1766053 2197481 

0.12 

1.33 1775484 3547297 5310806 7060404 8786587 1776558 3544006 5291491 7004118 8659109 

0.33 887741 1773589 2655291 3529777 4392354 888581 1774604 2655104 3526186 4382101 

0.15 591827 1182389 1770182 2353144 2928093 592423 1183375 1771136 2353392 2926676 

0.08 443870 886790 1327632 1764845 2196034 444331 887619 1328636 1765726 2196357 

0.17 

1.33 1775484 3547363 5310812 7060423 8786660 1776269 3540581 5277951 6965602 8563479 

0.33 887741 1773590 2655296 3529790 4392376 888587 1774290 2653779 3522643 4374410 

0.15 591827 1182390 1770186 2353154 2928136 592441 1183306 1770771 2352368 2924446 

0.08 443870 886791 1327635 1764854 2196056 444339 887588 1328466 1765255 2195332 

0.23 

1.33 1775484 3547360 5310819 7060440 8786729 1775616 3533456 5249865 6885491 8365621 

0.33 887742 1773591 2655300 3529801 4392417 888549 1773586 2651039 3515555 4359324 

0.15 591828 1182391 1770189 2353163 2928139 592445 1183124 1769992 2350339 2920179 

0.08 443871 886792 1327638 1764861 2196072 444352 887525 1328152 1764394 2193504 

0.29 

1.33 1775485 3547380 5310825 7060459 8786801 1774705 3523780 5211965 6778614 8111655 

0.33 887742 1773592 2655304 3529812 4392446 888530 1772694 2647439 3506162 4339356 

0.15 591828 1182391 1770191 2353171 2928157 592470 1182916 1768999 2347674 2914537 

0.08 443871 886793 1327640 1764867 2196087 444380 887469 1327756 1763269 2191079 

0.35 

1.33 1775485 3547410 5310833 7060479 8786876 1773831 3513765 5172928 6671863 7876098 

0.33 887742 1773593 2655308 3529823 4392479 888543 1771758 2643512 3495845 4317491 

0.15 591828 1182392 1770194 2353178 2928158 592522 1182703 1767868 2344558 2907858 

0.08 443871 886793 1327642 1710455 2196101 444431 887418 1327291 1761868 2187975 
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Table D-3: Longitudinal frequency of beams with compliant matrix and textured boundaries using 
MPFEM with corresponding FEA results 

  Longitudinal Frequency, ω, [Rad/s] of Beams With 

Compliant Matrix and  Textured Boundaries Using 

MPFEM 

Longitudinal Frequency, ω, [Rad/s] of Beams With 

Compliant Matrix and  Textured  Boundaries Using FEA 
  

  

Vr/Sy 1/d
2
 Mode 1  Mode 2 Mode 3 Mode 4 Mode 5 Mode 1  Mode 2 Mode 3 Mode 4 Mode 5 

0 

1.33 1775482 3547265 5310760 7060279 8785975 1776747 3549673 5314249 7064185 8789925 

0.33 887740.6 1773582 2655268 3529714 4351582 888373 1774836 2657121 3532105 4394956 

0.15 591996 1182027 1768671 2349671 2896848 592249 1183224 1771418 2354737 2929969 

0.08 444360.4 886747.8 1326985 1762730 2184207 444187 887418 1328561 1766053 2197481 

0.12 

1.33 1775484 3547306 5310814 7060422 8786663 1776830 3548222 5307315 7043690 8730560 

0.33 887741 1773589 2655294 3529785 4392408 888511 1774939 2656827 3530847 4391909 

0.15 591827 1182389 1770183 2353148 2928102 592353 1183382 1771517 2354624 2929421 

0.08 443870 886791 1327633 1764847 2196039 444263 887547 1328697 1766125 2197389 

0.17 

1.33 1775484 3547258 5310813 7060424 8786668 1776625 3546062 5299417 7024014 8690672 

0.33 887741 1773590 2655295 3529789 4392382 888500 1774702 2655928 3528577 4387226 

0.15 591827 1182390 1770185 2353152 2928113 592364 1183338 1771297 2353993 2928081 

0.08 443870 886791 1327635 1764852 2196050 444275 887547 1328621 1765873 2196837 

0.23 

1.33 1775484 3547353 5310813 7060426 8786673 1775948 3541505 5284281 6987847 8620718 

0.33 887742 1773590 2655296 3529792 4392398 888366 1774056 2653957 3524021 4378381 

0.15 591827 1182390 1770186 2353156 2928124 592280 1183054 1770556 2352448 2925180 

0.08 443871 886791 1327636 1764856 2196060 444225 887390 1328256 1765132 2195481 

0.29 

1.33 1775484 3547347 5310814 7060426 8786674 1775301 3535877 5264826 6940628 8531183 

0.33 887742 1773590 2655297 3529793 4392396 888294 1773378 2651608 3518345 4367093 

0.15 591827 1182390 1770187 2353158 2928127 592269 1182874 1769893 2350777 2921822 

0.08 443871 886792 1327637 1764857 2196063 444228 887327 1327984 1764438 2194047 

0.35 

1.33 1775484 3547345 5310814 7060427 8786675 1774166 3528325 5240057 6881805 8417683 

0.33 887742 1773590 2655297 3529794 4392397 888032 1772211 2648250 3510793 4352667 

0.15 591827 1182390 1770187 2353158 2928128 592150 1182444 1768774 2348380 2917392 

0.08 443871 886792 1327637 1764858 2196065 444130 887055 1327374 1763240 2191950 
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D.2)    Transverse Modal Frequencies for 2D beams Using MPFEM  

Table D-4: MPFEM results for the first ten non-dimensional bending modal frequencies, λ, 

 of four beam sizes for beams with voids and continuous boundaries. (BVOCB) 

Vr/Sy 1/d
2
 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10 

0.12 

1.33 4.76512 7.61965 10.27137 12.67763 14.96468 17.05317 18.86293 20.62313 22.26413 23.79808 

0.33 4.69153 7.57112 10.23810 12.66757 14.88220 16.90693 18.75617 20.43925 22.06997 23.58142 

0.15 4.67259 7.55084 10.22108 12.65493 14.87333 16.90203 18.76617 20.48682 22.07861 23.56709 

0.08 4.66537 7.54166 10.21185 12.64671 14.86651 16.89664 18.76221 20.48462 22.08058 23.56086 

0.17 

1.33 4.83584 7.65801 10.29792 12.74810 14.95530 16.99660 18.87115 20.63319 22.27322 23.80628 

0.33 4.72206 7.60101 10.26264 12.68602 14.89492 16.98578 18.79962 20.51875 22.11474 23.59822 

0.15 4.68809 7.56979 10.23970 12.67151 14.88754 16.91367 18.77417 20.63529 22.10398 23.58359 

0.08 4.67456 7.55407 10.22539 12.66006 14.87904 16.90809 18.77243 20.49323 22.08611 23.53795 

0.23 

1.33 4.91133 7.69002 10.32157 12.75489 14.96626 17.00478 18.96640 20.64210 22.28124 23.81351 

0.33 4.76159 7.63369 10.28690 12.70119 14.89833 16.93912 18.80516 20.52612 22.12187 23.60411 

0.15 4.70947 7.59326 10.26057 12.68848 14.90078 16.92161 18.75008 20.57493 22.16682 23.58377 

0.08 4.68754 7.57039 10.24183 12.67503 14.89210 16.91910 18.78092 20.49537 22.14981 23.59664 

0.29 

1.33 4.96123 7.70703 10.33621 12.76455 14.97427 17.01124 18.91516 20.64771 22.28628 23.81806 

0.33 4.79185 7.65574 10.30249 12.70784 14.87844 16.93753 18.81053 20.53166 22.12700 23.60878 

0.15 4.72676 7.61059 10.27495 12.69940 14.90850 16.91802 18.83010 20.53452 22.12564 23.61271 

0.08 4.69830 7.58308 10.25384 12.68535 14.90063 16.92567 18.78420 20.55882 22.11459 23.59468 

0.35 

1.33 5.00907 7.71788 10.34909 12.77350 14.98126 17.01692 18.90854 20.65250 22.29057 23.82193 

0.33 4.82502 7.67712 10.31697 12.70557 14.68714 16.91550 18.81526 20.53662 22.13155 23.61291 

0.15 4.74674 7.62892 10.28919 12.70935 14.91433 16.99867 18.81913 20.53473 22.12665 23.60558 

0.08 4.71104 7.59718 10.26642 12.69556 14.90857 16.93073 18.77999 20.49967 22.10444 23.59532 
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Table D-5: MPFEM results for the first ten non-dimensional bending modal frequencies, λ, 

 of four beam sizes for beams with compliant inclusions and continuous boundaries.(BINCB) 

Vr/Sy 1/d
2
 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10 

0.12 

1.33 4.72890 7.60088 10.26148 12.69004 14.90897 16.96877 18.86443 20.62369 22.26475 23.79880 

0.33 4.67735 7.55619 10.22575 12.65856 14.87622 16.90469 18.76902 20.48875 22.16388 23.59163 

0.15 4.66562 7.54185 10.21188 12.64654 14.86615 16.89616 18.76171 20.48422 22.08042 23.65958 

0.08 4.66130 7.53596 10.20538 12.64015 14.86022 16.89084 18.75701 20.48013 22.07695 23.55851 

0.17 

1.33 4.79161 7.63833 10.28541 12.65615 14.96247 17.01410 18.86947 20.62968 22.27013 23.80355 

0.33 4.70150 7.58224 10.24835 12.67632 14.88943 16.91133 18.70040 20.53129 22.12483 23.58034 

0.15 4.67748 7.55727 10.22794 12.66158 14.87954 16.90769 18.77115 20.49053 22.07494 23.65976 

0.08 4.66822 7.54570 10.21652 12.65162 14.87142 16.90143 18.76682 20.48898 22.08453 23.56394 

0.23 

1.33 4.85343 7.66669 10.30417 12.74833 14.95821 16.99868 18.87257 20.63566 22.27546 23.80830 

0.33 4.73042 7.60855 10.26855 12.69018 14.89729 16.94838 18.80060 20.52058 22.11657 23.59957 

0.15 4.69247 7.57488 10.24446 12.67559 14.89090 16.91622 18.77501 20.51604 22.10252 23.65977 

0.08 4.67718 7.55750 10.22899 12.66347 14.88213 16.91083 18.77475 20.49491 22.08574 23.58239 

0.29 

1.33 4.90837 7.68940 10.32106 12.79044 14.96622 17.00478 18.86849 20.64200 22.28116 23.81344 

0.33 4.75969 7.63246 10.28617 12.70102 14.89919 16.93968 18.80522 20.52613 22.12187 23.60413 

0.15 4.70837 7.59218 10.25973 12.68790 14.90041 16.92169 18.77769 20.60004 22.19558 23.65984 

0.08 4.68686 7.56960 10.24111 12.67444 14.89165 16.91880 18.78081 20.49615 22.17514 23.59828 

0.35 

1.33 4.95446 7.70938 10.33727 12.76698 14.97627 17.01310 18.84863 20.64880 22.28732 23.81903 

0.33 4.78530 7.65295 10.30163 12.70997 14.89459 16.94241 18.81199 20.53288 22.12818 23.60994 

0.15 4.72262 7.60727 10.27293 12.69855 14.90864 16.92415 18.86878 20.54169 22.13154 23.65985 

0.08 4.69564 7.58033 10.25169 12.68394 14.89989 16.92563 18.78555 20.48271 22.15448 23.59742 
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Table D-6: MPFEM results for the first ten non-dimensional bending modal frequencies, λ, 

 of four beam sizes with compliant matrix and textured boundaries (BCMTB) 

Vr/Sy 1/d
2
 Mode 1  Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10 

0.12 

1.33 4.73198 7.60680 10.26819 12.69702 14.91708 16.97845 18.87151 20.63001 22.27057 23.66279 

0.33 4.67796 7.55749 10.22776 12.66113 14.87919 16.90795 18.77263 20.49378 22.07772 23.62816 

0.15 4.66587 7.54235 10.21266 12.64764 14.86755 16.89783 18.76363 20.48638 22.08283 23.56387 

0.08 4.66143 7.53621 10.20578 12.64071 14.86096 16.89176 18.75812 20.48143 22.07843 23.56017 

0.17 

1.33 4.76403 7.62634 10.27953 12.69736 14.87073 16.96512 18.87075 20.63016 22.24991 23.66280 

0.33 4.68972 7.57073 10.23949 12.67038 14.88600 16.91221 18.77243 20.50951 22.10374 23.66024 

0.15 4.67156 7.54995 10.22079 12.65540 14.87453 16.90387 18.76865 20.49019 22.08479 23.56010 

0.08 4.66474 7.54094 10.21129 12.64650 14.86670 16.89726 18.76326 20.48611 22.08254 23.56352 

0.23 

1.33 4.80922 7.64620 10.29016 12.78410 14.95564 16.99908 18.86999 20.63077 22.27107 23.66281 

0.33 4.70944 7.58966 10.25403 12.68019 14.89171 16.90657 18.80874 20.51960 22.11495 23.60418 

0.15 4.68153 7.56214 10.23258 12.66553 14.88274 16.91012 18.77262 20.48896 22.14362 23.58712 

0.08 4.67063 7.54892 10.21998 12.65494 14.87444 16.90409 18.76908 20.49076 22.08555 23.56272 

0.29 

1.33 4.82916 7.65268 10.29370 12.74307 14.95163 16.99339 18.86895 20.63101 22.27121 23.66281 

0.33 4.71960 7.59810 10.25982 12.68350 14.89272 16.97499 18.79691 20.51637 22.11253 23.59607 

0.15 4.68689 7.56817 10.23791 12.66972 14.88582 16.91205 18.77267 20.43529 22.10181 23.58168 

0.08 4.67385 7.55306 10.22420 12.65877 14.87772 16.90677 18.77112 20.49196 22.08488 23.53265 

0.35 

1.33 4.83959 7.65556 10.29536 12.73834 14.95063 16.99209 18.86797 20.63112 22.27128 23.66281 

0.33 4.72534 7.60253 10.26272 12.68496 14.89273 16.93957 18.73094 20.51581 22.11211 23.59529 

0.15 4.68999 7.57150 10.24074 12.67184 14.88730 16.91280 18.77175 20.50748 22.09818 23.58059 

0.08 4.67573 7.55540 10.22651 12.66080 14.87939 16.90808 18.77204 20.49225 22.08297 23.57254 
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D.3)    Transverse Modal Frequencies for 2D beams Using CVFEM 

Table D-7: CVFEM results for the first ten non-dimensional bending modal frequencies, λ, 

 of four beam sizes for beams with voids and continuous boundaries. (BVOCB) 

Vr/Sy 1/d
2
 Mode 1  Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10 

0.12 

1.33 4.75637 7.59068 10.21280 12.58191 14.83105 16.73721 18.57903 20.25346 21.79828 23.22596 

0.33 4.68916 7.56458 10.22432 12.64295 14.84286 16.84883 18.67776 20.35837 21.94411 23.40409 

0.15 4.67151 7.54830 10.21598 12.64573 14.85819 16.87886 18.73272 20.44081 22.01811 23.49184 

0.08 4.66444 7.53964 10.20804 12.64007 14.85567 16.87998 18.73792 20.45078 22.03528 23.50243 

0.17 

1.33 4.82571 7.62610 10.23582 12.64875 14.80303 16.78384 18.58474 20.25889 21.80268 23.22954 

0.33 4.71946 7.59345 10.24690 12.65860 14.85219 16.73529 18.71317 20.40353 21.96680 23.41491 

0.15 4.68695 7.56691 10.23375 12.66084 14.87027 16.88774 18.73750 20.40843 22.03857 23.50013 

0.08 4.67359 7.55184 10.22102 12.65231 14.86642 16.88890 18.74484 20.45536 22.03627 23.48191 

0.23 

1.33 4.89978 7.65585 10.25707 12.65005 14.81051 16.78698 18.59033 20.26497 21.80785 23.23402 

0.33 4.75875 7.62521 10.26963 12.67185 14.85405 16.87464 18.71564 20.40768 21.97046 23.41640 

0.15 4.70825 7.58999 10.25379 12.67652 14.88179 16.89372 18.67238 20.53295 22.12210 23.49860 

0.08 4.68654 7.56794 10.23689 12.66626 14.87796 16.89789 18.75087 20.45506 22.10400 23.52893 

0.29 

1.33 4.94893 7.67196 10.27074 12.65827 14.81722 16.79191 18.59367 20.26935 21.81167 23.23741 

0.33 4.78885 7.64674 10.28445 12.67772 14.83656 16.87312 18.71981 20.41183 21.97414 23.41954 

0.15 4.72549 7.60708 10.26770 12.68676 14.88868 16.88974 18.79038 20.48019 22.05546 23.53306 

0.08 4.69727 7.58048 10.24856 12.67600 14.88566 16.90343 18.75304 20.52779 22.05965 23.52488 

0.35 

1.33 4.99620 7.68236 10.28297 12.66622 14.82330 16.79652 18.59503 20.27322 21.81505 23.24041 

0.33 4.82187 7.66765 10.29826 12.67535 14.67203 16.85808 18.72366 20.41567 21.97752 23.42249 

0.15 4.74542 7.62518 10.28153 12.69614 14.89387 16.68189 18.77758 20.47919 22.05506 23.51637 

0.08 4.70998 7.59443 10.26080 12.68566 14.89286 16.90762 18.74842 20.45925 22.05012 23.52442 
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Table D-8: CVFEM results for the first ten non-dimensional bending modal frequencies, λ, 

 of four beam sizes for beams with compliant inclusions and continuous boundaries.(BINCB) 

Vr/Sy 1/d
2
 Mode 1  Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10 

0.12 

1.33 4.72170 7.57633 10.20897 12.59875 14.76897 16.76765 18.58888 20.27545 21.80808 23.46034 

0.33 4.67518 7.55071 10.21431 12.63773 14.84205 16.85283 18.69499 20.38844 21.89480 23.42504 

0.15 4.66459 7.53964 10.20765 12.63903 14.85369 16.87676 18.73312 20.44407 22.02631 23.49088 

0.08 4.66039 7.53412 10.20211 12.63464 14.85133 16.87714 18.73684 20.45163 22.03824 23.50780 

0.17 

1.33 4.78258 7.60866 10.22594 12.56844 14.81827 16.85586 18.58464 20.25868 21.87438 23.46020 

0.33 4.69909 7.57548 10.23410 12.65100 14.84919 16.85236 18.64205 20.42563 21.99335 23.40545 

0.15 4.67638 7.55466 10.22265 12.65204 14.86388 16.88383 18.73686 20.44360 22.01467 23.43303 

0.08 4.66729 7.54364 10.21259 12.64473 14.86017 16.88417 18.74172 20.45413 22.03804 23.50421 

0.23 

1.33 4.84297 7.63420 10.24143 12.64686 14.80493 16.78422 18.58646 20.26062 21.80416 23.46021 

0.33 4.72777 7.60078 10.25244 12.66228 14.85404 16.88769 18.71330 20.40452 21.96770 23.41481 

0.15 4.69132 7.57191 10.23833 12.66462 14.87322 16.88978 18.73784 20.46793 22.03638 23.50025 

0.08 4.67621 7.55522 10.22449 12.65549 14.86916 16.89116 18.74656 20.45635 22.03532 23.50665 

0.29 

1.33 4.89703 7.65550 10.25680 12.65038 14.81073 16.78726 18.59051 20.26506 21.80796 23.46027 

0.33 4.75687 7.62403 10.26899 12.67177 14.85492 16.87530 18.71585 20.40784 21.97063 23.41660 

0.15 4.70716 7.58896 10.25303 12.67605 14.88157 16.89395 18.72123 20.56827 22.00172 23.49938 

0.08 4.68586 7.56716 10.23621 12.66574 14.87760 16.89770 18.75089 20.45590 22.13799 23.53097 

0.35 

1.33 4.94270 7.67492 10.27237 12.66142 14.81987 16.79444 18.59583 20.27094 21.81319 23.46034 

0.33 4.78238 7.64417 10.28390 12.68014 14.85095 16.87777 18.72173 20.41357 21.97586 23.42127 

0.15 4.72138 7.60389 10.26593 12.68625 14.88922 16.89599 18.38906 20.48869 22.06310 23.48966 

0.08 4.69462 7.57779 10.24655 12.67483 14.88525 16.90380 18.75481 20.44418 22.15225 23.52833 
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Table D-9: CVFEM results for the first ten non-dimensional bending modal frequencies, λ, 

 of four beam sizes with compliant matrix and textured boundaries (BCMTB) 

Vr/Sy 1/d
2
 Mode 1  Mode 

2 

Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10 

0.12 

1.33 4.72512 7.58322 10.21713 12.60747 14.77863 16.78034 18.59846 20.27179 21.81651 23.46050 

0.33 4.67584 7.55220 10.21678 12.64111 14.84618 16.85761 18.70041 20.39525 21.95234 23.34324 

0.15 4.66485 7.54019 10.20859 12.64045 14.85562 16.87922 18.73610 20.44757 22.03033 23.63363 

0.08 4.66053 7.53440 10.20260 12.63540 14.85243 16.87864 18.73877 20.45404 22.04114 23.51119 

0.17 

1.33 4.75603 7.59925 10.22335 12.60221 14.74273 16.76272 18.58975 20.26358 21.80796 23.46029 

0.33 4.68745 7.56467 10.22672 12.64732 14.84872 16.85649 18.69422 20.40684 22.90858 23.41549 

0.15 4.67051 7.54756 10.21608 12.64694 14.86053 16.88227 18.73717 20.44649 22.02660 23.63355 

0.08 4.66382 7.53900 10.20773 12.64036 14.85672 16.88188 18.74071 20.45448 22.03993 23.50817 

0.23 

1.33 4.79968 7.61544 10.22939 12.70649 14.80616 16.79492 18.58405 20.25813 21.80221 23.46019 

0.33 4.70695 7.58255 10.23910 12.65389 14.85027 16.84716 18.72621 20.40679 21.96980 23.45297 

0.15 4.68042 7.55941 10.22699 12.65548 14.86633 16.88529 18.73716 20.44098 22.09237 23.63348 

0.08 4.66968 7.54679 10.21585 12.64767 14.86258 16.88595 18.74283 20.45449 22.03743 23.50140 

0.29 

1.33 4.81895 7.62063 10.23146 12.64327 14.79917 16.78034 18.58238 20.25666 21.80063 23.46016 

0.33 4.71699 7.59053 10.24405 12.65603 14.84994 16.92840 18.71037 20.40108 21.96451 23.41257 

0.15 4.68575 7.56527 10.23194 12.65902 14.86850 16.88606 18.73592 20.59770 22.03622 23.63345 

0.08 4.67289 7.55083 10.21981 12.65100 14.86507 16.88754 18.74348 20.45403 22.03498 23.47842 

0.35 

1.33 4.82903 7.62289 10.23246 12.63645 14.79713 16.77727 18.58160 20.25602 21.79994 23.46015 

0.33 4.72267 7.59471 10.24653 12.65695 14.84936 16.87791 18.70780 20.39957 21.96306 23.41024 

0.15 4.68883 7.56852 10.23456 12.66081 14.86952 16.88626 18.73447 20.43049 22.03189 23.63344 

0.08 4.67476 7.55312 10.22199 12.65277 14.86635 16.88831 18.74372 20.45354 22.03242 23.51065 
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Appendix E 

E) Numerical Results for Square Plates with Cylindrical Voids 

and Inclusions 

In this section the finite element results using ANSYS for all plate models and MPFEM 

results for plates with CYVOCB, CYCICB and CYCMTB are provided. Only eight 

dimensionless modal frequencies,  , are listed in this appendix. The rest of modal 

frequencies up to mode number 33 and mode shapes are stored in an Excel database 

separately future work. Note that the first twisting mode is also included in the tables along 

with the transverse mode (not to be confused with bending modes). 

E.1)    FEA results for square plates with cylindrical voids and inclusions  

a) FEA results for plates with CYVOCB    

Table  E-1: FEA results for the first eight non-dimensional transverse modal frequencies, Ω, of four 

plate sizes for plates with voids and continuous boundaries (CYVOCB) 

Vr/Sy 1/d
2
 Mode 1  Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 

0.12 

1.33 1.32439 1.97707 2.42605 3.26842 3.26956 5.56322 5.59149 5.60799 

0.33 1.29461 1.93783 2.37172 3.19401 3.22234 5.44374 5.50546 5.56343 

0.15 1.28905 1.92922 2.36426 3.17816 3.21470 5.41029 5.48582 5.55132 

0.08 1.28680 1.92595 2.35610 3.17161 3.20771 5.39820 5.47563 5.54595 

0.17 

1.33 1.39586 2.08510 2.55332 3.42297 3.43057 5.74501 5.82232 5.88602 

0.33 1.32968 1.99618 2.44054 3.26395 3.32731 5.51294 5.64152 5.78506 

0.15 1.31675 1.97446 2.41637 3.22837 3.30398 5.44143 5.59565 5.75681 

0.08 1.31215 1.96682 2.40791 3.21547 3.29505 5.41587 5.57830 5.74625 

0.23 

1.33 1.49117 2.22880 2.72196 3.61649 3.64457 5.91532 6.10596 6.27711 

0.33 1.37643 2.07085 2.54383 3.35704 3.47024 5.59850 5.82152 6.09364 

0.15 1.35371 2.02951 2.50572 3.29689 3.42986 5.48596 5.74573 6.04352 

0.08 1.34572 2.01441 2.49207 3.27447 3.41483 5.44458 5.71707 6.02398 

0.29 

1.33 1.59691 2.38331 2.91319 3.80216 3.88169 5.95041 6.36623 6.76122 

0.33 1.42688 2.14561 2.67596 3.45219 3.63571 5.65741 6.01135 6.46441 

0.15 1.39278 2.07966 2.62382 3.36506 3.57490 5.51443 5.90564 6.33990 

0.08 1.38106 2.05565 2.60550 3.33385 3.55342 5.46001 5.86641 6.29245 

0.35 

1.33 1.70819 2.52099 3.15041 3.94553 4.14188 5.74997 6.55930 6.71095 

0.33 1.48547 2.21845 2.86293 3.55440 3.84082 5.67518 6.22222 6.58083 

0.15 1.44047 2.12749 2.79698 3.44677 3.76377 5.53239 6.10299 6.45191 

0.08 1.42586 2.09455 2.77353 3.40894 3.73670 5.47563 6.05904 6.40129 
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b) FEA results for plates with CYCICB 

Table  E-2: FEA results for the first eight non-dimensional transverse modal frequencies, Ω, of four 

plate sizes for plates with compliant inclusions and continuous boundaries (CYCICB) 

Vr/Sy 1/d
2
 Mode 1  Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 

0.12 

1.33 1.31207 1.96200 2.40683 3.24567 3.25021 5.55827 5.56631 5.56813 

0.33 1.28587 1.92534 2.35825 3.18106 3.20186 5.43439 5.47460 5.51481 

0.15 1.28105 1.91793 2.34841 3.16560 3.18840 5.40790 5.45587 5.50153 

0.08 1.27924 1.91524 2.34538 3.16060 3.18452 5.39778 5.44823 5.49654 

0.17 

1.33 1.36411 2.04025 2.49908 3.36242 3.36265 5.69552 5.73456 5.76472 

0.33 1.30878 1.96560 2.40347 3.22510 3.26755 5.48301 5.56437 5.66209 

0.15 1.29824 1.94949 2.38369 3.19793 3.24752 5.42782 5.52545 5.63576 

0.08 1.29441 1.94371 2.37673 3.18652 3.23997 5.40770 5.51072 5.62606 

0.23 

1.33 1.43165 2.14189 2.61784 3.50269 3.51438 5.83953 5.94215 6.03122 

0.33 1.33794 2.01706 2.46694 3.28418 3.35848 5.54109 5.67813 5.85972 

0.15 1.31977 1.98758 2.43411 3.23440 3.32375 5.45237 5.61374 5.81453 

0.08 1.31331 1.97709 2.42334 3.21918 3.31122 5.42024 5.58979 5.79838 

0.29 

1.33 1.50817 2.25630 2.75296 3.65090 3.68947 5.95080 6.16284 6.35711 

0.33 1.36987 2.07270 2.54642 3.34771 3.46348 5.59593 5.80231 6.09752 

0.15 1.34284 2.02692 2.49983 3.27438 3.40406 5.47663 5.71095 6.02907 

0.08 1.33355 2.01041 2.48369 3.25356 3.39249 5.43196 5.67710 6.00410 

0.35 

1.33 1.58508 2.36887 2.89790 3.78836 3.87556 6.01205 6.37511 6.73372 

0.33 1.40035 2.12532 2.64033 3.40650 3.57591 5.63525 5.92322 6.36945 

0.15 1.36480 2.06247 2.58381 3.31834 3.50828 5.49238 5.80763 6.27423 

0.08 1.35308 2.03981 2.56375 3.28775 3.48474 5.44173 5.77121 6.22606 
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c) FEA results for plates with CYCMCB (For which micropolar constants are not 

available) 

Table  E-3: FEA results for the first eight non-dimensional transverse modal frequencies, Ω, of four 

plate sizes for plates with compliant matrix and continuous boundaries (CYCMCB) 

Vr/Sy 1/d
2
 Mode 1  Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 

0.12 

1.33 1.23704 1.84852 2.27024 3.07338 3.07805 5.28954 5.30301 5.31268 

0.33 1.25889 1.95283 2.39442 3.12155 3.22485 5.33630 5.41059 5.70950 

0.15 1.26325 1.96942 2.42228 3.13250 3.25512 5.35266 5.43722 5.80111 

0.08 1.26436 1.97408 2.43299 3.13658 3.26507 5.36033 5.44939 5.83409 

0.17 

1.33 1.21498 1.81589 2.22727 3.00864 3.03908 5.14998 5.22114 5.29557 

0.33 1.25609 1.98625 2.50710 3.11041 3.32674 5.28818 5.44482 5.97914 

0.15 1.26419 2.00909 2.56775 3.13120 3.38445 5.32222 5.49687 6.03398 

0.08 1.26679 2.01723 2.59946 3.14450 3.40484 5.33525 5.51578 6.13843 

0.23 

1.33 1.20589 1.79723 2.21257 2.96116 3.04598 4.99098 5.18743 5.39944 

0.33 1.25764 1.99973 2.65914 3.10448 3.45200 5.23862 5.50265 5.98475 

0.15 1.26830 2.02654 2.74910 3.13333 3.53253 5.29199 5.57617 6.05360 

0.08 1.27224 2.03595 2.78096 3.14431 3.56179 5.31285 5.60261 6.07949 

0.29 

1.33 1.21890 1.78507 2.26178 2.94948 3.12207 4.83120 5.23376 5.58560 

0.33 1.26414 2.00200 2.81701 3.10653 3.58222 5.19538 5.57774 5.97979 

0.15 1.27483 2.03219 2.92337 3.13936 3.67508 5.26625 5.66124 6.05972 

0.08 1.27932 2.04003 2.95225 3.14891 3.70791 5.29393 5.68900 6.07197 

0.35 

1.33 1.25306 1.76422 2.38460 2.97472 3.25937 4.68165 5.35406 5.56577 

0.33 1.27318 2.00087 2.94759 3.11457 3.69214 5.16367 5.65255 5.97540 

0.15 1.28106 2.03360 3.05359 3.14613 3.78252 5.24831 5.73137 6.06166 

0.08 1.28500 2.04312 3.09265 3.15897 3.81084 5.29423 5.76150 6.09673 
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d) FEA results for plates with CYVOTB (Micro polar constants not available) 

Table  E-4: FEA results for the first eight non-dimensional transverse modal frequencies, Ω, of four 

plate sizes for plates with voids and textured boundaries (CYVOTB) 

Vr/Sy 1/d
2
 Mode 1  Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 

0.12 

1.33 1.21885 1.81492 2.23401 2.98461 3.08701 5.00831 5.23544 5.42015 

0.33 1.26756 1.89442 2.31705 3.11517 3.17046 5.26551 5.39736 5.50331 

0.15 1.27620 1.90891 2.33448 3.13956 3.18705 5.32467 5.43049 5.52247 

0.08 1.27971 1.91418 2.34102 3.15002 3.19381 5.34709 5.44524 5.53010 

0.17 

1.33 1.16917 1.71273 2.19954 2.83301 3.04268 4.64714 5.07989 5.41933 

0.33 1.27245 1.89765 2.33923 3.10207 3.21758 5.15633 5.41746 5.65648 

0.15 1.29021 1.92925 2.36953 3.15033 3.25175 5.27354 5.48606 5.69500 

0.08 1.29736 1.94041 2.38037 3.17083 3.26552 5.31582 5.51479 5.71018 

0.23 

1.33 1.10204 1.56585 2.20052 2.64208 2.98665 4.21954 4.87480 5.05230 

0.33 1.27939 1.89413 2.39386 3.09122 3.28342 5.03514 5.44879 5.82643 

0.15 1.30873 1.94830 2.43502 3.16872 3.33998 5.22016 5.55998 5.93177 

0.08 1.32042 1.96708 2.45031 3.20119 3.36267 5.28776 5.60952 5.95639 

0.29 

1.33 1.01673 1.38897 2.23290 2.41272 2.92117 3.74149 4.58959 4.61902 

0.33 1.28955 1.88377 2.48681 3.08605 3.37111 4.90624 5.49508 5.77238 

0.15 1.33278 1.96362 2.53855 3.19744 3.45499 5.17061 5.66114 6.01441 

0.08 1.34975 1.99095 2.55757 3.24301 3.48790 5.26540 5.73312 6.11074 

0.35 

1.33 0.91404 1.19296 2.14695 2.29899 2.85157 3.23143 4.04923 4.32341 

0.33 1.30750 1.86523 2.62631 3.08994 3.49302 4.75587 5.56858 5.69491 

0.15 1.36712 1.97300 2.68978 3.24036 3.60940 5.11251 5.80221 6.03902 

0.08 1.39016 2.00961 2.71286 3.30182 3.65462 5.23976 5.90134 6.17517 
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e) FEA results for plates with CYCITB (Micro polar  constants not available) 

Table  E-5: FEA results for the first eight non-dimensional transverse modal frequencies, Ω, of four 

plate sizes for plates with compliant inclusions and textured boundaries (CYCITB) 

Vr/Sy 1/d
2
 Mode 1  Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 

0.12 

1.33 1.22327 1.82841 2.24067 3.00586 3.07401 5.08335 5.23163 5.35579 

0.33 1.26231 1.89090 2.31349 3.11017 3.14922 5.29482 5.37104 5.45052 

0.15 1.27107 1.90273 2.32935 3.13563 3.16719 5.34292 5.41046 5.47353 

0.08 1.27388 1.90691 2.33357 3.14378 3.17299 5.35970 5.42218 5.48154 

0.17 

1.33 1.18233 1.76727 2.19607 2.89405 3.02919 4.84314 5.10925 5.37987 

0.33 1.26048 1.89486 2.32011 3.09055 3.17112 5.21894 5.36416 5.54155 

0.15 1.27764 1.91786 2.34613 3.13813 3.20498 5.30536 5.43737 5.58190 

0.08 1.28309 1.92596 2.35569 3.15336 3.21626 5.33721 5.46055 5.59601 

0.23 

1.33 1.13121 1.68575 2.16865 2.76145 2.97552 4.57575 4.95734 5.31187 

0.33 1.25856 1.89677 2.34142 3.06968 3.20100 5.13511 5.35879 5.66260 

0.15 1.28559 1.93329 2.37771 3.14248 3.25373 5.26344 5.47194 5.72353 

0.08 1.29420 1.94605 2.39069 3.16522 3.27106 5.31094 5.50723 5.74474 

0.29 

1.33 1.07342 1.59680 2.16008 2.61917 2.91761 4.31172 4.78577 5.06624 

0.33 1.25701 1.89536 2.37919 3.04976 3.23824 5.05048 5.35654 5.77500 

0.15 1.29468 1.94620 2.42457 3.14862 3.31138 5.22124 5.51274 5.89167 

0.08 1.30648 1.96373 2.44059 3.17875 3.33483 5.28359 5.56081 5.92040 

0.35 

1.33 1.01708 1.52084 2.17092 2.48819 2.86887 4.09473 4.62241 4.83753 

0.33 1.25892 1.89262 2.43521 3.03731 3.28800 4.97455 5.36893 5.73942 

0.15 1.30679 1.95611 2.48843 3.16010 3.38112 5.18139 5.56635 5.97264 

0.08 1.32173 1.97811 2.50766 3.19762 3.41194 5.25685 5.62712 6.04848 
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f) FEA results for plates with CYCMTB 

Table  E-6: FEA results for the first eight non-dimensional transverse modal frequencies, Ω, of four 

plate sizes for plates with compliant matrix and textured boundaries (CYCMTB) 

Vr/Sy 1/d
2
 Mode 1  Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 

0.12 

1.33 1.31260 2.09565 2.72556 3.23740 3.55381 5.48947 5.69220 6.22072 

0.33 1.27952 2.01528 2.51757 3.16992 3.35747 5.39764 5.53417 6.08326 

0.15 1.27148 1.99607 2.47579 3.15139 3.31220 5.37650 5.48825 5.97075 

0.08 1.26887 1.98891 2.46114 3.14566 3.29649 5.36890 5.47350 5.92826 

0.17 

1.33 1.35490 2.17988 3.07763 3.32969 3.87065 5.60757 5.95387 6.40082 

0.33 1.29513 2.06754 2.74562 3.20646 3.56192 5.41891 5.68551 6.18411 

0.15 1.28008 2.04248 2.67193 3.16842 3.48611 5.37503 5.59532 6.11830 

0.08 1.27497 2.03362 2.63937 3.15585 3.45919 5.35387 5.55321 6.09342 

0.23 

1.33 1.39685 2.24892 3.36427 3.42042 4.13370 5.72390 6.18806 6.55180 

0.33 1.31430 2.09898 2.97939 3.24190 3.76598 5.44407 5.83476 6.25873 

0.15 1.29251 2.06739 2.88975 3.19070 3.67016 5.37844 5.71945 6.16891 

0.08 1.28508 2.05617 2.85704 3.17414 3.63645 5.35519 5.68099 6.13918 

0.29 

1.33 1.43276 2.30688 3.49934 3.54682 4.31055 5.82403 6.36316 6.67184 

0.33 1.33387 2.11999 3.16789 3.27767 3.93212 5.46782 5.97180 6.31596 

0.15 1.30643 2.08095 3.07677 3.21440 3.82885 5.38296 5.83666 6.20599 

0.08 1.29679 2.06711 3.04330 3.19270 3.79281 5.35190 5.78996 6.16800 

0.35 

1.33 1.45817 2.35077 3.55833 3.61527 4.38889 5.89851 6.46273 6.74544 

0.33 1.35136 2.13445 3.28444 3.31177 4.04169 5.48900 6.07326 6.36188 

0.15 1.32006 2.08908 3.19868 3.23688 3.93374 5.38947 5.92901 6.23413 

0.08 1.30868 2.07314 3.17163 3.21146 3.90526 5.35278 5.87761 6.19199 
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E.2)    3D-MPFEM results for square plates with cylindrical voids and inclusions 

a) 3D-MPFEM results for CYVOCB plates   

Table  E-7: MPFEM results for the first eight non-dimensional transverse modal frequencies, Ω, of 

four plate sizes for plates with voids and continuous boundaries (CYVOCB) 

Vr/Sy 1/d
2
 Mode 1  Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 

0.12 

1.33 1.34818 1.99758 2.31508 3.21474 3.21489 5.41980 5.42041 5.47858 

0.33 1.32077 1.95327 2.32982 3.23478 3.23511 5.45393 5.45508 5.55006 

0.15 1.28586 1.91157 2.32003 3.16387 3.16423 5.39480 5.39600 5.42723 

0.08 1.27780 1.90102 2.31935 3.15251 3.15288 5.38619 5.38740 5.41200 

0.17 

1.33 1.38426 2.04650 2.30792 3.23880 3.23888 5.41202 5.41213 5.50402 

0.33 1.32958 1.96999 2.32043 3.21162 3.21196 5.42818 5.42933 5.48389 

0.15 1.30195 1.93266 2.32113 3.18528 3.18564 5.41087 5.41208 5.45544 

0.08 1.28835 1.91466 2.32055 3.16843 3.16880 5.39850 5.39971 5.43455 

0.23 

1.33 1.41695 2.09010 2.29547 3.25468 3.25469 5.35160 5.34996 5.51277 

0.33 1.35822 2.00841 2.31918 3.23756 3.23789 5.44360 5.44473 5.51353 

0.15 1.32190 1.95909 2.32173 3.20870 3.20906 5.42783 5.42903 5.48449 

0.08 1.30216 1.93271 2.32161 3.18737 3.18773 5.41284 5.41405 5.45989 

0.29 

1.33 1.43699 2.11622 2.28383 3.26060 3.26056 5.24178 5.23649 5.48425 

0.33 1.37786 2.03476 2.31759 3.25364 3.25397 5.45120 5.45231 5.53170 

0.15 1.33674 1.97884 2.32180 3.22458 3.22495 5.43888 5.44008 5.50353 

0.08 1.31290 1.94686 2.32218 3.20102 3.20138 5.42300 5.42420 5.47747 

0.35 

1.33 1.45468 2.13851 2.26842 3.25993 3.25981 5.01303 5.00119 5.15428 

0.33 1.39729 2.06082 2.31516 3.26787 3.26819 5.45505 5.45613 5.54751 

0.15 1.35258 1.99999 2.32148 3.24006 3.24042 5.44905 5.45024 5.52149 

0.08 1.32488 1.96271 2.32254 3.21514 3.21550 5.43327 5.43448 5.49499 
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b) 3D-MPFEM results for CYCICB plates 

Table  E-8: MPFEM results for the first eight non-dimensional transverse modal frequencies, Ω, of 

four plate sizes for plates with compliant inclusions and continuous boundaries (CYCICB) 

Vr/Sy 1/d
2
 Mode 1  Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 

0.12 

1.33 1.33058 1.97322 2.31853 3.20628 3.20646 5.42193 5.42265 5.47214 

0.33 1.29112 1.91857 2.32031 3.17074 3.17109 5.39994 5.40112 5.43597 

0.15 1.27828 1.90164 2.31943 3.15331 3.15367 5.38682 5.38802 5.41319 

0.08 1.27295 1.89479 2.31873 3.14490 3.14526 5.38027 5.38147 5.40101 

0.17 

1.33 1.36483 2.02013 2.31356 3.22911 3.22922 5.42540 5.42586 5.49522 

0.33 1.31332 1.94816 2.32080 3.19607 3.19642 5.41805 5.41922 5.46646 

0.15 1.29133 1.91865 2.32061 3.17192 3.17229 5.40101 5.40221 5.43854 

0.08 1.28127 1.90544 2.31986 3.15812 3.15848 5.39061 5.39181 5.42034 

0.23 

1.33 1.39260 2.05771 2.30564 3.24384 3.24390 5.40569 5.40559 5.50895 

0.33 1.33612 1.97875 2.32030 3.21806 3.21840 5.43237 5.43352 5.49145 

0.15 1.30626 1.93835 2.32134 3.19069 3.19105 5.41487 5.41607 5.46237 

0.08 1.29126 1.91843 2.32083 3.17262 3.17298 5.40171 5.40291 5.44032 

0.29 

1.33 1.41620 2.08915 2.29627 3.25494 3.25495 5.35829 5.35684 5.51433 

0.33 1.35711 2.00691 2.31932 3.23686 3.23719 5.44339 5.44452 5.51288 

0.15 1.32100 1.95788 2.32175 3.20783 3.20820 5.42725 5.42845 5.48355 

0.08 1.30150 1.93183 2.32159 3.18657 3.18693 5.41226 5.41346 5.45892 

0.35 

1.33 1.43724 2.11688 2.28758 3.26530 3.26526 5.29562 5.29207 5.51041 

0.33 1.37512 2.03096 2.31839 3.25324 3.25357 5.45265 5.45376 5.53219 

0.15 1.33387 1.97492 2.32206 3.22261 3.22298 5.43786 5.43906 5.50199 

0.08 1.31058 1.94373 2.32222 3.19870 3.19906 5.42142 5.42262 5.47506 
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c) 3D-MPFEM results for CYCMTB plates 

Table  E-9: MPFEM results for the first eight non-dimensional transverse modal frequencies, Ω, of 

four plate sizes for plates with compliant matrix and textured boundaries (CYCMTB) 

Vr/Sy 1/d
2
 Mode 1  Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 

0.12 

1.33 1.33537 1.97948 2.31923 3.21414 3.21429 5.42850 5.42918 5.48307 

0.33 1.29226 1.91994 2.32067 3.17329 3.17364 5.40208 5.40327 5.44037 

0.15 1.27875 1.90217 2.31960 3.15438 3.15475 5.38774 5.38894 5.41516 

0.08 1.27320 1.89506 2.31883 3.14547 3.14583 5.38076 5.38196 5.40206 

0.17 

1.33 1.35311 2.00396 2.31675 3.22488 3.22501 5.43087 5.43144 5.49264 

0.33 1.30347 1.93487 2.32097 3.18642 3.18677 5.41157 5.41275 5.45609 

0.15 1.28517 1.91052 2.32024 3.16381 3.16417 5.39496 5.39616 5.42816 

0.08 1.27724 1.90023 2.31941 3.15204 3.15240 5.38591 5.38712 5.41179 

0.23 

1.33 1.37252 2.03062 2.31142 3.23279 3.23289 5.42115 5.42150 5.49850 

0.33 1.31973 1.95677 2.32067 3.20226 3.20260 5.42214 5.42330 5.47334 

0.15 1.29545 1.92409 2.32082 3.17719 3.17755 5.40491 5.40611 5.44524 

0.08 1.28399 1.90898 2.32014 3.16214 3.16251 5.39369 5.39490 5.42592 

0.29 

1.33 1.37955 2.04015 2.30819 3.23430 3.23439 5.40966 5.40982 5.49862 

0.33 1.32711 1.96677 2.32027 3.20839 3.20873 5.42574 5.42690 5.47957 

0.15 1.30056 1.93088 2.32096 3.18316 3.18352 5.40921 5.41042 5.45237 

0.08 1.28748 1.91355 2.32041 3.16699 3.16735 5.39735 5.39856 5.43235 

0.35 

1.33 1.38291 2.04467 2.30622 3.23465 3.23473 5.40069 5.40067 5.49788 

0.33 1.33103 1.97208 2.31999 3.21140 3.21174 5.42734 5.42849 5.48253 

0.15 1.30339 1.93466 2.32099 3.18629 3.18665 5.41143 5.41263 5.45601 

0.08 1.28945 1.91615 2.32054 3.16962 3.16998 5.39933 5.40053 5.43577 
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Appendix F 

F) Numerical Results for Plates with Spherical Voids and 

Inclusions 

F.1)  FEA results for plates with spherical void and inclusions 

a) Plates with continuous boundaries 

1. FEA Results for SPVOCB 

Table  F-1: FEA results for the first eight non-dimensional transverse modal frequencies, Ω, of four 

plate sizes for plates with spherical voids and continuous boundaries (SPVOCB) 

Vr/Sy 1/d
2
 Mode 1  Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 

0.14 

2.00 1.25460 1.87174 2.29551 3.07401 3.07401 5.21956 5.22346 5.22347 

0.50 1.24989 1.86585 2.28760 3.06430 3.06430 5.20527 5.21292 5.21295 

0.22 1.24909 1.86449 2.28579 3.06232 3.06248 5.20222 5.20927 5.20945 

0.12 1.24871 1.86580 2.28536 3.06172 3.06172 5.20163 5.20811 5.21254 

0.21 

2.00 1.26984 1.89219 2.31968 3.10619 3.10619 5.26250 5.26252 5.26778 

0.50 1.25441 1.87414 2.29439 3.07449 3.08189 5.22116 5.22870 5.23536 

0.22 1.24913 1.86827 2.28737 3.06748 3.06803 5.21089 5.21655 5.21703 

0.12 1.25077 1.86750 2.28616 3.06607 3.06607 5.20838 5.21329 5.21337 

0.28 

2.00 1.29535 1.92583 2.35836 3.15872 3.15872 5.32114 5.32115 5.34477 

0.50 1.25964 1.88469 2.30183 3.08726 3.08750 5.23957 5.24708 5.24898 

0.22 1.25371 1.87486 2.28867 3.07319 3.07358 5.21821 5.22378 5.22386 

0.12 1.25221 1.87166 2.28448 3.06890 3.06907 5.21212 5.21562 5.21613 

0.35 

2.00 1.33078 1.97230 2.40886 3.22975 3.22976 5.39288 5.39292 5.44605 

0.50 1.26413 1.90971 2.31300 3.10117 3.10669 5.25622 5.27542 5.29800 

0.22 1.25137 1.88338 2.28723 3.07493 3.07647 5.21865 5.23210 5.23259 

0.12 1.24971 1.87514 2.28063 3.06673 3.06992 5.16960 5.21580 5.21962 

0.42 

2.00 1.36610 2.02218 2.45469 3.29849 3.29849 5.45087 5.45087 5.53646 

0.50 1.25483 1.92406 2.31499 3.10061 3.10061 5.24191 5.29861 5.29861 

0.22 1.24145 1.89867 2.28328 3.06661 3.06662 5.19266 5.23942 5.24056 

0.12 1.24034 1.89092 2.27207 3.05428 3.06007 5.18325 5.21849 5.22316 
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2. FEA Results for SPCICB 

Table  F-2: FEA results for the first eight non-dimensional transverse modal frequencies, Ω, of four 

plate sizes for plates with spherical inclusions and continuous boundaries (SPCICB) 

Vr/Sy 1/d
2
 Mode 1  Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 

0.14 

2.00 1.25870 1.88618 2.30922 3.09695 3.09695 5.26192 5.27574 5.27574 

0.50 1.24997 1.86622 2.28828 3.06482 3.06482 5.20527 5.21368 5.21368 

0.22 1.24938 1.86533 2.28705 3.06374 3.06374 5.20458 5.21238 5.21238 

0.12 1.24897 1.86425 2.28587 3.06229 3.06230 5.20213 5.20924 5.20945 

0.21 

2.00 1.27042 1.90143 2.32754 3.12136 3.12136 5.30026 5.30600 5.30602 

0.50 1.25306 1.87155 2.29309 3.07233 3.07233 5.21774 5.22627 5.22627 

0.22 1.25030 1.87003 2.29008 3.06720 3.07205 5.21085 5.21738 5.22251 

0.12 1.25001 1.86619 2.28627 3.06464 3.06465 5.20608 5.21225 5.21226 

0.28 

2.00 1.29101 1.92802 2.35861 3.16312 3.16313 5.35303 5.35303 5.36233 

0.50 1.25771 1.88107 2.30074 3.08411 3.08414 5.23580 5.24567 5.24567 

0.22 1.25284 1.87293 2.29018 3.07230 3.07231 5.21782 5.22505 5.22505 

0.12 1.25126 1.87050 2.28684 3.06797 3.07850 5.21143 5.21652 5.23799 

0.35 

2.00 1.31896 1.96385 2.39864 3.21826 3.21826 5.40934 5.40934 5.44137 

0.50 1.26148 1.89485 2.30960 3.09673 3.09673 5.25277 5.26946 5.26946 

0.22 1.25302 1.88051 2.29004 3.07552 3.07610 5.20090 5.22224 5.23390 

0.12 1.25202 1.87676 2.28557 3.06976 3.07000 5.21192 5.22127 5.22182 

0.42 

2.00 1.34629 2.00049 2.43545 3.27014 3.27015 5.45512 5.45516 5.51028 

0.50 1.25754 1.91087 2.31560 3.09971 3.09971 5.24927 5.29040 5.29043 

0.22 1.24614 1.88808 2.28872 3.07046 3.07265 5.20520 5.23876 5.24004 

0.12 1.24420 1.88858 2.28066 3.06360 3.07381 5.20000 5.22435 5.24166 
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b) Plates with textured boundaries 

1. FEA Results for SPVOTB 

Table  F-3: FEA results for the first eight non-dimensional transverse modal frequencies, Ω, of four 

plate sizes for plates with spherical voids and textured boundaries (SPVOTB) 

Vr/Sy 1/d
2
 Mode 1  Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 

0.14 

2.00 1.23975 1.84974 2.26590 3.04128 3.04128 5.17174 5.17341 5.17342 

0.50 1.24591 1.85974 2.27925 3.05434 3.05504 5.18970 5.19557 5.19618 

0.22 1.24734 1.86173 2.28224 3.05791 3.05791 5.19490 5.20134 5.20138 

0.12 1.24777 1.86257 2.28298 3.05914 3.05927 5.19694 5.20342 5.20346 

0.21 

2.00 1.22404 1.82743 2.23233 3.00706 3.00706 5.11664 5.11664 5.12208 

0.50 1.24241 1.85514 2.26925 3.04504 3.04700 5.17497 5.17798 5.18014 

0.22 1.24630 1.85995 2.27429 3.05402 3.05502 5.18964 5.19275 5.19358 

0.12 1.24775 1.86255 2.27959 3.05834 3.05852 5.19552 5.19933 5.19944 

0.28 

2.00 1.19608 1.79544 2.18114 2.94996 2.94996 5.02908 5.02908 5.03510 

0.50 1.23520 1.84800 2.25187 3.02731 3.03175 5.14538 5.14698 5.15034 

0.22 1.24332 1.85929 2.26644 3.04780 3.04944 5.17671 5.17724 5.18530 

0.12 1.24629 1.86198 2.27164 3.05442 3.05476 5.18817 5.18836 5.18863 

0.35 

2.00 1.15313 1.76257 2.12056 2.87111 2.87113 4.90743 4.92467 4.92474 

0.50 1.22425 1.84295 2.23079 3.00505 3.01200 5.10789 5.10830 5.11567 

0.22 1.23851 1.86012 2.25334 3.03882 3.03962 5.15909 5.15940 5.16006 

0.12 1.24367 1.86407 2.26126 3.04974 3.05027 5.17701 5.17768 5.17824 

0.42 

2.00 1.08870 1.73749 2.05852 2.76643 2.76643 4.72406 4.81656 4.81657 

0.50 1.20723 1.84285 2.20782 2.97615 2.98594 5.05417 5.06988 5.08300 

0.22 1.22987 1.86320 2.23752 3.02591 3.02642 5.13254 5.14209 5.14310 

0.12 1.23805 1.87048 2.24864 3.04275 3.04344 5.16183 5.16755 5.16874 
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2. FEA Results for SPCITB 

Table  F-4: FEA results for the first eight non-dimensional transverse modal frequencies, Ω, of four 

plate sizes for plates with spherical inclusions and textured boundaries (SPCITB) 

Vr/Sy 1/d
2
 Mode 1  Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 

0.14 

2.00 1.23781 1.84061 2.25791 3.02359 3.02359 5.12084 5.12085 5.12307 

0.50 1.16990 1.85684 2.26746 2.98296 3.05086 5.14625 5.18307 5.18470 

0.22 1.24645 1.85457 2.28083 3.05361 3.05667 5.10011 5.19512 5.19731 

0.12 1.24810 1.86258 2.28324 3.05781 3.05872 5.19545 5.20193 5.20224 

0.21 

2.00 1.22559 1.82446 2.23393 3.00067 3.00067 5.09126 5.09127 5.09798 

0.50 1.19418 1.84581 2.23914 2.77189 3.04326 5.16890 5.17193 5.31164 

0.22 1.24611 1.85966 2.27779 3.05380 3.05389 5.18635 5.19130 5.19135 

0.12 1.24742 1.86178 2.28254 3.05732 3.05747 5.19310 5.19823 5.20613 

0.28 

2.00 1.20478 1.80105 2.19750 2.96111 2.96111 5.03712 5.03713 5.04382 

0.50 1.24879 1.89306 2.26019 3.03242 3.04972 5.15140 5.15178 5.16761 

0.22 1.25508 1.86564 2.27198 3.04920 3.06375 5.17851 5.18153 5.18171 

0.12 1.24644 1.86155 2.27554 3.05500 3.05525 5.18891 5.19181 5.19210 

0.35 

2.00 1.17388 1.77619 2.15415 2.90613 2.90613 4.96002 4.96881 4.96883 

0.50 1.22911 1.84453 2.24348 3.01469 3.02018 5.12352 5.12551 5.13182 

0.22 1.26686 1.85894 2.26554 3.04231 3.06940 5.16825 5.16882 5.17605 

0.12 1.24436 1.86254 2.26829 3.05123 3.05169 5.18146 5.18368 5.18416 

0.42 

2.00 1.13075 1.75673 2.11094 2.83640 2.83642 4.84260 4.89817 4.89817 

0.50 1.21687 1.84287 2.22665 2.99348 3.00140 5.08554 5.09761 5.10763 

0.22 1.23367 1.85949 2.24999 3.03213 3.03213 5.14507 5.15497 5.15497 

0.12 1.23975 1.86542 2.25854 3.04457 3.04519 5.16745 5.17422 5.17508 
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F.2)  MPFEM results for plates with spherical void and Inclusions and 

Continuous Boundaries 

1. MPFEM Results for SPVOCB 

Table  F-5: MPFEM results for the first eight non-dimensional transverse modal frequencies, Ω, of 

four plate sizes for plates with spherical voids and continuous boundaries (SPVOCB) 

Vr/Sy 1/d
2
 Mode 1  Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 

0.14 

2.00 1.25917 1.87357 2.28025 3.06832 3.06886 5.19063 5.19413 5.20775 

0.50 1.25065 1.86212 2.27995 3.05728 3.05790 5.18281 5.18949 5.19113 

0.22 1.24854 1.85946 2.27965 3.05380 3.05442 5.18315 5.18383 5.18590 

0.12 1.24773 1.85847 2.27949 3.05237 3.05299 5.18088 5.18272 5.18479 

0.21 

2.00 1.27341 1.89301 2.27901 3.07975 3.08025 5.19612 5.19947 5.21899 

0.50 1.25759 1.87111 2.28037 3.06660 3.06720 5.18952 5.19619 5.20333 

0.22 1.25224 1.86412 2.28013 3.05965 3.06027 5.18825 5.19032 5.19171 

0.12 1.24999 1.86127 2.27987 3.05622 3.05684 5.18569 5.18682 5.18776 

0.28 

2.00 1.28432 1.90794 2.27537 3.08391 3.08438 5.18680 5.18980 5.22142 

0.50 1.26638 1.88279 2.28007 3.07510 3.07570 5.19473 5.20140 5.21261 

0.22 1.25773 1.87124 2.28038 3.06673 3.06735 5.19328 5.19535 5.20075 

0.12 1.25358 1.86584 2.28023 3.06153 3.06215 5.18963 5.19170 5.19425 

0.35 

2.00 1.29051 1.91605 2.26919 3.08256 3.08301 5.10459 5.10038 5.19953 

0.50 1.27424 1.89336 2.27907 3.08044 3.08104 5.19630 5.20295 5.21767 

0.22 1.26366 1.87909 2.28026 3.07276 3.07338 5.19711 5.19918 5.20749 

0.12 1.25781 1.87135 2.28039 3.06682 3.06744 5.19334 5.19541 5.20086 

0.42 

2.00 1.29357 1.91956 2.26125 3.07700 3.07741 4.51421 4.50051 4.49229 

0.50 1.27966 1.90066 2.27774 3.08302 3.08363 5.19449 5.20111 5.21984 

0.22 1.26852 1.88558 2.27989 3.07671 3.07733 5.19911 5.20118 5.21149 

0.12 1.26159 1.87634 2.28035 3.07082 3.07144 5.19595 5.19802 5.20541 
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2. MPFEM Results for SPCICB 

Table  F-6: MPFEM results for the first eight non-dimensional transverse modal frequencies, Ω, of 

four plate sizes for plates with spherical inclusions and continuous boundaries (SPCICB) 

Vr/Sy 1/d
2
 Mode 1  Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 

0.14 

2.00 1.25934 1.87377 2.28032 3.06877 3.06930 5.19101 5.19450 5.20851 

0.50 1.25068 1.86214 2.27997 3.05736 3.05797 5.18288 5.18955 5.19129 

0.22 1.24855 1.85947 2.27965 3.05382 3.05444 5.18320 5.18386 5.18593 

0.12 1.24773 1.85848 2.27949 3.05238 3.05300 5.18090 5.18273 5.18480 

0.21 

2.00 1.27137 1.89015 2.27954 3.07923 3.07973 5.19681 5.20018 5.21912 

0.50 1.25613 1.86917 2.28039 3.06502 3.06563 5.18848 5.19515 5.20162 

0.22 1.25139 1.86303 2.28006 3.05846 3.05907 5.18738 5.18945 5.19011 

0.12 1.24946 1.86060 2.27981 3.05537 3.05599 5.18505 5.18559 5.18712 

0.28 

2.00 1.28275 1.90576 2.27693 3.08498 3.08545 5.19396 5.19714 5.22370 

0.50 1.26396 1.87951 2.28034 3.07346 3.07407 5.19405 5.20071 5.21133 

0.22 1.25602 1.86898 2.28039 3.06486 3.06547 5.19203 5.19410 5.19867 

0.12 1.25240 1.86432 2.28016 3.05996 3.06058 5.18850 5.19057 5.19223 

0.35 

2.00 1.29143 1.91739 2.27092 3.08539 3.08584 5.15118 5.15194 5.21689 

0.50 1.27348 1.89228 2.27945 3.08079 3.08139 5.19732 5.20397 5.21859 

0.22 1.26275 1.87784 2.28040 3.07229 3.07291 5.19699 5.19906 5.20735 

0.12 1.25706 1.87034 2.28043 3.06614 3.06676 5.19293 5.19500 5.20025 

0.42 

2.00 1.29346 1.91994 2.26785 3.08401 3.08445 5.07433 5.06654 5.18617 

0.50 1.27651 1.89636 2.27893 3.08256 3.08316 5.19735 5.20399 5.22019 

0.22 1.26522 1.88112 2.28029 3.07457 3.07519 5.19834 5.20041 5.20978 

0.12 1.25889 1.87273 2.28046 3.06827 3.06888 5.19438 5.19645 5.20280 
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