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Abstract 

Agglomeration is an issue that causes many problems during secondary 

processing for pharmaceutical companies, causing material to need further 

processing, and costing additional time and resources to ensure a satisfactory 

outcome. A potential source of agglomeration arises from the particle contacts 

established during filtration that lead to robust agglomerates forming during 

drying, so that a necessary first step towards understanding agglomeration is 

to study the packing properties of filtration beds. Here I present two and three-

dimensional models simulating the formation of packed bed structures during 

filtration. 

These models were coded from the ground up using the ForTran 

programming language, starting with the 2D algorithm as it was a simpler 

algorithm compared to jumping straight to 3D systems. Once an algorithm was 

formed that could create realistic 2D systems of packed circular particles, it 

was extended so that it could also create systems of spherical particles in 3D. 

A variety of improvements and modifications were made to the algorithm as 

part of this change, including adding a stochastic optimisation function for 

determining particle locations, which was found to be a much more efficient 

method than the equations used in the 2D algorithm, so the stochastic 

optimisation method was used in all algorithms going forwards. The final 

modification made to the algorithm was the option to create systems formed of 

chain structures, made up of circular particles attached together; this enabled 

the investigation of more realistic systems. 

These models use circular and spherical particles of different sizes, 

mimicking the bimodal particle size distributions sometimes encountered in 

industrial practice. The systems containing chain particles made up of these 

circular particles were varied by both particle size and chain length to observe 

the effect of these parameters on systems with more realistic particles. The 

statistics of packing and void formation, the distribution of inter-particle 
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contacts and percolation structures, and the breakage of these systems under 

shear forces, are presented and discussed in the context of filtration, drying 

and agglomeration. The 3D model was also compared to current industry 

standard software, Ansys Rocky DEM, as part of a placement with 

AstraZeneca, where it was found my model produces very similar packing 

fraction outputs to those produced by Rocky DEM. 

The model paves the way for predictive capabilities that can lead to the 

rational design of processes to minimise the impact of agglomeration. 
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1 Introduction 

1.1 Aims of Project 

The aim of this project is to better understand how agglomeration occurs 

during particle drying, and how it can be mitigated. To do this I have designed 

a computer model that can emulate the packing of particles into filter beds. 

This model will enable us to gain greater understanding of the properties of 

these packed beds, and how those properties, such as particle size distribution 

and the presence of percolation structures potentially affect agglomeration and 

fragmentation. At this time, the model does not contain enough features to 

describe agglomeration but is in a position to be used in future projects, 

therefore this thesis is mainly investigating the packing of shapes in 2D and 

3D. 

The model will start with circular and spherical particles due to the ease of 

creation as well as aligning with laboratory work undertaken at the University 

by PhD student Mariam Siddique investigating the agglomeration of glass 

beads as an insoluble substitute for crystalline particles. This will allow future 

comparisons of the systems created by the model with physical examples. 

I have also upgraded the model to be able to produce systems involving non-

spherical particles, potentially allowing us to investigate specific crystalline 

Active Pharmaceutical Ingredients (APIs). 

The distribution of forces between these particles when a shear stress is 

applied has also been investigated in collaboration with MEng project students, 

so that weak points of the packed bed structure could be identified, to better 

understand how these systems would break apart under stress. The impact of 

structural properties, such as how the particles in the bed are arranged, can 

be explored in future work. 
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This project whilst producing this model has also given me a lot of experience 

into both regular programming workflow, as well as the work that goes into 

producing a computational model, even one as simple as mine. As part of 

using this model, I have shown that it produces realistic systems consistent 

with those formed under gravity, with parameters, such as packing fractions 

and number of contacts per particle, that fall within the calculated minimum 

and maximum ranges. As stated above, the model did not reach the stage 

during this project where it could be applied further beyond testing initial 

systems, so we were not able to investigate larger, more realistic systems. 

1.2 Significance of Project 

Agglomeration during pharmaceutical processing, particularly drying, can 

cause many problems further down the line such as ensuring the content 

uniformity of tablets. Whilst the mechanics of how agglomerates are formed 

are known, little is known about the best practices to avoid it. The aim is that 

the information gained from analysing the beds created with our model will give 

us greater insight into how agglomeration can be lessened and its negative 

repercussions prevented. 

1.3 Limitations of Project 

Due to gravity being the only force accounted for (in an approximate way) 

during the bed formation, our model produces a more simplistic representation 

of a packed bed system, than if all the forces between the particles, such as 

friction in a dry system or hydrodynamics in a wet system, were accounted for. 

This route was chosen to allow us to produce a model that enables us to have 

close control over its direction to keep it in line with the scope of the project, 

as well as significantly decreased computational times compared to more 

complex models. 
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1.4 Structure of Thesis 

In the pages following this introduction, I will review the literature surrounding 

agglomeration, how agglomerates form and their impact on the pharmaceutical 

production process, as well as modelling as a scientific tool. 

The next chapter will focus on the stages of development the 2D model 

underwent along the course of my project, as well as a step by step look at 

how the model runs to create a bed system. Following that will be a similar 

walkthrough and description of the 3D algorithm. 

Then there will be a discussion of the results I obtained from investigating 

the properties of the systems created by the 2D model, and then a discussion 

of the systems created by the 3D model. 

Next will follow a description of the algorithm used for modelling non-

spherical particles, as well as the results from the systems it produced. 

As part of my project, I undertook a three-month placement at AstraZeneca, 

Chapter 7 discusses the work performed as part of that placement. 

Finally, the conclusions gained from these investigations will be discussed. 
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2 Literature Review 

The global pharmaceutical industry provides medicines for the world 

population, now approaching eight billion people1, and has an annual turnover 

of around one trillion pounds2. The vast majority of these medicines are 

supplied as tablets and capsules3 in which the API exists as a crystalline solid 

formulated with multiple excipients to aid both the formulation process and as 

vehicles for carrying the APIs. As a consequence of this the physical properties 

of the APIs, including particle size distribution, crystal shape and the extent of 

agglomeration, are often critical quality attributes of the API because they play 

an important part in powder flow and hence formulation performance. 

There are many problems that can occur during secondary processing of 

APIs. The aim of this project is to investigate agglomeration, as its effect on 

the filtration process is of great importance to AstraZeneca, who are funding 

this work, both how it occurs and what can be done to prevent it. This is in the 

hope of creating a model to better understand its phenomenology and then to 

obtain new insight into how best to negate its effects. As previously stated, the 

model described within is not yet capable of completing this task. 

2.1 Agglomeration 

2.1.1 What it is and its mechanisms 

Agglomeration can be defined as the process of particulate solids gathering 

into an agglomerate, which is a robust cluster of these particulate solids4. This 

can sometimes be preferable as the larger agglomerates have better 

flowability compared to groups of smaller particles. However, during drug 

processing agglomeration can result in various inconveniences, such as 

affecting content uniformity, through increasing variation in the quantity of API 

contained within individual tablets, and damaging processing machinery5. 
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The binding mechanisms present during agglomeration, shown in Figure 2.1, 

were defined and ordered by H. Rumph et al4 and will each be briefly explained 

below. My model assumes solid bridges are the mechanism by which particles 

are joined together within the systems, shown in Figure 2.1a. 

 

 

 

 

 

 

2.1.1.1 Solid Bridges (Figure 2.1a) 

In systems where the temperature rises sufficiently, the particles start to melt. 

This can result in the particles merging at contact points with other particles, 

when the temperature cools the melted material solidifies causing the particles 

to fuse together, forming an agglomerate. Solid bridges can also occur even 

below the melting temperature of the solids present, as diffusion of atoms or 

molecules can occur across the contact points, over time forming bridges. This 

process is known as sintering and the bridges called sinter bridges. This heat 

can be from a deliberate heat source due to the processing requirements of 

the reaction or to enable agglomeration in reactions where it is favourable. This 

is mostly applied in industries that process minerals and ores, to combine fines 

Figure 2.1: Representation of the different mechanisms for 
Agglomerate formation (redrawn from 6) a) Solid Bridges b) 

Adhesion and Cohesion Forces c) Surface Tension and Capillary 
Forces d) Attraction Between Solid Particles e) Interlocking Bonds 
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into agglomerates for easier handling7, and not in pharmaceutical processes 

as high temperatures can lead to chemical degradation4. 

2.1.1.2 Adhesion and Cohesion Forces (Figure 2.1b) 

In the instances when agglomeration is preferred, a binding agent can be 

added to the system to aid in the formation of agglomerates and to increase 

their strength. These are generally viscous substances that cause particles to 

stick together by filling in the gaps between them. Resin and tar are used in 

non-medical applications, however there are also binders that are suitable for 

pharmaceutical processing4 such as sugars like sucrose and liquid glucose 

and binders such as microcrystalline cellulose8.  

2.1.1.3 Surface Tension and Capillary Forces (Figure 2.1c) 

Liquid bridges can also form between particles which have strong forces that 

maintain the bond between the particles. These forces are created by a 

negative capillary pressure that occurs when a liquid is filling the whole pore 

volume between two particles, causing the particles to be pulled together4. If 

the liquid is a solvent used in a previous purification process, when it 

evaporates it will leave behind the dissolved impurities and API, which can 

then form solid bridges between the particles. These bridges then act as 

bonding agents in the solvent’s place, holding the particles together9. This is 

one of the most common mechanisms of agglomeration in pharmaceutical 

manufacturing. 

One example of this, known as Snowballing or balling up, occurs during 

agitated drying with too much solvent present. The agitation causes the 

clusters to move throughout the system, allowing them to come into contact 

with more solvent-wet particles, which then join the cluster. This process then 

repeats with very large agglomerates forming due to the increased 

opportunities to bind to particles.9 
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2.1.1.4 Attraction Between Solid Particles (Figure 2.1d) 

It is possible that there are interactions occurring between the particles that 

cause them to attract each other, such as hydrogen bonding, if there is a 

suitably electronegative atom present, as well as the van der Waals forces that 

occur at all solid surfaces.4 

2.1.1.5 Interlocking Bonds (Figure 2.1e) 

Interlocking Bonds occur when the particles have irregular shapes so that 

they can intertwine and become entangled with each other, so forming the 

agglomerates.4 This occurs more readily in systems of needle like particles, 

where groups of particles snag on each other as they pass. Such agglomerates 

often look like sea urchins. 

2.1.2 Problems caused by Agglomeration 

Agglomeration frequently occurs during secondary processing, particularly 

during washing and drying. Due to their ability to differ greatly in size and 

strength, agglomerates cause various problems during the processing of drug 

products, some of which are discussed below. 

2.1.2.1 Content Uniformity 

Content uniformity is a property that needs to be maintained to ensure quality 

control of capsules and tablets and is assessed as follows. Randomly selected 

capsules or tablets are taken from a batch of product and then tested to 

determine if they each contain an amount of active ingredient that falls within 

the acceptable range10. Multiple studies to determine the effectiveness of 

methods of ensuring content uniformity have been carried out.11, 12, 13, 14 

There are guidelines which set out the acceptable ranges for how much drug 

substance should be present in each type of tablet, capsule and other dosage 
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types. Maintaining content uniformity across the tablets is essential6 as if 

tablets or capsules are produced that contain too little active ingredient, a 

patient will not be getting the treatment they need, and if a tablet or capsule 

contains too much active ingredient, it increases the possibility of an 

overdose15. 

The variation in size between agglomerates results in a broad particle size 

distribution within the system. This in turn increases the difficulty of maintaining 

content uniformity between individual tablets or capsules. Therefore, the 

presence of agglomerates within a processing system will result in extra care 

having to be taken to ensure the consistency of the tablets, through specific 

use of solvents to try and prevent agglomeration or by further processing, 

typically milling, after agglomeration has occurred.15 

2.1.2.2 Processing Issues 

The formation of agglomerates also greatly decreases the efficiency of drug 

processing, as any product that is part of a large agglomerate needs to go 

through further processing. Some agglomerates can be too difficult to break 

open due to the strength of the contacts. Some agglomerates may have 

impurities trapped inside, meaning it is not always cost effective to send the 

material through processing a second time16. This may occur when mother 

liquor is trapped inside agglomerates during ineffective washing, thus the 

agglomerates can take longer to fully dry, and the purity of the product is 

impacted17. 

Particularly large and strong agglomerates can also cause damage to the 

machinery itself, due to their size and strength blocking powder flow within the 

machines and grinding against parts, as well as causing difficulties in removing 

the batch so it can be processed further9. 
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2.1.3 Continuous Systems 

The importance of being able to efficiently process larger quantities of 

product at the same time is relatively obvious, as it would potentially reduce 

the costs and time that would be required to process the same amount in 

multiple smaller batches. A good deal of the work investigating the drying 

process has been done into how to scale it up to be able to process larger 

quantities or to create a continuous system.18 

A continuous system would speed up the process as the system would be 

capable of removing its own waste and transferring the products onto the next 

step of processing without someone having to be present to do it. This means, 

in principle, that the machines would require less supervision and also 

increase the speed of the process as any transfer time between steps of the 

process would be cut out, as well as allowing for full end to end processing.19 

One of the issues with creating a continuous system is ensuring that the 

machinery is able to deal with any unwanted circumstances that occur within 

the system during each of the processing stages; for example, if agglomerates 

form during drying, they should not be ignored and passed along onto the next 

processing stage. Instead, they would need to be separated out, broken down 

and potentially rewashed or dried before being able to be added back into the 

system. Additionally, if an error occurs within the system, it is easier to identify 

in a batch system where the issue originated so a fix can be sorted. Whereas 

in a continuous system, it can be hard to identify at what point the issue 

arose.19  
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2.2 Modelling 

Computational modelling of complex systems has become more widely 

available due to the increase in computational power over time. This has 

allowed researchers to analyse systems that were previously difficult to 

investigate experimentally, for example due to stability issues or lack of 

availability of reactants.20 

One of the ways in which computational modelling can be utilised is as a 

predictive tool prior to undertaking experimental work. This allows us to 

investigate the proposed experiment ahead of time, before any reactants are 

potentially wasted, and to ensure that the experiment would act as planned 

and produce a useful result. The model can also help show the preferred 

conditions for the experiment to run under; this should reduce negative effects 

and prevent accidents.21 

Another way in which modelling can be applied is alongside experimental 

work, so that the data produced from the model can be compared with data 

collected from physical experiments. This is especially useful whilst the model 

is relatively new to ensure that the data it is producing is similar to the results 

from a physical experiment to check whether there may be a calculation error 

within the model. But once the model has been validated, it can also be used 

to produce data that would otherwise be difficult to collect with laboratory 

experiments, for example due to lack of access to reactants, danger to 

researchers or unrealistic time lengths.22 

Some examples of types of models and their capabilities are discussed 

below. 
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2.2.1 Molecular Dynamics 

Molecular dynamics (MD) is a type of simulation that analyses the physical 

movement of molecules. The most common versions of MD simulations use 

Newton’s equations of motion to calculate the trajectories of the particles; the 

forces between them are calculated using interatomic potentials or molecular 

mechanics force fields23. As molecular systems generally consist of large 

quantities of particles, it is often impossible to determine properties of very 

complex systems analytically, therefore MD simulations use numerical 

methods. As a result, these systems are an approximation to reality, often not 

covering all the complexities a real system would have to compromise for the 

computational power that would be required to run a truly realistic simulation. 

This makes longer MD simulations less viable, as a single error early in the 

simulation would propagate throughout the simulation potentially causing the 

later stages to be far less accurate. Algorithmic developments mean that such 

an error is more likely to be from the user, in the way that they set up the 

simulation, rather than a failure of the numerical procedures. 

One advantage of MD simulations is that they work on an atomistic level 

therefore they can give information about the molecular detail of a system. 

However, as with most computer simulations, MD is computationally intensive 

and depending on the specific system being investigated could require a 

dedicated computer setup to run. Due to the timeframes of MD simulations 

being extremely short (typically on the 100 ns timescale), it can mean that vast 

quantities of simulations need to be run to gather enough data on a system24. 

Additionally, MD simulations are not useful when investigating large scale 

systems due to their small-scale nature (typically on the 10 nm scale), so a 

different modelling method would be needed, otherwise the MD simulation 

runtime would be unacceptably long. 
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2.2.2 Discrete Element Method 

Discrete Element Modelling (DEM) is closely related to molecular dynamics, 

where it differs is that it includes more complicated geometries as well as 

rotational degrees of freedom. An important distinction is that the elements of 

the model are the granular particles rather than atoms, so it works on much 

longer length and time scales. The force fields and equations of motion used 

must therefore embody all the relevant physics.  

A DEM simulation works by setting up a model with all of the particles placed 

within it and given an initial velocity. The forces acting on each particle are then 

calculated based on factors such as friction, gravity, or attractive and repulsive 

forces between particles. These forces and the initial velocities can then be 

used to compute an updated location of each particle following a short time 

step. These updated positions are then used to calculate the next round of 

forces, and the process then loops until the simulation ends. More detail is 

giving on the workings of a DEM system in section 7.2. 

DEM has many advantages, including its ability to simulate a variety of 

particle flow mechanics, as well as being able to be implemented into other 

engineering applications. DEM also allows for more detailed analysis of 

powder systems than would normally be achievable using physical 

experiments, allowing for a greater range of data to be collected. 

As with other computational modelling, the extent of the system being 

investigated is limited by the computational power available. Due to DEM being 

relatively computationally intensive compared to other model types, its 

capabilities are limited in relation to the size of the system being analysed and 

the duration of the simulations being run25, 26. In a simulation of a fluidized bed, 

a time step of 10-3s has been used27, with other experiments using smaller 

timesteps of down to 10-5s28. 
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During my project I used Rocky DEM modelling software (part of ANSYS), 

however there are many more packages available. Another source of DEM 

modelling is EDEM29, simulation software that uses DEM simulations for “bulk 

and granular material simulation”. EDEM has been used across multiple 

industries in different applications, such as investigating the strength of potato 

starch agglomerates for the food industry30, simulations of fluidized beds27, 

and modelling granular flow of systems to analyse the effect of different blade 

shapes31. 

Within the filtration space, DEM has been used in multiple instances to 

simulate filtration processes, for example to determine the porosity of 

systems32 or to compare wet and dry filtration, where either hydrodynamic or 

gravitational forces are used to filter the small particles33. Simulations have 

also been done with a variety of particle shapes and sizes, ranging from more 

spherical particles34 to fibrous particles35, 36. 

Whilst the above methods could have been used for this project, the 

approach of creating a new model was decided upon as it ensures that we had 

direct control over the direction and application of the model, keeping it simple 

compared to other models to aid in the speed of bed creation, as well as 

providing a unique learning opportunity for me as part of the project. 
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2.3 Areas Investigated 

There are many different parameters across processing that affect 

agglomeration, as detailed in Figure 2.2. 
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I aim to investigate some of these parameters, specifically the particle size 

and shape, particle size distribution, and the packing behaviour, through 

investigating simulated packed bed structures. Discussed below is some of the 

previous research into each of these properties and how they are relevant to 

agglomeration. 

2.3.1 Packing 

2.3.1.1 Packing of objects in two dimensions (2D) 

The packing of shapes in 2D has been extensively researched and many 

models have been created to determine the possible packing fractions under 

different circumstances. The most random of these types of packing is 

Random Sequential Adsorption (RSA), where “particles” are added to a 

system entirely at random, with the only restriction being that they cannot 

overlap. This results in low packing fractions, with the maximum packing 

fraction when using RSA in a system with single sized circular particles being 

roughly 0.54738, due to the lack of order. 

Previous investigations have also looked into the maximum possible packing 

of different systems. The highest packing fraction possible in a system of 

identical circles is 
𝜋

√12
≈ 0.906939, when the circles form a triangular lattice. 

2.3.1.2 Packing of objects in three dimensions (3D) 

Packing of 3D shapes has also been previously investigated. When using 

identical spherical shapes, there are two lattices that can occur to achieve the 

highest packing fraction40, which is 
𝜋

3√2
≈ 0.7404841. These two lattices, as 

seen in Figure 2.3, are face-centred cubic (FCC) and hexagonal close-packed 

(HCP) and are formed dependant on the symmetry of the system. 
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Other examples of packing types and their maximum densities are: random 

close packing, 0.640043; the tetrahedral lattice, 
π√3

16
≈ 0.304144; and the loosest 

possible density that has been found is 0.0555 in the Heesch and Laves loose-

packing structure45. 

Spherical packing was first analysed around 1587, when the question was 

posed about whether or not there was a method to quickly determine the 

number of cannonballs in a square pyramidal stack, which is known as the 

cannonball problem.46 

2.3.1.3 Packing of Multiple Sized Particle Systems 

Most of the research into systems where there are multiple sizes of particle 

present investigate binary systems, i.e. those with two distinct particle sizes 

present. In a 2D square packing system, it has been found that up until a radius 

ratio of 0.41:147, the system packs densely by filling in the voids created by the 

Figure 2.3: An FCC lattice (left) and HCP lattice (right) 
(redrawn from 42) 
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larger particles with the smaller particles. However, after this point, due to the 

sizes of the particles being more similar, the system rearranges into a different 

structure in order to maintain their density47. Additionally, if the radius ratio is 

above 0.742:1, the binary system is no longer able to pack better than a system 

with same sized particles.48 The binary system with the highest possible 

packing fraction is with a particle ratio of 0.1:1, having a packing fraction of 

0.9624.47 

Descartes circle theorem, shown in Equation 2.1, can be used to determine 

the radius of the particle that would fit perfectly between three particles, so that 

all four of them would share an edge with all of the others, as shown in Figure 

2.4. 

𝑘4 = 𝑘1 +  𝑘2 +  𝑘3  ± 2√𝑘1𝑘2 +  𝑘2𝑘3 +  𝑘3𝑘1    (2.1) 

where k is the curvature, 1/radius, of each of the circles 1 to 4. The two 

solutions to this theorem, through the ±, are due to the possibility of a large 

circle encompassing the three present circles, as well as a smaller one present 

between them. When the radii of the three present circles are the same, the 

ratio of their radii to the radius of the circle in between them is 0.1547.49 

 

 

 

 

 

Figure 2.4: Example of tangent circles with the black circles being 
present particles, and red circles being possible solutions through 

Descartes theorem 

1 

2 
3 

4 

4 
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Binary systems have also been investigated in 3D, where it has been found 

that if the radius ratio is 0.299099:1 or lower, then it is always possible for 

smaller spheres to pack inside the interstices between the larger spheres50. 

When the radius ratio exceeds 0.4142:151, the smaller spheres are no longer 

able to pack inside even the octahedral voids within the structure, meaning 

that above this ratio, the structure either needs to expand to allow the more 

similarly sized smaller particles to fill the voids inside, which decreases the 

overall density, or it would rearrange into a more complex structure51, 52. 

The packing fractions of binary systems of a radius ratio either side of the 

perfect 0.4142 value have been investigated. The packing fractions of the 

systems below this value were generally greater than the systems with a ratio 

above that value, except when comparing the minimum and maximum of some 

of the systems ranges. The systems with a radius ratio lower than the perfect 

value having packing fractions of around 0.8 and the systems with a radius 

ratio higher than the perfect value having packing fractions around 0.75. All of 

the systems packing fractions with a ratio below the value, except one, 

decrease when the ratio increases. The only system that increases alongside 

an increase in radius ratio is an orthorhombic lattice system with six small 

particles for each large particle. When the radius ratio is above the perfect 

value, of the five systems investigated, two showed a decrease in packing 

fraction, two showed an increase in packing fraction, and one showed no 

change in packing fraction.53 

2.3.2 Percolation 

Percolation theory is the study of percolation, which is generally used to 

investigate how fluids flow through porous materials through the connectivity 

of the pores. The theory describes how a network is affected when nodes or 

links between them are added or taken away. It was first elucidated in the 

Flory-Stockmayer Theory54, which governs the point at which a gel forms from 

a system of polymers55. This point is generally known as the percolation 
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threshold, which is the critical value for a system where below it a giant 

connected component does not exist, and above it one does exist. However, 

in this work we are instead looking at the connectivity of particles within the 

system, describing a percolation chain as a chain of particles connecting 

edges of the box, instead of a group of pores for fluid to pass through. 

There are two different “models” for investigating percolation: bond 

percolation and site percolation. Bond percolation uses the frequency of the 

presence of bonds between nodes to determine if a percolated structure is 

present. Site percolation determines whether or not a site is open and 

connected open sites form percolated structures. To visualise this using a grid 

of squares, bond percolation works using the connections between the 

vertices, whereas site percolation connects whole squares of the grid that are 

“open”, as can be seen in Figure 2.5.56 

 

 

Generally, systems of infinite size are examined, so a percolated structure 

would be a connected cluster of infinite length. Kolmogorov’s zero-one law 

states that, ‘the probability of an infinite cluster existing is either zero or one, 

for any given probability of a site being open or closed’58. In our systems, the 

chance of a percolation structure occurring is based on the probability of large 

     

          

          

     

     

     

     

     

     

     

Figure 2.5: Representation of Bond and Site 
Percolation (redrawn from 57) 

bond percolation site percolation 
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particle to large particle contacts forming. This allows us to investigate the 

critical value of the site probability to determine the critical probability, known 

as the percolation threshold, at which the cluster forms.  

Previously exact and approximate values of percolation thresholds for 

different lattices have been successfully calculated. It has been found that 

regular triangular lattices, shown in Figure 2.6, have a site percolation 

threshold of 0.559, which is the type of lattice that a fully regular system of circle 

packing could be likened to, with the centre of each circle a point on the lattice. 

In 3D, the site percolation threshold for FCC lattices has been calculated to be 

0.1998 ± 0.0006 and the bond percolation threshold is 0.1198 ± 0.000360. This 

shows that a percolated structure is much more likely to occur in 3D, as the 

percolation threshold in 3D systems is much lower than in 2D systems. 

 

 

 

 

 

 

The investigation of percolation theory can give insights into multiple different 

disciplines, including studying the flow of traffic through cities when certain 

roads are available, or not, to determine bottlenecks61, as well as in ecology to 

study environmental fragmentation effects on habitats62. Our interest lies in its 

uses, investigating how contacts within beds of particles might break when the 

bed system is altered, through the presence of differing particle sizes and other 

factors. 

Figure 2.6: Triangular Lattice 
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2.3.3 Finite Size Effect 

Models also need to deal with the finite size effect63, which is where, 

potentially due to the small size of a system, the edges of the system can skew 

the data. Using one of our produced systems as an example, the packing of 

the particles at the edges of the box is distinctly different to the packing in the 

centre, with denser packing in the centre of the bed. In a small enough system, 

this difference would affect the average data values and therefore give an 

incorrect outcome, compared to a larger system where the edge values are 

not as big a part of the system as a whole. 

Models can either be run with increasingly large systems to determine at 

which size there is no longer a skewing effect from edge cases, and the data 

used to extrapolate to an infinite system, or smaller systems run and the data 

from the edge cases discarded. Both strategies have their pros and cons, with 

larger systems taking longer and more computational power to complete 

however being able to lessen or remove the finite size effect, and smaller 

systems being easier to produce however still retaining the finite size effect as 

well as the potential of producing skewed results when looking at averages of 

a system as a large fraction of it has been removed. 

2.3.4 Angle of Repose 

The angle of repose is defined as the steepest angle of descent, relative to 

a horizontal surface, that a material can be piled without slumping.64  

There are various methods for determining the angle of repose for a material. 

The simplest is using the following equation if the coefficient of static friction is 

known for the material, 

tan(𝜃)  ≈  𝜇𝑠        (2.2) 
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where 𝜇𝑠 is the coefficient of static friction and 𝜃 is the angle of repose.65 

The other methods are experimentally based and are each suitable for a 

different type of material. The tilting box method is suitable for fine-grained 

materials with a grain size of 10mm or less and allows the coefficient of static 

friction to be determined for a material, from which the previous equation can 

be used to determine the angle of repose. This method works by filling a box 

with the granular material, and then tilting it gradually until the material begins 

to slide, as depicted in Figure 2.7.66 

 

 

 

 

 

 

 

 

 

Another method is the fixed funnel method, where the material is poured 

through a funnel to allow it to form a cone shape on a base. Once the cone 

has reached either a set height or a set width, the angle of repose can then be 

calculated using the following equation, 

Figure 2.7: Depicting the Tilting Box Method 
(with permission from 66) 
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𝜃 =  tan−1(
2ℎ

𝑏
)        (2.3) 

where 𝜃 is the angle of repose, h is the height of the cone, and b is the width 

of the base of the cone.66 

The angle of repose is useful to investigate as it has links to the flowability of 

granular materials, which helps when designing processing equipment and 

storage for particulate solids as it ensures the stability of the material and 

reliable flow from hoppers.67 

Another use of the angle of repose is to allow calibration of models for when 

a specific material is being simulated, the angle of repose of the system 

created in the model can be compared to the expected value to determine if 

the model is running accurately.68 However, as the model designed for this 

thesis does not consider frictional forces, only gravity, it is likely that this 

method will not be applicable to my model. 

2.3.5 Bed Fragmentation 

With the help of two final year MEng project students, we were also looking 

to investigate the effect of a shear force on the contacts between the particles 

within the modelled systems, discussed further in section 3.1.1.12. This allows 

us to see how they break apart, and so we can potentially compare different 

system parameters, such as particle size distribution, with how clusters can 

form within the systems. 

Agglomerates are generally defined by their size and strength, with the 

strength being defined by how difficult they are to break apart. Different factors 

have been investigated for their effects on agglomerate properties, including 

particle size and shape distribution, the solvents used during processing, and 

agitation during filtration.69, 70 Higher agitation does result in smaller 

agglomerates, however also runs the risk of particle breakage, so often it is a 
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balancing act between reducing particle size to an acceptable level, without 

breaking them down too far.71 

Investigation has also gone into the factors that affect the breakage of 

agglomerated systems in industries other than pharmaceutical, such as within 

the food industry, where DEM has been used to investigate how cereal grains 

break apart under impact within an agitated system.72, 73 

There is no unified way of reporting agglomerate properties, although some 

methods are becoming more consistent, such as the agglomerate brittleness 

index which describes the strength of an agglomerate.74 We anticipate that 

with the basis of the model complete, it can be used to add some more 

knowledge to how agglomerates act under various stresses and 

circumstances to greater aid the industries that need to find a solution to this 

issue. 

2.3.6 Non-Circular / Non-Spherical Particles 

Whilst spherical particles are a good starting point for simulating packed 

beds, being able to simulate specific particle shapes and sizes is incredibly 

useful. Whilst some modelling algorithms are capable of simulating non-

spherical shapes and sizes, to accurately simulate a specific substance, many 

more parameters describing its particles are required beyond its shape and 

size, all of which massively increases the computational time and power 

required. This is briefly discussed further in Chapter 7. 
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Therefore, when simulating non-spherical particles, it is often done using 

spherical particles as a starting point75, forming them into chains as illustrated 

in Figure 2.8. This allows simulation of more sophisticated systems without 

driving up the computational power required as far. The use of the circular 

particles as building blocks instead of swapping to polygons was to allow the 

new algorithm to build off the old one, thus decreasing the workload. 

 

 

 

 

Generalisations about system properties, like packing fractions, cannot be 

made across all systems of non-circular particles due to the wide range of 

particle shapes and sizes possible, only being somewhat possible when 

examining systems made up of a specific set of particles, due to the large 

variance that can now occur, even when only accounting for shape and size. 

Therefore, I will specifically be investigating chains made up of spherical 

particles. 

Research has gone into the packing on non-spherical 3D shapes, with the 

two shapes closest to my research being cylinders and spherocylinders: 

spherocylinders being cylinders with rounded ends. The maximum packing 

fraction found for both cylinders and spherocylinders is ~0.906976, dependant 

on the ratio between the diameter and height of the shape. Figure 2.9 shows 

the effect on changing the ratio of the diameter and height of cylinders and 

spherocylinders was found to have on the packing fraction of their systems 

using a relaxation algorithm. This algorithm works by filling the system with 

randomly placed shapes, i.e. cylinders, with large overlaps. When the system 

Figure 2.8: Example of a chain made up of circular 
particles. 
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then iterates, the particles move away from each other, lessening the overlaps, 

and the system size increases. The algorithm ends once the total overlap has 

become lower than a predefined value.77 

 

 

Both the cylinder and spherocylinders have a peak packing fraction, with 

the cylinder graph having a more defined peak. The cylinder systems are 

also shown to have higher packing fractions across the range of aspect ratios 

simulated. 

The packing of these shapes under gravity has also been investigated 

using DEM78, where the effect of different parameters within the DEM 

software on the packing fraction of a system were analysed and compared to 

experimental data. In contrast to Figure 2.9, this research found that when 

increasing the aspect ratio, it often resulted in the packing fraction plateauing 

instead of showing a consistent decrease, which is likely due to the different 

addition methods and the complexity of the simulation methods used. 
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Figure 2.9: Packing fractions of systems of cylinders or spherocylinders at 
different aspect ratios of height/diameter (redrawn from 76) 
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3 Methodology 

The aim of this work is to produce a model that can produce realistic 

representations of packed beds of particles formed under gravity that can be 

used to investigate agglomeration during isolation. This started with a 2D 

algorithm as it was initially easily produced, before upgrading it to a 3D 

algorithm. 

A new ab initio model was developed instead of using pre-existing software 

as it allows targeting the model towards specific issues that we want to 

investigate, as whilst current modelling software can achieve many goals, due 

to their complexity they can take up much more computational time and power 

than would be needed to solve a single problem within these systems. 

The following chapter discusses the stages that the 2D and 3D algorithms 

went through from initial conception to their current states. It also discusses 

the other functionalities that the model is able to perform, and the specifics of 

the experiments performed for data collection. The creation of these algorithms 

continued all the way up to the end of my project, with the 2D algorithm being 

finalised after roughly two years, the 3D algorithm finalised after the third year, 

and the chain particle algorithm being developed in the last year. The algorithm 

was created using the ForTran programming language, learnt using online 

resources and literature.1,2 

3.1 2D Algorithm 

3.1.1 Timeline of Model 

This section looks through the stages that the 2D algorithm went through and 

the reasons behind each of the changes, from its initial setup to the algorithm 

used to produce data discussed in the later sections. 
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3.1.1.1 Initial Program 

The first step taken in producing the model was to create a box such that the 

boundaries could be edited and it could have particles, made up of covered 

points within the system, placed inside it. Initially this was done by creating a 

2D array, allowing each co-ordinate to have an individual value. The values 

used were a 0, denoting that its location was empty, or a 1, showing that a 

particle was present at that location. The array could then be printed, showing 

the particles using a grid of 0s and 1s. The size of the box could be changed 

by simply editing the x and y ranges of the array. 

Once the box was set up, the particles could be added. This was done by 

randomly generating an x value, then a loop was initiated, with the starting 

value being the maximum y value present in the array, decreasing towards 0 

in intervals of -1. The loop repeated until either the particle reached the bottom 

of the box, in which case the particle would be placed there, or the falling 

particle impacted a previously placed particle. Impacts were determined by 

looking at the array and determining if the falling particle overlapped any co-

ordinates in the array containing a value of 1. When an impact occurred, a 

series of 'if, then, else' statements were run that determined where the falling 

particle had impacted and how to react, until a suitable position was found for 

the particle to be placed. For example, if the falling particle had been impacted 

(i.e. encountered an existing particle in the bed) on its left side, then it would 

“slide” down to the right to find a stable resting place. An example of the 

structure formed in this algorithm is shown in Figure 3.1. 

Due to the high specificity of the impact determining statements, this method 

worked for the situations that were found. It is very likely, however, that many 

interactions were not accounted for, due to the large number of ways two 

particles, even with set sizes and shapes, can impact. This method was also 

specific to the shape and size of the particle, as the calculations were made 

using exact distances, therefore it would not be very useful going forward as if 
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we wished to model a different size or shape of particle, the whole algorithm 

would need to be rewritten. This was important as the more varied the particles 

the model can account for, the more useful it will be. Even with the minimal 

number of interactions actually accounted for, the model was slow as it had to 

check through each interaction before finding the relevant one. Finding all of 

the possible interactions for the specific particle shape and size would have 

taken an inordinately long time and not been useful, therefore, a new method 

was investigated. In Figure 3.1, the particles added are displayed as integer 

values from 1 to 9, with the gaps between them shown as 0s. 

 

Figure 3.1: An example of a system created by the early 2D algorithm, with 

the diamond particle shapes, denoted by non-0 values, highlighted 

 3.1.1.2 Implementation of the Contour Plot Method 

In the previous model, the particles were a diamond shape as it was the 

easiest to draw and stack without calculations. However, in this revised model 

the particles were altered to be circular. By inputting a radius, the user was 

able to choose the size of the particles at the beginning of each run. The input 

of the particle into the array could also be done more simply by using the radius 

and Pythagoras theorem.  
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The new particle addition method not being specific to shape or size, rather 

being variable, made this possible. The size of the overall box was also now 

based upon the particle size that was entered, and when multiple particle sizes 

were added, the largest radius was used to calculate the box size. This 

ensures that a sensible number of particles are able to be added to a system. 

In addition to the original array, which showed where the particles were 

placed, and the space they took up in the same way as the previous model, 

there was a second array which showed a ‘contour plot’ of the grid. This 

contour-plot showed the particle bed with no distinction between individual 

particles, and with a line across the edge of the current particle bed showing 

the closest “safest spots” that a particle could be added on top of the particle 

bed. This allowed the lowest point along this line to be identified for the new 

particle to be placed, within certain bounds of the impact point. The model now 

also outputted the grid to a text file in a format that could be read by MATLAB; 

this allowed for improved presentation, as the command line output was 

difficult to observe for long periods of time. 

A new particle would be inputted into the system at a random x coordinate at 

the top of the system and then fall until it impacted with a previously placed 

particle. At this point, the above mentioned contour plot would be created to 

determine the nearby low point for the particle to roll to from its impact point. 

This model was a considerable step up from the initial model, however it still 

needed to search through the grid to find the contour plot points, at this point 

the grid was relatively small, as it would need to be scaled up later this method 

would also become less and less feasible the larger the grid became. 

3.1.1.3 Removing the Grid 

To address this, the ‘real’ grid, that denoted each spot with ‘1's and ‘0's, was 

removed and replaced with arrays that saved the centre points and radii of the 
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particles. For the initial version of this model the contour plot was removed, 

and instead distance calculations were made between the centres of the 

current particles and the proposed centre of the new particle. By checking the 

distance against the combined radius of the particles, it could be determined if 

they were too close to each other (i.e. overlapping) or not, and so whether the 

particle could be placed there. However, due to this being the only check 

present, the particles filled up the grid leaving some unwanted gaps between 

them, as the only check was whether or not the particles were overlapping, 

with no preferences for realistic stacking. 

The model now had to change how it output the particles, as the previous 

output, the array, no longer existed to be printed. Instead, the centre 

coordinates and radii of each particle was output to a file, and the code was 

written to allow MatLab to take the output and visualise them. 

 

Figure 3.2: A system created by the 2D algorithm where particles are only 

placed if they contact another particle 

3.1.1.4 Sections and Variable Grid 

Now that the model was running faster due to the removal of the visual array, 

the contour plot was reintroduced alongside the new distance calculations, 

both making sure that the particles were not overlapping and were in more 

realistic stable positions. However, in order that the contour plot did not have 

to be created for the whole grid, the large grid was split into 5x5 sections; when 
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a particle's centre point was saved, it was also noted in which section it was 

placed. Therefore, when a new particle was added, a local contour plot was 

created of that section, allowing the model to finalise the placement based 

upon the initial distance calculation. Initially these sections, and the grid itself, 

had set sizes due to it being simpler at the time. However now that different 

particle sizes were able to be added, which is discussed further below, the 

smaller sections, and the grid as a whole, needed to be able to accommodate 

this variation. Therefore, the sections and grid were changed to have a variable 

size, dependant on the largest particle radius that had been entered, thus 

ensuring that both the grid and the contour plot would be able to handle the 

size of the particles, ensuring a sensible number of particles were present in 

each grid section. The reintroduction of the contour plot along with the changes 

to how the particle data was saved, greatly increased the speed at which the 

model ran as well as improving its accuracy. 

3.1.1.5 Top-Down Filling 

All iterations of the model, after the first, simulated a particle falling into a 

box. This worked by looping the particle's location from the bottom to the top 

of the box, so that the lower points would be found first. However, when 

working with particles of different sizes, this resulted in smaller particles being 

placed in gaps between larger particles that should no longer be accessible. 

At first a method of trying to determine if a space would be underneath another 

particle was investigated, however this greatly increased the runtime of the 

model, as well as not always functioning correctly. Therefore, the model was 

changed so that instead of searching upwards for the first available space, the 

particles are lowered into the box until they impacted something else. The 

contour plot would then be used to refine the final position after impacting with 

the bed, in the same method as in the previous model algorithms. 
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3.1.1.6 Score Based Positioning 

Previously, the particle would simply pick the lowest point along the contour 

plot that was within a certain distance of the initial impact point. However, this 

was very basic and it did not result in particles being placed in inappropriate 

positions. As shown in Figure 3.4, the closest low point, (b), to the impact point, 

(a), would not be the correct final position as it would instead roll down the 

slope to the right and rest at (c). 

 

 

 

 

 

 

Initial Impact 
Location of 

Final Placement 

a) 
b) 

c) 

Figure 3.4: An example of a possible incorrect position. a) The point 
of impact. b) The closest low point. c) The correct resting point. 

Figure 3.3: The stages a particle goes through when being added to 
the system. a) Falling at a random x-coordinate until impacting the 

bed. b) The contour plot being formed to show possible points of rest. 
c) The particle moving down the contour plot to a low point. 



William Eales 
 

49 
 

Therefore, once the contour plot was created, each valid position along it 

was given a score based upon how close it was to the initial impact point, and 

how high up in the box it was. Preference was given to being close to the initial 

impact site and being lower down in the box. Each point was then ordered 

based upon its score, and the model then looped through them from best to 

worst until a point passed the final checks. This helped with the realism issue, 

however it did not fix it completely. Therefore, the score system was 

implemented in a way that when more criteria were conceived to make the 

point selection more accurate, they could easily be added to the model. 

3.1.1.7 Set Allocatable Array 

Once the functionality of being able to add particles of a chosen size was 

added, the arrays used in the model were made so that their size was 

allocatable at the beginning of the model, allowing them to be changed to fit 

the size of the particles being added. The contour plot array had its size 

changed each time it was created as depending on the location of the particle 

it might need to search adjacent sections of the box. 

Due to the array having to be reset each time a new particle was added, it 

occasionally caused the model to crash. Even after attempting a debugging of 

this issue, it still is not fully understood why these crashes occurred, only that 

they were caused by the re-allocating of the array. Owing to this, from here on 

in, the contour plot array was set to have the largest size it would need, instead 

of having its size changed each time it was used. 

3.1.1.8 Increase Position Criteria 

To increase the accuracy of the selection of the final position of the new 

particle, a check was added to ensure that the new particle was resting on top 

of two others. This was first done by confirming that there were two particles 
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close to the new location being tested, and then ensuring the centre point of 

the new particle would rest in between, above and in contact with them. 

The other change was made to ensure that this would work from the 

beginning of a run was that the model now started with the box having a base 

layer of particles already present instead of being empty, as a particle landing 

on the bottom of the box would have failed this check. 

3.1.1.9 Sliding downhill instead of jumping to final position 

As the score-based positioning was still occasionally resulting in an 

inaccurate placement for the particles, as sometimes it would jump over 

particles to get to its resting place shown in Figure 3.4, the way the particles 

interact with the contour plot was changed. A simpler approach of having the 

particle jump to the nearest contour plot point to its impact location, and then 

looking at the height of the contour plot points to either side of it. It then moved 

to the point that was lower than it, if they are the same height then it moves to 

a random side, which then repeats until both points either side of the resting 

point are higher than it. This method means that particles now accurately slide 

as if under gravity to their final destination without jumping over particles they 

would normally be stopped by. Note that the algorithm does not consider 

conservation of momentum or frictional forces explicitly, but instead the model 

assumes a gentle settling of the particles with motions dampened by the 

solvent. 

3.1.1.10 Real Final Values 

Currently, whilst the particles are not placed on a grid as in the method 

initially used, the outputs are still based upon a coordinate system. This 

resulted in the MatLab output having some gaps between particles due to the 

coordinates being integers and drawing circles within the grid. The next step 

was to edit the model so that once the integer positions for each particle have 
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been found, the integer values are edited to real values to eliminate the 

unphysical gaps appearing in the visualisation. 

This was done by removing the rounding from the calculations and allowing 

the values to be saved as real variables. This required a change in how the 

values were then referenced as the real variables were not able to be used as 

coordinates for the arrays, so instead of referencing the particle number by 

location, the location was now referenced by the particle number. 

3.1.1.11 Final Optimisations 

It was at this point that the 2D algorithm was deemed to be working, however 

a few more optimisations were added so that it ran more efficiently. These 

included removing looking at smaller boxes as it did not increase the speed of 

the model and instead resulted in more work for the model to separate the 

system. This is due to the size of the systems being simulated, as splitting up 

and reforming the whole systems into smaller boxes, was not efficient due to 

the small size of the overall system. Were the system to be scaled up to a 

much bigger size, this method would likely again become more efficient. As 

work on the 3D algorithm progressed and the stochastic optimisation method 

was finalised, discussed in section 3.2.1.2, this was retroactively added into 

the 2D algorithm as although it gave the same results as the equations 

discussed in section 3.1.2, the stochastic optimisation method was much more 

efficient. 

Finally, more checks were added for instances when the model cannot find 

a valid spot for the particle to rest; this ensured that there is not a valid point 

close by that the model has missed. 
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3.1.1.12 Undergraduate MEng masters project work, Lewis Cartwright 

and Luke Convery. 

The work around the forces present at the contact points of the particles 

under a shear force was carried out by two MEng students, Lewis Cartwright 

and Luke Convery, using structures supplied by the 2D model I generated. 

When forces are applied on the top and bottom of a system, it results in 

torque on the outer particles on which the force is applied, that is then 

transferred through particle-to-particle contacts throughout the system. To 

balance this torque, the angle of rotation for each particle is required, which 

then allows the relative stress at each point of contact to be calculated. This 

was done by using the following steps and equations. The variables used 

within these equations are defined at the end of this section in Table 3.1.3,4 

1: Calculate the position of the ends of the springs on each particle (i = 1 to 

n). 

𝑥𝑖2
= (𝑥𝑖1

− 𝑥𝑖𝑐
)𝑐𝑜𝑠𝜃𝑖 +  (𝑦𝑖1

− 𝑦𝑖𝑐
)𝑠𝑖𝑛𝜃𝑖 +  𝑥𝑖𝑐

    (3.1) 

𝑦𝑖2
= (𝑥𝑖1

− 𝑥𝑖𝑐
)𝑠𝑖𝑛𝜃𝑖 +  (𝑦𝑖1

− 𝑦𝑖𝑐
)𝑐𝑜𝑠𝜃𝑖 +  𝑦𝑖𝑐

    (3.2) 

2. Calculate the forces caused by the particle-particle interactions (i = 1 to 

n). 

𝐹ℎ𝑖𝑗𝑛𝑒𝑤
=  (

𝑥𝑗2−𝐷𝑥𝑗

𝑦𝑗2−𝐷𝑦𝑗

) −  (
𝑥𝑖2−𝐷𝑥𝑖
𝑦𝑖2−𝐷𝑦𝑖

)      (3.3) 

3. Calculate the forces caused by particle-wall interactions (i = 1 to n). 

𝐹ℎ𝑤𝑖
=  (𝑥𝑤𝑖

𝑦𝑤𝑖

) −  (𝑥𝑖2
𝑦𝑖2

)       (3.4) 
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4. Calculate the resultant force through the sum of all forces acting on a 

particle (i = 1 to n). 

𝐹𝑅𝑖
= 𝐹𝑠𝑖

+ ∑ 𝐹ℎ𝑖𝑗
+ 𝐹ℎ𝑤𝑖

= (𝑥𝑅𝑖
𝑦𝑅𝑖

)       (3.5) 

5. Calculate the torque from the initial shear force on each particle (for i = 1 

to n). 

𝑃𝑠𝑖
=  (𝑥𝑠𝑖

𝑦𝑠𝑖

) −  (𝑥𝑖𝑐
𝑦𝑖𝑐

)        (3.6) 

𝜏𝑠𝑖
=  𝐹𝑠𝑖

𝑃𝑠𝑖 = 𝐹𝑠𝑥𝑖
𝑃𝑠𝑦𝑖

− 𝑃𝑠𝑥𝑖
𝐹𝑠𝑦𝑖

      (3.7) 

6. Calculate the torque caused by particle-particle interactions (for i = 1 to n). 

Note that 𝐹ℎ𝑖𝑗
 is used here and not 𝐹ℎ𝑖𝑗𝑛𝑒𝑤

 as only the torque from the particles 

rotation is calculated here, not the particles displacement. 

𝑃𝑝𝑖𝑗
=  (𝑥𝑖𝑗2

𝑦𝑖𝑗2
) −  (𝑥𝑖𝑐

𝑦𝑖𝑐
)       (3.8) 

𝜏𝑝𝑖𝑗
=  𝐹ℎ𝑖𝑗

𝑃𝑝𝑖𝑗 = 𝐹ℎ𝑥𝑖𝑗
𝑃𝑝𝑦𝑖𝑗

− 𝑃𝑝𝑥𝑖𝑗
𝐹ℎ𝑦𝑖𝑗

     (3.9) 

7. Calculate the torque caused by particle-wall interactions (for i = 1 to n). 

𝑃𝑤𝑖
=  (

𝑥𝑤𝑖2
𝑦𝑤𝑖2

) −  (𝑥𝑖𝑐
𝑦𝑖𝑐

)       (3.10) 

𝜏𝑤𝑖
=  𝐹ℎ𝑤𝑖

𝑃𝑤𝑖 = 𝐹ℎ𝑤𝑥𝑖
𝑃𝑤𝑦𝑖

− 𝑃𝑤𝑥𝑖
𝐹ℎ𝑤𝑥𝑖

     (3.11) 

8. Calculate the torque created from the displacement of each particle (for i 

= 1 to n). 
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𝜏𝐷𝑖𝑗
=  𝐹𝑅𝑖

𝑃𝑝𝑖𝑗 = 𝐹𝑅𝑥𝑖
𝑃𝑝𝑦𝑖𝑗

− 𝑃𝑝𝑥𝑖𝑗
𝐹𝑅𝑦𝑖

     (3.12) 

9. Calculate the overall torque on each particle from the sum of their torques 

(for i = 1 to n). 

𝜏𝑅𝑖
=  𝜏𝑠𝑖

+ 𝜏𝑤𝑖
+ ∑ 𝜏𝑝𝑖𝑗

+ ∑ 𝜏𝐷𝑖𝑗
      (3.13) 

10. If the overall torque and resultant force are below 0.001, exit the program 

and output results. 

11. If either value of the overall torque or resultant force is over 0.001, adjust 

the value of the angle of rotation and the displacement vector (for i = 1 to n). 

𝜃𝑖 =  𝜃𝑖 + (0.2
𝜏𝑖

𝑟𝑖
2)        (3.14) 

𝐷𝑖 =  𝐷𝑖 + 𝛼𝐹𝑅𝑖
        (3.15) 

12. Return to step 1. 
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Table 3.1: Variables used within the above equations to determine the forces 
present at each contact point in a system when placed under a shear force. 

Variable Symbol Unit 

Angle of rotation for particle i 𝜃𝑖 radians 

Updated x or y coordinate of the spring location for 
particle i 

𝑥𝑖2
, 𝑦𝑖2

 mm 

Current x or y coordinate of the spring location for 
particle i 

𝑥𝑖1
, 𝑦𝑖1

 mm 

x or y coordinate of the centre of particle i 𝑥𝑖𝑐
, 𝑦𝑖𝑐

 mm 

Updated force between particles i and j 𝐹ℎ𝑖𝑗𝑛𝑒𝑤
 N 

Updated x or y coordinate of the spring location for 
particle j 

𝑥𝑗2
, 𝑦𝑗2

 mm 

Displacement of the x or y coordinate of particle i 𝐷𝑥𝑖
, 𝐷𝑦𝑖

 mm 

Displacement of the x or y coordinate of particle j 𝐷𝑥𝑗
, 𝐷𝑦𝑗

 mm 

Force caused by particle-wall interactions for particle i 𝐹ℎ𝑤𝑖
 N 

x or y coordinate of the contact point between the wall 
and particle i 

𝑥𝑤𝑖
, 𝑦𝑤𝑖

 mm 

Resultant force acting on particle i 𝐹𝑅𝑖
 N 

Applied shear force to particle i 𝐹𝑠𝑖
 N 

Position vector used for shear force torque for particle i 𝑃𝑠𝑖
 mm 

x or y coordinate of the shear force being applied to 
particle i 

𝑥𝑠𝑖
, 𝑦𝑠𝑖

 mm 

Torque due to applied shear force for particle i 𝜏𝑠𝑖
 nm 

x or y coordinate of the position vector used for shear 
force torque 

𝑃𝑠𝑥𝑖
, 𝑃𝑠𝑦𝑖

 mm 

Position vector used for particle-particle torque between 
particles i and j 

𝑃𝑝𝑖𝑗
 mm 

x or y coordinate spring end attached to particle i after 
rotation 

𝑥𝑖𝑗2
, 𝑦𝑖𝑗2

 mm 

Torque due to particle-particle interactions between 
particles i and j 

𝜏𝑝𝑖𝑗
 nm 

x or y coordinate of the position vector used for particle-
particle torque between particles i and j 

𝑃𝑝𝑥𝑖𝑗
, 𝑃𝑝𝑦𝑖𝑗

 mm 

Position vector used for particle-wall torque for particle i 𝑃𝑤𝑖
 mm 

Updated x or y coordinate of the contact point between 
the wall and particle i 

𝑥𝑤𝑖2
, 𝑦𝑤𝑖2

 mm 

Torque due to particle-wall interactions for particle i 𝜏𝑤𝑖
 Nm 

x or y coordinate of the position vector used for particle-
particle torque between the wall and particle i 

𝑃𝑤𝑥𝑖
, 𝑃𝑤𝑦𝑖

 Mm 

Torque due to the displacement of particle i by particle j 𝜏𝐷𝑖𝑗
 Nm 

Resultant torque for particle i 𝜏𝑅𝑖
 Nm 

Torque for particle i 𝜏𝑖 Nm 

Radius of particle i 𝑟𝑖 Mm 

Displacement of particle i 𝐷𝑖 Mm 

Angle between contact point and x-axis 𝛼 radians 
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3.1.2 Code Walkthrough 

This next section will go through the algorithms used in the final version of 

the 2D model to show how it works through each stage. 

The code is broken into three subroutines: the initial setup; when the particle 

is falling; and then its final placement. In addition, there is one module that 

contains all of the universal variables that are carried across all three 

subroutines. 

The main variables contained within the module are: the box dimensions; the 

number of particles; the radii being used; and the stored positions of the 

already placed particles. 

The first part of the initial setup subroutine sets up the local variables that are 

required, and then requests the user to start the program. The user is then 

prompted to enter how many different radii they would like to be present in the 

system and to enter those radii. Next, the model determines which of the 

entered radii is the smallest and which is the largest, to use when determining 

the size of the box. When the program is being looped to produce multiple 

results, this section is omitted, since the radii is already known and to stop the 

program being interrupted by prompting the user for inputs. 

Now that the size of the particles present is known, the box size can be 

determined. This is based on the largest particle radius so that a sensible 

number of large particles can fit, instead of having a system containing too few 

particles to form a sufficiently sized bed. The box size can then be used to 

allocate the size to various arrays used later in the algorithm. These include 

the array that contains the entire contour plot, which is still a grid of the box 

that contains a point for each integer spot within the box, and the “Ones” array, 

which stores the coordinates of the valid points on the contour plot, so named 

as a contour plot point is one of three options, either “0” denoting a blank 
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space, a “-“, denoting being covered by a particle, or a “1” denoting being a 

valid point based on the distance from the current bed. 

In the looped algorithm, the model now enters the section of code that will 

be looped for a number of times equal to the number of overall beds that has 

been requested to be simulated. 

The next stage of the model is to place the initial bed layer of particles into 

the box, shown in Figure 3.5. This is done by randomly picking a radius, from 

the inputted radius options, and an x coordinate within the boundaries of the 

box. The model confirms that this position, using the particles radius as its y 

coordinate, is not already covered by another particle. As the particle is resting 

upon the base of the bed, no other conditions are required, so once this check 

is passed the particle location is saved, and this section of the algorithm looped 

to place the rest of the initial bed layer. This loop goes for a sufficiently large 

number of iterations, currently set at 10000000. Due to the possibility of there 

still being a position where a particle could still rest upon the bed, the model 

then loops across all of the bottom layer of the bed, using the smallest particle 

radius as the y coordinate, checking if there are any more places for a particle 

to fit. 

Following this the program starts looping the second subroutine to add in the 

rest of the particles to the box, shown in Figure 3.6. This is done as many times 

as needed until the box is full, or the number of particles specified has been 

reached. 

After initialising the second subroutine’s local variables, the first check made 

is whether the box is full or not, as this check comes before adding a new 

particle in every loop. Each time the algorithm tries to place a particle beyond 

the roof of the box, a counter is iterated. Once this value reaches a sufficiently 

large value the box is deemed full, and no more particles added. 
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For each particle added, a random particle radius is chosen from the list of 

entered radii and a random starting spot is chosen at the top of the bed, by 

generating an x coordinate within the bounds of the box size. The third 

subroutine is called at this point whilst the particle is falling. This subroutine 

takes the starting position of the particle and iterates the y coordinate 

Figure 3.5 - Flowchart showing the stages the algorithm goes 
through to produce the base layer of particles for a bed system 
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downwards one step at a time. At each point the model confirms that it is not 

touching another particle allowing the loop to continue. Once an impact does 

occur, the model saves the location of the impact and moves back into the 

main second subroutine. 

At this point the model creates a contour map of the system, to locate the 

highest points that a particle can rest upon. The particle jumps from the 

location of impact to the nearest of these points, and then compares the height 

of the two points either side of it. The model then moves in the direction with 

the lowest y value, simulating gravity, until it reaches a point where the contour 

points on both sides are higher than it, so it rests there. 

However, at this point the location of the particle is still saved as an integer, 

resulting in gaps between particles due to rounding. As a result, using the 

location of the two particles it is resting on, and the distances between them, 

the model calculates the triangle that the three particles make to determine the 

final real values of the new particles coordinates. The distances between the 

original particles and the new particle are the sum of the radii of the particles. 

Knowing these three distances, a triangle can be formed between the centre 

of the three particles of which the angles can then be calculated. The gradient 

of the lines connecting the new particle with the old particles can then be 

calculated, then allowing the final determination of the centre point of the new 

particle. 

Checks are then run to confirm that: the new particle is resting upon the old 

ones instead of attempting to balance over an edge; that the new particle is 

not overlapping with any old particles; and that it is contained within the box. 

Having passed these tests, the coordinates are then saved into the list, and 

the model then resets the appropriate values and loops back to the start of the 

particle addition subroutine. 
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 Figure 3.6 - Flowchart showing the stages the algorithm goes 
through to add particles to fill up a bed system 
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Once the box is full, or a specified number of particles have been added, the 

model returns to the initial subroutine where the user is prompted as to whether 

they want to save the list of particle locations, their contacts, the contour map 

from any particle addition, or calculate the particle fraction of the system. 

Currently, the model saves these files to the same folder as it is contained in. 

A final query then confirms the user understands the model is about to end. 

3.1.3 Simulations Run 

All of the runs completed using the 2D algorithm were completed on 

ARCHIE-WeSt5, a regional supercomputer centre based at the University of 

Strathclyde. 

500 systems were created for each of the following systems: radius 10, 

radius 10 and 20, and radius 10 and 50 (henceforth when referring to particle 

sizes in a system, the notation rp = “radius” will be used. Binary mixture 

systems shall be referred to as rp = “radius a”, “radius b”). The ratio of addition 

for each radii in these system is 1:1. 

Each of these systems had its packing fraction calculated, the number of 

contacts each particle had determined, and the size of individual voids present 

calculated. The algorithms that determine these values are described in 

section 3.3. 

100 runs were also created for investigating percolation with rp = 10, 20 at 

the following ratios of addition Large:Small particles: 1:1, 1:1.5, 1:2, 1:2.25, 

and 1:2.5. The percentage of these structures that contained a percolation 

chain was determined. 

Particle sizes in these and future runs were chosen as round numbers that 

could easily be used for different size ratios, as the model can handle particles 
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with non-rounded values, however is it much easier to discuss particle ratios 

of 10:20 than e.g. 17:34. 

3.2 3D Algorithm Methodology 

As mentioned above, the program was modified so that it could replicate the 

packing of particles in 3D as well as 2D and produce images as well. A 3D 

version of this model would allow us to gain a much better insight into how the 

packed bed forms, and its properties, due to the increase in accuracy that the 

third dimension brings, and also due to it being a more realistic simulation of 

what would be happening in a real-life experiment. 

3.2.1 Timeline of Changes 

This section looks through the stages that the 3D algorithm went through and 

the reasons behind each of the changes, from its initial setup to the algorithm 

used to produce data discussed in the later sections. 

3.2.1.1 2D to 3D changes 

Whilst changes had to be made to create the 3D algorithm from the 2D 

version, it retained its previous structure of three subroutines and a module. 

The first thing changed from the 2D algorithm was the addition of the z axis 

into every stage of the model, and variables to account for the new coordinates 

in the particles’ locations.  

Another change from the 2D algorithm is that the particle is now looking for 

three particles to rest on instead of just two. It was decided that the possibility 

of a perfect square forming and requiring four particles to be rested on was 

exceedingly rare and not worth adding into the model. 

With the extra dimension also comes the possibility of a particle resting in a 

corner spot, so the model is now able to detect when a new particle is close 
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enough to two walls, and therefore only needs one particle to rest on, and then 

be up against the corner. A discussion was held with my supervisors as to 

whether to implement periodic boundary conditions, and at this stage it was 

decided to leave its implementation until later. Unfortunately, this did not come 

to pass as focus was shifted to work on the chain particle algorithm. 

3.2.1.2 Stochastic placement 

The main detail added into the 3D algorithm, different from the 2D version, 

is the change from calculating the final real position of the new particle; instead 

determining it through a stochastic optimisation function. This function works 

by taking the contour plot point closest to the impact and making small 

adjustments, in each direction, until a position is reached that satisfies the 

previous 2D algorithm conditions, i.e., resting on the correct number of 

particles, resting in between their centre points. This ensures that there are no 

errors during the calculation making it much more reliable, as previously on 

occasion the model returned a null value using the old method. 

A version of this algorithm is shown in Figure 3.7, with some altered variable 

names for ease of presentation. Lines 1 to 7 set up the initial variables with 

their desired values, with newCoords containing the current position of the 

particle to be adjusted, stochDists containing the distances between that 

particle and the two particles it will be adjusted to be resting upon, sumDist 

being the sum of those two distances, and dx being the size of the adjustments 

being made. The outer loop, controlled by the integer “a”, is the number of 

times the adjustments will be scaled down, which occurs at lines 11 to 12. Each 

loop the adjustment factor is reduced by a factor of 10.  

The main inner loop, controller by the integer “c”, is how many adjustments 

are made at each scale. For each adjustment, a random number is determined 

between -1 and 1, which is then multiplied by the adjustment scale to produce 
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a value which is then added to the current x or y value. The adjustments made 

to the x and y values of the particle are separate, shown in lines 13 to 16. 

In lines 19 and 20, the distances between the particle being adjusted and the 

resting particles are recalculated for its new position. PartCoords(b,1) and 

PartCoords(b,2) being the x and y values of resting particle b respectively. The 

radii of the two particles for each distance are also subtracted, to give the 

distance between their edges, rather than their centres. If the distance is less 

than 0, it means the particles are now overlapping and this adjustment is not 

saved, accomplished by setting the “ibad” variable to 1, shown in line 22. The 

other check made to allow the new position to be saved is that the sums of the 

distances between the resting and new particles is lower than at the previous 

location, as the aim to is reduce this value to 0, without going under it. If these 

conditions are met, the new locations are saved, shown in line 28, the sum 

distance stored, line 30, and then the new adjustment made. 

Once all the loops have been completed, the final positions calculated are 

saved into new variables, lines 34 and 35, that are then used going forward. 

1 newCoords(1) = TempX 
2 newCoords(2) = TempY 
3 newCoords(3) = TempZ 
! These variables store the current integer position of the particle to be adjusted 
 
4 stochDists(1) = FinalPartDist1,2) 
5 stochDists(2) = FinalPartDist(2,2) 
6 stochDists(3) = FinalPartDist(3,2) 
! These variables store the distances between the new particle and the particles it will 
be resting upon 
 
7 sumDist = stochDists(1) + stochDists(2) + stochDists(3) 
! This variable stores the sum of the above distances, and is the value we are trying to 
minimise 
 
8 dx(1) = 10 * RadLarge 
9 dx(2) = 10 * RadLarge 
10 dx(3) = 10 * RadLarge 
! These variables store the starting amounts by which the position will be adjusted 
 
11 do a = 1, 10 
!  This loop determines the number of times the adjustment amount will be shrunk 
12  do b = 1, 3 
13   dx(b) = dx(b) / 10 ! This shrinks the adjustment value 
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14  end do 
15  do c = 1, 500 
! This loops determines the number of adjustments made to the particle 
16   do b = 1, 3 
17    call random_number(RX) 
18    stochxnew(b) = newCoords(b) + dx(b) * (2*RX-1) 
19   end do 
! For each coordinate (x, y, z), they are adjusted by a random fraction of the total 
adjustment value 
 
20   ibad = 0 
 
21   do b = 1, 3 
!  The new distances between the particles are calculated based on the adjusted 
positions 
22    stochDists(b) = ((PartCoords(b,1) - stochxnew(1))**2) + 
((PartCoords(b,2)-stochxnew(2))**2) 
23    stochDists(b) = sqrt(stochDists(b)) – RadT – 
MLr(FinalPart(b,1)) 
24    if (stochDists(b) < 0) then 
! If the particles are overlapping then a variable (ibad) is set to 1, to ensure this 
adjustment is rejected 
25     ibad = 1 
26    end if 
27   end do 
 
28   stochynew = stochDists(1) + stochDists(2) + stochDists(3) 
!  The new total distance is calculated 
 
29   if (stochynew < sumDist .and. ibad == 0) then 
! If this distance is smaller than the previous distance and there are no overlaps, the 
new location is saved 
30    do b = 1, 3 
31     newCoords(b) = stochxnew(b) 
32    end do 
33    sumDist = stochynew ! And the new total distance saved 
34   end if 
35  end do 
36 end do 
! This process repeats with the adjustment distance shrinking each time to obtain more 
specific adjustments until a precise location is determined for the new particle 
   
37 NewX = newCoords(1) 
38 NewY = newCoords(2) 
39 NewY = newCoords(3) 
! The final particle location is then saved 

Figure 3.7: Stochastic optimisation algorithm used for shifting 
particles from the integer spot on the contour plot to the real 

location resting on top of their nearest particles 
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3.2.1.3 Extra checks 

Some extra checks were also added to ensure that the model is able to find 

the correct resting point, as this was where the model was having most of its 

issues due to the higher complexity of the 3D contour map. These involved 

allowing the model to change the resting particles to look at other nearby 

options until it found the particles that it should be being rested on. In the case 

of an overlap, the model replaces one of the current resting particles with the 

particle being overlapped with, as an overlap meant that the new particle 

should be resting on the overlapped particle. As shown in Figure 3.8, particle 

D is being added to the system and incorrectly attempted to rest upon particles 

A and B. This causes an overlap with particle C, so the algorithm swaps C with 

the closest of particles A or B, which in this case is particle B, so that it 

becomes a resting particle. This then allows particle D to rest correctly. Figure 

3.8 is a 2D representation of the 3D issue for the ease of visualisation, however 

these checks were also added in future versions of the 2D code used for the 

chain particles algorithm.  

 

 

 

Figure 3.8: Representation of an particle placement on the left where particle 

D has incorrectly rested on particles A and B, but then is corrected in the 

right image to be resting upon particles A and C. 

Further checks were required for when the particle is near the edge of the 

box. Previously there has been a binary statement for if a particle was resting 

against an edge or not, meaning that if the particle finds itself one spot away 

from the edge, it would still be looking for three particles to rest upon. However, 
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now it is able, when near the edge to swap between looking for an edge resting 

spot or not, once it has exhausted its other possibilities.  

3.2.2 3D Code Walkthrough 

This next section will go through the code used by the final version of the 3D 

model to show how it works through each stage.  

As with the 2D code, it is broken into three subroutines: the initial setup; when 

the particle is falling; and then its final placement, and one module which 

contains all of the universal variables that are carried across all three 

subroutines. 

The main variables contained within the module are: the box dimensions; the 

number of particles; the radii being used; and the stored positions of the placed 

particles. 

The first part of the initial setup subroutine sets up the local variables that are 

required, as mentioned in the 2D algorithm section, and then requests the user 

to start the program. The user is then prompted to enter how many different 

radii they would like to be present in the system and to enter those radii. The 

model then determines which of the entered radii is the smallest and largest, 

to use when determining the size of the box. When the program is being looped 

to produce multiple systems, this section is omitted as the radii are already 

known. 

The next stage of the model is to place the initial bed layer of particles into 

the box. This is done by randomly generating x and z coordinates, confirming 

that there is no other particle already overlapping, and then saving the particle 

there. The y coordinate of each of the particles is equal to their radius. A final 

check is then run to confirm that there are no available positions by looping 

through the box, looking for a position that a particle can fit in.   
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After this the program starts looping the second subroutine to add in the rest 

of the particles to the box. This is done as many times as needed until the box 

is full, or the number of particles specified has been reached. 

After initialising the second subroutines local variables, the first check made 

is whether the box is full or not, as this check comes before adding a new 

particle in every loop. A random particle radius is then chosen from the list of 

entered radii and a random starting position is chosen at the top of the bed. 

The third subroutine is called at this point whilst the particle is falling. The 

particle iterates downwards one coordinate at a time, and at each point the 

model confirms that it is not touching another particle. Once this does occur, 

the model saves the location of impact and moves back into the main second 

subroutine. 

At this point the model creates a contour map of the system, to locate the 

highest points that a particle can rest upon. The particle jumps from the 

location of impact to the nearest of these points and then starts moving along 

them in a downwards direction, to simulate gravity. As in the 2D model, once 

it reaches a point where all adjacent contour points are higher than it, it rests 

there. 

 

 

 

 



William Eales 
 

69 
 

 

 

 

 

 

 

Figure 3.9: Contour map showing possible points for a new particle in a 

small system of 3D particles 

However, at this point the location of the particle is still saved as an integer, 

so there would be gaps between particles due to rounding. Therefore, as 

described earlier, the model uses a stochastic optimisation function to move 

the final location around in increasingly small increments, to try and reduce the 

distance between the new particle and all the particles it is resting on to 0. 

Checks are then run to confirm: that the new particle is resting upon the old 

ones instead of attempting to balance over an edge; that the new particle is 

not overlapping with any old particles; and that it is contained within the box. 

Having passed these tests, the coordinates are then saved into the list, and 

the model then resets the appropriate values and loops back to the start of the 

particle addition subroutine. 

Once the box is full, or a specified number of particles have been added, the 

model returns to the initial subroutine where the user is prompted as to whether 

they want to save: the list of particle locations; their contacts; the contour map 

from any particle addition; or calculate the particle fraction of the system. The 

latter two of these were removed in the finalised version of the algorithm, as 
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the contour map was used for error checking, and an alternative method was 

used for calculating the packing fraction. Currently, the model saves these files 

to the same folder as it is contained in. 

A final query then confirms the user understands the model is about to end. 

3.2.3 Simulations Run 

All of the 500 runs completed for each system using the 3D algorithm were 

performed on ARCHIE-WeSt3. The ratio of addition for each radii in these 

system is 1:1. 

Each of these systems had its packing fraction calculated and the number of 

contacts for each particle was determined. 

100 binary mixture systems were also created for investigating percolation 

with rp = 10, 20 at the following ratios of addition Large:Small particles: 1:1, 

1:2, 1:3, 1:4, 1:5, and 1:6. The percentage of these structures that contained 

a percolation chain was determined. 

3.3 Other Functionalities and Data Collection 

Throughout creating the model, there have been functionalities added and 

removed that have been separate to how the model runs but have given 

options for the user to process the information produced. 

At the start of the program, it requests the input of the radius that will be used 

for the particles in the model. The model also asks how many different particle 

sizes are needed, currently allowing for between 1 and 5, so there can be 

variation in the sizes present. Certain versions of the model also allow the user 

to enter a mean and standard deviation, to allow the model to place particles 

with sizes of a standard distribution based upon the inputted data instead of a 

binary sized system, allowing more realistic systems to be created. However 
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this was left as a separate option within the algorithm and not investigated 

further. 

Different methods of particle addition have been investigated, with the 

packing being ordered from the bottom to the top, as well as placing the 

particles randomly throughout the box with no need for them to be in contact 

with each other. This can be used to simulate the particles in suspension in 

solution, however at this time it has not been investigated further in favour of 

refining the packed particle bed approach. 

The program also has the capability to calculate the fraction of the box that 

is either voids between particles or occupied by particles, as well as the sizes 

of the individual voids present in the system. These values can be used to 

compare against known values to confirm the realism of the model, as well as 

gain more information about the structure of the system created. 

The algorithm counts each particle in the system by its radius, and then 

works out the total area, or volume in 3D, of particles of each radius, as shown 

in Equations 3.16 and 3.17. When summed, this value represents the total 

area of the system that is present as particle surface. This is then divided by 

the total area, or volume, of the box to gain a fraction of the system that is then 

covered by particles. 

𝐴𝑟𝑒𝑎 =  (𝑝1 ∗ (𝜋 ∗ 𝑟1
2)) +  (𝑝2 ∗ (𝜋 ∗  𝑟2

2)) + ⋯ (𝑝𝑛 ∗ (𝜋 ∗  𝑟𝑛
2))     (3.16) 

𝑉𝑜𝑙𝑢𝑚𝑒 =  (𝑝1 ∗ (
4

3
𝜋 ∗ 𝑟1

3)) + (𝑝2 ∗ (
4

3
𝜋 ∗ 𝑟2

3)) + ⋯ (𝑝𝑛 ∗ (
4

3
𝜋 ∗ 𝑟𝑛

3))  (3.17) 

where p is the number of particles of radius r, and n is the number of different 

radii present in the system. 

The model can also determine the location of the points of contact between 

each of the particles, as well as noting which particles are in contact with each 
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other. This is done by looking at the distance between a particle and each other 

particle in the system. If the distance is equal to the sum of the two particles 

radii, then they are in contact. Each particle is numbered in order of when it 

was added to the system, so a file can be outputted showing each particles 

contacts using those assigned numbers, for example particle 1 is in contact 

with particle 3. 

A section of the 2D model is also capable of determining the shapes that 

groups of particles make up within the system to form a void, and then 

calculate the area of that void. As mentioned above, the model can determine 

which particles are in contact with each other, this can now be used to 

investigate the shapes that chains of the particles form. The algorithm starts 

looking for three vertex shapes, where vertices can be a particle or an edge, 

and then increments the number vertices, up until ten. This limit was created 

for time management purposes as this algorithm could theoretically look for 

shapes with an infinite number of vertices, however ten was deemed sufficient 

to find most, if not all shapes, and did not use too much computational time. 

Starting from particle one, the algorithm loops through the list of its contacts, 

for each particle in contact, the algorithm then loops through its contacts. This 

is done recursively, looking through the system until a chain starts and ends 

with the same particle. Once a chain has been found, the recursive loop 

unwinds, storing the particle number at each step so that once it has fully 

unwound, the chain creating the shape is fully saved. This shape is then 

checked against two criteria to ensure that it a valid shape to save 

permanently, the first of which is that it must be a unique shape that has not 

already been found, i.e. a shape could be found multiple times starting from 

each of its vertices, and be saved as 1,2,3, 2,1,3, etc, even though they make 

up the same shape. The other criteria is that there are no particles within the 

shape found, as therefore the area calculated for that shape would not be 

entirely void. This is done by creating the outline of the shape between each 

of the particles centre points. Looping through every other particle in the 

system, a line is drawn from its centre to the left most edge of the box, and the 
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number of times it crosses one of the shapes outer lines is counted. If the total 

is odd, then the particle is inside the shape, and if it is even then it is outside 

the shape. Now that the shape has been deemed valid, it is saved, and its area 

can be calculated using Equation 3.18. 

𝑇𝑜𝑡𝑎𝑙 𝑆ℎ𝑎𝑝𝑒 𝐴𝑟𝑒𝑎 =  
1

2
∑ (𝑥𝑖𝑦𝑖+1) – (𝑥𝑖+1𝑦𝑖)

𝑛
𝑖=1     (3.18)6 

Where x and y are the centre coordinates of each particle. 

Once the total area of the shape between the particles has been determined, 

the sectors of each of the particles that overlap with this shape are calculated 

and subtracted from the total area, thus leaving behind the void area. 

𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑆𝑒𝑐𝑡𝑜𝑟 𝐴𝑟𝑒𝑎 =  
𝛳

360
∗ 𝜋𝑟2     (3.19) 

Where ϴ is the inner angle of the sector and r is the radius of the particle. 

The algorithm used to find percolation structures uses the same recursive 

loop as above, detailed in Figure 3.10, however instead of looking for loops 

back to the starting particle, the chains only start from particles that are in 

contact with the lefthand edge and terminate when they have reached a 

particle in contact with the righthand edge. The same check is performed to 

ensure that each chain found is unique before they are saved. 

One of the main alternate functionalities is to have the model produce 

systems that are not circular/spherical. This was done by merging circular 

particles together to form chains, which is discussed in greater detail in 

Chapter 6. 
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Figure 3.10: Flowchart showing the stages the algorithm goes 
through to adjust a particles location from an integer to real value 

using stochastic optimisation 
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3.4 Summary and Conclusions 

This chapter has discussed the algorithms produced to simulate the packing 

of particles in both 2D and 3D under gravity. The algorithms are able to 

produce realistic representations of these systems which we have been able 

to analyse, the data obtained from which is discussed in the following two 

chapters. 

These algorithms will be saved on the University of Strathclyde Pure 

repository. 
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4 Results and Discussion – 2D Algorithm 

This chapter discusses the systems created by the 2D algorithm discussed 

in Chapter 2. Specifically investigating the different properties of these systems 

with emphasis on features that might affect the strength of the particle bed 

structure when placed under stress. We start by looking at the packing of the 

systems created, before investigating the sizes of the voids and number of 

contacts each particle has. Finally, the forces present within the systems and 

how breakages caused by the application of shear stress were investigated. 

4.1 Binary System Beds 

The radii 10, 20 and 50 were chosen as they given radius ratios of 1:2 and 

1:5, which would show either side of the range of particle size distributions. 

Ratios in between these ones were planned on being tested but were put to 

the side to focus on completing the later algorithms. 

The packed bed with only rp = 10 present shows a mostly regular square 

lattice structure, as shown in Figure 4.1a, even with the irregularity of the initial 

placement of particles at the bottom of the bed. In the centre of the bed, it can 

be seen that the average number of contacts is four, since each particle 

contacts two existing particles below it, and two particles are then placed 

above. However, there are significant edge effects with the hard walls of the 

box due to the small size of the systems and lack of periodic boundary 

conditions. 
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a) 

b) 

c) 

Figure 4.1: Packed beds of particles across four systems with different radii 
particles present. a: rp = 10. b: rp = 10, 20. c: rp = 10, 50. 
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The irregularity of the packing increases once the bed also includes larger rp = 

20, as shown in Figure 4.1b. As the rp = 10 are not small enough to fit inside 

the voids created by the rp = 20, as with the rp = 10 falling above the critical 

size ratio value, 0.41:11, discussed in the literature review, they instead 

contribute to the increased irregularity in void shape and size and compel the 

larger rp = 20 to shift from a regular packing structure to accommodate for the 

smaller particles between them. 

This effect is still apparent in the bed containing rp = 10, 50, however to a 

lesser extent, as shown in Figure 4.1c. Due to the larger difference in particle 

size, two and occasionally three of the smaller particles can be seen to fit in 

between the larger particles without greatly affecting the placement of the 

particles landing above them. There are still instances of irregularity that 

spawn from the overabundance of smaller particles overfilling what might 

otherwise be a void, thereby forcing the addition of the next large particle to 

the side, preventing it from capping the putative void. 

Note that the smaller particles filling in amongst the voids of the larger 

particles would increase the difficulty of washing the system, and the smaller 

particles forming clumps in between the larger particles would help bind them 

together, increasing the likelihood of agglomerates forming. 

4.2 Packing Fractions 

Table 4.1 shows the results of 500 runs of each system of different sized 

particles. Within these systems, the number ratio of large:small particles was 

1:1. 
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Table 4.1: The Packing Fractions in Packed Bed Systems with different 

particle radii present. 

 Packing Fraction 

Particle Radii Minimum Average ± 
Standard Deviation 

Maximum 

10 0.757 0.766 ± 0.007 0.806 

10, 20 0.731 0.779 ± 0.005 0.791 

10, 50 0.770 0.781 ± 0.005 0.796 

As the difference between the sizes of the particles present increases, the 

average packing fraction increases. The system with only rp = 10 has the 

lowest packing fraction, as whilst it is a partially ordered structure, with regions 

of short-range order, i.e. small sections of the system where the particles have 

packed efficiently, there is no way to fill in the voids between the particles. In 

the systems containing a larger size of particles, rp = 20, 50, the rp = 10 

particles are now able to sit in the voids created by the larger particles, thus 

giving these systems a higher packing fraction. The difference between the rp 

= 10, 20 and rp = 10, 50 systems is likely due to the way that the particles pack 

together. This means that in the rp = 10, 50 system, as previously mentioned, 

the rp = 50 are able to form a partially ordered structure, with the smaller 

particles more able to fill the voids in between. Whereas in the rp = 10, 20 

systems, the larger particles are pushed out further from a regular structure by 

the smaller particles, due to their closeness in size. When the particle radius 

ratio between smaller and larger particles is 0.41:1,1 or 10:24.39, scaling the 

0.41 value to 10, my smallest particle radius, the smaller particles can fit 

perfectly inside the voids created by the larger particles. For any size ratio less 

than this value the smaller particles can fit into the voids between larger 

particles. As the size of the void created by a set of same sized particles in a 

regular pattern is proportional to the size of the particles, once you have 

passed this ratio the void fraction will remain similar for the larger particles, as 

the rp = 10 do not affect the void formation and simply fill up space within them. 

The further variation in particle fraction would then come from the difference in 

the number of smaller particles that were placed within the voids, as it would 

hypothetically be possible to change the ratio between large and small particle 
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in order to get an extremely densely packed bed where enough smaller 

particles are placed in amongst the larger ones, so that all the voids were filled 

with closely packed small particles, with the larger particles still maintaining a 

fairly regular packing pattern. 

The theoretical maximums for these binary systems is unknown, as they are 

not using ratios for which the compact packing exists.1 As adding more smaller 

particles to the systems shifts the larger particles out of an ordered hexagonal 

packing arrangement, the highest packing possible for the rp = 10, 20 and rp = 

10, 50 systems is likely to be one in which the large particles pack on their own 

in a hexagonal lattice, and then the smaller particles are used to fill in any 

space left at the top of the box where large particles no longer fit. 

 

 

 

 

 

 

 

 

 

 

a) b) 

c) 

Figure 4.2: Examples of packing in systems with different particle addition 
methods. a) Random Sequential Adsoprtion (RSA). b) My Model. c) 

Triangular Lattice. 
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Packing fractions have been researched previously using random sequential 

adsorption (RSA) models, which calculate the maximum packing fraction to be 

roughly 0.547.2 Our values exceed this by about 0.2; which is expected as 

while the packed beds presented here have a degree of randomness in the 

placement of the particles, the particles settle under gravity to create denser 

packing than with RSA, where particles are added at random without overlap 

until it is no longer possible.3 

The highest possible packing fraction for a bed of circular particles of the 

same size is roughly 
𝜋

√12
≈ 0.9069,4 so our values fall comfortably below this. 

This is because the model will never achieve perfect packing in a triangular 

lattice due to the random nature of the structure, especially the randomness of 

the base layer of particles. A comparison of these packing methods and one 

of our systems is shown in Figure 4.2, demonstrating the differences in how 

packed the structures are. 

4.3 Number of contacts between particles 

The number of contacts each particle has was also investigated as it is a 

parameter that can give us more information about how densely packed a bed 

is. It is also another metric through which my model can be compared to 

expected values to confirm that the simulations run give usable results. 

As shown in Figure 4.3, across the different systems, particles will most often 

have two to five contacts. Particles with fewer contacts than this are infrequent, 

as having zero contacts requires being one of the initial particles placed on the 

bottom of the box ending up with no particles laying on top, and one contact 

being a resulting of a particle resting against a wall and one other particle.  
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In the systems with only rp = 10, there are no particles with greater than six 

contacts, as required by the geometry of packing. In a perfectly ordered 

system, each of the particles would have six contacts, as they would form a 

triangular lattice arrangement, and thus six is the maximum number of contacts 

possible. As our systems have a degree of disorder within them due to the 

randomness of the initial particle placements, it is rare for this to occur by 

chance, as shown by the frequency of occurrence bar in Figure 4.3 for six 

contacts being minimal compared to the other contact amounts. Therefore, in 

the middle of the bed, the average number of contacts will be four, since each 

particle added to the system creates two new contacts each shared by the two 

particles. 

 

Figure 4.3: The frequency of the number of contacts per particle across 
the investigated systems. 
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As larger particles are added into the system with the rp = 10, the number of 

contacts the particles are able to have with smaller particles increases, as the 

increased circumference of the larger particles allows for more contact points 

to be made. Figure 4.4a shows the frequency of each number of contacts for 

rp = 10 across each of the systems created. Figure 4.4b shows the frequency 

of each number of contacts for larger particles, rp = 20, 50, present across each 

of the systems created. 

 

When comparing the number of contacts of just the rp = 10 (Figure 4.4a), in 

the systems in which they are mixed with larger particles, there is a clear 

difference in the number of contacts they make. In the rp = 10, 20 systems, the 

peak moves to three contacts, with roughly half as many particles having four 
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Figure 4.4: The frequency of the number of contacts per particle, 
differentiated by the radius of the particle, across the investigated 
systems. a (top): Contact number frequency of rp = 10 in all three 

investigated systems. b (bottom): Contact number frequency of rp = 20, 
50 in the investigated binary systems. 

a) 

b) 
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contacts, then very few one or two contact particles. This is due to the 

increased irregularity in the systems, pushing the particles further away from 

the six contact “perfect” structure of the triangular lattice. Recall that the beds 

created with rp = 10 only have a fairly regular structure, whereas systems with 

larger particles present are more disordered (see Figure 4.1). The rp = 10, 50 

systems have similar sized peaks for both two and three contacts, with very 

few particles having one or four. This increase in two contact particles will be 

due to small particles that are resting inside a void created by larger particles, 

therefore having no contacts from above due the void being capped off above 

them. 

When looking at the larger particles present within their systems (Figure 

4.4b), their graphs both follow a similar pattern, with increasing frequency up 

to five contacts, but then decreasing from that point. The presence of the 

smaller particles allows for these larger particles to make many more contacts 

due to their increased circumference, hence the shift towards the higher 

number of contacts. The particles with lower numbers of contacts, such as two 

and three, will be due to those sitting at the bottom of the box and at the edges, 

as contacts with the edges of the system were not counted. 

4.4 Individual Void Areas 

Individual voids are determined as described in section 3.3, with loops of 

particles found that start and end with the same particle, as shown in Figure 

4.5. 
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As shown in Table 4.2, the size of the smallest void present does not vary 

across the different beds, which is due to the high likelihood of a triangle of rp 

= 10 existing across all the beds formed, therefore the smallest void would 

have little variation of the area formed by these particles. 

Table 4.2: The smallest, average, and largest void areas in packed bed 

systems with different particle radii present. 

Particle 
Radii 

Void Areas 
Average Void Area Scaled 
by Largest Particle Area 

 Min. Average Max.  

10 16 78 ± 2 930 0.25 

10, 20 16 190 ± 6 3300 0.15 

10, 50 16 610 ± 23 10000 0.08 

 

The average and largest void sizes increase as the width of the size 

distribution is increased, which is expected as there will be voids formed solely 

by larger particles therefore having larger gaps in between them. However, 

when the void areas are scaled to be proportional, by area, to the size of the 

largest particle area present in the system, the scaled sizes decrease with 

increased size distribution. This is because the voids in between the particles 
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1 

Figure 4.5: The order of particle looped through to find a shape 
that creates a void addition to create a void. 
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are proportional to particle area, however the larger particles allow the smaller 

particles to fit in between them filling up the gaps, whereas in the systems with 

more similarly sized particles, the gaps remain empty. 

The sizes of the voids at the edges of the box are also included in the 

calculations, which contribute to the large maximum void sizes, as these voids 

will be bigger due to the flat surface of the box making up an edge, instead of 

the curved edge of a particle. 

4.5 Percolation Structures 

We hypothesise that the existence of percolated structures5 in the packed 

beds are relevant to its structural properties. The presence of these structure 

may inform the strength the beds have when looking at how contacts within 

the system are broken, discussed in section 4.8, as well as having implications 

on the porosity on the bed for other investigations that could be done using 

this model in future research. 

As discussed in section 2.3.2, for our purposes, a percolation chain is a chain 

of connected large particles joining the left and right sides of the box. In Figure 

4.6, structures formed with varying number ratios of rp = 20 to rp = 10 are 

shown. Percolation pathways connecting large particles only from one side of 

the box to the other are also shown where they exist. The results of multiple 

runs are reported in Table 4.3. 100 runs were completed for each ratio of the 

different particle sizes, and the presence of percolation structures within the 

bed systems determined. The shortest chains, by number of particles, are 

counted where they exist. 
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Table 4.3: The percentage of particle system runs that contained an edge-

to-edge percolation chain and the shortest chain lengths present in systems 

with various number ratios of large-to-small particles in the rp = 10, 20 system. 

Particle 
Addition Ratio 
(Large:Small) 

Percentage of 
Systems with 
Percolation 

Chains 
Present (%) 

Avg 
Chains 

Max 
Chains 

Min 
Length 

Avg 
Length 

Max 
Length 

1:1 98 102.73 400 18 66.28 108 

1:1.5 82 113.19 319 16 41.98 81 

1:2 59 62.29 300 17 32.10 66 

1:2.25 33 27.27 350 17 32.69 62 

1:2.5 23 17.48 200 18 30.04 59 

 

Figure 4.6: The rp = 10, 20 system with different number ratios of large-
to-small particles. Top left 1:1, top right: 1:1.5, bottom left 1:2, bottom 

right 1:2.5. 
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For the purpose of determining if a percolation chain was unique, they were 

counted as unique chains if they were not made up of the exact same particles. 

For example, the blue and green chains shown in Figure 4.7 would be counted 

as separate chains, however the red and orange chains would be treated as 

the same chain and therefore only counted once. 

 

 

 

 

 

 

As shown in Table 4.3, as the ratio of larger particles within the system 

decreases it becomes more difficult for percolation chains to form, however 

even at the lower ratios there are still some chains present, indicating that we 

have not yet reached the percolation threshold for this system. The site 

percolation threshold for a regular triangular lattice is 0.56, and ~0.59 for a 

square lattice, however due to the irregularity of our structures, and the 

addition of smaller blocking particles, our value would likely be lower, due to 

these additional constraints making a chain from edge-to-edge less likely to 

form. The minimum possible length of a chain is 15 particles, so the minimum 

lengths in Table 4.3 are very close to this value, showing that almost direct 

chains across the bed are forming at all these ratios. 

The number of chains within each system also sees an overall decrease 

across the systems investigated, along with the length of the chains found. 

This is again supported by the chains becoming more difficult to form, therefore 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Example percolation chains showing unique chains (blue 
and green), and chains treated as identical (red and orange). 
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less are able to be made. The chain lengths do start to become more 

consistent at the higher particle proportion ratios. This is because in the lower 

particle proportion ratios, longer chains are able to be formed due to the 

greater number of contacts between pairs of large particles. However, once 

there are less contacts, the pathways are more restricted and so the shorter 

route becomes the only route. 

4.6 Finite Size Effect 

Runs could also be completed using larger box sizes to investigate the finite 

size effect7 within the model. As the packing of the particles will differ against 

the edge of the box compared to the centre of the bed, a larger box size will 

negate the effect of the edges so we can determine a more consistent packing 

fraction. Roughly 20 runs were completed on the system containing a 1:1 ratio 

of rp = 10, 20 with a box four times the normal size, one of which is shown in 

Figure 4.8: rp = 10, 20 system at a 1:1 addition ratio in a larger box 
size 
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Figure 4.8. The average packing fraction across these systems was 0.787 ± 

0.003, which is more densely packed than the systems in the smaller box 

sizes. There was also less variation between the larger systems than between 

the smaller systems. This shows initially that the properties of the systems in 

the smaller box sizes are getting affected by the finite size effect, therefore 

more runs should be completed as part of future work to fully comprehend the 

effect of box size on these systems and a system size where the effect is 

minimal. 

4.7 Bed Fragmentation 

The algorithm discussed in this next section was produced by two MEng 

students at the University of Strathclyde working alongside my PhD project.8,9 

Their projects involved taking the structures produced by my model and 

calculating the forces present at the contact points between the particles, using 

the steps described in section 3.1.1.12. 

Figures 4.9a and b show the forces present at the contact points between 

particles within four structures with different sized particles present. The 

structures used for these investigations are smaller than those used for the 

packing and percolation work discussed above as currently running these 

systems takes a long time due to the algorithm being written in VBA. The forces 

are represented by the coloured shapes at the contact points, with the darker 

blue colour representing a lower force, then colour shifting through green to 

yellow to represent a higher force present. The red square marks the contact 

point with the largest force present. 

A shear force was applied to the systems with a 1-unit force across the top 

in the positive x direction and a 1-unit force across the bottom in the negative 

x direction. These forces were split equally between the particles on the top 

and bottom of each of the systems, so if there were 5 particles resting on the 

bottom layer of a system, 0.2-units of force would be applied to each. 
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Figure 4.9: Forces present at the contact points within packed beds of 
particles across four systems with different radii particles present. The 

arrows show the direction of the shear forces applied to the systems. a: rp = 
10. b: rp = 10, 20. 

a) 

b) 

High force 

Low force 
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As shown in Figure 4.9a, and mentioned previously when discussing packing 

fractions, the system with just rp = 10 present is packed in a relatively ordered 

fashion when compared to the other systems. Because of this the forces are 

similar across the whole system, with forces being higher in the areas with 

more irregularity. The point with the highest force is present in the bottom left 

of the system, most likely due to the particle on the base of the bed having the 

shear force directly acting upon it, and only having one contact point for the 

force to be distributed through. 

In Figure 4.9b, the system with rp = 10, 20 present, the structure is more 

disordered and therefore there is less consistency between the forces present 

at the contact points. The highest force is again present near the base of the 

bed, on a particle pressed between two base layer particles and another larger 

particle above it. The large void to the right of the particle also means that the 

increased disorder of the area of the system means the force can not spread 

out as easily, resulting in it accumulating on the adjacent particle. 

Figures 4.10a and b show the same systems as Figures 4.9a and b, however 

they show the order in which contacts break upon multiple runs of the 

algorithm. After each run is completed, the contact point with the highest force 

present in the system is removed from the next round of calculations, 

simulating the bond being broken and allowing us to investigate the cracks that 

could form through the structure. If this breakage resulted in a top or bottom 

particle that had the shear force applied to it no longer having any contacts, 

the force was removed from this particle and redistributed evenly between the 

other particles on its level. 
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Both of the systems show a mostly continuous chain of breakages through 

the system. Figures 4.10a and b both contain cracks through the systems near 

the top or bottom of the bed, likely due to this being close to where the shear 

force is being applied. The bottom of Figure 4.10a’s bed is more irregular than 

the top therefore it is expected for it to be less stable and have higher forces 

present between the particles. In Figure 4.10b, the top and bottom of the bed 

are closer in regularity, however the bottom of the bed does contain larger 

voids so the packing is not as tight, resulting in higher forces there. 

 

 

Figures 4.11a and 4.11b show the contact point forces present in two 

structures, one which contains a percolation chain (4.11a) and one which does 

not (4.11b). As shown previously, the forces present in the ordered areas of 

the systems are more consistent compared to the forces in areas with less 

ordered packing. The forces are also higher near the top and bottom of the 

systems, where the shear force is being initially applied, and then spreads out 

closer to the centre of the systems. 
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Figure 4.10: The order of contact breakage within packed beds of 
particles across four systems with different radii particles present. a (left): 

rp = 10. b (right): rp = 10, 20. 
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Figure 4.11: Forces present at the contact points within the rp = 10, 20 
system with different number ratios of large-to-small particles. The 

arrows show the direction of the shear forces applied to the systems a: 
1:1, b: 1:2.5 

High force 

Low force 
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Figure 4.11b has more ordered areas due to a higher proportion of smaller 

particles present allowing them to pack more tightly together, compared to 

Figure 4.11a which has a more equal ratio of particle sizes, causing the 

structure to be more irregular. 

Figures 4.12a and 4.12b show the systems from Figures 4.11a and 4.11b, 

having gone through the same analysis as in Figures 4.9a and b. The initial 

contact breakages in both structures occur at the base of the beds, likely due 

to the proximity to the application of the force. However, once these initial 

contacts are broken, the next contacts to break form a chain closer to the 

centre of the beds. In Figure 4.12a, the breakage initially follows the 

percolation chain through the centre of the bed from contacts three through 

six. Contacts seven and eight then break the percolation chain which moved 

downwards, maintaining the horizontal fragmentation created by the previous 

contacts breaking, and ending with contact nine breaking on the left edge of 

the bed. The last contact then breaks as still in line with the previous breakages 

but back on the righthand side of the bed. 

Figure 4.12b contains no percolation chain, however the fragmentation also 

created a chain within the centre of the bed. Compared to Figure 4.12a 

however, the chain breaks in smaller clusters between contacts three and four, 

five and six, and then seven to ten. 

Both breakage chains occur in the regions of the beds that have larger voids 

and more irregular packing structures, as these areas are less stable within 

the bed due to the system finding it harder to distribute the forces evenly. 
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4.8 Summary and Conclusions 

When comparing the packing fractions for my simulated systems to 

calculated values from literature, it was found that my values fell in the 

expected range being higher than RSA packing fractions, due to the addition 

of gravity simulated in the system, however they had a lower packing fraction 

than the calculated maximum, as there is a degree of randomness stemming 

from the initial base layer of particles that causes the system to shift out of a 

perfectly ordered lattice. There is an increase in the average packing fraction 

as the particle size distribution is increased, due to the ability of the smaller 

particles to fit inside the voids created by the larger particles, thereby 

decreasing the void area of the system. 

When investigating the number of contacts that each particle had, the 

starting assumption was that in the single sized particle system, each particle 

would have four contacts, two from particles being rested on, and two from 

particles resting on it. This was found to be the case, with the majority of 

particles having four contacts, however there were particles with fewer 

contacts, likely due to the finite size effect in the small system, and some 

particles with more contacts, in areas where the particles were packed closer 

together. 

Figure 4.12: The order of contact breakage within a system with a 
percolation chain (a: left) and a system without a percolation chain (b: 

right). 
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The introduction of larger particles within the binary systems, caused a 

decrease in the number of contacts per small particle, as the systems became 

more irregular. In the rp = 10, 50 systems, the majority of small particles had 

two or three contacts, as they were likely placed in between two larger 

particles, with potentially one more small particle, before the void was capped 

off. The larger particles in the binary systems have a similar contact graph to 

the single sized system, with the peaks being around four to six particles. This 

is shifted upwards from the four shown in the single sized particle system due 

to the additional contacts with smaller particles in the voids between the larger 

particles. 

When calculating the sizes of the individual void areas between particles, it 

was found that when the average void area across a system was scaled by 

the largest particle area present within that system, it decreased when the 

particle size distribution increased. This is expected because, as previously 

discussed, the smaller particles in these systems are able to fill in void spaces 

between larger particles, so reducing the sizes of the voids within the system.  

When looking for the presence of percolation chains, in this thesis defined 

as a chain of large particles connecting the left- and right-hand side of the box, 

it was found, as expected that increasing the number of small particles within 

the system would disrupt the formation of percolation chains. There was 

always a system that did not contain a percolation chain, even at a ratio of 1:1 

large:small particles, and as the ratio of smaller particles increased the 

percentage of systems that contained a percolation chained decreased 

massively from 98% to 23% across the systems tested. The average number 

of chains per system, and the average length of chain per system also 

decreased as the number of small particles in a system increased. 

When looking at the forces present at the contact points between particles, 

it was found that the forces were much more evenly spread in the system with 

the same sized particles compared to the binary particle system. This is likely 
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due to the packing in the binary system being less uniform, therefore creating 

a less stable structure, with areas of higher stress within the system where 

contacts are more likely to break. The order of breakage contacts do follow 

chains in both same sized and binary particle systems, as once a contact 

breaks the contacts around it are put under more stress as there is one less 

contact for the forces to be shared between. 

When investigating the contact breakage of systems that did contain a 

percolation chain, it was found that the order of contact breakage followed the 

percolation chain through the system almost fully. However, more investigation 

will need to be done into these systems to determine if there is a link between 

the presence of percolation chains and contact breakage paths as this initial 

system could be due to random chance. 

The 2D algorithm was created as an initial starting point due to the simplicity 

of creating it, and it has been shown to be capable of producing realistic 

systems of packed bed particles formed under gravity. It has also shown the 

possibility of different applications it can be applied to, such as further 

investigation of how the beds break apart and how the existence of percolation 

structures affects this. However, it was intended to be a stepping stone into 

the 3D algorithm, the results of which are discussed in the next chapter. 
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5 Results and Discussion – 3D Algorithm 

This chapter discusses the systems created by the 3D algorithm discussed 

in Chapter 2. This chapter investigates the different properties of these 

systems in contrast with similar systems in two dimensions. We start by looking 

at the packing of the systems created, before investigating the sizes of the 

voids and number of contacts each particle has. 

5.1 Visual Inspection 

Figure 5.1 shows some examples of 3D packed beds, with different radii of 

particles present, that were created using the model presented in Section 2.3. 

 

 

 

 

Figure 5.1: Packed beds of 3D particles across three systems with different 
radii particles present. a (top left): rp = 10. b (top right): rp = 10, 20. c (bottom 

middle): rp = 10, 50. Note that the size of the bounding box increases with 
the largest particle dimension. 

a) 

c) 

b) 
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The 3D systems have much lower packing fractions when compared to the 

2D systems, which is expected when comparing the maximum possible 

packing fractions, ~0.9 in 2D and ~0.7 in 3D, as there is an extra dimension 

leading to more variability in particle placements. This makes the chance of an 

ordered system where each sphere has twelve contacts extremely unlikely, 

therefore an “ordered” system for our cases would be one where each sphere 

has six contacts, with both three above and three below. As even the systems 

with spheres of the same size present are disordered, the addition of smaller 

particles does not affect the order of the system significantly due to 

arrangement of the particles in the first layer. However, we can see, in contrast 

to the 2D systems, that particles which are sufficiently small are now able to 

fall through the gaps between the larger particles. In Figure 5.1b, the small 

particles are not small enough to fit between most of the gaps between the 

larger particles and therefore there are still small particles throughout the 

height of the system. However, in Figure 5.1c, the small particles are now small 

enough compared to the large particles to be able to fall through the majority 

of the gaps between them, resulting in a collection of small particles at the 

base of the bed. This is a significant observation since it is consistent with the 

widely held belief that the presence of fine particles which may be transported 

through a bed of particles are responsible for significant increases in the filter 

cake resistance when filtering particle suspensions with a wide particle size 

distribution.1 

5.2 Packing Fractions 

The packing fractions determined for the 3D systems follow a different 

pattern to that of the 2D systems. As shown in Table 5.1, the systems become 

more packed with the introduction of a larger sized particle, with the system 

that contained rp = 10, 20 particles having a larger packing fraction than the 

other systems. As with the 2D systems, the smaller particles are able to fill in 

the voids between the larger particles when they are present, however the 1:1 

addition ratio of the particles sizes means that whilst the rp = 10, 50 systems 
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could have a higher packing fraction if the voids were filled with smaller 

particles, there are not enough small particles placed within the systems to fill 

the voids, thus leaving the rp = 10, 20 systems with a higher packing fraction. 

Table 5.1: The Packing Fractions in 500 generated 3D Packed Bed Systems 

with different particle radii present. 

 Packing Fraction 

Particle Radii Minimum Average Maximum 

10 0.434 0.460 ± 0.007 0.475 

10, 20 0.480 0.497 ± 0.006 0.513 

10, 50 0.452 0.468 ± 0.006 0.486 

 

These values are lower than the highest packing fractions that have been 

calculated in systems of same sized spheres. There are two lattices that can 

occur to achieve the highest packing fraction2, which is 𝜋
3√2⁄  ≈ 0.740483. 

These two lattices, as seen earlier in Figure 2.3, are face-centred cubic (FCC) 

and hexagonal close-packed (HCP). It has been found that the highest packing 

fraction in 3D binary sphere packings, such as our rp = 10, 50 system, in which 

the smaller particles are able to pass between the voids formed by the larger 

particles is 0.8617.4 

Other examples of packing types and their maximum densities are: random 

close packing, 0.64005; the tetrahedral lattice, 𝜋√3
16

⁄  ≈ 0.30416; and the 

loosest possible density that has been found is 0.05557. Our values fit between 

these as expected, as they are lower than the more packed systems due to 

our inherent randomness but more packed than the more irregular systems 

due to the presence of the simulated gravity forcing particles downwards to 

pack more tightly. Another reason behind our systems having a lower packing 

fraction than the higher density packing methods is due to the small box size 

being used for our systems, resulting in significant edge effects reducing the 

packing fraction. 
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5.3 Number of Contacts 

In the FCC and HCP lattices discussed above, the expected number of 

contacts for each sphere is twelve, with three below, six on the same plane, 

and three above. However even the slightest irregularity causes the spheres 

on the same plane to be further away and no longer in contact with each other. 

Therefore, the number of contacts that each sphere would have in a regularly 

structured system would be six, accounting for the three touching spheres 

above and below. 

 

 

As seen in Figure 5.2, the systems containing only rp = 10 do show the most 

frequent contact number is six, however not by a large margin. Due to the large 

amount of disorder in these systems, the number of contacts ranges all the 

way from one to ten contacts in the single particle size bed. Whilst there are 

some particles with contact numbers close to the FCC and HCP lattice value 

of 12, they are extremely outnumbered by the number of particles with 6 

contacts or less. This shows how the packing of these systems is far away 

from the ordered packing of the HCP and FCC lattices, due to the randomness 

of the placement of the particles. 

Figure 5.2: The frequency of the number of contacts per particle has 
across the investigated 3D systems. 
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The beds with different sized particles present show a maximum at three 

contacts, also with high occurrences of four to seven contacts. These are still 

around the expected value of six, with the lower ones being particles in contact 

with the edge of the box, due to the finite size effect.8 The lower end of the 

contact values is also due to particles that are in contact with the edges of the 

box, as contacts between particle and boundary are not counted, as well as 

smaller particles resting inside voids capped by larger particles. As part of 

future work, discussed further in Chapter 8, future investigations would go into 

the finite size effect so that these data points will not impact the averages as 

much. 

As shown in Figure 5.3a, there is a large variance between the number of 

contacts each of the smaller particles across the three investigated systems 

has. The increased number of particles with one contact in the rp = 10, 20 and 

rp = 10, 50 systems, is due to the higher box area, and therefore more small 

particles falling to the bottom of the box, and only having a single contact with 

a particle resting above them. The large number of small particles with three 

contacts is due to a small particle resting on three larger particles with the void 

then capped above by another large particle, not allowing the smaller particle 

now trapped inside the void to gain any more contacts. 
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Figure 5.3b shows the difference between the number of contacts of the 

larger particles in the rp = 10, 20 and rp = 10, 50 systems. The rp = 10, 50 data 

in Figure 5.3b is similar to the rp = 10 data in Figure 5.3a, as similar to the 2D 

systems they pack similarly, however the rp = 10, 50 graph has a slower decline 

at the higher end of the number of contacts due to the smaller particles now 

present that will also be resting upon them. 
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Figure 5.3: The frequency of the number of contacts per particle, 
differentiated by the radius of the particle, across the investigated 3D 

systems. a (top): Contact number frequency of rp = 10 in all three 
invesitated systems. b (bottom): Contact number frequency of rp = 

20, 50 in the investigated binary systems. 
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These graphs give more information about my systems, and is another 

metric by which the simulated systems can be compared when subjected to 

shear forces, which would hopefully be performed as part of future research 

using this model. 

5.4 3D Percolation Structures 

We also investigated the presence of percolation structures in the 3D 

systems. With the addition of the third dimension, chains spanning the box in 

either the x- or z-direction are sought using the same method as discussed in 

Section 2.2.3 for the 2D structures. 

Table 5.2: Data on Percolation Structures in 100 generated 3D structures 

containing rp = 10, 20 in various proportions 

Particle 
Proportion 

(Large:Small) 

Systems with 
Percolation 

Chains Present 
(%) 

Minimum 
Number of 
Percolation 

Chains 
Present 

Average 
Number of 
Percolation 

Chains 
Present 

Maximum 
Number of 
Percolation 

Chains 
Present 

1:1 100 7 15.46 ± 4.94 26 

1:2 100 2 11.04 ± 5.38 27 

1:3 98 0 6.91 ± 5.17 26 

1:4 84 0 4.36 ± 3.26 14 

1:5 59 0 2.01 ± 3.04 19 

1:6 36 0 0.89 ± 1.82 9 

 

The 3D data shown in Table 5.2 show the same pattern as the 2D data in 

Table 4.3, with a higher frequency of percolation structures present when the 

number of large and small particle present are similar. However, there are still 

many more percolation structures present at higher ratios in the 3D systems 

compared to the 2D systems, with only 59% of systems containing a 

percolation structure in the 2D system with a ratio of 1:2 large:small particles, 

but the 3D system with the same ratio having 100% percolation chain 

presence. This is because in 3D the particles tend to have more contacts, 
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giving more options for the larger particles to connect to each other across the 

system. As shown, even at a ratio of 1:6 the percolation threshold has not been 

found and more percolation chains are being found than in the 2D system with 

a third of the ratio. Another factor is that whilst the radius ratio is the same in 

both the 2D and 3D systems, the area/volume ratio is not, as in the 2D systems 

the 10:20 area ratio is also 1:4, however in 3D the volume ratio between radius 

10:20 particles is 1:8, giving them much more surface area to make contacts 

with other particles in the system, and thus form percolation chains. 

Table 5.3: The minimum, average and maximum lengths of percolation 

chains in 100 generated 3D structures containing rp = 10, 20 in various 

proportions  

Particle 
Proportion 

(Large:Small) 

Minimum Length 
of Percolation 
Chain Present 

Average Length 
of Percolation 
Chain Present 

Maximum 
Length of 

Percolation 
Chain Present 

1:1 7 7.56 ± 0.94 18 

1:2 7 7.79 ± 1.02 16 

1:3 7 7.94 ± 1.31 15 

1:4 7 7.80 ± 1.11 17 

1:5 7 8.14 ± 1.18 15 

1:6 7 8.02 ± 0.98 12 

 

Again, the minimum length of chain is close to the minimum possible but 

slightly above, with the 3D box dimensions being 6 particle diameters. The 

average chain lengths across the different ratios are consistent, likely due to 

the smaller size of the box resulting in much longer chains being unable to 

form. The maximum chain lengths are also relatively consistent compared to 

the 2D data, still with a small decline, again likely due to the comparatively 

smaller box size. Producing more systems in larger boxes for all these tests 

on a larger scale is the next step for this area of the project, and is discussed 

more in the Future Work section, as further investigation can then be 
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undertaken into how these percolation structures may reflect fracture patterns 

within the systems. 

5.5 Summary and Conclusions 

When investigating the packing fractions of the 3D systems created by my 

model, I found that whilst they followed the same pattern as the 2D systems, 

they overall had much lower packing fractions, with a difference of about 0.3. 

My systems packing fraction values did rest between the precalculated 

minimum and maximum packing fraction values for single sized and binary 

particle systems, showing that initially these values are realistic. 

The 3D contact graphs also show similar patterns to the 2D contact graphs, 

however the 3D graphs are much more affected by the finite size affect, as 

well as the ability of the small particles to fall through voids to the bottom of the 

box. This results in a large number of small particles with very few contacts, 

especially in the binary rp = 10, 50 systems. The single sized rp = 10 system 

would have each particle having 12 contacts if it was perfectly packing in a 

FCC or HCP lattice, however as previously stated we expect our particles to 

have 6 contacts. There is a peak at this value, however the lower contact 

number values occur almost as frequently, showing that the structure is quite 

far removed from the ordered lattices, especially with very few particles having 

above 7 contacts. The larger particles that have more contacts will also be due 

to the small particles resting around them, rather than the packing of the 

systems shifting towards one of the ordered lattices. 

When investigating the presence of percolation chains within the 3D 

structures, it was found that they are much more prevalent in 3D systems than 

in 3D, likely due to the increase in contact area available, thus more contacts 

being formed, in 3D systems. When comparing across the 3D systems, the 

expected pattern of finding less percolation chains occurring the more smaller 

particles are in the system is found, with the minimum, average and maximum 
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number of chains per system decreasing as well as the average length of a 

chain increasing as it becomes harder to make a direct chain across the 

system. 

The 3D algorithm that has been produced is able to simulate more realistic 

systems that the 2D algorithm, purely given the extra dimension that exists in 

laboratory experiments. The 3D algorithm has also been shown to replicate 

phenomena experienced in laboratory experiments, such as smaller particles 

filtering to the bottom of a system, through the gaps made by larger particles. 

Given the various parameters investigated here, this model can hopefully be 

used in future research to see the effect on these systems when the 

parameters are further varied. 
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6 Non-Spherical Particle Chains 

As discussed in Section 2.3.6, when we are modelling chain particles, we are 

doing so by attaching multiple circular particles together to form the chain. This 

decreases the complexity of the algorithm as it can be created by building upon 

the previous 2D algorithm, however this approach does mean the chain 

particles are not accurate to how a rectangular or needle-like structures would 

pack, due to the ridges present in our chain structures. The following algorithm 

was created as an extension for the 2D algorithm due to its simplicity. A 3D 

version of the algorithm has also been started but is not complete due to time 

constraints. 

6.1 Initial Code Edits 

A new section was added into the algorithm that took place immediately after 

a particle was added into the system. Instead of looping back to the start to 

place another particle, the model created a localised contour plot based 

around the most recent particle, which followed its edge. This places the new 

particle with its edge on the centre of the previous particle, overlapping with it 

to form a chain, but still being unable to overlap with other particles. 
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Figure 6.1: Flowchart showing the stages of adding particles to form a chain 
particle from the initial particle 
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Once this contour plot is formed, the model then randomly picks a direction 

for the next particle in the chain to fall to from the centre of the particle, as it is 

assumed the chain is falling vertically and then tilting to one side upon impact. 

It then moves along the contour plot as before until it impacts with another 

particle. It then follows the algorithms previous path of particle impact, where 

the new particle is being balanced on one particle and joined with another, 

using stochastic optimisation to determine the real coordinates for its final 

position. 

For a system of chains containing only two particles, the model would then 

loop back to the start as before and repeat these steps. However, for chains 

containing three or more particles, a new step is added. 

As the chains direction has been determined by the first two particles, the 

contour plot is no longer required to place further particles in the chain. Instead, 

the radius of the particles and the direction that they are being placed in can 

be used to simply place the rest of the particles in the chain along its line. 

However, as each particle in the chain is placed, it checks that it is not 

overlapping with any other particles or outside the box. In either of these cases, 

the offending particle is moved to be balanced on what it is impacting, as 

shown in Figure 6.2, whilst still being the correct distance away from the 

original particle in the chain. The particles in between these two on the chain 

are then readjusted to ensure they are all connected and in a straight line. This 

process is looped until the chain is the requested length of particles, and then 

the model loops back to the very start to place a new chain. 
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Figure 6.2: Steps taken to adjust a growing chain to balance on an overlapping 

chain in the event the growth of the new chain causes an overlap with an old 

chain. A) New chain (currently 4 particles) overlapping with a previously placed 

chain b) New chain readjusted to be balancing instead of overlapping c) New 

chain (now 5 particles) overlapping with a previously placed chain d) New 

chain readjusted to be balancing instead of overlapping. 

6.2 Chain Particle Complexities 

As the length of the chain increased, the complexity of the systems being 

formed also increased, with new possible balancing possibilities between 

particles becoming possible. 

Due to the first particle being placed on its own, there was now the possibility 

of a particle being placed in a situation where a chain could not grow from it. 

a b 

d c 
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To combat this, in this instance, the particle would slide back along the path 

it took to get to its final position, until a chain was able to be formed. This then 

ran in to the issue that previously the first particle being placed needed to be 

balancing on two other particles, however in these situations, it is possible, and 

indeed correct, for the initial particle to be only in contact with one particle, and 

then be balanced by another contact further along the chain. Therefore, once 

the particle has determined it needed to slide upwards from a trapped position, 

some additional leeway was added to allow the first particle to have only one 

contact, provided the following conditions were true: 

a) The base particle of chain had a contact on the opposite side to the 

direction the particle was leaning, i.e. if the particle is leaning right, the contact 

is on the left. 

b) The contact that is furthest from the initial particle is also beyond the 

centre point of the chain. 

c) There is at least one contact point, not on the initial particle, that is on 

the underside of the particle. 

With these additional conditions, stable chain structures were able to be 

produced. 
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Figure 6.3: Chains labelled with the conditions a, b and c listed above that 

must be fulfilled to allow the placement of a chain with only have one contact 

at its base 

6.3 Results 

All of the 500 runs completed for each of the systems, listed below, using the 

2D chain algorithm were performed on ARCHIE-WeSt. The ratio of addition for 

each different chain or particle type in these systems is 1:1. np refers to the 

number of particles that made up an individual chain. 

Each of these systems had its packing fraction calculated and the angle of 

each chain was determined. 

Systems investigated: 

• A) rp = 10, np = 2 

• B) rp = 10, np = 3 

• C) rp = 10, np = 4 

• D) rp = 10, np = 5 

a 

b,c 
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• E) rp = 10, np = 5 and rp = 10, np = 1 

• F) rp = 10, np = 5 and rp = 5, np = 1 

• G) rp = 10, np = 5 and rp = 5, np = 5 

6.3.1 Visual Inspection 

Examples of each of the different systems produced, A to G, are shown in 

Figures 6.4, 6.5 and 6.6. 

Figure 6.4 shows systems A to D, where the np increases from system to 

system but remains consistent within each system. In each of these systems, 

once a chain has fallen, it often results in the chains placed above it adopting 

the same angle, creating sections within the system with chains stacked 

together, an example of which in the System D example at x = 300 and y = 

~150 to y = ~350. As the chain length gets longer, these groups of chains at 

the same angle take up much more of the systems. These clusters are broken 

up when a chain is placed to the side of it but leans over enough to cause the 

next chain that would want to join the cluster to lean differently. 

Some perfectly vertical chains are present leaning up against the wall of the 

box in the base layer of particles, which is a very unstable position. This is 

because when I added a section of code to the algorithm to favour falling away 

from the edge of the box if a chain found itself directly up against it, I forgot to 

also add that section of code to the part of the algorithm that placed the base 

layer of chain particles. Therefore these vertical chains will only appear in the 

bottom left and right corner of the box, using this algorithm, but this issue would 

be easily solved in a future version. 
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Figure 6.4: Examples of systems A to D 

System C 

System D 
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Figure 6.5: Examples of systems E and F 

System E 

System F 
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Figure 6.5 shows systems E and F, where single particles have been added 

into a system containing 5 length chains of rp = 10. The single particles make 

forming clusters of aligned chains much more difficult, especially when they 

are the same size as the chain, as their placement on top of a cluster will 

immediately stop its continuation. This shows that whilst processing these 

chain-like particles, the introduction of small particles can dissuade clusters of 

chains from joining together, and therefore reduce the size of the same angled 

groups that form. 

 

 

 

 

 

 

 

 

 

 

Figure 6.6 shows an example of system G, which has some similarities to 

system E as it contains smaller particles, however being chains instead of 

single particles causes them to have much less ability to fit into voids between 

Figure 6.6: Example of system G 

System G 
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the larger chains, instead each size of chain causing the other to be unable to 

join clusters as they block regular placement of each other. 

6.3.2 Packing Fraction 

Table 6.2: The Packing Fractions in the investigated 2D chain systems. 

System 
Packing 
Fraction 

A 0.790 ± 0.008 

B 0.772 ± 0.019 

C 0.795 ± 0.011 

D 0.781 ± 0.018 

E 0.795 ± 0.006 

F 0.788 ± 0.013 

G 0.800 ± 0.006 

 

The packing fractions across each of the investigated systems remain 

relatively consistent compared to the original 2D algorithm with no real pattern 

found throughout systems A to G, although there is a small increase in packing 

fraction for the systems that introduce another size of chain or single particles. 

As observed before, these single particles are able to pack in between the 

chain particles, filling in voids. 

The differences in packing between systems A to D are likely due to the 

randomness inherent within these systems, as there is an additional factor of 

randomness added to these systems in the form of the rotation of the chains, 

which was not present in systems only containing single particles. This is 

shown by the increased standard deviations in these systems compared to the 

regular 2D systems discussed in Chapter 4. Research has gone into the 

packing of 3D chain shapes, such as cylinders and spherocylinders, which 

have a maximum packing fraction at a specific ratio of height to diameter.1 

Spherocylinders, which are closer to the particles which I am simulating due to 

the curved ends, have been found to have a peak packing fraction of 0.6896 

at a ratio of 0.35, with packing fractions then having a small decrease on 
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increasing ratio. This could explain why there is no discernible pattern across 

systems A to D, as the ratios explored here are 1.5 to 3, which is far above the 

ratios explored within this research. In the research into cylindrical packing, a 

peak packing fraction of 0.7185 was found at a ratio of 0.9, which is still much 

below the ratios we investigated. Future research could look into simulating 

ratios closer to these to determine if a similar pattern was found, thought our 

systems are in 2D and have the slight difference in shape with rounded edge 

along the sides of the particles. 

Another study looked at the simulation of cylinders compared to chain 

structures made up of “glued spheres” to mimic a cylindrical shape, similar to 

the particles investigated here.2 It was found that the systems with cylindrical 

particles had higher packing fractions that the systems with glued sphere 

particles, found to be due to the higher volume each individual cylindrical 

particle has compared to the glued sphere particles. As the number of spheres 

used to make a particle was increased but the overall dimensions of the shape 

kept the same, a trend was found where the packing fraction increased, 

becoming closer to the packing fraction found in the true cylindrical particle 

systems. However, even with more spheres making up a particle, the packing 

fractions do not reach the same packing efficiency as the true cylindrical 

particles. 

The introduction of singular particles in systems E and F, increase the 

packing fraction to be on the higher side of the range of packing fractions 

previously seen in systems A to D. System E has a packing fraction on par 

with the highest of systems A to D, likely due to the addition ratio of the particles 

still being 1:1, so whilst the particles in system E would affect the structure 

more, an equal amount of particles to the small particles in system F, cover 

more space. If the small particles in system F were added in a greater amount, 

the packing fraction would likely be higher as they would be able to fill in many 

more of the voids, that shown in Figure 6.5 are still quite empty. 
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The addition of smaller chains in system G does increase the packing fraction 

to be above the range shown in systems A to D, again due to the small chains 

ability to fit in gaps that the larger chains cannot, however as expected they 

cannot fill in voids as well as single particles of the same size. Research has 

also gone into the packing of binary mixtures of cylindrical particles3, mixing 

particles with a height to diameter ratio (AR) of 1 with particles with an AR of 2 

and 3 separately. It was found that as a higher percentage of AR 1 particles 

were added to a system, the packing fraction increased for both the systems 

containing AR 2 and AR 3. The AR 1 and AR 2 mixture showed a smaller 

increase in packing fraction when increasing the percentage of AR 1 particles 

present but had higher packing fractions than the AR 1 and AR 3 systems 

overall. These patterns match other research carried out both in physical4 and 

simulated5 experiments. As my binary mixture chain system contained chains 

that did not differ by AR, being 3, but instead by the scale of their height and 

diameters this data is useful to investigate but can not be directly compared to 

my systems. Future runs on my model can be done to investigate particles with 

different AR to see if similar patterns emerge. 

6.3.3 Chain Angles 

A new property that can be investigated within the chain systems is the angle 

at which each chain is lying, with 0o being directly vertical, then -90o being lying 

flat to the left and +90o being lying flat to the right. 

Figure 6.7 shows histograms of the chain angles present in systems A to D. 

Each graph shows a clear curve with two peaks, starting at the 50o to 55o mark 

in System A and moving closer to 0o as the chains get longer, ending up at the 

30o to 35o mark in System D. This shows the chains are becoming more 

vertical the longer they become, which is likely due to the increased complexity 

of the systems leading to less orderly packed systems, as a more ordered 

system of chains would be made up of chains resting horizontal on top of each 

other. 
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The peaks at 90o exist as tan(90o) is an undefined value, therefore when the 

calculations gave an error it was recorrected to be a 90o value, thus no 

corresponding peak appears at the -90o mark. 
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Figure 6.7: Histograms of the angles of chain placement across systems A to 

D 

There is also a peak in the [-10o, -15o] bin in each of the systems. This is due 

to the large number base layer particles that are directly next to another particle 

and leaning against it, having an angle of -14.48o, as shown in Figure 6.8. The 

abundance of these chains comes from the setup of the base layer, as after 

the model has run for a large number of times to try and fill the base layer, to 

confirm it is filled, the model runs across the base layer from left to right looking 
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for empty space, as discussed in section 3.1.2. This results in initial particles 

being placed directly adjacent to horizontal chains, and when they tilt to the 

left, have an angle of -14.48o. This could be fixed by increasing the counter 

used when placing random particles, or by altering the algorithm to be able 

particles landing on the edge of the box, instead of requiring an initial layer of 

particles. 

 

 

 

Figure 6.8: Base layer particles with angle -14o particles highlighted with a 
red line marker. 
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Figure 6.9: Histograms of the angles of chain placement across systems E 

and F 

The introduction of single particles in the chain systems, E and F, does not 

appear to have much of an effect on the angle histograms with the peaks still 

being at ± 30o to 35o. System F does not have a peak in the [-10o,  -15o] bin, 

as the small single particles are being used to fill in the gaps in the base layer, 

meaning there is not an abundance of chains in the base layer resting at the 

specific -14.48o angle. 
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Figure 6.10: Histogram of angles of chain placement in system G overall 

and separated by chain size 

The system G histograms, Figure 6.10, shows the same pattern in its 

histogram as is within systems A to D, though with the peaks being at ± 25o to 

30o, showing the chains are more vertical than in the previous systems. This 

is more vertical than system D just containing length 5 chains, showing that 

the introduction of the smaller chains decreases the order of the system, 

resulting in the chains being pushed further from a regular horizontal packing. 

When looking at the angles of the chains in system G separated by size, the 

previously observed pattern remains, with the smaller chains in these systems 

creating the peak at -10o to -15o, as the smaller chains are used to fill in gaps 

in the base layer if they are not filled randomly. Research on the angle of 

cylinders resting in binary mixtures3 has been done, and found the opposite 
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trend that was reported here, with the cylinders preferring to lay horizontal over 

vertical. This is likely due to a few factors, including my systems being 2D and 

the literature systems being 3D, the system size, with my systems still affected 

by the finite size effect, and remaining issues within my code, such as what 

leads to the peak at -14o. Were the code to be updated and system size 

increased, my model would hopefully also follow the reported pattern, with 

chains resting more horizontal than vertical. 

6.4 Summary and Conclusions 

The expansion of the algorithm allows us to investigate systems containing 

particles that are closer to real needle-like particles, therefore it can be used 

to make more accurate simulations compared to perfectly circular particles. It 

was found that when small singular particles are added into a system of chain 

particles, they reduce the size of clusters of those chain particles, which could 

be used to lessen the effect of agglomeration in similar systems. 

The packing fractions in the investigated systems remained consistent, 

however with an increase when singular particles are added into the systems, 

as noted in previous chapters, they are able to fit into the voids created by the 

chains. 

When investigating the angles of the chains within the investigated systems, 

it was found that increasing the length of the chain caused the particles to 

become more vertical, likely due to the increased complexity caused by larger 

particle structures, moving the system away from a more ordered system with 

chains lying horizontal on top of each other. The preference to vertical over 

horizontal in my systems is potentially also due to the curved edges of 

individual particles in the chains still being present, allowing new chains to rest 

partway along them, instead of sliding along the chains to the edges and so 

becoming more horizontal. 
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Due to time constraints, these were the only systems that were able to be 

investigated, however there are many more experiments that could have been 

done given more time. Such as increasing the chain length further, 

investigating a wider range of particle radii within the same system, as well as 

chains that are made up of different sized particles instead of all the same. 

This algorithm does give us a good starting point from which to further 

investigate these systems, so going forward these additional systems would 

also be looked into. 
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7 AstraZeneca Placement 

During the fourth year of my PhD project, I spent 12 weeks on a placement 

at the AstraZeneca1 Macclesfield campus, where I compared the commercial 

Ansys Rocky DEM2 software with my own model, as well as then using the 

commercial DEM software in a Design of Experiments (DoE)3 approach to 

determine parameters for an AZ Compound. 

AstraZeneca are currently in the early stages of investigating various DEM 

modelling software packages, looking at which one best suits their needs at 

various stages of chemical and pharmaceutical development and processing. 

The main aim of my placement was to investigate Rocky DEM and its suitability 

for use modelling AstraZeneca particles and processes. My personal aims for 

this placement were to gain some professional experience working in an 

industry setting, as well as being able to get hands on experience with industry 

standard modelling software and be able to compare it to my own model. 

Within the pharmaceutical industry Rocky DEM modelling software is used 

to investigate behaviours of particles, such as particle breakage, with varying 

particle sizes, and shapes in systems of different geometries.4 

The parameters investigated were: the Basic Flowability Energy (BFE, mJ); 

the Rolling Resistance (no units); the Static and Dynamic Friction Coefficients 

(no units); the Young’s Modulus (Pa); and the Coefficient of Restitution (no 

units). The BFE of a powder is a measure of its flow properties when it is in a 

loosely packed state, in our case defined by the energy required for the mixing 

blade to move downwards through the powder.5 This can be used to quantify 

how changing various parameters of the particle affect how it flows. The Rolling 

Resistance quantifies the resistance that occurs when a particle rolls, either 

over another particle or a surface of the bounding box. The Static Friction 

Coefficient measures the friction that exists between two surfaces whilst they 

are at rest, whilst the Dynamic Friction Coefficient denotes how much friction 
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will occur when two surfaces are sliding over one another. The Youngs’ 

Modulus is a measure of the elasticity of the particles, denoting how much a 

particle shape will be affected by the forces being placed upon it. The 

Coefficient of Restitution is the ratio between the final and initial relative speeds 

between two particles after they have collided. 

7.1 Familiarisation with Rocky DEM 

As discussed in Section 2.2, there are multiple different types of models used 

within computational sciences. For these experiments I am using a DEM 

package called Ansys Rocky DEM. For new users of Ansys Rocky DEM, there 

are a series of tutorials that guide the user through various examples to 

familiarize them with the software and how to use it. Relevant topics include: 

setting up equipment geometries; establishing particle interaction 

characteristics; performing simulations and data visualization. Some of the 

advanced topics address capabilities which are relevant to this research 

including: particle addition; motion frames which allow geometries placed 

within the system to move; wear arising from multiple particle impacts; and 

particle breakage from an impact. 

The Rocky DEM training material also included a workshop on creating 

custom particle shapes including fibres and multiple particle sizes. Although 

during my short industrial placement, I did not get the time to run simulations 

using non-spherical shapes, it was useful to see how Rocky DEM handled 

them, I was however able to use different sized particles in my Rocky 

simulations. 

Another useful element in the training material was a simulation of a conical 

double screw vacuum dryer which involved multiple stacking motions, as 

geometries were rotating on multiple axes, both vertically and rotationally, and 

enabling thermal modelling within the system to see how the heat propagated 

through the system. 
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The Rocky training materials gave me a working understanding of the 

software such that I could use it for simulations. 

7.2 Comparing Rocky DEM with my model 

My model uses a simpler algorithm, described in Chapter 3, compared to 

Rocky DEM, with my model only simulating gravity when placing particles one 

at a time. Rocky however involves many particles moving within the system at 

the same time, and for each particle in each timestep has to identify that 

particle’s neighbours, calculate the forces that they exert on each other, 

whether through contacts, electrostatic forces, or other interactions, as well as 

other forces present in the system, such as gravity, as shown in Equation 7.1. 

∑ 𝐹𝑛𝑒𝑡 = ∑ 𝐹𝑏𝑜𝑑𝑦 + ∑ 𝐹𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = 𝑚
𝑑𝑣

𝑑𝑡
      (7.1) 

where F is Force, m is mass and t is time.6 

 Once all of these forces have been determined, they can be used to 

calculate how they affect an individual particle’s velocity so the model can 

calculate the position and rotation of that particle in the next timestep, based 

on its old position and current new velocity, as shown in Equations 7.2 and 7.3. 

𝑣𝑛𝑒𝑤 =  𝑣𝑜𝑙𝑑 + ∫
∑ 𝐹𝑛𝑒𝑡 

𝑚
𝑑𝑡

𝑡+𝛥𝑡

𝑡
      (7.2) 

𝑥𝑛𝑒𝑤 =  𝑥𝑜𝑙𝑑 + ∫ 𝑣𝑛𝑒𝑤 𝑑𝑡
𝑡+𝛥𝑡

𝑡
      (7.3) 

where F is Force, m is mass, t is time, v is velocity and x is position.6 

 These calculations are completed for every particle in the system, the 

timestep iterated to the next one, and then the whole process repeated until 

the simulation end time is reached or all particles have left the range of the 

system. Note that in principle, the simulations conserve energy however 



William Eales 
 

135 
 

frictional forces damp motions so that thermal energy of the particles must be 

considered. Each Ansys Rocky DEM run used the Hysteretic Linear Spring 

Model, first proposed by Walton and Braun7, which is an elastic-plastic 

(repulsive and dissipative) normal contact model.6 The means that, unlike my 

model, the particles are “soft” and can be compressed when coming into 

contact with another particle. The model is implemented in Ansys Rocky DEM 

using the following equations 7.4 and 7.5. 

𝐹𝑛
𝑡 = {

min(𝐾𝑛𝑙𝑠𝑛
𝑡 , 𝐹𝑛

𝑡−∆𝑡 + 𝐾𝑛𝑢∆𝑠𝑛) if ∆sn ≥ 0

   max(𝐹𝑛
𝑡−∆𝑡 + 𝐾𝑛𝑢∆𝑠𝑛, 𝜆𝐾𝑛𝑙𝑠𝑛

𝑡 ) if ∆sn < 0
    (7.4) 

∆𝑠𝑛 = 𝑠𝑛
𝑡 −  𝑠𝑛

𝑡−∆𝑡         (7.5) 

where 𝐹𝑛
𝑡 and 𝐹𝑛

𝑡−∆𝑡 are the normal elastic-plastic contact forces at the current 

time t and at the previous time t − ∆t, respectively, where ∆t is the timestep. 

∆𝑠𝑛 is the change in the contact normal overlap during the current time, 

otherwise described as the change in the size of the overlap between two 

particles, illustrated in Figure 7.1. It is assumed to be positive as particles 

approach each other and negative when they separate. 𝑠𝑛
𝑡  and 𝑠𝑛

𝑡−∆𝑡 are the 

normal overlap values at the current and at the previous time, respectively. 

𝐾𝑛𝑙 and 𝐾𝑛𝑢 are the values of loading and unloading contact stiffnesses, 

respectively. λ is a dimensionless small constant. Its value in Ansys Rocky 

DEM is 0.001. The part of the expression in which this constant is active 

ensures that, during the unloading, the normal force will return to zero when 

the overlap decreases to zero.6 
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As Rocky incorporates many more parameters than my model, it can be used 

to simulate much more complicated systems, but at the cost of having large 

parameters spaces that can be complicated to explore. It also has the cost of 

taking much more computational power and greater time to complete each run. 

Each of the Rocky simulations was run on the AstraZeneca supercomputer 

and took around one to three hours to complete each, with my model being 

run on a on the ARCHIE-West supercomputer and each run taking around a 

few minutes each. 

7.2.1 Method of Particle Addition Comparison 

Initial comparisons were completed between Rocky DEM and the model I 

created, using the same scale between particle and box size, with one box 

side being six particle diameters. Runs were completed in Rocky DEM using 

both the volume and continuous fill methods to also be able to analyse the 

difference between them. 

The Volume fill method involves choosing a point within the system as an 

origin point for the particles, which for my systems was the centre of the box. 

Figure 7.1: Two particles overlapping during a simulation with the contact 
normal overlap (Sn) labelled 

Sn 



William Eales 
 

137 
 

A particle is placed at this origin point, and then all subsequent particles are 

placed attached to this origin particle to form a ball of particles. No forces are 

accounted for during these additions, instead, once the model has added the 

requested number of particles, the forces are applied to the system, and the 

particles settle. Compared to this, the continuous fill method acts much more 

similarly to my model, with each particle entering the system from a random 

point in a designated inlet, which for my systems is the top of the box, and 

forces are immediately applied to them so they can settle. In Rocky DEM, 

multiple particles are added at the same time however, resulting in the 

possibilities of impacts and interactions as the particles are falling, instead of 

just once they impact the pre-existing bed. 

The volume fill option was difficult to set up as it either overflowed over the 

top of the box, or under-filled depending on which volume was set to be filled. 

This problem was overcome by placing a solid lid over the top of the box, and 

the volume fill set to overflow. Any particles outside of the lid were then not 

counted in the calculations, and any particles that were initially overlapping 

with the box lid were removed from the system at the simulation start, as shown 

in Figure 7.2 

The continuous option was much easier to set up as the inlet for the particles 

to be added to the system from could be placed at the top of the box, acting 

similarly to how my model functions.  

The packing fractions of the systems were examined as a simple point of 

comparison between the different types of particle addition in Rocky DEM, and 

as a comparison to my model. 

As shown in Table 7.1, across each of the systems investigated, the 

continuous addition method had a higher packing fraction than the volume fill 

method. This will be due to both the particles’ ability to pack whilst they are 

being added in the continuous method, as in the volume fill method, all the 
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particles are added in one go and then allowed to settle, which can cause gaps 

to occur which would allow additional particles to fit, if all particles for that 

system had not already been added. 

Table 7.1: Packing fractions of systems created with different particle 
addition methods and radii 

Radii 
Present 

Particle Addition Method 
Rocky Packing 

Fraction 
My Packing 
Fractions 

10 
Volume Fill 0.439 ± 0 

0.460 ± 0.007 
Continuous Fill 0.461 ± 0.005 

10, 20 
Volume Fill 0.460 ± 0.004 

0.497 ± 0.006 
Continuous Fill 0.475 ± 0.007 

10, 50 
Volume Fill 0.436 ± 0.004 

0.468 ± 0.006 
Continuous Fill 0.466 ± 0.017 

 

 
Figure 7.2: Continuous addition method (left) and Volume Fill addition 

method (right) 

The packing fractions across the volume fill methods are also very 

consistent, with there being no differentiation between the repeats run in the 

single sized particle system. This is due to the small size of the box limiting the 

number of particles that can be placed around the initial centre particle, 

causing systems which form to be largely the same, and in the case of the only 

rp = 10 system, identical. 
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Figure 7.2 shows the difference between the different types of particle 

addition, with continuous addition filling closer to the top of the box, having a 

higher packing fraction, and also not leaving additional particles outside it. 

7.2.2 Model Packing Fraction Comparisons 

As the continuous fill method is closer to how my model acts, and gives a 

better representation of a system being filled by particles from above than the 

volume fill method, it was the method used going forwards when comparing 

the two models. Some additional runs were conducted looking at how the 

different ways the particles were added in the continuous addition methods 

can affect the speed of the simulation runs, in order to reduce time spent 

waiting for them to be completed. Initially, particles were added in a consistent 

speed from the start to end of the simulation. However, nearer the end of the 

simulation, this resulted in the model attempting to add particles to the system 

when there was no room, wasting processing time and causing the simulation 

to take longer. Therefore, it was investigated what happened if particles were 

not added nearer the end of the simulation when the box got too full. This 

resulted in boxes that were not completely full as particles near the top were 

still able to pack down once addition had been halted. The solution used to 

correct this issue was to stagger the particle injections, to give each one some 

time to settle so that they are not immediately in the way of the next group of 

particles to be added. 

 

Table 7.2: Comparison of packing fractions calculated for systems created by 
Rocky DEM and our model 

Radii Ratio 
Present 

Packing Fraction 

Rocky DEM My Model 

1 0.460 ± 0.005 0.460 ± 0.007 

1:2 0.475 ± 0.007 0.497 ± 0.006 

1:5 0.466 ± 0.017 0.468 ± 0.006 
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In the Rocky DEM experiments, the ratios between the different radii, and 

between the radii and box size, within the investigated systems were kept 

consistent with the ones used within my model, and each radius having an 

equal number of particles added to the system. The larger radius in each case 

was also kept the same, so that the box size would remain consistent across 

each of the simulation runs. 

The values obtained by the Rocky DEM simulations and my model are very 

similar, with the main difference coming in the rp = 10, 20 systems. The rp = 10 

and rp = 10, 50 systems gave almost identical results, giving more confidence 

in the reliability of my model, as it is consistent with this industry standard 

software. The small differences will come from the randomness of particle 

placement inherent in both systems, however the consistency shows that my 

model is able to match up with the industry standard. 

 

7.3 Edge Effects Investigation 

Because the boxes sizes used in my model are rather small, Rocky DEM 

was used to investigate the edge effects present on the packing fraction at 

different sizes of box using one size of spherical particle. The packing fraction 

was determined as a whole, and then individually for different sections of the 

system, as shown in Figure 7.3. Note that some areas overlap, so some 

particles are counted twice and areas are larger than their colours show. The 

roof packing fraction is denoted by the area covered by red particles (and some 

yellow particles), the wall packing fraction is denoted by the area covered by 

yellow particles (and some pink particles), the floor packing fraction is denoted 

by the area covered by pink particles, and the whole packing fraction uses the 

area of the whole system. There is an additional section that cannot be seen 

inside accounting for the centre packing fraction (which would be coloured 

green), which starts where each of the floor, wall and roof areas end. 
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The order of packing fractions from highest to lowest is expected to be: the 

centre, the floor, the walls and then the roof, as the centre of the box has no 

edge effects to be affected by. The floor and walls of the box are then the 

edges where the effect will be less due to not being the point of entry, resulting 

in the floor being the next most packed and the walls coming after that, as they 

are partly affected by the roof area. Finally, the roof section would be expected 

to have the lowest packing fraction as its largest surface area is affected by 

the entry point of the particles, where the edge effects of the box will be at their 

greatest. The overall packing fraction of the system would then be an 

appropriate weighted average of these sections, as there is some overlap 

between the areas and multiple walls areas to account for. This pattern is 

confirmed by the data shown in Tables 7.3 and 7.4. 

Figure 7.3: Rocky DEM systems created with different particle to box size 
ratios. (a) 1:6 (b) 1:24 (c) 1:60 

a) b) 

c) 
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Table 7.3: Comparison of packing fractions of different sections of particle 
systems with different particle:box size ratios 

Particle 
Diameter 

to Box 
Width 
Ratio  

Box Section 

All Wall Centre Roof Floor 

1:6 
0.461 ± 
0.005 

0.393 ± 
0.029 

0.611 ± 
0.035 

0.180 ± 
0.017 

0.464 ± 
0.008 

1:24 
0.561 ± 
0.002 

0.548 ± 
0.003 

0.612 ± 
0.002 

0.419 ± 
0.010 

0.600 ± 
0.002 

1:60 
0.588 ± 
0.001 

0.582 ± 
0.001 

0.609 ± 
0.001 

0.531 ± 
0.005 

0.604 ± 
0.001 

 

The systems used to test the edge effects contained same sized particles 

equivalent to the small particles from our model systems. As the box size 

increases, the majority of the packing fractions increase, with the exception of 

the centre section, as it is not affected by the box size. The ordering of the 

sections packing fractions still remains the same, though the values become 

closer, and the overall packing fraction of the system starts to become closer 

to the value of the centre of the box. The increase in wall and overall packing 

fraction also comes from the decreased effect of the roof, as it is the area with 

the lowest packing fraction due to it not getting completely filled. Therefore, as 

the box gets taller, more area can be filled below the roof area increasing the 

overall packing fraction of that section.  

Using this data, a set of systems were created to investigate the effect of 

particle size distribution, with a Particle:Box diameter ratio of 1:33 1/3, using the 

larger particle diameter, as it is in between two higher values tested, however 

it would not have as long a runtime as the 1:60 ratio systems, taking roughly 

two hours each instead of four, as the time on my placement was a factor. 

Once again, the number of particles of each size is 1:1. 

 



William Eales 
 

143 
 

 

 

 

Table 7.4: Comparison of packing fractions of different sections of particle 
systems with different particle size distributions 

Radii 
Ratio 

Present 

Box Section 

All Wall Centre Roof Floor 

1 
0.576 ± 
0.002 

0.553 ± 
0.003 

0.610 ± 
0.0004 

0.371 ± 
0.021 

0.594 ± 
0.001 

1:2 
0.592 ± 
0.001 

0.572 ± 
0.002 

0.626 ± 
0.0004 

0.379 ± 
0.009 

0.612 ± 
0.002 

1:5 
0.576 ± 
0.001 

0.551 ± 
0.002 

0.613 ± 
0.0003 

0.342 ± 
0.015 

0.603 ± 
0.001 

 

Figure 7.4: Three systems created with different particle sizes present.     
a) rp = 10, b) rp = 10, 20, c) rp = 10, 50 
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When looking at the different sections of the box across the different 

systems, they maintain the same pattern as previously shown. This is 

expected as the size of the particles will not have any real interaction with the 

edge effects, instead only affecting the packing fraction of the system as a 

whole. Across the different systems, the packing fractions also showed the 

same pattern as above, with an increase between the rp = 10 to rp = 10, 20 

systems, and then a decrease to the rp = 10, 50 system. However, in these 

cases, the rp = 10 and rp = 10, 50 systems are much closer together compared 

to the smaller box systems, with some of the sections of the rp = 10, 50 system 

having a smaller packing fraction than the respective area in the rp = 10 

system. 

7.4 Design of Experiments using Rocky DEM 

The second part of my placement involved using Rocky DEM to determine 

various properties of an AstraZeneca compound, referred to here as 

Compound A. A Design of Experiments (DoE) approach was used to ensure 

that the experiments performed gave useful outputs, instead of using a trial-

and-error approach. Within these simulations, we are modelling Compound A 

as a spherical particle, as modelling the exact shape and size of it would take 

longer than the placement would allow. For these purposes, MODDE DoE 

software was used to take the inputted parameters and a starting value, shown 

in Table 7.5, to produce a series of experiments, shown in Table 7.6, that would 

give a good understanding of each parameters effect on the output value. 

7.4.1 Parameter Setup 

Five parameters were varied during our tests: which were the Rolling 

Resistance; Coefficient of Restitution; Static and Dynamic Friction 

Coefficients; and Young’s Modulus, using the values shown in Table 7.5. The 

same values were used in each experiment for both the Static and Dynamic 

Friction Coefficients. In future experiments, we would want to use a wider 
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variety of parameters, and use different values for each of them, however the 

first investigations were limited to these parameters, and had two of them 

equal, due to time constraints. 

Table 7.5: Range of parameter values used in the Design of Experiments 
method 

Parameter 
Rolling 

Resistance 

Coefficient 
of 

Restitution 

Static and 
Dynamic Friction 

Coefficients 

Young’s 
Modulus 

(Pa) 

Values 
0.125, 0.15, 

0.175 
0.1, 0.2, 0.3 0.175, 0.2, 0.225 

9e6, 1e7, 
1.1e7 

 

The simulations were done modelling a Freeman Rheometer (FT4)8, which 

is a small-scale powder rheometer that has been widely adopted in the 

pharmaceutical sector, shown in Figure 7.5, to calculate the BFE of Compound 

A, which can also be determined through laboratory experiments. Therefore, 

we can compare the model’s output to the physically measured value to 

determine if the values for the tested parameters are possibly valid. The 

simulation involves filling the cylinder with the testing particles, and then the 

mixing blade pressing downwards whilst rotating. 

 

 

 

 

 

 

 

Figure 7.5: The FT4 system geometries used 
within Rocky DEM 
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7.4.2 BFE Results 

Table 7.6 shows each of the experiments run and the BFE calculated from 

them. The BFE is a measure of the flowability of the powder whilst it is being 

forced to move, in this case by the energy required for the mixing blade to 

move downwards. Only one run was completed per set of parameters due to 

the time constraint on my placement, however more simulations per set would 

be run usually to get a better understanding of each parameter’s influence on 

the BFE output. 

Table 7.6: Simulation runs completed and parameter values used 

Run 
Number 

Rolling 
Resistance 

Coefficient 
of 

Restitution 

Static and 
Dynamic Friction 

Coefficients 

Young’s 
Modulus 

(Pa) 

BFE 
(mJ) 

1 0.125 0.1 0.175 9.00E+06 365 

2 0.175 0.1 0.175 9.00E+06 432 

3 0.125 0.3 0.175 9.00E+06 357 

4 0.175 0.3 0.175 9.00E+06 427 

5 0.125 0.1 0.225 9.00E+06 466 

6 0.175 0.1 0.225 9.00E+06 634 

7 0.125 0.3 0.225 9.00E+06 446 

8 0.175 0.3 0.225 9.00E+06 612 

9 0.125 0.1 0.175 1.10E+07 425 

10 0.175 0.1 0.175 1.10E+07 534 

11 0.125 0.3 0.175 1.10E+07 416 

12 0.175 0.3 0.175 1.10E+07 505 

13 0.125 0.1 0.225 1.10E+07 532 

14 0.175 0.1 0.225 1.10E+07 716 

15 0.125 0.3 0.225 1.10E+07 532 

16 0.175 0.3 0.225 1.10E+07 739 

17 0.15 0.2 0.2 1.00E+07 503 

18 0.15 0.2 0.2 1.00E+07 527 

19 0.15 0.2 0.2 1.00E+07 501 

20 0.15 0.2 0.2 1.00E+07 512 

 

By looking at how the output BFE value was affected across each 

experiment, the MODDE DoE software can determine the influence each 

parameter has on the BFE value, as well as any influence the interaction 
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between parameters may have. Parameters that do not have an influence on 

the BFE output are removed from the calculations, refining all the parameters 

relationships to the BFE output to Equation 7.6. It can then use this to calculate 

a point within the ranges tested that satisfy our desired BFE for Compound A 

of 542.23 mJ, shown as value set 1 in Table 7.7. The value of 542.23 mJ was 

previously determined in laboratory experiments, so we can therefore use this 

value to determine if the simulation is accurately modelling Compound A. An 

equation to calculate the BFE can also be determined, including coefficients 

for each of the parameters tested based on their influence on the final BFE, 

determined by how big a change in the BFE value each parameter caused. 

𝐵𝐹𝐸 =  −5174.26𝑟𝑟 − 2825.76𝑓 + 4.13899𝑒−5𝑦 + 39127.7(𝑟𝑟 ∗ 𝑓) + 0𝑐𝑟 +

 262.533        (7.6) 

𝐵𝐹𝐸 =  −5174.26𝑟𝑟 − 2825.76𝑓 + 4.13899𝑒−5𝑦 + 39127.7(𝑟𝑟 ∗ 𝑓) + 262.533

         (7.7) 

 where BFE is the Basic Flowability Energy, rr is the Rolling Resistance, 

f is the Static and Dynamic Friction Coefficients, cr is the Coefficient of 

Restitution and y is the Young’s Modulus. 

Equation 7.6 shows that the Rolling Resistance and Static and Dynamic 

Friction coefficients had a large influence on the BFE, with the Young’s 

Modulus having a small influence and the Coefficient of Restitution having no 

influence. The interaction between the rolling resistance and the friction 

coefficients was also determined to have an influence. This is shown by the 

coefficients in the equation for the parameters that have a high influence being 

in the order of 104 and 105, whereas the parameters with a small influence had 

a coefficient in the order of 10-5 and 0. For each of these influential parameters, 

a higher value results in a higher BFE. This fitted equation has an R2 value of 

0.99 and a Q2 value of 0.97, showing that there is a high measure of both the 

model’s fit and predictability. R2, also known as R-squared, is a measure of 
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the variance of a dataset, with a value ranging from 0 to 1. A value closer to 1 

denotes that there is less variance within the dataset, and a value closer to 0 

denotes that there is a large degree of variance. Our value of R2 being 0.99 in 

this dataset shows that the variance is minimal, and changes to the outputs 

are based upon our changing of the parameters and not random chance. Q2, 

also known as Q-squared, is a measure of the predictive relevance of a model, 

with a positive value denoting good predictive relevance. Our Q2 value of 0.97 

shows that this model has predictive relevance.9 This equation is only valid 

within the specific parameter ranges tested as part of the DoE runs, stated in 

Table 7.5, however as the target value is within this range it does not matter. 

Equation 7.7 shows a simplified form of equation 7.6, removing the parameters 

that had no influence on the calculation. 

Runs 17 to 20 were completed using the midpoints for the range of values 

used for each parameter. These repeats were performed to ensure the BFE 

values obtained were consistent with each other when the parameter values 

were kept the same, as there is inherent randomness within the simulations 

from the particle placements, and the calculations that stem from it. Therefore, 

ensuring that the data gained from the repeats are similar enough, even given 

these changes between simulations, means that we can trust the simulations 

and know that variations in the outputs are due to the effect of changing 

parameters, rather than just a random event in a simulation. These repeats 

gave an average of 511 ± 10.3, giving a variance of just under 2%. 

7.4.3 Value Confirmation 

Three sets of values were then calculated using Equation 7.6, as shown in 

Table 7.7, that should give the target BFE of 542 mJ, then FT4 model 

simulation runs were completed using these sets of values to see if the 

simulation and equation values were the same. 
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Table 7.7: "Solution" parameter sets and their determined BFE 

Value 
Set 

Rolling 
Resistance 

Coefficient 
of 

Restitution 

Static and 
Dynamic 
Friction 

Coefficients 

Young’s 
Modulus 

(Pa) 

Equation 
BFE (mJ) 

Simulation 
BFE (mJ) 

1 0.156334 0.3 0.212233 9.3264e6 
538.05 529.72 ± 

10.4 

2 0.157 0.3 0.213 9.33e6 
542.92 511.14 ± 

13.8 

3 0.16 0.3 0.21 9.33e6 
542.10 534.11 ± 

8.50 

 

Three repeats were completed for each of the value sets, and the average 

BFEs determined. There was some variance between each of the runs for the 

data parameter values due to the randomness that can occur in the system, 

which is consistent with the previous repeats, however Sets 1 and 3 both gave 

values close to the desired output. Run 2 gave consistently lower BFE values 

than anticipated, even with the equation stating it should have been close to 

542 mJ, showing that there are likely more interactions at play than our current 

series of experiments account for. Given more time, a larger range of values 

would have been used across more variables, to be able to investigate the 

effect of as many parameters as possible and looking for valid values within a 

larger range, instead of focusing on a narrower area. 

As there were many sets of values that can satisfy the expected BFE 

condition, we then used these values to simulate a test to calculate the Angle 

of Repose (AoR) of Compound A, another property which can be readily 

compared to an experimentally measured value. The simulations involved 

filling a cylinder with our particles, then slowing raising the cylinder, allowing 

the particles to form a pile on a platform below it, as shown in Figure 7.6. Five 
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repeats were completed for each of the value sets identified in Table 7.7, and 

the angles calculated are shown in Table 7.8. 

Each simulation gave two angles, one calculated from the bottom of the pile 

and one calculated from the top, as illustrated in Figure 7.7. To calculate the 

angle, a line is drawn across the pile of particles, and the maximum height at 

set intervals across the line is calculated. The line then rotates 10o around the 

y-axis (normal to the platform) and the heights collected again. This is repeated 

until the line has rotated a full 360o and is back in its starting rotation. 

The black dots in Figure 7.7 represent the average of the maximum heights 

at each of the intervals used. The light red area is the maximum of the 

maximum heights found, with the dark red area being the minimum of the 

Figure 7.7: Example particle system with labelled Angles of Repose 
from Ansys Rocky DEM 

Figure 7.6: A cylinder of particles before and after it has been lifted to 
allow the particles to settle forming a heap. 
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maximum heights found. Using the average maximum heights, the angles are 

then calculated, as shown by the fitting lines. 

Table 7.8: The Angles of Repose calculated for each of the parameter value 
sets tested 

Value Set 
Bottom AoR 

(o) 
Top AoR (o) 

1 14.9 ± 1.8 18.9 ± 0.9 

2 14.7 ± 2.4 18.2 ± 1.2 

3 17.2 ± 1.9 20.0 ± 2.3 

 

The values calculated by the model can then be compared with the 

laboratory value to determine which parameter value sets are closest. 

Alongside the data from the BFE experiments, the values can be checked to 

see which ones satisfy both tests. The laboratory values for the AoR for 

Compound A were not able to be obtained before the end of my project, 

however these data can still be used for comparison once the data is available. 

7.5 Summary and Conclusions 

At this point my placement came to an end, however a discussion was had 

about how this work would be used by AstraZeneca going forward. More 

conditions would be required to confirm the parameter values as only two 

conditions, being the BFE and AoR, do not give enough confidence in the 

values generated by Ansys Rocky DEM. Other possible confirmation 

experiments could be Ring Shear Tests10 or Granudrum11 equipment testing 

for powder cohesion. This would be the next stage for AstraZeneca going 

forward to further confirm the data values for the parameters we have tested, 

as well as testing as many other parameters as possible, to increase the 

confidence in the parameter values determined. Once a full set of model 

parameters are obtained, simulation of Compound A would be possible. 
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The Design of Experiments method was useful for having a predetermined 

set of experiments to run instead of taking a trial-and-error approach, as it gave 

more structure to the workflow. It also allowed us to properly investigate and 

determine the effects of each parameter, instead of just finding a value set that 

satisfied our condition. 

The comparisons between my model and Rocky DEM showed them 

producing very similar packing fraction data, showing the same trend across 

different particle size distributions. This increases my confidence in the 

accuracy of my model, as it compares with professionally made software. 
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8 Conclusions and Future Work 

8.1 Summary and Conclusions 

Over the course of the project multiple algorithms have been produced to 

investigate particle packing, in both 2D and 3D, and with spherical and non-

spherical particles. Initial investigations were done into these systems, 

comparing them to systems created by other models and the expected 

mathematical answers to the properties, such as minimum/maximum packing 

fractions. 

Comparisons were made between the packing of the 2D and 3D systems 

that were produced, containing single-sized particles, against previously 

calculated values of packing fractions for perfectly packed structures, and 

those created under different algorithms. It was found that my system’s 

packing fraction values fell within the expected range, as they were less than 

the most ordered system, as my systems have a degree of randomness, and 

were above the packing fractions of RSA systems, where the circles are not 

under as many constraints as within my systems therefore pack less efficiently. 

Initial investigations were also made into the number of contacts each particle 

had compared to the expected amount, four in 2D and six in 3D, with this being 

mostly shown in the data however it was greatly affected by the box size 

therefore further investigation with larger systems sizes is needed. 

An improvement was made to the model to allow chain particles to be created 

within the systems. The packing fractions were found to be rather consistent, 

especially compared to the single particle systems, and an expected increase 

when single void-filling particles were added into the systems. The angles of 

the chains were also determined, and it was found that as the chains became 

longer, the particles tended to rest more vertically. 
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The model was also compared to Industry standard software, Rocky Ansys 

DEM, and it was found that when similar systems were created in both models, 

the data found was very similar. This gives a lot of confidence in the outputs of 

my model as they are being corroborated by modelling software that has been 

used in many different scientific studies. 

Once consistent note throughout each of the systems was the effect of the 

size of the box on the outputs. As these were only initial tests, the box sizes 

were often limited by the project duration, or the capabilities of the model at 

the time. Now the model has improved, investigations into larger systems are 

possible in future projects. The evidence presented provides confidence in 

these algorithms such that they can be used in future work to investigate these 

structures further and the model can be further improved to investigate a wider 

range of systems and properties. 

The research completed through this project has given some more insight 

into the packing of spherical shapes when placed under gravity, as well as 

some investigation into non-spherical shapes. This aids other research 

completed into these topics and the completion of this model allows another 

avenue into further investigation into both these questions, as well as, once 

the model has had more features implemented, further areas within this topic. 

The creation of this model allows for more direct research into the packing of 

the systems it creates. Due to its simplicity, the model could be applied to a 

variety of different fields, beyond the initial pharmaceutical base it was created 

for, as with no defined scale the particle could be any size the researcher 

wants, e.g. larger for use in soil sciences. It is also an easy base to build on, 

compared to editing more complex modelling software or creating new 

forcefields, so can again be tailored for a variety of applications. 

Some of the project objectives were achieved with the completion of the 

current algorithms, however preferably the 3D chains algorithm would have 

been completed, along with the upgraded version of the contact breakage 
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algorithm. Details of these plans and other future work are discussed in the 

next section. 

8.2 Future Work 

As this project has created the basis of a modelling system, there are many 

various applications for it going forward beyond my project. 

Some of the most obvious are continuations of work that has been started 

as part of my project but could not be investigated to the extent that would be 

wanted, such as the investigation into the contact forces present between 

particles. The 3D non-spherical particle algorithm could be finalised, so that 

initial property investigations, as have been done for 2D and 3D spherical 

particle structures, can be completed. In addition, it would be preferable if the 

spherical basis of the chain particles could be removed to be able to model 

smooth edged particles. One way this could be approached with the current 

method is to increase the amount by which the circular particles, that make up 

a chain, overlap, to create a smoother surface. 

Further work could be done to gain a larger range of data in 2D systems, 

investigating the effects, if any, of percolation structures and particle size 

distribution on how the bed breaks apart. The algorithm could also be 

expanded to be able to handle 3D structures and non-spherical particle 

structures. 

Further investigation of some of the phenomena observed during the initial 

tests of the model, such as looking at the path that a small particle takes 

through a bed formed of larger particles would be desirable. This could also 

help to investigate fluid paths through the bed. As part of potentially 

investigating fluids, additional dynamics would be added to the model, such as 

solvent effects, and particles being affected by friction as they are settling. 
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Experimental work could also be done alongside the model systems created, 

one of which would be to build on recent unpublished work undertaken using 

the Diamond Light Synchrotron to gather images of packed systems that can 

be compared against those that the model produces. Breakage tests can also 

be done to see how systems break apart under stresses to compare to our 

breakage algorithm. 

As the scales of the particles is separate from the units used, the particles 

could be any size that the user desires them to be. For example, the model 

could be used within soil sciences to model the settling of larger particulates 

than would be investigated in the pharmaceutical industry. 
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Appendix 1: 2D System Algorithm 

This appendix contains the algorithm used for creating 2D systems. 

 module allSubs ! Initialises the variables used through all functions 
 character, dimension (:,:), allocatable, public :: RA*4 
 integer, dimension (:,:), allocatable, public :: RAMolClose 
 integer MolNo, RadLarge, RadSmall, BoxSize, GridSize, Rads, count, SN, Full, 
FullCount 
 integer MLr, AllocateVal, RoofCount 
 real MLxReal, MLyReal 
 integer, dimension (:,:), allocatable, public :: Ones 
 integer, dimension (:,:), allocatable, public :: Contacts 
 dimension MLr(10000), Rads(10), MLxReal(10000), MLyReal(10000) 
 logical FullCheck, Hit, RoofHit, StartPlace 
 integer x, y, Long, Tall, RadT 
 end module allSubs 
 
 
 
 program packedbed 
 use allSubs ! Loads the variables from the module 
 
 ! Initialises local variables 
 character t, FileName*15, FileID*3 
 integer m, n, check, PrintNo, ProgCount, PCId, count3 
 dimension FileID(1000) 
 real Rand, Dist 
 integer count2, RadTnew, TotLength 
 logical Finished, Cont, Impact 
 
 StartPlace = .TRUE. 
 
 t = 'y' 
 
 if (t == 'y') then 
  Rads(1) = 10 ! Sets the radius of a particle. Additional radii would be 
inputted as Rads(x) = 'Radius' 
  SN = 1  ! Sets the number of different radii in the system 
 
  RadLarge = 0 
  RadSmall = 0 
  
  do count = 1, SN 
   if (RadLarge < Rads(count)) then 
    RadLarge = Rads(count) 
   end if 
   if (RadSmall > Rads(count) .or. RadSmall == 0) then 
    RadSmall = Rads(count) 
   end if 
  end do 
 
  RadLarge = 10 
  RadSmall = 10 



William Eales 
 

159 
 

 
  ! Calculates the box size based on the largest radius present 
  BoxSize = (RadLarge*6) 
  GridSize = BoxSize*5 
  AllocateVal = ((BoxSize*3)**2)*2 
 
  ! Allocates the arrays 
  allocate(RA(1:GridSize, 1:GridSize)) 
  allocate(RAMolClose(1:GridSize, 1:GridSize)) 
 
  allocate(Ones(1:AllocateVal,1:2)) 
 
  do ProgCount = 1, 50 
   write(FileID(ProgCount), '(i0)') ProgCount 
  end do 
 
  do ProgCount = 1, 50 ! Starts the loop for the number of systems to be created 
 
   ! Sets variables initial values 
   MLxReal = 0 
   MLyReal = 0 
   MLr = 0 
 
   TotLength = 0 
   MolNo = 1 
   FileName = '' 
   Full = 0 
   check = 0 
   FullCount = 0 
   Finished = .FALSE. 
 
   Ones = 0 
 
   RA = '0' 
   RAMolClose = 0 
 
   RoofCount = 0 
   RoofHit = .FALSE. 
 
   call random_seed() 
 
   do while (count < 10000000) 
 
    Impact = .FALSE. 
 
    ! Picks a random radius and x coordinate, and sets y to be on 
the bottom of the box 
    call random_number(RX) 
    count2 = 1 + floor(SN*RX) 
    RadT = Rads(count2) 
 
    call random_number(RX) 
    count2 = 1 + floor((GridSize-(2*RadT))*RX) 
    x = count2+RadT 
 
    y = RadT 
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    if (MolNo > 1) then  ! Checks there is already at least 
one particle in the system 
     hitloop: do count3 = 1, MolNo - 1  
      Dist = ((MLxReal(count3)-
x)**2)+((MLyReal(count3)-y)**2) 
      Dist = sqrt(Dist) 
      if (Dist <= ((RadT*2)+(Mlr(count3)))) then 
       count = count + 1 
       Impact = .TRUE. 
       exit hitloop 
      end if 
     end do hitloop 
     if (Impact .eqv. .FALSE. .and. x <= GridSize-
(RadT*2)) then ! If the particle is not overlapping with any others and is inside the grid, its 
location is saved 
      count = 0 
      MLxReal(MolNo) = x 
      MLyReal(MolNo) = y 
      MLr(MolNo) = RadT 
      MolNo = MolNo + 1 
     end if 
    else 
     MLxReal(MolNo) = x 
     MLyReal(MolNo) = y 
     MLr(MolNo) = RadT 
     MolNo = MolNo + 1 
    end if 
   end do 
 
   ! This loops through the base line to check that there is nowhere a 
small particle could fall through to the bottom of the box, and if so, places a particle there 
   do m = RadSmall, GridSize-RadSmall 
    RadT = RadSmall 
    Impact = .FALSE. 
    hitloop2: do count3 = 1, MolNo - 1 
     Dist = ((MLxReal(count3)-m)**2) 
     Dist = sqrt(Dist) 
     if (Dist < ((RadSmall)+(Mlr(count3)))) then 
      count = count + 1 
      Impact = .TRUE. 
      exit hitloop2 
     end if 
    end do hitloop2 
    if (Impact .eqv. .FALSE.) then 
     count = 0 
     MLxReal(MolNo) = m 
     MLyReal(MolNo) = RadSmall 
     MLr(MolNo) = RadSmall 
     MolNo = MolNo + 1 
    end if 
   end do 
 
   StartPlace = .FALSE. 
 
   do n = 1, 2500 ! Loops for each particle being added to the system, 
using the main function. At the end of each loop, it checks if the box is full and if so, leaves the 
loop. 
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    call molpos 
    if (Full == 1) then 
     exit 
    elseif (RoofHit .eqv. .TRUE.) then 
     exit 
    end if 
   end do 
 
   t = 'y' 
   if (t == 'y' .and. RoofHit .eqv. .TRUE.) then ! Saves the particle 
locations to a file 
    FileName = '' 
    FileName = trim(adjustl(FileID(ProgCount))) // '.csv' 
    open(1, file = FileName, status = 'new') 
    do y = 1, MolNo-1 
     write(1,*) MLxReal(y), ',' , MLyReal(y), ',' , MLr(y) 
    end do 
    close(1) 
   end if 
 
   t = 'y' 
   if (t == 'y' .and. RoofHit .eqv. .TRUE.) then ! Saves the particle 
contacts to a file 
    allocate(Contacts(1:MolNo, 1:MolNo)) 
    Contacts = 0 
    do y = 1, MolNo-1 
     n = 1 
     do x = 1, MolNo-1 
      if (x /= y) then 
       Dist = ((MLxReal(y) - 
MLxReal(x))**2) + ((MLyReal(y) - MLyReal(x))**2) 
       Dist = sqrt(Dist) 
       if (Dist <= (MLr(y) + MLr(x) + 0.01)) 
then 
        Contacts(y,n) = x 
        n = n + 1 
       end if 
       if (n > TotLength) then 
        TotLength = n 
       end if 
      end if 
     end do 
    end do 
 
    FileName = '' 
    FileName = 'contacts' // trim(adjustl(FileID(ProgCount))) // 
'.csv' 
    open(3, file = FileName, status = 'new') 
    do y = 1, MolNo-1 
     do x = 1, TotLength 
      write(3,'(I4,A1,X)', advance='no') 
Contacts(y,x), ',' 
     end do 
     write(3, *) '' 
    end do 
    close(3) 
    deallocate(Contacts) 
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   end if 
  end do 
 end if 
 
 end program 
 
 
 subroutine molpos 
 use allSubs ! Loads the variables from the module 
 
 ! Sets up the local variables 
 integer count2, Spot, Height, DoubRad, RowRad, a,b,c, RadIn, m, n, TempX, TempY 
 real Rand, MidWay, Dist 
 character t, FileName*15 
 integer SavIncremX, SavIncremY, SafeLocCount, LR, SavOneX, SavOneY, SavDist, 
SavOnePart, LRNo, OneCount, RealPos1, RealPos2 
 integer TempRealPos1, TempRealPos2 
 logical SafeLocFound, ResetCheck 
 real TempXa, TempXb, TempYa, TempYb, DistAB, DistBC, DistAC, AngleA, AngleB, 
AngleFin, GradFin, HelpDist 
 real FDistA, FDistB, FDistC, FDistD 
 real xDiff, yDiff, FinalSavX, FinalSavY 
 integer FinalSavLong, FinalSavTall, checktime, Balanced 
 integer Balances, Touches 
 dimension Balances(10) 
 real DistFac, RadScale 
 integer NewPos, TRP1Swap, TRP2Swap 
 integer FinalPart, SideCount 
 dimension FinalPart(2,3) 
 real PartCoords, stochDists, sumDist, dx, stochxnew, newCoords, stochynew 
 integer ibad 
 dimension PartCoords(2,2), stochDists(2), newCoords(2), dx(2), stochxnew(2) 
 real RX, NewX, NewY 
 logical ChainAdd 
 real OverDist 
 integer OverDistNo 
 logical NotBal, FirstBal 
 dimension BalCheckNo(10000), BalCombi(100000,2) 
 integer BalCheckCount, BalCount, BalCheckNo, BalCombi, BalAttempt 
 integer OverlapCount 
 logical EdgeCase, FirstEdge 
 integer EdgeCombi, EdgeCount, EdgeAttempt 
 dimension EdgeCombi(10000) 
 real Dy, intC, CheckY 
  
40 CONTINUE 
 
 if (FullCount == 2500000) then 
  Full = 1 
 end if 
 
 ! Setting initial values of variables 
 Hit = .FALSE. 
 ResetCheck = .FALSE. 
 checktime = 1 
 Balanced = 0 
 Touches = 0 
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 Balances = 0 
 
 Dy = 0 
 intC = 0 
 CheckY = 0 
 
 EdgeAttempt = 0 
 EdgeCount = 0 
 EdgeCombi = 0 
 EdgeCase = .FALSE. 
 FirstEdge = .TRUE. 
 
 FinalPart = 999999 
 OverDist = 0 
 OverDistNo = 0 
 
 OverlapCount = 0 
 
 TRP1Swap = 0 
 TRP2Swap = 0 
 
 ChainAdd = .FALSE. 
 
 NotBal = .FALSE. 
 FirstBal = .TRUE. 
 BalCheckNo = 0 
 BalCombi = 0 
 BalCheckCount = 0 
 BalCount = 0 
 BalCheckNo = 0 
 BalCombi = 0 
 BalAttempt = 0 
 
 RadScale = 0 
 TempRealPos1 = 0 
 TempRealPos2 = 0 
 DistFac = 0 
 FDistA = 0 
 FDistB = 0 
 FDistC = 0 
 FDistD = 0 
 SavDist = 0 
 SavOneX = 0 
 SavOneY = 0 
 TempXa = 0 
 TempXb = 0 
 TempYa = 0 
 TempYb = 0 
 DistAB = 0 
 DistBC = 0 
 DistAC = 0 
 AngleA = 0 
 AngleB = 0 
 AngleFin = 0 
 GradFin = 0 
 xDiff = 0 
 yDiff = 0 
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 NewPos = 0 
 
 FinalDists = 0 
 
 PartCoords = 0 
 stochDists = 0 
 sumDist = 0 
 dx = 0 
 stochxnew = 0 
 newCoords = 0 
 stochynew = 0 
 
 ! Randomly chooses which radius will be used for this particle 
 call random_number(Rand) 
 RadScale = RadLarge/RadSmall 
 RadScale = RadScale + 1 
 count2 = 1 + floor(2*Rand) 
 if (count2 == 2) then 
  RadT = RadLarge 
 else 
  RadT = RadSmall 
 end if 
 
 wloop: do while (Hit .eqv. .FALSE.) ! The loop to place particles 
 
 ! Randomly chooses the x value 
  call random_number(Rand) 
  Spot = 1 + floor((GridSize-(2*RadT))*Rand) 
  x = Spot+RadT 
 
  do y = GridSize, RadT, -1  ! Loops from the top of the box, and sends to 
the function to determine impact 
   Long = (x/BoxSize)+1 
   Tall = (y/BoxSize)+1 
 
   call PointSafe 
 
   ! If the box is full or an impact has occured, the loop is exited 
 
   if (Full == 1) then 
    exit wloop 
   end if 
   if (FullCheck .eqv. .TRUE.) then 
    RoofHit = .TRUE. 
    GO TO 10 
   end if 
 
   if (Hit .eqv. .TRUE.) then 
    exit wloop 
   end if 
  end do 
 end do wloop 
 
 if (Hit .eqv. .TRUE. .and. Full /= 1) then 
  if (MolNo > 1) then  
   RA = '0' 
   RAMolClose = 0 
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   ! Sets up the variables to be used for particle placement 
 
   Ones = 0 
   OneCount = 1 
 
   do a = 1, MolNo - 1 ! Loops through the particles for contour plot 
placement 
    MLxCor = MLxReal(a) 
    MLyCor = MLyReal(a) ! Takes the radius, x and y coordinates 
of the current particle in the loop 
    RadIn = Mlr(a) 
     
    DoubRad = (RadIn+RadT)+1 
    do Height = 0, RadIn ! Draws the particle onto the contour 
plot, "-"s marking blocked locations, "1"s being valid spots 
     MidWay = RadIn**2 - Height**2 
     RowRad = abs(sqrt(MidWay)) 
     if (MLxCor+Height<=GridSize-RadT .and. 
MLyCor+RowRad<=GridSize .and. MLyCor-RowRad>=RadT .and. MLxCor-Height<=RadT) 
then 
      RA(MLyCor+RowRad, MLxCor+Height) = '-' 
      RA(MLyCor-RowRad, MLxCor+Height) = '-' 
      RA(MLyCor+RowRad, MLxCor-Height) = '-' 
      RA(MLyCor-RowRad, MLxCor-Height) = '-' 
     end if 
     do count2 = -RowRad,RowRad 
      if (MLxCor+Height<=GridSize-RadT .and. 
MLyCor+count2<=GridSize .and. MLxCor-Height>=RadT .and. MLyCor+count2>=RadT) then 
       RA(MLyCor+count2, 
MLxCor+Height) = '-' 
       RA(MLyCor+count2, MLxCor-
Height) = '-' 
      end if 
     end do 
    end do 
 
    do Height = 0, DoubRad ! Draws locations around the current 
particle that are too close for the new particle to be added due to overlap 
     MidWay = DoubRad**2 - Height**2 
     RowRad = abs(sqrt(Midway)) 
     do count2 = -rowrad+1, rowrad-1 
      if (MLyCor+count2<=GridSize .and. 
MLxCor+Height<=GridSize-RadT .and. MLyCor+count2>=RadT .and. 
MLxCor+Height>=RadT) then 
       RA(MLyCor+count2, 
MLxCor+Height) = '-' 
      end if 
      if (MLyCor+count2<=GridSize .and. 
MLxCor-Height<=GridSize-RadT .and. MLyCor+count2>=RadT .and. MLxCor-
Height>=RadT) then 
       RA(MLyCor+count2, MLxCor-
Height) = '-' 
      end if 
     end do 
    end do 
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    do Height = -RadIn, RadIn 
     do count2 = MlyCor-1, 1, -1 
      if (count2<=GridSize .and. 
MLxCor+Height<=GridSize-RadT .and. count2>=RadT .and. MLxCor+Height>=RadT) then 
       RA(count2, MLxCor+Height) = '-' 
      end if 
     end do 
    end do 
 
    do Height = -DoubRad, 0  ! Adds the valid 
spots for the resting particle to be placed 
     MidWay = DoubRad**2 - Height**2 
     RowRad = abs(sqrt(Midway)) 
     if (MLyCor+RowRad<=GridSize .and. 
MLxCor+Height<=GridSize-RadT .and. MLxCor+Height>=RadT .and. 
MLyCor+RowRad>=RadT) then 
      if (RA(MLyCor+RowRad, MLxCor+Height) 
/= '-') then 
       RA(MLyCor+RowRad, 
MLxCor+Height) = '1' 
       RAMolClose(MLyCor+RowRad, 
MLxCor+Height) = a 
      end if 
     end if 
     if (MLyCor-RowRad>=RadT .and. 
MLxCor+height<=GridSize-RadT .and. MLxCor+height>=RadT .and. MLyCor-
RowRad<=GridSize) then 
      if (RA(MLyCor-RowRad, MLxCor+Height) /= 
'-') then 
       RA(MLyCor-RowRad, 
MLxCor+Height) = '1' 
       RAMolClose(MLyCor-RowRad, 
MLxCor+Height) = a 
      end if 
     end if 
     if (MLyCor+RowRad<=GridSize .and. MLxCor-
Height<=GridSize-RadT .and. MLxCor-Height>=RadT .and. MLyCor+RowRad>=RadT) then 
      if (RA(MLyCor+RowRad, MLxCor-Height) /= 
'-') then 
       RA(MLyCor+RowRad, MLxCor-
Height) = '1' 
       RAMolClose(MLyCor+RowRad, 
MLxCor-Height) = a 
      end if 
     end if 
     if (MLyCor-RowRad>=RadT .and. MLxCor-
height<=GridSize-RadT .and. MLxCor-height>=RadT .and. MLyCor-RowRad<=GridSize) 
then 
      if (RA(MLyCor-RowRad, MLxCor-Height) /= 
'-') then 
       RA(MLyCor-RowRad, MLxCor-
Height) = '1' 
       RAMolClose(MLyCor-RowRad, 
MLxCor-Height) = a 
      end if 
     end if 
     do count2 = -RowRad, RowRad 
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      if (MLyCor+count2<=GridSize .and. 
MLxCor+height<=GridSize-RadT .and. MLxCor+height>=RadT .and. 
MLyCor+count2>=RadT) then 
       if (RA(MLyCor+count2, 
MLxCor+Height) /= '-')  then 
        RA(MLyCor+count2, 
MLxCor+Height) = '1' 
       
 RAMolClose(MLyCor+count2, MLxCor+Height) = a 
       end if 
      end if 
      if (MLyCor-count2>=RadT .and. 
MLxCor+height<=GridSize-RadT .and. MLxCor+height>=RadT .and. MLyCor-
count2<=GridSize) then 
       if (RA(MLyCor-count2, 
MLxCor+Height) /= '-') then 
        RA(MLyCor-count2, 
MLxCor+Height) = '1' 
        RAMolClose(MLyCor-
count2, MLxCor+Height) = a 
       end if 
      end if 
      if (MLyCor+count2>=RadT .and. MLxCor-
height<=GridSize-RadT .and. MLxCor-height>=RadT .and. MLyCor+count2<=GridSize) then 
       if (RA(MLyCor+count2, MLxCor-
Height) /= '-') then 
        RA(MLyCor+count2, 
MLxCor-Height) = '1' 
       
 RAMolClose(MLyCor+count2, MLxCor-Height) = a 
       end if 
      end if 
      if (MLyCor-count2<=GridSize .and. MLxCor-
height<=GridSize-RadT .and. MLxCor-height>=RadT .and. MLyCor-count2>=RadT) then 
       if (RA(MLyCor-count2, MLxCor-
Height) /= '-') then 
        RA(MLyCor-count2, 
MLxCor-Height) = '1' 
        RAMolClose(MLyCor-
count2, MLxCor-Height) = a 
       end if 
      end if 
     end do 
    end do 
   end do 
 
   do a = 1, GridSize ! Finds the valid points and saves them to an array 
    do b = 1, GridSize 
     if (RA(b,a) == '1') then 
      Ones(OneCount, 1) = b 
      Ones(OneCount, 2) = a 
      OneCount = OneCount + 1 
     end if 
    end do 
   end do 
 



William Eales 
 

168 
 

   do a = 1, OneCount - 1 ! Finds the closest of these points to the impact 
location and moves the particle to it 
    TempX = Ones(a,2) 
    TempY = Ones(a,1) 
 
    if (TempY <= y+1) then 
     Dist = ((x-TempX)**2)+((y-TempY)**2) 
     Dist = sqrt(Dist) 
     if (Dist < SavDist .or. SavDist == 0) then 
      SavDist = Dist 
      SavOneX = Ones(a,2) 
      SavOneY = Ones(a,1) 
     end if 
    end if 
   end do 
 
   TempX = SavOneX 
   TempY = SavOneY 
 
   if (TempX == 0 .and. TempY == 0) then 
    GO TO 10 
   end if 
    
   SavOnePart = RAMolClose(TempY, TempX) 
 
   SafeLocCount = 0 
   SavIncremX = SavOneX 
   SavIncremY = SavOneY 
   SafeLocFound = .FALSE. 
   FinalSavX = 0 
   FinalSavY = 0 
   LR = 0 
   RealPos1 = 0 
   RealPos2 = 0 
 
   if (MLxReal(SavOnePart) == TempX) then ! Determines which way 
the particle should roll 
    call random_number(Rand) 
    LRNo = 1 + floor(2*Rand) 
    if (LRNo == 1) then 
     LR = -1 
    elseif (LRNo == 2) then 
     LR = 1 
    end if 
   elseif (MLxReal(SavOnePart) < TempX) then 
    LR = 1 
   elseif (MLxReal(SavOnePart) > TempX) then 
    LR = -1 
   end if 
 
   RMPInter = 0 
   RMPPrev = SavOnePart 
   RealPos1 = SavOnePart 
 
   do a = 1, OneCount-1 
    if (Ones(a,2) == TempX) then 
     SideCount = a 
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    end if 
   end do 
    
   do while (SafeLocFound .eqv. .FALSE.) ! Iterates in that direction until 
the next position would be higher, or reaching the edge of the box 
    if (Ones(SideCount+LR,1) > Ones(SideCount,1) .or. 
Ones(SideCount,2) == RadT .or. Ones(SideCount,2) == GridSize-RadT) then 
     SafeLocFound = .TRUE. 
    else 
     SideCount = SideCount + LR 
    end if 
   end do 
 
   TempX = Ones(SideCount,2) 
   TempY = Ones(SideCount,1) 
 
   do a = 1, MolNo-1 ! Finds the particles closest to the low point for the 
new particle to be resting on 
    if (MLyReal(a) < TempY+RadT) then 
     Dist = ((MLxReal(a)-TempX)**2)+((MLyReal(a)-
TempY)**2) 
     Dist = sqrt(Dist) - RadT - MLr(a) 
     if (Dist <= FinalPart(1,2)) then 
      FinalPart(2,1) = FinalPart(1,1) 
      FinalPart(2,2) = FinalPart(1,2) 
      FinalPart(2,3) = FinalPart(1,3) 
      FinalPart(1,1) = a 
      FinalPart(1,2) = Dist 
      FinalPart(1,3) = Dist + RadT + MLr(a) 
     elseif (Dist <= FinalPart(2,2)) then 
      FinalPart(2,1) = a 
      FinalPart(2,2) = Dist 
      FinalPart(2,3) = Dist + RadT + MLr(a) 
     end if 
    end if 
   end do 
 
50   CONTINUE 
 
   PartCoords(1,1) = MLxReal(FinalPart(1,1)) 
   PartCoords(1,2) = MLyReal(FinalPart(1,1)) 
 
   PartCoords(2,1) = MLxReal(FinalPart(2,1)) 
   PartCoords(2,2) = MLyReal(FinalPart(2,1)) 
 
   if (TempX == RadT .or. TempX == GridSize-RadT) then 
    EdgeCase = .TRUE. 
   end if 
 
   if (EdgeCase .eqv. .TRUE.) then ! If the particle is on an edge, it 
balances the new particle on the edge + one particle 
    NewX = TempX 
 
    Dist = RadT + MLr(FinalPart(1,1)) 
 
    NewY = -
(MLxReal(FinalPart(1,1))**2)+(2*MLxReal(FinalPart(1,1))*NewX) 
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    NewY = NewY+(Dist**2)-(NewX**2) 
    NewY = sqrt(NewY) 
 
    if (NewY /= NewY) then 
 
25     CONTINUE 
      
     if (FirstEdge .eqv. .TRUE.) then 
      do a = 1, MolNo-1 
       Dist = (MLxReal(a)-NewX) 
       if (Dist < RadT + MLr(a) + 
(RadT*8)) then 
        EdgeCombi(EdgeCount) = 
a 
        EdgeCount = EdgeCount + 
1 
       end if 
      end do 
     end if 
 
     FirstEdge = .FALSE. 
 
     if (EdgeAttempt <= EdgeCount-1) then 
      FinalPart(1,1) = EdgeCombi(EdgeCount-
EdgeAttempt) 
      EdgeAttempt = EdgeAttempt + 1 
      GO TO 50 
     end if 
 
     FullCount = FullCount + 1 
     GO TO 10 
    end if 
 
    if (TempY - (MLyReal(FinalPart(1,1)) + NewY) < TempY - 
(MLyReal(FinalPart(1,1)) - NewY)) then 
     NewY = MLyReal(FinalPart(1,1)) + NewY 
    else 
     NewY = MLyReal(FinalPart(1,1)) - NewY 
    end if 
 
    do a = 1, MolNo-1 ! Confirming the new particle is not 
overlapping with any other particles 
     Dist = ((MLxReal(a)-NewX)**2)+((MlyReal(a)-
NewY)**2) 
     Dist = sqrt(Dist) 
     if (Dist < MLr(a)+RadT-0.25) then 
      OverlapCount = OverlapCount + 1 
      if (OverlapCount > 2500) then 
       GO TO 10 
      end if 
  
      FinalPart(1,1) = a 
      FullCount = FullCount + 1 
      GO TO 50 
     end if 
    end do 
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    if (NewX < RadT .or. NewY < RadT .or. NewX > GridSize-
RadT .or. NewY > GridSize-RadT) then 
     FullCount = FullCount + 1 
     GO TO 25 
    end if 
     
   else ! else if the particle is not on an edge it balances on two particles 
through stochastic optimisation 
    newCoords(1) = TempX 
    newCoords(2) = TempY 
 
    stochDists(1) = FinalPart(1,3) 
    stochDists(2) = FinalPart(2,3) 
 
    sumDist = stochDists(1) + stochDists(2) 
 
    dx(1) = 10 * RadLarge 
    dx(2) = 10 * RadLarge 
 
    do a = 1, 10 
     do b = 1, 2 
      dx(b) = dx(b) / 10 
     end do 
     do c = 1, 500 
      call random_number(RX) 
      stochxnew(2) = newCoords(2) + dx(2) * 
(2*RX-1) 
      call random_number(RX) 
      stochxnew(1) = newCoords(1) + dx(1) * 
(2*RX-1) 
 
      ibad = 0 
 
      do b = 1, 2 
       stochDists(b) = ((PartCoords(b,1)-
stochxnew(1))**2)+((PartCoords(b,2)-stochxnew(2))**2) 
       stochDists(b) = sqrt(stochDists(b)) – 
RadT – MLr(FinalPart(b,1)) 
       if (stochDists(b) < 0) then 
        ibad = 1 
       end if 
      end do 
      stochynew = stochDists(1) + stochDists(2) 
      if (stochynew < sumDist .and. ibad == 0) 
then 
       do b = 1, 2 
        newCoords(b) = 
stochxnew(b) 
       end do 
       sumDist = stochynew 
      end if 
     end do 
    end do 
   
    NewX = newCoords(1) 
    NewY = newCoords(2) 
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    do a = 1, MolNo-1 
     Dist = ((MlxReal(a)-NewX)**2)+((MlyReal(a)-
NewY)**2) 
     Dist = sqrt(Dist) 
     if (Dist < MLr(a)+RadT) then 
      OverDist = 0 
      OverlapCount = OverlapCount + 1 
      if (OverlapCount > 2500) then 
       NotBal = .TRUE. 
       GO TO 70 
      end if 
  
      do b = 1, 2 
       Dist = ((MlxReal(a)-
PartCoords(b,1))**2)+((MlyReal(a)-PartCoords(b,2))**2) 
       Dist = sqrt(Dist) 
       if (Dist < OverDist .or. OverDist == 
0) then 
        OverDist = Dist 
        OverDistNo = b 
       end if 
      end do 
      FinalPart(OverDistNo,1) = a 
      FullCount = FullCount + 1 
      if (OverDist == 0) then 
       GO TO 10 
      else 
       GO TO 50 
      end if 
     end if 
    end do 
 
    NotBal = .FALSE. 
    if (NewX > PartCoords(1,1) .and. NewX > PartCoords(2,1)) 
then ! Confirms the new particle is resting in between the old particles 
     NotBal = .TRUE. 
    elseif (NewX < PartCoords(1,1) .and. NewX < 
PartCoords(2,1)) then 
     NotBal = .TRUE. 
    end if 
    if (NewY < PartCoords(1,2) .and. NewY < PartCoords(2,2)) 
then 
     NotBal = .TRUE. 
    end if 
    do b = 1, 2 
     Dist = ((NewX-PartCoords(b,1))**2)+((NewY-
PartCoords(b,2))**2) 
     Dist = sqrt(Dist) 
     if (Dist > RadT + MLr(FinalPart(b,1))+1) then 
      NotBal = .TRUE. 
     end if 
    end do 
 
    Dy = (PartCoords(1,2) – PartCoords(2,2)) / (PartCoords(1,1) 
– PartCoords(2,1)) 
    intC =  PartCoords(1,2) – (Dy * PartCoords(1,1)) 
    CheckY = (Dy * NewX) + intC 
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    if (NewY < CheckY) then 
     NotBal = .TRUE. 
    end if 
 
70    CONTINUE 
 
    OverlapCount = 0 
 
    If (NotBal .eqv. .TRUE.) then ! If the particle is not 
correctly balancing then it looks for alternate particles to be resting on and moves to that 
location 
     if (FirstBal .eqv. .TRUE.) then 
      if (FinalPart(1,1) > FinalPart(2,1)) then 
       count = FinalPart(1,1) 
       FinalPart(1,1) = FinalPart(2,1) 
       FinalPart(2,1) = count 
       GO TO 50 
      end if 
 
      do a = 1, MolNo-1 
       Dist = ((MLxReal(a)-TempX)**2) 
       Dist = sqrt(Dist) 
       if (Dist < RadT + MLr(a) + 
(RadT*8)) then 
       
 BalCheckNo(BalCheckCount) = a 
        BalCheckCount = 
BalCheckCount + 1 
       end if 
      end do 
      aLoop: do a = 1, BalCheckCount-1 
       do b = 1, BalCheckCount-1 
        if (b < a) then 
         if (BalCount <= 
100000) then 
          if 
(BalCheckNo(a) /= 0 .and. BalCheckNo(b) /= 0) then 
           if 
(abs(MlxReal(BalCheckNo(a)) – MlxReal(BalCheckNo(b))) <= RadT*2 + MLr(BalCheckNo(a)) 
+ MLr(BalCheckNo(b))) then 
           
 BalCombi(BalCount,1) = BalCheckNo(a) 
           
 BalCombi(BalCount,2) = BalCheckNo(b) 
           
 BalCount = BalCount + 1 
          
 end if 
          end if 
         else 
          exit aLoop 
         end if 
        end if 
       end do 
      end do aLoop 
     end if 
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     FirstBal = .FALSE. 
 
     if (BalAttempt <= BalCount-1) then 
      FinalPart(1,1) = BalCombi(BalCount-
BalAttempt,1) 
      FinalPart(2,1) = BalCombi(BalCount-
BalAttempt,2) 
      BalAttempt = BalAttempt + 1 
      if (BalAttempt <= 100000) then 
       GO TO 50 
      end if 
     end if 
 
     if (TempX >= GridSize-(RadT*5)) then 
      OverlapCount = 0 
      TempX = GridSize-RadT 
      EdgeCase = .TRUE. 
      GO TO 50 
     elseif (TempX <= RadT+(RadT*5)) then 
      OverlapCount = 0 
      TempX = RadT 
      EdgeCase = .TRUE. 
      GO TO 50 
     end if 
 
     GO TO 10 
 
    end if 
 
   end if 
 
   if (NewX > GridSize-RadT .or. NewX < RadT .or. NewY > GridSize-
RadT .or. NewY < RadT) then ! Confirms the particle is within the bounds of the box 
    if (TempX >= GridSize-RadT-RadT) then 
     OverlapCount = 0 
     TempX = GridSize-RadT 
     EdgeCase = .TRUE. 
     GO TO 50 
    elseif (TempX <= RadT+RadT) then 
     OverlapCount = 0 
     TempX = RadT 
     EdgeCase = .TRUE. 
     GO TO 50 
    end if 
    GO TO 10 
   end if 
 
   MlxReal(MolNo) = NewX ! Saves the particle location 
   MlyReal(MolNo) = NewY 
   MLr(MolNo) = RadT 
   FullCount = 0 
   MolNo = MolNo + 1 
 
   RA = ‘0’ 
   RAMolClose = 0 
  end if 
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10  CONTINUE 
 
 else 
  Full = 1 
 end if 
 
 end 
  
 subroutine PointSafe ! Determines if the falling particle has impacted yet 
 use allSubs ! Loads the variables from the module 
 integer a, b 
 real Dist 
 character t 
 
 Hit = .FALSE. 
 FullCheck = .FALSE. 
 
 ! Checks the distance between the current falling particle location and previously 
placed partice to determine if it has impacted 
 
 cloop: do a = 1, MolNo – 1 
  Dist = ((MlxReal(a)-x)**2)+((MlyReal(a)-y)**2) 
  Dist = sqrt(Dist) 
  if (Dist <= ((RadT)+(Mlr(a)))) then 
   Hit = .TRUE. 
   exit cloop 
  end if 
 end do cloop 
 
 ! If the impact is above the top of the box, a counter is incremented to show the box 
may be full 
 if ((Hit .eqv. .TRUE.) .and. (y >= (GridSize – RadT))) then 
  Hit = .FALSE. 
  FullCount = FullCount + 1 
  RoofCount = RoofCount + 1 
 end if 
 
 if (RoofCount >= 2500) then 
  FullCheck = .TRUE. 
 end if 
 
 if (FullCount == 2500000) then 
  Full = 1 
 end if 
 
 end  
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Appendix 2: Percolation Chain Detection Algorithm 

This appendix contains the algorithm used to investigate both 2D and 3D 

systems for percolation chains. As it only looks at the contacts between the 

particles, the number of dimensions is irrelevant to it, excluding when importing 

file data. 

 Module VarList ! Initalises variables to be used across all functions 

 real, dimension (      , allocatable :: MLxReal 

 real, dimension (:), allocatable :: MLyReal 
 !real, dimension (:), allocatable :: MLzRea– - Needs to be included for 3D systems 
 integer, dimension (:), allocatable :: MLr 
 integer, dimension (:,:), allocatable :: Contacts 
 integer, dimension (:), allocatable :: Visited 
 integer, dimension (:), allocatable :: TotShap 
 integer, dimension (:,:), allocatable :: Edge 
 integer, dimension (:), allocatable :: EdgeCount 
 integer :: n 
 integer :: nlines 
 integer :: GridSize 
 end module 
  
 program VoidCalcs 
 use VarList ! Loads module variables 
 
 ! Initialises local variables and sets their starting values 
 character FileName*15, t*1 
 integer nlinesB, Depth, ShapeCount, CurCont, y, m 
 integer, dimension (1:250) :: Path 
 integer, dimension (1:20000,1:250) :: SetPath 
 integer, dimension (1:20000,1:250) :: Shapes 
 integer, dimension (1:20000) :: ShapesPrint 
 logical Found 
 integer, dimension (:), allocatable :: LocalShapeCount 
 integer, dimension (:), allocatable :: TotCont 
 integer, dimension (1:20000) :: ShapeLength 
 integer :: RadLarge 
 integer :: count 
 integer :: x 
 integer :: LoopCount 
 integer :: ProgCount 
 integer :: PCId 
 character, dimension (200) :: FileID*3 
 logical :: fileexists 
 integer :: OutCount 
 
 do ProgCount = 1, 50 
  write(FileID(ProgCount)‘ '(i’)') ProgCount 
 end do 
 
 do ProgCount = 1, 50 ! Loop for number of files to be investigated 
 
 RadLarge = 0 
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 GridSize = 0 
 m = 0 
 x = 0 
 n = 0 
 nlines = 0 
 nlinesB = 0 
 ShapeCount = 1 
 CurCont = 0 
 y = 0 
 
 FileName ‘’'' 
 FileName = tri177djusttl(FileID(ProgCount))) /‘ '.c’v' 
 
 INQUIRE(File=FileName, EXIST=fileexists) 
 
 if (fileexists .eqv. .FALSE.) then 
  GO TO 50 
 end if 
 ! Confirms the files exists and if so loads it, if not skips it and moves to the next 
 open(1, file = FileName, statu’='o’d') 
 
 do 
  read(1, *,iostat=io) 
  if (io/=0) EXIT 
  nlines=nlines+1 
 end do 
 close(1) 
 ! Determines the number of rows in that files which is equivalent to the number of 
particles in the system 
 ! Allocates the arrays using this value 
 allocate(MLyReal(1:nlines)) 
 allocate(MLxReal(1:nlines)) 
 ! allocate(MLzReal(1:nlines)– - To be included for 3D system files 
 allocate(MLr(1:nlines)) 
 
 allocate(Visited(1:nlines)) 
 allocate(LocalShapeCount(1:nlines)) 
 allocate(Edge(1:nlines,1:4)) 
 allocate(EdgeCount(1:nlines)) 
 allocate(TotCont(1:nlines)) 
 allocate(TotShap(1:nlines)) 
  
 ! Sets initial value of those arrays 
 MLyReal = 0 
 MLxReal = 0 
 ! MLzReal = – - To be included for 3D systems 
 MLr = 0 
 Shapes = 0 
 ShapeLength = 0 
 Visited = 0 
 SetPath = 0 
 Path = 0 
 LocalShapeCount = 0 
 OneCont = 0 
 TotCont = 1 
 TotShap = 0 
 Edge = 0 
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 EdgeCount = 1 
 OutCount = 0 
 
 open(1, file = FileName, statu’='o’d') 
 do n = 1, nlines 
  read (1,*) MLxReal(n), MLyReal(n), MLr(n) ! Include MLzReal(n), inbetween 
the y and radius inputs for 3D systems 
 end do 
 close(1) 
 ! Loads in the contacts file for the system 
 FileName ‘’'' 
 FileName ‘ 'contac’s' // tri178djusttl(FileID(ProgCount))) /‘ '.c’v' 
 open(2, file = FileName, statu’='o’d') 
 
 do 
  read(2, *,iostat=io) 
  if (io/=0) EXIT 
  nlinesB = nlinesB + 1 
 end do 
 close(2) 
 allocate(Contacts(1:nlinesB,20)) 
 Contacts = 0 
 
 open(2, file = FileName, statu’='o’d') 
 do n = 1, nlinesB 
  read (2,*) Contacts(n,1), Contacts(n,2), Contacts(n,3), Contacts(n,4), 
Contacts(n,5), Contacts(n,6), Contacts(n,7) 
 end do 
 close(2) 
 
 do n = 1, nlines 
  if (MLr(n) > RadLarge) then 
   RadLarge = MLr(n) 
  end if 
 end do 
 GridSize = (((RadLarge*6))*5) 
 ! Determines the largest radius present and the grid size 
 
 ! Calculates how many particle contacts each particle has 
 do n = 1, nlinesB 
  do while (Contacts(n,TotCont(n)) /= 0) 
   TotCont(n) = TotCont(n) + 1 
  end do 
 
  TotCont(n) = TotCont(n– - 1 
  TotShap(n) = TotCont(n) 
 end do 
  
 do n = 1, nlines ! Loops through each particle 
  if (TotShap(n) > 0 .and. MLxReal(n) == MLr(n)) then ! Checks that the current 
particle has at least one contact and is touching the leftmost edge of the hox 
   DepthLoop: do LoopCount = 1, 50 
10    CONTINUE 
    MaxDepth = 250 ! Maximum number of recursions 
that can occur before automatically unwinding 
    Visited = 0 
    CurCont = n 



William Eales 
 

179 
 

    y = 1 
    Depth = 1 
    Found = .FALSE. 
 
    if (LocalShapeCount(n) >= TotShap(n)) then 
     exit DepthLoop 
    elseif (Mlr(n) == 10) then ! Confirms the particle is a 
large one 
     exit DepthLoop 
    end if 
     
    ! Enters the recursion 
    call 
Searching(n,Depth,CurCont,y,ShapeCount,Found,MaxDepth,Path,SetPath,Shapes,ShapeLe
ngth,OutCount) 
 
    if (Found .eqv. .TRUE.) then ! If a shape has been found, 
increments the number of shapes 
     ShapeCount = ShapeCount + 1 
    end if 
    OutCount = 0 
   end do DepthLoop 
  end if 
 end do 
 
 ! Saves the shapes to file 
 FileName ‘’'' 
 FileName ‘ 'shap’s' // tri179djusttl(FileID(ProgCount))) /‘ '.c’v' 
 open(3, file = FileName, statu’='n’w') 
 do n = 1, ShapeCount 
  do m = 1, 250 
   write(’,'(I3,A1,’)', advanc’='’o') SetPath(n,m)‘ ’,' 
  end do 
  write(3, *‘’'' 
 end do 
 close(3) 
 
 ! Deallocates the arrays so they can be reallocated with the correct length for the next 
file 
 deallocate(MLyReal) 
 deallocate(MLxReal) 
 ! deallocate(MLzReal– - For 3D systems 
 deallocate(MLr) 
 
 deallocate(Visited) 
 deallocate(LocalShapeCount) 
 deallocate(Edge) 
 deallocate(EdgeCount) 
 deallocate(TotCont) 
 deallocate(TotShap) 
 
 deallocate(Contacts) 
 
50 CONTINUE 
 
 end do 
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 end program 
 
 RECURSIVE SUBROUTINE 
Searching(n1,Depth1,CurCont1,y1,ShapeCount1,Found,MaxDepth,Path1,SetPath1,Shapes
1,ShapeLength1,OutCount1) 
 use VarList ! Loads module variables and initalises local recursion variables 
 integer, intent(inout) :: Depth1 
 integer, intent(inout) :: CurCont1 
 integer, intent(inout) :: y1 
 integer, intent(inout) :: ShapeCount1 
 integer, intent(in) :: n1 
 integer, intent(in) :: MaxDepth 
 integer, dimension (1:250), intent(inout) :: Path1 
 integer, dimension (1:20000,1:250), intent(inout) :: SetPath1 
 integer, dimension (1:20000,1:250), intent(inout) :: Shapes1 
 integer, dimension (1:20000), intent(inout) :: ShapeLength1 
 integer :: OutCount1 
 integer :: SavCont 
 integer :: x 
 integer :: count 
 integer :: count2 
 integer :: count3 
 integer :: PathCount 
 integer :: NewCont 
 logical, intent(inout) :: Found 
 logical :: LT 
 integer :: Dupli 
 integer :: Insi 
 integer :: InsiCount 
 character :: t 
 
 SavCont = CurCont1 
 Visited(SavCont) = 1 
 x = 1 
 y1 = 1 
 count = 0 
 count2 = 0 
 count3 = 0 
 PathCount = 0 
 Found = .FALSE. 
 Dupli = 0 
 Insi = 0 
 InsiCount = 0 
 OutCount1 = OutCount1 + 1 
 if (Depth1 <= MaxDepth) then ! Confirms the recursion has not gone too deep 
 
 llop: do x = 1, TotShap(CurCont1) ! Loops through the current particle contacts 
 
  LT = .FALSE. 
  if (x == 1) then 
   ThisLoop: do count = 1, Depth1-1 ! Makes the path travelled through 
ordered in ascending particle numbers 
    if (CurCont1 < Path1(count)) then 
     LT = .TRUE. 
     exit ThisLoop 
    end if 
   end do ThisLoop 
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   if (LT .eqv. .TRUE.) then 
    do count2 = Depth1, count+1, -1 
     Path1(count2) = Path1(count2-1) 
    end do 
    Path1(count) = CurCont1 
   else 
    Path1(Depth1) = CurCont1 
   end if 
  end if 
 
  if (MLr(Contacts(CurCont1,x)) == 10) then ! If the connected particle is 
small, then it is skipped 
   GO TO 20 
  else 
   NewCont = Contacts(CurCont1,x) 
   if (OutCount1 > 100000) then ! Looped for too many times and may 
be stuck so exits the outer loop 
    exit llop 
   end if 
 
   if (MLxReal(NewCont) == GridSize-MLr(NewCont)) then ! Current 
contact is on the right hand edge of the box, in 3D systems, all instances of MLxReal can be 
swapped for MLzReal to look for chains crossing in the perpendicular direction 
    if (ShapeCount1 > 1) then ! Determining if the chain has 
already been found 
     PathCount = 0 
     Dupli = 0 
     ShapeLoop: do count = 1, ShapeCount1-1 
      PathCount = 0 
      do count2 = 1, ShapeLength1(count) 
       do count3 = 1, Depth1 
        if (Shapes1(count,count2) 
== Path1(count3)) then 
         PathCount = 
PathCount + 1 
        end if 
       end do 
      end do 
      if (PathCount == ShapeLength1(count)) then 
       Dupli = 1 
       exit ShapeLoop 
      end if 
     end do ShapeLoop 
    end if 
  
    if (ShapeCount1 == 1 or. Dupli == 0) then ! If unique 
chain (or the first one) then it is saved as the recursion unwinds 
     LT = .FALSE. 
     ThatLoop2: do count = 1, y1-1 
      if (SavCont < 
Shapes1(ShapeCount1,count)) then 
       LT = .TRUE. 
       exit ThatLoop2 
      end if 
     end do ThatLoop2 
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     if (LT .eqv. .TRUE.) then 
      do count2 = y1, count+1, -1 
       Shapes1(ShapeCount1,count2) = 
Shapes1(ShapeCount1,count2-1) 
      end do 
      Shapes1(ShapeCount1,count) = SavCont 
     else 
      Shapes1(ShapeCount1,y1) = CurCont1 
     end if 
     SetPath1(ShapeCount1,y1) = SavCont 
     y1 = y1 + 1 
     ShapeLength1(ShapeCount1) = Depth1 
     Found = .TRUE. 
     exit llop 
    else  ! If it has already been found the recursion continues 
     if (Visited(NewCont) /= 1) then 
      Depth1 = Depth1 + 1 
      call 
Searching(n1,Depth1,NewCont,y1,ShapeCount1,Found,MaxDepth,Path1,SetPath1,Shapes1
,ShapeLength1,OutCount1) 
     end if 
    end if 
   else ! If not at the right hand edge, the recursion continues to the 
next contact 
    if (Visited(NewCont) /= 1) then 
     Depth1 = Depth1 + 1 
     call 
Searching(n1,Depth1,NewCont,y1,ShapeCount1,Found,MaxDepth,Path1,SetPath1,Shapes1
,ShapeLength1,OutCount1) 
  
     if (Found .eqv. .TRUE.) then 
      LT = .FALSE. 
      ThatLoop3: do count = 1, y1-1 
       if (SavCont < 
Shapes1(ShapeCount1,count)) then 
        LT = .TRUE. 
        exit ThatLoop3 
       end if 
      end do ThatLoop3 
          
      if (LT .eqv. .TRUE.) then 
       do count2 = y1, count+1, -1 
       
 Shapes1(ShapeCount1,count2) = Shapes1(ShapeCount1,count2-1) 
       end do 
       Shapes1(ShapeCount1,count) = 
SavCont 
      else 
       Shapes1(ShapeCount1,y1) = 
CurCont1 
      end if 
      SetPath1(ShapeCount1,y1) = SavCont 
      y1 = y1 + 1 
      exit llop 
     end if 
    end if 
   end if 
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  end if 
 
20  CONTINUE 
 end do llop 
 
 end if 
 
 Visited(SavCont) = 0 ! Unwinding the recursion, marks the particle as no longer 
visited, and removes the particle from the path 
 do count = 1, Depth1 
  if (Path1(count) == SavCont) then 
   do count2 = count, Depth1-1 
    Path1(count2) = Path1(count2+1) 
   end do 
   Path1(Depth1) = 0 
   exit 
  end if 
 end do 
 
 Depth1 = Depth1 - 1 
 
 END SUBROUTINE Searching  
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Appendix 3: 3D System Algorithm 

This appendix contains the algorithm used for creating 3D systems. 

 module allSubs ! Initialises the variables used through all functions 
 character, dimension (:,:,:), allocatable, public :: RA*4 
 integer MolNo, RadLarge, RadSmall, BoxSize, GridSize, Rads, count, SN, Full, 
FullCount, OneLegacyCount 
 integer MLr, AllocateVal, RoofCount 
 real MLxReal, MLyReal, MLzReal 
 integer, dimension (:), allocatable, public :: OneLegacyCounterCount 
 integer, dimension (:,:), allocatable, public :: Ones 
 real, dimension (:,:,:), allocatable, public :: OnesLegacy 
 integer, dimension (:,:), allocatable, public :: Contacts 
 real, dimension (:,:,:), allocatable, public :: yVal 
 integer, dimension (:,:), allocatable, public :: OrderyVal 
 integer, dimension (:,:), allocatable, public :: FinalTriCombi 
 dimension MLr(10000), Rads(10), MLxReal(10000), MLyReal(10000), 
MLzReal(10000) 
 logical Hit, FullCheck, FirstCusps, RoofHit 
 integer x, y, z, RadT, RestartNo 
 integer HMAllo 
 end module allSubs 
 
 program packedbed 
 use allSubs ! Loads the variables from the module 
 
 ! Initialises local variables 
 character t, FileName*15, FileID*3 
 
 integer m, n, o, check, PrintNo, iSeed, ProgCount, PCId 
 dimension FileID(200) 
 dimension iSeed(50) 
 real RX, Dist, DistCheck 
 real PartArea, VoidArea, VoidFrac, Pi 
 integer count2, TotLength, count3, RunAmo, RunRedo 
 
 logical Cont, Impact 
 
 MLxReal = 0 
 MLyReal = 0 
 MLzReal = 0 
 MLr = 0 
 RunAmo = 250 
 RunRedo = 0 
 
 FirstCusps = .FALSE. 
 
 Dist = 0 
 DistCheck = 0 
 
 RestartNo = 0 
 
 PartArea = 0 
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 VoidArea = 0 
 VoidFrac = 0 
 Pi = 3.141596535 
 TotLength = 0 
 MolNo = 1 
 OneLegacyCount = 1 
 FileName = '' 
 Full = 0 
 check = 0 
 FullCount = 0 
 Impact = .FALSE. 
 count3 = 0 
 count = 0 
 count2 = 0 
 
 t = 'y' 
 
 if (t == 'y') then 
  Rads(1) = 10 ! Sets the radius of a particle. Additional radii would be inputted 
as Rads(x) = 'Radius' 
  SN = 1 ! Sets the number of different radii in the system 
 
  RadLarge = 0 
  RadSmall = 0 
  
  do count = 1, SN 
   if (RadLarge < Rads(count)) then 
    RadLarge = Rads(count) 
   end if 
   if (RadSmall > Rads(count) .or. RadSmall == 0) then 
    RadSmall = Rads(count) 
   end if 
  end do 
 
  RadLarge = 10 
  RadSmall = 10 
 
  ! Calculates the box size based on the largest radius present 
  BoxSize = (RadLarge*6) 
  GridSize = (BoxSize*2) 
  AllocateVal = (((BoxSize*3)**2)*2) 
  HMAllo = GridSize + (2*RadLarge) 
 
  ! Allocates the arrays 
  allocate(RA(1:HMAllo, 1:GridSize, 1:GridSize)) 
 
  allocate(Ones(1:AllocateVal,1:3)) 
  allocate(FinalTriCombi(1:AllocateVal,1:3)) 
 
  allocate(yVal(1:GridSize,1:GridSize,2)) 
  allocate(OrderyVal(1:GridSize*GridSize,2)) 
 
  do ProgCount = 1, RunAmo 
   write(FileID(ProgCount), '(i0)') ProgCount 
  end do 
 
  do ProgCount = 1, 50 ! Starts the loop for the number of systems to be created 
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   PCId = ProgCount 
 
   ! Sets variables intial values 
   MLxReal = 0 
   MLyReal = 0 
   MLzReal = 0 
   MLr = 0 
 
   FirstCusps = .FALSE. 
 
   Dist = 0 
   DistCheck = 0 
 
   RestartNo = 0 
 
   PartArea = 0 
   VoidArea = 0 
   VoidFrac = 0 
   TotLength = 0 
   Pi = 3.141596535 
   MolNo = 1 
   OneLegacyCount = 1 
   FileName = '' 
   Full = 0 
   check = 0 
   FullCount = 0 
   RoofCount = 0 
   RoofHit = .FALSE. 
   Impact = .FALSE. 
   count3 = 0 
   count = 0 
   count2 = 0 
 
   Ones = 0 
  ! OnesLegacy = 0 
  ! OneLegacyCounterCount = 0 
   yVal = 0 
 
   RA = '0' 
 
   call random_seed() 
 
   do while (count < 1000000) 
 
    Impact = .FALSE. 
 
    ! Picks a random radius and x and z coordinates, and sets y 
to be on the bottom of the box 
    call random_number(RX) 
    count2 = 1 + floor(SN*RX) 
    RadT = Rads(count2) 
 
    call random_number(RX) 
    count2 = 1 + floor((GridSize-(2*RadT))*RX) 
    x = count2+RadT 
 
    call random_number(RX) 
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    count2 = 1 + floor((GridSize-(2*RadT))*RX) 
    z = count2+RadT 
 
    y = RadT 
 
    if (MolNo > 1) then  ! Checks there is already at least 
one particle in the system 
     hitloop: do count3 = 1, MolNo - 1 
      Dist = ((MLxReal(count3)-
x)**2)+((MLyReal(count3)-y)**2)+((MLzReal(count3)-z)**2) 
      Dist = sqrt(Dist) 
      if (Dist <= ((RadT)+(Mlr(count3)))) then 
       count = count + 1 
       Impact = .TRUE. 
       exit hitloop 
      end if 
     end do hitloop 
     if (Impact .eqv. .FALSE.) then ! If the particle is not 
overlapping with any others and is inside the grid, its location is saved 
      count = 0 
      MLxReal(MolNo) = x 
      MlyReal(MolNo) = y 
      MlzReal(MolNo) = z 
      MLr(MolNo) = RadT 
      MolNo = MolNo + 1 
     end if 
    else 
     MlxReal(MolNo) = x 
     MlyReal(MolNo) = y 
     MlzReal(MolNo) = z 
     MLr(MolNo) = RadT 
     MolNo = MolNo + 1 
    end if 
   end do 
 
   ! This loops through the base line to check that there is nowhere a 
small particle could fall through to the bottom of the box, and if so, places a particle there 
   do m = RadSmall, GridSize-RadSmall 
    do n = RadSmall, GridSize-RadSmall 
     Impact = .FALSE. 
     hitloop2: do count3 = 1, MolNo – 1 
      Dist = ((MlxReal(count3)-
m)**2)+((MlzReal(count3)-n)**2) 
      Dist = sqrt(Dist) 
      if (Dist <= ((RadSmall)+(Mlr(count3)))) then 
       count = count + 1 
       Impact = .TRUE. 
       exit hitloop2 
      end if 
     end do hitloop2 
     if (Impact .eqv. .FALSE.) then 
      count = 0 
      MlxReal(MolNo) = m 
      MlyReal(MolNo) = RadSmall 
      MlzReal(MolNo) = n 
      MLr(MolNo) = RadSmall 
      MolNo = MolNo + 1 
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     end if 
    end do 
   end do 
 
   do n = 1, 2500 ! Loops for each particle being added to the system, 
using the main function. At the end of each loop, it checks if the box is full and if so, leaves the 
loop. 
    Call molpos 
    if (Full == 1) then 
     exit 
    elseif (RoofHit .eqv. .TRUE.) then 
     exit 
    end if 
   end do 
 
   t = ‘y’ 
   if (t == ‘y’ .and. RoofHit .eqv. .TRUE.) then ! Saves the particle 
locations to a file 
    FileName = ‘’ 
    FileName = trim(188nitia(FileID(PCId))) // ‘.csv’ 
    open(1, file = FileName, status = ‘new’) 
    do y = 1, MolNo-1 
     write(1,*) MlxReal(y), ‘,’ , MlyReal(y), ‘,’ , MlzReal(y), 
‘,’ , MLr(y) 
    end do 
    close(1) 
   else 
    RunAmo = RunAmo + 1 
    RunRedo = RunRedo + 1 
   end if 
 
   t = ‘y’ 
   if (t == ‘y’ .and. RoofHit .eqv. .TRUE.) then ! Saves the particle 
contacts to a file 
    allocate(Contacts(1:MolNo, 1:MolNo)) 
    Contacts = 0 
    do y = 1, MolNo-1 
     n = 1 
     do x = 1, MolNo-1 
      if (x /= y) then 
       Dist = ((MlxReal(y) – 
MlxReal(x))**2) + ((MlyReal(y) – MlyReal(x))**2) + ((MlzReal(y) – MlzReal(x))**2) 
       Dist = sqrt(Dist) 
       if (Dist <= (MLr(y) + MLr(x) + 0.01)) 
then 
        Contacts(y,n) = x 
        n = n + 1 
       end if 
       if (n > TotLength) then 
        TotLength = n 
       end if 
      end if 
     end do 
    end do 
 
    FileName = ‘’ 
    FileName = ‘contacts’ // trim(188nitia(FileID(PCId))) // ‘.csv’ 
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    open(3, file = FileName, status = ‘new’) 
    do y = 1, MolNo-1 
     do x = 1, TotLength 
      write(3,’(I4,A1,X)’, advance=’no’) 
Contacts(y,x), ‘,’ 
     end do 
     write(3, *) ‘’ 
    end do 
    close(3) 
    deallocate(Contacts) 
   end if 
  end do 
 
  FileName = ‘’ ! Outputs any files that failed and were not saved 
  FileName = ‘redo.csv’ 
  open(5, file = FileName, status = ‘new’) 
  write(5,’(I4,A1,X)’, advance=’no’) RunAmo 
  write(5,’(I4,A1,X)’, advance=’no’) RunRedo 
  close(5) 
 end if 
 
 end program 
 
 
 subroutine molpos 
 use allSubs ! Loads the variables from the module 
  
 ! Sets up the local variables  
 integer count2, Spot, Height, DoubRad, RowRad, a,b,c, TempX, TempZ, RadIn, m, n, 
o, Width 
 real TempY 
 real RX, MidWay, MidWayZ, Dist, RowRadReal 
 character t, FileName*15 
 integer SavOneX, SavOneY, SavOneZ, SavDist, OneCount 
 integer Zrad, ZdoubRad 
 integer MlxCor, MlyCor, MlzCor 
 logical SafeLocFound, CuspFound 
 integer OldX, OldZ, FinCount 
 real Grad1a, Grad2a, Grad1b, Grad2b, CurrentY, ZradReal, MidWayReal 
 integer FinalPartNo 
 real FinalPartDist 
 dimension FinalPartNo(5), FinalPartDist(5,2) 
 real EquA1, EquA2, EquA3, EquB1, EquB2, EquB3, EquC1, EquC2, EquC3, EquD1, 
EquD2, EquD3, NewX, NewY, NewZ, NewYa, NewYb 
 real EquValuesA, EquValuesB, k1, k2, Outputs 
 dimension EquValuesA(3,3), EquValuesB(3), Outputs(20) 
 integer EdgeSide 
 logical EdgeCase, NewXVal, NewZVal 
 real PartCoords, stochDists, sumDist, dx, stochxnew, newCoords, stochynew 
 integer ibad 
 dimension PartCoords(3,3), stochDists(3), newCoords(3), dx(3), stochxnew(3) 
 real FinalDists, FinalCuspsSaved 
 dimension FinalCuspsSaved(15000,4) 
 dimension FinalDists(3), CuspHighList(16,3) 
 real CuspHighList, FurthDist 
 integer CuspLowCount, CuspHighCount, CuspLowMoveTo 
 logical OuterLayer 
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 real TriCheckA, TriCheckB, TriCheckC 
 logical TriCheckInside 
 real LowYVal 
 integer LowYLoc 
 dimension LowYLoc(2) 
 real Sempi, SetTri, TriA, TriB, TriC, SempiA, SempiB, SempiC 
 real DistAN, DistBN, DistCN, DistAB, DistBC, DistCA 
 real EdgeLowVal 
 integer EdgeLowA, EdgeLowB, bSide1, bSide2 
 logical InitialCusp 
 integer TriCheckCount, TriCheckNo, TriCount, TriCombi, TriAttempt, ReTriAttempt 
 logical FirstTri, FirstEdge 
 real TriCoords, OverDist 
 integer OverDistNo 
 dimension TriCheckNo(10000), TriCombi(100001,3), TriCombi2(10000000,3), 
TriCoords(3,3) 
 dimension EdgeCombi(1000000) 
 integer EdgeCount, EdgeCombi, EdgeAttempt 
 integer SideCheckCount, SideCheckNo, SideCount, SideCombi, SideAttempt 
 integer FinalTriCount 
 logical FirstSide 
 real SideCoords 
 dimension SideCheckNo(10000), SideCombi(100001,3), SideCoords(3,3) 
 integer OverlapCount, HMSize 
 real DistCheck1, DistCheck2, DistCheck3, DistCheck1Val, DistCheck2Val, 
DistCheck3Val 
 
 FinalCuspsSaved = 0 
 
40 CONTINUE 
 
 RestartNo = RestartNo + 1 
 
 ! Setting initial values of variables 
 Hit = .FALSE. 
 EdgeSide = 0 
 
 HMSize = 0 
 
 OverDist = 0 
 OverDistNo = 0 
 
 OverlapCount = 0 
 
 
 DistCheck1 = 0 
 DistCheck2 = 0 
 DistCheck3 = 0 
 DistCheck1Val = 0 
 DistCheck2Val = 0 
 DistCheck3Val = 0 
  
 CuspLowCount = 0 
 CuspHighCount = 0 
 FurthDist = 0 
 CuspLowMoveTo = 0 
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 TriCheckNo = 0 
 TriCheckCount = 1 
 TriCount = 1 
 EdgeCount = 1 
 TriCombi = 0 
 TriCombi2 = 0 
 EdgeCombi = 0 
 TriCoords = 0 
 TriAttempt = 0 
 EdgeAttempt = 0 
 FirstTri = .TRUE. 
 FirstEdge = .TRUE. 
 ReTriAttempt = 0 
 
 FinalTriCombi = 0 
 FinalTriCount = 1 
 
 
 SideCheckNo = 0 
 SideCheckCount = 1 
 SideCount = 1 
 SideCombi = 0 
 SideCoords = 0 
 SideAttempt = 0 
 FirstSide = .TRUE. 
  
 Sempi = 0 
 SetTri = 0 
 TriA = 0 
 TriB = 0 
 TriC = 0 
 SempiA = 0 
 SempiB = 0 
 SempiC = 0 
 DistAN = 0 
 DistBN = 0 
 DistCN = 0 
 DistAB = 0 
 DistBC = 0 
 DistCA = 0 
 
 LowYLoc = 0 
 LowYVal = 0 
 
 FinalDists = 0 
 
 PartCoords = 0 
 stochDists = 0 
 sumDist = 0 
 dx = 0 
 stochxnew = 0 
 newCoords = 0 
 stochynew = 0 
 
 NewXVal = .FALSE. 
 NewZVal = .FALSE. 
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 EquValuesA = 0 
 EquValuesB = 0 
 k1 = 0 
 k2 = 0 
 Outputs = 0 
 
 TRP1Swap = 0 
 TRP2Swap = 0 
 
 ZradReal = 0 
 MidWayReal = 0 
 
 FinCount = 0 
 
 CuspFound = .FALSE. 
 CurrentY = 0 
 OldX = 999 
 OldZ = 999 
 
 SavDist = 0 
 SavOneX = 0 
 SavOneY = 0 
 
 MidWay = 0 
 MidWayZ = 0 
 
 Grad1a = 0 
 Grad2a = 0 
 Grad1b = 0 
 Grad2b = 0 
 
 FinalPartNo = 999999 
 FinalPartDist = 999999 
 
 EquA1 = 0 
 EquA2 = 0 
 EquA3 = 0 
 
 EquB1 = 0 
 EquB2 = 0 
 EquB3 = 0 
 
 EquC1 = 0 
 EquC2 = 0 
 EquC3 = 0 
 
 EquD1 = 0 
 EquD2 = 0 
 EquD3 = 0 
 
 NewX = 0 
 NewY = 0 
 NewZ = 0 
 NewYa = 0 
 NewYb = 0 
 
 RowRadReal = 0 



William Eales 
 

193 
 

 
 EdgeCase = .FALSE. 
 
 ! Randomly chooses which radius will be used for this particle 
 call random_number(RX) 
 count2 = 1 + floor(2*RX) 
 if (count2 == 2) then 
  RadT = RadLarge 
 else 
  RadT = RadSmall 
 end if 
 
 wloop: do while (Hit .eqv. .FALSE.) 
 
  ! Randomly chooses the x value 
  call random_number(RX) 
  Spot = 1 + floor((GridSize-(2*RadT))*RX) 
  x = Spot+RadT 
 
  call random_number(RX) 
  Spot = 1 + floor((GridSize-(2*RadT))*RX) 
  z = Spot+RadT 
 
  do y = GridSize, RadT, -1 ! Loops from the top of the box, and sends to 
the function to determine impact 
 
   call PointSafe 
 
   ! If the box is full or an impact has I, the loop is exited 
    
   if (Full == 1) then 
    exit wloop 
   end if 
 
   if (FullCheck .eqv. .TRUE.) then 
    RoofHit = .TRUE. 
    GO TO 10 
   end if 
 
   if (Hit .eqv. .TRUE.) then 
    exit wloop 
   end if 
  end do 
 end do wloop 
 
 if (Hit .eqv. .TRUE. .and. Full /= 1) then 
  if (MolNo > 1) then 
 ‘ ’A = '0' 
 
   ! Sets up the variables to be used for particle placement 
 
   Ones = 0 
   OneCount = 1 
 
   do count = 1,–MolNo - 1 ! Loops through the particles for contour plot 
placement 
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    MLxcor = MLxReal(count) 
    MLycor = MLyReal(count) 
    MLzcor = MLzReal(count) ! Takes the radius, x, y and z 
coordinates of the current particle in the loop 
    RadIn = Mlr(count) 
     
    DoubRad = (RadIn+RadT)+1 
    ZDoubRad = (RadIn+RadT)+1 
    
    do Width = -ZDoubRad, 0 
     MidWayZ = ZDoub–ad**2 - Width**2 
     ZRad = abs(sqrt(MidwayZ)) 
     ZRadReal = abs(sqrt(MidwayZ)) 
  
     do Height = -ZRad, 0 ! Draws the particle onto the 
contour“p“ot, "-"s marking blocked loca“i”ns, "1"s being valid spots 
 
      Midway = Z–ad**2 - Height**2 
      RowRad = abs(sqrt(MidWay)) 
      MidWayReal = ZRadR–al**2 - Height**2 
      RowRadReal = abs(sqrt(MidWayReal)) 
 
      do count2 = -RowRad+1,RowRad-1 
       if (MLyCor+count2<=HMAllo .and. 
MLyCor+count2>=RadT) then 
        if (MLxCor+Height>=RadT 
.and. MLzCor+Width >= RadT) then 
        
 RA(MLyCor+count2, MLxCor+Height, MLzCor+Wi‘t‘) = '-' 
        end if 
        if (MLxCor-
Height<=GridSize-RadT .and. MLzCor+Width >= RadT) then 
        
 RA(MLyCor+count2, MLxCor-Height, MLzCor+Wi‘t‘) = '-' 
        end if 
        if (MLxCor+Height>=RadT 
.and. MLzCor-Width <=GridSize-RadT) then 
        
 RA(MLyCor+count2, MLxCor+Height, MLzCor-Wi‘t‘) = '-' 
        end if 
        if (MLxCor-
Height<=GridSize-RadT .and. MLzCor-Width <=GridSize-RadT) then 
        
 RA(MLyCor+count2, MLxCor-Height, MLzCor-Wi‘t‘) = '-' 
        end if 
       end if 
      end do 
 
      do count2 = -RowRad,RowRad ! Adds the 
valid spots for the resting particle to be placed 
       if (MLyCor+count2>=RadT .and. 
MLyCor+count2<=HMAllo) then 
        if (MLxCor+Height>=RadT 
.and. MLzCor+Width >= RadT) then  
         if 
(RA(MLyCor+count2, MLxCor+Height, MLzCor+Wid‘h‘ /= '-')  then 
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 RA(MLyCor+count2, MLxCor+Height, MLzCor+Wi‘t’) = '1' 
         end if 
        end if 
        if (MLxCor-
Height<=GridSize-RadT .and. MLzCor+Width >= RadT) then  
         if 
(RA(MLyCor+count2, MLxCor-Height, MLzCor+Wid‘h‘ /= '-') then 
         
 RA(MLyCor+count2, MLxCor-Height, MLzCor+Wi‘t’) = '1' 
         end if 
        end if 
        if (MLxCor+Height>=RadT 
.and. MLzCor-Width <= GridSize-RadT) then 
         if 
(RA(MLyCor+count2, MLxCor+Height, MLzCor-Wid‘h‘ /= '-') then 
         
 RA(MLyCor+count2, MLxCor+Height, MLzCor-Wi‘t’) = '1' 
         end if 
        end if 
        if (MLxCor-
Height<=GridSize-RadT .and. MLzCor-Width <= GridSize-RadT) then 
         if 
(RA(MLyCor+count2, MLxCor-Height, MLzCor-Wid‘h‘ /= '-') then 
         
 RA(MLyCor+count2, MLxCor-Height, MLzCor-Wi‘t’) = '1' 
         end if 
        end if 
       end if 
      end do 
 
      if (MLyCor+RowRadReal>=RadT .and. 
MLyCor+RowRadReal<=HMAllo) then 
       if (MLxCor+Height>=RadT .and. 
MLzCor+Width >= RadT) then  
        if (RA(MLyCor+count2, 
MLxCor+Height, MLzCor+Wid‘h‘ /= '-')  then 
         if 
(MLyCor+RowRadReal > yVal(MLxCor+Height, MLzCor+Width,1)) then 
         
 yVal(MLxCor+Height, MLzCor+Width,1) = MLyCor+RowRadReal 
         
 yVal(MLxCor+Height, MLzCor+Width,2) = count 
         end if 
        end if 
       end if 
       if (MLxCor-Height<=GridSize-RadT 
.and. MLzCor+Width >= RadT) then  
        if (RA(MLyCor+count2, 
MLxCor-Height, MLzCor+Wid‘h‘ /= '-') then 
         if 
(MLyCor+RowRadReal > yVal(MLxCor-Height, MLzCor+Width,1)) then 
         
 yVal(MLxCor-Height, MLzCor+Width,1) = MLyCor+RowRadReal 
         
 yVal(MLxCor-Height, MLzCor+Width,2) = count 
         end if 
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        end if 
       end if 
       if (MLxCor+Height>=RadT .and. 
MLzCor-Width <= GridSize-RadT) then 
        if (RA(MLyCor+count2, 
MLxCor+Height, MLzCor-Wid‘h‘ /= '-') then 
         if 
(MLyCor+RowRadReal > yVal(MLxCor+Height, MLzCor-Width,1)) then 
         
 yVal(MLxCor+Height, MLzCor-Width,1) = MLyCor+RowRadReal 
         
 yVal(MLxCor+Height, MLzCor-Width,2) = count 
         end if 
        end if 
       end if 
       if (MLxCor-Height<=GridSize-RadT 
.and. MLzCor-Width <= GridSize-RadT) then 
        if (RA(MLyCor+count2, 
MLxCor-Height, MLzCor-Wid‘h‘ /= '-') then 
         if 
(MLyCor+RowRadReal > yVal(MLxCor-Height, MLzCor-Width,1)) then 
         
 yVal(MLxCor-Height, MLzCor-Width,1) = MLyCor+RowRadReal 
         
 yVal(MLxCor-Height, MLzCor-Width,2) = count 
         end if 
        end if 
       end if 
      end if 
     end do 
    end do 
   end do 
 
   do a = 1, GridSize ! Finds the valid points and saves them to an array 
    do b = 1, HMAllo 
     do c = 1, GridSize 
      if (RA(b,a‘c’ == '1') then 
       Ones(OneCount, 1) = b 
       Ones(OneCount, 2) = a 
       Ones(OneCount, 3) = c 
       OneCount = OneCount + 1 
      end if 
     end do 
    end do 
   end do 
 
   if (FirstCusps .eqv. .FALSE.) then 
    FirstCusps = .TRUE. 
    c = 1 
    do a = RadT, GridSize-RadT 
     do b = RadT, GridSize-RadT 
      if (yVal(a+1,b,1) > yVal(a,b,1) .and. yVal(a-
1,b,1) > yVal(a,b,1)) then 
       if (yVal(a,b+1,1) > yVal(a,b,1) .and. 
yVal(a,b-1,1) > yVal(a,b,1)) then 
        if (yVal(a+1,b+1,1) > 
yVal(a,b,1) .and. yVal(a-1,b-1,1) > yVal(a,b,1)) then 
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         if (yVal(a-1,b+1,1) > 
yVal(a,b,1) .and. yVal(a+1,b-1,1) > yVal(a,b,1)) then 
         
 FinalCuspsSaved(c,1) = a 
         
 FinalCuspsSaved(c,2) = b 
         
 FinalCuspsSaved(c,3) = yVal(a,b,1) 
         
 FinalCuspsSaved(c,4) = yVal(a,b,2) 
          c = c + 1 
         end if 
        end if 
       end if 
      end if 
     end do 
    end do 
   end if 
 
   do a = 1, On–Count - 1 ! Finds the closest of these points to the impact 
location and moves the particle to it 
    TempX = Ones(a,2) 
    TempY = Ones(a,1) 
    TempZ = Ones(a,3) 
 
    if (TempY <= y+1) then 
     Dist = ((x-TempX)**2)+((y-TempY)**2)+((z-
TempZ)**2) 
     Dist = sqrt(Dist) 
     if (Dist < SavDist .or. SavDist == 0) then 
      SavDist = Dist 
      SavOneX = Ones(a,2) 
      SavOneY = Ones(a,1) 
      SavOneZ = Ones(a,3) 
     end if 
    end if 
   end do 
 
   TempX = SavOneX 
   TempY = SavOneY 
   TempZ = SavOneZ 
 
   if (TempX == 0 .and. TempY == 0 .and. TempZ == 0) then 
    GO TO 10 
   end if 
    
   SafeLocFound = .FALSE. 
    
   FinCount = 0 
   LR = 0 
   step = 1 
 
   FindLoop: do while (SafeLocFound .eqv. .FALSE.) ! Rolling algorithm, 
moves in the direction with the deepest slope until it is fully surrounded by higher points 
    CurrentY = yVal(TempX,TempZ,1) 
    if (TempX < RadT .or. TempZ < RadT .or. TempX > GridSize-
RadT .or. TempZ > GridSize-RadT) then 
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     FullCount = FullCount + 1 
     GO TO 40 
    end if 
    if (TempX-1 < RadT .or. TempZ-1 < RadT .or. TempX+1 > 
GridSize-RadT .or. TempZ+1 > GridSize-RadT) then 
     EdgeLoop: do while (CuspFound .eqv. .FALSE.) 
      CurrentY = yVal(TempX,TempZ,1) 
      if (TempX-1 < RadT .and. TempZ-1 < RadT) 
then 
       EdgeSide = 1 
       CuspFound = .TRUE. 
       exit EdgeLoop 
      elseif (TempX+1 > GridSize-RadT .and. 
TempZ+1 > GridSize-RadT) then 
       EdgeSide = 4 
       CuspFound = .TRUE. 
       exit EdgeLoop 
      elseif (TempX+1 > GridSize-RadT .and. 
TempZ-1 < RadT) then 
       EdgeSide = 2 
       CuspFound = .TRUE. 
       exit EdgeLoop 
      elseif (TempX-1 < RadT .and. TempZ+1 > 
GridSize-RadT) then 
       EdgeSide = 3 
       CuspFound = .TRUE. 
       exit EdgeLoop 
      end if 
 
      EdgeLowVal = 0 
      EdgeLowA = 0 
      EdgeLowB = 0 
      InitialCusp = .FALSE. 
 
      if –TempX - 1 < RadT .or. TempX + 1 > 
GridSize-RadT) then 
       if (yVal(TempX,TempZ+1,1) >= 
CurrentY .and. yVal(TempX,TempZ-1,1) >= CurrentY) then 
        if –TempX - 1 < RadT) then 
         if 
(yVal(TempX+1,TempZ+1,1)>=CurrentY.and.yVal(TempX+1,TempZ-
1,1)>=CurrentY.and.yVal(TempX+1,TempZ,1)>=CurrentY) then 
          InitialCusp 
= .TRUE. 
         end if 
        elseif (TempX + 1 > 
GridSize-RadT) then 
         if (yVal(TempX-
1,TempZ+1,1)>=CurrentY.and.yVal(TempX-1,TempZ-1,1)>=CurrentY.and.yVal(TempX-
1,TempZ,1)>=CurrentY) then 
          InitialCusp 
= .TRUE. 
         end if 
        end if 
       end if 
 
       if (InitialCusp .eqv. .TRUE.) then 
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        if –TempX - 1 < RadT) then 
         EdgeSide = 5 
        elseif (TempX + 1 > 
GridSize-RadT) then 
         EdgeSide = 8 
        end if 
        CuspFound = .TRUE. 
       else 
        if –TempX - 1 < RadT) then 
         bSide1 = 0 
         bSide2 = 1 
        elseif (TempX + 1 > 
GridSize-RadT) then 
         bSide1 = -1 
         bSide2 = 0 
        end if 
        do a = -1, 1 
         do b = bSide1, 
bSide2 
          if 
(yVal(TempX+b,TempZ+a,1) < CurrentY) then 
           if 
(yVal(TempX+b,TempZ+a,1) < EdgeLowVal .or. EdgeLowVal == 0) then 
           
 EdgeLowVal = yVal(TempX+b,TempZ+a,1) 
           
 EdgeLowA = a 
           
 EdgeLowB = b 
          
 end if 
          end if 
         end do 
        end do 
       end if 
 
       TempX = TempX + EdgeLowB 
       TempZ = TempZ + EdgeLowA 
 
      elseif –TempZ - 1 < RadT .or. TempZ + 1 > 
GridSize-RadT) then        
       if (yVal(TempX+1,TempZ,1) >= 
CurrentY .and. yVal(TempX-1,TempZ,1) >= CurrentY) then 
        if –TempZ - 1 < RadT) then 
         if 
(yVal(TempX+1,TempZ+1,1)>=CurrentY.and.yVal(TempX-
1,TempZ+1,1)>=CurrentY.and.yVal(TempX,TempZ+1,1)>=CurrentY) then 
          InitialCusp 
= .TRUE. 
         end if 
        elseif (TempZ + 1 > 
GridSize-RadT) then 
         if 
(yVal(TempX+1,TempZ-1,1)>=CurrentY.and.yVal(TempX-1,TempZ-
1,1)>=CurrentY.and.yVal(TempX,TempZ-1,1)>=CurrentY) then 
          InitialCusp 
= .TRUE. 
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         end if 
        end if 
       end if 
 
       if (InitialCusp .eqv. .TRUE.) then 
        if –TempZ - 1 < RadT) then 
         EdgeSide = 6 
        elseif (TempZ + 1 > 
GridSize-RadT) then 
         EdgeSide = 7 
        end if 
        CuspFound = .TRUE. 
       else 
        if –TempZ - 1 < RadT) then 
         bSide1 = 0 
         bSide2 = 1 
        elseif (TempZ + 1 > 
GridSize-RadT) then 
         bSide1 = -1 
         bSide2 = 0 
        end if 
        do a = -1, 1 
         do b = bSide1, 
bSide2 
          if 
(yVal(TempX+a,TempZ+b,1) < CurrentY) then 
           if 
(yVal(TempX+a,TempZ+b,1) < EdgeLowVal .or. EdgeLowVal == 0) then 
           
 EdgeLowVal = yVal(TempX+a,TempZ+b,1) 
           
 EdgeLowA = a 
           
 EdgeLowB = b 
          
 end if 
          end if 
         end do 
        end do 
       end if 
 
       TempX = TempX + EdgeLowA 
       TempZ = TempZ + EdgeLowB 
      end if 
 
      FinCount = FinCount + 1 
      if (FinCount > 10000) then 
       CuspFound = .TRUE. 
       SafeLocFound = .TRUE. 
      end if 
 
     end do EdgeLoop 
 
     SafeLocFound = .TRUE. 
 
    elseif (yVal(TempX+1,TempZ,1) > CurrentY .and. 
yVal(TempX-1,TempZ,1) > CurrentY) then 
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     if (yVal(TempX,TempZ+1,1) > CurrentY .and. 
yVal(TempX,TempZ-1,1) > CurrentY) then 
      if (yVal(TempX+1,TempZ+1,1) > CurrentY 
.and. yVal(TempX-1,TempZ-1,1) > CurrentY) then 
       if (yVal(TempX-1,TempZ+1,1) > 
CurrentY .and. yVal(TempX+1,TempZ-1,1) > CurrentY) then 
        CuspHighCount = 1 
        CuspLowCount = 1 
 
        do a = -3, 3 
         do b = -3, 3 
          OuterLayer 
= .FALSE. 
          if 
(abs(a)+abs(b) >= 3) then 
          
 OuterLayer = .TRUE. 
          elseif 
(abs(a)+abs(b) == 2) then 
           if 
(a == 0 .or. b == 0) then 
           
 OuterLayer = .TRUE. 
          
 end if 
          end if 
          if 
(OuterLayer .eqv. .TRUE.) then 
           if 
(yVal(TempX+a,TempZ+b,1) >= CurrentY .or. yVal(TempX+a,TempZ+b,1) == 0) then 
           
 CuspHighCount = CuspHighCount + 1 
          
 elseif (TempX+a>GridSize-RadT.or.TempX+a<RadT.or.TempZ+b>GridSize-
RadT.or.TempZ+b<RadT) then 
           
 CuspHighCount = CuspHighCount + 1 
          
 elseif (yVal(TempX+a,TempZ+b,1) == 0) then 
           
 CuspHighCount = CuspHighCount + 1 
          
 elseif (yVal(TempX+a,TempZ+b,1) < CurrentY) then 
           
 if (TempX+a<=GridSize-RadT.and.TempX+a>=RadT.and.TempZ+b<=GridSize-
RadT.and.TempZ+b>=RadT) then 
           
  CuspHighList(CuspLowCount,1) = TempX+a 
           
  CuspHighList(CuspLowCount,2) = TempZ+b 
           
  CuspHighList(CuspLowCount,3) = yVal(TempX+a,TempZ+b,1) 
           
  CuspLowCount = CuspLowCount + 1 
           
 end if 
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 end if 
          end if 
         end do 
        end do 
 
        if (CuspHighCount == 41) 
then 
         CuspFound = 
.TRUE. 
         SafeLocFound = 
.TRUE. 
        else 
         do a = 1, 
CuspLowCount-1 
          Dist = 
((CuspHighList(a,1)-OldX)**2)+((CuspHighList(a,2)-OldZ)**2) 
          Dist = 
sqrt(Dist) 
 
          if (FurthDist 
< Dist) then 
          
 FurthDist = Dist 
          
 CuspLowMoveTo = a 
          end if 
         end do 
 
         OldX = TempX 
         OldZ = TempZ 
         TempX = 
CuspHighList(CuspLowMoveTo,1) 
         TempZ = 
CuspHighList(CuspLowMoveTo,2) 
 
         GO TO 20 
 
        end if 
       end if 
      end if 
     end if 
    end if 
 
    if (CuspFound .eqv. .TRUE.) then 
     SafeLocFound = .TRUE. 
    else 
     LowYLoc = 0 
     LowYVal = 0 
 
     do a = -1, 1 
      do b = -1, 1 
       if (yVal(TempX+a,TempZ+b,1) <= 
CurrentY) then 
        if 
(yVal(TempX+a,TempZ+b,1) < LowYVal .or. LowYVal == 0) then 
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         LowYVal = 
yVal(TempX+a,TempZ+b,1) 
         LowYLoc(1) = 
TempX+a 
         LowYLoc(2) = 
TempZ+b 
        end if 
       end if 
      end do 
     end do 
 
     if (OldX == LowYLoc(1) .and. OldZ == LowYLoc(2)) 
then 
      TempX = OldX 
      TempZ = OldZ 
      CuspFound = .TRUE. 
     elseif (OldX == TempX .and. OldZ == TempZ) then 
      CuspFound = .TRUE. 
     else 
      OldX = TempX 
      OldZ = TempZ 
      TempX = LowYLoc(1) 
      TempZ = LowYLoc(2) 
     end if 
    end if 
20    CONTINUE 
    FinCount = FinCount + 1 
    if (FinCount > 10000) then 
     CuspFound = .TRUE. 
     SafeLocFound = .TRUE. 
    end if 
   end do FindLoop 
 
   TempY = yVal(TempX,TempZ,1) 
 
   if (TempX == RadT .or. TempZ == RadT .or. TempX == GridSize-
RadT .or. TempZ == GridSize-RadT) then 
    EdgeCase = .TRUE. 
   end if 
 
25   CONTINUe 
 
   FPcount = 0 
   do a = 1, MolNo-1 ! Finds the particles closest to the low point for the 
new particle to be resting on 
    if (MLyReal(a) < TempY+(RadT/2)) then 
     Dist = ((MLxReal(a)-TempX)**2)+((MLyReal(a)-
TempY)**2)+((MLzReal(a)-TempZ)**2) 
     Dist = sqrt–Dist) – RadT - MLr(a) 
     if (Dist <= FinalPartDist(1,1)) then 
      FinalPartNo(5) = FinalPartNo(4) 
      FinalPartDist(5,1) = FinalPartDist(4,1) 
      FinalPartDist(5,2) = FinalPartDist(4,2) 
      FinalPartNo(4) = FinalPartNo(3) 
      FinalPartDist(4,1) = FinalPartDist(3,1) 
      FinalPartDist(4,2) = FinalPartDist(3,2) 
      FinalPartNo(3) = FinalPartNo(2) 
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      FinalPartDist(3,1) = FinalPartDist(2,1) 
      FinalPartDist(3,2) = FinalPartDist(2,2) 
      FinalPartNo(2) = FinalPartNo(1) 
      FinalPartDist(2,1) = FinalPartDist(1,1) 
      FinalPartDist(2,2) = FinalPartDist(1,2) 
      FinalPartNo(1) = a 
      FinalPartDist(1,1) = Dist 
      FinalPartDist(1,2) = Dist + RadT + MLr(a) 
     elseif (Dist <= FinalPartDist(2,1)) then 
      FinalPartNo(5) = FinalPartNo(4) 
      FinalPartDist(5,1) = FinalPartDist(4,1) 
      FinalPartDist(5,2) = FinalPartDist(4,2) 
      FinalPartNo(4) = FinalPartNo(3) 
      FinalPartDist(4,1) = FinalPartDist(3,1) 
      FinalPartDist(4,2) = FinalPartDist(3,2) 
      FinalPartNo(3) = FinalPartNo(2) 
      FinalPartDist(3,1) = FinalPartDist(2,1) 
      FinalPartDist(3,2) = FinalPartDist(2,2) 
      FinalPartNo(2) = a 
      FinalPartDist(2,1) = Dist 
      FinalPartDist(2,2) = Dist + RadT + MLr(a) 
     elseif (Dist <= FinalPartDist(3,1)) then 
      FinalPartNo(5) = FinalPartNo(4) 
      FinalPartDist(5,1) = FinalPartDist(4,1) 
      FinalPartDist(5,2) = FinalPartDist(4,2) 
      FinalPartNo(4) = FinalPartNo(3) 
      FinalPartDist(4,1) = FinalPartDist(3,1) 
      FinalPartDist(4,2) = FinalPartDist(3,2) 
      FinalPartNo(3) = a 
      FinalPartDist(3,1) = Dist 
      FinalPartDist(3,2) = Dist + RadT + MLr(a) 
     elseif (Dist <= FinalPartDist(4,1)) then 
      FinalPartNo(5) = FinalPartNo(4) 
      FinalPartDist(5,1) = FinalPartDist(4,1) 
      FinalPartDist(5,2) = FinalPartDist(4,2) 
      FinalPartNo(4) = a 
      FinalPartDist(4,1) = Dist 
      FinalPartDist(4,2) = Dist + RadT + MLr(a) 
     elseif (Dist <= FinalPartDist(5,1)) then 
      FinalPartNo(5) = a 
      FinalPartDist(5,1) = Dist 
      FinalPartDist(5,2) = Dist + RadT + MLr(a) 
     end if 
    end if 
   end do 
 
60   CONTINUE 
 
   if 
(FinalPartNo(1)>MolNo.or.FinalPartNo(2)>MolNo.or.FinalPartNo(3)>MolNo.or.FinalPartNo(4)
>MolNo.or.FinalPartNo(5)>MolNo) then 
    FullCount = FullCount + 1 
    GO TO 40 
   end if 
 
   PartCoords(1,1) = MLxReal(FinalPartNo(1)) 
   PartCoords(1,2) = MLyReal(FinalPartNo(1)) 
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   PartCoords(1,3) = MLzReal(FinalPartNo(1)) 
 
   PartCoords(2,1) = MLxReal(FinalPartNo(2)) 
   PartCoords(2,2) = MLyReal(FinalPartNo(2)) 
   PartCoords(2,3) = MLzReal(FinalPartNo(2)) 
 
   PartCoords(3,1) = MLxReal(FinalPartNo(3)) 
   PartCoords(3,2) = MLyReal(FinalPartNo(3)) 
   PartCoords(3,3) = MLzReal(FinalPartNo(3)) 
 
   EquA1 = 2*MLxReal(FinalPart–o(1)) - 2*MLxReal(FinalPartNo(2)) 
   EquA2 = 2*MLxReal(FinalPart–o(2)) - 2*MLxReal(FinalPartNo(3)) 
   EquA3 = 2*MLxReal(FinalPart–o(3)) - 2*MLxReal(FinalPartNo(1)) 
 
   EquB1 = 2*MLyReal(FinalPart–o(1)) - 2*MLyReal(FinalPartNo(2)) 
   EquB2 = 2*MLyReal(FinalPart–o(2)) - 2*MLyReal(FinalPartNo(3)) 
   EquB3 = 2*MLyReal(FinalPart–o(3)) - 2*MLyReal(FinalPartNo(1)) 
 
   EquC1 = 2*MLzReal(FinalPart–o(1)) - 2*MLzReal(FinalPartNo(2)) 
   EquC2 = 2*MLzReal(FinalPart–o(2)) - 2*MLzReal(FinalPartNo(3)) 
   EquC3 = 2*MLzReal(FinalPart–o(3)) - 2*MLzReal(FinalPartNo(1)) 
 
   Equd1 = (MLzReal(FinalPartNo(1–)**2) - 
(MLzReal(FinalPartNo(2))**2) + (MLyReal(FinalPartNo(1))**2) 
   EquD1 =–Equd1 - (MLyReal(FinalPartNo(2))**2) + 
(MLxReal(FinalPartNo(1–)**2) - (MLxReal(FinalPartNo(2))**2) 
   EquD1 =–EquD1 - ((MLr(FinalPartNo(1))+RadT)**2) + 
((MLr(FinalPartNo(2))+RadT)**2) 
 
   Equd2 = (MLzReal(FinalPartNo(2–)**2) - 
(MLzReal(FinalPartNo(3))**2) + (MLyReal(FinalPartNo(2))**2) 
   EquD2 =–Equd2 - (MLyReal(FinalPartNo(3))**2) + 
(MLxReal(FinalPartNo(2–)**2) - (MLxReal(FinalPartNo(3))**2) 
   EquD2 =–EquD2 - ((MLr(FinalPartNo(2))+RadT)**2) + 
((MLr(FinalPartNo(3))+RadT)**2) 
 
   Equd3 = (MLzReal(FinalPartNo(3–)**2) - 
(MLzReal(FinalPartNo(1))**2) + (MLyReal(FinalPartNo(3))**2) 
   EquD3 =–Equd3 - (MLyReal(FinalPartNo(1))**2) + 
(MLxReal(FinalPartNo(3–)**2) - (MLxReal(FinalPartNo(1))**2) 
   EquD3 =–EquD3 - ((MLr(FinalPartNo(3))+RadT)**2) + 
((MLr(FinalPartNo(1))+RadT)**2) 
 
   if (CuspFound .eqv. .TRUE. .and. EdgeCase .eqv. .FALSE.) then ! If 
in a cusp and not on an edge 
 
    EquValuesA(1,1) = EquA1 
    EquValuesA(1,2) = EquB1 
    EquValuesA(1,3) = EquC1 
    EquValuesB(1) = EquD1 
 
    EquValuesA(2,1) = EquA2 
    EquValuesA(2,2) = EquB2 
    EquValuesA(2,3) = EquC2 
    EquValuesB(2) = EquD2 
 
    EquValuesA(3,1) = EquA3 
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    EquValuesA(3,2) = EquB3 
    EquValuesA(3,3) = EquC3 
    EquValuesB(3) = EquD3 
 
    stochDists(1) = FinalPartDist(1,2) 
    stochDists(2) = FinalPartDist(2,2) 
    stochDists(3) = FinalPartDist(3,2) 
 
    sumDist = stochDists(1) + stochDists(2) + stochDists(3) ! 
Starts stochastic optimisation to find the resting position 
 
    newCoords(1) = TempX 
    newCoords(2) = TempY 
    newCoords(3) = TempZ 
 
    dx(1) = 10 * RadLarge 
    dx(2) = 10 * RadLarge 
    dx(3) = 10 * RadLarge 
 
    do a = 1, 10 
     do b = 1, 3 
      dx(b) = dx(b) / 10 
     end do 
     do c = 1, 500 
      do b = 1, 3 
       call random_number(RX) 
       stochxnew(b) = newCoords(b) + 
dx(b) * (2*RX-1) 
      end do 
      ibad = 0 
      do b = 1, 3 
       stochDists(b) = ((PartCoords(b,1)-
stochxnew(1))**2)+((PartCoords(b,2)-stochxnew(2))**2)+((PartCoords(b,3)-
stochxnew(3))**2) 
       stochDists(b) = sqrt(stochDis–s(b)) 
– RadT - MLr(FinalPartNo(b)) 
       if (stochDists(b) < 0) then 
        ibad = 1 
       end if 
      end do 
      stochynew = stochDists(1) + stochDists(2) + 
stochDists(3) 
      if (stochynew < sumDist .and. ibad == 0) 
then 
       do b = 1, 3 
        newCoords(b) = 
stochxnew(b) 
       end do 
       sumDist = stochynew 
      end if 
     end do 
    end do 
 
 
    NewX = newCoords(1) 
    NewY = newCoords(2) 
    NewZ = newCoords(3) 
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    do a = 1, MolNo-1 ! Confirms that the particle is not 
overlapping with any others in its new position 
     Dist = ((MLxReal(a)-NewX)**2)+((MLyReal(a)-
NewY)**2)+((MLzReal(a)-NewZ)**2) 
     Dist = sqrt(Dist) 
     if (Dist < MLr(a)+RadT) then 
      OverDist = 0 
      OverlapCount = OverlapCount + 1 
      if (OverlapCount > 2500) then 
       GO TO 50 
      end if 
      do b = 1, 3 
       Dist = ((MLxReal(a)-
PartCoords(b,1))**2)+((MLyReal(a)-PartCoords(b,2))**2)+((MLzReal(a)-PartCoords(b,3))**2) 
       Dist = sqrt(Dist) 
       if (Dist < OverDist .or. OverDist == 
0) then 
        OverDist = Dist 
        OverDistNo = b 
       end if 
      end do 
      FinalPartNo(OverDistNo) = a 
      FullCount = FullCount + 1 
      if (OverDist == 0) then 
       GO TO 50 
      else 
       GO TO 60 
      end if 
     end if 
    end do 
 
    DistAB = ((PartCoords(1,1)-
PartCoords(2,1))**2)+((PartCoords(1,3)-PartCoords(2,3))**2) 
    DistAB = sqrt(DistAB) 
    DistBC = ((PartCoords(2,1)-
PartCoords(3,1))**2)+((PartCoords(2,3)-PartCoords(3,3))**2) 
    DistBC = sqrt(DistBC) 
    DistCA = ((PartCoords(3,1)-
PartCoords(1,1))**2)+((PartCoords(3,3)-PartCoords(1,3))**2) 
    DistCA = sqrt(DistCA) 
 
    DistAN = ((PartCoords(1,1)-NewX)**2)+((PartCoords(1,3)-
NewZ)**2) 
    DistAN = sqrt(DistAN) 
    DistBN = ((PartCoords(2,1)-NewX)**2)+((PartCoords(2,3)-
NewZ)**2) 
    DistBN = sqrt(DistBN) 
    DistCN = ((PartCoords(3,1)-NewX)**2)+((PartCoords(3,3)-
NewZ)**2) 
    DistCN = sqrt(DistCN) 
 
    Sempi = (DistAB + DistBC + DistCA) / 2 
    SetTri = Sempi * –Sempi - DistAB) * –Sempi - DistBC) * –
Sempi - DistCA) 
    SetTri = sqrt(SetTri) 
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    SempiA = (DistAB + DistAN + DistBN) / 2 
    TriA = SempiA * (–empiA - DistAB) * (–empiA - DistAN) * (–
empiA - DistBN) 
    TriA = sqrt(TriA) 
 
    SempiB = (DistBC + DistBN + DistCN) / 2 
    TriB = SempiB * (–empiB - DistBC) * (–empiB - DistBN) * (–
empiB - DistCN) 
    TriB = sqrt(TriB) 
 
    SempiC = (DistCA + DistCN + DistAN) / 2 
    TriC = SempiC * (–empiC - DistCA) * (–empiC - DistCN) * (–
empiC - DistAN) 
    TriC = sqrt(TriC) 
 
    if (TriA + TriB + TriC > SetTri + 2.5) then ! Confirms the new 
particle location is correctly resting on the three particles below it 
 
50     CONTINUE 
 
     OverlapCount = 0 
 
     if (FirstTri .eqv. .TRUE.) then 
      do a = 1, MolNo-1 
       Dist = ((MLxReal(a)-
NewX)**2)+((MLzReal(a)-NewZ)**2) 
       Dist = sqrt(Dist) 
       if (Dist < RadT + MLr(a) + 
(RadT*8) .and. NewY-MLyReal(a) < RadT + MLr(a) + (RadT*6)) then 
       
 TriCheckNo(TriCheckCount) = a 
        TriCheckCount = 
TriCheckCount + 1 
       end if 
      end do 
      aLoop: do a = TriCheckCount-1, 1, -1 
       do b = TriCheckCount-1, 1, -1 
        if (b < a) then 
         do c = 
TriCheckCount-1, 1, -1 
          if (c < b) 
then 
           if 
(TriCount <= 100000) then 
           
 TriCombi(TriCount,1) = TriCheckNo(a) 
           
 TriCombi(TriCount,2) = TriCheckNo(b) 
           
 TriCombi(TriCount,3) = TriIckNo(c) 
           
 TriCount = TriCount + 1 
          
 else 
           
 exit aLoop 
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 end if 
          end if 
         end do 
        end if 
       end do 
      end do aLoop 
     end if 
 
     FirstTri = .FALSE. 
 
     if (TriAttempt <= TriCount-1) then 
      FinalPartNo(1) = TriCombi(TriCount-
TriAttempt,1) 
      FinalPartNo(2) = TriCombi(TriCount-
TriAttempt,2) 
      FinalPartNo(3) = TriCombi(TriCount-
TriAttempt,3) 
      TriAttempt = TriAttempt + 1 
      if (TriAttempt <= 100000) then 
       GO TO 60 
      end if 
     end if     
 
     if (TempX >= GridSize-RadT-RadT .or. TempX <= 
RadT+RadT .or. TempZ >= GridSize-RadT-RadT .or. TempZ <= RadT+RadT) then 
      if (TempX <= RadT+RadT .and. TempZ <= 
RadT+RadT) then 
       EdgeSide = 1 
      elseif (TempX >= GridSize-RadT-RadT 
.and. TempZ >= GridSize-RadT-RadT) then 
       EdgeSide = 4 
      elseif (TempX >= GridSize-RadT-RadT 
.and. TempZ <= RadT+RadT) then 
       EdgeSide = 2 
      elseif (TempX <= RadT+RadT .and. TempZ 
>= GridSize-RadT-RadT) then 
       EdgeSide = 3 
      elseif (TempX <= RadT+RadT) then 
       EdgeSide = 5 
      elseif (TempX >= GridSize-RadT-RadT) 
then 
       EdgeSide = 8 
      elseif (TempZ <= RadT+RadT) then 
       EdgeSide = 6 
      elseif (TempZ >= GridSize-RadT-RadT) 
then 
       EdgeSide = 7 
      end if 
      EdgeCase = .TRUE. 
      GO TO 25 
     end if 
     FullCount = FullCount + 1 
     GO TO 40 
    end if 
 
    do a = 1, 3 
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     FinalDists(a) = ((PartCoords(a,1)-
NewX)**2)+((PartCoords(a,2)-NewY)**2)+((PartCoords(a,3)-NewZ)**2) 
     FinalDists(a) = sqrt(FinalDists(a)) 
     if (FinalDists(a) > RadT+MLr(FinalPartNo(a))+1) 
then 
      FullCount = FullCount + 1 
      GO TO 50 
     end if 
    end do 
 
    if (NewX < RadT .or. NewY < RadT .or. NewZ < RadT) then 
     FullCount = FullCount + 1 
     if (TempX >= GridSize-RadT-RadT .or. TempX <= 
RadT+RadT .or. TempZ >= GridSize-RadT-RadT .or. TempZ <= RadT+RadT) then 
      if (TempX <= RadT+RadT .and. TempZ <= 
RadT+RadT) then 
       EdgeSide = 1 
      elseif (TempX >= GridSize-RadT-RadT 
.and. TempZ >= GridSize-RadT-RadT) then 
       EdgeSide = 4 
      elseif (TempX >= GridSize-RadT-RadT 
.and. TempZ <= RadT+RadT) then 
       EdgeSide = 2 
      elseif (TempX <= RadT+RadT .and. TempZ 
>= GridSize-RadT-RadT) then 
       EdgeSide = 3 
      elseif (TempX <= RadT+RadT) then 
       EdgeSide = 5 
      elseif (TempX >= GridSize-RadT-RadT) 
then 
       EdgeSide = 8 
      elseif (TempZ <= RadT+RadT) then 
       EdgeSide = 6 
      elseif (TempZ >= GridSize-RadT-RadT) 
then 
       EdgeSide = 7 
      end if 
      EdgeCase = .TRUE. 
      GO TO 25 
     end if 
     GO TO 50 
    elseif (NewX > GridSize-RadT .or. NewY > GridSize-RadT 
.or. NewZ > GridSize-RadT) then 
     FullCount = FullCount + 1 
     if (TempX >= GridSize-RadT-RadT .or. TempX <= 
RadT+RadT .or. TempZ >= GridSize-RadT-RadT .or. TempZ <= RadT+RadT) then 
      if (TempX <= RadT+RadT .and. TempZ <= 
RadT+RadT) then 
       EdgeSide = 1 
      elseif (TempX >= GridSize-RadT-RadT 
.and. TempZ >= GridSize-RadT-RadT) then 
       EdgeSide = 4 
      elseif (TempX >= GridSize-RadT-RadT 
.and. TempZ <= RadT+RadT) then 
       EdgeSide = 2 
      elseif (TempX <= RadT+RadT .and. TempZ 
>= GridSize-RadT-RadT) then 
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       EdgeSide = 3 
      elseif (TempX <= RadT+RadT) then 
       EdgeSide = 5 
      elseif (TempX >= GridSize-RadT-RadT) 
then 
       EdgeSide = 8 
      elseif (TempZ <= RadT+RadT) then 
       EdgeSide = 6 
      elseif (TempZ >= GridSize-RadT-RadT) 
then 
       EdgeSide = 7 
      end if 
      EdgeCase = .TRUE. 
      GO TO 25 
     end if 
     GO TO 50 
    end if 
 
    MLxReal(MolNo) = newX 
    MLyReal(MolNo) = newY 
    MLzReal(MolNo) = NewZ 
 
   elseif (EdgeCase .eqv. .TRUE.) then ! Else if the particle has come to 
rest upon an edge 
 
    if (EdgeSide < 5) then ! If the particle is resting in a corner, so 
needs a single particle contact 
     if (EdgeSide == 1) then 
      NewX = RadT 
      NewZ = RadT 
     elseif  (EdgeSide == 2) then 
      NewX = GridSize-RadT 
      NewZ = RadT 
     elseif  (EdgeSide == 3) then 
      NewX = RadT 
      NewZ = GridSize-RadT 
     elseif  (EdgeSide == 4) then 
      NewX = GridSize-RadT 
      NewZ = GridSize-RadT 
     end if 
 
     Dist = RadT + MLr(FinalPartNo(1)) 
 
     newY = -
(MLxReal(FinalPartNo(1))**2)+(2*MLxReal(FinalPartNo(1))*NewX)-
(MLzReal(FinalPartNo(1))**2) 
     NewY = 
NewY+(2*MLzReal(FinalPartNo(1))*NewZ)+(Dist**2)-(NewX**2)-(NewZ**2) 
     NewY = sqrt(NewY) 
 
     if (NewY /= NewY) then 
      if (FirstEdge .eqv. .TRUE.) then 
       do a = 1, MolNo-1 
        dist = ((MLxReal(a)-
Newx)**2)+((MLzReal(a)-NewZ)**2) 
        Dist = sqrt(Dist) 
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        if (Dist < RadT + MLr(a) + 
(RadT*8)) then 
        
 EdgeCombi(EdgeCount) = a 
         EdgeCount = 
EdgeCount + 1 
        end if 
       end do 
      end if 
 
      FirstEdge = .FALSE. 
 
      if (EdgeAttempt <= EdgeCount-1) then 
       FinalPartNo(1) = 
EdgeCombi(EdgeCount-EdgeAttempt) 
       EdgeAttempt = EdgeAttempt + 1 
       GO TO 60 
      end if 
 
      FullCount = FullCount + 1 
      GO TO 40 
     end if 
 
     –f (tempY - (MLyReal(FinalPartNo(1)) + NewY– < 
tempY - (MLyReal(FinalP–rtNo(1)) - NewY)) then 
      NewY = MLyReal(FinalPartNo(1)) + NewY 
     else 
      NewY = MLyReal(FinalP–rtNo(1)) - NewY 
     end if 
 
     do a = 1, MolNo-1 
      dist = ((MLxReal(a)-
Newx)**2)+((MLyReal(a)-Newy)**2)+((MLzReal(a)-NewZ)**2) 
      Dist = sqrt(Dist) 
      if (Dist < MLr(a)+RadT-1) then 
       OverlapCount = OverlapCount + 1 
       if (OverlapCount > 2500) then 
        GO TO 40 
       end if 
       FinalPartNo(1) = a 
       FullCount = FullCount + 1 
       GO TO 60 
      end if 
     end do 
 
    else ! On a regular edge so resting on two particles 
     NewXVal = .FALSE. 
     NewZVal = .FALSE. 
 
     if (EdgeSide == 5) then 
      stochxnew(1) = RadT 
      newCoords(3) = TempZ 
      NewXVal = .TRUE. 
     elseif (EdgeSide == 6) then 
      newCoords(1) = TempX 
      stochxnew(3) = RadT 
      NewZVal = .TRUE. 
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     elseif (EdgeSide == 7) then 
      newCoords(1) = TempX 
      stochxnew(3) =–GridSize - RadT 
      NewZVal = .TRUE. 
     elseif (EdgeSide == 8) then 
      stochxnew(1) =–GridSize - RadT 
      newCoords(3) = TempZ 
      NewXVal = .TRUE. 
     end if 
 
     stochDists(1) = FinalPartDist(1,2) 
     stochDists(2) = FinalPartDist(2,2) 
 
     sumDist = stochDists(1) + stochDists(2) 
 
     newCoords(2) = TempY 
 
     dx(1) = 10 * RadLarge 
     dx(2) = 10 * RadLarge 
     dx(3) = 10 * RadLarge 
 
     do a = 1, 10 
      do b = 1, 3 
       dx(b) = dx(b) / 10 
      end do 
      do c = 1, 500 
       call random_number(RX) 
       stochxnew(2) = newCoords(2) + 
dx(2) * (2*RX-1) 
 
       if (NewXVal .eqv. .TRUE.) then 
        call random_number(RX) 
        stochxnew(3) = 
newCoords(3) + dx(3) * (2*RX-1) 
       elseif (NewZVal .eqv. .TRUE.) then 
        call random_number(RX) 
        stochxnew(1) = 
newCoords(1) + dx(1) * (2*RX-1) 
       end if 
 
       ibad = 0 
 
       do b = 1, 2 
        stochDists(b) = 
((PartCoords(b,1)-stochxnew(1))**2)+((PartCoords(b,2)-
stochxnew(2))**2)+((PartCoords(b,3)-stochxnew(3))**2) 
        stochDists(b) = sqrt(stoch–
ists(b–) - RadT - MLr(FinalPartNo(b)) 
        if (stochDists(b) < 0) then 
         ibad = 1 
        end if 
       end do 
       stochynew = stochDists(1) + 
stochDists(2) 
       if (stochynew < sumDist .and. ibad 
== 0) then 
        do b = 1, 3 
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         newCoords(b) = 
stochxnew(b) 
        end do 
        sumDist = stochynew 
       end if 
      end do 
     end do 
 
     NewX = newCoords(1) 
     NewY = newCoords(2) 
     NewZ = newCoords(3) 
 
     do a = 1, MolNo-1 
      dist = ((MLxReal(a)-
Newx)**2)+((MLyReal(a)-Newy)**2)+((MLzReal(a)-NewZ)**2) 
      Dist = sqrt(Dist) 
      if (Dist < MLr(a)+RadT-1) then 
       OverDist = 0 
       OverlapCount = OverlapCount + 1 
       if (OverlapCount > 2500) then 
        GO TO 30 
       end if 
       do b = 1, 2 
        dist = ((MLxReal(a)-
PartCoords(b,1))**2)+((MLyReal(a)-PartCoords(b,2))**2)+((MLzReal(a)-PartCoords(b,3))**2) 
        Dist = sqrt(Dist) 
        if (Dist < OverDist .or. 
OverDist == 0) then 
         OverDist = Dist 
         OverDistNo = b 
        end if 
       end do 
       FinalPartNo(OverDistNo) = a 
       FullCount = FullCount + 1 
       if (OverDist == 0) then 
        GO TO 30 
       else 
        GO TO 60 
       end if 
      end if 
     end do 
 
     do a = 1, 2 
      FinalDists(a) = ((PartCoords(a,1)-
NewX)**2)+((PartCoords(a,2)-NewY)**2)+((PartCoords(a,3)-NewZ)**2) 
      FinalDists(a) = sqrt(FinalDists(a)) 
      if (FinalDists(a) > 
RadT+MLr(FinalPartNo(a))+1) then 
       FullCount = FullCount + 1 
 
30       CONTINUE 
 
       if (FirstSide .eqv. .TRUE.) then 
        do b = 1, MolNo-1 
         dist = 
((MLxReal(b)-Newx)**2)+((MLzReal(b)-NewZ)**2) 
         Dist = sqrt(Dist) 
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         if (Dist < RadT + 
MLr(b) + (RadT*8)) then 
         
 SideCheckNo(SideCheckCount) = b 
         
 SideCheckCount = SideCheckCount + 1 
         end if 
        end do 
 
        bLoop: do b = 
SideCheckCount-1, 1, -1 
         do c = 
SideCheckCount-1, 1, -1 
          if (c < b) 
then 
           if 
(SideCount <= 100000) then 
           
 SideCombi(SideCount,1) = SideCheckNo(b) 
           
 SideCombi(SideCount,2) = SICheckNo(c) 
           
 SideCount = SideCount + 1 
          
 else 
           
 exit bLoop 
          
 end if 
          end if 
         end do 
        end do bLoop 
       end if 
 
       SideAttempt = SideAttempt + 1 
       FirstSide = .FALSE. 
 
       do b = SideAttempt, SideCount-1 
        FinalPartNo(1) = 
SideCombi(b,1) 
        FinalPartNo(2) = 
SideCombi(b,2) 
        GO TO 60 
       end do 
       FullCount = FullCount + 1 
       GO TO 40 
      end if 
     end do 
 
     if (NewX < RadT .or. NewY < RadT .or. NewZ < 
RadT) then 
      FullCount = FullCount + 1 
      GO TO 30 
     elseif (NewX > GridSize-RadT .or. NewY > GridSize-
RadT .or. NewZ > GridSize-RadT) then 
      FullCount = FullCount + 1 
      GO TO 30 



William Eales 
 

216 
 

     end if 
    end if 
 
    if (NewX < RadT .or. NewY < RadT .or. NewZ < RadT) then 
     FullCount = FullCount + 1 
     GO TO 40 
    elseif (NewX > GridSize-RadT .or. NewY > GridSize-RadT 
.or. NewZ > GridSize-RadT) then 
     FullCount = FullCount + 1 
     GO TO 40 
    end if 
 
    MLxReal(MolNo) = NewX 
    MLyReal(MolNo) = NewY 
    MLzReal(MolNo) = NewZ 
 
   else 
    MLxReal(MolNo) = TempX ! Saves the particle location 
    MLyReal(MolNo) = TempY 
    MLzReal(MolNo) = TempZ 
   end if 
 
   MLr(MolNo) = RadT 
   FullCount = 0 
   OverlapCount = 0 
   Full = 0 
   MolNo = MolNo + 1 
 
  else 
   MLxReal(MolNo) = x 
   MLyReal(MolNo) = y 
   MLzReal(MolNo) = z 
   MLr(MolNo) = RadT 
   FullCount = 0 
   OverlapCount = 0 
   Full = 0 
   MolNo = MolNo + 1 
  end if 
 
10  CONTINUE 
 
 else 
  Full = 1 
90  CONTINUE 
 end if 
 
 end 
 
 
 subroutine PointSafe ! Determines if the falling particle has impacted yet 
 use allSubs ! Loads the variables from the module 
 integer a, b, c 
 real Dist 
 character t 
 
 Hit = .FALSE. 
 FullCheck = .FALSE. 
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 ! Checks the distance between the current falling particle location and previously 
placed partice to determine if it has impacted 
 
 cloop: do – = 1, MolNo - 1 
  Dist = ((MLxReal(a)-x)**2)+((MLyReal(a)-y)**2)+((MLzReal(a)-z)**2) 
  Dist = sqrt(Dist) 
  if (Dist <= ((RadT)+(Mlr(a)))) then 
   Hit = .TRUE. 
   exit cloop 
  end if 
 end do cloop 
 
 ! If the impact is above the top of the box, a counter is incremented to show the box 
may be full 
 if ((Hit .eqv. .TRUE.) .and. (y –= (GridSize - RadT))) then 
  Hit = .FALSE. 
  FullCount = FullCount + 1 
  RoofCount = RoofCount + 1 
 end if 
 
 if (RoofCount >= 500) then 
  FullCheck = .TRUE. 
 end if 
 
 end  
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Appendix 4: 2D Chain System Algorithm 

This appendix contains the algorithm used to create the 2D chain systems. 

 module allSubs ! Initialises the variables used through all functions 
 character, dimension (:,:), allocatable, public :: RA*4 
 integer, dimension (:,:), allocatable, public :: RAMolClose 
 integer MolNo, RadLarge, RadSmall, BoxSize, GridSize, Rads, count, SN, Full, 
FullCount, OneLegacyCount 
 integer MLx, MLy, MLr, Quad, QuadC, AllocateVal, Roofcount 
 real MLxReal, MLyReal 
 integer, dimension (:), allocatable, public :: OneLegacyCounterCount 
 integer, dimension (:,:), allocatable, public :: Ones 
 integer, dimension (:,:), allocatable, public :: ChainOnes 
 integer, dimension (:,:,:), allocatable, public :: OnesLegacy 
 integer, dimension (:,:), allocatable, public :: Contacts 
 dimension MLr(10000), Rads(10), MLxReal(10000), MLyReal(10000) 
 logical FullCheck, Hit, RoofHit, StartPlace 
 integer x, y, Long, Tall, RadT, ChainLength, OverFallCount, MinFallCount, LoopNo 
 end module allSubs 
 
 program packedbed 
 use allSubs ! Loads the variables from the module 
 
 ! Initialises local variables 
 character t, FileName*15, FileID*3 
 integer m, n, check, PrintNo, ProgCount, PCId, iSeed, count3 
 dimension FileID(1000) 
 real RX, ScaleFac, ScaleVal 
 real Dist 
 real PartArea, VoidArea, VoidFrac, Pi 
 integer count2, RadTnew, TotLength 
 logical Finished, Cont, Impact 
 dimension iSeed(50) 
 
! Variables initial values set 
 StartPlace = .TRUE. 
 OverFallCount = 0 
 MinFallCount = 0 
 LoopNo = ‘ 
’ if (t == 'y') then 
  Rads(1) = 10 ! Sets the radius of a particle. Additional radii would be 
inputted ‘s Rads’x) = 'Radius' 
  SN = 1  ! Sets the number of different radii in the system 
 
  RadLarge = 0 
  RadSmall = 0 
  ChainLength = 5 ! Sets the number of particles per chain 
  
  do count = 1, SN 
   if (RadLarge < Rads(count)) then 
    RadLarge = Rads(count) 
   end if 
   if (RadSmall > Rads(count) .or. RadSmall == 0) then 
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    RadSmall = Rads(count) 
   end if 
  end do 
 
  RadLarge = 10 
  RadSmall = 10 
 
  ! Calculates the box size based on the largest radius present 
  BoxSize = (RadLarge*6) * (ChainLength/2) 
  GridSize = BoxSize*5 
  AllocateVal = ((BoxSize*3)**2)*2 
 
  ! Allocates the arrays 
  allocate(RA(1:GridSize, 1:GridSize)) 
  allocate(RAMolClose(1:GridSize, 1:GridSize)) 
 
  allocate(Ones(1:AllocateVal,1:2)) 
  allocate(ChainOnes(1:AllocateVal,1:2)) 
  allocate(OnesLegacy(1:270,1:AllocateVal,1:2)) 
  allocate(OneLegacyCounterCount(1:270)) 
 
  do ProgCount = 1, 50 
   write(FileID‘Prog’ount), '(i0)') ProgCount 
  end do 
 
  do ProgCount = 1, 50 ! Starts the loop for the number of systems to be created 
 
   ! Se219nitialiables intial values 
   MLxreal = 0 
   MLyReal = 0 
   MLr = 0 
 
   PartArea = 0 
   VoidArea = 0 
   VoidFrac = 0 
   Pi = 3.141596535 
   TotLength = 0 
   MolNo = 1 
   OneLegacyCount = 1 
   OverFallCount = 0 
 ‘’FileName = '' 
   Full = 0 
   check = 0 
   FullCount = 0 
   Finished = .FALSE. 
   
   Ones = 0 
   OnesLegacy = 0 
   OneLegacyCounterCount ‘ ’ 
 
   RA = '0' 
   RAMolClose = 0 
 
   RoofCount = 0 
   RoofHit = .FALSE. 
    
   call random_seed() 



William Eales 
 

220 
 

 
   LayerLoop: do while (count < 10000000) 
 
    Impact = .FALSE. 
 
    ! Picks a random radius and x coordinate, and sets y to be on 
the bottom of the box 
    call random_number(RX) 
    count2 = 1 + floor(SN*RX) 
    RadT = Rads(count2) 
 
    call random_number(RX) 
    count2 = 1 + floor((GridSize-(2*RadT))*RX) 
    x = count2+RadT 
 
    y = RadT 
 
    if (MolNo > 1) then  ! Checks there is already at least 
one particle in the system 
     hitloop: do count– = 1, MolNo - 1 
      Dist = ((MLxReal(count3)-
x)**2)+((MLyReal(count3)-y)**2) 
      Dist = sqrt(Dist) 
      if (Dist <= ((RadT*2)+(Mlr(count3)))) then 
       count = count + 1 
       Impact = .TRUE. 
       exit hitloop 
      end if 
     end do hitloop 
     if ((Impact .eqv. .FALSE.) .and. (x <= GridSize-
(RadT*ChainLength))) then ! If the particle is not overlapping with any others and is inside the 
grid, its location is saved 
      MLxReal(MolNo) = x 
      MLyReal(MolNo) = y 
      MLr(MolNo) = RadT 
      MolNo = MolNo + 1 
 
      do m = 1, ChainLength - 1 
       x = x + RadT 
       
       if (x < GridSize-RadT) then 
        Impact = .FALSE. 
        hitloop3: do count3 = 1, 
MolNo - (m+1) 
         Dist = 
((MLxReal(count3)-x)**2)+((MLyReal(count3)-y)**2) 
         Dist = sqrt(Dist) 
         if (Dist <= 
((RadT*2)+(Mlr(count3)))) then 
          count = 
count + 1 
          Impact = 
.TRUE. 
          exit 
hitloop3 
         end if 
        end do hitloop3 
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        if (Impact .eqv. .FALSE.) 
then 
         MLxReal(MolNo) = 
x 
         MLyReal(MolNo) = 
y 
         MLr(MolNo) = 
RadT 
         MolNo = MolNo + 1 
        else 
         MolNo = MolNo - 
(m) 
         Cycle LayerLoop 
        end if 
       else 
        MolNo = MolNo - (m) 
        Cycle LayerLoop 
       end if 
      end do 
 
      count = 0 
     end if 
    else 
     MLxReal(MolNo) = x 
     MLyReal(MolNo) = y 
     MLr(MolNo) = RadT 
     MolNo = MolNo + 1 
 
     do m = 1, ChainLength - 1 
      x = x + RadT 
  
      if (x < GridSize - RadT) then 
       MLxReal(MolNo) = x 
       MLyReal(MolNo) = y 
       MLr(MolNo) = RadT 
       MolNo = MolNo + 1 
      else 
       MolNo = MolNo - (m) 
       Cycle LayerLoop 
      end if 
     end do 
    end if 
   end do LayerLoop 
 
   ! This loops through the base line to check that there is nowhere a 
small particle could fall through to the bottom of the box, and if so, places a particle there 
   do m = RadSmall, GridSize-RadSmall 
    RadT = RadSmall 
    Impact = .FALSE. 
    hitloop2: do count3 = 1, MolNo - 1 
     Dist = ((MLxReal(count3)-m)**2) 
     Dist = sqrt(Dist) 
     if (Dist < ((RadSmall)+(Mlr(count3)))) then 
      count = count + 1 
      Impact = .TRUE. 
      exit hitloop2 
     end if 
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    end do hitloop2 
    if (Impact .eqv. .FALSE.) then 
     count = 0 
     MLxReal(MolNo) = m 
     MLyReal(MolNo) = RadSmall 
     MLr(MolNo) = RadSmall 
     MolNo = MolNo + 1 
 
     call AddChain 
    end if 
   end do 
 
   StartPlace = .FALSE. 
 
   do n = 1, 500 ! Loops for each particle being added to the system, 
using the main function. At the end of each loop, it checks if the box is full and if so, leaves the 
loop. 
    LoopNo = n 
    call molpos 
    if (Full == 1) then 
     exit 
    elseif (RoofHit .eqv. .TRUE.) then 
     exit 
    end if 
   end do 
 
   t = 'y' 
   if (t == 'y' .and. RoofHit .eqv. .TRUE.) then ! Saves the particle 
locations to a file 
    FileName = '' 
    FileName = trim(adjustl(FileID(ProgCount))) // '.csv' 
    open(1, file = FileName, status = 'new') 
    do y = 1, MolNo-1 
     write(1,*) MLxReal(y), ',' , MLyReal(y), ',' , MLr(y) 
    end do 
    close(1) 
   end if 
  end do 
 end if 
 
 end program 
 
 
 subroutine molpos 
 use allSubs ! Loads the variables from the module 
  
 ! Sets up the local variables 
 integer count2, Spot, Height, DoubRad, RowRad, a,b,c, RadIn, m, n, TempX, TempY 
 real MidWay, Dist 
 character t, FileName*15 
 integer SavIncremX, SavIncremY, SafeLocCount, LR, SavOneX, SavOneY, 
SavOnePart, LRNo, OneCount, RealPos1, RealPos2 
 integer TempRealPos1, TempRealPos2, ChainOneCount 
 logical SafeLocFound, Go, ResetCheck 
 real TempXa, TempXb, TempYa, TempYb, DistAB, DistBC, DistAC, AngleA, AngleB, 
AngleFin, GradFin, HelpDist 
 real FDistA, FDistB, FDistC, FDistD 
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 real xDiff, yDiff, Pi, FinalSavX, FinalSavY, SavDist 
 integer FinalSavLong, FinalSavTall, checktime, Balanced 
 integer Balances, Touches 
 dimension Balances(10) 
 real DistFac, RadScale 
 integer NewPos, TRP1Swap, TRP2Swap 
 integer FinalPart, SideCount 
 dimension FinalPart(2,3) 
 real PartCoords, stochDists, sumDist, dx, stochxnew, newCoords, stochynew 
 integer ibad 
 dimension PartCoords(2,2), stochDists(2), newCoords(2), dx(2), stochxnew(2) 
 real RX, NewX, NewY 
 logical ChainAdd 
 real OverDist 
 integer OverDistNo 
 logical NotBal, FirstBal 
 dimension BalCheckNo(10000), BalCombi(100000,2) 
 integer BalCheckCount, BalCount, BalCheckNo, BalCombi, BalAttempt 
 integer OverlapCount 
 logical EdgeCase, FirstEdge 
 integer EdgeCombi, EdgeCount, EdgeAttempt 
 dimension EdgeCombi(10000) 
 integer ChainStartNo, ChainStartCont, d 
 real ChainGrad, EquC 
 logical ChainHitCheck, ChainEdgeHitCheck, ChainTopHitCheck 
 logical TopCase 
 integer OverTopCount, PartHit, MiddlePart, MiddlePartA, MiddlePartB, FallPoint, 
ContPoint, ContPointB 
 real Dy, intC, CheckY, MiddlePoint, ContDist, ContSpot 
 logical Fell, Tilt, HMAdju 
 integer FallCount, AdjCount 
 real ContSpotTemp, ContSpotTempUy, ContSpotL, ContSpotR, ContSpotUy, 
ContSpotUx 
 integer ContSpotUn, NLCount 
 logical RoundTwo 
 real Valdx, ValDist, ValAng1,ValDist2, ValDist3, ValAng2a, ValAng2b, ValAng2, 
ValAng3 
 logical SideBal, Upwards, Downwards 
  
 
 Fell = .FALSE. 
 Tilt = .FALSE. 
 FallPoint = 0 
 FallCount = 0 
 AdjCount = 0 
  
40 CONTINUE 
 
 if (FullCount == 2500000) then 
  Full = 1 
 end if 
 if (FallCount > 20) then 
  OverFallCount = OverFallCount + 1 
  if (OverFallCount >= 100) then 
   Full = 1 
  end if 
  GO TO 10 
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 end if 
 
 ! Setting initial values of variables 
 Hit = .FALSE. 
 ResetCheck = .FALSE. 
 TopCase = .FALSE. 
 ChainTopHitCheck = .FALSE. 
 checktime = 1 
 Balanced = 0 
 Touches = 0 
 Balances = 0 
 
 NLCount = 0 
 
 HMAdju = .FALSE. 
 ContSpotTemp = 0 
 ContSpotTempUy = 0 
 ContSpotL = 0 
 ContSpotR = 0 
 ContSpotUy = 0 
 ContSpotUx = 0 
 ContSpotUn = 0 
 
 SideBal = .FALSE. 
 Upwards = .FALSE. 
 Downwards = .FALSE. 
 
 RoundTwo = .FALSE. 
 
 MiddlePart = 0 
 MiddlePartA = 0 
 MiddlePartB = 0 
 MiddlePoint = 0 
 ContPoint = 0 
 ContPointB = 0 
 ContSpot = 0 
 ContDist = 99999 
 
 Valdx = 0 
 ValDist = 0 
 ValAng1 = 0 
 ValDist2 = 0 
 ValDist3 = 0 
 ValAng2a = 0 
 ValAng2b = 0 
 ValAng2 = 0 
 ValAng3 = 0 
 
 Dy = 0 
 intC = 0 
 CheckY = 0 
 
 ChainStartNo = 0 
 ChainStartCont = 1 
 ChainGrad = 0 
 EquC = 0 
 



William Eales 
 

225 
 

 EdgeAttempt = 0 
 EdgeCount = 0 
 EdgeCombi = 0 
 EdgeCase = .FALSE. 
 FirstEdge = .TRUE. 
 
 FinalPart = 999999 
 OverDist = 0 
 OverDistNo = 0 
 
 OverlapCount = 0 
 OverTopCount = 0 
 
 TRP1Swap = 0 
 TRP2Swap = 0 
 
 ChainAdd = .FALSE. 
 
 NotBal = .FALSE. 
 FirstBal = .TRUE. 
 BalCheckNo = 0 
 BalCombi = 0 
 BalCheckCount = 0 
 BalCount = 0 
 BalCheckNo = 0 
 BalCombi = 0 
 BalAttempt = 0 
 
 RadScale = 0 
 TempRealPos1 = 0 
 TempRealPos2 = 0 
 DistFac = 0 
 FDistA = 0 
 FDistB = 0 
 FDistC = 0 
 FDistD = 0 
 SavDist = 0 
 SavOneX = 0 
 SavOneY = 0 
 TempXa = 0 
 TempXb = 0 
 TempYa = 0 
 TempYb = 0 
 DistAB = 0 
 DistBC = 0 
 DistAC = 0 
 AngleA = 0 
 AngleB = 0 
 AngleFin = 0 
 GradFin = 0 
 xDiff = 0 
 yDiff = 0 
 Pi = 3.141596535 
 NewPos = 0 
 
 FinalDists = 0 
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 PartCoords = 0 
 stochDists = 0 
 sumDist = 0 
 dx = 0 
 stochxnew = 0 
 newCoords = 0 
 stochynew = 0 
 
 if (Fell .eqv. .TRUE.) then 
  Fell = .FALSE. 
  GO TO 66 
 end if 
 
 ! Randomly chooses which radius will be used for this particle 
 call random_number(RX) 
 RadScale = RadLarge/RadSmall 
 RadScale = RadScale + 1 
 count2 = 1 + floor(2*RX) 
 if (count2 == 2) then 
  RadT = RadLarge 
 else 
  RadT = RadSmall 
 end if 
 
 wloop: do while (Hit .eqv. .FALSE.) 
  FallPoint = GridSize 
   
  ! Randomly chooses the x value 
  call random_number(RX) 
  Spot = 1 + floor((GridSize-(2*RadT))*RX) 
  x = Spot+RadT 
 
66  CONTINUE 
 
  do y = FallPoint, RadT, -1 ! Loops from the top of the box, and sends to the 
function to determine impact 
   Long = (x/BoxSize)+1 
   Tall = (y/BoxSize)+1 
 
   call PointSafe 
 
   ! If the box is full or an impact has occured, the loop is exited 
    
   if (Full == 1) then 
    exit wloop 
   end if 
   if (FullCheck .eqv. .TRUE.) then 
    RoofHit = .TRUE. 
    GO TO 10 
   end if 
 
   if (Hit .eqv. .TRUE.) then 
    exit wloop 
   end if 
  end do 
 end do wloop 
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 if ((Hit .eqv. .TRUE.) .and. (Full /= 1)) then 
  if (MolNo > 1) then  
   RA = '0' 
   RAMolClose = 0 
 
   ! Sets up the variables to be used for particle placement 
 
   Ones = 0 
   OneCount = 1 
   ChainOnes = 0 
   ChainOneCount = 1 
    
   do a = 1, MolNo - 1 ! Loops through the particles for contour plot 
placement 
    MLxCor = MLxReal(a) 
    MLyCor = MLyReal(a) ! Takes the radius, x and y coordinates 
of the current particle in the loop 
    RadIn = Mlr(a) 
 
    DoubRad = (RadIn+RadT)+1 
    do Height = 0, RadIn ! Draws the particle onto the contour 
plot, "-"s marking blocked locations, "1"s being valid spots 
     MidWay = RadIn**2 - Height**2 
     RowRad = abs(sqrt(MidWay)) 
     if((MLxCor+Height<=GridSize-
RadT).and.(MLyCor+RowRad<=GridSize-RadT).and.(MLyCor-
RowRad>=RadT).and.(MLxCor-Height>=RadT))then 
      RA(MLyCor+RowRad, MLxCor+Height) = '-' 
      RA(MLyCor-RowRad, MLxCor+Height) = '-' 
      RA(MLyCor+RowRad, MLxCor-Height) = '-' 
      RA(MLyCor-RowRad, MLxCor-Height) = '-' 
     end if 
     do count2 = -RowRad,RowRad 
      if((MLxCor+Height<=GridSize-
RadT).and.(MLyCor+count2<=GridSize).and.(MLxCor-
Height>=RadT).and.(MLyCor+count2>=RadT))then 
       RA(MLyCor+count2, 
MLxCor+Height) = '-' 
       RA(MLyCor+count2, MLxCor-
Height) = '-' 
      end if 
     end do 
    end do 
 
    do Height = 0, DoubRad ! Draws locations around the current 
particle that are too close for the new particle to be added due to overlap 
     MidWay = DoubRad**2 - Height**2 
     RowRad = abs(sqrt(Midway)) 
     do count2 = -rowrad+1, rowrad-1 
      if 
((MLyCor+count2<=GridSize).and.(MLxCor+Height<=GridSize-
RadT).and.(MLyCor+count2>=RadT).and.(MLxCor+Height>=RadT))then 
       RA(MLyCor+count2, 
MLxCor+Height) = '-' 
      end if 
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      if 
((MLyCor+count2<=GridSize).and.(MLxCor-Height<=GridSize-
RadT).and.(MLyCor+count2>=RadT).and.(MLxCor-Height>=RadT))then 
       RA(MLyCor+count2, MLxCor-
Height) = '-' 
      end if 
     end do 
    end do 
 
    do Height = -RadIn, RadIn 
     do count2 = MlyCor-1, 1, -1 
      if 
((count2<=GridSize).and.(MLxCor+Height<=GridSize-
RadT).and.(count2>=RadT).and.(MLxCor+Height>=RadT))then 
       RA(count2, MLxCor+Height) = '-' 
      end if 
     end do 
    end do 
 
    do Height = -DoubRad, 0  ! Adds the valid spots for the 
resting particle to be placed 
     MidWay = DoubRad**2 - Height**2 
     RowRad = abs(sqrt(Midway)) 
 
     if 
((MLyCor+RowRad<=GridSize).and.(MLxCor+height<=GridSize-
RadT).and.(MLxCor+height>=RadT).and.(MLyCor+RowRad>=RadT))then 
      if (RA(MLyCor+RowRad, MLxCor+Height) 
/= '-') then 
       RA(MLyCor+RowRad, 
MLxCor+Height) = '1' 
       RAMolClose(MLyCor+RowRad, 
MLxCor+Height) = a 
      end if 
     end if 
     if ((MLyCor-
RowRad>=RadT).and.(MLxCor+height<=GridSize-
RadT).and.(MLxCor+height>=RadT).and.(MLyCor-RowRad<=GridSize)) then 
      if (RA(MLyCor-RowRad, MLxCor+Height) /= 
'-') then 
       RA(MLyCor-RowRad, 
MLxCor+Height) = '1' 
       RAMolClose(MLyCor-RowRad, 
MLxCor+Height) = a 
      end if 
     end if 
     if ((MLyCor+RowRad<=GridSize).and.(MLxCor-
Height<=GridSize-RadT).and.(MLxCor-Height>=RadT).and.(MLyCor+RowRad>=RadT))then 
      if (RA(MLyCor+RowRad, MLxCor-Height) /= 
'-') then 
       RA(MLyCor+RowRad, MLxCor-
Height) = '1' 
       RAMolClose(MLyCor+RowRad, 
MLxCor-Height) = a 
      end if 
     end if 
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     if ((MLyCor-RowRad>=RadT).and.(MLxCor-
height<=GridSize-RadT).and.(MLxCor-height>=RadT).and.(MLyCor-
RowRad<=GridSize))then 
      if (RA(MLyCor-RowRad, MLxCor-Height) /= 
'-') then 
       RA(MLyCor-RowRad, MLxCor-
Height) = '1' 
       RAMolClose(MLyCor-RowRad, 
MLxCor-Height) = a 
      end if 
     end if 
     do count2 = -RowRad, RowRad 
      if 
((MLyCor+count2<=GridSize).and.(MLxCor+height<=GridSize-
RadT).and.(MLxCor+height>=RadT).and.(MLyCor+count2>=RadT))then 
       if (RA(MLyCor+count2, 
MLxCor+Height) /= '-')  then 
        RA(MLyCor+count2, 
MLxCor+Height) = '1' 
       
 RAMolClose(MLyCor+count2, MLxCor+Height) = a 
       end if 
      end if 
      if ((MLyCor-
count2>=RadT).and.(MLxCor+height<=GridSize-
RadT).and.(MLxCor+height>=RadT).and.(MLyCor-count2<=GridSize))then 
       if (RA(MLyCor-count2, 
MLxCor+Height) /= '-') then 
        RA(MLyCor-count2, 
MLxCor+Height) = '1' 
        RAMolClose(MLyCor-
count2, MLxCor+Height) = a 
       end if 
        end if 
        if ((MLyCor+count2>=RadT).and.(MLxCor-
height<=GridSize-RadT).and.(MLxCor-
height>=RadT).and.(MLyCor+count2<=GridSize))then 
         if (RA(MLyCor+count2, MLxCor-
Height) /= '-') then 
          RA(MLyCor+count2, 
MLxCor-Height) = '1' 
         
 RAMolClose(MLyCor+count2, MLxCor-Height) = a 
         end if 
        end if 
        if ((MLyCor-
count2<=GridSize).and.(MLxCor-height<=GridSize-RadT).and.(MLxCor-
height>=RadT).and.(MLyCor-count2>=RadT))then 
         if (RA(MLyCor-count2, MLxCor-
Height) /= '-') then 
          RA(MLyCor-count2, 
MLxCor-Height) = '1' 
          RAMolClose(MLyCor-
count2, MLxCor-Height) = a 
         end if 
        end if 
       end do 
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      end do 
   end do 
 
   do a = 1, GridSize ! Finds the valid points and saves them to an array 
    do b = 1, GridSize 
     if (RA(b,a) == '1') then 
      ReWLoop: do c = 1, OneCount 
       if ((Ones(c,2) == a) .and. (Ones(c,1) 
< b)) then 
        Ones(c,1) = b 
        exit ReWLoop 
       end if 
      end do ReWLoop 
      if ((c-1 == OneCount) .or. (OneCount == 1)) 
then 
       Ones(OneCount, 1) = b 
       Ones(OneCount, 2) = a 
       OneCount = OneCount + 1 
      end if 
     end if 
    end do 
   end do 
 
   do a = 1, OneCount - 1 ! Finds the closest of these points to the impact 
location and moves the particle to it 
    TempX = Ones(a,2) 
    TempY = Ones(a,1) 
 
    if (TempY <= y+1) then 
     Dist = ((x-TempX)**2)+((y-TempY)**2) 
     Dist = sqrt(Dist) 
     if ((Dist < SavDist) .or. (SavDist == 0)) then 
      SavDist = Dist 
      SavOneX = Ones(a,2) 
      SavOneY = Ones(a,1) 
     end if 
    end if 
   end do 
 
   TempX = SavOneX 
   TempY = SavOneY 
 
   if ((TempX == 0) .and. (TempY == 0)) then 
    GO TO 10 
   end if 
    
   SavOnePart = RAMolClose(TempY, TempX) 
 
   SafeLocCount = 0 
   SavIncremX = SavOneX 
   SavIncremY = SavOneY 
   SafeLocFound = .FALSE. 
   FinalSavX = 0 
   FinalSavY = 0 
   LR = 0 
   RealPos1 = 0 
   RealPos2 = 0 
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   if (MLxReal(SavOnePart) == TempX) then! Determines which way 
the particle should roll 
    call random_number(RX) 
    LRNo = 1 + floor(2*RX) 
    if (LRNo == 1) then 
     LR = -1 
    elseif (LRNo == 2) then 
     LR = 1 
    end if 
   elseif (MLxReal(SavOnePart) < TempX) then 
    LR = 1 
    Upwards = .TRUE. 
   elseif (MLxReal(SavOnePart) > TempX) then 
    LR = -1 
    Downwards = .TRUE. 
   end if 
    
   RMPInter = 0 
   RMPPrev = SavOnePart 
   RealPos1 = SavOnePart 
 
   do a = 1, OneCount-1 
    if (Ones(a,2) == TempX) then 
     SideCount = a 
    end if 
   end do 
    
   do while (SafeLocFound .eqv. .FALSE.) ! Iterates in that direction until 
the next position would be higher, or reaching the edge of the box 
    if ((Ones(SideCount+LR,1) > Ones(SideCount,1)) .or. 
(Ones(SideCount,2) == RadT) .or. (Ones(SideCount,2) == GridSize-RadT)) then 
     SafeLocFound = .TRUE. 
    else 
     SideCount = SideCount + LR 
    end if 
   end do 
 
19   CONTINUE 
 
   TempX = Ones(SideCount+AdjCount,2) 
   TempY = Ones(SideCount+AdjCount,1) 
    
   if (TempX > GridSize-RadT) then 
    TempX = GridSize-RadT 
    TempY = Ones(SideCount-AdjCount,1) 
   elseif (TempX < RadT) then 
    TempX = RadT 
    TempY = Ones(SideCount-AdjCount,1) 
   end if 
 
   do a = 1, MolNo-1 ! Finds the particles closest to the low point for the 
new particle to be resting on 
    if (MLyReal(a) < TempY+RadT) then 
     Dist = ((MLxReal(a)-TempX)**2)+((MLyReal(a)-
TempY)**2) 
     Dist = sqrt(Dist) - RadT - MLr(a) 
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     if (Dist <= FinalPart(1,2)) then 
      FinalPart(2,1) = FinalPart(1,1) 
      FinalPart(2,2) = FinalPart(1,2) 
      FinalPart(2,3) = FinalPart(1,3) 
      FinalPart(1,1) = a 
      FinalPart(1,2) = Dist 
      FinalPart(1,3) = Dist + RadT + MLr(a) 
     elseif (Dist <= FinalPart(2,2)) then 
      FinalPart(2,1) = a 
      FinalPart(2,2) = Dist 
      FinalPart(2,3) = Dist + RadT + MLr(a) 
     end if 
    end if 
   end do 
 
50   CONTINUE 
 
   PartCoords(1,1) = MLxReal(FinalPart(1,1)) 
   PartCoords(1,2) = MLyReal(FinalPart(1,1)) 
 
   PartCoords(2,1) = MLxReal(FinalPart(2,1)) 
   PartCoords(2,2) = MLyReal(FinalPart(2,1)) 
 
   if ((TempX == RadT) .or. (TempX == GridSize-RadT)) then 
    EdgeCase = .TRUE. 
   end if 
 
   if (EdgeCase .eqv. .TRUE.) then ! If the particle is on an edge, it 
balances the new particle on the edge + one particle 
    NewX = TempX 
 
    Dist = RadT + MLr(FinalPart(1,1)) 
 
    NewY = -
(MLxReal(FinalPart(1,1))**2)+(2*MLxReal(FinalPart(1,1))*NewX) 
    NewY = NewY+(Dist**2)-(NewX**2) 
    NewY = sqrt(NewY) 
 
    if (NewY /= NewY) then 
71     CONTINUE 
     if (FirstEdge .eqv. .TRUE.) then 
      do a = 1, MolNo-1 
       Dist = (MLxReal(a)-NewX) 
       if (Dist < RadT + MLr(a) + 
(RadT*8)) then 
        EdgeCombi(EdgeCount) = 
a 
        EdgeCount = EdgeCount + 
1 
       end if 
      end do 
     end if 
 
     FirstEdge = .FALSE. 
 
     if (EdgeAttempt <= EdgeCount-1) then 
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      FinalPart(1,1) = EdgeCombi(EdgeCount-
EdgeAttempt-1) 
      EdgeAttempt = EdgeAttempt + 1 
      GO TO 50 
     end if 
 
     FullCount = FullCount + 1 
     GO TO 10 
    end if 
 
    if ((TempY - (MLyReal(FinalPart(1,1)) + NewY)) < (TempY - 
(MLyReal(FinalPart(1,1)) - NewY))) then 
     NewY = MLyReal(FinalPart(1,1)) + NewY 
    else 
     NewY = MLyReal(FinalPart(1,1)) - NewY 
    end if 
 
    do a = 1, MolNo-1 ! Confirming the new particle is not 
overlapping with any other particles 
     Dist = ((MLxReal(a)-NewX)**2)+((MLyReal(a)-
NewY)**2) 
     Dist = sqrt(Dist) 
     if (Dist < MLr(a)+RadT-0.1) then 
      OverlapCount = OverlapCount + 1 
      if (OverlapCount > 2500) then 
       GO TO 71 
      end if 
 
      FinalPart(1,1) = a 
      FullCount = FullCount + 1 
      GO TO 50 
     end if 
    end do 
 
    if ((NewX < RadT) .or. (NewY < RadT) .or. (NewX > GridSize-
RadT) .or. (NewY > GridSize-RadT)) then 
     FullCount = FullCount + 1 
     GO TO 10 
    end if 
     
   else ! else if the particle is not on an edge it balances on two particles 
through stochastic optimisation 
    
    newCoords = 0 
    stochDists = 0 
    sumDist = 0 
    dx = 0 
    stochxnew = 0 
    ibad = 0 
 
    newCoords(1) = TempX 
    newCoords(2) = TempY 
 
    stochDists(1) = FinalPart(1,3) 
    stochDists(2) = FinalPart(2,3) 
 
    sumDist = stochDists(1) + stochDists(2) 
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    dx(1) = 10 * RadLarge 
    dx(2) = 10 * RadLarge 
 
    do a = 1, 10 
     do b = 1, 2 
      dx(b) = dx(b) / 10 
     end do 
 
     do c = 1, 500 
      call random_number(RX) 
      stochxnew(2) = newCoords(2) + (dx(2) * 
((2*RX)-1)) 
      call random_number(RX) 
      stochxnew(1) = newCoords(1) + (dx(1) * 
((2*RX)-1)) 
 
      ibad = 0 
 
      do b = 1, 2 
       stochDists(b) = ((PartCoords(b,1) - 
stochxnew(1))**2) + ((PartCoords(b,2)-stochxnew(2))**2) 
       stochDists(b) = sqrt(stochDists(b)) - 
RadT - MLr(FinalPart(b,1)) 
       if (stochDists(b) < 0) then 
        ibad = 1 
       end if 
      end do 
 
      stochynew = stochDists(1) + stochDists(2) 
      if ((stochynew < sumDist) .and. (ibad == 0)) 
then 
       do b = 1, 2 
        newCoords(b) = 
stochxnew(b) 
       end do 
       sumDist = stochynew 
      end if 
     end do 
    end do 
   
    NewX = newCoords(1) 
    NewY = newCoords(2) 
 
    do a = 1, MolNo-1 
     Dist = ((MLxReal(a)-NewX)**2)+((MLyReal(a)-
NewY)**2) 
     Dist = sqrt(Dist) 
     if (Dist < MLr(a)+RadT) then 
      OverDist = 0 
      OverlapCount = OverlapCount + 1 
      if (OverlapCount > 2500) then 
       NotBal = .TRUE. 
       GO TO 70 
      end if 
  
      do b = 1, 2 
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       Dist = ((MLxReal(a)-
PartCoords(b,1))**2)+((MLyReal(a)-PartCoords(b,2))**2) 
       Dist = sqrt(Dist) 
       if ((Dist < OverDist) .or. (OverDist == 
0)) then 
        OverDist = Dist 
        OverDistNo = b 
       end if 
      end do 
      FinalPart(OverDistNo,1) = a 
      if (FinalPart(1,1) == FinalPart(2,1)) then 
       NotBal = .TRUE. 
       GO TO 70 
      end if 
      FullCount = FullCount + 1 
      if (OverDist == 0) then 
       NotBal = .TRUE. 
       GO TO 70 
      else 
       GO TO 50 
      end if 
     end if 
    end do 
 
    NotBal = .FALSE. 
    if (HMAdju .eqv. .FALSE.) then 
     if ((NewX > PartCoords(1,1)+0.25) .and. (NewX > 
PartCoords(2,1)+0.25)) then ! Confirms the new particle is resting in between the old particles 
      NotBal = .TRUE. 
     elseif ((NewX < PartCoords(1,1)-0.25) .and. (NewX 
< PartCoords(2,1)-0.25)) then 
      NotBal = .TRUE. 
     end if 
    end if 
 
    do b = 1, 2 
     Dist = ((NewX-PartCoords(b,1))**2)+((NewY-
PartCoords(b,2))**2) 
     Dist = sqrt(Dist) 
     if (Dist > RadT + MLr(FinalPart(b,1))+0.25) then 
      NotBal = .TRUE. 
     end if 
    end do 
 
    Dy = (PartCoords(1,2) - PartCoords(2,2)) / (PartCoords(1,1) 
- PartCoords(2,1)) 
    intC =  PartCoords(1,2) - (Dy * PartCoords(1,1)) 
    CheckY = (Dy * NewX) + intC 
    if (NewY < CheckY) then 
     NotBal = .TRUE. 
    end if 
 
70    CONTINUE 
 
    OverlapCount = 0 
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    if (NotBal .eqv. .TRUE.) then ! If the particle is not 
correctly balancing then it looks for alternate particles to be resting on and moves to that 
location 
     if (FirstBal .eqv. .TRUE.) then 
      do a = 1, MolNo-1 
       Dist = ((MLxReal(a)-NewX)**2) 
       Dist = sqrt(Dist) 
       if ((Dist < RadT + MLr(a) + (RadT*8)) 
.and. (NewY-MlyReal(a) < RadT + MLr(a) + (RadT*6))) then 
       
 BalCheckNo(BalCheckCount) = a 
        BalCheckCount = 
BalCheckCount + 1 
       end if 
      end do 
      aLoop: do a = BalCheckCount-1, 1, -1 
       do b = BalCheckCount-1, 1, -1 
        if (BalCheckNo(b) < 
BalCheckNo(a)) then 
         if (BalCount <= 
100000) then 
          if 
(abs(MlxReal(BalCheckNo(a)) – MlxReal(BalCheckNo(b))) <= RadT*2 + MLr(BalCheckNo(a)) 
+ MLr(BalCheckNo(b))) then 
          
 BalCombi(BalCount,1) = BalCheckNo(a) 
          
 BalCombi(BalCount,2) = BalCheckNo(b) 
          
 BalCount = BalCount + 1 
          end if 
         else 
          exit aLoop 
         end if 
        end if 
       end do 
      end do aLoop 
     end if 
 
     FirstBal = .FALSE. 
 
     if (BalAttempt <= BalCount-1) then 
      do while (BalCombi(BalCount-BalAttempt,1) 
== 0 .or. BalCombi(BalCount-BalAttempt,2) == 0) 
       BalAttempt = BalAttempt + 1 
      end do 
      FinalPart(1,1) = BalCombi(BalCount-
BalAttempt,1) 
      FinalPart(2,1) = BalCombi(BalCount-
BalAttempt,2) 
      BalAttempt = BalAttempt + 1 
 
      if (BalAttempt <= 100000) then 
       GO TO 50 
      end if 
     end if 
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     if (TempX >= GridSize-(RadT*5)) then 
      TempX = GridSize-RadT 
      EdgeCase = .TRUE. 
      GO TO 50 
     elseif (TempX <= RadT+(RadT*5)) then 
      TempX = RadT 
      EdgeCase = .TRUE. 
      GO TO 50 
     end if 
 
     if ((AdjCount < 75) .and. (AdjCount > -75)) then 
      AdjCount = AdjCount – LR 
      HMAdju = .TRUE. 
      GO TO 19 
     elseif (AdjCount < -75 .and. Downwards .eqv. 
.TRUE.) then 
      Downwards = .FALSE. 
      AdjCount = 0 
      LR = 1 
      GO TO 19 
     elseif (AdjCount > 75 .and. Upwards .eqv. .TRUE.) 
then 
      Downwards = .TRUE. 
      AdjCount = 0 
      LR = -1 
      GO TO 19 
     else 
      GO TO 10 
     end if 
 
     GO TO 10 
 
    end if 
 
   end if 
 
   if ((NewX > GridSize-RadT) .or. (NewX < RadT) .or. (NewY > 
GridSize-RadT) .or. (NewY < RadT)) then 
    if (TempX >= GridSize-RadT-RadT) then 
     TempX = GridSize-RadT 
     EdgeCase = .TRUE. 
     GO TO 50 
    elseif (TempX <= RadT+RadT) then 
     TempX = RadT 
     EdgeCase = .TRUE. 
     GO TO 50 
    end if 
    GO TO 10 
   end if 
 
   MlxReal(MolNo) = NewX ! Saves the first particle location 
   MlyReal(MolNo) = NewY 
   MLr(MolNo) = RadT 
   FullCount = 0 
   MolNo = MolNo + 1 
 
   RA = ‘0’ 
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   RAMolClose = 0  
  else 
   MlxReal(MolNo) = x 
   MlyReal(MolNo) = y 
   MLr(MolNo) = RadT 
   FullCount = 0 
   MolNo = MolNo + 1 
  end if 
 
  ! The first particle in the chain placed, now moving onto placing the rest of the 
chain 
 
  RA = ‘’ 
  OverlapCount = 0 
 
  MlxCor = MlxReal(MolNo-1) 
  MlyCor = MlyReal(MolNo-1) 
  RadIn = MLr(MolNo-1)  
  DoubRad = (RadIn+RadT)+1 
 
  do Height = -RadIn, 0 ! The contour plot is remade similar to the first time, 
however valid points are only placed attached to the particle just added to the system 
   MidWay = RadIn**2 – Height**2 
   RowRad = abs(sqrt(Midway)) 
   if ((MlyCor+RowRad<=GridSize).and.(MlxCor+Height<=GridSize-
RadT).and.(MlxCor+Height>=RadT).and.(MlyCor+RowRad>=RadT))then 
    if (MlyCor+RowRad>= MlyCor) then 
    do a = 1, MolNo-2 
     Dist = ((MlxReal(a)-(MlxCor+Height))**2) + 
((MlyReal(a)-(MlyCor+RowRad))**2) 
     Dist = sqrt(Dist) 
     if (Dist < RadIn + MLr(a)) then 
      GO TO 15 
     end if 
    end do 
    RA(MlyCor+RowRad, MlxCor+Height) = ‘1’ 
    end if 
   end if 
15     CONTINUE 
   if ((MlyCor-RowRad>=RadT).and.(MlxCor+Height<=GridSize-
RadT).and.(MlxCor+height>=RadT).and.(MlyCor-RowRad<=GridSize))then 
    if (MlyCor-RowRad>= MlyCor) then 
    do a = 1, MolNo-2 
     Dist = ((MlxReal(a)-(MlxCor+Height))**2) + 
((MlyReal(a)-(MlyCor-RowRad))**2) 
     Dist = sqrt(Dist) 
     if (Dist < RadIn + MLr(a)) then 
      GO TO 16 
     end if 
    end do 
    RA(MlyCor-RowRad, MlxCor+Height) = ‘1’ 
    end if 
   end if 
16     CONTINUE 
   if ((MlyCor+RowRad<=GridSize).and.(MlxCor-Height<=GridSize-
RadT).and.(MlxCor-Height>=RadT).and.(MlyCor+RowRad>=RadT))then 
    if (MlyCor+RowRad>= MlyCor) then 
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    do a = 1, MolNo-2 
     Dist = ((MlxReal(a)-(MlxCor-Height))**2) + 
((MlyReal(a)-(MlyCor+RowRad))**2) 
     Dist = sqrt(Dist) 
     if (Dist < RadIn + MLr(a)) then 
      GO TO 17 
     end if 
    end do 
    RA(MlyCor+RowRad, MlxCor-Height) = ‘1’ 
    end if 
   end if 
17     CONTINUE 
   if ((MlyCor-RowRad>=RadT).and.(MlxCor-Height<=GridSize-
RadT).and.(MlxCor-height>=RadT).and.(MlyCor-RowRad<=GridSize))then 
    if (MlyCor-RowRad>= MlyCor) then 
    do a = 1, MolNo-2 
     Dist = ((MlxReal(a)-(MlxCor-Height))**2) + 
((MlyReal(a)-(MlyCor-RowRad))**2) 
     Dist = sqrt(Dist) 
     if (Dist < RadIn + MLr(a)) then 
      GO TO 18 
     end if 
    end do 
    RA(MlyCor-RowRad, MlxCor-Height) = ‘1’ 
    end if 
   end if 
18     CONTINUE 
  end do 
 
  ChainOneCount = 1 
 
  do a = 1, GridSize 
   do b = 1, GridSize 
    if (RA(b,a) == ‘1’) then 
     ChainOnes(ChainOneCount, 1) = b 
     ChainOnes(ChainOneCount, 2) = a 
     ChainOneCount = ChainOneCount + 1 
    end if 
   end do 
  end do 
  
  call random_number(RX) 
  LRNo = 1 + floor(2*RX) 
14  CONTINUE 
 
  if (NLCount >= 250) then 
   OverFallCount = OverFallCount + 1 
   MolNo = MolNo – 1 
   if (OverFallCount >= 100) then 
    Full = 1 
   end if 
   GO TO 10 
  end if 
 
  if (LRNo == 1) then ! Picks whether the chain should fall left or right 
   TempX = ChainOnes(1,2) 
   TempY = ChainOnes(1,1) 
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  elseif (LRNo == 2) then 
   TempX = ChainOnes(ChainOneCount-1,2) 
   TempY = ChainOnes(ChainOneCount-1,1) 
  end if 
 
  if  (MlxReal(MolNo-1) == GridSize-RadT) then 
   TempX = ChainOnes(1,2) 
   TempY = ChainOnes(1,1) 
  elseif (MlxReal(MolNo-1) == RadT) then 
   TempX = ChainOnes(ChainOneCount-1,2) 
   TempY = ChainOnes(ChainOneCount-1,1) 
  end if 
   
  if (TempX == 0 .or. TempY == 0) then 
   TempX = MlxReal(MolNo-1) 
   TempY = MlyReal(MolNo-1)+MLr(MolNo-1) 
  end if 
 
  FinalPart = 99999 
  FinalPart(1,1) = MolNo-1 
  Dist = ((MlxReal(a)-TempX)**2)+((MlyReal(a)-TempY)**2) 
  Dist = sqrt(Dist) – MLr(a) 
  FinalPart(1,2) = Dist 
  FinalPart(1,3) = Dist + MLr(a) 
 
  do a = 1, MolNo-2 
   if (MlyReal(a) < TempY+1) then 
    Dist = ((MlxReal(a)-TempX)**2)+((MlyReal(a)-TempY)**2) 
    Dist = sqrt(Dist) – RadT – MLr(a) 
    if (Dist <= FinalPart(2,2)) then 
     FinalPart(2,1) = a 
     FinalPart(2,2) = Dist 
     FinalPart(2,3) = Dist + RadT + MLr(a) 
    end if 
   end if 
  end do 
 
60  CONTINUE 
 
  PartCoords(1,1) = MlxReal(FinalPart(1,1)) 
  PartCoords(1,2) = MlyReal(FinalPart(1,1)) 
  PartCoords(2,1) = MlxReal(FinalPart(2,1)) 
  PartCoords(2,2) = MlyReal(FinalPart(2,1)) 
 
  EdgeCase = .FALSE. 
  TopCase = .FALSE. 
 
  if ((TempX <= RadT) .or. (TempX >= GridSize-RadT)) then 
   EdgeCase = .TRUE. 
  elseif (TempY >= GridSize-RadT) then 
   TopCase = .TRUE. 
  end if 
 
  if (EdgeCase .eqv. .TRUE.) then ! Does the same as above but resting the 
particle against the edge attached to the first particle 
   NewX = TempX 
   Dist = MLr(FinalPart(1,1)) 
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   NewY = -
(MlxReal(FinalPart(1,1))**2)+(2*MlxReal(FinalPart(1,1))*NewX) 
   NewY = NewY+(Dist**2)-(NewX**2) 
   NewY = sqrt(NewY) 
 
   if (NewY /= NewY) then 
    MolNo = MolNo – 1 
    GO TO 10 
   end if 
 
   if (TempY – (MlyReal(FinalPart(1,1)) + NewY) < TempY – 
(MlyReal(FinalPart(1,1)) – NewY)) then 
    NewY = MlyReal(FinalPart(1,1)) + NewY 
   else 
    NewY = MlyReal(FinalPart(1,1)) – NewY 
   end if 
  elseif (TopCase .eqv. .TRUE.) then 
   NewY = TempY 
   Dist = MLr(FinalPart(1,1)) ! Does the same as above but resting the 
particle against the roof of the box attached to the first particle 
 
   NewX = -
(MlyReal(FinalPart(1,1))**2)+(2*MlyReal(FinalPart(1,1))*NewY) 
   NewX = NewX+(Dist**2)-(NewY**2) 
   NewX = sqrt(NewX) 
 
   if (NewX /= NewX) then 
    MolNo = MolNo – 1 
    GO TO 10 
   end if 
 
   if (TempX – (MlxReal(FinalPart(1,1)) + NewX) < TempX – 
(MlxReal(FinalPart(1,1)) – NewX)) then 
    NewX = MlxReal(FinalPart(1,1)) + NewX 
   else 
    NewX = MlxReal(FinalPart(1,1)) – NewX 
   end if 
     
  else ! Does the same as above resting the particle against a particle while still 
being attached to the first particle 
   
   newCoords = 0 
   stochDists = 0 
   sumDist = 0 
   dx = 0 
   stochxnew = 0 
   ibad = 0 
     
   newCoords(1) = TempX 
   newCoords(2) = TempY 
 
   stochDists(1) = FinalPart(1,3) 
   stochDists(2) = FinalPart(2,3) 
 
   sumDist = stochDists(1) + stochDists(2) 
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   dx(1) = 10 * RadLarge 
   dx(2) = 10 * RadLarge 
    
   do a = 1, 10 
    do b = 1, 2 
     dx(b) = dx(b) / 10 
    end do 
    do c = 1, 500 
     call random_number(RX) 
     stochxnew(2) = newCoords(2) + dx(2) * ((2*RX)-1) 
     call random_number(RX) 
     stochxnew(1) = newCoords(1) + dx(1) * ((2*RX)-1) 
 
     ibad = 0 
 
     stochDists(1) = ((PartCoords(1,1)-
stochxnew(1))**2)+((PartCoords(1,2)-stochxnew(2))**2) 
     stochDists(1) = sqrt(stochDists(1)) – 
MLr(FinalPart(1,1)) 
     if (stochDists(1) < 0) then 
      ibad = 1 
     end if 
 
     stochDists(2) = ((PartCoords(2,1)-
stochxnew(1))**2)+((PartCoords(2,2)-stochxnew(2))**2) 
     stochDists(2) = sqrt(stochDists(2)) – RadT – 
MLr(FinalPart(2,1)) 
     if (stochDists(2) < 0) then 
      ibad = 1 
     end if 
 
     stochynew = stochDists(1) + stochDists(2) 
     if ((stochynew < sumDist) .and. (ibad == 0)) then 
      do b = 1, 2 
       newCoords(b) = stochxnew(b) 
      end do 
      sumDist = stochynew 
     end if 
    end do 
   end do 
 
   ContPoint = FinalPart(2,1) 
   NewX = newCoords(1) 
   NewY = newCoords(2) 
  end if 
 
  if ((NewX > GridSize-RadT) .or. (NewX < RadT) .or. (NewY > GridSize-RadT) 
.or. (NewY < RadT)) then 
   if (EdgeCase .eqv. .FALSE.) then 
    EdgeCase = .TRUE. 
   end if 
   MolNo = MolNo – 1 
   GO TO 10 
  end if 
 
  do a = 1, MolNo-2 
   Dist = ((MlxReal(a)-NewX)**2)+((MlyReal(a)-NewY)**2) 
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   Dist = sqrt(Dist) 
   if (Dist < MLr(a)+RadT) then 
    OverlapCount = OverlapCount + 1 
    if (OverlapCount > 2500) then 
     if (Tilt .eqv. .FALSE.) then 
      OverlapCount = 0 
      if (LRNo == 1) then 
       LRNo = 2 
      else 
       LRNo = 1 
      end if 
      Tilt = .TRUE. 
      GO TO 14 
     end if 
     MolNo = MolNo – 1 
     if ((AdjCount < 75) .and. (AdjCount > -75)) then 
      AdjCount = AdjCount – LR 
      HMAdju = .TRUE. 
      GO TO 19 
     elseif (AdjCount < -75 .and. Downwards .eqv. 
.TRUE.) then 
      Downwards = .FALSE. 
      AdjCount = 0 
      LR = 1 
      GO TO 19 
     elseif (AdjCount > 75 .and. Upwards .eqv. .TRUE.) 
then 
      Downwards = .TRUE. 
      AdjCount = 0 
      LR = -1 
      GO TO 19 
     else 
      GO TO 10 
     end if 
     GO TO 10 
    end if 
     
    FinalPart(2,1) = a 
    GO TO 60 
 
    FullCount = FullCount + 1 
    MolNo = MolNo – 1 
    GO TO 10 
   end if 
  end do 
 
  MlxReal(MolNo) = NewX ! Saves the second particle in the chain 
  MlyReal(MolNo) = NewY 
  MLr(MolNo) = RadT 
  FullCount = 0 
  MolNo = MolNo + 1 
 
  ChainStartNo = MolNo-2 ! If the requested chain length is longer than 2 then 
the following code is done 
  ChainStartCont = MolNo-1 
  CSCy = MlyReal(ChainStartCont) 
  CSCx = NewX 
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  do a = 1, ChainLength – 2 ! Loops for the chain particles beyond the first two 
 
   OverlapCount = 0 
 
   ChainGrad = (MlyReal(ChainStartCont) – MlyReal(ChainStartNo)) / 
(MlxReal(ChainStartCont) – MlxReal(ChainStartNo)) 
   EquC = MlyReal(ChainStartCont) – (ChainGrad * 
MlxReal(ChainStartCont)) 
 
   if (MlxReal(ChainStartCont) – MlxReal(ChainStartNo) == 0) then ! If 
particle is vertical then places the new one on top 
    NewX = MlxReal(ChainStartNo) 
    NewY = MlyReal(ChainStartNo+a) + RadT 
   else ! Otherwise works out the gradient and then angle of the 2 
particle chain to add the following particles onto 
    NewX = RadT / (sqrt((ChainGrad**2) + 1)) 
    NewY = (ChainGrad * NewX)  
 
    if (MlxReal(ChainStartCont) < MlxReal(ChainStartNo)) then 
     if (MlyReal(ChainStartCont) > 
MlyReal(ChainStartNo)) then 
      NewX = MlxReal(MolNo-1) – NewX 
      NewY = MlyReal(MolNo-1) – NewY 
     else 
      NewX = MlxReal(MolNo-1) – NewX 
      NewY = MlyReal(MolNo-1) – NewY 
     end if 
    elseif (MlxReal(ChainStartCont) > MlxReal(ChainStartNo)) 
then 
     if (MlyReal(ChainStartCont) > 
MlyReal(ChainStartNo)) then 
      NewX = MlxReal(MolNo-1) + NewX 
      NewY = MlyReal(MolNo-1) + NewY 
     else 
      NewX = MlxReal(MolNo-1) + NewX 
      NewY = MlyReal(MolNo-1) + NewY 
     end if 
    end if  
   end if 
 
98   CONTINUE 
 
   ChainHitCheck = .FALSE. 
   ChainEdgeHitCheck = .FALSE. 
   ChainTopHitCheck = .FALSE. 
 
   ChainHitLoop: do b = 1, MolNo – a-2 ! Checks if the new part of 
the chain is overlapping with anything 
    Dist = ((MlxReal(b)-NewX)**2)+((MlyReal(b)-NewY)**2) 
    Dist = sqrt(Dist) 
    if (Dist < ((RadT)+(Mlr(b)))) then 
     ChainHitCheck = .TRUE. 
     PartHit = b 
    end if 
   end do ChainHitLoop 
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99   CONTINUE 
 
   if ((NewX > GridSize-RadT) .or. (NewX < RadT)) then ! Checks if the 
new part of the chain is outside of the box 
    ChainEdgeHitCheck = .TRUE. 
   elseif (NewY > GridSize-RadT) then 
    ChainTopHitCheck = .TRUE. 
   end if 
 
   if (ChainHitCheck .eqv. .TRUE.) then ! If overlapping then the particle 
moves to be resting upon the particle it is overlapping 
 
    if (OverlapCount > 2500) then 
     MolNo = MolNo – a 
     if (Tilt .eqv. .FALSE.) then 
      OverlapCount = 0 
      if (LRNo == 1) then 
       LRNo = 2 
      else 
       LRNo = 1 
      end if 
      Tilt = .TRUE. 
      GO TO 14 
     end if 
     MolNo = MolNo – 1 
     if ((AdjCount < 75) .and. (AdjCount > -75)) then 
      AdjCount = AdjCount – LR 
      HMAdju = .TRUE. 
      GO TO 19 
     elseif (AdjCount < -75 .and. Downwards .eqv. 
.TRUE.) then 
      Downwards = .FALSE. 
      AdjCount = 0 
      LR = 1 
      GO TO 19 
     elseif (AdjCount > 75 .and. Upwards .eqv. .TRUE.) 
then 
      Downwards = .TRUE. 
      AdjCount = 0 
      LR = -1 
      GO TO 19 
     else 
      GO TO 10 
     end if 
     GO TO 10 
    end if 
     
    newCoords = 0 
    stochDists = 0 
    sumDist = 0 
    dx = 0 
    stochxnew = 0 
    ibad = 0 
 
    newCoords(1) = NewX 
    newCoords(2) = NewY 
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    stochDists(1) = Dist 
    stochDists(2) = ((MlxReal(MolNo-a-1)-
NewX)**2)+((MlyReal(MolNo-a-1)-NewY)**2) 
    stochDists(2) = sqrt(stochDists(2)) 
 
    sumDist = stochDists(1) + stochDists(2) 
 
    dx(1) = 10 * RadLarge 
    dx(2) = 10 * RadLarge 
 
    do b = 1, 10 
     do c = 1, 2 
      dx© =©(c) / 10 
     end do 
     do c = 1, 500 
      call random_number(RX) 
      stochxnew(2) = newCoords(2) + dx(2) * 
((2*RX)-1) 
      call random_number(RX) 
      stochxnew(1) = newCoords(1) + dx(1) * 
((2*RX)-1) 
 
      ibad = 0 
 
      stochDists(1) = ((MLxReal(PartHit)-
stochxnew(1))**2)+((MLyReal(PartHit)-stochxnew(2))**2) 
      stochDists(1) = sqrt(stochDist–(1)) - (–adT) - 
(MLr(PartHit)) 
      if (stochDists(1) < 0) then 
       ibad = 1 
      end if 
 
      stochDists(2) = ((MLxReal(MolNo-a-1)-
stochxnew(1))**2)+((MLyReal(MolNo-a-1)-stochxnew(2))**2) 
      stochDists(2) = sqrt(stochDist–(2)) - ((a+1) * 
RadT) 
      if (stochDists(2) < 0) then 
       ibad = 1 
      end if 
 
      stochynew = stochDists(1) + stochDists(2) 
      if ((stochynew < sumDist) .and. (ibad == 0)) 
then 
       do d = 1, 2 
        newCoords(d) = 
stochxnew(d) 
       end do 
       sumDist = stochynew 
      end if 
     end do 
    end do 
   
    ContPoint = PartHit 
    NewX = newCoords(1) 
    NewY = newCoords(2) 
 
    if (NewY < MLyReal(PartHit)) then 
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     AngleFix: do b = 1, MolNo-a-2 
      Dist = ((MLxReal(b)-
NewX)**2)+((MLyReal(b)-NewY)**2) 
      Dist = sqrt(Dist) 
      if (Dist < MLr(b)+RadT) then 
 
       Valdx = abs(MLxReal(MolNo–a-1) - 
NewX) 
       ValDist = ((MLxReal(MolNo-a-1)-
NewX)**2)+((MLyReal(MolNo-a-1)-NewY)**2) 
       ValDist = sqrt(ValDist) 
       ValAng1 = asin(Valdx/ValDist) 
       ValDist2 = ((MLxReal(MolNo-a-1)-
MLxReal(PartHit))**2)+((MLyReal(MolNo-a-1)-MLyReal(PartHit))**2) 
       ValDist2 = sqrt(ValDist2) 
       ValDist3 = ((newX-
MLxReal(PartHit))**2)+((newY-MLyReal(PartHit))**2) 
       ValDist3 = sqrt(ValDist3) 
       ValAng2a = (ValDist2**2) + (ValDis–
**2) - (ValDist3**2) 
       ValAng2b = 2 * ValDist * ValDist2 
       ValAng2 = 
acos(ValAng2a/ValAng2b) 
       if ((ValAng2 /= ValAng2) .or. 
ValAng2 < 0.01) then 
        ValAng3 =–(Pi) - ValAng1 
       else 
        ValAng3 =–(Pi) - Va–Ang1 - 
(ValAng2*2) 
        if (MLxReal(PartHit) > 
MLxReal(MolNo-a-1)) then 
         NewX = 
MLxReal(MolNo-a-1) + (sin(ValAng3) * ValDist) 
        else 
         NewX = 
MLxReal(MolNo–a-1) - (sin(ValAng3) * ValDist) 
        end if 
        NewY = MLyReal(MolNo-a-
1) + (cos(ValAng3) * ValDist) 
       end if 
       exit AngleFix 
      end if 
     end do AngleFix 
    end if 
     
 
    ChainHitCheck = .FALSE. 
 
    do b = 1, –olNo - a-2 
     Dist = ((MLxReal(b)-NewX)**2)+((MLyReal(b)-
NewY)**2) 
     Dist = sqrt(Dist) 
     if (Dist < ((RadT)+(Mlr(b)))) then 
      ChainHitCheck = .TRUE. 
      PartHit = b 
     end if 
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    end do 
 
    if (ChainHitCheck .eqv. .TRUE.) then 
     OverlapCount = OverlapCount + 1 
     GO TO 99 
    end if 
 
    if ((NewX < RadT) .or. (NewX > Gri–Size - RadT)) then 
     ChainHitCheck = .FALSE. 
     ChainEdgeHitCheck = .TRUE. 
     GO TO 99 
    end if 
    if (NewY > Gri–Size - RadT) then 
     ChainHitCheck = .FALSE. 
     ChainTopHitCheck = .TRUE. 
     GO TO 99 
    end if     
 
    ChainGrad = –NewY - MLyReal(ChainStartNo)) / –NewX - 
MLxReal(ChainStartNo)) 
    EquC =–NewY - (ChainGrad * NewX) 
    CSCy = NewY 
    CSCx = NewX 
 
    do d = 1, a 
     OverlapCount = 0 
 
     if –NewX - MLxReal(ChainStartNo) == 0) then 
      MLxReal(MolNo-d) = NewX 
      CSCy =–CSCy - RadT 
      MLyReal(MolNo-d) = CSCy 
     else 
      MLxReal(MolNo-d) = RadT / 
(sqrt((ChainGrad**2) + 1)) 
      MLyReal(MolNo-d) = (ChainGrad * 
MLxReal(MolNo-d))  
       
      if (NewX < MLxReal(ChainStartNo)) then 
       CSCy = CScy + MLyReal(MolNo-d) 
       CSCx = CScx + MLxReal(MolNo-d) 
       MLxReal(MolNo-d) = CSCx 
       MLyReal(MolNo-d) = CSCy 
      elseif (NewX > MLxReal(ChainStartNo)) 
then 
       CSCy =–CScy - MLyReal(MolNo-d) 
       CSCx =–CScx - MLxReal(MolNo-d) 
       MLxReal(MolNo-d) = CSCx 
       MLyReal(MolNo-d) = CSCy 
      end if 
     end if 
    end do 
   end if 
 
   if (ChainEdgeHitCheck .eqv. .TRUE.) then ! If the particle is 
overlapping with an edge then it is moved to be resting against it 
    if (OverlapCount > 2500) then 
     MolNo = –olN– - a - 1 
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     GO TO 10 
    end if 
    if (NewX > GridSize-RadT) then 
     NewX = GridSize-RadT 
    elseif (NewX < RadT) then 
     NewX = RadT 
    end if 
    Dist = (a+1)*RadT 
 
    NewY = -(MLxReal(MolNo-a-1)**2)+(2*MLxReal(MolNo-a-
1)*NewX) 
    NewY = NewY+(Dist**2)-(NewX**2) 
    NewY = sqrt(NewY) 
 
    if (NewY /= NewY) then 
     MolNo = –olN– - a - 1 
     GO TO 10 
    end if 
 
    if (–empy - (MLyReal(MolNo-a-1) + NewY) < –empy - 
(MLyReal(MolNo–a-1) - NewY)) then 
     NewY = MLyReal(MolNo-a-1) + NewY 
    else 
     NewY = MLyReal(MolNo–a-1) - NewY 
    end if 
 
    do b = 1, –olNo - a-2 
     Dist = ((MLxReal(b)-NewX)**2)+((MLyReal(b)-
NewY)**2) 
     Dist = sqrt(Dist) 
     if (Dist < ((RadT)+(Mlr(b)))) then 
      ChainHitCheck = .TRUE. 
      PartHit = b 
      OverlapCount = OverlapCount + 1 
      GO TO 99 
     end if 
    end do 
 
    ChainGrad = –NewY - MLyReal(ChainStartNo)) / –NewX - 
MLxReal(ChainStartNo)) 
    EquC =–NewY - (ChainGrad * NewX) 
    CSCy = NewY 
    CSCx = NewX 
 
    do d = 1, a ! The previous particle in the chain are moved to 
be in line with the fixed location of the new particle 
     OverlapCount = 0 
      
     if –NewX - MLxReal(ChainStartNo) == 0) then 
      MLxReal(MolNo-d) = NewX 
      CSCy =–CSCy - RadT 
      MLyReal(MolNo-d) = CSCy 
     else 
      MLxReal(MolNo-d) = RadT / 
(sqrt((ChainGrad**2) + 1)) 
      MLyReal(MolNo-d) = (ChainGrad * 
MLxReal(MolNo-d))  
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      if (NewX < MLxReal(ChainStartNo)) then 
       CSCy = CScy + MLyReal(MolNo-d) 
       CSCx = CScx + MLxReal(MolNo-d) 
       MLxReal(MolNo-d) = CSCx 
       MLyReal(MolNo-d) = CSCy 
      elseif (NewX > MLxReal(ChainStartNo)) 
then 
       CSCy =–CScy - MLyReal(MolNo-d) 
       CSCx =–CScx - MLxReal(MolNo-d) 
       MLxReal(MolNo-d) = CSCx 
       MLyReal(MolNo-d) = CSCy 
      end if 
     end if 
    end do 
 
   elseif (ChainTopHitCheck .eqv. .TRUE.) then ! If the particle is over 
the top of the box it is moved to be resting against it 
    OverTopCount = OverTopCount + 1 
    if (OverlapCount > 2500) then 
     MolNo = –olN– - a - 1 
     GO TO 10 
    end if 
    if (OverTopCount > 2500) then 
     MolNo = –olN– - a - 1 
     GO TO 10 
    end if 
    NewY = GridSize-RadT 
    Dist = (a+1)*RadT 
 
    NewX = -(MLyReal(MolNo-a-1)**2)+(2*MLyReal(MolNo-a-
1)*NewY) 
    NewX = NewX+(Dist**2)-(NewY**2) 
    NewX = sqrt(NewX) 
 
    if (NewX /= NewX) then 
     MolNo = –olN– - a - 1 
     GO TO 10 
    end if 
 
    if (–empx - (MLxReal(MolNo-a-1) + NewX) < –empx - 
(MLxReal(MolNo–a-1) - NewX)) then 
     NewX = MLxReal(MolNo-a-1) + NewX 
    else 
     NewX = MLxReal(MolNo–a-1) - NewX 
    end if 
 
    do b = 1, –olNo - a-2 
     Dist = ((MLxReal(b)-NewX)**2)+((MLyReal(b)-
NewY)**2) 
     Dist = sqrt(Dist) 
     if (Dist < ((RadT)+(Mlr(b)))) then 
      ChainHitCheck = .TRUE. 
      PartHit = b 
      OverlapCount = OverlapCount + 1 
      GO TO 99 
     end if 
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    end do 
 
    ChainGrad = –NewY - MLyReal(ChainStartNo)) / –NewX - 
MLxReal(ChainStartNo)) 
    EquC =–NewY - (ChainGrad * NewX) 
    CSCy = NewY 
    CSCx = NewX 
 
    do d = 1, a 
     OverlapCount = 0 
     OverTopCount = 0 
 
     if –NewX - MLxReal(ChainStartNo) == 0) then 
      MLxReal(MolNo-d) = NewX 
      CSCy =–CSCy - RadT 
      MLyReal(MolNo-d) = CSCy 
     else 
      MLxReal(MolNo-d) = RadT / 
(sqrt((ChainGrad**2) + 1)) 
      MLyReal(MolNo-d) = (ChainGrad * 
MLxReal(MolNo-d))  
 
      if (NewX < MLxReal(ChainStartNo)) then 
       CSCy = CScy + MLyReal(MolNo-d) 
       CSCx = CScx + MLxReal(MolNo-d) 
       MLxReal(MolNo-d) = CSCx 
       MLyReal(MolNo-d) = CSCy 
      elseif (NewX > MLxReal(ChainStartNo)) 
then 
       CSCy =–CScy - MLyReal(MolNo-d) 
       CSCx =–CScx - MLxReal(MolNo-d) 
       MLxReal(MolNo-d) = CSCx 
       MLyReal(MolNo-d) = CSCy 
      end if 
     end if 
 
    end do 
    RoofCount = RoofCount + 1 
   end if 
    
   do m = –olNo - a-1, MolNo-1 
    do n = 1, –olNo - a  - 2 
     Dist = ((MLxReal(n)-MLxReal(m))**2)+((MLyReal(n)-
MLyReal(m))**2) 
     Dist = sqrt(Dist) 
     if (Dist+0.1 < (MLr(m)+MLr(n))) then 
      MolNo = –olN– - a - 1 
      if ((AdjCount < 75) .and. (AdjCount > -75)) 
then 
       AdjCount = Adj–ount - LR 
       HMAdju = .TRUE. 
       GO TO 19 
      elseif (AdjCount < -75 .and. Downwards 
.eqv. .TRUE.) then 
       Downwards = .FALSE. 
       AdjCount = 0 
       LR = 1 
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       GO TO 19 
      elseif (AdjCount > 75 .and. Upwards .eqv. 
.TRUE.) then 
       Downwards = .TRUE. 
       AdjCount = 0 
       LR = -1 
       GO TO 19 
      else 
       GO TO 10 
      end if 
     end if 
    end do 
   end do 
 
   if (NewY > GridSize-RadT) then 
    RoofCount = RoofCount + 1 
    MolNo = –olN– - a - 1 
    GO TO 10 
   elseif ((NewX > GridSize-RadT) .or. (NewX < RadT)) then 
    MolNo = –olN– - a - 1 
    GO TO 10 
   end if 
 
   MLxReal(MolNo) = NewX ! Saves the particle location and loops to 
the next particle in the chain to be added if there are any left 
   MLyReal(MolNo) = NewY 
   MLr(MolNo) = RadT 
   FullCount = 0 
   MolNo = MolNo + 1 
  end do 
 
  if ((MLxReal(MolNo-1) <= RadT+0.2) .or. (MLxReal(MolNo-1) >= GridSize-
RadT-0.2)) then 
   GO TO 10 
  end if 
 
  if (MOD(ChainLength,2) == 0) then ! Determines the centre point of the chain 
for determining balance 
   MiddlePartA = –olNo - ((ChainLength/2)+1) 
   MiddlePartB = –olNo - ((ChainLength/2)) 
   MiddlePoint = ((MLxReal(MiddleP–rta) - MLxReal(MiddlePartB))/2) + 
MLxReal(MiddlePartB) 
  elseif (MOD(ChainLength,2) == 1) then 
   MiddlePart = –olNo - ((ChainLength/2)+1) 
   MiddlePoint = MLxReal(MiddlePart) 
  end if 
 
  do m = MolNo-ChainLength, MolNo-1 ! Determines furthest point of contact 
along the chain 
   Dist = ((MLxReal(m)-MLxReal(ContPoint))**2)+((MLyReal(m)-
MLyReal(ContPoint))**2) 
   Dist = sqrt(Dist) 
   if (Dist <= (MLr(m)+MLr(ContPoint)+0.1)) then 
    ContDist = Dist 
    ContPointB = m 
   end if 
  end do 
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  ContSpot = 0 
  OuterCPLoopA: do m = MolNo-1, MolNo-ChainLength, -1 
   do n = 1, –olN– - a - 2 
    Dist = ((MLxReal(m)-MLxReal(n))**2)+((MLyReal(m)-
MLyReal(n))**2) 
    Dist = sqrt(Dist) 
    if (Dist < MLr(m)+MLr(n)+0.1) then 
     if (MLxReal(MolNo-1) > MLxReal(ChainStartNo)) 
then  
      ContSpotTemp = ((MLxRe–l(n) - 
MLxReal(m))/2) + MLxReal(m) 
      if ((ContSpot == 0) .or. (ContSpotTemp > 
ContSpot)) then 
       ContSpot = ContSpotTemp 
       ContPoint = n 
       ContPointB = m 
      end if 
     else  
      ContSpotTemp = ((MLxRe–l(n) - 
MLxReal(m))/2) + MLxReal(m) 
      if ((ContSpot == 0) .or. (ContSpotTemp < 
ContSpot)) then 
       ContSpot = ContSpotTemp 
       ContPoint = n 
       ContPointB = m 
      end if 
     end if 
    end if 
   end do 
  end do OuterCPLoopA 
 
  ContSpot = ((MLxReal(ContP–int) - MLxReal(ContPointB))/2) + 
MLxReal(ContPointB) 
 
  if ((MLxReal(MolNo-1) > MLxReal(ChainStartNo)) .and. (MiddlePoint > 
ContSpot)) then ! Checks that contact points on the chain are in the correct positions for chain 
balance 
21   CONTINUE 
   x = MLxReal(MolNo-1) 
   FallPoint = MLyReal(MolNo-1) 
   MolNo = –olNo - ChainLength 
   Fell = .TRUE. 
   if (FallCount < 10) then 
    FallCount = FallCount + 1 
    GO TO 40 
   else 
    if ((AdjCount < 75) .and. (AdjCount > -75)) then 
     AdjCount = Adj–ount - LR 
     HMAdju = .TRUE. 
     GO TO 19 
    elseif (AdjCount < -75 .and. Downwards .eqv. .TRUE.) then 
     Downwards = .FALSE. 
     AdjCount = 0 
     LR = 1 
     GO TO 19 
    elseif (AdjCount > 75 .and. Upwards .eqv. .TRUE.) then 



William Eales 
 

254 
 

     Downwards = .TRUE. 
     AdjCount = 0 
     LR = -1 
     GO TO 19 
    else 
     GO TO 10 
    end if 
   end if 
  elseif ((MLxReal(MolNo-1) < MLxReal(ChainStartNo)) .and. (MiddlePoint < 
ContSpot)) then 
22   CONTINUE 
   x = MLxReal(MolNo-1) 
   FallPoint = MLyReal(MolNo-1) 
   MolNo = –olNo - ChainLength 
   Fell = .TRUE. 
   if (FallCount < 10) then 
    FallCount = FallCount + 1 
    GO TO 40 
   else 
    if ((AdjCount < 75) .and. (AdjCount > -75)) then 
     AdjCount = Adj–ount - LR 
     HMAdju = .TRUE. 
     GO TO 19 
    elseif (AdjCount < -75 .and. Downwards .eqv. .TRUE.) then 
     Downwards = .FALSE. 
     AdjCount = 0 
     LR = 1 
     GO TO 19 
    elseif (AdjCount > 75 .and. Upwards .eqv. .TRUE.) then 
     Downwards = .TRUE. 
     AdjCount = 0 
     LR = -1 
     GO TO 19 
    else 
     GO TO 10 
    end if 
   end if 
  end if 
 
  ContSpotL = 0 
  ContSpotR = 0 
  ContSpotUy = 0 
  ContSpotUx = 0 
  ContSpotUn = 0 
 
  do m = MolNo-1, MolNo-ChainLength, -1 
   do n = 1, –olN– - a - 2 
    Dist = ((MLxReal(m)-MLxReal(n))**2)+((MLyReal(m)-
MLyReal(n))**2) 
    Dist = sqrt(Dist) 
    if (Dist < MLr(m)+MLr(n)+0.1) then 
     ContPoint = n 
     ContSpotTemp = ((MLxReal(ContP–int) - 
MLxReal(m))/2) + MLxReal(m) 
     if ((ContSpotL == 0) .or. (ContSpotTemp < 
ContSpotL)) then 
      ContSpotL = ContSpotTemp 
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     end if 
     if ((ContSpotR == 0) .or. (ContSpotTemp > 
ContSpotR)) then 
      ContSpotR = ContSpotTemp 
     end if 
     ContSpotTempUy = ((MLyReal(ContP–int) - 
MLyReal(m))/2) + MLyReal(m) 
     if (m /= –olNo - ChainLength) then 
      if ((ContSpotUy == 0) .or. (ContSpotTempUy 
> ContSpotUy)) then 
       ContSpotUy = ContSpotTempUy 
       ContSpotUx = ContSpotTemp 
       ContSpotUn = m 
      end if 
     end if 
    end if 
   end do 
  end do 
 
  do m = MolNo-1, MolNo-ChainLength+1, -1 
   do n = 1, –olN– - a - 2 
    Dist = ((MLxReal(m)-MLxReal(n))**2)+((MLyReal(m)-
MLyReal(n))**2) 
    Dist = sqrt(Dist) 
    if (Dist < MLr(m)+MLr(n)+0.1) then 
     ContSpotTemp = ((MLxRe–l(n) - MLxReal(m))/2) + 
MLxReal(m) 
 
     if ((MLxReal(MolNo-1) > MLxReal(MolNo-
ChainLength)) .and. (ContSpotTemp > MLxReal(m))) then 
      SideBal = .TRUE. 
     elseif ((MLxReal(MolNo-1) < MLxReal(MolNo-
ChainLength)) .and. (ContSpotTemp < MLxReal(m))) then 
      SideBal = .TRUE. 
     end if 
    end if 
   end do 
  end do 
 
 
  if (MLxReal(MolNo-1) > MLxReal(MolNo-ChainLength)) then ! If the particle 
is not balancing correctly, the algorithm goes back to the beginning, however the initial falling 
point is moved to the end of this chain 
   if ((ContSpotL > MLxReal(MolNo-ChainLength)) .or. (SideBal .eqv. 
.FALSE.)) then 
    if ((MLxReal(MolNo-ChainLength).GT.MLr(MolNo-
ChainLength)+0.2).and.(MLyReal(MolNo-ChainLength)/=MLyReal(MolNo-1))) then 
     NLCount = NLCount + 1 
     OverlapCount = 0 
     if (LRNo == 1) then 
      LRNo = 2 
     else 
      LRNo = 1 
     end if 
     Tilt = .TRUE. 
     MolNo = MolNo - a 
     GO TO 14 
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    end if 
   end if 
  elseif (MLxReal(MolNo-1) < MLxReal(MolNo-ChainLength)) then 
   if ((ContSpotR < MLxReal(MolNo-ChainLength)) .or. (SideBal .eqv. 
.FALSE.)) then 
    if ((MLxReal(MolNo-ChainLength)/=GridSize-MLr(MolNo-
ChainLength)).and.(MLyReal(MolNo-ChainLength)/=MLyReal(MolNo-1))) then 
     NLCount = NLCount + 1 
     OverlapCount = 0 
     if (LRNo == 1) then 
      LRNo = 2 
     else 
      LRNo = 1 
     end if 
     Tilt = .TRUE. 
     MolNo = MolNo - a 
     GO TO 14 
    end if 
   end if 
  end if 
 
  if (MLyReal(MolNo-ChainLength) > MLyReal(MolNo-1)) then 
   if (MLxReal(MolNo-1) > MLxReal(MolNo-ChainLength)) then 
    GO TO 21  
   elseif (MLxReal(MolNo-1) < MLxReal(MolNo-ChainLength)) then  
    GO TO 22 
   end if 
  end if 
 
10  CONTINUE 
 
  if ((MinFallCount > FallCount) .or. (MinFallCount == 0)) then 
   MinFallCount = FallCount 
  end if 
 
 else 
  Full = 1 
 end if 
 
 end 
 
 subroutine PointSafe ! Determines if the falling particle has impacted yet 
 use allSubs ! Loads the variables from the module 
 integer a, b, CoordX, CoordY 
 real Dist 
 character t 
 
 Hit = .FALSE. 
 FullCheck = .FALSE. 
 
 ! Checks the distance between the current falling particle location and previously 
placed partice to determine if it has impacted 
  
 cloop: do a = 1, MolNo - 1 
  Dist = ((MLxReal(a)-x)**2)+((MLyReal(a)-y)**2) 
  Dist = sqrt(Dist) 
  if (Dist <= ((RadT)+(Mlr(a)))) then 
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   Hit = .TRUE. 
   exit cloop 
  end if 
 end do cloop 
 
 ! If the impact is above the top of the box, a counter is incremented to show the box 
may be full 
 if ((Hit .eqv. .TRUE.) .and. (y >= (GridSize - RadT))) then 
  Hit = .FALSE. 
  FullCount = FullCount + 1 
  RoofCount = RoofCount + 1 
 end if 
 
 if (RoofCount >= 1000) then 
  FullCheck = .TRUE. 
 end if 
 
 if (FullCount == 2500000) then 
  Full = 1 
 end if 
 
 end 
 
 
 
 subroutine AddChain() ! This subroutine performs the exact same function as the main 
particle chain adding code, however is used for the chains placed along the base layer 
 use allsubs 
 integer count2, Spot, Height, DoubRad, RowRad, a,b,c, RadIn, m, n, TempX, TempY 
 real MidWay, Dist 
 character t, FileName*15 
 integer SavIncremX, SavIncremY, SafeLocCount, LR, SavOneX, SavOneY, SavDist, 
SavOnePart, LRNo, OneCount, RealPos1, RealPos2 
 integer TempRealPos1, TempRealPos2, ChainOneCount 
 logical SafeLocFound, Go, ResetCheck 
 real TempXa, TempXb, TempYa, TempYb, DistAB, DistBC, DistAC, AngleA, AngleB, 
AngleFin, GradFin, HelpDist 
 real FDistA, FDistB, FDistC, FDistD 
 real xDiff, yDiff, Pi, FinalSavX, FinalSavY 
 integer FinalSavLong, FinalSavTall, checktime, Balanced 
 integer Balances, Touches 
 dimension Balances(10) 
 real DistFac, RadScale 
 integer NewPos, TRP1Swap, TRP2Swap 
 integer FinalPart, SideCount 
 dimension FinalPart(2,3) 
 real PartCoords, stochDists, sumDist, dx, stochxnew, newCoords, stochynew 
 integer ibad 
 dimension PartCoords(2,2), stochDists(2), newCoords(2), dx(2), stochxnew(2) 
 real RX, NewX, NewY 
 logical ChainAdd 
 real OverDist 
 integer OverDistNo 
 logical NotBal, FirstBal 
 dimension BalCheckNo(10000), BalCombi(100000,2) 
 integer BalCheckCount, BalCount, BalCheckNo, BalCombi, BalAttempt 
 integer OverlapCount 



William Eales 
 

258 
 

 integer ChainStartNo, ChainStartCont, d 
 real ChainGrad, EquC 
 logical ChainHitCheck, ChainEdgeHitCheck, ChainTopHitCheck 
 logical TopCase 
 integer OverTopCount, PartHit 
  
 Hit = .FALSE. 
 ResetCheck = .FALSE. 
 checktime = 1 
 Balanced = 0 
 Touches = 0 
 Balances = 0 
 
 FinalPart = 999999 
 OverDist = 0 
 OverDistNo = 0 
 
 OverlapCount = 0 
 
 TRP1Swap = 0 
 TRP2Swap = 0 
 
 ChainAdd = .FALSE. 
 ChainOneCount = 1 
 
 NotBal = .FALSE. 
 FirstBal = .TRUE. 
 BalCheckNo = 0 
 BalCombi = 0 
 BalCheckCount = 0 
 BalCount = 0 
 BalCheckNo = 0 
 BalCombi = 0 
 BalAttempt = 0 
 
 RadScale = 0 
 TempRealPos1 = 0 
 TempRealPos2 = 0 
 DistFac = 0 
 FDistA = 0 
 FDistB = 0 
 FDistC = 0 
 FDistD = 0 
 SavDist = 0 
 SavOneX = 0 
 SavOneY = 0 
 TempXa = 0 
 TempXb = 0 
 TempYa = 0 
 TempYb = 0 
 DistAB = 0 
 DistBC = 0 
 DistAC = 0 
 AngleA = 0 
 AngleB = 0 
 AngleFin = 0 
 GradFin = 0 
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 xDiff = 0 
 yDiff = 0 
 Pi = 3.141596535 
 NewPos = 0 
 
 FinalDists = 0 
 
 PartCoords = 0 
 stochDists = 0 
 sumDist = 0 
 dx = 0 
 stochxnew = 0 
 newCoords = 0 
 stochynew = 0 
 
 RA = '' 
 OverlapCount = 0 
 
 do a = 1, MolNo - 1 
  MLxCor = MLxReal(a) 
  MLyCor = MLyReal(a) 
  RadIn = MLr(a)  
  DoubRad = (RadIn+RadT)+1 
 
  if (a /= MolNo-1) then 
   do Height = 0, DoubRad 
    MidWay = DoubRad**2 - Height**2 
    RowRad = abs(sqrt(Midway)) 
    do count2 = -rowrad+1, rowrad-1 
     if 
((MLyCor+count2<=GridSize).and.(MLxCor+Height<=GridSize-
RadT).and.(MLyCor+count2>=RadT).and.(MLxCor+Height>=RadT))then 
      RA(MLyCor+count2, MLxCor+Height) = '-' 
     end if 
     if ((MLyCor+count2<=GridSize).and.(MLxCor-
Height<=GridSize-RadT).and.(MLyCor+count2>=RadT).and.(MLxCor-Height>=RadT))then 
      RA(MLyCor+count2, MLxCor-Height) = '-' 
     end if 
    end do 
   end do 
 
   do Height = -RadIn, RadIn 
    do count2 = MlyCor-1, 1, -1 
     if 
((count2<=GridSize).and.(MLxCor+Height<=GridSize-
RadT).and.(count2>=RadT).and.(MLxCor+Height>=RadT))then 
      RA(count2, MLxCor+Height) = '-' 
     end if 
    end do 
   end do 
  end if 
 
  if (a == MolNo-1) then 
   do Height = -RadIn, 0 
    MidWay = RadIn**2 - Height**2 
    RowRad = abs(sqrt(Midway)) 
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    if 
((MLyCor+RowRad<=GridSize).and.(MLxCor+height<=GridSize-
RadT).and.(MLxCor+height>=RadT).and.(MLyCor+RowRad>=RadT))then 
     if (RA(MLyCor+RowRad, MLxCor+Height) /= '-') then 
      RA(MLyCor+RowRad, MLxCor+Height) = '1' 
     end if 
    end if 
    if ((MLyCor-
RowRad>=RadT).and.(MLxCor+height<=GridSize-
RadT).and.(MLxCor+height>=RadT).and.(MLyCor-RowRad<=GridSize))then 
     if (RA(MLyCor-RowRad, MLxCor+Height) /= '-') then 
      RA(MLyCor-RowRad, MLxCor+Height) = '1' 
     end if 
    end if 
    if ((MLyCor+RowRad<=GridSize).and.(MLxCor-
Height<=GridSize-RadT).and.(MLxCor-Height>=RadT).and.(MLyCor+RowRad>=RadT))then 
     if (RA(MLyCor+RowRad, MLxCor-Height) /= '-') then 
      RA(MLyCor+RowRad, MLxCor-Height) = '1' 
     end if 
    end if 
    if ((MLyCor-RowRad>=RadT).and.(MLxCor-
height<=GridSize-RadT).and.(MLxCor-height>=RadT).and.(MLyCor-
RowRad<=GridSize))then 
     if (RA(MLyCor-RowRad, MLxCor-Height) /= '-') then 
      RA(MLyCor-RowRad, MLxCor-Height) = '1' 
     end if 
    end if 
   end do 
  end if 
 end do 
 
 do a = 1, GridSize 
  do b = 1, GridSize 
   if (RA(b,a) == '1') then 
    ChainOnes(ChainOneCount, 1) = b 
    ChainOnes(ChainOneCount, 2) = a 
    ChainOneCount = ChainOneCount + 1 
   end if 
  end do 
 end do 
 
 call random_number(RX) 
 LRNo = 1 + floor(2*RX) 
 if (LRNo == 1) then 
  TempX = ChainOnes(1,2) 
  TempY = ChainOnes(1,1) 
 elseif (LRNo == 2) then 
  TempX = ChainOnes(ChainOneCount-1,2) 
  TempY = ChainOnes(ChainOneCount-1,1) 
 end if 
 
 FinalPart = 99999 
 FinalPart(1,1) = MolNo-1 
 Dist = ((MLxReal(a)-TempX)**2)+((MLyReal(a)-TempY)**2) 
 Dist = sqrt(Dist) - MLr(a) 
 FinalPart(1,2) = Dist 
 FinalPart(1,3) = Dist + MLr(a) 
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 do a = 1, MolNo-2 
  if (MLyReal(a) < TempY+1) then 
   Dist = ((MLxReal(a)-TempX)**2)+((MLyReal(a)-TempY)**2) 
   Dist = sqrt(Dist) - RadT - MLr(a) 
   if (Dist <= FinalPart(2,2)) then 
    FinalPart(2,1) = a 
    FinalPart(2,2) = Dist 
    FinalPart(2,3) = Dist + RadT + MLr(a) 
   end if 
  end if 
 end do 
 
60  CONTINUE 
 
 PartCoords(1,1) = MLxReal(FinalPart(1,1)) 
 PartCoords(1,2) = MLyReal(FinalPart(1,1)) 
 PartCoords(2,1) = MLxReal(FinalPart(2,1)) 
 PartCoords(2,2) = MLyReal(FinalPart(2,1)) 
 
 if ((TempX == RadT) .or. (TempX == GridSize-RadT)) then 
  NewX = TempX 
  Dist = MLr(FinalPart(1,1)) 
 
  NewY = -(MLxReal(FinalPart(1,1))**2)+(2*MLxReal(FinalPart(1,1))*NewX) 
  NewY = NewY+(Dist**2)-(NewX**2) 
  NewY = sqrt(NewY) 
 
  if (NewY /= NewY) then 
   MolNo = MolNo - 1 
   GO TO 10 
  end if 
 
  if (TempY - (MLyReal(FinalPart(1,1)) + NewY) < TempY - 
(MLyReal(FinalPart(1,1)) - NewY)) then 
   NewY = MLyReal(FinalPart(1,1)) + NewY 
  else 
   NewY = MLyReal(FinalPart(1,1)) - NewY 
  end if 
    
 else 
  newCoords(1) = TempX 
  newCoords(2) = TempY 
 
  stochDists(1) = FinalPart(1,3) 
  stochDists(2) = FinalPart(2,3) 
 
  sumDist = stochDists(1) + stochDists(2) 
 
  dx(1) = 10 * RadLarge 
  dx(2) = 10 * RadLarge 
 
  do a = 1, 10 
   do b = 1, 2 
    dx(b) = dx(b) / 10 
   end do 
   do c = 1, 500 



William Eales 
 

262 
 

    call random_number(RX) 
    stochxnew(2) = newCoords(2) + dx(2) * (2*RX-1) 
    call random_number(RX) 
    stochxnew(1) = newCoords(1) + dx(1) * (2*RX-1) 
 
    ibad = 0 
 
    stochDists(1) = ((PartCoords(1,1)-
stochxnew(1))**2)+((PartCoords(1,2)-stochxnew(2))**2) 
    stochDists(1) = sqrt(stochDists(1)) - MLr(FinalPart(1,1)) 
    if (stochDists(1) < 0) then 
     ibad = 1 
    end if 
 
    stochDists(2) = ((PartCoords(2,1)-
stochxnew(1))**2)+((PartCoords(2,2)-stochxnew(2))**2) 
    stochDists(2) = sqrt(stochDists(2)) - RadT - 
MLr(FinalPart(2,1)) 
    if (stochDists(2) < 0) then 
     ibad = 1 
    end if 
 
    stochynew = stochDists(1) + stochDists(2) 
    if ((stochynew < sumDist) .and. (ibad == 0)) then 
     do b = 1, 2 
      newCoords(b) = stochxnew(b) 
     end do 
     sumDist = stochynew 
    end if 
   end do 
  end do 
  
  NewX = newCoords(1) 
  NewY = newCoords(2) 
 end if 
 
 if ((NewX > GridSize-RadT) .or. (NewX < RadT) .or. (NewY > GridSize-RadT) .or. 
(NewY < RadT)) then 
  MolNo = MolNo - 1 
  GO TO 10 
 end if 
 
 do a = 1, MolNo-2 
  Dist = ((MLxReal(a)-NewX)**2)+((MLyReal(a)-NewY)**2) 
  Dist = sqrt(Dist) 
  if (Dist < MLr(a)+RadT) then 
   OverlapCount = OverlapCount + 1 
   if (OverlapCount > 2500) then 
    MolNo = MolNo - 1 
    GO TO 10 
   end if 
    
   FinalPart(2,1) = a 
   GO TO 60 
 
   FullCount = FullCount + 1 
   MolNo = MolNo - 1 
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   GO TO 10 
  end if 
 end do 
 
 MLxReal(MolNo) = NewX 
 MLyReal(MolNo) = NewY 
 MLr(MolNo) = RadT 
 FullCount = 0 
 MolNo = MolNo + 1 
 
 ChainStartNo = MolNo-2 
 ChainStartCont = MolNo-1 
 CSCy = MLyReal(ChainStartCont) 
 
 do a = 1, ChainLength - 2 
  OverlapCount = 0 
 
  ChainGrad = (MLyReal(ChainStartCont) - MLyReal(ChainStartNo)) / 
(MLxReal(ChainStartCont) - MLxReal(ChainStartNo)) 
  EquC = MLyReal(ChainStartCont) - (ChainGrad * MLxReal(ChainStartCont)) 
  if (MLxReal(ChainStartCont) - MLxReal(ChainStartNo) == 0) then 
   NewX = MLxReal(ChainStartCont) 
   CSCy = CSCy + RadT 
   NewY = CSCy 
  else 
   NewX = RadT / (sqrt((ChainGrad**2) + 1)) 
   NewY = (ChainGrad * NewX) 
 
   if (MLxReal(ChainStartCont) < MLxReal(ChainStartNo)) then 
    NewX = MLxReal(MolNo-1) - NewX 
    NewY = MLyReal(MolNo-1) - NewY 
   elseif (MLxReal(ChainStartCont) > MLxReal(ChainStartNo)) then 
    NewX = MLxReal(MolNo-1) + NewX 
    NewY = MLyReal(MolNo-1) + NewY 
   end if  
  end if 
 
  ChainHitCheck = .FALSE. 
  ChainEdgeHitCheck = .FALSE. 
  ChainTopHitCheck = .FALSE. 
 
  ChainHitLoop: do b = 1, MolNo - a-2 
   Dist = ((MLxReal(b)-NewX)**2)+((MLyReal(b)-NewY)**2) 
   Dist = sqrt(Dist) 
   if (Dist < ((RadT)+(Mlr(b)))) then 
    ChainHitCheck = .TRUE. 
    PartHit = b 
   end if 
  end do ChainHitLoop 
 
99   CONTINUE 
 
  if ((NewX > GridSize-RadT) .or. (NewX < RadT)) then 
   ChainEdgeHitCheck = .TRUE. 
  elseif (NewY > GridSize-RadT) then 
   ChainTopHitCheck = .TRUE. 
  end if 
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  if (ChainHitCheck .eqv. .TRUE.) then 
   if (OverlapCount > 2500) then 
    MolNo = MolNo - a - 1 
    GO TO 10 
   end if 
 
   newCoords(1) = NewX 
   newCoords(2) = NewY 
 
   stochDists(1) = Dist 
   stochDists(2) = ((MLxReal(MolNo-a-1)-
NewX)**2)+((MLyReal(MolNo-a-1)-NewY)**2) 
   stochDists(2) = sqrt(stochDists(2)) 
 
   sumDist = stochDists(1) + stochDists(2) 
 
   dx(1) = 10 * RadLarge 
   dx(2) = 10 * RadLarge 
 
   do b = 1, 10 
    do c = 1, 2 
     dx(c) = dx(c) / 10 
    end do 
    do c = 1, 500 
     call random_number(RX) 
     stochxnew(2) = newCoords(2) + dx(2) * (2*RX-1) 
     call random_number(RX) 
     stochxnew(1) = newCoords(1) + dx(1) * (2*RX-1) 
 
     ibad = 0 
 
     stochDists(1) = ((MLxReal(PartHit)-
stochxnew(1))**2)+((MLyReal(PartHit)-stochxnew(2))**2) 
     stochDists(1) = sqrt(stochDists(1)) - RadT - 
MLr(PartHit) 
     if (stochDists(1) < 0) then 
      ibad = 1 
     end if 
 
     stochDists(2) = ((MLxReal(MolNo-a-1)-
stochxnew(1))**2)+((MLyReal(MolNo-a-1)-stochxnew(2))**2) 
     stochDists(2) = sqrt(stochDists(2)) - ((a+1) * RadT) 
     if (stochDists(2) < 0) then 
      ibad = 1 
     end if 
 
     stochynew = stochDists(1) + stochDists(2) 
     if ((stochynew < sumDist) .and. (ibad == 0)) then 
      do d = 1, 2 
       newCoords(d) = stochxnew(d) 
      end do 
      sumDist = stochynew 
     end if 
    end do 
   end do 
  
   NewX = newCoords(1) 
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   NewY = newCoords(2) 
 
   if (NewY < RadT) then 
    NewY = RadT 
    NewX = MLxReal(MolNo-1) + RadT 
   end if 
 
   do b = MolNo - a-2, 1, -1 
    Dist = ((MLxReal(b)-NewX)**2)+((MLyReal(b)-NewY)**2) 
    Dist = sqrt(Dist) 
    if (Dist < ((RadT)+(Mlr(b)))) then 
     ChainHitCheck = .TRUE. 
     PartHit = b 
     OverlapCount = OverlapCount + 1 
     GO TO 99 
    end if 
   end do 
 
   if ((NewX < RadT) .or. (NewX > GridSize - RadT)) then 
    ChainHitCheck = .FALSE. 
    ChainEdgeHitCheck = .TRUE. 
    GO TO 99 
   end if 
   if (NewY > GridSize - RadT) then 
    ChainHitCheck = .FALSE. 
    ChainTopHitCheck = .TRUE. 
    GO TO 99 
   end if 
 
   ChainGrad = (NewY - MLyReal(ChainStartNo)) / (NewX - 
MLxReal(ChainStartNo)) 
   EquC = NewY - (ChainGrad * NewX) 
   CSCy = NewY 
   CSCx = NewX 
 
   do d = 1, a 
    OverlapCount = 0 
 
    if (NewX - MLxReal(ChainStartNo) == 0) then 
     MLxReal(MolNo-d) = NewX 
     MLyReal(MolNo-d) = NewY-RadT 
    else 
     MLxReal(MolNo-d) = RadT / (sqrt((ChainGrad**2) + 
1)) 
     MLyReal(MolNo-d) = (ChainGrad * MLxReal(MolNo-
d))  
      
     if (NewX < MLxReal(ChainStartNo)) then 
      CSCy = CSCy + MLyReal(MolNo-d) 
      CSCx = CSCx + MLxReal(MolNo-d) 
      MLxReal(MolNo-d) = CSCx 
      MLyReal(MolNo-d) = CSCy 
     elseif (NewX > MLxReal(ChainStartNo)) then 
      CSCy = CSCy - MLyReal(MolNo-d) 
      CSCx = CSCx - MLxReal(MolNo-d) 
      MLxReal(MolNo-d) = CSCx 
      MLyReal(MolNo-d) = CSCy 
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     end if 
    end if 
 
   end do 
  end if 
 
  if (ChainEdgeHitCheck .eqv. .TRUE.) then 
   if (OverlapCount > 2500) then 
    MolNo = MolNo - a - 1 
    GO TO 10 
   end if 
   if (NewX > GridSize-RadT) then 
    NewX = GridSize-RadT 
   elseif (NewX < RadT) then 
    NewX = RadT 
   end if 
   Dist = (a+1)*RadT 
 
   NewY = -(MLxReal(MolNo-a-1)**2)+(2*MLxReal(MolNo-a-1)*NewX) 
   NewY = NewY+(Dist**2)-(NewX**2) 
   NewY = sqrt(NewY) 
 
   if (NewY /= NewY) then 
    MolNo = MolNo - a - 1 
    GO TO 10 
   end if 
 
   if (TempY - (MLyReal(MolNo-a-1) + NewY) < TempY - 
(MLyReal(MolNo-a-1) - NewY)) then 
    NewY = MLyReal(MolNo-a-1) + NewY 
   else 
    NewY = MLyReal(MolNo-a-1) - NewY 
   end if 
 
   do b = 1, MolNo - a-2 
    Dist = ((MLxReal(b)-NewX)**2)+((MLyReal(b)-NewY)**2) 
    Dist = sqrt(Dist) 
    if (Dist < ((RadT)+(Mlr(b)))) then 
     ChainHitCheck = .TRUE. 
     PartHit = b 
     OverlapCount = OverlapCount + 1 
     GO TO 99 
    end if 
   end do 
 
   ChainGrad = (NewY - MLyReal(ChainStartNo)) / (NewX - 
MLxReal(ChainStartNo)) 
   EquC = NewY - (ChainGrad * NewX) 
   CSCy = NewY 
   CSCx = NewX 
 
   do d = 1, a 
    OverlapCount = 0 
 
    if (NewX - MLxReal(ChainStartNo) == 0) then 
     MLxReal(MolNo-d) = NewX 
     MLyReal(MolNo-d) = NewY-RadT 
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    else 
     MLxReal(MolNo-d) = RadT / (sqrt((ChainGrad**2) + 
1)) 
     MLyReal(MolNo-d) = (ChainGrad * MLxReal(MolNo-
d))  
 
     if (NewX < MLxReal(ChainStartNo)) then 
      CSCy = CSCy + MLyReal(MolNo-d) 
      CSCx = CSCx + MLxReal(MolNo-d) 
      MLxReal(MolNo-d) = CSCx 
      MLyReal(MolNo-d) = CSCy 
     elseif (NewX > MLxReal(ChainStartNo)) then 
      CSCy = CSCy - MLyReal(MolNo-d) 
      CSCx = CSCx - MLxReal(MolNo-d) 
      MLxReal(MolNo-d) = CSCx 
      MLyReal(MolNo-d) = CSCy 
     end if 
    end if 
 
   end do 
 
  elseif (ChainTopHitCheck .eqv. .TRUE.) then 
   OverTopCount = OverTopCount + 1 
   if (OverlapCount > 2500) then 
    MolNo = MolNo - a - 1 
    GO TO 10 
   end if 
   if (OverTopCount > 2500) then 
    MolNo = MolNo - 2 
    GO TO 10 
   end if 
   NewY = GridSize-RadT 
   Dist = (a+1)*RadT 
 
   NewX = -(MLyReal(MolNo-a-1)**2)+(2*MLyReal(MolNo-a-1)*NewY) 
   NewX = NewX+(Dist**2)-(NewY**2) 
   NewX = sqrt(NewX) 
 
   if (NewX /= NewX) then 
    MolNo = MolNo - a - 1 
    GO TO 10 
   end if 
 
   if (TempX - (MLxReal(MolNo-a-1) + NewX) < TempX - 
(MLxReal(MolNo-a-1) - NewX)) then 
    NewX = MLxReal(MolNo-a-1) + NewX 
   else 
    NewX = MLxReal(MolNo-a-1) - NewX 
   end if 
 
   do b = 1, MolNo - a-2 
    Dist = ((MLxReal(b)-NewX)**2)+((MLyReal(b)-NewY)**2) 
    Dist = sqrt(Dist) 
    if (Dist < ((RadT)+(Mlr(b)))) then 
     ChainHitCheck = .TRUE. 
     PartHit = b 
     OverlapCount = OverlapCount + 1 
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     GO TO 99 
    end if 
   end do 
 
   ChainGrad = (NewY - MLyReal(ChainStartNo)) / (NewX - 
MLxReal(ChainStartNo)) 
   EquC = NewY - (ChainGrad * NewX) 
   CSCy = NewY 
 
   do d = 1, a 
    OverlapCount = 0 
    OverTopCount = 0 
 
    if (NewX - MLxReal(ChainStartNo) == 0) then 
     MLxReal(MolNo-d) = NewX 
     CSCy = CSCy - RadT 
     MLyReal(MolNo-d) = CSCy 
    else 
     MLxReal(MolNo-d) = RadT / (sqrt((ChainGrad**2) + 
1)) 
     MLyReal(MolNo-d) = (ChainGrad * MLxReal(MolNo-
d))  
 
     if (NewX < MLxReal(ChainStartNo)) then 
      CSCy = CSCy + MLyReal(MolNo-d) 
      CSCx = CSCx + MLxReal(MolNo-d) 
      MLxReal(MolNo-d) = CSCx 
      MLyReal(MolNo-d) = CSCy 
     elseif (NewX > MLxReal(ChainStartNo)) then 
      CSCy = CSCy - MLyReal(MolNo-d) 
      CSCx = CSCx - MLxReal(MolNo-d) 
      MLxReal(MolNo-d) = CSCx 
      MLyReal(MolNo-d) = CSCy 
     end if 
    end if 
 
   end do 
 
  end if 
 
  MLxReal(MolNo) = NewX 
  MLyReal(MolNo) = NewY 
  MLr(MolNo) = RadT 
  FullCount = 0 
  MolNo = MolNo + 1 
 end do 
 
10 CONTINUE 
 
 end  
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Appendix 5: RSA Algorithm 

This appendix contains the algorithm used to create the random sequential 

adsorption image used in Figure 4.3. 

program packedbed 
! Sets up initial variables 
integer MolNo, RadLarge, RadSmall, BoxSize, GridSize, Rads, count, SN, 
integer MLr 
real MLxReal, MLyReal 
dimension MLr(10000), Rads(10), MLxReal(10000), MLyReal(10000) 
integer x, y, RadT 
 
character t, FileName*15, FileID*3 
integer ProgCount, PCId, count3 
dimension FileID(1000) 
real Dist 
integer count2 
logical Impact 
 
t = 'y' 
 
if (t == 'y') then 
 Rads(1) = 10 ! Inputs the radius to be present in the system 
 SN = 1 
 
 RadLarge = 0 
 RadSmall = 0 
  
 do count = 1, SN 
  if (RadLarge < Rads(count)) then 
   RadLarge = Rads(count) 
  end if 
  if (RadSmall > Rads(count) .or. RadSmall == 0) then 
   RadSmall = Rads(count) 
  end if 
 end do 
 
 RadLarge = 10 ! Determines the largest and smallest radius of the entered radii 
 RadSmall = 10 
 
 BoxSize = (RadLarge*6) 
 GridSize = BoxSize*5 
 
 do ProgCount = 1, 50 
  write(FileID(ProgCount), '(i0)') ProgCount 
 end do 
 
 do ProgCount = 1, 50 ! Loops for the number of systems to be created 
 
  MLxReal = 0 
  MLyReal = 0 
  MLr = 0 
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  MolNo = 1 
  FileName = '' 
 
  call random_seed() 
    
  do while (count < 10000000) 
 
   Impact = .FALSE. 
 
   ! Finds a random x and y coordinate and radius 
   call random_number(RX) 
   count2 = 1 + floor(SN*RX) 
   RadT = Rads(count2) 
 
   call random_number(RX) 
   count2 = 1 + floor((GridSize-(2*RadT))*RX) 
   x = count2+RadT 
 
   call random_number(RX) 
   count2 = 1 + floor((GridSize-(2*RadT))*RX) 
   y = count2+RadT 
 
   ! Confirms that the chosen location does not overlap with a previously 
placed particle 
   if (MolNo > 1) then 
    hitloop: do count3 = 1, MolNo - 1 
     Dist = ((MLxReal(count3)-x)**2)+((MLyReal(count3)-
y)**2) 
     Dist = sqrt(Dist) 
     if (Dist <= (RadT+Mlr(count3))) then 
      count = count + 1 
      Impact = .TRUE. 
      exit hitloop 
     end if 
    end do hitloop 
    if (Impact .eqv. .FALSE.) then ! If there is no overlap, the 
location is saved, if there is an overlap the location is not saved and ignored. 
     count = 0 
     MLxReal(MolNo) = x 
     MLyReal(MolNo) = y 
     MLr(MolNo) = RadT 
     MolNo = MolNo + 1 
    end if 
   else 
    MLxReal(MolNo) = x 
    MLyReal(MolNo) = y 
    MLr(MolNo) = RadT 
    MolNo = MolNo + 1 
   end if 
  end do 
 
  t = 'y' 
  if (t == 'y') then ! The particle locations are saved to a file, and the next 
system is started 
   FileName = '' 
   FileName = trim(adjustl(FileID(ProgCount))) // '.csv' 
   open(1, file = FileName, status = 'new') 
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   do y = 1, MolNo-1 
    write(1,*) MLxReal(y), ',' , MLyReal(y), ',' , MLr(y) 
   end do 
   close(1) 
  end if 
 end do 
end if 
 
end program  
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Appendix 6: MatLab Code Used 

This appendix contains the code used, to obtain data and visualise created 

systems, within MatLab. 

Visualising 2D System Beds 
for x = 1:50 % This line starts the loop that will iterate for the number of systems inputted 
 if isfile([num2str(x) '.csv']) % Confirms the file exists in the expected folder 
  load ([num2str(x) '.csv']) % Loading the respective file 
  box on % Turns on an outline so the edges of the box are in the image output 
  th = 0:pi/50:2*pi; % Gives the variable th values in the range 0 to 2π 
  L = length(evalin('base',sprintf('X%d',x))) % Sets L to the number of particles 
in the system 
  figure(x) % Creates a figure for system x 
  for q = 1:L % Loops through each particle within the system 
   xunit = evalin('base',sprintf('X%d(q,3)',x)) * cos(th) + 
evalin('base',sprintf('X%d(q,1)',x)); % Calculates the x positions on the particle circumference 
   yunit = evalin('base',sprintf('X%d(q,3)',x)) * sin(th) + 
evalin('base',sprintf('X%d(q,2)',x)); % Calculates the y positions on the particle circumference 
   h = plot(xunit, yunit, 'k'); % Plots those positions onto the figure 
   hold on % Keeps the old figure when adding a new particle to it 
   xlim([0 600]); % Sets the x-axis limits 
   ylim([0 600]); % Sets the y-axis limits 
  end 
 else 
  l = x % Outputs the file number if the file does not exist for error checking 
 end 
end 
 
 
Determining 2D Packing Fractions 
PartFrac = 0 % Stores the packing fractions for all the systems 
PartSum = 0 % Stores the total of all of the packing fractions for calculating the average 
PartAvg = 0 % Stores the average of the packing fractions across all the systems 
for x = 1:50 % This line starts the loop that will iterate for the number of systems inputted 
 PartTot = 0; % Stores the total area of Particles within the currently analysed system 
 if isfile([num2str(x) '.csv']) % Confirms the file exists in the expected folder 
  load ([num2str(x) '.csv']) % Loading the respective file 
  L = length(evalin('base',sprintf('X%d',x))); % Sets L to the number of particles 
in the system 
  for q = 1:L % Loops through each particle within the system 
   PartTot = ((evalin('base',sprintf('X%d(q,3)',x)) ^ 2) * pi) + PartTot; % 
Calculates the area of the particle and adds it to the current total area 
  end 
  PartFrac(x) = PartTot / (300^2); % Calculates the packing fraction of the 
current system 
  PartSum = PartSum + PartFrac(x); % Adds the packing fraction of the current 
system to the total to be averaged 
 end 
end 
PartAvg = PartSum / 50 % Calculates the packing fraction average of the systems 
 
 
Determining 2D Number of Contacts 
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for x = 1:50 % This line starts the loop that will iterate for the number of systems inputted 
 if isfile(['contacts' num2str(x) '.csv']) % Confirms the file exists in the expected folder 
  load (['contacts' num2str(x) '.csv']) % Loading the respective contacts file 
  load ([num2str(x) '.csv']) % Loading the respective particle locations file 
  L = length(evalin('base',sprintf('contacts%d',x))); % Sets L to the number of 
particles in the system 
  for q = 1:L  
   SmolContNo = 0; % Stores the number of contacts for small 
particles 
   LorgContNo = 0; % Stores the number of contacts for large particles 
   f = 1; % The counter for looping through the arrays 
   while evalin('base',sprintf('contacts%d(q,f)',x)) ~= 0 % Checks the 
particle has more than zero contacts 
    if evalin('base',sprintf('X%d(q,3)',x)) == 10 % Determines if 
the particle is of radius 10 (small) or not (large) 
     SmolContNo = SmolContNo + 1; % Increments the 
number of contacts for a small particle 
     f = f + 1; % Increments the array counter 
    else 
     LorgContNo = LorgContNo + 1; % Increments the 
number of contacts for a large particle 
     f = f + 1; % Increments the array counter 
    end 
   end 
   SmolContCount(x,q) = SmolContNo; % Stores the number of 
contacts for each small particle across all systems 
 
   LorgContCount(x,q) = LorgContNo; % Stores the number of 
contacts for each large particle across all systems 
  end 
 end 
end 
 
 
Determining the Percentage of 2D Systems That Contain a Percolation Chain 
PercCount = 0 % Stores the number of systems that contain a percolation chain 
TotalCount = 0 % Stores the total number of systems 
for x = 1:50 % This line starts the loop that will iterate for the number of systems inputted 
 if isfile(['shapes' num2str(x) '.csv']) % Confirms the file exists in the expected folder 
  load (['shapes' num2str(x) '.csv']) % Loading the respective particle shapes 
file 
  CurShape = evalin('base',sprintf('shapes%d',x)); % Retrieves the chains from 
the file 
  [numRows,numCols] = size(CurShape); % Determines the size of the array 
  TotalCount = TotalCount + 1; % Adds one to the total number of systems 
  if numRows == 1 % Determines if the system has no percolation chains 
   PercCount = PercCount + 1; % If so adds one to this counter 
  end 
 end 
end 
PercFracs = 100 - ((PercCount/TotalCount) * 100) % Determines the percentage of systems 
that contain a percolation chain 
 
 
Determining the Number of Percolation Chains in 2D Systems 
AvgCount = 0 % Stores the average number of percolation chains across all systems 
MaxCount = 0 % Stores the maximum number of percolation chain in a system 
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MinCount = 999 % Stores the minimum number of percolation chain in a system 
RowCount = 0 % Stores the number of percolation chains in each system 
TotalCount = 0 % Stores the sum of how many percolation chains across all systems 
TotAmount = 0 % Stores the number of systems 
for x = 1:50 % This line starts the loop that will iterate for the number of systems inputted 
 if isfile(['shapes' num2str(x) '.csv']) % Confirms the file exists in the expected folder 
  load (['shapes' num2str(x) '.csv']) % Loading the respective particle shapes 
file 
  CurShape = evalin('base',sprintf('shapes%d',x)); % Retrieves the chains from 
the file 
  [numRows,numCols] = size(CurShape); % Determines the size of the array 
  TotalCount = TotalCount + (numRows-1); % Adds the number of percolation 
chains in the current system to the total 
  TotAmount = TotAmount + 1; % Adds one to the total number of systems 
  RowCount(x) = numRows-1; % Saves number of percolation chain to the 
array 
  if numRows-1 > MaxCount % If it is more than the current highest 
   MaxCount = numRows - 1; % It is overwritten 
  end 
  if numRows-1 < MinCount % If it is less than the current lowest 
   MinCount = numRows - 1; % It is overwritten 
  end 
 end 
end 
AvgCount = TotalCount/TotAmount % Calculates the average number of percolation chains 
per system 
 
 
Determining the Shortest Percolation Chain in 2D Systems 
SmallShapes = 0 % Stores all smallest percolation chain lengths from all systems 
for x = 1:50 % This line starts the loop that will iterate for the number of systems inputted 
 SmolShap = 0; % Stores the current shortest percolation chain length 
 if isfile(['shapes' num2str(x) '.csv']) % Confirms the file exists in the expected folder 
  load (['shapes' num2str(x) '.csv']) % Loading the respective particle chains file 
  CurShape = evalin('base',sprintf('shapes%d',x)); % Retrieves the chains from 
the file 
  [numRows,numCols] = size(CurShape); % Determines the size of the array 
  if numRows ~= 1 % Confirms there is at least one chain in the system 
   for y = 1:numRows-1 % Loops through all the chains in the system 
    ShapLength = 0; % Stores current chain length 
    for z = 1:numCols % Loops through the columns 
     if CurShape(y,z) == 0 % Checks if the chain is still 
going 
      if ShapLength < SmolShap | SmolShap == 0 
% Checks if the current chain is shorter than the previously shortest chain 
       SmolShap = ShapLength; % If so it 
replaces it 
      end 
     end 
     ShapLength = ShapLength + 1; % Increments the 
chain length counter 
    end 
   end 
  end 
 end 
 SmallShapes(x) = SmolShap; % Stores the smallest chain from this system 
End 
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Determining the Longest Percolation Chain in 2D Systems 
LargeShapes = 0 % Stores all largest percolation chain lengths from all systems 
for x = 1:50 % This line starts the loop that will iterate for the number of systems inputted 
 LorgShap = 0; % Stores the current longest percolation chain length 
 if isfile(['shapes' num2str(x) '.csv']) % Confirms the file exists in the expected folder 
  load (['shapes' num2str(x) '.csv']) % Loading the respective particle chain file 
  CurShape = evalin('base',sprintf('shapes%d',x)); )); % Retrieves the chain 
from the file 
  [numRows,numCols] = size(CurShape); % Determines the size of the array 
  if numRows ~= 1 % Confirms there is at least one chain in the system 
   for y = 1:numRows-1 % Loops through all the chains in the system 
    ShapLength = 0; % Stores current chain length 
    for z = 1:numCols % Loops through the columns 
     if CurShape(y,z) == 0 % Checks if the chain is still 
going 
      if ShapLength > LorgShap | LorgShap == 0 
% Checks if the current chain is longer than the previously longest chain 
       LorgShap = ShapLength; % If so it 
replaces it 
      end 
     end 
     ShapLength = ShapLength + 1; % Increments the 
chain length counter 
    end 
   end 
  end 
 end 
 LargeShapes(x) = LorgShap; % Stores the largest chain from this system 
end 
 
 
Determining the Average Percolation Chain Length in 2D Systems 
Shapes = 0 % Stores the sum of all chain lengths across all systems 
ShapeCount = 0 % Stores the number of chains 
AvgLength = 0 % Stores the average length of chain 
for x = 1:50 % This line starts the loop that will iterate for the number of systems inputted 
 if isfile(['shapes' num2str(x) '.csv']) % Confirms the file exists in the expected folder 
  load (['shapes' num2str(x) '.csv']) % Loading the respective particle chain file 
  CurShape = evalin('base',sprintf('shapes%d',x)); % Retrieves the chain from 
the file 
  [numRows,numCols] = size(CurShape); % Determines the size of the array 
  if numRows ~= 1 % Confirms there is at least one chain in the system 
   for y = 1:numRows-1  % Loops through all the chain in the system 
    ShapLength = 0; % Stores current chain length 
    for z = 1:numCols % Loops through the columns 
     if CurShape(y,z) == 0 % Checks if the chain is still 
going 
      Shapes = Shapes + ShapLength; % Adds 
the chain length to the total of all shape lengths 
      ShapeCount = ShapeCount + 1; % 
Increments the number of chains counter 
     end 
     ShapLength = ShapLength + 1; % Increments the 
chain length counter 
    end 
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   end 
  end 
 end 
end 
AvgLength = Shapes/ShapeCount % Calculates the average percolation chain length 
 
 
Visualising 3D System Beds 
for a = 1:50 % This line starts the loop that will iterate for the number of systems inputted 
 if isfile([num2str(a) '.csv']) % Confirms the file exists in the expected folder 
  load ([num2str(a) '.csv']) % Loading the respective particle locations file 
  CurPart = evalin('base',sprintf('X%d',a))'; 
  [x y z] = sphere; % Sets up x, y and z, as the coordinates of the sphere particle 
  box on % Turns on an outline so the edges of the box are in the image output 
  L = length(CurPart) % Sets L to the number of particles in the system 
  figure(a) Creates a figure for system a 
  for q = 1:L % Loops through each particle within the system 

s(q)=surf(x*CurPart(4,q)+CurPart(1,q),y*CurPart(4,q)+CurPart(3,q),
z*CurPart(4,q)+CurPart(2,q)); % Draws the sphere particle onto the figure 

   hold on % Keeps the old figure when adding a new particle to it 
  end 
 end 
end 
 
 
Determining 3D Packing Fractions 
PartFrac = 0 % Stores the packing fractions for all the systems 
PartFracAvg = 0 % Stores the average of the packing fractions across all the systems 
for x = 1:50 % This line starts the loop that will iterate for the number of systems inputted 
 PartTot = 0; % Stores the total area of Particles within the currently analysed system 
 if isfile([num2str(x) '.csv']) % Confirms the file exists in the expected folder 
  load ([num2str(x) '.csv']) % Loading the respective particle locations file 
  L = length(evalin('base',sprintf('X%d',x))); % Sets L to the number of particles 
in the system 
  for q = 1:L % Loops through each particle within the system 
   PartTot = ((evalin('base',sprintf('X%d(q,4)',x)) ^ 3) * (4/3) * pi) + 
PartTot % Calculates the volume  of the particle and adds it to the current total volume 
  end 
  PartFrac(x) = PartTot / (240^3); % Calculates the packing fraction of the 
current system 
  PartFracAvg = PartFracAvg + PartFrac(x); % Adds the packing fraction of the 
current system to the total to be averaged 
 end 
end 
PartFracAvg = PartFracAvg / 50 % Calculates the packing fraction average of the systems 
 
 
Determining 3D Number of Contacts 
for x = 1:50 % This line starts the loop that will iterate for the number of systems inputted 
 if isfile(['contacts' num2str(x) '.csv']) % Confirms the file exists in the expected folder 
  load (['contacts' num2str(x) '.csv']) % Loading the respective particle contacts 
file 
  load ([num2str(x) '.csv']) % Loading the respective particle locations file 
  L = length(evalin('base',sprintf('contacts%d',x))); % Sets L to the number of 
particles in the system 
  for q = 1:L % Loops through each particle within the system 
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   SmolContNo = 0; % Stores the number of contacts for small 
particles 
   LorgContNo = 0; % Stores the number of contacts for large particles 
   f = 1; % The counter for looping through the arrays 
   while evalin('base',sprintf('contacts%d(q,f)',x)) ~= 0 % Checks the 
particle has more than zero contacts 
    if evalin('base',sprintf('X%d(q,4)',x)) == 10 % Determines if 
the particle is of radius 10 (small) or not (large) 
     SmolContNo = SmolContNo + 1; % Increments the 
number of contacts for a small particle 
     f = f + 1; % Increments the array counter 
    else 
     LorgContNo = LorgContNo + 1; % Increments the 
number of contacts for a large particle 
     f = f + 1; % Increments the array counter 
    end 
   end 
   SmolContCount(x,q) = SmolContNo; % Stores the number of 
contacts for each small particle across all systems 
 
   LorgContCount(x,q) = LorgContNo; % Stores the number of 
contacts for each large particle across all systems 
  end 
 end 
end 
 
 
Determining Chain Angles in Single Chain Type System (Currently set at np = 2) 
y=1 % Stores the number of chains 
for x = 1:50 % This line starts the loop that will iterate for the number of systems inputted 
 if isfile([num2str(x) '.csv']) % Confirms the file exists in the expected folder 
  load ([num2str(x) '.csv']) % Loading the respective particle locations file 
  L = length(evalin('base',sprintf('X%d',x))) % Sets L to the number of particles 
in the system 
  for q = 1:2:L % Loops through each particle within the system skipping middle 
of chain particles 
   v1 = evalin('base',sprintf('X%d(q+1,1)',x)) - 
evalin('base',sprintf('X%d(q,1)',x)); % Calculates the dx between the current particle and the 
next particle it is attached to 
   v2 = evalin('base',sprintf('X%d(q+1,2)',x)) - 
evalin('base',sprintf('X%d(q,2)',x)); % Calculates the dy between the current particle and the 
next particle it is attached to 
   v3 = v1/v2; % Calculates the gradient of the chain 
   v4(x,y) = atand(v3); % Calculates the angle of the chain 
   y = y + 1; % Increments the number of chains counter 
  end 
 end 
end 
 
 
Determining Chain Angles and Packing Fractions in Chain Systems (Based on Particle 
Size) 
ys = 1 % Stores the counter for shorter chain angle array 
yc = 1 % Stores the counter for longer chain angle array 
PartTotC = 0; % Stores the area covered by larger chains 
PartTotS = 0; % Stores the area covered by smaller chains 
PartFrac = 0; % Stores all the systems packing fractions 
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PartSum = 0; % Stores the sum of all systems packing fractions 
PartAvg = 0; % Stores the average of all systems packing fractions 
for x = 1:50 % This line starts the loop that will iterate for the number of systems inputted 
 if isfile([num2str(x) '.csv']) % Confirms the file exists in the expected folder 
  scount = 1; % Stores the number of smaller chains or single particles 
  ccount = 1; % Stores the number of larger chains 
  load ([num2str(x) '.csv']) % Loading the respective particle locations file 
  L = length(evalin('base',sprintf('X%d',x))) % Sets L to the number of particles 
in the system 
  for q = 1:L % Loops through each particle within the system 
   if evalin('base',sprintf('X%d(q,3)',x)) == 5  % Determines of the radius 
of the particle is 5 (small chain or single) or not (long chain) 
    singles(scount,1) = evalin('base',sprintf('X%d(q,1)',x)); % If 
small, saves the x coordinate here 
    singles(scount,2) = evalin('base',sprintf('X%d(q,2)',x)); % 
And the y coordinate here 
    scount = scount + 1; % Then adds one to the counter 
   else 
    chains(ccount,1) = evalin('base',sprintf('X%d(q,1)',x)); % If 
large, saves the x coordinate here 
    chains(ccount,2) = evalin('base',sprintf('X%d(q,2)',x)); % And 
the y coordinate here 
    ccount = ccount + 1; % Then adds one to the counter 
   end 
  end 
 
  for q = 1:5:ccount-4 % Loops through the large chains (currently set for np = 
5) 
   v1 = chains(q+1,1) - chains(q,1); % Calculates the dx between the 
current particle and the next particle it is attached to 
   v2 = chains(q+1,2) - chains(q,2); % Calculates the dy between the 
current particle and the next particle it is attached to 
   v3 = v1/v2; % Calculates the gradient of the chain 
   cv4(yc) = atand(v3); % Calculates the angle of the chain and saves it 
   yc = yc + 1; % Increments the array counter 
  end 
  for q = 1:5:scount-4 % Loops through the small chains (currently set for np = 
5) 
   v1 = singles(q+1,1) - singles(q,1); % Calculates the dx between the 
current particle and the next particle it is attached to 
   v2 = singles(q+1,2) - singles(q,2); % Calculates the dy between the 
current particle and the next particle it is attached to 
   v3 = v1/v2; % Calculates the gradient of the chain 
   sv4(ys) = atand(v3); % Calculates the angle of the chain and saves it 
   ys = ys + 1; % Increments the array counter 
  end 
 
  PartTotC = (((10 ^ 2) * pi) - (((10^2)* (((2*pi)/3) - ((sqrt(3))/2))) * (0.8))) * 
(ccount); % Calculates the area covered by larger chains 
  PartTotS = (((5 ^ 2) * pi) - (((5^2)* (((2*pi)/3) - ((sqrt(3))/2))) * (0.8))) * (scount); 
% Calculates the area covered by smaller chains 
  PartFrac(x) = (PartTotS + PartTotC) / (600^2); % Calculates the systems 
packing fraction 
  PartSum = PartSum + PartFrac(x); % Adds the packing fraction to the total for 
calculating the average 
 else 
  l = x % Outputs the file number if the file does not exist for error checking 
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 end 
end 
PartAvg = PartSum / 50 % Calculates the packing fraction average of the systems 
 
 
Determining Chain Angles and Packing Fractions in Chain Systems (Based on Particle 
Overlap) 
ys = 1 % Stores the counter for shorter chain angle array 
yc = 1 % Stores the counter for longer chain angle array 
PartTotC = 0; % Stores the area covered by larger chains 
PartTotS = 0; % Stores the area covered by smaller chains 
PartFrac = 0; % Stores all the systems packing fractions 
PartSum = 0; % Stores the sum of all systems packing fractions 
PartAvg = 0; % Stores the average of all systems packing fractions 
for x = 1:50  % This line starts the loop that will iterate for the number of systems inputted 
 if isfile([num2str(x) '.csv']) % Confirms the file exists in the expected folder 
  scount = 1; % Stores the number of smaller chains or single particles 
  ccount = 1; % Stores the number of larger chains 
  load ([num2str(x) '.csv']) % Loading the respective particle locations file 
  L = length(evalin('base',sprintf('X%d',x))) % Sets L to the number of particles 
in the system 
  for q = 1:L % Loops through each particle within the system 
   overlap = 0; % Value for if there is an overlap (1) or not (0) 
 
   if q ~= L % Determining if the loop is not on the last iteration 
    m = q + 1; % Used to denote the particle placed after the 
current particle 
 
    dist = ((evalin('base',sprintf('X%d(q,1)',x)) - 
evalin('base',sprintf('X%d(m,1)',x)))^2) + ((evalin('base',sprintf('X%d(q,2)',x)) - 
evalin('base',sprintf('X%d(m,2)',x)))^2); 
    dist = sqrt(dist); % Determining the distance between particle 
q and m 
 
    if dist < ((evalin('base',sprintf('X%d(q,3)',x)) + 
evalin('base',sprintf('X%d(m,3)',x))) - 5) % Determining if they are overlapping 
     overlap = 1; % If so setting variable to ‘yes’ 
    end 
   end 
 
   if q ~= 1 % Does the same as above however checks the particle 
placed prior 
    n = q - 1; 
  
    dist = ((evalin('base',sprintf('X%d(q,1)',x)) - 
evalin('base',sprintf('X%d(n,1)',x)))^2) + ((evalin('base',sprintf('X%d(q,2)',x)) - 
evalin('base',sprintf('X%d(n,2)',x)))^2); 
    dist = sqrt(dist); 
  
    if dist < ((evalin('base',sprintf('X%d(q,3)',x)) + 
evalin('base',sprintf('X%d(n,3)',x))) - 5) 
     overlap = 1; 
    end 
   end 
    
   if overlap == 1 % If an overlap is found then the particle is part of a 
chain 
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    chains(ccount,1) = evalin('base',sprintf('X%d(q,1)',x)); % 
Saves the x coordinate here 
    chains(ccount,2) = evalin('base',sprintf('X%d(q,2)',x)); % 
Saves the y coordinate here 
    ccount = ccount + 1; % Increments the array counter 
   else % If no overlap then particle is a single 
    singles(scount,1) = evalin('base',sprintf('X%d(q,1)',x)); % 
Saves the x coordinate here 
    singles(scount,2) = evalin('base',sprintf('X%d(q,2)',x)); % 
Saves the y coordinate here 
    scount = scount + 1; % Increments the array counter 
   end 
  end 
 
  for q = 1:5:ccount-4 
   v1 = chains(q+1,1) - chains(q,1); 
   v2 = chains(q+1,2) - chains(q,2); 
   v3 = v1/v2; 
   cv4(yc) = atand(v3); 
   yc = yc + 1; 
  end 
 
  PartTotC = (((10 ^ 2) * pi) - (((10^2)* (((2*pi)/3) - ((sqrt(3))/2))) * (0.8))) * 
(ccount); % Calculates the area covered by chains 
  PartTotS = ((10 ^ 2) * pi) * (scount); % Calculates the area covered by singles 
  PartFrac(x) = (PartTotS + PartTotC) / (600^2); % Calculates the systems 
packing fraction 
  PartSum = PartSum + PartFrac(x); % Adds the packing fraction to the total for 
calculating the average 
 else 
  l = x % Outputs the file number if the file does not exist for error checking 
 end 
end 
PartAvg = PartSum / 50 % Calculates the packing fraction average of the systems 


