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Abstract

In this thesis, the influence of the periodic microstructure on the dynamic mechanical
behaviour of geometrically similar heterogeneous samples, namely 2D beams and 3D plates,
with different dimensions and boundary textures but constant aspect ratio has been
numerically investigated. Beam samples of a representative material comprised of 2D unit-
cells were created using the conventional finite element analysis (FEA) to identify and
quantify size effects existing in flexural modal frequencies when the scale of microstructure
becomes comparable to the macroscopic dimensions. The unit cells were created so as to
keep the overall properties of the material at the macroscopic scale constant despite
variations in the void or inclusions volume fraction. The finite element numerical results
were then compared against the analytical results obtained from the enhanced nonlocal
Timoshenko beam which incorporates the Eringen small length scale coefficients, but the
values obtained for the coefficient exhibited size dependency. Accordingly, 2D analysis
using a novel finite element method (MPFEM) or, alternatively, the control volume based
finite element method (CVFEM) was carried out by incorporating micropolar constitutive
behaviour into their formulation. The numerical predictions using either MPFEM or CVFEM
were then matched with the FEA results to obtain additional constitutive parameters

featuring in planar micropolar elasticity theory.

The 2D models were then extruded to form square 3D plates as a straightforward
progression. These samples demonstrated a moderate degree of anisotropy, which increased
with volume fraction. Nevertheless, the 3D-MPFEM models which assume isotropy agreed
with the dynamic behaviour of FEA nonhomogeneous models with low volume fractions,
which were mildly anisotropic. Subsequently, to reduce the anisotropy, 3D square plate
samples with a square-pyramidal geometry, or a body-centred cubic, arrangement of
spherical voids and inclusions were modelled which demonstrated approximately isotropic
characteristics for which the 3D-MPFEM results agreed with the finite element results at

lower mode numbers.



Acknowledgements

Those who went in pursuit of knowledge
Soared up so high, stretched the edge
Were still encaged by the same dark hedge

Brought us some tales ere life to death pledge. !

I am very grateful and would like to thank all those who supported me during the course of
my Ph.D. research studies and their supportive role contributed to knowledge in general and
my Ph.D. research specifically. My supervisor, Dr. Marcus Wheel made this possible by his

guidance and supervision and support.

I would like to express my special gratitude to the technical staff of the University of
Strathclyde namely IT group of MAE (Department of Mechanical and Aerospace
Engineering). MAE administration staff members were of great support during this project
and always were prepared to help and support me especially our postgraduate administrator
Diane McArthur.

The three dimensional analysis results were obtained using the EPSRC funded ARCHIE-
WeSt High-Performance Computer (www.archie-west.ac.uk). EPSRC grant no.

EP/K000586/1. | also want to express my appreciation to the Archie-WeSt personnel for
training and educational support that | received during the course of the project. | especially
thank Dr. Richard Martin and Dr. Karina Kubiak-Ossuka for their support.

Bahman Hassanati

Summer 2019

! Omar Khayyam ; 1048 — 1131, was a Persian polymath, scholar, mathematician, astronomer, philosopher, and poet


http://www.archie-west.ac.uk/
https://en.wikipedia.org/wiki/Persian_people
https://en.wikipedia.org/wiki/Polymath
https://en.wikipedia.org/wiki/Scholar
https://en.wikipedia.org/wiki/Mathematician
https://en.wikipedia.org/wiki/Astronomer
https://en.wikipedia.org/wiki/Philosopher
https://en.wikipedia.org/wiki/Persian_literature

Table of Contents

Declaration of Authenticity and Author's RIgNtS..........coceeiiiiiiriieniiice e 2
AADSTIACT ...ttt h e st b ettt e h et e b e 3
ACKNOWIBAGEMENTS ...ttt st ettt st nb e s et e b 4
TaDIE OF CONTENTS .....viiiteetieett et ettt et e b sabe et e sbee e 5
TS 0 T O S 11
LISE OF TADIES ... e 18
List of Symbols (NOMENCIALUIE)........eeereieeeiiee ettt e e 22
ROMAN SYMDOIS ...t e e e e sabe e e ssreeenneeens 22
LC =YY ] oo PP 24
=T Lol 11 o] | SR 25
Lo INErOQUCTION. ..ttt et 26
1.1 MOLIVATIONS .ottt e 26
1.2 Research aim and ODJECHIVES .......eevvvveeiiiie et 28
I B |V =11 oo (o] oo |V 29
131 General aPPrOACH .......cccveieiee et e 29
1.3.2 THRESIS OVEIVIBW ...ttt 30
2. Literature Review of Previous WOrK..........ccccovevirieiinicninicnecceeecseecse e 33
2.1 Analytical methods and exact solutions for FF beam vibration ...........c...ccceene.e. 33
2.1.1 Transverse Vibration of the Classical Beam Theory (CBT).....ccccceevvvevuvenee. 33
2.1.2 Transverse Vibration of Timoshenko beam (Timoshenko beam theory) ....... 34
2.2 Continuum mechanics descriptions of heterogeneous beams ...........ccccceevveeenneen. 37
2.3 Higher order deformation theory of the micropolar (Cosserat) type ..........ce........ 38
2.4 Incorporation of micropolar theory in the finite element method.......................... 42
2.5 HELErogenEOUS PIALES ........veeeivieeeiieeciee ettt ettt e e tre e st e e aree e 46
2.6 SUIMMEAIY eeiieieieiiitee e e e e e eee et e e e e s e sabreeeeeeeesssaaaasaaeeeaessessssraeeeeeessssnssssnneeeaeeen 49

3 Investigation into the Effect of Size in Two-dimensional Heterogeneous Beam
SHUCTUIES ...ttt sttt st ser e s nr e e sre e e sar e e nnneesneees 50
3.1 A comparison between CBT and local Timoshenko beam models ....................... 50
3.1.1 Obtaining the frequency parameters for classical beam...........cccccocveennennne. 50
3.1.2 Frequency parameters for Timoshenko beam...........cccovcieviieriiienicenenieene 51



3.2 Finite element modelling of 2D heterogeneous beams...........cccceeveerveeieeneeninens 52

3.21 Unit-cells consisting of two isotropic materials.............cccoevvenieniiineennene. 52
3.2.2 Mesh convergence in modal analysis. ..........cccevveereenienieenieneeeeeseee 56
3.3 Adjusting the modulus of elasticity (E) and mass density (p) of the unit-cells......56
3.4 Modal analysis (Flexural VIDration).........c.ccceceeriinienienieiieeseesee e 59
34.1 2D model and boundary conditions CNOICES ............cocverveerierieenieenieeieeeen 59
3.4.2 FEA Solver used, the number of modal frequencies, and the benefits of Block
Lanczos 59
3.5  Finite element results and size effect predictions ..........cccceeveveveeeivcee v, 60
3.5.1 Beams with continuous DOUNAriEsS..........cccovvveriiieniiiiiiccee e 60
3.5.2 Beams with textured DOUNDAIIES .........ccoocveiiiiiiniiiecc e 65
3.6 Ananalytical nonlocal Timoshenko beam model and size effect...........cccecuerunene 67
3.6.1 The nonlocal Timoshenko beam model ...........ccoceviiiiininiiniciciiccne, 68
3.6.2 Local and nonlocal Timoshenko beam mode Shapes ..........cccveeeerercieeerneenns 70
3.6.3 Comparison with FE results to identify o.........cccvevrivieeeiiiiiensinieeeenieee s 71
3.7 CONCIUSIONS: ...ttt st sr e 74
4 Application of Micropolar Theory t0 2D BEamMS .........ccccveeevveeecieieiiee e eeeecree e 75
4.1 2D micropolar formulation..........ccccocveeioiie i 75
4.2 Characteristic length in bending, Ib ...........cccvvevieeecieeciee e 79
4.3 SUMMAry and CONCIUSIONS........ccccueieiieeeiieeciee sttt e et sra e s reeeseree e 85
5  Development of Algorithms for the Numerical CVFEM and 2D-MPFEM and
Investigation into the Effect of Micro Inertia on the Coupling Number “N”...........cccccueeee. 87
5.1 INEOQUCTION vttt 87
5.2 Formulation of the numerical CVFEM (and 2D-MPFEM)...........ccccevevievveeenneen. 87
521 Modelling 6-node triangular element ..........cccveevieeiiieie i, 87
5.2.2 Stiffness matrix based on micropolar elasticity (2D-MPFEM) ..................... 89
523 Determination of mass and micro inertia MatriCes..........ccooeevvereenereeniennenn 91
5.2.4 Solution to igen ProbIEM.........c.oeeiviiiiiee e e 98
5.3  Algorithms used for modal analysis of micropolar beams.............ccccccevverveeenneen. 98
5.3.1 The 2D beam modelling ProCeSS........veevveeiieeeiiee et e 98
5.3.2 Algorithm for constructing the element stiffness matrix..........ccccceeveeeunenns 100
5.3.3 Algorithm for constructing element mass and micro-inertia matrices ......... 101
534 Solution process to eigenvalue problem ..o, 103



535 Post-processing of data for extracting the modal frequencies and mode shapes

103
5.4 A parameter identification algorithm for obtaining the coupling number “N” using
(ORI 104
5.5  The effect of micro-inertia on the coupling number “N”.........cccceevveriiriieeneenne 107
55.1 Validation of the analytically determined micro-inertia............ccccceeveernene 107
55.2 The effect of increased micro inertia on the coupling number .................... 109
5.6  Summary and CONCIUSIONS.........ccueeriuiriiiee et sree e e 111
6  Two-dimensional CVFEM and MPFEM Results, Comparison with FEA Results, and
ValIAALION ...t 113
6.1 Identification of the coupling number, N, for the representative material ........... 113
6.1.1 Estimation of N for beams with continuous boundaries (BVOCB and BINCB)
113

6.1.2 Estimation of N for beams with compliant matrix and textured boundaries
(BINTB) 115

6.2  Modelling 2D homogeneous beams with MPFEM and CVFEM...............cc........ 116
6.2.1 Applying the free-free boundary conditions in micropolar beam models ....116

6.2.2 Modelling beams and mesh convergence study of micropolar beam models
116

6.2.3 Non-dimensional transverse frequencies for homogeneous micropolar beam
with N and the characteristic length of bending to Zero ........ccccocvevevicieeccenecee e, 117

6.2.4 Extracting the transverse and longitudinal mode shapes using CVFEM and
MPFEM 118

6.3  Full frequency spectrum modal analysis of 2D beams models using CVFEM and
MPFEM incorporating identified micropolar constants............ccccceeevcveeeveeeiceeevvee e, 122

6.3.1 Longitudinal modal frequencies of heterogeneous materials and size effects

122
6.3.2 Transverse modal frequencies of micropolar beams in comparison with
heterogeneous F. E. MOGEIS ........c.oeeviiiiiiee et e 124
6.4  Summary and CONCIUSIONS.........cueeiueiiiiie ettt et e 131
7  Development of Algorithms for the Numerical 3D-MPFEM.........cccccceovveviveecineenee, 133
7.1  Stiffness matrix for 3D micropolar plate...........c.ceovveeeiiieiceeicee e 133
7.2 Formulation of the 3D-MPFEM using 15-node wedge element for modal analysis
135
7.2.1 Formulation of stiffness matrix based on micropolar elasticity................... 135
7.2.2 Derivation of mass and micro inertia matriCes .........ccccevvevereeerierenceerennnen. 138



7.2.3 Solution to eigen ProbIEM........cocuiiiiiriiie e 139

7.3 Algorithms used for modal analysis of 3D micropolar plates ...........c..cccceenueenee. 139
7.3.1 Plate modelling using 3D-MPFEM...........cocciiiiiiiiiieiceceeee e 139
7.3.2 Algorithm for constructing the element stiffness matrix............cccccevcvernene 142

7.3.3 Algorithm for constructing the element mass and micro-inertia matrices....144

7.3.4 Solution of the discrete eigenvalue problem...........cccevierieininicineeneee 145
7.35 Post-processing of data for extracting the modal frequencies and mode shapes
145
7.4  Analternative 8-node brick element and comparison with the 15-node wedge
BIBIMBNT ..ttt sttt ettt et nae e e 146
7.4.1 Modelling and shape functions using 8-node brick element ...................... 146
7.4.2 Solution of plate problem with 8-node brick element..........ccccoovvvriiennnnnne 147
7.4.3 Comparing 15-node wedge element with 8-node brick element.................. 148
7.5  Validation of the 3D-MPFEM and 15-node wedge element..........cccceeevvvereveennee. 149
7.6 CONCIUSIONS ..ottt sttt s st enbe e 150
Size Effects in 3D Heterogeneous Plates with Cylindrical Voids or Inclusions.......... 151
8.1  Finite element modelling of plates with cylindrical voids or inclusions and mesh
TEIINEIMENT ...ttt et sb e st e e beesaeesabeenaeas 152
8.1.1 Unit-cells with cylindrical void or inCluSiONS...........cccceecveievieescer e, 152
8.1.2 Mesh refinement of the UnNit-Cells ...........coovvvriieiiiniii e, 153
8.2  Adjusting the modulus of elasticity (E) and mass density (p) of the unit-cells with
cylindrical voids OF INCIUSIONS .......ccveiiiiiieiieieee e e 154
8.2.1 Obtaining modulus of elasticity (E) and mass density (p).....c.cceeeveerveenueene 154
8.2.2 The effect of anisotropy in plates with cylindrical voids or inclusions......... 156
8.3  Modal analysis procedure and mode Shapes .........cccveeveeercieeeiiee e 157
8.4  Micropolar elastiC CONSIANLS .........ccccveieiieeeiiee ettt 161

8.4.1 Qualitative illustration of the influence of ¥ and It on modal frequencies.163

8.5  Detailed results and diSCUSSIONS ..........ceoveereeriiriienie e 166
8.5.1 Plates with continuous BOUNTArIES ...........cocvevierieniieeeeeeee e, 166
8.5.2 Plates with textured DOUNDAIIES ..........covveriiieiieiieeee e 176

8.6 CONCIUSIONS ...ttt sttt et e e snteennee e 181
Size Effects in 3D Heterogeneous Plates with Spherical Voids or Inclusions............. 183

9.1  Finite element modelling of plates with spherical voids or inclusions ................ 183



9.11 Unit-cells in construction of plates with spherical voids or inclusions ........ 184

9.1.2 Mesh convergence in modal analysis...........cccccevveriiiieeniinieeneenceeeee, 186
9.2  Adjusting the modulus of elasticity (E) and mass density (p) of the unit-cells in
plates with spherical voids and iNCIUSIONS..........cccccoviirieiiienieie e 187
9.21 Obtaining the modulus of elasticity (E) and mass density (p) ......ccccceervenne 187
9.2.2 The effect of anisotropy in plates with spherical voids or inclusions .......... 189
9.3  Modal analysis procedure and mode shapes of plate models............c.cccoceenneenne 189
9.4  Results and size effect forecast for plates with spherical voids or inclusions......192
94.1 The micropolar constants for the plate models..........ccccoeevveeieiiieiciienies 192
9.4.2 Plates with continuous BOUNAriES...........cccovveiiiiieniiiiciicceeee e 196
9.4.3 Plates with textured DOUNDAIIES .........ccoveiirieiiiiieiice e 203
9.5 CONCIUSIONS ...ttt 204
10 Summary and Suggestions for FUtUre WOorK...........ccceevveeieiiesee e 207
10.1  Modelling specimens with heterogeneities and analysis approach...................... 207
10.2  Micropolar theory and size effect.........cccevceveiiee i 208
10.3  Project achievements and fULUre WOIK ...........cocveeiiiieiieieriee e 210
........................................................................................................................................ 213
F N o] 0 1<] 1 [ A P 214
A) Exact Analytical Solution of the Timoshenko beam theory with FF boundary
conditions by separation of VariablesS ...........cocveiviiiiiei i 214
F N o 1<] 1o [ Dl = TSP 217
B) FEA Numerical Results (Transverse Frequencies) for 2D Beams with Voids and
INCIUSTONS. ... ettt 217
F Y o] 1<] 1 [ RSP 223
C) Solution to Small scale effects on Non-Local Timoshenko beam for free-free
DOUNAANY CONAITIONS: ....eiieiieciie e e st be e e tr e e sabe e e areeenaeas 223
C.1 Eringen Nonlocal Effect In X DIireCtion ........ccceeeveeeiiieiiieeciee e 223
C.2 The Effect of Eringen Small Length Scale parameter, a, in both Normal and Shear
Stress Components (X and y components Of StrESSES) ......cccveeecveercreeeiiee e e 228
C.3 Extracting the Timoshenko Beam Mode Shapes .........ccccvveevcieiiiieeecieee e 233
APPENAIX D oot et e e st e e ta e e e be e e st e e e baeeetaeenareeennes 236

D) Numerical Results (Longitudinal and Transverse) for 2D beams Using MPFEM and



D.1) Longitudinal Modal Frequencies Using MPFEM in Comparison with FEA
Results 236

D.2) Transverse Modal Frequencies for 2D beams Using MPFEM ...........cccccevienneee 239
D.3) Transverse Modal Frequencies for 2D beams Using CVFEM............cccceecveeenneen. 242
APPENTIX E ettt nae s 245
E) Numerical Results for Square Plates with Cylindrical VVoids and Inclusions .............. 245
E.1) FEA results for square plates with cylindrical voids and inclusions................. 245
E.2) 3D-MPFEM results for square plates with cylindrical voids and inclusions.....251
N o] 1= o |5 S 254
F) Numerical Results for Plates with Spherical Voids and Inclusions ..............cccceeuee.... 254
F.1)  FEAresults for plates with spherical void and inclusions ............cccceeceevvernenne 254
a) Plates with continuOUSs DOUNTAIIES........cccvveiieieiiie e 254
b)  Plates with textured DOUNGAIIES .........ccocveeeiieeiiie e 256

F.2)  MPFEM results for plates with spherical void and Inclusions and Continuous
BOUNGANIES ... .ottt 258
1. MPFEM Results for SPVOCB .......ccccoiiiiiiiiiciieicsceseceseee e 258
2. MPFEM Results for SPCICB.......cccooiiiiiieiieicteceeeiee e 259
0] LT 0T ol PP SPPPPPPPPPRN 260

10



List of Figures

FIGURE 1-1: EXAMPLES OF HETEROGENEOUS MATERIALS ...ccceeiiiutttreeeeeeeiiirrrereeeeesssssrssseseesssssssssneees 27
FIGURE 2-1: REPRESENTATION OF THE ROTATION AND DEFLECTION IN THE CBT AND TIMOSHENKO
BEAM CASES ...cutveeeeitreeeeitteeeeeitreeeeaitseeeessaeeeaassaseeaassesessassesesassasesaastesesanssseesasseeeesassesesanssesesans 35
FIGURE 2-2: THE CONSTRUCTION OF THE DUAL CONTROL VOLUME MESH AROUND FINITE ELEMENT
NODES .t ettteeeetreeeeetreeeestreeeeattaeeeasseeeaastaeeeaassaeeeaassaseaassaeesaassaeeeasseeeessbeeeaasteeeesastasesasreeennns 45
FIGURE 3-1: FIRST TO FIFTH MODE SHAPES OF A FREE-FREE BEAM BASED ONTHE CBT .......cccovnnnnneen. 51
FIGURE 3-2: FREQUENCY PARAMETER FOR A HOMOGENISED BEAM WITH ASPECT RATIO EQUAL T010.4
AND DEPTH EQUAL TO 0.866 MM USING CBT AND TIMOSHENKO. ....ccuvviiieeeeeeiiiriineeeeeeeeeenvnnnnes 52

FIGURE 3-3: UNIT CELL CONSISTING OF TWO ISOTROPIC MATERIALS R = 0.2 MM; THE UNIT CELL ON THE
LEFT IS USED IN GENERATING BEAMS WITH CONTINUOUS SURFACES AND THE UNIT CELL ON THE
RIGHT IS USED FOR WHEN INCLUSIONS INTERCEPT THE SURFACE OF THE BEAM. ...c.vevrveienieeennnee. 54

FIGURE 3-4: MODELS SHOWING THE ARRANGEMENT OF UNIT CELLS IN BEAMS; (A) BEAM SIZE1WITH 9
UNIT CELLS WITH CONTINUOUS BOUNDARIES (TOP, LEFT); (B) BEAM SIZE 2 WITH 18 UNIT CELLS IN
LENGTH WITH CONTINUOUS BOUNDARIES (BOTTOM, LEFT); (C) BEAM SIZE 1 WITH 9 UNIT CELLS
WITH TEXTURED BOUNDARIES (TOP, RIGHT); (D) BEAM SIZE 2 WITH 18 UNIT CELLS IN LENGTH

WITH TEXTURED BOUNDARIES (BOTTOM, RIGHT) ..eeiuteietereseieesereesreeeeneessreessresssesesssesssseesssenans 55
FIGURE 3-5: SCHEMATIC REPRESENTATION OF THE COORDINATES AND DIMENSIONS ON A

HOMOGENEOUS BEAM ...eeeuutieeeeetteeestteeeasnseeeeassseessssssesessssesssssseessssssesessnssesssnsseeesssssesessnseessnns 55
FIGURE 3-6: NORMALISED PRIMARY BENDING MODAL FREQUENCY OF FOUR BEAM SIZES FOR BEAMS

WITH VARIOUS VOLUME FRACTIONS OF VOIDS AND CONTINUOUS BOUNDARIES (BVOCB)........... 62

FIGURE 3-7: THE FIRST TEN NORMALISED BENDING MODAL FREQUENCY OF THE SMALLEST BEAM
SAMPLE (NCy=1 OR DEPTH=0.866 MM) WITH VARIOUS VOLUME FRACTIONS OF VOIDS AND
CONTINUOUS BOUNDARIES (BVOCB) .....oiiiiiieiee ettt stae e et 63

FIGURE 3-8: NORMALISED PRIMARY BENDING MODAL FREQUENCY OF FOUR BEAM SIZES FOR BEAMS
WITH VARIOUS VOLUME FRACTIONS OF COMPLIANT INCLUSION AND CONTINUOUS BOUNDARIES

(2 1) (1 = ) SRR 63
FIGURE 3-9: NORMALISED PRIMARY BENDING MODAL FREQUENCY OF FOUR BEAM SIZES FOR BEAMS
WITH COMPLIANT MATRIX AND CONTINUOUS BOUNDARIES (BCMCB) ......oovvcvvviiiievieevieeciees 64
FIGURE 3-10: THE FIRST TEN NORMALISED BENDING MODAL FREQUENCY OF THE SMALLEST BEAM
SAMPLE (NCY=1) WITH COMPLIANT MATRIX AND CONTINUOUS BOUNDARIES (BCMCB)........... 64
FIGURE 3-11: MoODE NUMBER: AT MODAL FREQUENCY OF Hz, BEAM SAMPLE WITH VOIDS AND
CONTINUOUS BOUNDARIES, DEPTH =1.732 MM, R=0.2MM......ccciiciiieiiiiie e eceee e 65
FIGURE 3-12: NORMALISED PRIMARY BENDING MODAL FREQUENCY OF FOUR BEAM SIZES FOR BEAMS WITH VOIDS AND
TEXTURED BOUNDARIES (BVOTB) FOR WHICH THE MICROPOLAR CONSTANTS WERE NOT OBTAINABLE .............. 66

FIGURE 3-13: THE FIRST TEN NORMALISED BENDING MODAL FREQUENCY OF THE SMALLEST BEAM
SAMPLE (NCY=1) WITH VOIDS AND TEXTURED BOUNDARIES (BVOTB) FOR WHICH THE
MICROPOLAR CONSTANTS WERE OBTAINABLE .....veeiietreieeitreeesitreeeesnsresessssesssssseeesssssesssssssesenns 66

FIGURE 3-14: NORMALISED PRIMARY BENDING MODAL FREQUENCY OF FOUR BEAM SIZES FOR BEAMS WITH COMPLIANT
MATRIX AND TEXTURED BOUNDARIES (BCMTB) FOR WHICH THE MICROPOLAR CONSTANTS WERE OBTAINABLE... 67

FIGURE 3-15: FIRST TO FIFTH MODE SHAPES OF A FREE-FREE BEAM BASED OF THE TBT, AR=10.4. THE
MODE SHAPES ARE USED TO IDENTIFY MODAL FREQUENCIES ASSOCIATED WITH EACH MODE

FIGURE 3-16: NUMERICALLY OBTAINED NORMALISED FREQUENCY PARAMETER VS. MODE NUMBERS. 72

11



FIGURE 3-17: RESULTS FOR PERFORATED BEAM MODELS WITH CONTINUOUS BOUNDARIES AND F-F
BOUNDARY CONDITIONS USING NLT BEAM THEORY; A) NORMALISED NON-LOCAL TIMOSHENKO
FREQUENCY PARAMETERS FOR VARIOUS A'S. ERINGEN’S NONLOCAL PARAMETER IS INFLUENCED IN
ONLY XDIRECTIONS (d — 2 = 1.33, AR = 10.4) eeiteiiiiiieieeiieieeseee et 73

FIGURE 3-18: RESULTS FOR PERFORATED BEAM MODELS WITH CONTINUOUS BOUNDARIES AND F-F
BOUNDARY CONDITIONS USING NLT BEAM THEORY (INCLUDING THE ERINGEN’S NONLOCAL
PARAMETER IN X AND Y DIRECTIONS); A)NORMALISED NON-LOCAL TIMOSHENKO FREQUENCY
PARAMETERS FOR VARIOUS A’S FOR PERFORATED BEAM MODELS WITH CONTINUOUS BOUNDARIES
AND F-F BOUNDARY CONDITIONS USING NLT BEAM THEORY. ERINGEN’S NONLOCAL PARAMETER
ISEFFECTIVE IN X AND Y DIRECTIONS (1/d2 = 1.33, AR = 10.4). B) SCALE COEFFICIENT ‘A’
(ALPHA), OBTAINED BY CURVE FITTING FE RESULTS WITH NLT AND Vr /Sy IS THE NORMALISED

VOID RADIUS CHANGING FROM 0 TO 0.35 (GRAPH ON THE RIGHT). .vvvevieeieieeriieesiereieeeseneesnneeens 73
FIGURE 4-1: REPRESENTATION OF MICRO AND MACRO ROTATIONS IN A MICROPOLAR MEDIUM ..vevvveeereesnreesneeeenens 75
FIGURE 4-2: LINEAR CHANGES OF THE CHARACTERISTIC LENGTH VOID RADIUS FOR BEAMS WITH

CONTINUOUS BOUNDARIES. BASED ON THE THREE LARGEST BEAM MODELS.....ccccvveterrvieeesnerneens 85
FIGURE 5-1: THE CONVENTIONAL MODE NUMBERING IN A 6-NODE TRIANGULAR ELEMENT IN CARTESIAN

COORDINATES ... euttteeeeutteeeesueteeesuteeeesuseeeessseeeaassaeesasseeseansseeessnsseessssseeessnsseeessnssneessnsenessnseees 88
FIGURE 5-2: THE ILLUSTRATION OF NATURAL COORDINATE SYSTEM FOR TRIANGULAR ELEMENT........ 88
FIGURE 5-3: REPRESENTATION OF A CUBIC MICRO ELEMENT ..ceeuutvereeeteeeesereeessnreeeesnnrneessnnnneessnnneesanns 95
FIGURE 5-4: AN EXAMPLE OF ELEMENT COUNTS IN A BEAM WITH FOUR AND TWO LINE DIVISIONS IN

LENGTH AND DEPTH TO GENERATE ONE SAMPLE BEAM WITH SIXTEEN ELEMENTS ....ccuvvveeiiveeenns 99

FIGURE 5-5: THE VALUE OF THE COUPLING NUMBER, N, FOR DIFFERENT VALUES OF J/p AND VOLUME
FRACTIONS. THE BEAM HAS THREE UNIT CELLS IN DEPTH AND CONTINUOUS BOUNDARIES. (Vf =
0.04t00.33 corresponds tolc = 0.332t00.817 MM ) cccceeevvvevieiiii e 108

FIGURE 5-6: THE VALUE OF THE COUPLING NUMBER, N, FOR DIFFERENT VALUES OF AN ARBITRARY
COEFFICIENT Ci AND VOLUME FRACTIONS. THE BEAM HAS THREE UNIT CELLS IN DEPTH AND
CONTINUOUS BOUNDARIES. (Vf = 0.04 to 0.33 corresponds tolc = 0.332t0 0.817 mm) 109

FIGURE 5-7: NORMALISED PRIMARY FREQUENCY CHANGES WITH THE INVERSE BEAMS DEPTH SQUARED
FOR BEAMS WITH VOIDS AND CONTINUOUS BOUNDARIES AND VARIOUS VOLUME FRACTIONS USING
CVFEM WHEN Ci = 36 ( Ic = 0.332t0 0.817 mm correspondstoVf = 0.04t0 0.33) ..... 111

FIGURE 6-1: THE VARIATION OF MQ? WITH BEAM SIZE FOR BEAMS WITH VOIDS AND CONTINUOUS
SURFACE AND VOLUME FRACTION EQUAL TO 0.23; A) THE VARIATION OF MQ? AT FLEXURAL MODE
1 (ON THE LEFT); B) THE VARIATION OF MQ? AT FLEXURAL MODE 2 (ON THE RIGHT)................. 114

FIGURE 6-2: MESH CONVERGENCE FOR A HOMOGENEOUS BEAM (NCY=1) USING THE CVFEM ( a *,8 *,
Y * ANDK % AT€ @QUALTEO ZOT0) . .ueeiiieiiiieiie ettt

FIGURE 6-3: MICROPOLAR BEAM MODEL, NCy=L1...

FIGURE 6-4: MODE SHAPE OF BEAM WITH d = 1.732 mm, MODE 1, TRANSVERSE 1

FIGURE 6-5: MODE SHAPE OF BEAM WITH d = 1.732 mm, MODE 2, TRANSVERSE 2

FIGURE 6-6: MODE SHAPE OF BEAM WITH d = 1.732 mm, MODE 3, TRANSVERSE 3

FIGURE 6-7: MODE SHAPE OF BEAM WITH d = 1.732 mm, MODE 4, LONGITUDINAL 1 ..................... 120
FIGURE 6-8: MODE SHAPE OF BEAM WITH d = 1.732 mm, MODE 5, TRANSVERSE 4 .......ccccvvvevnnenn. 120
FIGURE 6-9: MODE SHAPE OF BEAM WITH d = 1.732 mm, MODE 6, TRANSVERSES ........cccceeevnneen. 120
FIGURE 6-10: MODE SHAPE OF BEAMWITH d = 1.732 mm, MODE 7, LONGITUDINAL 2 ...........c........ 120
FIGURE 6-11: MODE SHAPE OF BEAMWITH d = 1.732 mm, MODE 8, TRANSVERSE 6 ...........ccuueue... 120
FIGURE 6-12: MODE SHAPE OF BEAMWITH d = 1.732 mm, MODE 9, LONGITUDINAL 3 .................... 121
FIGURE 6-13: MODE SHAPE OF BEAMWITH d = 1.732 mm, MODE 10, TRANSVERSE 7.......ccccceuveee. 121
FIGURE 6-14: MODE SHAPE OF BEAMWITH d = 1.732 mm, MODE 11, TRANSVERSE 8.......ccccccevvuune 121
FIGURE 6-15: MODE SHAPE OF BEAMWITH d = 1.732 mm, MODE 12, LONGITUDINAL 4 ................. 121

12



FIGURE 6-16: MODE SHAPE OF BEAMWITH d = 1.732 mm, MODE 13, TRANSVERSE 9
FIGURE 6-17: MODE SHAPE OF BEAMWITH d = 1.732 mm, MODE 14, TRANSVERSE 10
FIGURE 6-18: NORMALISED PRIMARY LONGITUDINAL FREQUENCY OF FOUR HETEROGENEOUS BEAM

SIZES FOR BEAMS WITH VOIDS AND CONTINUOUS BOUNDARIES FROM FEA .....coiiiiiiiiiiieeieens 123
FIGURE 6-19: NORMALISED 2"° MODE LONGITUDINAL FREQUENCY OF FOUR HETEROGENEOUS BEAM
SIZES FOR BEAMS WITH VOIDS AND CONTINUOUS BOUNDARIES FROM FEA .....ooiiviiiiiiiiieeeeeeens 123

FIGURE 6-20: NORMALISED LONGITUDINAL FREQUENCY (FOR MODES 1 TO 5) OF FOUR BEAM SIZES FOR
BEAMS WITH VOIDS AND CONTINUOUS BOUNDARIES USING MPFEM (Vf = 0.04 to 0.33
CORRESPOND TO [h = 0.077 £0 0.1 1117) c..eoviiiiiiiiieee ettt 124

FIGURE 6-21: NORMALISED PRIMARY BENDING MODAL FREQUENCY OF FOUR BEAM SIZES FOR BEAMS
WITH VOIDS AND CONTINUOUS BOUNDARIES USING CVFEM
(Ib = 0t00.19 mmCORRESPONDS TO V7SY = 00 0.35).ccccvieiiieiiireiereiie e sieesiee e 126

FIGURE 6-22: NORMALISED PRIMARY BENDING MODAL FREQUENCY OF FOUR BEAM SIZES FOR BEAMS
WITH VOIDS AND CONTINUOUS BOUNDARIES USING MPFEM
(Ib = 0t00.19 mmCORRESPONDS TO V1SY = 00 0.35).ccccvieiiieiiireiireiieeriee e 126

FIGURE 6-23: FIRST FIVE NORMALISED BENDING MODAL FREQUENCIES OF THE SMALLEST BEAM SAMPLE
WITH VOIDS AND CONTINUOUS BOUNDARIES USING CVFEM
(Ib = 0t00.19 mmCORRESPONDS TO V7SY = 010 0.35).cccceieieiieiieeeieeeriir e siee e 126

FIGURE 6-24: FIRST FIVE NORMALISED BENDING MODAL FREQUENCIES OF THE SMALLEST BEAM SAMPLE
WITH VOIDS AND CONTINUOUS BOUNDARIES USING MPFEM

(Ib = 0t00.19 mmCORRESPONDS TO V7SY = 00 0.35)..iccvieriieiiieeier e e siee e 127
FIGURE 6-25: PRIMARY NORMALISED MODAL FREQUENCIES, MODE 1, FOR BEAMS WITH VOIDS AND
CONTINUOUS BOUNDARIES, BVOCB........coveeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeesssessssssssssssssssssnnnnsnnns 127

FIGURE 6-26: NORMALISED PRIMARY BENDING MODAL FREQUENCY OF FOUR BEAM SIZES FOR BEAMS
WITH COMPLIANT INCLUSIONS AND CONTINUOUS BOUNDARIES USING MPFEM
(Ib = 0t00.159 mmCORRESPONDS TO V1Sy = 010 0.35) cvveviieiieeciee e 128
FIGURE 6-27: FIRST FIVE NORMALISED BENDING MODAL FREQUENCIES (MODES 1 TO 5) OF THE
SMALLEST BEAM SAMPLE FOR BEAMS WITH COMPLIANT INCLUSIONS AND CONTINUOUS

BOUNDARIES USING MPFEM ( Ib = 0 to 0.159 mmcoRRESPONDS TO VrSy = 0to 0.35) ........ 128
FIGURE 6-28: PRIMARY NORMALISED MODAL FREQUENCIES, MODE 1, FOR BEAMS WITH COMPLIANT
INCLUSIONS AND CONTINUOUS BOUNDARIES, BCICB ... 129

FIGURE 6-29: NORMALISED PRIMARY BENDING MODAL FREQUENCY OF FOUR BEAM SIZES FOR BEAMS
WITH COMPLIANT MATRIX AND TEXTURED BOUNDARIES USING MPFEM
(b =0t00.112 mmCORRESPONDS TO V7SY = 0 £0 0.35) .eevveriiriiniinieeie et 129
FIGURE 6-30: FIRST FIVE NORMALISED BENDING MODAL FREQUENCIES (MODES 1 TO 5) OF THE
SMALLEST BEAM SAMPLE FOR BEAMS WITH COMPLIANT MATRIX AND TEXTURED BOUNDARIES
USING MPFEM (' Ib = 0 to 0.112 mmcORRESPONDS TO V7rSy = 0t0 0.35) .ceecvverveeieeirenennn 130
FIGURE 6-31: PRIMARY NORMALISED MODAL FREQUENCIES, MODE 1, FOR BEAMS WITH COMPLIANT
MATRIX AND TEXTURED BOUNDARIES, BCMTB .....ccuviiiiieeeeee e 130
FIGURE 7-1 : REPRESENTATION OF A 15-NODE WEDGE ELEMENT IN NATURAL COORDINATE SYSTEM. THE
CARTESIAN COORDINATES MAY ALSO BE INDICATED BY INTEGERS 1, 2 AND 3......ccccvveiveennnnnns 136
FIGURE 7-2 : REPRESENTATION OF ONE MICROPOLAR UNIT CELL CONSISTING OF 8 WEDGE ELEMENTS.
HeightUnit Cell = 0.866 mm, LengthUnit Cell = 1 mm and WidthUnit Cell = 1mm.... 139
FIGURE 7-3 : MPFEM PLATE MODEL WITH HEIGHT DOUBLED AND AR=8.083..........cccccvevviieeernneenn, 140
FIGURE 7-4 : THE INFLUENCE OF DOF IN DECREASING THE PERCENTAGE OF ERROR IN THE MICROPOLAR
PLATE IN COMPARISON WITH DETAILED FEA HOMOGENEOUS PLATE MODEL ; HEIGHT=0.866 MM,
LENGTH=7 MM, WIDTH=7 MM, AR=8.083 ; THE ERROR PERCENTAGE WAS CALCULATED BY
error = (QMPFEM — QANSYS)/QANSYS X 100 ....cccvievieiieiieieeieeeesieesie e 140

13



FIGURE 7-5: REPRESENTATION OF 8-NODE BRICK ELEMENT IN NATURAL COORDINATE SYSTEM......... 147
FIGURE 7-6: NORMALISED FREQUENCY OF HOMOGENEOUS PLATES WITH VARIOUS LINE DIVISIONS AND
BRICK ELEMENT IN COMPARISON WITH A PLATE WITH 15-NODE WEDGE ELEMENT. FREQUENCIES OF
FIVE MODES NORMALISED TO THE FREQUENCIES OBTAINED FROM FEA HOMOGENEOUS PLATE
WITHNCY=1, AR=8.083 AND SY=0.866 MM ......uuuuieriiinniieeeeeeeeeeeeeseeeeeeeeeeeeeeeeeeeanns 148
FIGURE 8-1: REPRESENTATION OF HALF UNIT CELLS OF TWO ISOTROPIC MATERIALS WITH VOID OR
INCLUSION’S VOLUME FRACTION 15%. THE UNIT CELL ON THE LEFT IS USED TO MODEL 3D PLATES
WITH CONTINUOUS BOUNDARIES E.G., CYCICB (WITH INCLUSIONS) OR CYVOCB (WITHOUT
INCLUSIONS) AND THE UNIT CELL ON THE RIGHT-HAND SIDE IS USED FOR PLATES WITH TEXTURED
BOUNDARIES (E.G., CYCMTB). c..eitiiiiiiieiteitetet ettt 153
FIGURE 8-2 : MODELS’ CROSS SECTIONS WITH PERIODICALLY LOCATED CYLINDRICAL VOIDS OR
INCLUSIONS SHOWING THE ARRANGEMENT OF UNIT CELLS IN PLATES; A) PLATE SIZE 1 WITH 7 UNIT
CELLS WITH CONTINUOUS BOUNDARIES (TOP, LEFT); B) PLATE SIZE 2 WITH 14 UNIT CELLS IN
LENGTH AND WIDTH WITH CONTINUOUS BOUNDARIES (BOTTOM, LEFT); C) PLATE SIZE 1 WITH 7
UNIT CELLS WITH TEXTURED BOUNDARIES (TOP, RIGHT); D) PLATE SIZE 2 WITH 14 UNIT CELLS IN
LENGTH AND WIDTH WITH TEXTURED BOUNDARIES (BOTTOM, RIGHT) ....cvvvieeriieereieesreeeeneenens 155
FIGURE 8-3: THE FIRST 8 MODE SHAPES (A TO H) OF A SAMPLE PLATE WITH CYLINDRICAL INCLUSIONS
OF VOLUME FRACTION EQUAL TO 0.15 AND CONTINUOUS BOUNDARIES (NCY=1) GENERATED BY
FEA. NOTE THAT THE FIRST EIGHT MODE SHAPES OF THE HOMOGENEOUS PLATE AS WELL AS
OTHER PLATE MODELS WITH TEXTURED BOUNDARIES ARE SIMILAR TO THE MODE SHAPE FIGURES
HERE ALSO. 1 tuttteutteenuttesuttestee ettt esitees st esabee s st esteesat e e sabeeebeeeabeeesmbeesabeeeabeeenbneesabeesareesneeennes 159
FIGURE 8-4: MPFEM EXTRACTED MODE SHAPES FOR A PLATE MODEL WITH THE DEPTH OF 2 UNIT
CELLS;h =2 X 0.866; Vf =0.15;lb =0.6084;lt =2 x1lb,N = 0.0507,¥ =15,vm =
0.3,EM =7 X TOLO MPQ ueeeeiieiieeeeeeee ettt ettt ettt 160
FIGURE 8-5: CHANGES OF NORMALISED FREQUENCIES OF A MICROPOLAR PLATE (CYVOCB) WITH
It =2x1b,¥Y=1.5,NCy=3, Sy = 0.866 MM AND AR=8.083 IN COMPARISON WITH
CORRESPONDING FEA RESULTS (DOTTED LINES). 1uvviestveerereesreresteeeseeeesssesssesassnsessseessessssesans 164
FIGURE 8-6: CHANGES OF NORMALISED FREQUENCIES OF A MICROPOLAR PLATE (CYVOCB) WITH It =
lb, ¥Y=1.5,NCvy=3, Sy = 0.866 AND AR=8.083 IN COMPARISON WITH CORRESPONDING FEA
RESULTS (DOTTED LINES). ©1etvtestreesureesteeaseeessseesssesssesssssassssessseesssesassssessssessseessessssesansesensns 164
FIGURE 8-7: CHANGES OF NORMALISED FREQUENCIES OF A MICROPOLAR PLATE (CYVOCB) WITH It =
lb/2,¥=1.5,NCy=3, Sy = 0.866 AND AR=8.083 IN COMPARISON WITH CORRESPONDING FEA

RESULTS (DOTTED LINES). ©eetveestveesureesteeeseeessseessseessesasssassssesssessssessssssassssessseessesssesansesensns 164
FIGURE 8-8: THE INFLUENCE OF It AND N ON THE PRIMARY MODAL FREQUENCIES OF PLATES WITH

(O Y 01 = PSSP 165
FIGURE 8-9: THE INFLUENCE OF It AND N ON THE SECOND MODAL FREQUENCIES OF PLATES WITH

(O AV 01 = USRS 165

FIGURE 8-10: NORMALISED PRIMARY MODAL FREQUENCY OF FOUR PLATE SIZES FOR PLATES WITH
CYLINDRICAL VOIDS AND CONTINUOUS BOUNDARIES USING FEA (CYVOCB).
VE=0t033% (Vr/Sy = 0.1210 0.35) .cciiieiieriienienienieeneeneeseesiee e 168
FIGURE 8-11: NORMALISED PRIMARY MODAL FREQUENCY OF FOUR PLATE SIZES FOR PLATES WITH
CYLINDRICAL VOIDS AND CONTINUOUS BOUNDARIES USING THE MICROPOLAR THEORY (FOR
CYVOCB). (b =0t00.190 mm corresponds to Vf = 0t033%)..cccccecveriverieeneereennennn. 168
FIGURE 8-12: THE FIRST FIVE NORMALISED TRANSVERSE MODAL FREQUENCIES OF THE SMALLEST
PLATE SAMPLE WITH VOIDS AND CONTINUOUS BOUNDARIES USING FEA. Vf =0to33% (Vr/
SY = 0.12 80 0.35) ittt et e b sareas 168

14



FIGURE 8-13: THE FIRST FIVE NORMALISED TRANSVERSE MODAL FREQUENCIES OF THE SMALLEST
PLATE SAMPLE WITH VOIDS AND CONTINUOUS BOUNDARIES USING THE MICROPOLAR THEORY.

(Ib=0t00.190 mmcorresponds to Vf = 0t033% )ecceerceeroeerriniininieeieeieee e 169
FIGURE 8-14: PRIMARY NORMALISED MODAL FREQUENCIES, MODE 1, FOR PLATES WITH VOIDS AND

CONTINUOUS BOUNDARIES, CYVOCB .....oooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeessessessssssssssssssssssssssssssanes 170
FIGURE 8-15: SECOND NORMALISED MODAL FREQUENCIES, MODE 1, FOR PLATES WITH VOIDS AND

CONTINUOUS BOUNDARIES, CYVOCB .....oooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeevesessssssssssssssssssssssssssnssanes 170

FIGURE 8-16: NORMALISED PRIMARY MODAL FREQUENCY OF FOUR PLATE SIZES FOR PLATES WITH
CYLINDRICAL COMPLIANT INCLUSIONS AND CONTINUOUS BOUNDARIES USING FEA (CYCICB).
VI =0to33% (Vr/Sy = 0.1260 0.35) iiiiieiiiiiiie ittt ettt e s eiaee e 171
FIGURE 8-17: NORMALISED PRIMARY MODAL FREQUENCY OF FOUR PLATE SIZES FOR PLATES WITH
CYLINDRICAL COMPLIANT INCLUSIONS AND CONTINUOUS BOUNDARIES USING MPFEM
(CYCICB). (b = 0t00.159mm correspondsto Vf = 0t033%) .cccceverrvrnerneenienienn 172
FIGURE 8-18: THE FIRST FIVE NORMALISED TRANSVERSE MODAL FREQUENCIES OF THE SMALLEST
PLATE SAMPLE WITH COMPLIANT INCLUSIONS AND CONTINUOUS BOUNDARIES USING FEA. Vf =
0t033% (V1/SY = 0.1210 0.35) ccuuiiieeiiiieeeiiiee ettt e s rtre e et e e st e e s snbae e e snbeee s 172
FIGURE 8-19: THE FIRST FIVE NORMALISED TRANSVERSE MODAL FREQUENCIES OF THE SMALLEST
PLATE SAMPLE WITH COMPLIANT INCLUSIONS AND CONTINUOUS BOUNDARIES USING MPFEM.

(Ib=0t00.159mmcorresponds to Vf = 0t033% )eccercereriinieniieie e 173
FIGURE 8-20: PRIMARY NORMALISED MODAL FREQUENCIES, MODE 1, FOR PLATES WITH COMPLIANT
INCLUSIONS AND CONTINUOUS BOUNDARIES, CYCICB ... 174

FIGURE 8-21: NORMALISED PRIMARY MODAL FREQUENCY OF FOUR PLATE SIZES FOR PLATES WITH
CYLINDRICAL COMPLIANT MATRIX AND CONTINUOUS BOUNDARIES USING FEA (CYCMCB).
VF=0t033% (Vr/Sy = 0.1210 0.35) .ccciiiieieenieneeneeneeneeneesee e 175
FIGURE 8-22: THE FIRST FIVE NORMALISED TRANSVERSE MODAL FREQUENCIES OF THE SMALLEST
PLATE SAMPLE WITH COMPLIANT MATRIX AND CONTINUOUS BOUNDARIES USING FEA. Vf =
0t033% (V1/SY = 0.1210 0.35) eccieeiieeeieeceese e e 175
FIGURE 8-23: NORMALISED PRIMARY MODAL FREQUENCY OF FOUR PLATE SIZES FOR PLATES WITH
CYLINDRICAL VOIDS AND TEXTURED BOUNDARIES USING FEA (CYVOTB). Vf =0to33% (Vr/
SY = 0.12 80 0.35) ittt be e nareas 176
FIGURE 8-24: THE FIRST FIVE NORMALISED TRANSVERSE MODAL FREQUENCIES OF THE SMALLEST
PLATE SAMPLE WITH VOIDS AND TEXTURED BOUNDARIES USING FEA. Vf = 0to33% (Vr/Sy =
012 80 0.35) ettt et h e h et e s bttt e bb e sabe e sab e e e beeenee 176
FIGURE 8-25: NORMALISED PRIMARY MODAL FREQUENCY OF FOUR PLATE SIZES FOR PLATES WITH
CYLINDRICAL COMPLIANT INCLUSIONS AND TEXTURED BOUNDARIES USING FEA (CYCITB).
VF=0t033% (Vr/Sy = 0.1210 0.35) .cciiirieiieniienienieeneeneeseesee e 178
FIGURE 8-26: THE FIRST FIVE NORMALISED TRANSVERSE MODAL FREQUENCIES OF THE SMALLEST
PLATE SAMPLE WITH COMPLIANT INCLUSIONS AND TEXTURED BOUNDARIES USING FEA. Vf =
0t033% (V1 /SY = 0.1210 0.35) eeeieeiieienieeeereeee e 178
FIGURE 8-27: NORMALISED PRIMARY MODAL FREQUENCY OF FOUR PLATE SIZES FOR PLATES WITH
COMPLIANT MATRIX AND TEXTURED BOUNDARIES USING FEA (CYCMTB).
VF=0t033% (V1r/Sy = 0.1210 0.35) .cciiiiieiienieniienieneeneeneesee e 179
FIGURE 8-28: THE FIRST FIVE NORMALISED TRANSVERSE MODAL FREQUENCIES OF THE SMALLEST
PLATE SAMPLE WITH COMPLIANT MATRIX AND TEXTURED BOUNDARIES USING FEA. Vf =

0t033% (V1 /SY = 0.1210 0.35) .cciieiieieieeiereee et 180
FIGURE 8-29: PRIMARY NORMALISED MODAL FREQUENCIES, MODE 1, FOR PLATES WITH COMPLIANT
MATRIX AND TEXTURED BOUNDARIES, CYCMTB ..o 181

15



FIGURE 9-1: REPRESENTATION OF HALF UNIT CELLS OF TWO ISOTROPIC MATERIALS WITH VOID OR
INCLUSION’S VOLUME FRACTION OF 4.7%. THE UNIT-CELL ON THE LEFT IS USED TO MODEL 3D
PLATES WITH CONTINUOUS BOUNDARIES, E.G., SPCICB (WITH INCLUSIONS) OR SPVOCB
(WITHOUT INCLUSIONS) AND THE UNIT CELL ON THE RIGHT-HAND SIDE IS USED FOR PLATES WITH
TEXTURED BOUNDARIES (E.G., SPCITB). ...eeitiiitiiiiiiieniteieeieereereeste ettt 184

FIGURE 9-2: A COMPLETED PLATE MODEL WITH COMPLIANT INCLUSIONS (Vf = 0.047) AND
CONTINUOUS BOUNDARIES (E.G. TOP AND BOTTOM SURFACES ARE NOT TEXTURED), NCY=2,
D=0.7071 2 MM, ARTT.072 ..ottt e e e et e e e s eabe e e e s bb e e e e eataeeesnreeaas 185

FIGURE 9-3: A COMPLETED PLATE MODEL WITH COMPLIANT INCLUSIONS (Vf = 0.047) TEXTURED
BOUNDARIES (E.G. TOP AND BOTTOM SURFACES ARE TEXTURED), NCY=2, D=0.7071*2 MM,

F A e L0 185
FIGURE 9-4: A QUARTER CELL FOR PLATES WITH COMPLIANT INCLUSIONS AND CONTINUOUS
BOUNDARIES ..ottt 186

FIGURE 9-5: THE FIRST 8 MODE SHAPES (A TO H) OF A SAMPLE PLATE WITH SPHERICAL INCLUSIONS OF
VOLUME FRACTION EQUAL TO 0.05 AND TEXTURED BOUNDARIES (NCY=1). NOTE THAT THE FIRST
EIGHT MODE SHAPES OF THE HOMOGENEOUS PLATE AS WELL AS OTHER PLATE MODELS WITH
CONTINUOUS BOUNDARIES ARE SIMILAR TO THE MODE SHAPE FIGURES HERE ALSO. ........ccve..n. 191

FIGURE 9-6: THE OVERESTIMATION OF THE NORMALISED PRIMARY FREQUENCIES OF SPVOCB PLATES
USING FEA AND 3D-MPFEM FOR THE PLATE WITH NCY=3 WHEN It = 21b.

(Vf =0.006,0.05 and 0.16 corresponds tolb = 0.017,0.048 and 0.078 mm)................ 194

FIGURE 9-7: THE NORMALISED FREQUENCIES OF THE SECOND MODE OF SPVOCB PLATES WITH NCY=3
USING FEA WHICH SHOW BETTER AGREEMENT WITH THE 3D-MPFEM RESULTS WHEN [t = 21b.
(Vf = 0.006, 0.05 and 0.16 corresponds tolb = 0.017,0.048 and 0.078 mm)................ 194

FIGURE 9-8: THE NORMALISED FREQUENCIES OF THE THIRD MODE OF SPVOCB PLATES WITH NCy=3
USING FEA WHICH SHOW BETTER AGREEMENT WITH THE 3D-MPFEM RESULTS WHEN [t = 21b.
(Vf = 0.006,0.05 and 0.16 corresponds tolb = 0.017,0.048 and 0.078 mm)................ 194

FIGURE 9-9: THE NORMALISED FREQUENCIES OF SPVOCB PLATES USING FEA AND 3D-MPFEM FOR
THE PLATE WITH NCY=3, ¥=1.5, D=0.866MM AND AR=8.083. ANSYS RESULTS REDUCTION AT
MODE THREE ARE SIMILAR TO MPFEM WHEN [t = 21D c..ccoviiiiiiiiiieiiieeie e 195

FIGURE 9-10: CHANGES OF NORMALISED FREQUENCIES OF A MICROPOLAR PLATE (SPVOCB) WITH It =
(3/2)lb, ¥=1.5,NCY=3, Sy = 0.866mm AND AR=8.083 IN COMPARISON WITH CORRESPONDING
FEA RESULTS. «.eetteeiiiiteeeiteee ettt e e sttt e ettt e st e e st e st e e s sss et e e snr et e e snneeesnnreeesanneeeesnreeens 195

FIGURE 9-11: CHANGES OF NORMALISED FREQUENCIES OF A MICROPOLAR PLATE (SPVOCB) WITH It =
lb, ¥=1.5,NCy=3, Sy = 0.866mm AND AR=8.083 IN COMPARISON WITH CORRESPONDING FEA
RESULTS. .ttt ettt eutteenuteesuteesatee ettt esateeeateeeabeeeabaeaabeesabeeeabeeaabeeeabbeesabeeeabeeebeeeabbeesabeesabeesabeeennes 196

FIGURE 9-12: CHANGES OF NORMALISED FREQUENCIES OF A MICROPOLAR PLATE (SPVOCB) WITH It =
(1/2)lb, ¥=1.5,NCY=3, Sy = 0.866mm AND AR=8.083 IN COMPARISON WITH CORRESPONDING
FEA RESULTS. «..etteeiiitteeeittee e sttt e e sttt e s sttt e e s ittt e e sab bt e s ettt e e s ambeeeesanb et e eanbbeeeeaabbeeesanbeeeesnnreeens 196

FIGURE 9-13: NORMALISED PRIMARY MODAL FREQUENCY OF FOUR SIZES OF PLATES WITH SPHERICAL
VOIDS AND CONTINUOUS BOUNDARIES USING FEA (SPVOCB). Vf =0to 16% (Vr/Sy =
080 0.42) ettt bbbt b bt e ea e e e bt e e be e e shbe e sabeesabeeebeeeeee 197

FIGURE 9-14: NORMALISED PRIMARY MODAL FREQUENCY OF FOUR SIZES OF PLATES WITH SPHERICAL
VOIDS AND CONTINUOUS BOUNDARIES USING 3D-MPFEM (SPVOCB).

(Ib =0t00.078 mm corresponds to Vf = 0t0 16% ) ..cccceeveerenenienienienieeiene e 198
FIGURE 9-15: PRIMARY NORMALISED MODAL FREQUENCIES, MODE 1, FOR PLATES WITH SPHERICAL

VOIDS AND CONTINUOUS BOUNDARIES, SPVOCB........cccciiiieiieie et saee e 198
FIGURE 9-16: SECOND NORMALISED MODAL FREQUENCIES, MODE 2, FOR PLATES WITH SPHERICAL

VOIDS AND CONTINUOUS BOUNDARIES, SPVOCB.......ccoiiiiiiiiiiiieice ettt 198

16



FIGURE 9-17: THE FIRST FIVE NORMALISED FLEXURAL MODAL FREQUENCIES OF THE SMALLEST PLATE
SAMPLE WITH VOIDS AND CONTINUOUS BOUNDARIES USING FEA. Vf =0to 16% (Vr/Sy =
O o X O USSR 199
FIGURE 9-18: THE FIRST FIVE NORMALISED FLEXURAL MODAL FREQUENCIES OF THE SMALLEST PLATE
SAMPLE WITH VOIDS AND CONTINUOUS BOUNDARIES USING 3D-MPFEM.
(b =0t00.078mm corresponds to Vf = 0t016%0 ) cccceovvereerienieniiieeieeieee e 199
FIGURE 9-19: NORMALISED PRIMARY MODAL FREQUENCY OF FOUR PLATE SIZES FOR PLATES WITH
SPHERICAL COMPLIANT INCLUSIONS AND CONTINUOUS BOUNDARIES USING FEA (SPCICB).
VE=0to016% (V1/SY = 010 0.42) c.eeeiiiiiiieeiee ettt ettt 200
FIGURE 9-20: NORMALISED PRIMARY MODAL FREQUENCY OF FOUR PLATE SIZES FOR PLATES WITH
SPHERICAL COMPLIANT INCLUSIONS AND CONTINUOUS BOUNDARIES USING 3D-MPFEM
(SPCICB). (Ib = 0t0 0.067 mm corresponds to Vf = 0t0 16% )...ccccevvrvvrnerneenennenn 201
FIGURE 9-21: THE FIRST FIVE NORMALISED FLEXURAL MODAL FREQUENCIES OF THE SMALLEST PLATE
SAMPLE WITH COMPLIANT INCLUSIONS AND CONTINUOUS BOUNDARIES USING ANSYS. Vf =
06016% (V1/SY = 080 0.42)uuiiiiiieeeiieee ettt ettt st saee e st e e s snbae e s snbeee s 201
FIGURE 9-22: THE FIRST FIVE NORMALISED FLEXURAL MODAL FREQUENCIES OF THE SMALLEST PLATE
SAMPLE WITH COMPLIANT INCLUSIONS AND CONTINUOUS BOUNDARIES USING MPFEM. (b =

0t00.067 mm corresponds to Vf = 010 16%0) ..cccveveereerieniinienieeeeie e 202
FIGURE 9-23: PRIMARY NORMALISED MODAL FREQUENCIES, MODE 1, FOR PLATES WITH SPHERICAL
COMPLIANT MATRIX AND CONTINUOUS BOUNDARIES, SPCICB ......oovvveeeeeeeeeeeeeeeeeeeeevevevvevenanns 202

FIGURE 9-24: NORMALISED PRIMARY MODAL FREQUENCY OF FOUR PLATE SIZES FOR PLATES WITH
SPHERICAL VOIDS AND TEXTURED BOUNDARIES USING FEA (SPVOTB). Vf =0to 16% (Vr/
SY =080 0.42) ittt b e e b bt et e s e bee e nnrees 203
FIGURE 9-25: THE FIRST FIVE NORMALISED FLEXURAL MODAL FREQUENCIES OF THE SMALLEST PLATE
SAMPLE WITH VOIDS AND TEXTURED BOUNDARIES USING FEA. Vf =0to16% (Vr/Sy =
080 0.42) ettt ettt h e h e et e s bt e e bt e nh bt e nabe e s beeebee e e 204
FIGURE 9-26: THE FIRST FIVE NORMALISED FLEXURAL MODAL FREQUENCIES OF THE SMALLEST PLATE
SAMPLE WITH COMPLIANT INCLUSIONS AND TEXTURED BOUNDARIES USING FEA. Vf =
0t016% (VT/SY = 080 0.42) c.eeiniiiieieeeeseee e e 204

17



List of Tables

TABLE 3-1: FREQUENCY PARAMETERS FOR BEAMS USING THE SOLUTION FOR THE CLASSICAL BEAM
THEORY (EULER-BERNOULLI). THE CBT FREQUENCY PARAMETERS ARE INDEPENDENT OF THE

BEAMS ASPECT RATIO ..1eieeiutreeeeitreeeeeitreeeeisaeeeaasreesesassesessassessaassssssassesesasssssesasesessssesessasesennns 50
TABLE 3-2: FREQUENCY PARAMETERS FOR BEAMS USING THE SOLUTION FOR THE TIMOSHENKO BEAM
THEORY (TBT )t eutteuttetteteet ettt sttt ettt st h e a e st st s a e st s st et s st st et e e bt enbesabeenbeenee 51
TABLE 3-3: CHANGES IN VOID OR INCLUSION VOLUME FRACTION WITH RADIUS AND/OR NORMALISED
RADIUS OF VOID OR INCLUSION ....ttteuttteesitteeesuiteeestreeessseeessssseeessssseeesssseessssseeessssseeessssseessnns 55
TABLE 3-4: CORRECTION OF MODULUS OF ELASTICITY OF BEAMS MATRIX BY VOID OR INCLUSIONS
RADIUS FOR VARIOUS BEAM MODELS ....eeeiuvttteeuiieeeitreeesseeeeesnneeeessssseeesssseessnsseeesssseeessnsseessnes 57
TABLE 3-5: THE RELATIVE DIFFERENCE OF THE OVERALL MODULUS OF ELASTICITY OF BEAMS MODELS
PROVIDED IN TABLE 3-4 WITH THE MODULUS OF ELASTICITY OF THE HOMOGENEOUS BEAM......... 58
TABLE 3-6: CORRECTION OF DENSITY BY VOID OR INCLUSIONS RADIUS.....ccceiurerernireeeneireessnereeessnnes 58
TABLE 3-7: THE NON-DIMENSIONAL MODAL FREQUENCIES (A) FOR HOMOGENEOUS BEAMS AND WITH
ASPECT RATIO 10.4: L. oottt e et e e et e e e et e e e s ate e e e snt e e e esnsaeeeenseeessnreeesennees 61
TABLE 4-1: CHARACTERISTIC LENGTH CHANGES WITH VOLUME FRACTION, Vf . BASED ON ALL FOUR
SIZES OF BEAM MODEL....eeeeiuttireeuteeeesurteeesuseeesanseeeesssseeessssseessssssesssssssesssnssneesssssesssmssnessnsseees 83
TABLE 4-2: THE NORMALISED CHARACTERISTIC LENGTH OF BENDING, Ic , FOR PERFORATED BEAMS OF
VOLUME FRACTION EQUAL TO 0.23 ..ottt s 84
TABLE 4-3: CHARACTERISTIC LENGTH CHANGES WITH V f . BASED ON THE THREE LARGEST SIZES OF
2] =YY LY T = SRR 84
TABLE 4-4; CHARACTERISTIC LENGTH (Ib) CHANGES WITH VOLUME FRACTION. BASED ON THE THREE
LARGEST SIZES OF BEAM MODEL ..eeeeuvvteeeiuteeeesetteeesseeeessseesesssseeesssssesessssseesssseeessssesessssseessnns 85
TABLE 5-1: INTEGRATION OF THE MATRIX ELEMENTS OF THE AREADOMAIN ...coovuiviiiieeeeeeiiiiineeeeeenns 93

TABLE 5-2: COUPLING NUMBER, N, IF MICRO INERTIA INCREASED BY 36 AND 44 TIMES FOR A BEAMS
WITH CONTINUOUS BOUNDARIES (AVERAGED OVER THE THREE LARGEST SAMPLE MODELS)

SAMPLE SIZE (NCYT3) 1ot itiieiiieciieette ettt et e st e et e e v e e saveasabeeetaeestseessbeasaseeanteeessneesnseesnsenans 110
TABLE 6-1: COUPLING NUMBERS OBTAINED FOR VARIOUS BEAM TYPES BY TAKING J = 21b2(1 +
VITL) ettt ettt et ettt ettt bt e h e e a bbbt e e Rt e e et et e b et b et e ehbeeeabe e e bt e e ehbe e s be e e beeenbeeennreas 115

TABLE 6-2: DIMENSIONLESS FREQUENCY PARAMETERS GENERATED FOR A HOMOGENEOUS BEAM
MODEL USING CVFEM AND MPFEM (BASED ON BEAMS WITH NCY=4) AND THE RELATIVE
DIFFERENCES (ABSOLUTE VALUES) WITH FEA AND TIMOSHENKO VALUES GIVEN IN CHAPTER

i 3= Y = I SRS 118
TABLE 7-1: SHAPE FUNCTION OF A 15-NODE WEDGE ELEMENTS BASED ON THE NODE NUMBERING IN

FIGURE 7=Liiiititteeeeeeeiitt e e ettt e e e e e ettt e e e e e e sttt e e e e e e e s s st b e aaeeeeesaaabbbbeeaaeessnnsbenaeaaesnns 135
TABLE 7-2: SHAPE FUNCTION OF 8-NODE BRICK ELEMENTS BASED ON THE NODE NUMBERING IN

FIGURE 7= itttttte e eeettt ettt ettt e e e e sttt e e e e e e sttt e e e e e e s s bbb e e e e e e e e s anaabbbaeeeeeessaabbeaaeaeeenns 147

TABLE 7-3: NON-DIMENSIONAL FREQUENCY PARAMETERS FOR AN UNCONSTRAINED SQUARE
HOMOGENEOUS PLATE WITH THE ASPECT RATIO EQUAL TO 10 USING VARIOUS NUMERICAL

IMETHODS. . tettetetenteneeue et teneeneebesbeseeseeseabese e ee st ese et e abe b eneebeeb et eneene ek e sbenbeneebesbesbenseneabesbesaeneas 149
TABLE 8-1: MESH CONVERGENCE FOR THE PLATE SAMPLES WITH COMPLIANT INCLUSIONS AND

CONTINUOUS BOUNDARIES (CYCICB) AND Vf = 0.15. . uicieieieeieeieee e 154
TABLE 8-2: MESH CONVERGENCE FOR THE PLATE SAMPLES WITH COMPLIANT INCLUSIONS AND

TEXTURED BOUNDARIES (CYCITB) AND Vf = 0.15 .ooiiiiiieiiecieniiesieesiee e 154

18



TABLE 8-3: VOLUME FRACTION AND NORMALISED EQUIVALENT OF CYLINDRICAL VOID OR INCLUSIONS

TABLE 8-4: CORRECTED MODULUS OF ELASTICITY FOR PLATE’S MATRIX. INCLUSIONS MODULUS IS
EITHER 0.1 OR 10 TIMES THE VALUES OF THIS TABLE DEPENDING ON PLATE TYPE. THESE FE PLATE
TYPES ARE THOSE FOR WHICH MICROPOLAR SOLUTIONS WERE OBTAINED ......ccveeeeiivveeeeenreeeennns 156

TABLE 8-5: CORRECTED MODULUS OF ELASTICITY FOR PLATE’S MATRIX. INCLUSIONS MODULUS IS
EITHER 0.1 OR 10 TIMES THE VALUES OF THIS TABLE. THESE FE PLATE TYPES ARE THOSE FOR

TABLE 9-1: MESH CONVERGENCE FOR THE PLATE SAMPLES WITH SPHERICAL COMPLIANT INCLUSIONS

AND CONTINUOUS BOUNDARIES (SPCICB) AND Vf = 0.05 ...cooiiiiiiiinieinieenieenieeseeee e 187
TABLE 9-2: MESH CONVERGENCE FOR THE PLATE SAMPLES WITH SPHERICAL COMPLIANT INCLUSIONS
AND TEXTURED BOUNDARIES (SPCITB) AND Vf = 0.05 ...coviiiiiiiinieenieneeniee e 187

TABLE 9-3: VOLUME FRACTION AND NORMALISED EQUIVALENT OF SPHERICAL VOID OR INCLUSIONS 188
TABLE 9-4: CORRECTED MODULUS OF ELASTICITY FOR PLATE’S MATRIX. THE YOUNG MODULUS 1S 0.1

TIMES THE VALUES OF THE MATRIX FOR PLATES WITH COMPLIANT INCLUSIONS ....cccevvienieenieene 188
TABLE 9-5: CORRECTED DENSITY OF THE PLATE’S UNIT CELL BY SPHERICAL VOID OR INCLUSIONS
RADIUS ...ttt sttt st e e a e sttt e e n e s h e e r e s r e s e e et e n e s Rt e e e b e Rt s beenn e er e e r e e e e r e r e ae e re e 188
TABLE 9-6: THE DEGREE OF ANISOTROPY IN HETEROGENEOUS PLATE MODELS WITH SPHERICAL VOIDS
AND INCLUSIONS ....covtetentettettententesteete st sresseesse s sseeseessesresreesnesnesresseesnesnesnesseennesresneesnennennens 189
TABLE 9-7 : THE NON-DIMENSIONAL FREQUENCIES (£2) FOR HOMOGENEOUS PLATES WITH AR=7.072:1
............................................................................................................................................ 191

TABLE 9-8: CHARACTERISTIC LENGTH OF BENDING FOR PLATES WITH SPHERICAL VOIDS AND

INCLUSIONS ...uettteeeeueteeeeetteessaeeesessseeesssseeeesssseesasseeessnssneeesssesessnsensssssseeessnnseeessnsens
TABLE B-1: FEA RESULTS FOR THE FIRST TEN NON-DIMENSIONAL BENDING MODAL FREQUENCIES, A,
TABLE B-2: FEA RESULTS FOR THE FIRST TEN NON-DIMENSIONAL BENDING MODAL FREQUENCIES, A,

............................................................................................................................................ 218
TABLE B-3: FEA RESULTS FOR THE FIRST TEN NON-DIMENSIONAL BENDING MODAL FREQUENCIES, A,
............................................................................................................................................ 219
TABLE B-4: FEA RESULTS FOR THE FIRST TEN NON-DIMENSIONAL BENDING MODAL FREQUENCIES, A,
............................................................................................................................................ 220
TABLE B-5: FEA RESULTS FOR THE FIRST TEN NON-DIMENSIONAL BENDING MODAL FREQUENCIES, A,
............................................................................................................................................ 221
TABLE B-6: FEA RESULTS FOR THE FIRST TEN NON-DIMENSIONAL BENDING MODAL FREQUENCIES, A,
............................................................................................................................................ 222
TABLE D-1: LONGITUDINAL FREQUENCY OF BEAMS WITH VOIDS AND CONTINUOUS BOUNDARIES USING
MPFEM WITH CORRESPONDING FEA RESULTS ....uuvviiiieieeeiiiiiiireeeeessssniiieeeeeesssssnnsseessssssnnnns 236
TABLE D-2: LONGITUDINAL FREQUENCY OF BEAMS WITH COMPLIANT INCLUSIONS AND CONTINUOUS
BOUNDARIES USING MPFEM WITH CORRESPONDING FEA RESULTS ..cceevviiiiiiieeeeeesiiirieneeeaeenns 237
TABLE D-3: LONGITUDINAL FREQUENCY OF BEAMS WITH COMPLIANT MATRIX AND TEXTURED
BOUNDARIES USING MPFEM WITH CORRESPONDING FEA RESULTS ..cccevvvieiiiieeeeeesiiirieneeeeeenns 238
TABLE D-4: MPFEM RESULTS FOR THE FIRST TEN NON-DIMENSIONAL BENDING MODAL FREQUENCIES,
A ORI 239

19



TABLE D-5: MPFEM RESULTS FOR THE FIRST TEN NON-DIMENSIONAL BENDING MODAL FREQUENCIES,

A SRS PPRTRTNN 240
TABLE D-6: MPFEM RESULTS FOR THE FIRST TEN NON-DIMENSIONAL BENDING MODAL FREQUENCIES,

A PSP 241
TABLE D-7: CVFEM RESULTS FOR THE FIRST TEN NON-DIMENSIONAL BENDING MODAL FREQUENCIES,

3 PN 242
TABLE D-8: CVFEM RESULTS FOR THE FIRST TEN NON-DIMENSIONAL BENDING MODAL FREQUENCIES,

A PPN 243
TABLE D-9: CVFEM RESULTS FOR THE FIRST TEN NON-DIMENSIONAL BENDING MODAL FREQUENCIES,

A PN 244

TABLE E-1: FEA RESULTS FOR THE FIRST EIGHT NON-DIMENSIONAL TRANSVERSE MODAL FREQUENCIES,
), OF FOUR PLATE SIZES FOR PLATES WITH VOIDS AND CONTINUOUS BOUNDARIES (CYVOCB) 245
TABLE E-2: FEA RESULTS FOR THE FIRST EIGHT NON-DIMENSIONAL TRANSVERSE MODAL FREQUENCIES,
€, OF FOUR PLATE SIZES FOR PLATES WITH COMPLIANT INCLUSIONS AND CONTINUOUS
BOUNDARIES (CYCICB) ..eietiiiiieeiieeeieeette et ste st sstee e stte e seteesnte e st e etaeesnseesnseesnseesnneeenens 246
TABLE E-3: FEA RESULTS FOR THE FIRST EIGHT NON-DIMENSIONAL TRANSVERSE MODAL FREQUENCIES,
Q, OF FOUR PLATE SIZES FOR PLATES WITH COMPLIANT MATRIX AND CONTINUOUS BOUNDARIES
(0211, = TSR 247
TABLE E-4: FEA RESULTS FOR THE FIRST EIGHT NON-DIMENSIONAL TRANSVERSE MODAL FREQUENCIES,
), OF FOUR PLATE SIZES FOR PLATES WITH VOIDS AND TEXTURED BOUNDARIES (CYVOTB).... 248
TABLE E-5: FEA RESULTS FOR THE FIRST EIGHT NON-DIMENSIONAL TRANSVERSE MODAL FREQUENCIES,
Q, OF FOUR PLATE SIZES FOR PLATES WITH COMPLIANT INCLUSIONS AND TEXTURED BOUNDARIES
(021 I 1 = ) TSR 249
TABLE E-6: FEA RESULTS FOR THE FIRST EIGHT NON-DIMENSIONAL TRANSVERSE MODAL FREQUENCIES,
€), OF FOUR PLATE SIZES FOR PLATES WITH COMPLIANT MATRIX AND TEXTURED BOUNDARIES
(O (1Y, 1 = ) SR 250
TABLE E-7: MPFEM RESULTS FOR THE FIRST EIGHT NON-DIMENSIONAL TRANSVERSE MODAL
FREQUENCIES, Q, OF FOUR PLATE SIZES FOR PLATES WITH VOIDS AND CONTINUOUS BOUNDARIES
(O AV 0101 = ) TSR 251
TABLE E-8: MPFEM RESULTS FOR THE FIRST EIGHT NON-DIMENSIONAL TRANSVERSE MODAL
FREQUENCIES, Q, OF FOUR PLATE SIZES FOR PLATES WITH COMPLIANT INCLUSIONS AND
CONTINUOUS BOUNDARIES (CYCICB) ....iiiiiiiciie ettt e tee s save e sre e 252
TABLE E-9: MPFEM RESULTS FOR THE FIRST EIGHT NON-DIMENSIONAL TRANSVERSE MODAL
FREQUENCIES, Q, OF FOUR PLATE SIZES FOR PLATES WITH COMPLIANT MATRIX AND TEXTURED
BOUNDARIES (CYCIMTBY) ...uviiiiiieiieeeiee ettt ettt e te e et stv e e stae e ve s eta e e staeestbaesavaesareeentneeens 253
TABLE F-1: FEA RESULTS FOR THE FIRST EIGHT NON-DIMENSIONAL TRANSVERSE MODAL FREQUENCIES,
€, OF FOUR PLATE SIZES FOR PLATES WITH SPHERICAL VOIDS AND CONTINUOUS BOUNDARIES
(S 2AV/ 0101 2 ) ISP 254
TABLE F-2: FEA RESULTS FOR THE FIRST EIGHT NON-DIMENSIONAL TRANSVERSE MODAL FREQUENCIES,
€), OF FOUR PLATE SIZES FOR PLATES WITH SPHERICAL INCLUSIONS AND CONTINUOUS
BOUNDARIES (SPCICB) ...eiiiiiiiiieiiee ettt ettt et e e stae e be e s ta e etae e staeesaveesabeesntneeens 255
TABLE F-3: FEA RESULTS FOR THE FIRST EIGHT NON-DIMENSIONAL TRANSVERSE MODAL FREQUENCIES,
€, OF FOUR PLATE SIZES FOR PLATES WITH SPHERICAL VOIDS AND TEXTURED BOUNDARIES
YO 1 = TSR 256
TABLE F-4: FEA RESULTS FOR THE FIRST EIGHT NON-DIMENSIONAL TRANSVERSE MODAL FREQUENCIES,
€, OF FOUR PLATE SIZES FOR PLATES WITH SPHERICAL INCLUSIONS AND TEXTURED BOUNDARIES
(IO 1 1= ) TSRS 257

20



TABLE F-5: MPFEM RESULTS FOR THE FIRST EIGHT NON-DIMENSIONAL TRANSVERSE MODAL
FREQUENCIES, Q, OF FOUR PLATE SIZES FOR PLATES WITH SPHERICAL VOIDS AND CONTINUOUS
BOUNDARIES (SPVOCB).....cottiiieiteiieitetest ettt s s s 258

TABLE F-6: MPFEM RESULTS FOR THE FIRST EIGHT NON-DIMENSIONAL TRANSVERSE MODAL
FREQUENCIES, Q, OF FOUR PLATE SIZES FOR PLATES WITH SPHERICAL INCLUSIONS AND
CONTINUOUS BOUNDARIES (SPCICB) ...coutiiiiiiieieeteee e 259

21



List of Symbols (Nomenclature)

Roman Symbols

W <«

CBT

CN LT

CVFEM

DOF

FE
FEA
FF
FFFF
ENA
€o

€ijk

—>

Cross section area of the beam

Area of the triangular element

Mid-plane surface area of the plate

Aspect ratio

ANSYS Parametric Design Language

Internal characteristic length in the NLT beam
Matrix of derivatives of the shape functions
Classical beam theory (Euler-Bernoulli)

An empirical constant for nonlocal Timoshenko curve fitting
Multiplying coefficient

Control Volume Finite Element Method
Flexural rigidity

Matrix of the material properties

Degree of Freedom

Beam or plate depth

Modulus of Elasticity

micropolar modulus of elasticity

Finite Element

Finite Element Analysis

Free-Free boundary conditions of Beams
Free-Free-Free-Free boundary conditions of Plates
Element-Node adjacency table

A constant specific to each material
Permutation tensor

Flexural or longitudinal modal frequency in Hz
Shear Modulus

Beam or plate depth

Second moment of area

Micro-inertia density

Jacobian matrix

22



Microinertia tensor

Global stiffness matrix

Element stiffness matrix

Length of beam or plate

Characteristic length in bending

Characteristic length in torsion

Bending moment

Consistent mass matrix

Global mass matrix

Lumpped mass matrix

Template mass matrix

Micropolar Finite Element Method

Mass

Couple stresses

Coupling number

Shape function

The number of unit-cells across the depth of beam and plate models
Non-local Timoshenko beam

Mode number

Shear force

Radius of curvature

The coefficient of determination of the Polyfit approximation
Rayleigh’s Beam Theory

Void/inclusion radius

Dimensions of the unit cell in Cartesian coordinates
Square root of the second order differential equations
Transposed

Timoshenko beam theory

Time

Displacement and micro rotation vector
Displacements

Volumetric domain

The radius of void or inclusions

Cylindrical void or inclusion volume fraction

23



w
X,y,Z

YMean

Transverse or lateral deflection
Cartesian coordinates

The mean square value

Greek Symbols

a
a*, ‘8*, y*’ K*

B,y

=

KXZ

*

A*and u

= o R S
ﬁ)‘m)~~5::‘b>§"‘:o

D 2O £

Scaling effect parameter

Micropolar elastic constants

The roots of second order differential equation
Mass scaling coefficient

Kronecker delta

Natural coordinates

Strain tensors

Strain field

Micro rotation

Macro rotation

Timoshenko shear correction factor
Curvature of the cubic micro-element
Normalised frequency

The Lamé constants

Nondimensional frequency parameter
Non-dimensional frequency of homogeneous beam
Mass per unit length

Micropolar Poisson’s ratio
Slenderness ratio

Mass density of the material

Stress (force stress)

Polar ratio

A function of B
A function of y

Circular frequency, rad.s™!
Non-dimensional modal frequency of the plate

Shear deformation parameter

24



Research output

The ouput of this PhD project are as follows:

e Journal paper (Published):

Article title: Quantifying Numerically Forecast Size Effects in the Free Vibration of
Heterogeneous Beams

Authors: B Hassanati, M Wheel

Journal title: International Journal of Mechanical Sciences

DOI information: 152.10.1016/j.ijmecsci.2019.01.009.

e Journal paper (In progress):
Article title: On the Influence of Micro-inertia on Free Vibration of Heterogeneous Beams

Authors: B Hassanati, M Wheel

e Conference paper (Published):

Article title: Size Effects on Free Vibration of Heterogeneous Beams

Authors: B Hassanati, M Wheel

Issue: MATEC Web Conf., Volume 148, 2018, International Conference on Engineering
Vibration (ICoEV 2017)

Avrticle Number : 07003

Section : Vibration of Beams, Plates and Shells, from Nano to Macro

DOI: https://doi.org/10.1051/matecconf/201814807003

Published online: 02 February 2018

25



1. Introduction

1.1 Motivations

In recent decades, technological advances in many areas such as in the biomedical and
biomechanical, nanotechnology, bio-inspired and especially aero-space technologies have
rapidly revealed the necessity of achieving in-depth knowledge in the application of micro-
scaled structures and materials. Structures in which their microstructural dimensions are
comparable to the overall size make the classical deformation theories in mechanics invalid
and inapplicable. This has created a whole new era for researchers to investigate the dynamic
behaviour of structures where the classical theories of elasticity become increasingly invalid
such as in the case of the flexural or transverse vibration of small-scale heterogeneous beams

and plates.

If materials are macroscopically examined and show that they consist of undistinguishable
phases which are mechanically inseparable, they are then called homogeneous. Now, if the
mechanical properties of a homogeneous material remain constant in all directions, the
material is then classified as homogeneous isotropic, for example steel, aluminium and
ceramics. Therefore, the static and dynamic behaviour of homogeneous isotropic materials
can be explained by the classical deformation theories. These classical deformation theories
applicable to 2D beams such as Euler-Bernoulli and Timoshenko theories provide
formulations for a beam’s static and dynamic behaviour when undergoing small
displacements. These theories are categorised as local because the strain at any given point in
the material is only related to the stresses at that specific point and is independent of the
stresses at all other points in the body which will be further discussed in chapters two and
three where these theories are applied and solved for specific beam models. On the other
hand, if the overall dimensions of the specimen reduced significantly, down to the
microstructural scale, the material becomes inhomogeneous, and the significance of the
changes of the material properties in different locations of the specimen becomes inevitable.
These types of materials are therefore classified as heterogeneous. Generally, heterogeneity
is regarded as a discontinuity of physical properties of the material in either a specific
direction or multi-directionally. The heterogeneity may consist of porosities, particles, fibres,
polycrystalline, and so forth. Also, the specimen may consist of one or more isotropic or

orthotropic materials.
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The heterogeneity may also appear in a periodic manner. Four different heterogeneous

materials are shown figure 1-1 as examples:

a) Carbon ﬁbre b) Humqn hip bone
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Figure 1-1: Examples of heterogeneous materials

It is clearly evident that the heterogeneity is a microstructural characteristic of materials.
Almost all solid materials are non-homogeneous at some scale: if they are measured and it is
found that the overall dimensions of the material specimen under investigation become so
small that the microstructure becomes a measurable dimension it is thus not ignorable.
Therefore, there is no exact prescription to define when precisely a specimen is considered
heterogeneous, but it is widely understood that when a material shows unusual size
dependent static or dynamic behaviour at a certain size, then the specimen is categorised as
non-homogeneous. One option is to model the specific microstructure of the specimen in
complete detail such as voids, inclusions or impurities; the other option is to consider the
material a continuous but heterogeneous mass and take advantage of more general

deformation theories which can anticipate size effects in microscopic scaled specimens.

Most research publications focus on beam or plate structures and the application of the more
advanced and higher order deformation theories to justify the validity and usefulness of more
generalised continuum mechanics, but there are always shortcomings especially the
complexity of these higher order theories and the additional material constants they
incorporate which make them less attractive. For instance, the micropolar theory, which will
be discussed in more details in chapters two and four, has long been studied and exploited in

a variety of applications especially in two-dimensional static cases in which fewer
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complications are involved. 2D micropolar elasticity incorporates two additional elastic
constants while the 3D version contains four. But the question is whether this theory is
adaptable to dynamic cases, specifically modal analysis? If yes, are the assumptions which
are made in static cases also valid in dynamic cases? Are the micropolar elastic constants
accurately obtained? How much are the results sensitive to the accuracy of the micropolar
constants? Unfortunately, information is scarce and the material constants are not widely
available for many material types. In recent decades, numerical methods and high
performance computers have made it easier to find answers to these questions which were
previously impossible to solve. This has inspired and motivated us to adopt a numerical
approach in making the most out of technology and exploit the advanced and higher order
mechanical deformation theories in a wider range of applications, specifically the vibration

of plates and beams which while apparently a small step, is nonetheless significant.

1.2 Research aim and objectives

The primary goal of this thesis is to investigate, understand and quantify the size effects
arising from the microstructure of heterogeneous materials, periodic voids and inclusions, in
a dynamic regime namely modal analysis and determine whether more generalised
continuum elasticity may or may not anticipate the size effect in such materials by using

numerical methods. The following objectives are set to achieve the project goal:

1) Size effects in dynamic behaviour, specifically modal analysis, of heterogeneous
beams and plates will be quantified which could not be seen through applying other
analytical or numerical methods e.g., size effect detected in beams or plates with
same volume fraction and aspect ratio but varying depth;

2) Limitations of the classical elasticity theories will be investigated;

3) The applicability and relevance of modified theories such as the Eringen non-local
theory in explaining size effect in the material models will be investigated and its
shortcomings will be identified.

4) The applicability of micropolar theory in the modal analysis of heterogeneous beams
and plates will be investigated to reveal any shortcomings that may exist in the
theory as applied to modal analysis and its advantage over other theories will then be
highlighted.

28



1.3 Methodology
1.3.1 General approach

Finite element (FE) modelling was used as the prime method to model 2D beams and 3D
plates for numerical analysis of dynamic behaviour of heterogeneous materials. The
advantage of this method is that detailed microstructure of representative heterogeneous
material can be modelled by constructing unit cells and repeated regeneration of the unit
cells results in a complex heterogeneous beam or plate model. FE modelling provides
versatility to model almost any nonhomogeneous solid material consisting of different
isotropic materials. Modal analysis, as a means of dynamic analysis, with free boundary
conditions in the absence of external loads with small displacements was used for both

beams and plates.

As the primary objective of this project was to see whether continuum elasticity can explain
size effects in heterogeneous material, therefore, unconstrained 2D and 3D beam and plate
structures were considered. This choice of boundary conditions eliminates the complications
in the finite element analysis of constraining the structure, e.g., simply supported or clamped
edges and the effect of these boundary conditions on the analysis are avoided. Other reasons
are that in finite element analysis there are many ways to constrain 3D plates and choosing

one method in preference to another would not help the objectives of this project.

Correction to the material properties was carried out for each unit cell volume fraction. This
facilitates the study of beams and plates of various sizes with varying void or inclusions
volume fraction while keeping the overall homogenised properties of the material constant.
In theory, this allowed the study of the dynamic behaviour of specimens and thereby
identifies the size effect with respect to the variation of specimen size and the volume
fraction of voids or inclusions. Therefore, this method permits having a range of volume
fractions in a specific specimen model while the overall properties of the sample are kept
similar. This homogenisation concept used throughout this work as the basis for numerical
analysis which is a novel methodology in modelling and FE analysis of heterogeneous
materials because it reveals size effects in non-homogeneous beams and plate without
changing their aspect ratio. Maintaining the homogenised properties provides a rational basis
for normalising the predicted dynamic behaviour of the representative heterogeneous
materials. The size effect was quantified based on the effects of changes that the specimen
depths and volume fractions have on the extracted normalised modal frequencies, although

the aspect ratio of the specimens remained unchanged.
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Modal analysis by finite element method results in generating the full spectrum of
frequencies such as longitudinal, transverse and torsion modes and thus it is not possible to
perform a dynamic analysis by finite element to generate, for instance, transverse or
longitudinal modes independently. Therefore post-processing and categorisation of the
modal frequencies were conducted. For this reason a database comprising of an Excel
spreadsheet was created to store modal frequencies and screen captures of mode shapes for
further investigation. Then modal frequencies were categorised into mode shape groups. 2D
analysis for beams was used to isolate some of the modal frequencies and generate
longitudinal and transverse frequencies. 2D modal analysis also helps to reduce the number
of micropolar constants which makes it possible to identify them by analytical and numerical

methods suitable for micropolar models.

Analytical methods were used to develop a one-dimensional model for the free vibration of
the nonlocal Timoshenko beam. Analytical methods were also used to derive useful
equations to obtain characteristic length of bending using the primary modal frequency of 2D
beams. The coupling number was obtained by an iterative method. The micro-inertia
parameter is also derived and obtained analytically. A combination of numerical and
iteration method was used to obtain the coupling number. Thus both analytical and

numerical methods were employed to obtain the relevant micropolar constants.

The micropolar theory was incorporated into conventional finite element method (MPFEM)
as well as using the existing control volume based finite element method (CVFEM) to
investigate the dynamic behaviour of two-dimensional heterogeneous beams. The MPFEM
and its control volume counterpart, CVFEM, were implemented in MATLAB codes
developed during the course of this research. For three-dimensional plates, only the finite
element method incorporating micropolar elasticity was used. The applicability of the
micropolar theory was investigated by comparing the modal frequencies resulted from the

application of this theory with those obtained from the finite element analysis.

1.3.2 Thesis overview

In chapter two, the previous work in the beam theories were first reviewed before focussing
on the review of literature in which the size effects on the mechanical behaviour of the

heterogeneous beams and plates have been examined.

In chapter three, specific beam models with voids and inclusions of various volume
fractions were modelled using the finite element method, then the dynamic behaviour of the

models were investigated which lead to quantifying size effect in heterogeneous beams.
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Appropriate corrections were made to material properties while keeping the overall
properties unchanged. Then non-dimensional modal frequencies (A) of beams with free-free
boundary conditions, in the absence of any external load, were investigated with regard to
the influence of any size effect. The normalized frequencies (A) were also compared at each

of the modal frequencies for particular beam models and volume fractions.

The widely used non-local theory of Eringen was studied with the aim of identifying whether
it could explain the influence of the size effect in the dynamic behaviour of non-
homogeneous beams. The Eringen non-local theory incorporates a length scale parameter in
its formulation. Therefore, the Eringen non-local theory was considered and formulated for a
Timoshenko beam with free-free boundary conditions. Then the results from FEA and
Eringen non-local Timoshenko beams were compared, and shortcomings of non-local theory

for the beam models considered in this work were highlighted.

In chapter four, formulations based on micropolar theory were conducted for beam models,
and a useful equation was derived which helps to identify one of the micropolar constants,
namely characteristic length of bending, from the beams overall dimensions, and the primary

modal frequency.

In chapter five, the micropolar constituent parameters were incorporated into the
conventional FE method, namely micropolar finite element method (MPFEM), and then an
already existing control volume finite element method (CVFEM) was enhanced to provide
an alternative procedure for the dynamic analysis of two-dimensional beams, with regard to
the application of micropolar theory, and the difference between the two methods has been
discussed. Then an iterative process was defined to identify the other micropolar constant,
namely the coupling number. Then the effect of micro-inertia in micropolar theory in
transverse modal frequencies of micropolar beams was investigated. The micro-inertia was
analytically derived and numerically investigated, and the impact of changing the value of

micro-inertia on the transverse modal frequencies of beams was investigated.

In chapter six, the second micropolar constant namely coupling number was obtained for
beam models and the results based on micropolar theory and dynamic analysis of Two-

dimensional beams were compared with FEA results.

In chapter seven, the work, then, expanded to 3D models. The micropolar constituent
parameters were incorporated into the FE method for three-dimensional dynamic problems

(modal analysis) and two types of finite elements were employed and compared.
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In chapter eight, detailed 3D plate models incorporating cylindrical shaped voids and
inclusions were generated using commercial finite element software. Modal analysis was
performed on all models for which the micropolar constants were available. The size effect
was also investigated in detail for plates with unconstrained boundaries. The micropolar
finite element procedure (MPFEM) was applied to some of the plate models for which the
micropolar constants were available, and the results were compared with those from FEA.

In chapter nine, analyses similar to those in chapter eight were conducted but plate models
with spherical voids and inclusions were modelled, and detailed finite element analysis was
carried out for the plate models. The FE results were then compared with the results obtained
from the three-dimensional MPFEM.

In chapter ten, Summary and Conclusions and further work are discussed.
Appendices provide:

e Dimensionless frequency parameter for various 2D beam and three-dimensional
plate models with different surface conditions, volume fractions obtained
numerically from finite element analysis and application of micropolar beam theory,

e The first five longitudinal frequencies of 2D beam models,

e Analytical solution for the local and nonlocal Timoshenko beams,

e Finite element results in terms of dimensionless frequency parameter for various
three-dimensional plate models with different surface conditions, volume fractions
and corresponding results obtained from micropolar beam models. The numerical
results include both plates with cylindrical and body-centred types of voids and

inclusions.
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2. Literature Review of Previous Work

Beams and plates represent arguably the simplest but most fundamental mechanical
structures for which the concept of the size effect can be studied, developed and expanded to
more involved structures. Therefore, in this chapter, firstly previous work in the well-known
beam theories such as Euler-Bernoulli and Timoshenko beams will be reviewed and then the
focus will be on the review of literature in which the size effects on the mechanical

behaviour of the heterogeneous beams and plates have been examined.

2.1 Analytical methods and exact solutions for FF beam vibration

Euler-Bernoulli beam theory provides reasonably accurate predictions of modal frequencies
if the aspect ratio of the beam specimen is greater than 20 but less than 100, but this theory
neither considers the shear deformation nor the rotary inertia. Rayleigh’s beam theory
(RBT), on the other hand, considers rotary inertia but not shear deformation (Dolph 1954).
The shear beam model takes into account the shear distortion but ignores the rotary inertia
(Strutt and Rayleigh 1877). Timoshenko beam theory takes into account both shear
deformation and rotary inertia and can be used for moderately thick beams with smaller
length, L, to depth, d, aspect ratio , L/d, and is thus a more accurate beam theory when
compared with the other theories (Dolph 1954; Stephen 1981; Stephen and Puchegger 2006;
Elishakoff, Kaplunov, and Nolde 2015), but it is still a single layer (one-dimensional) theory
and does not consider variation of properties and layers across the beam depth or along the
length of the beam. The methods to solve the above theories are provided in ref. (Han, S.,
Benaroya, and Wei 1999).

2.1.1 Transverse Vibration of the Classical Beam Theory (CBT)

Here, Euler-Bernoulli’s beam theory which is sometimes called Euler, Bernoulli, or classical
beam theory is considered for free-free boundary conditions. Euler-Bernoulli beam theory in

absence of external loads and damping can be stated as in equation (2.1):

d*w 5 (2.1)
El - Uw*W =20
U = pA = mass per unit length (2.2)
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where El is the flexural rigidity; E is the modulus of elasticity, | is the second moment of
area, p is the mass density, W is the transverse displacement and u is the linear mass or mass
per unit length.

The general solution for the equation (2.1) according to ref. (Avcar 2014) is:

W(x) = Asin(Ax) + Bcos(Ax) + Csinh(Ax) + Dcosh(Ax) (2.3

where “A” is the transverse non-dimensional frequency. A, B, C and D are constants which

depend on the initial and boundary conditions.

Now to solve the above equation boundary conditions must be applied for a free-free beam
where the second and third derivative of equation (2.3) equals zero as in equation (2.4) to

eliminate bending moments and shear forces at the free ends:
w’')=w"(L)=w"0)=w"(L)=0 (2.4)
This leads to the following equation for a free-free beam flexural vibration Sawant (2013):

cos(AL)cosh(AL) —1 =10 (2.5)

2.1.2 Transverse Vibration of Timoshenko beam (Timoshenko beam theory)

Among all beam theories, the Timoshenko beam theory is the most widely used and
thoroughly investigated by researchers as it includes both rotary inertia and shear
deformation. The Timoshenko beam theory can be written in the following format in
equations (2.6) to (2.7) as presented in references (Han, S., Benaroya, and Wei 1999; Wang,
Zhang, and He 2007):

O vt oo (2.6)
M Te=rlg5
o otw 2.7)
=@ = Pl

Thus:

920 (2.8)
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2w (2.9)
ot?

d g (AGd ow 7] ) =pd
an 0x RGa( 0x ))=p
where @ and W are the beam’s rotation and transverse deflection:

0(x,t) = 0(x) cos wt rotation of the normal line (2.10)

W(x,t) = W(x) cos wt transverse or lateral deflection (2.11)

while M is the bending moment, Q is the shear force, G denotes the shear modulus of the
beam, £ (Kappa with hat) is the shear correction factor, 0 is the rotation, pl is the rotary
inertia, A is the cross section area of a rectangular beam and d is the beam’s depth,

sometimes denoted by h in other literature.

The fundamental difference between the Timoshenko and the classical beams with regard to
the rotation of the cross section perpendicular to the bending line is shown in figure 2-1. As
seen in the CBT the cross-section remains perpendicular to the mid-plane line after beam
deformation while in the Timoshenko beam, the cross section also rotates and does not

necessarily remain perpendicular to the mid-plane this being due to the shear deformation.

Deformation of Euler- \ 1

Bernoulli beam (CBT) ; . pefomation of
Timoshenko beam

d 1‘— '
l dr2 Mid-palne j ! Beam berf_ore
I 1 deformation

Figure 2-1: Representation of the rotation and deflection in the CBT and Timoshenko beam cases

Equation (2.8) and (2.9) can be written in the following forms:
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d?e dw
Gh(——0) = —w? 2.12
El— +KGh(dx 0) w?pl® (2.12)
d*w de
.  _RGA== = —w2phW 2.13
KGh I2 KG i w*ph (2.13)

Equations (2.12) and (2.13) can be decoupled for W, x and t (Han, S., Benaroya, and Wei
1999) to form:

W g pAZY (2B pp) W (£1YOW
E1S+ paZl — (4 o) -2+ (21) 20 =0 (2.14)

The Timoshenko beam theory tends to be less reliable for cases were the transverse modal
frequencies are higher than the first eleven modes or so, as the results of Stephen et al.
(2006) show, but can identify the first few modes accurately. The reason is that as the
wavelength approaches the beams height, the lower and the upper surface of the beam would
not vibrate simultaneously and therefore they will not stay parallel as seen in the lower mode

shapes. This phenomenon will be discussed further in chapter three.

Méndez-Sanchez and Franco-Villafafie (2005; 2016) performed experiments on an
aluminium beam with Length/height ratio of 19.841 and obtained normal-mode frequency
percentage error for the first 24 modes. Their results show a dramatic and reverse shift in the
modal frequencies after mode 11 and this shift in the results they obtained also depends on
the value of ‘k’, the Timoshenko shear correction factor, before and after this critical
frequency and therefore they suggested that: ‘the value of k above the critical frequency is
different from below it’. Critical frequency is the frequency at which the wavelength
approaches the beam depth of homogeneous materials in beam models. In Timoshenko beam
theory the cross sectional area is assumed to be planar® and unchanged during beams

deformation but this is not a valid assumption for higher mode frequencies.
The surface morphology may also have a great impact on the results. This complicates the
dynamic behaviour of the beam structures.

In summary, the dynamic behaviour of the heterogeneous beams strongly depends to the

following issues:

2 In Timoshenko beam theory, the original cross-section of the beam remains straight although it does not necessarily remain
vertical to the mid-plane after beam deformation (Stephen 1981; Garcea, Madeo, and Casciaro 2012; Dolph 1954; Asghari et al.
2011).
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e Beany/ plate’s aspect ratio (AR)
e Mode numbers for which frequencies are obtained
e Material discontinuity across the height and length of the structure
e Structures surface morphology
These issues are addressed in chapters 3 to 6.

2.2 Continuum mechanics descriptions of heterogeneous beams

In the literature, homogenisation methods are sought to represent the properties of materials
comprised of periodic assemblies of a specified unit cell. Della and Shu (2006) used
Eshelby’s equivalent inclusion method to investigate the vibration of piezoelectric beams,
and their analytically obtained results indicate that a size effect arising from the size of the
piezoelectric inclusions, their location in the structure of the beam and their volume fraction
is anticipated in their dynamic behaviour. Rabboh et al. (2013) thus used the rule of mixtures
to calculate the elastic constants and Poisson’s ratio for functionally graded material
sandwich beams and investigated the effect of the functional grading on the beams’ dynamic
behaviour. They also reported that increasing the thickness of the beam results in the

increase of natural frequencies.

Homogenisation methods also become increasingly problematic when the size of constituent
materials such as inclusions and/or voids becomes comparable to the overall size of the beam
structure. Modifications to classical elasticity theories are only useful when the internal
length scale parameters associated with the microstructure are considered very small. The
size-dependent behaviour of materials has been reported by many researchers (Groh and
Weaver 2015), (Gherlone 2013), and (Schulze et al. 2012) in laminated beams. The results
presented by Dasgupta et al. (2000) in modelling active damping of adaptive structures show
how the beam’s time to decay varies as the device aspect ratio, inclusion shape, location and
volume fraction are altered, and also show how changes in host stiffness result in changes in
time to decay and electrical field. Timoshenko beam theory is regarded as nonlocal if
Eringen’s small-scale effect (Wang, Zhang, and He 2007) is incorporated in the governing
equations. In Eringen non-local elasticity (A. Cemal Eringen 1972) ‘the stress state at a
given point is a function of the strain states at all points in the body.”. Wang et al. (2007) ,
solved the nonlocal Timoshenko beam theory (NTB) incorporating the scale coefficient ‘a’
in Nano-beams. In chapter three the NTB will be extended to the case of free-free beam

models and examined against the FEA results for 2D heterogeneous beam.
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The Eringen nonlocal theory of elasticity has also been used to analyse Euler-Bernoulli
beams by researchers but it may show inconsistencies depending on whether the differential
form or integral form of the theory is solved which has been reported by Ferndndez-Séez et
al (2016) in the investigation of size effects in static bending of heterogeneous Euler-

Bernoulli beams.

C M Wang et al. (2013) used a finite segments method to calibrate Eringen’s small length
scale coefficient for initially stressed vibrating nonlocal beams and stated that ‘e, does not
depend on buckling or vibration modes’ where e, is a constant specific to each material in
non-local Timoshenko beam theory which will be discussed in further details in chapter
three. Available results on the presence of size effects in the deformation of heterogeneous
materials reported by researchers show deviation from elastic theories in static loading cases
when the beam or plate length, L, to depth, d, aspect or slenderness ratio ,L/d, reduces (A.
Riahi Dehkordi 2008; Riahi and Curran 2009; Beveridge, Wheel, and Nash 2013b; 2013a;
Frame 2013b; Waseem et al. 2013; M. a. Wheel, Frame, and Riches 2015)

2.3 Higher order deformation theory of the micropolar (Cosserat) type

The classical and local Timoshenko beam theories do not include asymmetry of shear
stresses (Hassanpour and Heppler 2017). On the other hand, the Eringen micropolar theory
as described by Lakes (1996; 2003), which will be discussed further in chapter four to six,
incorporates additional couple stresses and an associated additional degree of freedom, a
micro-rotation, and thus accounts for material size effects but requires the specification of

additional constitutive parameters including a characteristic length.

The micropolar elasticity theory is just one member of a family of theories that incorporate
additional degrees of freedom to account for higher order deformation. Other members
include couple stress and micromorphic elasticity (Toupin 1964; Tekoglu and Onck 2008;

Hassanpour and Heppler 2017).

In classical elasticity the stress-strain relations are given by:

. . 2.15
Tij=lgkk 6L1+2/J- eij ( )

where A" and p* are the Lamé constants, £, and &;; are strain tensors, and ;; is the force

stress, i,7,k = 1,2,3, and § is the Kronecker delta which is equal to one if i = j otherwise it
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is zero . However, in linear, three dimensional, micropolar elasticity the force stresses, ;;,
and couple stresses, m;;, are related to the deformations by equations (2.16) and (2.17) as
defined by Lakes (1996):

Tij = )l*skkSij + (2[1* + K*)Si}' + K *eijk(ek — ¢k) (216)

" " " 2.17
my = '@ 8y + B i +v" P, 2.17)

where ¢ is the microrotation and @ is the conventional macro rotation. i,j,k = 1,2,3,and & is
again the Kronecker delta and e; is the permutation tensor. For even permutation of ijk,
e, = +1, for the odd permutation of ijk, e;;; = —1 and otherwise zero. a*,f*, y* and k*

are the additional moicropolar elastic constants.

Thus the equations (2.16) and (2.17) may be written in matrix form in a general equation as

in equation (2.18) for the 3D cases:

[;llij] =D [;ljj] (2.18)

Here D is the matrix of the material properties of size 18 by 18:

A1 0 [0]oxg

o (2.19)
[0Joxg O T2

The stresses and strains in equation (2.18) are related as follows:

A1 0
2] = 0 AZ] ;] (2.20)
where matrices A1 and A2 are;
A+ 2u + K" A A*
A A A+ 2" + K"
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A3 00
42 =10 430 (2.22)
0 0 A3
and matrix 43 is:
43 = [u*+ K ) u* (2.23)
2 [T

In the 3D micropolar medium, assuming that the displacements and micro-rotations act
independently, the matrix of the material properties will be of rank 18. The micro-rotation
and macro-rotation are not considered as equal, and this is apparent in equations (2.18),
(2.19), (2.22) and (2.23) when k™ # 0. The shear stresses in equation (2.18), &;; when i # j,
are also related to the derivatives of displacements and micro-rotation which will be later

discussed in section 4.1 where the relations of macro and micro rotations will be addressed.

Now matrix A3 in equation (2.23), relates the shear stress and strain in a 3-dimensional

situation.
Similarly:
_[T10 2.24
[mi] =, TZ] (] (2.24)
where matrices T1 and T2 are:
Tl=|a" a*+p +y" ar
T3 00
T2 =10 T30 (2.26)
00T3
and matrix T3 is:
Y B
T3 = [ 2.27
By (2.27)
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The matrix of the material properties, D, in equation (2.18), is easily reducible to a 2D plane
stress form (to form a matrix of the material properties of rank 6) in terms of four practical
engineering constants which will be discussed in chapter four. Further, two more engineering

constants which are applicable in 3D cases will be defined and used in chapter seven.

Nakamura and Lakes (2003) used a two dimensional FE method to investigate the localised
end loads applied on a strip sample and the influences of elastic constants, especially
characteristic length and coupling number, were studied. They concluded that as the
characteristic length increases, the rate of decay of stress and strain energy reduces. They
also concluded that for a significantly small characteristic length (in comparison with the
strip’s width), the rate of stress/or strain energy decreases as the characteristic length
increases. In the dynamic case, this may be shown by wave dispersion. Their work
predominantly included studying the models for various characteristic lengths and coupling
numbers, N; but provide no method to determine them. However, in an earlier work by
Lakes (1996), an extensive comparison was made between various theories, e.g. micropolar
and Eringen’s nonlocal theories. This shows that the elastic constants can be obtained by
means of a dynamic wave propagation method. Nevertheless, in any field or wave based
method that relies on determining size effects, there are limitations concerning the smallest
characteristic length. Also, caution is required when one of the practical engineering
constants, the coupling number, N, is close to its lower and upper bound values of zero and

one when performing numerical analysis otherwise errors in computation may result.

Beveridge et al. (2013a) also studied the micropolar behaviour of perforated beams in the
static 3 point bending case and determined the micropolar constants using 3 point bending
test results and a control volume based finite element technique to inversely identify the

constants by matching numerical predictions to experimental results.

Waseem et al. (2013) investigated the influence of void size on the constitutive properties of
circularly shaped samples containing voids (Perforated rings), and derived the final equation
linking the stiffness to the specimen size by relating the diametrically applied loads,
displacement and stored strain energy. They concluded that in models with smooth specimen
surface (rings circumference), the stiffness changes linearly with sample size measure.

McGregor (2014) provides the same conclusions.

Wheel et al. (2015) studied the influence of model size in heterogeneous beams when loaded
in 3 point bending. They investigated size effects in beams with voids and showed that

sample stiffness relates to the beam sample size, as measured by the reciprocal of its depth
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squared, in a linear manner. They also reported that there are both negative and positive
effects of beam size depending on the beam boundary topology. The majority of previous
work is confined to static loading cases.

There are also other more generalised elasticity theories such as strain gradient theories in
which the potential energy density depends on the gradient of the strain in addition to the
strain (R. D. Mindlin and Eshel 1968). The strain gradient theory was first introduced by
Touplin (1964) in a non-linear form. The strain gradient theories have been subject of
studying size effects in materials, such as the work that has been done in (Lam et al. 2003;
Tekoglu and Onck 2008; Askes 2009; Neff, Jeong, and Ramézani 2009; Gitman et al. 2010;
Aifantis 2011; Askes and Aifantis 2011; Trinh et al. 2012; Rafii-tabar, Ghavanloo, and
Fazelzadeh 2016; Lurie and Solyaev 2018; Gortsas et al. 2018; Faghidian 2018; Apuzzo et
al. 2018; Fu, Zhou, and Qi 2019). An excellent comparison between higher order theories
incorporating additional degrees of freedom and additional gradients is given in (Tekoglu
and Onck 2008).

2.4 Incorporation of micropolar theory in the finite element method

As briefly discussed in section 2.3, micropolar elasticity had previously been applied to static
mechanical problems by researchers incorporating the theory often into 2D but rarely in 3D
finite element formulations. These studies mostly included stress concentration around a
circular hole in a plate or beam under uniform tension applied to two opposite edges, or
bending of 2D slender beams. Eremeyev et al. (2016) used an 8-node isoparametric finite
element to analyse a contact problem and their numerically obtained results showed that
couple stress appears almost in the vicinity of the contact zone. Although they included the
micropolar elasticity in the finite element formulation, the 8-node element itself is not
discussed in detail. Forest et al. (1998) replaced a heterogeneous Cauchy medium by a
homogeneous micropolar (Cosserat) continuum and studied the deformation of a multi-
layered 2D cantilever beam and concluded that the Cauchy continuum is seen to give a poor
prediction of the real deformation state and is not able to take the clamping conditions into
account. On the contrary, the additional boundary condition in the Cosserat continuum in
which micro-rotation is set to zero at one end of the specimen provides a more precise
approach to the actual situation. They also stated that in the Cosserat computation, the free

end of the specimen is also free of couples.
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The micropolar elasticity model has also been used in models which represent rocks, blocks,
granular, composite and layered materials as seen in (Vardoulakis 1989; S. Forest and Sab
1998; Buhan et al. 2002; Pasternak and Miihlhaus 2005; Stefanou, Sulem, and I. VVardoulakis
2008; Salerno and Felice 2009;Sulem, Stefanou, and Veveakis 2011; Veveakis et al. 2013),
in biomechanics especially in the mechanical behaviour of bones (Park and Lakes 1986;
Fatemi, Keulen, and Onck 2002; Goda, Assidi, and Ganghoffer 2014) and in other
microstructures such as in the description of biological tissues (Sanchez-Molina 2014).
Hongxiang et al. (2016) utilised an eight noded finite element discretisation with the
incorporation of the Cosserat continuum model for soil and implemented it to simulate the
strain localisation phenomena due to strain softening or non-associated plasticity of the
material. Their numerical results indicated that the classical continuum finite element may
suffer from uncontrollable mesh dependence and may be incapable of completing the
analysis of the whole failure process, while the Cosserat continuum finite elements possess
better performance in preserving the well-posed problem of localization and in completing
the simulation of the entire progressive failure process occurring in geotechnical engineering

structures.

Nakamura et al. (1984) developed a planar finite element method for orthotropic, micropolar
solids using 3-node triangular plane stress and plane couple stress for computing the stress
concentration around a hole in strips of isotropic and orthotropic micropolar elastic materials
under tension. They used arbitrary micropolar constants in their analysis, and their work
showed that the numerically and analytically predicted stresses were in agreement for
circular holes smaller than the finite strip width. In another pertaining work, Nakamura et al.
(1995) employed 4-node elements to investigate the decay of strain energy in a 2D strip and
found that for the strip geometry a Cosserat solid exhibits slower stress decay than an elastic
solid, and the rate of decline of strain energy becomes slower in a 2D strip as the micropolar
characteristic length, I, is increased when the characteristic length sufficiently less than the
strip width. Lei et al. (2004) used 2D 4-node and 8-node finite elements and numerically
studied the scale effects in pure bending of very-thin beams. They also studied the stress
concentration problem of a plate with a circular hole. Their study indicated that the bending
stiffness of beams increased significantly when the beam’s thickness is close to the material
characteristic length parameter. They also found that the stress concentration factor
decreased when the radius of the hole is close to another of the engineering constants, the

material characteristic length in bending, I,,. However, their research did not consider the
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shear locking problem that is a ubiquitous phenomenon which may exist and can affect the

results in bending using 4-node elements.

Although the above literature survey shows that the micropolar theory has been applied to
many mechanical problems using finite element analysis, the details of how exactly the
formulation of micropolar theory exploited in the finite element procedure is only partially
explained, and there is no procedure describing how the micro-inertia, in dynamic cases,
would be included into the finite element code. Thus this lack of information would question

the general applicability of such formulations to dynamic situations.

Godio et al. (2015) utilised an eight-noded shell-type finite element discretisation with six
degrees of freedom per node incorporating the Cosserat finite element that may be used for

different applications in structural and materials engineering.

Providas et al. (2002) also studied the stress concentration around a circular hole in a plate of
an isotropic material under uniform tension and thus exploited both 3-node linear and 6-node
quadratic triangular elements integrating micropolar elasticity. Their study shows that for a
hole with a specific radius, the error between analytically and numerically obtained
maximum stress at the circular hole increases by the ratio of radius to the characteristic
length parameter. Wheel (2008) developed a numerical procedure for predicting
deformations and stresses in a loaded 2D membrane which exhibited micropolar constitutive
behaviour by employing a conventional finite element mesh together with a dual mesh of
interconnected control volumes; the control volume based finite element method (CVFEM)
which was then validated through a series of patch tests. The numerically obtained maximum
stress at circular hole predicted by the CVFEM (M. A. Wheel 2008) was in good agreement
with analytical and conventional FE results previously obtained by Lakes et al. (1984) and
Providas et al. (2002). Beveridge et al. (2013b) also incorporated the micropolar elasticity
into a higher order control volume procedure, which led to the development of a CVFEM
code for static 3 point bending. However, their work includes static cases only. The
algorithm for the stiffness matrix based on incorporating the micropolar theory in two
dimensional cases using control volume finite element method (CVFEM) which was
previously developed by Beveridge et al (2013b) showed satisfactory performance for static
three-point bending. Therefore the readily available stiffness matrixes of CVFEM as well as
the micropolar finite element method MPFEM, as detailed in chapter five, are both used for
modal analysis in chapter six. In the control volume FE, a dual mesh is introduced which

incorporates control volumes paved over a finite element mesh. Since an exact solution for
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the transverse vibration of a 2D micropolar beam is not available, a 2D numerical method
based on the CVFEM was developed. The difference between the two-dimensional MPFEM
and CVFEM is that the MPFEM enforces equilibrium in a global sense only whereas the
CVFEM enforces it locally to each control volume. The diagram in figure 2-2 represents the
construction of the dual mesh around vertices of finite element nodes belonging to a six node
triangular element:

Finite element mesh =—e—
Control volume mesh -- @ --

Figure 2-2: The construction of the dual control volume mesh around finite element nodes

Thus control volumes are constructed around each node of six-node triangular finite
elements. Discrete equilibrium equations are developed for each control volume by
integrating the stress resultants around each volume to yield the stiffness matrix. The method
was originally developed for predicting static deformations by Beveridge et al. (2013b)
where full details of the derivation of the stiffness matrix are available. This work exploits
the method used to derive the stiffness matrix since it is already validated for the static case
by Beveridge et al. However, the method has now been significantly enhanced through the
incorporation of mass and micro inertia matrices to facilitate the dynamic analysis of
micropolar media. Micro inertia is an extra parameter in dynamic problems that must be
considered in the governing equations of micropolar theory which were initially derived by
Eringen (1966). Although the term micro inertia is frequently referred to in the literature, the
value of micro inertia and how it was obtained remains ambiguous. Usually, in the literature,
a minimal value is selected for micro inertia which eliminates the effect of it. However, de
Borst et al. (1991) derived this additional material parameter analytically as a function of

characteristics length of bending by introducing a micro-element.

The micro-inertia is typically assumed to be of order of 1078m? e.g. a value for aluminium
of 0.325 x 10~7m? was used by Abadikhan et al (2015; 2017). However, there is no
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extensive work on how the micro-inertia might be obtained or its influence on the coupling

number. The effect of varying micro-inertia is considered in chapter 5.

2.5 Heterogeneous plates

Plates are also subject to vast research activity and the understanding of the dynamic
behaviour of plates has become a significant area of research in recent years due to its
importance in advanced technological structures within industries which exploit them
especially when the overall size of the plates under dynamic loading becomes so small that
the constitutive microstructure of the plate become comparable to the overall size. In some
applications, researchers suggest a modification of the available theories such as introducing
penalty factors into the governing equations when micro inertia is involved (Lombardo and
Askes 2012; Askes, Nguyen, and Tyas 2011) or, alternatively taking advantage of less
complicated theories for which the unknown elastic constants are limited to one or two, as
for instance in the application of Eringen’s non-local theory in nanoplates, beams, and tubes.
However, despite the simplicity and validity of these methods, they are limited to specific
applications, and they are not necessarily valid for all situations (Hassanati and Wheel 2019).
In this thesis, considerable effort has been made to understand the behaviour of

heterogeneous plates from a dynamic perspective.

Much of the work undertaken by researchers and reported in many scientific papers agree
that the micropolar theory provides more accurate results compared to the classical theory of
elasticity if micropolar elastic constants are available, however most work is restricted to
static cases, and the means of identification of micropolar elastic constants are still
questionable. Determination of micropolar elastic constants for the material is an active
research area in itself. Despite suggestions that micropolar elastic constants can be obtained
through bending and torsion in the static case or from wave dispersion in a dynamic case
(Lakes 1996), the sources for such material elastic constants are rare (Hassanpour and
Heppler 2017); especially if a dynamic method using 3D methods in combination with finite
element methods is proposed. The static analysis of structures is usually limited to simple
cases of bending, torsion, contact problems and so forth with known boundary conditions.
Furthermore static analysis demands less computation. This raises some fundamental
questions regarding size effects such as: if the assumptions made to simplify the theories and
the use of presumable constants resulted in promising and convincing outcomes in the static

case, would they also be valid in a dynamic case to verify such a method?
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In this work, unconstrained square plates with three types of heterogeneities and continuous
or textured boundaries where investigated which are categorised in chapter eight. In fact,
there are 21 different choices of boundary conditions, as defined by Kitipornchai (1998).
Finally, the aim of this project is to study size effect in heterogeneous material in dynamic
regimes rather than the influence of boundary conditions or modal frequency. Free,
unconstrained boundary conditions at all plate edges in the absence of external load, provide
a unique condition in which the size effect is not compromised by local loads or constraints,
and therefore the applicability of the micropolar theory can be better studied and understood.

Eremeyev et al. (2016) used 8-node isoparametric element to analyse a contact problem and
used the micropolar constant of the polar ratio equal to 1.5 as obtained from Lakes work
(1991). Their work showed that couple stress distribution appears in the contact zone of two

elastic solids which can be explained by the micropolar elasticity.

Since Mindlin plate theory was proposed by Mindlin (1955;1951;1986), many researchers
tried to solve the midline plate theory by the exact solution for various boundary conditions.
However the exact solution for unconstrained boundaries (FFFF or all-edges-free boundary
conditions) has not been found and if one edge is free, the neighbouring edges must be
constrained such as in references (Xing and Liu 2009; Wu, Liu, and Chen 2007). Shen et al.
(2001) used the Rayleigh-Ritz method and analysed the free vibration of Mindlin plate with

FFFF edges but resting on Pasternak-type elastic foundations.

Aksencer et al. (2011) incorporated an internal characteristic length in Eringen non-local
plate theory, to obtain the governing equations for vibration analysis of Mindlin plates and
considered size effect in nano-plates. The non-local theory has been applied to simple 2D
beam cases and its validity in dynamic cases is investigated and discussed in chapter three as

well as in reference (Hassanati and Wheel 2019).

The size effect becomes even more influential when the plates aspect ratio (Length or width
to thickness) decreases, and the specimen becomes a Mindlin plate. Thus in this work exact
square plates were investigated with equal length and width, and aspect ratio of length to
height at 8.083:1 for plates with cylindrical voids or inclusions and 7.071:1 for plates with

spherical voids or inclusions.

Liew et al. (1995) applied the Ritz energy method with boundary characteristics orthogonal
polynomials (the transverse deflection function and the cross-sectional rotation functions are

expressed in terms of sets of separable orthogonally generated polynomial functions) to
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analyse the vibration of Mindlin plates for a variety of boundary conditions except for FFFF
(all edges free and unconstrained) boundary conditions. Lim et al. (1998;1998) also used an
energy method to formulate three dimensional thick plates into a two dimensional Mindlin
domain. Liew et al. (1995) have done an extensive literature survey on various thick plate
vibration cases including rectangular plates. Considering the amount of work done on
Mindlin plates with a moderate thickness in recent years, it is clear that there is no exact
method available to perform modal analysis on square plate models when all plate edges are

unconstrained.

Shimpi and Petal (2006) used two-dimensional plate theory to avoid the use of shear
correction factor such as ,k, in Mindlin plate theory. Their work, despite the proposed
refined plate theory, indicates that the percentage error of the non-dimensional frequency
parameter compared with the values from exact theory increases for higher modes.
According to the work of Xing and Liu (2009) which covers the direct separation of
variables and provides characteristic equations for various types of boundary conditions, the
characteristic equations for exact solution of Mindlin plate, when edges are unconstrained,
are only available for cases where two opposite edges of the plate are constrained with
simply supported boundary conditions. Xiang et al. (2010) developed and applied a DSC-
Ritz element method for rectangular plates with mixed boundary conditions. They
discretised a plate into the equal sectioned 5 by 5 grid and applied the DSC-Ritz method.
This method is numerical, and therefore the accuracy of the method greatly depends on the

grid size.

Liu et al. (2017) modelled the plate’s boundary conditions by assuming spring-shaped
supports for which the stiffness changes from zero to infinity and then used improved
Fourier series to represent three displacements fields and then via Rayleigh-Ritz method
derived an eigenvalue problem which was solved for various boundary conditions including
unconstrained plate edges. By modifying the stiffness and mass matrix of this method to
incorporate micropolar constants, this method has the potential to be modified to a numerical
micropolar method as it has only previously been applied to the isotropic material and
classical elasticity. However, the advantage of this method over finite element methods
remains to be proven; that is one of the reasons, that in this work micropolar theory was used

with the finite element method to represent the three-dimensional plates.

There are numerous literature published in recent years showing the extensive work carried

out to apply the micropolar theory into real plate problems most of which are related to static
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and two-dimensional cases. Hassanpour (2017) has carried out an extensive survey on
micropolar theory literature. The main problem is that there are 6 independent elastic
constants in full 3D micropolar theory and for most materials, these constants are not
available. The micropolar theory sounds promising with regard to the static problems such as
bending, but due to unavailability of micropolar elastic constants, similar material constants

are repeatedly used by researchers that were originally given by Lakes (1996).

2.6 Summary

Based on the literature review of previous work, as stated in this chapter, it has become clear
that the influence of microstructure on the dynamic behaviour of materials, when the overall
properties of the specimen are fixed but different at the microstructural level, in terms of
material properties, has not been previously studied and this suggests that there is a gap in
this research area which require further research. Therefore, in the next chapter, a set of
beam models with periodic heterogeneities will be modelled, and the effects of beam size
and volume fraction on their dynamic behaviour will be investigated, then more generalised
higher-order theories such as Eringen nonlocal and micropolar theories will be investigated
to see if they may explain any size effect that may exist in the dynamic behaviour of the

representative heterogeneous beam models.
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3 Investigation into the Effect of Size in Two-dimensional
Heterogeneous Beam Structures

In this chapter, first two widely used theories namely the classical or Euler-Bernoulli beam
and the Timoshenko beam theories will be solved for homogeneous beam models and
compared, then the focus will be on modelling a set of two-dimensional beams with detailed
periodic heterogeneities comprised of one or two isotropic materials, and their dynamic
behaviour will be investigated to study any effects that may arise from the microstructure of
the specimens. Then the Eringen nonlocal theory will be examined to see if it may explain
any identified size effect that may exist in the dynamic behaviour of the representative

heterogeneous beam models.

3.1 A comparison between CBT and local Timoshenko beam models
3.1.1 Obtaining the frequency parameters for classical beam

By solving equation (2.5) using the Newton-Raphson method, the first 10 flexural modal
frequencies can be determined using an iterative sequence as listed in table 3-1 and non-

dimensionalised using equation (3.1):

El

3.1)

Since the units of w are rad.s™!, this must be divided by 27 to get frequency, in Hz.

Table 3-1: Frequency parameters for beams using the solution for the classical beam theory (Euler-
Bernoulli). The CBT frequency parameters are independent of the beams aspect ratio

Mode 1 2 3 4 5 6 7 8 9 10

CBT 4.73004 7.8532 10.9956 | 14.1372 | 17.2788 | 20.4204 | 23.5619 | 26.7035 | 29.8451 | 32.9867

The mode shapes of an Euler beam may be obtained using equation (3.2):

sin(AL) — sinh(AL) (3.2

W(x) = (sin(Ax) + sinh(Ax)) + [cos(/'lL) — Cosh(AL)](cos(/lx)

+ cosh(Ax))

For a given A, equation (3.2) would produce a specific mode shape for that particular

transverse modal frequency from W = —1 to +1 and from x = 0 to L. The first to fifth
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mode shapes of a free-free beam based on the classical beam theory (CBT) are shown in
figure 3-1:

modeshape amplitude

Normalised beam length

Figure 3-1: First to fifth mode shapes of a free-free beam based on the CBT

These mode shapes are used to identify associated modal frequencies.

3.1.2 Frequency parameters for Timoshenko beam

The solution for the governing equation (2.14) for FF boundary conditions when moment
and shear forces at each end of the beam are zero is provided in Appendix A which results in
the polynomial equation below:

1 . 4p* 1 . . 8p3
{[COS(SZ) X (E + eSl)] - 2} l E4£)452 AS + [(E - eSl) X Sln(Sl)]l E3PG3 2'6 +

1 sing: 4s2p% L4 (3:3)
[2 = cos(sl) x (§+ eNiZ51"=0

R2G2
where s is the square root of the second order form of the differential equation (2.14).
Equation (3.3) is a polynomial equation of order 8 and it can be solved by iterative
techniques. Here, by using the bisection method the non-dimensional parameters (A) have
been generated for the Timoshenko beam of aspect ratio 10.4 and these are provided below
in table 3-2.

Table 3-2: Frequency parameters for beams using the solution for the Timoshenko beam theory (TBT)

Mode 1 2 3 4 5 6 7 8 9 10
TBT 46530 7.5166 | 10.1714 | 12.5904 | 14.7956 | 16.8130 | 18.6676 | 20.3807 | 21.9687 | 23.4418
Relative

difference 1.64% 4.38% 7.79% 11.57% | 15.48% | 19.38% | 23.18% | 26.86% | 30.40% | 33.83%
with CBT
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Figure 3-2 shows clearly that the CBT overestimates the modal frequencies after mode three
and this indicates that the numerical beam models are Timoshenko beams.

35

30 —

25

o / o

15 /:/ - —+—CBT

10 / :
/ +— Timoshenko

0 2 4 6 8 10 12
Mode number

Dimensionless frequency
parameter, A

Figure 3-2: Frequency parameter for a homogenised beam with aspect ratio equal t010.4 and depth
equal to 0.866 mm using CBT and Timoshenko.

Although the Euler-Bernoulli beam theory (CBT) provides fairly acceptable forecasts of
flexural modal frequencies for slender beams, for the short beams of L/d<20, it over

estimates the frequency values especially for modes 3 and above.
The shortcomings of the Timoshenko beam theory in modal analysis are as follow:

a) Size effect is not anticipated;

b) Only effective below the critical frequencies

The critical frequency as described in section 2.1.2 occurs in beams’ transverse vibration
when the wavelength approaches the beam depth of homogeneous materials. However, in
heterogeneous materials, the critical frequency depends highly on the specimen’s
microstructure and the beam’s boundary conditions; consequently it may occur at lower

frequencies compared with homogeneous cases.

3.2 Finite element modelling of 2D heterogeneous beams
3.2.1 Unit-cells consisting of two isotropic materials

In this chapter, the procedure for FE modelling of 2D heterogeneous beams is discussed. In
homogenisation methods the ultimate aim is to model unit cells which have the following
characteristics in order to be amenable to analysis and reveal any potential size effect in their

dynamic behaviour:
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1. The unit-cells must be large enough to contain all the material information in the
specimen.
2. The unit-cell must be small enough in order not to cause distortions in the stress
gradient across the depth of the beam.
However, there are some challenges involved which highlight the potential difficulties with
the application of such methods. Firstly, when the smallest scale of specimen is intended to
be studied, the second condition will not be satisfied as the depth of the beam might be as
little as one unit-cell. Secondly, a variation of void or inclusion’s radius would affect the
constituent materials volume fraction thus the overall properties of the specimens will
consequently change which thereby undermines the identification of any size effect present
in the specimen. Therefore, as the radius of the void or inclusion changes, so does the mass
and stiffness of the unit-cell, correcting for this is discussed in section 3.3. In this research,

three distinct types of 2D beams were modelled:

e those with perforations (voids)
e those with compliant inclusions
e and those with a compliant matrix
By considering two possible beam surface conditions, namely smooth, continuous surfaces
and textured surfaces there will be six possible beam types as follows:
. beams with perforations (voids) and continuous boundaries (BVOCB);
Il.  beams with perforations (voids) and textured boundaries (BVOTB);
I, beams with compliant inclusions and continuous boundaries (BINCB)
IV.  beams with compliant inclusions and textured boundaries (BINTB)
V.  beams with compliant matrix and continuous boundaries (BCMCB)

VI.  beams with compliant matrix and textured boundaries (BCMTB)

ANSYS APDL version 16.2 was used to perform geometric modelling and finite element
analysis (FEA) on each beam type. Figure 3-3 shows the two unit-cell configurations
containing either voids or inclusions that were used to construct individual beam models.
The height of the modelled unit cell is 0.866 mm, and the length of the unit cells is 1mm
respectively. The void or inclusion centres are thus located on an equilateral triangular array.
Models containing various void/inclusion volume fractions were generated. For unit-cells
containing inclusions rather than voids, the cells consist of two isotropic materials with the

included material surrounded by matrix material.
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Figure 3-3: Unit cell consisting of two isotropic materials r = 0.2 mm; the unit cell on the left is used
in generating beams with continuous surfaces and the unit cell on the right is used for when inclusions
intercept the surface of the beam.

Figure 3-3 shows unit-cells with the inclusion of 0.2 mm in radius. For the unit cells used to
generate beam models with continuous boundaries as seen in figure 3-3, left, a quarter unit
cell was first modelled and then reflected appropriately to produce a full unit cell. Therefore,
all sides of the matrix section are divided by 12 parts and mapped so that the sizes of
elements decrease on approaching the inclusion’s border. The circular area containing the
inclusion incorporates a squared area which is divided into a 12 by 12 element meshed area
and the remaining area is divided into two concentric rings. 8-node solid elements were used
for meshing the areas. 8-node solid element is a quadrilateral element with four corner nodes
plus four mid-side nodes, and this element choice uses full integration that will not cause
shear locking problems. By reflecting the quarter unit cell in both x and y-directions, a

complete unit cell was created which contained 1920 elements and 6068 nodes.

The beams with textured boundaries were modelled so that inclusions or voids were located
at the centre of a hexagonal array as seen in figure 3-3, right. The hexagonal sides are
divided into 12 equal parts. The diagonal lines connecting the hexagon’s vertices to the circle
are divided into ten parts. Such a mesh arrangement provides 1260 elements and 3925 nodes
per unit cell.

Void or inclusion radius was varied from 0.1 to 0.3 mm in 0.05 mm increments. The
corresponding void or inclusion volume fractions are listed in table 3-3 along with the

equivalent radius normalised with respect to the unit cell height (V,./S,,), where V. is the void
or inclusion radius, and S,, is the height of the unit cell. Throughout this work, void or

inclusions radius, volume fraction and normalised radius are used interchangeably.
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Table 3-3: Changes in void or inclusion volume fraction with radius and/or normalised radius of void

or inclusion
Void/inclusion Void/inclusion Normalised

radius, r volume fraction, V; void/inclusion
mm % radius, V,./S,,
0.1 4 0.12
0.15 8 0.17
0.2 15 0.23
0.25 23 0.29
0.3 33 0.35

In order to create the macroscopic scale beam models, the unit cells were repeatedly
regenerated to produce four different beam sizes consisting of one, two, three or four layers
of cells through beam depth, NCy=1,2,3 and 4 e.g. when NCy=1 then d=1*0.866 mm and
NCy=2 then d=2*0.866 mm and so forth. The length, L, to depth, d, aspect ratio, (L/d) was
kept constant at 10.4:1 so that all four sizes of the beam of a given volume fraction remained
geometrically similar. Two variants of each beam were created: those based on the first unit
cell contained boundaries comprised continuously of matrix material, figure 3-4a and 3-4b,
while those incorporating the second unit cell contained textured boundaries intersected by
the voids or inclusions, as seen in figures 3-4c and 3-4d. The successive layers of voids and
inclusions are such that the center points of every three neighboring voids or inclusions

forms an equilateral triangle aimed to minimise anisotropic characteristics of the material.

(b). e i (d)

had

Figure 3-4: Models showing the arrangement of unit cells in beams; (a) Beam size 1 with 9 unit cells

with continuous boundaries (top, left); (b) Beam size 2 with 18 unit cells in length with continuous

boundaries (bottom, left); (c) Beam size 1 with 9 unit cells with textured boundaries (top, right); (d)
Beam size 2 with 18 unit cells in length with textured boundaries (bottom, right)

A schematic of the beams overall dimensions is shown in figure 3-5.

T

do

+X

Figure 3-5: Schematic representation of the coordinates and dimensions on a homogeneous beam
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3.2.2 Mesh convergence in modal analysis.

To analyse the effect of mesh refinement, beams with 28, 156, 528, 898, 1920 and 7680
elements per unit cell were modelled by changing the number of line divisions, and it was
observed that the average error of the frequencies of each model for the first ten modes
compared with the next model refinement in sequence are 5.6740E-03, 4.6611E-05,
1.6991E-06, 1.1951E-06 and 1.1950E-06. Therefore, beams with 1920 elements per unit
cell satisfied the requirements for mesh convergence for the beams with continuous
boundaries. Beams with textured boundaries and 108, 276, 1260 and 5040 element/Unit-Cell
were modelled and the average error for the first ten modes reduced to 7.8101E-03, 2.1102E-
03, 6.2110E-04, 6.2102E-04 upon refinement. Therefore unit cells with 1260 elements have
a 6.00E-06 difference comparing with unit cells containing 5040 elements. The choice of
tolerance was set at 1E-5 for the first ten modal frequencies because in dynamic analysis,
firstly the meshed models must represent an idealised geometry, secondly the average error

increases for the higher modal frequencies.

3.3 Adjusting the modulus of elasticity (E) and mass density (p) of the
unit-cells

When changing the volume fraction of each material, the homogenised mass and stiffness
properties of the beam were kept fixed. This enabled the size effect on the free vibration to
be identified for various volume fractions when the unit cell mass and overall homogenised

properties were kept constant.

The aim is to investigate the frequency changes for various beam sizes and void/or
inclusions volume fractions for transverse vibration modes. Therfore, the ratio of modulus of
elasticity of matrix to inclusion was set at 10:1 for the beams with compliant inclusions and
1:10 for the beams with the compliant matrix. The modulus of elasticity at the macroscopic

scale was fixed at 70 GPa, see table 3-4.

The adjustment of the modulus of elasticity for each beam model has been done by
conducting appropriate static tensile test simulations which involved constraining all degrees
of freedom at one end of the beams like clamped conditions and applying a constant tensile
force on the opposite end and then obtaining the changes in length which is then used to
adjust modulus of elasticity. FEA made it possible to easily model various beam types with
the volume fractions and material constants associated with the constituent unit-cells being

altered while keeping the properties of the equivalent homogenized beam unchanged. This
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approach resulted in identifying the influence of the size effect on the flexural frequencies in
the beam models which would not be possible with other approaches such as practical
experimental testing. Using corrected values of modulus of elasticity of matrix and inclusion,
the beam models were again examined for the level of accuracy in comparison with the
original assumption of the overall modulus of elasticity which is 70 GPa. Therefore the
values in table 3-5 show the relative difference between the overall modulus of elasticity of
heterogeneous beam models and the modulus of elasticity of corresponding homogeneous
beams. As seen, in table 3-5, the relative difference for all beam models remains about or
below 1E-3.

The matrix and inclusion densities were also altered according to the void or inclusion
volume fraction, as detailed in table 3-6 while keeping the mass density of the unit cells
constant at 2700 kg/m® as a strategy during analysis. For beams with voids, the mass of the
matrix material was increased proportionally to its volume fraction. Therefore, the value of
2700 kg/m3 was divided by the volume fraction of the matrix as the void’s radius increased,
which resulted in creating beam models with an equal mass of the unit cell. For beams with
inclusions, the mass of inclusions kept as 1/10 of the mass of the matrix, therefore achieving
the overall density of 2700 kg/m® for such beams required a nominal value of 2454.5 kg/m®

to be divided by the volume fraction of the matrix.

Although the matrix and inclusion’s density altered, the overall mass density of the beam
models are very close to the homogeneous beam models and the relative difference remains

below 1E-6, as seen in table 3-6. Poisson ratio, v, is equal to 0.3 throughout this work.

Table 3-4: Correction of modulus of elasticity of beams matrix by void or inclusions radius for
various beam models

The modulus of elasticity of matrix, MPa
Void or inclusion Beams with compliant Beams with compliant
. Perforated beams . . :
radius, mm inclusions matrix
Continuous Textured Continuous Textured Continuous Textured
boundaries boundaries boundaries boundaries boundaries boundaries
0 7.000E+04 7.000E+04 7.000E+04 7.000E+04 7.000E+04 7.000E+04
0.1 7.796E+04 7.814E+04 7.590E+04 7.600E+04 6.679E+04 6.681E+04
0.15 8.892E+04 8.915E+04 8.382E+04 8.394E+04 6.292E+04 6.295E+04
0.2 1.064E+05 1.063E+05 9.600E+04 9.599E+04 5.775E+04 5.776E+04
0.25 1.338E+05 1.328E+05 1.139E+05 1.135E+05 5.142E+04 5.142E+04
0.3 1.796E+05 1.767E+05 1.404E+05 1.397E+05 4.412E+04 4.413E+04
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Table 3-5: The relative difference of the overall modulus of elasticity of beams models provided in
table 3-4 with the modulus of elasticity of the homogeneous beam

The relative difference of the overal modulus of elasticity of the heterogeneous beams with
homogeneous beam
Void or inclusion Beams with compliant Beams with compliant
radius, mm Perforated beams inclusions i matrix P
Continuous Textured Continuous Textured Continuous Textured
boundaries boundaries boundaries boundaries boundaries boundaries
0 0 0 0 0 0 0
0.1 3.394E-05 1.238E-04 1.096E-05 1.238E-04 1.096E-05 5.587E-05
0.15 7.885E-05 1.687E-04 3.394E-05 1.238E-04 5.587E-05 1.096E-05
0.2 5.587E-05 1.906E-04 7.885E-05 2.136E-04 7.885E-05 7.885E-05
0.25 2.585E-04 1.457E-04 3.483E-04 2.803E-04 1.096E-05 7.885E-05
0.3 6.179E-04 2.136E-04 4.382E-04 1.687E-04 1.008E-04 1.096E-05

Table 3-6: Correction of density by void or inclusions radius

The mass density of matrix and inclusions, kg/m3
ixglludsi%; Perforated beams Beams with inclusions
radius. mm Relative difference Relative difference
' For matrix with homogeneous For matrix For inclusions | with homogeneous
beam beam
0 2700.00 0 2700.00 N/A 0

0.1 2801.64 1.852E-07 2546.94 6766.11 1.852E-07

0.15 2939.97 1.852E-07 2672.70 3007.16 1.852E-07

0.2 3158.29 1.852E-07 2871.18 1691.53 1.852E-07

0.25 3491.67 1.852E-07 3174.25 1082.58 1.852E-07

0.3 4008.87 1.852E-07 3644.43 751.79 1.852E-07

The adjustment of modulus of elasticity and mass of the unit cells with the volume fraction
of void and inclusions has the following benefits:

e Toidentify any size effect within the structure of the heterogeneous models that may
exist on the dynamic behaviour of specimens due to the changes in void or
inclusion’s volume fraction as well as size effects due to changes in beam depths
with a constant aspect ratio;

e The effects of the size of the voids and inclusions near the boundaries on the
dynamic behaviour of beams and also when they intercept the boundaries can be
investigated;

e This approach is particularly useful for studying the size of the voids and inclusions

on the flexural frequencies in the heterogeneous beam models when experimental
testing is not physically possible.

This approach can be useful for future research studies mainly when two different materials
with similar macroscopic geometries and overall observable properties but different in
microstructural scale are studied. Consequently, the industrial application of such materials
may be their functionality rather than overall similarities among them.
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3.4 Modal analysis (Flexural vibration)
3.4.1 2D model and boundary conditions choices

In modelling the dynamic behaviour of the beams, two dimensional analyses were initially
preferred rather than three dimensional, the main reason being that in a two dimensional
analysis, the in-plane modes are only identified, such as in-plane transverse and longitudinal
modal frequencies. In-plane modal analysis will automatically exclude torsional and out-of-
plane bending modes. This reduced the required computational time and resources for

analysis.

In this work the study of the size effect in nonhomogeneous materials was the primary goal
and the effect of boundary conditions was of lesser importance. Therefore, free-free (FF)
boundary conditions were chosen for the two dimensional modal analyses. This means that
there are no bending moments or shear forces acting at either ends of the beam. The reason is
that in the FF case the effect of boundary conditions are totally eliminated and, in addition,
the mode shapes are distinctively recognisable for categorising. Thus, in order to categorise
the transverse modes, it just requires counting the number of wave lobes and subsequently
distinguishing the mode number, e.g. primary mode shape has one lobe, second mode shape
has two opposite lobes, and so forth; see for example the five mode shapes shown in figure
3-1.

3.4.2 FEA Solver used, the number of modal frequencies, and the benefits of Block
Lanczos

In 2D FE modal analysis initially about 63 modal frequencies were extracted using the Block
Lanczos solver. This solver is capable of extracting modes from a lower to a prescribed
upper frequency and it is very reliable and would not omit any of the modal frequencies
within the specified range. This solver is the preferred option when the number of DOF is
less than one million. The main issue in modal analysis using finite element software is that
it does not distinguish longitudinal from transverse frequencies and all the modal frequencies
are produced in ascending order. Therefore, the mode shapes were investigated individually
and divided into three categories: transverse modes, longitudinal modes and mixed modes.
Transverse modal frequencies were distinctly recognisable below the critical frequency,
before the wave length approached the beams depth. Therefore, to be certain, 10 transverse
modal frequencies were identified along with 4 to 6 longitudinal frequencies. The majority

of the modes above the critical frequency showed very complicated in-plane mode shapes in
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which the bending modes were not clearly recognizable from the longitudinal ones; therefore
they were separated and named mixed-modes.

3.5 Finite element results and size effect predictions
3.5.1 Beams with continuous boundaries

The finite element results which are presented in this section and shown in figures 3-6 to 3-8
and also tabulated in Appendix B, provide size effect information for beams with continuous
surfaces. For this purpose, three types of beams listed in section 3.2.1 are modelled and

analysed.

Modal frequencies are nondimensionalised using the equation (3.4):
12p
A= L@rf)V )V (3.4)

where A is the non-dimensional frequency parameter, L is the beams length; f is the
numerically predicted flexural modal frequency in Hz; p is the mass density; E is the
modulus of elasticity, and d is the depth of the beam. The values for A for the first ten
flexural modal frequencies of homogeneous beams (V,/S, = 0) predicted using finite
element analysis are compared to the analytically derived values based on Timoshenko beam
theory in table 3-7. These frequency parameters are dimensionless and are used for
normalisation of the flexural frequency values of all heterogeneous beams considered in this
thesis. The procedure to obtain the dimensionless frequency parameters of Timoshenko
beam is explained in section 3.1.2. However, Timoshenko beam theory proved to provide
good predictions for the first ten flexural modal frequencies which are corroborated by the

FEA results for homogeneous cases.
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Table 3-7: The non-dimensional modal frequencies () for homogeneous beams and with aspect ratio

10.4:1
Relative diff. of
Mode FEA Timoshenko FEA with
Timoshenko
1 4.655455 4.653041 0.05%
2 7.527076 7.516596 0.14%
3 10.194069 10.171415 0.22%
4 12.626892 12.590439 0.29%
5 14.84537 14.795647 0.34%
6 16.874623 16.813016 0.37%
7 18.739625 18.667635 0.38%
8 20.461702 20.380707 0.40%
9 22.057553 21.968693 0.40%
10 23.538186 23.441844 0.41%

The normalised values (A) when presented in figure 3-6 to 3-14 were obtained by dividing
the non-dimensional frequency parameter (1) at each modal frequency by its corresponding
non-dimensional frequency from column two of table 3-7, that is, the FEA derived values for
A

Figure 3-6 shows the normalised primary bending modal frequency of four beam sizes for
beams with various volume fractions of voids and continuous boundaries (BVOCB). This
behaviour is highly size dependent as seen in figure 3-6. The homogeneous case is
represented by the blue lines (dotted lines with solid square markers) and the FE results show
that in this case, the normalised modal frequency is size independent. For any given mode
the size effect becomes more pronounced with diminishing beam size and is greatest for the
smallest size of beams. The size effect is also more pronounced for beams with a higher void
volume fraction. The non-dimensional frequency parameters (L) information for the first ten
transverse vibration modes of beams with voids is provided in table B-1 in Appendix B.
Interestingly, the size effect is apparently mode dependent; there is a distinct change in its
nature such that after mode three changes in void radius causes a decrease rather than an
increase in normalised frequencies (A). Figure 3-7 shows how the normalised frequencies for
the beams with voids and height of one unit-cells (First smallest beam sample) vary with

mode number.
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Results in figure 3-8 show that beams with compliant inclusions behave similarly although

the size effect appears to be slightly less pronounced. The smaller values of normalised
frequencies for beams with compliant inclusions is because the matrix is less stiff in
comparison with the perforated beam models which is related to the reduction of the flexural
rigidity, El, at any given cross-section of the beams.

According to these results in figures 3-6 and 3-8, for the primary modes (first flexural mode),
it appears that variations in the normalised frequencies have an approximately linear
relationship with reciprocal size measure given by the inverse of the square of the depth of
the beam (1/d?), except for the smallest beam sizes where the ratio of the radius of void or
inclusion to overall beam thickness approaches the maximum. The smallest beam models
lack the triangular arrangements of void or inclusions within the beam structures. Therefore
the size effect not only increases dramatically but also deviates from the linear pattern as

seen for the larger models.
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Figure 3-6: Normalised primary bending modal frequency of four beam sizes for beams with various
volume fractions of voids and continuous boundaries (BVOCB)
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Figure 3-7: The first ten normalised bending modal frequency of the smallest beam sample (NCy=1 or
depth=0.866 mm) with various volume fractions of voids and continuous boundaries (BVOCB)
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Figure 3-8: Normalised primary bending modal frequency of four beam sizes for beams with various
volume fractions of compliant inclusion and continuous boundaries (BINCB)

The results for specimens with stiff inclusions and continuous surfaces, BCMCB, show an
entirely different dynamic behaviour; Here, a distinctly different size effect indicating that
increasing volume fraction causes a decrease in A at a given mode number for this sample
size. Figure 3-9 shows the inverse size effect on normalised frequencies for the primary
mode when the inclusions have a higher modulus of elasticity than the matrix. The size
effect although inverted once more remains approximately linear across the three larger
samples but again this does not extrapolate to the smallest sample size. Figure 3-10 shows
changes in A with mode number for the beams with height of one unit-cell (the smallest

beam sample).
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The dynamic behaviour of the beam models with a compliant matrix as modelled in this
chapter may seem counterintuitive because of the inverse size effects that they indicate. In
structures with a matrix of a specific modulus of elasticity, stiffer inclusions are expected to
make the entire structure stiffer. But here, on the contrary, the matrix material is not the same
as the beams with compliant inclusions; here the matrix is more compliant than the previous
models and reduces with volume fraction too. The second reason is that as the models are
two-dimensional, only in-plane transverse vibrations are analysed, which is not in the
direction of cylindrical shaped inclusions. The third reason is that in beam models with or
less than four layers of unit cells in depth of the beams, the compliant matrix may dictate the
overall behaviour of the structure and generates inverse size effects on normalised
frequencies. Note that the matrix modulus of elasticity is ten times lower than the modulus of

elasticity which was explained earlier in section 3.3 and shown in table 3-4.
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Figure 3-9: Normalised primary bending modal frequency of four beam sizes for beams with
compliant matrix and continuous boundaries (BCMCB)
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Figure 3-10: The first ten normalised bending modal frequency of the smallest beam sample (NCy=1)
with compliant matrix and continuous boundaries (BCMCB)
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As seen in figures 3-7 and 3-10, the normalised frequency values are also mode related, and
that means the frequency values change at any specific mode number which also depends on
the void or inclusions volume fraction. If the void or inclusion’s volume fraction is reduced
then the dynamic behaviour of the specimen becomes closer to a homogeneous case. The
mode related frequencies show a clear pattern for the lower modal frequencies, e.g., mode
numbers one to eight. As the frequency values approach the critical frequency, then a clear
trend is not visible any longer since the wavelength approaches the beam depth, so mode
shapes are not categorically distinguishable. This phenomenon is observed in FE results as
seen in figure 3-11 for the transverse modes numbers 12, 13 and 14 for the beam with 0.2
mm voids, depth equal to 1.732 mm, aspect ratio (Length to depth) equal to 10.4 and

continuous boundaries.

DISPLACEMENT
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SUB =21
FREQ=830734
DMX =7327.6

STEP=1
SUB =22
FREQ=879850
DMX =7814.94

STEP=1
SUB =23

FREQ=885420
DMX =6500.6

Figure 3-11: Mode Number: At modal frequency of Hz, beam sample with voids and continuous
boundaries, depth =1.732 mm, R=0.2mm

3.5.2 Beams with textured boundaries

If the upper and lower boundaries of the beams are not continuously comprised of matrix but
textured due to their intersection with the voids or inclusions, there is a significant difference
in dynamic behaviour. Beams with voids or compliant inclusions and textured boundaries
showed similar behaviour to the beams with compliant matrix and continuous boundaries
already discussed in section 3.5.1 and therefore are not discussed any further in this section.
Figures 3-12 and 3-13 show normalised flexural frequencies of beams with voids and

textured boundaries.
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Figure 3-12: Normalised primary bending modal frequency of four beam sizes for beams with voids
and textured boundaries (BVOTB) for which the micropolar constants were not obtainable
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Figure 3-13: The first ten normalised bending modal frequency of the smallest beam sample (NCy=1)
with voids and textured boundaries (BVOTB) for which the micropolar constants were obtainable

Finally, beams with textured boundaries and a matrix comprised of compliant material with a
lower modulus of elasticity exhibit a more conventional size effect with normalised

frequency increasing as beam size reduces as seen in figure 3-14.

The location of the inclusions concerning the boundaries of the specimens causes an inverse
dynamic behaviour. As explained in section 3.5.1, for beam models with or less than four
layers of unit cells in depth of the beams, the compliant matrix may dictate the overall
behaviour of the structure. However, when the boundaries of the specimen are intercepted
with stiff inclusions, the beams’ borders will be more rigid in general. Therefore, the actual
cause of inverse size effects in beam models with textured boundaries is due to changes in
the material properties in near the surface of the specimen. If voids or compliant inclusions
intercept the models, then the near-surface area becomes less stiff than inner parts of the

sample. On the contrary, if stiffer inclusions intercept the surface of the beam, then the near-
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surface area becomes stiffer than internal components of the specimen. Such dynamic
behaviour will be maximised by reducing the total number of the constitutive layers across
the beam depth to only one unit cell, as well as changing the shape of the void or inclusion’s

which is not circular any longer.
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Figure 3-14: Normalised primary bending modal frequency of four beam sizes for beams with

compliant matrix and textured boundaries (BCMTB) for which the micropolar constants were

obtainable

In summary, the numerical results shown in figures 3-6 to 3-14 and provided in tables B-1
to B-6 Appendix B indicate that the forecast size effect depends on:

a) Beam depth

b) Void/inclusions volume fraction

c) The relative stiffness of matrix and inclusions

d) Beam surface morphology
The remainder of this chapter considers whether various theoretical beam models, especially
models incorporating an intrinsic length scale in their formulations to account for size effects
are capable of predicting these numerical results by means of analytical or numerical

solution methods.

3.6 An analytical nonlocal Timoshenko beam model and size effect

In this section the characteristic equations for nonlocal Timoshenko beams will be derived
and solved for free-free boundary conditions. The local and nonlocal Timoshenko beam
mode shapes will also be discussed. In addition, the results will be compared with FEA

results.
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3.6.1 The nonlocal Timoshenko beam model

In this section, the nonlocal Timoshenko (NLT) beam model is used to study the size effect
in a Timoshenko beam by incorporating Eringen’s nonlocal theory. This approach has been
widely used in nanotechnology because it can be solved analytically for various boundary
conditions, e.g., (Wang, Zhang, and He 2007; Z. Zhang, Challamel, and Wang 2013; Zhen
Zhang, Wang, and Challamel 2015). However, it must be noted that the Timoshenko beam
theory is one dimensional and Eringen’s small-scale coefficient is only really applicable to

the longitudinal direction.

Here the work of Wang et al. (2007) is extended to include the free-free boundary condition:

Axial normal stresses, o, , can be stated in the following forms:

2
d“ 0y,
dx?

where the &, is the corresponding strain. Equation (3.5) indicates that NLT is a gradient

= ngx (35)

Oyxx — (eoa)z

type nonlocal theory.
The governing equations for nonlocal Timoshenko beam can be obtained by applying
Hamilton’s principle and incorporating Eringen’s small-scale coefficient ega into the

Timoshenko beam model as defined by Wang et al.(2007):

Py AGA(0+dW)+ 0?0 2 (pae? ™ 4 p102E0) Z g (3.6)
dxz ¢ dx prew (eo@)” | pAw dx P axz) T '
RGA de+dzw + pAw*W =0 (3.7)
K dx  dx? paw= = '

where 0 is the rotation, W is the transverse displacement, w is the circular frequency, & is
the Timoshenko’s shear correction factor, G is the shear modulus, A is the cross-section of
the beam, | is the second moment of area, e, is a constant specific to each material and @ is
the internal characteristic length in the NLT beam. In equation (3.5), ey,a can be normalised
and represented by o, alpha. After decoupling equations (3.6) and (3.7) and applying free-
free boundary conditions, the following equation (3.8) may be derived:

[(H,H3)? — (HyH,)?]
2H,H,HyH,

coshfcosy + ( >sinhﬁsiny =1 (3.8)

where:
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a?? _
H, = a?2% + < - 1>ﬁwﬁ (3.9)

52
a’2? _
H, = a?A% + ( o 1) Y%, (3.10)
Hy =T +p (3.11)
H, =% +y (3.12)
and
(ﬁ) _ <ib +Vb? — 4ac>1/2 (3.13)
y) 2a .
in which
a’)?
a= <1 - 22 ) (3.14)
. 1—0Na?2?
b =22 (n + —Tf + a2> (3.15)
120
c=2% ? -1 (316)
with a, b and ¢ being the usual quadratic formula constants. Finally:
_ 2+ 220
)= P ; (3.17)
2 29
oyt + A0
P, = — (3.18)

The parameters H; to H, are defined by C. M. Wang et al. (2007) while the derivation of
equation (3.8) is entirely new. The full mathematical procedure to derive equation (3.8) is

given in Appendix C.1.
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The non-dimensional parameters used in the above equations are:

A= w2 (pAL* JED)'/* (3.19)
2 = EI/(K,GAL?) (3.20)
a=eya/l (3.21)
&=LA/DY? (3.22)

in which X is the dimensionless frequency parameter, {2 is the shear deformation parameter,
o is the scaling effect parameter, @ is the internal characteristic length, and finally, & is the
slenderness ratio.

The equations (3.6) and (3.7) where solved with the assumption that eya is effective in the
axial, x, direction. The solutions to equations (3.6) and (3.7) with alpha effective in this
direction, as shown in equation (3.5), and when Eringen’s nonlocal effect is also applicable

in axial and transverse, y, directions are provided in the Appendices C.1 and C.2.

Equation (3.8) can be solved by iteration which produces an infinite number of Eigenvalues

giving the transverse frequencies for a free-free beam.

It must be stated that small scale effects are considered when the overall length scales of the
beam are comparable to the microstructural scale and thus appear to affect the resulting
eigenvalues. Therefore, if ‘a’ is taken as equal to zero, then the characteristic length is
ignored and so the governing equations will be reduced to that of conventional local
Timoshenko beams and the results from equation (3.8) will be the exact results for a local

Timoshenko beam where there is no small scale effect.

3.6.2 Local and nonlocal Timoshenko beam mode shapes

Having obtained the transverse frequencies, the Eigen vectors or mode shapes at each modal

frequency can be determined by equation (3.23):
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w = [sinh(ﬁ%) - %sin(yf)] (3.23)
2

[ﬁzsinh(ﬁ) + (Z—;) yzsin(y)]

 [B2eosh(®) ~ (rcos()]

[cosh(ﬁf) + % cos(yx)

where X and W are the position in the axial, x, and displacements in the transverse, y,
direction normalised with respect to length, L. The full mathematical procedure to derive

equation (3.23) is given in Appendix C.3.

If the frequency parameter is known then the associated mode shape for a free-free beam can

be depicted using the equation (3.23) for X between 0 <x <1 knowing that W =
% and x = % The first to fifth mode shapes of a free-free beam based on the Timoshenko

beam theory (TBT) are shown in figure 3-15 which are the same for local and nonlocal

Timoshenko beams:

05

modeshape amplitude wiL

1 1 I 1 1 I
0 04 02 03 04 05 06 07 08 09 1
Normalised beam length x/L

Figure 3-15: First to fifth mode shapes of a free-free beam based of the TBT, AR=10.4. The mode
shapes are used to identify modal frequencies associated with each mode shape.

3.6.3 Comparison with FE results to identify o

Equation (3.8) was solved by applying the bisection method to identify the normalised
transverse modal frequencies for the first 37 modes of a beam with aspect ratio L/d=10.4:1.
The results are provided in figure 3-17-a. By comparing the finite element results and these
analytical NLT results, it is possible to obtain Eringen’s scale parameter for some of the

heterogeneous beam models considered previously. Direct comparison between the results in
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figure 3-17-a and the finite element results given in section 3.5 suggests that it is not always

possible to determine o for all cases considered. However, by applying a constant shift:

(A/AO)FE,n,after = (A/AO)FE,n,before - [CNLT X (1 - (A//IO)FE, Mode_l)] (3-24)

where n, n > 1, is the mode number and A, is the non-dimensional frequency of
homogeneous beam obtained using ANSYS. The FE results for perforated beams with
continuous boundaries could be compared with the results obtained from solving the Eringen
non-local theory, as seen in figure 3-16.
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Figure 3-16: Numerically obtained normalised frequency parameter vs. mode numbers
Beam model: Perforated beam (BVOCB), Size 1(1/d"2=1.33), BC: Free-Free

Equation (3.24) is only used to shift the FE normalised frequencies at any given volume
fraction and fit them onto the NLT transverse frequency results to obtain a. Therefore,
(A/Ao0)FEmarter is the normalised frequency parameter of the nt" mode after shifting,
(A/A0)FEnpefore 1S the normalised frequency parameter of the mode number nt" pefore
shifting from the FE results and Cy ;. is an empirical constant for the beam type and is equal
to 1.2 which relates FE and NLT results. The value of Cy,r was obtained by curve fitting and
changing the Cy,r value until the NLT beam results match those obtained from FE. Thus, by
shifting the results below the line representing the homogeneous case, obtaining a for beams

with either voids or inclusions is possible.

The values for a obtained via this curve fitting method for beams with continuous surfaces

show that for a given volume fraction o is not size independent as illustrated in figure 3-17-b
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and therefore, it cannot be considered as a unique property of the material. For the samples

with textured boundaries, it is not possible to identify a because of the inverted size effect.
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Figure 3-17: Results for perforated beam models with continuous boundaries and F-F boundary
conditions using NLT beam theory; a) Normalised non-local Timoshenko frequency parameters for
various o's. Eringen’s nonlocal parameter is influenced in only x directions (d~2 = 1.33, AR = 10.4)
(graph on the left); b) Scale Coefficient 'a' (Alpha), Obtained by curve fitting FE results with NLT and
V,./S,, is the normalised void radius changing from 0 to 0.35 (graph on the right).

Further investigation into the nonlocal Timoshenko beam theory such as including the
Eringen’s nonlocal parameter in both x and y directions in the formulations did not
overcome this fundamental problem. See figures 3-18-a, 3-18-b and the solution procedure

in Appendix C.2.

parameter is effective in x and y directions (1/d? = 1.33,AR = 10.4). b) Scale Coefficient '

Flexural mode number

1/d® [1/mm?*]
Figure 3-18: Results for perforated beam models with continuous boundaries and F-F boundary

conditions using NLT beam theory (including the Eringen’s nonlocal parameter in x and y directions);
a)Normalised non-local Timoshenko frequency parameters for various a’s for perforated beam models
with continuous boundaries and F-F boundary conditions using NLT beam theory. Eringen’s nonlocal
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(Alpha), Obtained by curve fitting FE results with NLT and V;./S,, is the normalised void radius

changing from 0 to 0.35 (graph on the right).
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As seen in figures 3-17-b and 3-18-b, increasing the beam depth will require a different
value of 'a' which indicates that the Eringen’s scale coefficient for the beam models with
constant aspect ratio is thus size-dependent. This confirms that the NLT beam is not
applicable for modal analysis in cases when increasing the beam depth is accompanied by an

increase in number of unit cells across the beam depth.

3.7 Conclusions:

Geometrically similar beam samples of different sizes that contained periodic heterogeneities
were modelled using finite element analysis, and modal analyses were performed to identify
the unconstrained flexural natural frequencies. Contrary to the homogeneous case where
these frequencies are size independent, the FE results indicate that in the heterogeneous case
they are size dependent. Moreover, this size effect depends on both the specification of the

periodic heterogeneity and its location relative to the sample boundaries.

Eringen’s enhanced nonlocal Timoshenko beam was also solved analytically for FF
boundary condition and mode shapes were extracted. For cases where the finite element
results exhibit a consistent size effect, Eringen’s nonlocal Timoshenko beam (NLT) analysis
was considered in attempting to explain the dynamic behaviour observed. However, the NLT
appears to have shortcomings since the small-scale coefficient was not constant for all model
sizes of the same aspect ratio. The size dependency of the coefficient value thus implies that
it cannot be interpreted as an independent constitutive property and, therefore, the Eringen

nonlocal theory was not applicable for the models presented in this chapter.

In the light of the above points which describe, in detail, the inability of the classical and
non-local beam deformation theories to explain the dynamic behaviour of heterogeneous
models, in the next chapter, the theory of micropolar elasticity will be studied and its
applicability and abilities in explaining the dynamic response of the heterogeneous beams

and plates will be investigated.
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4 Application of Micropolar Theory to 2D Beams

In chapter three, the Eringen non-local Timoshenko beam could not explain the dynamic
behaviour of two-dimensional heterogeneous beams. Therefore a more suitable theory must
be used which should be able to explain the size effect in the dynamic behaviour of the
heterogeneous materials. The micropolar theory, as briefly discussed in chapter two, has an
additional degree of freedom: a micro rotation vector which allows the constituent material
particles to rotate individually. Additional couple stresses, as well as the stresses, are taken
into considerations in the micropolar theory (Lakes 1996) and orthogonal shear stresses may
therefore be symmetric or asymmetric. In this chapter, two-dimensional plane-stress
formulation of micropolar theory will first be discussed and one of the micropolar constants,

namely the characteristic length of bending, will be analytically obtained.

4.1 2D micropolar formulation
Equation (4.1) defines the strain components, &, in terms of the displacements, u, and micro-
rotations, ¢, by (Hossein Abadikhah and Folkow 2015; Hassanpour and Heppler 2017):

£ij = Wj; — €jji Py (4.1)

The micro-rotation occurs due to the effects of asymmetric components of shear stresses on
infinitesimal material particles which causes these material points to rotate individually and
is different from the macro rotation when the slope of the displacement is considered. The

micro and macro rotations are shown in figure 4-1.

Micro-rotation

A section of a
deflected structure

Figure 4-1: Representation of micro and macro rotations in a micropolar medium
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The macro-rotation is:

0, = (e uy,;)/2 (4.2)

The strain tensor in equation (4.1) is composed of symmetric and asymmetric strain tensors
as in (Hassanpour and Heppler 2017):

gj=¢g; +e;” (4.3)
Thus:
1 (4.4)
gy = 5+ )

(4.5)

1
g = E(ui,j — ;) — ey P = ey (O — Pi)

Therefore equation (4.1) can be expanded in a 2D matrix form in Cartesian coordinates with

indices substituted i, j, k=x, y, and z as follows:

Exx [ Ux,x 1 (4.6)
& u
wi_ | vy |
Exy |uy,x - ¢z|
Eyx Uy y + ¢zJ

In the dynamic case micro inertia also needs to be included into the equations of dynamic
equilibrium for linear and angular momenta. Therefore the equations of equilibrium to

satisfy the micropolar linear elasticity balance will be according to:

Tiji = Poz

0%¢y, (4.8)
mi;; + i Ty = plji 57~

where J;; is the microinertia tensor. In the literature, the value of the micro-inertia is taken

constant (Hossein Abadikhah and Folkow 2015) but in the next chapter, it will be shown that

76



the micro inertia depends on volume fraction through the characteristic length of bending

and its influence on another constitutive parameter, the coupling number, will be discussed.

In the plane stress case, the micro-rotation vector is only perpendicular to the plane and the

shear stresses relating to z coordinates vanish. Therefore, ¢, = ¢, =0 and t,, = T,, =

Tox = Tyz = Tzy = 0

The stress and strain tensors are define by:

4.9
T= [Txx Tyy Txy Tyx]T ( )
€= [Exx &)y Exy £ (4.10)
where T stands for transposed.
Stress and couple stress are linked to the strain and curvature as follows:
T £
(mx2> = D2p piane stress b2 x (4.11)
Mz bz
D (o [0]x2
2D Plane Stress [0]2><4 D2 (4.12)

where the material constitutive matrix “ID1” and “ID2” can be derived from equations (2.16)

and (2.17) and reduced for a 2-D micropolar in plane stress case are given by Lake (2003)

as.
[ 2u* + k) A"+ 2uF + k%) Qu*+rHA" 0 0
A"+ 2p* + x¥) A"+ 2u* + x¥)
Qu*+x9HA" Qu* + k)2 + 2u* + «*)
D= O +2u +r) " + 24" + 1) 0 (4.13)
0 0 W+ K w
0 0 wout+K
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D2 = [Oy ;)] (4.14)

Equations (4.13) and (4.14) may be written in terms of 4 independent engineering constants

as defined by Lake (1996) in a generalised plane stress form thus:

1 Vi 0 0
Vi 1 0 0
1—v 1 1—v, (1—2N?
E m m
D1 =-—" 0 0 2 ( —NZ) 2 (1—1\12) 4.15
1—v,? (4.15)
0 0 1—vy,[(1-2N? 1—vm( 1 )
2 1— N2 2 1— N?
[2Eml} ol
Dy |1 F vy | (4.16)
l 2Enlj |
l 1+vy, J
where the engineering constants relate to the micropolar constants as follows:
£ - Qu*+ k*)(BA + 2u* + k%) (4.17)
m QA" + 2u* + k*)
_— A (4.18)
™ (22 + 2u* + k¥)
2 = y* (4.19)
b 202u + k%)
K* (4.20)

2 —_— e —————
2(u +x7)

Here E,, is the micropolar modulus, v, is the micropolar Poisson’s ratio and [}, is a length
scale parameter termed the characteristic length in bending that should reflect the

microstructural scale. N is the coupling number that quantifies the shear stress asymmetry.

The characteristic length of bending, [, , in equation (4.16) can be obtained analytically for a
slender beam which is now described in section 4.2.

According to equation (4.15), the shear stress and strain relationship may be written in

matrix form:
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[TWC] _ [ Gy G2 ] [EYX] (4.21)
Tayl | Goy Goz [ 1Exy
Gll = 622 = ,Ll* + k¥ (422)
G2 =Gy = (4.23)
or
(1 (1-2n2)]
(7] = L |20-N3)  2(1-ND)| ) (4.24)
Tyl (1 +vy)| (1-2N?) 1 [ [Exy

|20-N?) 201 -N?)

indicating that the asymmetric components of the shear stress are controlled by N according

to:

P s E 4.25
oy = Gy + Gu) = 20" 4 " = T 29
m
. E N? (4.26)
Gasy = G11 — G2 = K =1+v (1—N2)
m

This parameter can be identified from the higher order modes using an iteration method that

will be described in chapter five since these involve increased shear deformation.

The solid behaves in a classical homogeneous manner if a*, 8*,y* and k* equal zero, while
if N=1 and therefore, microrotation and macrorotation are not kinematically distinct
implying that, they are equal, such that ¢, = 8, and this limiting case is usually referred to

as couple stress elasticity.

4.2 Characteristic length in bending, [,

As shown in equations (4.11), (4.12), (4.15) and (4.16), the couple stress tensors are related
to the micro rotations which allow identification of one of the micropolar constants, namely
the characteristic length of bending, analytically through the primary transverse frequency of
slender beams. E,,, and v,,, can be determined from static tensile tests where no size effect is

anticipated while [, can be obtained from mode 1 dynamic behaviour as outlined here.
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In a slender beam where d/L << 1 , the micro and macro-rotations actually become

indistinguishable (Hadjesfandiari, Hajesfandiari, and Dargush 2016):

Microrotation ¢, = Macrorotation 8, (4.27)

The bending moment, M, is related to the internal force stress,z,,, and couple stress,m,,,
thus:

4.2
M= f (VTyy + My, )dA (4.28)
A
Also,
1 do d¢, d*w (4.29)
R dx dx = dx?
where R is the radius of curvature and W is the transverse displacement.
The in-plane couple stress my, and the normal stress T, are:
L4, (4.30)
m,, =Y dx
Emfy (4.31)
Txx = T

where Ey; is the micropolar flexural modulus which is assumed to be equal to the

micropolar tensile modulus E,,,.

If ¢, =0, then:

(4.32)
The second moment of area is defined as:

(4.33)

I=fy2dA
A

where A is the cross-section of the slender beam:
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A=fdA
A

2

Substituting for% =4 ‘iv in the moment-curvature relationship:

dx

d*w M

dx? ~  Ep+y'A Dy

where Dy,,; is the micropolar flexural rigidity

For an unloaded Euler-Bernoulli beam in the dynamic case:

d*w 5
Dmf W — W W=0
where p is the mass per unit length given by:
u=pA
and
D
=2 [
@ DAL*
Emfl +7*4A
=22 =
- DAL

Also, Dp,r = D = EI in absence of any couple stress.

The equations (4.33) and (4.34) may also be written as:

_ bd®
12

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)
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A=bd (4.42)

for a rectangular sectioned beam. By combining the equations (4.17) and (4.19) it follows
that:

. Emyl (4.43)
12

Note that parameter [. (Beveridge, Wheel, and Nash 2013a) differs from the conventional

characteristic length in bending, [, , by a factor of 24.
By substituting equations (4.41), (4.42) and (4.43) into equation (4.40):

4
,  Emsh

(4.44)
w =
12pL*

(a2 +12)
Rearrange the equation (4.44) regarding mass and frequency:
EpeA*h sdy\3 I\ 4.45
2 = L(_) (_) (4.45)
mw 12 I <1 + P

Note that if y* is taken as in the equation (4.16), the resulting characteristics length will be

about+/24 or 4.3 times smaller. By applying y* as it appears in equation (4.16), the equation
(4.45) can be modified to:

e ()

Equation (4.45) thus relates the characteristic length, 1., non-dimensional frequency, A,

micropolar flexural modulus, E.¢, and beam dimensions, to the product of beam’s mass, m
(m without subscript is scalar and stands for mass), multiplied by squared frequency. Thus, if
this product is determined for beams of various size and plotted against the beam’s
reciprocal size measure, (1/d?), then it is possible to obtain E,¢ or A from the intercept and
the characteristic length from the slope. See table 4-1. Since equation (4.45) and (4.46)
assume the beam is slender, they are only applied to mode one here where this assumption is

presumed valid.
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The FE results, as presented in chapter three, indicated that in some cases, the size effect
appears to be consistent with more generalised continuum descriptions of dynamic
constitutive behaviour such as micropolar elasticity in that an increase in frequency with
reducing size is observed while in other cases the effect is contradictory. Therefore, Equation
(4.45) was applied to all four sizes of sample to obtain results, the characteristic length of
bending, listed in table 4-1 for the following beam types:

1) Perforated beams with continuous boundaries

2) Beams with compliant inclusions and continuous boundaries

3) Beams with compliant matrix and textured boundaries
Other beam types did not satisfy the micropolar theory since the size effect is not as
anticipated.

The characteristic length does not vary with beam size and only depends on volume fraction.
See table 4-1 below:

Table 4-1: Characteristic length changes with volume fraction, V; . Based on all four sizes of beam

model
. . . - I, for beams with textured
_V0|d or [, for beams with continuous boundaries, mm boundaries, mm
inclusion
vol. Beams with :
fraction Perforated R? compliant R2 Beams with R2
beams . . compliant matrix
inclusions
4% 0.2717 98.99% 0.2555 99.99% 0.2218 99.70%
8% 0.4139 99.77% 0.3612 99.97% 0.3126 99.76%
15% 0.5432 99.78% 0.4681 99.95% 0.3829 99.91%
23% 0.6522 99.88% 0.5621 99.94% 0.4379 99.95%
33% 0.7334 99.83% 0.6367 99.93% 0.4759 99.91%

The coefficients of determination, denoted R?, in table 4-1 indicate the accuracy of the
Polyfit approximation for in obtaining the values of characteristic length for various volume

fractions.

Beveridge et al. (2013a) identified the characteristic length of bending through static
mechanical 3 point bending experiments on four slender beams of high mass density
aluminium (HMD) with periodic perforations of radius equal to 3.5 mm, breadth 12.7 mm,
depths of 12.7, 25.4, 38.1, and 50.8 mm and aspect ratio of 10:1. Although their test pieces
were scaled up and that their results are available for only one volume fraction equal to 0.23,
however, the normalised value of the characteristic length of bending that they identified is
in good agreement with the value that was determined through dynamic procedure for the

same volume fraction in this chapter, as seen in table 4-2:

83




Table 4-2: The normalised characteristic length of bending, I, , for perforated beams of volume
fraction equal to 0.23

The The normalised
Void Unit-cell | Normalised | characteristic i
. . - characteristic
radius depth void radius length of .
bendi length of bending
ending
V. mm S, mm I/;/Sy I, mm lC/Sy
This work,
Modal FEA 0.25 0.866 0.289 0.652 0.753
Experimental,
3 Point
bending case,
Ref: 35 12.7 0.276 8.750 0.689
(Beveridge,
Wheel, and
Nash 2013a)

As seen in figure 3-6 and 3-8, the variations in the normalised frequencies have an
approximately linear relationship with (1/d?), except for the smallest beam sizes where the
ratio of the radius of void or inclusion to overall beam thickness approaches the maximum.
Therefore, in this work, the three largest sizes of beam model were considered in identifying
the characteristic length of bending, as given in table 4-3 to avoid complications relevant to
the smallest beam sample. However, while the values change from table 4-1 to 4-3, they
don’t change dramatically. Therefore, values listed in table 4-3 of were subsequently used to

estimate the coupling number in chapter 5.

Table 4-3: Characteristic length changes with V, . Based on the three largest sizes of beam model

I, for beams with
I, for beams with continuous boundaries, mm textured boundaries,
Void or mm
inclusion vol. Beams Beams
fraction, V; Perforated R2 with R2 with R2
beams compliant compliant
inclusions matrix
4% 0.332 97.12% 0.254 99.99% 0.256 99.92%
8% 0.464 99.64% 0.377 99.99% 0.32 93.76%
15% 0.608 99.41% 0.496 99.99% 0.412 99.77%
23% 0.709 99.55% 0.601 99.99% 0.455 99.04%
33% 0.817 99.93% 0.684 99.99% 0.479 97.70%
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Figure 4-2: Linear changes of the characteristic length void radius for beams with continuous
boundaries. Based on the three largest beam models

lc (mm)

I, may be obtained directly from the equation (4.46) or simply multiplying the values in the

above table by ¢%—4 or 0.233 and they are listed below in table 4-4. The

R? values here are exactly equal to those listed in table 4-3.

Table 4-4: Characteristic length (I,,) changes with volume fraction. Based on the three largest sizes of

beam model
. . . 1, for beams with continuous boundaries, mm Ly for beams W'th textured
Void or inclusion boundaries, mm
vol. fraction Perforated Beams with compliant Beams with compliant
beams inclusions matrix
4% 0.077 0.059 0.060
8% 0.108 0.088 0.075
15% 0.142 0.115 0.096
23% 0.165 0.140 0.106
33% 0.190 0.159 0.112

4.3 Summary and conclusions

The FE results presented in chapter 3 were used to estimate the characteristic length in
bending. A useful equation was derived analytically which relates the beam’s primary modal
frequency to the inverse of the depth squared and then used to obtain the characteristic length
of bending. This result agrees with the results of Frame (2013b) that were obtained through
FE analysis of statically loaded perforated beams. The characteristic length of bending, [,
was found to behave linearly, in proportion to the void and inclusions radius but it was
noticed that the smallest sample with one layer of voids/inclusions departs slightly from

linearity. It was also found that the inverse of beams depth squared varies approximately
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linearly with the mass multiplied by the square of the frequency of the primary mode but it
deviates from linearity for the smallest sample.

Equation (4.45) only facilitates the identification of the characteristic length parameter from
the first flexural natural frequency based on the assumption of slender beam behaviour for
which shear deformation is negligible.

Therefore, in order to have a more conservative approach towards deviation from linearity of
length scale, the characteristic lengths based on the three largest sample models were

obtained.

As there was no analytical method available to relate the coupling number to modal
frequency similar to the method used for obtaining the characteristic length, the coupling
number may therefore be obtained with known parameters such as characteristic length of
bending and the micro-inertia in an iterative process employing a numerical procedure as

outlined in the next chapter.
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5 Development of Algorithms for the Numerical CVFEM and 2D-
MPFEM and Investigation into the Effect of Micro Inertia on the
Coupling Number “N”

5.1 Introduction

Now that the characteristic lengths of bending for beam models have been identified, the
linear isotropic micropolar theory will be incorporated into conventional finite element and
control volume finite element methods (MPFEM and CVFEM) through a set of
mathematical models and algorithms which facilitates the modal analysis of heterogeneous
beam models. Therefore, the methods of construction of the main matrices, namely the
stiffness, mass and micro-inertia matrices along with the step-wise algorithms needed for
numerical analysis will be presented. These algorithms can be used in future to develop
useful codes in any programing language for modal analysis. Besides this, another algorithm
will be developed which is useful for the identification of the coupling number, N, which is
named the “Parameter Identification Algorithm” will be described in details which benefits
from the modelling and modal analysis of MPFEM or CVFEM and the linear regression
method for the iteration process and obtaining the coupling number specific to the
heterogeneous beam models. The parameter identification algorithm will be used later in
chapter six to obtain the coupling number, N, for various beam types. The effect of micro

inertia on the coupling number will also be described in section 5.5.

5.2 Formulation of the numerical CVFEM (and 2D-MPFEM)

In this section, the formulation which incorporates the micropolar theory into two different
numerical procedures for dynamic analysis is discussed. Both the control volume finite
element method (CVFEM) incorporating micropolar elasticity and two-dimensional
micropolar finite element method (2D-MPFEM) used in obtaining the required stiffness
matrix are described. Derivation of the mass and micro inertia matrices and solution process
are explained in detail. The formulations will be later used in section 5.3 for development of

algorithms which are used for modal analysis of micropolar beams.

5.2.1 Modelling 6-node triangular element

In a 6-node linear strain triangular element, figure 5-1, there are three nodes at the corners
plus three mid-side nodes. In conventional, displacement-based finite element procedures,

each node has two degrees of freedom but here nodes can also rotate independently as well
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as undergoing displacement in the coordinates of the plane. Therefore, an extra degree of
freedom called the micro rotation is associated with each node.

1 o °2

Figure 5-1: The conventional mode numbering in a 6-node triangular element in Cartesian coordinates

The displacements in 6-node triangular element are quadratic functions. U, and U, are

assumed to be displacements in x and y directions. Therefore:

U(x,y) = a;x% + ayx + azxy + a,y + asy? + ag (5.1)

in which the polynomials are of the second order.

The overall displacement field of the triangular element can be expressed in the following
way:

e = wif3) 62

where N is the shape function of a specific node i , i = 1,2, ...6 in the natural coordinate
system in which internal location coordinates are defined based on the fraction of the sub-

triangles areas to the overall area of the triangular element; as seen in figure 5-2:

§

Figure 5-2: The illustration of natural coordinate system for triangular element
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5.2.2  Stiffness matrix based on micropolar elasticity (2D-MPFEM)

The six-node triangular element is used in the development of a finite element code
incorporating the aforementioned micropolar theory and each shape function is identified as
NE, for i=1,2,...6; Shape functions for six-node triangular element can be found in reference
(Bathe 2006; Zienkiewicz and Taylor 2000; Vladimir and Tomic 2015; Kaltenbacher 2015)

and are as follows:

N=[6(26-1) §2§—1) n(2n —1) 46§ 4én 4nd ] (5.3)

where
§=1-&—n (5.4)
By substituting equation (5.4) in (5.3), the shape functions may also be written as:

N=[A-¢-nA-28-2n) &RE-1) n@2n—-1) 40Q-¢ (5.5)
-mé¢  4n 4n(1-¢-n)]

The derivatives of the shape functions with regard to the area coordinates are:

Ns| ra6-1 0 o0 4 0 4 56
N, =[0 44-1 0 45 7 0 (5.6)
N, L0 0 an-1 0 4 48

For any point with coordinates (x, y) in the 6-node triangular and isoparametric elements we

may write:

6 (5.7)
X = Z Nixi
i=1
6 (5.8)
y= Z N;y;
i=1

89



The derivatives of the shape functions in the Cartesian and natural coordinates are related

according to equation (5.9):

[fo] _ [5,,( n,x”Nfg] _j1 [Ng] (5.9)
Ny Oy My N N

where J~1 represents the inverse of the Jacobian matrix and is used to transform the
derivatives of shape functions from natural to Cartesian coordinates. The Jacobian matrix

can be calculated as follows(Zienkiewicz and Taylor 2000; Zienkiewicz, Taylor, and Zhu

2013; Zienkiewicz and Taylor, n.d.; Bathe 2006):

[ : ]
| ) xNY yiNs|
llz x; N, ZYiN,inJl
i=1 i=1
Thus
j-1=24 (5.11)
i.e.
j=1/(24) (5.12)

where A is the area of the triangular element.

Referring to equation (4.11), the strain field as described by [Sij ¢L-J-]T, can be related to the

displacement field and micro rotation by matrix B, see equation (5.13). Let & represent the

strain field and U represent the displacement and micro rotation vector:
[€] = [B][U] (5.13)

where:
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[0] = [uy, uy, ¢,] (5.14)

Knowing the derivatives of the shape functions N¢, the matrix B can be constructed as

follows:

[P1] (5.15)
5] = |
[P2]
where the matrices Pland P2 are:
[ N, 0 0
[P1]—| 0 N 0| (5.16)
SNy 0 4N
lo N —Ni

0 0 fo] (5.17)

P2]= [o 0 N
Y

and N is the shape function of the 6-node triangular element at node i, where i=1, 2... 6

Now the stiffness matrix for the 6-node triangular element, K, , can be calculated:

1 r1-7m
K, = j j BTDBdet[j] dsd, (5.18)
0o Jo

where K, has the size of 18 x 18. Equation (5.18) was solved by symbolic integration in

MATLAB. T stands for transposed.

5.2.3 Determination of mass and micro inertia matrices

In this section a full description of the mass and micro-inertia matrices and how they actually

were used to construct the element mass matrix is given.
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5.2.3.1 Mass matrix for 6-node triangular element

The mass matrix for a 6-node triangular element must be constructed such as to form an 18
by 18 template mass matrix for a six-node triangular element which incorporates consistent
and lumped mass matrices. The consistent mass matrix, Mo, interpolates nodal masses
within the area of the triangle while in the lumped mass matrix, M;, the element mass is

equally spread over all element nodes as lump masses.

First a lumped mass matrix M; was defined,

A 5.19
M, = %diag[l 11..1]18x18 .19)

Then a consistent mass matrix was obtained for the 6-node triangular element using equation
(5.20):

M, = L p(N)TN dV (5.20)

where N is the shape function, and T stands for transposed. M, the consistent mass matrix,
is thus an integration of mass over the domain V which is the area of a triangular element

within the mesh, figure 5-1.

In equation (5.20), the shape function N and its transpose have been multiplied as in equation
(5.21):

'N; 0 07
goNlNO N, 00 N, 0 0.Ngj 00 5 21
MN™N=f " Tol[0 N0 0N, 0.0 Ng 0 (5.21)
720 o 0 Ny 0 0 N,.0 0 N
[0 0 Nl

Note that N is the shape function and is different from the coupling number N associated
with shear stress asymmetry.

The elements in the third column of the first matrix and the third row of the second matrix in
equation (5.21) are introduced to account for the mass which is associated with the micro-
inertia. The micro inertia is described in section 5.2.3.2. The integration of equation (5.21)
required the multiplication of the shape functions and integration over the area of the

triangular element (Huebner et al. 2001) as follows:
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[ NV = [ eielesav
\'% \%

(5.22)

where i,j and k = 0 and indicate the node numbers; and V is the volumetric domain which

becomes an area in the 2D case, thus the integration of the shape functions over the area

coordinates, according to Stricklin (1968) and Eisenberg et al. (1973), are obtained using the

equation (5.23):

[ el v = 24 (L)
J 15253 (i+j+k+2)!
Thus, for example:

leNldK=j(484—483+62)dK= 1484df‘,—j483 dK+jSZdK
A A A A . A
4 3! 2! ]_ dA

=2A[(4+2)!_(3+2)!+(2+2)! 30

The rest of the integrals are calculated accordingly and listed below:

Table 5-1: Integration of the matrix elements of the area domain

i | j N;N;dA i j j N;N;d4
A A
1] 2 A 3 | 3 A
180 30
113 A 3 | 4 A
180 45
1|4 0 3 | s 0
1|5 —A 3 | 6
45 _
1|6 0 4 | 4 84
_ 45
2| 2 A 4 | 5 4A
30 45
2|3 A 4 | 6 44
180 45
2| 4 0 5 | 5 84
45
2|5 0 5 | 6 A
45
2|6 —A 6 | 6 84
45 45

(5.23)

(5.24)
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In order to have both the lumped, M;, and consistent masses considered, a template matrix
My with a scaling coefficient I' equal to 0.5 was introduced, see equation (5.25) and
reference (Colorado 2010). Therefore, the template mass matrix is obtained for each element

within the mesh using the equation below:

According to Felippa et al. (2015), where the details of this method are discussed, as beams
depth increases, the consistent mass matrix causes an overestimation of frequencies and, on
the contrary, a diagonally constructed mass matrix underestimates frequencies. Therefore, a
linear combination of the two mass matrices with I' equal to 0.5 has been chosen to

overcome these problems.

The values in table 5-1 were used in equation (5.20) to determine the consistent mass matrix.
Now that the mass matrix of a triangular element is defined according to equation (5.25), the
micro inertia, which is described in section 5.2.3.2, needs to be incorporated into the mass
matrix. In equation (4.8), the micro-inertia tensor, J;; is considered as equal in all directions
for simplicity. Therefore, in order to include micro-inertia into the formulation, it must be
assembled into the elements of an overall mass matrix that are associated with the micro
rotation accelerations. Thus, the micro-inertia matrix is incorporated into the overall mass

matrix. Deriving the micro-inertia matrix is explained in further detail in section 5.2.3.2.

5.2.3.2 Micro-inertia matrix in the 2D field

As referred in section 2.4, there is no extensive work on how the micro-inertia might be
obtained or on its influence on the coupling number. In this work, periodic voids or
inclusions are introduced into the representative material which requires a method for
obtaining an appropriate micro-inertia value for the beam models. In this section, the
relation of the micro-inertia to the characteristic length of bending will be shown. The
determination of micro-inertia in finite element applications is rather complex to visualise
and understand as the FE elements do not undergo micro-rotation but the individual nodes
presumably do. On the other hand, the nodes have no physically spatial dimensions and are
defined as the point of masses and their mass are interpolated throughout the element.
Therefore to quantify the micro-inertia the nodal mass must be multiplied by a value which
represents the square of a length dimension and at the same time be independent of the

dimensions of the triangular element.
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In a pertinent work, de Borst et al. (1991) related the micro inertia density to the square of
the characteristic length in bending by defining a microelement. In this work, a cubic micro-
element, not to be confused with a conventional finite element, is considered and it is stated
that the rotational inertia depends on the shape and size of the microelement. However, in the
finite element method elements are defined by nodes which are considered as the points of
mass. As said, the finite element models in this chapter incorporate the linear isotropic
micropolar elasticity using triangular finite elements, but they do not represent individual
microelements that rotates independently as seen in other models such as, for example,
materials with granular particles where micro-inertia can be directly identified by the mass
and radius of the constituent particles. In fact, in the finite element method, the micro-inertia
is applied to the models but independently from the mesh density and size or the type of the
finite element, e.g., FE triangular or brick elements. Therefore the micro-inertia density will

be constant for each material with a specific characteristic length in bending.

If the micro-element dimensions, despite the shape of the element, approach zero, then the
micro inertia becomes independent of the shape and dimensions of the micro-element and
only depends on the characteristics length. Such a three-dimensional micro element is shown

in figure 5-3.

X

Figure 5-3: Representation of a cubic micro element

If we consider the rotation of a cubic micro-element of edge length equal to d, in a 2D x-y
plane, as identified in figure 5-3, then the rotational inertia per unit volume, J, may be stated

as:
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_ (J,pGe? +y?) ()dxdy) (5.26)
B (d)?

where d is the edge length of a cube element in which all edge lengths are equal. x and y are
coordinates of any point in the x-y plane of the front face of the micro element which vary
from —d/2tod/2. Thus:

_ pd? (5.27)

/=7

The bending moment for a cubic micro-element can be stated as:

M,, = Elk,, (5.28)
where
. i 3 _ d_4 (5.29)
12 12
i.e.

1 5.30
M,, = EEmd4’sz ( )

where k., is the curvature of the cubic micro-element and can be represented by the

derivative of the micro-rotation:

_de, (5.31)
Ky; = Kz = W

The couple stress can be obtained by:

M., End®d¢, (5.32)
A 12 dx

m,, =

From the micropolar theory which was described in chapter four and equation (4.11) to

(4.16) in particular, the couple stress is:
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Lad$; (5.33)

my, =Yy dx
where
v =2GI} (5.34)
Then since
Emly  Epd? (5.35)
1+v, 12
It follows that
g - 1213 (5.36)
1+v,

By substituting the equation (5.36) into equation (5.27):

1213
pd?> P17 +1?m (5.37)
/= 6 6
Thus:
I 212 (5.38)
"+ P

2
Note that in some literature y* in equation (5.34) is taken equal to % and this will cause

m

the micro-inertia to be doubled. It will be shown in the section 4.6 that the coupling humber,

N, will not be greatly affected by this.

The micro-inertia term in equation (5.38), if assumed to be independent of the direction it
applies to, will thus be a parameter which is related to the square of the characteristic length

of bending.
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In section 5.5, a set of numerical trials have been performed to investigate the validity of the
equation (5.38).

5.2.4  Solution to eigen problem

Having obtained stiffness and mass matrices for an element, assembly of global mass and
stiffness matrixes can then be carried out by following standard finite element procedures.
Finally, the eigenvalue equation below can be solved in the absence of external loads:

KG - (,()ZMG =0 (539)

to obtain the natural frequencies. Here K; and M are the global stiffness and overall mass

matrices respectively.

By solving the eigenvalue problem, equation (5.39), w® will be an array comprised of the
diagonal elements of the resulting matrix. The square root of the array elements provides the
frequency spectrum. Once the modal frequencies are obtained the normalised displacement

components can be extracted, and the mode shapes obtained.

5.3 Algorithms used for modal analysis of micropolar beams

In this section the mathematical formulations which were defined in section 5.2 are used to
develop algorithms which are used to develop MATLAB codes for the modal analysis and

they can also be used in future to create codes in any programing language.

5.3.1 The 2D beam modelling process

Straight-sided and equal-sized triangular elements were used for modelling the micropolar
beams. The numbering of elements begins from left to right side of the beam, counting both

triangles on a line division as seen in figure 5-4 for example:
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10 12 14 16

1 3 5 7

Figure 5-4: An example of element counts in a beam with four and two line divisions in length and

depth to generate one sample beam with sixteen elements

The beam modelling procedure is conducted according to the following algorithm:

Step 1:
Step 2:
Step 3:

Step 4:
Step 5:
Step 6:

Step 7:

Step 8:
Step 9:

Step 10:
Step 11:
Step 12:
Step 13:
Step 14:
Step 15:
Step 16:
Step 17:

Start [Start of algorithm];

Enter the overall dimensions beam model: e.g., beam depth, width;

Enter the number of layers (NCy), number of line divisions across the depth
and length of the beam;

Enter the beam’s length to depth aspect ratio (AR);

Create and save Element-Node adjacency table (ENA);

Create and save the list of coordinates, nodal-coordinates (GNC), for all
nodes in the beam in ascending order;

Generate a 2D plot representing the actual beam dimensions for visual
confirmation;

Normalise the nodal coordinates by the maximum length and depth;

Save the number of elements (nel);

Save the number of nodes per element (nnel);

Save nodal degree of freedom (ndof);

Save the number of nodes (nnode);

Calculate the element’s degree of freedom edof=ndof*nnel;

Save the element’s degree of freedom sdof;

Calculate the system’s degree of freedom sdof= ndof*nnode;

Save the system’s degree of freedom sdof;

Stop [End of algorithm];

The beam mesh comprised of 2 and 18 element divisions through the depth and along the

length respectively for the smallest sample size. Overall dimensions of each model

correspond to the beam sizes used in chapter three for finite element models. For example,

the second smallest sample size, which is comprised of two layers of unit cells, has NCy=2.

Therefore its micropolar counterpart will consist of 4 and 36 element divisions across the
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depth and along length of the beam model. Figure 6-3 shows the mesh assembled from
triangular elements by the CVFEM or MPFEM analysis. So, every unit cell which was
created through detailed finite element modelling in chapter three, are represented by eight

triangular elements.

5.3.2  Algorithm for constructing the element stiffness matrix

Here the mathematical model in section 5.2.2 is presented in the form of an algorithm
through which the stiffness matrix, mainly 2D-MPFEM, can be constructed and used for
modal analysis. This algorithm can be implemented for beam modelling. Note that the
difference between CVFEM and MPFEM is only in the construction of the element’s
stiffness matrix. Therefore, if the CVFEM is intended instead of MPFEM, the already
existing algorithm shall be used as briefly discussed in 2.4 and provided by Beveridge et al.
(2013b). Thus, the general algorithm to derive the global stiffness matrix using the 2D-
MPFEM is defined as follows:

Step 1: Start [Start of algorithm]

Step 2: Entre the engineering micropolar constants: E,,, iy, N, and 1,

Step 3: Construct the matrix of the material properties, D, (matrix of material
properties), using the micropolar engineering constants as in equation (4.12),
(4.15) and (4.16)

Step 4: Select the first element of the finite element model from section 5.3.1;

Step 5: Select the nodal coordinates of all six nodes in the triangular element in
Cartesian coordinate system e.g., X1, X5, X3, ... and y1, V5, ¥3, ...;

Step 6: Calculate the nodal distances of the vertex nodes:
Xz3 = (X2 — X3) ; x31 = (X3 — X1); x12 = (X1 — X2);
V23 = (V2= ¥2) 1 Y31 = (V3= Y1) 1 Y1z = 1 — ¥2)

Step 7: Calculate the area of the triangular element:
A = (x31Y12 — %12Y31)/2;

Step 8: Calculate the matrix of derivatives of the shape functions, equation (5.3)
with respect to area coordinates, §, n and &. According to the equation (5.6)

Step 9: Calculate the Jacobian (J) and the inverse of the Jacobian matrix using the
derivatives of shape functions and the coordinates from step 5 as in equation
(5.10) and (5.11); or:
For 2D analysis: Jacobian = 1/24 as in equation (5.12)
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Step 10:

Step 11:

Step 12:

Step 13:
Step 14:

Step 15:

Calculate the matrix of derivatives of the shape functions with respect to
Cartesian coordinates ( dN, and dN,,) according to the equation (5.9)
Construct the matrix B using the derivatives of shape functions® from step 10
to generate matrix B of size 6 x 18 as in equations (5.15), (5.16), and (5.17)
using the following pseudo code:
B=sym (zeros (6, 18));
For n=1:6

B (1, (3*n-2)) = dNx (n);

B (2, (3*n-1)) = dNy (n);

B (3, (3*n-2)) = dNy (n);

B@3, (3*n) =N(n);

B (4, (3*n-1)) = dNx (n);

B4, (3*n) =-N(n);

B (5, (3*n)) =dNx (n);

B (6, (3*n)) =dNy (n);
End
Calculate the element stiffness matrix using equation (5.18) and the
following pseudo code:
Bl=substitute § with 1- n - ¢ in B matrix;
B2=D*B1*(determinant of J);
B3= multiply the inverse of B1by B2;
k=integrate from B3 with respect to & from 0 to 1- n;
k= integrate from k with respect ton from 0 to 1; Note: k will be a matrix
of size 18 x 18
Insert the element stiffness matrix into the global stiffness matrix, K;
Continue the steps (2) to (13) for the subsequent element till the last element
stiffness matrix is included into the global stiffness matrix;
Stop [End of algorithm]

5.3.3 Algorithm for constructing element mass and micro-inertia matrices

The template mass matrix is a weighed combination of the lumped and consistent mass

matrices as described in section 5.2.3. The mass matrix for the 6-node triangular element

¥ B (Row, Column)= The shape function or derivative of the shape function.
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also incorporates the micro-inertia matrix. Thus, the general algorithm to derive the global

mass matrix using the 2D-MPFEM is defined as follows:

Step 1:
Step 2:
Step 3:
Step 4:

Step 5:

Step 6:

Step 7:
Step 8:
Step 9:

Step 10:

Step 11:

Step 12:

Step 13:

Step 14:

Step 15:
Step 16:
Step 17:

Step 18:

Start [Start of algorithm]

Entre the material mass density, p;

Select the first element of the finite element model,

Define the nodal coordinates of all six nodes in the triangular element in
Cartesian coordinate system e.g., X1, X3, X3, ... and y4, Vo, ¥3, ..;

Calculate the nodal distances of the vertex nodes:

Xz3 = (X2 — X3) ; X31 = (X3 — X1); X12 = (%1 — X2);

Y23 = V2 —=¥2) Y31 = V3= Y1) ;Y12 = 1 — ¥2)

Calculate the area of the triangular element:

A = (X31Y12 — X12Y31)/2

Calculate the volume of the triangular element;

Create an (18 x 18) identity matrix;

Multiply the element volume by its mass density and divide the product by
6;

Multiply the product of step (9) to the identity matrix from step (8) to
generate lumped mass matrix;

Generate an (18 x 18) matrix using equation (5.21) and the values in table
4-1;

Multiply the element volume by mass density and the matrix from step (11)
to generate the consistent mass matrix;

Having the lumped and consistent mass matrices obtained from steps (10)

and (12), generate the template mass matrix using equation (5.25);

2
Calculate the micro-rotation J/ p = % from equation (5.38); and inject

into the rows and columns and rows in the matrix generated from step (13)
which represent the micro-rotations.

Insert the element mass matrix into the global mass matrix, M;

Select the next element;

Continue the steps (4) to (16) for the subsequent element till the last element
stiffness matrix is included into the global stiffness matrix;

Stop [End of algorithm]
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5.3.4 Solution process to eigenvalue problem

The solution process begins with defining the system matrices which are zero matrices for
reserving memory spaces for stiffness, mass and forces based on the total number degrees of
freedom of all nodes comprising the beam geometry. The next step in the process is to
generate element stiffness, mass and micro-inertia matrices. The micro-inertia matrix will be
merged into the element mass matrix. The element stiffness matrix is calculated based on the
selection made between CVFEM and MPFEM by the operator. The matrices are then
globalised and assembled into the system matrices. The process continues in a loop for all
elements. The boundary conditions take effect in the global matrices by setting the selected
rows and columns to zero as appropriate. Finally, the eigen problem is solved according to
equation (5.39). Following the solution of the eigen problem, the list of eigen values, w? ,

and the matrix of eigen vectors are saved for post-processing.
The algorithm of the solution stage is as follows:

Step 1: Start [Start of algorithm]

Step 2: Call M, (the global mass matrix including micro-inertia matrix);

Step 3: Call K, (the global stiffness matrix);

Step 4: Solve the eigen problem by applying equation (5.39) using the pseudo code:

[Eigen vectors, Eigen values]=eig (K;, Mg);
Step 5: Save eigenvectors;

Step 6: Save eigenvalues;
Step 7: Stop [End of algorithm]

5.3.5 Post-processing of data for extracting the modal frequencies and mode shapes

The frequency values are obtained by taking the square root of the eigen values and
multiplied by 2m then arranged in ascending order. The normalised displacement of each
node in the system in x and y directions is defined by identifying row and column number in
the matrix of eigen vectors for that specific frequency and, after arranging them in ascending
order, saving the values as vectors for x and y displacements for each node. The eigen vector
values contain normalised values which could be zero, positive or negative. These eigen
vector values are then added to the normalised GNC coordinates which result in mode shape
coordinates.

The algorithm of the post-processing stage is as follows:

Step 1: Start [Start of algorithm]
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Step 2: Take the square root of the eigenvalues;

Step 3: Multiply the eigenvalues by 2 to obtain w values;

Step 4: Arranged the in ascending order;

Step 5: Extract corresponding row and column associated with each frequency from
the matrix of eigenvectors;

Step 6: Add the eigenvector to the normalised nodal coordinates obtained from Step
(8) section 5.3.1;

Step 7: Generate a 2D plot representing the mode shape for any of the specified
modal frequency in step (5);

Step 8: Stop [End of algorithm]

Note that the use of these algorithms will result in generating the full frequency spectrum
including both flexural and longitudinal modes. Therefore, to identify the flexural
frequencies, every individual frequency and its corresponding mode shape must be visually

investigated for categorisation of the modal frequencies.

5.4 A parameter identification algorithm for obtaining the coupling
Number “N” using CVFEM

Before embarking on the investigation into the effect of micro-inertia on the coupling
number, which will be discussed in section 5.5, a numerical method must be introduced to

obtain the coupling number.

N will be estimated through linear regression implemented in an iteration method. This
method was used by Beveridge et al (2013a) for the static three point bending problem. The
linear regression is a fairly standard method and is used for curve fitting. Therefore an
algorithm for identification of the coupling number, N, is used. For this purpose, the values
of characteristic length of bending which were previously estimated for beam models in table
4-3 will be used and then the iteration process will only be carried out to identify the

coupling number for beams with specified volume fractions.

The first two transverse modes are used in the process to iterate for coupling number, N,
which, as a constitutive property, should satisfy all modal frequencies and all model depths.
Therefore, the mass of each beam specimen is calculated, the higher flexural frequencies
(modes 1 and 2) which were previously obtained through finite element analysis in chapter
three will be selected and the values for m. w?against d=2 will be derived. As seen already

the m. w? values are on the same lines when plotted against d~2. Therefore, this line will be
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set as the reference and the linear regression attempts to fit the m.w? values using the
numerical control volume finite element method (CVFEM) to those obtained from detailed
FEA as best as possible. 2D-MPFEM can alternatively be used to derive m.w?. The
parameter identification algorithm is therefore linked to the algorithms described in section
5.3 through the use of CVFEM or MPFEM methods to obtain m. w? for micropolar beams.
A value is specified for N as the initial guess which must be near but not equal to one such as
N=0.95. A set of m.w? are calculated for all required beam models (beam depth: NCy=2, 3
and 4) and then the mean square value is calculated using the sequence of equation (5.40) to
(5.46):

Yrga = (m. wz)FEA

(5.40)
Yevrem = (M. 0*)cvrpm (5.41)
. (5.42)

YMean - length(YFEA) * Z(YFEA) ]
5.43
Error = (Ypga — Yevrem)® (5:49)
(5.44)

Total = (YFEA - YMeoLn)2

The coefficient R; which is used to check the necessity of repeating the iteration loop is:

_ XL Total — Y Error (5.45)
L Y. Total

If R,,,1 > R, then the iteration stops, otherwise it repeats. At each iteration point, the value

of the coupling number is updated as follows:
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1 Yrea (5.46)
o=l S
ntl length(Yega) Yevrem "

So the parameter identification algorithm attempts to find the best fit for the coupling
number, N, by taking average values for beams with depths of two, three and four unit cells
by iteration. Beams with one array of unit-cells were not considered for the reason of
deviation from linearity seen with the beams of larger depths and shown in figure 3-6
and 3-8.

The above method is time consuming because the CVFEM is numerical and the above
method uses iteration over the CVFEM outcome results. Therefore the mesh density used for
meshing the beams in the process of parameter identification must be as low as reasonably
possible. Three divisions in depth of the beam were found to satisfy the requirement of mesh

density in this case.

The parameter identification algorithm is as follows:

Step 1. Start [Start of algorithm]

Step 2: Entre the first and second flexural frequencies from FEA for the three largest
samples with equal vy;

Step 3: Construct matrix of modal frequencies against beam sizes d~?;

Step 4: Construct matrix square of frequencies w? from step (3)

Step 5: Specify [, corresponding to the vy in step (2);

Step 6: Calculate the mass of each beam sample;

Step 7: Construct matrix of m. w? against beam sizes d =2 for FEA models;
Step 8: Save m. w? values as Yz, , (equation 5.40);

Step 9: Calculate mean value, Yy qqn, €quation (5.42);

Step 10:  Entre the initial guessed value for N, equal to 0.95;

Step 11:  Go to algorithm for CVFEM or MPFEM described in section 5.3 to generate
w? for three largest beam depths;

Step 12:  Construct matrix of m.w? against beam sizes d=? for CVFEM/ MPFEM
models;

Step 13:  Save m.w? values as Ycyrgy , €quation (5.41);

Step 14:  Calculate error, equation (5.43);

Step 15:  Calculate Total, equation (5.44);
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Step 16:  Calculate the coefficient R;, equation (5.45);

Step 17:  Stop if R,+1 > R,, then the iteration stops, Go to Step (19);
Step 18:  Estimate new N, equation (5.46); Go to Step (11);

Step 190 Report N;

Step 20:  Stop [End of algorithm]

Now that the parameter identification algorithm has been defined, the effect of changing the
micro-inertia value on the coupling number, N, and the validity of the equation (5.38) can be

studied and is discussed in detail in section 5.5.

5.5 The effect of micro-inertia on the coupling number “N”

As described in chapter four, in order to perform a two-dimensional modal analysis using the
micropolar theory, the material micropolar engineering elastic constants were identified
except the coupling number N which is to be determined in chapter six but first the
influencing parameters must also be investigated. In two-dimensional beam vibrations, the
characteristic length of bending is not the only parameter which influences the coupling
number. The other important influencing parameter is the micro inertia. Therefore, in this
section the effect of micro-inertia on the coupling number will be investigated. The
appropriate coupling numbers for the beam models will subsequently be obtained in chapter

SIX.

5.5.1 Validation of the analytically determined micro-inertia

For the validation of the equation (5.38), the value of the micro inertia was varied from a

small fraction of IZ to a much higher bound as follows:

12 12 (5.47)

b b
Ci(Lower bound) m <J/p < Ciwpper bouna) m
m m

The multiplying coefficient, C; , varied from a lower bound % to an upper bound 52 by

doubling the value of C; each time and evaluating the coupling number using the MPFEM
procedure for different volume fractions of voids, three unit cells in depth and continuous
boundaries. In figure 5-5 the value of N is drawn against J/p while in figure 5-6 the value
of N is drawn against an arbitrary coefficient C;. The values for coupling number with C;
being equal to 2 are identified by a dotted rectangle in both graphs for which the equation

(5.38) has been used to derive micro-inertia and consequently to identify the coupling
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number, N. It can be readily seen that if C; < 2, then the coupling number become much less
dependent on micro-inertia or the characteristic length and tends to remain constant. On the
other hand for C; > 4, the value of the coupling number is highly affected by and sensitive to
the micro-inertia and becomes unstable. Therefore, the derived micro-inertia appears to be a
threshold above which the coupling number will be affected largely by the volume fraction.
However, in the next section, two values of micro-inertia from the higher bound region are
chosen, the related coupling numbers are obtained for two beam types with various volume
fractions, see table 5-2, and the effect of using higher values of micro-inertia and on modal

frequencies are discussed.
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Figure 5-5: The value of the coupling number, N, for different values of J/p and volume fractions.
The beam has three unit cells in depth and continuous boundaries.
(Vr =0.04to 0.33 corresponds tol. = 0.332 to 0.817 mm )
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Figure 5-6: The value of the coupling number, N, for different values of an arbitrary coefficient C; and
volume fractions. The beam has three unit cells in depth and continuous boundaries. (V; =
0.04 to 0.33 corresponds tol. = 0.332to 0.817 mm)

5.5.2 The effect of increased micro inertia on the coupling number

In this section the effect of increasing the micro-inertia on coupling number and therefore the
transverse modal frequencies is investigated. This, in fact, validated the analytical method
which was used to define the micro-inertia in the MPFEM and the CVFEM algorithms and
shows that increasing the micro-inertia beyond the values of the equation (5.38) will not
improve the accuracy of the results. To do this, beams with continuous boundaries with
voids or inclusions with three layers depth (NCy=3) were considered and the coefficient
C; equal to 36 and 44 have been tried using both MPFEM and CVFEM stiffness matrices in
the parameter identification algorithm. So, a set of values for coupling number at different
volume fractions were obtained to study how increasing the micro inertia, by increasing the
value of C;, will affect the coupling number and if these positively affect the modal
frequency results. Thus, the values of coupling number corresponding to different volume
fractions are obtained and listed in table 5-2 which indicate that the choice between MPFEM
and CVFEM does not matter too much as the resulting coupling numbers are very close but

the obtained coupling numbers become very sensitive to the volume fraction.
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Table 5-2: Coupling number, N, if micro inertia increased by 36 and 44 times for a beams with
continuous boundaries (Averaged over the three largest sample models) Sample size (NCy=3)

v, | 004 0.08 0.15 0.23 0.33
C;

I, mm ; 0.332 0464 | 0608 | 0709 | 0817

Beams with | 2D CVFEM 0.031 0044 | 0057 |0067 |0.073
: 36

voidsand [ oren 0.032 0044 | 0056 | 0066 |0.074

continuous

boundaries | 2D CVFEM » 0.034 0047 | 0062 |0070 |0.079

2D MPFEM 0.034 0048 | 0060 | 0070 | 0.080

_ I, mm - 0.254 0377 | 049 | 0601 |0.684

Beams with 7 "oy 0.024 003 | 0046 | 0057 | 0.065
inclusions 36

and 2D MPFEM 0.024 0035 | 0047 |0055 |0.063

continuous | 5 c\/Fgm 0.028 0.039 0051 | 0061 | 0.067
boundaries 44

2D MPFEM 0.026 0039 | 0051 |0061 |0.068

Furthermore, to investigate how the changes in micro inertia affects the transverse modal
frequencies, again a sample model of three unite cells in depth (NCy=3) was investigated
with respect to the influence of the higher values of the micro-inertia equal to C;=36 and the
five transverse modal frequencies were extracted for beams with voids using both CVFEM
and MPFEM. The primary analysis showed clearly that increasing the micro-inertia by
altering the coefficient, C;, has more influence on the primary mode rather than on the higher
transverse modal frequencies. This suggests that, increasing the micro-inertia would only
significantly affect the primary mode and provides results for the primary mode which
approximately matched the values that were obtained by detailed FEA but the rest of the
modal frequencies are less affected. Figure 5-7 show the micropolar CVFEM results
(Primary normalised modal frequency) for a specimen with C; equal to 36 which clearly
shows the development of nonlinearity in anticipating the size effect and the coupling
numbers become more sensitive to volume fraction as the values in table 5-2 confirm. The
higher modes showed that increasing the C; has less influence on the results with regard to
anticipation of the size effect. Figure 5-7 also indicates that increasing the micro-inertia via
increasing the C; causes nonlinearity in normalised primary frequency changes with the

inverse of beam depth squared.
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Figure 5-7: Normalised primary frequency changes with the inverse beams depth squared for beams
with voids and continuous boundaries and various volume fractions using CVFEM when C; = 36
( I = 0.332to 0.817 mm corresponds to V; = 0.04 to 0.33)

Using the 2D MPFEM also resulted in the same dynamic behaviour with increasing the
micro-inertia by changing C; to 36 which indicated that 2D-MPFEM produced results
similar to the CVFEM method and that increasing the micro inertia mainly affects the modal
frequencies at mode one. Therefore the value of C; is equal to 2 and the equation (5.38) is
valid and, therefore, incorporated into the algorithms. Note that for this additional reason
only the first two modal frequencies were used for iteration process to obtain the coupling

number using the parameter identification algorithm.

5.6 Summary and conclusions

This chapter resulted in development of algorithms which incorporate the micropolar theory
into a numerical method for dynamic analysis. However, in order to obtain the coupling
number, N, a parameter identification algorithm has also been developed and described. In
two dimensional beam vibrations, the characteristic length of bending is not the only
parameter which influences the coupling number. The other important influencing parameter
is the micro inertia. Therefore, in this chapter, a procedure for obtaining mass and micro-
inertia matrices and the coupling number, N, were introduced and the effect of micro-inertia

on the coupling number was investigated.

The general conclusion is that the micro-inertia is very much related to the parameter of
characteristics length of bending, [;,, mass density, p, and the Poisson ratio, v,,,. As the mass
density and Poisson ratio are considered constant, therefore, the only influencing parameter

is the characteristic length of bending.
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Now that the aditional micropolar constant, the characteristic length of bending and the
micro inertia are detemined, and that the algorithm for parameter identification has been
developed for obtaining the second additional micropolar constant namely coupling number,
N, it is now possible to generate modal frequencies using either the CVFEM or MPFEM
procedures and compare the results with those from detailed FE analysis from chapter three.
Therefore, in chapter six, first the coupling number for some of the beam models will be
obtaind using the parameter identification algorithm which incorporates micro-inertia as
described in this chapter then three types of beam models, for which micropolar constants
are available, will be modeled and modal frequencies will be obtained using both the
CVFEM and 2D-MPFEM and the size effects will be compared with the detailed finite

element results which were previously obtained in chapter three.
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6 Two-dimensional CVFEM and MPFEM Results, Comparison
with FEA Results, and Validation

Recalling from chapter three, FEA was used for creating geometrically detailed beam models
of a representative heterogeneous material, which are considered to exhibit realistic beam
vibration modes, generating corresponding modal frequencies that can be used as the basis
for comparison with suitable theory. Therefore, in this chapter, two-dimensional beam
models are created using the CVFEM and MPFEM methods presented in the previous
chapter to generate modal frequencies. The results will then be compared with the

aforementioned FEA results.

Note that for 2D beams modal analysis incorporating the micropolar elasticity, not only the
characteristic length of bending is needed, but the coupling number value is also required for
running the analysis. Therefore, in section 6.1, the coupling number will be identified for

some of the beam models.

6.1 Identification of the coupling number, N, for the representative
material

Previously in chapter four, an analytical method was introduced for obtaining the
characteristic length in bending from the size dependency of the first natural frequency. Then
in chapter five a parameter identification algorithm was developed which enables the
coupling number to be identified by an iterative approach based upon matching multiple
flexural frequency forecasts provided by the FEA results. In this section, the additional

micropolar constant, coupling number, will be identified for the representative materials.

6.1.1 Estimation of N for beams with continuous boundaries (BVOCB and BINCB)

Using the CVFEM, and the parameter identification procedure which uses the linear
regression as described in section 5.4, unique values for N were identified. In figures 6-1-a
and 6-1-b, the FEA results and the results predicted for mode one and two by the CVFEM
through the parameter identification procedure are compared after convergence of the
iteration process with mw? being obtained within the range of N from 0 to 0.9. The first
value represents the lower bound on N and corresponds to the classical case while the second
value is an approximation to the upper bound on N of 1 corresponding to the constrained

micropolar or so called couple stress elasticity case. Note that setting the upper bound for N
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at 1 would give rise to numerical error. In figures 6-1-a and 6-1-b, the linear regression
method was applied to the first and second modal frequencies (obtained from ANSYS finite

element analysis) for all beam sizes and a void or inclusion volume fraction of 0.23.
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Figure 6-1: The variation of m? with beam size for beams with voids and continuous surface and
volume fraction equal to 0.23; a) The variation of mo? at flexural mode 1 (on the left); b) The

variation of ma? at flexural mode 2 (on the right).

In theory, the more mode numbers used within the iterative identification, the more accurate
the coupling number estimate should be, but as the frequency spectrum which is identified
by the CVFEM also includes longitudinal modes above mode 2, only the first two modal
frequencies were used in the iteration process. The second reason is that micropolar flexural

frequencies approach the homogenised case frequencies after mode 3 or 4.

The values of N identified in this way are given in table 6-1 for both beams with voids and
compliant inclusions. The iteration process was similarly performed for all other inclusion
volume fractions from 4% to 33%. This revealed that N changes only slightly with volume
fraction. Waseem et al. (2013) have reported that the value of coupling number in perforated
ring samples decreasing slightly as the void radius is increased but, here, for perforated beam
models as can be seen in table 6-1, the value of coupling number, N, increases slightly with

changes in volume fraction.

The regression method was not useful for beams with continuous boundaries but compliant

matrix and therefore the coupling numbers are not available for such beam types. This is due
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to the fact that the value of mw? fall either below or above the values of mw? obtained with
coupling numbers 0 and 1 and thus their behaviour is apparently not anticipated by
micropolar theory.

6.1.2 Estimation of N for beams with compliant matrix and textured boundaries
(BINTB)

When the boundary of the beam is intercepted by voids or inclusions, the coupling number
could also not be identified by the iterative method because the values of mw? obtained from
the finite element analysis exhibit a size effect that is not anticipated by the micropolar
theory. While the size effect in beams with compliant matrix and continuous surfaces
contradicts the micropolar theory, when the boundaries are textured by intersection with the
stiffer inclusions the size effect is as expected. Thus for this type of beam, a value for the

coupling number can also be identified by the linear regression based iterative procedure.

Table 6-1 shows the coupling numbers estimated using CVFEM for various beam types and
C; equal to 2:

213

Table 6-1: Coupling numbers obtained for various beam types by taking J = v

o

Ve 0.04 0.08 0.15 0.23 0.33

BVOCB 0.042 0.047 0.051 0.053 0.055

BINCB 0.043 0.046 0.048 0.051 0.053

BCMTB | 0.0459 0.0460 0.0451 0.0452 0.0477

The values in table 6-1 above are obtained by using the three largest sample sizes with the
CVFEM to match the first two modes and averaging them (With (;=2, as identified in
chapter five). Therefore the coupling number values based on the CVFEM were also selected
for 3D-MPFEM modal analysis in chapters eight and nine. Note that values in table 6-1 are
smaller than those that other researchers usually assume for example in the work by
Beveridge et al.(2013a), the value that has been identified for coupling number through static
3 point bending is equal to 0.12. The coupling number values obtained are towards the lower
bound of the anticipated range and thus show some agreement with those obtained
previously for similar materials when undergoing static deformation (Frame 2013a).
However, later in chapter eight, in three dimensional modal analysis of plates it will be

shown that the major influencing parameter in modal frequencies is the characteristic length
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rather than the coupling number and that increasing the coupling number affectes the
primary modal frequency more significantly than the higher modes.

6.2 Modelling 2D homogeneous beams with MPFEM and CVFEM

Before using the constitutive parameters identified in section 6.1 to predict the full frequency
spectrum of the representative heterogeneous materials in this section, both the MPFEM and
CVFEM methods were first used to model 2D homogeneous beams. Thus four beam sizes
were modelled and all with the aspect ratio of 10.4 similar to the overall beam dimensions as

the FEA models with one, two, three and four unit-cells in depth as described in section 3.2.

6.2.1 Applying the free-free boundary conditions in micropolar beam models

In beams with free-free boundary conditions (FF), both changes in the moment and shear
forces at each end of the beam are equal to zero; and in finite element analysis, it can be
achieved by not constraining any of the nodes at each side of the beam and allowing them to
move freely. Such condition is not completely achievable practically but using the finite
element method, it is feasible and the CVFEM and MPFEM results for the full frequency
spectrum can be generated and compared with the finite element results which supposedly

represent realistic dynamic behaviour.

6.2.2 Modelling beams and mesh convergence study of micropolar beam models

By dividing the micropolar beam depth and length into subsections, it was possible to run a
modal analysis for various DOF’s and investigate the mesh convergence of a meshed
micropolar beam. The graph in figure 6-2 below shows that the smallest beam (NCy=1) with
225 degrees of freedom converges with an error below 0.2 percent while the smallest sample
model, which is modelled for modal analysis micropolar beams in this chapter, has 555
degrees of freedom with the height of 2 and length of 18 divisions which satisfies the
requirement of mesh convergence. This convergence study was conducted for the
homogeneous case. In fact the unit-cells employed by FEA are here represented by a 2 by 2

divisions which include eight 6-node triangular elements, see figure 6-3.
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Figure 6-2: Mesh convergence for a homogeneous beam (NCy=1) using the CVFEM ( a*,8*,y* and

K" are equal to zero)
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Figure 6-3: Micropolar beam model, NCy=1

6.2.3 Non-dimensional transverse frequencies for homogeneous micropolar beam
with N and the characteristic length of bending to zero

In order to solve the micropolar beam for a homogeneous case, the parameters a*,87,

y*and k* are set to zero. Therefore, the coupling number and the characteristic length of

bending must also be taken equal zero. The results for a homogeneous beam model are used

to first of all check the validity of the CVFEM and MPFEM methods and then to use these

values for normalisation of the transverse modal frequency values of the results for the

heterogeneous beam models presented later in sections 6.3.2.1t0 6.3.2.3.

The FEA modal frequencies for homogeneous cases were already compared with the
Classical, Timoshenko and non-local Timoshenko beams in chapter three. Here, in table 6-2
the relative difference of the CVFEM and MPFEM results are given in comparison with the
FEA and Timoshenko beam results for the homogeneous cases listed in chapter three
table 3-7.

While the dimensionless frequency parameters for the homogeneous beams with aspect ratio

of 10.4:1, which are listed in table 6-2, are used to normalise the transverse modal
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frequencies of the micropolar beams in the next sections, the longitudinal frequencies
presented in section 6.3.1 are normalised by the frequency of the longitudinal modes of the

homogeneous beam models.

As can be observed in table 6-2 the relative difference between values for the primary modal
frequency irrespective of the solution method is well below 0.1% although this difference
increases slightly with mode number. However, even for the 10 modal frequencies the
difference value still remains below 0.5% for the homogeneous beams. This therefore
validates the performance of the code for the implementation of the CVFEM and 2D
MPFEM algorithms.

Table 6-2: Dimensionless frequency parameters generated for a homogeneous beam model using

CVFEM and MPFEM (Based on beams with NCy=4) and the relative differences (absolute values)
with FEA and Timoshenko values given in chapter three table 3-7

Transverse Modes Relati

Non-dimensional Relative d?f?“c\)/fe Relative | Relative diff.

Mode diff. of CVFIEM diff. of of MPFEM

Frequency, A CVFEM with MPFEM with
number with FEA . with FEA | Timoshenko
CVFEM MPFEM Timoshenko

1 4.649946 4.654824 1.18E-03 6.65E-04 1.36E-04 3.83E-04

2 7.531761 7.525683 6.22E-04 2.02E-03 1.85E-04 1.21E-03

3 10.20287 10.19205 8.63E-04 3.09E-03 1.98E-04 2.03E-03

4 12.64783 12.62462 1.66E-03 4.56E-03 1.80E-04 2.71E-03

5 14.85686 14.84335 7.74E-04 4.14E-03 1.36E-04 3.22E-03

6 16.90657 16.87354 1.89E-03 5.56E-03 6.42E-05 3.60E-03

7 18.79062 18.74023 2.72E-03 6.59E-03 3.23E-05 3.89E-03

8 20.51416 20.4649 2.56E-03 6.55E-03 1.56E-04 4,13E-03

9 22.12443 22.06447 3.03E-03 7.09E-03 3.14E-04 4.36E-03

10 23.42212 23.55009 4.93E-03 8.41E-04 5.06E-04 4.62E-03

6.2.4 Extracting the transverse and longitudinal mode shapes using CVFEM and
MPFEM

The transverse mode shapes below the critical frequency, are easily recognizable by the lobe
(wave) counts on the beams surface so that a full wave length in mode two, generates two
lobes, one positive and one negative ( or one up and one down). In order to create the mode
shapes in 2D MPFEM or CVFEM, the eigen vectors are normalised by the corresponding
maximum eigen vector value then each normalised value is added to the normalised
coordinated of the same node. This method will result in generating mode shapes for further

analysis. However, it must be noted that while the eigen vectors are useful for generating
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mode shapes they do not provide any information regarding the actual displacement of the
nodal points.

Increasing the mode number is associated with an increase in frequency and the number of
lobes is increased and the wave length decreases. When the length of the wave approaches
the beams depth, then it is hard to distinguish the modal frequencies in the 2D plane and that
is when the transverse modal frequency is approaching the critical frequency. Another point
to note is that after mode numbers three or four, the CVFEM and/or MPFEM results do not
show any size effect and, therefore, micropolar theory would not apply. The first fourteen
mode shapes predicted by MPFEM (CVFEM) are shown in figures 6-4 to 6-17 which
include ten transverse and 4 longitudinal mode shapes of a homogeneous beam with depth
equal to two unit cells.

Modal Frequency 170007.6725 Radians/s

Beams depth (Normalised)

! ! 1 1 1 1 |
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Figure 6-4: Mode shape of beam with d = 1.732 mm, Mode 1, Transverse 1
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Figure 6-5: Mode shape of beam with d = 1.732 mm, Mode 2, Transverse 2
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Figure 6-6: Mode shape of beam with d = 1.732 mm, Mode 3, Transverse 3
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Figure 6-7: Mode shape of beam with d = 1.732 mm, Mode 4, Longitudinal 1
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Figure 6-8: Mode shape of beam with d = 1.732 mm, Mode 5, Transverse 4
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Figure 6-9: Mode shape of beam with d = 1.732 mm, Mode 6, Transverse 5
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Figure 6-10: Mode shape of beam with d = 1.732 mm, Mode 7, Longitudinal 2
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Figure 6-11: Mode shape of beam with d = 1.732 mm, Mode 8, Transverse 6
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Figure 6-12: Mode shape of beam with d = 1.732 mum, Mode 9, Longitudinal 3
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Figure 6-13: Mode shape of beam with d = 1.732 mm, Mode 10, Transverse 7
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Figure 6-14: Mode shape of beam with d = 1.732 mm, Mode 11, Transverse 8
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Figure 6-15: Mode shape of beam with d = 1.732 mm, Mode 12, Longitudinal 4
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Figure 6-16: Mode shape of beam with d = 1.732 mm, Mode 13, Transverse 9
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Figure 6-17: Mode shape of beam with d = 1.732 mm, Mode 14, Transverse 10

6.3 Full frequency spectrum modal analysis of 2D beams models using
CVFEM and MPFEM incorporating identified micropolar constants

In this section, both CVFEM and MPFEM were employed for modelling 2D beams
exploiting the identified micropolar constants, N and [;, to generate all modal frequencies.
The results are then compared with the FEA results of chapter three, and the capabilities and
shortcomings of the micropolar elasticity in predicting the size effects in heterogeneous

beam models are discussed.

6.3.1 Longitudinal modal frequencies of heterogeneous materials and size effects

The finite element results for heterogeneous beam models also indicated the existance of size
a effect in longitudinal modes, but unfortunately the micropolar theory is not capable of
anticipating any size effects in longitudinal displacements because the characteristic length
parameters, [, and [;, only influence the transverse and torsional displacements and thus
have no influence on longitudinal displacement. The finite element results for the first two
longitudinal frequencies for the perforated beams with continuous boundaries are provided in
figure 6-18 and 6-19 confirming the existance of the size effect phenomenon in the
heterogeneous beams for longitudinal modes. Other beam models showed similar size effects
too. The first five longitudinal frequencies for beams with voids and compliant inclusions
and continuous boundaries, and also beams with compliant matrix and textured boundaries
are provided in tables D-1 to D-3 in Appendix D.1. Although the finite element results
indicate that there is a longitudinal size effect, it is small compared to the flexural size effect.
The results for other type of beams are not included because although the tabulated results
for those beams confirm the existance of a size effect in longitudinal modes, the micropolar

theory is again not capable of predicting these effects.
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Figure 6-18: Normalised primary longitudinal frequency of four heterogeneous beam sizes for beams

with voids and continuous boundaries from FEA
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Figure 6-19: Normalised 2™ mode longitudinal frequency of four heterogeneous beam sizes for beams

with voids and continuous boundaries from FEA

The CVFEM and MPFEM results for the longitudinal modal frequencies showed no size
effect with beam thickness or volume fraction, Figure 6-20, and that is because the
micropolar theory does not account for any size effect in the longitudinal direction, therefore,
only the transverse (bending) modes have been extracted and investigated. This required
checking every mode shape and selecting the transverse modal frequencies from the entire

frequency spectrum up to the 33" modal frequency.
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Figure 6-20: Normalised longitudinal frequency (for modes 1 to 5) of four beam sizes for beams with
voids and continuous boundaries using MPFEM (V; = 0.04 to 0.33 correspond
to [, = 0.077 to 0.19 mm)

6.3.2 Transverse modal frequencies of micropolar beams in comparison with
heterogeneous F. E. models
Based on the equation 4.46 and the iteration process which was introduced in section 5.4, the
characteristic length of bending and the coupling number for various beam types are
obtained and provided previously in tables 4-4 and 6-1. Having quantified the characteristic
length parameter analytically and the coupling number numerically, the CVFEM and
MPFEM procedures were used to predict the full frequency spectrum for all sizes of beams
with inclusions or perforated by voids at all volume fractions considered. The only
difference between CVFEM and MPFEM procedures is the process with which the stiffness
matrix for the triangular element is obtained. These procedures showed significant

agreement for lower mode numbers.

6.3.2.1 Beams with voids and continuous boundaries (BVOCB)

The discussions regarding the size effect which was provided in chapter three for finite
element results are valid here too. The MPFEM and CVFEM reasonably forecast the same

explanation for size effect of beams with voids and continuous boundaries (BVVOCB).

In figures 6-21 and 6-22, the variations in normalised frequency, A, with size measure for
the primary flexural modes are displayed. According to these results, variations in the
normalised frequencies have an approximately linear relationship with the inverse of the

square of the depth of the beam (1/d?) just the same as what had been observed from FEA
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results in chapter three figure 3-6 and 3-8, except for the smallest beam sizes where the ratio
of the radius of void or inclusion to beam thickness reaches the maximum. The A value for

the smallest beam sample size is slightly underestimated in comparison with the FEA results.

Figure 6-23 and 6-24 shows how the first five transverse normalised frequencies for the
beams with voids and height of one unit-cell vary with mode number and how the behaviour
is highly size dependent, as seen in figures 6-21 and 6-22, for mode one. The CVFEM and
MPFEM results* show that the normalised modal frequency of the homogeneous beams is

size independent.

Tables D-4 and D-7 in Appendix D provide non-dimensional frequency parameter ()
information for the first ten transverse vibration modes of beams with voids and continuous
boundaries predicted using MPFEM and CVFEM procedures. For any given mode the size
effect becomes more pronounced with diminishing beam size and is greatest for the smallest
size of beams. The size effect is also more pronounced for beams with a higher void volume

fraction.

Similar to the beam behaviour based on the FEA results; here too, the size effect is mode
dependent; but the micropolar results do not provide much information regarding the size
effect in modal frequencies for after mode 3 or 4. This issue must be investigated in future

work but in the meantime, it appears to be one of the shortcomings of the micropolar theory.

All of the CVFEM and MPFEM results provided in figures 6-21 to 6-31 are obtained using
the characteristic length in bending, [,, and the coupling number, N, from tables 4-4 and 6-1
as input parameters which correspond to normalised void radius (V;./S,) = 0,0.12,..,0.35 in

heterogeneous beam models using FEA.

4 Here on after it’s called micropolar beam when it meant either of CVFEM or MPFEM or both as a general expression.
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Figure 6-21: Normalised primary bending modal frequency of four beam sizes for beams with voids

and continuous boundaries using CVFEM ( [, = 0 to 0.19 mm corresponds to V;./S,, = 0 to 0.35)
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Figure 6-22: Normalised primary bending modal frequency of four beam sizes for beams with voids

and continuous boundaries using MPFEM ( [,
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Figure 6-23: First five normalised bending modal frequencies of the smallest beam sample with voids

and continuous boundaries using CVFEM ( [, = 0 to 0.19 mm corresponds to V;./S,, = 0 to 0.35)
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Figure 6-24: First five normalised bending modal frequencies of the smallest beam sample with voids

and continuous boundaries using MPFEM (', = 0 to 0.19 mm corresponds to V./S,, = 0 to 0.35)

The results in figures 6-21 and 6-22 indicate that the MPFEM and CVFEM results show
little difference for the beams with one layer in depth (NCy = 1) although the frequency
values obtained from using CVFEM are slightly higher.

An overall comparison with the results from FE analysis, as shown in figure 6-25 for mode
one, indicates that both CVFEM and MPFEM under estimate the normalised frequency
values for the smallest sample size with the difference increasing as the volume fraction
increases. For example for volume fractions above V; = 0.08 in figure 6-25; the maximum A
reads 1.15 for the smallest beam sample size with the highest volume fraction at mode one

but the predicted value is only around 1.075.
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Figure 6-25: Primary normalised modal frequencies, mode 1, for beams with voids and continuous
boundaries, BVOCB
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6.3.2.2 Beams with inclusions and continuous boundaries (BCICB)

As seen in the previous section, the choice between CVFEM and MPFEM does not alter the

results significantly. Therefore, while all the CVFEM results have been tabulated in

Appendix D, the MPFEM results are sufficient for investigating and making conclusions

regarding the size effect in micropolar beams in dynamic cases.

The dynamic behaviour of micropolar beams with compliant inclusions and continuous

boundaries, as shown in figures 6-26 to 6-27, show similar size effect behaviour as beams

with voids. However, the normalised frequencies are smaller and the graphs show a better fit

with the FE results as seen in figure 6-28. Thus, according to figure 6-28, A reads 1.12 for

the smallest beam sample size with the highest volume fraction at mode one which is smaller

than the corresponding specimens in figure 6-25 for BVOCB.
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Figure 6-26: Normalised primary bending modal frequency of four beam sizes for beams with
compliant inclusions and continuous boundaries using MPFEM
( I, = 0to0.159 mm corresponds to V. /S, = 0 to 0.35)
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Figure 6-27: First five normalised bending modal frequencies (modes 1 to 5) of the smallest beam

sample for beams with compliant inclusions and continuous boundaries using MPFEM ( [, =

0 to 0.159 mm corresponds to V. /S, = 0 to 0.35)
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Figure 6-28: Primary normalised modal frequencies, mode 1, for beams with compliant inclusions and

continuous boundaries, BCICB

6.3.2.3 Beams with compliant matrix and textured boundaries (BCMTB)

Beams with compliant matrix and textured boundaries also show size effects consistent with

micropolar theory but comparatively less pronounced than the previously discussed beam

models, see figure 6-29. The normalised primary modal frequency is equal to 1.04 even for

the largest volume fraction of 0.33 (V,./S, = 0.35) and this reduces with diminishing volume

fraction, see figure 6-29 and 6-30. For example, the normalised frequency, A, for the

smallest beam sample with V./S,, = 0.12 is about 1.01.
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Figure 6-29: Normalised primary bending modal frequency of four beam sizes for beams with
compliant matrix and textured boundaries using MPFEM

( 1, = 0t00.112 mm corresponds to V. /S, = 0 to 0.35)
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Figure 6-30
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Figure 6-31: Primary normalised modal frequencies, mode 1, for beams with compliant matrix and

textured boundaries, BCMTB

According to the results shown in figure 6-31 above, the normalised frequency value, A

reads 1.07 (using FEA) for the smallest beam sample size with the highest volume fraction

for mode one which clearly indicates that the size effect in these type of beams are less

marked in comparison with the size effect seen for both beams with voids and inclusions

with continuous boundaries as shown previously in figures 6-25 and 6-28.
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6.4 Summary and conclusions

FEA was used for creating beam models of a representative heterogeneous material and
generating modal frequencies and using them as the basis for comparison with those from
CVFEM and MPFEM. This approach is different from the usual techniques in the literature
but has some benefits. First of all, as shown in chapter three, the analytical methods in the
literature were not applicable to those beam models. Secondly, changing the volume fraction
in beam models with a periodic array of voids or inclusions, as described in detail in chapter
three, required changing material constants such as modulus of elasticity in order to keep the
overall dimensions and the properties of the homogenized equivalent beam unchanged which
was achieved by performing tensile test simulations using finite element analysis while

keeping each cell’s mesh configurations fixed.

In studying the longitudinal modal frequencies category, the FEA results revealed that there
is a smaller yet nevertheless identifiable size effect present in non-homogeneous beams
which indicate that normalised frequencies decreases on increasing the modal frequency and
this becomes more discernible in smaller beam samples. Nevertheless, the micropolar theory
was incapable of predicting this size effect in such longitudinal modes for non-homogeneous
beam models due to the fact that there is no length scale parameter in micropolar theory

related to size effects in axial strain states associated with longitudinal displacement.

In the flexural modal frequencies category of dynamic behaviour, when the micropolar
predictions are compared to the results obtained from finite element analysis, a number of
similarities and differences are evident. The MPFEM (CVFEM) modal analysis results
indicate that in the micropolar beam, the modal frequencies decreased quickly and
consequently after the first few modes the size effect is rapidly suppressed which thus limits
the utility of the higher modes in the investigation of any size effect. On the other hand, the
FEA results indicate that the size effect remains more pronounced and may even change in

nature.

Micropolar analyses were conducted for both beams with void and inclusions with
continuous boundaries and beams with compliant matrix in which boundaries were textured.
Micropolar analysis for other beam types are not obtained due to unavailability of the
micropolar constants as explained in chapter four. For the beam types for which the
constants were available, the values identified were subsequently for micropolar modal
analysis to predict the full frequency spectrum covered by the FE results. Discernible

differences were still present with these becoming more marked as frequency increased.
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Thus, while micropolar theory appears to have some capacity to forecast the size effect at
low frequencies of beams with lower volume fractions, its predictive ability becomes
progressively compromised as the volume fraction increases or beam depth reduced to one
unit cell or the frequency is increased towards the critical value. Comparable similarities and
differences are seen in the cases where the beams contain compliant inclusions and where
the inclusions, although more rigid, intersect the boundaries. Full numerical results are
tabulated and presented in Appendices B and D.

However, despite some shortcomings as stated above, the linear isotropic micropolar theory

demonstrated good capabilities to:

e capture size effect in beams with different sizes despite having the same length to
depth aspect ratio;

o forecast size effects for the first few flexural frequencies, especially modes 1 and 2,
in some of the 2D heterogeneous beam models;

e show that size effect also depends on the volume fraction similar to FEA results;

e predict the flexural frequencies for beam models with low to moderate volume
fractions;

e Predict the flexural frequencies for beam models with more than one layer of unit

cells across the depth of the heterogeneous beam models.

The above listed positive aspects of employing the micropolar theory raise the necessity to
investigate the extent to which the theory is still applicable. Therefore, in the next three
chapters the application of micropolar theory is extended to three-dimensional plate vibration
to verify the existence of size effects in plate models and to identify and investigate size
effects in three-dimensional representative materials as well. The three-dimensional
heterogeneous plate models discussed in chapter eight will demonstrate some anisotropy but
the more isotropic 3D micropolar plate presented in chapter nine is expected to be able to
explain the dynamic behaviour of the heterogeneous 3D models with a lower degree of
anisotropy. Therefore, in chapter seven the 3D micropolar theory will be formulated and
introduced through a 3D MPFEM procedure for modal analysis which will later be used to

generate the modal frequency data presented in chapters eight and nine.

132



7 Development of Algorithms for the Numerical 3D-MPFEM

This chapter covers the incorporation of the linear isotropic micropolar theory in the
conventional finite element method and its application to the three-dimensional (3D) context
and the development of appropriate algorithms defining the 3D linear isotropic micropolar
finite element method (3D-MPFEM) which will be used subsequently to extract eigenvalues
of heterogeneous plates in chapters eight and nine. Thus, in the development of the 3D-
MPFEM algorithms, two types of solid elements, namely, 8-node and 15-node solid
elements are formulated, and consequently their features are therefore discussed in some
detail here. Therefore, from this section onward, the accuracy of micropolar theory in a
specific dynamic problem, the free vibration of square plates with free-free-free-free (FFFF)
boundary conditions, is investigated to see if the theory can also explain the size effect in 3-

dimensional plates® in the dynamic case.

7.1 Stiffness matrix for 3D micropolar plate

As explained in chapter two, for the 3D cases, the stiffness matrix will be of rank 18, see
equation (2.19). The strain components in the micropolar govering equations (2.16) and
(2.17) can be related to micro rotation tensor, ¢, and the displacements tensor , u, as in
equation (4.1) while the strain tensors and the macro rotations in terms of displacements are
given in equations (4.2). Therefore the micro-rotation and macro-rotation are not taken as
equal which is clearly seen in the above equations and also reflected in the matrix expansion

of the equations as seen in equations (2.18) to (2.27).

The extra engineering constants in 3D micropolar elasticity are l;, the characteristics length
of torsion (I, reflect the microstructural scale similar to [, but in torsion), and ¥ is the polar
ratio which is conceptually similar to Poisson ratio but now represents the ratio of orthogonal
rotations. Energetically ¥ may vary from zero to 1.5. In almost all literature, the value of ¥
is assumed to be 1.5; thus also throughout the analysis in this project. The characteristic

length of torsion and the polar ratio are defined as:

2, P HY (7.1)
t = (2#* + K'*)

> Sign conventions are according to the figure 7-1. The Cartesian coordinates may also be indicated by integers 1, 2 and 3.
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_ Bty (7.2)
- a* + ﬁ* + .y*

If ¥ approaches one, then a* approaches zero which is necessary for the material to behave
in a classical manner but not sufficient since for the material to behave classically, all of four
additional micropolar constants a*, 8*,y* and k* must each equal zero. In a special case
when N=1 in equation (4.15), the material behaves as in couple stress theory where micro

rotation and macrorotation become equal.

The micropolar elastic constants may also be written as functions of the engineering

constants by rearranging equations (4.17) to (4.20) and equations (7.1) and (7.2):

*

a =
1+v,

_ EplZ (1 —SU) (7.3)
v

* Em 2 2 (74)
pr= @ -2

. 2Enl} (7.5)

v= 1+v,

. N? ( Ep, ) (7.6)
TN 1+,
1+, \1-2u,

. En [1-2N? (7.8)
b o1+, \20-n9)

In the dynamic analysis, the micro inertia tensor, J;; , must be included into the governing

equations as given in the equations of dynamic equilibrium (4.7) and (4.8).
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7.2 Formulation of the 3D-MPFEM using 15-node wedge element for

modal analysis

In this section the 3D micropolar elasticity theory is incorporated into a finite element

method which leads to development of algorithms for the 3-D MPFEM for modal analysis of

heterogeneous plates.

7.2.1 Formulation of stiffness matrix based on micropolar elasticity

There are 15 nodes in a wedge element, and each shape function is identified as N,

i=1,2,...15; Shape functions for 15-node wedge element are listed in table 7-1 which can be
found in reference (Hanukah 2014):

Table 7-1: Shape function of a 15-node wedge elements based on the node numbering in figure 7-1

Node Node
Shape function Shape function
number number
1 n1-9Cn—{-2)/2 9 6(1-17%)
-DA-6- 1-026+2
) (=1)( M1 ={)(26 +2n 10 (402 + T — )2
+9)/2
A=-6—-nA+DER6+2n
3 §1-0DR65-7—-2)/2 11
1-9@8~¢~2) o2
4 2n1-6—nA -9 12 SA+DR+7-2)/2
5 261=-6—-mA -9 13 2n1-=6—-mQA+9
6 26n(1 -9 14 260=6-mA+9
7 n(1—17%) 15 26n(1+9)
8 1-6-mA-7?)

Figure 7-1 shows the node numbering in a 15-node wedge element in a natural coordinate

system. & and n vary from zero to one and ¢ varies from —1 to +1.
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Cartesian Wedge element in natural
coordinates coordinates

+Z

Figure 7-1 : Representation of a 15-node wedge element in natural coordinate system. The Cartesian coordinates
may also be indicated by integers 1, 2 and 3.

The derivatives of the shape functions in the Cartesian and natural coordinates are related

according to the equation (7.9):

N,ix 6,x Nx (,x N,itS N,i(S
IN% =% tor S| [N | =T N (7.9)
Niz 6,2 Nz (,z N,if N,if

=1 represents the inverse of the Jacobian matrix and is used to transform the derivatives of

shape functions from natural to Cartesian coordinates. The Jacobian matrix can be calculated
as follows (Zienkiewicz, Taylor, and Zhu 2013; Kaltenbacher 2015):

- 15 15 15 B
Z xiN's z yiN's z z;N's
i=1 i=1 i=1
15 15 15
P=> uNy Y Ny Yz, (7.10)
i=1 i=1 i=1
15 15 15
Z xiNg Z yiNg Z ziNg
=1 =1 i=1 |

Referring to equation (2.18), the strain field as described by [si]- ¢,-j]T, can be related to the

displacement field and micro rotation by matrix B, see equation (7.11). Let & represent the

strain field and U represent the displacement and micro rotation vector:
[€] = [B][U] (7.11)

where:
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[0]=[w ¢;]' .J=12and3 (7.12)
Knowing the derivatives of the shape functions N¢, the B matrix can be constructed as

follows:

Cflen ezl
BI=1[00xs [03] (7.13)

where the matrices Q1, Q2, and Q3 are:

[@Q1]=|N, 0 0 (7.14)

[Q2] = (7.15)

and

[N, 0 0]
0 N, 0
0 0 N
Ny, 0 0

[@3]=j0 N, © (7.16)
N, 0 0
0 0 Ni
0 N, 0

[0 0 N

N is the shape function of 15-node wedge element at node i, where i=1, 2... 15.
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Now the stiffness matrix for the 15-node wedge element, K, , can be calculated:

$1 41 .41 . 717
K, = f f f BTDBdet[f|dsd, d; 710
-1 J0 0

where K, is the element stiffness matrix which has the size of 90 x 90 . A Gauss quadrature
method with three integration points was used to calculate the element stiffness matrix
numerically. T stands for transposed.

7.2.2 Derivation of mass and micro inertia matrices

Similar to the procedure described in chapter five, a template mass matrix was constructed
for a 15-node wedge element incorporating both consistent and lumped mass matrices using
the equation (5.25). A full and comprehensive procedure on obtaining consistent and lumped
matrices is provided in (Colorado 2010; Felippa, Guo, and Park 2015). The consistent and

lumped mass matrices were obtained from the equations 7.18 and 7.19:

M, = fp(N)TN dv (7.18)
\%
v
M, = li—sdiag[l 11...1]90%90 (7.19)

The consistent mass matrix using shape functions of nodes within the wedge element
interpolates the nodal mass within the element by integration of mass over the volume

domain V.

The micro-inertia, as introduced in equation (4.8), now has components in X, y and z
directions. In this thesis, it is assumed that the micro-inertia tensors are equal in all
directions. In the finite element method, a node is considered as a point of mass. Therefore
the micro-inertia of a node must be independent of the physical dimensions of the elements
which can cause some confusion, but in micropolar theory, however, it can be related to the
square of the characteristics length in bending. As described in chapter five, in 3D the micro

inertia is assumed to be given by equation (7.20):

22 p (7.20)

Micro Inertia =] = m
m

Thus the micro inertia matrix is considered as a 3 by 3 diagonal matrix:
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J 0O
Micro Inertia = [O ] O] (7.21)

007
J;i in equation (4.8) has three components in spatial coordinates but, as seen in equations

(5.38) and (7.20), these components are assumed to be J/p when i=j and zero otherwise.

When the element mass matrix is constructed, it is possible to include the micro-inertia
matrix into the mass matrix through those elements associated with the rotation of the nodes

as in the 2D cases.

7.2.3  Solution to eigen problem

Finally the stiffness and mass matrices will be assebled in the global mass and stiffness
matrixes, K; and Mg, and the eigenvalue equation can be solved according to the equation
(5.39). Similar to the algorithm for 2D eigen problem, the square root of the array of the

diagonal elements of the resulting matrix provides the frequency spectrum, o’.

7.3 Algorithms used for modal analysis of 3D micropolar plates

In this section the mathematical formulations which were defined in sections 2.3, 7.1 and 7.2
are used to develop algorithms for modal analysis of three dimensional micropolar plates in a
distinct process of 3D-MPFEM.

7.3.1 Plate modelling using 3D-MPFEM

The micropolar models are such that each plate unit-cell is represented by 8 wedge elements,
figure 7-2, and the modal frequencies of the primary mode for the plate shown in
figure 7-4 shows that the number of elements (392 elements with 10350 DOF) satisfies the

required mesh density for this, the smallest plate.

Figure 7-2 : Representation of one micropolar unit cell consisting of 8 wedge elements. Heightypit cetr =
0.866 mm, Lengthynit cen = 1 mm and Widthy,t cen = 1 mm
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A micropolar plate model generated by 3D-MPFEM is provided in figure 7-3 which
represents a plate with two layers of cells in depth. Note that in this work, free vibration with
FFFF boundary conditions in the absence of external loads was exclusively investigated.
This negates the problem of having to prescribe partially or fully constrained boundary

conditions.

Figure 7-3 : MPFEM plate model with height doubled and AR=8.083

Figure 7-4 shows the reduction of the percentage of error with increasing DOF representing
a micropolar plate albeit in a homogeneous test case in which all of the additional micropolar

engineering parameters are each set to zero.

3.2% -
2.8% %
2.4% - \
2.0% - \
Error 1.6% —4\
1% ] —0—10350
0.8% - X
0.4% - \‘\.‘ = —
0.0% - : : : .
0 5000 10000 15000 20000
DOF

Figure 7-4 : The influence of DOF in decreasing the percentage of error in the micropolar plate in comparison
with detailed FEA homogeneous plate model ; height=0.866 mm, Length=7 mm, Width=7 mm, AR=8.083 ; the
error percentage was calculated by error = {|(Qyprem — Lansys)|/Lansys) X 100
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The process of modelling the micropolar plate begins with entering the overall plate
dimensions by requesting the number of layers across the depth of the plate, number of line
divisions along the depth, width and length of the plate layers and aspect ratios in both mid-
plane directions. The micropolar constants are then required to be entered and finally the
number of modal frequencies and mode shapes to be extracted which becomes important at
post-processing stage as described in section 7.3.5.

In the process of modelling by 3D-MPFEM, a matrix denoted ENA (element node adjacency
or element node connectivity table) is generated in which each row represents a wedge
element and columns define the node numbers (first to fifteenth node) in that particular
element. Neither the element nor the node numbers are repeated. The numbering sequence of
elements proceeds from the left to the right side of the plate in the length direction counting
both wedge elements on a line division, then moving on to the next layer until one slice of
the plate is completed. Then the successive plate slices in the direction of the plate’s width, z

direction, will be generated until the plate model is completed.

Then, a list of coordinates for all nodes used in constructing the plate in an ascending will be
generated. Having the matrices for elements-nodes (ENA) and nodes-coordinates (GNC), a
3-D plot representing the actual plate dimensions and showing the meshed plate model for
visual confirmation will be generated. The nodal coordinates are also normalised by the
maximum length, width and depth and saved to be used later in the post-processing stage in

section 7.3.5.

The plate modelling procedure is conducted according to the following algorithm:

Step 1. Start [Start of algorithm];

Step 2: Enter the overall dimensions of the plate model: e.g., depth, width and
length;

Step 3: Enter the number of layers (NCy), number of line divisions across the depth
of the plate;

Step 4: Entre the number of unit-cells along the length and width of the plate model;

Step 5: Enter the plates’s length to depth aspect ratio (ARX);

Step 6: Enter the plates’s width to depth aspect ratio (ARz);

Step 7: Create and save Element-Node adjacency table (ENA);

Step 8: Create and save the list of coordinates, nodal-coordinates (GNC), for all

nodes in the plate structure in ascending order;
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Step 9: Generate a 3D plot representing the actual plate’s dimensions for visual
confirmation;

Step 10:  Normalise the nodal coordinates by the maximum length, depth and width;

Step 11:  Save the number of elements (nel);

Step 12:  Save the number of nodes per element (nnel);

Step 13:  Save nodal degree of freedom (ndof);

Step 14:  Save the number of nodes (nnode);

Step 15:  Calculate the element’s degree of freedom edof=ndof*nnel;

Step 16:  Save the element’s degree of freedom sdof;

Step 17:  Calculate the system’s degree of freedom sdof= ndof*nnode;

Step 18:  Save the system’s degree of freedom sdof;

Step 19:  Stop [End of algorithm];

7.3.2  Algorithm for constructing the element stiffness matrix

Here in this section the algorithm for obtaining the element stiffness matrix, K., in 3D-
MPFEM is developed based on the mathematical formulations provided in sections 2.3, 7.1
and 7.2.1. This algorithm can be implemented for the construction of plate’s element
stiffness matrix incorporating the micropolar theory into conventional finite element method
and used in construction of the global stiffness matrix, K;. Thus, the general algorithm to

derive the global stiffness matrix, using the 3D-MPFEM is defined as follows:

Step 1. Start [Start of algorithm]

Step 2: Entre the engineering micropolar constants: E,,, v,,, N, 1, I, and .

Step 3: Convert the engineering micropolar constants to the original micropolar
constants, a*, 87, y", k*, A%, u*, using equations (7.3) to (7.8).

Step 4: Construct the matrix of the material properties, D, using the micropolar
constants, defined in step 3, as in equation (2.19) to (2.27).

Step 5: Select the first element of the finite element model from section 7.3.1;

Step 6: Select the nodal coordinates of all 15 nodes in the wedge element in
Cartesian coordinate system e.g., X1, X3, X3, ... ,\¥1, V2, V3, -.. aNd zq, 25, Z3, ...;

Step 7: Entre the three Gauss points and weights;

Step 8: Reserve a matrix of zeros of rank 90 for the element’s stiffness matrix, K;

Step 9: Begin numerical integration using Gauss integration to implement the

equation (7.17) over the following steps 10 to 17;
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Step 10:

Step 11:

Step 12:

Step 13:

Calculate the matrix of derivatives of the shape functions, 15 equations in
table 7.1, with respect to area coordinates, §, n and ¢.

Calculate the Jacobian matrix ,J, the J determinant and the inverse of the
Jacobian matrix using the derivatives of shape functions and the coordinates
from step 6 as in equation (7.10);

Calculate the matrix of derivatives of the shape functions with respect to
Cartesian coordinates ( dN, ,dN, and dN, ) according to the equation (7.9)
Construct the partial matrix B using the derivatives of shape functions® from

step 12 as in equations (7.13) to (7.16), using the following pseudo code:

For n=11to 15

B (1, (6*n-5)) =dNx (n);
B (2, (6*n-4)) =dNy (n);
B (3, (6*n-3)) =dNz (n);
B (4, (6*n-4)) =dNx (n);

B (4, (6*n)) =-N(n);

B (5, (6*n-5)) =dNy (n)
B(5 (6*n) =N(n);

B (6, (6*n-3)) =dNx (n)
B (6, (6*n-1)) =N (n);

B (7, (6*n-5)) =dNz (n)
B (7, (6*n-1)) =-N(n);
B (8, (6*n-3)) =dNy (n)
B (8, (6*n-2)) =-N (n);
B (9, (6*n-4)) =dNz (n)

B (9, (6*n-2)) =N (n);

B (10, (6*n-2)) = dNx (n);
B (11, (6*n-1)) = dNy (n);
B (12, (6*n)) =dNz (n);
B (13, (6*n-2)) = dNy (n);
B (14, (6*n-1)) = dNx (n);
B (15, (6*n-2)) = dNz (n);
B (16, (6*n)) =dNx (n);
B (17, (6*n-1)) = dNz (n);

B (18, (6*n)) =dNy (n);
End;
Step 14:  Calculate K, = BTlD)Bdet[ﬂ *(Gauss weightl)*(Gauss weight2)*(Gauss
weight3);
Step 15:  Substitute the values in K, matrix
Step 16:  Update the Gauss point and weight
Step 17:  Repeat the loop from step (9) till the K, matrix of rank 90 is completed.
Step 18:  Insert the element stiffness matrix into the global stiffness matrix, K;;

® B (Row, Column) = the shape function or derivative of the shape function.
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Step 19:  Continue the steps (5) to (18) for the subsequent element till the last element
stiffness matrix is included into the global stiffness matrix;
Step 20:  Stop [End of algorithm]

7.3.3  Algorithm for constructing the element mass and micro-inertia matrices

The template mass matrix is described in section 7.2.2. The mass matrix for the 15-node
wedge element also incorporates the micro-inertia matrix. Thus, the general algorithm to
derive the global mass matrix for using in the 3D-MPFEM is defined as follows:

Step 1: Start [Start of algorithm]

Step 2: Entre the material mass density, p;
Step 3: Select the first element of the finite element model;
Step 4: Define the nodal coordinates of all 15 nodes in the wedge element in

Cartesian coordinate system e.g., X1, X3, X3, ... ,\Y1, V2, V3, ... aNd 24, 25, 73, ...;

Step 5: Calculate the volume of the wedge element;

Step 6: Create an (90 x 90) identity matrix;

Step 7: Multiply the element volume by its mass density and divide the product by
15;

Step 8: Multiply the product of step (7) to the identity matrix from step (6) to
generate lumped mass matrix using equation (7.19);

Step 9: Generate an (90 x 90) matrix using (N)"N;

Step 10:  Multiply the element volume by mass density and the matrix from step (9) to
generate the consistent mass matrix as in equation (7.18);

Step 11:  Having the lumped and consistent mass matrices obtained from steps (8) and

(10), generate the template mass matrix using equation (5.25);

2
Step 12:  Calculate the micro-rotation J/ p = % from equation (5.38); and inject

into the rows and columns and rows in the matrix generated from step (11)
which represent the micro-rotations.

Step 13:  Insert the element mass matrix into the global mass matrix, Mg;

Step 14:  Select the next element;

Step 15:  Continue the steps (4) to (14) for the subsequent element till the last element
mass matrix is included into the global mass matrix;

Step 16:  Stop [End of algorithm]
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7.3.4  Solution of the discrete eigenvalue problem

Equation 5.39 in chapter five is also valid here for 3D plate’s modal analysis and was solved
by using a sparse matrix and parallel computation method’. The solution process® begins
with defining the system matrices which are zero matrices for reserving memory spaces for
stiffness, forces (if applicable) and mass matrices based on the total number of degree of
freedom associated with all nodes in the constructed plate (also called the plate system
matrix). The boundary conditions take effect in the global matrices by replacing the
appropriate rows and columns with zeros which is not applicable here as no constrains are
applied but are considered for future work. Finally the eigen problem is solved according to
the equation 5.39. Following the solution of the eigen problem, the list of eigenvalues, w?,

and the matrix of the eigenvectors are saved for post-processing.
The algorithm of the solution stage is as follows:

Step 1: Start [Start of algorithm]

Step 2: Define the number of modal frequencies and mode shapes to be extracted,
e.g., Ext_mode=10 means that the first ten modal frequencies are to be
extracted;

Step 3: Call Mg, (the global mass matrix including micro-inertia matrix);

Step 4: Call K, (the global stiffness matrix);

Step 5: Create sparse matrix from Kj;
Step 6: Create sparse matrix from M;;
Step 7: Start a parallel pool for parallel solution;

Step 8: Solve the eigen problem by applying equation (5.39) using the pseudo code:

[Eigen vectors, Eigen values]=eig (K;, M;, Ext_mode);
Step 9: Save eigen vectors;

Step 10:  Save eigen values;
Step 11:  Delete the parallel pool;
Step 12:  Stop [End of algorithm]

7.3.5 Post-processing of data for extracting the modal frequencies and mode shapes

The frequency values are obtained by taking the square root of the eigenvalues and

multiplied by 27 then arranged in ascending order. The displacement of each node in the

" The sparse matrix and parallel computation was carried out in MATLAB.
& MATLAB was used as the numerical computing environment and all numerical codes in this project
are developed in this language.
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system in x, y and z directions is defined by identifying row and column number in the
eigenvectors matrix for that specific frequency and after arranging them in ascending order,
saving the values as vectors corresponding to X, y and z coordinates for each node. The
eigenvector values contain normalised displacement values which could be zero, positive or
negative values. These eigenvector values are then added to the normalised GNC coordinates
which result in mode shape coordinates.

The algorithm of the post-processing stage is as follows:

Step 1: Start [Start of algorithm]

Step 2: Take the square root of the eigenvalues;

Step 3: Multiply the eigenvalues by 2 to obtain w values;

Step 4: Arranged the in ascending order;

Step 5: Extract corresponding row and column associated with each frequency from
the matrix of eigenvectors;

Step 6: Add the eigenvector to the normalised nodal coordinates obtained from Step
(10) of the algorithm which is provided in section 7.3.1;

Step 7: Generate a 3D plot representing the mode shape for any of the specified
modal frequency in step (5);

Step 8: Stop [End of algorithm]

7.4 An alternative 8-node brick element and comparison with the 15-

node wedge element

Here, in this section, an alternative but widely used solid element with fewer nodes (8-node
brick element) is described which is simpler than a 15-node wedge element and, therefore,
requires less computational time. The shortcomings of the 8-node brick elements and the
advantages of using the 15-node wedge element in the modal analysis of plates are

discussed.
7.4.1 Modelling and shape functions using 8-node brick element

The modelling process with the 8-node brick element is similar to the description that was
provided in section 7.3 for the wedge element; the only difference is that the numbers of
nodes are reduced to eight nodes per element. Note that two 15-nodes wedge elements
construct a cuboid with 22 nodes in comparison with 8 nodes in a brick element. Another
difference is there are no mid-side nodes in the 8-node brick elements. Therefore, the

interpolation of dependent variables in the 8-node brick element is linear.
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Figure 7-5 represents the node numbering in an 8-node brick element in a natural coordinate

system. §, n and ¢ that vary from —1 to +1.

i
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Figure 7-5: Representation of 8-node brick element in natural coordinate system

The shape functions in the 8-nodes brick element are identified as N¢, i=1,2,...8; Shape

functions for brick element are listed in table 7-2:

Table 7-2: Shape function of 8-node brick elements based on the node numbering in figure 7-5

nt'r?]%ir Shape function nt'r?]%ir Shape function
1 1-6a-m1-9)/8 5 1+8)A-mMA-9)/8
2 1-8Ha+m@a-9)/8 6 1+8)A+mMA-9)/8
3 1-8)a-m1+7)/8 7 1+8)A-mMA+4)/8
4 1-8Ha+mA+7)/8 8 1+8)A+mMA+)/8

7.4.2  Solution of plate problem with 8-node brick element

The stiffness matrix for the 8-node brick element, K, , can be calculated by equation (7.22):

+1 41 +1
K, = f f f BTDBdet[f|dsd,d; (7.22)
-1 /-1 1

where K, is the element stiffness matrix which has the size of 48 x 48. A Gauss quadrature
method with two integration points was used to calculate the element stiffness matrix

numerically. T again indicates transposed.

The mass and micro-inertia matrices are obtained as described in section 7.2.2 which also

results in an overall mass-micro-inertia matrix of dimension 48 x 48.
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Equation (5.39) was again solved by using a sparse matrix and parallel computation and then

modal frequencies and mode shapes were extracted as required.
7.4.3 Comparing 15-node wedge element with 8-node brick element

The numerical solution of plates with an 8-node brick element mesh is expected to be
performed faster than those with 15-node wedge elements since the dimensions of the mass
and stiffness matrices are smaller for the 8-node brick element. But numerical investigation
of a homogeneous plate, see figure 7-6, showed that plates with 15-node wedge element
display very good accuracy with fewer elements needed to mesh the plate in comparison
with plates of the same dimensions modelled using 8-node brick elements. Figure 7-6
indicates that the frequency results in a plate with wedge element and line division of
7 X 7 x 1 which consist of 98 wedge elements is significantly more accurate than similar
plate meshed with brick elements and a line division of 30 x 30 x 2 which consists of 1800
brick elements. Therefore in order to achieve reliable results for plates using brick elements,
the mesh density must increase substantially in all directions. The reason for the inaccuracy
of the 8-node brick element when using a sparse mesh density is mainly due to the shear
locking issue in the 8-node brick element which does not happen in the wedge element in
which the interpolation of dependent variables is quadratic. The additional shear stress as a
result of linearity of the brick element makes it stiffer than the actual plate model and

therefore any given modal frequency of the plate increases.

1 |6 T T T
2
3% 14} |
24 -e. FEA
=3 —— Wedge,7x7x1
g g)o 1.2+ —— DBrick, 7x7xI
= g —e— Drick, 14x14x1
S’g =& Brick, 14x14x2
§ < 1.0 - -TsEseEss==" == Brick, 20x20x2
gE —@— Brick, 30x30x2
= 0.8F .
1 1 1
1 2 3 4 5

Mode number

Figure 7-6: Normalised frequency of homogeneous plates with various line divisions and brick
element in comparison with a plate with 15-node wedge element. Frequencies of five modes
normalised to the frequencies obtained from FEA homogeneous plate with NCy=1, AR=8.083 and
Sy=0.866 mm
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7.5 Validation of the 3D-MPFEM and 15-node wedge element

A square homogeneous plate with the depth of 0.866 mm and the aspect ratio of 10 was
modelled using the 3D-MPFEM in which the length and width of the plates were divided
into 20 equal divisions and one division throughout the depth of the plate. This line division
constitutes a plate with 400 elements (15-node wedge), and the first eight dimensionless
modal frequencies were obtained for this plate with unconstrained boundary conditions, see
table 7-3. Also, a plate with the dimensions mentioned above was modelled, and the first
eight dimensionless modal frequencies were obtained by FEA with 334080 brick elements
(20-node).

As stated explicitly in chapter two, as yet there is not an exact solution available for a two
dimensional Mindlin plate with FFFF boundary conditions, however, there are some limited
results available in the literature which used the Ritz method that could be used for
verification of the 3D-MPFEM. Eftekhari et al. (2013) used a method termed the mixed
finite element differential quadrature formulation (Mixed FE-DQ) and derived the first eight
non-dimensional frequency parameters for plates with different boundary conditions. They
also provided results based on the Pb2-Ritz method that was previously developed by Liew
et al. (1993) in which two-dimensional polynomials were used as the admissible
displacement and rotation functions in this Rayleigh-Ritz based method. Table 7-3 provides
the results for the homogeneous isotropic plate with aspect ratio equal to 10:1 in which the

data in the second and third columns are extracted from the work of Eftekhari et al. (2013).

Table 7-3: non-dimensional frequency parameters for an unconstrained square homogeneous plate
with the aspect ratio equal to 10 using various humerical methods.

Relative difference of 3D-MPFEM
with

ode | FE-DQ | Pha-Ritz | 2R | 3D FEDQ | Po2Ritz | DR
1 1.2887 | 1.2887 1.2891 1.2877 -0.0008 -0.0008 -0.0011
2 1.9194 | 1.9194 1.9205 1.9141 -0.0027 -0.0027 -0.0033
3 2.3633 | 2.3633 2.3654 2.3588 -0.0019 -0.0019 -0.0028
4 3.2343 | 3.2344 3.2376 3.2273 -0.0022 -0.0022 -0.0032
5 3.2344 | 3.2344 3.2381 3.2280 -0.0020 -0.0020 -0.0031
6 5.6082 | 5.6084 5.6222 5.5929 -0.0027 -0.0028 -0.0052
7 5.6082 | 5.6084 5.6222 5.5951 -0.0023 -0.0024 -0.0048
8 5.6449 | 5.6450 5.6557 5.6330 -0.0021 -0.0021 -0.0040
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The relative difference of the values of the first eight modal frequencies, obtained by using
3D-MPFEM, with the results from FEA, FE-DQ and Pb2-Ritz methods, which are provided
in table 7-3, verify the accuracy of the 3D-MPFEM with an error of less than -0.0052.

7.6 Conclusions

A set of algorithms which incorporate the linear isotropic micropolar theory into the
conventional finite element method were developed for modal analysis of 3D plates. In the
development of the finite element algorithms, both 15-node wedge and 8-node brick
elements were used in the implementation of the algorithms as described in this chapter, and
the method was named 3D-MPFEM or MPFEM for short. The micro-inertia and mass
matrices were then incorporated into the algorithms. The micropolar elastic constants in a
heterogeneous plate facilitate investigating size effects in such plates and enable the
comparison of the predicted modal frequencies with those of actual plates with various types

of heterogeneities which will be covered in chapters eight and nine.

Homogeneous plates modelled with 15-node wedge and 8-node brick elements were
compared and the advantages of 15-node wedge element were discussed. The application of
the wedge element was then favoured over the use of brick element because of its versatility

and robustness in modelling and modal analysis.

The application of the 15-node wedge element in modal analysis especially in heterogeneous
plates has not been previously studied by researchers; therefore, the 3D-MPFEM is a novel
approach in the dynamic analysis of such plates which is capable of forecasting the size

effects anticipated in them.

In the next two chapters, heterogeneous plates with cylindrical and spherical voids and
inclusions will be modelled, and the modal frequencies acquired by FE modal analysis will
be compared with the results which are generated using the 3D-MPFEM which uses the

advantages of 15-node wedge element in modelling of nonhomogeneous plates.
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8 Size Effects in 3D Heterogeneous Plates with Cylindrical VVoids
or Inclusions

In this chapter, the free vibration of unconstrained square plates is studied with specific focus
again being on the size effect phenomenon in heterogeneous materials. Plates with
cylindrical-type voids and inclusions were modelled, the cross section of which resemble
beam categories similar to those studied in chapter three which are then extruded in the
direction that is normal to the x-y plane. The general methodology of studying the size effect
is unchanged which means that the overall properties of the plates such as modulus of
elasticity, Poisson’s ratio and the mass density were kept unchanged for all plate types.
Unlike the previous chapters, here the longitudinal and transverse modes were not
categorically segregated or studied separately and therefore the full spectrum of the modal
frequencies was investigated. The main reason is that the first eight mode shapes appear in
sequence and only include transverse modes. The longitudinal modes, in horizontal
directions (in x-z plane), parallel to the plane of the plate appear after the eighth modal
frequency for which the micropolar theory is incapable of anticipating size effects correctly
anyway. Secondly, in relation to the plate’s longitudinal vibration, the micropolar theory is

again incapable of anticipating any size effect.

In fact, the beam models which were studied in chapter three, are extruded to construct three
dimensional plate models which allows the use of two micropolar constants (I, and N) that
were already obtained for the 2D materials thereby permitting the identification of the
remaining micropolar constants (I; and ¥) and study the size effect in 3D heterogeneous
materials. Therefore, going from 2D beams’ modal analysis to 3D heterogeneous plates’
modal analysis seems to be a logical progression. The other important point which must be
addressed here is that in the application of the 3D-MPFEM, isotropic micropolar plates are
created and analysed while FE method creates 3D plate models with cylindrical extrusions
which are anisotropic, although this thesis has attempted to reduce the anisotropic effect to as
minimum as practically possible. The issue of the degree of anisotropy of heterogeneous

plate models with cylindrical voids and inclusions will be addressed in section 8.2.2.
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8.1 Finite element modelling of plates with cylindrical voids or
inclusions and mesh refinement

Cylindrical type voids or inclusions were considered for modelling the heterogeneous plates.
Therefore, plates with voids and one isotropic matrix material, plates with two isotropic
materials comprised of stiff matrix but compliant inclusions, and finally plates with
compliant matrix and stiff inclusions were all modelled. The surface conditions of the top
and bottom surfaces of the plates were considered to be either continuous or textured.

Therefore, six plate types in total were modelled as follows:

Plates with cylindrical voids and continuous boundaries (CYVOCB)
Plates with cylindrical voids and textured boundaries (CYVOTB)
Plates with cylindrical compliant inclusions and continuous boundaries (CYCICB)

Plates with cylindrical compliant inclusions and textured boundaries (CYCITB)

o M w DN

Plates with cylindrical inclusions, compliant matrix and continuous boundaries
(CYCMCB)
6. Plates with cylindrical inclusions, compliant matrix and textured boundaries
(CYCMTB)

Referring back to chapters four to six, the micropolar constants were only obtainable for the
first, third and sixth plates types of the above list which are distinguished as CYVOCB,
CYCICB and CYCMTB.

The FEA results are presented for all of the above categories while, in this chapter, the 3D-
MPFEM results for the plate types CYVOCB, CYCICB and CYCMTB are presented and

discussed.

8.1.1 Unit-cells with cylindrical void or inclusions

For each plate type, specific three-dimensional unit cells were modeled using 20-node Solid
element type with ANSYS APDL version 17, see the semi unit-cells (half sized) in
figure 8-1. The line divisions are the same as the earlier beam models in their 2D forms
presented in chapter three and the only difference is that the unit-cells are three-dimensional
here, this being achieved by extruding the 2D plane models in the z direction with the
extended lines in the direction of S, being divided into 14 equal divisions. The sign
conventions are according to figure 7-1. The Cartesian coordinates may also be indicated by
integers 1, 2 and 3. By repeatedly regenerating the unit cells as needed, plate types of

required thickness and aspect ratios were modeled. The height of the unit cells remained
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unchanged at 0.866 mm, and the aspect ratio (length or width to height ratio) for all plates
was 8.083:1 which resulted in modelling the smallest squared plate samples so that they
contained seven cylindrical voids or inclusions along the plate edge and one unit-cell through
the plate thickness which thus form a plate model with 49 unit-cells in total; and this is
increased by eight times when the plate depth is multiplied by two for the second smallest
plate and so forth. The length and width of unit cells were equal to 1 mm, and the successive
layers of voids and inclusions were such that the center points of every three neighboring
cylinders forms an equilateral triangle. This, as the heterogeneity arrangement, was aimed at
reducing or avoiding the anisotropic characteristics of the material as much as practically
possible. Voids and inclusions in plate models are unidirectional and normal to the length of
the plates (they are extruded in z direction). Therefore, the plates are squared which
eliminates the need for a separate investigation into the importance of cylinder orientation in
a plane parallel to the mid-plane. Inclusion and matrix are of two isotropic materials with a
matrix to inclusion stiffness ratio of 10:1 for the third and fourth plate types (CYCICB and
CYCITB) and 1:10 for the fifth and sixth plates plate categories (CYCMCB and
CYCMTB).

" §

/
7

/
4
3
4

/'é__.. 2 ___>'

4
,I
LS
i

~

; e
Sx/2°~

Figure 8-1: Representation of half unit cells of two isotropic materials with void or inclusion’s volume
fraction 15%. The unit cell on the left is used to model 3D plates with continuous boundaries e.g.,
CYCICB (with inclusions) or CYVOCB (without inclusions) and the unit cell on the right-hand side is
used for plates with textured boundaries (e.g., CYCMTB).

8.1.2 Mesh refinement of the unit-cells

Two plate models with continuous and textured boundary surfaces and containing compliant
inclusions were studied and presented here to show that the plate models under investigation
satisfy the requirements of mesh convergence. The modal frequencies of plates with NCy =
1,AR = 8.083:1, S, = 0.866mm and V; = 0.15 (r = 0.2 mm) with cylindrical inclusions
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were studied for mesh convergence while changing the element density of the unit-cell as the
average error are provided in tables 8-1 and 8-2:

Table 8-1: Mesh convergence for the plate samples with compliant inclusions and continuous
boundaries (CYCICB) and V; = 0.15

:::rr:\?rftrs ?rf] nNOlCJ]LZbiﬁro%fe Avera_ge error for the Average error for ten Average error for 33
one unit-cell unit-cell primary mode modes modes
128 773 1.94E-04 2.63E-04 2.87E-04
624 3141 2.94E-05 5.65E-05 4.97E-05
3744 19980 4.90E-06 3.18E-05 2.39E-05
10240 45077 3.27E-06 3.09E-05 2.23E-05
34944 149405 1.50E-07 2.80E-06 2.20E-06

Table 8-2: Mesh convergence for the plate samples with compliant inclusions and textured boundaries

(CYCITB) and V; = 0.15

Number qf Numb_er of Average error for the Average error for ten Average error for 33
elements in nodes in one .
one unit-cell unit-cell primary mode modes modes
100 1124 7.65E-05 2.66E-04 3.56E-04
288 2788 1.86E-05 1.23E-04 1.29E-04
1734 12124 1.10E-06 2.95E-05 2.66E-05
4431 26816 2.07E-06 1.28E-05 1.10E-05
18270 94932 1.96E-06 1.35E-06 1.07E-06

As seen in tables 8-1 and 8-2, plates with about 3000 to 10,000 elements per unit cells satisfy
the mesh convergence for the primary and first ten modes. The FEA plate models were
created so that they contained elements per unit cells as given in the fourth row of tables 8-1
and 8-2. The average errors in these tables are small values but the relative error
simultaneously increases with mode number which must be noted if higher mode numbers

are to be investigated.

8.2 Adjusting the modulus of elasticity (E) and mass density (p) of the
unit-cells with cylindrical voids or inclusions

Now that the heterogeneous plates are modelled, the matrix and inclusions Young’s modulus
and material density must be adjusted so that the overall homogenised properties of the plate
remain unchanged. However, by adjusting the material properties, some degree of anisotropy

in plate properties will occur which are also noted and quantified in this section.

8.2.1 Obtaining modulus of elasticity (E) and mass density (p)

The cylinders’ radius varied from 0.1 to 0.3 mm, in 0.05 mm intervals, giving void or

inclusions volume fractions of 4, 8 15, 23 and 33 percent respectively. In this chapter as
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previously, volume fraction, void radius or normalised void radius are used interchangeably,

and their relations are provided in table 8-3 for clarification.

By regenerating and repeated reflection of the unit cells in X, y and z directions, plates with
continuous and textured boundaries of minimum one to maximum of four unit cells in the
plate depth were created. This modelling procedure provides plates of four sizes and varying
volume fractions for each of the three plate types as introduced earlier in section 8.1. This
procedure was performed while keeping the overall material properties hamely the mass of
the unit cells and elastic modulus of the plates unchanged at 2700 kg/m® and 7E10 Pa for
density and Young’s modulus respectively. Therefore, it is believed that changing the
volume fraction of each plate of any specified size or type won’t affect the overall
homogenised material properties of the plate samples. The correction of elastic modulus was
done by performing tensile test simulations using FEA, and the correction of density was
done by keeping the mass and volume of the unit cells constant but changing the density of
the constituent isotropic materials. The corrected materials properties are provided in
table 8-4, 8-5 and 8-6. Figure 8-2 illustrates the cross-section of example plates and the

arrangement of unit cells for two plate types.

LSS IS SRR

Figure 8-2 : Models’ cross sections with periodically located cylindrical voids or inclusions showing
the arrangement of unit cells in plates; a) Plate size 1 with 7 unit cells with continuous boundaries
(top, left); b) Plate size 2 with 14 unit cells in length and width with continuous boundaries (bottom,
left); c) Plate size 1 with 7 unit cells with textured boundaries (top, right); d) Plate size 2 with 14 unit
cells in length and width with textured boundaries (bottom, right)

Table 8-3: Volume fraction and normalised equivalent of cylindrical void or inclusions

Void/inclusion radius, r, [mm] 0.1 0.15 0.2 0.25 0.3

Cylindrical void or inclusion volume 4% 8% 15% 23% 33%
fraction, %

Normalised radius, V,./S,, 0.12 0.17 0.23 0.29 0.35
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Table 8-4: Corrected modulus of elasticity for plate’s matrix. Inclusions modulus is either 0.1 or 10
times the values of this table depending on plate type. These FE plate types are those for which
micropolar solutions were obtained

The modulus of elasticity of matrix, MPa
Plates with Continuous boundaries Plates with Textured
boundaries
Plates with Plates with .
. L . R Relative
Cylindrical Plates with Relative diff, |  SYlindrical Relative cylindrical diff. with
- cylindrical voids . compliant diff. with inclusions,
void or - with the - - B - the
. - and continuous inclusions and the compliant matrix
inclusion boundari homogen- - h d d homoge-
radius. mm oundaries eous beam continuous omoge- and texture neous
' (CYVOCB) boundaries eous beam boundaries beam
(CYCICB) (CYCMTB)
0 7.00E+04 3.16E-05 7.000E+04 2.30E-05 7.000E+04 4.07E-05
0.1 7.75E+04 8.36E-05 7.56E+04 5.33E-05 6.57E+04 7.40E-05
0.15 8.80E+04 5.63E-05 8.31E+04 7.31E-05 6.12E+04 9.22E-05
0.2 1.05E+05 9.27E-05 9.48E+04 7.31E-05 5.56E+04 8.92E-05
0.25 1.31E+05 2.60E-05 1.12E+05 8.36E-05 4.91E+04 4.37E-05
0.3 1.75E+05 3.16E-05 1.37E+05 2.30E-05 4.19E+04 4.07E-05

Table 8-5: Corrected modulus of elasticity for plate’s matrix. Inclusions modulus is either 0.1 or 10
times the values of this table. These FE plate types are those for which micropolar solutions were not
obtained

The modulus of elasticity of matrix, MPa
Plates with Continuous boundaries Plates with Textured boundaries
- Plates with . . Pla_tes With R_elatiye cyllaiféi?c\gllt:nd Relatiye
Cylindrical - . Relative diff. cylindrical diff. with . diff. with
void or compllant_ matrix with the voids and the . com_pllant the
inclusion ank(]:i contlngous homoge- textured homoge- inclusions and homoge-
- oundaries - textured
radius, mm (CYCMCB) neous beam boundaries neous boundaries neous
(CYVOTB) beam (CYCITB) beam
0 7.00E+04 4.38E-05 7.00E+04 1.25E-05 7.00E+04 8.36E-05
0.1 6.59E+04 7.75E-05 7.77E+04 4.28E-05 7.57E+04 5.36E-05
0.15 6.15E+04 5.16E-05 8.82E+04 1.25E-05 8.32E+04 2.60E-05
0.2 5.60E+04 7.49E-05 1.05E+05 1.39E-05 9.47E+04 8.66E-05
0.25 4.95E+04 8.01E-05 1.30E+05 2.30E-05 1.11E+05 8.31E-05
0.3 4.22E+04 4.38E-05 1.72E+05 1.25E-05 1.37E+05 8.36E-05
Table 8-6: Corrected density of the plate’s unit cell by void or inclusions radius
cylindrical voids The mass density of matrix and inclusions, kg/m?3
?;(;?Sslufr'ﬁg Plates with cylindrical voids Plates with cylindrical inclusions
' For matrix For matrix For inclusions
0 2700.00 2700.00 N/A
0.1 2801.64 2546.94 6766.11
0.15 2939.97 2672.70 3007.16
0.2 3158.29 2871.18 1691.53
0.25 3491.67 3174.25 1082.58
0.3 4008.87 3644.43 751.79

8.2.2 The effect of anisotropy in plates with cylindrical voids or inclusions

The tensile test simulations on the plate models were carried out in x-direction based on
which the modulus of elasticity of the matrix material was adjusted and provided in
tables 8-4 and 8-5 for various volume fractions. The moduli of elasticity of inclusions were
also assumed to be different from the modulus of elasticity of matrix material by a factor of

ten depending on the plate model types. Although the macroscopic modulus of elasticity in
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the x-direction, Ey , is unchanged and equal to 70E3 MPa, the corresponding modulus of
elasticity in the z-direction, E, , (perpendicular to the x-direction) for various volume
fractions changes which indicate that the plate models will demonstrate some degrees of
anisotropy. The degree of anisotropy (DA) was obtained by tensile test simulations in the z-
direction, and the relative difference of E; to E, was calculated for various volume fractions.
However, the anisotropy in plate models varies with volume fraction as seen in table 8-7:

Table 8-7: The degree of anisotropy in heterogeneous plate models with cylindrical voids and

inclusions
The relative degree of anisotropy [(Ez-EX)/Ez]
boundaries boundaries boundaries
0.00 0.00 0.00 0.00
0.04 0.04 0.06 0.20
0.08 0.09 0.13 0.34
0.15 0.15 0.22 0.46
0.23 0.21 0.31 0.53
0.33 0.28 0.41 0.58

The values in table 8-7 indicate that the plates with void or compliant inclusions and volume
fraction of less than 0.15 can be assumed to be relatively isotropic, and the plates with higher
volume fractions as plates with a higher degree of anisotropy. On the contrary, the plates
with a compliant matrix exhibit a higher degree of anisotropy even for lower volume
fractions. Therefore, the dynamic behaviours of the heterogeneous plate models with a lower
degree of anisotropy (DA) are expected to be explained by the results from 3D-MPFEM
which only models isotropic micropolar plates. The results for heterogeneous plates are

compared and discussed in section 8.5.

8.3 Modal analysis procedure and mode shapes

In finite element modal analysis, the PCG Lanczos solver and distributed memory were used
for modal analysis of plates. This method is as accurate as Block Lanczos and is widely used
for models with a large number of degrees of freedom. A detailed comparison between the

two methods and their applicability are given in reference (Beisheim 2007).

The first 8 mode shapes using finite element analysis are shown in figures 8-3-a to 8-3-h and

as it can be seen every mode has its own distinct shape. The first mode is known as the twist
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mode (figure 8-3-a), the second mode is known as the saddle type mode or hyperbolical
surface (figure 8-3-b) and the mode shape in figure 8-3-c is known as the ellipsoidal surfaced
type mode. The rest of modes show very distinct mode shapes in which the number of
transverse lobes (waves) increases with the mode number. The twisting modes are shear
deformation dominated such as in mode one where [, is the key influencing parameter in
their dynamic behaviour while modes two and three are bending deformation dominated in
which [, is the principal influencing parameter rather than ;. Thus, from the transverse
mode four onward, the dynamic behaviour of the plate models, both shear and bending
deformations are the prevailing factors. However, the longitudinal modes in an FFFF
boundary condition case appear usually after mode 8 which are therefore not presented in

this chapter.

The non-dimensional modal frequencies for homogeneous plates (£2) which are given in
table 8-8 and used for normalisation of the plate modal frequencies in the figures provided in

sections 8.4 and 8.5, are derived using equation (8.1) as follows:

_ WLW |pd 8.1)
2 D

where L is the plate length, W (=L) is the plates width, d is the plate depth which may also

be shown by “h” while D is the flexural rigidity:

Ed3
P = za v 62

Table 8-8 : The non-dimensional frequencies (£2) for homogeneous plates with AR=8.083:1

Mode 1 2 3 4 5 6 7 8

AFNISXS 1.266325 | 1.889482 | 2.321783 | 3.138321 | 3.138415 | 5.388943 | 5.389036 | 5.395208

MPFEM | 1.265003 | 1.884909 | 2.317066 | 3.130562 | 3.130925 | 5.36872 | 5.369923 | 5.378121

In this chapter, the finite element results are only presented when being compared to the
predictions of 3D-MPFEM in the sections that follow. However, the FEA and 3D-MPFEM
results are listed in Appendix E.1 and E.2.
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a) Mode 1, Twist shape Mode 2, (hyperbolical surface) Saddle
shape
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¢) Mode 3, (ellipsoidal surfaced) Bending Type :Mode 4
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g) Mode7 h) Mode 8

Figure 8-3: The first 8 mode shapes (a to h) of a sample plate with cylindrical inclusions of volume
fraction equal to 0.15 and continuous boundaries (NCy=1) generated by FEA. Note that the first eight
mode shapes of the homogeneous plate as well as other plate models with textured boundaries are

similar to the mode shape figures here also.

The mode shapes of the micropolar plates were also extracted using the 3D-MPFEM. As an
example, the first eight mode shapes for a plate model with the depth of 2 unit cells;h = 2 x
0.866; V; = 0.15;1, = 0.6084 ; [, =2 x I, , N = 0.0507 , ¥ = 1.5, v, = 0.3, E,, = 7 X

10'° MPa, corresponding to CYVOCB are provided in figures 8-4-a to 8-4-h. The
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micropolar plate mode shapes generated were qualitatively similar to those in figures 8-3-a
to 8-3-h for plates modelled using FEA which indicate that 3D-MPFEM identifies the first
mode as twisting, second and third modes as bending and the rest of the transverse modes are

dominated by both shear and bending deformation.

g) mode7 h) mode 8

Figure 8-4: MPFEM extracted mode shapes for a plate model with the depth of 2 unit cells; h = 2 x
0.866; V; = 0.15;1, = 0.6084 ;1 = 2% [, ,N = 0.0507 ,%¥ = 1.5,v,, = 0.3 ,E,, =7 X
101° MPa ,
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8.4 Micropolar elastic constants

Here, in the three-dimensional modal analysis, the micropolar Poisson’s ratio is assumed to
be equal to 0.3, micropolar modulus of elasticity, E,,;, equal to 7E10 Pa; the characteristic
length in bending and the coupling number are as given in tables 4-3 and 6-1 and were
obtained from the two dimensional plane stress case, the method of which is provided in
chapters 4 and 5, and for greater accuracy, these two constants were obtained by considering
only the beam models of depth 2, 3 and 4 array of voids or inclusions. Finally the polar ratio

is assumed to be 1.5 as already indicated.

The modal analysis of micropolar plates with three unit cells in height and cylindrical voids,
as will be explained in section 8.4.1, indicates that the characteristic length of torsion must
forecast the behavior of higher modes as well as the first mode which is twisting dominated.
Therefore, three values for the characteristic length of torsion I, = 21,, I, = I, and I, = 0.5[,
had been tried and its influence on the frequency predictions are investigated and

qualitatively illustrated.

In modal analysis of a micropolar plate, small displacements in the absence of any external
load with FFFF (unconstrained plate edges) boundary conditions are sought in order to
investigate size effect predictions by micropolar theory when the microstructural dimensions
are comparable to the overall size of the plate. It will be shown in the details given in this
chapter and in chapter nine, that for specific non-homogeneous plates, the micropolar theory
is capable of predicting size effect for the first few modal frequencies, that means the first 5
to 8 modes, but the micropolar theory lacks the ability to be reliable in predicting the
frequencies of higher modes. It will also be shown in section 8.4.1 that selecting a
characteristic length of torsion, I;, equal to twice the characteristic length of bending, {;, , as
has been used in other literature (Hassanpour and Heppler 2017), where it may be a valid

estimation in static cases, may also be valid for lower mode numbers in the dynamic case.

As an extra verification of the characteristic length of bending which was identified through
equation (4.46), by replacing the flexural rigidity, D, with D + yd in equation (8.1), a very
useful and alternative equation for calculating the characteristic length of bending in plates

can be derived as:

wLlW pd (8.3)

w2 D +y*d
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where D + y*d is termed the flexural rigidity of the micropolar plate here, which was first
derived by Gauthier et al. (1975) to relate the curvature to bending in a micropolar plate with
small displacement, and is identified with D here, and d is the depth of the plate. The extra
micropolar term y*d reflects the effect of micropolar constituent parameter,y™, in flexural
rigidity of micropolar plates. D is reducible to D when y* approaches zero for the flexural

rigidity in a classical material.

By replacing D from equation (8.2), y* from equation (7.5) and knowing that E,,; =~ E.,:

5_ Epsd? 2E 12 4 (8.4)
T [120=-v,2)]  \1+v,
Thus:
= Epgd? 12 (8.5)
D =—[12(1—Vm2)] 1+24(1 —vy) E
in the context of a square plate in which:
LW =12 = A (8.6)

where A* is the mid plane surface area of the plate.

Note that h and d are used interchangeably throughout for the depth (or height) of the plate;
Therefore, by replacing D from equation (8.5) and substituting into equation (8.3) and re-

arranging:

g T0Epg Ip) 8.7)
A" = A v D) AR {1 + 241~ vm) (E) }

Equation (8.7) thus relates the characteristic length of bending, [, non-dimensional

frequency parameter of the plate (applicable to mode two only), £, micropolar flexural
modulus, E,f, and plate dimensions, to the product of plate’s mass density, p, multiplied by
the mid plane surface area of the plate and the squared frequency. Thus, if this product is
determined for plates of various sizes and plotted against the plate’s reciprocal size measure,
(1/d?), then it is possible to obtain E,, or Q from the intercept and the characteristic length
from the slope. Thus equation (8.7) generates the same characteristic length of bending as
equation (4.46).
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Note that the equation (8.7) is not reducible to equation (4.46) because here w is the
transverse frequency of a rectangular plate and 2 is the non-dimensional frequency
parameter of the plate. Therefore, equation (8.7) is only introduced and used as an alternative

method to confirm the values obtained for the [,,.

8.4.1 Qualitative illustration of the influence of ¥ and I, on modal frequencies

As referred to in chapters 4, 5 and 6, and based on the method introduced in reference
(Hassanati and Wheel 2018) for the determination of elastic constants in two-dimensional
beam models, [, and N where determined for various beam models and these material
property constants of [, and N were used for plate models in this chapter accordingly
because the heterogeneous plate types in this chapter are created by extruding the 2D beam

models which were previously modelled and presented in chapter three.

The assumed values of [, and ¥, appear to be satisfactory for static cases (Altenbach and
Eremeyev 2009; V. a. Eremeyev, Lebedev, and Altenbach 2013; Kouhia and Niemi 2013; V.
A. Eremeyev, Skrzat, and Stachowicz 2016a) or even modal analysis (Steinberg and Kvasov
2015), but in this work, these assumptions have proved to have some shortcomings which

are illustrated here.

These maximum values of [; and ¥ qualitatively forecast the results for the first two modal
frequencies, but are less reliable for the third mode and beyond. As is shown in
figures 8-5, 8-6, and 8-7, by keeping the polar ratio at 1.5 but decreasing, [, to the values
listed below, some improvement is achievable for mode three but at the expense of other
modal frequencies. As an example, the plate samples CYVOCB with NCy = 3 and volume

fractions, 0.4, 0.15 and 0.33 were investigated with following constants:

a) ¥=15, I, =2l,,seefigure 8-5
b) =15, [, =1,,seefigure 8-6
c) ¥=15, [, =0.1,, seefigure 8-7

As seen in figure 8-5, by setting the value of I, = 2[,, the isotropic micropolar plate
assumption leads to underestimating the modal frequencies at mode three compared with the
FEA results for the heterogeneous plate models with higher volume fraction cylindrical
voids which represent materials with a higher level of anisotropy. Nevertheless, decreasing
the value of [, causes an increase in the modal frequency at mode three for isotropic
micropolar plates but then underestimates the primary and second modal frequencies for all

volume fractions, as seen in figures 8-6 and 8-7.
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Figure 8-5: Changes of normalised frequencies of a micropolar plate (CYVOCB) with [, = 2 * [,
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Figure 8-6: Changes of normalised frequencies of a micropolar plate (CYVOCB) with [, = [, ¥=1.5,
NCy=3, S, = 0.866 and AR=8.083 in comparison with corresponding FEA results (dotted lines).
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In addition, a set of numerical analyses indicated that the smallest plate samples with higher

volume fraction are more sensitive to the value of coupling number. The results in

figures 8-8 and 8-9 indicate that the normalised frequencies produce more acceptable results

for higher volume fractions when the characteristic length of torsion is set to twice the value

of I,. However, at mode three, the frequency values are under estimated as shown previously

in figure 8-5.
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Figure 8-8: The influence of I, and N on the primary modal frequencies of plates with CYVOCB
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8.5 Detailed results and discussions

In this section, the finite element results and the size effect predictions for plates with
cylindrical voids or inclusions are presented, these results are also compared with those
obtained by 3D-MPFEM and the size effect predictions for plates are discussed.

8.5.1 Plates with continuous boundaries
8.5.1.1 Plates with cylindrical voids and continuous boundaries (CYVOCB)

The modal frequencies obtained by finite element analysis were normalised by the values in
table 8-8. Figure 8-10 shows the normalised modal frequencies for the primary mode of all
four plate sizes, using FEA and indicates that the variation of normalised modal frequencies
with the inverse of the squared sample depth, is approximately linear and this linear behavior
is valid for all cylindrical void volume fractions. As the graph in figure 8-10 reveals, the size
effect is highest for the smallest plate sample sizes, and thus more pronounced. The size
effect reduces as the depth of the plate increases. This phenomenon is unique for every mode
number and thus for every mode the gradient of the line varies which can be characterised as
the behaviour of plates in such specific modal frequency. Of course, as the void’s volume
fraction increases, so does the gradient of the line which connects these normalised
frequencies. This is precisely what was expected because adding more layers to the sample
and reducing the void radius, will definitely reduce the sudden changes in stress gradients at
each unit-cell throughout the depth of the plate and therefore, if one extrapolates the lines in
the figure 8-10, the normalised frequency parameter of the plates will finally approach unity
value and exhibit the behaviour of a homogeneous plate if the ratio of the volume fraction to

the plate's depth is reduced to near zero.

It must be noted here that the plates with one layer of voids are structurally different from
other specimens with more than one layer in the depth of the plate. In the 3-dimensional
plate modeling, as explained in the previous section, the arrangement of the cylindrical voids
in the material are such that they form an equilateral triangle with 60° angle to avoid
anisotropic behavior but the smallest samples lack this fundamental arrangement. For this
very reason, at some modes where bending is involved (other than mode one which is the
first twisting mode) the normalised frequencies for the smallest sized sample do not correlate
with other larger samples. This inconsistency of the modal frequencies of the smallest

samples occurs for the higher modes too.
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Figure 8-11 shows the normalised modal frequencies for the primary mode of all four plate
sizes, exploiting the micropolar theory with the micropolar constants identified (E,,, [, N) or
assumed (I, ¥) previously. By comparing these data with the corresponding results in
figure 8-10 for the finite element models, it can be concluded that for the primary modal

frequencies:

e Micropolar plate theory can anticipate the size effect although the micropolar results
are not correlated on a straight line.

e The normalised modal frequencies obtained for micropolar plates are slightly lower
than the results from finite element modal analysis,

e The micropolar theory underestimates the modal frequencies for the smallest
samples in comparison with the finite element modal analysis and this is understood
to be due to the structural characteristics of the void arrangements which do not form

equilateral triangles as seen in plates with two or more layers.

Figure 8-12 shows the FEA results for the first five normalised modal frequencies of five
volume fractions which vary with mode number. The finite element predictions show that
the homogeneous plates are not size dependent, as expected, these being represented by
dotted lines with the value of unity. The results which were generated using the micropolar
theory like the finite element results clearly demonstrate the size effect in a micropolar plate
for only the first 2 modes, after which the normalised frequencies quickly reduced to near the
homogenised case, see figure 8-13 . This suggests that the micropolar theory is not
applicable to higher modal frequencies. It must also be noted that although mode shapes
appear in sequential order, every modal frequency which is generated for the micropolar
plate must be compared with the same mode number (mode shapes) of the FEA models

because every modal frequency in the plate vibration is associated with a distinct shape.
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Figure 8-10: Normalised primary modal frequency of four plate sizes for plates with cylindrical voids
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Figure 8-11: Normalised primary modal frequency of four plate sizes for plates with cylindrical voids
and continuous boundaries using the micropolar theory (for CYVOCB).
(I, = 0to00.190 mm corresponds to V; = 0 to33%)
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Figure 8-12: The first five normalised transverse modal frequencies of the smallest plate sample with
voids and continuous boundaries using FEA. V; = 0to 33% (1}./S,, = 0.12 to 0.35)
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Figure 8-13: The first five normalised transverse modal frequencies of the smallest plate sample with
voids and continuous boundaries using the micropolar theory.
( I, = 0to00.190 mm corresponds to V; = 0 to33%)

In figure 8-14 and 8-15 the primary and second modal frequencies for all plate depths and
void volume fractions using FEA and micropolar theory for plates with voids and continuous
boundaries are compared directly which clearly indicate that as the void volume fraction
increases and plate sample size (depth) reduces, so the difference between the FEA and
micropolar results is accentuated. The values of DA listed in table 8-7 are directly related
to V. Therefore, the increased difference between FEA and 3D-MPFEM results at higher V;
is due to increasing anisotropy in the plate models. The results indicate clearly that the
micropolar theory is able to predict modal frequencies in good agreement with FEA results
for the first two modal frequencies and below volume fraction of 0.15 when the degree of

anisotropy is low.

The FEA and micropolar dimensionless parameters of eight modes are provided in the

Appendix E.
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Figure 8-14: Primary normalised modal frequencies, mode 1, for plates with voids and continuous
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Figure 8-15: Second normalised modal frequencies, mode 1, for plates with voids and continuous
boundaries, CYVOCB
The numerical results (modal frequency of plates) for the first 8 normalised modal
frequencies of four plate sizes with cylindrical voids and continuous boundaries for V; =
0 to 33% (V,/S, = 0.12 to 0.35) obtained using finite element for CYVOCB which are
tabulated in table E-1 in Appendix E and indicate that the size effects at higher modes are
qualitatively similar to the FE results for the smaller sample, as seen in figure 8-12, with

considers the changes in volume fraction and the plate size.
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8.5.1.2 Plates with cylindrical inclusions of compliant material (CYCICB)

The finite element results for plates with cylindrical inclusions of a compliant material show
similar behavior to plates with cylindrical voids although the normalised frequencies are
different. The main difference is that the gradients quantifying the size effect seem to be
smaller than the plates with voids. The numerical results for eight normalised modal
frequencies of this type of plates are given in Appendix E and the explanations provided in
section 8.5.1.1 also appear to be valid for plates with cylindrical compliant inclusions
(CYCICB) as well. The normalised modal frequencies presented in figure 8-16 indicate that
the variation of frequency of the primary mode is linear with the inverse of the squared
sample depth which is also valid for plates with cylindrical voids. The results for the primary
mode also indicate that the gradient of the lines decreases with reducing volume fraction.
This dynamic behaviour of plates with cylindrical and compliant inclusions has been
observed already in the dynamic analysis of plates with cylindrical voids and continues
boundaries; however, by direct comparison of the results in figure 8-16 and 8-10 it can be
argued that the existence of inclusions in the plate models mitigates the size effect in

comparison with plates with cylindrical voids.
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Figure 8-16: Normalised primary modal frequency of four plate sizes for plates with cylindrical
compliant inclusions and continuous boundaries using FEA (CYCICB). V; = 0to 33% (1}./S, =
0.12 to 0.35)

The modal analysis results obtained by applying the micropolar theory show similar dynamic
behaviour for the three largest plate samples for the normalised primary frequency values of
the plate with cylindrical compliant inclusions and continuous boundaries (CYCICB) with
the micropolar constants assumed or identified previously, as seen in figure 8-17. The size
effect in the primary modal frequency of the plate samples using 3D-MPFEM is in close

agreement with those obtained by finite element analysis except for the smallest plate model.
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Figure 8-17: Normalised primary modal frequency of four plate sizes for plates with cylindrical
compliant inclusions and continuous boundaries using MPFEM (CYCICB).
( I, = 0to 0.159 mm corresponds to V; = 0to33%)
Once again, similar to the results derived for plates with voids (CYVOCB), the
underestimations in normalised values for the smallest plate sample, as shown in figure 8-17,
are due to the void arrangements which do not form equilateral triangles as seen in plates
with two or more layers. Thus, the normalised frequency values do not form a straight line
and show underestimations in normalised frequency values which were obtained by using

3D-MPFEM.

The values of normalised modal frequencies of the first five normalised transverse modal
frequencies of the smallest plate sample with compliant inclusions and continuous
boundaries using FEA do not show sensitivity to mode number for the first three modal

frequencies, as seen figure 8-18.
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Figure 8-18: The first five normalised transverse modal frequencies of the smallest plate sample with
compliant inclusions and continuous boundaries using FEA. V; = 0 to 33% (V,/S, = 0.12 to 0.35)
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The normalised frequency values obtained by applying the micropolar theory were not able
to predict size effect at higher mode numbers beyond the second and tend to reach unity, see
figure 8-19.

T
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Figure 8-19: The first five normalised transverse modal frequencies of the smallest plate sample with
compliant inclusions and continuous boundaries using MPFEM.
( I, = 0to 0.159 mm corresponds to V; = 0to33%)
Note that, the micropolar plates which are modelled and analysed by 3D-MPFEM are
isotropic while the representative plates which are modelled by FEA are not isotropic despite
arranging the cylindrical inclusions in an equilateral triangles form. However, the first two
normalised frequencies, which were obtained by using the available micropolar constants,
show some agreement with the FEA results and the size effect is clearly forecast.
Figure 8-20 shows the primary normalised modal frequencies for plates with compliant
inclusions and continuous boundaries, which indicate that the micropolar plate models
significantly under-estimates the normalised frequency values predicted by FEA for the
smallest sample size when the volume fraction is greater than 0.15. Again, as explained in
the previous section, the increased difference between FEA and 3D-MPFEM at higher V; is
due to increasing anisotropy in the plate models with compliant inclusions and continuous
boundaries. However, the 3D-MPFEM results here are in better agreement with the FEA
results because the degree of anisotropy, as provided in table 8-7, is lower compared with

plates with voids.
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Figure 8-20: Primary normalised modal frequencies, mode 1, for plates with compliant inclusions and
continuous boundaries, CYCICB

The first 8 normalised modal frequencies of four plate sizes with cylindrical inclusions and

continuous boundaries for V; = 0 to 33% (V;,./S, = 0.12 to 0.35) using finite element

analysis (CYCICB) are tabulated in table E.2 in Appendix E and indicate that the size effect

at higher modes for the three larger sizes are qualitatively similar to the FEA results for the

smaller sample, as seen in figure 8-18.

8.5.1.3 Plates with cylindrical inclusions of stiff material but compliant matrix
(SYCMCB)

Plates with cylindrical inclusions of stiff material but compliant matrix, (SYCMCB), show a
different size effect in modal frequencies in comparison with plates with voids and /or
compliant inclusions, as the gradient of the lines which connect the normalised modal
frequencies at each volume fraction is negative, as seen in figure 8-21. This type of size
effect could not be predicted by the micropolar theory either because the micropolar constant
the coupling number, N, could not be obtained for a material with such heterogeneities using

the analytical method which was provided in chapter five.

Figure 8-21 shows the normalised primary modal frequency of four plate sizes for plates
with cylindrical inclusions, compliant matrix and continuous boundaries (CYCMCB) using
FEA. The negative slope of the lines indicates that increasing volume fraction causes a
decrease in A at a given mode number for larger sample sizes with more than two unit-cells
across the depth of the plates. However, the size effect although inverted nevertheless

remains approximately linear across the plate samples.
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Figure 8-21: Normalised primary modal frequency of four plate sizes for plates with cylindrical
compliant matrix and continuous boundaries using FEA (CYCMCB). V; = 0to 33% (V,./S, =
0.12 to 0.35)

Increasing the volume fraction in plates with cylindrical inclusions, compliant matrix and
continuous boundaries (CYCMCRB), as seen in figure 8-22, does not always have an inverse

effect on the normalised frequencies as can be seen for volume fractions greater than 0.15.
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Figure 8-22: The first five normalised transverse modal frequencies of the smallest plate sample with
compliant matrix and continuous boundaries using FEA. V; = 0 to 33% (V,/S, = 0.12 to 0.35)
The opposite scale effect in the dynamic behaviour of the plate sample with compliant
matrix and continuous boundaries could be due to the material’s matrix which is more
compliant than the previous models, in sections 8.5.1.1 and 8.5.2.1, and that in beam models
with or less than four layers of unit cells in depth of the beams, the compliant matrix may
dictate the overall behaviour of the structure and generate inverse size effects on normalised
frequencies. This phenomenon has also been seen in the 2D beams with similar material

properties, Figure 3-9 and 3-10. Therefore, it must be noted that the plates with similar
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macroscopic properties may demonstrate different dynamic behaviour due to their micro-
structurally related size effects.

8.5.2 Plates with textured boundaries
8.5.2.1 Plates with textured boundaries and voids (CYVOTB)

The FEA results for the plates with cylindrical voids and textured boundaries showed a
specific size effect for which 3D-MPFEM results are again not available for comparison
because of the negative gradient in the graph for normalised frequency against the inverse of
the plates depth squared as seen in figure 8-23. This figure shows how the normalised
frequency changes with the plates sample size while figure 8-24 provides the five normalised
modal frequencies of the smallest CYVOTB plate.

Normalised Frequency, A
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Figure 8-23: Normalised primary modal frequency of four plate sizes for plates with cylindrical voids
and textured boundaries using FEA (CYVOTB). V; = 0to 33% (V,./S, = 0.12 to 0.35)
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Figure 8-24: The first five normalised transverse modal frequencies of the smallest plate sample with
voids and textured boundaries using FEA. V; = 0to 33% (V;./S,, = 0.12 to 0.35)
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Similar to the dynamic behaviour of the beams with textured boundaries as presented in
chapter three, opposite scale effects in specimens with textured edges may occur in
heterogeneous plate models because the material near the surface region of the sample is
compromised. Also, as has already been explained in the previous section, the compliant
matrix may dictate the overall dynamic behaviour of the plate structure when there are four
or less than four layers of unit cells are present across the depth of the specimen. However, if
the structure’s boundary is intercepted by voids or compliant inclusions (See also section
8.5.2.2), the near-surface region becomes even more compliant, and this compromises the
rigidity of the plate’s boundaries. On the contrary, the near-surface area becomes stiffer than
internal sections of the specimen if more rigid inclusions intercept the surface of the plate,
(See section 8.5.2.3). The samples with one layer of unit-cells across the depths of the plate
models show even more pronounced response because the microstructural arrangements of

the inclusions will be no longer present.

8.5.2.2 Plates with textured boundaries and compliant inclusions (CYCITB)

Plates with compliant inclusions and textured boundaries showed similar dynamic behaviour
as the plates with voids as explained in the previous section for which the micropolar
constants cannot be identified. Therefore, the micropolar results are once again not available
for comparison with the FEA results. In figure 8-25 the results include the normalised
primary modal frequency values of four plate sizes for plates with cylindrical compliant
inclusions and textured boundaries using FEA (CYCITB) which indicate that the size effect
also inverts at a specific plate depth ( here plate with NCy = 2) but remains linear across the

samples.
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Figure 8-25: Normalised primary modal frequency of four plate sizes for plates with cylindrical
compliant inclusions and textured boundaries using FEA (CYCITB). V; = 0to 33% (V,/S, =
0.12 to 0.35)

The FEA numerical results for the first eight non-dimensional bending modal frequencies of
four plate sizes for plates with compliant inclusions and textured boundaries (CYCITB) are
provided in Appendix table E-5 which also confirm the inversion of size effect at this
specific plate depth. As an example, the first five normalised modal frequencies of the
smallest plate sample with compliant inclusions and textured boundaries using FEA are
provided in figure 8-26, which show that the normalised frequencies are all below unity

values for the smallest plate sample.

Mode number

Figure 8-26: The first five normalised transverse modal frequencies of the smallest plate sample with
compliant inclusions and textured boundaries using FEA. V; = 0to 33% (V;./S, = 0.12 to 0.35)
8.5.2.3 Plates with textured boundaries and compliant matrix (CYCMTB)

Unlike the plates with compliant inclusions or voids and textured boundaries, the micropolar
constants can be obtained for the plates with textured boundaries and compliant matrix

according to the methodology given in chapter five.
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The finite element results for plates with textured boundaries and compliant matrix
(CYCMTB) are provided in figure 8-27 to 8-29 and in table E-6 in Appendix E.

The FEA results for plates with stiff cylindrical inclusions and compliant matrix (CYCMTB)
show similar behavior as plates with cylindrical voids or inclusions but continuous
boundaries. However, here the plate models demonstrated lower size effect in comparison
with CYVOCB or CYCICB. The results in figure 8-27 indicate that the gradient in the
primary normalised frequency results for CYCMTB plates are slightly smaller than the
results for CYCICB and CYVOCB. The normalised modal frequencies presented in
figure 8-27 indicate that the variation of normalised modal frequencies of the primary mode
is approximately linear with the inverse of the squared sample depth. The results for the
primary mode also indicate that the gradient of the lines decreases with reducing the volume

fraction.
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Figure 8-27: Normalised primary modal frequency of four plate sizes for plates with compliant matrix
and textured boundaries using FEA (CYCMTB). V; = 0to 33% (V,./S, = 0.12 to 0.35)
The values of normalised modal frequencies of the first five normalised modal frequencies of
the smallest plate sample with compliant matrix and textured boundaries generated using
FEA demonstrate a great deal of sensitivity to mode number as seen in figure 8-28 which
remains pronounced for higher modes too. This figure indicates that there is an increase in
normalised frequency at modes three and five compared to CYCICB and CYVOCB. Note
that figure 8-28 provides normalised frequencies at five different modes for the smallest
plate sample and is not showing the gradient of changes at any specific mode for all plate

sizes as seen in figure 8-27.
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Figure 8-28: The first five normalised transverse modal frequencies of the smallest plate sample with
compliant matrix and textured boundaries using FEA. V; = 0 to 33% (V,./S, = 0.12 to 0.35)
As mentioned earlier in this chapter, the linear isotropic micropolar theory is not applicable
for calculating the modal frequencies at higher mode numbers because, as said, the
micropolar plate models are isotropic in contrast with the anisotropic models which were
generated by FEA. However, the first two normalised frequencies, which were obtained by
using the available micropolar constants, are in close agreement with the FEA results and the
size effect is forecast. Figure 8-29 shows the primary normalised modal frequencies for
plates with compliant matrix and textured boundaries, CYCMTB, which again indicate that
the micropolar theory under-estimates the normalised frequency values for the smallest
sample size when the volume fraction is higher than 0.15. In this figure, the 3D-MPFEM
results are in better agreement with FEA results although the plates are more anisotropic,

nevertheless this might be due to inverse effect of the plate’s textured boundaries.
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Figure 8-29: Primary normalised modal frequencies, mode 1, for plates with compliant matrix and
textured boundaries, CYCMTB

8.6 Conclusions

In this chapter, six types of heterogeneous plate models were created using FEA as listed in
section 8.1. The models were generated such that the sizes of the microstructures were
comparable to the overall size of the plates. The size effects due to these microstructures
were investigated by their effect on modal frequencies in the free vibration of plates with

FFFF boundary conditions (unconstrained edges) in the absence of external loads.

Using the results from the finite element analysis, two of the micropolar constants, the
characteristic length of bending and coupling number, were obtained from the dynamic
behaviour of beams in a 2-dimensional case as discussed in chapters 4 and 5. The modulus of
elasticity values were obtained from the tensile analysis. The polar ratio was considered
constant and equal to 1.5, and the characteristic length of torsion was kept as twice the value
of the characteristic length of bending throughout the entire modal analysis of the micropolar
plates. However, the effect of changes in polar ratio or characteristic length of torsion was
briefly investigated and it was concluded that reducing the ratio of [/l to e.g. 0.5 may only
correct the underestimation of the modal frequency of mode three to some extent, but it
causes severe under estimation in the value of the primary modal frequency of the plate. The
under estimation of the normalised frequency parameters, especially at mode 3, by the 3D-
MPFEM, may well be due to the orientation of the cylindrical voids or inclusions in one
direction of the square heterogeneous plates which might indicate the effect of anisotropy in

the material. If this is the case, then next chapter describes the influence of spherical voids or
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inclusions in modal frequencies of the square plates which indeed negates the anisotropy
issues associated with the direction of the cylindrical voids or inclusions.

The three-dimensional micropolar finite element approach, incorporating the micropolar
theory was used to model a set of micropolar plates corresponding to the previously
modelled non-homogeneous plates using FEA. Using the 3D-MPFEM algorithms, modal
frequencies were generated for the micropolar plates. The size effects in micropolar plates
were investigated. The results of the 3D-MPFEM analysis were in approximate agreement
with FEA results for the first five modal frequencies though the degree of agreement

appeared to decrease as V; increased and the plate became more anisotropic.

In general, the micropolar theory was capable of anticipating size effect qualitatively in non-
homogeneous plates in modal analysis, and the accuracy of the results greatly depends on the
precise values of micropolar constants used in the analysis and the degree of anisotropy
(DA) of the plate properties. The heterogeneous plate models, as explained in section 8.2.2
showed some degree of anisotropy which is also related to the volume fraction. Plates with
lower volume fractions were considered to be mildly anisotropic, and therefore the dynamic
behaviour of such heterogeneous plates could be better explained by the isotropic plate

models generated by applying the micropolar theory.

Although the size effect can be anticipated by micropolar theory, nevertheless, for the
smallest sample models where the structural depth of the plates was comprised of just one
unit cell, the frequencies were underestimated and the reason may be, for example, that for
such models, despite unit-cell similarities, the equilateral triangle arrangements for the
neighbouring voids or inclusions was removed indicating that in such structures the strain
gradient through the depths of the plate changes more abruptly than anticipated which thus

affect the results.

In the next chapter, the heterogeneous models will include plates with spherical voids or
compliant inclusions in which the effect of the material anisotropy is expected to be reduced
and the application of the linear isotropic micropolar theory to such plates will be
investigated accordingly. Therefore, the linear isotropic micropolar theory is also expected to
answer the question of the underestimation in the value of the modal frequencies at mode

three observed in this chapter.
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9 Size Effects in 3D Heterogeneous Plates with Spherical VVoids or
Inclusions

In the previous chapter, the study of plates with cylindrical-type voids or inclusions showed
some underestimation in calculating the normalised values of the modal frequencies of
heterogeneous plates especially at mode three despite the anticipation of noticeable size
effects. These underestimations, however, were presumed to result from the orientation of
the voids or inclusions being in one direction which caused some anisotropy effects in the
plate models that also increased with volume fraction. In this chapter, the free vibration of
unconstrained square plates with spherical-type voids and inclusions is investigated.
Modelling these non-homogeneous plates with spherical voids or inclusions is intended to
decrease the degree of anisotropy (DA) which justifies the application of the linear isotropic
micropolar theory to analyse such plate models. The degree of anisotropy of these plates are

obtained and discussed in section 9.2.2.

The plates were modelled so that the centre point of any particular void or inclusion is
located at the same distance from all neighbouring spheres in a square-pyramidal geometry
or a so called body-centred cubic arrangement when there are at least two unit-cells included
in the depth of the plate models. Like the previous chapters, the general methodology of
studying size effects is unaltered which means that the overall properties of the plate’s
material are kept unchanged for all plate types. The plates with compliant matrix and stiff
inclusions where not included here because this chapter is only investigating spherical
heterogeneity types to find answers to some of the questions raised in the previous chapter;
the other reason is that the plate models with cylindrical inclusions, complaint matrix and

textured boundaries showed smaller size effects compared to the other plate types.

9.1 Finite element modelling of plates with spherical voids or inclusions

Spherical type voids or inclusions were considered for modelling the plates. Therefore,
plates with voids consisting of one isotropic material forming the matrix and plates with two
isotropic materials comprising the stiff matrix and compliant inclusions were modelled and
numerically analysed. The surface conditions of the top and bottom faces of the plates were
considered to be either continuous or textured. Therefore, four plate types, in total, were

studied as follows:

a) Plates with spherical voids and continuous boundaries (SPVOCB)
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b) Plates with spherical voids and textured boundaries (SPVOTB)
C) Plates with spherical compliant inclusions and continuous boundaries (SPCICB)
d) Plates with spherical compliant inclusions and textured boundaries (SPCITB)

FEA results are presented for all of the above categories while the micropolar results for the
plate types SPVOCB and SPCICB are presented and discussed because the micropolar
constants were only identifiable for plates with continuous boundaries.

9.1.1 Unit-cells in construction of plates with spherical voids or inclusions

For each plate type with spherical voids or inclusions, specific three-dimensional unit-cells
were modelled using 20-node Solid elements of tetrahedron type; see the semi unit-cells in
figure 9-1 and a full sized plate with continuous surfaces in figure 9-2 along with a full sized
plate with textured boundaries in figure 9-3. In the smallest plate samples, there are five unit-
cells along the plate edge and one unit-cell through the plate thickness which form a plate
with 25 unit-cells in total; and this is increased by eight times when the plate depth is
multiplied by two for the second smallest plate and so forth.

Figure 9-1: Representation of half unit cells of two isotropic materials with void or inclusion’s volume

fraction of 4.7%. The unit-cell on the left is used to model 3D plates with continuous boundaries, e.g.,

SPCICB (with inclusions) or SPVOCB (without inclusions) and the unit cell on the right-hand side is
used for plates with textured boundaries (e.g., SPCITB).
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Figure 9-2: A completed plate model with compliant inclusions (V; = 0.047) and continuous
boundaries (e.g. top and bottom surfaces are not textured), NCy=2, d=0.7071*2 mm, AR=7.072

Figure 9-3: A completed plate model with compliant inclusions (V; = 0.047) textured boundaries
(e.g. top and bottom surfaces are textured), NCy=2, d=0.7071*2 mm, AR=7.072

Similar to the models presented in chapter eight, the void or inclusion radius varies from 0.1
to 0.3 in 0.05 mm intervals but for the spherical type void and inclusions within unit-cells,
this, when compared with cylindrical type voids, generated lower volume fractions ranging
between 0.6 and 16%.

At first, for both plate types (with continuous or textured boundaries), a quarter-sized unit-
cell was modelled which was then repeatedly reflected to form a complete unit-cell. The
unit-cell was then regenerated in all coordinate directions as required to form a full plate
model with desired heterogeneity and dimensions. A completed plate model is arranged such
that the voids or inclusions construct a uniform arrangement in which every five spheres
(four spheres in one layer and one from the next layer) form a pyramidal, body-centred cubic

arrangement where the spheres are located at the vertices. In order to achieve such
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arrangements, the depth of the unit-cell is set at 0.7071mm and the plate aspect ratio at
7.072. The length and width of unit-cells were equal to 1 mm. This heterogeneity
arrangement attempted to minimise the anisotropy of the material.

In modelling the quarter unit-cell for the plates with textured boundaries, the quarter circle
arcs and the lines together with the circle edge lines were segmented into six element
divisions, and the remaining lines were divided into 3 to 5 divisions as shown in figure 9-1
on the right. Then, using tetrahedron elements, the whole quarter cell was meshed. The same
method was used to model the quarter unit cells for the plates with continuous boundaries
except for one difference, that is to generate solid brick elements on one side of the quarter
cell, as shown in figure 9-1 on the left, due to element connectivity when regenerating next
layer of unit-cells. Therefore, a six by six area meshed with three divisions of brick in depth
was utilised. The sizes of the three divisions in depth vary as the radius of the void or

inclusion increase, as seen in figure 9-4:

Figure 9-4: A quarter cell for plates with compliant inclusions and continuous boundaries

By repeatedly regenerating the unit-cells as needed, plate types of required thickness and

aspect ratios were modelled.

In the case of plates with inclusions, similar to previous models, inclusion and matrix are

both of two isotropic materials with a matrix to inclusion stiffness ratio of 10:1.

9.1.2 Mesh convergence in modal analysis

Two plate models with continuous and textured boundary surfaces and containing compliant
inclusions with spherical geometries were studied and presented here to show that the plate
models under study satisfy the requirements of mesh convergence. The modal frequencies of
plates with NCy = 1, AR = 7.072:1, S, =0.7071 mm and V; = 0.047 (r = 0.2 mm) with
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spherical inclusions were numerically investigated for mesh convergence while changing the

element density of the unit-cell (mesh density) as follows:

Table 9-1: Mesh convergence for the plate samples with spherical compliant inclusions and
continuous boundaries (SPCICB) and V, = 0.05

Number of Number of The average error Th The average
. . . e average error
elements in nodes in one for the primary error for 33
. ) for ten modes

one unit-cell unit-cell mode modes
1216 2261 1.25E-03 1.61E-03 2.34E-03
3016 5341 1.49E-04 1.09E-04 2.85E-04
9128 14421 1.58E-04 7.38E-05 8.15E-05
18464 29061 1.27E-04 5.67E-05 4.33E-05
136424 136424 1.25E-05 2.46E-06 3.25E-06

Table 9-2: Mesh convergence for the plate samples with spherical compliant inclusions and textured

boundaries (SPCITB) and V, = 0.05

Number of Number of The average error The average
X . . The average error
elements in nodes in one for the primary error for 33
. ; for ten modes

one unit-cell unit-cell mode modes
1604 2727 3.35E-03 2.74E-03 2.87E-03
2312 3981 1.37E-03 1.09E-03 1.17E-03
4892 8015 4.33E-04 3.57E-04 3.82E-04
14752 22371 2.98E-04 2.39E-04 2.57E-04
121916 175922 1.13E-05 1.00E-06 1.26E-06

As seen in tables 9-1 and 9-2, SPCICB and SPCITB plates with 18,464 and 14572 elements
per unit cells provide convergence error of less than 0.03% and, therefore, used for meshing
the plate models. Although the average error in these tables are small values, as explained in
the previous chapter, section 8.1, the relative error simultaneously increases with mode

number which must be noted if higher modes numbers are investigated.

9.2 Adjusting the modulus of elasticity (E) and mass density (p) of the
unit-cells in plates with spherical voids and inclusions

9.2.1 Obtaining the modulus of elasticity (E) and mass density (p)

The sphere radius within the unit-cells varied from 0.1 to 0.3 mm, in 0.05mm intervals, to
account for void or inclusions volume fractions of 0.6, 2, 4.7, 9.3 and 16% respectively. The
volume fraction, void radius or normalised void radius, V,./S,, are as previously used

interchangeably, see table 9-3.
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Having modelled and meshed the unit-cells, complete plate models were created by
regenerating and repeated reflection of the unit-cells in x, y and z directions similar to the
methodology of chapter eight. The overall material properties such as the mass of the unit-
cells and elastic modulus of the plate remained unchanged and set at 2700 kg/m3 and
7 x 10° Pa for density and Young’s modulus respectively. The correction of elastic
modulus was therefore done by performing FEA static tensile test simulations, and
correction of the density was done by keeping the mass and volume of the unit cells constant
but changing the density of the constituent isotropic materials. The materials corrected
properties of the plate models are provided in table 9-4 and 9-5.

Table 9-3: Volume fraction and normalised equivalent of spherical void or inclusions

Void/inclusion radius, r, [mm] 0.1 0.15 0.2 0.25 0.3
Spherical void or inclusion volume
fraction, % 0.59% 2.00% 4.74% 9.26% 15.99%
Normalised radius, V,./S,, 0.14 0.21 0.28 0.35 0.42

Table 9-4: Corrected modulus of elasticity for plate’s matrix. The young modulus is 0.1 times the
values of the matrix for plates with compliant inclusions

The modulus of elasticity of matrix, MPa
Plates with Continuous boundaries Plates with Textured boundaries
Void or Relative Relative Relative Relative
inclusion | S | gige with | PRES | gigewith | RS it with | DS it with
radius with homogene with homogene with homogene with homogene
' SPVOCB SPCICB SPVOTB SPCITB
mm ous beam ous beam ous beam ous beam
0 7.00E+04 0 7.00E+04 0 7.00E+04 0 7.00E+04 0

0.1 7.08E+04 1.94E-04 7.07E+04 4.39E-06 7.08E+04 2.60E-04 | 7.07E+04 2.60E-04
0.15 7.29E+04 1.61E-04 7.23E+04 1.69E-04 7.29E+04 5.90E-04 | 7.23E+04 9.46E-05
0.2 7.70E+04 3.67E-04 7.57E+04 4.66E-04 7.70E+04 9.46E-05 | 7.57E+04 4.58E-04
0.25 8.44E+04 4.99E-04 8.16E+04 5.65E-04 8.44E+04 4.91E-04 | 8.15E+04 8.87E-04
0.3 9.72E+04 3.67E-04 9.13E+04 7.96E-04 9.71E+04 4.99E-04 | 9.12E+04 9.20E-04

Table 9-5: Corrected density of the plate’s unit cell by spherical void or inclusions radius

The mass density of matrix and inclusions, kg/m?3
Spherlgal v0|d_s or Plates with voids Plates with inclusions
inclusion radius, - - - -
mm Relative difference Relative difference
For matrix with homogeneous For matrix For inclusions | with homogeneous
beam beam
0 2700 0 2700.00 N/A 0
0.1 2716.09 1.85E-07 2469.17 41434.61 1.85E-07
0.15 2755.08 1.85E-07 2504.62 12276.92 1.85E-07
0.2 2834.32 1.85E-07 2576.66 5179.33 1.85E-07
0.25 2975.41 1.85E-07 2704.91 2651.81 1.85E-07
0.3 3214.08 1.85E-07 2921.89 1534.62 1.85E-07
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9.2.2 The effect of anisotropy in plates with spherical voids or inclusions

Although the voids and inclusions are modelled such as to decrease the degree of anisotropy
(DA) of the plates, the plate models might still be considered as non-homogeneous and the
degree of anisotropy of such plate models must therefore be investigated. The method of
obtaining the DA of the plate models considered here are analogous to what was explained in
section 8.2.2 for plates with cylindrical voids or inclusions in chapter eight. Therefore, the
degree of anisotropy (DA) was obtained by tensile test simulations in the z-direction, and the
relative difference of E, to Ex was calculated for various volume fractions as provided in
table 9-6:

Table 9-6: The degree of anisotropy in heterogeneous plate models with spherical voids and
inclusions

The relative degree of anisotropy (DA)
[(Ez-Ex)/EZz]

Volume fraction Platesi\r:\gltgs(i:grr;rs\pliant Plates with voids
0.00 0.000 0.000
0.006 0.001 0.001
0.020 0.003 0.001
0.047 0.005 0.002
0.093 0.010 0.003
0.160 0.020 0.018

The values of DA, as seen in table 9-6, are minimal and indicate that the anisotropy in these
plate models is practically negligible even for high volume fractions of 0.16 and therefore
the plates may be considered as isotropic even though they are still heterogeneous at the
macroscopic scale. Consequently, the application of the isotropic 3D-MPFEM to the
investigation of the dynamic behaviour of non-homogeneous plates with spherical void and

inclusions seems logical.

9.3 Modal analysis procedure and mode shapes of plate models

The PCG Lanczos method and distributed memory were again used for the modal analysis of
plates. The first 8 mode shapes are shown in figures 9-5-a to 9-5-h. Mode shapes of plates
with spherical voids and inclusions are similar to those of cylindrical shaped voids and
inclusions shown in figures 8-3-a to 8-3-h in chapter eight. Thus similarly, the first mode is

distinctively the twisting mode which is shearing deformation dominated where the
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influencing parameter in the dynamic behaviour of the plate is the characteristic length in
torsion, l,. The second and third are bending dominated modes in which the determining
micropolar constant is [,. After mode three, some mode shapes appear in pairs with very
close frequencies, but opposite mode shapes, and some does not. For example modes four
and five are similar in which the plate’s dynamic behaviour is influenced by both [, and [;;
modes six and seven are again bending deformation dominated; mode eight which is both

bending and shear deformation dominated.

The non-dimensional modal frequencies (£2) for homogeneous plates are provided in
table 9-7 and used for normalisation of modal frequencies (see figures 9-6 to 9-26) which are

derived using the equation (8.1).
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b)  Mode 2, (hyperbolical surface) Saddle

a) Mode 1, Twist shape (Shear dominated) shape

¢) :Mode 3, (ellipsoidal surfaced) Bending

Type d) Mode4

e) Mode5 f)  Mode 6

9 Mode7 ' h) Mode8
Figure 9-5: The first 8 mode shapes (a to h) of a sample plate with spherical inclusions of volume
fraction equal to 0.05 and textured boundaries (NCy=1). Note that the first eight mode shapes of the
homogeneous plate as well as other plate models with continuous boundaries are similar to the mode
shape figures here also.

Table 9-7 : The non-dimensional frequencies (£2) for homogeneous plates with AR=7.072:1

Mode 1 2 3 4 5 6 7 8

A"I':?EYS 1.2483145 | 1.8623777 | 2.2832388 | 3.0602078 | 3.060611 | 51799099 | 5203043 | 5.207992

MPFEM | 1.2466034 | 1.8571328 | 2.2792083 | 3.0502382 | 3.0508554 | 5.1773338 | 5.181014 5.183083
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9.4 Results and size effect forecast for plates with spherical voids or
inclusions

The numerical results for the plates with continuous and textured boundaries using FEA and
the linear isotropic micropolar theory are tabulated and provided in Appendix F which
includes the eight modal frequencies for the plate models. The isotropic micropolar plate
models (referred to as 3D-MPFEM models) contain eight 15-node wedge elements per unit-
cell as described in the section 7.3.1 of chapter 7, so the mesh densities of the plates are the
same. The height of the unit cells remained unchanged at 0.7071 mm, and the aspect ratio
(length or width to height ratio) for all plates was 7.072:1 which resulted in modelling the
smallest squared plate samples such that they contained 10 divisions along the plate edges
(x-z plane) and one division through the plate thickness thus forming a plate with 200 wedge
elements in total. This is increased by eight times when the plate depth is multiplied by two
for the second smallest plate and so forth. In the next sections, the normalised frequency
values, A, of the plates with spherical voids and inclusions which are obtained by using both

FEA and 3D-MPFEM are presented, compared and discussed accordingly.

9.4.1 The micropolar constants for the plate models

To identify some of the micropolar constants, three-dimensional slender beams with
spherical voids and inclusions were modelled with one unit-cell in depth and ten unit cells in
length representing the smallest beam sample with twice the aspect ratio of the plates
(2 x 7.072) using FEA. Then beams with two, three and four unit cells in depth were created
with the same aspect ratio. The unit-cells geometry, mesh density and the material properties
are the same as the plate models which are already discussed in sections 9.1 and 9.2 but
instead of plates, 3D beam models were generated. The reason is to obtain the lateral modal
frequencies in the x-y plane of beams with spherical voids and inclusions, and subsequently
use these frequencies to identify the [, and N by applying the methods in chapters 4 and 5.
The algorithm for identifying the coupling number, N, as described in chapter 5, is only
capable of estimating the coupling number by matching the first two flexural frequencies of
beams obtained through FEA with two-dimensional micropolar beam models and using the
linear regression methods. Therefore, the first two bending modal frequencies were used to
obtain the characteristic length of bending, 1, , using equation (4.46). The characteristic
lengths of bending was then compared with those obtained from using equation (8.7) at
mode two (because mode one of the plates is a twist mode). Interestingly, the characteristic

length using either equations (4.46) or (8.7) show approximately similar values as seen in
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table 9-8. However, the values obtained from beam models and equation (4.46) appear to
vary more linearly with the void radius and, therefore, are used for the plate analysis.

Table 9-8: Characteristic length of bending for plates with spherical voids and inclusions

Specimen Equation R=0.1,mm | R=0.15,mm | R=0.2, mm | R=0.25, mm | R=0.3, mm
SPVOCB (8.7) 0.017 0.034 0.044 0.062 0.076
BVOCB (4.46) 0.017 0.032 0.048 0.064 0.078
SPCICB (8.7) 0.016 0.029 0.041 0.050 0.060
BCICB (4.46) 0.017 0.029 0.043 0.061 0.067

The micropolar Poisson’s ratio, micropolar modulus of elasticity and the polar ratio, ¥, were
all kept constant at 0.3, 7 x 101° Pa and 1.5 respectively. The coupling number, N, was
obtained by the iteration method as described in chapter five and values were found to be
insensitive to void or inclusion radius, being 0.030 and 0.031 for SPVOCB and SPCICB
plate models respectively. The low values of the coupling number are due to the shape and
arrangements of the spherical voids and inclusions in the vicinity of the plate matrix. Finally
the value of the characteristics length of torsion, [; , is chosen as equal to twice the value of
characteristics length of bending. It must be remembered that this value of I, might influence
the modal frequencies differently especially the primary mode which is dominated by shear

deformation.

As an example, the plate samples SPVOCB with NCy = 3 and volume fractions, 0.01, 0.05
and 0.16 were investigated and compared with 3D-MPFEM results with input parameters of
¥ = 1.5 and various values of [, equal to2l,, 1.5l,, I, and 0.51,. This is aimed to
qualitatively illustrate the influence of the changes of [, on the primary mode in particular

(the twist mode) and then see the outcome of such changes in [, on the higher frequencies.

As seen in figure 9-6, by setting the value of [, = 21, , micropolar theory overestimates the
modal frequencies of mode one compared to the FEA results for the heterogeneous plate
models even though the level of anisotropy in plate models is low. Although, decreasing the
value of [, causes a decrease in the modal frequency at mode one for isotropic micropolar
plates but then underestimates the second modal frequency and overestimates the third
modal frequencies for all volume fractions, as seen in figures 9-7 and 9-8 while, on the other
hand, the value of I, = 21, provides better agreement with the finite element results at mode

two and three.
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Figure 9-6: The overestimation of the normalised primary frequencies of SPVOCB plates using FEA
and 3D-MPFEM for the plate with NCy=3 when [, = 21,,.
(Vs = 0.006,0.05 and 0.16 corresponds to l, = 0.017,0.048 and 0.078 mm)
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Figure 9-7: The normalised frequencies of the second mode of SPVOCB plates with NCy=3 using
FEA which show better agreement with the 3D-MPFEM results when [, = 21,.
(Vs = 0.006,0.05 and 0.16 corresponds to 1, = 0.017,0.048 and 0.078 mm)
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Figure 9-8: The normalised frequencies of the third mode of SPVOCB plates with NCy=3 using FEA

which show better agreement with the 3D-MPFEM results when [, = 21,,.
(Vs = 0.006,0.05 and 0.16 corresponds to l,, = 0.017,0.048 and 0.078 mm)
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For further clarifications, the results in figures 9-9 to 9-12 show the changes of the
normalised frequency with mode number and indicate that the 3D-MPFEM produces more
acceptable results for higher volume fractions when the value of [, is set to equal 21,.
However, at mode one and especially the highest volume fraction, the frequency values are
overestimated.
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Figure 9-9: The normalised frequencies of SPVOCB plates using FEA and 3D-MPFEM for the plate
with NCy=3, ¥=1.5, d=0.866mm and AR=8.083. ANSYS results reduction at mode three are similar
to MPFEM when [, = 21,.
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Figure 9-10: Changes of normalised frequencies of a micropolar plate (SPVOCB) with [, = (3/2)1,,
¥=1.5,NCy=3, S, = 0.866mm and AR=8.083 in comparison with corresponding FEA results.
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Figure 9-11: Changes of normalised frequencies of a micropolar plate (SPVOCB) with [, = [, Y=1.5,
NCy=3, S, = 0.866mm and AR=8.083 in comparison with corresponding FEA results.
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Figure 9-12: Changes of normalised frequencies of a micropolar plate (SPVOCB) with [, = (1/2)1,,
¥=1.5,NCy=3, S, = 0.866mm and AR=8.083 in comparison with corresponding FEA results.

9.4.2 Plates with continuous boundaries

Now that the plate models and micropolar constants for the heterogeneous plates with
continuous boundaries are defined, the modal frequencies are to be obtained using FEA and
compared to 3D-MPFEM results in this section. The comparison of the results aims to
answer some of the questions surrounding the shortcomings which were raised in chapter

eight, especially the underestimation of modal frequency at mode three.

9.4.2.1 Plates with spherical voids and continuous boundaries (SPVOCB)

The size effect governing the changes in normalised modal frequency values for the plates
with spherical voids and inclusions rapidly diminishes as the plate’s depth increases, but is
still pronounced for the smallest plate samples. This is, indeed, due to the square pyramidal

void and inclusion geometrical configuration, or body-centred cubic, which is not present in
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the smallest plate sample. Despite the somewhat smaller size effects in the dynamic
behaviour of the plate models of thickness of two or more unit cells, the rate of changes of
the normalised frequencies with size remains approximately linear, except at the largest
volume fraction, and the gradient remain positive which is an indication of the applicability
of micropolar theory to this case; see figure 9-13 and 9-14. The 3D-MPFEM results for the
corresponding SPVOCB plates showed convincing agreement with the FEA results except in
the high volume fraction cases for the smallest plate samples; see figure 9-15. It must be
remembered that the primary modal frequency is associated with a twist mode which is shear
deformation dominated and therefore different to the bending modes. The 3D-MPFEM
results for the second mode, which is a saddle type mode and therefore predominantly
bending, showed an even better agreement with the FEA results but the difference at the
highest volume fraction for the smallest plate models remains quite marked; see figure 9-16.
In fact the second mode is influenced by the value of characteristic length of bending, {;,, for
identification of which an analytical method was developed and [, was obtained according
to equation (4.46) which was also confirmed by equation (8.7), where the [, values are
believed to be accurate. On the contrary, the primary frequency is merely influenced by the

value of the characteristic length in torsion, I, for which a value of 21, is assumed.

In general, the results obtained by the micropolar plate simulations for the SPVOCB
representative plate models, compared with the results of the CYVOCB plates presented in
Chapter 8, in figures 8-14 and 8-15, are more in agreement with the FEA results, due to the

presence of a lower degree of anisotropy in the plate models containing spherical void.
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Figure 9-13: Normalised primary modal frequency of four sizes of plates with spherical voids and
continuous boundaries using FEA (SPVOCB). V; = 0to 16% (;./S, = 0 to 0.42)
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Figure 9-16: Second normalised modal frequencies, mode 2, for plates with spherical voids and

continuous boundaries, SPVOCB
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The FEA results indicated that the size effect for the smallest plate samples is more
pronounced than in the larger samples, especially for the plates with higher void volume
fraction, as explained. The FEA results, figure 9-17, show a gradual decline in normalised
modal frequencies as the mode number increases while the 3D-MPFEM results at mode
three show an inverted size effect, see figure 9-18. This is believed to occur because the
characteristic length of torsion, I, is taken as equal to twice the value of [,. A lower value of
Il would compensate this shortcoming but would then affect the other modal frequencies
more significantly and would thus result in their severe underestimation. However, the 3D-
MPFEM results for the plates with more than one unit-cell in depth show similar dynamic
behaviour to the FEA, as previously shown in figure 9-9 for the normalised frequencies of
SPVOCB plates with NCy=3.
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Figure 9-17: The first five normalised flexural modal frequencies of the smallest plate sample with
voids and continuous boundaries using FEA. V; = 0to 16% (V,./S, = 0 to 0.42)
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Figure 9-18: The first five normalised flexural modal frequencies of the smallest plate sample with
voids and continuous boundaries using 3D-MPFEM. (1, = 0 to 0.078 mm corresponds to Vf =

0to16%)
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9.4.2.2 Plates with spherical inclusions of compliant material (SPCICB)

The numerical results using the FEA and 3D-MPFEM procedure for the plates with spherical
compliant inclusions show plate dynamic behaviour similar to the plates with voids. The
results also indicate that plates with SPCICB show slightly lower normalised frequencies in
comparison with those for plates with SPVOCB, as seen in figures 9-19 to 9-23. Thus the
explanations regarding the dynamic behaviour of plates with voids and continuous
boundaries in section 9.4.2.1 are valid for the plate models considered in this section as well.
The normalised modal frequencies in figure 9-19 indicate that the size effect rapidly
diminishes as the plate’s depth increases, but is still pronounced for the smallest plate
samples. This is, indeed, due to the fact that firstly the degree of anisotropy (DA) in SPCICB
plates is minimal thus ignorable. Secondly, the body-centred geometrical configuration of

inclusions (pyramidal arrangements of inclusions) is not present in the smallest plate sample.

The FEA results, with an exception of the plates with largest volume fraction as seen in
figure 9-19, for SPCICB plates indicate that size effect in plates with two or more unit cells
in depth is somewhat smaller yet readily discernible, thus the micropolar theory is

applicable, see figure 9-20.

The numerical results indicated that size effect for the smallest plate samples is more
pronounced than expected especially for the plates with higher void volume fraction, as

explained.
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Figure 9-19: Normalised primary modal frequency of four plate sizes for plates with spherical
compliant inclusions and continuous boundaries using FEA (SPCICB). V; = 0to 16% (V,/S, =

0 to 0.42)

200



1.2 T T T T T T T T T

B lb =10.000 mm

=1, =0.017 mm
£A\1,=0029 mm| |
-1, =0.043 mm
@ 1, =0.061 mm

_‘ﬁ'_lb =0.067 mm

w

Normalised Frequency, A
5
>

0 02 04 06 08 1 12 14 16 18 2
1/0* [1/mm?]

Figure 9-20: Normalised primary modal frequency of four plate sizes for plates with spherical
compliant inclusions and continuous boundaries using 3D-MPFEM (SPCICB).
(1, =0t00.067 mm corresponds to Vf =0to16%)

The FEA results, figure 9-21, show a gradual decline in normalised modal frequencies as the
mode number increase which indicates that the first five modal frequencies are less sensitive
to the actual mode numbers while the 3D-MPFEM results show an inverted size effect at
mode three, see figure 9-22. However, the 3D-MPFEM results for the plate with more than
one unit-cell in depth show similar dynamic behaviour to the FEA results as previously

shown in figure 9-9 for plates with voids.
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Figure 9-21: The first five normalised flexural modal frequencies of the smallest plate sample with
compliant inclusions and continuous boundaries using ANSYS. V; = 0to 16% (V. /S, =

0 t0 0.42)

It must be noted that the 3D-MPFEM results do not show any size effect in normalised

modal frequencies above mode five, therefore are not shown here. However, the first eight
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non-dimensional modal frequencies predicted for the plates with SPCICB are provided in
Appendix F, table F-2.
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Figure 9-22: The first five normalised flexural modal frequencies of the smallest plate sample with
compliant inclusions and continuous boundaries using MPFEM.
(1, =0t00.067 mm corresponds to Vf =0to16%)

The 3D-MPFEM results for the corresponding SPCICB plates showed convincing agreement
with the FEA results except in the high volume fraction cases for the smallest plate samples;
see figure 9-23. However, the results obtained by the micropolar plate simulations for the
SPCICB plate models are more in agreement with the FEA results, due to having a very low

degree of anisotropy in the plate models containing spherical inclusions.
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Figure 9-23: Primary normalised modal frequencies, mode 1, for plates with spherical compliant
matrix and continuous boundaries, SPCICB
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9.4.3 Plates with textured boundaries

The plate models with texture boundaries and spherical voids or inclusions show a different
size effect for which the micropolar constants were not available; therefore 3D-MPFEM
results are not obtained, but the size effect of such plate models is discussed in this section.
Furthermore, the first eight non-dimensional modal frequencies of plates with textured
boundaries were obtained using FEA and these are provided in Appendix F.

9.4.3.1 Plates with textured boundaries and voids (SPVOTB)

Figure 9-24 shows the inverse size effect on normalised frequencies for the primary mode of
plate specimens with spherical voids and textured boundaries, SPVOTB, when the voids
intersect the plate surfaces. The size effect clearly inverts but its variation remains
approximately linear across the three larger samples. Figure 9-25 shows changes in A with
mode number for the plates with the depth of one unit-cell. Here, a distinctly different size
effect indicating that increasing volume fraction causes a decrease in normalised frequency,

A, at a given model number is seen for this plates size.
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Figure 9-24: Normalised primary modal frequency of four plate sizes for plates with spherical voids
and textured boundaries using FEA (SPVOTB). V; = 0to 16% (V,/S, = 0 to 0.42)
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Figure 9-25: The first five normalised flexural modal frequencies of the smallest plate sample with
voids and textured boundaries using FEA. V= 0to 16% (V,/S, = 0to 0.42)

9.4.3.2 Plates with textured boundaries and compliant inclusions (SPCITB)

Plates with spherical compliant inclusions and textured boundaries, SPCITB showed similar
behaviour as the plates with spherical voids and textured boundaries, as summarised in
figure 9-26.
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Figure 9-26: The first five normalised flexural modal frequencies of the smallest plate sample with
compliant inclusions and textured boundaries using FEA. V; = 0 to 16% (V,/S, = 0 to 0.42)

9.5 Conclusions

In this chapter, two types of heterogeneous plate models were created using the finite
element method. The models were generated for plates with spherical voids or compliant

inclusions and with both textured and continuous boundaries. The size effects due to the
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various microstructures were investigated by its effect on modal frequencies in the free

vibration of plates with FFFF boundary conditions in the absence of external loads.

Using finite element modelling capabilities, the spherical type void and inclusions in a body-
centred arrangement were located in the plate models so that it causes a considerable
reduction in the overall plate material’s anisotropy which resulted in a more convincing
agreement with the 3D micropolar results for beams with either voids or compliant
inclusions in which the surfaces were continuous. However, the micropolar constant
(Coupling number), N, could not be obtained for plates with textured surface configurations
using the parameter identification algorithm as described in chapter five; therefore, the 3D-
MPFEM procedure was not applied to such plate models. The crucial point in the analysis of
plates with spherical void or inclusions is that although the observed size effects were
attenuated in most cases, particularly plates with two or more unit cells in depth even at
relatively low heterogeneity levels, there is still noticeable size effect which can be

anticipated.

A set of three-dimensional beams with spherical voids and inclusions were also modelled by
using finite element modelling and the transverse flexural modal frequencies of the beams
were used to estimate the characteristic lengths which were then validated with the values
which were obtained with a corresponding equation for plates in chapter eight, see equation
(8.7). The coupling number was obtained from the dynamic behaviour of beams in a two-
dimensional case. The modulus of elasticity values were obtained from the simulated static
tensile analysis. The polar ratio was kept at equal to 1.5, and the characteristic length of
torsion was kept as twice the value of the characteristic length of bending throughout all

modal analyses.

In chapter eight, the underestimation of the normalised frequency parameters, especially at
mode 3, by the 3D-MPFEM, which was understood to be due to the unidirectional
orientation of the voids or inclusions within the square plates was still present for plate

models in this chapter but it diminished quickly upon increasing the plate’s depth.

Using 3D-MPFEM method, modal frequencies were generated for the micropolar plates. The
size effects in micropolar plates were investigated. The results of 3D-MPFEM analysis were
in gqualitative and approximate quantitative agreement with the FEA results for the first five
modal frequencies. The analysis of size effects in plates with spherical voids or inclusions in

this chapter had two significant benefits. Firstly, the study showed the size effects in the
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dynamic behaviour of heterogeneous materials declines with reducing the anisotropy of
material due to changes in the geometry of the constituent unit-cells. Secondly, the size
effect analysis made it possible to present the extent to which the linear isotropic micropolar
theory applies to the heterogeneous materials.

In general, the micropolar theory was qualitatively capable of anticipating size effects in
non-homogeneous plates with spherical voids or inclusions in dynamic analysis and this
suggests that the micropolar theory is applicable to such problems in heterogeneous plates
with a small degree of anisotropy (DA) below 0.15. Nevertheless, the 3D-MPFEM algorithm
can be improved by modifying its element stiffness matrix to account for heterogeneous

plates with higher DA and this is suggested for future research work.

The disagreement between the FEA and 3D-MPFEM results was still present for the smallest
plate models. This might well be because the smallest plate models were comprised of one
unit-cell in depth. Therefore, the body-centred cubic arrangement of the voids and inclusions
did not exist for the smallest plate models which caused such disagreement between the

results.

The mode shapes were also categorised and distinguished from each other based on their
deformation knowing that in some modes the dynamic behaviour was predominantly
controlled by shear deformation; therefore, the characteristic length of torsion is the
determinative parameter in such cases. As an example mode one was categorised as the twist
mode. On the contrary, mode two and three, as tangible examples, showed a tendency of
being influenced by the characteristic length of bending rather than torsion. Clearly, there
were some modes whose modal frequency was greatly influenced by both shearing and

bending deformation e.g., modes four and five.
In summary, the numerical results indicate that the forecast size effect depends on:

e Plate depths
e Void/inclusions volume fraction
e The relative stiffness of matrix and inclusions
e Plate surface topology
These conditions are similar to the conclusions which were made in studying the beams with

voids and inclusions as well as the plates with cylindrical voids and inclusions.

206



10 Summary and Suggestions for Future Work

10.1 Modelling specimens with heterogeneities and analysis approach

In order to study and quantify the size effect in the dynamic behaviour of nonhomogeneous
materials, modal analysis of 2D beam and 3D plate models with unconstrained boundary
conditions and small displacements was selected as a consistent approach to the problem. In
this project, unlike the conventional approach by researchers, the models were created so that
changing the depth of the specimen caused no changes in the aspect ratio of the specimens.
Maintaining constant aspect ratio is important because in the homogeneous case all sizes of
sample exhibit the same frequency spectrum while in heterogeneous case, in contrast,
normalised frequency values not only exhibit sensitivity to the volume fraction of voids and
inclusions but also to the sample’s size as quantified by its depth. So the changes in volume
fraction and the specimen size were both used to quantify size effects while the overall
homogenized material properties of specimens were maintained. This yields a novel analysis
approach which is not readily achieved by laboratory based methods and thus the best tool
for doing this was indeed through finite element modelling and numerical analysis.
Consequently, the results are very useful in understanding the size effect in the dynamic
behaviour of nonhomogeneous materials. Another importance of this work is that unlike
most previous studies of size effects which involve static loading, here an extensive
investigation into size effects has been carried out in dynamic cases. The finite element
models represented simple though realistic heterogeneities with various types of physical
material configurations, void and inclusions, their shape and location within the specimen

and also cases where they were exposed at the specimen’s exterior surfaces.

The finite element analysis results revealed novel types of size effects which were not
conventionally forecast by existing theoretical means. Initial numerical analysis indicated
that 2D beams with voids or compliant inclusions and continuous boundaries exhibited
similar dynamic behaviour and size effects while the beams with similar heterogeneities but
textured boundaries behaved in a completely opposite manner and the size effect actually

reversed.

3D square plate models with cylindrical voids and inclusions were modelled and analysed
numerically by the finite element method and confirmed the same dynamic behaviour and

size effects as seen in the 2D beam models. However, since the direction of the cylindrical
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voids or inclusions in these plates was identified as a source of anisotropy within the material
of the plates despite their square shape, additional more isotropic models with spherical
voids and compliant inclusions were modelled and analysed which once again confirmed the

size effect in their dynamic behaviour.

As the classical theory of elasticity for beams, namely Euler-Bernoulli and Timoshenko
beams theories, failed to explain any size effect in 2D heterogeneous beam models, the
Eringen non-local Timoshenko beam theory, a more advanced model with inherent length
scale, was thus used to investigate size effect in the beam’s dynamic behaviour. However,
the analytically obtained results of the Eringen non-local Timoshenko beam theory again
failed to explain the size effects which are exhibited by beam models. Consequently, the
micropolar theory of Eringen, a higher order and more advanced theory, was chosen to
investigate if the size effect in the dynamic behaviour of beams and plates can be explained
by such more generalised continuum mechanics and, if so, to what extent is the theory

applicable and can it capture the size effect.

10.2 Micropolar theory and size effect

The Eringen micropolar theory had been previously applied to the investigation of size
effects in heterogeneous beams in the static case of three points bending by incorporating the
theory into a CVFEM which showed satisfactory agreement with the FEA and laboratory test
results. Therefore, the already available CVFEM stiffness matrix, as well as the mass and
inertia matrices, were taken into account and incorporated into the calculations for modal
analysis and obtain mode shapes. The micropolar theory was also incorporated into the
conventional finite element method as an alternative procedure, namely 2D-MPFEM, which
was used to confirm the CVFEM results. The traditional finite element method is
computationally faster than the control volume finite element method. Therefore the study of

3D heterogeneous plates has been conducted by the micropolar finite element method alone.

Useful equations were analytically derived which can estimate the characteristic length of
bending by knowing only the overall 2D beam dimensions and the primary modal
frequencies of four beam sizes. The coupling number was then obtained numerically by
iteration, and this was only possible for beams with voids or compliant inclusions and
continuous boundaries as well as beams with a compliant matrix and textured boundaries.
So, the micropolar theory was capable of being used to obtain the characteristic length of

bending and coupling number in the 2D modal analysis and forecast the size effect in certain
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cases for example, the coupling number is not obtainable by the iteration procedure, as
described in chapter five, for beam models with voids or compliant inclusions and textured

boundaries or models with compliant matrix and continuous boundaries.

The numerical iteration process for obtaining the coupling number considers only the first
two modal frequencies. However, the values of coupling number did not show severe
sensitivity with changes in volume fraction and are about 0.05 for 2D beams and plates with
cylindrical voids or inclusions for which it was also obtainable. The coupling number values
obtained are in broad agreement with statically obtained values determined previously. The

coupling numbers obtained from 2D iterative analysis were used in subsequent 3D analysis.

A shortcoming of the micropolar theory is that the size effect actually seen in longitudinal

modal frequencies though smaller is not anticipated at all.

Turning to the different plate types, in the three-dimensional micropolar finite element
method, 3D-MPFEM, 8-nodes brick element or 15-node wedge element were uses for
meshing along with the micropolar theory in the dynamic analysis of 3D plate models which

has not been attempted for modal analysis before and is the novelty of this method.

The finite element results for the plates with spherical voids or compliant inclusions showed
size effects which confirmed the dynamic behaviour as seen in previous heterogeneous
models of 2D beams. Because of the geometrical shape and arrangement of the spheres in
the plate models which suppressed the effect of any material anisotropy, the size effect was
also reduced but nonetheless is still identifiable. The coupling numbers for these plate
models were obtained by modelling 2D micropolar beams with the same void distribution
and using the numerical iterative method. Lower values for coupling number of about 0.03
were obtained for such beams. The 3D-MPFEM results satisfactorily anticipated the size
effects seen in the plates although the issue with the smallest plate models was still present
and this was caused by the fact that in the smallest plate samples the body-centred cubic

arrangement of the voids or inclusions was not really present.

The polar ratio and the characteristic length of torsion were not obtained numerically for two
reasons. Firstly, modal analysis and iteration for N for the three-dimensional micropolar
models are not expedient as it takes significant computational time and resources. Secondly,
if the values of the characteristic length of torsion are based on the previous micropolar
constants and another iteration process, in addition to numerical difficulties, any under or

overestimation of the previous micropolar constants will be reflected and amplified for the
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polar ratio and the characteristic length of torsion. Therefore, the values of these remaining
micropolar constants [, and ¥ were taken from the literature as equal to 2, and 1.5
respectively. The influence of these assumed values of the micropolar constants in predicting
the FEA results is closely related to the mode number at which the modal frequency is
compared. For example, the frequency at mode one which is shear dominated is more related
to the value of coupling number where the optimum value for the polar ratio is 1.5. At modes
two to five, when the characteristic length of torsion is set to twice the value of [, the
predictions of micropolar theory were in good agreement with the FEA results especially if
the degree of anisotropy of the plate materials remains below 0.15, particularly at mode three

which is highly sensitive to the degree of anisotropy.

10.3 Project achievements and future work

The finite element and micropolar results helped greatly in investigating the size effect in the
dynamic behaviour of materials through modal analysis of 2D beams and 3D plates with free
boundary conditions in the absence of external loads. However, this paves the way to extend
future work for other type of boundary conditions and constrained specimen edges as well as
applying external load and studying the modal analysis. However, it must be noted that
prescribing boundary conditions may not be mathematically straight forward. The
complexity of partial constrains which are present in static cases are eliminated in

unconstrained boundary condition cases involving dynamic behaviour.

The equations derived for obtaining the characteristic length of bending via modal
frequencies of beams and plates are very useful and may be beneficial for research activities
in future work. Moreover, the benefit of these equations is that by only obtaining the first
modal frequency of slender beams or plates, the characteristic length of bending of the
sample will be determined and can be used as a benchmark for verification of results for

future work.

The coupling numbers for the specimens were obtained by numerical iterations based on the
first two modal frequencies of 2D beam models. The values for the coupling number remain
to be further studied and be analytically obtained independently from other constants as it is

evident that the coupling number plays a significant role in the outcome of the analyses.

The results indicate that the micropolar type theories do not apply to the specimens with

textured boundaries; therefore alternative advanced theories are required.
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The algorithms for micropolar finite element method are defined for dynamic analysis of 2D

beam and 3D plate models and are excellent candidates to be modified, improved and

adapted for static problems such as 3D bending and also for other types of dynamic analysis

such as forced vibration with a combination of boundary conditions.

The matrix of material properties which is termed as D matrix in this work is based on the

isotropic micropolar theory which can be used for the isotropic and mildly anisotropic

materials. However, the D matrix could be modified for application of orthotropic and highly

anisotropic materials which expands the applicability of the 3D-MPFEM greatly.

The FEA results for both 2D beams and 3D plates form an invaluable database of results:

Against which the predictions of other more generalised continuum theories can be
tested;

Which can be used for future investigation into the dynamic behaviour of 2D beams
and 3D plates at higher modes because considerable time and HPC resources were
used in obtaining the modal frequency data and archiving them including mode
shapes for future use;

The FEA data base can be expanded to additionally include results for dynamic
cases with other type of boundary conditions and static cases as well;

The FEA results provide a lot more information than experimental results with
regard to the frequency spectrum, mode shapes, and variety of sample models which
are useful in terms of reducing research time and the economic allocation of

resources.

As further recommendations, from the theoretical and practical point of views this work can

be expanded to investigate and study:

Other more generalised continuum theories and their applications in predicting size
effect in heterogeneous materials and compare the results with the already existing
FEA results, for example investigation of the influence of the samples’ surface
conditions using other continuum theories;

Other material and sample models with different type of heterogeneities such as in
predicting the dynamic behaviour of foam core materials used in the construction of
sandwich panel materials;

The dynamic behaviour of highly anisotropic materials;

The dynamic behaviour of other practical loaded heterogeneous materials;
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e The influence of various types of boundary conditions in the dynamic behaviour of

heterogeneous materials.
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Appendix A

A) Exact Analytical Solution of the Timoshenko beam theory
with FF boundary conditions by separation of variables

The Timoshenko beam theory in terms of transverse deflection W can be written as in
equation A.l, see references (Han, S., Benaroya, and Wei 1999), (Carcorze-soto 2010),
(Manevich and Zbigniew 2011):

(A1)

El

a*w aZw (p_EI )a4w (p21)64W

A z
ax* tp at? RG 0x20t2 RG/ ot*

Note that equation (A.1) can be stated in terms of beam rotation, @, by simply replace W
with 6. The abovementioned equation is a fourth order differential equation which may also
be stated in form of a quadratic equation form. Thus, the following characteristics equation is

derived as in (Han, S., Benaroya, and Wei 1999; Carcorze-soto 2010):

EDK2 + [~pI?(1+ )|k — parz + 22 = 0 (A2)

kG

According to (Doschoris 2016) the roots of the equation (A.2) are:

k= [kik,] = [—b +Vb? —4ac —b —Vb? —4ac (A-3)
= [kiky] =
2a 2a

The solutions of equation (A.1) may also be written in form of displacement or rotation as in

equations A.4 and A.5:

W = (A1e5* + Aye™* + Aze™* + Aye %) (Toe'™t) (A.4)

0 = (Blesx + Bze_sx + Bgeisx + B4e_isx)(TOeMt) (A5)

where s is the square root (vk) of the second order form of the differential equation (A.1)

and T, is constant for time function. A; and B; are interrelated in following forms:
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B, = +pAZA B, = pAZA
1={® kRGs) 1’ T2 S RGs )%

(A6)
. pA? o pA?
B; = lS—l’eGs A; and B, = —lS+l’€GS A,
Thus:
W = (4;Tyees™ + A;ToeMte™* + A3TyeMtels™ + A, TyeMte™i%) (A7)
pA? pA® _ o pA :

- <<S " z%Gs) e <_S Ties) A28 s T g ) Ase™

(A8)

2

.. pA i :
+ <—lS + lr%Gs) Age lsx) (Toett)

The boundary conditions for a free-free beam must be so that to satisfy the end conditions at

x=0 and x=L so moment and shear force at both ends must equal zero:

20 (A.9)
Moment =0 - [a] =0atx=0andlL

ow A.10
Shear force =0 - [W—O]ZOatxZOandL ( )

This is the same as stating that second and the third derivatives of the displacement function

W must be equal zero at x=0 and x=L.
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w' =0 [6—9] =0
( (x=0) — ) Oxly=g
mnr _ a_W _ ] _
Wix=0) =0 ax 970
3 ¢ Or it can be written as < »or in matrix form we get the
W' _,,=0 [3_"] =0
(x=L) axl s
WIII=L =0 ow _ ] _
=) \Ldx 0 x=L - OJ
following equation:
AZ AZ AZ /12 T4 -
52+2G 52+I;G _SZ+[;)%G _52+€€G A
pA? pA? pA% . [ZAVI
KGs KGs %Gs)* %Gs)" 2 (A.11)
=0
eslp/'lZ 52 pAZ . eiSlpAZ 52 p/12
sle2 S _pislo2 -
(e7s™+ kG ) (eSZ * ;%Gesl) (me™s™+ kG ) et T ,gGeisz) A3
p/lzeSl P/12 pﬂ.zeiSl ] p/12 )
| KGs RGses! %Gs )" RGs;ews! b la,]

The above determinant consists of both real and imaginary parts. After solving the above
4by4 determinant and applying lengthy but simple multiplications and collection of
variables, the real portions of the final equation will cancel each other out and only the

imaginary parts will remain as follows:

1 . 4p* 1 . . 8p3
{[eoststy x Gt o] =2} igifiaa® + G — ey xsinGsbligze e+ (A1)
2,2
[2 — cos(sl) X (o5 +e*D)]i T2 A* = 0
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Appendix B

B) FEA Numerical Results (Transverse Frequencies) for 2D Beams with Voids and Inclusions

Table B-1: FEA results for the first ten non-dimensional bending modal frequencies, A,
of four beam sizes for beams with voids and continuous boundaries.

VIS, | Ud® Mode1 | Mode2 | Mode3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10
1.33 476955 | 7.68132 | 10.35591 | 12.76693 | 14.93788 | 16.88913 | 18.61605 | 19.99604 | 22.62761 | 23.77287
0.33 468729 | 7.57493 | 10.25310 | 12.69255 | 14.91404 | 16.94335 | 18.80583 | 20.52301 | 22.11161 | 23.58229
012 0.15 4.66959 | 7.54856 | 10.22110 | 12.65790 | 14.87917 | 16.91035 | 18.77657 | 20.49923 | 22.09501 | 23.57460
0.08 4.66333 | 7.53907 | 10.20920 | 12.64431 | 14.86449 | 16.89507 | 18.76115 | 20.48404 | 22.08054 | 23.56148
1.33 | 490166 | 7.84884 | 10.51240 | 12.87028 | 14.94866 | 16.75620 | 18.25124 | 19.27956 | 23.33800 | 24.05576
0.33 | 4.72757 | 7.63200 | 10.31759 | 12.75624 | 14.97082 | 16.98881 | 18.83670 | 20.53666 | 22.10554 | 23.55362
o4 0.15 | 4.68756 | 7.57440 | 10.25109 | 12.68880 | 14.90873 | 16.93700 | 18.79930 | 20.51731 | 22.10779 | 23.58129
0.08 | 4.67318 | 7.55331 | 10.22584 | 12.66164 | 14.88138 | 16.91078 | 18.77521 | 20.49630 | 22.09079 | 23.56949
1.33 5.06288 | 8.02794 | 10.63599 | 12.87575 | 14.78071 | 16.35164 | 17.54079 | 18.26429 | 22.58100 | 22.85800
0.33 478076 | 7.70206 | 10.38746 | 12.81145 | 15.00121 | 16.98756 | 18.79922 | 20.45959 | 21.98596 | 23.38806
023 0.15 471149 | 7.60675 | 10.28491 | 12.71812 | 14.92935 | 16.94617 | 18.79525 | 20.49900 | 22.07450 | 23.53231
0.08 4.68620 | 7.57108 | 10.24467 | 12.67837 | 14.89384 | 16.91758 | 18.77564 | 20.48990 | 22.07746 | 23.54905
1.33 5.22486 | 8.15349 | 10.61435 | 12.65910 | 14.31213 | 15.59849 | 16.50500 | 17.02099 | 20.76968 | 21.14741
0.33 4.83872 | 7.76881 | 10.43623 | 12.82049 | 14.95620 | 16.87921 | 18.62170 | 20.20869 | 21.65796 | 22.97855
029 0.15 473769 | 7.63848 | 10.31101 | 12.72910 | 14.91850 | 16.90907 | 18.72915 | 20.40219 | 21.94600 | 23.37150
0.08 470036 | 7.58842 | 10.25926 | 12.68512 | 14.88911 | 16.89905 | 18.74183 | 20.44008 | 22.01115 | 23.46609
1.33 5.35391 | 8.14392 | 10.37197 | 12.11473 | 13.47552 | 14.48776 | 15.17417 | 15.55343 | 18.77221 | 19.31754
0.33 4.89192 | 7.80981 | 10.42461 | 12.72609 | 14.76084 | 16.57268 | 18.19838 | 19.66493 | 20.99083 | 22.18467
0.3 0.15 476152 | 7.65909 | 10.31068 | 12.69310 | 14.83683 | 16.77533 | 18.53948 | 20.15453 | 21.63943 | 23.00600
0.08 471287 | 7.59915 | 10.25851 | 12.66461 | 14.84301 | 16.82350 | 18.63439 | 20.29934 | 21.83652 | 23.25743
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Table B-2: FEA results for the first ten non-dimensional bending modal frequencies, A,
of four beam sizes for beams with compliant inclusions and continuous boundaries.

VIS, | 1d? Mode1 | Mode2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10
1.33 | 4.75123 7.66769 10.35911 | 12.79741 | 15.00668 | 17.01499 | 18.84630 | 20.49177 | 22.19597 | 23.59273
0.33 | 4.68110 | 7.56720 10.24600 | 12.68789 | 14.91294 | 16.94646 | 18.81348 | 20.53531 | 22.12848 | 23.60351
042 0.15 | 4.66748 7.54630 10.21966 | 12.65800 | 14.88127 | 16.91468 | 18.78318 | 20.50804 | 22.10581 | 23.58711
0.08 | 4.66249 | 7.53830 10.20903 | 12.64515 | 14.86659 | 16.89853 | 18.76588 | 20.49005 | 22.08768 | 23.56959
1.33 | 4.84870 | 7.79438 10.48399 | 12.89362 | 15.05104 | 16.97843 | 18.66707 | 19.97418 | 22.70293 | 23.81555
0.17 0.33 | 4.71030 | 7.60966 10.29603 | 12.74053 | 14.96462 | 16.99474 | 18.85674 | 20.57241 | 22.15847 | 23.62528
0.15 | 4.68058 7.56559 10.24292 | 12.68337 | 14.90744 | 16.94082 | 18.80887 | 20.53297 | 22.12978 | 23.60976
0.08 | 4.66978 7.54912 10.22220 | 12.65969 | 14.88186 | 16.91418 | 18.78177 | 20.50613 | 22.10393 | 23.58594
1.33 | 4.96849 | 7.94033 10.61103 | 12.96234 | 15.02517 | 16.80993 | 18.27300 | 19.25911 | 23.40805 | 23.92484
0.33 | 4.74841 | 7.66251 10.35388 | 12.79499 | 15.00981 | 17.02668 | 18.87283 | 20.57082 | 22.13765 | 23.58338
0.23 0.15 | 4.69778 | 7.58987 10.27030 | 12.71048 | 14.93192 | 16.96124 | 18.82433 | 20.54298 | 22.13400 | 23.60783
0.08 | 4.67937 | 7.56279 10.23785 | 12.67553 | 14.89668 | 16.92727 | 18.79279 | 20.51494 | 22.11055 | 23.59024
1.33 | 5.09188 | 8.07596 10.70363 | 12.96512 | 14.89632 | 16.50033 | 17.72840 | 18.48490 | 22.82080 | 23.10764
0.33 | 4.78987 | 7.71682 10.40761 | 12.83679 | 15.03172 | 17.02332 | 18.84050 | 20.50669 | 22.03927 | 23.44780
029 0.15 | 4.71681 7.61537 10.29664 | 12.73282 | 14.94694 | 16.96665 | 18.81872 | 20.52549 | 22.10404 | 23.56488
0.08 | 4.69009 | 7.57735 10.25318 | 12.68902 | 14.90650 | 16.93228 | 18.79233 | 20.50866 | 22.09828 | 23.57190
1.33 | 5.19900 | 8.18027 10.75120 | 12.91266 | 14.70869 | 16.14526 | 17.19202 | 17.80838 | 21.86749 | 22.21757
0.33 | 4.82774 | 7.76310 10.44718 | 12.85702 | 15.02368 | 16.98069 | 18.75855 | 20.38153 | 21.86718 | 23.22472
0.3 0.15 | 4.73465 7.63768 10.31667 | 12.74478 | 14.94674 | 16.95144 | 18.78654 | 20.47502 | 22.03434 | 23.47507
0.08 | 4.70048 7.59047 10.26515 | 12.69652 | 14.90715 | 16.92448 | 18.77513 | 20.48139 | 22.06051 | 23.52323
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Table B-3: FEA results for the first ten non-dimensional bending modal frequencies, A,
of four beam sizes with compliant matrix and textured boundaries

Vi/S, | 1d* | Model Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode9 | Mode 10
1.33 | 4.72946 | 7.63167 10.31391 | 12.74914 | 14.96101 | 16.97705 | 18.82349 | 20.52080 | 22.08456 | 23.51864
0.33 | 4.67474 | 7.55630 | 10.23092 | 12.66928 | 14.89158 | 16.92312 | 18.78891 | 20.51027 | 22.10379 | 23.58024
042 0.15 | 4.66415 | 7.54046 | 10.21133 | 12.64735 | 14.86851 | 16.90006 | 18.76707 | 20.49073 | 22.08789 | 23.56936
0.08 | 4.66041 | 7.53475 | 10.20404 | 12.63884 | 14.85907 | 16.88991 | 18.75639 | 20.47983 | 22.07692 | 23.55855
1.33 | 4.79981 | 7.73649 10.44016 | 12.88522 | 15.09868 | 17.11120 | 18.95153 | 20.64153 | 22.19873 | 23.62610
0.17 0.33 | 4.69361 | 7.58611 10.26980 | 12.71521 | 14.94282 | 16.97809 | 18.84626 | 20.56862 | 22.16152 | 23.63539
0.15 | 4.67256 | 7.55394 | 10.22929 | 12.66920 | 14.89381 | 16.92850 | 18.79839 | 20.52477 | 22.12430 | 23.60763
0.08 | 4.66512 | 7.54233 | 10.21420 | 12.65134 | 14.87374 | 16.90666 | 18.77518 | 20.50069 | 22.09963 | 23.58306
1.33 | 486778 | 7.83361 | 10.54994 | 12.99331 | 15.19525 | 17.19013 | 19.00983 | 20.67820 | 22.21484 | 23.62362
0.33 | 4.71272 | 7.61511 | 10.30545 | 12.75433 | 14.98271 | 17.01645 | 18.88109 | 20.59805 | 22.18360 | 23.64764
0.23 0.15 | 4.68105 | 7.56693 | 10.24559 | 12.68764 | 14.91352 | 16.94881 | 18.81879 | 20.54492 | 22.14375 | 23.62573
0.08 | 4.66980 | 7.54951 | 10.22324 | 12.66163 | 14.88488 | 16.91839 | 18.78735 | 20.51312 | 22.11233 | 23.59574
1.33 | 492902 | 7.91767 10.63896 | 13.07209 | 15.25356 | 17.22171 | 19.01125 | 20.64896 | 22.15520 | 23.53770
0.33 | 4.73121 | 7.64217 10.33705 | 12.78652 | 15.01227 | 17.04078 | 18.89797 | 20.60541 | 22.17930 | 23.62915
029 0.15 | 4.68972 | 7.57979 10.26091 | 12.70387 | 14.92945 | 16.96357 | 18.83174 | 20.55554 | 22.15156 | 23.63006
0.08 | 4.67484 | 7.55698 | 10.23220 | 12.67124 | 14.89453 | 16.92768 | 18.79602 | 20.52104 | 22.11932 | 23.60152
1.33 | 4.97450 | 7.97691 10.69532 | 13.11107 | 15.26453 | 17.19681 | 18.94450 | 20.53606 | 21.99261 | 23.32542
0.33 | 4.74526 | 7.66210 | 10.35901 | 12.80674 | 15.02757 | 17.04848 | 18.89564 | 20.59065 | 22.14966 | 23.58161
0.3 0.15 | 4.69628 | 7.58920 | 10.27154 | 12.71418 | 14.93820 | 16.96979 | 18.83470 | 20.55444 | 22.14572 | 23.61878
0.08 | 4.67845 | 7.56215 | 10.23804 | 12.67693 | 14.89946 | 16.93139 | 18.79821 | 20.52143 | 22.11778 | 23.59761
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Note: Micropolar theory does not apply to the FEA results which are provided in the next three tables A-4 to A-6.

Table B-4: FEA results for the first ten non-dimensional bending modal frequencies, A,

of four beam sizes for beams with voids and textured boundaries.(BVOTB)

VIS, | 1d? Mode1 | Mode2 | Mode3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10
1.33 4.46441 | 7.24540 9.85519 12.26018 | 14.47163 | 16.50739 | 18.39289 | 20.12539 | 21.73600 | 23.21958
0.33 4.60562 | 7.44731 10.08676 | 12.49434 | 14.68954 | 16.69718 | 18.54218 | 20.24584 | 21.82513 | 23.29161
012 0.15 4.63202 | 7.48910 10.14213 | 12.56149 | 14.76677 | 16.78308 | 18.63534 | 20.34500 | 21.92897 | 23.39882
0.08 4.64149 | 7.50434 10.16279 | 12.58724 | 14.79742 | 16.81836 | 18.67507 | 20.38892 | 21.97680 | 23.45007
1.33 4.27663 | 6.96480 9.51273 11.88429 | 14.08302 | 16.11926 | 18.00429 | 19.74958 | 21.35540 | 22.80511
0.33 456247 | 7.37419 9.98165 12.35565 | 14.51631 | 16.48902 | 18.29906 | 19.96798 | 21.51278 | 22.94510
047 0.15 4.61224 | 7.45512 10.09246 | 12.49481 | 14.68218 | 16.67992 | 18.51339 | 20.20437 | 21.77018 | 23.22299
0.08 4.62983 | 7.48425 10.13333 | 12.54755 | 14.74686 | 16.75653 | 18.60175 | 20.30415 | 21.88082 | 23.34353
1.33 4.04846 | 6.61526 9.07218 11.38240 | 13.54270 | 15.55583 | 17.42541 | 19.15406 | 20.73298 | 22.13102
0.33 451730 | 7.29154 9.85333 12.17503 | 14.27896 | 16.19256 | 17.94243 | 19.55080 | 21.03488 | 22.40625
0.23 0.15 459282 | 7.41882 10.03480 | 12.41198 | 14.57147 | 16.53972 | 18.34305 | 20.00390 | 21.54037 | 22.96538
0.08 4.61897 | 7.46373 10.10043 | 12.49993 | 14.68284 | 16.67507 | 18.50235 | 20.18680 | 21.74599 | 23.19222
1.33 3.78355 | 6.19944 8.53137 10.74385 | 12.82918 | 14.78308 | 16.60534 | 18.28903 | 19.82041 | 21.16942
0.33 447136 | 7.19942 9.69922 11.94638 | 13.96812 | 15.79559 | 17.45799 | 18.97892 | 20.37611 | 21.66117
029 0.15 4.57417 | 7.38000 9.96771 12.30975 | 14.42940 | 16.35513 | 18.11472 | 19.73186 | 21.22556 | 22.60968
0.08 4.60907 | 7.44257 10.06307 | 12.44213 | 14.60163 | 16.56870 | 18.36993 | 20.02824 | 21.56182 | 22.98364
1.33 3.48557 | 5.72363 7.89873 9.97832 11.95237 | 13.81322 | 15.55441 | 17.16643 | 18.63458 | 19.88314
0.33 4.42469 | 7.09477 9.51141 11.65692 | 13.56704 | 15.27907 | 16.82599 | 18.23326 | 19.51922 | 20.69549
0.3 0.15 4.55550 | 7.33585 9.88499 12.17779 | 14.24130 | 16.10705 | 17.80524 | 19.36103 | 20.79465 | 22.12091
0.08 4.59927 | 7.41832 10.01628 | 12.36601 | 14.49158 | 16.42196 | 18.18530 | 19.80557 | 21.30176 | 22.68774
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Table B-5: FEA results for the first ten non-dimensional bending modal frequencies, A,
of four beam sizes for beams with compliant inclusions and textured boundaries.(BINTB)

VIS, | 1/d? Mode1 | Mode2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10
133 | 451605 | 7.31346 | 9.92525 | 12.32020 | 1451296 | 16.52368 | 18.37101 | 20.07825 | 21.65362 | 23.10773
012 | 033 | 462023 | 7.46881 | 10.11317 | 12.52394 | 14.72092 | 16.72917 | 1857365 | 20.27577 | 21.85259 | 23.31579
015 | 463989 | 7.50100 | 10.15721 | 1257900 | 14.78618 | 16.80380 | 18.65686 | 20.36677 | 21.95054 | 23.41972
008 | 464696 | 7.51275 | 10.17367 | 12.60016 | 14.81200 | 16.83433 | 18.69210 | 20.40672 | 21.99502 | 23.46844
133 | 4.38917 | 7.12858 | 9.70687 | 12.09052 | 14.28881 | 16.31732 | 18.19235 | 19.93034 | 2153995 | 23.02279
017 | 033 | 459087 | 7.42067 | 10.04633 | 12.43873 | 14.61784 | 16.60902 | 18.43752 | 20.12493 | 21.68840 | 23.13980
015 | 462722 | 7.47983 | 10.12715 | 1253970 | 14.73738 | 16.74548 | 18.58920 | 20.29018 | 21.86562 | 23.32748
008 | 464006 | 7.50115 | 10.15704 | 1257818 | 14.78444 | 16.80109 | 18.65318 | 20.36220 | 21.94526 | 23.41396
133 | 424250 | 6.90973 | 9.43976 | 11.79736 | 13.98606 | 16.01594 | 17.89808 | 19.64316 | 21.25236 | 22.71077
023 | 033 | 455888 | 7.36509 | 9.96417 | 12.32776 | 14.47681 | 16.43768 | 18.23620 | 19.89442 | 21.42958 | 22.85352
015 | 461286 | 7.45437 | 10.08864 | 12.48650 | 14.66840 | 16.66021 | 18.48755 | 20.17250 | 21.73271 | 23.18058
008 | 463166 | 7.48616 | 10.13421 | 12.54645 | 14.74312 | 16.74971 | 18.59164 | 20.29067 | 21.86418 | 23.32400
133 | 410052 | 6.69304 | 9.16710 | 11.48629 | 13.64945 | 15.66161 | 17.52834 | 19.25456 | 20.83378 | 22.23871
029 | 033 | 453107 | 7.31325 | 9.88238 | 12.21129 | 14.32302 | 16.24554 | 18.00582 | 19.62655 | 21.12520 | 22.51347
015 | 460140 | 7.43215 | 10.05220 | 12.43293 | 14.50577 | 16.56743 | 18.37441 | 20.03931 | 21.58029 | 23.01028
008 | 462554 | 7.47396 | 10.11375 | 12.51586 | 14.70108 | 16.69548 | 18.52494 | 20.21162 | 21.77315 | 23.22181
133 | 3.98470 | 651302 | 8.93458 | 11.21201 | 13.34051 | 1532128 | 17.15460 | 18.84169 | 20.37054 | 21.71070
035 | 933 | 450910 | 7.26928 | 9.80900 | 12.10299 | 14.17684 | 16.06054 | 17.78247 | 19.36602 | 20.82885 | 22.18260
015 | 459236 | 7.41294 | 10.01850 | 12.38116 | 14.52356 | 16.47363 | 18.25860 | 19.90183 | 21.42191 | 22.83222
008 | 462075 | 7.46328 | 10.09433 | 12.48530 | 14.65772 | 16.63844 | 18.45375 | 20.12634 | 21.67416 | 23.10977
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Table B-6: FEA results for the first ten non-dimensional bending modal frequencies, A,
of four beam sizes for beams with compliant matrix and continuous boundaries.(BCMCB)

Vi/Sy [ 1/ | Model | Mode2 [ Mode3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10
1.33 | 4.61383 | 7.47353 10.14126 | 12.58521 | 14.82253 | 16.87804 | 18.78383 | 20.71425 | 21.76321 | 23.53297
0.12 0.33 | 4.64432 | 7.50988 10.17193 | 12.60087 | 14.81635 | 16.84333 | 18.70668 | 20.42775 | 22.02311 | 23.50382
0.15 | 4.65070 | 7.51966 10.18426 | 12.61496 | 14.83147 | 16.85889 | 18.72219 | 20.44272 | 22.03715 | 23.51663
0.08 | 4.65276 | 7.52278 10.18824 | 12.61963 | 14.83670 | 16.86457 | 18.72822 | 20.44895 | 22.04354 | 23.52292
1.33 | 455692 | 7.38608 | 10.03265 | 12.46490 | 14.69803 | 16.75459 | 18.66406 | 20.56475 | 21.67034 | 23.43582
0.33 | 4.63126 | 7.48793 10.14103 | 12.56132 | 14.76882 | 16.78869 | 18.64621 | 20.36279 | 21.95542 | 23.43536
047 0.15 | 4.64474 | 7.50934 10.16924 | 12.59501 | 14.80651 | 16.82899 | 18.68752 | 20.40367 | 21.99423 | 23.47059
0.08 | 4.64938 | 7.51694 | 10.17967 | 12.60816 | 14.82223 | 16.84705 | 18.70767 | 20.42549 | 22.01731 | 23.49433
1.33 | 4.49132 | 7.28276 | 9.90045 12.31340 | 14.53530 | 16.58635 | 18.49186 | 20.33557 | 21.59447 | 23.28639
0.33 | 4.61766 | 7.46393 | 10.10556 | 12.51390 | 14.70954 | 16.71840 | 18.56605 | 20.27438 | 21.86057 | 23.33626
0.23 0.15 | 4.63864 | 7.49819 10.15218 | 12.57135 | 14.77586 | 16.79121 | 18.64278 | 20.35213 | 21.93648 | 23.40755
0.08 | 4.64596 | 7.51066 10.17003 | 12.59467 | 14.80461 | 16.82512 | 18.68142 | 20.39501 | 21.98266 | 23.45596
1.33 | 4.42665 | 7.17754 9.76069 12.14632 | 14.34703 | 16.38025 | 18.26414 | 20.01883 | 21.59575 | 23.10994
0.33 | 4.60665 | 7.44292 10.07226 | 12.46671 | 14.64790 | 16.64239 | 18.47642 | 20.17232 | 21.74750 | 23.21389
0.29 0.15 | 4.63395 | 7.48873 10.13647 | 12.54816 | 14.74441 | 16.75106 | 18.59380 | 20.29446 | 21.87053 | 23.33409
0.08 | 4.64343 | 7.50553 10.16136 | 12.58175 | 14.78687 | 16.80226 | 18.65327 | 20.36154 | 21.94411 | 23.41255
1.33 | 4.36876 | 7.07890 9.62276 11.97163 | 14.13677 | 16.13128 | 17.96091 | 19.58367 | 21.71911 | 22.96106
0.33 | 4.59933 | 7.42714 10.04481 | 12.42512 | 14.59054 | 16.56852 | 18.38565 | 20.06448 | 21.62267 | 23.07231
0.3 0.15 | 4.63134 | 7.48230 10.12432 | 12.52869 | 14.71644 | 16.71377 | 18.54664 | 20.23714 | 21.80307 | 23.25671
0.08 | 4.64233 | 7.50251 10.15534 | 12.57171 | 14.77211 | 16.78225 | 18.62765 | 20.33008 | 21.90677 | 23.36949
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Appendix C

C) Solution to Small scale effects on Non-Local Timoshenko beam
for free-free boundary conditions:

C.1 Eringen Nonlocal Effect In x Direction

A modified Timoshenko beam theory based on Eringen’s nonlocal theory has been used in
nanotechnology in recent years. Wang et al. (2007) incorporated the Eringen small scale
coefficient eya into the moment in the Timoshenko beam model. Here, the work of Wang et
al., which was briefly discussed earlier in chapter two, is extended to include the free-free

boundary condition:

Normal and shear stresses can be stated in following forms:

_,d’c (C.1)
Oxx — (€9@)? dx:x = Eg&yy
Oyy = GYyxy (C.2)

where (eya) has the dimension of length and referred to as a "Alpha" which stand for small
length scale parameter; "e," is the small length scale coefficient which is dimensionless; "a"
is internal characteristic length. Wang et al did not consider the nonlocal effect into shear
constitutive relations. However, the influence of the Eringen’s nonlocal small length scale
parameter, a, in both horizontal and vertical stress components will be discussed in appendix

C.2 and the nonlocal Timoshenko beam will be solved for such assumptions.

The term a can be identified by the curve fitting methods. However, the constituent terms in
a such as a or e, have their mechanical definitions too. For example "a" as the internal
characteristic length can be related to molecular bonds or granular size or distance in
materials. Some researchers have attempted to obtain e, analytically. In a very recent work
Wang et al modelled a beam by dividing it into finite rigid elements (segments), elastic

rotational springs and lumped masses where the segments join together and by applying

223



Hamilton principle to their model, they were able to obtain the small length scale coefficient
"eo" by analytical method and showed that e, is approximately equals to 0.408 or \/ig for
vibration of nonlocal Euler beams when there is no load applied on the beam eg. Initial axial
stress ratio is zero?° /b/'m = 0, and for initial stress ration from -1 to +1, e, changes from 0.5

to 0.289 and found that e, is independent from vibration modes (Z. Zhang, Challamel, and
Wang 2013),(Zhen Zhang, Wang, and Challamel 2015).

The shear force and bending moment with taking the effect of the Eringen small length scale
parameter in x coordinates may be stated as in (Wang, Zhang, and He 2007):

aw (C.3)
= %GA -
Q=xG (0 + dx)

de de (C.49)

_ - =\2 2 2

M = EI Ix (eg@)*(pAw*W + plw dx)

Thus the governing equations of nonlocal Timoshenko may be modified as:
d?e dw dw d2e (C.5)
- _ R hatd 2g _ 7)2 22 27 7\ =
El T2 KGA (0+ dx)+p1w 06— (ep) (pAw I + plw dxz) 0

(C.6)

KGA d0+d2W + pAw*W =0
K dx dx? paw -

Considering the following non-dimensional parameters:

EI

4

2 _ .2 PAL

, ¢ = w*— P
KGAL

EI

W= Shear deformation

x = , A is frequency parameter. ) =

=R
==

parameters, a = epa/L as scaling effect parameter and finally 5:% which is the

slenderness ratio.

Thus according to Wang et al (2007) the Timoshenko governing equations for beams can be

rewritten in a non-dimensional form as follows:

~ a’)?\d?*e [0 . aw
rz<1— . > +< —1>0—(a2/12.(2+1)ﬁ=0 (C.7)

52 dfz 5“2
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dx = gx°

do d*w o
( ) +220W =0 (C.8)

The equations (C.7) and (C.8) can be decoupled in term of w and 8 as follows:

a?A?\d'w (. 1-0a?22 Nd*w (2?0 \—. (C9)
1- é_z d_4+/1 .Q-I-T-}-CZ e + 1 é_z—l w
X X

=0

a?2?\d*e (. 1-0a%2*>  \d?60 (A0 (C.10)
1—? F-F)L 0+ +a _2+)L ——110=0
X

The solutions of the above equations are:
W = C;sinh(BX) + C,cosh(Bx) + C3sin(yx) + Cicos(yx) (C.11)
0 = D;sinh(Bx) + D,cosh(Bx) + D3sin(yx) + Dycos(yx) (C.12)

where:

a?1? . 1—0a?2? 220 (C.13)
a=(1-——|,b=20+————+a? | andc=21*[——-1

B _ &b+ Vb?—4dac (C.14)
(V) = 2a )

According to Wang et al. (2007) the constants C; and D; are not independent and related as

follows:
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D, =(, lflﬁ (C.15)

D, = Cz‘f’ﬁ (C.16)

D; = C;%, (C.17)

_ B2 + 220 (C.19)
Pp=—-—>—

B
_ 24220 C.20
7, - Y (C.20)
Y

Wang et al. (2007) have provided the solutions of the above equations for various boundary
conditions except for beam model with free-free boundary conditions. To apply the boundary
conditions for free-free beam, the bending moment and shear forces at either edges of the

beam must be equal to zero as follows:

M= (1—‘12}2)2—0(212W=0 at x=0andatx =1 (C.21)
EI &2 ) dx
6=%=0+%=0 at x=0andatx =1 (C.22)

Thus the eigenvalue problem for a free- free beam can be solved as follows:
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H; cosh 8

| H; sinh 8

0 H, 0 1 C;
H, 0 —H, C,
X 4 r=0
H;sinh 8 H, cosy H, siny Cs
H; cosh f8 H,siny —Hicosy . C,
292 e
Hy = a?? + (- - 1) p%p

H4=l;l\ly_y

(C.23)

(C.24)

(C.25)

(C.26)

(C.27)

In order to make sure that both sides of equation (C.23) equal zero then the determinant of

the matrix must equal zero:

H; 0 H, 0 0

0 H; 0 —H, 0
H, cosh 8 H; sinh 8 H, cosy H, siny B 0
H; sinh H; cosh 8 H, siny — H,cosy 0

Solution of the above equation equals:

2HH,H;H,(cosh B cosy — 1) + [(HyH3)? — (HyH,)?] sinh B siny =0

(cosh B cosy — 1) + ([(HyH3)? — (HyH,)?]/2H,H,H3H,,) sinh B siny

=0

(C.28)

(C.29)

(C.30)
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C.2 The Effect of Eringen Small Length Scale parameter, «, in both
Normal and Shear Stress Components (X and y components of
stresses)

In this appendix section the Eringen’s nonlocal effect assumed also considered to influence
in y direction too. Hosseini et al. (2013) has influenced the Eringen’s material constant
(ep@) in shear stress as well as the normal stress in an investigation of surface Effects on free
vibration of Nano beams. Reddy (2007) has also referred to the stress resultant in x-y as
shear forces. Thus, the shear stress and strain relationship which was previously defined in

equation (C.2) may be written with nonlocal effect as:

2

d“o
Oy — (e0@)* dx’z‘y = G¥xy = 26y, (C.31)

Bending moment and shear forces are:

M= [,0,,2dA [N.m] (C.32)

Q= f,0,,dA [N] (C.33)

So, by multiplying equation (C.1) by ydy and integrating over the cross section of the beam,
A

L d®M _ de (C.34)
M — (eqa)? Frele Ela

Therefore, constitutive equations must be obtained and solved for this new assumption

accordingly. Thus the Timoshenko governing equations can be written as:

d (C.35)
—M = Q — plw?6
I Q—-plw

N 2w (C.36)
—p
ot?

d —
de -
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Or:

dM (C.37)
- — plw?
dx Q- plw”6
And
aqQ (C.38)
— = —pAw?
dx pAwW
Therefore:
de a*m de dQ de (C.39)
M=El— )2 Y i —z(__ I z_)
dx+(eoa) dx? dx+(eoa) dx 'Y dx
Thus:
de de (C.40)
_ - N2 [ _ 2 _ 2
M =EI Tx + (ep@) ( pAw*W — plw dx)
So:
de de (C.41)
_ bt —\2 2 227
M =EI T2 + (ep@) (pAw W + plw dx)
Now by integrating equation (C.31) over area, A:
d’o C.42
foxy dA — (eod)zf :y dA = GjyxydA (C42)
A a Ox A
d?Q dw aw (C.43)
— (e g)? — = ki S bl
Q — (ep) I GL(B + dx)dA KGA(O + dx)

Thus
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. dw _.d?Q (C.44)
Q =kGA <0 +E) + (eoa)zﬁ

Taking derivatives from both sides of equation (C.38) with respect to x:

d’Q , 0w (C.45)

— = —pl
dx? prew 0x

Now (C.45) into (C.44):

Q =%GA (0 + Z—I:/) — (eo@)* (pAa)Z Z—I:/) (C.46)

Taking derivatives from equation (C.41) with respect to x:
02%:1 = EIZZTZ — (epa)? <pAw2 (fi_ljc/ + plw? Z%) (C.47)

Taking derivatives from equation (C.46) with respect to x:
((ii—g = RGA (g + f;:f) — (eo@)? <pAa)2 f;:g) (C.48)

Now by substitution equations (C.47) and (C.48) in the equations (C.37) and (C.38), the

Timoshenko constitutive equations can be written as:

a’e dw ) 2 2d20 (C.49)
EIW—KGA(O-FE)-FPI(U 0—(6061) pIa) W =0

. (de d*w ) . Jdw (C.50)

RGA (ﬁ + W) + pAw W — (eya) <pAa) 2 |~ 0
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Now by normalisation we derive:

do AW -
—+ (1= a?220) —+ 120w =
df+( a?i )df2+/’t 0

Equations (C.51) and (C.52) then decoupled in term of W and @ as follows:

<1 227 a?2i - 1)) d'w T <é L1- 20a2* 2) d*w
—a - s — %, T
é2 dx" é2 dx*
2 AZ'QA _ W —
+22(—=—-1|W=0
52

And in terms of rotation:

. a?az) —1.\d*e . 1-20a%)? dze
1—a?2%(2 - ) + 2+ ———+ % | —

&2 dx* &2 dx’
220
+ A2 T2 1]16=0

Thus the general solutions for the above decoupled equations are:
W = A;sinh(Bx) + A,cosh(BX) + Assin(yx) + Aycos(yx)

0 = B;sinh(Bx) + Bycosh(Bx) + Bssin(yx) + B,cos(yx)

(C.51)

(C.52)

(C.53)

(C.54)

(C55)

(C.56)

The solution of either of the above equations a set of new variables are defined which are

different from Appendix C.1 but the rest of procedure is the same and final equation will be

similar to the equation (C.30). Therefore, equation (C.30) should be used with the following

parameters:
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So

B +b + Vb? — 4ac
( ) — ( )1/2
14 2a

Bl = Allluﬁ

BZ = Azlluﬁ

B3 = A3llUy

B4 = _A4¢V

g _ B 200 -’

P B

Y2 —220(1 + a®B?)
P, =

(C.57)

(C.58)

(C.59)

(C.60)

(C.61)

(C.62)

(C.63)

(C.64)

(C.65)

(C.66)

(C.67)

(C.68)
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Hy = %5 + (1 — a?220)P (C.69)
And
Hy =%, — (1 —a222Q)y (C.70)

C.3 Extracting the Timoshenko Beam Mode Shapes

The mode shapes for the modal frequencies in both local and nonlocal Timoshenko beam
will be the same (Wang, Zhang, and He 2007). Thus the displacement and the three

consecutive derivatives of it are as:

W = C;sinh(Bx) + C,cosh(BX) + Cssin(yx) + Cycos(yx) (C.71)

W’(x) = C,Bcosh(Bx) + C,Bsinh(Bx) + C3ycos(yx) — Cuysin(yx) (C.72)

W”(x) = C,p?*sinh(Bx) + C,B%*cosh(Bx) — C3y?sin(yx)
o (C.73)
— Cyy*cos(yx)

Wm(x) = C,p3cosh(Bx) + C,B3sinh(Bx) — C3y3cos(yx) (C.74)
+ C,y3sin(yx) '

From the equations (C.71) to (C.74), at x=0 then the second and third derivatives must also

be equal to zero: W' (0) = 0 and W'’ (0) = 0. Thus, in other to achieve such conditions then:
chl + H2C3 = 0 (C75)

And,
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H3CZ - H4_C4_ = 0 (C76)

The variables H, to H, in equations (C.75) and (C.76) can be derived from equations (C.23)
to (C.27) as the final equation can be used to obtain the mode shapes in either local or
nonlocal Timoshenko beams. Thus:

Hj
C4:H_4C2 (C.77)
And,
¢, = C.78
2= G (C78)

Andsoatx=Lor =1, W (1) =0and W (1) =0

W”(l) = C,8%sinh(B) + C,B?cosh(B) — C3y?sin(y) — Cyy*cos(y) =0 (C.79)

Sunstituting C; and C, into equation (C.79):

W' (1) = CB2sinh(B) + C,B%cosh(B) — (H—H ) y2sin()

(C.80)

H
- (B2 st -0
H,

Thus

G [Bsinh(8) + () sin(r)] + o187 cosh ) ~ G cosr)] =0 (C8)

C [ﬂzsinh(ﬁ) + (Z—;) yzsin(y)]

G [p2cosh(®) ~ (reos()]

(C.82)
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Substitute (C.77) and (C.78) into the equation (C.71):
— . — — , Hi . _  Hs —
W = C,sinh(Bx) + C,cosh(Bx) + H—Clsm(yx) + H—Czcos(yx) (C.83)
2 4
By rearranging equation (C.83):
— e Hi I —
W = C,sinh(Bx) — H—Clsln(yx)+Czcosh(ﬁx) + H—Czcos(yx) (C.84)
2 4
Thus
Hj
w= [smh(ﬁx} - —sm(yx)] +— [cosh(ﬁx) + H—cos(yx) (C.85)
For C; =1 inequation (C.82) and replacing C; /C, in equation (C.85):

w= [sinh(ﬁi} — ﬂsin(yf)]

[,8 sinh(B) +( )y sm(y)]
(82cosh(B) - (y?cos ()]

[cosh(ﬂi) (C.86)

H
+ H—i cos(yf)]

The mode shapes at each modal frequency of a Timoshenko beam with a defined aspect ratio

can be extracted using the equation (C.86).
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Appendix D

D) Numerical Results (Longitudinal and Transverse) for 2D
beams Using MPFEM and CVFEM

D.1) Longitudinal Modal Frequencies Using MPFEM in Comparison

with FEA Results

Table D-1: Longitudinal frequency of beams with voids and continuous boundaries using MPFEM
with corresponding FEA results

Longitudinal Frequency, ®, [Rad/s] of Beams With Voids Longitudinal Frequency, o, [Rad/s] of Beams With Voids
and Continuous Boundaries Using MPFEM and Continuous Boundaries Using FEA

Vi/S, [ 1/ | Mode1l Mode 2 Mode3 | Mode4 | Mode5 | Model Mode 2 Mode3 | Mode4 | Mode5
133 | 1775482 | 3547265 | 5310760 | 7060279 | 8785975 | 1776747 | 3549673 | 5314249 | 7064185 | 8789925

0 0.33 | 887740.6 | 1773582 | 2655268 | 3529714 | 4351582 | 888373 | 1774836 | 2657121 | 3532105 | 4394956
0.15 | 591996 | 1182027 | 1768671 | 2349671 | 2896848 | 592249 | 1183224 | 1771418 | 2354737 | 2929969

0.08 | 444360.4 | 886747.8 | 1326985 | 1762730 | 2184207 | 444187 | 887418 | 1328561 | 1766053 | 2197481

133 | 1775484 | 3547360 | 5310805 | 7060403 | 8786580 | 1776206 | 3545099 | 5297398 | 7018695 | 8682608

0.12 0.33 | 887741 | 1773589 | 2655292 | 3529779 | 4392354 | 888310 | 1774284 | 2655161 | 3527217 | 4384821
0.15 | 591827 | 1182389 | 1770183 | 2353147 | 2928101 | 592228 | 1183042 | 1770771 | 2353160 | 2926752

0.08 | 443870 | 886791 | 1327634 | 1764849 | 2196043 | 444175 | 887330 | 1328247 | 1765286 | 2195923

133 | 1775484 | 3547354 | 5310816 | 7060433 | 8786700 | 1775069 | 3535542 | 5261715 | 6919986 | 8443910

017 0.33 | 887742 | 1773591 | 2655298 | 3529797 | 4392406 | 888166 | 1773159 | 2651316 | 3517723 | 4365174
0.15 | 591828 | 1182390 | 1770188 | 2353160 | 2928132 | 592180 | 1182690 | 1769596 | 2350307 | 2920977

0.08 | 443871 | 886792 | 1327637 | 1764859 | 2196066 | 444153 | 887167 | 1327719 | 1764004 | 2193341

133 | 1775485 | 3547380 | 5310825 | 7060459 | 8786802 | 1773209 | 3519614 | 5201478 | 6751597 | 8042289

0.23 0.33 | 887742 | 1773592 | 2655304 | 3529812 | 4392447 | 887952 | 1771437 | 2645309 | 3502782 | 4334116
0.15 | 591828 | 1182391 | 1770192 | 2353171 | 2928158 | 592118 | 1182181 | 1767818 | 2345959 | 2912137

0.08 | 443871 | 886793 | 1327640 | 1764867 | 2196088 | 444128 | 886947 | 1326940 | 1762107 | 2189495

133 | 1775485 | 3547404 | 5310831 | 7060475 | 8786864 | 1770501 | 3496473 | 5112980 | 6501714 | 7457890

0.29 0.33 | 887742 | 1773593 | 2655307 | 3529821 | 4392474 | 887663 | 1769087 | 2637065 | 3482223 | 4291290
0.15 | 591828 | 1182392 | 1770194 | 2353177 | 2928176 | 592029 | 1181465 | 1765368 | 2339959 | 2899929

0.08 | 443871 | 886793 | 1327642 | 1764873 | 2196100 | 444085 | 886620 | 1325840 | 1759436 | 2184098

133 | 1775485 | 3547430 | 5310836 | 7060489 | 8786915 | 1766505 | 3461463 | 4975208 | 6090417 | 6550472

0.35 0.33 | 887742 | 1773574 | 2655310 | 3529829 | 4392498 | 887255 | 1765707 | 2625203 | 3452598 | 4229696
0.15 | 591828 | 1182393 | 1770196 | 2353183 | 2928190 | 591900 | 1180416 | 1761723 | 2331005 | 2881682

0.08 | 443871 | 886794 | 1327644 | 1764877 | 2196111 | 444025 | 886130 | 1324131 | 1755239 | 2175553
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Table D-2: Longitudinal frequency of beams with compliant inclusions and continuous boundaries
using MPFEM with corresponding FEA results

Longitudinal Frequency, o, [Rad/s] of Beams With

Compliant Inclusions and Continuous Boundaries Using

Longitudinal Frequency, o, [Rad/s] of Beams With

Compliant Inclusions and Continuous Boundaries

MPFEM Using FEA
Vi/Sy 1/d> | Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 1 Mode 2 | Mode 3 Mode 4 Mode 5
133 | 1775482 | 3547265 | 5310760 | 7060279 | 8785975 | 1776747 | 3549673 | 5314249 | 7064185 | 8789925
0 0.33 | 887740.6 | 1773582 | 2655268 | 3529714 | 4351582 | 888373 | 1774836 | 2657121 | 3532105 | 4394956
0.15 | 591996 | 1182027 | 1768671 | 2349671 | 2896848 | 592249 | 1183224 | 1771418 | 2354737 | 2929969
0.08 | 444360.4 | 886747.8 | 1326985 | 1762730 | 2184207 | 444187 | 887418 | 1328561 | 1766053 | 2197481
133 | 1775484 | 3547297 | 5310806 | 7060404 | 8786587 | 1776558 | 3544006 | 5291491 | 7004118 | 8659109
0.12 0.33 | 887741 | 1773589 | 2655291 | 3529777 | 4392354 | 888581 | 1774604 | 2655104 | 3526186 | 4382101
0.15 | 591827 | 1182389 | 1770182 | 2353144 | 2928093 | 592423 | 1183375 | 1771136 | 2353392 | 2926676
0.08 | 443870 | 886790 | 1327632 | 1764845 | 2196034 | 444331 | 887619 | 1328636 | 1765726 | 2196357
133 | 1775484 | 3547363 | 5310812 | 7060423 | 8786660 | 1776269 | 3540581 | 5277951 | 6965602 | 8563479
017 0.33 | 887741 | 1773590 | 2655296 | 3529790 | 4392376 | 888587 | 1774290 | 2653779 | 3522643 | 4374410
0.15 | 591827 | 1182390 | 1770186 | 2353154 | 2928136 | 592441 | 1183306 | 1770771 | 2352368 | 2924446
0.08 | 443870 | 886791 | 1327635 | 1764854 | 2196056 | 444339 | 887588 | 1328466 | 1765255 | 2195332
133 | 1775484 | 3547360 | 5310819 | 7060440 | 8786729 | 1775616 | 3533456 | 5249865 | 6885491 | 8365621
0.3 0.33 | 887742 | 1773591 | 2655300 | 3529801 | 4392417 | 888549 | 1773586 | 2651039 | 3515555 | 4359324
0.15 | 591828 | 1182391 | 1770189 | 2353163 | 2928139 | 592445 | 1183124 | 1769992 | 2350339 | 2920179
0.08 | 443871 | 886792 | 1327638 | 1764861 | 2196072 | 444352 | 887525 | 1328152 | 1764394 | 2193504
133 | 1775485 | 3547380 | 5310825 | 7060459 | 8786801 | 1774705 | 3523780 | 5211965 | 6778614 | 8111655
0.29 0.33 | 887742 | 1773592 | 2655304 | 3529812 | 4392446 | 888530 | 1772694 | 2647439 | 3506162 | 4339356
0.15 | 591828 | 1182391 | 1770191 | 2353171 | 2928157 | 592470 | 1182916 | 1768999 | 2347674 | 2914537
0.08 | 443871 | 886793 | 1327640 | 1764867 | 2196087 | 444380 | 887469 | 1327756 | 1763269 | 2191079
133 | 1775485 | 3547410 | 5310833 | 7060479 | 8786876 | 1773831 | 3513765 | 5172928 | 6671863 | 7876098
035 0.33 | 887742 | 1773593 | 2655308 | 3529823 | 4392479 | 888543 | 1771758 | 2643512 | 3495845 | 4317491
0.15 | 591828 | 1182392 | 1770194 | 2353178 | 2928158 | 592522 | 1182703 | 1767868 | 2344558 | 2907858
0.08 | 443871 | 886793 | 1327642 | 1710455 | 2196101 | 444431 | 887418 | 1327291 | 1761868 | 2187975
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Table D-3: Longitudinal frequency of beams with compliant matrix and textured boundaries using
MPFEM with corresponding FEA results

Longitudinal Frequency, ®, [Rad/s] of Beams With

Compliant Matrix and Textured Boundaries Using

Longitudinal Frequency, o, [Rad/s] of Beams With

Compliant Matrix and Textured Boundaries Using FEA

MPFEM
Vi/Sy | 1/d° | Mode 1 Mode2 | Mode3 | Mode4 | Mode5 | Model Mode2 | Mode3 | Mode4 | Mode5
133 | 1775482 | 3547265 | 5310760 | 7060279 | 8785975 | 1776747 | 3549673 | 5314249 | 7064185 | 8789925
0 0.33 | 887740.6 | 1773582 | 2655268 | 3529714 | 4351582 | 888373 | 1774836 | 2657121 | 3532105 | 4394956
0.15 | 591996 | 1182027 | 1768671 | 2349671 | 2896848 | 592249 | 1183224 | 1771418 | 2354737 | 2929969
0.08 | 444360.4 | 886747.8 | 1326985 | 1762730 | 2184207 | 444187 | 887418 | 1328561 | 1766053 | 2197481
133 | 1775484 | 3547306 | 5310814 | 7060422 | 8786663 | 1776830 | 3548222 | 5307315 | 7043690 | 8730560
0.12 0.33 | 887741 | 1773589 | 2655294 | 3529785 | 4392408 | 888511 | 1774939 | 2656827 | 3530847 | 4391909
0.15 | 591827 | 1182389 | 1770183 | 2353148 | 2928102 | 592353 | 1183382 | 1771517 | 2354624 | 2929421
0.08 | 443870 | 886791 | 1327633 | 1764847 | 2196039 | 444263 | 887547 | 1328697 | 1766125 | 2197389
133 | 1775484 | 3547258 | 5310813 | 7060424 | 8786668 | 1776625 | 3546062 | 5299417 | 7024014 | 8690672
017 0.33 | 887741 | 1773590 | 2655295 | 3529789 | 4392382 | 888500 | 1774702 | 2655928 | 3528577 | 4387226
0.15 | 591827 | 1182390 | 1770185 | 2353152 | 2928113 | 592364 | 1183338 | 1771297 | 2353993 | 2928081
0.08 | 443870 | 886791 | 1327635 | 1764852 | 2196050 | 444275 | 887547 | 1328621 | 1765873 | 2196837
133 | 1775484 | 3547353 | 5310813 | 7060426 | 8786673 | 1775948 | 3541505 | 5284281 | 6987847 | 8620718
0.3 0.33 | 887742 | 1773590 | 2655296 | 3529792 | 4392398 | 888366 | 1774056 | 2653957 | 3524021 | 4378381
0.15 | 591827 | 1182390 | 1770186 | 2353156 | 2928124 | 592280 | 1183054 | 1770556 | 2352448 | 2925180
0.08 | 443871 | 886791 | 1327636 | 1764856 | 2196060 | 444225 | 887390 | 1328256 | 1765132 | 2195481
1.33 | 1775484 | 3547347 | 5310814 | 7060426 | 8786674 | 1775301 | 3535877 | 5264826 | 6940628 | 8531183
0.29 0.33 | 887742 | 1773590 | 2655297 | 3529793 | 4392396 | 888294 | 1773378 | 2651608 | 3518345 | 4367093
0.15 | 591827 | 1182390 | 1770187 | 2353158 | 2928127 | 592269 | 1182874 | 1769893 | 2350777 | 2921822
0.08 | 443871 | 886792 | 1327637 | 1764857 | 2196063 | 444228 | 887327 | 1327984 | 1764438 | 2194047
133 | 1775484 | 3547345 | 5310814 | 7060427 | 8786675 | 1774166 | 3528325 | 5240057 | 6881805 | 8417683
0.35 0.33 | 887742 | 1773590 | 2655297 | 3529794 | 4392397 | 888032 | 1772211 | 2648250 | 3510793 | 4352667
0.15 | 591827 | 1182390 | 1770187 | 2353158 | 2928128 | 592150 | 1182444 | 1768774 | 2348380 | 2917392
0.08 | 443871 | 886792 | 1327637 | 1764858 | 2196065 | 444130 | 887055 | 1327374 | 1763240 | 2191950
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D.2) Transverse Modal Frequencies for 2D beams Using MPFEM

Table D-4: MPFEM results for the first ten non-dimensional bending modal frequencies, 2,
of four beam sizes for beams with voids and continuous boundaries. (BVOCB)

VIS, | 1d? Mode1 | Mode2 | Mode3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10
1.33 | 476512 | 7.61965 | 10.27137 | 12.67763 | 14.96468 | 17.05317 | 18.86293 | 20.62313 | 22.26413 | 23.79808
0.12 0.33 | 4.69153 | 7.57112 | 10.23810 | 12.66757 | 14.88220 | 16.90693 | 18.75617 | 20.43925 | 22.06997 | 23.58142
0.15 | 4.67259 | 7.55084 | 10.22108 | 12.65493 | 14.87333 | 16.90203 | 18.76617 | 20.48682 | 22.07861 | 23.56709
0.08 | 4.66537 | 7.54166 | 10.21185 | 12.64671 | 14.86651 | 16.89664 | 18.76221 | 20.48462 | 22.08058 | 23.56086
1.33 | 4.83584 | 7.65801 | 10.29792 | 12.74810 | 14.95530 | 16.99660 | 18.87115 | 20.63319 | 22.27322 | 23.80628
0.33 | 4.72206 | 7.60101 | 10.26264 | 12.68602 | 14.89492 | 16.98578 | 18.79962 | 20.51875 | 22.11474 | 23.59822
047 0.15 | 4.68809 | 7.56979 | 10.23970 | 12.67151 | 14.88754 | 16.91367 | 18.77417 | 20.63529 | 22.10398 | 23.58359
0.08 | 4.67456 | 7.55407 | 10.22539 | 12.66006 | 14.87904 | 16.90809 | 18.77243 | 20.49323 | 22.08611 | 23.53795
1.33 | 491133 | 7.69002 | 10.32157 | 12.75489 | 14.96626 | 17.00478 | 18.96640 | 20.64210 | 22.28124 | 23.81351
0.33 | 4.76159 | 7.63369 | 10.28690 | 12.70119 | 14.89833 | 16.93912 | 18.80516 | 20.52612 | 22.12187 | 23.60411
023 0.15 | 4.70947 | 7.59326 | 10.26057 | 12.68848 | 14.90078 | 16.92161 | 18.75008 | 20.57493 | 22.16682 | 23.58377
0.08 | 4.68754 | 7.57039 | 10.24183 | 12.67503 | 14.89210 | 16.91910 | 18.78092 | 20.49537 | 22.14981 | 23.59664
1.33 | 496123 | 7.70703 | 10.33621 | 12.76455 | 14.97427 | 17.01124 | 18.91516 | 20.64771 | 22.28628 | 23.81806
0.33 | 4.79185 | 7.65574 | 10.30249 | 12.70784 | 14.87844 | 16.93753 | 18.81053 | 20.53166 | 22.12700 | 23.60878
029 0.15 | 4.72676 | 7.61059 | 10.27495 | 12.69940 | 14.90850 | 16.91802 | 18.83010 | 20.53452 | 22.12564 | 23.61271
0.08 | 4.69830 | 7.58308 | 10.25384 | 12.68535 | 14.90063 | 16.92567 | 18.78420 | 20.55882 | 22.11459 | 23.59468
1.33 5.00907 | 7.71788 | 10.34909 | 12.77350 | 14.98126 | 17.01692 | 18.90854 | 20.65250 | 22.29057 | 23.82193
0.33 | 4.82502 | 7.67712 | 10.31697 | 12.70557 | 14.68714 | 16.91550 | 18.81526 | 20.53662 | 22.13155 | 23.61291
0.3 0.15 | 4.74674 | 7.62892 | 10.28919 | 12.70935 | 14.91433 | 16.99867 | 18.81913 | 20.53473 | 22.12665 | 23.60558
0.08 | 4.71104 | 7.59718 | 10.26642 | 12.69556 | 14.90857 | 16.93073 | 18.77999 | 20.49967 | 22.10444 | 23.59532
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Table D-5: MPFEM results for the first ten non-dimensional bending modal frequencies, A,

of four beam sizes for beams with compliant inclusions and continuous boundaries.(BINCB)

VIS, | 1d? Mode1 | Mode2 | Mode3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10
1.33 | 4.72890 | 7.60088 | 10.26148 | 12.69004 | 14.90897 | 16.96877 | 18.86443 | 20.62369 | 22.26475 | 23.79880
0.33 | 4.67735 | 7.55619 | 10.22575 | 12.65856 | 14.87622 | 16.90469 | 18.76902 | 20.48875 | 22.16388 | 23.59163
042 0.15 | 4.66562 | 7.54185 | 10.21188 | 12.64654 | 14.86615 | 16.89616 | 18.76171 | 20.48422 | 22.08042 | 23.65958
0.08 | 4.66130 | 7.53596 | 10.20538 | 12.64015 | 14.86022 | 16.89084 | 18.75701 | 20.48013 | 22.07695 | 23.55851
1.33 | 479161 | 7.63833 | 10.28541 | 12.65615 | 14.96247 | 17.01410 | 18.86947 | 20.62968 | 22.27013 | 23.80355
0.17 0.33 | 4.70150 | 7.58224 | 10.24835 | 12.67632 | 14.88943 | 16.91133 | 18.70040 | 20.53129 | 22.12483 | 23.58034
0.15 4.67748 | 7.55727 | 10.22794 | 12.66158 | 14.87954 | 16.90769 | 18.77115 | 20.49053 | 22.07494 | 23.65976
0.08 | 4.66822 | 7.54570 | 10.21652 | 12.65162 | 14.87142 | 16.90143 | 18.76682 | 20.48898 | 22.08453 | 23.56394
1.33 | 4.85343 | 7.66669 | 10.30417 | 12.74833 | 14.95821 | 16.99868 | 18.87257 | 20.63566 | 22.27546 | 23.80830
0.33 | 4.73042 | 7.60855 | 10.26855 | 12.69018 | 14.89729 | 16.94838 | 18.80060 | 20.52058 | 22.11657 | 23.59957
0.23 0.15 | 4.69247 | 7.57488 | 10.24446 | 12.67559 | 14.89090 | 16.91622 | 18.77501 | 20.51604 | 22.10252 | 23.65977
0.08 | 4.67718 | 7.55750 | 10.22899 | 12.66347 | 14.88213 | 16.91083 | 18.77475 | 20.49491 | 22.08574 | 23.58239
1.33 | 4.90837 | 7.68940 | 10.32106 | 12.79044 | 14.96622 | 17.00478 | 18.86849 | 20.64200 | 22.28116 | 23.81344
0.33 | 4.75969 | 7.63246 | 10.28617 | 12.70102 | 14.89919 | 16.93968 | 18.80522 | 20.52613 | 22.12187 | 23.60413
029 0.15 | 4.70837 | 7.59218 | 10.25973 | 12.68790 | 14.90041 | 16.92169 | 18.77769 | 20.60004 | 22.19558 | 23.65984
0.08 | 4.68686 | 7.56960 | 10.24111 | 12.67444 | 14.89165 | 16.91880 | 18.78081 | 20.49615 | 22.17514 | 23.59828
1.33 | 4.95446 | 7.70938 | 10.33727 | 12.76698 | 14.97627 | 17.01310 | 18.84863 | 20.64880 | 22.28732 | 23.81903
0.33 | 4.78530 | 7.65295 | 10.30163 | 12.70997 | 14.89459 | 16.94241 | 18.81199 | 20.53288 | 22.12818 | 23.60994
0.3 0.15 | 4.72262 | 7.60727 | 10.27293 | 12.69855 | 14.90864 | 16.92415 | 18.86878 | 20.54169 | 22.13154 | 23.65985
0.08 | 4.69564 | 7.58033 | 10.25169 | 12.68394 | 14.89989 | 16.92563 | 18.78555 | 20.48271 | 22.15448 | 23.59742
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Table D-6: MPFEM results for the first ten non-dimensional bending modal frequencies, A,

of four beam sizes with compliant matrix and textured boundaries (BCMTB)

Vi/S, | 1d® | Model | Mode2 | Mode3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10
1.33 | 4.73198 | 7.60680 | 10.26819 | 12.69702 | 14.91708 | 16.97845 | 18.87151 | 20.63001 | 22.27057 | 23.66279
0.33 | 467796 | 7.55749 | 10.22776 | 12.66113 | 14.87919 | 16.90795 | 18.77263 | 20.49378 | 22.07772 | 23.62816
042 0.15 | 4.66587 | 7.54235 | 10.21266 | 12.64764 | 14.86755 | 16.89783 | 18.76363 | 20.48638 | 22.08283 | 23.56387
0.08 | 4.66143 | 7.53621 | 10.20578 | 12.64071 | 14.86096 | 16.89176 | 18.75812 | 20.48143 | 22.07843 | 23.56017
1.33 | 4.76403 | 7.62634 | 10.27953 | 12.69736 | 14.87073 | 16.96512 | 18.87075 | 20.63016 | 22.24991 | 23.66280
0.17 0.33 | 4.68972 | 7.57073 | 10.23949 | 12.67038 | 14.88600 | 16.91221 | 18.77243 | 20.50951 | 22.10374 | 23.66024
0.15 | 4.67156 | 7.54995 | 10.22079 | 12.65540 | 14.87453 | 16.90387 | 18.76865 | 20.49019 | 22.08479 | 23.56010
0.08 | 4.66474 | 7.54094 | 10.21129 | 12.64650 | 14.86670 | 16.89726 | 18.76326 | 20.48611 | 22.08254 | 23.56352
1.33 | 4.80922 | 7.64620 | 10.29016 | 12.78410 | 14.95564 | 16.99908 | 18.86999 | 20.63077 | 22.27107 | 23.66281
0.33 | 4.70944 | 7.58966 | 10.25403 | 12.68019 | 14.89171 | 16.90657 | 18.80874 | 20.51960 | 22.11495 | 23.60418
0.23 0.15 | 4.68153 | 7.56214 | 10.23258 | 12.66553 | 14.88274 | 16.91012 | 18.77262 | 20.48896 | 22.14362 | 23.58712
0.08 | 4.67063 | 7.54892 | 10.21998 | 12.65494 | 14.87444 | 16.90409 | 18.76908 | 20.49076 | 22.08555 | 23.56272
1.33 | 4.82916 | 7.65268 | 10.29370 | 12.74307 | 14.95163 | 16.99339 | 18.86895 | 20.63101 | 22.27121 | 23.66281
0.33 | 4.71960 | 7.59810 | 10.25982 | 12.68350 | 14.89272 | 16.97499 | 18.79691 | 20.51637 | 22.11253 | 23.59607
029 0.15 | 4.68689 | 7.56817 | 10.23791 | 12.66972 | 14.88582 | 16.91205 | 18.77267 | 20.43529 | 22.10181 | 23.58168
0.08 | 4.67385 | 7.55306 | 10.22420 | 12.65877 | 14.87772 | 16.90677 | 18.77112 | 20.49196 | 22.08488 | 23.53265
1.33 | 4.83959 | 7.65556 | 10.29536 | 12.73834 | 14.95063 | 16.99209 | 18.86797 | 20.63112 | 22.27128 | 23.66281
0.33 | 4.72534 | 7.60253 | 10.26272 | 12.68496 | 14.89273 | 16.93957 | 18.73094 | 20.51581 | 22.11211 | 23.59529
0.3 0.15 | 4.68999 | 7.57150 | 10.24074 | 12.67184 | 14.88730 | 16.91280 | 18.77175 | 20.50748 | 22.09818 | 23.58059
0.08 | 4.67573 | 7.55540 | 10.22651 | 12.66080 | 14.87939 | 16.90808 | 18.77204 | 20.49225 | 22.08297 | 23.57254
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D.3) Transverse Modal Frequencies for 2D beams Using CVFEM

Table D-7: CVFEM results for the first ten non-dimensional bending modal frequencies, A,
of four beam sizes for beams with voids and continuous boundaries. (BVOCB)

VIS, | Ud® Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10
133 | 475637 | 759068 | 10.21280 | 12.58191 | 14.83105 | 16.73721 | 18.57903 | 20.25346 | 21.79828 | 23.22596
012 0.33 | 468916 | 7.56458 | 10.22432 | 12.64295 | 14.84286 | 16.84883 | 18.67776 | 20.35837 | 21.94411 | 23.40409
0.15 | 467151 | 754830 | 10.21598 | 12.64573 | 14.85819 | 16.87886 | 18.73272 | 20.44081 | 22.01811 | 23.49184
0.08 | 466444 | 753964 | 10.20804 | 12.64007 | 14.85567 | 16.87998 | 18.73792 | 20.45078 | 22.03528 | 2350243
133 | 482571 | 7.62610 | 10.23582 | 12.64875 | 14.80303 | 16.78384 | 18.58474 | 20.25889 | 21.80268 | 23.22954
017 0.33 | 471946 | 7.59345 | 10.24690 | 12.65860 | 14.85219 | 16.73529 | 18.71317 | 20.40353 | 21.96680 | 23.41491
0.15 | 468695 | 7.56691 | 10.23375 | 12.66084 | 14.87027 | 16.88774 | 18.73750 | 20.40843 | 22.03857 | 23.50013
0.08 | 467359 | 7.55184 | 10.22102 | 12.65231 | 14.86642 | 16.88890 | 18.74484 | 20.45536 | 22.03627 | 23.48191
133 | 489978 | 7.65585 | 10.25707 | 12.65005 | 14.81051 | 16.78698 | 18.59033 | 20.26497 | 21.80785 | 23.23402
0.3 0.33 | 475875 | 7.62521 | 10.26963 | 12.67185 | 14.85405 | 16.87464 | 18.71564 | 20.40768 | 21.97046 | 23.41640
0.15 | 470825 | 7.58999 | 10.25379 | 12.67652 | 14.88179 | 16.89372 | 18.67238 | 20.53295 | 22.12210 | 23.49860
0.08 | 468654 | 7.56794 | 10.23689 | 12.66626 | 14.87796 | 16.89789 | 18.75087 | 20.45506 | 22.10400 | 23.52893
133 | 494893 | 7.67196 | 10.27074 | 12.65827 | 14.81722 | 16.79191 | 1859367 | 20.26935 | 21.81167 | 23.23741
0.29 0.33 | 478885 | 7.64674 | 10.28445 | 12.67772 | 14.83656 | 16.87312 | 18.71981 | 20.41183 | 21.97414 | 23.41954
0.15 | 472549 | 7.60708 | 10.26770 | 12.68676 | 14.88868 | 16.88974 | 18.79038 | 20.48019 | 22.05546 | 23.53306
0.08 | 469727 | 7.58048 | 10.24856 | 12.67600 | 14.88566 | 16.90343 | 18.75304 | 20.52779 | 22.05965 | 23.52488
133 | 499620 | 7.68236 | 10.28297 | 12.66622 | 14.82330 | 16.79652 | 1859503 | 20.27322 | 21.81505 | 23.24041
035 0.33 | 482187 | 7.66765 | 10.29826 | 12.67535 | 14.67203 | 16.85808 | 18.72366 | 20.41567 | 21.97752 | 23.42249
0.15 | 474542 | 762518 | 10.28153 | 12.69614 | 14.89387 | 16.68189 | 18.77758 | 20.47919 | 22.05506 | 23.51637
0.08 | 470998 | 7.59443 | 10.26080 | 12.68566 | 14.89286 | 16.90762 | 18.74842 | 20.45925 | 22.05012 | 23.52442
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Table D-8: CVFEM results for the first ten non-dimensional bending modal frequencies, A,
of four beam sizes for beams with compliant inclusions and continuous boundaries.(BINCB)

Vi/Sy 1/d? Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10
133 | 472170 | 757633 | 10.20897 | 12.59875 | 14.76897 | 16.76765 | 18.58888 | 20.27545 | 21.80808 | 23.46034
0.12 0.33 | 467518 | 7.55071 | 10.21431 | 12.63773 | 14.84205 | 16.85283 | 18.69499 | 20.38844 | 21.89480 | 23.42504
0.15 | 466459 | 7.53964 | 10.20765 | 12.63903 | 14.85369 | 16.87676 | 18.73312 | 20.44407 | 22.02631 | 23.49088
0.08 | 466039 | 7.53412 | 10.20211 | 12.63464 | 14.85133 | 16.87714 | 18.73684 | 20.45163 | 22.03824 | 23.50780
133 | 478258 | 7.60866 | 10.22594 | 12.56844 | 14.81827 | 16.85586 | 18.58464 | 20.25868 | 21.87438 | 23.46020
0.17 0.33 | 469909 | 7.57548 | 10.23410 | 12.65100 | 14.84919 | 16.85236 | 18.64205 | 20.42563 | 21.99335 | 23.40545
0.15 | 467638 | 7.55466 | 10.22265 | 12.65204 | 14.86388 | 16.88383 | 18.73686 | 20.44360 | 22.01467 | 23.43303
0.08 | 466729 | 7.54364 | 10.21259 | 12.64473 | 14.86017 | 16.88417 | 18.74172 | 20.45413 | 22.03804 | 23.50421
133 | 484297 | 7.63420 | 10.24143 | 12.64686 | 14.80493 | 16.78422 | 18.58646 | 20.26062 | 21.80416 | 23.46021
0.23 0.33 | 472777 | 7.60078 | 10.25244 | 12.66228 | 14.85404 | 16.88769 | 18.71330 | 20.40452 | 21.96770 | 23.41481
0.15 | 469132 | 7.57191 | 10.23833 | 12.66462 | 14.87322 | 16.88978 | 18.73784 | 20.46793 | 22.03638 | 23.50025
0.08 | 467621 | 7.55522 | 10.22449 | 12.65549 | 14.86916 | 16.89116 | 18.74656 | 20.45635 | 22.03532 | 23.50665
133 | 489703 | 7.65550 | 10.25680 | 12.65038 | 14.81073 | 16.78726 | 18.59051 | 20.26506 | 21.80796 | 23.46027
0.29 0.33 | 475687 | 7.62403 | 10.26899 | 12.67177 | 14.85492 | 16.87530 | 18.71585 | 20.40784 | 21.97063 | 23.41660
0.15 | 470716 | 7.58896 | 10.25303 | 12.67605 | 14.88157 | 16.89395 | 18.72123 | 20.56827 | 22.00172 | 23.49938
0.08 | 468586 | 7.56716 | 10.23621 | 12.66574 | 14.87760 | 16.89770 | 18.75089 | 20.45590 | 22.13799 | 23.53097
133 | 494270 | 767492 | 10.27237 | 12.66142 | 14.81987 | 16.79444 | 18.59583 | 20.27094 | 21.81319 | 23.46034
035 0.33 | 478238 | 7.64417 | 10.28390 | 12.68014 | 14.85095 | 16.87777 | 18.72173 | 20.41357 | 21.97586 | 23.42127
0.15 | 472138 | 7.60389 | 10.26593 | 12.68625 | 14.88922 | 16.89599 | 18.38006 | 20.48869 | 22.06310 | 23.48966
0.08 | 469462 | 7.57779 | 10.24655 | 12.67483 | 14.88525 | 16.90380 | 18.75481 | 20.44418 | 22.15225 | 2352833
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Table D-9: CVFEM results for the first ten non-dimensional bending modal frequencies, A,
of four beam sizes with compliant matrix and textured boundaries (BCMTB)

Vi/Sy 1/d? Mode 1 Mode Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10
133 | 472512 | 758322 | 10.21713 | 12.60747 | 14.77863 | 16.78034 | 18.59846 | 20.27179 | 21.81651 | 23.46050
0.12 0.33 | 467584 | 7.55220 | 10.21678 | 12.64111 | 14.84618 | 16.85761 | 18.70041 | 20.39525 | 21.95234 | 23.34324
0.15 | 466485 | 7.54019 | 10.20859 | 12.64045 | 14.85562 | 16.87922 | 18.73610 | 20.44757 | 22.03033 | 23.63363
0.08 | 466053 | 7.53440 | 10.20260 | 12.63540 | 14.85243 | 16.87864 | 18.73877 | 20.45404 | 22.04114 | 2351119
133 | 475603 | 7.59925 | 10.22335 | 12.60221 | 14.74273 | 16.76272 | 18.58975 | 20.26358 | 21.80796 | 23.46029
017 0.33 | 468745 | 7.56467 | 10.22672 | 12.64732 | 14.84872 | 16.85649 | 18.69422 | 20.40684 | 22.90858 | 23.41549
0.15 | 467051 | 7.54756 | 10.21608 | 12.64694 | 14.86053 | 16.88227 | 18.73717 | 20.44649 | 22.02660 | 23.63355
0.08 | 466382 | 7.53900 | 10.20773 | 12.64036 | 14.85672 | 16.88188 | 18.74071 | 20.45448 | 22.03993 | 23.50817
133 | 479968 | 7.61544 | 10.22939 | 12.70649 | 14.80616 | 16.79492 | 18.58405 | 20.25813 | 21.80221 | 23.46019
0.23 0.33 | 470695 | 7.58255 | 10.23910 | 12.65389 | 14.85027 | 16.84716 | 18.72621 | 20.40679 | 21.96980 | 23.45297
0.15 | 468042 | 7.55941 | 10.22699 | 12.65548 | 14.86633 | 16.88529 | 18.73716 | 20.44098 | 22.09237 | 23.63348
0.08 | 466968 | 7.54679 | 10.21585 | 12.64767 | 14.86258 | 16.88595 | 18.74283 | 20.45449 | 22.03743 | 23.50140
133 | 481895 | 7.62063 | 10.23146 | 12.64327 | 1479917 | 16.78034 | 18.58238 | 20.25666 | 21.80063 | 23.46016
0.29 0.33 | 471699 | 7.59053 | 10.24405 | 12.65603 | 14.84994 | 16.92840 | 18.71037 | 20.40108 | 21.96451 | 23.41257
0.15 | 468575 | 7.56527 | 10.23194 | 12.65902 | 14.86850 | 16.88606 | 18.73592 | 20.59770 | 22.03622 | 23.63345
0.08 | 467289 | 7.55083 | 10.21981 | 12.65100 | 14.86507 | 16.88754 | 18.74348 | 20.45403 | 22.03498 | 23.47842
133 | 482903 | 7.62289 | 10.23246 | 12.63645 | 1479713 | 16.77727 | 18.58160 | 20.25602 | 21.79994 | 23.46015
035 0.33 | 472267 | 7.59471 | 10.24653 | 12.65695 | 14.84936 | 16.87791 | 18.70780 | 20.39957 | 21.96306 | 23.41024
0.15 | 468883 | 7.56852 | 10.23456 | 12.66081 | 14.86952 | 16.88626 | 18.73447 | 20.43049 | 22.03189 | 23.63344
0.08 | 467476 | 7.55312 | 10.22199 | 12.65277 | 14.86635 | 16.88831 | 18.74372 | 20.45354 | 22.03242 | 23.51065
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Appendix E

E) Numerical Results for Square Plates with Cylindrical VVoids
and Inclusions

In this section the finite element results using ANSYS for all plate models and MPFEM
results for plates with CYVOCB, CYCICB and CYCMTB are provided. Only eight
dimensionless modal frequencies, 2, are listed in this appendix. The rest of modal
frequencies up to mode number 33 and mode shapes are stored in an Excel database
separately future work. Note that the first twisting mode is also included in the tables along

with the transverse mode (not to be confused with bending modes).

E.1) FEA results for square plates with cylindrical voids and inclusions

a) FEA results for plates with CYVOCB

Table E-1: FEA results for the first eight non-dimensional transverse modal frequencies, Q, of four
plate sizes for plates with voids and continuous boundaries (CYVOCB)

Vi/Sy 1/d? Mode 1 Mode 2 Mode 3 Mode 4 Mode5 | Mode6 | Mode7 | Mode8
1.33 1.32439 1.97707 242605 | 3.26842 | 3.26956 | 5.56322 | 5.59149 | 5.60799
0.33 1.29461 1.93783 2.37172 3.19401 | 3.22234 | 5.44374 | 550546 | 5.56343
012 0.15 1.28905 1.92922 236426 | 3.17816 | 3.21470 | 5.41029 | 5.48582 | 5.55132
0.08 1.28680 192595 | 2.35610 | 3.17161 | 3.20771 | 5.39820 | 5.47563 | 5.54595
1.33 1.39586 2.08510 | 2.55332 3.42297 | 3.43057 | 5.74501 | 5.82232 | 5.88602
0.33 1.32968 1.99618 244054 | 3.26395 | 3.32731 | 5.51294 | 5.64152 | 5.78506
017 0.15 1.31675 1.97446 2.41637 3.22837 3.30398 | 5.44143 | 5.59565 | 5.75681
0.08 1.31215 1.96682 2.40791 3.21547 3.29505 | 5.41587 | 5.57830 | 5.74625
1.33 1.49117 2.22880 2.72196 3.61649 3.64457 | 5.91532 | 6.10596 | 6.27711
0.33 1.37643 2.07085 2.54383 3.35704 3.47024 | 5.59850 | 5.82152 | 6.09364
023 0.15 1.35371 2.02951 2.50572 3.29689 3.42986 | 5.48596 | 5.74573 | 6.04352
0.08 1.34572 2.01441 2.49207 3.27447 3.41483 | 5.44458 | 5.71707 | 6.02398
1.33 1.59691 2.38331 2.91319 3.80216 3.88169 | 5.95041 | 6.36623 | 6.76122
0.33 1.42688 2.14561 2.67596 3.45219 3.63571 | 5.65741 | 6.01135 | 6.46441
029 0.15 1.39278 2.07966 2.62382 3.36506 3.57490 | 5.51443 | 5.90564 | 6.33990
0.08 1.38106 2.05565 2.60550 3.33385 3.55342 | 5.46001 | 5.86641 | 6.29245
1.33 1.70819 2.52099 3.15041 3.94553 | 4.14188 | 5.74997 | 6.55930 | 6.71095
0.33 1.48547 2.21845 2.86293 3.55440 3.84082 | 5.67518 | 6.22222 | 6.58083
0.3 0.15 1.44047 2.12749 2.79698 3.44677 3.76377 | 5.53239 | 6.10299 | 6.45191
0.08 1.42586 2.09455 2.77353 3.40894 3.73670 | 5.47563 | 6.05904 | 6.40129
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b) FEA results for plates with CYCICB

Table E-2: FEA results for the first eight non-dimensional transverse modal frequencies, Q, of four
plate sizes for plates with compliant inclusions and continuous boundaries (CYCICB)

Vi/Sy 1/d? Mode 1 Mode 2 Mode 3 Mode4 | Mode5 | Mode6 | Mode7 | Mode8
1.33 1.31207 1.96200 2.40683 3.24567 | 3.25021 | 5.55827 | 5.56631 | 5.56813
0.33 1.28587 1.92534 2.35825 3.18106 | 3.20186 | 5.43439 | 5.47460 | 5.51481
012 0.15 1.28105 1.91793 2.34841 3.16560 | 3.18840 | 5.40790 | 5.45587 | 5.50153
0.08 1.27924 1.91524 2.34538 3.16060 | 3.18452 | 5.39778 | 5.44823 | 5.49654
1.33 1.36411 2.04025 2.49908 3.36242 | 3.36265 | 5.69552 | 5.73456 | 5.76472
0.33 1.30878 1.96560 2.40347 3.22510 | 3.26755 | 5.48301 | 5.56437 | 5.66209
047 0.15 1.29824 1.94949 2.38369 3.19793 | 3.24752 | 5.42782 | 5.52545 | 5.63576
0.08 1.29441 1.94371 2.37673 3.18652 | 3.23997 | 5.40770 | 5.51072 | 5.62606
1.33 1.43165 2.14189 2.61784 3.50269 | 3.51438 | 5.83953 | 5.94215 | 6.03122
0.33 1.33794 2.01706 2.46694 3.28418 | 3.35848 | 554109 | 5.67813 | 5.85972
023 0.15 1.31977 1.98758 243411 3.23440 | 3.32375 | 5.45237 | 5.61374 | 5.81453
0.08 1.31331 1.97709 242334 3.21918 | 3.31122 | 5.42024 | 5.58979 | 5.79838
1.33 1.50817 2.25630 2.75296 3.65090 | 3.68947 | 5.95080 | 6.16284 | 6.35711
0.33 1.36987 2.07270 2.54642 3.34771 | 3.46348 | 559593 | 5.80231 | 6.09752
029 0.15 1.34284 2.02692 2.49983 3.27438 | 3.40406 | 5.47663 | 5.71095 | 6.02907
0.08 1.33355 2.01041 2.48369 3.25356 | 3.39249 | 5.43196 | 5.67710 | 6.00410
1.33 1.58508 2.36887 2.89790 3.78836 | 3.87556 | 6.01205 | 6.37511 | 6.73372
0.33 1.40035 2.12532 2.64033 3.40650 | 3.57591 | 5.63525 | 5.92322 | 6.36945
035 0.15 1.36480 2.06247 2.58381 3.31834 | 3.50828 | 5.49238 | 5.80763 | 6.27423
0.08 1.35308 2.03981 2.56375 3.28775 | 3.48474 | 544173 | 5.77121 | 6.22606
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c) FEA results for plates with CYCMCB (For which micropolar constants are not

available)

Table E-3: FEA results for the first eight non-dimensional transverse modal frequencies, Q, of four
plate sizes for plates with compliant matrix and continuous boundaries (CYCMCB)

Vi/Sy 1/d? Mode 1 Mode 2 Mode3 | Mode4 | Mode5 | Mode6 | Mode7 | Mode8
1.33 1.23704 1.84852 2.27024 | 3.07338 | 3.07805 | 5.28954 | 5.30301 | 5.31268
0.33 1.25889 1.95283 2.39442 | 3.12155 | 3.22485 | 5.33630 | 5.41059 | 5.70950
012 0.15 1.26325 1.96942 242228 | 3.13250 | 3.25512 | 5.35266 | 5.43722 | 5.80111
0.08 1.26436 1.97408 243299 | 3.13658 | 3.26507 | 5.36033 | 5.44939 | 5.83409
1.33 1.21498 1.81589 2.22727 | 3.00864 | 3.03908 | 5.14998 | 5.22114 | 5.29557
0.33 1.25609 1.98625 2.50710 | 3.11041 | 3.32674 | 5.28818 | 5.44482 | 5.97914
047 0.15 1.26419 2.00909 256775 | 3.13120 | 3.38445 | 5.32222 | 5.49687 | 6.03398
0.08 1.26679 2.01723 2.59946 | 3.14450 | 3.40484 | 533525 | 5.51578 | 6.13843
1.33 1.20589 1.79723 2.21257 | 2.96116 | 3.04598 | 4.99098 | 5.18743 | 5.39944
0.33 1.25764 1.99973 2.65914 | 3.10448 | 3.45200 | 5.23862 | 5.50265 | 5.98475
023 0.15 1.26830 2.02654 2.74910 | 3.13333 | 3.53253 | 5.29199 | 5.57617 | 6.05360
0.08 1.27224 2.03595 2.78096 | 3.14431 | 3.56179 | 531285 | 5.60261 | 6.07949
1.33 1.21890 1.78507 2.26178 | 2.94948 | 3.12207 | 4.83120 | 5.23376 | 5.58560
0.33 1.26414 2.00200 2.81701 | 3.10653 | 3.58222 | 5.19538 | 5.57774 | 5.97979
029 0.15 1.27483 2.03219 2.92337 | 3.13936 | 3.67508 | 5.26625 | 5.66124 | 6.05972
0.08 1.27932 2.04003 2.95225 | 3.14891 | 3.70791 | 5.29393 | 5.68900 | 6.07197
1.33 1.25306 1.76422 2.38460 | 2.97472 | 3.25937 | 4.68165 | 5.35406 | 5.56577
0.33 1.27318 2.00087 2.94759 | 3.11457 | 3.69214 | 5.16367 | 5.65255 | 5.97540
035 0.15 1.28106 2.03360 3.05359 | 3.14613 | 3.78252 | 5.24831 | 5.73137 | 6.06166
0.08 1.28500 2.04312 3.09265 | 3.15897 | 3.81084 | 5.29423 | 5.76150 | 6.09673
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d) FEA results for plates with CYVOTB (Micro polar constants not available)

Table E-4: FEA results for the first eight non-dimensional transverse modal frequencies, Q, of four
plate sizes for plates with voids and textured boundaries (CYVOTB)

Vi/Sy 1/d? Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode6 | Mode7 | Mode8
1.33 1.21885 | 1.81492 2.23401 2.98461 3.08701 5.00831 | 5.23544 | 5.42015
0.33 1.26756 | 1.89442 2.31705 3.11517 3.17046 5.26551 | 5.39736 | 5.50331
012 0.15 1.27620 | 1.90891 2.33448 3.13956 3.18705 5.32467 | 5.43049 | 5.52247
0.08 1.27971 | 1.91418 2.34102 3.15002 3.19381 5.34709 | 5.44524 | 5.53010
1.33 116917 | 1.71273 2.19954 2.83301 3.04268 4.64714 | 5.07989 | 5.41933
0.33 1.27245 | 1.89765 2.33923 3.10207 3.21758 5.15633 | 5.41746 | 5.65648
047 0.15 1.29021 | 1.92925 2.36953 3.15033 3.25175 5.27354 | 5.48606 | 5.69500
0.08 1.29736 | 1.94041 2.38037 3.17083 3.26552 5.31582 | 5.51479 | 5.71018
1.33 1.10204 | 1.56585 2.20052 2.64208 2.98665 4.21954 | 4.87480 | 5.05230
0.33 1.27939 | 1.89413 2.39386 3.09122 3.28342 5.03514 | 5.44879 | 5.82643
023 0.15 1.30873 | 1.94830 2.43502 3.16872 3.33998 5.22016 | 5.55998 | 5.93177
0.08 1.32042 | 1.96708 2.45031 3.20119 3.36267 5.28776 | 5.60952 | 5.95639
1.33 1.01673 | 1.38897 2.23290 241272 2.92117 3.74149 | 4.58959 | 4.61902
0.33 1.28955 | 1.88377 2.48681 3.08605 3.37111 4.90624 | 5.49508 | 5.77238
029 0.15 1.33278 1.96362 2.53855 3.19744 3.45499 5.17061 | 5.66114 | 6.01441
0.08 1.34975 | 1.99095 2.55757 3.24301 3.48790 5.26540 | 5.73312 | 6.11074
1.33 0.91404 | 1.19296 2.14695 2.29899 2.85157 3.23143 | 4.04923 | 4.32341
0.33 1.30750 | 1.86523 2.62631 3.08994 3.49302 4.75587 | 5.56858 | 5.69491
0.85 0.15 1.36712 | 1.97300 2.68978 3.24036 3.60940 5.11251 | 5.80221 | 6.03902
0.08 1.39016 | 2.00961 2.71286 3.30182 3.65462 5.23976 | 5.90134 | 6.17517
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e) FEA results for plates with CYCITB (Micro polar constants not available)

Table E-5: FEA results for the first eight non-dimensional transverse modal frequencies, Q, of four
plate sizes for plates with compliant inclusions and textured boundaries (CYCITB)

VIS, | 1d? Mode 1 Mode2 | Mode3 | Mode4 | Mode5 Mode 6 Mode7 | Mode 8
1.33 1.22327 1.82841 | 2.24067 | 3.00586 | 3.07401 5.08335 5.23163 | 5.35579
0.33 1.26231 1.89090 | 2.31349 | 3.11017 | 3.14922 5.29482 5.37104 | 5.45052
012 0.15 1.27107 1.90273 | 2.32935 | 3.13563 | 3.16719 5.34292 5.41046 | 5.47353
0.08 1.27388 1.90691 | 2.33357 | 3.14378 | 3.17299 5.35970 542218 | 5.48154
1.33 1.18233 1.76727 | 2.19607 | 2.89405 | 3.02919 4.84314 5.10925 | 5.37987
0.33 1.26048 1.89486 | 2.32011 | 3.09055 | 3.17112 5.21894 5.36416 | 5.54155
017 0.15 1.27764 1.91786 | 2.34613 | 3.13813 | 3.20498 5.30536 5.43737 | 5.58190
0.08 1.28309 1.92596 | 2.35569 | 3.15336 | 3.21626 5.33721 5.46055 | 5.59601
1.33 113121 1.68575 | 2.16865 | 2.76145 2.97552 4.57575 4.95734 | 5.31187
0.33 1.25856 1.89677 | 2.34142 | 3.06968 | 3.20100 5.13511 5.35879 | 5.66260
023 0.15 1.28559 1.93329 | 2.37771 | 3.14248 | 3.25373 5.26344 5.47194 | 5.72353
0.08 1.29420 1.94605 | 2.39069 | 3.16522 | 3.27106 5.31094 550723 | 5.74474
1.33 1.07342 1.59680 | 2.16008 | 2.61917 | 2.91761 431172 4.78577 | 5.06624
0.33 1.25701 1.89536 | 2.37919 | 3.04976 | 3.23824 5.05048 5.35654 | 5.77500
029 0.15 1.29468 1.94620 | 2.42457 | 3.14862 | 3.31138 5.22124 551274 | 5.89167
0.08 1.30648 1.96373 | 2.44059 | 3.17875 | 3.33483 5.28359 5.56081 | 5.92040
1.33 1.01708 1.52084 | 2.17092 | 2.48819 | 2.86887 4.09473 4.62241 | 4.83753
0.33 1.25892 1.89262 | 2.43521 | 3.03731 | 3.28800 4.97455 5.36893 | 5.73942
0.85 0.15 1.30679 1.95611 | 2.48843 | 3.16010 | 3.38112 5.18139 5.56635 | 5.97264
0.08 1.32173 1.97811 | 2.50766 | 3.19762 | 3.41194 5.25685 5.62712 | 6.04848
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f) FEA results for plates with CYCMTB

Table E-6: FEA results for the first eight non-dimensional transverse modal frequencies, Q, of four

plate sizes for plates with compliant matrix and textured boundaries (CYCMTB)

Vi/Sy 1/d? Mode 1 Mode2 | Mode3 | Mode4 Mode 5 Mode6 | Mode7 | Mode8
1.33 1.31260 2.09565 | 2.72556 | 3.23740 3.55381 5.48947 | 5.69220 | 6.22072
0.33 1.27952 2.01528 | 2.51757 | 3.16992 3.35747 539764 | 5.53417 | 6.08326
012 0.15 1.27148 1.99607 | 2.47579 | 3.15139 3.31220 5.37650 | 5.48825 | 5.97075
0.08 1.26887 1.98891 | 2.46114 | 3.14566 3.29649 5.36890 | 5.47350 | 5.92826
1.33 1.35490 2.17988 | 3.07763 | 3.32969 3.87065 5.60757 | 5.95387 | 6.40082
0.33 1.29513 2.06754 | 2.74562 | 3.20646 3.56192 5.41891 | 5.68551 | 6.18411
047 0.15 1.28008 2.04248 | 2.67193 | 3.16842 3.48611 5.37503 | 5.59532 | 6.11830
0.08 1.27497 2.03362 | 2.63937 | 3.15585 3.45919 5.35387 | 5.55321 | 6.09342
1.33 1.39685 2.24892 | 3.36427 | 3.42042 4.13370 5.72390 | 6.18806 | 6.55180
0.33 1.31430 2.09898 | 2.97939 | 3.24190 3.76598 5.44407 | 5.83476 | 6.25873
023 0.15 1.29251 2.06739 | 2.88975 | 3.19070 3.67016 537844 | 5.71945 | 6.16891
0.08 1.28508 2.05617 | 2.85704 | 3.17414 3.63645 5.35519 | 5.68099 | 6.13918
1.33 1.43276 2.30688 | 3.49934 | 3.54682 4.31055 5.82403 | 6.36316 | 6.67184
0.33 1.33387 2.11999 | 3.16789 | 3.27767 3.93212 5.46782 | 5.97180 | 6.31596
029 0.15 1.30643 2.08095 | 3.07677 | 3.21440 3.82885 5.38296 | 5.83666 | 6.20599
0.08 1.29679 2.06711 | 3.04330 | 3.19270 3.79281 5.35190 | 5.78996 | 6.16800
1.33 1.45817 2.35077 | 3.55833 | 3.61527 4.38889 5.89851 | 6.46273 | 6.74544
0.33 1.35136 2.13445 | 3.28444 | 3.31177 4.04169 5.48900 | 6.07326 | 6.36188
0.85 0.15 1.32006 2.08908 | 3.19868 | 3.23688 3.93374 5.38947 | 5.92901 | 6.23413
0.08 1.30868 2.07314 | 3.17163 | 3.21146 3.90526 5.35278 | 5.87761 | 6.19199
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E.2) 3D-MPFEM results for square plates with cylindrical voids and inclusions

a) 3D-MPFEM results for CYVOCB plates

Table E-7: MPFEM results for the first eight non-dimensional transverse modal frequencies, Q, of

four plate sizes for plates with voids and continuous boundaries (CYVOCB)

Vi/Sy 1Ud? Mode 1 Mode 2 Mode3 | Mode4 | Mode5 | Mode6 | Mode7 | Mode8
1.33 1.34818 1.99758 2.31508 | 3.21474 | 3.21489 | 5.41980 | 5.42041 | 5.47858
0.33 1.32077 1.95327 2.32982 | 3.23478 | 3.23511 | 5.45393 | 5.45508 | 5.55006
012 0.15 1.28586 1.91157 2.32003 | 3.16387 | 3.16423 | 5.39480 | 5.39600 | 5.42723
0.08 1.27780 1.90102 2.31935 | 3.15251 | 3.15288 | 5.38619 | 5.38740 | 5.41200
1.33 1.38426 2.04650 2.30792 | 3.23880 | 3.23888 | 5.41202 | 5.41213 | 5.50402
0.33 1.32958 1.96999 2.32043 | 3.21162 | 3.21196 | 5.42818 | 5.42933 | 5.48389
017 0.15 1.30195 1.93266 2.32113 | 3.18528 | 3.18564 | 5.41087 | 5.41208 | 5.45544
0.08 1.28835 1.91466 2.32055 | 3.16843 | 3.16880 | 5.39850 | 5.39971 | 5.43455
1.33 1.41695 2.09010 2.29547 | 3.25468 | 3.25469 | 5.35160 | 5.34996 | 5.51277
0.33 1.35822 2.00841 2.31918 | 3.23756 | 3.23789 | 5.44360 | 5.44473 | 5.51353
023 0.15 1.32190 1.95909 2.32173 | 3.20870 | 3.20906 | 5.42783 | 5.42903 | 5.48449
0.08 1.30216 1.93271 2.32161 | 3.18737 | 3.18773 | 5.41284 | 5.41405 | 5.45989
1.33 1.43699 2.11622 2.28383 | 3.26060 | 3.26056 | 5.24178 | 5.23649 | 5.48425
0.33 1.37786 2.03476 2.31759 | 3.25364 | 3.25397 | 5.45120 | 5.45231 | 5.53170
029 0.15 1.33674 1.97884 2.32180 | 3.22458 | 3.22495 | 5.43888 | 5.44008 | 5.50353
0.08 1.31290 1.94686 2.32218 | 3.20102 | 3.20138 | 5.42300 | 5.42420 | 5.47747
1.33 1.45468 2.13851 2.26842 | 3.25993 | 3.25981 | 5.01303 | 5.00119 | 5.15428
0.33 1.39729 2.06082 2.31516 | 3.26787 | 3.26819 | 5.45505 | 5.45613 | 5.54751
035 0.15 1.35258 1.99999 2.32148 | 3.24006 | 3.24042 | 5.44905 | 5.45024 | 5.52149
0.08 1.32488 1.96271 2.32254 | 3.21514 | 3.21550 | 5.43327 | 5.43448 | 5.49499
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b) 3D-MPFEM results for CYCICB plates

Table E-8: MPFEM results for the first eight non-dimensional transverse modal frequencies, €, of
four plate sizes for plates with compliant inclusions and continuous boundaries (CYCICB)

Vi/Sy | Ld? Mode 1 Mode 2 Mode 3 Mode 4 Mode5 | Mode6 | Mode7 | Mode8
1.33 1.33058 1.97322 2.31853 3.20628 3.20646 | 5.42193 | 5.42265 | 5.47214
0.33 1.29112 1.91857 2.32031 3.17074 3.17109 | 5.39994 | 5.40112 | 5.43597
012 0.15 1.27828 1.90164 2.31943 3.15331 3.15367 | 5.38682 | 5.38802 | 5.41319
0.08 1.27295 1.89479 2.31873 3.14490 3.14526 | 5.38027 | 5.38147 | 5.40101
1.33 1.36483 2.02013 2.31356 3.22911 3.22922 | 5.42540 | 5.42586 | 5.49522
0.33 1.31332 1.94816 2.32080 3.19607 3.19642 | 5.41805 | 5.41922 | 5.46646
047 0.15 1.29133 1.91865 2.32061 3.17192 3.17229 | 5.40101 | 5.40221 | 5.43854
0.08 1.28127 1.90544 2.31986 3.15812 3.15848 | 5.39061 | 5.39181 | 5.42034
1.33 1.39260 2.05771 2.30564 3.24384 3.24390 | 5.40569 | 5.40559 | 5.50895
0.33 1.33612 1.97875 2.32030 3.21806 3.21840 | 5.43237 | 5.43352 | 5.49145
023 0.15 1.30626 1.93835 2.32134 3.19069 3.19105 | 5.41487 | 5.41607 | 5.46237
0.08 1.29126 1.91843 2.32083 3.17262 3.17298 | 5.40171 | 5.40291 | 5.44032
1.33 1.41620 2.08915 2.29627 3.25494 3.25495 | 5.35829 | 5.35684 | 5.51433
0.33 1.35711 2.00691 2.31932 3.23686 3.23719 | 5.44339 | 5.44452 | 5.51288
029 0.15 1.32100 1.95788 2.32175 3.20783 3.20820 | 5.42725 | 5.42845 | 5.48355
0.08 1.30150 1.93183 2.32159 3.18657 3.18693 | 5.41226 | 5.41346 | 5.45892
1.33 1.43724 2.11688 2.28758 3.26530 | 3.26526 | 5.29562 | 5.29207 | 5.51041
0.33 1.37512 2.03096 2.31839 3.25324 | 3.25357 | 5.45265 | 5.45376 | 5.53219
035 0.15 1.33387 1.97492 2.32206 3.22261 3.22298 | 5.43786 | 5.43906 | 5.50199
0.08 1.31058 1.94373 2.32222 3.19870 | 3.19906 | 5.42142 | 5.42262 | 5.47506
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c) 3D-MPFEM results for CYCMTB plates

Table E-9: MPFEM results for the first eight non-dimensional transverse modal frequencies, €, of
four plate sizes for plates with compliant matrix and textured boundaries (CYCMTB)

Vi/Sy 1/d? Mode 1 Mode 2 Mode 3 Mode4 | Mode5 | Mode6 | Mode7 | Mode8
1.33 1.33537 | 1.97948 2.31923 3.21414 | 3.21429 | 5.42850 | 5.42918 | 5.48307
0.33 1.29226 | 1.91994 2.32067 3.17329 | 3.17364 | 5.40208 | 5.40327 | 5.44037
012 0.15 1.27875 | 1.90217 2.31960 3.15438 | 3.15475 | 5.38774 | 5.38894 | 5.41516
0.08 1.27320 | 1.89506 2.31883 3.14547 | 3.14583 | 5.38076 | 5.38196 | 5.40206
1.33 1.35311 | 2.00396 2.31675 3.22488 | 3.22501 | 5.43087 | 5.43144 | 5.49264
0.33 1.30347 1.93487 2.32097 3.18642 3.18677 | 5.41157 | 5.41275 | 5.45609
017 0.15 1.28517 | 1.91052 2.32024 3.16381 | 3.16417 | 5.39496 | 5.39616 | 5.42816
0.08 1.27724 1.90023 2.31941 3.15204 3.15240 | 5.38591 | 5.38712 | 5.41179
1.33 1.37252 | 2.03062 2.31142 3.23279 | 3.23289 | 5.42115 | 5.42150 | 5.49850
0.33 1.31973 | 1.95677 2.32067 3.20226 | 3.20260 | 5.42214 | 5.42330 | 5.47334
023 0.15 1.29545 1.92409 2.32082 3.17719 3.17755 | 5.40491 | 5.40611 | 5.44524
0.08 1.28399 | 1.90898 2.32014 3.16214 | 3.16251 | 5.39369 | 5.39490 | 5.42592
1.33 1.37955 | 2.04015 2.30819 3.23430 | 3.23439 | 5.40966 | 5.40982 | 5.49862
0.33 1.32711 | 1.96677 2.32027 3.20839 | 3.20873 | 5.42574 | 5.42690 | 5.47957
029 0.15 1.30056 | 1.93088 2.32096 3.18316 | 3.18352 | 5.40921 | 5.41042 | 5.45237
0.08 1.28748 | 1.91355 2.32041 3.16699 | 3.16735 | 5.39735 | 5.39856 | 5.43235
1.33 1.38291 | 2.04467 2.30622 3.23465 | 3.23473 | 5.40069 | 5.40067 | 5.49788
0.33 1.33103 | 1.97208 2.31999 3.21140 | 3.21174 | 5.42734 | 5.42849 | 5.48253
035 0.15 1.30339 | 1.93466 2.32099 3.18629 | 3.18665 | 5.41143 | 5.41263 | 5.45601
0.08 1.28945 | 1.91615 2.32054 3.16962 | 3.16998 | 5.39933 | 5.40053 | 5.43577
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Appendix F

F) Numerical Results for Plates with Spherical Voids and
Inclusions

F.1) FEA results for plates with spherical void and inclusions

a)

Plates with continuous boundaries

FEA Results for SPVOCB

Table F-1: FEA results for the first eight non-dimensional transverse modal frequencies, Q, of four

plate sizes for plates with spherical voids and continuous boundaries (SPVOCB)

Vi/Sy 1/d? Mode 1 Mode 2 Mode 3 Mode4 | Mode5 | Mode6 | Mode7 | Mode8
2.00 1.25460 1.87174 2.29551 3.07401 3.07401 | 5.21956 | 5.22346 | 5.22347
0.50 1.24989 1.86585 2.28760 3.06430 | 3.06430 | 5.20527 | 5.21292 | 5.21295
014 0.22 1.24909 1.86449 2.28579 3.06232 | 3.06248 | 5.20222 | 5.20927 | 5.20945
0.12 1.24871 1.86580 2.28536 3.06172 | 3.06172 | 5.20163 | 5.20811 | 5.21254
2.00 1.26984 1.89219 2.31968 3.10619 | 3.10619 | 5.26250 | 5.26252 | 5.26778
0.50 1.25441 1.87414 2.29439 3.07449 | 3.08189 | 5.22116 | 5.22870 | 5.23536
02t 0.22 1.24913 1.86827 2.28737 3.06748 | 3.06803 | 5.21089 | 5.21655 | 5.21703
0.12 1.25077 1.86750 2.28616 3.06607 | 3.06607 | 5.20838 | 5.21329 | 5.21337
2.00 1.29535 1.92583 2.35836 3.15872 | 3.15872 | 5.32114 | 5.32115 | 5.34477
0.50 1.25964 1.88469 2.30183 3.08726 | 3.08750 | 5.23957 | 5.24708 | 5.24898
0.28 0.22 1.25371 1.87486 2.28867 3.07319 | 3.07358 | 5.21821 | 5.22378 | 5.22386
0.12 1.25221 1.87166 2.28448 3.06890 | 3.06907 | 5.21212 | 5.21562 | 5.21613
2.00 1.33078 1.97230 2.40886 3.22975 | 3.22976 | 5.39288 | 5.39292 | 5.44605
0.50 1.26413 1.90971 2.31300 3.10117 | 3.10669 | 5.25622 | 5.27542 | 5.29800
035 0.22 1.25137 1.88338 2.28723 3.07493 | 3.07647 | 5.21865 | 5.23210 | 5.23259
0.12 1.24971 1.87514 2.28063 3.06673 | 3.06992 | 5.16960 | 5.21580 | 5.21962
2.00 1.36610 2.02218 2.45469 3.29849 | 3.29849 | 5.45087 | 5.45087 | 5.53646
0.50 1.25483 1.92406 2.31499 3.10061 | 3.10061 | 5.24191 | 5.29861 | 5.29861
042 0.22 1.24145 1.89867 2.28328 3.06661 | 3.06662 | 5.19266 | 5.23942 | 5.24056
0.12 1.24034 1.89092 2.27207 3.05428 | 3.06007 | 5.18325 | 5.21849 | 5.22316
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2.

FEA Results for SPCICB

Table F-2: FEA results for the first eight non-dimensional transverse modal frequencies, Q, of four

plate sizes for plates with spherical inclusions and continuous boundaries (SPCICB)

Vi/Sy 1/d? Mode 1 Mode 2 Mode 3 Mode4 | Mode5 | Mode6 | Mode7 | Mode8
2.00 1.25870 1.88618 2.30922 3.09695 | 3.09695 | 5.26192 | 5.27574 | 5.27574
0.50 1.24997 1.86622 2.28828 3.06482 | 3.06482 | 5.20527 | 5.21368 | 5.21368
014 0.22 1.24938 1.86533 2.28705 3.06374 | 3.06374 | 5.20458 | 5.21238 | 5.21238
0.12 1.24897 1.86425 2.28587 3.06229 | 3.06230 | 5.20213 | 5.20924 | 5.20945
2.00 1.27042 1.90143 2.32754 3.12136 | 3.12136 | 5.30026 | 5.30600 | 5.30602
0.50 1.25306 1.87155 2.29309 3.07233 | 3.07233 | 5.21774 | 5.22627 | 5.22627
021 0.22 1.25030 1.87003 2.29008 3.06720 | 3.07205 | 5.21085 | 5.21738 | 5.22251
0.12 1.25001 1.86619 2.28627 3.06464 | 3.06465 | 5.20608 | 5.21225 | 5.21226
2.00 1.29101 1.92802 2.35861 3.16312 | 3.16313 | 5.35303 | 5.35303 | 5.36233
0.50 1.25771 1.88107 2.30074 3.08411 | 3.08414 | 5.23580 | 5.24567 | 5.24567
028 0.22 1.25284 1.87293 2.29018 3.07230 | 3.07231 | 5.21782 | 5.22505 | 5.22505
0.12 1.25126 1.87050 2.28684 3.06797 | 3.07850 | 5.21143 | 5.21652 | 5.23799
2.00 1.31896 1.96385 2.39864 3.21826 | 3.21826 | 5.40934 | 5.40934 | 5.44137
0.50 1.26148 1.89485 2.30960 3.09673 | 3.09673 | 5.25277 | 5.26946 | 5.26946
035 0.22 1.25302 1.88051 2.29004 3.07552 | 3.07610 | 5.20090 | 5.22224 | 5.23390
0.12 1.25202 1.87676 2.28557 3.06976 | 3.07000 | 5.21192 | 5.22127 | 5.22182
2.00 1.34629 2.00049 2.43545 3.27014 | 3.27015 | 5.45512 | 5.45516 | 5.51028
0.50 1.25754 1.91087 2.31560 3.09971 | 3.09971 | 5.24927 | 5.29040 | 5.29043
042 0.22 1.24614 1.88808 2.28872 3.07046 | 3.07265 | 5.20520 | 5.23876 | 5.24004
0.12 1.24420 1.88858 2.28066 3.06360 | 3.07381 | 5.20000 | 5.22435 | 5.24166
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b)

Plates with textured boundaries

1.

FEA Results for SPVOTB

Table F-3: FEA results for the first eight non-dimensional transverse modal frequencies, Q, of four
plate sizes for plates with spherical voids and textured boundaries (SPVOTB)

Vi/Sy 1Ud? Mode 1 Mode 2 Mode 3 Mode4 | Mode5 | Mode6 | Mode7 | Mode8
2.00 1.23975 1.84974 2.26590 3.04128 | 3.04128 | 5.17174 | 5.17341 | 5.17342
0.50 1.24591 1.85974 2.27925 3.05434 | 3.05504 | 5.18970 | 5.19557 | 5.19618
044 0.22 1.24734 1.86173 2.28224 3.05791 | 3.05791 | 5.19490 | 5.20134 | 5.20138
0.12 1.24777 1.86257 2.28298 3.05914 | 3.05927 | 5.19694 | 5.20342 | 5.20346
2.00 1.22404 1.82743 2.23233 3.00706 | 3.00706 | 5.11664 | 5.11664 | 5.12208
0.50 1.24241 1.85514 2.26925 3.04504 | 3.04700 | 5.17497 | 5.17798 | 5.18014
ot 0.22 1.24630 1.85995 2.27429 3.05402 | 3.05502 | 5.18964 | 5.19275 | 5.19358
0.12 1.24775 1.86255 2.27959 3.05834 | 3.05852 | 5.19552 | 5.19933 | 5.19944
2.00 1.19608 1.79544 2.18114 2.94996 | 2.94996 | 5.02908 | 5.02908 | 5.03510
0.50 1.23520 1.84800 2.25187 3.02731 | 3.03175 | 5.14538 | 5.14698 | 5.15034
0.28 0.22 1.24332 1.85929 2.26644 3.04780 | 3.04944 | 5.17671 | 5.17724 | 5.18530
0.12 1.24629 1.86198 2.27164 3.05442 | 3.05476 | 5.18817 | 5.18836 | 5.18863
2.00 1.15313 1.76257 2.12056 2.87111 | 2.87113 | 4.90743 | 4.92467 | 4.92474
0.50 1.22425 1.84295 2.23079 3.00505 | 3.01200 | 5.10789 | 5.10830 | 5.11567
0.%5 0.22 1.23851 1.86012 2.25334 3.03882 | 3.03962 | 5.15909 | 5.15940 | 5.16006
0.12 1.24367 1.86407 2.26126 3.04974 | 3.05027 | 5.17701 | 5.17768 | 5.17824
2.00 1.08870 1.73749 2.05852 2.76643 | 2.76643 | 4.72406 | 4.81656 | 4.81657
0.50 1.20723 1.84285 2.20782 2.97615 | 2.98594 | 5.05417 | 5.06988 | 5.08300
042 0.22 1.22987 1.86320 2.23752 3.02591 | 3.02642 | 5.13254 | 5.14209 | 5.14310
0.12 1.23805 1.87048 2.24864 3.04275 | 3.04344 | 5.16183 | 5.16755 | 5.16874
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2. FEA Results for SPCITB

Table F-4: FEA results for the first eight non-dimensional transverse modal frequencies, Q, of four

plate sizes for plates with spherical inclusions and textured boundaries (SPCITB)

Vi/Sy 1/d? Mode 1 Mode 2 Mode 3 Mode4 | Mode5 | Mode6 | Mode7 | Mode8
2.00 1.23781 1.84061 2.25791 3.02359 | 3.02359 | 5.12084 | 5.12085 | 5.12307
0.50 1.16990 1.85684 2.26746 2.98296 | 3.05086 | 5.14625 | 5.18307 | 5.18470
o1 0.22 1.24645 1.85457 2.28083 3.05361 | 3.05667 | 5.10011 | 5.19512 | 5.19731
0.12 1.24810 1.86258 2.28324 3.05781 | 3.05872 | 5.19545 | 5.20193 | 5.20224
2.00 1.22559 1.82446 2.23393 3.00067 | 3.00067 | 5.09126 | 5.09127 | 5.09798
0.50 1.19418 1.84581 2.23914 2.77189 | 3.04326 | 5.16890 | 5.17193 | 5.31164
o 0.22 1.24611 1.85966 2.27779 3.05380 | 3.05389 | 5.18635 | 5.19130 | 5.19135
0.12 1.24742 1.86178 2.28254 3.05732 | 3.05747 | 5.19310 | 5.19823 | 5.20613
2.00 1.20478 1.80105 2.19750 296111 | 2.96111 | 5.03712 | 5.03713 | 5.04382
0.50 1.24879 1.89306 2.26019 3.03242 | 3.04972 | 5.15140 | 5.15178 | 5.16761
0.28 0.22 1.25508 1.86564 2.27198 3.04920 | 3.06375 | 5.17851 | 5.18153 | 5.18171
0.12 1.24644 1.86155 2.27554 3.05500 | 3.05525 | 5.18891 | 5.19181 | 5.19210
2.00 1.17388 1.77619 2.15415 2.90613 | 2.90613 | 4.96002 | 4.96881 | 4.96883
0.50 1.22911 1.84453 2.24348 3.01469 | 3.02018 | 5.12352 | 5.12551 | 5.13182
0.3 0.22 1.26686 1.85894 2.26554 3.04231 | 3.06940 | 5.16825 | 5.16882 | 5.17605
0.12 1.24436 1.86254 2.26829 3.05123 | 3.05169 | 5.18146 | 5.18368 | 5.18416
2.00 1.13075 1.75673 2.11094 2.83640 | 2.83642 | 4.84260 | 4.89817 | 4.89817
0.50 1.21687 1.84287 2.22665 2.99348 | 3.00140 | 5.08554 | 5.09761 | 5.10763
042 0.22 1.23367 1.85949 2.24999 3.03213 | 3.03213 | 5.14507 | 5.15497 | 5.15497
0.12 1.23975 1.86542 2.25854 3.04457 | 3.04519 | 5.16745 | 5.17422 | 5.17508
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F.2) MPFEM results for plates with spherical void and Inclusions and
Continuous Boundaries

1.

MPFEM Results for SPVOCB

Table F-5: MPFEM results for the first eight non-dimensional transverse modal frequencies, Q, of
four plate sizes for plates with spherical voids and continuous boundaries (SPVOCB)

Vi/Sy 1/d? Mode 1 Mode 2 Mode 3 Mode4 | Mode5 | Mode6 | Mode7 | Mode8
2.00 1.25917 1.87357 2.28025 3.06832 | 3.06886 | 5.19063 | 5.19413 | 5.20775
0.50 1.25065 1.86212 2.27995 3.05728 | 3.05790 | 5.18281 | 5.18949 | 5.19113
o1 0.22 1.24854 1.85946 2.27965 3.05380 | 3.05442 | 5.18315 | 5.18383 | 5.18590
0.12 1.24773 1.85847 2.27949 3.05237 | 3.05299 | 5.18088 | 5.18272 | 5.18479
2.00 1.27341 1.89301 2.27901 3.07975 | 3.08025 | 5.19612 | 5.19947 | 5.21899
0.50 1.25759 1.87111 2.28037 3.06660 | 3.06720 | 5.18952 | 5.19619 | 5.20333
o 0.22 1.25224 1.86412 2.28013 3.05965 | 3.06027 | 5.18825 | 5.19032 | 5.19171
0.12 1.24999 1.86127 2.27987 3.05622 | 3.05684 | 5.18569 | 5.18682 | 5.18776
2.00 1.28432 1.90794 2.27537 3.08391 | 3.08438 | 5.18680 | 5.18980 | 5.22142
0.50 1.26638 1.88279 2.28007 3.07510 | 3.07570 | 5.19473 | 5.20140 | 5.21261
0.28 0.22 1.25773 1.87124 2.28038 3.06673 | 3.06735 | 5.19328 | 5.19535 | 5.20075
0.12 1.25358 1.86584 2.28023 3.06153 | 3.06215 | 5.18963 | 5.19170 | 5.19425
2.00 1.29051 1.91605 2.26919 3.08256 | 3.08301 | 5.10459 | 5.10038 | 5.19953
0.50 1.27424 1.89336 2.27907 3.08044 | 3.08104 | 5.19630 | 5.20295 | 5.21767
0.%5 0.22 1.26366 1.87909 2.28026 3.07276 | 3.07338 | 5.19711 | 5.19918 | 5.20749
0.12 1.25781 1.87135 2.28039 3.06682 | 3.06744 | 5.19334 | 5.19541 | 5.20086
2.00 1.29357 1.91956 2.26125 3.07700 | 3.07741 | 4.51421 | 4.50051 | 4.49229
0.50 1.27966 1.90066 2.27774 3.08302 | 3.08363 | 5.19449 | 5.20111 | 5.21984
042 0.22 1.26852 1.88558 2.27989 3.07671 | 3.07733 | 5.19911 | 5.20118 | 5.21149
0.12 1.26159 1.87634 2.28035 3.07082 | 3.07144 | 5.19595 | 5.19802 | 5.20541
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2.

MPFEM Results for SPCICB

Table F-6: MPFEM results for the first eight non-dimensional transverse modal frequencies, Q, of
four plate sizes for plates with spherical inclusions and continuous boundaries (SPCICB)

Vi/Sy 1/d? Mode 1 Mode 2 Mode 3 Mode4 | Mode5 | Mode6 | Mode7 | Mode8
2.00 1.25934 1.87377 2.28032 3.06877 | 3.06930 | 5.19101 | 5.19450 | 5.20851
0.50 1.25068 1.86214 2.27997 3.05736 | 3.05797 | 5.18288 | 5.18955 | 5.19129
o1 0.22 1.24855 1.85947 2.27965 3.05382 | 3.05444 | 5.18320 | 5.18386 | 5.18593
0.12 1.24773 1.85848 2.27949 3.05238 | 3.05300 | 5.18090 | 5.18273 | 5.18480
2.00 1.27137 1.89015 2.27954 3.07923 | 3.07973 | 5.19681 | 5.20018 | 5.21912
0.50 1.25613 1.86917 2.28039 3.06502 | 3.06563 | 5.18848 | 5.19515 | 5.20162
o 0.22 1.25139 1.86303 2.28006 3.05846 | 3.05907 | 5.18738 | 5.18945 | 5.19011
0.12 1.24946 1.86060 2.27981 3.05537 | 3.05599 | 5.18505 | 5.18559 | 5.18712
2.00 1.28275 1.90576 2.27693 3.08498 | 3.08545 | 5.19396 | 5.19714 | 5.22370
0.50 1.26396 1.87951 2.28034 3.07346 | 3.07407 | 5.19405 | 5.20071 | 5.21133
0.28 0.22 1.25602 1.86898 2.28039 3.06486 | 3.06547 | 5.19203 | 5.19410 | 5.19867
0.12 1.25240 1.86432 2.28016 3.05996 | 3.06058 | 5.18850 | 5.19057 | 5.19223
2.00 1.29143 1.91739 2.27092 3.08539 | 3.08584 | 5.15118 | 5.15194 | 5.21689
0.50 1.27348 1.89228 2.27945 3.08079 | 3.08139 | 5.19732 | 5.20397 | 5.21859
0.85 0.22 1.26275 1.87784 2.28040 3.07229 | 3.07291 | 5.19699 | 5.19906 | 5.20735
0.12 1.25706 1.87034 2.28043 3.06614 | 3.06676 | 5.19293 | 5.19500 | 5.20025
2.00 1.29346 1.91994 2.26785 3.08401 | 3.08445 | 5.07433 | 5.06654 | 5.18617
0.50 1.27651 1.89636 2.27893 3.08256 | 3.08316 | 5.19735 | 5.20399 | 5.22019
042 0.22 1.26522 1.88112 2.28029 3.07457 | 3.07519 | 5.19834 | 5.20041 | 5.20978
0.12 1.25889 1.87273 2.28046 3.06827 | 3.06888 | 5.19438 | 5.19645 | 5.20280
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