
William Eales

1

Modelling the Properties of Packed Bed
Structures Formed During Filtration

William Eales

Department of Chemical and Process Engineering

University of Strathclyde

This dissertation is submitted for the degree of Doctor of
Philosophy

2023

William Eales

2

This thesis is the result of the author’s original research. It has been composed

by the author and has not been previously submitted for examination which

has led to the award of a degree. The copyright of this thesis belongs to the

author under the terms of the United Kingdom Copyright Acts as qualified by

University of Strathclyde Regulation 3.50. Due acknowledgement must always

be made of the use of any material contained in, or derived from, this thesis.

Signed: William Eales

Date: 27/09/2023

William Eales

3

Acknowledgements

I would like to thank my supervisors Prof. Chris Price and Dr. Paul Mulheran,

as well as William Hicks and Colm Cotter from Astra Zeneca, for their guidance

and direction during my PhD.

I would also like to thank Lewis Cartwright and Luke Convery for their

contributions.

I was supported through an Engineering and Physical Sciences Research

Council iCASE Award co-funded by AstraZeneca EP/T517665/1.

COVID-19 Statement

This project was affected by the COVID-19 pandemic, however due to its

nature as a computational project, it was still able to progress during lockdown,

even if at a slightly slower pace. The main effect the pandemic had on this

project was the decreased accessibility to my supervisors and others in my

department, as whilst email contact was maintained, there was a natural delay

compared to being able to discuss issues or ideas in person.

William Eales

4

Abstract

Agglomeration is an issue that causes many problems during secondary

processing for pharmaceutical companies, causing material to need further

processing, and costing additional time and resources to ensure a satisfactory

outcome. A potential source of agglomeration arises from the particle contacts

established during filtration that lead to robust agglomerates forming during

drying, so that a necessary first step towards understanding agglomeration is

to study the packing properties of filtration beds. Here I present two and three-

dimensional models simulating the formation of packed bed structures during

filtration.

These models were coded from the ground up using the ForTran

programming language, starting with the 2D algorithm as it was a simpler

algorithm compared to jumping straight to 3D systems. Once an algorithm was

formed that could create realistic 2D systems of packed circular particles, it

was extended so that it could also create systems of spherical particles in 3D.

A variety of improvements and modifications were made to the algorithm as

part of this change, including adding a stochastic optimisation function for

determining particle locations, which was found to be a much more efficient

method than the equations used in the 2D algorithm, so the stochastic

optimisation method was used in all algorithms going forwards. The final

modification made to the algorithm was the option to create systems formed of

chain structures, made up of circular particles attached together; this enabled

the investigation of more realistic systems.

These models use circular and spherical particles of different sizes,

mimicking the bimodal particle size distributions sometimes encountered in

industrial practice. The systems containing chain particles made up of these

circular particles were varied by both particle size and chain length to observe

the effect of these parameters on systems with more realistic particles. The

statistics of packing and void formation, the distribution of inter-particle

William Eales

5

contacts and percolation structures, and the breakage of these systems under

shear forces, are presented and discussed in the context of filtration, drying

and agglomeration. The 3D model was also compared to current industry

standard software, Ansys Rocky DEM, as part of a placement with

AstraZeneca, where it was found my model produces very similar packing

fraction outputs to those produced by Rocky DEM.

The model paves the way for predictive capabilities that can lead to the

rational design of processes to minimise the impact of agglomeration.

William Eales

6

Contents

1 Introduction ... 9

1.1 Aims of Project.. 9
1.2 Significance of Project .. 10
1.3 Limitations of Project .. 10
1.4 Structure of Thesis .. 11

2 Literature Review .. 12
2.1 Agglomeration .. 12

2.1.1 What it is and its mechanisms .. 12
2.1.1.1 Solid Bridges (Figure 2.1a) ... 13

2.1.1.2 Adhesion and Cohesion Forces (Figure 2.1b) 14

2.1.1.3 Surface Tension and Capillary Forces (Figure 2.1c) 14

2.1.1.4 Attraction Between Solid Particles (Figure 2.1d) 15

2.1.1.5 Interlocking Bonds (Figure 2.1e) ... 15

2.1.2 Problems caused by Agglomeration ... 15
2.1.2.1 Content Uniformity ... 15

2.1.2.2 Processing Issues .. 16

2.1.3 Continuous Systems... 17
2.2 Modelling .. 18

2.2.1 Molecular Dynamics ... 19
2.2.2 Discrete Element Method ... 20

2.3 Areas Investigated .. 22
2.3.1 Packing ... 23

2.3.1.1 Packing of objects in two dimensions (2D) 23

2.3.1.2 Packing of objects in three dimensions (3D) 23

2.3.1.3 Packing of Multiple Sized Particle Systems 24

2.3.2 Percolation ... 26
2.3.3 Finite Size Effect .. 29
2.3.4 Angle of Repose ... 29
2.3.5 Bed Fragmentation ... 31
2.3.6 Non-Circular / Non-Spherical Particles ... 32

2.4 References ... 35
3 Methodology ... 42

3.1 2D Algorithm ... 42
3.1.1 Timeline of Model ... 42

3.1.1.1 Initial Program ... 43

3.1.1.2 Implementation of the Contour Plot Method 44

3.1.1.3 Removing the Grid ... 45

3.1.1.4 Sections and Variable Grid ... 46

3.1.1.5 Top-Down Filling .. 47

3.1.1.6 Score Based Positioning .. 48

3.1.1.7 Set Allocatable Array .. 49

3.1.1.8 Increase Position Criteria .. 49

3.1.1.9 Sliding downhill instead of jumping to final position 50

3.1.1.10 Real Final Values... 50

3.1.1.11 Final Optimisations .. 51

William Eales

7

3.1.1.12 Undergraduate MEng masters project work, Lewis Cartwright
and Luke Convery. ... 52

3.1.2 Code Walkthrough .. 56
3.1.3 Simulations Run ... 61

3.2 3D Algorithm Methodology ... 62
3.2.1 Timeline of Changes... 62

3.2.1.1 2D to 3D changes .. 62

3.2.1.2 Stochastic placement .. 63

3.2.1.3 Extra checks .. 66

3.2.2 3D Code Walkthrough .. 67
3.2.3 Simulations Run ... 70

3.3 Other Functionalities and Data Collection ... 70
3.4 Summary and Conclusions ... 75
3.5 References ... 75

4 Results and Discussion – 2D Algorithm .. 76
4.1 Binary System Beds ... 76
4.2 Packing Fractions ... 78
4.3 Number of contacts between particles .. 81
4.4 Individual Void Areas .. 84
4.5 Percolation Structures .. 86
4.6 Finite Size Effect ... 89
4.7 Bed Fragmentation ... 90
4.8 Summary and Conclusions ... 96
4.9 References ... 98

5 Results and Discussion – 3D Algorithm .. 100
5.1 Visual Inspection... 100
5.2 Packing Fractions ... 101
5.3 Number of Contacts .. 103
5.4 3D Percolation Structures ... 106
5.5 Summary and Conclusions ... 108
5.6 References ... 109

6 Non-Spherical Particle Chains .. 111
6.1 Initial Code Edits ... 111
6.2 Chain Particle Complexities .. 114
6.3 Results .. 116

6.3.1 Visual Inspection .. 117
6.3.2 Packing Fraction ... 122
6.3.3 Chain Angles .. 124

6.4 Summary and Conclusions ... 130
6.5 References ... 131

7 AstraZeneca Placement .. 132
7.1 Familiarisation with Rocky DEM ... 133
7.2 Comparing Rocky DEM with my model .. 134

7.2.1 Method of Particle Addition Comparison 136
7.2.2 Model Packing Fraction Comparisons .. 139

7.3 Edge Effects Investigation .. 140
7.4 Design of Experiments using Rocky DEM .. 144

7.4.1 Parameter Setup .. 144

William Eales

8

7.4.2 BFE Results ... 146
7.4.3 Value Confirmation ... 148

7.5 Summary and Conclusions ... 151
7.6 References ... 152

8 Conclusions and Future Work ... 154
8.1 Summary and Conclusions ... 154
8.2 Future Work .. 156

Appendix 1: 2D System Algorithm ... 158
Appendix 2: Percolation Chain Detection Algorithm 176
Appendix 3: 3D System Algorithm ... 184
Appendix 4: 2D Chain System Algorithm ... 218
Appendix 5: RSA Algorithm ... 269
Appendix 6: MatLab Code Used .. 272

William Eales

9

1 Introduction

1.1 Aims of Project

The aim of this project is to better understand how agglomeration occurs

during particle drying, and how it can be mitigated. To do this I have designed

a computer model that can emulate the packing of particles into filter beds.

This model will enable us to gain greater understanding of the properties of

these packed beds, and how those properties, such as particle size distribution

and the presence of percolation structures potentially affect agglomeration and

fragmentation. At this time, the model does not contain enough features to

describe agglomeration but is in a position to be used in future projects,

therefore this thesis is mainly investigating the packing of shapes in 2D and

3D.

The model will start with circular and spherical particles due to the ease of

creation as well as aligning with laboratory work undertaken at the University

by PhD student Mariam Siddique investigating the agglomeration of glass

beads as an insoluble substitute for crystalline particles. This will allow future

comparisons of the systems created by the model with physical examples.

I have also upgraded the model to be able to produce systems involving non-

spherical particles, potentially allowing us to investigate specific crystalline

Active Pharmaceutical Ingredients (APIs).

The distribution of forces between these particles when a shear stress is

applied has also been investigated in collaboration with MEng project students,

so that weak points of the packed bed structure could be identified, to better

understand how these systems would break apart under stress. The impact of

structural properties, such as how the particles in the bed are arranged, can

be explored in future work.

William Eales

10

This project whilst producing this model has also given me a lot of experience

into both regular programming workflow, as well as the work that goes into

producing a computational model, even one as simple as mine. As part of

using this model, I have shown that it produces realistic systems consistent

with those formed under gravity, with parameters, such as packing fractions

and number of contacts per particle, that fall within the calculated minimum

and maximum ranges. As stated above, the model did not reach the stage

during this project where it could be applied further beyond testing initial

systems, so we were not able to investigate larger, more realistic systems.

1.2 Significance of Project

Agglomeration during pharmaceutical processing, particularly drying, can

cause many problems further down the line such as ensuring the content

uniformity of tablets. Whilst the mechanics of how agglomerates are formed

are known, little is known about the best practices to avoid it. The aim is that

the information gained from analysing the beds created with our model will give

us greater insight into how agglomeration can be lessened and its negative

repercussions prevented.

1.3 Limitations of Project

Due to gravity being the only force accounted for (in an approximate way)

during the bed formation, our model produces a more simplistic representation

of a packed bed system, than if all the forces between the particles, such as

friction in a dry system or hydrodynamics in a wet system, were accounted for.

This route was chosen to allow us to produce a model that enables us to have

close control over its direction to keep it in line with the scope of the project,

as well as significantly decreased computational times compared to more

complex models.

William Eales

11

1.4 Structure of Thesis

In the pages following this introduction, I will review the literature surrounding

agglomeration, how agglomerates form and their impact on the pharmaceutical

production process, as well as modelling as a scientific tool.

The next chapter will focus on the stages of development the 2D model

underwent along the course of my project, as well as a step by step look at

how the model runs to create a bed system. Following that will be a similar

walkthrough and description of the 3D algorithm.

Then there will be a discussion of the results I obtained from investigating

the properties of the systems created by the 2D model, and then a discussion

of the systems created by the 3D model.

Next will follow a description of the algorithm used for modelling non-

spherical particles, as well as the results from the systems it produced.

As part of my project, I undertook a three-month placement at AstraZeneca,

Chapter 7 discusses the work performed as part of that placement.

Finally, the conclusions gained from these investigations will be discussed.

William Eales

12

2 Literature Review

The global pharmaceutical industry provides medicines for the world

population, now approaching eight billion people1, and has an annual turnover

of around one trillion pounds2. The vast majority of these medicines are

supplied as tablets and capsules3 in which the API exists as a crystalline solid

formulated with multiple excipients to aid both the formulation process and as

vehicles for carrying the APIs. As a consequence of this the physical properties

of the APIs, including particle size distribution, crystal shape and the extent of

agglomeration, are often critical quality attributes of the API because they play

an important part in powder flow and hence formulation performance.

There are many problems that can occur during secondary processing of

APIs. The aim of this project is to investigate agglomeration, as its effect on

the filtration process is of great importance to AstraZeneca, who are funding

this work, both how it occurs and what can be done to prevent it. This is in the

hope of creating a model to better understand its phenomenology and then to

obtain new insight into how best to negate its effects. As previously stated, the

model described within is not yet capable of completing this task.

2.1 Agglomeration

2.1.1 What it is and its mechanisms

Agglomeration can be defined as the process of particulate solids gathering

into an agglomerate, which is a robust cluster of these particulate solids4. This

can sometimes be preferable as the larger agglomerates have better

flowability compared to groups of smaller particles. However, during drug

processing agglomeration can result in various inconveniences, such as

affecting content uniformity, through increasing variation in the quantity of API

contained within individual tablets, and damaging processing machinery5.

William Eales

13

The binding mechanisms present during agglomeration, shown in Figure 2.1,

were defined and ordered by H. Rumph et al4 and will each be briefly explained

below. My model assumes solid bridges are the mechanism by which particles

are joined together within the systems, shown in Figure 2.1a.

2.1.1.1 Solid Bridges (Figure 2.1a)

In systems where the temperature rises sufficiently, the particles start to melt.

This can result in the particles merging at contact points with other particles,

when the temperature cools the melted material solidifies causing the particles

to fuse together, forming an agglomerate. Solid bridges can also occur even

below the melting temperature of the solids present, as diffusion of atoms or

molecules can occur across the contact points, over time forming bridges. This

process is known as sintering and the bridges called sinter bridges. This heat

can be from a deliberate heat source due to the processing requirements of

the reaction or to enable agglomeration in reactions where it is favourable. This

is mostly applied in industries that process minerals and ores, to combine fines

Figure 2.1: Representation of the different mechanisms for
Agglomerate formation (redrawn from 6) a) Solid Bridges b)

Adhesion and Cohesion Forces c) Surface Tension and Capillary
Forces d) Attraction Between Solid Particles e) Interlocking Bonds

William Eales

14

into agglomerates for easier handling7, and not in pharmaceutical processes

as high temperatures can lead to chemical degradation4.

2.1.1.2 Adhesion and Cohesion Forces (Figure 2.1b)

In the instances when agglomeration is preferred, a binding agent can be

added to the system to aid in the formation of agglomerates and to increase

their strength. These are generally viscous substances that cause particles to

stick together by filling in the gaps between them. Resin and tar are used in

non-medical applications, however there are also binders that are suitable for

pharmaceutical processing4 such as sugars like sucrose and liquid glucose

and binders such as microcrystalline cellulose8.

2.1.1.3 Surface Tension and Capillary Forces (Figure 2.1c)

Liquid bridges can also form between particles which have strong forces that

maintain the bond between the particles. These forces are created by a

negative capillary pressure that occurs when a liquid is filling the whole pore

volume between two particles, causing the particles to be pulled together4. If

the liquid is a solvent used in a previous purification process, when it

evaporates it will leave behind the dissolved impurities and API, which can

then form solid bridges between the particles. These bridges then act as

bonding agents in the solvent’s place, holding the particles together9. This is

one of the most common mechanisms of agglomeration in pharmaceutical

manufacturing.

One example of this, known as Snowballing or balling up, occurs during

agitated drying with too much solvent present. The agitation causes the

clusters to move throughout the system, allowing them to come into contact

with more solvent-wet particles, which then join the cluster. This process then

repeats with very large agglomerates forming due to the increased

opportunities to bind to particles.9

William Eales

15

2.1.1.4 Attraction Between Solid Particles (Figure 2.1d)

It is possible that there are interactions occurring between the particles that

cause them to attract each other, such as hydrogen bonding, if there is a

suitably electronegative atom present, as well as the van der Waals forces that

occur at all solid surfaces.4

2.1.1.5 Interlocking Bonds (Figure 2.1e)

Interlocking Bonds occur when the particles have irregular shapes so that

they can intertwine and become entangled with each other, so forming the

agglomerates.4 This occurs more readily in systems of needle like particles,

where groups of particles snag on each other as they pass. Such agglomerates

often look like sea urchins.

2.1.2 Problems caused by Agglomeration

Agglomeration frequently occurs during secondary processing, particularly

during washing and drying. Due to their ability to differ greatly in size and

strength, agglomerates cause various problems during the processing of drug

products, some of which are discussed below.

2.1.2.1 Content Uniformity

Content uniformity is a property that needs to be maintained to ensure quality

control of capsules and tablets and is assessed as follows. Randomly selected

capsules or tablets are taken from a batch of product and then tested to

determine if they each contain an amount of active ingredient that falls within

the acceptable range10. Multiple studies to determine the effectiveness of

methods of ensuring content uniformity have been carried out.11, 12, 13, 14

There are guidelines which set out the acceptable ranges for how much drug

substance should be present in each type of tablet, capsule and other dosage

William Eales

16

types. Maintaining content uniformity across the tablets is essential6 as if

tablets or capsules are produced that contain too little active ingredient, a

patient will not be getting the treatment they need, and if a tablet or capsule

contains too much active ingredient, it increases the possibility of an

overdose15.

The variation in size between agglomerates results in a broad particle size

distribution within the system. This in turn increases the difficulty of maintaining

content uniformity between individual tablets or capsules. Therefore, the

presence of agglomerates within a processing system will result in extra care

having to be taken to ensure the consistency of the tablets, through specific

use of solvents to try and prevent agglomeration or by further processing,

typically milling, after agglomeration has occurred.15

2.1.2.2 Processing Issues

The formation of agglomerates also greatly decreases the efficiency of drug

processing, as any product that is part of a large agglomerate needs to go

through further processing. Some agglomerates can be too difficult to break

open due to the strength of the contacts. Some agglomerates may have

impurities trapped inside, meaning it is not always cost effective to send the

material through processing a second time16. This may occur when mother

liquor is trapped inside agglomerates during ineffective washing, thus the

agglomerates can take longer to fully dry, and the purity of the product is

impacted17.

Particularly large and strong agglomerates can also cause damage to the

machinery itself, due to their size and strength blocking powder flow within the

machines and grinding against parts, as well as causing difficulties in removing

the batch so it can be processed further9.

William Eales

17

2.1.3 Continuous Systems

The importance of being able to efficiently process larger quantities of

product at the same time is relatively obvious, as it would potentially reduce

the costs and time that would be required to process the same amount in

multiple smaller batches. A good deal of the work investigating the drying

process has been done into how to scale it up to be able to process larger

quantities or to create a continuous system.18

A continuous system would speed up the process as the system would be

capable of removing its own waste and transferring the products onto the next

step of processing without someone having to be present to do it. This means,

in principle, that the machines would require less supervision and also

increase the speed of the process as any transfer time between steps of the

process would be cut out, as well as allowing for full end to end processing.19

One of the issues with creating a continuous system is ensuring that the

machinery is able to deal with any unwanted circumstances that occur within

the system during each of the processing stages; for example, if agglomerates

form during drying, they should not be ignored and passed along onto the next

processing stage. Instead, they would need to be separated out, broken down

and potentially rewashed or dried before being able to be added back into the

system. Additionally, if an error occurs within the system, it is easier to identify

in a batch system where the issue originated so a fix can be sorted. Whereas

in a continuous system, it can be hard to identify at what point the issue

arose.19

William Eales

18

2.2 Modelling

Computational modelling of complex systems has become more widely

available due to the increase in computational power over time. This has

allowed researchers to analyse systems that were previously difficult to

investigate experimentally, for example due to stability issues or lack of

availability of reactants.20

One of the ways in which computational modelling can be utilised is as a

predictive tool prior to undertaking experimental work. This allows us to

investigate the proposed experiment ahead of time, before any reactants are

potentially wasted, and to ensure that the experiment would act as planned

and produce a useful result. The model can also help show the preferred

conditions for the experiment to run under; this should reduce negative effects

and prevent accidents.21

Another way in which modelling can be applied is alongside experimental

work, so that the data produced from the model can be compared with data

collected from physical experiments. This is especially useful whilst the model

is relatively new to ensure that the data it is producing is similar to the results

from a physical experiment to check whether there may be a calculation error

within the model. But once the model has been validated, it can also be used

to produce data that would otherwise be difficult to collect with laboratory

experiments, for example due to lack of access to reactants, danger to

researchers or unrealistic time lengths.22

Some examples of types of models and their capabilities are discussed

below.

William Eales

19

2.2.1 Molecular Dynamics

Molecular dynamics (MD) is a type of simulation that analyses the physical

movement of molecules. The most common versions of MD simulations use

Newton’s equations of motion to calculate the trajectories of the particles; the

forces between them are calculated using interatomic potentials or molecular

mechanics force fields23. As molecular systems generally consist of large

quantities of particles, it is often impossible to determine properties of very

complex systems analytically, therefore MD simulations use numerical

methods. As a result, these systems are an approximation to reality, often not

covering all the complexities a real system would have to compromise for the

computational power that would be required to run a truly realistic simulation.

This makes longer MD simulations less viable, as a single error early in the

simulation would propagate throughout the simulation potentially causing the

later stages to be far less accurate. Algorithmic developments mean that such

an error is more likely to be from the user, in the way that they set up the

simulation, rather than a failure of the numerical procedures.

One advantage of MD simulations is that they work on an atomistic level

therefore they can give information about the molecular detail of a system.

However, as with most computer simulations, MD is computationally intensive

and depending on the specific system being investigated could require a

dedicated computer setup to run. Due to the timeframes of MD simulations

being extremely short (typically on the 100 ns timescale), it can mean that vast

quantities of simulations need to be run to gather enough data on a system24.

Additionally, MD simulations are not useful when investigating large scale

systems due to their small-scale nature (typically on the 10 nm scale), so a

different modelling method would be needed, otherwise the MD simulation

runtime would be unacceptably long.

William Eales

20

2.2.2 Discrete Element Method

Discrete Element Modelling (DEM) is closely related to molecular dynamics,

where it differs is that it includes more complicated geometries as well as

rotational degrees of freedom. An important distinction is that the elements of

the model are the granular particles rather than atoms, so it works on much

longer length and time scales. The force fields and equations of motion used

must therefore embody all the relevant physics.

A DEM simulation works by setting up a model with all of the particles placed

within it and given an initial velocity. The forces acting on each particle are then

calculated based on factors such as friction, gravity, or attractive and repulsive

forces between particles. These forces and the initial velocities can then be

used to compute an updated location of each particle following a short time

step. These updated positions are then used to calculate the next round of

forces, and the process then loops until the simulation ends. More detail is

giving on the workings of a DEM system in section 7.2.

DEM has many advantages, including its ability to simulate a variety of

particle flow mechanics, as well as being able to be implemented into other

engineering applications. DEM also allows for more detailed analysis of

powder systems than would normally be achievable using physical

experiments, allowing for a greater range of data to be collected.

As with other computational modelling, the extent of the system being

investigated is limited by the computational power available. Due to DEM being

relatively computationally intensive compared to other model types, its

capabilities are limited in relation to the size of the system being analysed and

the duration of the simulations being run25, 26. In a simulation of a fluidized bed,

a time step of 10-3s has been used27, with other experiments using smaller

timesteps of down to 10-5s28.

William Eales

21

During my project I used Rocky DEM modelling software (part of ANSYS),

however there are many more packages available. Another source of DEM

modelling is EDEM29, simulation software that uses DEM simulations for “bulk

and granular material simulation”. EDEM has been used across multiple

industries in different applications, such as investigating the strength of potato

starch agglomerates for the food industry30, simulations of fluidized beds27,

and modelling granular flow of systems to analyse the effect of different blade

shapes31.

Within the filtration space, DEM has been used in multiple instances to

simulate filtration processes, for example to determine the porosity of

systems32 or to compare wet and dry filtration, where either hydrodynamic or

gravitational forces are used to filter the small particles33. Simulations have

also been done with a variety of particle shapes and sizes, ranging from more

spherical particles34 to fibrous particles35, 36.

Whilst the above methods could have been used for this project, the

approach of creating a new model was decided upon as it ensures that we had

direct control over the direction and application of the model, keeping it simple

compared to other models to aid in the speed of bed creation, as well as

providing a unique learning opportunity for me as part of the project.

William Eales

22

2.3 Areas Investigated

There are many different parameters across processing that affect

agglomeration, as detailed in Figure 2.2.

F
ig

u
re

 2
.2

: P
a

ra
m

e
te

rs
 th

a
t in

flu
e

n
c
e
 a

g
g

lo
m

e
ra

tio
n

 in
 a

g
ita

te
d

 filte
r d

ry
e
rs

(re

d
ra

w
n
 fro

m
 3

7)

William Eales

23

I aim to investigate some of these parameters, specifically the particle size

and shape, particle size distribution, and the packing behaviour, through

investigating simulated packed bed structures. Discussed below is some of the

previous research into each of these properties and how they are relevant to

agglomeration.

2.3.1 Packing

2.3.1.1 Packing of objects in two dimensions (2D)

The packing of shapes in 2D has been extensively researched and many

models have been created to determine the possible packing fractions under

different circumstances. The most random of these types of packing is

Random Sequential Adsorption (RSA), where “particles” are added to a

system entirely at random, with the only restriction being that they cannot

overlap. This results in low packing fractions, with the maximum packing

fraction when using RSA in a system with single sized circular particles being

roughly 0.54738, due to the lack of order.

Previous investigations have also looked into the maximum possible packing

of different systems. The highest packing fraction possible in a system of

identical circles is
𝜋

√12
≈ 0.906939, when the circles form a triangular lattice.

2.3.1.2 Packing of objects in three dimensions (3D)

Packing of 3D shapes has also been previously investigated. When using

identical spherical shapes, there are two lattices that can occur to achieve the

highest packing fraction40, which is
𝜋

3√2
≈ 0.7404841. These two lattices, as

seen in Figure 2.3, are face-centred cubic (FCC) and hexagonal close-packed

(HCP) and are formed dependant on the symmetry of the system.

William Eales

24

Other examples of packing types and their maximum densities are: random

close packing, 0.640043; the tetrahedral lattice,
π√3

16
≈ 0.304144; and the loosest

possible density that has been found is 0.0555 in the Heesch and Laves loose-

packing structure45.

Spherical packing was first analysed around 1587, when the question was

posed about whether or not there was a method to quickly determine the

number of cannonballs in a square pyramidal stack, which is known as the

cannonball problem.46

2.3.1.3 Packing of Multiple Sized Particle Systems

Most of the research into systems where there are multiple sizes of particle

present investigate binary systems, i.e. those with two distinct particle sizes

present. In a 2D square packing system, it has been found that up until a radius

ratio of 0.41:147, the system packs densely by filling in the voids created by the

Figure 2.3: An FCC lattice (left) and HCP lattice (right)
(redrawn from 42)

William Eales

25

larger particles with the smaller particles. However, after this point, due to the

sizes of the particles being more similar, the system rearranges into a different

structure in order to maintain their density47. Additionally, if the radius ratio is

above 0.742:1, the binary system is no longer able to pack better than a system

with same sized particles.48 The binary system with the highest possible

packing fraction is with a particle ratio of 0.1:1, having a packing fraction of

0.9624.47

Descartes circle theorem, shown in Equation 2.1, can be used to determine

the radius of the particle that would fit perfectly between three particles, so that

all four of them would share an edge with all of the others, as shown in Figure

2.4.

𝑘4 = 𝑘1 + 𝑘2 + 𝑘3 ± 2√𝑘1𝑘2 + 𝑘2𝑘3 + 𝑘3𝑘1 (2.1)

where k is the curvature, 1/radius, of each of the circles 1 to 4. The two

solutions to this theorem, through the ±, are due to the possibility of a large

circle encompassing the three present circles, as well as a smaller one present

between them. When the radii of the three present circles are the same, the

ratio of their radii to the radius of the circle in between them is 0.1547.49

Figure 2.4: Example of tangent circles with the black circles being
present particles, and red circles being possible solutions through

Descartes theorem

1

2
3

4

4

William Eales

26

Binary systems have also been investigated in 3D, where it has been found

that if the radius ratio is 0.299099:1 or lower, then it is always possible for

smaller spheres to pack inside the interstices between the larger spheres50.

When the radius ratio exceeds 0.4142:151, the smaller spheres are no longer

able to pack inside even the octahedral voids within the structure, meaning

that above this ratio, the structure either needs to expand to allow the more

similarly sized smaller particles to fill the voids inside, which decreases the

overall density, or it would rearrange into a more complex structure51, 52.

The packing fractions of binary systems of a radius ratio either side of the

perfect 0.4142 value have been investigated. The packing fractions of the

systems below this value were generally greater than the systems with a ratio

above that value, except when comparing the minimum and maximum of some

of the systems ranges. The systems with a radius ratio lower than the perfect

value having packing fractions of around 0.8 and the systems with a radius

ratio higher than the perfect value having packing fractions around 0.75. All of

the systems packing fractions with a ratio below the value, except one,

decrease when the ratio increases. The only system that increases alongside

an increase in radius ratio is an orthorhombic lattice system with six small

particles for each large particle. When the radius ratio is above the perfect

value, of the five systems investigated, two showed a decrease in packing

fraction, two showed an increase in packing fraction, and one showed no

change in packing fraction.53

2.3.2 Percolation

Percolation theory is the study of percolation, which is generally used to

investigate how fluids flow through porous materials through the connectivity

of the pores. The theory describes how a network is affected when nodes or

links between them are added or taken away. It was first elucidated in the

Flory-Stockmayer Theory54, which governs the point at which a gel forms from

a system of polymers55. This point is generally known as the percolation

William Eales

27

threshold, which is the critical value for a system where below it a giant

connected component does not exist, and above it one does exist. However,

in this work we are instead looking at the connectivity of particles within the

system, describing a percolation chain as a chain of particles connecting

edges of the box, instead of a group of pores for fluid to pass through.

There are two different “models” for investigating percolation: bond

percolation and site percolation. Bond percolation uses the frequency of the

presence of bonds between nodes to determine if a percolated structure is

present. Site percolation determines whether or not a site is open and

connected open sites form percolated structures. To visualise this using a grid

of squares, bond percolation works using the connections between the

vertices, whereas site percolation connects whole squares of the grid that are

“open”, as can be seen in Figure 2.5.56

Generally, systems of infinite size are examined, so a percolated structure

would be a connected cluster of infinite length. Kolmogorov’s zero-one law

states that, ‘the probability of an infinite cluster existing is either zero or one,

for any given probability of a site being open or closed’58. In our systems, the

chance of a percolation structure occurring is based on the probability of large

Figure 2.5: Representation of Bond and Site
Percolation (redrawn from 57)

bond percolation site percolation

William Eales

28

particle to large particle contacts forming. This allows us to investigate the

critical value of the site probability to determine the critical probability, known

as the percolation threshold, at which the cluster forms.

Previously exact and approximate values of percolation thresholds for

different lattices have been successfully calculated. It has been found that

regular triangular lattices, shown in Figure 2.6, have a site percolation

threshold of 0.559, which is the type of lattice that a fully regular system of circle

packing could be likened to, with the centre of each circle a point on the lattice.

In 3D, the site percolation threshold for FCC lattices has been calculated to be

0.1998 ± 0.0006 and the bond percolation threshold is 0.1198 ± 0.000360. This

shows that a percolated structure is much more likely to occur in 3D, as the

percolation threshold in 3D systems is much lower than in 2D systems.

The investigation of percolation theory can give insights into multiple different

disciplines, including studying the flow of traffic through cities when certain

roads are available, or not, to determine bottlenecks61, as well as in ecology to

study environmental fragmentation effects on habitats62. Our interest lies in its

uses, investigating how contacts within beds of particles might break when the

bed system is altered, through the presence of differing particle sizes and other

factors.

Figure 2.6: Triangular Lattice

William Eales

29

2.3.3 Finite Size Effect

Models also need to deal with the finite size effect63, which is where,

potentially due to the small size of a system, the edges of the system can skew

the data. Using one of our produced systems as an example, the packing of

the particles at the edges of the box is distinctly different to the packing in the

centre, with denser packing in the centre of the bed. In a small enough system,

this difference would affect the average data values and therefore give an

incorrect outcome, compared to a larger system where the edge values are

not as big a part of the system as a whole.

Models can either be run with increasingly large systems to determine at

which size there is no longer a skewing effect from edge cases, and the data

used to extrapolate to an infinite system, or smaller systems run and the data

from the edge cases discarded. Both strategies have their pros and cons, with

larger systems taking longer and more computational power to complete

however being able to lessen or remove the finite size effect, and smaller

systems being easier to produce however still retaining the finite size effect as

well as the potential of producing skewed results when looking at averages of

a system as a large fraction of it has been removed.

2.3.4 Angle of Repose

The angle of repose is defined as the steepest angle of descent, relative to

a horizontal surface, that a material can be piled without slumping.64

There are various methods for determining the angle of repose for a material.

The simplest is using the following equation if the coefficient of static friction is

known for the material,

tan(𝜃) ≈ 𝜇𝑠 (2.2)

William Eales

30

where 𝜇𝑠 is the coefficient of static friction and 𝜃 is the angle of repose.65

The other methods are experimentally based and are each suitable for a

different type of material. The tilting box method is suitable for fine-grained

materials with a grain size of 10mm or less and allows the coefficient of static

friction to be determined for a material, from which the previous equation can

be used to determine the angle of repose. This method works by filling a box

with the granular material, and then tilting it gradually until the material begins

to slide, as depicted in Figure 2.7.66

Another method is the fixed funnel method, where the material is poured

through a funnel to allow it to form a cone shape on a base. Once the cone

has reached either a set height or a set width, the angle of repose can then be

calculated using the following equation,

Figure 2.7: Depicting the Tilting Box Method
(with permission from 66)

William Eales

31

𝜃 = tan−1(
2ℎ

𝑏
) (2.3)

where 𝜃 is the angle of repose, h is the height of the cone, and b is the width

of the base of the cone.66

The angle of repose is useful to investigate as it has links to the flowability of

granular materials, which helps when designing processing equipment and

storage for particulate solids as it ensures the stability of the material and

reliable flow from hoppers.67

Another use of the angle of repose is to allow calibration of models for when

a specific material is being simulated, the angle of repose of the system

created in the model can be compared to the expected value to determine if

the model is running accurately.68 However, as the model designed for this

thesis does not consider frictional forces, only gravity, it is likely that this

method will not be applicable to my model.

2.3.5 Bed Fragmentation

With the help of two final year MEng project students, we were also looking

to investigate the effect of a shear force on the contacts between the particles

within the modelled systems, discussed further in section 3.1.1.12. This allows

us to see how they break apart, and so we can potentially compare different

system parameters, such as particle size distribution, with how clusters can

form within the systems.

Agglomerates are generally defined by their size and strength, with the

strength being defined by how difficult they are to break apart. Different factors

have been investigated for their effects on agglomerate properties, including

particle size and shape distribution, the solvents used during processing, and

agitation during filtration.69, 70 Higher agitation does result in smaller

agglomerates, however also runs the risk of particle breakage, so often it is a

William Eales

32

balancing act between reducing particle size to an acceptable level, without

breaking them down too far.71

Investigation has also gone into the factors that affect the breakage of

agglomerated systems in industries other than pharmaceutical, such as within

the food industry, where DEM has been used to investigate how cereal grains

break apart under impact within an agitated system.72, 73

There is no unified way of reporting agglomerate properties, although some

methods are becoming more consistent, such as the agglomerate brittleness

index which describes the strength of an agglomerate.74 We anticipate that

with the basis of the model complete, it can be used to add some more

knowledge to how agglomerates act under various stresses and

circumstances to greater aid the industries that need to find a solution to this

issue.

2.3.6 Non-Circular / Non-Spherical Particles

Whilst spherical particles are a good starting point for simulating packed

beds, being able to simulate specific particle shapes and sizes is incredibly

useful. Whilst some modelling algorithms are capable of simulating non-

spherical shapes and sizes, to accurately simulate a specific substance, many

more parameters describing its particles are required beyond its shape and

size, all of which massively increases the computational time and power

required. This is briefly discussed further in Chapter 7.

William Eales

33

Therefore, when simulating non-spherical particles, it is often done using

spherical particles as a starting point75, forming them into chains as illustrated

in Figure 2.8. This allows simulation of more sophisticated systems without

driving up the computational power required as far. The use of the circular

particles as building blocks instead of swapping to polygons was to allow the

new algorithm to build off the old one, thus decreasing the workload.

Generalisations about system properties, like packing fractions, cannot be

made across all systems of non-circular particles due to the wide range of

particle shapes and sizes possible, only being somewhat possible when

examining systems made up of a specific set of particles, due to the large

variance that can now occur, even when only accounting for shape and size.

Therefore, I will specifically be investigating chains made up of spherical

particles.

Research has gone into the packing on non-spherical 3D shapes, with the

two shapes closest to my research being cylinders and spherocylinders:

spherocylinders being cylinders with rounded ends. The maximum packing

fraction found for both cylinders and spherocylinders is ~0.906976, dependant

on the ratio between the diameter and height of the shape. Figure 2.9 shows

the effect on changing the ratio of the diameter and height of cylinders and

spherocylinders was found to have on the packing fraction of their systems

using a relaxation algorithm. This algorithm works by filling the system with

randomly placed shapes, i.e. cylinders, with large overlaps. When the system

Figure 2.8: Example of a chain made up of circular
particles.

William Eales

34

then iterates, the particles move away from each other, lessening the overlaps,

and the system size increases. The algorithm ends once the total overlap has

become lower than a predefined value.77

Both the cylinder and spherocylinders have a peak packing fraction, with

the cylinder graph having a more defined peak. The cylinder systems are

also shown to have higher packing fractions across the range of aspect ratios

simulated.

The packing of these shapes under gravity has also been investigated

using DEM78, where the effect of different parameters within the DEM

software on the packing fraction of a system were analysed and compared to

experimental data. In contrast to Figure 2.9, this research found that when

increasing the aspect ratio, it often resulted in the packing fraction plateauing

instead of showing a consistent decrease, which is likely due to the different

addition methods and the complexity of the simulation methods used.

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.73

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

P
ac

ki
n

g
Fr

ac
ti

o
n

Aspect Ratio

Spherocylinder Cylinder

Figure 2.9: Packing fractions of systems of cylinders or spherocylinders at
different aspect ratios of height/diameter (redrawn from 76)

William Eales

35

2.4 References

(1) United Nations Population Division.

https://www.un.org/development/desa/pd/ (accessed 2020).

(2) Global Pharmaceutical Industry - Statistics & Facts,

https://www.statista.com/topics/1764/global-pharmaceutical-industry/

(accessed 2020).

(3) Shepherd, M., and Shepherd, E., Medicines administration 2: procedure

for administration of oral medicines. Nursing Times [online], 2020, 116(7), 42-

44.

(4) Pietsch, W. (2008) Agglomeration in industry: Occurrence and

applications, Agglomeration in Industry: Occurrence and Applications; Wiley,

2008.

(5) Mehos, G. and C. Kozicki, “Consider Wet Agglomeration to Improve

Powder Flow”, Chem. Eng., 2011, 121, 46-49.

(6) Pietsch, W., Agglomeration Processes: Phenomena, Technologies,

Equipment; Wiley, 2002.

(7) Fernández-González, D., Ruiz-Bustinza, I., Mochón, J., González-

Gasca, C. and Verdeja, L. F., Iron Ore Sintering: Process, Mineral

Processing and Extractive Metallurgy Review, 2017, 38(4), 215–227.

(8) Tablet Presses: Tablet Binders.

https://www.lfatabletpresses.com/articles/tablet-binders (accessed 2020).

(9) am Ende, D., Birch, M., Brenek, S. J., and Maloney, M. T., Development

and Application of Laboratory Tools To Predict Particle Properties upon

Scale-Up in Agitated Filter-Dryers, Org. Process Res. Dev., 2013, 17 (10),

1345-1358.

(10) PharmTech: Analyzing Content Uniformity,

https://www.pharmtech.com/view/analyzing-content-uniformity (accessed

2023).

(11) Nessel, R. J., Apelian, H. M. & Blodinger, J., Uniformity of Distribution

of Cyanocobalamin in Tablet Formulations, J. Pharm. Sci., 1970, 59, 254-

257.

https://www.un.org/development/desa/pd/
https://www.statista.com/topics/1764/global-pharmaceutical-industry/
https://www.lfatabletpresses.com/articles/tablet-binders
https://ww/
https://ww/

William Eales

36

(12) Langenbucher, F., Statistical Analysis of the USP 18 Content

Uniformity sampling plan for tablets, Pharm. Acta Helv., 1972, 47, 142-151.

(13) Pederson, A. O. & Torud, Y., Statistical characteristics of the USP

content uniformity test, Pharm. Acta Helv., 1971, 46, 114-120.

(14) Pederson, A. O., Torud, Y. & Waaler, T. J., Influence of the analytical

error on the validity of the content uniformity test USP XVII, Pharm. Acta

Helv., 1971, 46, 21-30.

(15) Orr, N. A. and Sallam E. A., Content uniformity of potent drugs in

tablets. J. Pharm. Pharmacol., 1978, 30, 741-747.

(16) Saunders, R., The Effect of Particle Agglomeration in Pharmaceutical

Preparations. The Statistician, 1991, 40, 77-86.

(17) Heisel, S., Ernst, J., Emshoff, A., Schembecker, G., and Wohlgemuth,

K., Shape-independent particle classification for discrimination of single

crystals and agglomerates. Powder Technol., 2019, 345, 425-437.

(18) The Benefits of Continuous Manufacturing.

https://www.pharmaceuticalprocessingworld.com/the-benefits-of-continuous-

manufacturing/ (accessed 2020).

(19) Warman, M., (2010) Chemical Engineering in the Pharmaceutical

Industry: R&D to Manufacturing; John Wiley & Sons, 2010.

(20) Auger, P. and Bougarel, C., Models in Science, Diogenes, 1965,

13(52), 1-13.

(21) Encyclopaedia Britannica: Scientific Modelling.

https://www.britannica.com/science/scientific-modeling (accessed 2020).

(22) Oberkampf, W. L., DeLand, S. M., Rutherford, B. M., Diegert, K. V. and

Alvin, K. F., Error and uncertainty in modelling and simulation, Reliability

Engineering and System Safety, 2002, 75(3), 333–357.

(23) Roy, K., Kar, S. and Das, R. N., Understanding the Basics of QSAR for

Applications in Pharmaceutical Sciences and Risk Assessment, Academic

Press, 2015.

(24) Durrant, J. D. and McCammon, J. A., Molecular dynamics simulations

and drug discovery, BMC Biology, 2011, 9, 71.

https://www.pharmaceuticalprocessingworld.com/the-benefits-of-continuous-manufacturing/
https://www.pharmaceuticalprocessingworld.com/the-benefits-of-continuous-manufacturing/
https://www.britannica.com/science/scientific-modeling

William Eales

37

(25) Burman, B. C., Cundall, P. A. and Strack, O. D. L., A discrete

numerical model for granular assemblies, Geotechnique, 1980, 30(3), 331–

336.

(26) Munjiza, A., Bangash, T. and John, N. W. M., The combined finite-

discrete element method for structural failure and collapse, Engineering

Fracture Mechanics, 2004, 71(4–6), 469–483.

(27) EDEM Research Spotlight: CFD-DEM Simulations of a Liquid-Solid

Fluidized Bed with ERT Validation. https://altairuniversity.com/51138-edem-

research-spotlight-cfd-dem-simulations-of-a-liquid-solid-fluidized-bed-with-

ert-validation/ (accessed 2021).

(28) Thakur, S. C., Ooi, J. Y. and Ahmadian, H., Scaling of discrete element

model parameters for cohesionless and cohesive solid, Powder Technology,

2016, 293, 130–137.

(29) Altair EDEM Home Page. https://www.altair.com/edem/ (accessed

2021).

(30) EDEM Research Spotlight: DEM modelling of agglomeration of potato

starch. https://altairuniversity.com/51109-edem-research-spotlight-dem-

modelling-of-agglomeration-of-potato-starch/ (accessed 2021).

(31) Marigo, M., Discrete element method modelling of complex granular

motion in mixing vessels: evaluation and validation. Ph.D. Thesis, University

of Birmingham, Birmingham, U.K., 2012.

(32) Stein Sören, S., and Jürgen, T., Simulation of a Filtration Process by

DEM and CFD, IJMEM, 2012, 1 (1), 28-35.

(33) Abdallah, A., Vincens, E., Magoariec, H., and Picault, C., DEM filtration

modelling for granular materials: Comparative analysis of dry and wet

approaches, Int J Numer Anal Methods, 2024, 48, 870-886.

(34) Abdallah, A., Vincens, E., and Magoariec, H., Dry and wet filtration in

granular filters: a DEM modeling, 25th French Mechanics Congress, 2022.

(35) Qian, F., Huang, N., Lu, J., and Han, Y., CFD-DEM simulation of the

filtration performance for fibrous media based on the mimic structure,

Computers and Chemical Engineering, 2014, 71, 478-488.

https://altairuniversity.com/51138-edem-research-spotlight-cfd-dem-simulations-of-a-liquid-solid-fluidized-bed-with-ert-validation/
https://altairuniversity.com/51138-edem-research-spotlight-cfd-dem-simulations-of-a-liquid-solid-fluidized-bed-with-ert-validation/
https://altairuniversity.com/51138-edem-research-spotlight-cfd-dem-simulations-of-a-liquid-solid-fluidized-bed-with-ert-validation/
https://www.altair.com/edem/
https://altairuniversity.com/51109-edem-research-spotlight-dem-modelling-of-agglomeration-of-potato-starch/
https://altairuniversity.com/51109-edem-research-spotlight-dem-modelling-of-agglomeration-of-potato-starch/

William Eales

38

(36) Liu, X., Ding, X., Chen, C., An, R., Guo, W., Zhang, W., Nan, H., and

Wang, Y., Investigating the filtration behaviour of metal felt using CFD-DEM

simulation, Eng. Appl. Comput. Fluid Mech., 2019, 13, 426-437.

(37) Tamrakar, A., Zheng, A., Piccione, P. M. and Ramachandran, R.,

(2020) ‘Investigating particle-level dynamics to understand bulk behavior in a

lab-scale Agitated Filter Dryer (AFD) using Discrete Element Method (DEM)’,

Advanced Powder Technology, 2020, 31(1), 477–492.

(38) Zhang, G. and Torquato, S., Precise algorithm to generate random

sequential addition of hard hyperspheres at saturation. Phys. Rev. E, 2013,

88(5), 053312.

(39) Chang, H. and Wang, L., A Simple Proof of Thu’'s Theorem on Circle

Packing, 2010. arXiv:1009.4322

(40) Gauss, C.F., Besprechung des Buchs von L.A. Seeber:

Untersuchungen über die Eigenschaften der38ositiven ternären

quadratischen Formen usw., Göttingische Gelehrte Anzeigen, 1831, 2, 188–

196.

(41) Schoenberg, I.J. and Steinhaus, H. Mathematical Snapshots,

Coll. Math. J., 1986.

(42) Chen LT., Chen, CY., and Chen, HL., FCC or HCP: The stable close-

packed lattice of crystallographically equivalent spherical micelles in block

copolymer/homopolymer blend, Polymer, 2019, 169, 131-137.

(43) Jaeger, H.M. and Nagel, S.R. ‘Physics of Granular State’, Science,

1992, 20, 1523–1531.

(44) Hilbert, D. and Cohn‐Vossen, S. ‘Geometry and the Imagination’,

Phys. Today, 1953, 6(5), 19.

(45) Gardner, M. ‘New Mathematical Diversions From Scientific American’,

1966, 88.

(46) David Darling: Cannonball Problem.

https://www.daviddarling.info/encyclopedia/C/Cannonball_Problem.html

(accessed 2021).

https://www.daviddarling.info/encyclopedia/C/Cannonball_Problem.html

William Eales

39

(47) Bédaride N. and Fernique, T., Density of Binary Disc Packings: The

Nine Compact Packings. Discrete and Computational Geometry, 2022, 67,

787-810.

(48) Heppes, A., Some Densest Two-Size Disc Packings in the Plane,

Discrete and Computational Geometry, 2003, 30(2), 241–262.

(49) Beecroft, P., Properties of Circles in Mutual Contact, Lady’s and

gentleman’s diary, 1843.

(50) Zong, C., From deep holes to free planes, Bulletin of the American

Mathematical Society, 2002, 39(4), 533–555.

(51) O’Toole, P. and Hudson, T., New High-Density Packings of Similarly

Sized Binary Spheres. J. Phys. Chem. C, 2011, 115(39), 19037-19040.

(52) Marshall, G. W. and Hudson, T. S., Dense binary sphere packings,

Beitrage zur Algebra und Geometrie, 2010, 51(2), 337–344.

(53) Hopkins, A., and Stillinger, F., Densest binary sphere packings, Phys.

Rev. E., 2012, 85, 021130.

(54) Sahimi, M., Applications of percolation theory; London: Taylor &

Francis. 1994.

(55) Flory, P. J., Molecular size distribution in three dimensional polymers.

I. Gelation, Journal of the American Chemical Society, 1941, 63(11), 3081.

(56) Chayes, L. and Schonmann, R.H., Mixed percolation as a bridge

between site and bond percolation, Annals of Applied Probability, 2000,

10(4), 1182–1196.

(57) Wolfram MathWold: Bond Percolation.

https://mathworld.wolfram.com/BondPercolation.html (accessed 2021).

(58) Mcnamara, D., Kolmogorov’s zero-one law with applications, 2017, 1–

15.

(59) Stauffer, D. and Aharony, A., Introduction to Percolation Theory 2nd

Edition; Taylor & Francis Group, 2014.

(60) Gaunt, D. S. and Sykes, M. F., Series study of random percolation in

three dimensions, Journal of Physics A: General Physics, 1893, 16(4), 783–

799.

https://mathworld.wolfram.com/BondPercolation.html

William Eales

40

(61) Li, D., Fu, B., Wang, Y. and Havlin, S., Percolation transition in

dynamical traffic network with evolving critical bottlenecks, Proceedings of

the National Academy of Sciences of the United States of America, 2015,

112(3), 669–672.

(62) Boswell, G. P., Britton, N. F. and Franks, N. R., Habitat fragmentation,

percolation theory and the conservation of a keystone species, Proceedings

of the Royal Society B: Biological Sciences, 1998, 265(1409), 1921–1925.

(63) Wedekind, J., Reguera, D. and Strey, R., Finite-size effects in

simulations of nucleation. J. Chem. Phys, 2006, 125(21), 214505.

(64) Mehta, A. and Barker, G.C., The dynamics of sand, Reports on

Progress in Physics, 1994, 57(4), 383–416.

(65) Nichols, E.L. and Franklin, W.S., The Elements of Physics. A College

Text-Book; New York: The Macmillan company, 1896

(66) Pitanga, H., N., Gourc, JP. and Vilar, O. M., Interface shear strength of

geosynthetics: Evaluation and analysis of inclined plane tests, Geotextiles

and Geomembranes, 2009, 27(6), 435–446.

(67) Powder Process: Angle of Repose Overview.

https://powderprocess.net/Powder_Flow/Angle_Repose.html (accessed

2021).

(68) Coetzee, C.J., Review: Calibration of the discrete element method,

Powder Technology, 2017, 310, 104–142.

(69) Birch, M. and Marziano, I., Understanding and Avoidance of

Agglomeration During Drying processes: a case study, Org. Process Res.

Dev., 2013, 17, 1359−1366.

(70) Feeco International: Controlling particle size through agglomeration.

https://feeco.com/controlling-particle-size-through-agglomeration/ (accessed

2022).

(71) Eggersdorfer M. L., Kadau, D., Herrmann, H. J. and Pratsinis, S. E.,

Fragmentation and restructuring of soft-agglomerates under shear, Journal of

Colloid and Interface Science, 2010, 342, 261–268.

(72) van Wachem, B., Thalberg, K., Nguyen, D., de Juan, L. M.,

Remmelgas, J. and Ingela Niklasson-Bjorn, I., Analysis, modelling and

https://powderprocess.net/Powder_Flow/Angle_Repose.html
https://feeco.com/controlling-particle-size-through-agglomeration/

William Eales

41

simulation of the fragmentation of agglomerates, Chemical Engineering

Science, 2020, 227, 115944.

(73) Zeng, Y., Jia, F., Xiao, Y., Han, Y. and Meng, X., Discrete element

method modelling of impact breakage of ellipsoidal agglomerate, Powder

Technology, 2019, 346, 57-69.

(74) Ottoboni, S., Simurda, M., Wilson, S., Irvine, A., Ramsay, F. and Price,

C. J., Understanding effect of filtration and washing on dried product:

Paracetamol case study, Powder Technology, 2020, 366, 305-323.

(75) Nolan, G. T. and Kavanagh, P. E., Random packing of nonspherical

spheres, Power Technology, 1995, 84(3), 199-205.

(76) ShuiXiang, L., Zhao, J., Lu, P., and Xie, Y., Maximum packing

densities of basic 3D objects, Chinese Science Bulletin, 2010, 55(2), 114-

119.

(77) Li, S., and Zhao, J., Sphere assembly model and relaxation algorithm

for packing of non-spherical particles, Chinese Journal of Computational

Physics, 2009, 26(3), 454-460.

(78) Tangri, H., Guo, Y., and Curtis, J., Packing of cylindrical particles:

DEM simulations and experimental measurements, Powder Technology,

2017, 317, 72-82.

William Eales

42

3 Methodology

The aim of this work is to produce a model that can produce realistic

representations of packed beds of particles formed under gravity that can be

used to investigate agglomeration during isolation. This started with a 2D

algorithm as it was initially easily produced, before upgrading it to a 3D

algorithm.

A new ab initio model was developed instead of using pre-existing software

as it allows targeting the model towards specific issues that we want to

investigate, as whilst current modelling software can achieve many goals, due

to their complexity they can take up much more computational time and power

than would be needed to solve a single problem within these systems.

The following chapter discusses the stages that the 2D and 3D algorithms

went through from initial conception to their current states. It also discusses

the other functionalities that the model is able to perform, and the specifics of

the experiments performed for data collection. The creation of these algorithms

continued all the way up to the end of my project, with the 2D algorithm being

finalised after roughly two years, the 3D algorithm finalised after the third year,

and the chain particle algorithm being developed in the last year. The algorithm

was created using the ForTran programming language, learnt using online

resources and literature.1,2

3.1 2D Algorithm

3.1.1 Timeline of Model

This section looks through the stages that the 2D algorithm went through and

the reasons behind each of the changes, from its initial setup to the algorithm

used to produce data discussed in the later sections.

William Eales

43

3.1.1.1 Initial Program

The first step taken in producing the model was to create a box such that the

boundaries could be edited and it could have particles, made up of covered

points within the system, placed inside it. Initially this was done by creating a

2D array, allowing each co-ordinate to have an individual value. The values

used were a 0, denoting that its location was empty, or a 1, showing that a

particle was present at that location. The array could then be printed, showing

the particles using a grid of 0s and 1s. The size of the box could be changed

by simply editing the x and y ranges of the array.

Once the box was set up, the particles could be added. This was done by

randomly generating an x value, then a loop was initiated, with the starting

value being the maximum y value present in the array, decreasing towards 0

in intervals of -1. The loop repeated until either the particle reached the bottom

of the box, in which case the particle would be placed there, or the falling

particle impacted a previously placed particle. Impacts were determined by

looking at the array and determining if the falling particle overlapped any co-

ordinates in the array containing a value of 1. When an impact occurred, a

series of 'if, then, else' statements were run that determined where the falling

particle had impacted and how to react, until a suitable position was found for

the particle to be placed. For example, if the falling particle had been impacted

(i.e. encountered an existing particle in the bed) on its left side, then it would

“slide” down to the right to find a stable resting place. An example of the

structure formed in this algorithm is shown in Figure 3.1.

Due to the high specificity of the impact determining statements, this method

worked for the situations that were found. It is very likely, however, that many

interactions were not accounted for, due to the large number of ways two

particles, even with set sizes and shapes, can impact. This method was also

specific to the shape and size of the particle, as the calculations were made

using exact distances, therefore it would not be very useful going forward as if

William Eales

44

we wished to model a different size or shape of particle, the whole algorithm

would need to be rewritten. This was important as the more varied the particles

the model can account for, the more useful it will be. Even with the minimal

number of interactions actually accounted for, the model was slow as it had to

check through each interaction before finding the relevant one. Finding all of

the possible interactions for the specific particle shape and size would have

taken an inordinately long time and not been useful, therefore, a new method

was investigated. In Figure 3.1, the particles added are displayed as integer

values from 1 to 9, with the gaps between them shown as 0s.

Figure 3.1: An example of a system created by the early 2D algorithm, with

the diamond particle shapes, denoted by non-0 values, highlighted

 3.1.1.2 Implementation of the Contour Plot Method

In the previous model, the particles were a diamond shape as it was the

easiest to draw and stack without calculations. However, in this revised model

the particles were altered to be circular. By inputting a radius, the user was

able to choose the size of the particles at the beginning of each run. The input

of the particle into the array could also be done more simply by using the radius

and Pythagoras theorem.

William Eales

45

The new particle addition method not being specific to shape or size, rather

being variable, made this possible. The size of the overall box was also now

based upon the particle size that was entered, and when multiple particle sizes

were added, the largest radius was used to calculate the box size. This

ensures that a sensible number of particles are able to be added to a system.

In addition to the original array, which showed where the particles were

placed, and the space they took up in the same way as the previous model,

there was a second array which showed a ‘contour plot’ of the grid. This

contour-plot showed the particle bed with no distinction between individual

particles, and with a line across the edge of the current particle bed showing

the closest “safest spots” that a particle could be added on top of the particle

bed. This allowed the lowest point along this line to be identified for the new

particle to be placed, within certain bounds of the impact point. The model now

also outputted the grid to a text file in a format that could be read by MATLAB;

this allowed for improved presentation, as the command line output was

difficult to observe for long periods of time.

A new particle would be inputted into the system at a random x coordinate at

the top of the system and then fall until it impacted with a previously placed

particle. At this point, the above mentioned contour plot would be created to

determine the nearby low point for the particle to roll to from its impact point.

This model was a considerable step up from the initial model, however it still

needed to search through the grid to find the contour plot points, at this point

the grid was relatively small, as it would need to be scaled up later this method

would also become less and less feasible the larger the grid became.

3.1.1.3 Removing the Grid

To address this, the ‘real’ grid, that denoted each spot with ‘1's and ‘0's, was

removed and replaced with arrays that saved the centre points and radii of the

William Eales

46

particles. For the initial version of this model the contour plot was removed,

and instead distance calculations were made between the centres of the

current particles and the proposed centre of the new particle. By checking the

distance against the combined radius of the particles, it could be determined if

they were too close to each other (i.e. overlapping) or not, and so whether the

particle could be placed there. However, due to this being the only check

present, the particles filled up the grid leaving some unwanted gaps between

them, as the only check was whether or not the particles were overlapping,

with no preferences for realistic stacking.

The model now had to change how it output the particles, as the previous

output, the array, no longer existed to be printed. Instead, the centre

coordinates and radii of each particle was output to a file, and the code was

written to allow MatLab to take the output and visualise them.

Figure 3.2: A system created by the 2D algorithm where particles are only

placed if they contact another particle

3.1.1.4 Sections and Variable Grid

Now that the model was running faster due to the removal of the visual array,

the contour plot was reintroduced alongside the new distance calculations,

both making sure that the particles were not overlapping and were in more

realistic stable positions. However, in order that the contour plot did not have

to be created for the whole grid, the large grid was split into 5x5 sections; when

William Eales

47

a particle's centre point was saved, it was also noted in which section it was

placed. Therefore, when a new particle was added, a local contour plot was

created of that section, allowing the model to finalise the placement based

upon the initial distance calculation. Initially these sections, and the grid itself,

had set sizes due to it being simpler at the time. However now that different

particle sizes were able to be added, which is discussed further below, the

smaller sections, and the grid as a whole, needed to be able to accommodate

this variation. Therefore, the sections and grid were changed to have a variable

size, dependant on the largest particle radius that had been entered, thus

ensuring that both the grid and the contour plot would be able to handle the

size of the particles, ensuring a sensible number of particles were present in

each grid section. The reintroduction of the contour plot along with the changes

to how the particle data was saved, greatly increased the speed at which the

model ran as well as improving its accuracy.

3.1.1.5 Top-Down Filling

All iterations of the model, after the first, simulated a particle falling into a

box. This worked by looping the particle's location from the bottom to the top

of the box, so that the lower points would be found first. However, when

working with particles of different sizes, this resulted in smaller particles being

placed in gaps between larger particles that should no longer be accessible.

At first a method of trying to determine if a space would be underneath another

particle was investigated, however this greatly increased the runtime of the

model, as well as not always functioning correctly. Therefore, the model was

changed so that instead of searching upwards for the first available space, the

particles are lowered into the box until they impacted something else. The

contour plot would then be used to refine the final position after impacting with

the bed, in the same method as in the previous model algorithms.

William Eales

48

3.1.1.6 Score Based Positioning

Previously, the particle would simply pick the lowest point along the contour

plot that was within a certain distance of the initial impact point. However, this

was very basic and it did not result in particles being placed in inappropriate

positions. As shown in Figure 3.4, the closest low point, (b), to the impact point,

(a), would not be the correct final position as it would instead roll down the

slope to the right and rest at (c).

Initial Impact
Location of

Final Placement

a)
b)

c)

Figure 3.4: An example of a possible incorrect position. a) The point
of impact. b) The closest low point. c) The correct resting point.

Figure 3.3: The stages a particle goes through when being added to
the system. a) Falling at a random x-coordinate until impacting the

bed. b) The contour plot being formed to show possible points of rest.
c) The particle moving down the contour plot to a low point.

William Eales

49

Therefore, once the contour plot was created, each valid position along it

was given a score based upon how close it was to the initial impact point, and

how high up in the box it was. Preference was given to being close to the initial

impact site and being lower down in the box. Each point was then ordered

based upon its score, and the model then looped through them from best to

worst until a point passed the final checks. This helped with the realism issue,

however it did not fix it completely. Therefore, the score system was

implemented in a way that when more criteria were conceived to make the

point selection more accurate, they could easily be added to the model.

3.1.1.7 Set Allocatable Array

Once the functionality of being able to add particles of a chosen size was

added, the arrays used in the model were made so that their size was

allocatable at the beginning of the model, allowing them to be changed to fit

the size of the particles being added. The contour plot array had its size

changed each time it was created as depending on the location of the particle

it might need to search adjacent sections of the box.

Due to the array having to be reset each time a new particle was added, it

occasionally caused the model to crash. Even after attempting a debugging of

this issue, it still is not fully understood why these crashes occurred, only that

they were caused by the re-allocating of the array. Owing to this, from here on

in, the contour plot array was set to have the largest size it would need, instead

of having its size changed each time it was used.

3.1.1.8 Increase Position Criteria

To increase the accuracy of the selection of the final position of the new

particle, a check was added to ensure that the new particle was resting on top

of two others. This was first done by confirming that there were two particles

William Eales

50

close to the new location being tested, and then ensuring the centre point of

the new particle would rest in between, above and in contact with them.

The other change was made to ensure that this would work from the

beginning of a run was that the model now started with the box having a base

layer of particles already present instead of being empty, as a particle landing

on the bottom of the box would have failed this check.

3.1.1.9 Sliding downhill instead of jumping to final position

As the score-based positioning was still occasionally resulting in an

inaccurate placement for the particles, as sometimes it would jump over

particles to get to its resting place shown in Figure 3.4, the way the particles

interact with the contour plot was changed. A simpler approach of having the

particle jump to the nearest contour plot point to its impact location, and then

looking at the height of the contour plot points to either side of it. It then moved

to the point that was lower than it, if they are the same height then it moves to

a random side, which then repeats until both points either side of the resting

point are higher than it. This method means that particles now accurately slide

as if under gravity to their final destination without jumping over particles they

would normally be stopped by. Note that the algorithm does not consider

conservation of momentum or frictional forces explicitly, but instead the model

assumes a gentle settling of the particles with motions dampened by the

solvent.

3.1.1.10 Real Final Values

Currently, whilst the particles are not placed on a grid as in the method

initially used, the outputs are still based upon a coordinate system. This

resulted in the MatLab output having some gaps between particles due to the

coordinates being integers and drawing circles within the grid. The next step

was to edit the model so that once the integer positions for each particle have

William Eales

51

been found, the integer values are edited to real values to eliminate the

unphysical gaps appearing in the visualisation.

This was done by removing the rounding from the calculations and allowing

the values to be saved as real variables. This required a change in how the

values were then referenced as the real variables were not able to be used as

coordinates for the arrays, so instead of referencing the particle number by

location, the location was now referenced by the particle number.

3.1.1.11 Final Optimisations

It was at this point that the 2D algorithm was deemed to be working, however

a few more optimisations were added so that it ran more efficiently. These

included removing looking at smaller boxes as it did not increase the speed of

the model and instead resulted in more work for the model to separate the

system. This is due to the size of the systems being simulated, as splitting up

and reforming the whole systems into smaller boxes, was not efficient due to

the small size of the overall system. Were the system to be scaled up to a

much bigger size, this method would likely again become more efficient. As

work on the 3D algorithm progressed and the stochastic optimisation method

was finalised, discussed in section 3.2.1.2, this was retroactively added into

the 2D algorithm as although it gave the same results as the equations

discussed in section 3.1.2, the stochastic optimisation method was much more

efficient.

Finally, more checks were added for instances when the model cannot find

a valid spot for the particle to rest; this ensured that there is not a valid point

close by that the model has missed.

William Eales

52

3.1.1.12 Undergraduate MEng masters project work, Lewis Cartwright

and Luke Convery.

The work around the forces present at the contact points of the particles

under a shear force was carried out by two MEng students, Lewis Cartwright

and Luke Convery, using structures supplied by the 2D model I generated.

When forces are applied on the top and bottom of a system, it results in

torque on the outer particles on which the force is applied, that is then

transferred through particle-to-particle contacts throughout the system. To

balance this torque, the angle of rotation for each particle is required, which

then allows the relative stress at each point of contact to be calculated. This

was done by using the following steps and equations. The variables used

within these equations are defined at the end of this section in Table 3.1.3,4

1: Calculate the position of the ends of the springs on each particle (i = 1 to

n).

𝑥𝑖2
= (𝑥𝑖1

− 𝑥𝑖𝑐
)𝑐𝑜𝑠𝜃𝑖 + (𝑦𝑖1

− 𝑦𝑖𝑐
)𝑠𝑖𝑛𝜃𝑖 + 𝑥𝑖𝑐

 (3.1)

𝑦𝑖2
= (𝑥𝑖1

− 𝑥𝑖𝑐
)𝑠𝑖𝑛𝜃𝑖 + (𝑦𝑖1

− 𝑦𝑖𝑐
)𝑐𝑜𝑠𝜃𝑖 + 𝑦𝑖𝑐

 (3.2)

2. Calculate the forces caused by the particle-particle interactions (i = 1 to

n).

𝐹ℎ𝑖𝑗𝑛𝑒𝑤
= (

𝑥𝑗2−𝐷𝑥𝑗

𝑦𝑗2−𝐷𝑦𝑗

) − (
𝑥𝑖2−𝐷𝑥𝑖
𝑦𝑖2−𝐷𝑦𝑖

) (3.3)

3. Calculate the forces caused by particle-wall interactions (i = 1 to n).

𝐹ℎ𝑤𝑖
= (𝑥𝑤𝑖

𝑦𝑤𝑖

) − (𝑥𝑖2
𝑦𝑖2

) (3.4)

William Eales

53

4. Calculate the resultant force through the sum of all forces acting on a

particle (i = 1 to n).

𝐹𝑅𝑖
= 𝐹𝑠𝑖

+ ∑ 𝐹ℎ𝑖𝑗
+ 𝐹ℎ𝑤𝑖

= (𝑥𝑅𝑖
𝑦𝑅𝑖

) (3.5)

5. Calculate the torque from the initial shear force on each particle (for i = 1

to n).

𝑃𝑠𝑖
= (𝑥𝑠𝑖

𝑦𝑠𝑖

) − (𝑥𝑖𝑐
𝑦𝑖𝑐

) (3.6)

𝜏𝑠𝑖
= 𝐹𝑠𝑖

𝑃𝑠𝑖 = 𝐹𝑠𝑥𝑖
𝑃𝑠𝑦𝑖

− 𝑃𝑠𝑥𝑖
𝐹𝑠𝑦𝑖

 (3.7)

6. Calculate the torque caused by particle-particle interactions (for i = 1 to n).

Note that 𝐹ℎ𝑖𝑗
 is used here and not 𝐹ℎ𝑖𝑗𝑛𝑒𝑤

 as only the torque from the particles

rotation is calculated here, not the particles displacement.

𝑃𝑝𝑖𝑗
= (𝑥𝑖𝑗2

𝑦𝑖𝑗2
) − (𝑥𝑖𝑐

𝑦𝑖𝑐
) (3.8)

𝜏𝑝𝑖𝑗
= 𝐹ℎ𝑖𝑗

𝑃𝑝𝑖𝑗 = 𝐹ℎ𝑥𝑖𝑗
𝑃𝑝𝑦𝑖𝑗

− 𝑃𝑝𝑥𝑖𝑗
𝐹ℎ𝑦𝑖𝑗

 (3.9)

7. Calculate the torque caused by particle-wall interactions (for i = 1 to n).

𝑃𝑤𝑖
= (

𝑥𝑤𝑖2
𝑦𝑤𝑖2

) − (𝑥𝑖𝑐
𝑦𝑖𝑐

) (3.10)

𝜏𝑤𝑖
= 𝐹ℎ𝑤𝑖

𝑃𝑤𝑖 = 𝐹ℎ𝑤𝑥𝑖
𝑃𝑤𝑦𝑖

− 𝑃𝑤𝑥𝑖
𝐹ℎ𝑤𝑥𝑖

 (3.11)

8. Calculate the torque created from the displacement of each particle (for i

= 1 to n).

William Eales

54

𝜏𝐷𝑖𝑗
= 𝐹𝑅𝑖

𝑃𝑝𝑖𝑗 = 𝐹𝑅𝑥𝑖
𝑃𝑝𝑦𝑖𝑗

− 𝑃𝑝𝑥𝑖𝑗
𝐹𝑅𝑦𝑖

 (3.12)

9. Calculate the overall torque on each particle from the sum of their torques

(for i = 1 to n).

𝜏𝑅𝑖
= 𝜏𝑠𝑖

+ 𝜏𝑤𝑖
+ ∑ 𝜏𝑝𝑖𝑗

+ ∑ 𝜏𝐷𝑖𝑗
 (3.13)

10. If the overall torque and resultant force are below 0.001, exit the program

and output results.

11. If either value of the overall torque or resultant force is over 0.001, adjust

the value of the angle of rotation and the displacement vector (for i = 1 to n).

𝜃𝑖 = 𝜃𝑖 + (0.2
𝜏𝑖

𝑟𝑖
2) (3.14)

𝐷𝑖 = 𝐷𝑖 + 𝛼𝐹𝑅𝑖
 (3.15)

12. Return to step 1.

William Eales

55

Table 3.1: Variables used within the above equations to determine the forces
present at each contact point in a system when placed under a shear force.

Variable Symbol Unit

Angle of rotation for particle i 𝜃𝑖 radians

Updated x or y coordinate of the spring location for
particle i

𝑥𝑖2
, 𝑦𝑖2

 mm

Current x or y coordinate of the spring location for
particle i

𝑥𝑖1
, 𝑦𝑖1

 mm

x or y coordinate of the centre of particle i 𝑥𝑖𝑐
, 𝑦𝑖𝑐

 mm

Updated force between particles i and j 𝐹ℎ𝑖𝑗𝑛𝑒𝑤
 N

Updated x or y coordinate of the spring location for
particle j

𝑥𝑗2
, 𝑦𝑗2

 mm

Displacement of the x or y coordinate of particle i 𝐷𝑥𝑖
, 𝐷𝑦𝑖

 mm

Displacement of the x or y coordinate of particle j 𝐷𝑥𝑗
, 𝐷𝑦𝑗

 mm

Force caused by particle-wall interactions for particle i 𝐹ℎ𝑤𝑖
 N

x or y coordinate of the contact point between the wall
and particle i

𝑥𝑤𝑖
, 𝑦𝑤𝑖

 mm

Resultant force acting on particle i 𝐹𝑅𝑖
 N

Applied shear force to particle i 𝐹𝑠𝑖
 N

Position vector used for shear force torque for particle i 𝑃𝑠𝑖
 mm

x or y coordinate of the shear force being applied to
particle i

𝑥𝑠𝑖
, 𝑦𝑠𝑖

 mm

Torque due to applied shear force for particle i 𝜏𝑠𝑖
 nm

x or y coordinate of the position vector used for shear
force torque

𝑃𝑠𝑥𝑖
, 𝑃𝑠𝑦𝑖

 mm

Position vector used for particle-particle torque between
particles i and j

𝑃𝑝𝑖𝑗
 mm

x or y coordinate spring end attached to particle i after
rotation

𝑥𝑖𝑗2
, 𝑦𝑖𝑗2

 mm

Torque due to particle-particle interactions between
particles i and j

𝜏𝑝𝑖𝑗
 nm

x or y coordinate of the position vector used for particle-
particle torque between particles i and j

𝑃𝑝𝑥𝑖𝑗
, 𝑃𝑝𝑦𝑖𝑗

 mm

Position vector used for particle-wall torque for particle i 𝑃𝑤𝑖
 mm

Updated x or y coordinate of the contact point between
the wall and particle i

𝑥𝑤𝑖2
, 𝑦𝑤𝑖2

 mm

Torque due to particle-wall interactions for particle i 𝜏𝑤𝑖
 Nm

x or y coordinate of the position vector used for particle-
particle torque between the wall and particle i

𝑃𝑤𝑥𝑖
, 𝑃𝑤𝑦𝑖

 Mm

Torque due to the displacement of particle i by particle j 𝜏𝐷𝑖𝑗
 Nm

Resultant torque for particle i 𝜏𝑅𝑖
 Nm

Torque for particle i 𝜏𝑖 Nm

Radius of particle i 𝑟𝑖 Mm

Displacement of particle i 𝐷𝑖 Mm

Angle between contact point and x-axis 𝛼 radians

William Eales

56

3.1.2 Code Walkthrough

This next section will go through the algorithms used in the final version of

the 2D model to show how it works through each stage.

The code is broken into three subroutines: the initial setup; when the particle

is falling; and then its final placement. In addition, there is one module that

contains all of the universal variables that are carried across all three

subroutines.

The main variables contained within the module are: the box dimensions; the

number of particles; the radii being used; and the stored positions of the

already placed particles.

The first part of the initial setup subroutine sets up the local variables that are

required, and then requests the user to start the program. The user is then

prompted to enter how many different radii they would like to be present in the

system and to enter those radii. Next, the model determines which of the

entered radii is the smallest and which is the largest, to use when determining

the size of the box. When the program is being looped to produce multiple

results, this section is omitted, since the radii is already known and to stop the

program being interrupted by prompting the user for inputs.

Now that the size of the particles present is known, the box size can be

determined. This is based on the largest particle radius so that a sensible

number of large particles can fit, instead of having a system containing too few

particles to form a sufficiently sized bed. The box size can then be used to

allocate the size to various arrays used later in the algorithm. These include

the array that contains the entire contour plot, which is still a grid of the box

that contains a point for each integer spot within the box, and the “Ones” array,

which stores the coordinates of the valid points on the contour plot, so named

as a contour plot point is one of three options, either “0” denoting a blank

William Eales

57

space, a “-“, denoting being covered by a particle, or a “1” denoting being a

valid point based on the distance from the current bed.

In the looped algorithm, the model now enters the section of code that will

be looped for a number of times equal to the number of overall beds that has

been requested to be simulated.

The next stage of the model is to place the initial bed layer of particles into

the box, shown in Figure 3.5. This is done by randomly picking a radius, from

the inputted radius options, and an x coordinate within the boundaries of the

box. The model confirms that this position, using the particles radius as its y

coordinate, is not already covered by another particle. As the particle is resting

upon the base of the bed, no other conditions are required, so once this check

is passed the particle location is saved, and this section of the algorithm looped

to place the rest of the initial bed layer. This loop goes for a sufficiently large

number of iterations, currently set at 10000000. Due to the possibility of there

still being a position where a particle could still rest upon the bed, the model

then loops across all of the bottom layer of the bed, using the smallest particle

radius as the y coordinate, checking if there are any more places for a particle

to fit.

Following this the program starts looping the second subroutine to add in the

rest of the particles to the box, shown in Figure 3.6. This is done as many times

as needed until the box is full, or the number of particles specified has been

reached.

After initialising the second subroutine’s local variables, the first check made

is whether the box is full or not, as this check comes before adding a new

particle in every loop. Each time the algorithm tries to place a particle beyond

the roof of the box, a counter is iterated. Once this value reaches a sufficiently

large value the box is deemed full, and no more particles added.

William Eales

58

For each particle added, a random particle radius is chosen from the list of

entered radii and a random starting spot is chosen at the top of the bed, by

generating an x coordinate within the bounds of the box size. The third

subroutine is called at this point whilst the particle is falling. This subroutine

takes the starting position of the particle and iterates the y coordinate

Figure 3.5 - Flowchart showing the stages the algorithm goes
through to produce the base layer of particles for a bed system

William Eales

59

downwards one step at a time. At each point the model confirms that it is not

touching another particle allowing the loop to continue. Once an impact does

occur, the model saves the location of the impact and moves back into the

main second subroutine.

At this point the model creates a contour map of the system, to locate the

highest points that a particle can rest upon. The particle jumps from the

location of impact to the nearest of these points, and then compares the height

of the two points either side of it. The model then moves in the direction with

the lowest y value, simulating gravity, until it reaches a point where the contour

points on both sides are higher than it, so it rests there.

However, at this point the location of the particle is still saved as an integer,

resulting in gaps between particles due to rounding. As a result, using the

location of the two particles it is resting on, and the distances between them,

the model calculates the triangle that the three particles make to determine the

final real values of the new particles coordinates. The distances between the

original particles and the new particle are the sum of the radii of the particles.

Knowing these three distances, a triangle can be formed between the centre

of the three particles of which the angles can then be calculated. The gradient

of the lines connecting the new particle with the old particles can then be

calculated, then allowing the final determination of the centre point of the new

particle.

Checks are then run to confirm that: the new particle is resting upon the old

ones instead of attempting to balance over an edge; that the new particle is

not overlapping with any old particles; and that it is contained within the box.

Having passed these tests, the coordinates are then saved into the list, and

the model then resets the appropriate values and loops back to the start of the

particle addition subroutine.

William Eales

60

 Figure 3.6 - Flowchart showing the stages the algorithm goes
through to add particles to fill up a bed system

William Eales

61

Once the box is full, or a specified number of particles have been added, the

model returns to the initial subroutine where the user is prompted as to whether

they want to save the list of particle locations, their contacts, the contour map

from any particle addition, or calculate the particle fraction of the system.

Currently, the model saves these files to the same folder as it is contained in.

A final query then confirms the user understands the model is about to end.

3.1.3 Simulations Run

All of the runs completed using the 2D algorithm were completed on

ARCHIE-WeSt5, a regional supercomputer centre based at the University of

Strathclyde.

500 systems were created for each of the following systems: radius 10,

radius 10 and 20, and radius 10 and 50 (henceforth when referring to particle

sizes in a system, the notation rp = “radius” will be used. Binary mixture

systems shall be referred to as rp = “radius a”, “radius b”). The ratio of addition

for each radii in these system is 1:1.

Each of these systems had its packing fraction calculated, the number of

contacts each particle had determined, and the size of individual voids present

calculated. The algorithms that determine these values are described in

section 3.3.

100 runs were also created for investigating percolation with rp = 10, 20 at

the following ratios of addition Large:Small particles: 1:1, 1:1.5, 1:2, 1:2.25,

and 1:2.5. The percentage of these structures that contained a percolation

chain was determined.

Particle sizes in these and future runs were chosen as round numbers that

could easily be used for different size ratios, as the model can handle particles

William Eales

62

with non-rounded values, however is it much easier to discuss particle ratios

of 10:20 than e.g. 17:34.

3.2 3D Algorithm Methodology

As mentioned above, the program was modified so that it could replicate the

packing of particles in 3D as well as 2D and produce images as well. A 3D

version of this model would allow us to gain a much better insight into how the

packed bed forms, and its properties, due to the increase in accuracy that the

third dimension brings, and also due to it being a more realistic simulation of

what would be happening in a real-life experiment.

3.2.1 Timeline of Changes

This section looks through the stages that the 3D algorithm went through and

the reasons behind each of the changes, from its initial setup to the algorithm

used to produce data discussed in the later sections.

3.2.1.1 2D to 3D changes

Whilst changes had to be made to create the 3D algorithm from the 2D

version, it retained its previous structure of three subroutines and a module.

The first thing changed from the 2D algorithm was the addition of the z axis

into every stage of the model, and variables to account for the new coordinates

in the particles’ locations.

Another change from the 2D algorithm is that the particle is now looking for

three particles to rest on instead of just two. It was decided that the possibility

of a perfect square forming and requiring four particles to be rested on was

exceedingly rare and not worth adding into the model.

With the extra dimension also comes the possibility of a particle resting in a

corner spot, so the model is now able to detect when a new particle is close

William Eales

63

enough to two walls, and therefore only needs one particle to rest on, and then

be up against the corner. A discussion was held with my supervisors as to

whether to implement periodic boundary conditions, and at this stage it was

decided to leave its implementation until later. Unfortunately, this did not come

to pass as focus was shifted to work on the chain particle algorithm.

3.2.1.2 Stochastic placement

The main detail added into the 3D algorithm, different from the 2D version,

is the change from calculating the final real position of the new particle; instead

determining it through a stochastic optimisation function. This function works

by taking the contour plot point closest to the impact and making small

adjustments, in each direction, until a position is reached that satisfies the

previous 2D algorithm conditions, i.e., resting on the correct number of

particles, resting in between their centre points. This ensures that there are no

errors during the calculation making it much more reliable, as previously on

occasion the model returned a null value using the old method.

A version of this algorithm is shown in Figure 3.7, with some altered variable

names for ease of presentation. Lines 1 to 7 set up the initial variables with

their desired values, with newCoords containing the current position of the

particle to be adjusted, stochDists containing the distances between that

particle and the two particles it will be adjusted to be resting upon, sumDist

being the sum of those two distances, and dx being the size of the adjustments

being made. The outer loop, controlled by the integer “a”, is the number of

times the adjustments will be scaled down, which occurs at lines 11 to 12. Each

loop the adjustment factor is reduced by a factor of 10.

The main inner loop, controller by the integer “c”, is how many adjustments

are made at each scale. For each adjustment, a random number is determined

between -1 and 1, which is then multiplied by the adjustment scale to produce

William Eales

64

a value which is then added to the current x or y value. The adjustments made

to the x and y values of the particle are separate, shown in lines 13 to 16.

In lines 19 and 20, the distances between the particle being adjusted and the

resting particles are recalculated for its new position. PartCoords(b,1) and

PartCoords(b,2) being the x and y values of resting particle b respectively. The

radii of the two particles for each distance are also subtracted, to give the

distance between their edges, rather than their centres. If the distance is less

than 0, it means the particles are now overlapping and this adjustment is not

saved, accomplished by setting the “ibad” variable to 1, shown in line 22. The

other check made to allow the new position to be saved is that the sums of the

distances between the resting and new particles is lower than at the previous

location, as the aim to is reduce this value to 0, without going under it. If these

conditions are met, the new locations are saved, shown in line 28, the sum

distance stored, line 30, and then the new adjustment made.

Once all the loops have been completed, the final positions calculated are

saved into new variables, lines 34 and 35, that are then used going forward.

1 newCoords(1) = TempX
2 newCoords(2) = TempY
3 newCoords(3) = TempZ
! These variables store the current integer position of the particle to be adjusted

4 stochDists(1) = FinalPartDist1,2)
5 stochDists(2) = FinalPartDist(2,2)
6 stochDists(3) = FinalPartDist(3,2)
! These variables store the distances between the new particle and the particles it will
be resting upon

7 sumDist = stochDists(1) + stochDists(2) + stochDists(3)
! This variable stores the sum of the above distances, and is the value we are trying to
minimise

8 dx(1) = 10 * RadLarge
9 dx(2) = 10 * RadLarge
10 dx(3) = 10 * RadLarge
! These variables store the starting amounts by which the position will be adjusted

11 do a = 1, 10
! This loop determines the number of times the adjustment amount will be shrunk
12 do b = 1, 3
13 dx(b) = dx(b) / 10 ! This shrinks the adjustment value

William Eales

65

14 end do
15 do c = 1, 500
! This loops determines the number of adjustments made to the particle
16 do b = 1, 3
17 call random_number(RX)
18 stochxnew(b) = newCoords(b) + dx(b) * (2*RX-1)
19 end do
! For each coordinate (x, y, z), they are adjusted by a random fraction of the total
adjustment value

20 ibad = 0

21 do b = 1, 3
! The new distances between the particles are calculated based on the adjusted
positions
22 stochDists(b) = ((PartCoords(b,1) - stochxnew(1))**2) +
((PartCoords(b,2)-stochxnew(2))**2)
23 stochDists(b) = sqrt(stochDists(b)) – RadT –
MLr(FinalPart(b,1))
24 if (stochDists(b) < 0) then
! If the particles are overlapping then a variable (ibad) is set to 1, to ensure this
adjustment is rejected
25 ibad = 1
26 end if
27 end do

28 stochynew = stochDists(1) + stochDists(2) + stochDists(3)
! The new total distance is calculated

29 if (stochynew < sumDist .and. ibad == 0) then
! If this distance is smaller than the previous distance and there are no overlaps, the
new location is saved
30 do b = 1, 3
31 newCoords(b) = stochxnew(b)
32 end do
33 sumDist = stochynew ! And the new total distance saved
34 end if
35 end do
36 end do
! This process repeats with the adjustment distance shrinking each time to obtain more
specific adjustments until a precise location is determined for the new particle

37 NewX = newCoords(1)
38 NewY = newCoords(2)
39 NewY = newCoords(3)
! The final particle location is then saved

Figure 3.7: Stochastic optimisation algorithm used for shifting
particles from the integer spot on the contour plot to the real

location resting on top of their nearest particles

William Eales

66

3.2.1.3 Extra checks

Some extra checks were also added to ensure that the model is able to find

the correct resting point, as this was where the model was having most of its

issues due to the higher complexity of the 3D contour map. These involved

allowing the model to change the resting particles to look at other nearby

options until it found the particles that it should be being rested on. In the case

of an overlap, the model replaces one of the current resting particles with the

particle being overlapped with, as an overlap meant that the new particle

should be resting on the overlapped particle. As shown in Figure 3.8, particle

D is being added to the system and incorrectly attempted to rest upon particles

A and B. This causes an overlap with particle C, so the algorithm swaps C with

the closest of particles A or B, which in this case is particle B, so that it

becomes a resting particle. This then allows particle D to rest correctly. Figure

3.8 is a 2D representation of the 3D issue for the ease of visualisation, however

these checks were also added in future versions of the 2D code used for the

chain particles algorithm.

Figure 3.8: Representation of an particle placement on the left where particle

D has incorrectly rested on particles A and B, but then is corrected in the

right image to be resting upon particles A and C.

Further checks were required for when the particle is near the edge of the

box. Previously there has been a binary statement for if a particle was resting

against an edge or not, meaning that if the particle finds itself one spot away

from the edge, it would still be looking for three particles to rest upon. However,

William Eales

67

now it is able, when near the edge to swap between looking for an edge resting

spot or not, once it has exhausted its other possibilities.

3.2.2 3D Code Walkthrough

This next section will go through the code used by the final version of the 3D

model to show how it works through each stage.

As with the 2D code, it is broken into three subroutines: the initial setup; when

the particle is falling; and then its final placement, and one module which

contains all of the universal variables that are carried across all three

subroutines.

The main variables contained within the module are: the box dimensions; the

number of particles; the radii being used; and the stored positions of the placed

particles.

The first part of the initial setup subroutine sets up the local variables that are

required, as mentioned in the 2D algorithm section, and then requests the user

to start the program. The user is then prompted to enter how many different

radii they would like to be present in the system and to enter those radii. The

model then determines which of the entered radii is the smallest and largest,

to use when determining the size of the box. When the program is being looped

to produce multiple systems, this section is omitted as the radii are already

known.

The next stage of the model is to place the initial bed layer of particles into

the box. This is done by randomly generating x and z coordinates, confirming

that there is no other particle already overlapping, and then saving the particle

there. The y coordinate of each of the particles is equal to their radius. A final

check is then run to confirm that there are no available positions by looping

through the box, looking for a position that a particle can fit in.

William Eales

68

After this the program starts looping the second subroutine to add in the rest

of the particles to the box. This is done as many times as needed until the box

is full, or the number of particles specified has been reached.

After initialising the second subroutines local variables, the first check made

is whether the box is full or not, as this check comes before adding a new

particle in every loop. A random particle radius is then chosen from the list of

entered radii and a random starting position is chosen at the top of the bed.

The third subroutine is called at this point whilst the particle is falling. The

particle iterates downwards one coordinate at a time, and at each point the

model confirms that it is not touching another particle. Once this does occur,

the model saves the location of impact and moves back into the main second

subroutine.

At this point the model creates a contour map of the system, to locate the

highest points that a particle can rest upon. The particle jumps from the

location of impact to the nearest of these points and then starts moving along

them in a downwards direction, to simulate gravity. As in the 2D model, once

it reaches a point where all adjacent contour points are higher than it, it rests

there.

William Eales

69

Figure 3.9: Contour map showing possible points for a new particle in a

small system of 3D particles

However, at this point the location of the particle is still saved as an integer,

so there would be gaps between particles due to rounding. Therefore, as

described earlier, the model uses a stochastic optimisation function to move

the final location around in increasingly small increments, to try and reduce the

distance between the new particle and all the particles it is resting on to 0.

Checks are then run to confirm: that the new particle is resting upon the old

ones instead of attempting to balance over an edge; that the new particle is

not overlapping with any old particles; and that it is contained within the box.

Having passed these tests, the coordinates are then saved into the list, and

the model then resets the appropriate values and loops back to the start of the

particle addition subroutine.

Once the box is full, or a specified number of particles have been added, the

model returns to the initial subroutine where the user is prompted as to whether

they want to save: the list of particle locations; their contacts; the contour map

from any particle addition; or calculate the particle fraction of the system. The

latter two of these were removed in the finalised version of the algorithm, as

William Eales

70

the contour map was used for error checking, and an alternative method was

used for calculating the packing fraction. Currently, the model saves these files

to the same folder as it is contained in.

A final query then confirms the user understands the model is about to end.

3.2.3 Simulations Run

All of the 500 runs completed for each system using the 3D algorithm were

performed on ARCHIE-WeSt3. The ratio of addition for each radii in these

system is 1:1.

Each of these systems had its packing fraction calculated and the number of

contacts for each particle was determined.

100 binary mixture systems were also created for investigating percolation

with rp = 10, 20 at the following ratios of addition Large:Small particles: 1:1,

1:2, 1:3, 1:4, 1:5, and 1:6. The percentage of these structures that contained

a percolation chain was determined.

3.3 Other Functionalities and Data Collection

Throughout creating the model, there have been functionalities added and

removed that have been separate to how the model runs but have given

options for the user to process the information produced.

At the start of the program, it requests the input of the radius that will be used

for the particles in the model. The model also asks how many different particle

sizes are needed, currently allowing for between 1 and 5, so there can be

variation in the sizes present. Certain versions of the model also allow the user

to enter a mean and standard deviation, to allow the model to place particles

with sizes of a standard distribution based upon the inputted data instead of a

binary sized system, allowing more realistic systems to be created. However

William Eales

71

this was left as a separate option within the algorithm and not investigated

further.

Different methods of particle addition have been investigated, with the

packing being ordered from the bottom to the top, as well as placing the

particles randomly throughout the box with no need for them to be in contact

with each other. This can be used to simulate the particles in suspension in

solution, however at this time it has not been investigated further in favour of

refining the packed particle bed approach.

The program also has the capability to calculate the fraction of the box that

is either voids between particles or occupied by particles, as well as the sizes

of the individual voids present in the system. These values can be used to

compare against known values to confirm the realism of the model, as well as

gain more information about the structure of the system created.

The algorithm counts each particle in the system by its radius, and then

works out the total area, or volume in 3D, of particles of each radius, as shown

in Equations 3.16 and 3.17. When summed, this value represents the total

area of the system that is present as particle surface. This is then divided by

the total area, or volume, of the box to gain a fraction of the system that is then

covered by particles.

𝐴𝑟𝑒𝑎 = (𝑝1 ∗ (𝜋 ∗ 𝑟1
2)) + (𝑝2 ∗ (𝜋 ∗ 𝑟2

2)) + ⋯ (𝑝𝑛 ∗ (𝜋 ∗ 𝑟𝑛
2)) (3.16)

𝑉𝑜𝑙𝑢𝑚𝑒 = (𝑝1 ∗ (
4

3
𝜋 ∗ 𝑟1

3)) + (𝑝2 ∗ (
4

3
𝜋 ∗ 𝑟2

3)) + ⋯ (𝑝𝑛 ∗ (
4

3
𝜋 ∗ 𝑟𝑛

3)) (3.17)

where p is the number of particles of radius r, and n is the number of different

radii present in the system.

The model can also determine the location of the points of contact between

each of the particles, as well as noting which particles are in contact with each

William Eales

72

other. This is done by looking at the distance between a particle and each other

particle in the system. If the distance is equal to the sum of the two particles

radii, then they are in contact. Each particle is numbered in order of when it

was added to the system, so a file can be outputted showing each particles

contacts using those assigned numbers, for example particle 1 is in contact

with particle 3.

A section of the 2D model is also capable of determining the shapes that

groups of particles make up within the system to form a void, and then

calculate the area of that void. As mentioned above, the model can determine

which particles are in contact with each other, this can now be used to

investigate the shapes that chains of the particles form. The algorithm starts

looking for three vertex shapes, where vertices can be a particle or an edge,

and then increments the number vertices, up until ten. This limit was created

for time management purposes as this algorithm could theoretically look for

shapes with an infinite number of vertices, however ten was deemed sufficient

to find most, if not all shapes, and did not use too much computational time.

Starting from particle one, the algorithm loops through the list of its contacts,

for each particle in contact, the algorithm then loops through its contacts. This

is done recursively, looking through the system until a chain starts and ends

with the same particle. Once a chain has been found, the recursive loop

unwinds, storing the particle number at each step so that once it has fully

unwound, the chain creating the shape is fully saved. This shape is then

checked against two criteria to ensure that it a valid shape to save

permanently, the first of which is that it must be a unique shape that has not

already been found, i.e. a shape could be found multiple times starting from

each of its vertices, and be saved as 1,2,3, 2,1,3, etc, even though they make

up the same shape. The other criteria is that there are no particles within the

shape found, as therefore the area calculated for that shape would not be

entirely void. This is done by creating the outline of the shape between each

of the particles centre points. Looping through every other particle in the

system, a line is drawn from its centre to the left most edge of the box, and the

William Eales

73

number of times it crosses one of the shapes outer lines is counted. If the total

is odd, then the particle is inside the shape, and if it is even then it is outside

the shape. Now that the shape has been deemed valid, it is saved, and its area

can be calculated using Equation 3.18.

𝑇𝑜𝑡𝑎𝑙 𝑆ℎ𝑎𝑝𝑒 𝐴𝑟𝑒𝑎 =
1

2
∑ (𝑥𝑖𝑦𝑖+1) – (𝑥𝑖+1𝑦𝑖)

𝑛
𝑖=1 (3.18)6

Where x and y are the centre coordinates of each particle.

Once the total area of the shape between the particles has been determined,

the sectors of each of the particles that overlap with this shape are calculated

and subtracted from the total area, thus leaving behind the void area.

𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑆𝑒𝑐𝑡𝑜𝑟 𝐴𝑟𝑒𝑎 =
𝛳

360
∗ 𝜋𝑟2 (3.19)

Where ϴ is the inner angle of the sector and r is the radius of the particle.

The algorithm used to find percolation structures uses the same recursive

loop as above, detailed in Figure 3.10, however instead of looking for loops

back to the starting particle, the chains only start from particles that are in

contact with the lefthand edge and terminate when they have reached a

particle in contact with the righthand edge. The same check is performed to

ensure that each chain found is unique before they are saved.

One of the main alternate functionalities is to have the model produce

systems that are not circular/spherical. This was done by merging circular

particles together to form chains, which is discussed in greater detail in

Chapter 6.

William Eales

74

Figure 3.10: Flowchart showing the stages the algorithm goes
through to adjust a particles location from an integer to real value

using stochastic optimisation

William Eales

75

3.4 Summary and Conclusions

This chapter has discussed the algorithms produced to simulate the packing

of particles in both 2D and 3D under gravity. The algorithms are able to

produce realistic representations of these systems which we have been able

to analyse, the data obtained from which is discussed in the following two

chapters.

These algorithms will be saved on the University of Strathclyde Pure

repository.

3.5 References

(1) A. Balfour and D. H. Marwick. Programming in Standard ForTran 77.

Heinemann Educational Books, 1979.

(2) W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling.

Numerical Recipes in Fortran 77 Second Edition. Cambridge University

Press. 1993.

(3) L. Cartwright, Modelling Stress and Fracture in Agglomerated

Structures, University of Strathclyde, Glasgow, 2021.

(4) L. Convery, Modelling the Fracture and Breakage of Agglomerates

Under an Applied Shear Force, University of Strathclyde, Glasgow, 2022.

(5) Archie-WeSt. https://www.archie-west.ac.uk/ (accessed 2020).

(6) M. A. de Souza, H. R. Gamba and H. Pedrini. Multi-Modality Imaging:

Applications and Computational Techniques. Springer. 2018.

https://www.archie-west.ac.uk/

William Eales

76

4 Results and Discussion – 2D Algorithm

This chapter discusses the systems created by the 2D algorithm discussed

in Chapter 2. Specifically investigating the different properties of these systems

with emphasis on features that might affect the strength of the particle bed

structure when placed under stress. We start by looking at the packing of the

systems created, before investigating the sizes of the voids and number of

contacts each particle has. Finally, the forces present within the systems and

how breakages caused by the application of shear stress were investigated.

4.1 Binary System Beds

The radii 10, 20 and 50 were chosen as they given radius ratios of 1:2 and

1:5, which would show either side of the range of particle size distributions.

Ratios in between these ones were planned on being tested but were put to

the side to focus on completing the later algorithms.

The packed bed with only rp = 10 present shows a mostly regular square

lattice structure, as shown in Figure 4.1a, even with the irregularity of the initial

placement of particles at the bottom of the bed. In the centre of the bed, it can

be seen that the average number of contacts is four, since each particle

contacts two existing particles below it, and two particles are then placed

above. However, there are significant edge effects with the hard walls of the

box due to the small size of the systems and lack of periodic boundary

conditions.

William Eales

77

a)

b)

c)

Figure 4.1: Packed beds of particles across four systems with different radii
particles present. a: rp = 10. b: rp = 10, 20. c: rp = 10, 50.

William Eales

78

The irregularity of the packing increases once the bed also includes larger rp =

20, as shown in Figure 4.1b. As the rp = 10 are not small enough to fit inside

the voids created by the rp = 20, as with the rp = 10 falling above the critical

size ratio value, 0.41:11, discussed in the literature review, they instead

contribute to the increased irregularity in void shape and size and compel the

larger rp = 20 to shift from a regular packing structure to accommodate for the

smaller particles between them.

This effect is still apparent in the bed containing rp = 10, 50, however to a

lesser extent, as shown in Figure 4.1c. Due to the larger difference in particle

size, two and occasionally three of the smaller particles can be seen to fit in

between the larger particles without greatly affecting the placement of the

particles landing above them. There are still instances of irregularity that

spawn from the overabundance of smaller particles overfilling what might

otherwise be a void, thereby forcing the addition of the next large particle to

the side, preventing it from capping the putative void.

Note that the smaller particles filling in amongst the voids of the larger

particles would increase the difficulty of washing the system, and the smaller

particles forming clumps in between the larger particles would help bind them

together, increasing the likelihood of agglomerates forming.

4.2 Packing Fractions

Table 4.1 shows the results of 500 runs of each system of different sized

particles. Within these systems, the number ratio of large:small particles was

1:1.

William Eales

79

Table 4.1: The Packing Fractions in Packed Bed Systems with different

particle radii present.

 Packing Fraction

Particle Radii Minimum Average ±
Standard Deviation

Maximum

10 0.757 0.766 ± 0.007 0.806

10, 20 0.731 0.779 ± 0.005 0.791

10, 50 0.770 0.781 ± 0.005 0.796

As the difference between the sizes of the particles present increases, the

average packing fraction increases. The system with only rp = 10 has the

lowest packing fraction, as whilst it is a partially ordered structure, with regions

of short-range order, i.e. small sections of the system where the particles have

packed efficiently, there is no way to fill in the voids between the particles. In

the systems containing a larger size of particles, rp = 20, 50, the rp = 10

particles are now able to sit in the voids created by the larger particles, thus

giving these systems a higher packing fraction. The difference between the rp

= 10, 20 and rp = 10, 50 systems is likely due to the way that the particles pack

together. This means that in the rp = 10, 50 system, as previously mentioned,

the rp = 50 are able to form a partially ordered structure, with the smaller

particles more able to fill the voids in between. Whereas in the rp = 10, 20

systems, the larger particles are pushed out further from a regular structure by

the smaller particles, due to their closeness in size. When the particle radius

ratio between smaller and larger particles is 0.41:1,1 or 10:24.39, scaling the

0.41 value to 10, my smallest particle radius, the smaller particles can fit

perfectly inside the voids created by the larger particles. For any size ratio less

than this value the smaller particles can fit into the voids between larger

particles. As the size of the void created by a set of same sized particles in a

regular pattern is proportional to the size of the particles, once you have

passed this ratio the void fraction will remain similar for the larger particles, as

the rp = 10 do not affect the void formation and simply fill up space within them.

The further variation in particle fraction would then come from the difference in

the number of smaller particles that were placed within the voids, as it would

hypothetically be possible to change the ratio between large and small particle

William Eales

80

in order to get an extremely densely packed bed where enough smaller

particles are placed in amongst the larger ones, so that all the voids were filled

with closely packed small particles, with the larger particles still maintaining a

fairly regular packing pattern.

The theoretical maximums for these binary systems is unknown, as they are

not using ratios for which the compact packing exists.1 As adding more smaller

particles to the systems shifts the larger particles out of an ordered hexagonal

packing arrangement, the highest packing possible for the rp = 10, 20 and rp =

10, 50 systems is likely to be one in which the large particles pack on their own

in a hexagonal lattice, and then the smaller particles are used to fill in any

space left at the top of the box where large particles no longer fit.

a) b)

c)

Figure 4.2: Examples of packing in systems with different particle addition
methods. a) Random Sequential Adsoprtion (RSA). b) My Model. c)

Triangular Lattice.

William Eales

81

Packing fractions have been researched previously using random sequential

adsorption (RSA) models, which calculate the maximum packing fraction to be

roughly 0.547.2 Our values exceed this by about 0.2; which is expected as

while the packed beds presented here have a degree of randomness in the

placement of the particles, the particles settle under gravity to create denser

packing than with RSA, where particles are added at random without overlap

until it is no longer possible.3

The highest possible packing fraction for a bed of circular particles of the

same size is roughly
𝜋

√12
≈ 0.9069,4 so our values fall comfortably below this.

This is because the model will never achieve perfect packing in a triangular

lattice due to the random nature of the structure, especially the randomness of

the base layer of particles. A comparison of these packing methods and one

of our systems is shown in Figure 4.2, demonstrating the differences in how

packed the structures are.

4.3 Number of contacts between particles

The number of contacts each particle has was also investigated as it is a

parameter that can give us more information about how densely packed a bed

is. It is also another metric through which my model can be compared to

expected values to confirm that the simulations run give usable results.

As shown in Figure 4.3, across the different systems, particles will most often

have two to five contacts. Particles with fewer contacts than this are infrequent,

as having zero contacts requires being one of the initial particles placed on the

bottom of the box ending up with no particles laying on top, and one contact

being a resulting of a particle resting against a wall and one other particle.

William Eales

82

In the systems with only rp = 10, there are no particles with greater than six

contacts, as required by the geometry of packing. In a perfectly ordered

system, each of the particles would have six contacts, as they would form a

triangular lattice arrangement, and thus six is the maximum number of contacts

possible. As our systems have a degree of disorder within them due to the

randomness of the initial particle placements, it is rare for this to occur by

chance, as shown by the frequency of occurrence bar in Figure 4.3 for six

contacts being minimal compared to the other contact amounts. Therefore, in

the middle of the bed, the average number of contacts will be four, since each

particle added to the system creates two new contacts each shared by the two

particles.

Figure 4.3: The frequency of the number of contacts per particle across
the investigated systems.

0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9 10 11 12 13Fr
ac

ti
o

n
 o

f
O

cc
u

re
n

ce
s

Number of Contacts

10 10&20 10&50

William Eales

83

As larger particles are added into the system with the rp = 10, the number of

contacts the particles are able to have with smaller particles increases, as the

increased circumference of the larger particles allows for more contact points

to be made. Figure 4.4a shows the frequency of each number of contacts for

rp = 10 across each of the systems created. Figure 4.4b shows the frequency

of each number of contacts for larger particles, rp = 20, 50, present across each

of the systems created.

When comparing the number of contacts of just the rp = 10 (Figure 4.4a), in

the systems in which they are mixed with larger particles, there is a clear

difference in the number of contacts they make. In the rp = 10, 20 systems, the

peak moves to three contacts, with roughly half as many particles having four

0

0.2

0.4

0.6

0.8

1 2 3 4 5 6Fr
ac

ti
o

n
 o

f
O

cc
u

re
n

ce
s

Number of Contacts

10 10&20 10&50

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10 11 12 13Fr
ac

ti
o

n
 o

f
O

cc
u

re
n

ce
s

Number of Contacts

10&20 10&50

Figure 4.4: The frequency of the number of contacts per particle,
differentiated by the radius of the particle, across the investigated
systems. a (top): Contact number frequency of rp = 10 in all three

investigated systems. b (bottom): Contact number frequency of rp = 20,
50 in the investigated binary systems.

a)

b)

William Eales

84

contacts, then very few one or two contact particles. This is due to the

increased irregularity in the systems, pushing the particles further away from

the six contact “perfect” structure of the triangular lattice. Recall that the beds

created with rp = 10 only have a fairly regular structure, whereas systems with

larger particles present are more disordered (see Figure 4.1). The rp = 10, 50

systems have similar sized peaks for both two and three contacts, with very

few particles having one or four. This increase in two contact particles will be

due to small particles that are resting inside a void created by larger particles,

therefore having no contacts from above due the void being capped off above

them.

When looking at the larger particles present within their systems (Figure

4.4b), their graphs both follow a similar pattern, with increasing frequency up

to five contacts, but then decreasing from that point. The presence of the

smaller particles allows for these larger particles to make many more contacts

due to their increased circumference, hence the shift towards the higher

number of contacts. The particles with lower numbers of contacts, such as two

and three, will be due to those sitting at the bottom of the box and at the edges,

as contacts with the edges of the system were not counted.

4.4 Individual Void Areas

Individual voids are determined as described in section 3.3, with loops of

particles found that start and end with the same particle, as shown in Figure

4.5.

William Eales

85

As shown in Table 4.2, the size of the smallest void present does not vary

across the different beds, which is due to the high likelihood of a triangle of rp

= 10 existing across all the beds formed, therefore the smallest void would

have little variation of the area formed by these particles.

Table 4.2: The smallest, average, and largest void areas in packed bed

systems with different particle radii present.

Particle
Radii

Void Areas
Average Void Area Scaled
by Largest Particle Area

 Min. Average Max.

10 16 78 ± 2 930 0.25

10, 20 16 190 ± 6 3300 0.15

10, 50 16 610 ± 23 10000 0.08

The average and largest void sizes increase as the width of the size

distribution is increased, which is expected as there will be voids formed solely

by larger particles therefore having larger gaps in between them. However,

when the void areas are scaled to be proportional, by area, to the size of the

largest particle area present in the system, the scaled sizes decrease with

increased size distribution. This is because the voids in between the particles

4

5
3

2
1

Figure 4.5: The order of particle looped through to find a shape
that creates a void addition to create a void.

William Eales

86

are proportional to particle area, however the larger particles allow the smaller

particles to fit in between them filling up the gaps, whereas in the systems with

more similarly sized particles, the gaps remain empty.

The sizes of the voids at the edges of the box are also included in the

calculations, which contribute to the large maximum void sizes, as these voids

will be bigger due to the flat surface of the box making up an edge, instead of

the curved edge of a particle.

4.5 Percolation Structures

We hypothesise that the existence of percolated structures5 in the packed

beds are relevant to its structural properties. The presence of these structure

may inform the strength the beds have when looking at how contacts within

the system are broken, discussed in section 4.8, as well as having implications

on the porosity on the bed for other investigations that could be done using

this model in future research.

As discussed in section 2.3.2, for our purposes, a percolation chain is a chain

of connected large particles joining the left and right sides of the box. In Figure

4.6, structures formed with varying number ratios of rp = 20 to rp = 10 are

shown. Percolation pathways connecting large particles only from one side of

the box to the other are also shown where they exist. The results of multiple

runs are reported in Table 4.3. 100 runs were completed for each ratio of the

different particle sizes, and the presence of percolation structures within the

bed systems determined. The shortest chains, by number of particles, are

counted where they exist.

William Eales

87

Table 4.3: The percentage of particle system runs that contained an edge-

to-edge percolation chain and the shortest chain lengths present in systems

with various number ratios of large-to-small particles in the rp = 10, 20 system.

Particle
Addition Ratio
(Large:Small)

Percentage of
Systems with
Percolation

Chains
Present (%)

Avg
Chains

Max
Chains

Min
Length

Avg
Length

Max
Length

1:1 98 102.73 400 18 66.28 108

1:1.5 82 113.19 319 16 41.98 81

1:2 59 62.29 300 17 32.10 66

1:2.25 33 27.27 350 17 32.69 62

1:2.5 23 17.48 200 18 30.04 59

Figure 4.6: The rp = 10, 20 system with different number ratios of large-
to-small particles. Top left 1:1, top right: 1:1.5, bottom left 1:2, bottom

right 1:2.5.

William Eales

88

For the purpose of determining if a percolation chain was unique, they were

counted as unique chains if they were not made up of the exact same particles.

For example, the blue and green chains shown in Figure 4.7 would be counted

as separate chains, however the red and orange chains would be treated as

the same chain and therefore only counted once.

As shown in Table 4.3, as the ratio of larger particles within the system

decreases it becomes more difficult for percolation chains to form, however

even at the lower ratios there are still some chains present, indicating that we

have not yet reached the percolation threshold for this system. The site

percolation threshold for a regular triangular lattice is 0.56, and ~0.59 for a

square lattice, however due to the irregularity of our structures, and the

addition of smaller blocking particles, our value would likely be lower, due to

these additional constraints making a chain from edge-to-edge less likely to

form. The minimum possible length of a chain is 15 particles, so the minimum

lengths in Table 4.3 are very close to this value, showing that almost direct

chains across the bed are forming at all these ratios.

The number of chains within each system also sees an overall decrease

across the systems investigated, along with the length of the chains found.

This is again supported by the chains becoming more difficult to form, therefore

Figure 4.7: Example percolation chains showing unique chains (blue
and green), and chains treated as identical (red and orange).

William Eales

89

less are able to be made. The chain lengths do start to become more

consistent at the higher particle proportion ratios. This is because in the lower

particle proportion ratios, longer chains are able to be formed due to the

greater number of contacts between pairs of large particles. However, once

there are less contacts, the pathways are more restricted and so the shorter

route becomes the only route.

4.6 Finite Size Effect

Runs could also be completed using larger box sizes to investigate the finite

size effect7 within the model. As the packing of the particles will differ against

the edge of the box compared to the centre of the bed, a larger box size will

negate the effect of the edges so we can determine a more consistent packing

fraction. Roughly 20 runs were completed on the system containing a 1:1 ratio

of rp = 10, 20 with a box four times the normal size, one of which is shown in

Figure 4.8: rp = 10, 20 system at a 1:1 addition ratio in a larger box
size

William Eales

90

Figure 4.8. The average packing fraction across these systems was 0.787 ±

0.003, which is more densely packed than the systems in the smaller box

sizes. There was also less variation between the larger systems than between

the smaller systems. This shows initially that the properties of the systems in

the smaller box sizes are getting affected by the finite size effect, therefore

more runs should be completed as part of future work to fully comprehend the

effect of box size on these systems and a system size where the effect is

minimal.

4.7 Bed Fragmentation

The algorithm discussed in this next section was produced by two MEng

students at the University of Strathclyde working alongside my PhD project.8,9

Their projects involved taking the structures produced by my model and

calculating the forces present at the contact points between the particles, using

the steps described in section 3.1.1.12.

Figures 4.9a and b show the forces present at the contact points between

particles within four structures with different sized particles present. The

structures used for these investigations are smaller than those used for the

packing and percolation work discussed above as currently running these

systems takes a long time due to the algorithm being written in VBA. The forces

are represented by the coloured shapes at the contact points, with the darker

blue colour representing a lower force, then colour shifting through green to

yellow to represent a higher force present. The red square marks the contact

point with the largest force present.

A shear force was applied to the systems with a 1-unit force across the top

in the positive x direction and a 1-unit force across the bottom in the negative

x direction. These forces were split equally between the particles on the top

and bottom of each of the systems, so if there were 5 particles resting on the

bottom layer of a system, 0.2-units of force would be applied to each.

William Eales

91

Figure 4.9: Forces present at the contact points within packed beds of
particles across four systems with different radii particles present. The

arrows show the direction of the shear forces applied to the systems. a: rp =
10. b: rp = 10, 20.

a)

b)

High force

Low force

William Eales

92

As shown in Figure 4.9a, and mentioned previously when discussing packing

fractions, the system with just rp = 10 present is packed in a relatively ordered

fashion when compared to the other systems. Because of this the forces are

similar across the whole system, with forces being higher in the areas with

more irregularity. The point with the highest force is present in the bottom left

of the system, most likely due to the particle on the base of the bed having the

shear force directly acting upon it, and only having one contact point for the

force to be distributed through.

In Figure 4.9b, the system with rp = 10, 20 present, the structure is more

disordered and therefore there is less consistency between the forces present

at the contact points. The highest force is again present near the base of the

bed, on a particle pressed between two base layer particles and another larger

particle above it. The large void to the right of the particle also means that the

increased disorder of the area of the system means the force can not spread

out as easily, resulting in it accumulating on the adjacent particle.

Figures 4.10a and b show the same systems as Figures 4.9a and b, however

they show the order in which contacts break upon multiple runs of the

algorithm. After each run is completed, the contact point with the highest force

present in the system is removed from the next round of calculations,

simulating the bond being broken and allowing us to investigate the cracks that

could form through the structure. If this breakage resulted in a top or bottom

particle that had the shear force applied to it no longer having any contacts,

the force was removed from this particle and redistributed evenly between the

other particles on its level.

William Eales

93

Both of the systems show a mostly continuous chain of breakages through

the system. Figures 4.10a and b both contain cracks through the systems near

the top or bottom of the bed, likely due to this being close to where the shear

force is being applied. The bottom of Figure 4.10a’s bed is more irregular than

the top therefore it is expected for it to be less stable and have higher forces

present between the particles. In Figure 4.10b, the top and bottom of the bed

are closer in regularity, however the bottom of the bed does contain larger

voids so the packing is not as tight, resulting in higher forces there.

Figures 4.11a and 4.11b show the contact point forces present in two

structures, one which contains a percolation chain (4.11a) and one which does

not (4.11b). As shown previously, the forces present in the ordered areas of

the systems are more consistent compared to the forces in areas with less

ordered packing. The forces are also higher near the top and bottom of the

systems, where the shear force is being initially applied, and then spreads out

closer to the centre of the systems.

1

2

3

4

5
6

7 8

9 10 1 2

3 4
5 6

7 8

9 10

a) b)

Figure 4.10: The order of contact breakage within packed beds of
particles across four systems with different radii particles present. a (left):

rp = 10. b (right): rp = 10, 20.

William Eales

94

Figure 4.11: Forces present at the contact points within the rp = 10, 20
system with different number ratios of large-to-small particles. The

arrows show the direction of the shear forces applied to the systems a:
1:1, b: 1:2.5

High force

Low force

William Eales

95

Figure 4.11b has more ordered areas due to a higher proportion of smaller

particles present allowing them to pack more tightly together, compared to

Figure 4.11a which has a more equal ratio of particle sizes, causing the

structure to be more irregular.

Figures 4.12a and 4.12b show the systems from Figures 4.11a and 4.11b,

having gone through the same analysis as in Figures 4.9a and b. The initial

contact breakages in both structures occur at the base of the beds, likely due

to the proximity to the application of the force. However, once these initial

contacts are broken, the next contacts to break form a chain closer to the

centre of the beds. In Figure 4.12a, the breakage initially follows the

percolation chain through the centre of the bed from contacts three through

six. Contacts seven and eight then break the percolation chain which moved

downwards, maintaining the horizontal fragmentation created by the previous

contacts breaking, and ending with contact nine breaking on the left edge of

the bed. The last contact then breaks as still in line with the previous breakages

but back on the righthand side of the bed.

Figure 4.12b contains no percolation chain, however the fragmentation also

created a chain within the centre of the bed. Compared to Figure 4.12a

however, the chain breaks in smaller clusters between contacts three and four,

five and six, and then seven to ten.

Both breakage chains occur in the regions of the beds that have larger voids

and more irregular packing structures, as these areas are less stable within

the bed due to the system finding it harder to distribute the forces evenly.

William Eales

96

4.8 Summary and Conclusions

When comparing the packing fractions for my simulated systems to

calculated values from literature, it was found that my values fell in the

expected range being higher than RSA packing fractions, due to the addition

of gravity simulated in the system, however they had a lower packing fraction

than the calculated maximum, as there is a degree of randomness stemming

from the initial base layer of particles that causes the system to shift out of a

perfectly ordered lattice. There is an increase in the average packing fraction

as the particle size distribution is increased, due to the ability of the smaller

particles to fit inside the voids created by the larger particles, thereby

decreasing the void area of the system.

When investigating the number of contacts that each particle had, the

starting assumption was that in the single sized particle system, each particle

would have four contacts, two from particles being rested on, and two from

particles resting on it. This was found to be the case, with the majority of

particles having four contacts, however there were particles with fewer

contacts, likely due to the finite size effect in the small system, and some

particles with more contacts, in areas where the particles were packed closer

together.

Figure 4.12: The order of contact breakage within a system with a
percolation chain (a: left) and a system without a percolation chain (b:

right).

1

3

5
6 7

8

9

10

1 2

3
4

5
6

8 9

4

2

7

10

William Eales

97

The introduction of larger particles within the binary systems, caused a

decrease in the number of contacts per small particle, as the systems became

more irregular. In the rp = 10, 50 systems, the majority of small particles had

two or three contacts, as they were likely placed in between two larger

particles, with potentially one more small particle, before the void was capped

off. The larger particles in the binary systems have a similar contact graph to

the single sized system, with the peaks being around four to six particles. This

is shifted upwards from the four shown in the single sized particle system due

to the additional contacts with smaller particles in the voids between the larger

particles.

When calculating the sizes of the individual void areas between particles, it

was found that when the average void area across a system was scaled by

the largest particle area present within that system, it decreased when the

particle size distribution increased. This is expected because, as previously

discussed, the smaller particles in these systems are able to fill in void spaces

between larger particles, so reducing the sizes of the voids within the system.

When looking for the presence of percolation chains, in this thesis defined

as a chain of large particles connecting the left- and right-hand side of the box,

it was found, as expected that increasing the number of small particles within

the system would disrupt the formation of percolation chains. There was

always a system that did not contain a percolation chain, even at a ratio of 1:1

large:small particles, and as the ratio of smaller particles increased the

percentage of systems that contained a percolation chained decreased

massively from 98% to 23% across the systems tested. The average number

of chains per system, and the average length of chain per system also

decreased as the number of small particles in a system increased.

When looking at the forces present at the contact points between particles,

it was found that the forces were much more evenly spread in the system with

the same sized particles compared to the binary particle system. This is likely

William Eales

98

due to the packing in the binary system being less uniform, therefore creating

a less stable structure, with areas of higher stress within the system where

contacts are more likely to break. The order of breakage contacts do follow

chains in both same sized and binary particle systems, as once a contact

breaks the contacts around it are put under more stress as there is one less

contact for the forces to be shared between.

When investigating the contact breakage of systems that did contain a

percolation chain, it was found that the order of contact breakage followed the

percolation chain through the system almost fully. However, more investigation

will need to be done into these systems to determine if there is a link between

the presence of percolation chains and contact breakage paths as this initial

system could be due to random chance.

The 2D algorithm was created as an initial starting point due to the simplicity

of creating it, and it has been shown to be capable of producing realistic

systems of packed bed particles formed under gravity. It has also shown the

possibility of different applications it can be applied to, such as further

investigation of how the beds break apart and how the existence of percolation

structures affects this. However, it was intended to be a stepping stone into

the 3D algorithm, the results of which are discussed in the next chapter.

4.9 References

(1) Bédaride N. and Fernique, T., Density of Binary Disc Packings: The

Nine Compact Packings. Discrete and Computational Geometry, 2022, 67,

787-810.

(2) Zhang, G. and Torquato, S., Precise algorithm to generate random

sequential addition of hard hyperspheres at saturation. Phys. Rev. E, 2013,

88(5), 053312.

(3) Andrienko, Y., Brilliantov, N. & Kurths, J. Complexity of two-dimensional

patterns. Eur. Phys. J. B, 2000, 15(3), 539–546.

William Eales

99

(4) H. Chang and L. Wang, 2010. A Simple Proof of Thu’'s Theorem on Circle

Packing. arXiv:1009.4322

(5) Sahimi, M., Applications of percolation theory. London: Taylor & Francis.

1994.

(6) Stauffer, D. and Aharony, A., Introduction to Percolation Theory. 2nd ed.

Boca Raton: Taylor & Francis Group, 2014.

(7) Wedekind, J., Reguera, D. and Strey, R., Finite-size effects in simulations

of nucleation. J. Chem. Phys, 2006, 125(21), p.214505.

(8) L. Cartwright, “Modelling Stress and Fracture in Agglomerated

Structures,” University of Strathclyde, Glasgow, 2021.

(9) L. Convery, “Modelling the Fracture and Breakage of Agglomerates

Under an Applied Shear Force,” University of Strathclyde, Glasgow, 2022.

William Eales

100

5 Results and Discussion – 3D Algorithm

This chapter discusses the systems created by the 3D algorithm discussed

in Chapter 2. This chapter investigates the different properties of these

systems in contrast with similar systems in two dimensions. We start by looking

at the packing of the systems created, before investigating the sizes of the

voids and number of contacts each particle has.

5.1 Visual Inspection

Figure 5.1 shows some examples of 3D packed beds, with different radii of

particles present, that were created using the model presented in Section 2.3.

Figure 5.1: Packed beds of 3D particles across three systems with different
radii particles present. a (top left): rp = 10. b (top right): rp = 10, 20. c (bottom

middle): rp = 10, 50. Note that the size of the bounding box increases with
the largest particle dimension.

a)

c)

b)

William Eales

101

The 3D systems have much lower packing fractions when compared to the

2D systems, which is expected when comparing the maximum possible

packing fractions, ~0.9 in 2D and ~0.7 in 3D, as there is an extra dimension

leading to more variability in particle placements. This makes the chance of an

ordered system where each sphere has twelve contacts extremely unlikely,

therefore an “ordered” system for our cases would be one where each sphere

has six contacts, with both three above and three below. As even the systems

with spheres of the same size present are disordered, the addition of smaller

particles does not affect the order of the system significantly due to

arrangement of the particles in the first layer. However, we can see, in contrast

to the 2D systems, that particles which are sufficiently small are now able to

fall through the gaps between the larger particles. In Figure 5.1b, the small

particles are not small enough to fit between most of the gaps between the

larger particles and therefore there are still small particles throughout the

height of the system. However, in Figure 5.1c, the small particles are now small

enough compared to the large particles to be able to fall through the majority

of the gaps between them, resulting in a collection of small particles at the

base of the bed. This is a significant observation since it is consistent with the

widely held belief that the presence of fine particles which may be transported

through a bed of particles are responsible for significant increases in the filter

cake resistance when filtering particle suspensions with a wide particle size

distribution.1

5.2 Packing Fractions

The packing fractions determined for the 3D systems follow a different

pattern to that of the 2D systems. As shown in Table 5.1, the systems become

more packed with the introduction of a larger sized particle, with the system

that contained rp = 10, 20 particles having a larger packing fraction than the

other systems. As with the 2D systems, the smaller particles are able to fill in

the voids between the larger particles when they are present, however the 1:1

addition ratio of the particles sizes means that whilst the rp = 10, 50 systems

William Eales

102

could have a higher packing fraction if the voids were filled with smaller

particles, there are not enough small particles placed within the systems to fill

the voids, thus leaving the rp = 10, 20 systems with a higher packing fraction.

Table 5.1: The Packing Fractions in 500 generated 3D Packed Bed Systems

with different particle radii present.

 Packing Fraction

Particle Radii Minimum Average Maximum

10 0.434 0.460 ± 0.007 0.475

10, 20 0.480 0.497 ± 0.006 0.513

10, 50 0.452 0.468 ± 0.006 0.486

These values are lower than the highest packing fractions that have been

calculated in systems of same sized spheres. There are two lattices that can

occur to achieve the highest packing fraction2, which is 𝜋
3√2⁄ ≈ 0.740483.

These two lattices, as seen earlier in Figure 2.3, are face-centred cubic (FCC)

and hexagonal close-packed (HCP). It has been found that the highest packing

fraction in 3D binary sphere packings, such as our rp = 10, 50 system, in which

the smaller particles are able to pass between the voids formed by the larger

particles is 0.8617.4

Other examples of packing types and their maximum densities are: random

close packing, 0.64005; the tetrahedral lattice, 𝜋√3
16

⁄ ≈ 0.30416; and the

loosest possible density that has been found is 0.05557. Our values fit between

these as expected, as they are lower than the more packed systems due to

our inherent randomness but more packed than the more irregular systems

due to the presence of the simulated gravity forcing particles downwards to

pack more tightly. Another reason behind our systems having a lower packing

fraction than the higher density packing methods is due to the small box size

being used for our systems, resulting in significant edge effects reducing the

packing fraction.

William Eales

103

5.3 Number of Contacts

In the FCC and HCP lattices discussed above, the expected number of

contacts for each sphere is twelve, with three below, six on the same plane,

and three above. However even the slightest irregularity causes the spheres

on the same plane to be further away and no longer in contact with each other.

Therefore, the number of contacts that each sphere would have in a regularly

structured system would be six, accounting for the three touching spheres

above and below.

As seen in Figure 5.2, the systems containing only rp = 10 do show the most

frequent contact number is six, however not by a large margin. Due to the large

amount of disorder in these systems, the number of contacts ranges all the

way from one to ten contacts in the single particle size bed. Whilst there are

some particles with contact numbers close to the FCC and HCP lattice value

of 12, they are extremely outnumbered by the number of particles with 6

contacts or less. This shows how the packing of these systems is far away

from the ordered packing of the HCP and FCC lattices, due to the randomness

of the placement of the particles.

Figure 5.2: The frequency of the number of contacts per particle has
across the investigated 3D systems.

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8 9 10 11 12 13

Fr
ac

ti
o

n
 o

f
O

cc
u

re
n

ce
s

Number of Contacts

10 10&20 10&50

William Eales

104

The beds with different sized particles present show a maximum at three

contacts, also with high occurrences of four to seven contacts. These are still

around the expected value of six, with the lower ones being particles in contact

with the edge of the box, due to the finite size effect.8 The lower end of the

contact values is also due to particles that are in contact with the edges of the

box, as contacts between particle and boundary are not counted, as well as

smaller particles resting inside voids capped by larger particles. As part of

future work, discussed further in Chapter 8, future investigations would go into

the finite size effect so that these data points will not impact the averages as

much.

As shown in Figure 5.3a, there is a large variance between the number of

contacts each of the smaller particles across the three investigated systems

has. The increased number of particles with one contact in the rp = 10, 20 and

rp = 10, 50 systems, is due to the higher box area, and therefore more small

particles falling to the bottom of the box, and only having a single contact with

a particle resting above them. The large number of small particles with three

contacts is due to a small particle resting on three larger particles with the void

then capped above by another large particle, not allowing the smaller particle

now trapped inside the void to gain any more contacts.

William Eales

105

Figure 5.3b shows the difference between the number of contacts of the

larger particles in the rp = 10, 20 and rp = 10, 50 systems. The rp = 10, 50 data

in Figure 5.3b is similar to the rp = 10 data in Figure 5.3a, as similar to the 2D

systems they pack similarly, however the rp = 10, 50 graph has a slower decline

at the higher end of the number of contacts due to the smaller particles now

present that will also be resting upon them.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 2 3 4 5 6 7 8

Fr
ac

ti
o

n
 o

f
O

cc
u

re
n

ce
s

Number of Contacts

10 10&20 10&50

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fr
ac

ti
o

n
 o

f
O

cc
u

ra
n

ce
s

Number of Contacts

10&20 10&50

Figure 5.3: The frequency of the number of contacts per particle,
differentiated by the radius of the particle, across the investigated 3D

systems. a (top): Contact number frequency of rp = 10 in all three
invesitated systems. b (bottom): Contact number frequency of rp =

20, 50 in the investigated binary systems.

William Eales

106

These graphs give more information about my systems, and is another

metric by which the simulated systems can be compared when subjected to

shear forces, which would hopefully be performed as part of future research

using this model.

5.4 3D Percolation Structures

We also investigated the presence of percolation structures in the 3D

systems. With the addition of the third dimension, chains spanning the box in

either the x- or z-direction are sought using the same method as discussed in

Section 2.2.3 for the 2D structures.

Table 5.2: Data on Percolation Structures in 100 generated 3D structures

containing rp = 10, 20 in various proportions

Particle
Proportion

(Large:Small)

Systems with
Percolation

Chains Present
(%)

Minimum
Number of
Percolation

Chains
Present

Average
Number of
Percolation

Chains
Present

Maximum
Number of
Percolation

Chains
Present

1:1 100 7 15.46 ± 4.94 26

1:2 100 2 11.04 ± 5.38 27

1:3 98 0 6.91 ± 5.17 26

1:4 84 0 4.36 ± 3.26 14

1:5 59 0 2.01 ± 3.04 19

1:6 36 0 0.89 ± 1.82 9

The 3D data shown in Table 5.2 show the same pattern as the 2D data in

Table 4.3, with a higher frequency of percolation structures present when the

number of large and small particle present are similar. However, there are still

many more percolation structures present at higher ratios in the 3D systems

compared to the 2D systems, with only 59% of systems containing a

percolation structure in the 2D system with a ratio of 1:2 large:small particles,

but the 3D system with the same ratio having 100% percolation chain

presence. This is because in 3D the particles tend to have more contacts,

William Eales

107

giving more options for the larger particles to connect to each other across the

system. As shown, even at a ratio of 1:6 the percolation threshold has not been

found and more percolation chains are being found than in the 2D system with

a third of the ratio. Another factor is that whilst the radius ratio is the same in

both the 2D and 3D systems, the area/volume ratio is not, as in the 2D systems

the 10:20 area ratio is also 1:4, however in 3D the volume ratio between radius

10:20 particles is 1:8, giving them much more surface area to make contacts

with other particles in the system, and thus form percolation chains.

Table 5.3: The minimum, average and maximum lengths of percolation

chains in 100 generated 3D structures containing rp = 10, 20 in various

proportions

Particle
Proportion

(Large:Small)

Minimum Length
of Percolation
Chain Present

Average Length
of Percolation
Chain Present

Maximum
Length of

Percolation
Chain Present

1:1 7 7.56 ± 0.94 18

1:2 7 7.79 ± 1.02 16

1:3 7 7.94 ± 1.31 15

1:4 7 7.80 ± 1.11 17

1:5 7 8.14 ± 1.18 15

1:6 7 8.02 ± 0.98 12

Again, the minimum length of chain is close to the minimum possible but

slightly above, with the 3D box dimensions being 6 particle diameters. The

average chain lengths across the different ratios are consistent, likely due to

the smaller size of the box resulting in much longer chains being unable to

form. The maximum chain lengths are also relatively consistent compared to

the 2D data, still with a small decline, again likely due to the comparatively

smaller box size. Producing more systems in larger boxes for all these tests

on a larger scale is the next step for this area of the project, and is discussed

more in the Future Work section, as further investigation can then be

William Eales

108

undertaken into how these percolation structures may reflect fracture patterns

within the systems.

5.5 Summary and Conclusions

When investigating the packing fractions of the 3D systems created by my

model, I found that whilst they followed the same pattern as the 2D systems,

they overall had much lower packing fractions, with a difference of about 0.3.

My systems packing fraction values did rest between the precalculated

minimum and maximum packing fraction values for single sized and binary

particle systems, showing that initially these values are realistic.

The 3D contact graphs also show similar patterns to the 2D contact graphs,

however the 3D graphs are much more affected by the finite size affect, as

well as the ability of the small particles to fall through voids to the bottom of the

box. This results in a large number of small particles with very few contacts,

especially in the binary rp = 10, 50 systems. The single sized rp = 10 system

would have each particle having 12 contacts if it was perfectly packing in a

FCC or HCP lattice, however as previously stated we expect our particles to

have 6 contacts. There is a peak at this value, however the lower contact

number values occur almost as frequently, showing that the structure is quite

far removed from the ordered lattices, especially with very few particles having

above 7 contacts. The larger particles that have more contacts will also be due

to the small particles resting around them, rather than the packing of the

systems shifting towards one of the ordered lattices.

When investigating the presence of percolation chains within the 3D

structures, it was found that they are much more prevalent in 3D systems than

in 3D, likely due to the increase in contact area available, thus more contacts

being formed, in 3D systems. When comparing across the 3D systems, the

expected pattern of finding less percolation chains occurring the more smaller

particles are in the system is found, with the minimum, average and maximum

William Eales

109

number of chains per system decreasing as well as the average length of a

chain increasing as it becomes harder to make a direct chain across the

system.

The 3D algorithm that has been produced is able to simulate more realistic

systems that the 2D algorithm, purely given the extra dimension that exists in

laboratory experiments. The 3D algorithm has also been shown to replicate

phenomena experienced in laboratory experiments, such as smaller particles

filtering to the bottom of a system, through the gaps made by larger particles.

Given the various parameters investigated here, this model can hopefully be

used in future research to see the effect on these systems when the

parameters are further varied.

5.6 References

(1) Hennemann, M., Gastl, M., and Becker, T., Influence of particle size

uniformity on the filter cake resistance of physically and chemically modified

fine particles, Separation and Purification Technology, 2021, 272, 118966.

(2) Gauss, C.F., ‘Besprechung des Buchs von L.A. Seeber: Untersuchungen

über die Eigenschaften der109ositiven ternären quadratischen Formen usw.’,

Göttingische Gelehrte Anzeigen, 1831, 2, 188–196.

(3) Schoenberg, I.J. and Steinhaus, H. Mathematical Snapshots,

Coll. Math. J., 1986.

(4) De Laat, D., De Oliveira Filho, F., and Vallentin, F., Upper bounds for

packings of spheres of several radii, Forum of Mathematics, Sigma, 2014, 2,

E23.

(5) Jaeger, H.M. and Nagel, S.R. ‘Physics of Granular State’, Science, 1992,

20, 1523–1531.

(6) Hilbert, D. and Cohn‐Vossen, S. ‘Geometry and the Imagination’, Phys.

Today, 1953, 6(5), 19.

(7) Gardner, M. ‘New Mathematical Diversions From Scientific American’,

1966, 88.

William Eales

110

(8) Wedekind, J., Reguera, D. and Strey, R., Finite-size effects in simulations

of nucleation. J. Chem. Phys, 2006, 125(21), 214505.

William Eales

111

6 Non-Spherical Particle Chains

As discussed in Section 2.3.6, when we are modelling chain particles, we are

doing so by attaching multiple circular particles together to form the chain. This

decreases the complexity of the algorithm as it can be created by building upon

the previous 2D algorithm, however this approach does mean the chain

particles are not accurate to how a rectangular or needle-like structures would

pack, due to the ridges present in our chain structures. The following algorithm

was created as an extension for the 2D algorithm due to its simplicity. A 3D

version of the algorithm has also been started but is not complete due to time

constraints.

6.1 Initial Code Edits

A new section was added into the algorithm that took place immediately after

a particle was added into the system. Instead of looping back to the start to

place another particle, the model created a localised contour plot based

around the most recent particle, which followed its edge. This places the new

particle with its edge on the centre of the previous particle, overlapping with it

to form a chain, but still being unable to overlap with other particles.

William Eales

112

Figure 6.1: Flowchart showing the stages of adding particles to form a chain
particle from the initial particle

William Eales

113

Once this contour plot is formed, the model then randomly picks a direction

for the next particle in the chain to fall to from the centre of the particle, as it is

assumed the chain is falling vertically and then tilting to one side upon impact.

It then moves along the contour plot as before until it impacts with another

particle. It then follows the algorithms previous path of particle impact, where

the new particle is being balanced on one particle and joined with another,

using stochastic optimisation to determine the real coordinates for its final

position.

For a system of chains containing only two particles, the model would then

loop back to the start as before and repeat these steps. However, for chains

containing three or more particles, a new step is added.

As the chains direction has been determined by the first two particles, the

contour plot is no longer required to place further particles in the chain. Instead,

the radius of the particles and the direction that they are being placed in can

be used to simply place the rest of the particles in the chain along its line.

However, as each particle in the chain is placed, it checks that it is not

overlapping with any other particles or outside the box. In either of these cases,

the offending particle is moved to be balanced on what it is impacting, as

shown in Figure 6.2, whilst still being the correct distance away from the

original particle in the chain. The particles in between these two on the chain

are then readjusted to ensure they are all connected and in a straight line. This

process is looped until the chain is the requested length of particles, and then

the model loops back to the very start to place a new chain.

William Eales

114

Figure 6.2: Steps taken to adjust a growing chain to balance on an overlapping

chain in the event the growth of the new chain causes an overlap with an old

chain. A) New chain (currently 4 particles) overlapping with a previously placed

chain b) New chain readjusted to be balancing instead of overlapping c) New

chain (now 5 particles) overlapping with a previously placed chain d) New

chain readjusted to be balancing instead of overlapping.

6.2 Chain Particle Complexities

As the length of the chain increased, the complexity of the systems being

formed also increased, with new possible balancing possibilities between

particles becoming possible.

Due to the first particle being placed on its own, there was now the possibility

of a particle being placed in a situation where a chain could not grow from it.

a b

d c

William Eales

115

To combat this, in this instance, the particle would slide back along the path

it took to get to its final position, until a chain was able to be formed. This then

ran in to the issue that previously the first particle being placed needed to be

balancing on two other particles, however in these situations, it is possible, and

indeed correct, for the initial particle to be only in contact with one particle, and

then be balanced by another contact further along the chain. Therefore, once

the particle has determined it needed to slide upwards from a trapped position,

some additional leeway was added to allow the first particle to have only one

contact, provided the following conditions were true:

a) The base particle of chain had a contact on the opposite side to the

direction the particle was leaning, i.e. if the particle is leaning right, the contact

is on the left.

b) The contact that is furthest from the initial particle is also beyond the

centre point of the chain.

c) There is at least one contact point, not on the initial particle, that is on

the underside of the particle.

With these additional conditions, stable chain structures were able to be

produced.

William Eales

116

Figure 6.3: Chains labelled with the conditions a, b and c listed above that

must be fulfilled to allow the placement of a chain with only have one contact

at its base

6.3 Results

All of the 500 runs completed for each of the systems, listed below, using the

2D chain algorithm were performed on ARCHIE-WeSt. The ratio of addition for

each different chain or particle type in these systems is 1:1. np refers to the

number of particles that made up an individual chain.

Each of these systems had its packing fraction calculated and the angle of

each chain was determined.

Systems investigated:

• A) rp = 10, np = 2

• B) rp = 10, np = 3

• C) rp = 10, np = 4

• D) rp = 10, np = 5

a

b,c

William Eales

117

• E) rp = 10, np = 5 and rp = 10, np = 1

• F) rp = 10, np = 5 and rp = 5, np = 1

• G) rp = 10, np = 5 and rp = 5, np = 5

6.3.1 Visual Inspection

Examples of each of the different systems produced, A to G, are shown in

Figures 6.4, 6.5 and 6.6.

Figure 6.4 shows systems A to D, where the np increases from system to

system but remains consistent within each system. In each of these systems,

once a chain has fallen, it often results in the chains placed above it adopting

the same angle, creating sections within the system with chains stacked

together, an example of which in the System D example at x = 300 and y =

~150 to y = ~350. As the chain length gets longer, these groups of chains at

the same angle take up much more of the systems. These clusters are broken

up when a chain is placed to the side of it but leans over enough to cause the

next chain that would want to join the cluster to lean differently.

Some perfectly vertical chains are present leaning up against the wall of the

box in the base layer of particles, which is a very unstable position. This is

because when I added a section of code to the algorithm to favour falling away

from the edge of the box if a chain found itself directly up against it, I forgot to

also add that section of code to the part of the algorithm that placed the base

layer of chain particles. Therefore these vertical chains will only appear in the

bottom left and right corner of the box, using this algorithm, but this issue would

be easily solved in a future version.

William Eales

118

System A

System B

William Eales

119

Figure 6.4: Examples of systems A to D

System C

System D

William Eales

120

Figure 6.5: Examples of systems E and F

System E

System F

William Eales

121

Figure 6.5 shows systems E and F, where single particles have been added

into a system containing 5 length chains of rp = 10. The single particles make

forming clusters of aligned chains much more difficult, especially when they

are the same size as the chain, as their placement on top of a cluster will

immediately stop its continuation. This shows that whilst processing these

chain-like particles, the introduction of small particles can dissuade clusters of

chains from joining together, and therefore reduce the size of the same angled

groups that form.

Figure 6.6 shows an example of system G, which has some similarities to

system E as it contains smaller particles, however being chains instead of

single particles causes them to have much less ability to fit into voids between

Figure 6.6: Example of system G

System G

William Eales

122

the larger chains, instead each size of chain causing the other to be unable to

join clusters as they block regular placement of each other.

6.3.2 Packing Fraction

Table 6.2: The Packing Fractions in the investigated 2D chain systems.

System
Packing
Fraction

A 0.790 ± 0.008

B 0.772 ± 0.019

C 0.795 ± 0.011

D 0.781 ± 0.018

E 0.795 ± 0.006

F 0.788 ± 0.013

G 0.800 ± 0.006

The packing fractions across each of the investigated systems remain

relatively consistent compared to the original 2D algorithm with no real pattern

found throughout systems A to G, although there is a small increase in packing

fraction for the systems that introduce another size of chain or single particles.

As observed before, these single particles are able to pack in between the

chain particles, filling in voids.

The differences in packing between systems A to D are likely due to the

randomness inherent within these systems, as there is an additional factor of

randomness added to these systems in the form of the rotation of the chains,

which was not present in systems only containing single particles. This is

shown by the increased standard deviations in these systems compared to the

regular 2D systems discussed in Chapter 4. Research has gone into the

packing of 3D chain shapes, such as cylinders and spherocylinders, which

have a maximum packing fraction at a specific ratio of height to diameter.1

Spherocylinders, which are closer to the particles which I am simulating due to

the curved ends, have been found to have a peak packing fraction of 0.6896

at a ratio of 0.35, with packing fractions then having a small decrease on

William Eales

123

increasing ratio. This could explain why there is no discernible pattern across

systems A to D, as the ratios explored here are 1.5 to 3, which is far above the

ratios explored within this research. In the research into cylindrical packing, a

peak packing fraction of 0.7185 was found at a ratio of 0.9, which is still much

below the ratios we investigated. Future research could look into simulating

ratios closer to these to determine if a similar pattern was found, thought our

systems are in 2D and have the slight difference in shape with rounded edge

along the sides of the particles.

Another study looked at the simulation of cylinders compared to chain

structures made up of “glued spheres” to mimic a cylindrical shape, similar to

the particles investigated here.2 It was found that the systems with cylindrical

particles had higher packing fractions that the systems with glued sphere

particles, found to be due to the higher volume each individual cylindrical

particle has compared to the glued sphere particles. As the number of spheres

used to make a particle was increased but the overall dimensions of the shape

kept the same, a trend was found where the packing fraction increased,

becoming closer to the packing fraction found in the true cylindrical particle

systems. However, even with more spheres making up a particle, the packing

fractions do not reach the same packing efficiency as the true cylindrical

particles.

The introduction of singular particles in systems E and F, increase the

packing fraction to be on the higher side of the range of packing fractions

previously seen in systems A to D. System E has a packing fraction on par

with the highest of systems A to D, likely due to the addition ratio of the particles

still being 1:1, so whilst the particles in system E would affect the structure

more, an equal amount of particles to the small particles in system F, cover

more space. If the small particles in system F were added in a greater amount,

the packing fraction would likely be higher as they would be able to fill in many

more of the voids, that shown in Figure 6.5 are still quite empty.

William Eales

124

The addition of smaller chains in system G does increase the packing fraction

to be above the range shown in systems A to D, again due to the small chains

ability to fit in gaps that the larger chains cannot, however as expected they

cannot fill in voids as well as single particles of the same size. Research has

also gone into the packing of binary mixtures of cylindrical particles3, mixing

particles with a height to diameter ratio (AR) of 1 with particles with an AR of 2

and 3 separately. It was found that as a higher percentage of AR 1 particles

were added to a system, the packing fraction increased for both the systems

containing AR 2 and AR 3. The AR 1 and AR 2 mixture showed a smaller

increase in packing fraction when increasing the percentage of AR 1 particles

present but had higher packing fractions than the AR 1 and AR 3 systems

overall. These patterns match other research carried out both in physical4 and

simulated5 experiments. As my binary mixture chain system contained chains

that did not differ by AR, being 3, but instead by the scale of their height and

diameters this data is useful to investigate but can not be directly compared to

my systems. Future runs on my model can be done to investigate particles with

different AR to see if similar patterns emerge.

6.3.3 Chain Angles

A new property that can be investigated within the chain systems is the angle

at which each chain is lying, with 0o being directly vertical, then -90o being lying

flat to the left and +90o being lying flat to the right.

Figure 6.7 shows histograms of the chain angles present in systems A to D.

Each graph shows a clear curve with two peaks, starting at the 50o to 55o mark

in System A and moving closer to 0o as the chains get longer, ending up at the

30o to 35o mark in System D. This shows the chains are becoming more

vertical the longer they become, which is likely due to the increased complexity

of the systems leading to less orderly packed systems, as a more ordered

system of chains would be made up of chains resting horizontal on top of each

other.

William Eales

125

The peaks at 90o exist as tan(90o) is an undefined value, therefore when the

calculations gave an error it was recorrected to be a 90o value, thus no

corresponding peak appears at the -90o mark.

William Eales

126

Figure 6.7: Histograms of the angles of chain placement across systems A to

D

There is also a peak in the [-10o, -15o] bin in each of the systems. This is due

to the large number base layer particles that are directly next to another particle

and leaning against it, having an angle of -14.48o, as shown in Figure 6.8. The

abundance of these chains comes from the setup of the base layer, as after

the model has run for a large number of times to try and fill the base layer, to

confirm it is filled, the model runs across the base layer from left to right looking

William Eales

127

for empty space, as discussed in section 3.1.2. This results in initial particles

being placed directly adjacent to horizontal chains, and when they tilt to the

left, have an angle of -14.48o. This could be fixed by increasing the counter

used when placing random particles, or by altering the algorithm to be able

particles landing on the edge of the box, instead of requiring an initial layer of

particles.

Figure 6.8: Base layer particles with angle -14o particles highlighted with a
red line marker.

William Eales

128

Figure 6.9: Histograms of the angles of chain placement across systems E

and F

The introduction of single particles in the chain systems, E and F, does not

appear to have much of an effect on the angle histograms with the peaks still

being at ± 30o to 35o. System F does not have a peak in the [-10o, -15o] bin,

as the small single particles are being used to fill in the gaps in the base layer,

meaning there is not an abundance of chains in the base layer resting at the

specific -14.48o angle.

William Eales

129

Figure 6.10: Histogram of angles of chain placement in system G overall

and separated by chain size

The system G histograms, Figure 6.10, shows the same pattern in its

histogram as is within systems A to D, though with the peaks being at ± 25o to

30o, showing the chains are more vertical than in the previous systems. This

is more vertical than system D just containing length 5 chains, showing that

the introduction of the smaller chains decreases the order of the system,

resulting in the chains being pushed further from a regular horizontal packing.

When looking at the angles of the chains in system G separated by size, the

previously observed pattern remains, with the smaller chains in these systems

creating the peak at -10o to -15o, as the smaller chains are used to fill in gaps

in the base layer if they are not filled randomly. Research on the angle of

cylinders resting in binary mixtures3 has been done, and found the opposite

William Eales

130

trend that was reported here, with the cylinders preferring to lay horizontal over

vertical. This is likely due to a few factors, including my systems being 2D and

the literature systems being 3D, the system size, with my systems still affected

by the finite size effect, and remaining issues within my code, such as what

leads to the peak at -14o. Were the code to be updated and system size

increased, my model would hopefully also follow the reported pattern, with

chains resting more horizontal than vertical.

6.4 Summary and Conclusions

The expansion of the algorithm allows us to investigate systems containing

particles that are closer to real needle-like particles, therefore it can be used

to make more accurate simulations compared to perfectly circular particles. It

was found that when small singular particles are added into a system of chain

particles, they reduce the size of clusters of those chain particles, which could

be used to lessen the effect of agglomeration in similar systems.

The packing fractions in the investigated systems remained consistent,

however with an increase when singular particles are added into the systems,

as noted in previous chapters, they are able to fit into the voids created by the

chains.

When investigating the angles of the chains within the investigated systems,

it was found that increasing the length of the chain caused the particles to

become more vertical, likely due to the increased complexity caused by larger

particle structures, moving the system away from a more ordered system with

chains lying horizontal on top of each other. The preference to vertical over

horizontal in my systems is potentially also due to the curved edges of

individual particles in the chains still being present, allowing new chains to rest

partway along them, instead of sliding along the chains to the edges and so

becoming more horizontal.

William Eales

131

Due to time constraints, these were the only systems that were able to be

investigated, however there are many more experiments that could have been

done given more time. Such as increasing the chain length further,

investigating a wider range of particle radii within the same system, as well as

chains that are made up of different sized particles instead of all the same.

This algorithm does give us a good starting point from which to further

investigate these systems, so going forward these additional systems would

also be looked into.

6.5 References

(1) Shuixiang, L., Zhao, J., Lu, P., and Xie, Y., Maximum packing densities of

basic 3D objects, Chinese Science Bulletin, 2010, 55(2), 114-119.

(2) Tangri, H., Guo, Y., and Curtis, J. S., Packing of cylindrical particles: DEM

simulations and experimental measurements, Powder Technology, 2017, 317,

72-82.

(3) Iniyatova, G., Yermukhambetova, A., Boribayeva, A., and Golman, B.,

Approximate packing of binary mixtures of cylindrical particles,

Micromachines, 2023, 14, 36.

(4) Zou, R., Lin, X., Yi, A., and Wong, P., Packing of cylindriocal particles with

a length distribution, Jounral of the American Ceramic Society, 1997, 80, 646-

652.

(5) Gan, J., and Yu, A., DEM Simulation of the packing of cylindrical particles,

Granular Matter, 2020, 22, 22.

William Eales

132

7 AstraZeneca Placement

During the fourth year of my PhD project, I spent 12 weeks on a placement

at the AstraZeneca1 Macclesfield campus, where I compared the commercial

Ansys Rocky DEM2 software with my own model, as well as then using the

commercial DEM software in a Design of Experiments (DoE)3 approach to

determine parameters for an AZ Compound.

AstraZeneca are currently in the early stages of investigating various DEM

modelling software packages, looking at which one best suits their needs at

various stages of chemical and pharmaceutical development and processing.

The main aim of my placement was to investigate Rocky DEM and its suitability

for use modelling AstraZeneca particles and processes. My personal aims for

this placement were to gain some professional experience working in an

industry setting, as well as being able to get hands on experience with industry

standard modelling software and be able to compare it to my own model.

Within the pharmaceutical industry Rocky DEM modelling software is used

to investigate behaviours of particles, such as particle breakage, with varying

particle sizes, and shapes in systems of different geometries.4

The parameters investigated were: the Basic Flowability Energy (BFE, mJ);

the Rolling Resistance (no units); the Static and Dynamic Friction Coefficients

(no units); the Young’s Modulus (Pa); and the Coefficient of Restitution (no

units). The BFE of a powder is a measure of its flow properties when it is in a

loosely packed state, in our case defined by the energy required for the mixing

blade to move downwards through the powder.5 This can be used to quantify

how changing various parameters of the particle affect how it flows. The Rolling

Resistance quantifies the resistance that occurs when a particle rolls, either

over another particle or a surface of the bounding box. The Static Friction

Coefficient measures the friction that exists between two surfaces whilst they

are at rest, whilst the Dynamic Friction Coefficient denotes how much friction

William Eales

133

will occur when two surfaces are sliding over one another. The Youngs’

Modulus is a measure of the elasticity of the particles, denoting how much a

particle shape will be affected by the forces being placed upon it. The

Coefficient of Restitution is the ratio between the final and initial relative speeds

between two particles after they have collided.

7.1 Familiarisation with Rocky DEM

As discussed in Section 2.2, there are multiple different types of models used

within computational sciences. For these experiments I am using a DEM

package called Ansys Rocky DEM. For new users of Ansys Rocky DEM, there

are a series of tutorials that guide the user through various examples to

familiarize them with the software and how to use it. Relevant topics include:

setting up equipment geometries; establishing particle interaction

characteristics; performing simulations and data visualization. Some of the

advanced topics address capabilities which are relevant to this research

including: particle addition; motion frames which allow geometries placed

within the system to move; wear arising from multiple particle impacts; and

particle breakage from an impact.

The Rocky DEM training material also included a workshop on creating

custom particle shapes including fibres and multiple particle sizes. Although

during my short industrial placement, I did not get the time to run simulations

using non-spherical shapes, it was useful to see how Rocky DEM handled

them, I was however able to use different sized particles in my Rocky

simulations.

Another useful element in the training material was a simulation of a conical

double screw vacuum dryer which involved multiple stacking motions, as

geometries were rotating on multiple axes, both vertically and rotationally, and

enabling thermal modelling within the system to see how the heat propagated

through the system.

William Eales

134

The Rocky training materials gave me a working understanding of the

software such that I could use it for simulations.

7.2 Comparing Rocky DEM with my model

My model uses a simpler algorithm, described in Chapter 3, compared to

Rocky DEM, with my model only simulating gravity when placing particles one

at a time. Rocky however involves many particles moving within the system at

the same time, and for each particle in each timestep has to identify that

particle’s neighbours, calculate the forces that they exert on each other,

whether through contacts, electrostatic forces, or other interactions, as well as

other forces present in the system, such as gravity, as shown in Equation 7.1.

∑ 𝐹𝑛𝑒𝑡 = ∑ 𝐹𝑏𝑜𝑑𝑦 + ∑ 𝐹𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = 𝑚
𝑑𝑣

𝑑𝑡
 (7.1)

where F is Force, m is mass and t is time.6

 Once all of these forces have been determined, they can be used to

calculate how they affect an individual particle’s velocity so the model can

calculate the position and rotation of that particle in the next timestep, based

on its old position and current new velocity, as shown in Equations 7.2 and 7.3.

𝑣𝑛𝑒𝑤 = 𝑣𝑜𝑙𝑑 + ∫
∑ 𝐹𝑛𝑒𝑡

𝑚
𝑑𝑡

𝑡+𝛥𝑡

𝑡
 (7.2)

𝑥𝑛𝑒𝑤 = 𝑥𝑜𝑙𝑑 + ∫ 𝑣𝑛𝑒𝑤 𝑑𝑡
𝑡+𝛥𝑡

𝑡
 (7.3)

where F is Force, m is mass, t is time, v is velocity and x is position.6

 These calculations are completed for every particle in the system, the

timestep iterated to the next one, and then the whole process repeated until

the simulation end time is reached or all particles have left the range of the

system. Note that in principle, the simulations conserve energy however

William Eales

135

frictional forces damp motions so that thermal energy of the particles must be

considered. Each Ansys Rocky DEM run used the Hysteretic Linear Spring

Model, first proposed by Walton and Braun7, which is an elastic-plastic

(repulsive and dissipative) normal contact model.6 The means that, unlike my

model, the particles are “soft” and can be compressed when coming into

contact with another particle. The model is implemented in Ansys Rocky DEM

using the following equations 7.4 and 7.5.

𝐹𝑛
𝑡 = {

min(𝐾𝑛𝑙𝑠𝑛
𝑡 , 𝐹𝑛

𝑡−∆𝑡 + 𝐾𝑛𝑢∆𝑠𝑛) if ∆sn ≥ 0

 max(𝐹𝑛
𝑡−∆𝑡 + 𝐾𝑛𝑢∆𝑠𝑛, 𝜆𝐾𝑛𝑙𝑠𝑛

𝑡) if ∆sn < 0
 (7.4)

∆𝑠𝑛 = 𝑠𝑛
𝑡 − 𝑠𝑛

𝑡−∆𝑡 (7.5)

where 𝐹𝑛
𝑡 and 𝐹𝑛

𝑡−∆𝑡 are the normal elastic-plastic contact forces at the current

time t and at the previous time t − ∆t, respectively, where ∆t is the timestep.

∆𝑠𝑛 is the change in the contact normal overlap during the current time,

otherwise described as the change in the size of the overlap between two

particles, illustrated in Figure 7.1. It is assumed to be positive as particles

approach each other and negative when they separate. 𝑠𝑛
𝑡 and 𝑠𝑛

𝑡−∆𝑡 are the

normal overlap values at the current and at the previous time, respectively.

𝐾𝑛𝑙 and 𝐾𝑛𝑢 are the values of loading and unloading contact stiffnesses,

respectively. λ is a dimensionless small constant. Its value in Ansys Rocky

DEM is 0.001. The part of the expression in which this constant is active

ensures that, during the unloading, the normal force will return to zero when

the overlap decreases to zero.6

William Eales

136

As Rocky incorporates many more parameters than my model, it can be used

to simulate much more complicated systems, but at the cost of having large

parameters spaces that can be complicated to explore. It also has the cost of

taking much more computational power and greater time to complete each run.

Each of the Rocky simulations was run on the AstraZeneca supercomputer

and took around one to three hours to complete each, with my model being

run on a on the ARCHIE-West supercomputer and each run taking around a

few minutes each.

7.2.1 Method of Particle Addition Comparison

Initial comparisons were completed between Rocky DEM and the model I

created, using the same scale between particle and box size, with one box

side being six particle diameters. Runs were completed in Rocky DEM using

both the volume and continuous fill methods to also be able to analyse the

difference between them.

The Volume fill method involves choosing a point within the system as an

origin point for the particles, which for my systems was the centre of the box.

Figure 7.1: Two particles overlapping during a simulation with the contact
normal overlap (Sn) labelled

Sn

William Eales

137

A particle is placed at this origin point, and then all subsequent particles are

placed attached to this origin particle to form a ball of particles. No forces are

accounted for during these additions, instead, once the model has added the

requested number of particles, the forces are applied to the system, and the

particles settle. Compared to this, the continuous fill method acts much more

similarly to my model, with each particle entering the system from a random

point in a designated inlet, which for my systems is the top of the box, and

forces are immediately applied to them so they can settle. In Rocky DEM,

multiple particles are added at the same time however, resulting in the

possibilities of impacts and interactions as the particles are falling, instead of

just once they impact the pre-existing bed.

The volume fill option was difficult to set up as it either overflowed over the

top of the box, or under-filled depending on which volume was set to be filled.

This problem was overcome by placing a solid lid over the top of the box, and

the volume fill set to overflow. Any particles outside of the lid were then not

counted in the calculations, and any particles that were initially overlapping

with the box lid were removed from the system at the simulation start, as shown

in Figure 7.2

The continuous option was much easier to set up as the inlet for the particles

to be added to the system from could be placed at the top of the box, acting

similarly to how my model functions.

The packing fractions of the systems were examined as a simple point of

comparison between the different types of particle addition in Rocky DEM, and

as a comparison to my model.

As shown in Table 7.1, across each of the systems investigated, the

continuous addition method had a higher packing fraction than the volume fill

method. This will be due to both the particles’ ability to pack whilst they are

being added in the continuous method, as in the volume fill method, all the

William Eales

138

particles are added in one go and then allowed to settle, which can cause gaps

to occur which would allow additional particles to fit, if all particles for that

system had not already been added.

Table 7.1: Packing fractions of systems created with different particle
addition methods and radii

Radii
Present

Particle Addition Method
Rocky Packing

Fraction
My Packing
Fractions

10
Volume Fill 0.439 ± 0

0.460 ± 0.007
Continuous Fill 0.461 ± 0.005

10, 20
Volume Fill 0.460 ± 0.004

0.497 ± 0.006
Continuous Fill 0.475 ± 0.007

10, 50
Volume Fill 0.436 ± 0.004

0.468 ± 0.006
Continuous Fill 0.466 ± 0.017

Figure 7.2: Continuous addition method (left) and Volume Fill addition

method (right)

The packing fractions across the volume fill methods are also very

consistent, with there being no differentiation between the repeats run in the

single sized particle system. This is due to the small size of the box limiting the

number of particles that can be placed around the initial centre particle,

causing systems which form to be largely the same, and in the case of the only

rp = 10 system, identical.

William Eales

139

Figure 7.2 shows the difference between the different types of particle

addition, with continuous addition filling closer to the top of the box, having a

higher packing fraction, and also not leaving additional particles outside it.

7.2.2 Model Packing Fraction Comparisons

As the continuous fill method is closer to how my model acts, and gives a

better representation of a system being filled by particles from above than the

volume fill method, it was the method used going forwards when comparing

the two models. Some additional runs were conducted looking at how the

different ways the particles were added in the continuous addition methods

can affect the speed of the simulation runs, in order to reduce time spent

waiting for them to be completed. Initially, particles were added in a consistent

speed from the start to end of the simulation. However, nearer the end of the

simulation, this resulted in the model attempting to add particles to the system

when there was no room, wasting processing time and causing the simulation

to take longer. Therefore, it was investigated what happened if particles were

not added nearer the end of the simulation when the box got too full. This

resulted in boxes that were not completely full as particles near the top were

still able to pack down once addition had been halted. The solution used to

correct this issue was to stagger the particle injections, to give each one some

time to settle so that they are not immediately in the way of the next group of

particles to be added.

Table 7.2: Comparison of packing fractions calculated for systems created by
Rocky DEM and our model

Radii Ratio
Present

Packing Fraction

Rocky DEM My Model

1 0.460 ± 0.005 0.460 ± 0.007

1:2 0.475 ± 0.007 0.497 ± 0.006

1:5 0.466 ± 0.017 0.468 ± 0.006

William Eales

140

In the Rocky DEM experiments, the ratios between the different radii, and

between the radii and box size, within the investigated systems were kept

consistent with the ones used within my model, and each radius having an

equal number of particles added to the system. The larger radius in each case

was also kept the same, so that the box size would remain consistent across

each of the simulation runs.

The values obtained by the Rocky DEM simulations and my model are very

similar, with the main difference coming in the rp = 10, 20 systems. The rp = 10

and rp = 10, 50 systems gave almost identical results, giving more confidence

in the reliability of my model, as it is consistent with this industry standard

software. The small differences will come from the randomness of particle

placement inherent in both systems, however the consistency shows that my

model is able to match up with the industry standard.

7.3 Edge Effects Investigation

Because the boxes sizes used in my model are rather small, Rocky DEM

was used to investigate the edge effects present on the packing fraction at

different sizes of box using one size of spherical particle. The packing fraction

was determined as a whole, and then individually for different sections of the

system, as shown in Figure 7.3. Note that some areas overlap, so some

particles are counted twice and areas are larger than their colours show. The

roof packing fraction is denoted by the area covered by red particles (and some

yellow particles), the wall packing fraction is denoted by the area covered by

yellow particles (and some pink particles), the floor packing fraction is denoted

by the area covered by pink particles, and the whole packing fraction uses the

area of the whole system. There is an additional section that cannot be seen

inside accounting for the centre packing fraction (which would be coloured

green), which starts where each of the floor, wall and roof areas end.

William Eales

141

The order of packing fractions from highest to lowest is expected to be: the

centre, the floor, the walls and then the roof, as the centre of the box has no

edge effects to be affected by. The floor and walls of the box are then the

edges where the effect will be less due to not being the point of entry, resulting

in the floor being the next most packed and the walls coming after that, as they

are partly affected by the roof area. Finally, the roof section would be expected

to have the lowest packing fraction as its largest surface area is affected by

the entry point of the particles, where the edge effects of the box will be at their

greatest. The overall packing fraction of the system would then be an

appropriate weighted average of these sections, as there is some overlap

between the areas and multiple walls areas to account for. This pattern is

confirmed by the data shown in Tables 7.3 and 7.4.

Figure 7.3: Rocky DEM systems created with different particle to box size
ratios. (a) 1:6 (b) 1:24 (c) 1:60

a) b)

c)

William Eales

142

Table 7.3: Comparison of packing fractions of different sections of particle
systems with different particle:box size ratios

Particle
Diameter

to Box
Width
Ratio

Box Section

All Wall Centre Roof Floor

1:6
0.461 ±
0.005

0.393 ±
0.029

0.611 ±
0.035

0.180 ±
0.017

0.464 ±
0.008

1:24
0.561 ±
0.002

0.548 ±
0.003

0.612 ±
0.002

0.419 ±
0.010

0.600 ±
0.002

1:60
0.588 ±
0.001

0.582 ±
0.001

0.609 ±
0.001

0.531 ±
0.005

0.604 ±
0.001

The systems used to test the edge effects contained same sized particles

equivalent to the small particles from our model systems. As the box size

increases, the majority of the packing fractions increase, with the exception of

the centre section, as it is not affected by the box size. The ordering of the

sections packing fractions still remains the same, though the values become

closer, and the overall packing fraction of the system starts to become closer

to the value of the centre of the box. The increase in wall and overall packing

fraction also comes from the decreased effect of the roof, as it is the area with

the lowest packing fraction due to it not getting completely filled. Therefore, as

the box gets taller, more area can be filled below the roof area increasing the

overall packing fraction of that section.

Using this data, a set of systems were created to investigate the effect of

particle size distribution, with a Particle:Box diameter ratio of 1:33 1/3, using the

larger particle diameter, as it is in between two higher values tested, however

it would not have as long a runtime as the 1:60 ratio systems, taking roughly

two hours each instead of four, as the time on my placement was a factor.

Once again, the number of particles of each size is 1:1.

William Eales

143

Table 7.4: Comparison of packing fractions of different sections of particle
systems with different particle size distributions

Radii
Ratio

Present

Box Section

All Wall Centre Roof Floor

1
0.576 ±
0.002

0.553 ±
0.003

0.610 ±
0.0004

0.371 ±
0.021

0.594 ±
0.001

1:2
0.592 ±
0.001

0.572 ±
0.002

0.626 ±
0.0004

0.379 ±
0.009

0.612 ±
0.002

1:5
0.576 ±
0.001

0.551 ±
0.002

0.613 ±
0.0003

0.342 ±
0.015

0.603 ±
0.001

Figure 7.4: Three systems created with different particle sizes present.
a) rp = 10, b) rp = 10, 20, c) rp = 10, 50

William Eales

144

When looking at the different sections of the box across the different

systems, they maintain the same pattern as previously shown. This is

expected as the size of the particles will not have any real interaction with the

edge effects, instead only affecting the packing fraction of the system as a

whole. Across the different systems, the packing fractions also showed the

same pattern as above, with an increase between the rp = 10 to rp = 10, 20

systems, and then a decrease to the rp = 10, 50 system. However, in these

cases, the rp = 10 and rp = 10, 50 systems are much closer together compared

to the smaller box systems, with some of the sections of the rp = 10, 50 system

having a smaller packing fraction than the respective area in the rp = 10

system.

7.4 Design of Experiments using Rocky DEM

The second part of my placement involved using Rocky DEM to determine

various properties of an AstraZeneca compound, referred to here as

Compound A. A Design of Experiments (DoE) approach was used to ensure

that the experiments performed gave useful outputs, instead of using a trial-

and-error approach. Within these simulations, we are modelling Compound A

as a spherical particle, as modelling the exact shape and size of it would take

longer than the placement would allow. For these purposes, MODDE DoE

software was used to take the inputted parameters and a starting value, shown

in Table 7.5, to produce a series of experiments, shown in Table 7.6, that would

give a good understanding of each parameters effect on the output value.

7.4.1 Parameter Setup

Five parameters were varied during our tests: which were the Rolling

Resistance; Coefficient of Restitution; Static and Dynamic Friction

Coefficients; and Young’s Modulus, using the values shown in Table 7.5. The

same values were used in each experiment for both the Static and Dynamic

Friction Coefficients. In future experiments, we would want to use a wider

William Eales

145

variety of parameters, and use different values for each of them, however the

first investigations were limited to these parameters, and had two of them

equal, due to time constraints.

Table 7.5: Range of parameter values used in the Design of Experiments
method

Parameter
Rolling

Resistance

Coefficient
of

Restitution

Static and
Dynamic Friction

Coefficients

Young’s
Modulus

(Pa)

Values
0.125, 0.15,

0.175
0.1, 0.2, 0.3 0.175, 0.2, 0.225

9e6, 1e7,
1.1e7

The simulations were done modelling a Freeman Rheometer (FT4)8, which

is a small-scale powder rheometer that has been widely adopted in the

pharmaceutical sector, shown in Figure 7.5, to calculate the BFE of Compound

A, which can also be determined through laboratory experiments. Therefore,

we can compare the model’s output to the physically measured value to

determine if the values for the tested parameters are possibly valid. The

simulation involves filling the cylinder with the testing particles, and then the

mixing blade pressing downwards whilst rotating.

Figure 7.5: The FT4 system geometries used
within Rocky DEM

William Eales

146

7.4.2 BFE Results

Table 7.6 shows each of the experiments run and the BFE calculated from

them. The BFE is a measure of the flowability of the powder whilst it is being

forced to move, in this case by the energy required for the mixing blade to

move downwards. Only one run was completed per set of parameters due to

the time constraint on my placement, however more simulations per set would

be run usually to get a better understanding of each parameter’s influence on

the BFE output.

Table 7.6: Simulation runs completed and parameter values used

Run
Number

Rolling
Resistance

Coefficient
of

Restitution

Static and
Dynamic Friction

Coefficients

Young’s
Modulus

(Pa)

BFE
(mJ)

1 0.125 0.1 0.175 9.00E+06 365

2 0.175 0.1 0.175 9.00E+06 432

3 0.125 0.3 0.175 9.00E+06 357

4 0.175 0.3 0.175 9.00E+06 427

5 0.125 0.1 0.225 9.00E+06 466

6 0.175 0.1 0.225 9.00E+06 634

7 0.125 0.3 0.225 9.00E+06 446

8 0.175 0.3 0.225 9.00E+06 612

9 0.125 0.1 0.175 1.10E+07 425

10 0.175 0.1 0.175 1.10E+07 534

11 0.125 0.3 0.175 1.10E+07 416

12 0.175 0.3 0.175 1.10E+07 505

13 0.125 0.1 0.225 1.10E+07 532

14 0.175 0.1 0.225 1.10E+07 716

15 0.125 0.3 0.225 1.10E+07 532

16 0.175 0.3 0.225 1.10E+07 739

17 0.15 0.2 0.2 1.00E+07 503

18 0.15 0.2 0.2 1.00E+07 527

19 0.15 0.2 0.2 1.00E+07 501

20 0.15 0.2 0.2 1.00E+07 512

By looking at how the output BFE value was affected across each

experiment, the MODDE DoE software can determine the influence each

parameter has on the BFE value, as well as any influence the interaction

William Eales

147

between parameters may have. Parameters that do not have an influence on

the BFE output are removed from the calculations, refining all the parameters

relationships to the BFE output to Equation 7.6. It can then use this to calculate

a point within the ranges tested that satisfy our desired BFE for Compound A

of 542.23 mJ, shown as value set 1 in Table 7.7. The value of 542.23 mJ was

previously determined in laboratory experiments, so we can therefore use this

value to determine if the simulation is accurately modelling Compound A. An

equation to calculate the BFE can also be determined, including coefficients

for each of the parameters tested based on their influence on the final BFE,

determined by how big a change in the BFE value each parameter caused.

𝐵𝐹𝐸 = −5174.26𝑟𝑟 − 2825.76𝑓 + 4.13899𝑒−5𝑦 + 39127.7(𝑟𝑟 ∗ 𝑓) + 0𝑐𝑟 +

 262.533 (7.6)

𝐵𝐹𝐸 = −5174.26𝑟𝑟 − 2825.76𝑓 + 4.13899𝑒−5𝑦 + 39127.7(𝑟𝑟 ∗ 𝑓) + 262.533

 (7.7)

 where BFE is the Basic Flowability Energy, rr is the Rolling Resistance,

f is the Static and Dynamic Friction Coefficients, cr is the Coefficient of

Restitution and y is the Young’s Modulus.

Equation 7.6 shows that the Rolling Resistance and Static and Dynamic

Friction coefficients had a large influence on the BFE, with the Young’s

Modulus having a small influence and the Coefficient of Restitution having no

influence. The interaction between the rolling resistance and the friction

coefficients was also determined to have an influence. This is shown by the

coefficients in the equation for the parameters that have a high influence being

in the order of 104 and 105, whereas the parameters with a small influence had

a coefficient in the order of 10-5 and 0. For each of these influential parameters,

a higher value results in a higher BFE. This fitted equation has an R2 value of

0.99 and a Q2 value of 0.97, showing that there is a high measure of both the

model’s fit and predictability. R2, also known as R-squared, is a measure of

William Eales

148

the variance of a dataset, with a value ranging from 0 to 1. A value closer to 1

denotes that there is less variance within the dataset, and a value closer to 0

denotes that there is a large degree of variance. Our value of R2 being 0.99 in

this dataset shows that the variance is minimal, and changes to the outputs

are based upon our changing of the parameters and not random chance. Q2,

also known as Q-squared, is a measure of the predictive relevance of a model,

with a positive value denoting good predictive relevance. Our Q2 value of 0.97

shows that this model has predictive relevance.9 This equation is only valid

within the specific parameter ranges tested as part of the DoE runs, stated in

Table 7.5, however as the target value is within this range it does not matter.

Equation 7.7 shows a simplified form of equation 7.6, removing the parameters

that had no influence on the calculation.

Runs 17 to 20 were completed using the midpoints for the range of values

used for each parameter. These repeats were performed to ensure the BFE

values obtained were consistent with each other when the parameter values

were kept the same, as there is inherent randomness within the simulations

from the particle placements, and the calculations that stem from it. Therefore,

ensuring that the data gained from the repeats are similar enough, even given

these changes between simulations, means that we can trust the simulations

and know that variations in the outputs are due to the effect of changing

parameters, rather than just a random event in a simulation. These repeats

gave an average of 511 ± 10.3, giving a variance of just under 2%.

7.4.3 Value Confirmation

Three sets of values were then calculated using Equation 7.6, as shown in

Table 7.7, that should give the target BFE of 542 mJ, then FT4 model

simulation runs were completed using these sets of values to see if the

simulation and equation values were the same.

William Eales

149

Table 7.7: "Solution" parameter sets and their determined BFE

Value
Set

Rolling
Resistance

Coefficient
of

Restitution

Static and
Dynamic
Friction

Coefficients

Young’s
Modulus

(Pa)

Equation
BFE (mJ)

Simulation
BFE (mJ)

1 0.156334 0.3 0.212233 9.3264e6
538.05 529.72 ±

10.4

2 0.157 0.3 0.213 9.33e6
542.92 511.14 ±

13.8

3 0.16 0.3 0.21 9.33e6
542.10 534.11 ±

8.50

Three repeats were completed for each of the value sets, and the average

BFEs determined. There was some variance between each of the runs for the

data parameter values due to the randomness that can occur in the system,

which is consistent with the previous repeats, however Sets 1 and 3 both gave

values close to the desired output. Run 2 gave consistently lower BFE values

than anticipated, even with the equation stating it should have been close to

542 mJ, showing that there are likely more interactions at play than our current

series of experiments account for. Given more time, a larger range of values

would have been used across more variables, to be able to investigate the

effect of as many parameters as possible and looking for valid values within a

larger range, instead of focusing on a narrower area.

As there were many sets of values that can satisfy the expected BFE

condition, we then used these values to simulate a test to calculate the Angle

of Repose (AoR) of Compound A, another property which can be readily

compared to an experimentally measured value. The simulations involved

filling a cylinder with our particles, then slowing raising the cylinder, allowing

the particles to form a pile on a platform below it, as shown in Figure 7.6. Five

William Eales

150

repeats were completed for each of the value sets identified in Table 7.7, and

the angles calculated are shown in Table 7.8.

Each simulation gave two angles, one calculated from the bottom of the pile

and one calculated from the top, as illustrated in Figure 7.7. To calculate the

angle, a line is drawn across the pile of particles, and the maximum height at

set intervals across the line is calculated. The line then rotates 10o around the

y-axis (normal to the platform) and the heights collected again. This is repeated

until the line has rotated a full 360o and is back in its starting rotation.

The black dots in Figure 7.7 represent the average of the maximum heights

at each of the intervals used. The light red area is the maximum of the

maximum heights found, with the dark red area being the minimum of the

Figure 7.7: Example particle system with labelled Angles of Repose
from Ansys Rocky DEM

Figure 7.6: A cylinder of particles before and after it has been lifted to
allow the particles to settle forming a heap.

William Eales

151

maximum heights found. Using the average maximum heights, the angles are

then calculated, as shown by the fitting lines.

Table 7.8: The Angles of Repose calculated for each of the parameter value
sets tested

Value Set
Bottom AoR

(o)
Top AoR (o)

1 14.9 ± 1.8 18.9 ± 0.9

2 14.7 ± 2.4 18.2 ± 1.2

3 17.2 ± 1.9 20.0 ± 2.3

The values calculated by the model can then be compared with the

laboratory value to determine which parameter value sets are closest.

Alongside the data from the BFE experiments, the values can be checked to

see which ones satisfy both tests. The laboratory values for the AoR for

Compound A were not able to be obtained before the end of my project,

however these data can still be used for comparison once the data is available.

7.5 Summary and Conclusions

At this point my placement came to an end, however a discussion was had

about how this work would be used by AstraZeneca going forward. More

conditions would be required to confirm the parameter values as only two

conditions, being the BFE and AoR, do not give enough confidence in the

values generated by Ansys Rocky DEM. Other possible confirmation

experiments could be Ring Shear Tests10 or Granudrum11 equipment testing

for powder cohesion. This would be the next stage for AstraZeneca going

forward to further confirm the data values for the parameters we have tested,

as well as testing as many other parameters as possible, to increase the

confidence in the parameter values determined. Once a full set of model

parameters are obtained, simulation of Compound A would be possible.

William Eales

152

The Design of Experiments method was useful for having a predetermined

set of experiments to run instead of taking a trial-and-error approach, as it gave

more structure to the workflow. It also allowed us to properly investigate and

determine the effects of each parameter, instead of just finding a value set that

satisfied our condition.

The comparisons between my model and Rocky DEM showed them

producing very similar packing fraction data, showing the same trend across

different particle size distributions. This increases my confidence in the

accuracy of my model, as it compares with professionally made software.

7.6 References

(1) AstraZeneca. https://www.astrazeneca.co.uk/ (accessed 2023).

(2) Ansys Rocky DEM. https://www.ansys.com/en-gb/products/fluids/ansys-

rocky (accessed 2023).

(3) American Society for Quality: Design of Experiments.

https://asq.org/quality-resources/design-of-experiments (accessed 2023).

(4) Chiaravalle, A., G., Cotabarren, I., M. and Pina, J., DEM breakage

calibration for single particle fracture of maize kernels under a particle

replacement approach, Chem. Eng. Res. Des., 2023, 195, 151-165.

(5) Freeman, F., Measuring the flow properties of consolidated, conditioned

and aerated powders — A comparative study using a powder rheometer and

a rotational shear cell, Powder Technology, 2007, 174, 25-33.

(6) ESSS Rocky, Release 2021 R2.2, DEM Technical Manual, ESS Rocky

DEM, S. R. l., 2021.

(7) Walton, O., R., and Braun, R., L., Viscosity, granular-temperature, and

stress calculations for shearing assemblies of inelastic, frictional disks. Journal

of Rheology, 1986, 30, 948–980.

(8) Freeman Technology, https://www.freemantech.co.uk/powder-testing/ft4-

powder-rheometer-powder-flow-tester/external-variables (accessed 2023).

https://www.astrazeneca.co.uk/
https://www.ansys.com/en-gb/products/fluids/ansys-rocky
https://www.ansys.com/en-gb/products/fluids/ansys-rocky
https://asq.org/quality-resources/design-of-experiments
https://www.freemantech.co.uk/powder-testing/ft4-powder-rheometer-powder-flow-tester/external-variables
https://www.freemantech.co.uk/powder-testing/ft4-powder-rheometer-powder-flow-tester/external-variables

William Eales

153

(9) Research with Fawad, https://researchwithfawad.com/index.php/lp-

courses/basic-and-advance-data-analysis-using-smart-pls/understanding-r-

square-f-square-and-q-square-using-smart-pls/ (accessed 2024).

(10) American Society for Testing and Materials. https://www.astm.org/d6467-

21e01.html (accessed 2023).

(11) Granutools: GranuDrum. https://products.granutools.com/granudrum

(accessed 2023).

https://researchwithfawad.com/index.php/lp-courses/basic-and-advance-data-analysis-using-smart-pls/understanding-r-square-f-square-and-q-square-using-smart-pls/
https://researchwithfawad.com/index.php/lp-courses/basic-and-advance-data-analysis-using-smart-pls/understanding-r-square-f-square-and-q-square-using-smart-pls/
https://researchwithfawad.com/index.php/lp-courses/basic-and-advance-data-analysis-using-smart-pls/understanding-r-square-f-square-and-q-square-using-smart-pls/
https://www.astm.org/d6467-21e01.html
https://www.astm.org/d6467-21e01.html
https://products.granutools.com/granudrum

William Eales

154

8 Conclusions and Future Work

8.1 Summary and Conclusions

Over the course of the project multiple algorithms have been produced to

investigate particle packing, in both 2D and 3D, and with spherical and non-

spherical particles. Initial investigations were done into these systems,

comparing them to systems created by other models and the expected

mathematical answers to the properties, such as minimum/maximum packing

fractions.

Comparisons were made between the packing of the 2D and 3D systems

that were produced, containing single-sized particles, against previously

calculated values of packing fractions for perfectly packed structures, and

those created under different algorithms. It was found that my system’s

packing fraction values fell within the expected range, as they were less than

the most ordered system, as my systems have a degree of randomness, and

were above the packing fractions of RSA systems, where the circles are not

under as many constraints as within my systems therefore pack less efficiently.

Initial investigations were also made into the number of contacts each particle

had compared to the expected amount, four in 2D and six in 3D, with this being

mostly shown in the data however it was greatly affected by the box size

therefore further investigation with larger systems sizes is needed.

An improvement was made to the model to allow chain particles to be created

within the systems. The packing fractions were found to be rather consistent,

especially compared to the single particle systems, and an expected increase

when single void-filling particles were added into the systems. The angles of

the chains were also determined, and it was found that as the chains became

longer, the particles tended to rest more vertically.

William Eales

155

The model was also compared to Industry standard software, Rocky Ansys

DEM, and it was found that when similar systems were created in both models,

the data found was very similar. This gives a lot of confidence in the outputs of

my model as they are being corroborated by modelling software that has been

used in many different scientific studies.

Once consistent note throughout each of the systems was the effect of the

size of the box on the outputs. As these were only initial tests, the box sizes

were often limited by the project duration, or the capabilities of the model at

the time. Now the model has improved, investigations into larger systems are

possible in future projects. The evidence presented provides confidence in

these algorithms such that they can be used in future work to investigate these

structures further and the model can be further improved to investigate a wider

range of systems and properties.

The research completed through this project has given some more insight

into the packing of spherical shapes when placed under gravity, as well as

some investigation into non-spherical shapes. This aids other research

completed into these topics and the completion of this model allows another

avenue into further investigation into both these questions, as well as, once

the model has had more features implemented, further areas within this topic.

The creation of this model allows for more direct research into the packing of

the systems it creates. Due to its simplicity, the model could be applied to a

variety of different fields, beyond the initial pharmaceutical base it was created

for, as with no defined scale the particle could be any size the researcher

wants, e.g. larger for use in soil sciences. It is also an easy base to build on,

compared to editing more complex modelling software or creating new

forcefields, so can again be tailored for a variety of applications.

Some of the project objectives were achieved with the completion of the

current algorithms, however preferably the 3D chains algorithm would have

been completed, along with the upgraded version of the contact breakage

William Eales

156

algorithm. Details of these plans and other future work are discussed in the

next section.

8.2 Future Work

As this project has created the basis of a modelling system, there are many

various applications for it going forward beyond my project.

Some of the most obvious are continuations of work that has been started

as part of my project but could not be investigated to the extent that would be

wanted, such as the investigation into the contact forces present between

particles. The 3D non-spherical particle algorithm could be finalised, so that

initial property investigations, as have been done for 2D and 3D spherical

particle structures, can be completed. In addition, it would be preferable if the

spherical basis of the chain particles could be removed to be able to model

smooth edged particles. One way this could be approached with the current

method is to increase the amount by which the circular particles, that make up

a chain, overlap, to create a smoother surface.

Further work could be done to gain a larger range of data in 2D systems,

investigating the effects, if any, of percolation structures and particle size

distribution on how the bed breaks apart. The algorithm could also be

expanded to be able to handle 3D structures and non-spherical particle

structures.

Further investigation of some of the phenomena observed during the initial

tests of the model, such as looking at the path that a small particle takes

through a bed formed of larger particles would be desirable. This could also

help to investigate fluid paths through the bed. As part of potentially

investigating fluids, additional dynamics would be added to the model, such as

solvent effects, and particles being affected by friction as they are settling.

William Eales

157

Experimental work could also be done alongside the model systems created,

one of which would be to build on recent unpublished work undertaken using

the Diamond Light Synchrotron to gather images of packed systems that can

be compared against those that the model produces. Breakage tests can also

be done to see how systems break apart under stresses to compare to our

breakage algorithm.

As the scales of the particles is separate from the units used, the particles

could be any size that the user desires them to be. For example, the model

could be used within soil sciences to model the settling of larger particulates

than would be investigated in the pharmaceutical industry.

William Eales

158

Appendix 1: 2D System Algorithm

This appendix contains the algorithm used for creating 2D systems.

 module allSubs ! Initialises the variables used through all functions
 character, dimension (:,:), allocatable, public :: RA*4
 integer, dimension (:,:), allocatable, public :: RAMolClose
 integer MolNo, RadLarge, RadSmall, BoxSize, GridSize, Rads, count, SN, Full,
FullCount
 integer MLr, AllocateVal, RoofCount
 real MLxReal, MLyReal
 integer, dimension (:,:), allocatable, public :: Ones
 integer, dimension (:,:), allocatable, public :: Contacts
 dimension MLr(10000), Rads(10), MLxReal(10000), MLyReal(10000)
 logical FullCheck, Hit, RoofHit, StartPlace
 integer x, y, Long, Tall, RadT
 end module allSubs

 program packedbed
 use allSubs ! Loads the variables from the module

 ! Initialises local variables
 character t, FileName*15, FileID*3
 integer m, n, check, PrintNo, ProgCount, PCId, count3
 dimension FileID(1000)
 real Rand, Dist
 integer count2, RadTnew, TotLength
 logical Finished, Cont, Impact

 StartPlace = .TRUE.

 t = 'y'

 if (t == 'y') then
 Rads(1) = 10 ! Sets the radius of a particle. Additional radii would be
inputted as Rads(x) = 'Radius'
 SN = 1 ! Sets the number of different radii in the system

 RadLarge = 0
 RadSmall = 0

 do count = 1, SN
 if (RadLarge < Rads(count)) then
 RadLarge = Rads(count)
 end if
 if (RadSmall > Rads(count) .or. RadSmall == 0) then
 RadSmall = Rads(count)
 end if
 end do

 RadLarge = 10
 RadSmall = 10

William Eales

159

 ! Calculates the box size based on the largest radius present
 BoxSize = (RadLarge*6)
 GridSize = BoxSize*5
 AllocateVal = ((BoxSize*3)**2)*2

 ! Allocates the arrays
 allocate(RA(1:GridSize, 1:GridSize))
 allocate(RAMolClose(1:GridSize, 1:GridSize))

 allocate(Ones(1:AllocateVal,1:2))

 do ProgCount = 1, 50
 write(FileID(ProgCount), '(i0)') ProgCount
 end do

 do ProgCount = 1, 50 ! Starts the loop for the number of systems to be created

 ! Sets variables initial values
 MLxReal = 0
 MLyReal = 0
 MLr = 0

 TotLength = 0
 MolNo = 1
 FileName = ''
 Full = 0
 check = 0
 FullCount = 0
 Finished = .FALSE.

 Ones = 0

 RA = '0'
 RAMolClose = 0

 RoofCount = 0
 RoofHit = .FALSE.

 call random_seed()

 do while (count < 10000000)

 Impact = .FALSE.

 ! Picks a random radius and x coordinate, and sets y to be on
the bottom of the box
 call random_number(RX)
 count2 = 1 + floor(SN*RX)
 RadT = Rads(count2)

 call random_number(RX)
 count2 = 1 + floor((GridSize-(2*RadT))*RX)
 x = count2+RadT

 y = RadT

William Eales

160

 if (MolNo > 1) then ! Checks there is already at least
one particle in the system
 hitloop: do count3 = 1, MolNo - 1
 Dist = ((MLxReal(count3)-
x)**2)+((MLyReal(count3)-y)**2)
 Dist = sqrt(Dist)
 if (Dist <= ((RadT*2)+(Mlr(count3)))) then
 count = count + 1
 Impact = .TRUE.
 exit hitloop
 end if
 end do hitloop
 if (Impact .eqv. .FALSE. .and. x <= GridSize-
(RadT*2)) then ! If the particle is not overlapping with any others and is inside the grid, its
location is saved
 count = 0
 MLxReal(MolNo) = x
 MLyReal(MolNo) = y
 MLr(MolNo) = RadT
 MolNo = MolNo + 1
 end if
 else
 MLxReal(MolNo) = x
 MLyReal(MolNo) = y
 MLr(MolNo) = RadT
 MolNo = MolNo + 1
 end if
 end do

 ! This loops through the base line to check that there is nowhere a
small particle could fall through to the bottom of the box, and if so, places a particle there
 do m = RadSmall, GridSize-RadSmall
 RadT = RadSmall
 Impact = .FALSE.
 hitloop2: do count3 = 1, MolNo - 1
 Dist = ((MLxReal(count3)-m)**2)
 Dist = sqrt(Dist)
 if (Dist < ((RadSmall)+(Mlr(count3)))) then
 count = count + 1
 Impact = .TRUE.
 exit hitloop2
 end if
 end do hitloop2
 if (Impact .eqv. .FALSE.) then
 count = 0
 MLxReal(MolNo) = m
 MLyReal(MolNo) = RadSmall
 MLr(MolNo) = RadSmall
 MolNo = MolNo + 1
 end if
 end do

 StartPlace = .FALSE.

 do n = 1, 2500 ! Loops for each particle being added to the system,
using the main function. At the end of each loop, it checks if the box is full and if so, leaves the
loop.

William Eales

161

 call molpos
 if (Full == 1) then
 exit
 elseif (RoofHit .eqv. .TRUE.) then
 exit
 end if
 end do

 t = 'y'
 if (t == 'y' .and. RoofHit .eqv. .TRUE.) then ! Saves the particle
locations to a file
 FileName = ''
 FileName = trim(adjustl(FileID(ProgCount))) // '.csv'
 open(1, file = FileName, status = 'new')
 do y = 1, MolNo-1
 write(1,*) MLxReal(y), ',' , MLyReal(y), ',' , MLr(y)
 end do
 close(1)
 end if

 t = 'y'
 if (t == 'y' .and. RoofHit .eqv. .TRUE.) then ! Saves the particle
contacts to a file
 allocate(Contacts(1:MolNo, 1:MolNo))
 Contacts = 0
 do y = 1, MolNo-1
 n = 1
 do x = 1, MolNo-1
 if (x /= y) then
 Dist = ((MLxReal(y) -
MLxReal(x))**2) + ((MLyReal(y) - MLyReal(x))**2)
 Dist = sqrt(Dist)
 if (Dist <= (MLr(y) + MLr(x) + 0.01))
then
 Contacts(y,n) = x
 n = n + 1
 end if
 if (n > TotLength) then
 TotLength = n
 end if
 end if
 end do
 end do

 FileName = ''
 FileName = 'contacts' // trim(adjustl(FileID(ProgCount))) //
'.csv'
 open(3, file = FileName, status = 'new')
 do y = 1, MolNo-1
 do x = 1, TotLength
 write(3,'(I4,A1,X)', advance='no')
Contacts(y,x), ','
 end do
 write(3, *) ''
 end do
 close(3)
 deallocate(Contacts)

William Eales

162

 end if
 end do
 end if

 end program

 subroutine molpos
 use allSubs ! Loads the variables from the module

 ! Sets up the local variables
 integer count2, Spot, Height, DoubRad, RowRad, a,b,c, RadIn, m, n, TempX, TempY
 real Rand, MidWay, Dist
 character t, FileName*15
 integer SavIncremX, SavIncremY, SafeLocCount, LR, SavOneX, SavOneY, SavDist,
SavOnePart, LRNo, OneCount, RealPos1, RealPos2
 integer TempRealPos1, TempRealPos2
 logical SafeLocFound, ResetCheck
 real TempXa, TempXb, TempYa, TempYb, DistAB, DistBC, DistAC, AngleA, AngleB,
AngleFin, GradFin, HelpDist
 real FDistA, FDistB, FDistC, FDistD
 real xDiff, yDiff, FinalSavX, FinalSavY
 integer FinalSavLong, FinalSavTall, checktime, Balanced
 integer Balances, Touches
 dimension Balances(10)
 real DistFac, RadScale
 integer NewPos, TRP1Swap, TRP2Swap
 integer FinalPart, SideCount
 dimension FinalPart(2,3)
 real PartCoords, stochDists, sumDist, dx, stochxnew, newCoords, stochynew
 integer ibad
 dimension PartCoords(2,2), stochDists(2), newCoords(2), dx(2), stochxnew(2)
 real RX, NewX, NewY
 logical ChainAdd
 real OverDist
 integer OverDistNo
 logical NotBal, FirstBal
 dimension BalCheckNo(10000), BalCombi(100000,2)
 integer BalCheckCount, BalCount, BalCheckNo, BalCombi, BalAttempt
 integer OverlapCount
 logical EdgeCase, FirstEdge
 integer EdgeCombi, EdgeCount, EdgeAttempt
 dimension EdgeCombi(10000)
 real Dy, intC, CheckY

40 CONTINUE

 if (FullCount == 2500000) then
 Full = 1
 end if

 ! Setting initial values of variables
 Hit = .FALSE.
 ResetCheck = .FALSE.
 checktime = 1
 Balanced = 0
 Touches = 0

William Eales

163

 Balances = 0

 Dy = 0
 intC = 0
 CheckY = 0

 EdgeAttempt = 0
 EdgeCount = 0
 EdgeCombi = 0
 EdgeCase = .FALSE.
 FirstEdge = .TRUE.

 FinalPart = 999999
 OverDist = 0
 OverDistNo = 0

 OverlapCount = 0

 TRP1Swap = 0
 TRP2Swap = 0

 ChainAdd = .FALSE.

 NotBal = .FALSE.
 FirstBal = .TRUE.
 BalCheckNo = 0
 BalCombi = 0
 BalCheckCount = 0
 BalCount = 0
 BalCheckNo = 0
 BalCombi = 0
 BalAttempt = 0

 RadScale = 0
 TempRealPos1 = 0
 TempRealPos2 = 0
 DistFac = 0
 FDistA = 0
 FDistB = 0
 FDistC = 0
 FDistD = 0
 SavDist = 0
 SavOneX = 0
 SavOneY = 0
 TempXa = 0
 TempXb = 0
 TempYa = 0
 TempYb = 0
 DistAB = 0
 DistBC = 0
 DistAC = 0
 AngleA = 0
 AngleB = 0
 AngleFin = 0
 GradFin = 0
 xDiff = 0
 yDiff = 0

William Eales

164

 NewPos = 0

 FinalDists = 0

 PartCoords = 0
 stochDists = 0
 sumDist = 0
 dx = 0
 stochxnew = 0
 newCoords = 0
 stochynew = 0

 ! Randomly chooses which radius will be used for this particle
 call random_number(Rand)
 RadScale = RadLarge/RadSmall
 RadScale = RadScale + 1
 count2 = 1 + floor(2*Rand)
 if (count2 == 2) then
 RadT = RadLarge
 else
 RadT = RadSmall
 end if

 wloop: do while (Hit .eqv. .FALSE.) ! The loop to place particles

 ! Randomly chooses the x value
 call random_number(Rand)
 Spot = 1 + floor((GridSize-(2*RadT))*Rand)
 x = Spot+RadT

 do y = GridSize, RadT, -1 ! Loops from the top of the box, and sends to
the function to determine impact
 Long = (x/BoxSize)+1
 Tall = (y/BoxSize)+1

 call PointSafe

 ! If the box is full or an impact has occured, the loop is exited

 if (Full == 1) then
 exit wloop
 end if
 if (FullCheck .eqv. .TRUE.) then
 RoofHit = .TRUE.
 GO TO 10
 end if

 if (Hit .eqv. .TRUE.) then
 exit wloop
 end if
 end do
 end do wloop

 if (Hit .eqv. .TRUE. .and. Full /= 1) then
 if (MolNo > 1) then
 RA = '0'
 RAMolClose = 0

William Eales

165

 ! Sets up the variables to be used for particle placement

 Ones = 0
 OneCount = 1

 do a = 1, MolNo - 1 ! Loops through the particles for contour plot
placement
 MLxCor = MLxReal(a)
 MLyCor = MLyReal(a) ! Takes the radius, x and y coordinates
of the current particle in the loop
 RadIn = Mlr(a)

 DoubRad = (RadIn+RadT)+1
 do Height = 0, RadIn ! Draws the particle onto the contour
plot, "-"s marking blocked locations, "1"s being valid spots
 MidWay = RadIn**2 - Height**2
 RowRad = abs(sqrt(MidWay))
 if (MLxCor+Height<=GridSize-RadT .and.
MLyCor+RowRad<=GridSize .and. MLyCor-RowRad>=RadT .and. MLxCor-Height<=RadT)
then
 RA(MLyCor+RowRad, MLxCor+Height) = '-'
 RA(MLyCor-RowRad, MLxCor+Height) = '-'
 RA(MLyCor+RowRad, MLxCor-Height) = '-'
 RA(MLyCor-RowRad, MLxCor-Height) = '-'
 end if
 do count2 = -RowRad,RowRad
 if (MLxCor+Height<=GridSize-RadT .and.
MLyCor+count2<=GridSize .and. MLxCor-Height>=RadT .and. MLyCor+count2>=RadT) then
 RA(MLyCor+count2,
MLxCor+Height) = '-'
 RA(MLyCor+count2, MLxCor-
Height) = '-'
 end if
 end do
 end do

 do Height = 0, DoubRad ! Draws locations around the current
particle that are too close for the new particle to be added due to overlap
 MidWay = DoubRad**2 - Height**2
 RowRad = abs(sqrt(Midway))
 do count2 = -rowrad+1, rowrad-1
 if (MLyCor+count2<=GridSize .and.
MLxCor+Height<=GridSize-RadT .and. MLyCor+count2>=RadT .and.
MLxCor+Height>=RadT) then
 RA(MLyCor+count2,
MLxCor+Height) = '-'
 end if
 if (MLyCor+count2<=GridSize .and.
MLxCor-Height<=GridSize-RadT .and. MLyCor+count2>=RadT .and. MLxCor-
Height>=RadT) then
 RA(MLyCor+count2, MLxCor-
Height) = '-'
 end if
 end do
 end do

William Eales

166

 do Height = -RadIn, RadIn
 do count2 = MlyCor-1, 1, -1
 if (count2<=GridSize .and.
MLxCor+Height<=GridSize-RadT .and. count2>=RadT .and. MLxCor+Height>=RadT) then
 RA(count2, MLxCor+Height) = '-'
 end if
 end do
 end do

 do Height = -DoubRad, 0 ! Adds the valid
spots for the resting particle to be placed
 MidWay = DoubRad**2 - Height**2
 RowRad = abs(sqrt(Midway))
 if (MLyCor+RowRad<=GridSize .and.
MLxCor+Height<=GridSize-RadT .and. MLxCor+Height>=RadT .and.
MLyCor+RowRad>=RadT) then
 if (RA(MLyCor+RowRad, MLxCor+Height)
/= '-') then
 RA(MLyCor+RowRad,
MLxCor+Height) = '1'
 RAMolClose(MLyCor+RowRad,
MLxCor+Height) = a
 end if
 end if
 if (MLyCor-RowRad>=RadT .and.
MLxCor+height<=GridSize-RadT .and. MLxCor+height>=RadT .and. MLyCor-
RowRad<=GridSize) then
 if (RA(MLyCor-RowRad, MLxCor+Height) /=
'-') then
 RA(MLyCor-RowRad,
MLxCor+Height) = '1'
 RAMolClose(MLyCor-RowRad,
MLxCor+Height) = a
 end if
 end if
 if (MLyCor+RowRad<=GridSize .and. MLxCor-
Height<=GridSize-RadT .and. MLxCor-Height>=RadT .and. MLyCor+RowRad>=RadT) then
 if (RA(MLyCor+RowRad, MLxCor-Height) /=
'-') then
 RA(MLyCor+RowRad, MLxCor-
Height) = '1'
 RAMolClose(MLyCor+RowRad,
MLxCor-Height) = a
 end if
 end if
 if (MLyCor-RowRad>=RadT .and. MLxCor-
height<=GridSize-RadT .and. MLxCor-height>=RadT .and. MLyCor-RowRad<=GridSize)
then
 if (RA(MLyCor-RowRad, MLxCor-Height) /=
'-') then
 RA(MLyCor-RowRad, MLxCor-
Height) = '1'
 RAMolClose(MLyCor-RowRad,
MLxCor-Height) = a
 end if
 end if
 do count2 = -RowRad, RowRad

William Eales

167

 if (MLyCor+count2<=GridSize .and.
MLxCor+height<=GridSize-RadT .and. MLxCor+height>=RadT .and.
MLyCor+count2>=RadT) then
 if (RA(MLyCor+count2,
MLxCor+Height) /= '-') then
 RA(MLyCor+count2,
MLxCor+Height) = '1'

 RAMolClose(MLyCor+count2, MLxCor+Height) = a
 end if
 end if
 if (MLyCor-count2>=RadT .and.
MLxCor+height<=GridSize-RadT .and. MLxCor+height>=RadT .and. MLyCor-
count2<=GridSize) then
 if (RA(MLyCor-count2,
MLxCor+Height) /= '-') then
 RA(MLyCor-count2,
MLxCor+Height) = '1'
 RAMolClose(MLyCor-
count2, MLxCor+Height) = a
 end if
 end if
 if (MLyCor+count2>=RadT .and. MLxCor-
height<=GridSize-RadT .and. MLxCor-height>=RadT .and. MLyCor+count2<=GridSize) then
 if (RA(MLyCor+count2, MLxCor-
Height) /= '-') then
 RA(MLyCor+count2,
MLxCor-Height) = '1'

 RAMolClose(MLyCor+count2, MLxCor-Height) = a
 end if
 end if
 if (MLyCor-count2<=GridSize .and. MLxCor-
height<=GridSize-RadT .and. MLxCor-height>=RadT .and. MLyCor-count2>=RadT) then
 if (RA(MLyCor-count2, MLxCor-
Height) /= '-') then
 RA(MLyCor-count2,
MLxCor-Height) = '1'
 RAMolClose(MLyCor-
count2, MLxCor-Height) = a
 end if
 end if
 end do
 end do
 end do

 do a = 1, GridSize ! Finds the valid points and saves them to an array
 do b = 1, GridSize
 if (RA(b,a) == '1') then
 Ones(OneCount, 1) = b
 Ones(OneCount, 2) = a
 OneCount = OneCount + 1
 end if
 end do
 end do

William Eales

168

 do a = 1, OneCount - 1 ! Finds the closest of these points to the impact
location and moves the particle to it
 TempX = Ones(a,2)
 TempY = Ones(a,1)

 if (TempY <= y+1) then
 Dist = ((x-TempX)**2)+((y-TempY)**2)
 Dist = sqrt(Dist)
 if (Dist < SavDist .or. SavDist == 0) then
 SavDist = Dist
 SavOneX = Ones(a,2)
 SavOneY = Ones(a,1)
 end if
 end if
 end do

 TempX = SavOneX
 TempY = SavOneY

 if (TempX == 0 .and. TempY == 0) then
 GO TO 10
 end if

 SavOnePart = RAMolClose(TempY, TempX)

 SafeLocCount = 0
 SavIncremX = SavOneX
 SavIncremY = SavOneY
 SafeLocFound = .FALSE.
 FinalSavX = 0
 FinalSavY = 0
 LR = 0
 RealPos1 = 0
 RealPos2 = 0

 if (MLxReal(SavOnePart) == TempX) then ! Determines which way
the particle should roll
 call random_number(Rand)
 LRNo = 1 + floor(2*Rand)
 if (LRNo == 1) then
 LR = -1
 elseif (LRNo == 2) then
 LR = 1
 end if
 elseif (MLxReal(SavOnePart) < TempX) then
 LR = 1
 elseif (MLxReal(SavOnePart) > TempX) then
 LR = -1
 end if

 RMPInter = 0
 RMPPrev = SavOnePart
 RealPos1 = SavOnePart

 do a = 1, OneCount-1
 if (Ones(a,2) == TempX) then
 SideCount = a

William Eales

169

 end if
 end do

 do while (SafeLocFound .eqv. .FALSE.) ! Iterates in that direction until
the next position would be higher, or reaching the edge of the box
 if (Ones(SideCount+LR,1) > Ones(SideCount,1) .or.
Ones(SideCount,2) == RadT .or. Ones(SideCount,2) == GridSize-RadT) then
 SafeLocFound = .TRUE.
 else
 SideCount = SideCount + LR
 end if
 end do

 TempX = Ones(SideCount,2)
 TempY = Ones(SideCount,1)

 do a = 1, MolNo-1 ! Finds the particles closest to the low point for the
new particle to be resting on
 if (MLyReal(a) < TempY+RadT) then
 Dist = ((MLxReal(a)-TempX)**2)+((MLyReal(a)-
TempY)**2)
 Dist = sqrt(Dist) - RadT - MLr(a)
 if (Dist <= FinalPart(1,2)) then
 FinalPart(2,1) = FinalPart(1,1)
 FinalPart(2,2) = FinalPart(1,2)
 FinalPart(2,3) = FinalPart(1,3)
 FinalPart(1,1) = a
 FinalPart(1,2) = Dist
 FinalPart(1,3) = Dist + RadT + MLr(a)
 elseif (Dist <= FinalPart(2,2)) then
 FinalPart(2,1) = a
 FinalPart(2,2) = Dist
 FinalPart(2,3) = Dist + RadT + MLr(a)
 end if
 end if
 end do

50 CONTINUE

 PartCoords(1,1) = MLxReal(FinalPart(1,1))
 PartCoords(1,2) = MLyReal(FinalPart(1,1))

 PartCoords(2,1) = MLxReal(FinalPart(2,1))
 PartCoords(2,2) = MLyReal(FinalPart(2,1))

 if (TempX == RadT .or. TempX == GridSize-RadT) then
 EdgeCase = .TRUE.
 end if

 if (EdgeCase .eqv. .TRUE.) then ! If the particle is on an edge, it
balances the new particle on the edge + one particle
 NewX = TempX

 Dist = RadT + MLr(FinalPart(1,1))

 NewY = -
(MLxReal(FinalPart(1,1))**2)+(2*MLxReal(FinalPart(1,1))*NewX)

William Eales

170

 NewY = NewY+(Dist**2)-(NewX**2)
 NewY = sqrt(NewY)

 if (NewY /= NewY) then

25 CONTINUE

 if (FirstEdge .eqv. .TRUE.) then
 do a = 1, MolNo-1
 Dist = (MLxReal(a)-NewX)
 if (Dist < RadT + MLr(a) +
(RadT*8)) then
 EdgeCombi(EdgeCount) =
a
 EdgeCount = EdgeCount +
1
 end if
 end do
 end if

 FirstEdge = .FALSE.

 if (EdgeAttempt <= EdgeCount-1) then
 FinalPart(1,1) = EdgeCombi(EdgeCount-
EdgeAttempt)
 EdgeAttempt = EdgeAttempt + 1
 GO TO 50
 end if

 FullCount = FullCount + 1
 GO TO 10
 end if

 if (TempY - (MLyReal(FinalPart(1,1)) + NewY) < TempY -
(MLyReal(FinalPart(1,1)) - NewY)) then
 NewY = MLyReal(FinalPart(1,1)) + NewY
 else
 NewY = MLyReal(FinalPart(1,1)) - NewY
 end if

 do a = 1, MolNo-1 ! Confirming the new particle is not
overlapping with any other particles
 Dist = ((MLxReal(a)-NewX)**2)+((MlyReal(a)-
NewY)**2)
 Dist = sqrt(Dist)
 if (Dist < MLr(a)+RadT-0.25) then
 OverlapCount = OverlapCount + 1
 if (OverlapCount > 2500) then
 GO TO 10
 end if

 FinalPart(1,1) = a
 FullCount = FullCount + 1
 GO TO 50
 end if
 end do

William Eales

171

 if (NewX < RadT .or. NewY < RadT .or. NewX > GridSize-
RadT .or. NewY > GridSize-RadT) then
 FullCount = FullCount + 1
 GO TO 25
 end if

 else ! else if the particle is not on an edge it balances on two particles
through stochastic optimisation
 newCoords(1) = TempX
 newCoords(2) = TempY

 stochDists(1) = FinalPart(1,3)
 stochDists(2) = FinalPart(2,3)

 sumDist = stochDists(1) + stochDists(2)

 dx(1) = 10 * RadLarge
 dx(2) = 10 * RadLarge

 do a = 1, 10
 do b = 1, 2
 dx(b) = dx(b) / 10
 end do
 do c = 1, 500
 call random_number(RX)
 stochxnew(2) = newCoords(2) + dx(2) *
(2*RX-1)
 call random_number(RX)
 stochxnew(1) = newCoords(1) + dx(1) *
(2*RX-1)

 ibad = 0

 do b = 1, 2
 stochDists(b) = ((PartCoords(b,1)-
stochxnew(1))**2)+((PartCoords(b,2)-stochxnew(2))**2)
 stochDists(b) = sqrt(stochDists(b)) –
RadT – MLr(FinalPart(b,1))
 if (stochDists(b) < 0) then
 ibad = 1
 end if
 end do
 stochynew = stochDists(1) + stochDists(2)
 if (stochynew < sumDist .and. ibad == 0)
then
 do b = 1, 2
 newCoords(b) =
stochxnew(b)
 end do
 sumDist = stochynew
 end if
 end do
 end do

 NewX = newCoords(1)
 NewY = newCoords(2)

William Eales

172

 do a = 1, MolNo-1
 Dist = ((MlxReal(a)-NewX)**2)+((MlyReal(a)-
NewY)**2)
 Dist = sqrt(Dist)
 if (Dist < MLr(a)+RadT) then
 OverDist = 0
 OverlapCount = OverlapCount + 1
 if (OverlapCount > 2500) then
 NotBal = .TRUE.
 GO TO 70
 end if

 do b = 1, 2
 Dist = ((MlxReal(a)-
PartCoords(b,1))**2)+((MlyReal(a)-PartCoords(b,2))**2)
 Dist = sqrt(Dist)
 if (Dist < OverDist .or. OverDist ==
0) then
 OverDist = Dist
 OverDistNo = b
 end if
 end do
 FinalPart(OverDistNo,1) = a
 FullCount = FullCount + 1
 if (OverDist == 0) then
 GO TO 10
 else
 GO TO 50
 end if
 end if
 end do

 NotBal = .FALSE.
 if (NewX > PartCoords(1,1) .and. NewX > PartCoords(2,1))
then ! Confirms the new particle is resting in between the old particles
 NotBal = .TRUE.
 elseif (NewX < PartCoords(1,1) .and. NewX <
PartCoords(2,1)) then
 NotBal = .TRUE.
 end if
 if (NewY < PartCoords(1,2) .and. NewY < PartCoords(2,2))
then
 NotBal = .TRUE.
 end if
 do b = 1, 2
 Dist = ((NewX-PartCoords(b,1))**2)+((NewY-
PartCoords(b,2))**2)
 Dist = sqrt(Dist)
 if (Dist > RadT + MLr(FinalPart(b,1))+1) then
 NotBal = .TRUE.
 end if
 end do

 Dy = (PartCoords(1,2) – PartCoords(2,2)) / (PartCoords(1,1)
– PartCoords(2,1))
 intC = PartCoords(1,2) – (Dy * PartCoords(1,1))
 CheckY = (Dy * NewX) + intC

William Eales

173

 if (NewY < CheckY) then
 NotBal = .TRUE.
 end if

70 CONTINUE

 OverlapCount = 0

 If (NotBal .eqv. .TRUE.) then ! If the particle is not
correctly balancing then it looks for alternate particles to be resting on and moves to that
location
 if (FirstBal .eqv. .TRUE.) then
 if (FinalPart(1,1) > FinalPart(2,1)) then
 count = FinalPart(1,1)
 FinalPart(1,1) = FinalPart(2,1)
 FinalPart(2,1) = count
 GO TO 50
 end if

 do a = 1, MolNo-1
 Dist = ((MLxReal(a)-TempX)**2)
 Dist = sqrt(Dist)
 if (Dist < RadT + MLr(a) +
(RadT*8)) then

 BalCheckNo(BalCheckCount) = a
 BalCheckCount =
BalCheckCount + 1
 end if
 end do
 aLoop: do a = 1, BalCheckCount-1
 do b = 1, BalCheckCount-1
 if (b < a) then
 if (BalCount <=
100000) then
 if
(BalCheckNo(a) /= 0 .and. BalCheckNo(b) /= 0) then
 if
(abs(MlxReal(BalCheckNo(a)) – MlxReal(BalCheckNo(b))) <= RadT*2 + MLr(BalCheckNo(a))
+ MLr(BalCheckNo(b))) then

 BalCombi(BalCount,1) = BalCheckNo(a)

 BalCombi(BalCount,2) = BalCheckNo(b)

 BalCount = BalCount + 1

 end if
 end if
 else
 exit aLoop
 end if
 end if
 end do
 end do aLoop
 end if

William Eales

174

 FirstBal = .FALSE.

 if (BalAttempt <= BalCount-1) then
 FinalPart(1,1) = BalCombi(BalCount-
BalAttempt,1)
 FinalPart(2,1) = BalCombi(BalCount-
BalAttempt,2)
 BalAttempt = BalAttempt + 1
 if (BalAttempt <= 100000) then
 GO TO 50
 end if
 end if

 if (TempX >= GridSize-(RadT*5)) then
 OverlapCount = 0
 TempX = GridSize-RadT
 EdgeCase = .TRUE.
 GO TO 50
 elseif (TempX <= RadT+(RadT*5)) then
 OverlapCount = 0
 TempX = RadT
 EdgeCase = .TRUE.
 GO TO 50
 end if

 GO TO 10

 end if

 end if

 if (NewX > GridSize-RadT .or. NewX < RadT .or. NewY > GridSize-
RadT .or. NewY < RadT) then ! Confirms the particle is within the bounds of the box
 if (TempX >= GridSize-RadT-RadT) then
 OverlapCount = 0
 TempX = GridSize-RadT
 EdgeCase = .TRUE.
 GO TO 50
 elseif (TempX <= RadT+RadT) then
 OverlapCount = 0
 TempX = RadT
 EdgeCase = .TRUE.
 GO TO 50
 end if
 GO TO 10
 end if

 MlxReal(MolNo) = NewX ! Saves the particle location
 MlyReal(MolNo) = NewY
 MLr(MolNo) = RadT
 FullCount = 0
 MolNo = MolNo + 1

 RA = ‘0’
 RAMolClose = 0
 end if

William Eales

175

10 CONTINUE

 else
 Full = 1
 end if

 end

 subroutine PointSafe ! Determines if the falling particle has impacted yet
 use allSubs ! Loads the variables from the module
 integer a, b
 real Dist
 character t

 Hit = .FALSE.
 FullCheck = .FALSE.

 ! Checks the distance between the current falling particle location and previously
placed partice to determine if it has impacted

 cloop: do a = 1, MolNo – 1
 Dist = ((MlxReal(a)-x)**2)+((MlyReal(a)-y)**2)
 Dist = sqrt(Dist)
 if (Dist <= ((RadT)+(Mlr(a)))) then
 Hit = .TRUE.
 exit cloop
 end if
 end do cloop

 ! If the impact is above the top of the box, a counter is incremented to show the box
may be full
 if ((Hit .eqv. .TRUE.) .and. (y >= (GridSize – RadT))) then
 Hit = .FALSE.
 FullCount = FullCount + 1
 RoofCount = RoofCount + 1
 end if

 if (RoofCount >= 2500) then
 FullCheck = .TRUE.
 end if

 if (FullCount == 2500000) then
 Full = 1
 end if

 end

William Eales

176

Appendix 2: Percolation Chain Detection Algorithm

This appendix contains the algorithm used to investigate both 2D and 3D

systems for percolation chains. As it only looks at the contacts between the

particles, the number of dimensions is irrelevant to it, excluding when importing

file data.

 Module VarList ! Initalises variables to be used across all functions

 real, dimension (, allocatable :: MLxReal

 real, dimension (:), allocatable :: MLyReal
 !real, dimension (:), allocatable :: MLzRea– - Needs to be included for 3D systems
 integer, dimension (:), allocatable :: MLr
 integer, dimension (:,:), allocatable :: Contacts
 integer, dimension (:), allocatable :: Visited
 integer, dimension (:), allocatable :: TotShap
 integer, dimension (:,:), allocatable :: Edge
 integer, dimension (:), allocatable :: EdgeCount
 integer :: n
 integer :: nlines
 integer :: GridSize
 end module

 program VoidCalcs
 use VarList ! Loads module variables

 ! Initialises local variables and sets their starting values
 character FileName*15, t*1
 integer nlinesB, Depth, ShapeCount, CurCont, y, m
 integer, dimension (1:250) :: Path
 integer, dimension (1:20000,1:250) :: SetPath
 integer, dimension (1:20000,1:250) :: Shapes
 integer, dimension (1:20000) :: ShapesPrint
 logical Found
 integer, dimension (:), allocatable :: LocalShapeCount
 integer, dimension (:), allocatable :: TotCont
 integer, dimension (1:20000) :: ShapeLength
 integer :: RadLarge
 integer :: count
 integer :: x
 integer :: LoopCount
 integer :: ProgCount
 integer :: PCId
 character, dimension (200) :: FileID*3
 logical :: fileexists
 integer :: OutCount

 do ProgCount = 1, 50
 write(FileID(ProgCount)‘ '(i’)') ProgCount
 end do

 do ProgCount = 1, 50 ! Loop for number of files to be investigated

 RadLarge = 0

William Eales

177

 GridSize = 0
 m = 0
 x = 0
 n = 0
 nlines = 0
 nlinesB = 0
 ShapeCount = 1
 CurCont = 0
 y = 0

 FileName ‘’''
 FileName = tri177djusttl(FileID(ProgCount))) /‘ '.c’v'

 INQUIRE(File=FileName, EXIST=fileexists)

 if (fileexists .eqv. .FALSE.) then
 GO TO 50
 end if
 ! Confirms the files exists and if so loads it, if not skips it and moves to the next
 open(1, file = FileName, statu’='o’d')

 do
 read(1, *,iostat=io)
 if (io/=0) EXIT
 nlines=nlines+1
 end do
 close(1)
 ! Determines the number of rows in that files which is equivalent to the number of
particles in the system
 ! Allocates the arrays using this value
 allocate(MLyReal(1:nlines))
 allocate(MLxReal(1:nlines))
 ! allocate(MLzReal(1:nlines)– - To be included for 3D system files
 allocate(MLr(1:nlines))

 allocate(Visited(1:nlines))
 allocate(LocalShapeCount(1:nlines))
 allocate(Edge(1:nlines,1:4))
 allocate(EdgeCount(1:nlines))
 allocate(TotCont(1:nlines))
 allocate(TotShap(1:nlines))

 ! Sets initial value of those arrays
 MLyReal = 0
 MLxReal = 0
 ! MLzReal = – - To be included for 3D systems
 MLr = 0
 Shapes = 0
 ShapeLength = 0
 Visited = 0
 SetPath = 0
 Path = 0
 LocalShapeCount = 0
 OneCont = 0
 TotCont = 1
 TotShap = 0
 Edge = 0

William Eales

178

 EdgeCount = 1
 OutCount = 0

 open(1, file = FileName, statu’='o’d')
 do n = 1, nlines
 read (1,*) MLxReal(n), MLyReal(n), MLr(n) ! Include MLzReal(n), inbetween
the y and radius inputs for 3D systems
 end do
 close(1)
 ! Loads in the contacts file for the system
 FileName ‘’''
 FileName ‘ 'contac’s' // tri178djusttl(FileID(ProgCount))) /‘ '.c’v'
 open(2, file = FileName, statu’='o’d')

 do
 read(2, *,iostat=io)
 if (io/=0) EXIT
 nlinesB = nlinesB + 1
 end do
 close(2)
 allocate(Contacts(1:nlinesB,20))
 Contacts = 0

 open(2, file = FileName, statu’='o’d')
 do n = 1, nlinesB
 read (2,*) Contacts(n,1), Contacts(n,2), Contacts(n,3), Contacts(n,4),
Contacts(n,5), Contacts(n,6), Contacts(n,7)
 end do
 close(2)

 do n = 1, nlines
 if (MLr(n) > RadLarge) then
 RadLarge = MLr(n)
 end if
 end do
 GridSize = (((RadLarge*6))*5)
 ! Determines the largest radius present and the grid size

 ! Calculates how many particle contacts each particle has
 do n = 1, nlinesB
 do while (Contacts(n,TotCont(n)) /= 0)
 TotCont(n) = TotCont(n) + 1
 end do

 TotCont(n) = TotCont(n– - 1
 TotShap(n) = TotCont(n)
 end do

 do n = 1, nlines ! Loops through each particle
 if (TotShap(n) > 0 .and. MLxReal(n) == MLr(n)) then ! Checks that the current
particle has at least one contact and is touching the leftmost edge of the hox
 DepthLoop: do LoopCount = 1, 50
10 CONTINUE
 MaxDepth = 250 ! Maximum number of recursions
that can occur before automatically unwinding
 Visited = 0
 CurCont = n

William Eales

179

 y = 1
 Depth = 1
 Found = .FALSE.

 if (LocalShapeCount(n) >= TotShap(n)) then
 exit DepthLoop
 elseif (Mlr(n) == 10) then ! Confirms the particle is a
large one
 exit DepthLoop
 end if

 ! Enters the recursion
 call
Searching(n,Depth,CurCont,y,ShapeCount,Found,MaxDepth,Path,SetPath,Shapes,ShapeLe
ngth,OutCount)

 if (Found .eqv. .TRUE.) then ! If a shape has been found,
increments the number of shapes
 ShapeCount = ShapeCount + 1
 end if
 OutCount = 0
 end do DepthLoop
 end if
 end do

 ! Saves the shapes to file
 FileName ‘’''
 FileName ‘ 'shap’s' // tri179djusttl(FileID(ProgCount))) /‘ '.c’v'
 open(3, file = FileName, statu’='n’w')
 do n = 1, ShapeCount
 do m = 1, 250
 write(’,'(I3,A1,’)', advanc’='’o') SetPath(n,m)‘ ’,'
 end do
 write(3, *‘’''
 end do
 close(3)

 ! Deallocates the arrays so they can be reallocated with the correct length for the next
file
 deallocate(MLyReal)
 deallocate(MLxReal)
 ! deallocate(MLzReal– - For 3D systems
 deallocate(MLr)

 deallocate(Visited)
 deallocate(LocalShapeCount)
 deallocate(Edge)
 deallocate(EdgeCount)
 deallocate(TotCont)
 deallocate(TotShap)

 deallocate(Contacts)

50 CONTINUE

 end do

William Eales

180

 end program

 RECURSIVE SUBROUTINE
Searching(n1,Depth1,CurCont1,y1,ShapeCount1,Found,MaxDepth,Path1,SetPath1,Shapes
1,ShapeLength1,OutCount1)
 use VarList ! Loads module variables and initalises local recursion variables
 integer, intent(inout) :: Depth1
 integer, intent(inout) :: CurCont1
 integer, intent(inout) :: y1
 integer, intent(inout) :: ShapeCount1
 integer, intent(in) :: n1
 integer, intent(in) :: MaxDepth
 integer, dimension (1:250), intent(inout) :: Path1
 integer, dimension (1:20000,1:250), intent(inout) :: SetPath1
 integer, dimension (1:20000,1:250), intent(inout) :: Shapes1
 integer, dimension (1:20000), intent(inout) :: ShapeLength1
 integer :: OutCount1
 integer :: SavCont
 integer :: x
 integer :: count
 integer :: count2
 integer :: count3
 integer :: PathCount
 integer :: NewCont
 logical, intent(inout) :: Found
 logical :: LT
 integer :: Dupli
 integer :: Insi
 integer :: InsiCount
 character :: t

 SavCont = CurCont1
 Visited(SavCont) = 1
 x = 1
 y1 = 1
 count = 0
 count2 = 0
 count3 = 0
 PathCount = 0
 Found = .FALSE.
 Dupli = 0
 Insi = 0
 InsiCount = 0
 OutCount1 = OutCount1 + 1
 if (Depth1 <= MaxDepth) then ! Confirms the recursion has not gone too deep

 llop: do x = 1, TotShap(CurCont1) ! Loops through the current particle contacts

 LT = .FALSE.
 if (x == 1) then
 ThisLoop: do count = 1, Depth1-1 ! Makes the path travelled through
ordered in ascending particle numbers
 if (CurCont1 < Path1(count)) then
 LT = .TRUE.
 exit ThisLoop
 end if
 end do ThisLoop

William Eales

181

 if (LT .eqv. .TRUE.) then
 do count2 = Depth1, count+1, -1
 Path1(count2) = Path1(count2-1)
 end do
 Path1(count) = CurCont1
 else
 Path1(Depth1) = CurCont1
 end if
 end if

 if (MLr(Contacts(CurCont1,x)) == 10) then ! If the connected particle is
small, then it is skipped
 GO TO 20
 else
 NewCont = Contacts(CurCont1,x)
 if (OutCount1 > 100000) then ! Looped for too many times and may
be stuck so exits the outer loop
 exit llop
 end if

 if (MLxReal(NewCont) == GridSize-MLr(NewCont)) then ! Current
contact is on the right hand edge of the box, in 3D systems, all instances of MLxReal can be
swapped for MLzReal to look for chains crossing in the perpendicular direction
 if (ShapeCount1 > 1) then ! Determining if the chain has
already been found
 PathCount = 0
 Dupli = 0
 ShapeLoop: do count = 1, ShapeCount1-1
 PathCount = 0
 do count2 = 1, ShapeLength1(count)
 do count3 = 1, Depth1
 if (Shapes1(count,count2)
== Path1(count3)) then
 PathCount =
PathCount + 1
 end if
 end do
 end do
 if (PathCount == ShapeLength1(count)) then
 Dupli = 1
 exit ShapeLoop
 end if
 end do ShapeLoop
 end if

 if (ShapeCount1 == 1 or. Dupli == 0) then ! If unique
chain (or the first one) then it is saved as the recursion unwinds
 LT = .FALSE.
 ThatLoop2: do count = 1, y1-1
 if (SavCont <
Shapes1(ShapeCount1,count)) then
 LT = .TRUE.
 exit ThatLoop2
 end if
 end do ThatLoop2

William Eales

182

 if (LT .eqv. .TRUE.) then
 do count2 = y1, count+1, -1
 Shapes1(ShapeCount1,count2) =
Shapes1(ShapeCount1,count2-1)
 end do
 Shapes1(ShapeCount1,count) = SavCont
 else
 Shapes1(ShapeCount1,y1) = CurCont1
 end if
 SetPath1(ShapeCount1,y1) = SavCont
 y1 = y1 + 1
 ShapeLength1(ShapeCount1) = Depth1
 Found = .TRUE.
 exit llop
 else ! If it has already been found the recursion continues
 if (Visited(NewCont) /= 1) then
 Depth1 = Depth1 + 1
 call
Searching(n1,Depth1,NewCont,y1,ShapeCount1,Found,MaxDepth,Path1,SetPath1,Shapes1
,ShapeLength1,OutCount1)
 end if
 end if
 else ! If not at the right hand edge, the recursion continues to the
next contact
 if (Visited(NewCont) /= 1) then
 Depth1 = Depth1 + 1
 call
Searching(n1,Depth1,NewCont,y1,ShapeCount1,Found,MaxDepth,Path1,SetPath1,Shapes1
,ShapeLength1,OutCount1)

 if (Found .eqv. .TRUE.) then
 LT = .FALSE.
 ThatLoop3: do count = 1, y1-1
 if (SavCont <
Shapes1(ShapeCount1,count)) then
 LT = .TRUE.
 exit ThatLoop3
 end if
 end do ThatLoop3

 if (LT .eqv. .TRUE.) then
 do count2 = y1, count+1, -1

 Shapes1(ShapeCount1,count2) = Shapes1(ShapeCount1,count2-1)
 end do
 Shapes1(ShapeCount1,count) =
SavCont
 else
 Shapes1(ShapeCount1,y1) =
CurCont1
 end if
 SetPath1(ShapeCount1,y1) = SavCont
 y1 = y1 + 1
 exit llop
 end if
 end if
 end if

William Eales

183

 end if

20 CONTINUE
 end do llop

 end if

 Visited(SavCont) = 0 ! Unwinding the recursion, marks the particle as no longer
visited, and removes the particle from the path
 do count = 1, Depth1
 if (Path1(count) == SavCont) then
 do count2 = count, Depth1-1
 Path1(count2) = Path1(count2+1)
 end do
 Path1(Depth1) = 0
 exit
 end if
 end do

 Depth1 = Depth1 - 1

 END SUBROUTINE Searching

William Eales

184

Appendix 3: 3D System Algorithm

This appendix contains the algorithm used for creating 3D systems.

 module allSubs ! Initialises the variables used through all functions
 character, dimension (:,:,:), allocatable, public :: RA*4
 integer MolNo, RadLarge, RadSmall, BoxSize, GridSize, Rads, count, SN, Full,
FullCount, OneLegacyCount
 integer MLr, AllocateVal, RoofCount
 real MLxReal, MLyReal, MLzReal
 integer, dimension (:), allocatable, public :: OneLegacyCounterCount
 integer, dimension (:,:), allocatable, public :: Ones
 real, dimension (:,:,:), allocatable, public :: OnesLegacy
 integer, dimension (:,:), allocatable, public :: Contacts
 real, dimension (:,:,:), allocatable, public :: yVal
 integer, dimension (:,:), allocatable, public :: OrderyVal
 integer, dimension (:,:), allocatable, public :: FinalTriCombi
 dimension MLr(10000), Rads(10), MLxReal(10000), MLyReal(10000),
MLzReal(10000)
 logical Hit, FullCheck, FirstCusps, RoofHit
 integer x, y, z, RadT, RestartNo
 integer HMAllo
 end module allSubs

 program packedbed
 use allSubs ! Loads the variables from the module

 ! Initialises local variables
 character t, FileName*15, FileID*3

 integer m, n, o, check, PrintNo, iSeed, ProgCount, PCId
 dimension FileID(200)
 dimension iSeed(50)
 real RX, Dist, DistCheck
 real PartArea, VoidArea, VoidFrac, Pi
 integer count2, TotLength, count3, RunAmo, RunRedo

 logical Cont, Impact

 MLxReal = 0
 MLyReal = 0
 MLzReal = 0
 MLr = 0
 RunAmo = 250
 RunRedo = 0

 FirstCusps = .FALSE.

 Dist = 0
 DistCheck = 0

 RestartNo = 0

 PartArea = 0

William Eales

185

 VoidArea = 0
 VoidFrac = 0
 Pi = 3.141596535
 TotLength = 0
 MolNo = 1
 OneLegacyCount = 1
 FileName = ''
 Full = 0
 check = 0
 FullCount = 0
 Impact = .FALSE.
 count3 = 0
 count = 0
 count2 = 0

 t = 'y'

 if (t == 'y') then
 Rads(1) = 10 ! Sets the radius of a particle. Additional radii would be inputted
as Rads(x) = 'Radius'
 SN = 1 ! Sets the number of different radii in the system

 RadLarge = 0
 RadSmall = 0

 do count = 1, SN
 if (RadLarge < Rads(count)) then
 RadLarge = Rads(count)
 end if
 if (RadSmall > Rads(count) .or. RadSmall == 0) then
 RadSmall = Rads(count)
 end if
 end do

 RadLarge = 10
 RadSmall = 10

 ! Calculates the box size based on the largest radius present
 BoxSize = (RadLarge*6)
 GridSize = (BoxSize*2)
 AllocateVal = (((BoxSize*3)**2)*2)
 HMAllo = GridSize + (2*RadLarge)

 ! Allocates the arrays
 allocate(RA(1:HMAllo, 1:GridSize, 1:GridSize))

 allocate(Ones(1:AllocateVal,1:3))
 allocate(FinalTriCombi(1:AllocateVal,1:3))

 allocate(yVal(1:GridSize,1:GridSize,2))
 allocate(OrderyVal(1:GridSize*GridSize,2))

 do ProgCount = 1, RunAmo
 write(FileID(ProgCount), '(i0)') ProgCount
 end do

 do ProgCount = 1, 50 ! Starts the loop for the number of systems to be created

William Eales

186

 PCId = ProgCount

 ! Sets variables intial values
 MLxReal = 0
 MLyReal = 0
 MLzReal = 0
 MLr = 0

 FirstCusps = .FALSE.

 Dist = 0
 DistCheck = 0

 RestartNo = 0

 PartArea = 0
 VoidArea = 0
 VoidFrac = 0
 TotLength = 0
 Pi = 3.141596535
 MolNo = 1
 OneLegacyCount = 1
 FileName = ''
 Full = 0
 check = 0
 FullCount = 0
 RoofCount = 0
 RoofHit = .FALSE.
 Impact = .FALSE.
 count3 = 0
 count = 0
 count2 = 0

 Ones = 0
 ! OnesLegacy = 0
 ! OneLegacyCounterCount = 0
 yVal = 0

 RA = '0'

 call random_seed()

 do while (count < 1000000)

 Impact = .FALSE.

 ! Picks a random radius and x and z coordinates, and sets y
to be on the bottom of the box
 call random_number(RX)
 count2 = 1 + floor(SN*RX)
 RadT = Rads(count2)

 call random_number(RX)
 count2 = 1 + floor((GridSize-(2*RadT))*RX)
 x = count2+RadT

 call random_number(RX)

William Eales

187

 count2 = 1 + floor((GridSize-(2*RadT))*RX)
 z = count2+RadT

 y = RadT

 if (MolNo > 1) then ! Checks there is already at least
one particle in the system
 hitloop: do count3 = 1, MolNo - 1
 Dist = ((MLxReal(count3)-
x)**2)+((MLyReal(count3)-y)**2)+((MLzReal(count3)-z)**2)
 Dist = sqrt(Dist)
 if (Dist <= ((RadT)+(Mlr(count3)))) then
 count = count + 1
 Impact = .TRUE.
 exit hitloop
 end if
 end do hitloop
 if (Impact .eqv. .FALSE.) then ! If the particle is not
overlapping with any others and is inside the grid, its location is saved
 count = 0
 MLxReal(MolNo) = x
 MlyReal(MolNo) = y
 MlzReal(MolNo) = z
 MLr(MolNo) = RadT
 MolNo = MolNo + 1
 end if
 else
 MlxReal(MolNo) = x
 MlyReal(MolNo) = y
 MlzReal(MolNo) = z
 MLr(MolNo) = RadT
 MolNo = MolNo + 1
 end if
 end do

 ! This loops through the base line to check that there is nowhere a
small particle could fall through to the bottom of the box, and if so, places a particle there
 do m = RadSmall, GridSize-RadSmall
 do n = RadSmall, GridSize-RadSmall
 Impact = .FALSE.
 hitloop2: do count3 = 1, MolNo – 1
 Dist = ((MlxReal(count3)-
m)**2)+((MlzReal(count3)-n)**2)
 Dist = sqrt(Dist)
 if (Dist <= ((RadSmall)+(Mlr(count3)))) then
 count = count + 1
 Impact = .TRUE.
 exit hitloop2
 end if
 end do hitloop2
 if (Impact .eqv. .FALSE.) then
 count = 0
 MlxReal(MolNo) = m
 MlyReal(MolNo) = RadSmall
 MlzReal(MolNo) = n
 MLr(MolNo) = RadSmall
 MolNo = MolNo + 1

William Eales

188

 end if
 end do
 end do

 do n = 1, 2500 ! Loops for each particle being added to the system,
using the main function. At the end of each loop, it checks if the box is full and if so, leaves the
loop.
 Call molpos
 if (Full == 1) then
 exit
 elseif (RoofHit .eqv. .TRUE.) then
 exit
 end if
 end do

 t = ‘y’
 if (t == ‘y’ .and. RoofHit .eqv. .TRUE.) then ! Saves the particle
locations to a file
 FileName = ‘’
 FileName = trim(188nitia(FileID(PCId))) // ‘.csv’
 open(1, file = FileName, status = ‘new’)
 do y = 1, MolNo-1
 write(1,*) MlxReal(y), ‘,’ , MlyReal(y), ‘,’ , MlzReal(y),
‘,’ , MLr(y)
 end do
 close(1)
 else
 RunAmo = RunAmo + 1
 RunRedo = RunRedo + 1
 end if

 t = ‘y’
 if (t == ‘y’ .and. RoofHit .eqv. .TRUE.) then ! Saves the particle
contacts to a file
 allocate(Contacts(1:MolNo, 1:MolNo))
 Contacts = 0
 do y = 1, MolNo-1
 n = 1
 do x = 1, MolNo-1
 if (x /= y) then
 Dist = ((MlxReal(y) –
MlxReal(x))**2) + ((MlyReal(y) – MlyReal(x))**2) + ((MlzReal(y) – MlzReal(x))**2)
 Dist = sqrt(Dist)
 if (Dist <= (MLr(y) + MLr(x) + 0.01))
then
 Contacts(y,n) = x
 n = n + 1
 end if
 if (n > TotLength) then
 TotLength = n
 end if
 end if
 end do
 end do

 FileName = ‘’
 FileName = ‘contacts’ // trim(188nitia(FileID(PCId))) // ‘.csv’

William Eales

189

 open(3, file = FileName, status = ‘new’)
 do y = 1, MolNo-1
 do x = 1, TotLength
 write(3,’(I4,A1,X)’, advance=’no’)
Contacts(y,x), ‘,’
 end do
 write(3, *) ‘’
 end do
 close(3)
 deallocate(Contacts)
 end if
 end do

 FileName = ‘’ ! Outputs any files that failed and were not saved
 FileName = ‘redo.csv’
 open(5, file = FileName, status = ‘new’)
 write(5,’(I4,A1,X)’, advance=’no’) RunAmo
 write(5,’(I4,A1,X)’, advance=’no’) RunRedo
 close(5)
 end if

 end program

 subroutine molpos
 use allSubs ! Loads the variables from the module

 ! Sets up the local variables
 integer count2, Spot, Height, DoubRad, RowRad, a,b,c, TempX, TempZ, RadIn, m, n,
o, Width
 real TempY
 real RX, MidWay, MidWayZ, Dist, RowRadReal
 character t, FileName*15
 integer SavOneX, SavOneY, SavOneZ, SavDist, OneCount
 integer Zrad, ZdoubRad
 integer MlxCor, MlyCor, MlzCor
 logical SafeLocFound, CuspFound
 integer OldX, OldZ, FinCount
 real Grad1a, Grad2a, Grad1b, Grad2b, CurrentY, ZradReal, MidWayReal
 integer FinalPartNo
 real FinalPartDist
 dimension FinalPartNo(5), FinalPartDist(5,2)
 real EquA1, EquA2, EquA3, EquB1, EquB2, EquB3, EquC1, EquC2, EquC3, EquD1,
EquD2, EquD3, NewX, NewY, NewZ, NewYa, NewYb
 real EquValuesA, EquValuesB, k1, k2, Outputs
 dimension EquValuesA(3,3), EquValuesB(3), Outputs(20)
 integer EdgeSide
 logical EdgeCase, NewXVal, NewZVal
 real PartCoords, stochDists, sumDist, dx, stochxnew, newCoords, stochynew
 integer ibad
 dimension PartCoords(3,3), stochDists(3), newCoords(3), dx(3), stochxnew(3)
 real FinalDists, FinalCuspsSaved
 dimension FinalCuspsSaved(15000,4)
 dimension FinalDists(3), CuspHighList(16,3)
 real CuspHighList, FurthDist
 integer CuspLowCount, CuspHighCount, CuspLowMoveTo
 logical OuterLayer

William Eales

190

 real TriCheckA, TriCheckB, TriCheckC
 logical TriCheckInside
 real LowYVal
 integer LowYLoc
 dimension LowYLoc(2)
 real Sempi, SetTri, TriA, TriB, TriC, SempiA, SempiB, SempiC
 real DistAN, DistBN, DistCN, DistAB, DistBC, DistCA
 real EdgeLowVal
 integer EdgeLowA, EdgeLowB, bSide1, bSide2
 logical InitialCusp
 integer TriCheckCount, TriCheckNo, TriCount, TriCombi, TriAttempt, ReTriAttempt
 logical FirstTri, FirstEdge
 real TriCoords, OverDist
 integer OverDistNo
 dimension TriCheckNo(10000), TriCombi(100001,3), TriCombi2(10000000,3),
TriCoords(3,3)
 dimension EdgeCombi(1000000)
 integer EdgeCount, EdgeCombi, EdgeAttempt
 integer SideCheckCount, SideCheckNo, SideCount, SideCombi, SideAttempt
 integer FinalTriCount
 logical FirstSide
 real SideCoords
 dimension SideCheckNo(10000), SideCombi(100001,3), SideCoords(3,3)
 integer OverlapCount, HMSize
 real DistCheck1, DistCheck2, DistCheck3, DistCheck1Val, DistCheck2Val,
DistCheck3Val

 FinalCuspsSaved = 0

40 CONTINUE

 RestartNo = RestartNo + 1

 ! Setting initial values of variables
 Hit = .FALSE.
 EdgeSide = 0

 HMSize = 0

 OverDist = 0
 OverDistNo = 0

 OverlapCount = 0

 DistCheck1 = 0
 DistCheck2 = 0
 DistCheck3 = 0
 DistCheck1Val = 0
 DistCheck2Val = 0
 DistCheck3Val = 0

 CuspLowCount = 0
 CuspHighCount = 0
 FurthDist = 0
 CuspLowMoveTo = 0

William Eales

191

 TriCheckNo = 0
 TriCheckCount = 1
 TriCount = 1
 EdgeCount = 1
 TriCombi = 0
 TriCombi2 = 0
 EdgeCombi = 0
 TriCoords = 0
 TriAttempt = 0
 EdgeAttempt = 0
 FirstTri = .TRUE.
 FirstEdge = .TRUE.
 ReTriAttempt = 0

 FinalTriCombi = 0
 FinalTriCount = 1

 SideCheckNo = 0
 SideCheckCount = 1
 SideCount = 1
 SideCombi = 0
 SideCoords = 0
 SideAttempt = 0
 FirstSide = .TRUE.

 Sempi = 0
 SetTri = 0
 TriA = 0
 TriB = 0
 TriC = 0
 SempiA = 0
 SempiB = 0
 SempiC = 0
 DistAN = 0
 DistBN = 0
 DistCN = 0
 DistAB = 0
 DistBC = 0
 DistCA = 0

 LowYLoc = 0
 LowYVal = 0

 FinalDists = 0

 PartCoords = 0
 stochDists = 0
 sumDist = 0
 dx = 0
 stochxnew = 0
 newCoords = 0
 stochynew = 0

 NewXVal = .FALSE.
 NewZVal = .FALSE.

William Eales

192

 EquValuesA = 0
 EquValuesB = 0
 k1 = 0
 k2 = 0
 Outputs = 0

 TRP1Swap = 0
 TRP2Swap = 0

 ZradReal = 0
 MidWayReal = 0

 FinCount = 0

 CuspFound = .FALSE.
 CurrentY = 0
 OldX = 999
 OldZ = 999

 SavDist = 0
 SavOneX = 0
 SavOneY = 0

 MidWay = 0
 MidWayZ = 0

 Grad1a = 0
 Grad2a = 0
 Grad1b = 0
 Grad2b = 0

 FinalPartNo = 999999
 FinalPartDist = 999999

 EquA1 = 0
 EquA2 = 0
 EquA3 = 0

 EquB1 = 0
 EquB2 = 0
 EquB3 = 0

 EquC1 = 0
 EquC2 = 0
 EquC3 = 0

 EquD1 = 0
 EquD2 = 0
 EquD3 = 0

 NewX = 0
 NewY = 0
 NewZ = 0
 NewYa = 0
 NewYb = 0

 RowRadReal = 0

William Eales

193

 EdgeCase = .FALSE.

 ! Randomly chooses which radius will be used for this particle
 call random_number(RX)
 count2 = 1 + floor(2*RX)
 if (count2 == 2) then
 RadT = RadLarge
 else
 RadT = RadSmall
 end if

 wloop: do while (Hit .eqv. .FALSE.)

 ! Randomly chooses the x value
 call random_number(RX)
 Spot = 1 + floor((GridSize-(2*RadT))*RX)
 x = Spot+RadT

 call random_number(RX)
 Spot = 1 + floor((GridSize-(2*RadT))*RX)
 z = Spot+RadT

 do y = GridSize, RadT, -1 ! Loops from the top of the box, and sends to
the function to determine impact

 call PointSafe

 ! If the box is full or an impact has I, the loop is exited

 if (Full == 1) then
 exit wloop
 end if

 if (FullCheck .eqv. .TRUE.) then
 RoofHit = .TRUE.
 GO TO 10
 end if

 if (Hit .eqv. .TRUE.) then
 exit wloop
 end if
 end do
 end do wloop

 if (Hit .eqv. .TRUE. .and. Full /= 1) then
 if (MolNo > 1) then
 ‘ ’A = '0'

 ! Sets up the variables to be used for particle placement

 Ones = 0
 OneCount = 1

 do count = 1,–MolNo - 1 ! Loops through the particles for contour plot
placement

William Eales

194

 MLxcor = MLxReal(count)
 MLycor = MLyReal(count)
 MLzcor = MLzReal(count) ! Takes the radius, x, y and z
coordinates of the current particle in the loop
 RadIn = Mlr(count)

 DoubRad = (RadIn+RadT)+1
 ZDoubRad = (RadIn+RadT)+1

 do Width = -ZDoubRad, 0
 MidWayZ = ZDoub–ad**2 - Width**2
 ZRad = abs(sqrt(MidwayZ))
 ZRadReal = abs(sqrt(MidwayZ))

 do Height = -ZRad, 0 ! Draws the particle onto the
contour“p“ot, "-"s marking blocked loca“i”ns, "1"s being valid spots

 Midway = Z–ad**2 - Height**2
 RowRad = abs(sqrt(MidWay))
 MidWayReal = ZRadR–al**2 - Height**2
 RowRadReal = abs(sqrt(MidWayReal))

 do count2 = -RowRad+1,RowRad-1
 if (MLyCor+count2<=HMAllo .and.
MLyCor+count2>=RadT) then
 if (MLxCor+Height>=RadT
.and. MLzCor+Width >= RadT) then

 RA(MLyCor+count2, MLxCor+Height, MLzCor+Wi‘t‘) = '-'
 end if
 if (MLxCor-
Height<=GridSize-RadT .and. MLzCor+Width >= RadT) then

 RA(MLyCor+count2, MLxCor-Height, MLzCor+Wi‘t‘) = '-'
 end if
 if (MLxCor+Height>=RadT
.and. MLzCor-Width <=GridSize-RadT) then

 RA(MLyCor+count2, MLxCor+Height, MLzCor-Wi‘t‘) = '-'
 end if
 if (MLxCor-
Height<=GridSize-RadT .and. MLzCor-Width <=GridSize-RadT) then

 RA(MLyCor+count2, MLxCor-Height, MLzCor-Wi‘t‘) = '-'
 end if
 end if
 end do

 do count2 = -RowRad,RowRad ! Adds the
valid spots for the resting particle to be placed
 if (MLyCor+count2>=RadT .and.
MLyCor+count2<=HMAllo) then
 if (MLxCor+Height>=RadT
.and. MLzCor+Width >= RadT) then
 if
(RA(MLyCor+count2, MLxCor+Height, MLzCor+Wid‘h‘ /= '-') then

William Eales

195

 RA(MLyCor+count2, MLxCor+Height, MLzCor+Wi‘t’) = '1'
 end if
 end if
 if (MLxCor-
Height<=GridSize-RadT .and. MLzCor+Width >= RadT) then
 if
(RA(MLyCor+count2, MLxCor-Height, MLzCor+Wid‘h‘ /= '-') then

 RA(MLyCor+count2, MLxCor-Height, MLzCor+Wi‘t’) = '1'
 end if
 end if
 if (MLxCor+Height>=RadT
.and. MLzCor-Width <= GridSize-RadT) then
 if
(RA(MLyCor+count2, MLxCor+Height, MLzCor-Wid‘h‘ /= '-') then

 RA(MLyCor+count2, MLxCor+Height, MLzCor-Wi‘t’) = '1'
 end if
 end if
 if (MLxCor-
Height<=GridSize-RadT .and. MLzCor-Width <= GridSize-RadT) then
 if
(RA(MLyCor+count2, MLxCor-Height, MLzCor-Wid‘h‘ /= '-') then

 RA(MLyCor+count2, MLxCor-Height, MLzCor-Wi‘t’) = '1'
 end if
 end if
 end if
 end do

 if (MLyCor+RowRadReal>=RadT .and.
MLyCor+RowRadReal<=HMAllo) then
 if (MLxCor+Height>=RadT .and.
MLzCor+Width >= RadT) then
 if (RA(MLyCor+count2,
MLxCor+Height, MLzCor+Wid‘h‘ /= '-') then
 if
(MLyCor+RowRadReal > yVal(MLxCor+Height, MLzCor+Width,1)) then

 yVal(MLxCor+Height, MLzCor+Width,1) = MLyCor+RowRadReal

 yVal(MLxCor+Height, MLzCor+Width,2) = count
 end if
 end if
 end if
 if (MLxCor-Height<=GridSize-RadT
.and. MLzCor+Width >= RadT) then
 if (RA(MLyCor+count2,
MLxCor-Height, MLzCor+Wid‘h‘ /= '-') then
 if
(MLyCor+RowRadReal > yVal(MLxCor-Height, MLzCor+Width,1)) then

 yVal(MLxCor-Height, MLzCor+Width,1) = MLyCor+RowRadReal

 yVal(MLxCor-Height, MLzCor+Width,2) = count
 end if

William Eales

196

 end if
 end if
 if (MLxCor+Height>=RadT .and.
MLzCor-Width <= GridSize-RadT) then
 if (RA(MLyCor+count2,
MLxCor+Height, MLzCor-Wid‘h‘ /= '-') then
 if
(MLyCor+RowRadReal > yVal(MLxCor+Height, MLzCor-Width,1)) then

 yVal(MLxCor+Height, MLzCor-Width,1) = MLyCor+RowRadReal

 yVal(MLxCor+Height, MLzCor-Width,2) = count
 end if
 end if
 end if
 if (MLxCor-Height<=GridSize-RadT
.and. MLzCor-Width <= GridSize-RadT) then
 if (RA(MLyCor+count2,
MLxCor-Height, MLzCor-Wid‘h‘ /= '-') then
 if
(MLyCor+RowRadReal > yVal(MLxCor-Height, MLzCor-Width,1)) then

 yVal(MLxCor-Height, MLzCor-Width,1) = MLyCor+RowRadReal

 yVal(MLxCor-Height, MLzCor-Width,2) = count
 end if
 end if
 end if
 end if
 end do
 end do
 end do

 do a = 1, GridSize ! Finds the valid points and saves them to an array
 do b = 1, HMAllo
 do c = 1, GridSize
 if (RA(b,a‘c’ == '1') then
 Ones(OneCount, 1) = b
 Ones(OneCount, 2) = a
 Ones(OneCount, 3) = c
 OneCount = OneCount + 1
 end if
 end do
 end do
 end do

 if (FirstCusps .eqv. .FALSE.) then
 FirstCusps = .TRUE.
 c = 1
 do a = RadT, GridSize-RadT
 do b = RadT, GridSize-RadT
 if (yVal(a+1,b,1) > yVal(a,b,1) .and. yVal(a-
1,b,1) > yVal(a,b,1)) then
 if (yVal(a,b+1,1) > yVal(a,b,1) .and.
yVal(a,b-1,1) > yVal(a,b,1)) then
 if (yVal(a+1,b+1,1) >
yVal(a,b,1) .and. yVal(a-1,b-1,1) > yVal(a,b,1)) then

William Eales

197

 if (yVal(a-1,b+1,1) >
yVal(a,b,1) .and. yVal(a+1,b-1,1) > yVal(a,b,1)) then

 FinalCuspsSaved(c,1) = a

 FinalCuspsSaved(c,2) = b

 FinalCuspsSaved(c,3) = yVal(a,b,1)

 FinalCuspsSaved(c,4) = yVal(a,b,2)
 c = c + 1
 end if
 end if
 end if
 end if
 end do
 end do
 end if

 do a = 1, On–Count - 1 ! Finds the closest of these points to the impact
location and moves the particle to it
 TempX = Ones(a,2)
 TempY = Ones(a,1)
 TempZ = Ones(a,3)

 if (TempY <= y+1) then
 Dist = ((x-TempX)**2)+((y-TempY)**2)+((z-
TempZ)**2)
 Dist = sqrt(Dist)
 if (Dist < SavDist .or. SavDist == 0) then
 SavDist = Dist
 SavOneX = Ones(a,2)
 SavOneY = Ones(a,1)
 SavOneZ = Ones(a,3)
 end if
 end if
 end do

 TempX = SavOneX
 TempY = SavOneY
 TempZ = SavOneZ

 if (TempX == 0 .and. TempY == 0 .and. TempZ == 0) then
 GO TO 10
 end if

 SafeLocFound = .FALSE.

 FinCount = 0
 LR = 0
 step = 1

 FindLoop: do while (SafeLocFound .eqv. .FALSE.) ! Rolling algorithm,
moves in the direction with the deepest slope until it is fully surrounded by higher points
 CurrentY = yVal(TempX,TempZ,1)
 if (TempX < RadT .or. TempZ < RadT .or. TempX > GridSize-
RadT .or. TempZ > GridSize-RadT) then

William Eales

198

 FullCount = FullCount + 1
 GO TO 40
 end if
 if (TempX-1 < RadT .or. TempZ-1 < RadT .or. TempX+1 >
GridSize-RadT .or. TempZ+1 > GridSize-RadT) then
 EdgeLoop: do while (CuspFound .eqv. .FALSE.)
 CurrentY = yVal(TempX,TempZ,1)
 if (TempX-1 < RadT .and. TempZ-1 < RadT)
then
 EdgeSide = 1
 CuspFound = .TRUE.
 exit EdgeLoop
 elseif (TempX+1 > GridSize-RadT .and.
TempZ+1 > GridSize-RadT) then
 EdgeSide = 4
 CuspFound = .TRUE.
 exit EdgeLoop
 elseif (TempX+1 > GridSize-RadT .and.
TempZ-1 < RadT) then
 EdgeSide = 2
 CuspFound = .TRUE.
 exit EdgeLoop
 elseif (TempX-1 < RadT .and. TempZ+1 >
GridSize-RadT) then
 EdgeSide = 3
 CuspFound = .TRUE.
 exit EdgeLoop
 end if

 EdgeLowVal = 0
 EdgeLowA = 0
 EdgeLowB = 0
 InitialCusp = .FALSE.

 if –TempX - 1 < RadT .or. TempX + 1 >
GridSize-RadT) then
 if (yVal(TempX,TempZ+1,1) >=
CurrentY .and. yVal(TempX,TempZ-1,1) >= CurrentY) then
 if –TempX - 1 < RadT) then
 if
(yVal(TempX+1,TempZ+1,1)>=CurrentY.and.yVal(TempX+1,TempZ-
1,1)>=CurrentY.and.yVal(TempX+1,TempZ,1)>=CurrentY) then
 InitialCusp
= .TRUE.
 end if
 elseif (TempX + 1 >
GridSize-RadT) then
 if (yVal(TempX-
1,TempZ+1,1)>=CurrentY.and.yVal(TempX-1,TempZ-1,1)>=CurrentY.and.yVal(TempX-
1,TempZ,1)>=CurrentY) then
 InitialCusp
= .TRUE.
 end if
 end if
 end if

 if (InitialCusp .eqv. .TRUE.) then

William Eales

199

 if –TempX - 1 < RadT) then
 EdgeSide = 5
 elseif (TempX + 1 >
GridSize-RadT) then
 EdgeSide = 8
 end if
 CuspFound = .TRUE.
 else
 if –TempX - 1 < RadT) then
 bSide1 = 0
 bSide2 = 1
 elseif (TempX + 1 >
GridSize-RadT) then
 bSide1 = -1
 bSide2 = 0
 end if
 do a = -1, 1
 do b = bSide1,
bSide2
 if
(yVal(TempX+b,TempZ+a,1) < CurrentY) then
 if
(yVal(TempX+b,TempZ+a,1) < EdgeLowVal .or. EdgeLowVal == 0) then

 EdgeLowVal = yVal(TempX+b,TempZ+a,1)

 EdgeLowA = a

 EdgeLowB = b

 end if
 end if
 end do
 end do
 end if

 TempX = TempX + EdgeLowB
 TempZ = TempZ + EdgeLowA

 elseif –TempZ - 1 < RadT .or. TempZ + 1 >
GridSize-RadT) then
 if (yVal(TempX+1,TempZ,1) >=
CurrentY .and. yVal(TempX-1,TempZ,1) >= CurrentY) then
 if –TempZ - 1 < RadT) then
 if
(yVal(TempX+1,TempZ+1,1)>=CurrentY.and.yVal(TempX-
1,TempZ+1,1)>=CurrentY.and.yVal(TempX,TempZ+1,1)>=CurrentY) then
 InitialCusp
= .TRUE.
 end if
 elseif (TempZ + 1 >
GridSize-RadT) then
 if
(yVal(TempX+1,TempZ-1,1)>=CurrentY.and.yVal(TempX-1,TempZ-
1,1)>=CurrentY.and.yVal(TempX,TempZ-1,1)>=CurrentY) then
 InitialCusp
= .TRUE.

William Eales

200

 end if
 end if
 end if

 if (InitialCusp .eqv. .TRUE.) then
 if –TempZ - 1 < RadT) then
 EdgeSide = 6
 elseif (TempZ + 1 >
GridSize-RadT) then
 EdgeSide = 7
 end if
 CuspFound = .TRUE.
 else
 if –TempZ - 1 < RadT) then
 bSide1 = 0
 bSide2 = 1
 elseif (TempZ + 1 >
GridSize-RadT) then
 bSide1 = -1
 bSide2 = 0
 end if
 do a = -1, 1
 do b = bSide1,
bSide2
 if
(yVal(TempX+a,TempZ+b,1) < CurrentY) then
 if
(yVal(TempX+a,TempZ+b,1) < EdgeLowVal .or. EdgeLowVal == 0) then

 EdgeLowVal = yVal(TempX+a,TempZ+b,1)

 EdgeLowA = a

 EdgeLowB = b

 end if
 end if
 end do
 end do
 end if

 TempX = TempX + EdgeLowA
 TempZ = TempZ + EdgeLowB
 end if

 FinCount = FinCount + 1
 if (FinCount > 10000) then
 CuspFound = .TRUE.
 SafeLocFound = .TRUE.
 end if

 end do EdgeLoop

 SafeLocFound = .TRUE.

 elseif (yVal(TempX+1,TempZ,1) > CurrentY .and.
yVal(TempX-1,TempZ,1) > CurrentY) then

William Eales

201

 if (yVal(TempX,TempZ+1,1) > CurrentY .and.
yVal(TempX,TempZ-1,1) > CurrentY) then
 if (yVal(TempX+1,TempZ+1,1) > CurrentY
.and. yVal(TempX-1,TempZ-1,1) > CurrentY) then
 if (yVal(TempX-1,TempZ+1,1) >
CurrentY .and. yVal(TempX+1,TempZ-1,1) > CurrentY) then
 CuspHighCount = 1
 CuspLowCount = 1

 do a = -3, 3
 do b = -3, 3
 OuterLayer
= .FALSE.
 if
(abs(a)+abs(b) >= 3) then

 OuterLayer = .TRUE.
 elseif
(abs(a)+abs(b) == 2) then
 if
(a == 0 .or. b == 0) then

 OuterLayer = .TRUE.

 end if
 end if
 if
(OuterLayer .eqv. .TRUE.) then
 if
(yVal(TempX+a,TempZ+b,1) >= CurrentY .or. yVal(TempX+a,TempZ+b,1) == 0) then

 CuspHighCount = CuspHighCount + 1

 elseif (TempX+a>GridSize-RadT.or.TempX+a<RadT.or.TempZ+b>GridSize-
RadT.or.TempZ+b<RadT) then

 CuspHighCount = CuspHighCount + 1

 elseif (yVal(TempX+a,TempZ+b,1) == 0) then

 CuspHighCount = CuspHighCount + 1

 elseif (yVal(TempX+a,TempZ+b,1) < CurrentY) then

 if (TempX+a<=GridSize-RadT.and.TempX+a>=RadT.and.TempZ+b<=GridSize-
RadT.and.TempZ+b>=RadT) then

 CuspHighList(CuspLowCount,1) = TempX+a

 CuspHighList(CuspLowCount,2) = TempZ+b

 CuspHighList(CuspLowCount,3) = yVal(TempX+a,TempZ+b,1)

 CuspLowCount = CuspLowCount + 1

 end if

William Eales

202

 end if
 end if
 end do
 end do

 if (CuspHighCount == 41)
then
 CuspFound =
.TRUE.
 SafeLocFound =
.TRUE.
 else
 do a = 1,
CuspLowCount-1
 Dist =
((CuspHighList(a,1)-OldX)**2)+((CuspHighList(a,2)-OldZ)**2)
 Dist =
sqrt(Dist)

 if (FurthDist
< Dist) then

 FurthDist = Dist

 CuspLowMoveTo = a
 end if
 end do

 OldX = TempX
 OldZ = TempZ
 TempX =
CuspHighList(CuspLowMoveTo,1)
 TempZ =
CuspHighList(CuspLowMoveTo,2)

 GO TO 20

 end if
 end if
 end if
 end if
 end if

 if (CuspFound .eqv. .TRUE.) then
 SafeLocFound = .TRUE.
 else
 LowYLoc = 0
 LowYVal = 0

 do a = -1, 1
 do b = -1, 1
 if (yVal(TempX+a,TempZ+b,1) <=
CurrentY) then
 if
(yVal(TempX+a,TempZ+b,1) < LowYVal .or. LowYVal == 0) then

William Eales

203

 LowYVal =
yVal(TempX+a,TempZ+b,1)
 LowYLoc(1) =
TempX+a
 LowYLoc(2) =
TempZ+b
 end if
 end if
 end do
 end do

 if (OldX == LowYLoc(1) .and. OldZ == LowYLoc(2))
then
 TempX = OldX
 TempZ = OldZ
 CuspFound = .TRUE.
 elseif (OldX == TempX .and. OldZ == TempZ) then
 CuspFound = .TRUE.
 else
 OldX = TempX
 OldZ = TempZ
 TempX = LowYLoc(1)
 TempZ = LowYLoc(2)
 end if
 end if
20 CONTINUE
 FinCount = FinCount + 1
 if (FinCount > 10000) then
 CuspFound = .TRUE.
 SafeLocFound = .TRUE.
 end if
 end do FindLoop

 TempY = yVal(TempX,TempZ,1)

 if (TempX == RadT .or. TempZ == RadT .or. TempX == GridSize-
RadT .or. TempZ == GridSize-RadT) then
 EdgeCase = .TRUE.
 end if

25 CONTINUe

 FPcount = 0
 do a = 1, MolNo-1 ! Finds the particles closest to the low point for the
new particle to be resting on
 if (MLyReal(a) < TempY+(RadT/2)) then
 Dist = ((MLxReal(a)-TempX)**2)+((MLyReal(a)-
TempY)**2)+((MLzReal(a)-TempZ)**2)
 Dist = sqrt–Dist) – RadT - MLr(a)
 if (Dist <= FinalPartDist(1,1)) then
 FinalPartNo(5) = FinalPartNo(4)
 FinalPartDist(5,1) = FinalPartDist(4,1)
 FinalPartDist(5,2) = FinalPartDist(4,2)
 FinalPartNo(4) = FinalPartNo(3)
 FinalPartDist(4,1) = FinalPartDist(3,1)
 FinalPartDist(4,2) = FinalPartDist(3,2)
 FinalPartNo(3) = FinalPartNo(2)

William Eales

204

 FinalPartDist(3,1) = FinalPartDist(2,1)
 FinalPartDist(3,2) = FinalPartDist(2,2)
 FinalPartNo(2) = FinalPartNo(1)
 FinalPartDist(2,1) = FinalPartDist(1,1)
 FinalPartDist(2,2) = FinalPartDist(1,2)
 FinalPartNo(1) = a
 FinalPartDist(1,1) = Dist
 FinalPartDist(1,2) = Dist + RadT + MLr(a)
 elseif (Dist <= FinalPartDist(2,1)) then
 FinalPartNo(5) = FinalPartNo(4)
 FinalPartDist(5,1) = FinalPartDist(4,1)
 FinalPartDist(5,2) = FinalPartDist(4,2)
 FinalPartNo(4) = FinalPartNo(3)
 FinalPartDist(4,1) = FinalPartDist(3,1)
 FinalPartDist(4,2) = FinalPartDist(3,2)
 FinalPartNo(3) = FinalPartNo(2)
 FinalPartDist(3,1) = FinalPartDist(2,1)
 FinalPartDist(3,2) = FinalPartDist(2,2)
 FinalPartNo(2) = a
 FinalPartDist(2,1) = Dist
 FinalPartDist(2,2) = Dist + RadT + MLr(a)
 elseif (Dist <= FinalPartDist(3,1)) then
 FinalPartNo(5) = FinalPartNo(4)
 FinalPartDist(5,1) = FinalPartDist(4,1)
 FinalPartDist(5,2) = FinalPartDist(4,2)
 FinalPartNo(4) = FinalPartNo(3)
 FinalPartDist(4,1) = FinalPartDist(3,1)
 FinalPartDist(4,2) = FinalPartDist(3,2)
 FinalPartNo(3) = a
 FinalPartDist(3,1) = Dist
 FinalPartDist(3,2) = Dist + RadT + MLr(a)
 elseif (Dist <= FinalPartDist(4,1)) then
 FinalPartNo(5) = FinalPartNo(4)
 FinalPartDist(5,1) = FinalPartDist(4,1)
 FinalPartDist(5,2) = FinalPartDist(4,2)
 FinalPartNo(4) = a
 FinalPartDist(4,1) = Dist
 FinalPartDist(4,2) = Dist + RadT + MLr(a)
 elseif (Dist <= FinalPartDist(5,1)) then
 FinalPartNo(5) = a
 FinalPartDist(5,1) = Dist
 FinalPartDist(5,2) = Dist + RadT + MLr(a)
 end if
 end if
 end do

60 CONTINUE

 if
(FinalPartNo(1)>MolNo.or.FinalPartNo(2)>MolNo.or.FinalPartNo(3)>MolNo.or.FinalPartNo(4)
>MolNo.or.FinalPartNo(5)>MolNo) then
 FullCount = FullCount + 1
 GO TO 40
 end if

 PartCoords(1,1) = MLxReal(FinalPartNo(1))
 PartCoords(1,2) = MLyReal(FinalPartNo(1))

William Eales

205

 PartCoords(1,3) = MLzReal(FinalPartNo(1))

 PartCoords(2,1) = MLxReal(FinalPartNo(2))
 PartCoords(2,2) = MLyReal(FinalPartNo(2))
 PartCoords(2,3) = MLzReal(FinalPartNo(2))

 PartCoords(3,1) = MLxReal(FinalPartNo(3))
 PartCoords(3,2) = MLyReal(FinalPartNo(3))
 PartCoords(3,3) = MLzReal(FinalPartNo(3))

 EquA1 = 2*MLxReal(FinalPart–o(1)) - 2*MLxReal(FinalPartNo(2))
 EquA2 = 2*MLxReal(FinalPart–o(2)) - 2*MLxReal(FinalPartNo(3))
 EquA3 = 2*MLxReal(FinalPart–o(3)) - 2*MLxReal(FinalPartNo(1))

 EquB1 = 2*MLyReal(FinalPart–o(1)) - 2*MLyReal(FinalPartNo(2))
 EquB2 = 2*MLyReal(FinalPart–o(2)) - 2*MLyReal(FinalPartNo(3))
 EquB3 = 2*MLyReal(FinalPart–o(3)) - 2*MLyReal(FinalPartNo(1))

 EquC1 = 2*MLzReal(FinalPart–o(1)) - 2*MLzReal(FinalPartNo(2))
 EquC2 = 2*MLzReal(FinalPart–o(2)) - 2*MLzReal(FinalPartNo(3))
 EquC3 = 2*MLzReal(FinalPart–o(3)) - 2*MLzReal(FinalPartNo(1))

 Equd1 = (MLzReal(FinalPartNo(1–)**2) -
(MLzReal(FinalPartNo(2))**2) + (MLyReal(FinalPartNo(1))**2)
 EquD1 =–Equd1 - (MLyReal(FinalPartNo(2))**2) +
(MLxReal(FinalPartNo(1–)**2) - (MLxReal(FinalPartNo(2))**2)
 EquD1 =–EquD1 - ((MLr(FinalPartNo(1))+RadT)**2) +
((MLr(FinalPartNo(2))+RadT)**2)

 Equd2 = (MLzReal(FinalPartNo(2–)**2) -
(MLzReal(FinalPartNo(3))**2) + (MLyReal(FinalPartNo(2))**2)
 EquD2 =–Equd2 - (MLyReal(FinalPartNo(3))**2) +
(MLxReal(FinalPartNo(2–)**2) - (MLxReal(FinalPartNo(3))**2)
 EquD2 =–EquD2 - ((MLr(FinalPartNo(2))+RadT)**2) +
((MLr(FinalPartNo(3))+RadT)**2)

 Equd3 = (MLzReal(FinalPartNo(3–)**2) -
(MLzReal(FinalPartNo(1))**2) + (MLyReal(FinalPartNo(3))**2)
 EquD3 =–Equd3 - (MLyReal(FinalPartNo(1))**2) +
(MLxReal(FinalPartNo(3–)**2) - (MLxReal(FinalPartNo(1))**2)
 EquD3 =–EquD3 - ((MLr(FinalPartNo(3))+RadT)**2) +
((MLr(FinalPartNo(1))+RadT)**2)

 if (CuspFound .eqv. .TRUE. .and. EdgeCase .eqv. .FALSE.) then ! If
in a cusp and not on an edge

 EquValuesA(1,1) = EquA1
 EquValuesA(1,2) = EquB1
 EquValuesA(1,3) = EquC1
 EquValuesB(1) = EquD1

 EquValuesA(2,1) = EquA2
 EquValuesA(2,2) = EquB2
 EquValuesA(2,3) = EquC2
 EquValuesB(2) = EquD2

 EquValuesA(3,1) = EquA3

William Eales

206

 EquValuesA(3,2) = EquB3
 EquValuesA(3,3) = EquC3
 EquValuesB(3) = EquD3

 stochDists(1) = FinalPartDist(1,2)
 stochDists(2) = FinalPartDist(2,2)
 stochDists(3) = FinalPartDist(3,2)

 sumDist = stochDists(1) + stochDists(2) + stochDists(3) !
Starts stochastic optimisation to find the resting position

 newCoords(1) = TempX
 newCoords(2) = TempY
 newCoords(3) = TempZ

 dx(1) = 10 * RadLarge
 dx(2) = 10 * RadLarge
 dx(3) = 10 * RadLarge

 do a = 1, 10
 do b = 1, 3
 dx(b) = dx(b) / 10
 end do
 do c = 1, 500
 do b = 1, 3
 call random_number(RX)
 stochxnew(b) = newCoords(b) +
dx(b) * (2*RX-1)
 end do
 ibad = 0
 do b = 1, 3
 stochDists(b) = ((PartCoords(b,1)-
stochxnew(1))**2)+((PartCoords(b,2)-stochxnew(2))**2)+((PartCoords(b,3)-
stochxnew(3))**2)
 stochDists(b) = sqrt(stochDis–s(b))
– RadT - MLr(FinalPartNo(b))
 if (stochDists(b) < 0) then
 ibad = 1
 end if
 end do
 stochynew = stochDists(1) + stochDists(2) +
stochDists(3)
 if (stochynew < sumDist .and. ibad == 0)
then
 do b = 1, 3
 newCoords(b) =
stochxnew(b)
 end do
 sumDist = stochynew
 end if
 end do
 end do

 NewX = newCoords(1)
 NewY = newCoords(2)
 NewZ = newCoords(3)

William Eales

207

 do a = 1, MolNo-1 ! Confirms that the particle is not
overlapping with any others in its new position
 Dist = ((MLxReal(a)-NewX)**2)+((MLyReal(a)-
NewY)**2)+((MLzReal(a)-NewZ)**2)
 Dist = sqrt(Dist)
 if (Dist < MLr(a)+RadT) then
 OverDist = 0
 OverlapCount = OverlapCount + 1
 if (OverlapCount > 2500) then
 GO TO 50
 end if
 do b = 1, 3
 Dist = ((MLxReal(a)-
PartCoords(b,1))**2)+((MLyReal(a)-PartCoords(b,2))**2)+((MLzReal(a)-PartCoords(b,3))**2)
 Dist = sqrt(Dist)
 if (Dist < OverDist .or. OverDist ==
0) then
 OverDist = Dist
 OverDistNo = b
 end if
 end do
 FinalPartNo(OverDistNo) = a
 FullCount = FullCount + 1
 if (OverDist == 0) then
 GO TO 50
 else
 GO TO 60
 end if
 end if
 end do

 DistAB = ((PartCoords(1,1)-
PartCoords(2,1))**2)+((PartCoords(1,3)-PartCoords(2,3))**2)
 DistAB = sqrt(DistAB)
 DistBC = ((PartCoords(2,1)-
PartCoords(3,1))**2)+((PartCoords(2,3)-PartCoords(3,3))**2)
 DistBC = sqrt(DistBC)
 DistCA = ((PartCoords(3,1)-
PartCoords(1,1))**2)+((PartCoords(3,3)-PartCoords(1,3))**2)
 DistCA = sqrt(DistCA)

 DistAN = ((PartCoords(1,1)-NewX)**2)+((PartCoords(1,3)-
NewZ)**2)
 DistAN = sqrt(DistAN)
 DistBN = ((PartCoords(2,1)-NewX)**2)+((PartCoords(2,3)-
NewZ)**2)
 DistBN = sqrt(DistBN)
 DistCN = ((PartCoords(3,1)-NewX)**2)+((PartCoords(3,3)-
NewZ)**2)
 DistCN = sqrt(DistCN)

 Sempi = (DistAB + DistBC + DistCA) / 2
 SetTri = Sempi * –Sempi - DistAB) * –Sempi - DistBC) * –
Sempi - DistCA)
 SetTri = sqrt(SetTri)

William Eales

208

 SempiA = (DistAB + DistAN + DistBN) / 2
 TriA = SempiA * (–empiA - DistAB) * (–empiA - DistAN) * (–
empiA - DistBN)
 TriA = sqrt(TriA)

 SempiB = (DistBC + DistBN + DistCN) / 2
 TriB = SempiB * (–empiB - DistBC) * (–empiB - DistBN) * (–
empiB - DistCN)
 TriB = sqrt(TriB)

 SempiC = (DistCA + DistCN + DistAN) / 2
 TriC = SempiC * (–empiC - DistCA) * (–empiC - DistCN) * (–
empiC - DistAN)
 TriC = sqrt(TriC)

 if (TriA + TriB + TriC > SetTri + 2.5) then ! Confirms the new
particle location is correctly resting on the three particles below it

50 CONTINUE

 OverlapCount = 0

 if (FirstTri .eqv. .TRUE.) then
 do a = 1, MolNo-1
 Dist = ((MLxReal(a)-
NewX)**2)+((MLzReal(a)-NewZ)**2)
 Dist = sqrt(Dist)
 if (Dist < RadT + MLr(a) +
(RadT*8) .and. NewY-MLyReal(a) < RadT + MLr(a) + (RadT*6)) then

 TriCheckNo(TriCheckCount) = a
 TriCheckCount =
TriCheckCount + 1
 end if
 end do
 aLoop: do a = TriCheckCount-1, 1, -1
 do b = TriCheckCount-1, 1, -1
 if (b < a) then
 do c =
TriCheckCount-1, 1, -1
 if (c < b)
then
 if
(TriCount <= 100000) then

 TriCombi(TriCount,1) = TriCheckNo(a)

 TriCombi(TriCount,2) = TriCheckNo(b)

 TriCombi(TriCount,3) = TriIckNo(c)

 TriCount = TriCount + 1

 else

 exit aLoop

William Eales

209

 end if
 end if
 end do
 end if
 end do
 end do aLoop
 end if

 FirstTri = .FALSE.

 if (TriAttempt <= TriCount-1) then
 FinalPartNo(1) = TriCombi(TriCount-
TriAttempt,1)
 FinalPartNo(2) = TriCombi(TriCount-
TriAttempt,2)
 FinalPartNo(3) = TriCombi(TriCount-
TriAttempt,3)
 TriAttempt = TriAttempt + 1
 if (TriAttempt <= 100000) then
 GO TO 60
 end if
 end if

 if (TempX >= GridSize-RadT-RadT .or. TempX <=
RadT+RadT .or. TempZ >= GridSize-RadT-RadT .or. TempZ <= RadT+RadT) then
 if (TempX <= RadT+RadT .and. TempZ <=
RadT+RadT) then
 EdgeSide = 1
 elseif (TempX >= GridSize-RadT-RadT
.and. TempZ >= GridSize-RadT-RadT) then
 EdgeSide = 4
 elseif (TempX >= GridSize-RadT-RadT
.and. TempZ <= RadT+RadT) then
 EdgeSide = 2
 elseif (TempX <= RadT+RadT .and. TempZ
>= GridSize-RadT-RadT) then
 EdgeSide = 3
 elseif (TempX <= RadT+RadT) then
 EdgeSide = 5
 elseif (TempX >= GridSize-RadT-RadT)
then
 EdgeSide = 8
 elseif (TempZ <= RadT+RadT) then
 EdgeSide = 6
 elseif (TempZ >= GridSize-RadT-RadT)
then
 EdgeSide = 7
 end if
 EdgeCase = .TRUE.
 GO TO 25
 end if
 FullCount = FullCount + 1
 GO TO 40
 end if

 do a = 1, 3

William Eales

210

 FinalDists(a) = ((PartCoords(a,1)-
NewX)**2)+((PartCoords(a,2)-NewY)**2)+((PartCoords(a,3)-NewZ)**2)
 FinalDists(a) = sqrt(FinalDists(a))
 if (FinalDists(a) > RadT+MLr(FinalPartNo(a))+1)
then
 FullCount = FullCount + 1
 GO TO 50
 end if
 end do

 if (NewX < RadT .or. NewY < RadT .or. NewZ < RadT) then
 FullCount = FullCount + 1
 if (TempX >= GridSize-RadT-RadT .or. TempX <=
RadT+RadT .or. TempZ >= GridSize-RadT-RadT .or. TempZ <= RadT+RadT) then
 if (TempX <= RadT+RadT .and. TempZ <=
RadT+RadT) then
 EdgeSide = 1
 elseif (TempX >= GridSize-RadT-RadT
.and. TempZ >= GridSize-RadT-RadT) then
 EdgeSide = 4
 elseif (TempX >= GridSize-RadT-RadT
.and. TempZ <= RadT+RadT) then
 EdgeSide = 2
 elseif (TempX <= RadT+RadT .and. TempZ
>= GridSize-RadT-RadT) then
 EdgeSide = 3
 elseif (TempX <= RadT+RadT) then
 EdgeSide = 5
 elseif (TempX >= GridSize-RadT-RadT)
then
 EdgeSide = 8
 elseif (TempZ <= RadT+RadT) then
 EdgeSide = 6
 elseif (TempZ >= GridSize-RadT-RadT)
then
 EdgeSide = 7
 end if
 EdgeCase = .TRUE.
 GO TO 25
 end if
 GO TO 50
 elseif (NewX > GridSize-RadT .or. NewY > GridSize-RadT
.or. NewZ > GridSize-RadT) then
 FullCount = FullCount + 1
 if (TempX >= GridSize-RadT-RadT .or. TempX <=
RadT+RadT .or. TempZ >= GridSize-RadT-RadT .or. TempZ <= RadT+RadT) then
 if (TempX <= RadT+RadT .and. TempZ <=
RadT+RadT) then
 EdgeSide = 1
 elseif (TempX >= GridSize-RadT-RadT
.and. TempZ >= GridSize-RadT-RadT) then
 EdgeSide = 4
 elseif (TempX >= GridSize-RadT-RadT
.and. TempZ <= RadT+RadT) then
 EdgeSide = 2
 elseif (TempX <= RadT+RadT .and. TempZ
>= GridSize-RadT-RadT) then

William Eales

211

 EdgeSide = 3
 elseif (TempX <= RadT+RadT) then
 EdgeSide = 5
 elseif (TempX >= GridSize-RadT-RadT)
then
 EdgeSide = 8
 elseif (TempZ <= RadT+RadT) then
 EdgeSide = 6
 elseif (TempZ >= GridSize-RadT-RadT)
then
 EdgeSide = 7
 end if
 EdgeCase = .TRUE.
 GO TO 25
 end if
 GO TO 50
 end if

 MLxReal(MolNo) = newX
 MLyReal(MolNo) = newY
 MLzReal(MolNo) = NewZ

 elseif (EdgeCase .eqv. .TRUE.) then ! Else if the particle has come to
rest upon an edge

 if (EdgeSide < 5) then ! If the particle is resting in a corner, so
needs a single particle contact
 if (EdgeSide == 1) then
 NewX = RadT
 NewZ = RadT
 elseif (EdgeSide == 2) then
 NewX = GridSize-RadT
 NewZ = RadT
 elseif (EdgeSide == 3) then
 NewX = RadT
 NewZ = GridSize-RadT
 elseif (EdgeSide == 4) then
 NewX = GridSize-RadT
 NewZ = GridSize-RadT
 end if

 Dist = RadT + MLr(FinalPartNo(1))

 newY = -
(MLxReal(FinalPartNo(1))**2)+(2*MLxReal(FinalPartNo(1))*NewX)-
(MLzReal(FinalPartNo(1))**2)
 NewY =
NewY+(2*MLzReal(FinalPartNo(1))*NewZ)+(Dist**2)-(NewX**2)-(NewZ**2)
 NewY = sqrt(NewY)

 if (NewY /= NewY) then
 if (FirstEdge .eqv. .TRUE.) then
 do a = 1, MolNo-1
 dist = ((MLxReal(a)-
Newx)**2)+((MLzReal(a)-NewZ)**2)
 Dist = sqrt(Dist)

William Eales

212

 if (Dist < RadT + MLr(a) +
(RadT*8)) then

 EdgeCombi(EdgeCount) = a
 EdgeCount =
EdgeCount + 1
 end if
 end do
 end if

 FirstEdge = .FALSE.

 if (EdgeAttempt <= EdgeCount-1) then
 FinalPartNo(1) =
EdgeCombi(EdgeCount-EdgeAttempt)
 EdgeAttempt = EdgeAttempt + 1
 GO TO 60
 end if

 FullCount = FullCount + 1
 GO TO 40
 end if

 –f (tempY - (MLyReal(FinalPartNo(1)) + NewY– <
tempY - (MLyReal(FinalP–rtNo(1)) - NewY)) then
 NewY = MLyReal(FinalPartNo(1)) + NewY
 else
 NewY = MLyReal(FinalP–rtNo(1)) - NewY
 end if

 do a = 1, MolNo-1
 dist = ((MLxReal(a)-
Newx)**2)+((MLyReal(a)-Newy)**2)+((MLzReal(a)-NewZ)**2)
 Dist = sqrt(Dist)
 if (Dist < MLr(a)+RadT-1) then
 OverlapCount = OverlapCount + 1
 if (OverlapCount > 2500) then
 GO TO 40
 end if
 FinalPartNo(1) = a
 FullCount = FullCount + 1
 GO TO 60
 end if
 end do

 else ! On a regular edge so resting on two particles
 NewXVal = .FALSE.
 NewZVal = .FALSE.

 if (EdgeSide == 5) then
 stochxnew(1) = RadT
 newCoords(3) = TempZ
 NewXVal = .TRUE.
 elseif (EdgeSide == 6) then
 newCoords(1) = TempX
 stochxnew(3) = RadT
 NewZVal = .TRUE.

William Eales

213

 elseif (EdgeSide == 7) then
 newCoords(1) = TempX
 stochxnew(3) =–GridSize - RadT
 NewZVal = .TRUE.
 elseif (EdgeSide == 8) then
 stochxnew(1) =–GridSize - RadT
 newCoords(3) = TempZ
 NewXVal = .TRUE.
 end if

 stochDists(1) = FinalPartDist(1,2)
 stochDists(2) = FinalPartDist(2,2)

 sumDist = stochDists(1) + stochDists(2)

 newCoords(2) = TempY

 dx(1) = 10 * RadLarge
 dx(2) = 10 * RadLarge
 dx(3) = 10 * RadLarge

 do a = 1, 10
 do b = 1, 3
 dx(b) = dx(b) / 10
 end do
 do c = 1, 500
 call random_number(RX)
 stochxnew(2) = newCoords(2) +
dx(2) * (2*RX-1)

 if (NewXVal .eqv. .TRUE.) then
 call random_number(RX)
 stochxnew(3) =
newCoords(3) + dx(3) * (2*RX-1)
 elseif (NewZVal .eqv. .TRUE.) then
 call random_number(RX)
 stochxnew(1) =
newCoords(1) + dx(1) * (2*RX-1)
 end if

 ibad = 0

 do b = 1, 2
 stochDists(b) =
((PartCoords(b,1)-stochxnew(1))**2)+((PartCoords(b,2)-
stochxnew(2))**2)+((PartCoords(b,3)-stochxnew(3))**2)
 stochDists(b) = sqrt(stoch–
ists(b–) - RadT - MLr(FinalPartNo(b))
 if (stochDists(b) < 0) then
 ibad = 1
 end if
 end do
 stochynew = stochDists(1) +
stochDists(2)
 if (stochynew < sumDist .and. ibad
== 0) then
 do b = 1, 3

William Eales

214

 newCoords(b) =
stochxnew(b)
 end do
 sumDist = stochynew
 end if
 end do
 end do

 NewX = newCoords(1)
 NewY = newCoords(2)
 NewZ = newCoords(3)

 do a = 1, MolNo-1
 dist = ((MLxReal(a)-
Newx)**2)+((MLyReal(a)-Newy)**2)+((MLzReal(a)-NewZ)**2)
 Dist = sqrt(Dist)
 if (Dist < MLr(a)+RadT-1) then
 OverDist = 0
 OverlapCount = OverlapCount + 1
 if (OverlapCount > 2500) then
 GO TO 30
 end if
 do b = 1, 2
 dist = ((MLxReal(a)-
PartCoords(b,1))**2)+((MLyReal(a)-PartCoords(b,2))**2)+((MLzReal(a)-PartCoords(b,3))**2)
 Dist = sqrt(Dist)
 if (Dist < OverDist .or.
OverDist == 0) then
 OverDist = Dist
 OverDistNo = b
 end if
 end do
 FinalPartNo(OverDistNo) = a
 FullCount = FullCount + 1
 if (OverDist == 0) then
 GO TO 30
 else
 GO TO 60
 end if
 end if
 end do

 do a = 1, 2
 FinalDists(a) = ((PartCoords(a,1)-
NewX)**2)+((PartCoords(a,2)-NewY)**2)+((PartCoords(a,3)-NewZ)**2)
 FinalDists(a) = sqrt(FinalDists(a))
 if (FinalDists(a) >
RadT+MLr(FinalPartNo(a))+1) then
 FullCount = FullCount + 1

30 CONTINUE

 if (FirstSide .eqv. .TRUE.) then
 do b = 1, MolNo-1
 dist =
((MLxReal(b)-Newx)**2)+((MLzReal(b)-NewZ)**2)
 Dist = sqrt(Dist)

William Eales

215

 if (Dist < RadT +
MLr(b) + (RadT*8)) then

 SideCheckNo(SideCheckCount) = b

 SideCheckCount = SideCheckCount + 1
 end if
 end do

 bLoop: do b =
SideCheckCount-1, 1, -1
 do c =
SideCheckCount-1, 1, -1
 if (c < b)
then
 if
(SideCount <= 100000) then

 SideCombi(SideCount,1) = SideCheckNo(b)

 SideCombi(SideCount,2) = SICheckNo(c)

 SideCount = SideCount + 1

 else

 exit bLoop

 end if
 end if
 end do
 end do bLoop
 end if

 SideAttempt = SideAttempt + 1
 FirstSide = .FALSE.

 do b = SideAttempt, SideCount-1
 FinalPartNo(1) =
SideCombi(b,1)
 FinalPartNo(2) =
SideCombi(b,2)
 GO TO 60
 end do
 FullCount = FullCount + 1
 GO TO 40
 end if
 end do

 if (NewX < RadT .or. NewY < RadT .or. NewZ <
RadT) then
 FullCount = FullCount + 1
 GO TO 30
 elseif (NewX > GridSize-RadT .or. NewY > GridSize-
RadT .or. NewZ > GridSize-RadT) then
 FullCount = FullCount + 1
 GO TO 30

William Eales

216

 end if
 end if

 if (NewX < RadT .or. NewY < RadT .or. NewZ < RadT) then
 FullCount = FullCount + 1
 GO TO 40
 elseif (NewX > GridSize-RadT .or. NewY > GridSize-RadT
.or. NewZ > GridSize-RadT) then
 FullCount = FullCount + 1
 GO TO 40
 end if

 MLxReal(MolNo) = NewX
 MLyReal(MolNo) = NewY
 MLzReal(MolNo) = NewZ

 else
 MLxReal(MolNo) = TempX ! Saves the particle location
 MLyReal(MolNo) = TempY
 MLzReal(MolNo) = TempZ
 end if

 MLr(MolNo) = RadT
 FullCount = 0
 OverlapCount = 0
 Full = 0
 MolNo = MolNo + 1

 else
 MLxReal(MolNo) = x
 MLyReal(MolNo) = y
 MLzReal(MolNo) = z
 MLr(MolNo) = RadT
 FullCount = 0
 OverlapCount = 0
 Full = 0
 MolNo = MolNo + 1
 end if

10 CONTINUE

 else
 Full = 1
90 CONTINUE
 end if

 end

 subroutine PointSafe ! Determines if the falling particle has impacted yet
 use allSubs ! Loads the variables from the module
 integer a, b, c
 real Dist
 character t

 Hit = .FALSE.
 FullCheck = .FALSE.

William Eales

217

 ! Checks the distance between the current falling particle location and previously
placed partice to determine if it has impacted

 cloop: do – = 1, MolNo - 1
 Dist = ((MLxReal(a)-x)**2)+((MLyReal(a)-y)**2)+((MLzReal(a)-z)**2)
 Dist = sqrt(Dist)
 if (Dist <= ((RadT)+(Mlr(a)))) then
 Hit = .TRUE.
 exit cloop
 end if
 end do cloop

 ! If the impact is above the top of the box, a counter is incremented to show the box
may be full
 if ((Hit .eqv. .TRUE.) .and. (y –= (GridSize - RadT))) then
 Hit = .FALSE.
 FullCount = FullCount + 1
 RoofCount = RoofCount + 1
 end if

 if (RoofCount >= 500) then
 FullCheck = .TRUE.
 end if

 end

William Eales

218

Appendix 4: 2D Chain System Algorithm

This appendix contains the algorithm used to create the 2D chain systems.

 module allSubs ! Initialises the variables used through all functions
 character, dimension (:,:), allocatable, public :: RA*4
 integer, dimension (:,:), allocatable, public :: RAMolClose
 integer MolNo, RadLarge, RadSmall, BoxSize, GridSize, Rads, count, SN, Full,
FullCount, OneLegacyCount
 integer MLx, MLy, MLr, Quad, QuadC, AllocateVal, Roofcount
 real MLxReal, MLyReal
 integer, dimension (:), allocatable, public :: OneLegacyCounterCount
 integer, dimension (:,:), allocatable, public :: Ones
 integer, dimension (:,:), allocatable, public :: ChainOnes
 integer, dimension (:,:,:), allocatable, public :: OnesLegacy
 integer, dimension (:,:), allocatable, public :: Contacts
 dimension MLr(10000), Rads(10), MLxReal(10000), MLyReal(10000)
 logical FullCheck, Hit, RoofHit, StartPlace
 integer x, y, Long, Tall, RadT, ChainLength, OverFallCount, MinFallCount, LoopNo
 end module allSubs

 program packedbed
 use allSubs ! Loads the variables from the module

 ! Initialises local variables
 character t, FileName*15, FileID*3
 integer m, n, check, PrintNo, ProgCount, PCId, iSeed, count3
 dimension FileID(1000)
 real RX, ScaleFac, ScaleVal
 real Dist
 real PartArea, VoidArea, VoidFrac, Pi
 integer count2, RadTnew, TotLength
 logical Finished, Cont, Impact
 dimension iSeed(50)

! Variables initial values set
 StartPlace = .TRUE.
 OverFallCount = 0
 MinFallCount = 0
 LoopNo = ‘
’ if (t == 'y') then
 Rads(1) = 10 ! Sets the radius of a particle. Additional radii would be
inputted ‘s Rads’x) = 'Radius'
 SN = 1 ! Sets the number of different radii in the system

 RadLarge = 0
 RadSmall = 0
 ChainLength = 5 ! Sets the number of particles per chain

 do count = 1, SN
 if (RadLarge < Rads(count)) then
 RadLarge = Rads(count)
 end if
 if (RadSmall > Rads(count) .or. RadSmall == 0) then

William Eales

219

 RadSmall = Rads(count)
 end if
 end do

 RadLarge = 10
 RadSmall = 10

 ! Calculates the box size based on the largest radius present
 BoxSize = (RadLarge*6) * (ChainLength/2)
 GridSize = BoxSize*5
 AllocateVal = ((BoxSize*3)**2)*2

 ! Allocates the arrays
 allocate(RA(1:GridSize, 1:GridSize))
 allocate(RAMolClose(1:GridSize, 1:GridSize))

 allocate(Ones(1:AllocateVal,1:2))
 allocate(ChainOnes(1:AllocateVal,1:2))
 allocate(OnesLegacy(1:270,1:AllocateVal,1:2))
 allocate(OneLegacyCounterCount(1:270))

 do ProgCount = 1, 50
 write(FileID‘Prog’ount), '(i0)') ProgCount
 end do

 do ProgCount = 1, 50 ! Starts the loop for the number of systems to be created

 ! Se219nitialiables intial values
 MLxreal = 0
 MLyReal = 0
 MLr = 0

 PartArea = 0
 VoidArea = 0
 VoidFrac = 0
 Pi = 3.141596535
 TotLength = 0
 MolNo = 1
 OneLegacyCount = 1
 OverFallCount = 0
 ‘’FileName = ''
 Full = 0
 check = 0
 FullCount = 0
 Finished = .FALSE.

 Ones = 0
 OnesLegacy = 0
 OneLegacyCounterCount ‘ ’

 RA = '0'
 RAMolClose = 0

 RoofCount = 0
 RoofHit = .FALSE.

 call random_seed()

William Eales

220

 LayerLoop: do while (count < 10000000)

 Impact = .FALSE.

 ! Picks a random radius and x coordinate, and sets y to be on
the bottom of the box
 call random_number(RX)
 count2 = 1 + floor(SN*RX)
 RadT = Rads(count2)

 call random_number(RX)
 count2 = 1 + floor((GridSize-(2*RadT))*RX)
 x = count2+RadT

 y = RadT

 if (MolNo > 1) then ! Checks there is already at least
one particle in the system
 hitloop: do count– = 1, MolNo - 1
 Dist = ((MLxReal(count3)-
x)**2)+((MLyReal(count3)-y)**2)
 Dist = sqrt(Dist)
 if (Dist <= ((RadT*2)+(Mlr(count3)))) then
 count = count + 1
 Impact = .TRUE.
 exit hitloop
 end if
 end do hitloop
 if ((Impact .eqv. .FALSE.) .and. (x <= GridSize-
(RadT*ChainLength))) then ! If the particle is not overlapping with any others and is inside the
grid, its location is saved
 MLxReal(MolNo) = x
 MLyReal(MolNo) = y
 MLr(MolNo) = RadT
 MolNo = MolNo + 1

 do m = 1, ChainLength - 1
 x = x + RadT

 if (x < GridSize-RadT) then
 Impact = .FALSE.
 hitloop3: do count3 = 1,
MolNo - (m+1)
 Dist =
((MLxReal(count3)-x)**2)+((MLyReal(count3)-y)**2)
 Dist = sqrt(Dist)
 if (Dist <=
((RadT*2)+(Mlr(count3)))) then
 count =
count + 1
 Impact =
.TRUE.
 exit
hitloop3
 end if
 end do hitloop3

William Eales

221

 if (Impact .eqv. .FALSE.)
then
 MLxReal(MolNo) =
x
 MLyReal(MolNo) =
y
 MLr(MolNo) =
RadT
 MolNo = MolNo + 1
 else
 MolNo = MolNo -
(m)
 Cycle LayerLoop
 end if
 else
 MolNo = MolNo - (m)
 Cycle LayerLoop
 end if
 end do

 count = 0
 end if
 else
 MLxReal(MolNo) = x
 MLyReal(MolNo) = y
 MLr(MolNo) = RadT
 MolNo = MolNo + 1

 do m = 1, ChainLength - 1
 x = x + RadT

 if (x < GridSize - RadT) then
 MLxReal(MolNo) = x
 MLyReal(MolNo) = y
 MLr(MolNo) = RadT
 MolNo = MolNo + 1
 else
 MolNo = MolNo - (m)
 Cycle LayerLoop
 end if
 end do
 end if
 end do LayerLoop

 ! This loops through the base line to check that there is nowhere a
small particle could fall through to the bottom of the box, and if so, places a particle there
 do m = RadSmall, GridSize-RadSmall
 RadT = RadSmall
 Impact = .FALSE.
 hitloop2: do count3 = 1, MolNo - 1
 Dist = ((MLxReal(count3)-m)**2)
 Dist = sqrt(Dist)
 if (Dist < ((RadSmall)+(Mlr(count3)))) then
 count = count + 1
 Impact = .TRUE.
 exit hitloop2
 end if

William Eales

222

 end do hitloop2
 if (Impact .eqv. .FALSE.) then
 count = 0
 MLxReal(MolNo) = m
 MLyReal(MolNo) = RadSmall
 MLr(MolNo) = RadSmall
 MolNo = MolNo + 1

 call AddChain
 end if
 end do

 StartPlace = .FALSE.

 do n = 1, 500 ! Loops for each particle being added to the system,
using the main function. At the end of each loop, it checks if the box is full and if so, leaves the
loop.
 LoopNo = n
 call molpos
 if (Full == 1) then
 exit
 elseif (RoofHit .eqv. .TRUE.) then
 exit
 end if
 end do

 t = 'y'
 if (t == 'y' .and. RoofHit .eqv. .TRUE.) then ! Saves the particle
locations to a file
 FileName = ''
 FileName = trim(adjustl(FileID(ProgCount))) // '.csv'
 open(1, file = FileName, status = 'new')
 do y = 1, MolNo-1
 write(1,*) MLxReal(y), ',' , MLyReal(y), ',' , MLr(y)
 end do
 close(1)
 end if
 end do
 end if

 end program

 subroutine molpos
 use allSubs ! Loads the variables from the module

 ! Sets up the local variables
 integer count2, Spot, Height, DoubRad, RowRad, a,b,c, RadIn, m, n, TempX, TempY
 real MidWay, Dist
 character t, FileName*15
 integer SavIncremX, SavIncremY, SafeLocCount, LR, SavOneX, SavOneY,
SavOnePart, LRNo, OneCount, RealPos1, RealPos2
 integer TempRealPos1, TempRealPos2, ChainOneCount
 logical SafeLocFound, Go, ResetCheck
 real TempXa, TempXb, TempYa, TempYb, DistAB, DistBC, DistAC, AngleA, AngleB,
AngleFin, GradFin, HelpDist
 real FDistA, FDistB, FDistC, FDistD

William Eales

223

 real xDiff, yDiff, Pi, FinalSavX, FinalSavY, SavDist
 integer FinalSavLong, FinalSavTall, checktime, Balanced
 integer Balances, Touches
 dimension Balances(10)
 real DistFac, RadScale
 integer NewPos, TRP1Swap, TRP2Swap
 integer FinalPart, SideCount
 dimension FinalPart(2,3)
 real PartCoords, stochDists, sumDist, dx, stochxnew, newCoords, stochynew
 integer ibad
 dimension PartCoords(2,2), stochDists(2), newCoords(2), dx(2), stochxnew(2)
 real RX, NewX, NewY
 logical ChainAdd
 real OverDist
 integer OverDistNo
 logical NotBal, FirstBal
 dimension BalCheckNo(10000), BalCombi(100000,2)
 integer BalCheckCount, BalCount, BalCheckNo, BalCombi, BalAttempt
 integer OverlapCount
 logical EdgeCase, FirstEdge
 integer EdgeCombi, EdgeCount, EdgeAttempt
 dimension EdgeCombi(10000)
 integer ChainStartNo, ChainStartCont, d
 real ChainGrad, EquC
 logical ChainHitCheck, ChainEdgeHitCheck, ChainTopHitCheck
 logical TopCase
 integer OverTopCount, PartHit, MiddlePart, MiddlePartA, MiddlePartB, FallPoint,
ContPoint, ContPointB
 real Dy, intC, CheckY, MiddlePoint, ContDist, ContSpot
 logical Fell, Tilt, HMAdju
 integer FallCount, AdjCount
 real ContSpotTemp, ContSpotTempUy, ContSpotL, ContSpotR, ContSpotUy,
ContSpotUx
 integer ContSpotUn, NLCount
 logical RoundTwo
 real Valdx, ValDist, ValAng1,ValDist2, ValDist3, ValAng2a, ValAng2b, ValAng2,
ValAng3
 logical SideBal, Upwards, Downwards

 Fell = .FALSE.
 Tilt = .FALSE.
 FallPoint = 0
 FallCount = 0
 AdjCount = 0

40 CONTINUE

 if (FullCount == 2500000) then
 Full = 1
 end if
 if (FallCount > 20) then
 OverFallCount = OverFallCount + 1
 if (OverFallCount >= 100) then
 Full = 1
 end if
 GO TO 10

William Eales

224

 end if

 ! Setting initial values of variables
 Hit = .FALSE.
 ResetCheck = .FALSE.
 TopCase = .FALSE.
 ChainTopHitCheck = .FALSE.
 checktime = 1
 Balanced = 0
 Touches = 0
 Balances = 0

 NLCount = 0

 HMAdju = .FALSE.
 ContSpotTemp = 0
 ContSpotTempUy = 0
 ContSpotL = 0
 ContSpotR = 0
 ContSpotUy = 0
 ContSpotUx = 0
 ContSpotUn = 0

 SideBal = .FALSE.
 Upwards = .FALSE.
 Downwards = .FALSE.

 RoundTwo = .FALSE.

 MiddlePart = 0
 MiddlePartA = 0
 MiddlePartB = 0
 MiddlePoint = 0
 ContPoint = 0
 ContPointB = 0
 ContSpot = 0
 ContDist = 99999

 Valdx = 0
 ValDist = 0
 ValAng1 = 0
 ValDist2 = 0
 ValDist3 = 0
 ValAng2a = 0
 ValAng2b = 0
 ValAng2 = 0
 ValAng3 = 0

 Dy = 0
 intC = 0
 CheckY = 0

 ChainStartNo = 0
 ChainStartCont = 1
 ChainGrad = 0
 EquC = 0

William Eales

225

 EdgeAttempt = 0
 EdgeCount = 0
 EdgeCombi = 0
 EdgeCase = .FALSE.
 FirstEdge = .TRUE.

 FinalPart = 999999
 OverDist = 0
 OverDistNo = 0

 OverlapCount = 0
 OverTopCount = 0

 TRP1Swap = 0
 TRP2Swap = 0

 ChainAdd = .FALSE.

 NotBal = .FALSE.
 FirstBal = .TRUE.
 BalCheckNo = 0
 BalCombi = 0
 BalCheckCount = 0
 BalCount = 0
 BalCheckNo = 0
 BalCombi = 0
 BalAttempt = 0

 RadScale = 0
 TempRealPos1 = 0
 TempRealPos2 = 0
 DistFac = 0
 FDistA = 0
 FDistB = 0
 FDistC = 0
 FDistD = 0
 SavDist = 0
 SavOneX = 0
 SavOneY = 0
 TempXa = 0
 TempXb = 0
 TempYa = 0
 TempYb = 0
 DistAB = 0
 DistBC = 0
 DistAC = 0
 AngleA = 0
 AngleB = 0
 AngleFin = 0
 GradFin = 0
 xDiff = 0
 yDiff = 0
 Pi = 3.141596535
 NewPos = 0

 FinalDists = 0

William Eales

226

 PartCoords = 0
 stochDists = 0
 sumDist = 0
 dx = 0
 stochxnew = 0
 newCoords = 0
 stochynew = 0

 if (Fell .eqv. .TRUE.) then
 Fell = .FALSE.
 GO TO 66
 end if

 ! Randomly chooses which radius will be used for this particle
 call random_number(RX)
 RadScale = RadLarge/RadSmall
 RadScale = RadScale + 1
 count2 = 1 + floor(2*RX)
 if (count2 == 2) then
 RadT = RadLarge
 else
 RadT = RadSmall
 end if

 wloop: do while (Hit .eqv. .FALSE.)
 FallPoint = GridSize

 ! Randomly chooses the x value
 call random_number(RX)
 Spot = 1 + floor((GridSize-(2*RadT))*RX)
 x = Spot+RadT

66 CONTINUE

 do y = FallPoint, RadT, -1 ! Loops from the top of the box, and sends to the
function to determine impact
 Long = (x/BoxSize)+1
 Tall = (y/BoxSize)+1

 call PointSafe

 ! If the box is full or an impact has occured, the loop is exited

 if (Full == 1) then
 exit wloop
 end if
 if (FullCheck .eqv. .TRUE.) then
 RoofHit = .TRUE.
 GO TO 10
 end if

 if (Hit .eqv. .TRUE.) then
 exit wloop
 end if
 end do
 end do wloop

William Eales

227

 if ((Hit .eqv. .TRUE.) .and. (Full /= 1)) then
 if (MolNo > 1) then
 RA = '0'
 RAMolClose = 0

 ! Sets up the variables to be used for particle placement

 Ones = 0
 OneCount = 1
 ChainOnes = 0
 ChainOneCount = 1

 do a = 1, MolNo - 1 ! Loops through the particles for contour plot
placement
 MLxCor = MLxReal(a)
 MLyCor = MLyReal(a) ! Takes the radius, x and y coordinates
of the current particle in the loop
 RadIn = Mlr(a)

 DoubRad = (RadIn+RadT)+1
 do Height = 0, RadIn ! Draws the particle onto the contour
plot, "-"s marking blocked locations, "1"s being valid spots
 MidWay = RadIn**2 - Height**2
 RowRad = abs(sqrt(MidWay))
 if((MLxCor+Height<=GridSize-
RadT).and.(MLyCor+RowRad<=GridSize-RadT).and.(MLyCor-
RowRad>=RadT).and.(MLxCor-Height>=RadT))then
 RA(MLyCor+RowRad, MLxCor+Height) = '-'
 RA(MLyCor-RowRad, MLxCor+Height) = '-'
 RA(MLyCor+RowRad, MLxCor-Height) = '-'
 RA(MLyCor-RowRad, MLxCor-Height) = '-'
 end if
 do count2 = -RowRad,RowRad
 if((MLxCor+Height<=GridSize-
RadT).and.(MLyCor+count2<=GridSize).and.(MLxCor-
Height>=RadT).and.(MLyCor+count2>=RadT))then
 RA(MLyCor+count2,
MLxCor+Height) = '-'
 RA(MLyCor+count2, MLxCor-
Height) = '-'
 end if
 end do
 end do

 do Height = 0, DoubRad ! Draws locations around the current
particle that are too close for the new particle to be added due to overlap
 MidWay = DoubRad**2 - Height**2
 RowRad = abs(sqrt(Midway))
 do count2 = -rowrad+1, rowrad-1
 if
((MLyCor+count2<=GridSize).and.(MLxCor+Height<=GridSize-
RadT).and.(MLyCor+count2>=RadT).and.(MLxCor+Height>=RadT))then
 RA(MLyCor+count2,
MLxCor+Height) = '-'
 end if

William Eales

228

 if
((MLyCor+count2<=GridSize).and.(MLxCor-Height<=GridSize-
RadT).and.(MLyCor+count2>=RadT).and.(MLxCor-Height>=RadT))then
 RA(MLyCor+count2, MLxCor-
Height) = '-'
 end if
 end do
 end do

 do Height = -RadIn, RadIn
 do count2 = MlyCor-1, 1, -1
 if
((count2<=GridSize).and.(MLxCor+Height<=GridSize-
RadT).and.(count2>=RadT).and.(MLxCor+Height>=RadT))then
 RA(count2, MLxCor+Height) = '-'
 end if
 end do
 end do

 do Height = -DoubRad, 0 ! Adds the valid spots for the
resting particle to be placed
 MidWay = DoubRad**2 - Height**2
 RowRad = abs(sqrt(Midway))

 if
((MLyCor+RowRad<=GridSize).and.(MLxCor+height<=GridSize-
RadT).and.(MLxCor+height>=RadT).and.(MLyCor+RowRad>=RadT))then
 if (RA(MLyCor+RowRad, MLxCor+Height)
/= '-') then
 RA(MLyCor+RowRad,
MLxCor+Height) = '1'
 RAMolClose(MLyCor+RowRad,
MLxCor+Height) = a
 end if
 end if
 if ((MLyCor-
RowRad>=RadT).and.(MLxCor+height<=GridSize-
RadT).and.(MLxCor+height>=RadT).and.(MLyCor-RowRad<=GridSize)) then
 if (RA(MLyCor-RowRad, MLxCor+Height) /=
'-') then
 RA(MLyCor-RowRad,
MLxCor+Height) = '1'
 RAMolClose(MLyCor-RowRad,
MLxCor+Height) = a
 end if
 end if
 if ((MLyCor+RowRad<=GridSize).and.(MLxCor-
Height<=GridSize-RadT).and.(MLxCor-Height>=RadT).and.(MLyCor+RowRad>=RadT))then
 if (RA(MLyCor+RowRad, MLxCor-Height) /=
'-') then
 RA(MLyCor+RowRad, MLxCor-
Height) = '1'
 RAMolClose(MLyCor+RowRad,
MLxCor-Height) = a
 end if
 end if

William Eales

229

 if ((MLyCor-RowRad>=RadT).and.(MLxCor-
height<=GridSize-RadT).and.(MLxCor-height>=RadT).and.(MLyCor-
RowRad<=GridSize))then
 if (RA(MLyCor-RowRad, MLxCor-Height) /=
'-') then
 RA(MLyCor-RowRad, MLxCor-
Height) = '1'
 RAMolClose(MLyCor-RowRad,
MLxCor-Height) = a
 end if
 end if
 do count2 = -RowRad, RowRad
 if
((MLyCor+count2<=GridSize).and.(MLxCor+height<=GridSize-
RadT).and.(MLxCor+height>=RadT).and.(MLyCor+count2>=RadT))then
 if (RA(MLyCor+count2,
MLxCor+Height) /= '-') then
 RA(MLyCor+count2,
MLxCor+Height) = '1'

 RAMolClose(MLyCor+count2, MLxCor+Height) = a
 end if
 end if
 if ((MLyCor-
count2>=RadT).and.(MLxCor+height<=GridSize-
RadT).and.(MLxCor+height>=RadT).and.(MLyCor-count2<=GridSize))then
 if (RA(MLyCor-count2,
MLxCor+Height) /= '-') then
 RA(MLyCor-count2,
MLxCor+Height) = '1'
 RAMolClose(MLyCor-
count2, MLxCor+Height) = a
 end if
 end if
 if ((MLyCor+count2>=RadT).and.(MLxCor-
height<=GridSize-RadT).and.(MLxCor-
height>=RadT).and.(MLyCor+count2<=GridSize))then
 if (RA(MLyCor+count2, MLxCor-
Height) /= '-') then
 RA(MLyCor+count2,
MLxCor-Height) = '1'

 RAMolClose(MLyCor+count2, MLxCor-Height) = a
 end if
 end if
 if ((MLyCor-
count2<=GridSize).and.(MLxCor-height<=GridSize-RadT).and.(MLxCor-
height>=RadT).and.(MLyCor-count2>=RadT))then
 if (RA(MLyCor-count2, MLxCor-
Height) /= '-') then
 RA(MLyCor-count2,
MLxCor-Height) = '1'
 RAMolClose(MLyCor-
count2, MLxCor-Height) = a
 end if
 end if
 end do

William Eales

230

 end do
 end do

 do a = 1, GridSize ! Finds the valid points and saves them to an array
 do b = 1, GridSize
 if (RA(b,a) == '1') then
 ReWLoop: do c = 1, OneCount
 if ((Ones(c,2) == a) .and. (Ones(c,1)
< b)) then
 Ones(c,1) = b
 exit ReWLoop
 end if
 end do ReWLoop
 if ((c-1 == OneCount) .or. (OneCount == 1))
then
 Ones(OneCount, 1) = b
 Ones(OneCount, 2) = a
 OneCount = OneCount + 1
 end if
 end if
 end do
 end do

 do a = 1, OneCount - 1 ! Finds the closest of these points to the impact
location and moves the particle to it
 TempX = Ones(a,2)
 TempY = Ones(a,1)

 if (TempY <= y+1) then
 Dist = ((x-TempX)**2)+((y-TempY)**2)
 Dist = sqrt(Dist)
 if ((Dist < SavDist) .or. (SavDist == 0)) then
 SavDist = Dist
 SavOneX = Ones(a,2)
 SavOneY = Ones(a,1)
 end if
 end if
 end do

 TempX = SavOneX
 TempY = SavOneY

 if ((TempX == 0) .and. (TempY == 0)) then
 GO TO 10
 end if

 SavOnePart = RAMolClose(TempY, TempX)

 SafeLocCount = 0
 SavIncremX = SavOneX
 SavIncremY = SavOneY
 SafeLocFound = .FALSE.
 FinalSavX = 0
 FinalSavY = 0
 LR = 0
 RealPos1 = 0
 RealPos2 = 0

William Eales

231

 if (MLxReal(SavOnePart) == TempX) then! Determines which way
the particle should roll
 call random_number(RX)
 LRNo = 1 + floor(2*RX)
 if (LRNo == 1) then
 LR = -1
 elseif (LRNo == 2) then
 LR = 1
 end if
 elseif (MLxReal(SavOnePart) < TempX) then
 LR = 1
 Upwards = .TRUE.
 elseif (MLxReal(SavOnePart) > TempX) then
 LR = -1
 Downwards = .TRUE.
 end if

 RMPInter = 0
 RMPPrev = SavOnePart
 RealPos1 = SavOnePart

 do a = 1, OneCount-1
 if (Ones(a,2) == TempX) then
 SideCount = a
 end if
 end do

 do while (SafeLocFound .eqv. .FALSE.) ! Iterates in that direction until
the next position would be higher, or reaching the edge of the box
 if ((Ones(SideCount+LR,1) > Ones(SideCount,1)) .or.
(Ones(SideCount,2) == RadT) .or. (Ones(SideCount,2) == GridSize-RadT)) then
 SafeLocFound = .TRUE.
 else
 SideCount = SideCount + LR
 end if
 end do

19 CONTINUE

 TempX = Ones(SideCount+AdjCount,2)
 TempY = Ones(SideCount+AdjCount,1)

 if (TempX > GridSize-RadT) then
 TempX = GridSize-RadT
 TempY = Ones(SideCount-AdjCount,1)
 elseif (TempX < RadT) then
 TempX = RadT
 TempY = Ones(SideCount-AdjCount,1)
 end if

 do a = 1, MolNo-1 ! Finds the particles closest to the low point for the
new particle to be resting on
 if (MLyReal(a) < TempY+RadT) then
 Dist = ((MLxReal(a)-TempX)**2)+((MLyReal(a)-
TempY)**2)
 Dist = sqrt(Dist) - RadT - MLr(a)

William Eales

232

 if (Dist <= FinalPart(1,2)) then
 FinalPart(2,1) = FinalPart(1,1)
 FinalPart(2,2) = FinalPart(1,2)
 FinalPart(2,3) = FinalPart(1,3)
 FinalPart(1,1) = a
 FinalPart(1,2) = Dist
 FinalPart(1,3) = Dist + RadT + MLr(a)
 elseif (Dist <= FinalPart(2,2)) then
 FinalPart(2,1) = a
 FinalPart(2,2) = Dist
 FinalPart(2,3) = Dist + RadT + MLr(a)
 end if
 end if
 end do

50 CONTINUE

 PartCoords(1,1) = MLxReal(FinalPart(1,1))
 PartCoords(1,2) = MLyReal(FinalPart(1,1))

 PartCoords(2,1) = MLxReal(FinalPart(2,1))
 PartCoords(2,2) = MLyReal(FinalPart(2,1))

 if ((TempX == RadT) .or. (TempX == GridSize-RadT)) then
 EdgeCase = .TRUE.
 end if

 if (EdgeCase .eqv. .TRUE.) then ! If the particle is on an edge, it
balances the new particle on the edge + one particle
 NewX = TempX

 Dist = RadT + MLr(FinalPart(1,1))

 NewY = -
(MLxReal(FinalPart(1,1))**2)+(2*MLxReal(FinalPart(1,1))*NewX)
 NewY = NewY+(Dist**2)-(NewX**2)
 NewY = sqrt(NewY)

 if (NewY /= NewY) then
71 CONTINUE
 if (FirstEdge .eqv. .TRUE.) then
 do a = 1, MolNo-1
 Dist = (MLxReal(a)-NewX)
 if (Dist < RadT + MLr(a) +
(RadT*8)) then
 EdgeCombi(EdgeCount) =
a
 EdgeCount = EdgeCount +
1
 end if
 end do
 end if

 FirstEdge = .FALSE.

 if (EdgeAttempt <= EdgeCount-1) then

William Eales

233

 FinalPart(1,1) = EdgeCombi(EdgeCount-
EdgeAttempt-1)
 EdgeAttempt = EdgeAttempt + 1
 GO TO 50
 end if

 FullCount = FullCount + 1
 GO TO 10
 end if

 if ((TempY - (MLyReal(FinalPart(1,1)) + NewY)) < (TempY -
(MLyReal(FinalPart(1,1)) - NewY))) then
 NewY = MLyReal(FinalPart(1,1)) + NewY
 else
 NewY = MLyReal(FinalPart(1,1)) - NewY
 end if

 do a = 1, MolNo-1 ! Confirming the new particle is not
overlapping with any other particles
 Dist = ((MLxReal(a)-NewX)**2)+((MLyReal(a)-
NewY)**2)
 Dist = sqrt(Dist)
 if (Dist < MLr(a)+RadT-0.1) then
 OverlapCount = OverlapCount + 1
 if (OverlapCount > 2500) then
 GO TO 71
 end if

 FinalPart(1,1) = a
 FullCount = FullCount + 1
 GO TO 50
 end if
 end do

 if ((NewX < RadT) .or. (NewY < RadT) .or. (NewX > GridSize-
RadT) .or. (NewY > GridSize-RadT)) then
 FullCount = FullCount + 1
 GO TO 10
 end if

 else ! else if the particle is not on an edge it balances on two particles
through stochastic optimisation

 newCoords = 0
 stochDists = 0
 sumDist = 0
 dx = 0
 stochxnew = 0
 ibad = 0

 newCoords(1) = TempX
 newCoords(2) = TempY

 stochDists(1) = FinalPart(1,3)
 stochDists(2) = FinalPart(2,3)

 sumDist = stochDists(1) + stochDists(2)

William Eales

234

 dx(1) = 10 * RadLarge
 dx(2) = 10 * RadLarge

 do a = 1, 10
 do b = 1, 2
 dx(b) = dx(b) / 10
 end do

 do c = 1, 500
 call random_number(RX)
 stochxnew(2) = newCoords(2) + (dx(2) *
((2*RX)-1))
 call random_number(RX)
 stochxnew(1) = newCoords(1) + (dx(1) *
((2*RX)-1))

 ibad = 0

 do b = 1, 2
 stochDists(b) = ((PartCoords(b,1) -
stochxnew(1))**2) + ((PartCoords(b,2)-stochxnew(2))**2)
 stochDists(b) = sqrt(stochDists(b)) -
RadT - MLr(FinalPart(b,1))
 if (stochDists(b) < 0) then
 ibad = 1
 end if
 end do

 stochynew = stochDists(1) + stochDists(2)
 if ((stochynew < sumDist) .and. (ibad == 0))
then
 do b = 1, 2
 newCoords(b) =
stochxnew(b)
 end do
 sumDist = stochynew
 end if
 end do
 end do

 NewX = newCoords(1)
 NewY = newCoords(2)

 do a = 1, MolNo-1
 Dist = ((MLxReal(a)-NewX)**2)+((MLyReal(a)-
NewY)**2)
 Dist = sqrt(Dist)
 if (Dist < MLr(a)+RadT) then
 OverDist = 0
 OverlapCount = OverlapCount + 1
 if (OverlapCount > 2500) then
 NotBal = .TRUE.
 GO TO 70
 end if

 do b = 1, 2

William Eales

235

 Dist = ((MLxReal(a)-
PartCoords(b,1))**2)+((MLyReal(a)-PartCoords(b,2))**2)
 Dist = sqrt(Dist)
 if ((Dist < OverDist) .or. (OverDist ==
0)) then
 OverDist = Dist
 OverDistNo = b
 end if
 end do
 FinalPart(OverDistNo,1) = a
 if (FinalPart(1,1) == FinalPart(2,1)) then
 NotBal = .TRUE.
 GO TO 70
 end if
 FullCount = FullCount + 1
 if (OverDist == 0) then
 NotBal = .TRUE.
 GO TO 70
 else
 GO TO 50
 end if
 end if
 end do

 NotBal = .FALSE.
 if (HMAdju .eqv. .FALSE.) then
 if ((NewX > PartCoords(1,1)+0.25) .and. (NewX >
PartCoords(2,1)+0.25)) then ! Confirms the new particle is resting in between the old particles
 NotBal = .TRUE.
 elseif ((NewX < PartCoords(1,1)-0.25) .and. (NewX
< PartCoords(2,1)-0.25)) then
 NotBal = .TRUE.
 end if
 end if

 do b = 1, 2
 Dist = ((NewX-PartCoords(b,1))**2)+((NewY-
PartCoords(b,2))**2)
 Dist = sqrt(Dist)
 if (Dist > RadT + MLr(FinalPart(b,1))+0.25) then
 NotBal = .TRUE.
 end if
 end do

 Dy = (PartCoords(1,2) - PartCoords(2,2)) / (PartCoords(1,1)
- PartCoords(2,1))
 intC = PartCoords(1,2) - (Dy * PartCoords(1,1))
 CheckY = (Dy * NewX) + intC
 if (NewY < CheckY) then
 NotBal = .TRUE.
 end if

70 CONTINUE

 OverlapCount = 0

William Eales

236

 if (NotBal .eqv. .TRUE.) then ! If the particle is not
correctly balancing then it looks for alternate particles to be resting on and moves to that
location
 if (FirstBal .eqv. .TRUE.) then
 do a = 1, MolNo-1
 Dist = ((MLxReal(a)-NewX)**2)
 Dist = sqrt(Dist)
 if ((Dist < RadT + MLr(a) + (RadT*8))
.and. (NewY-MlyReal(a) < RadT + MLr(a) + (RadT*6))) then

 BalCheckNo(BalCheckCount) = a
 BalCheckCount =
BalCheckCount + 1
 end if
 end do
 aLoop: do a = BalCheckCount-1, 1, -1
 do b = BalCheckCount-1, 1, -1
 if (BalCheckNo(b) <
BalCheckNo(a)) then
 if (BalCount <=
100000) then
 if
(abs(MlxReal(BalCheckNo(a)) – MlxReal(BalCheckNo(b))) <= RadT*2 + MLr(BalCheckNo(a))
+ MLr(BalCheckNo(b))) then

 BalCombi(BalCount,1) = BalCheckNo(a)

 BalCombi(BalCount,2) = BalCheckNo(b)

 BalCount = BalCount + 1
 end if
 else
 exit aLoop
 end if
 end if
 end do
 end do aLoop
 end if

 FirstBal = .FALSE.

 if (BalAttempt <= BalCount-1) then
 do while (BalCombi(BalCount-BalAttempt,1)
== 0 .or. BalCombi(BalCount-BalAttempt,2) == 0)
 BalAttempt = BalAttempt + 1
 end do
 FinalPart(1,1) = BalCombi(BalCount-
BalAttempt,1)
 FinalPart(2,1) = BalCombi(BalCount-
BalAttempt,2)
 BalAttempt = BalAttempt + 1

 if (BalAttempt <= 100000) then
 GO TO 50
 end if
 end if

William Eales

237

 if (TempX >= GridSize-(RadT*5)) then
 TempX = GridSize-RadT
 EdgeCase = .TRUE.
 GO TO 50
 elseif (TempX <= RadT+(RadT*5)) then
 TempX = RadT
 EdgeCase = .TRUE.
 GO TO 50
 end if

 if ((AdjCount < 75) .and. (AdjCount > -75)) then
 AdjCount = AdjCount – LR
 HMAdju = .TRUE.
 GO TO 19
 elseif (AdjCount < -75 .and. Downwards .eqv.
.TRUE.) then
 Downwards = .FALSE.
 AdjCount = 0
 LR = 1
 GO TO 19
 elseif (AdjCount > 75 .and. Upwards .eqv. .TRUE.)
then
 Downwards = .TRUE.
 AdjCount = 0
 LR = -1
 GO TO 19
 else
 GO TO 10
 end if

 GO TO 10

 end if

 end if

 if ((NewX > GridSize-RadT) .or. (NewX < RadT) .or. (NewY >
GridSize-RadT) .or. (NewY < RadT)) then
 if (TempX >= GridSize-RadT-RadT) then
 TempX = GridSize-RadT
 EdgeCase = .TRUE.
 GO TO 50
 elseif (TempX <= RadT+RadT) then
 TempX = RadT
 EdgeCase = .TRUE.
 GO TO 50
 end if
 GO TO 10
 end if

 MlxReal(MolNo) = NewX ! Saves the first particle location
 MlyReal(MolNo) = NewY
 MLr(MolNo) = RadT
 FullCount = 0
 MolNo = MolNo + 1

 RA = ‘0’

William Eales

238

 RAMolClose = 0
 else
 MlxReal(MolNo) = x
 MlyReal(MolNo) = y
 MLr(MolNo) = RadT
 FullCount = 0
 MolNo = MolNo + 1
 end if

 ! The first particle in the chain placed, now moving onto placing the rest of the
chain

 RA = ‘’
 OverlapCount = 0

 MlxCor = MlxReal(MolNo-1)
 MlyCor = MlyReal(MolNo-1)
 RadIn = MLr(MolNo-1)
 DoubRad = (RadIn+RadT)+1

 do Height = -RadIn, 0 ! The contour plot is remade similar to the first time,
however valid points are only placed attached to the particle just added to the system
 MidWay = RadIn**2 – Height**2
 RowRad = abs(sqrt(Midway))
 if ((MlyCor+RowRad<=GridSize).and.(MlxCor+Height<=GridSize-
RadT).and.(MlxCor+Height>=RadT).and.(MlyCor+RowRad>=RadT))then
 if (MlyCor+RowRad>= MlyCor) then
 do a = 1, MolNo-2
 Dist = ((MlxReal(a)-(MlxCor+Height))**2) +
((MlyReal(a)-(MlyCor+RowRad))**2)
 Dist = sqrt(Dist)
 if (Dist < RadIn + MLr(a)) then
 GO TO 15
 end if
 end do
 RA(MlyCor+RowRad, MlxCor+Height) = ‘1’
 end if
 end if
15 CONTINUE
 if ((MlyCor-RowRad>=RadT).and.(MlxCor+Height<=GridSize-
RadT).and.(MlxCor+height>=RadT).and.(MlyCor-RowRad<=GridSize))then
 if (MlyCor-RowRad>= MlyCor) then
 do a = 1, MolNo-2
 Dist = ((MlxReal(a)-(MlxCor+Height))**2) +
((MlyReal(a)-(MlyCor-RowRad))**2)
 Dist = sqrt(Dist)
 if (Dist < RadIn + MLr(a)) then
 GO TO 16
 end if
 end do
 RA(MlyCor-RowRad, MlxCor+Height) = ‘1’
 end if
 end if
16 CONTINUE
 if ((MlyCor+RowRad<=GridSize).and.(MlxCor-Height<=GridSize-
RadT).and.(MlxCor-Height>=RadT).and.(MlyCor+RowRad>=RadT))then
 if (MlyCor+RowRad>= MlyCor) then

William Eales

239

 do a = 1, MolNo-2
 Dist = ((MlxReal(a)-(MlxCor-Height))**2) +
((MlyReal(a)-(MlyCor+RowRad))**2)
 Dist = sqrt(Dist)
 if (Dist < RadIn + MLr(a)) then
 GO TO 17
 end if
 end do
 RA(MlyCor+RowRad, MlxCor-Height) = ‘1’
 end if
 end if
17 CONTINUE
 if ((MlyCor-RowRad>=RadT).and.(MlxCor-Height<=GridSize-
RadT).and.(MlxCor-height>=RadT).and.(MlyCor-RowRad<=GridSize))then
 if (MlyCor-RowRad>= MlyCor) then
 do a = 1, MolNo-2
 Dist = ((MlxReal(a)-(MlxCor-Height))**2) +
((MlyReal(a)-(MlyCor-RowRad))**2)
 Dist = sqrt(Dist)
 if (Dist < RadIn + MLr(a)) then
 GO TO 18
 end if
 end do
 RA(MlyCor-RowRad, MlxCor-Height) = ‘1’
 end if
 end if
18 CONTINUE
 end do

 ChainOneCount = 1

 do a = 1, GridSize
 do b = 1, GridSize
 if (RA(b,a) == ‘1’) then
 ChainOnes(ChainOneCount, 1) = b
 ChainOnes(ChainOneCount, 2) = a
 ChainOneCount = ChainOneCount + 1
 end if
 end do
 end do

 call random_number(RX)
 LRNo = 1 + floor(2*RX)
14 CONTINUE

 if (NLCount >= 250) then
 OverFallCount = OverFallCount + 1
 MolNo = MolNo – 1
 if (OverFallCount >= 100) then
 Full = 1
 end if
 GO TO 10
 end if

 if (LRNo == 1) then ! Picks whether the chain should fall left or right
 TempX = ChainOnes(1,2)
 TempY = ChainOnes(1,1)

William Eales

240

 elseif (LRNo == 2) then
 TempX = ChainOnes(ChainOneCount-1,2)
 TempY = ChainOnes(ChainOneCount-1,1)
 end if

 if (MlxReal(MolNo-1) == GridSize-RadT) then
 TempX = ChainOnes(1,2)
 TempY = ChainOnes(1,1)
 elseif (MlxReal(MolNo-1) == RadT) then
 TempX = ChainOnes(ChainOneCount-1,2)
 TempY = ChainOnes(ChainOneCount-1,1)
 end if

 if (TempX == 0 .or. TempY == 0) then
 TempX = MlxReal(MolNo-1)
 TempY = MlyReal(MolNo-1)+MLr(MolNo-1)
 end if

 FinalPart = 99999
 FinalPart(1,1) = MolNo-1
 Dist = ((MlxReal(a)-TempX)**2)+((MlyReal(a)-TempY)**2)
 Dist = sqrt(Dist) – MLr(a)
 FinalPart(1,2) = Dist
 FinalPart(1,3) = Dist + MLr(a)

 do a = 1, MolNo-2
 if (MlyReal(a) < TempY+1) then
 Dist = ((MlxReal(a)-TempX)**2)+((MlyReal(a)-TempY)**2)
 Dist = sqrt(Dist) – RadT – MLr(a)
 if (Dist <= FinalPart(2,2)) then
 FinalPart(2,1) = a
 FinalPart(2,2) = Dist
 FinalPart(2,3) = Dist + RadT + MLr(a)
 end if
 end if
 end do

60 CONTINUE

 PartCoords(1,1) = MlxReal(FinalPart(1,1))
 PartCoords(1,2) = MlyReal(FinalPart(1,1))
 PartCoords(2,1) = MlxReal(FinalPart(2,1))
 PartCoords(2,2) = MlyReal(FinalPart(2,1))

 EdgeCase = .FALSE.
 TopCase = .FALSE.

 if ((TempX <= RadT) .or. (TempX >= GridSize-RadT)) then
 EdgeCase = .TRUE.
 elseif (TempY >= GridSize-RadT) then
 TopCase = .TRUE.
 end if

 if (EdgeCase .eqv. .TRUE.) then ! Does the same as above but resting the
particle against the edge attached to the first particle
 NewX = TempX
 Dist = MLr(FinalPart(1,1))

William Eales

241

 NewY = -
(MlxReal(FinalPart(1,1))**2)+(2*MlxReal(FinalPart(1,1))*NewX)
 NewY = NewY+(Dist**2)-(NewX**2)
 NewY = sqrt(NewY)

 if (NewY /= NewY) then
 MolNo = MolNo – 1
 GO TO 10
 end if

 if (TempY – (MlyReal(FinalPart(1,1)) + NewY) < TempY –
(MlyReal(FinalPart(1,1)) – NewY)) then
 NewY = MlyReal(FinalPart(1,1)) + NewY
 else
 NewY = MlyReal(FinalPart(1,1)) – NewY
 end if
 elseif (TopCase .eqv. .TRUE.) then
 NewY = TempY
 Dist = MLr(FinalPart(1,1)) ! Does the same as above but resting the
particle against the roof of the box attached to the first particle

 NewX = -
(MlyReal(FinalPart(1,1))**2)+(2*MlyReal(FinalPart(1,1))*NewY)
 NewX = NewX+(Dist**2)-(NewY**2)
 NewX = sqrt(NewX)

 if (NewX /= NewX) then
 MolNo = MolNo – 1
 GO TO 10
 end if

 if (TempX – (MlxReal(FinalPart(1,1)) + NewX) < TempX –
(MlxReal(FinalPart(1,1)) – NewX)) then
 NewX = MlxReal(FinalPart(1,1)) + NewX
 else
 NewX = MlxReal(FinalPart(1,1)) – NewX
 end if

 else ! Does the same as above resting the particle against a particle while still
being attached to the first particle

 newCoords = 0
 stochDists = 0
 sumDist = 0
 dx = 0
 stochxnew = 0
 ibad = 0

 newCoords(1) = TempX
 newCoords(2) = TempY

 stochDists(1) = FinalPart(1,3)
 stochDists(2) = FinalPart(2,3)

 sumDist = stochDists(1) + stochDists(2)

William Eales

242

 dx(1) = 10 * RadLarge
 dx(2) = 10 * RadLarge

 do a = 1, 10
 do b = 1, 2
 dx(b) = dx(b) / 10
 end do
 do c = 1, 500
 call random_number(RX)
 stochxnew(2) = newCoords(2) + dx(2) * ((2*RX)-1)
 call random_number(RX)
 stochxnew(1) = newCoords(1) + dx(1) * ((2*RX)-1)

 ibad = 0

 stochDists(1) = ((PartCoords(1,1)-
stochxnew(1))**2)+((PartCoords(1,2)-stochxnew(2))**2)
 stochDists(1) = sqrt(stochDists(1)) –
MLr(FinalPart(1,1))
 if (stochDists(1) < 0) then
 ibad = 1
 end if

 stochDists(2) = ((PartCoords(2,1)-
stochxnew(1))**2)+((PartCoords(2,2)-stochxnew(2))**2)
 stochDists(2) = sqrt(stochDists(2)) – RadT –
MLr(FinalPart(2,1))
 if (stochDists(2) < 0) then
 ibad = 1
 end if

 stochynew = stochDists(1) + stochDists(2)
 if ((stochynew < sumDist) .and. (ibad == 0)) then
 do b = 1, 2
 newCoords(b) = stochxnew(b)
 end do
 sumDist = stochynew
 end if
 end do
 end do

 ContPoint = FinalPart(2,1)
 NewX = newCoords(1)
 NewY = newCoords(2)
 end if

 if ((NewX > GridSize-RadT) .or. (NewX < RadT) .or. (NewY > GridSize-RadT)
.or. (NewY < RadT)) then
 if (EdgeCase .eqv. .FALSE.) then
 EdgeCase = .TRUE.
 end if
 MolNo = MolNo – 1
 GO TO 10
 end if

 do a = 1, MolNo-2
 Dist = ((MlxReal(a)-NewX)**2)+((MlyReal(a)-NewY)**2)

William Eales

243

 Dist = sqrt(Dist)
 if (Dist < MLr(a)+RadT) then
 OverlapCount = OverlapCount + 1
 if (OverlapCount > 2500) then
 if (Tilt .eqv. .FALSE.) then
 OverlapCount = 0
 if (LRNo == 1) then
 LRNo = 2
 else
 LRNo = 1
 end if
 Tilt = .TRUE.
 GO TO 14
 end if
 MolNo = MolNo – 1
 if ((AdjCount < 75) .and. (AdjCount > -75)) then
 AdjCount = AdjCount – LR
 HMAdju = .TRUE.
 GO TO 19
 elseif (AdjCount < -75 .and. Downwards .eqv.
.TRUE.) then
 Downwards = .FALSE.
 AdjCount = 0
 LR = 1
 GO TO 19
 elseif (AdjCount > 75 .and. Upwards .eqv. .TRUE.)
then
 Downwards = .TRUE.
 AdjCount = 0
 LR = -1
 GO TO 19
 else
 GO TO 10
 end if
 GO TO 10
 end if

 FinalPart(2,1) = a
 GO TO 60

 FullCount = FullCount + 1
 MolNo = MolNo – 1
 GO TO 10
 end if
 end do

 MlxReal(MolNo) = NewX ! Saves the second particle in the chain
 MlyReal(MolNo) = NewY
 MLr(MolNo) = RadT
 FullCount = 0
 MolNo = MolNo + 1

 ChainStartNo = MolNo-2 ! If the requested chain length is longer than 2 then
the following code is done
 ChainStartCont = MolNo-1
 CSCy = MlyReal(ChainStartCont)
 CSCx = NewX

William Eales

244

 do a = 1, ChainLength – 2 ! Loops for the chain particles beyond the first two

 OverlapCount = 0

 ChainGrad = (MlyReal(ChainStartCont) – MlyReal(ChainStartNo)) /
(MlxReal(ChainStartCont) – MlxReal(ChainStartNo))
 EquC = MlyReal(ChainStartCont) – (ChainGrad *
MlxReal(ChainStartCont))

 if (MlxReal(ChainStartCont) – MlxReal(ChainStartNo) == 0) then ! If
particle is vertical then places the new one on top
 NewX = MlxReal(ChainStartNo)
 NewY = MlyReal(ChainStartNo+a) + RadT
 else ! Otherwise works out the gradient and then angle of the 2
particle chain to add the following particles onto
 NewX = RadT / (sqrt((ChainGrad**2) + 1))
 NewY = (ChainGrad * NewX)

 if (MlxReal(ChainStartCont) < MlxReal(ChainStartNo)) then
 if (MlyReal(ChainStartCont) >
MlyReal(ChainStartNo)) then
 NewX = MlxReal(MolNo-1) – NewX
 NewY = MlyReal(MolNo-1) – NewY
 else
 NewX = MlxReal(MolNo-1) – NewX
 NewY = MlyReal(MolNo-1) – NewY
 end if
 elseif (MlxReal(ChainStartCont) > MlxReal(ChainStartNo))
then
 if (MlyReal(ChainStartCont) >
MlyReal(ChainStartNo)) then
 NewX = MlxReal(MolNo-1) + NewX
 NewY = MlyReal(MolNo-1) + NewY
 else
 NewX = MlxReal(MolNo-1) + NewX
 NewY = MlyReal(MolNo-1) + NewY
 end if
 end if
 end if

98 CONTINUE

 ChainHitCheck = .FALSE.
 ChainEdgeHitCheck = .FALSE.
 ChainTopHitCheck = .FALSE.

 ChainHitLoop: do b = 1, MolNo – a-2 ! Checks if the new part of
the chain is overlapping with anything
 Dist = ((MlxReal(b)-NewX)**2)+((MlyReal(b)-NewY)**2)
 Dist = sqrt(Dist)
 if (Dist < ((RadT)+(Mlr(b)))) then
 ChainHitCheck = .TRUE.
 PartHit = b
 end if
 end do ChainHitLoop

William Eales

245

99 CONTINUE

 if ((NewX > GridSize-RadT) .or. (NewX < RadT)) then ! Checks if the
new part of the chain is outside of the box
 ChainEdgeHitCheck = .TRUE.
 elseif (NewY > GridSize-RadT) then
 ChainTopHitCheck = .TRUE.
 end if

 if (ChainHitCheck .eqv. .TRUE.) then ! If overlapping then the particle
moves to be resting upon the particle it is overlapping

 if (OverlapCount > 2500) then
 MolNo = MolNo – a
 if (Tilt .eqv. .FALSE.) then
 OverlapCount = 0
 if (LRNo == 1) then
 LRNo = 2
 else
 LRNo = 1
 end if
 Tilt = .TRUE.
 GO TO 14
 end if
 MolNo = MolNo – 1
 if ((AdjCount < 75) .and. (AdjCount > -75)) then
 AdjCount = AdjCount – LR
 HMAdju = .TRUE.
 GO TO 19
 elseif (AdjCount < -75 .and. Downwards .eqv.
.TRUE.) then
 Downwards = .FALSE.
 AdjCount = 0
 LR = 1
 GO TO 19
 elseif (AdjCount > 75 .and. Upwards .eqv. .TRUE.)
then
 Downwards = .TRUE.
 AdjCount = 0
 LR = -1
 GO TO 19
 else
 GO TO 10
 end if
 GO TO 10
 end if

 newCoords = 0
 stochDists = 0
 sumDist = 0
 dx = 0
 stochxnew = 0
 ibad = 0

 newCoords(1) = NewX
 newCoords(2) = NewY

William Eales

246

 stochDists(1) = Dist
 stochDists(2) = ((MlxReal(MolNo-a-1)-
NewX)**2)+((MlyReal(MolNo-a-1)-NewY)**2)
 stochDists(2) = sqrt(stochDists(2))

 sumDist = stochDists(1) + stochDists(2)

 dx(1) = 10 * RadLarge
 dx(2) = 10 * RadLarge

 do b = 1, 10
 do c = 1, 2
 dx© =©(c) / 10
 end do
 do c = 1, 500
 call random_number(RX)
 stochxnew(2) = newCoords(2) + dx(2) *
((2*RX)-1)
 call random_number(RX)
 stochxnew(1) = newCoords(1) + dx(1) *
((2*RX)-1)

 ibad = 0

 stochDists(1) = ((MLxReal(PartHit)-
stochxnew(1))**2)+((MLyReal(PartHit)-stochxnew(2))**2)
 stochDists(1) = sqrt(stochDist–(1)) - (–adT) -
(MLr(PartHit))
 if (stochDists(1) < 0) then
 ibad = 1
 end if

 stochDists(2) = ((MLxReal(MolNo-a-1)-
stochxnew(1))**2)+((MLyReal(MolNo-a-1)-stochxnew(2))**2)
 stochDists(2) = sqrt(stochDist–(2)) - ((a+1) *
RadT)
 if (stochDists(2) < 0) then
 ibad = 1
 end if

 stochynew = stochDists(1) + stochDists(2)
 if ((stochynew < sumDist) .and. (ibad == 0))
then
 do d = 1, 2
 newCoords(d) =
stochxnew(d)
 end do
 sumDist = stochynew
 end if
 end do
 end do

 ContPoint = PartHit
 NewX = newCoords(1)
 NewY = newCoords(2)

 if (NewY < MLyReal(PartHit)) then

William Eales

247

 AngleFix: do b = 1, MolNo-a-2
 Dist = ((MLxReal(b)-
NewX)**2)+((MLyReal(b)-NewY)**2)
 Dist = sqrt(Dist)
 if (Dist < MLr(b)+RadT) then

 Valdx = abs(MLxReal(MolNo–a-1) -
NewX)
 ValDist = ((MLxReal(MolNo-a-1)-
NewX)**2)+((MLyReal(MolNo-a-1)-NewY)**2)
 ValDist = sqrt(ValDist)
 ValAng1 = asin(Valdx/ValDist)
 ValDist2 = ((MLxReal(MolNo-a-1)-
MLxReal(PartHit))**2)+((MLyReal(MolNo-a-1)-MLyReal(PartHit))**2)
 ValDist2 = sqrt(ValDist2)
 ValDist3 = ((newX-
MLxReal(PartHit))**2)+((newY-MLyReal(PartHit))**2)
 ValDist3 = sqrt(ValDist3)
 ValAng2a = (ValDist2**2) + (ValDis–
2) - (ValDist32)
 ValAng2b = 2 * ValDist * ValDist2
 ValAng2 =
acos(ValAng2a/ValAng2b)
 if ((ValAng2 /= ValAng2) .or.
ValAng2 < 0.01) then
 ValAng3 =–(Pi) - ValAng1
 else
 ValAng3 =–(Pi) - Va–Ang1 -
(ValAng2*2)
 if (MLxReal(PartHit) >
MLxReal(MolNo-a-1)) then
 NewX =
MLxReal(MolNo-a-1) + (sin(ValAng3) * ValDist)
 else
 NewX =
MLxReal(MolNo–a-1) - (sin(ValAng3) * ValDist)
 end if
 NewY = MLyReal(MolNo-a-
1) + (cos(ValAng3) * ValDist)
 end if
 exit AngleFix
 end if
 end do AngleFix
 end if

 ChainHitCheck = .FALSE.

 do b = 1, –olNo - a-2
 Dist = ((MLxReal(b)-NewX)**2)+((MLyReal(b)-
NewY)**2)
 Dist = sqrt(Dist)
 if (Dist < ((RadT)+(Mlr(b)))) then
 ChainHitCheck = .TRUE.
 PartHit = b
 end if

William Eales

248

 end do

 if (ChainHitCheck .eqv. .TRUE.) then
 OverlapCount = OverlapCount + 1
 GO TO 99
 end if

 if ((NewX < RadT) .or. (NewX > Gri–Size - RadT)) then
 ChainHitCheck = .FALSE.
 ChainEdgeHitCheck = .TRUE.
 GO TO 99
 end if
 if (NewY > Gri–Size - RadT) then
 ChainHitCheck = .FALSE.
 ChainTopHitCheck = .TRUE.
 GO TO 99
 end if

 ChainGrad = –NewY - MLyReal(ChainStartNo)) / –NewX -
MLxReal(ChainStartNo))
 EquC =–NewY - (ChainGrad * NewX)
 CSCy = NewY
 CSCx = NewX

 do d = 1, a
 OverlapCount = 0

 if –NewX - MLxReal(ChainStartNo) == 0) then
 MLxReal(MolNo-d) = NewX
 CSCy =–CSCy - RadT
 MLyReal(MolNo-d) = CSCy
 else
 MLxReal(MolNo-d) = RadT /
(sqrt((ChainGrad**2) + 1))
 MLyReal(MolNo-d) = (ChainGrad *
MLxReal(MolNo-d))

 if (NewX < MLxReal(ChainStartNo)) then
 CSCy = CScy + MLyReal(MolNo-d)
 CSCx = CScx + MLxReal(MolNo-d)
 MLxReal(MolNo-d) = CSCx
 MLyReal(MolNo-d) = CSCy
 elseif (NewX > MLxReal(ChainStartNo))
then
 CSCy =–CScy - MLyReal(MolNo-d)
 CSCx =–CScx - MLxReal(MolNo-d)
 MLxReal(MolNo-d) = CSCx
 MLyReal(MolNo-d) = CSCy
 end if
 end if
 end do
 end if

 if (ChainEdgeHitCheck .eqv. .TRUE.) then ! If the particle is
overlapping with an edge then it is moved to be resting against it
 if (OverlapCount > 2500) then
 MolNo = –olN– - a - 1

William Eales

249

 GO TO 10
 end if
 if (NewX > GridSize-RadT) then
 NewX = GridSize-RadT
 elseif (NewX < RadT) then
 NewX = RadT
 end if
 Dist = (a+1)*RadT

 NewY = -(MLxReal(MolNo-a-1)**2)+(2*MLxReal(MolNo-a-
1)*NewX)
 NewY = NewY+(Dist**2)-(NewX**2)
 NewY = sqrt(NewY)

 if (NewY /= NewY) then
 MolNo = –olN– - a - 1
 GO TO 10
 end if

 if (–empy - (MLyReal(MolNo-a-1) + NewY) < –empy -
(MLyReal(MolNo–a-1) - NewY)) then
 NewY = MLyReal(MolNo-a-1) + NewY
 else
 NewY = MLyReal(MolNo–a-1) - NewY
 end if

 do b = 1, –olNo - a-2
 Dist = ((MLxReal(b)-NewX)**2)+((MLyReal(b)-
NewY)**2)
 Dist = sqrt(Dist)
 if (Dist < ((RadT)+(Mlr(b)))) then
 ChainHitCheck = .TRUE.
 PartHit = b
 OverlapCount = OverlapCount + 1
 GO TO 99
 end if
 end do

 ChainGrad = –NewY - MLyReal(ChainStartNo)) / –NewX -
MLxReal(ChainStartNo))
 EquC =–NewY - (ChainGrad * NewX)
 CSCy = NewY
 CSCx = NewX

 do d = 1, a ! The previous particle in the chain are moved to
be in line with the fixed location of the new particle
 OverlapCount = 0

 if –NewX - MLxReal(ChainStartNo) == 0) then
 MLxReal(MolNo-d) = NewX
 CSCy =–CSCy - RadT
 MLyReal(MolNo-d) = CSCy
 else
 MLxReal(MolNo-d) = RadT /
(sqrt((ChainGrad**2) + 1))
 MLyReal(MolNo-d) = (ChainGrad *
MLxReal(MolNo-d))

William Eales

250

 if (NewX < MLxReal(ChainStartNo)) then
 CSCy = CScy + MLyReal(MolNo-d)
 CSCx = CScx + MLxReal(MolNo-d)
 MLxReal(MolNo-d) = CSCx
 MLyReal(MolNo-d) = CSCy
 elseif (NewX > MLxReal(ChainStartNo))
then
 CSCy =–CScy - MLyReal(MolNo-d)
 CSCx =–CScx - MLxReal(MolNo-d)
 MLxReal(MolNo-d) = CSCx
 MLyReal(MolNo-d) = CSCy
 end if
 end if
 end do

 elseif (ChainTopHitCheck .eqv. .TRUE.) then ! If the particle is over
the top of the box it is moved to be resting against it
 OverTopCount = OverTopCount + 1
 if (OverlapCount > 2500) then
 MolNo = –olN– - a - 1
 GO TO 10
 end if
 if (OverTopCount > 2500) then
 MolNo = –olN– - a - 1
 GO TO 10
 end if
 NewY = GridSize-RadT
 Dist = (a+1)*RadT

 NewX = -(MLyReal(MolNo-a-1)**2)+(2*MLyReal(MolNo-a-
1)*NewY)
 NewX = NewX+(Dist**2)-(NewY**2)
 NewX = sqrt(NewX)

 if (NewX /= NewX) then
 MolNo = –olN– - a - 1
 GO TO 10
 end if

 if (–empx - (MLxReal(MolNo-a-1) + NewX) < –empx -
(MLxReal(MolNo–a-1) - NewX)) then
 NewX = MLxReal(MolNo-a-1) + NewX
 else
 NewX = MLxReal(MolNo–a-1) - NewX
 end if

 do b = 1, –olNo - a-2
 Dist = ((MLxReal(b)-NewX)**2)+((MLyReal(b)-
NewY)**2)
 Dist = sqrt(Dist)
 if (Dist < ((RadT)+(Mlr(b)))) then
 ChainHitCheck = .TRUE.
 PartHit = b
 OverlapCount = OverlapCount + 1
 GO TO 99
 end if

William Eales

251

 end do

 ChainGrad = –NewY - MLyReal(ChainStartNo)) / –NewX -
MLxReal(ChainStartNo))
 EquC =–NewY - (ChainGrad * NewX)
 CSCy = NewY
 CSCx = NewX

 do d = 1, a
 OverlapCount = 0
 OverTopCount = 0

 if –NewX - MLxReal(ChainStartNo) == 0) then
 MLxReal(MolNo-d) = NewX
 CSCy =–CSCy - RadT
 MLyReal(MolNo-d) = CSCy
 else
 MLxReal(MolNo-d) = RadT /
(sqrt((ChainGrad**2) + 1))
 MLyReal(MolNo-d) = (ChainGrad *
MLxReal(MolNo-d))

 if (NewX < MLxReal(ChainStartNo)) then
 CSCy = CScy + MLyReal(MolNo-d)
 CSCx = CScx + MLxReal(MolNo-d)
 MLxReal(MolNo-d) = CSCx
 MLyReal(MolNo-d) = CSCy
 elseif (NewX > MLxReal(ChainStartNo))
then
 CSCy =–CScy - MLyReal(MolNo-d)
 CSCx =–CScx - MLxReal(MolNo-d)
 MLxReal(MolNo-d) = CSCx
 MLyReal(MolNo-d) = CSCy
 end if
 end if

 end do
 RoofCount = RoofCount + 1
 end if

 do m = –olNo - a-1, MolNo-1
 do n = 1, –olNo - a - 2
 Dist = ((MLxReal(n)-MLxReal(m))**2)+((MLyReal(n)-
MLyReal(m))**2)
 Dist = sqrt(Dist)
 if (Dist+0.1 < (MLr(m)+MLr(n))) then
 MolNo = –olN– - a - 1
 if ((AdjCount < 75) .and. (AdjCount > -75))
then
 AdjCount = Adj–ount - LR
 HMAdju = .TRUE.
 GO TO 19
 elseif (AdjCount < -75 .and. Downwards
.eqv. .TRUE.) then
 Downwards = .FALSE.
 AdjCount = 0
 LR = 1

William Eales

252

 GO TO 19
 elseif (AdjCount > 75 .and. Upwards .eqv.
.TRUE.) then
 Downwards = .TRUE.
 AdjCount = 0
 LR = -1
 GO TO 19
 else
 GO TO 10
 end if
 end if
 end do
 end do

 if (NewY > GridSize-RadT) then
 RoofCount = RoofCount + 1
 MolNo = –olN– - a - 1
 GO TO 10
 elseif ((NewX > GridSize-RadT) .or. (NewX < RadT)) then
 MolNo = –olN– - a - 1
 GO TO 10
 end if

 MLxReal(MolNo) = NewX ! Saves the particle location and loops to
the next particle in the chain to be added if there are any left
 MLyReal(MolNo) = NewY
 MLr(MolNo) = RadT
 FullCount = 0
 MolNo = MolNo + 1
 end do

 if ((MLxReal(MolNo-1) <= RadT+0.2) .or. (MLxReal(MolNo-1) >= GridSize-
RadT-0.2)) then
 GO TO 10
 end if

 if (MOD(ChainLength,2) == 0) then ! Determines the centre point of the chain
for determining balance
 MiddlePartA = –olNo - ((ChainLength/2)+1)
 MiddlePartB = –olNo - ((ChainLength/2))
 MiddlePoint = ((MLxReal(MiddleP–rta) - MLxReal(MiddlePartB))/2) +
MLxReal(MiddlePartB)
 elseif (MOD(ChainLength,2) == 1) then
 MiddlePart = –olNo - ((ChainLength/2)+1)
 MiddlePoint = MLxReal(MiddlePart)
 end if

 do m = MolNo-ChainLength, MolNo-1 ! Determines furthest point of contact
along the chain
 Dist = ((MLxReal(m)-MLxReal(ContPoint))**2)+((MLyReal(m)-
MLyReal(ContPoint))**2)
 Dist = sqrt(Dist)
 if (Dist <= (MLr(m)+MLr(ContPoint)+0.1)) then
 ContDist = Dist
 ContPointB = m
 end if
 end do

William Eales

253

 ContSpot = 0
 OuterCPLoopA: do m = MolNo-1, MolNo-ChainLength, -1
 do n = 1, –olN– - a - 2
 Dist = ((MLxReal(m)-MLxReal(n))**2)+((MLyReal(m)-
MLyReal(n))**2)
 Dist = sqrt(Dist)
 if (Dist < MLr(m)+MLr(n)+0.1) then
 if (MLxReal(MolNo-1) > MLxReal(ChainStartNo))
then
 ContSpotTemp = ((MLxRe–l(n) -
MLxReal(m))/2) + MLxReal(m)
 if ((ContSpot == 0) .or. (ContSpotTemp >
ContSpot)) then
 ContSpot = ContSpotTemp
 ContPoint = n
 ContPointB = m
 end if
 else
 ContSpotTemp = ((MLxRe–l(n) -
MLxReal(m))/2) + MLxReal(m)
 if ((ContSpot == 0) .or. (ContSpotTemp <
ContSpot)) then
 ContSpot = ContSpotTemp
 ContPoint = n
 ContPointB = m
 end if
 end if
 end if
 end do
 end do OuterCPLoopA

 ContSpot = ((MLxReal(ContP–int) - MLxReal(ContPointB))/2) +
MLxReal(ContPointB)

 if ((MLxReal(MolNo-1) > MLxReal(ChainStartNo)) .and. (MiddlePoint >
ContSpot)) then ! Checks that contact points on the chain are in the correct positions for chain
balance
21 CONTINUE
 x = MLxReal(MolNo-1)
 FallPoint = MLyReal(MolNo-1)
 MolNo = –olNo - ChainLength
 Fell = .TRUE.
 if (FallCount < 10) then
 FallCount = FallCount + 1
 GO TO 40
 else
 if ((AdjCount < 75) .and. (AdjCount > -75)) then
 AdjCount = Adj–ount - LR
 HMAdju = .TRUE.
 GO TO 19
 elseif (AdjCount < -75 .and. Downwards .eqv. .TRUE.) then
 Downwards = .FALSE.
 AdjCount = 0
 LR = 1
 GO TO 19
 elseif (AdjCount > 75 .and. Upwards .eqv. .TRUE.) then

William Eales

254

 Downwards = .TRUE.
 AdjCount = 0
 LR = -1
 GO TO 19
 else
 GO TO 10
 end if
 end if
 elseif ((MLxReal(MolNo-1) < MLxReal(ChainStartNo)) .and. (MiddlePoint <
ContSpot)) then
22 CONTINUE
 x = MLxReal(MolNo-1)
 FallPoint = MLyReal(MolNo-1)
 MolNo = –olNo - ChainLength
 Fell = .TRUE.
 if (FallCount < 10) then
 FallCount = FallCount + 1
 GO TO 40
 else
 if ((AdjCount < 75) .and. (AdjCount > -75)) then
 AdjCount = Adj–ount - LR
 HMAdju = .TRUE.
 GO TO 19
 elseif (AdjCount < -75 .and. Downwards .eqv. .TRUE.) then
 Downwards = .FALSE.
 AdjCount = 0
 LR = 1
 GO TO 19
 elseif (AdjCount > 75 .and. Upwards .eqv. .TRUE.) then
 Downwards = .TRUE.
 AdjCount = 0
 LR = -1
 GO TO 19
 else
 GO TO 10
 end if
 end if
 end if

 ContSpotL = 0
 ContSpotR = 0
 ContSpotUy = 0
 ContSpotUx = 0
 ContSpotUn = 0

 do m = MolNo-1, MolNo-ChainLength, -1
 do n = 1, –olN– - a - 2
 Dist = ((MLxReal(m)-MLxReal(n))**2)+((MLyReal(m)-
MLyReal(n))**2)
 Dist = sqrt(Dist)
 if (Dist < MLr(m)+MLr(n)+0.1) then
 ContPoint = n
 ContSpotTemp = ((MLxReal(ContP–int) -
MLxReal(m))/2) + MLxReal(m)
 if ((ContSpotL == 0) .or. (ContSpotTemp <
ContSpotL)) then
 ContSpotL = ContSpotTemp

William Eales

255

 end if
 if ((ContSpotR == 0) .or. (ContSpotTemp >
ContSpotR)) then
 ContSpotR = ContSpotTemp
 end if
 ContSpotTempUy = ((MLyReal(ContP–int) -
MLyReal(m))/2) + MLyReal(m)
 if (m /= –olNo - ChainLength) then
 if ((ContSpotUy == 0) .or. (ContSpotTempUy
> ContSpotUy)) then
 ContSpotUy = ContSpotTempUy
 ContSpotUx = ContSpotTemp
 ContSpotUn = m
 end if
 end if
 end if
 end do
 end do

 do m = MolNo-1, MolNo-ChainLength+1, -1
 do n = 1, –olN– - a - 2
 Dist = ((MLxReal(m)-MLxReal(n))**2)+((MLyReal(m)-
MLyReal(n))**2)
 Dist = sqrt(Dist)
 if (Dist < MLr(m)+MLr(n)+0.1) then
 ContSpotTemp = ((MLxRe–l(n) - MLxReal(m))/2) +
MLxReal(m)

 if ((MLxReal(MolNo-1) > MLxReal(MolNo-
ChainLength)) .and. (ContSpotTemp > MLxReal(m))) then
 SideBal = .TRUE.
 elseif ((MLxReal(MolNo-1) < MLxReal(MolNo-
ChainLength)) .and. (ContSpotTemp < MLxReal(m))) then
 SideBal = .TRUE.
 end if
 end if
 end do
 end do

 if (MLxReal(MolNo-1) > MLxReal(MolNo-ChainLength)) then ! If the particle
is not balancing correctly, the algorithm goes back to the beginning, however the initial falling
point is moved to the end of this chain
 if ((ContSpotL > MLxReal(MolNo-ChainLength)) .or. (SideBal .eqv.
.FALSE.)) then
 if ((MLxReal(MolNo-ChainLength).GT.MLr(MolNo-
ChainLength)+0.2).and.(MLyReal(MolNo-ChainLength)/=MLyReal(MolNo-1))) then
 NLCount = NLCount + 1
 OverlapCount = 0
 if (LRNo == 1) then
 LRNo = 2
 else
 LRNo = 1
 end if
 Tilt = .TRUE.
 MolNo = MolNo - a
 GO TO 14

William Eales

256

 end if
 end if
 elseif (MLxReal(MolNo-1) < MLxReal(MolNo-ChainLength)) then
 if ((ContSpotR < MLxReal(MolNo-ChainLength)) .or. (SideBal .eqv.
.FALSE.)) then
 if ((MLxReal(MolNo-ChainLength)/=GridSize-MLr(MolNo-
ChainLength)).and.(MLyReal(MolNo-ChainLength)/=MLyReal(MolNo-1))) then
 NLCount = NLCount + 1
 OverlapCount = 0
 if (LRNo == 1) then
 LRNo = 2
 else
 LRNo = 1
 end if
 Tilt = .TRUE.
 MolNo = MolNo - a
 GO TO 14
 end if
 end if
 end if

 if (MLyReal(MolNo-ChainLength) > MLyReal(MolNo-1)) then
 if (MLxReal(MolNo-1) > MLxReal(MolNo-ChainLength)) then
 GO TO 21
 elseif (MLxReal(MolNo-1) < MLxReal(MolNo-ChainLength)) then
 GO TO 22
 end if
 end if

10 CONTINUE

 if ((MinFallCount > FallCount) .or. (MinFallCount == 0)) then
 MinFallCount = FallCount
 end if

 else
 Full = 1
 end if

 end

 subroutine PointSafe ! Determines if the falling particle has impacted yet
 use allSubs ! Loads the variables from the module
 integer a, b, CoordX, CoordY
 real Dist
 character t

 Hit = .FALSE.
 FullCheck = .FALSE.

 ! Checks the distance between the current falling particle location and previously
placed partice to determine if it has impacted

 cloop: do a = 1, MolNo - 1
 Dist = ((MLxReal(a)-x)**2)+((MLyReal(a)-y)**2)
 Dist = sqrt(Dist)
 if (Dist <= ((RadT)+(Mlr(a)))) then

William Eales

257

 Hit = .TRUE.
 exit cloop
 end if
 end do cloop

 ! If the impact is above the top of the box, a counter is incremented to show the box
may be full
 if ((Hit .eqv. .TRUE.) .and. (y >= (GridSize - RadT))) then
 Hit = .FALSE.
 FullCount = FullCount + 1
 RoofCount = RoofCount + 1
 end if

 if (RoofCount >= 1000) then
 FullCheck = .TRUE.
 end if

 if (FullCount == 2500000) then
 Full = 1
 end if

 end

 subroutine AddChain() ! This subroutine performs the exact same function as the main
particle chain adding code, however is used for the chains placed along the base layer
 use allsubs
 integer count2, Spot, Height, DoubRad, RowRad, a,b,c, RadIn, m, n, TempX, TempY
 real MidWay, Dist
 character t, FileName*15
 integer SavIncremX, SavIncremY, SafeLocCount, LR, SavOneX, SavOneY, SavDist,
SavOnePart, LRNo, OneCount, RealPos1, RealPos2
 integer TempRealPos1, TempRealPos2, ChainOneCount
 logical SafeLocFound, Go, ResetCheck
 real TempXa, TempXb, TempYa, TempYb, DistAB, DistBC, DistAC, AngleA, AngleB,
AngleFin, GradFin, HelpDist
 real FDistA, FDistB, FDistC, FDistD
 real xDiff, yDiff, Pi, FinalSavX, FinalSavY
 integer FinalSavLong, FinalSavTall, checktime, Balanced
 integer Balances, Touches
 dimension Balances(10)
 real DistFac, RadScale
 integer NewPos, TRP1Swap, TRP2Swap
 integer FinalPart, SideCount
 dimension FinalPart(2,3)
 real PartCoords, stochDists, sumDist, dx, stochxnew, newCoords, stochynew
 integer ibad
 dimension PartCoords(2,2), stochDists(2), newCoords(2), dx(2), stochxnew(2)
 real RX, NewX, NewY
 logical ChainAdd
 real OverDist
 integer OverDistNo
 logical NotBal, FirstBal
 dimension BalCheckNo(10000), BalCombi(100000,2)
 integer BalCheckCount, BalCount, BalCheckNo, BalCombi, BalAttempt
 integer OverlapCount

William Eales

258

 integer ChainStartNo, ChainStartCont, d
 real ChainGrad, EquC
 logical ChainHitCheck, ChainEdgeHitCheck, ChainTopHitCheck
 logical TopCase
 integer OverTopCount, PartHit

 Hit = .FALSE.
 ResetCheck = .FALSE.
 checktime = 1
 Balanced = 0
 Touches = 0
 Balances = 0

 FinalPart = 999999
 OverDist = 0
 OverDistNo = 0

 OverlapCount = 0

 TRP1Swap = 0
 TRP2Swap = 0

 ChainAdd = .FALSE.
 ChainOneCount = 1

 NotBal = .FALSE.
 FirstBal = .TRUE.
 BalCheckNo = 0
 BalCombi = 0
 BalCheckCount = 0
 BalCount = 0
 BalCheckNo = 0
 BalCombi = 0
 BalAttempt = 0

 RadScale = 0
 TempRealPos1 = 0
 TempRealPos2 = 0
 DistFac = 0
 FDistA = 0
 FDistB = 0
 FDistC = 0
 FDistD = 0
 SavDist = 0
 SavOneX = 0
 SavOneY = 0
 TempXa = 0
 TempXb = 0
 TempYa = 0
 TempYb = 0
 DistAB = 0
 DistBC = 0
 DistAC = 0
 AngleA = 0
 AngleB = 0
 AngleFin = 0
 GradFin = 0

William Eales

259

 xDiff = 0
 yDiff = 0
 Pi = 3.141596535
 NewPos = 0

 FinalDists = 0

 PartCoords = 0
 stochDists = 0
 sumDist = 0
 dx = 0
 stochxnew = 0
 newCoords = 0
 stochynew = 0

 RA = ''
 OverlapCount = 0

 do a = 1, MolNo - 1
 MLxCor = MLxReal(a)
 MLyCor = MLyReal(a)
 RadIn = MLr(a)
 DoubRad = (RadIn+RadT)+1

 if (a /= MolNo-1) then
 do Height = 0, DoubRad
 MidWay = DoubRad**2 - Height**2
 RowRad = abs(sqrt(Midway))
 do count2 = -rowrad+1, rowrad-1
 if
((MLyCor+count2<=GridSize).and.(MLxCor+Height<=GridSize-
RadT).and.(MLyCor+count2>=RadT).and.(MLxCor+Height>=RadT))then
 RA(MLyCor+count2, MLxCor+Height) = '-'
 end if
 if ((MLyCor+count2<=GridSize).and.(MLxCor-
Height<=GridSize-RadT).and.(MLyCor+count2>=RadT).and.(MLxCor-Height>=RadT))then
 RA(MLyCor+count2, MLxCor-Height) = '-'
 end if
 end do
 end do

 do Height = -RadIn, RadIn
 do count2 = MlyCor-1, 1, -1
 if
((count2<=GridSize).and.(MLxCor+Height<=GridSize-
RadT).and.(count2>=RadT).and.(MLxCor+Height>=RadT))then
 RA(count2, MLxCor+Height) = '-'
 end if
 end do
 end do
 end if

 if (a == MolNo-1) then
 do Height = -RadIn, 0
 MidWay = RadIn**2 - Height**2
 RowRad = abs(sqrt(Midway))

William Eales

260

 if
((MLyCor+RowRad<=GridSize).and.(MLxCor+height<=GridSize-
RadT).and.(MLxCor+height>=RadT).and.(MLyCor+RowRad>=RadT))then
 if (RA(MLyCor+RowRad, MLxCor+Height) /= '-') then
 RA(MLyCor+RowRad, MLxCor+Height) = '1'
 end if
 end if
 if ((MLyCor-
RowRad>=RadT).and.(MLxCor+height<=GridSize-
RadT).and.(MLxCor+height>=RadT).and.(MLyCor-RowRad<=GridSize))then
 if (RA(MLyCor-RowRad, MLxCor+Height) /= '-') then
 RA(MLyCor-RowRad, MLxCor+Height) = '1'
 end if
 end if
 if ((MLyCor+RowRad<=GridSize).and.(MLxCor-
Height<=GridSize-RadT).and.(MLxCor-Height>=RadT).and.(MLyCor+RowRad>=RadT))then
 if (RA(MLyCor+RowRad, MLxCor-Height) /= '-') then
 RA(MLyCor+RowRad, MLxCor-Height) = '1'
 end if
 end if
 if ((MLyCor-RowRad>=RadT).and.(MLxCor-
height<=GridSize-RadT).and.(MLxCor-height>=RadT).and.(MLyCor-
RowRad<=GridSize))then
 if (RA(MLyCor-RowRad, MLxCor-Height) /= '-') then
 RA(MLyCor-RowRad, MLxCor-Height) = '1'
 end if
 end if
 end do
 end if
 end do

 do a = 1, GridSize
 do b = 1, GridSize
 if (RA(b,a) == '1') then
 ChainOnes(ChainOneCount, 1) = b
 ChainOnes(ChainOneCount, 2) = a
 ChainOneCount = ChainOneCount + 1
 end if
 end do
 end do

 call random_number(RX)
 LRNo = 1 + floor(2*RX)
 if (LRNo == 1) then
 TempX = ChainOnes(1,2)
 TempY = ChainOnes(1,1)
 elseif (LRNo == 2) then
 TempX = ChainOnes(ChainOneCount-1,2)
 TempY = ChainOnes(ChainOneCount-1,1)
 end if

 FinalPart = 99999
 FinalPart(1,1) = MolNo-1
 Dist = ((MLxReal(a)-TempX)**2)+((MLyReal(a)-TempY)**2)
 Dist = sqrt(Dist) - MLr(a)
 FinalPart(1,2) = Dist
 FinalPart(1,3) = Dist + MLr(a)

William Eales

261

 do a = 1, MolNo-2
 if (MLyReal(a) < TempY+1) then
 Dist = ((MLxReal(a)-TempX)**2)+((MLyReal(a)-TempY)**2)
 Dist = sqrt(Dist) - RadT - MLr(a)
 if (Dist <= FinalPart(2,2)) then
 FinalPart(2,1) = a
 FinalPart(2,2) = Dist
 FinalPart(2,3) = Dist + RadT + MLr(a)
 end if
 end if
 end do

60 CONTINUE

 PartCoords(1,1) = MLxReal(FinalPart(1,1))
 PartCoords(1,2) = MLyReal(FinalPart(1,1))
 PartCoords(2,1) = MLxReal(FinalPart(2,1))
 PartCoords(2,2) = MLyReal(FinalPart(2,1))

 if ((TempX == RadT) .or. (TempX == GridSize-RadT)) then
 NewX = TempX
 Dist = MLr(FinalPart(1,1))

 NewY = -(MLxReal(FinalPart(1,1))**2)+(2*MLxReal(FinalPart(1,1))*NewX)
 NewY = NewY+(Dist**2)-(NewX**2)
 NewY = sqrt(NewY)

 if (NewY /= NewY) then
 MolNo = MolNo - 1
 GO TO 10
 end if

 if (TempY - (MLyReal(FinalPart(1,1)) + NewY) < TempY -
(MLyReal(FinalPart(1,1)) - NewY)) then
 NewY = MLyReal(FinalPart(1,1)) + NewY
 else
 NewY = MLyReal(FinalPart(1,1)) - NewY
 end if

 else
 newCoords(1) = TempX
 newCoords(2) = TempY

 stochDists(1) = FinalPart(1,3)
 stochDists(2) = FinalPart(2,3)

 sumDist = stochDists(1) + stochDists(2)

 dx(1) = 10 * RadLarge
 dx(2) = 10 * RadLarge

 do a = 1, 10
 do b = 1, 2
 dx(b) = dx(b) / 10
 end do
 do c = 1, 500

William Eales

262

 call random_number(RX)
 stochxnew(2) = newCoords(2) + dx(2) * (2*RX-1)
 call random_number(RX)
 stochxnew(1) = newCoords(1) + dx(1) * (2*RX-1)

 ibad = 0

 stochDists(1) = ((PartCoords(1,1)-
stochxnew(1))**2)+((PartCoords(1,2)-stochxnew(2))**2)
 stochDists(1) = sqrt(stochDists(1)) - MLr(FinalPart(1,1))
 if (stochDists(1) < 0) then
 ibad = 1
 end if

 stochDists(2) = ((PartCoords(2,1)-
stochxnew(1))**2)+((PartCoords(2,2)-stochxnew(2))**2)
 stochDists(2) = sqrt(stochDists(2)) - RadT -
MLr(FinalPart(2,1))
 if (stochDists(2) < 0) then
 ibad = 1
 end if

 stochynew = stochDists(1) + stochDists(2)
 if ((stochynew < sumDist) .and. (ibad == 0)) then
 do b = 1, 2
 newCoords(b) = stochxnew(b)
 end do
 sumDist = stochynew
 end if
 end do
 end do

 NewX = newCoords(1)
 NewY = newCoords(2)
 end if

 if ((NewX > GridSize-RadT) .or. (NewX < RadT) .or. (NewY > GridSize-RadT) .or.
(NewY < RadT)) then
 MolNo = MolNo - 1
 GO TO 10
 end if

 do a = 1, MolNo-2
 Dist = ((MLxReal(a)-NewX)**2)+((MLyReal(a)-NewY)**2)
 Dist = sqrt(Dist)
 if (Dist < MLr(a)+RadT) then
 OverlapCount = OverlapCount + 1
 if (OverlapCount > 2500) then
 MolNo = MolNo - 1
 GO TO 10
 end if

 FinalPart(2,1) = a
 GO TO 60

 FullCount = FullCount + 1
 MolNo = MolNo - 1

William Eales

263

 GO TO 10
 end if
 end do

 MLxReal(MolNo) = NewX
 MLyReal(MolNo) = NewY
 MLr(MolNo) = RadT
 FullCount = 0
 MolNo = MolNo + 1

 ChainStartNo = MolNo-2
 ChainStartCont = MolNo-1
 CSCy = MLyReal(ChainStartCont)

 do a = 1, ChainLength - 2
 OverlapCount = 0

 ChainGrad = (MLyReal(ChainStartCont) - MLyReal(ChainStartNo)) /
(MLxReal(ChainStartCont) - MLxReal(ChainStartNo))
 EquC = MLyReal(ChainStartCont) - (ChainGrad * MLxReal(ChainStartCont))
 if (MLxReal(ChainStartCont) - MLxReal(ChainStartNo) == 0) then
 NewX = MLxReal(ChainStartCont)
 CSCy = CSCy + RadT
 NewY = CSCy
 else
 NewX = RadT / (sqrt((ChainGrad**2) + 1))
 NewY = (ChainGrad * NewX)

 if (MLxReal(ChainStartCont) < MLxReal(ChainStartNo)) then
 NewX = MLxReal(MolNo-1) - NewX
 NewY = MLyReal(MolNo-1) - NewY
 elseif (MLxReal(ChainStartCont) > MLxReal(ChainStartNo)) then
 NewX = MLxReal(MolNo-1) + NewX
 NewY = MLyReal(MolNo-1) + NewY
 end if
 end if

 ChainHitCheck = .FALSE.
 ChainEdgeHitCheck = .FALSE.
 ChainTopHitCheck = .FALSE.

 ChainHitLoop: do b = 1, MolNo - a-2
 Dist = ((MLxReal(b)-NewX)**2)+((MLyReal(b)-NewY)**2)
 Dist = sqrt(Dist)
 if (Dist < ((RadT)+(Mlr(b)))) then
 ChainHitCheck = .TRUE.
 PartHit = b
 end if
 end do ChainHitLoop

99 CONTINUE

 if ((NewX > GridSize-RadT) .or. (NewX < RadT)) then
 ChainEdgeHitCheck = .TRUE.
 elseif (NewY > GridSize-RadT) then
 ChainTopHitCheck = .TRUE.
 end if

William Eales

264

 if (ChainHitCheck .eqv. .TRUE.) then
 if (OverlapCount > 2500) then
 MolNo = MolNo - a - 1
 GO TO 10
 end if

 newCoords(1) = NewX
 newCoords(2) = NewY

 stochDists(1) = Dist
 stochDists(2) = ((MLxReal(MolNo-a-1)-
NewX)**2)+((MLyReal(MolNo-a-1)-NewY)**2)
 stochDists(2) = sqrt(stochDists(2))

 sumDist = stochDists(1) + stochDists(2)

 dx(1) = 10 * RadLarge
 dx(2) = 10 * RadLarge

 do b = 1, 10
 do c = 1, 2
 dx(c) = dx(c) / 10
 end do
 do c = 1, 500
 call random_number(RX)
 stochxnew(2) = newCoords(2) + dx(2) * (2*RX-1)
 call random_number(RX)
 stochxnew(1) = newCoords(1) + dx(1) * (2*RX-1)

 ibad = 0

 stochDists(1) = ((MLxReal(PartHit)-
stochxnew(1))**2)+((MLyReal(PartHit)-stochxnew(2))**2)
 stochDists(1) = sqrt(stochDists(1)) - RadT -
MLr(PartHit)
 if (stochDists(1) < 0) then
 ibad = 1
 end if

 stochDists(2) = ((MLxReal(MolNo-a-1)-
stochxnew(1))**2)+((MLyReal(MolNo-a-1)-stochxnew(2))**2)
 stochDists(2) = sqrt(stochDists(2)) - ((a+1) * RadT)
 if (stochDists(2) < 0) then
 ibad = 1
 end if

 stochynew = stochDists(1) + stochDists(2)
 if ((stochynew < sumDist) .and. (ibad == 0)) then
 do d = 1, 2
 newCoords(d) = stochxnew(d)
 end do
 sumDist = stochynew
 end if
 end do
 end do

 NewX = newCoords(1)

William Eales

265

 NewY = newCoords(2)

 if (NewY < RadT) then
 NewY = RadT
 NewX = MLxReal(MolNo-1) + RadT
 end if

 do b = MolNo - a-2, 1, -1
 Dist = ((MLxReal(b)-NewX)**2)+((MLyReal(b)-NewY)**2)
 Dist = sqrt(Dist)
 if (Dist < ((RadT)+(Mlr(b)))) then
 ChainHitCheck = .TRUE.
 PartHit = b
 OverlapCount = OverlapCount + 1
 GO TO 99
 end if
 end do

 if ((NewX < RadT) .or. (NewX > GridSize - RadT)) then
 ChainHitCheck = .FALSE.
 ChainEdgeHitCheck = .TRUE.
 GO TO 99
 end if
 if (NewY > GridSize - RadT) then
 ChainHitCheck = .FALSE.
 ChainTopHitCheck = .TRUE.
 GO TO 99
 end if

 ChainGrad = (NewY - MLyReal(ChainStartNo)) / (NewX -
MLxReal(ChainStartNo))
 EquC = NewY - (ChainGrad * NewX)
 CSCy = NewY
 CSCx = NewX

 do d = 1, a
 OverlapCount = 0

 if (NewX - MLxReal(ChainStartNo) == 0) then
 MLxReal(MolNo-d) = NewX
 MLyReal(MolNo-d) = NewY-RadT
 else
 MLxReal(MolNo-d) = RadT / (sqrt((ChainGrad**2) +
1))
 MLyReal(MolNo-d) = (ChainGrad * MLxReal(MolNo-
d))

 if (NewX < MLxReal(ChainStartNo)) then
 CSCy = CSCy + MLyReal(MolNo-d)
 CSCx = CSCx + MLxReal(MolNo-d)
 MLxReal(MolNo-d) = CSCx
 MLyReal(MolNo-d) = CSCy
 elseif (NewX > MLxReal(ChainStartNo)) then
 CSCy = CSCy - MLyReal(MolNo-d)
 CSCx = CSCx - MLxReal(MolNo-d)
 MLxReal(MolNo-d) = CSCx
 MLyReal(MolNo-d) = CSCy

William Eales

266

 end if
 end if

 end do
 end if

 if (ChainEdgeHitCheck .eqv. .TRUE.) then
 if (OverlapCount > 2500) then
 MolNo = MolNo - a - 1
 GO TO 10
 end if
 if (NewX > GridSize-RadT) then
 NewX = GridSize-RadT
 elseif (NewX < RadT) then
 NewX = RadT
 end if
 Dist = (a+1)*RadT

 NewY = -(MLxReal(MolNo-a-1)**2)+(2*MLxReal(MolNo-a-1)*NewX)
 NewY = NewY+(Dist**2)-(NewX**2)
 NewY = sqrt(NewY)

 if (NewY /= NewY) then
 MolNo = MolNo - a - 1
 GO TO 10
 end if

 if (TempY - (MLyReal(MolNo-a-1) + NewY) < TempY -
(MLyReal(MolNo-a-1) - NewY)) then
 NewY = MLyReal(MolNo-a-1) + NewY
 else
 NewY = MLyReal(MolNo-a-1) - NewY
 end if

 do b = 1, MolNo - a-2
 Dist = ((MLxReal(b)-NewX)**2)+((MLyReal(b)-NewY)**2)
 Dist = sqrt(Dist)
 if (Dist < ((RadT)+(Mlr(b)))) then
 ChainHitCheck = .TRUE.
 PartHit = b
 OverlapCount = OverlapCount + 1
 GO TO 99
 end if
 end do

 ChainGrad = (NewY - MLyReal(ChainStartNo)) / (NewX -
MLxReal(ChainStartNo))
 EquC = NewY - (ChainGrad * NewX)
 CSCy = NewY
 CSCx = NewX

 do d = 1, a
 OverlapCount = 0

 if (NewX - MLxReal(ChainStartNo) == 0) then
 MLxReal(MolNo-d) = NewX
 MLyReal(MolNo-d) = NewY-RadT

William Eales

267

 else
 MLxReal(MolNo-d) = RadT / (sqrt((ChainGrad**2) +
1))
 MLyReal(MolNo-d) = (ChainGrad * MLxReal(MolNo-
d))

 if (NewX < MLxReal(ChainStartNo)) then
 CSCy = CSCy + MLyReal(MolNo-d)
 CSCx = CSCx + MLxReal(MolNo-d)
 MLxReal(MolNo-d) = CSCx
 MLyReal(MolNo-d) = CSCy
 elseif (NewX > MLxReal(ChainStartNo)) then
 CSCy = CSCy - MLyReal(MolNo-d)
 CSCx = CSCx - MLxReal(MolNo-d)
 MLxReal(MolNo-d) = CSCx
 MLyReal(MolNo-d) = CSCy
 end if
 end if

 end do

 elseif (ChainTopHitCheck .eqv. .TRUE.) then
 OverTopCount = OverTopCount + 1
 if (OverlapCount > 2500) then
 MolNo = MolNo - a - 1
 GO TO 10
 end if
 if (OverTopCount > 2500) then
 MolNo = MolNo - 2
 GO TO 10
 end if
 NewY = GridSize-RadT
 Dist = (a+1)*RadT

 NewX = -(MLyReal(MolNo-a-1)**2)+(2*MLyReal(MolNo-a-1)*NewY)
 NewX = NewX+(Dist**2)-(NewY**2)
 NewX = sqrt(NewX)

 if (NewX /= NewX) then
 MolNo = MolNo - a - 1
 GO TO 10
 end if

 if (TempX - (MLxReal(MolNo-a-1) + NewX) < TempX -
(MLxReal(MolNo-a-1) - NewX)) then
 NewX = MLxReal(MolNo-a-1) + NewX
 else
 NewX = MLxReal(MolNo-a-1) - NewX
 end if

 do b = 1, MolNo - a-2
 Dist = ((MLxReal(b)-NewX)**2)+((MLyReal(b)-NewY)**2)
 Dist = sqrt(Dist)
 if (Dist < ((RadT)+(Mlr(b)))) then
 ChainHitCheck = .TRUE.
 PartHit = b
 OverlapCount = OverlapCount + 1

William Eales

268

 GO TO 99
 end if
 end do

 ChainGrad = (NewY - MLyReal(ChainStartNo)) / (NewX -
MLxReal(ChainStartNo))
 EquC = NewY - (ChainGrad * NewX)
 CSCy = NewY

 do d = 1, a
 OverlapCount = 0
 OverTopCount = 0

 if (NewX - MLxReal(ChainStartNo) == 0) then
 MLxReal(MolNo-d) = NewX
 CSCy = CSCy - RadT
 MLyReal(MolNo-d) = CSCy
 else
 MLxReal(MolNo-d) = RadT / (sqrt((ChainGrad**2) +
1))
 MLyReal(MolNo-d) = (ChainGrad * MLxReal(MolNo-
d))

 if (NewX < MLxReal(ChainStartNo)) then
 CSCy = CSCy + MLyReal(MolNo-d)
 CSCx = CSCx + MLxReal(MolNo-d)
 MLxReal(MolNo-d) = CSCx
 MLyReal(MolNo-d) = CSCy
 elseif (NewX > MLxReal(ChainStartNo)) then
 CSCy = CSCy - MLyReal(MolNo-d)
 CSCx = CSCx - MLxReal(MolNo-d)
 MLxReal(MolNo-d) = CSCx
 MLyReal(MolNo-d) = CSCy
 end if
 end if

 end do

 end if

 MLxReal(MolNo) = NewX
 MLyReal(MolNo) = NewY
 MLr(MolNo) = RadT
 FullCount = 0
 MolNo = MolNo + 1
 end do

10 CONTINUE

 end

William Eales

269

Appendix 5: RSA Algorithm

This appendix contains the algorithm used to create the random sequential

adsorption image used in Figure 4.3.

program packedbed
! Sets up initial variables
integer MolNo, RadLarge, RadSmall, BoxSize, GridSize, Rads, count, SN,
integer MLr
real MLxReal, MLyReal
dimension MLr(10000), Rads(10), MLxReal(10000), MLyReal(10000)
integer x, y, RadT

character t, FileName*15, FileID*3
integer ProgCount, PCId, count3
dimension FileID(1000)
real Dist
integer count2
logical Impact

t = 'y'

if (t == 'y') then
 Rads(1) = 10 ! Inputs the radius to be present in the system
 SN = 1

 RadLarge = 0
 RadSmall = 0

 do count = 1, SN
 if (RadLarge < Rads(count)) then
 RadLarge = Rads(count)
 end if
 if (RadSmall > Rads(count) .or. RadSmall == 0) then
 RadSmall = Rads(count)
 end if
 end do

 RadLarge = 10 ! Determines the largest and smallest radius of the entered radii
 RadSmall = 10

 BoxSize = (RadLarge*6)
 GridSize = BoxSize*5

 do ProgCount = 1, 50
 write(FileID(ProgCount), '(i0)') ProgCount
 end do

 do ProgCount = 1, 50 ! Loops for the number of systems to be created

 MLxReal = 0
 MLyReal = 0
 MLr = 0

William Eales

270

 MolNo = 1
 FileName = ''

 call random_seed()

 do while (count < 10000000)

 Impact = .FALSE.

 ! Finds a random x and y coordinate and radius
 call random_number(RX)
 count2 = 1 + floor(SN*RX)
 RadT = Rads(count2)

 call random_number(RX)
 count2 = 1 + floor((GridSize-(2*RadT))*RX)
 x = count2+RadT

 call random_number(RX)
 count2 = 1 + floor((GridSize-(2*RadT))*RX)
 y = count2+RadT

 ! Confirms that the chosen location does not overlap with a previously
placed particle
 if (MolNo > 1) then
 hitloop: do count3 = 1, MolNo - 1
 Dist = ((MLxReal(count3)-x)**2)+((MLyReal(count3)-
y)**2)
 Dist = sqrt(Dist)
 if (Dist <= (RadT+Mlr(count3))) then
 count = count + 1
 Impact = .TRUE.
 exit hitloop
 end if
 end do hitloop
 if (Impact .eqv. .FALSE.) then ! If there is no overlap, the
location is saved, if there is an overlap the location is not saved and ignored.
 count = 0
 MLxReal(MolNo) = x
 MLyReal(MolNo) = y
 MLr(MolNo) = RadT
 MolNo = MolNo + 1
 end if
 else
 MLxReal(MolNo) = x
 MLyReal(MolNo) = y
 MLr(MolNo) = RadT
 MolNo = MolNo + 1
 end if
 end do

 t = 'y'
 if (t == 'y') then ! The particle locations are saved to a file, and the next
system is started
 FileName = ''
 FileName = trim(adjustl(FileID(ProgCount))) // '.csv'
 open(1, file = FileName, status = 'new')

William Eales

271

 do y = 1, MolNo-1
 write(1,*) MLxReal(y), ',' , MLyReal(y), ',' , MLr(y)
 end do
 close(1)
 end if
 end do
end if

end program

William Eales

272

Appendix 6: MatLab Code Used

This appendix contains the code used, to obtain data and visualise created

systems, within MatLab.

Visualising 2D System Beds
for x = 1:50 % This line starts the loop that will iterate for the number of systems inputted
 if isfile([num2str(x) '.csv']) % Confirms the file exists in the expected folder
 load ([num2str(x) '.csv']) % Loading the respective file
 box on % Turns on an outline so the edges of the box are in the image output
 th = 0:pi/50:2*pi; % Gives the variable th values in the range 0 to 2π
 L = length(evalin('base',sprintf('X%d',x))) % Sets L to the number of particles
in the system
 figure(x) % Creates a figure for system x
 for q = 1:L % Loops through each particle within the system
 xunit = evalin('base',sprintf('X%d(q,3)',x)) * cos(th) +
evalin('base',sprintf('X%d(q,1)',x)); % Calculates the x positions on the particle circumference
 yunit = evalin('base',sprintf('X%d(q,3)',x)) * sin(th) +
evalin('base',sprintf('X%d(q,2)',x)); % Calculates the y positions on the particle circumference
 h = plot(xunit, yunit, 'k'); % Plots those positions onto the figure
 hold on % Keeps the old figure when adding a new particle to it
 xlim([0 600]); % Sets the x-axis limits
 ylim([0 600]); % Sets the y-axis limits
 end
 else
 l = x % Outputs the file number if the file does not exist for error checking
 end
end

Determining 2D Packing Fractions
PartFrac = 0 % Stores the packing fractions for all the systems
PartSum = 0 % Stores the total of all of the packing fractions for calculating the average
PartAvg = 0 % Stores the average of the packing fractions across all the systems
for x = 1:50 % This line starts the loop that will iterate for the number of systems inputted
 PartTot = 0; % Stores the total area of Particles within the currently analysed system
 if isfile([num2str(x) '.csv']) % Confirms the file exists in the expected folder
 load ([num2str(x) '.csv']) % Loading the respective file
 L = length(evalin('base',sprintf('X%d',x))); % Sets L to the number of particles
in the system
 for q = 1:L % Loops through each particle within the system
 PartTot = ((evalin('base',sprintf('X%d(q,3)',x)) ^ 2) * pi) + PartTot; %
Calculates the area of the particle and adds it to the current total area
 end
 PartFrac(x) = PartTot / (300^2); % Calculates the packing fraction of the
current system
 PartSum = PartSum + PartFrac(x); % Adds the packing fraction of the current
system to the total to be averaged
 end
end
PartAvg = PartSum / 50 % Calculates the packing fraction average of the systems

Determining 2D Number of Contacts

William Eales

273

for x = 1:50 % This line starts the loop that will iterate for the number of systems inputted
 if isfile(['contacts' num2str(x) '.csv']) % Confirms the file exists in the expected folder
 load (['contacts' num2str(x) '.csv']) % Loading the respective contacts file
 load ([num2str(x) '.csv']) % Loading the respective particle locations file
 L = length(evalin('base',sprintf('contacts%d',x))); % Sets L to the number of
particles in the system
 for q = 1:L
 SmolContNo = 0; % Stores the number of contacts for small
particles
 LorgContNo = 0; % Stores the number of contacts for large particles
 f = 1; % The counter for looping through the arrays
 while evalin('base',sprintf('contacts%d(q,f)',x)) ~= 0 % Checks the
particle has more than zero contacts
 if evalin('base',sprintf('X%d(q,3)',x)) == 10 % Determines if
the particle is of radius 10 (small) or not (large)
 SmolContNo = SmolContNo + 1; % Increments the
number of contacts for a small particle
 f = f + 1; % Increments the array counter
 else
 LorgContNo = LorgContNo + 1; % Increments the
number of contacts for a large particle
 f = f + 1; % Increments the array counter
 end
 end
 SmolContCount(x,q) = SmolContNo; % Stores the number of
contacts for each small particle across all systems

 LorgContCount(x,q) = LorgContNo; % Stores the number of
contacts for each large particle across all systems
 end
 end
end

Determining the Percentage of 2D Systems That Contain a Percolation Chain
PercCount = 0 % Stores the number of systems that contain a percolation chain
TotalCount = 0 % Stores the total number of systems
for x = 1:50 % This line starts the loop that will iterate for the number of systems inputted
 if isfile(['shapes' num2str(x) '.csv']) % Confirms the file exists in the expected folder
 load (['shapes' num2str(x) '.csv']) % Loading the respective particle shapes
file
 CurShape = evalin('base',sprintf('shapes%d',x)); % Retrieves the chains from
the file
 [numRows,numCols] = size(CurShape); % Determines the size of the array
 TotalCount = TotalCount + 1; % Adds one to the total number of systems
 if numRows == 1 % Determines if the system has no percolation chains
 PercCount = PercCount + 1; % If so adds one to this counter
 end
 end
end
PercFracs = 100 - ((PercCount/TotalCount) * 100) % Determines the percentage of systems
that contain a percolation chain

Determining the Number of Percolation Chains in 2D Systems
AvgCount = 0 % Stores the average number of percolation chains across all systems
MaxCount = 0 % Stores the maximum number of percolation chain in a system

William Eales

274

MinCount = 999 % Stores the minimum number of percolation chain in a system
RowCount = 0 % Stores the number of percolation chains in each system
TotalCount = 0 % Stores the sum of how many percolation chains across all systems
TotAmount = 0 % Stores the number of systems
for x = 1:50 % This line starts the loop that will iterate for the number of systems inputted
 if isfile(['shapes' num2str(x) '.csv']) % Confirms the file exists in the expected folder
 load (['shapes' num2str(x) '.csv']) % Loading the respective particle shapes
file
 CurShape = evalin('base',sprintf('shapes%d',x)); % Retrieves the chains from
the file
 [numRows,numCols] = size(CurShape); % Determines the size of the array
 TotalCount = TotalCount + (numRows-1); % Adds the number of percolation
chains in the current system to the total
 TotAmount = TotAmount + 1; % Adds one to the total number of systems
 RowCount(x) = numRows-1; % Saves number of percolation chain to the
array
 if numRows-1 > MaxCount % If it is more than the current highest
 MaxCount = numRows - 1; % It is overwritten
 end
 if numRows-1 < MinCount % If it is less than the current lowest
 MinCount = numRows - 1; % It is overwritten
 end
 end
end
AvgCount = TotalCount/TotAmount % Calculates the average number of percolation chains
per system

Determining the Shortest Percolation Chain in 2D Systems
SmallShapes = 0 % Stores all smallest percolation chain lengths from all systems
for x = 1:50 % This line starts the loop that will iterate for the number of systems inputted
 SmolShap = 0; % Stores the current shortest percolation chain length
 if isfile(['shapes' num2str(x) '.csv']) % Confirms the file exists in the expected folder
 load (['shapes' num2str(x) '.csv']) % Loading the respective particle chains file
 CurShape = evalin('base',sprintf('shapes%d',x)); % Retrieves the chains from
the file
 [numRows,numCols] = size(CurShape); % Determines the size of the array
 if numRows ~= 1 % Confirms there is at least one chain in the system
 for y = 1:numRows-1 % Loops through all the chains in the system
 ShapLength = 0; % Stores current chain length
 for z = 1:numCols % Loops through the columns
 if CurShape(y,z) == 0 % Checks if the chain is still
going
 if ShapLength < SmolShap | SmolShap == 0
% Checks if the current chain is shorter than the previously shortest chain
 SmolShap = ShapLength; % If so it
replaces it
 end
 end
 ShapLength = ShapLength + 1; % Increments the
chain length counter
 end
 end
 end
 end
 SmallShapes(x) = SmolShap; % Stores the smallest chain from this system
End

William Eales

275

Determining the Longest Percolation Chain in 2D Systems
LargeShapes = 0 % Stores all largest percolation chain lengths from all systems
for x = 1:50 % This line starts the loop that will iterate for the number of systems inputted
 LorgShap = 0; % Stores the current longest percolation chain length
 if isfile(['shapes' num2str(x) '.csv']) % Confirms the file exists in the expected folder
 load (['shapes' num2str(x) '.csv']) % Loading the respective particle chain file
 CurShape = evalin('base',sprintf('shapes%d',x));)); % Retrieves the chain
from the file
 [numRows,numCols] = size(CurShape); % Determines the size of the array
 if numRows ~= 1 % Confirms there is at least one chain in the system
 for y = 1:numRows-1 % Loops through all the chains in the system
 ShapLength = 0; % Stores current chain length
 for z = 1:numCols % Loops through the columns
 if CurShape(y,z) == 0 % Checks if the chain is still
going
 if ShapLength > LorgShap | LorgShap == 0
% Checks if the current chain is longer than the previously longest chain
 LorgShap = ShapLength; % If so it
replaces it
 end
 end
 ShapLength = ShapLength + 1; % Increments the
chain length counter
 end
 end
 end
 end
 LargeShapes(x) = LorgShap; % Stores the largest chain from this system
end

Determining the Average Percolation Chain Length in 2D Systems
Shapes = 0 % Stores the sum of all chain lengths across all systems
ShapeCount = 0 % Stores the number of chains
AvgLength = 0 % Stores the average length of chain
for x = 1:50 % This line starts the loop that will iterate for the number of systems inputted
 if isfile(['shapes' num2str(x) '.csv']) % Confirms the file exists in the expected folder
 load (['shapes' num2str(x) '.csv']) % Loading the respective particle chain file
 CurShape = evalin('base',sprintf('shapes%d',x)); % Retrieves the chain from
the file
 [numRows,numCols] = size(CurShape); % Determines the size of the array
 if numRows ~= 1 % Confirms there is at least one chain in the system
 for y = 1:numRows-1 % Loops through all the chain in the system
 ShapLength = 0; % Stores current chain length
 for z = 1:numCols % Loops through the columns
 if CurShape(y,z) == 0 % Checks if the chain is still
going
 Shapes = Shapes + ShapLength; % Adds
the chain length to the total of all shape lengths
 ShapeCount = ShapeCount + 1; %
Increments the number of chains counter
 end
 ShapLength = ShapLength + 1; % Increments the
chain length counter
 end

William Eales

276

 end
 end
 end
end
AvgLength = Shapes/ShapeCount % Calculates the average percolation chain length

Visualising 3D System Beds
for a = 1:50 % This line starts the loop that will iterate for the number of systems inputted
 if isfile([num2str(a) '.csv']) % Confirms the file exists in the expected folder
 load ([num2str(a) '.csv']) % Loading the respective particle locations file
 CurPart = evalin('base',sprintf('X%d',a))';
 [x y z] = sphere; % Sets up x, y and z, as the coordinates of the sphere particle
 box on % Turns on an outline so the edges of the box are in the image output
 L = length(CurPart) % Sets L to the number of particles in the system
 figure(a) Creates a figure for system a
 for q = 1:L % Loops through each particle within the system

s(q)=surf(x*CurPart(4,q)+CurPart(1,q),y*CurPart(4,q)+CurPart(3,q),
z*CurPart(4,q)+CurPart(2,q)); % Draws the sphere particle onto the figure

 hold on % Keeps the old figure when adding a new particle to it
 end
 end
end

Determining 3D Packing Fractions
PartFrac = 0 % Stores the packing fractions for all the systems
PartFracAvg = 0 % Stores the average of the packing fractions across all the systems
for x = 1:50 % This line starts the loop that will iterate for the number of systems inputted
 PartTot = 0; % Stores the total area of Particles within the currently analysed system
 if isfile([num2str(x) '.csv']) % Confirms the file exists in the expected folder
 load ([num2str(x) '.csv']) % Loading the respective particle locations file
 L = length(evalin('base',sprintf('X%d',x))); % Sets L to the number of particles
in the system
 for q = 1:L % Loops through each particle within the system
 PartTot = ((evalin('base',sprintf('X%d(q,4)',x)) ^ 3) * (4/3) * pi) +
PartTot % Calculates the volume of the particle and adds it to the current total volume
 end
 PartFrac(x) = PartTot / (240^3); % Calculates the packing fraction of the
current system
 PartFracAvg = PartFracAvg + PartFrac(x); % Adds the packing fraction of the
current system to the total to be averaged
 end
end
PartFracAvg = PartFracAvg / 50 % Calculates the packing fraction average of the systems

Determining 3D Number of Contacts
for x = 1:50 % This line starts the loop that will iterate for the number of systems inputted
 if isfile(['contacts' num2str(x) '.csv']) % Confirms the file exists in the expected folder
 load (['contacts' num2str(x) '.csv']) % Loading the respective particle contacts
file
 load ([num2str(x) '.csv']) % Loading the respective particle locations file
 L = length(evalin('base',sprintf('contacts%d',x))); % Sets L to the number of
particles in the system
 for q = 1:L % Loops through each particle within the system

William Eales

277

 SmolContNo = 0; % Stores the number of contacts for small
particles
 LorgContNo = 0; % Stores the number of contacts for large particles
 f = 1; % The counter for looping through the arrays
 while evalin('base',sprintf('contacts%d(q,f)',x)) ~= 0 % Checks the
particle has more than zero contacts
 if evalin('base',sprintf('X%d(q,4)',x)) == 10 % Determines if
the particle is of radius 10 (small) or not (large)
 SmolContNo = SmolContNo + 1; % Increments the
number of contacts for a small particle
 f = f + 1; % Increments the array counter
 else
 LorgContNo = LorgContNo + 1; % Increments the
number of contacts for a large particle
 f = f + 1; % Increments the array counter
 end
 end
 SmolContCount(x,q) = SmolContNo; % Stores the number of
contacts for each small particle across all systems

 LorgContCount(x,q) = LorgContNo; % Stores the number of
contacts for each large particle across all systems
 end
 end
end

Determining Chain Angles in Single Chain Type System (Currently set at np = 2)
y=1 % Stores the number of chains
for x = 1:50 % This line starts the loop that will iterate for the number of systems inputted
 if isfile([num2str(x) '.csv']) % Confirms the file exists in the expected folder
 load ([num2str(x) '.csv']) % Loading the respective particle locations file
 L = length(evalin('base',sprintf('X%d',x))) % Sets L to the number of particles
in the system
 for q = 1:2:L % Loops through each particle within the system skipping middle
of chain particles
 v1 = evalin('base',sprintf('X%d(q+1,1)',x)) -
evalin('base',sprintf('X%d(q,1)',x)); % Calculates the dx between the current particle and the
next particle it is attached to
 v2 = evalin('base',sprintf('X%d(q+1,2)',x)) -
evalin('base',sprintf('X%d(q,2)',x)); % Calculates the dy between the current particle and the
next particle it is attached to
 v3 = v1/v2; % Calculates the gradient of the chain
 v4(x,y) = atand(v3); % Calculates the angle of the chain
 y = y + 1; % Increments the number of chains counter
 end
 end
end

Determining Chain Angles and Packing Fractions in Chain Systems (Based on Particle
Size)
ys = 1 % Stores the counter for shorter chain angle array
yc = 1 % Stores the counter for longer chain angle array
PartTotC = 0; % Stores the area covered by larger chains
PartTotS = 0; % Stores the area covered by smaller chains
PartFrac = 0; % Stores all the systems packing fractions

William Eales

278

PartSum = 0; % Stores the sum of all systems packing fractions
PartAvg = 0; % Stores the average of all systems packing fractions
for x = 1:50 % This line starts the loop that will iterate for the number of systems inputted
 if isfile([num2str(x) '.csv']) % Confirms the file exists in the expected folder
 scount = 1; % Stores the number of smaller chains or single particles
 ccount = 1; % Stores the number of larger chains
 load ([num2str(x) '.csv']) % Loading the respective particle locations file
 L = length(evalin('base',sprintf('X%d',x))) % Sets L to the number of particles
in the system
 for q = 1:L % Loops through each particle within the system
 if evalin('base',sprintf('X%d(q,3)',x)) == 5 % Determines of the radius
of the particle is 5 (small chain or single) or not (long chain)
 singles(scount,1) = evalin('base',sprintf('X%d(q,1)',x)); % If
small, saves the x coordinate here
 singles(scount,2) = evalin('base',sprintf('X%d(q,2)',x)); %
And the y coordinate here
 scount = scount + 1; % Then adds one to the counter
 else
 chains(ccount,1) = evalin('base',sprintf('X%d(q,1)',x)); % If
large, saves the x coordinate here
 chains(ccount,2) = evalin('base',sprintf('X%d(q,2)',x)); % And
the y coordinate here
 ccount = ccount + 1; % Then adds one to the counter
 end
 end

 for q = 1:5:ccount-4 % Loops through the large chains (currently set for np =
5)
 v1 = chains(q+1,1) - chains(q,1); % Calculates the dx between the
current particle and the next particle it is attached to
 v2 = chains(q+1,2) - chains(q,2); % Calculates the dy between the
current particle and the next particle it is attached to
 v3 = v1/v2; % Calculates the gradient of the chain
 cv4(yc) = atand(v3); % Calculates the angle of the chain and saves it
 yc = yc + 1; % Increments the array counter
 end
 for q = 1:5:scount-4 % Loops through the small chains (currently set for np =
5)
 v1 = singles(q+1,1) - singles(q,1); % Calculates the dx between the
current particle and the next particle it is attached to
 v2 = singles(q+1,2) - singles(q,2); % Calculates the dy between the
current particle and the next particle it is attached to
 v3 = v1/v2; % Calculates the gradient of the chain
 sv4(ys) = atand(v3); % Calculates the angle of the chain and saves it
 ys = ys + 1; % Increments the array counter
 end

 PartTotC = (((10 ^ 2) * pi) - (((10^2)* (((2*pi)/3) - ((sqrt(3))/2))) * (0.8))) *
(ccount); % Calculates the area covered by larger chains
 PartTotS = (((5 ^ 2) * pi) - (((5^2)* (((2*pi)/3) - ((sqrt(3))/2))) * (0.8))) * (scount);
% Calculates the area covered by smaller chains
 PartFrac(x) = (PartTotS + PartTotC) / (600^2); % Calculates the systems
packing fraction
 PartSum = PartSum + PartFrac(x); % Adds the packing fraction to the total for
calculating the average
 else
 l = x % Outputs the file number if the file does not exist for error checking

William Eales

279

 end
end
PartAvg = PartSum / 50 % Calculates the packing fraction average of the systems

Determining Chain Angles and Packing Fractions in Chain Systems (Based on Particle
Overlap)
ys = 1 % Stores the counter for shorter chain angle array
yc = 1 % Stores the counter for longer chain angle array
PartTotC = 0; % Stores the area covered by larger chains
PartTotS = 0; % Stores the area covered by smaller chains
PartFrac = 0; % Stores all the systems packing fractions
PartSum = 0; % Stores the sum of all systems packing fractions
PartAvg = 0; % Stores the average of all systems packing fractions
for x = 1:50 % This line starts the loop that will iterate for the number of systems inputted
 if isfile([num2str(x) '.csv']) % Confirms the file exists in the expected folder
 scount = 1; % Stores the number of smaller chains or single particles
 ccount = 1; % Stores the number of larger chains
 load ([num2str(x) '.csv']) % Loading the respective particle locations file
 L = length(evalin('base',sprintf('X%d',x))) % Sets L to the number of particles
in the system
 for q = 1:L % Loops through each particle within the system
 overlap = 0; % Value for if there is an overlap (1) or not (0)

 if q ~= L % Determining if the loop is not on the last iteration
 m = q + 1; % Used to denote the particle placed after the
current particle

 dist = ((evalin('base',sprintf('X%d(q,1)',x)) -
evalin('base',sprintf('X%d(m,1)',x)))^2) + ((evalin('base',sprintf('X%d(q,2)',x)) -
evalin('base',sprintf('X%d(m,2)',x)))^2);
 dist = sqrt(dist); % Determining the distance between particle
q and m

 if dist < ((evalin('base',sprintf('X%d(q,3)',x)) +
evalin('base',sprintf('X%d(m,3)',x))) - 5) % Determining if they are overlapping
 overlap = 1; % If so setting variable to ‘yes’
 end
 end

 if q ~= 1 % Does the same as above however checks the particle
placed prior
 n = q - 1;

 dist = ((evalin('base',sprintf('X%d(q,1)',x)) -
evalin('base',sprintf('X%d(n,1)',x)))^2) + ((evalin('base',sprintf('X%d(q,2)',x)) -
evalin('base',sprintf('X%d(n,2)',x)))^2);
 dist = sqrt(dist);

 if dist < ((evalin('base',sprintf('X%d(q,3)',x)) +
evalin('base',sprintf('X%d(n,3)',x))) - 5)
 overlap = 1;
 end
 end

 if overlap == 1 % If an overlap is found then the particle is part of a
chain

William Eales

280

 chains(ccount,1) = evalin('base',sprintf('X%d(q,1)',x)); %
Saves the x coordinate here
 chains(ccount,2) = evalin('base',sprintf('X%d(q,2)',x)); %
Saves the y coordinate here
 ccount = ccount + 1; % Increments the array counter
 else % If no overlap then particle is a single
 singles(scount,1) = evalin('base',sprintf('X%d(q,1)',x)); %
Saves the x coordinate here
 singles(scount,2) = evalin('base',sprintf('X%d(q,2)',x)); %
Saves the y coordinate here
 scount = scount + 1; % Increments the array counter
 end
 end

 for q = 1:5:ccount-4
 v1 = chains(q+1,1) - chains(q,1);
 v2 = chains(q+1,2) - chains(q,2);
 v3 = v1/v2;
 cv4(yc) = atand(v3);
 yc = yc + 1;
 end

 PartTotC = (((10 ^ 2) * pi) - (((10^2)* (((2*pi)/3) - ((sqrt(3))/2))) * (0.8))) *
(ccount); % Calculates the area covered by chains
 PartTotS = ((10 ^ 2) * pi) * (scount); % Calculates the area covered by singles
 PartFrac(x) = (PartTotS + PartTotC) / (600^2); % Calculates the systems
packing fraction
 PartSum = PartSum + PartFrac(x); % Adds the packing fraction to the total for
calculating the average
 else
 l = x % Outputs the file number if the file does not exist for error checking
 end
end
PartAvg = PartSum / 50 % Calculates the packing fraction average of the systems

