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Abstract

Since its creation in the early 1990s the Web has held the promise of allowing

near-instantaneous communication, participation and sharing of resources and ideas

between users across the globe. However up until fairly recently, the Web was

predominantly a large collection of static documents providing no real scope for

such interaction. The past decade has seen the arrival and rapid growth of the so

called “Web 2.0” movement where sites have become increasingly more social with

users able to share information with others. Due to the sheer volume of information

available on the Internet and the massive number of products available on online

shops, finding items which may be of interest can often be a very difficult task.

Furthermore the continual expansion of the Web makes it impossible to manually

evaluate each new item to determine if it might be of interest. In recent years the

emergence of a more social web has resulted in the development of tools with the

purpose of making this undertaking both easier and more enjoyable.

This thesis explores two avenues of this new social web: social tagging and

ratings-based collaborative filtering. Both of these methods rely on the users of

the system to provide some information about the resources contained therein and

then use this information to improve the user experience. The main hypothesis of

this thesis is that these new social tools can be significantly improved by the use of

machine learning methods to model and make sense of the data available. The work

introduces a family of novel latent variable Bayesian models designed specifically to

deal with this sparse and extremely noisy data. A series of experiments carried out

on real-world data sets show that these models can overcome the inherent difficulties

and provide significant improvements in performance over state of the art systems.

Furthermore it is shown that the output of these models is more readily interpretable

than from competing models and can therefore be utilised to gain a more complete

understanding of the complex social and topical dynamics of such systems.
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Chapter 1

Introduction and Background

“If you have an apple and I have an apple and we exchange these

apples then you and I will still each have one apple. But if you

have an idea and I have an idea and we exchange these ideas, then

each of us will have two ideas.”

George Bernard Shaw

Humans are inherently social beings and much of the scientific and cul-

tural progress made in history has been as a direct result of improvements to

communication technology. From the early invention of basic language to the

printing press and the telegraph, new technologies allowing people to share

ideas and knowledge have been at the very heart of society. Since its invention

in the early 1990s, the Web has held the promise of allowing near-instantaneous

communication, participation and sharing of resources and ideas between users

across the globe [BLCL+94]. However up until fairly recently, the Web was

predominantly a large collection of static documents providing no real scope

for such interaction. The past decade has seen the arrival and rapid growth of

the so-called “Web 2.0” movement where sites have become increasingly more

social with users sharing their information with others.

Due to the sheer volume of information available on the Internet and the

massive number of products available on online shops, finding items which may

be of interest can often be a very difficult task. The continual expansion of

the Web makes it impossible to manually evaluate each new item to determine

1



CHAPTER 1. INTRODUCTION AND BACKGROUND

if it might be of interest. Furthermore media items such as photographs, mu-

sic and movies are extremely difficult to automatically classify and annotate

and therefore it is often necessary to rely on human beings to provide their

descriptions. In recent years the emergence of a more social web has allowed

for the development of tools with the expressed purpose of making this both

easier and more enjoyable. This thesis specifically explores two avenues of this

new social web: social tagging and ratings-based collaborative filtering. Both

of these methods rely on the users of the system to provide some information

about the resources contained therein and then make use of this information

to improve the user experience. The main contributions of the thesis are the

development of a series of novel Bayesian latent variable models appropriate

to these settings and the evaluation of these models via three different exper-

iments on real-world data. The thesis is structured as follows:

• Chapter 1 presents a background overview of research into both social

tagging and collaborative filtering, including some discussion of findings

from this work. The aims of this chapter are to instruct the reader on

basic theories and approaches to understanding the complex dynamics

of such systems and to instruct and inform the approaches and methods

investigated later in the thesis. The chapter discusses the posited ben-

efits of these new paradigms, whether such systems are necessary and

where they can be most effectively utilised. It then proceeds to anal-

yse some common motivations identified for these social interactions and

looks into the statistical structure of large folksonomies in order to better

understand how they evolve and grow. In doing so we gain a more com-

plete understanding of how social tagging systems are used in practice

and how they are organised and structured.

• Chapter 2 reviews the existing literature in modelling socially generated

data including details of previous attempts to solve the problem of per-

sonalising tag suggestion, search and collaborative filtering.

• Chapter 3 provides a short introduction to the Bayesian methods of sta-

tistical modelling - in particular latent variable models - and how they

2



CHAPTER 1. INTRODUCTION AND BACKGROUND

can be used as powerful tools for modelling socially generated data. La-

tent topic models are then introduced as a stepping-stone to explaining a

series of novel Bayesian models (TTM1, TTM2, LITRM1 and LITRM2)

designed for social data, which are used later in the experiments.

• Chapters 4, 5 and 6 show by experiment on real-world data that not only

can the models developed in Chapter 3 be used to perform useful tasks

on socially generated data but that they are also able to out-perform

other state-of-the-art methods in the field.

• In Chapter 7 concludes the thesis by summarising its main ideas and

themes and point to directions of possible future work.

• Appendices A and B discuss the two key distributions used in this thesis:

the multinomial and Dirichlet, and mathematically derives the Tagging

Topic Model and its related Gibbs sampling algorithm.

1.1 Social Tagging

Social tagging or social annotation refers to an increasingly popular method of

data categorisation found, in some form or another, on many of these Web 2.0

sites. This new paradigm allows users of a system to define their own personal

set of categorisations in order to organise and publicly annotate a diverse range

of resources in a manner which is meaningful to them [GH05]. In such systems

lightweight keywords (otherwise known as “tags”) are assigned to resources

by users in a shared, usually on-line, environment. The resulting assemblage

of tags from all users covering all resources form a “folksonomy,” a conflation

of the words ’taxonomy’ and ’folk’; literally an organisation scheme of the

people. This is in direct contrast with the much more conventional approach

of providing users with a finite set of available categorisations, defined a-priori

by the designers of the system or by information architects. This somewhat

ad-hoc categorisation system is known as a bottom-up approach since the base

elements of the system (the tags) are defined first in great detail and are linked

together in such a way that higher level associations may be derived from them.

3



CHAPTER 1. INTRODUCTION AND BACKGROUND

The rise of social tagging has caused a major resurgence of interest in man-

ual indexing on the Web [Voß07], it is frequently posited as being one of the

defining features of the Web 2.0 revolution and an integral part of the emerg-

ing social web. In this setting tags can be seen as being a form of metadata

- literally “data about data”. Social tagging systems have been used to or-

ganise, classify and share an extremely diverse range of topics and content

types including (but certainly not limited to): URLs, photographs, academic

papers, video clips, products for purchase and even music. Popular examples

of online social tagging systems include Flickr (http://flickr.com/), de-

licious (http://delicious.com/), Last.fm (http://last.fm/) and BibSon-

omy (http://bibsonomy.org/), however examples of social classification can

be found in a large number of other less obvious, and more professional, ap-

plications. For example the University of Pennsylvania Library allows users

to tags records, supplementing the more traditional library subject indexes

[BP06].

Despite its popularity in recent years, research into social tagging is so far

relatively sparse and while there has been some early seminal work in the area,

there is much still left to be done. The current literature draws from a number

of related topics in the disciplines of Computer Science, Information Science

and the Social Sciences. In Computer and Information science the fields of

information retrieval, collaborative filtering, graph theory, data mining and

social networking are of particular relevance. The majority of the existing

literature attempts to superficially analyse the high-level structure of these

systems in terms of descriptive statistics or looks at the motivations people

have for annotating resources and being part of the community.

The data structure of a folksonomy consists of 3 different entities; resources,

users and the tags themselves as well as the links between these entities result-

ing from the annotation of a resource by a user.

Users are responsible for assigning tags to resources in social tagging systems.

Users will generally only annotate a resource he or she is interested in

and therefore a user tagging a resource can be seen as a preference or

vote for that resource by the user.

4
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Resources are the individual objects which are tagged in the system and

vary in their type depending on the system in question. They can also be

referred to as objects or - in an information retrieval setting - documents.

All of the tags used to annotate a resource, conflated over all users, is

its description. In many cases the representation of the resource in the

system is simply a unique ID number.

Tags are the free-form keywords chosen by users to annotate resources and

are usually single-term words or short compound phrases. The complete

set of unique tags within a given social tagging system is referred to as

its vocabulary or lexicon.

If we view the structure formed by these entities as a large graph, then we

can use the links obtained from tag co-occurence as an indicator of relationships

between resources. More formally one can model a folksonomy as a tripartite

graph with 3 disjoint sets of nodes: resources D = {d1, . . . , dD}, users U =

{u1, . . . , uU} and tags W = {w1, . . . , wV } with the edges between these nodes

representing the individual annotations. Note that the character w is used

to refer to tags and d to refer to resources in order to be consistent with

Information Retrieval conventions. Each assignment of a tag to a resource by a

user is denoted as the relation Y and is typically called a tag assignment (tas for

short). Therefore the complete folksonomy is a quadruple F := (U ,W ,D,Y)

and each tag assignment is a triple of the form (wi, uj, dk) [HJSS06]. The

complete set of tags used to annotate a resource over all users can be reffered

to as that resource’s description.

These entities are essentially meaningless in isolation; each tag is given

meaning by the resources it is used to describe, each user’s interests are de-

scribed by the tags he or she uses and the resources he or she annotates, each

resource is given meaning by the tags used to describe it and the interests of

the users who have chosen to annotate it. Therefore each element in a tagging

system is given semantic meaning by the other elements it is linked to. This

dependance between entities for meaning is commonly referred to as “mutual

contextualisation” [YGS07] and is where the real advantages of such systems

are to be found.
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User 1 User 2 User u...

...

Resource 1 Resource n...

Tag 1 Tag 2 Tag 3 Tag t

Figure 1.1: The structure of a folksonomy where User 1 has annotated Resource
1 with Tag 1 and Tag 3, User 2 has chosen Tag 1 and Tag2

The links between users can be implicit; users who are interested in similar

topics are likely to be similar and we can discover these implicit links by

analysing tag usage and resource annotation among users. Users are implicitly

linked by the shared resources they tag and, reciprocally, resources are linked

by the users who annotate them. In many tagging systems these user-user

links can also be made explicit via the implementation and use of a friends

system where people can maintain a contact list of friends on the system who

they share a social relationship with.

Social network analysis is a key area of study and parallels can be drawn

to work done in classical psychology dealing with how people communicate

and form groups and with more formal network theory. By analysing people’s

individual networks of friends we can learn more about the resources being

shared and discussed. In doing so we are able to expose more complex rela-

tionships leading to the discovery of latent groups or sub-communities. By

utilising these relationships between users Marlow et al. [MNBD06] noted

that tagging systems can be seen as complementary to collaborative filtering.

Furthermore this complex network of associations has been used to assess the

trustworthiness and relative expertise of users [NmAYG+10].

Similarly, relationships between tags can be inferred based on their usage in

the folksonomy. Tags that are frequently used together (to annotate the same

resources) are said to co-occur and can be assumed to be in some way similar.
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We can use these implied relationships between tags to better understand their

semantic meanings or to construct term-hierarchies [PLG11]. Tags which are

used to annotate the same resources are said to have a first-order co-occurence

relationship, we can extend this notion further to a second order relationship

by considering the potential similarity between terms that co-occur with terms

that also co-occur with other terms. For example we may find that the tag

‘fruit’ frequently co-occurs with the tag ‘apple’ and we may also find that the

tag ‘granny smith’ also co-occurs frequently with ‘apple’ . However it may be

that the tags ‘granny smith’ and ‘fruit’ never share a first-order relationship

but by considering the second-order relationships we discover that these tags

are in some way related.

The freedom of choice permitted by an unrestricted vocabulary is seen as

an important advantage for such systems where tags become more personally

meaningful and the initial categorisation process is made easier. Social tagging

systems facilitate traditional forms of classification and indexing by keywords

but also allow for a new more personalised dimension of organisation and col-

laboration. Users are able to annotate resources with not only descriptive

nouns, but also with expressions of opinion and contextual information per-

tinent to them [KC06]. The structure of links in the system allows users to

browse through the resources, users and tags as well as search for specific tags.

This provides a mechanism for discovering new resources and to find other

users with common interests, which may not be possible or indeed practical

with a more traditional text-based search.

Browsing and filtering content via tags is commonly made simple and in-

tuitive in tagging systems by allowing users to click on any tags they see. For

example a user may be interested in finding new resources about the British

car marque Jaguar and may start by either clicking on or searching for the

tag jaguar. However, as we shall discuss in more detail later, this is a good

example of a highly ambiguous tag which has many different meanings and us-

ing it to query a large collection is likely to return a conflated set of resources

covering many or all of these distinct interpretations [LZT09].

Users are much more likely to be willing to dedicate some time to manually

annotating resources that either they have created or indeed that they find in-
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teresting or useful. A widely cited, early paper on social tagging by Mathes

showed [Mat04] that not requiring users to pigeonhole their annotations into a

rigid, pre-defined vocabulary lowers cognitive load significantly. Tagging dra-

matically lowers this perceived cost of annotation as there is “no complicated,

hierarchically organized nomenclature to learn, users simply create and apply

tags on the fly”. Sinha [Sin05] argues that users generally find tagging much

easier to use than a taxonomy-based system, particularly when classifying new

items and revising existing classifications. Users don’t report the same kind

of difficulties discovered in studies of hierarchical systems either, such as the

reluctancy to categorise an item, either because they are not sure which cate-

gory the resource belongs to or because they are not confident in their ability

to recollect at a later date how an item was categorised [AKD07a]. A further

cognitive benefit of folksonomies is that the process of tagging utilises existing

processes without adding to the cognitive load experienced by the user.

1.1.1 The Importance of the Community in Social Tagging

The idea of assigning keywords to media objects is hardly a new one, desk-

top software has allowed organisation and categorisation of photos, music and

movies via free-form keywords for some time. However the option to tag re-

sources in such systems is frequently ignored or underused. Rodden et al.

[RW03] noted that while users of off-line systems rarely annotate their media,

they generally feel that doing so will be useful and wish they did it more often.

Clearly in this case the perceived benefits of annotation does not outweigh

the investment of time required. However this may not be the case with on-

line social tagging systems. Research has shown [Ame07] that people using

similar media organisation systems online annotate their content much more

frequently and that public photographs on the popular site Flickr are more

thoroughly tagged than those that are kept private. In these online tagging

systems the motivations for annotating have changed; it is no longer purely

about self-recall and organisation but about sharing ones content and exposing

work to the wider community. If authors annotate their content well it is much

more likely to be discovered by other users than if it is sparsely annotated, or
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indeed not annotated at all.

Hence, arguably the most important aspect of social tagging is the commu-

nity aspect, after all the word “social” is in the name. The dramatic increase

in use of the Web in recent years had precipitated a sea change in how people

communicate; lowering the - previously significant - costs of social sharing,

group formation and collaboration. In his book “Here Comes Everybody”

[Shi08], Shirky explains that having a shared pool of resources distributes the

metadata creation workload amongst many contributors and increases the like-

lihood that a resource will be densely annotated.

Some seminal work on the usage of folksonomies [GH06] indicated that

while most people tend to tag for their own benefit, the categorisations they

choose can be of use to the community as a whole. It was found that after a

relatively small number of users had tagged a resource, a nascent consensus

forms that remains unaffected by the addition of further tags. Over time, tag

use stabilises and the community forms an unspoken group consensus of how

things should be categorised, creating a shared and agreed upon vocabulary

[CLP07]. Users’ motivations to tag are still influenced by the desire to appeal to

the community at large and it is this aspect that helps to reinforce the tagging

process, encouraging further annotation of resources and sharing of knowledge

[Fit06]. In these communities of practice even though the set of tags used at

a global level is freely determined, patterns in usage rapidly emerge leading

towards a shared terminology.

This so called process of semiotic dynamics [CLP07] - how populations of

agents can establish and share semiotic systems, driven by their use in com-

munication - is in many ways key to the usefulness and unrealised potential

of the social tagging idea. If a consensus can be formed regarding the use

of vocabulary and the semantics of said vocabulary then the system becomes

stable and consistent. It does not preclude the possibility of new tags being

used and included in the community and indeed it is these emergent semantics

that allows such a system to grow and adapt to new topics and resources. This

is again an area where the unrestricted vocabulary of social classification sys-

tems become a significant asset, allowing new terminology to develop naturally

when it is required.
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Over time a community-driven feedback loop allows an implicit agreement

to be formed regarding the classification of resources, thus improving the likeli-

hood that a given resource is accurately tagged. The end result of this process

is a classification scheme that represents the community’s perceptions of the

resources within the collection. This complete set of categorisations includes

the most commonly used tags - which most users agree on - as well as more

idiosyncratic tags that may be useful descriptors for a small number of people.

Once they begin to reach some form of convergence these loose categori-

sation systems derived from the emergent, implicit information structures are

referred to as “folksonomies”, a term originally coined by Thomas Vander Wal

in 2003. It is clear that there are a number of significant benefits to social

tagging systems and that the resulting folksonomies can, over time, approach

stable semantic meanings of terms agreed on by the tagging community.

Tagging systems can generally be partitioned into 2 distinct categories or

types based on their chosen tagging model. These models are chosen based

on decisions made about who should have the right to tag resources and as a

direct consequence, how the overall folksonomic system will form.

The earliest and most common type is known as a narrow folksonomy

or self-tagging, “where users only tag the resources they created” [MNBD06].

In such systems users are only able to tag the resources they contribute and

not those provided by other users of the system, however they are still able to

view and share content contributed by other users. A popular example of a

narrow folksonomy is that of the online photo sharing web site Flickr where

only the user who uploaded each photograph is allowed to assign tags to it. As

a result the system only maintains a single set of annotations for each resource

and the assignment of tags drawn from the vocabulary to a single resource is

binary (either the tag is used to describe the resource or it is not).

In contrast to this are the so called broad folksonomies or “collaborative”

tagging systems where users have the ability to annotate not only their own

resources, but also the resources of others. In these systems a separate set of

annotations is maintained for each user who is interested in a given resource.

This model of tagging is almost always used for bookmarking sites such as

delicious where users can either contribute new links to the global directory
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or choose to bookmark an existing link that she is interested in. When book-

marking an existing link the user is also encouraged to provide their own set

of tags to describe the resource meaning that a single resource can be tagged

by multiple users. In this model it is possible for the same tag to be used

by multiple users to describe the same resource, meaning that the assignment

of vocabulary words to resources is ordinal and this can be used to provide a

weighting of tags to resources.

This distinction between tagging models is important as while both types

of folksonomies share some common traits, the community tagging process in

broad folksonomies does have a significant effect.

1.1.2 The Need for Social Annotation

The emergence of the web brings new problems: an ever-expanding and con-

stantly evolving corpus generated by many millions of users. As the Internet

continues to grow in size and scope, it is becoming increasingly apparent that

the more traditional methods used for organising and locating data on it are

insufficiently powerful [Lyn97, QCI04]. The recent changes to the way people

use the Internet with the arrival of social networking and social media sites

(such as Facebook, Flickr and delicious) have highlighted the need for a more

collaborative and robust approach to categorising this mountain of data. Not

only are these collections of data growing at an increasingly rapid rate but

the data itself is also changing in many key ways. It is becoming more so-

cially motivated and is evolving at a rapid pace. New services such as twitter

and Facebook have precipitated the new trend of microblogging, an erratically

changing stream of consciousness approach to communication and information

sharing. Rather than simply being a collection of static web pages, this new

form of online data is like a blog that is almost constantly being updated with

new information, new terms, new phrases and new ideas.

If we look closely at the methods currently dominant for information clas-

sification on the Internet the issues with them and their lack of suitability for

use with these new forms of media quickly become apparent. Initially, portal

services such as Yahoo! provided a useful way of scouring the early web’s rela-
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tively limited content by providing a classification system based on a common

shared vocabulary [VG02]. This categorisation paradigm was derived from

traditional library classification schemes which have changed little in design

from the famous Dewey Decimal Classification System [Dew76], now the most

widely used classification scheme in the world. They work by defining a set

hierarchy of classification labels for items which can not be easily changed in

structure once the system is in use. Each item, in the case of libraries a book

and in the case of Yahoo! a link to a web page, is placed in the class to which

the librarian or information architect believes it is most suited.

These categorisations schemes make a lot of sense for physical objects such

as books and are a natural response to storage constraints. A physical book

can only exist in a single place at a given time and so each item has to be

given a single label or category in a hierarchical system. However on the

web (particularly in social tagging systems) the “books” (resources) are no

longer tangible real-world objects. They are therefore not subject to the same

constraints; as Shirky [Shi05] succinctly puts it “in the digital world ... there

is no shelf”.

The top-down nature of these systems can also cause problems as docu-

ments will not always clearly fit into a single category and it is almost impos-

sible to design a taxonomy that everyone will agree with. Class and cultural

issues frequently crop up, particularly when the documents to be categorised

are as diverse as they are in most libraries and particularly on the Internet. A

classic example of this, perhaps a result of Melvil Dewey’s Westernised values,

is the way religious books are classified in the Dewey Decimal System. The

system sets aside a full super-class (200-299) for religious books, subclasses

200-219 cover general religious issues and theology, classes 220-290 are de-

voted exclusively to Christianity leaving all other religions having to share the

remaining section 290 between them.

It is no surprise, therefore, that as the content and scope of the web grew

in size these methods no longer remained as feasible options. As a result the

de-facto standard on the web is now the fulltext search engine. Search engines

index documents automatically by exploiting statistical methods, such as term

frequency, to establish keywords that describe resources and link structure as
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an indicator of an individual page’s value [BP98]. By categorising documents

based on their own vocabulary in an ad-hoc nature, rather than using a pre-

defined hierarchical model the Google model allows for much greater flexibil-

ity. It could be argued that a large part of Google’s tremendous success stems

from the fact that they did not attempt to provide categorisations for the web

a priori, rather they allowed the system to evolve organically. The PageRank

algorithm allows relationships between categories to evolve in a similarly or-

ganic manner, via implicit connections made by the links defined by content

authors rather than a single, fixed set of relationships defined by a professional

ontologist.

While they are clearly far more suited to the task at hand, these methods

still struggle to uncover the semantics of a resources content, only working at

a superficial level. There is little definition to be found in terms of context

and a lack of understanding of the main concepts behind a resource. This

results in diminished precision in the resulting keywords [AKD07b], particu-

larly when attempting to classify multimedia such as images and video where

a large volume of easily machine interpretable data is not readily available

[CW04]. Surely an obvious way to resolve this issue is to use humans rather

than machines to label and classify such data.

Indexing is the process by which keywords are chosen that accurately de-

scribe the content and meaning of a resource which is to be indexed. Or,

choosing terms whose semantics help in remembering the documents main

themes [BYRN99]. According to Lancaster[Lan98] this process involves two

steps: conceptual analysis and translation. Conceptual analysis involves decid-

ing on what a given resource is about by breaking down or analysing concepts

into their constituent parts in order to ascertain what is relevant in particular.

The results of the conceptual analysis stage heavily depends on the needs and

interests of users that a resource is tagged for; different people can be inter-

ested in different aspects. The second stage, translation, is where appropriate

index terms are generated based on the results of the previous stage i.e. terms

that best represent the substance of the conceptual analysis.

Many studies have shown that obtaining high consistency among differ-

ent indexers is very difficult to achieve and can be affected by many factors
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including vocabulary, personal understanding of the resource and use of lan-

guage [Hoo65, ZD69]. It has been shown that indexers are more likely to agree

on the concepts that should be indexed rather than on the terms that best

represent the concepts themselves [Iiv95], suggesting that the disparity issue

occurs during the translation stage and not during the conceptual analysis.

This phenomenon has troubled IR researchers since its inception and was

noted in the literature as early as 1958 when Vic Yngve presented a paper on

the feasibility of text searching at the International Conference on Scientific

Information (ICSI) [Yng59]. His insights on the ubiquity of ambiguity and on

the need to find “formal connections between widely divergent ways of saying

essentially the same thing” are generally considered to be prophetic and are

still useful for informing contemporary research.

This lack of consistency among users is commonly a result of the so called

“vocabulary problem,” the natural variation in word use between people. In

an extensive study Furnas et al. [FLGD87] showed that the probability that

two people describe a given object with a common word is less than 0.2 (1 in

5). In many cases this problem was discovered to be so difficult to overcome

that in 1985 Blair wrote “Stated succinctly, it is impossibly difficult for users

to predict the exact words, word combinations, and phrases that are used by

all (or most) relevant documents and only (or primarily) by those documents”

[BM85].

It is clear that the sheer number of resources to be indexed on the Internet

makes manual indexing from domain experts or professional indexers imprac-

tical. It can also be said that, particularly for resources such as images, auto-

mated indexing does not provide accurate enough results. [AKD07a] showed

that folksonomy tags agree more closely with the human generated keywords

than those that are automatically generated and it is therefore possible that

folksonomies might offer a solution to this problem, providing a cheap source

of semantically meaningful index terms.

Having said that, the issue of (lack of) agreement with regard to index

terms is a significant problem and can inhibit the usefulness of tags provided by

users to categorise resources. Furthermore as peoples’ motivations for tagging

resources vary it is important to understand these motivations before we can
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begin to make use of folksonomies for the purposes of information retrieval and

organisation.

1.1.3 Motivations for Tagging

A fundamental question raised when discussing social tagging systems is why

are they so popular and why do people so happily give up their own time to tag

resources? After all, people are generally very reluctant to give up their own

free time to do work if there is not some form of reward or incentive for doing

so. A related topic of discussion is what motivates people to tag resources

online, how does this affect the terms and specific language used and does this

have implications for deriving hidden semantics from tagging data?

[Ame07] studied data from the social photo sharing site Flickr in order to

uncover what incentives and motivations existed for people to annotate their

images. They cited a study [RW03] showing that in offline image organisation

systems (such as Apple’s iPhoto) users very rarely bother to annotate their

photos, although they do see the benefit of doing so and wish they did it more

often. Clearly in this case the perceived benefits of annotation do not overcome

the required investment of time.

In contrast, Ames et al. showed that users of Flickr very rarely fail to

annotate resources at all and posit that this is because the motivations for

tagging are fundamentally different in the online setting. In social systems,

tags not only facilitate search and recall by the owner of resources but also

enable discovery of potentially interesting resources by the community at large.

Therefore the traditional use for annotation is now augmented by the ability

to expose ones work to the online community. The study found that in only a

small number of cases users annotated their photos solely for the purposes of

personal retrieval and organisation.

Four distinct categories of motivation over two dimensions were discovered,

which are shown in Table 1.1. The first dimension has two classes; “social”

and “self,” both referring to who the tag is intended for. The second dimension

describes the function of the tag; whether it is intended for organisation and

search or for communication and personal expression. Personal expression tags
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Organsation Communication

Social Retrieval/directory Context for self

Search Memory

Personal Contribution/attention Content descriptors

Ad-hoc photo pooling Social signalling

Table 1.1: Taxonomy of motivations for tagging photos on Flickr according to
Ames and Naaman

such as ‘awesome’, ‘funny’, ‘inspirational’ and ‘helpful’ may be of considerable

benefit as they indicate the usefulness or quality of a resource. They provide

index terms which are very unlikely to be present in the resource itself and

would therefore not be available to a more traditional search engine.

A similar study by Zollers [Zol07] examined the tags on Amazon.com and

Last.fm and found comparable motivations. They identified several more spe-

cific emerging motivations including self-presentation, expression and activism.

For example people used tags on Amazon to indicate how good they thought a

product was and on Last.fm to express their views on music and bands. Self-

presentation tags are when users “write their own identity into the system,” for

example on Last.fm users tagged bands with ‘seen live’, ‘songs from my youth’

and ‘my favourite’. Activism tags are a direct result of the inherently social

and collaborative nature of online tagging systems and allow people to form

action groups by using the same tag to annotate resources. For example the

tag ‘defectivebydesign’ is used by people to denote products or services which

they believe should be avoided due to that product’s use of DRM (Digital

Rights Management) technology.

Many of these motivations for tagging are an attempt to add personal

meaning to a resource, which may help the user to later re-find that item.

Morville [Mor05] suggests that in an environment such as the Internet where

there is an excess of content, findability and re-discovery of content is criti-

cal. Proponents of social tagging systems therefore cite this as one of the key

advantages of an unrestricted vocabulary and posit that while the initial mo-

tivation in this case is for personal benefit, the additional information can still

benefit the community in ways traditional keywords would not. Other motiva-
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tions are more explicitly social where the original intention is to communicate

views, opinions or information to other users of the system.

The combination of the various motivations identified for tagging suggest

a number of potential issues with regard to direct application of tagging data

for information retrieval and searching purposes. Clearly in some cases tags

used are extremely specific to the user who tagged a resource and therefore

may not be of any benefit to the wider community. However, they do highlight

that in many cases in social tagging systems not only do users feel they should

annotate resources for their own future recall, but that they also appreciate a

need for the resource to be discovered by other users of the system. Therefore it

is assumed to be more likely that the user will choose a more diverse, descriptive

and less ego-centric set of tags than if they were purely tagging for their own

benefit.

1.1.4 Statistical Structure of Folksonomies

A significant area of research into social tagging has been in analysing the

statistical properties of large-scale, real world folksonomies. In this section

I will discuss a number of seminal early studies and will comment on their

findings with regard to the statistical structure of tagging systems and the

patterns that frequently emerge. We will leave discussion of actual term usage

and issues borne out of this for later chapters.

An early - and heavily cited - journal article by Golder and Huberman

[GH06] analysed 2 sets of data from the social bookmarking site delicious,

a very good example of both a broad folksonomy and a social bookmarking

system. In delicious users can either add new URLs (resources) to the system

or ‘bookmark’ existing resources by annotating it with their own set of tags.

The first set comprised of a sample of 212 most popular URLs from delicious.

The second set was the complete collections of 229 users sampled at random.

Unsurprisingly they found that tagging behaviour varied greatly over the

subset of users in the sample with some users making frequent use of the system

and others only using it very infrequently. However they also found, perhaps

somewhat surprisingly, that there was not a strong relationship between the

17



CHAPTER 1. INTRODUCTION AND BACKGROUND

number of distinct resources a user had tagged and the number of tags used.

They did however show that the list of distinct tags used increases over time

as the user tags more resources, particularly as they discover new interests.

These growth rates varied immensely over different users and tags, perhaps

reflecting how users’ interests and each tag’s popularity changes over time.

By looking at individual URLs the authors remarked that the vast majority

of resources are annotated by users very quickly, with the rate of new annota-

tions decreasing over time. Some resources on the other hand do not show this

trend and may not be densely annotated to begin with but experience several

modal peaks of popularity over time. These sharp peaks may be a result of

the resource being ‘rediscovered’ by the community, perhaps because the topic

covered by the resource has experienced a resurgence of popularity or because

it has been referenced on a popular web site or blog. They may alternatively

be the result of a popular (or ‘hub’) user choosing to bookmark the resource

thus temporarily increasing its exposure to other users of the system.

In this study it was found that 67% of resources reached peak popularity

within the first 10 days of being on delicious, 17% of which reached their peak

on the first day. This distinct peaking of popularity is frequently referred to

as ‘burstiness’ and is also typically displayed by not only resources but also

by tags themselves. A resource or tag’s surge in popularity is self re-enforcing

as popular resources are displayed prominently on the ‘popular URLs’ page of

the delicious web site.

Surprising regularities were found in tag frequency, user activity and re-

source popularity and discovered that after only a small number of users had

tagged a resource its tag set tended to converge to a stable subset of popular

tags. They argue that this subset of “stable” tags represents the community’s

consensus on the best way to annotate the resource. As users add more re-

sources to the system their sets of distinct tag terms grows, however the rate at

which this set of tags grows differs greatly between different users. This result

is notably similar to the stochastic Pólya urn model [Mah08] where a stable

pattern eventually emerges from what appears to be an entirely random pro-

cess. Generally speaking this stable pattern emerges quickly, usually requiring

fewer than 100 bookmark events and thus, it is argued, resources do not need
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Figure 1.2: Log-log plot of tag frequency distribution in Bibsonomy showing
characteristic power law

to become particularly popular before the combined tag data is useful.

Similar analyses are performed in [KC06], however the focus in this paper

is more on how similar tagging is to conventional indexing. As subsequently

found by future studies (such as [SvZ08]), a consistent characteristic of folk-

sonomies is that the frequency of use of tags follows a power law. That is that

a small number of tags are observed very frequently with the frequency of use

tailing off sharply. This pattern follows Zipf’s law “given some corpus of natu-

ral language utterances, the frequency of any word is inversely proportional to

its rank in the frequency table”. This distribution can be seen clearly in the

log-log plot of tag frequency in Figure 1.2. It has been noted [Shi05] that for

some folksonomies the drop-off does not occur immediately and is initially less

steep, perhaps indicating that the resources in that folksonomy cover a broad

range of topics.

In a broad folksonomy we can analyse tag distributions and patterns for

individual resources as more than one user can annotate a given resource and

it is therefore possible for tag frequencies to be ordinal numbers rather than

simply binary. Kipp et al. [KC06] note that in cases where a resource has been
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tagged by a sufficiently large number of users, a similar frequency distribution

begins to emerge with a small number of very stable high frequency tags. This

suggests that the community has to some extent agreed on how a resource

should be categorised, however the so called ‘long tail’ - the list of tags that

do not have a high frequency - may have more personal meaning for individual

users and are therefore also useful. It is noted that this may indicate that

“taggers apply tags according to a mix of communal and individual notions of

aboutness and usefulness”.

The analysis of tagging data performed in these early works provide useful

information describing the general structure of folkosonomic data and offer

illuminating insights into the patterns that emerge. It is clear that tag dis-

tributions tend to form in a similar manner to terms in free-form text and in

natural language in that a small number of agreed upon tags tend to dominate.

As use of the system increases the community forms a general consensus on

what topics are prevalent in both individual resources and also in the web site

corpus (the entire collection of resources). The rate at which tag frequencies

drop off for a resource indicate the perceived breadth of topic coverage of that

resource as defined by the community.

These communal tag sets grow and develop in a very consistent and pre-

dictable manner and as such are fairly consistent with conventional indexing

terms. However, the ’long tail’ of tags beyond the initial high frequency peak

are more personal, idiosyncratic and therefore provide useful classification in-

formation regarding the aboutness of a resource that is beyond the scope of

traditional classification schemes. These two properties give credence to the

notion that tagging systems may be extremely useful as a cheap source of meta-

data, however they also highlight the fact that in their raw and unprocessed

form they can be difficult to interpret.

1.1.5 Problems with Tagging Data

As with any naturally evolved system, the set of classifications chosen and

used in tagging systems will be imperfect and will suffer from a number of

problems related to language use. We can pigeonhole these problems into 3
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categories: polysemy, synonymy and basic level variation. Polysemy refers to

words which have more than one meaning, for example the word ‘bat’ may refer

to a small flying mammal or it may also refer to a piece of sports equipment.

In many cases the meanings are very different and this can have an effect

on the precision of search results: if you were looking for information about

baseball bats then information about the habitats of fruit bats would not be

very helpful.

Synonymy refers to different words with the same (or at least similar) mean-

ing, for example the words ‘computer’ and ‘pc’ both refer to the same thing

but are quite different. This relates back to the age-old vocabulary mis-match

problem, however the issue is particularly prevalent in social tagging systems

where vocabulary is unrestricted. This is compounded when you consider how

few annotations are generally available for each resource, meaning that it is

highly unlikely that different synonyms will be used together. Expanding on

the classifications noted by Golder et al. [GH06] we can also consider the use

of different languages as being a strongly related problem. Going back to the

tag ‘television’ we can expect for example that an Italian user would be more

likely to use the tag ‘televisiore’ instead, further decreasing the likelihood of

users choosing the same descriptive terms. Traditional methods of dealing with

this problem such as word stemming will not resolve the problem for the vast

majority of cases where there is a language mis-match or where completely

different terms are being used.

The third category of vocabulary problem is that of basic-level variation.

This occurs because people have different levels of familiarity of knowledge of

items and as such may choose more or less complex or specific terms for a

resource. Even in cases where people have a similar level of understanding it is

common for them to use different levels of sophistication of granularity in their

tags. For example the difference in granularity and sophistication between the

tags ‘animal’, ‘cat’, ‘tiger’ and ‘panthera tigris tigris’.

These issues are the primary motivation for the use of machine learning

techniques, and particularly dimensionality reduction, to uncover and make

use of the implicit hidden relationships inherent in social tagging data and

informs the work in this thesis.
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1.2 Collaborative Filtering with Ratings

The previous section discussed the process of social tagging in which users

submit short descriptions of resources either already in the system or when

contributing a new resource of their own. We can consider that these tags

indicate an implicit association of the user with the resource, suggesting that

the user likes (or is at least interested in) the item. Another form of socially

contributed data available on many modern web sites are where users assign

ratings to items, a more explicit indication of interest or utility. Some sites also

exploit less explicit ratings and may obtain binary associations by considering

a user’s purchase or bookmark history or by utilising tags as indicators of

interest, as described above.

Explicit ratings systems are commonly found on movie and music rec-

ommendation sites such as MovieLens (http://movielens.org/) or imdb

(http://imdb.com/) where users can give each item a rating (usually from

0 to 5 stars). Implicit systems are used in online retail stores such as Ama-

zon (http://amazon.com/) or can be used within a desktop application, in

the case of iTunes (http://apple.com/itunes/). In these systems users pur-

chase items or add them to a wish list, indicating that they are interested in

that kind of item. Ratings are generally chosen from a discrete set of values,

for example any number of stars between 1 and 5, however for the purposes of

modelling this data it can often be appropriate to treat them as being from a

continuous, but bounded, range. Note that in some cases both forms of infor-

mation can be used, for example Figure 1.3 shows an example of both explicit

ratings and implicit information in use on Amazon’s web site.

1.2.1 Data Structures and Goals

We can formalise the ratings mathematically in a very similar way to tags: we

have a set of items (like resources) M = {m1, . . . , mM}, users U = {u1, . . . , uU}
and a set of discrete rating values {r1, . . . , rR}. Each individual rating i for an

item by a user is also a tuple: (ui,mi, ri) and there are a total of N tuples in

the system representing all ratings the users have supplied. For example the
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Figure 1.3: Example of collaborative filtering being used commercially on Ama-
zon

tuple (ui =1, mi = 1, ri = 4) would indicate that user 1 had given item 1 a

rating of 4. Again, in a similar vein to tags, it is usually convenient to visualise

the complete collection of ratings as a large, (typically) very sparse matrix R

of size U ×M where rum indicates the rating given by user u to item m.

Given the collection of ratings provided by users, the goal is to attempt

to use the data to suggest more items or resources each user may like or be

interested in. This process of machine recommendation is frequently called

“ratings-based collaborative filtering” or simply “collaborative filtering” and

the systems themselves are frequently referred to as “recommender systems”.

The process is in fact very similar to information filtering and has significant

links to more orthodox information retrieval. Collaborative filtering systems

can be placed in the context of information retrieval by considering that in

a retrieval system items are pulled to users by the issuing of explicit search

queries. Filtering systems on the other hand are described as push systems

since they quite literally push those items at a user that they predict the user

will like.

For some kinds of items is also possible to make recommendations based

on their content or some attached metadata. This is known as content-based

filtering and functions in a very similar way to classical information retrieval.

Such systems attempt to find items that are similar to items the user has

already indicated as being of utility to them and rank them in ascending or-

der of distance. This is done by using heuristic methods such as the cosine
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distance between TF-IDF content vectors [LZ04, Lan95] or the Winnow algo-

rithm [Paz99]. Other approaches make use of more principled machine learning

methods such as Bayesian classifiers [MBR98] and decision trees [PB97]. This

work, however, will focus on the task of item recommendation based solely on

ratings data.

There are two main potential outcomes of such systems: firstly the sugges-

tion of items to users they may like and secondly the related task of predicting

the rating a user will give to an as-yet unrated item. If a system is able to

predict unknown ratings then the suggestion task can be achieved by simply

ordering unrated items in descending order of predicted rating. The intuition

behind collaborative filtering is that similar people tend to like similar things,

therefore if you can reliably identify people similar to the “target” user you

can use their ratings of items to infer what rating the target user might give.

More modern systems also make the assumption that there is some consistency

in how an individual user will rate items and also how an individual item will

be rated by different users.

By utilising ratings we obviate the need to automatically interpret con-

tent, which is a very difficult and error-prone process. This allows the same

algorithms to be applied to any kind of items be they textual, photographic,

musical or even more abstract such as items for sale in an online store. We

can use such systems to filter and recommend diverse items based on subjec-

tive and hard to represent concepts such as taste and quality. For example

it is often very difficult to describe exactly what it is about films, songs or

artworks that you like however it is quite easy to provide specific examples.

Similarly when looking for new content it is difficult to describe in a textual

search exactly what it is you are looking for and again, providing examples as

a reference point is much easier.

A small example extract (or fragment) of a ratings matrix from a music

recommendation site is shown in Table 1.2. The matrix indicates that the user

Ian has given the album The Joshua Tree a rating of 5 and London Calling a

rating of 4, however he has not yet rated Pet Sounds. A recommender system

should be able to predict all of the unknown ratings (indicated by ∅) within

the matrix based on the ratings which are known.
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The Joshua Tree Pet Sounds London Calling
Steve 4 2 5
David ∅ 4 2
Ian 5 ∅ 4
Emma 5 ∅ ∅

Table 1.2: Small fragment of a ratings matrix for a music recommender system

1.2.2 Background

Formal work in the field was started in the early 1990s [GNOT92, SM95] how-

ever it can be argued that the concept is much older than that. Perhaps the

earliest example of a collaborative filtering system is the so called “Grundy

system” [Ric79] which suggested the use of stereotypes as a means of building

models of users. Each user was assigned to the closest stereotype and predic-

tions were made as to what books the user would like based on the stereotype

profile. The Tapestry system [GNOT92], on the other hand, relied on individ-

ual users to identify neighbours manually who were then used to suggest items.

Later work such as GroupLens [KMM+97] were seminal in the development of

fully-automated recommender systems.

Collaborative filtering algorithms can be generally classified into 2 distinct

types: memory-based and model-based. Early systems were memory-based

and make use of the original ratings matrix in its entirety to formulate pre-

dictions. The vast majority of such systems operate via a relatively simple

2 step process. First they identify a neighbourhood of users similar to the

target user and then use an aggregate weighted summation of the neighbours’

ratings for an item in order to predict the rating for the target user. These

algorithms form the basis of most filtering currently performed on the Web

including sites such as Amazon and CDNow and were the cornerstone of much

early research in the field [GNOT92, BHK98]. We refer to [AT05] for a much

more comprehensive description of how these methods operate. It has been

speculated that their popularity is due to their relative simplicity and their

inherently intuitive nature [Hof04].

Unfortunately these simple, memory-based algorithms suffer from a number

of major shortcomings. The number of items rated by most users is oftentimes
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small and therefore it can be difficult to choose a good neighbourhood of simi-

lar users. Once a neighbourhood is chosen only a very small number of similar

users may have rated the item for which we wish to predict a rating lead-

ing ultimately to suboptimal accuracy. Beyond the recommendations made,

memory-based systems do not provide much scope for data mining and learn-

ing from the user profile information collected. Furthermore it is difficult to

design neighbourhood-based systems that do not bias strongly towards certain

users, particularly those who submit a large number of ratings.

More recently a new approach to solving the problem has become more pop-

ular: the model-based approach. These newer systems use the observed ratings

to construct a model of the data, usually based on some form of dimensionality

reduction to uncover latent factors. These latent factors are constructed in a

manner that best explains the training ratings and if we make the assumption

that any further ratings will be drawn IID1 from the same distribution then

the model should be able to predict new ratings well.

The recent resurgence of interest lately is primarily due to the Netflix prize

[Pat07]. Netflix are an online DVD rental company who had been using col-

laborative filtering as a means of recommending films to users but were not

satisfied with the quality of existing recommendation systems. They offered

a significant prize to any team who could improve upon their algorithm by

more than 10%. Many attempts to solving this problem use gradient descent

algorithms to estimate a Singular Value Decomposition (SVD) of the original

sparse ratings matrix [Pat07]. These methods will be explained and discussed

in more detail in the next section.

1.2.3 Difficulties and Challenges

Collaborative filtering has proven to be a very difficult problem due to a num-

ber of factors. Firstly the sheer number of items and users in a typical online

store or media recommendation site necessitates that the algorithm be both

fast and highly scalable. Due to their design, early recommender systems suf-

fered from severe scalability issues, particularly for users with large profiles.

1IID stands for independently and identically distributed.
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This is because the process of determining good neighbours has a computa-

tional complexity of at least order n3 and as such any large increase in the

number of possible neighbours will have a significant impact on the time re-

quired to complete the task. As we shall see in the next section, modern

algorithms seek to get around this problem by making use of dimensionality

reduction techniques and I follow a similar approach in this work.

The second, and perhaps more obvious, challenge for collaborative filtering

algorithms is to improve the quality of recommendations made to users. This

is of particular importance in applications where purchase decisions may be

made on the basis of recommendations. After all, if a system is recommending

items to users with the intention of encouraging them to purchase said items

then it is important to be certain of the recommendations otherwise distrust

of the system could result.

Recommendation errors can be said to fall into 2 distinct categories which

relate to type I and type II errors in statistical hypothesis testing. Type I

errors are false positive and are potentially the most serious of the two. They

occur when an item is recommended to a user that the user does not like. This

type of error is generally the most frustrating for users, especially if there is

no clear rationale behind why the system is recommending some items over

others.

Type II errors are less likely to irritate users but can ultimately cost a

company sales so should still ideally be kept to an absolute minimum. These

errors occur when the system fails to suggest an item to a user that the user

does actually like. Both of these error types can be minimised by increasing the

overall accuracy of predictions, or more objectively to minimise the prediction

error. However, much like in statistical hypothesis testing, reduction of one

error is likely to increase the incidence of the other type so choosing an optimal

model that mediates between the 2 error types is of critical importance.

A third problem, which is somewhat related to the first, is the sheer sparsity

of the ratings matrices in real-world systems. Amazon sell millions of different

products to hundreds of millions of customers. Individual users will only have

rated (either implicitly or explicitly) a very small number of items in the

complete product catalogue and as a result a massive proportion of the matrix
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will not have a rating. For example, imagine a system consisting of “only”

1000 items and 10,000 users. This system will have a ratings matrix with 10

million individual user-item combinations and in practise much less than 99%

of these cells will be filled-in. Therefore systems must have the ability to make

a very large number of (hopefully) accurate predictions based on only a very

small amount of data.

1.3 Summary

In this chapter I first described in detail what social tagging is, how it can

be used in practise and what its perceived benefits are. I have also given a

brief introduction to the concept of rating-based collaborative filtering and

outlined some early background work in the field as well as challenges to be

overcome. The next section will look specifically at 3 problems in social systems

that I attempt to tackle in this thesis and discusses why it is important to

research better ways to deal with these issues. Furthermore prior work related

to these problems is detailed and their relative merits and drawbacks discussed,

providing motivation for the later techniques and models that form the main

contributions of this thesis.
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Chapter 2

Related Work

“What we work on today, others will first think of tomorrow.”

Alan Perlis

Online social collaborative systems represent a very large area of study and

there are certainly many avenues for possible research. Such work is necessary

so that we may better understand and use the information contained therein.

The focus of this thesis is on three main problems; two relate to tagging systems

and the third applies to collaborative filtering. While these works apply to

different problems they are all strongly related and are all based on Bayesian

statistical models which are explained in detail in the next chapter. Rather

than simply using existing techniques to work with these new sources of data,

this work instead involves the design of novel models specifically adapted to

the form and statistical properties of the data. This section briefly describes

the three problems tackled and discusses related work pertaining to each of

them. The three problems tackled are as follows:

Tag suggestion One of the problems facing the use of social tags for resource

description and item metadata is the small number of tags assigned per

resource on average. Tag suggestion systems attempt to partially allevi-

ate this problem by suggesting additional (relevant) tags to users when

they are annotating a resource in the hopes that they will also add some

of the suggested tags and thus increase the total tag count. The methods

presently used on social tagging web site tend to be very simplistic in
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nature and are often a global list which is not specific to the item being

tagged.

Personalised search When searching on the web, search engines generally

make the assumption that responses to queries are user-independent,

that is if two different users submit the same textual query then they are

looking for the same thing. However it has been shown that most queries

are short and many are highly ambiguous with several possible interpre-

tations of their meaning [HO06, TT10]. Personalised search attempts

to gain some understanding of a user’s interests from some user profile

any uses this information to improve the accuracy of search results by

leveraging this extra information. Search in social bookmarking systems

tends to be particularly frustrating due to a number of factors. There-

fore it is an area where improvements in the general search algorithm

and attempts at personalisation have the potential to make material im-

provements to search results.

Collaborative filtering Many web sites on the Internet allow users to pro-

vide ratings for items to indicate how much they like that item or how

interested they are in the item. This method of determining people’s

interests is commonly used by online stores such as Amazon or on recom-

mendations sites such as MovieLens. Collaborative filtering algorithms

use these ratings in order to form profiles of user’s tastes and interests

and then use these profiles to suggest new items to users that they may

like.

2.1 Tag Suggestion

As we have seen, social tagging systems provide a new way for Internet users

to organise and share their own digital content and content from other users.

Users are able to annotate each resource with any number of free-form tags of

their own choosing without having to adhere to an a-priori set of keywords.

Unfortunately the ease of use and freedom of word choice this allows comes at

a significant cost. If each user is free to choose whatever tags she wishes then

30



CHAPTER 2. RELATED WORK

Figure 2.1: An example of tag suggestion on delicious.com

it is unlikely that other users will choose exactly the same tags to describe

the same resource or indeed to tag similar resources they have found. Many

studies have shown that obtaining high consistency among different taggers is

very difficult to achieve [ZD69, Hoo65]. These factors result in the categorisa-

tion scheme displaying a number of highly undesirable characteristics such as

polysemous and synonymous terms which make searching or browsing through

the collection difficult and inaccurate.

This lack of a consistent and shared vocabulary also results in a large num-

ber of unique or “singleton” tags appearing in the folksonomy. Sigurbjörnsson

and van Zwol investigated [SvZ08] the characteristics of a large sample of

the Flickr database (which can be taken as a good reference point for most

large-scale tagging systems) and found that the tag frequency closely follows

a Zipfian distribution. This is where a small number of tags are used very

frequently with tag use quickly tailing off leaving the so called “long tail” of

infrequently used tags. Generally speaking, the tags at the extreme ends of the

distribution are not particularly useful; the high-frequency tags are too generic

and the singleton tags tend to be either compound phrases or misspellings and

are likely to only be useful in very specific cases. The distribution of tags per

resource was also found to follow a power law with a small number of resources

being very thoroughly annotated and a large majority (64%) having only one,

two or three tags.

To assist the user when tagging new resources, most of these systems offer

some form of tag recommendation to increase the chance that a given resource

is tagged and also to increase the average number of tags assigned to each

resource in the system. These systems are primarily based on the observation

that in many cases a user will tag resources with tags other users have already

used, provided they agree with those tags. When a user goes to annotate a

new resource they are presented with a list of recommended tags that they
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can choose to use or in some cases these suggestions may assist or prompt the

user in coming up with their own tags. Figure 2.1 shows an example of tag

suggestions on the popular social bookmarking site delicious. Users can either

enter their own tags in the input field or click on one of the recommendations

below to automatically add those tags.

A user study we conducted which involved users tagging images where

only half of the users were given tag suggestions (in the form of a tag cloud)

indicated that the suggestions served to increase both the quantity and the

subjective quality of the tags [HBRE09]. The research also indicated that

the users who were shown the tag suggestions more quickly converged on a

group consensus on the most appropriate tags for the resource. Sood et al.

[SOHB07] explain that providing tag suggestions “fundamentally changes the

tagging process from generation to cognition,” serving to reduce cognitive load

on users and expedite the tagging process. In many cases the tag suggestions

can be improved further once the user has provided a few tags of their own

and can be adapted to the user’s own interests and word choice.

2.1.1 Early Approaches

Despite their clear utility for improving social tagging systems, the literature

on tag recommendation is still quite sparse, particularly in the case of per-

sonalised methods. Many early approaches tended to be based on a mixture

of the most popular tags and tags which the user has used previously or by

reusing existing techniques from information retrieval [Mis06, BWC07]. Re-

cently more sophisticated systems have been proposed, focussing on methods

derived from collaborative filtering and simple co-occurence data or making

use of information other than the tags provided by users (for example the

HTML content of web pages) [Sch06, GW08]. Research by Jäschke et al.

[JMH+07] has shown that these unadapted techniques are unable to perform

well in real-world scenarios and in fact are unable to significantly outperform

much simpler methods based purely on tag frequency. The method presented

in [SvZ08] also uses simple co-occurence data but augments it by promoting

tags based on two heuristic measures. The method boosts the ranking of tags
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which are both highly descriptive in that they are not in the head of the tag

distribution (i.e. are not stopwords) and “stable” in that they are not only

used by a very small number of users.

[SOHB07] focusses on tag suggestion for blog posts based on the tags used

to annotate other posts in the blogosphere that have similar content. [HRM08]

treats suggestion as a binary classification problem where each possible tag

from the complete vocabulary either does or does not describe the resource.

The algorithm also incorporates link data and content of web pages as features

and uses Support Vector Machines to perform the classification task. This

limits the application of this algorithm to social bookmarks as these features

are not available for other resource types such as images, films and products.

2.1.2 Modern Approaches

In [JMH+08] the authors reduce the tri-partite social tagging graph into three

two-dimensional matrices and then use a collaborative filtering on these algo-

rithm to generate suggestions. While [HJSS06] propose a method based on

random walks around the folksonomy graph, much like the PageRank algo-

rithm made famous by Google. The algorithm works by assigning importance

weights to the links in the graph where importance is propagated around the

graph via the random walk. For example a tag is important if it is used by

important users and if it used to tag important resources or if it co-occurs with

other important tags. A similar method, based on the older HITS algorithm,

is detailed in [XFMS06]. Both of these systems suffer from their computation

complexity which is a direct result of the sheer size of the tri-partite folksonomy

graphs found in real-world tagging systems.

Many modern tag suggestions algorithms make use of some form of dimen-

sionality reduction to improve the quality and variety of suggestions and to get

round the problem of sparsity. For example [WZY06a] modelled broad folk-

sonomic data using a simple Separable Mixture Model representation which

reportedly worked well. However it makes the assumption that the probabili-

ties of a user, a tag and a resource are all independent given a dimension dα.

It is also not an entirely generative model and does not make use of a Bayesian
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hierarchical structure when inferring parameters, meaning that it could eas-

ily suffer from problems of over-fitting. A similar model [PL07] was used to

recommend resources to tagging system users, however this too suffers from

similar drawbacks.

The work presented later in this thesis builds upon the knowledge gained

from these previous attempts and also makes use of dimensionality reduction

but approaches the problem from a more principled and Bayesian viewpoint.

2.2 Personalised Search

As highlighted in the previous chapter, term use in social tagging systems

tends be very inconsistent between different users resulting in a large number

of polysemous and synonymous tags. This has a highly detrimental effect

on search performance unless the system deals with this inherent variation in

some way and makes search in such systems a frustrating task. This problem

is not restricted to the domain of social tagging and was identified early in the

development of information retrieval systems [Yng59], however due to their

unrestricted vocabularies and inherent data sparsity it is a more common issue

in social tagging systems. This issue is compounded by the fact that the vast

majority of search queries are short (usually less than three terms in length)

and are frequently ambiguous in nature [HO06, TT10].

2.2.1 Search in Social Tagging Systems

In current social tagging systems, search algorithms tend to be rather simplistic

in nature, often relying on simple term matching algorithms in order to rank

resources given a query and seek to exploit the aggregated annotations across

all users, the so called “wisdom of the crowds”. This simple approach to

the problem fails to deal with the vocabulary problems noted above and can

result in quite poor rankings, particularly when users make use of very specific

or unusual tags. One potential method of reducing this ambiguity and thus

improving search performance is to use some form of dimensionality reduction

so that terms which frequently co-occur and are therefore likely to have a
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similar meaning, are in some way grouped together or implicitly linked. By

doing so we can reduce the requirement on the user to choose exactly the same

terms for a query as those used to annotate the relevant resources.

Consider a resource about a laptop computer which has been annotated

by a knowledgeable user with the tags “macbook pro” and “core 2 duo”. A

less knowledgeable user may be searching for this resource and may not know

the specific terminology and as a result will use simpler search terms such as

“laptop” and “computer”. Or, alternatively, the searcher may have a little

knowledge of the terminology but misspells some of the query terms, for in-

stance “macbookpro”. In a search system with no dimensionality reduction

the relevant result will be ranked very low as its annotations do not contain

the exact terms of the user’s search query. However a reduced dimensionality

system does not rank resources based purely on matching terms, but does so by

calculating a probability (or distance) of each resource given the query terms

over the lower dimensional space. Since there is no requirement for the terms

to match exactly and the system will have reduced all of these terms to the

same dimension(s), it is highly likely that the relevant resource will be given a

high rank for this query, thus allowing the user to fulfil their information need.

Another possible way of dealing with the inherent ambiguity of search

queries is to attempt to personalise the search results based on the user’s pref-

erences or interest profile. In the case of social tagging data we can build such

user profiles implicitly by looking at the resources the user has bookmarked

and the tags they have used to annotate these bookmarks; the user’s tag-

ging history. Previous studies have suggested that while it can be difficult, if

done correctly, personalisation can indeed improve the quality of search results

[DSW07].

A classic example where understanding the user’s interests is of clear bene-

fit is when the user enters a vague and highly ambiguous query. For example a

user interested in astrology may want to find articles about the star sign Can-

cer and may simply choose to enter the query “cancer”. It seems a reasonable

assumption that such a query would provide good results, however the word

cancer has another very different meaning. At the time of writing, entering

such a query on the Google search engine returns absolutely no results per-
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taining to the astrological meaning of the word within the first page of results.

However in a personalised system the user’s preference for astrology would

cause results relating to this topic to be pushed up the rankings, making it

much more likely that the user will easily find a relevant result.

Previous attempts have been made to improve search performance in tag-

ging systems, however almost all large tagging systems on the web still use

simple term matching or standard IR techniques. [KHS08] studied the perfor-

mance of “traditional” search systems on tagging data and found that they

performed poorly, suggesting that more novel approaches were needed to yield

acceptable results from tagging data. As a result more successful algorithms

are designed to work more in concert with the kind of data obtained from

such systems. Work by Hotho et al. [HJSS06] utilised graph theory techniques

based on the famous PageRank algorithm to rank documents. The authors

conclude that enhanced search facilities are vital to support emergent seman-

tics in tagging systems and found that their algorithm was good at identifying

latent communities of interest.

[RHMGM09] investigate the use of tags from Delicious as additional source

of data to assist in automatic clustering of web pages. Their results show that

principled inclusion of tagging data can improve model quality and aid in

the clustering process. They use both k-means and topic modelling based

approaches and find that the latter significantly improves on the former indi-

cating that such models are a good fit for tagging data. This work provides

an interesting insight into how our own models may perform however it differs

significantly from this work as it does not attempt to rank resources solely on

tagging data and does not attempt to personalise the results.

2.2.2 Personalised Search

In more recent but similar work [VCJ10] the authors describe methods of

deriving user profiles based on data obtained from social bookmarking systems

to personalise search results on the Yahoo! search engine. However, again

they do not attempt to apply this model to rank resources in the bookmarking

system itself, they use it to re-rank the top URLs returned by the Yahoo! Boss
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API based on the user preferences obtained from delicious data. Their results

and methods are therefore not comparable with those described in this paper.

Closer to the work described in this thesis is [WCY+10] where the authors

also attempt to provide personalised rankings using social tagging data. We

discuss their models later on and use the best performing one (when applied

to our data) as a highly competitive baseline. In this case the authors use

Language Modelling techniques to estimate probabilities of resources given tags

and tags given users. They use the resulting parameters to rank resources given

single term queries and compare various smoothing methods for obtaining these

estimates.

Other uses for personalisation in social tagging systems have been investi-

gated and several papers have looked at providing personalised tag suggestions

to users when annotating resources, this includes work by Sigurbjörnsson et

al. [SvZ08]. Work by Krestel et al. [KFN09] explored the use of topic models

for tag recommendation and by extension to improve search results, however

they did not make any attempt to personalise the recommendations.

Outside of social tagging, there have been a number of studies on the

possibility of personalising search systems. For example Dou et al. [DSW07]

investigated a number of methods for creating user profiles and generating

personalised rankings using query logs. Their approach was to use a set of

pre-defined interest categories and a K-nearest neighbour approach for clus-

tering similar users. In this work we take a similar view that by reducing

the dimensionality of the data we can get better results, however we use more

principled techniques that do not rely on predefined categories but derive these

from the data as part of the estimation process.

Teevan et al. [TDL08] investigated for what kinds of queries personalisa-

tion techniques most improved ranking performance. They found that how

ambiguous a query is provides a good indication of how much benefit will be

gained from personalisation. However for queries of low ambiguity (where all

users tend to find the same results relevant) the personalisation can have a

negative impact on performance. This work indicates that we must be careful

when designing such systems to ensure that too much weight is not given to

prior user preferences in deference to the unpersonalised document score.
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2.3 Model-based Collaborative Filtering

Collaborative filtering systems can be placed in the context of information

retrieval by considering that in a retrieval system items are “pulled” to users

by the issuing of explicit search queries. Filtering systems on the other hand

are described as “push” systems since they quite literally push those items at

a user that they predict the user will like. Much early work was done in the

90s and the field has seen a resurgence of interest lately, primarily due to the

Netflix prize [Kor08]. As mentioned in the first section, collaborative filtering

algorithms can be generally classified into two distinct types: memory-based

and model-based. Modern techniques tend to be model-based and are generally

seen as a significant improvement over the older memory-based methods. In

this work collaborative filtering algorithms are constructed via the model-based

approach and therefore this survey of related work is restricted to similar

methods.

In model-based collaborative filtering, typically the observed ratings are

used to construct a model of the data by being decomposed into a sum of

some biases. In the case of this work these include one for the user bu, one for

the item bm and a third bu,m; the joint bias caused by the interaction between

user and item. More specifically it is surmised that the observed rating ru,m

for an item m by a user u is a result of the mean rating over the entire data

set µ perturbed by these three different factors plus some Gaussian error ε:

ru,m = µ+ bu + bm + bu,m + ε (2.1)

Examples of these models frequently use some form of dimensionality re-

duction to uncover latent factors and to calculate the joint bias bu,m. These

latent factors are constructed in a manner that best explains the training rat-

ings and if we make the assumption that any further ratings will be drawn

IID from the same distribution then the model should be able to predict new

ratings well.

These model-based algorithms are able to overcome many of the scalability

problems associated with the earlier, memory-based systems. This is partic-
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ularly the case when real-time recommendations are required, which is obvi-

ously the most likely situation given the on-line nature of the systems where

collaborative filtering is most often used. The most time-consuming task is

the generation of the model itself, after which the task of new predictions

is extremely quick due to the significant reduction in dimensionality afforded

by the latent factors. With model-based systems the entire modelling opera-

tion can be completed off-line thus allowing for near-instantaneous real-time

predictions as and when users need them.

2.3.1 Dimensionality Reduction

Many examples of this approach, including most attempts at the Netflix prize,

use gradient descent algorithms to estimate a Singular Value Decomposition

(SVD) of the original sparse ratings matrix [Pat07, SKKR00]. SVD is a tech-

nique derived from linear algebra used to represent a matrix A of real values as

product of three simpler matrices usually denoted U , Σ and V , i.e. A = UΣV T .

The columns of U are the left-singular vectors of the original matrix, the rows

of V the right-singular vectors and Σ is a diagonal matrix of the singular values;

essentially scaling factors for the singular vectors.

The resulting matrices are normally ordered so that the singular values in

Σ are in descending order of relative importance where the first value in Σ,

row in U and column in V represents the axis of greatest variance, the second

being for the second greatest variance and so on. In its complete form the

SVD of a matrix can be recombined into the exact original matrix with no loss

of data. However, the rank of the matrices can be reduced to any number K,

resulting in a reduced-dimensionality equivalent of the original matrix. This

provides the best least-squares approximation of the original matrix and may

uncover interesting relationships not easily discernible before the reduction in

dimensionality.

If the matrix is complete (i.e. it is dense) then SVD has an analytic solu-

tion, however due to the incompleteness of the ratings matrix gradient descent

methods are required to find a close approximation. The values computed

for the SVD matrices are often regularised so as to prevent over-fitting and
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individual optimised biases for each user and item are commonly added to

improve prediction performance. Goldberg et al. [GRGP01] instead apply a

related technique called Principal Components Analysis (PCA).

2.3.2 Probabilistic Models

A large proportion of modern methods use probability theory to construct the

models where observed ratings are assumed to arise from some latent variables

which have to be estimated. In [Mar03], Marlin represents each user as a

mixture of “attitudes” with each rating being generated by selecting one of

these attitudes and then selecting the rating based on the ratings distribution

for that attitude. Hofmann [Hof04] extends his earlier pLSI model to model

ratings by again assuming that users have a distribution over “interests” or

“attitudes” and that each rating is associated with a single interest drawn from

the user’s interest distribution. His work differs from that of Marlin [Mar03]

however by then assuming that there is a rating distribution for each latent

interest and item pair. So the observed rating is assumed conditional on both

the latent interest of the user who rated the item and also on the item itself.

Other probabilistic approaches include [ZK07] in which the authors intro-

duce a novel adaptation of the EM algorithm to learn the parameters of a pre-

diction model for personalised content-based prediction. Stern et al. [SHG09]

instead use Expectation Propagation and Variational Message Passing to learn

a model using both ratings data and content. In other recent work Chen et

al. [CCL+09] compare the performance of Latent Dirichlet Allocation (LDA)

[BNJ03] with association rule mining (ARM) for the purpose of community

recommendation. This is a similar problem to rating prediction but instead

involves the suggestion of online communities of interest rather than items.

They show that LDA consistently outperforms ARM for this task, particu-

larly when considering later recommendation. They also demonstrate that it

is less likely to make extreme errors due to its Bayesian nature, certainly a

useful property when recommending items. The next chapter discusses two

probabilistic model-based collaborative filtering algorithms that can in some

ways be seen as comparable to these models and draw on similar background
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theory. Blei [BNJ03] in fact uses collaborative filtering as an example of a

problem for which LDA could be used and shows that it is able to outperform

both probabilistic LSA [Hof01] and a simple unigram model.

2.4 Summary

This chapter has surveyed the previous work performed in these problem ar-

eas that motivates the later contributions of this thesis. In the next chapter I

will present a short overview of the field of statistical machine learning, pay-

ing particular attention to unsupervised methods. Of particular interest are

models involving latent variables which require the use of sophisticated sam-

pling techniques required to work with. Furthermore the chapter will explain

the Bayesian treatment of statistical inference and justify its application in

learning the hidden semantics of social tagging data and for development of

sophisticated collaborative filtering systems. The chapter will go on to de-

scribe two families of novel models that are used later in this thesis in a series

of experiments with a view to solving these problems.
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Chapter 3

Modelling Social Data

“What we learn about is not nature itself, but nature exposed to

our methods of questioning”

Werner Heisenberg

This chapter provides a short introduction to the Bayesian methods of

statistical modelling - in particular latent variable models - and how they can

be used as powerful tools for modelling socially generated data. Before we can

understand and use Bayesian modelling techniques we first have to understand

what a probabilistic statistical model is, how one can be designed and how it

can then be used. The chapter also briefly introduces the classical method

of parameter estimation and contrasts this with the Bayesian treatment. In

doing so, it suggests reasons why the Bayesian method is generally seen as

being more principled and yields better results when inferring in real-world

scenarios. Later the chapter describes more complex latent variable models and

explains how their parameters can be estimated using Markov Chain Monte

Carlo techniques. Finally latent topic models are introduced and then a series

of novel Bayesian models designed for social data are described and derived.

These models are used later in this thesis in a series of three experiments

demonstrating their use and general applicability.
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3.1 Data Modelling and Coin Tossing

Probabilistic data modelling refers to a process where we first construct a

parameter-based model that we believe describes the outcomes of a set of

experiments or data. These models are defined using one or more probability

distributions that best explain the data which has been observed. Then using

various mathematical and statistical methods we “fit” these parameters in

such a way that the likelihood of the data we have actually observed being

generated from that model is maximised. In a computer science setting this is

frequently referred to as Machine Learning as we are in essence trying to get

the machine to extract patterns and trends in order to gain a more complete

understanding of what the data means [HTF08].

In classical (or frequentist) statistics, probabilities of events are interpreted

as the frequencies of outcomes of an infinitely long-running experimental pro-

cess. For example, in the simple - but very popular - example of flipping a coin

the probability θ of the coin coming up heads be seen as simply the number of

observations of heads divided by the total number of experiments, or in this

case coin flips. This may seem quite intuitive and obvious but can actually

be derived mathematically based on the underlying distribution and is known

as a Maximum likelihood estimator (MLE). This process is modelled using a

binomial distribution and a single coin flip can be modelled using a Bernoulli

distribution where each coin flip is referred to as a single Bernoulli trial. The

binomial distribution describes the probability of observing a number of “suc-

cesses” (in this case, the number of heads) x in n experiments (coin flips)

where the probability of success for each individual experiment is θ. The x

and n values in this case are known as the sufficient statistics as they contain

all the information required to describe the distribution and can be combined

and written as the data D. The distribution can be written mathematically

as the following function:

p(x;n, θ) =

(
n

x

)
θx(1− θ)n−x (3.1)

The binomial distribution has a discrete and countable number of possible
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outcomes and is therefore known as a discrete distribution, the function above

is known as a probability mass function (PMF). The first term in the function is

the binomial coefficient and simply serves to ensure that the distribution over

all possible outcomes sums to one, it is the remainder of the function that truly

describes the form of the distribution. All probability functions have a similar

form as it is always necessary that they sum to one. The mathematical form of

this distribution is quite intuitive; it is simply the probability of success θ raised

to the number of times a success is observed multiplied by the probability of

failure (which must be 1− θ) raised to the number of observed failures (which

must be n− x). Distributions where the number of possible outcomes are not

countable (because they can take on an infinite number of values) are known

as continuous distributions and are described by probability density functions

(PDFs). In this case the function does not describe the probability of a specific

outcome value since that would always be zero but can be used to determine

the probability of the outcome falling within a range of values by taking the

integral of the PDF over a bounded interval.

Return to the problem of ML estimation, if we consider observed data D =

{x1, ..., xn} as being random independent, identically distributed (IID) draws1

from some underlying and distribution F parameterised by θ, xi ∼ F (θ). Then

we can calculate the likelihood estimator L(θ|D) of some setting of parameter

θ of this distribution conditioned on the observed data as follows:

L(θ|D) =
n∏

i=1

p(θ|xi) (3.2)

If we then wish to calculate the best fitting value of this parameter given the

data we find the value of θ that maximises the above likelihood estimator:

θ̂ = argmaxθ L(θ|D). Formally we say that the MLE produces the choice of

parameters most likely to have generated the observed data. There are a num-

ber of techniques available for deriving the MLE for a given model, however

generally speaking it can be obtained by calculating the derivative of the like-

lihood with respect to the parameter of interest and then solving the resulting

1Each draw is from the same distribution and draws are mutually independent (i.e.
observing an outcome does not affect the probability of the next outcome).
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equation when it equals zero. This is because finding the derivative and set-

ting it to zero will return the value of the parameter at the stationary point

of the distribution, i.e. where it is maximised. For reference the MLE for the

binomial distribution, and therefore the most likely value for the parameter θ

in this problem, is simply the number of observed heads divided by the total

number of observations. For example if we toss the coin 20 times and observe

10 heads then the most likely value for the parameter θ is simply 10
20 , a half. In

this coin flipping example the derivation of a Maximum likelihood estimator

is simple and intuitive however this is not always the case.

3.1.1 Incorporating Prior Beliefs

The ML frequentist estimate is the best estimate we can make given the data

we have been given, however it is not always very sensible. In many cases

we are working with data which is quite sparse in nature and in some sense

incomplete, we therefore may not have many observations from which to base

our model. Imagine a case where we want to calculate θ, the probability of a

coin giving heads, and so we flip a coin two times and observe two heads. The

ML estimate would say that there is a 100% probability of this coin showing

heads and conversely, a 0% probability of it returning tails. Do we honestly

believe this is the case, or is it more likely that we simply have not observed

the outcome of enough experiments to truly determine the most appropriate

value for this parameter?

It is therefore practical to try to include some of our prior beliefs about

the outcome of a coin toss. Our prior beliefs on the parameter θ can be

incorporated in a distribution p(θ). In the coin tossing example we would use

a binomial distribution for the likelihood function, p(θ|D), and could choose

a beta distribution for the prior on θ, p(θ). The choice of the prior should

represent our beliefs about the probability of observing heads before observing

any data (coin tosses). The choice of a beta distribution is sensible in this

case as it is conjugate to the binomial, therefore making computation more

straightforward. Conjugacy is discussed in more detail in appendix A.

The beta distribution is a natural choice for a prior on the probability of
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observing heads for a coin toss experiment and has two parameters2 α and

β which essentially represent the prior number of observations we have made

of heads and tails. If we strongly believe that the coin is fair and unbiased

before observing any tosses then we could set our prior to be strongly peaked

at p(θ = 0.5), for example by choosing a beta(101, 101) distribution. In the

coin flip setting this particular choice of hyperparmeters is analogous to saying

that we have observed 200 coin flips before where 100 came up heads and 100

came up tails. However if we do not have strong prior beliefs and are happy to

accept that the probability of heads is equally likely to be any value of θ from

0 to 1, we could choose a beta(1, 1) distribution (this is the same as a uniform

distribution where each outcome is equally likely).

In our coin tossing example, it is entirely possible that θ (the probability

of heads) could be any value from 0 to 1 and we therefore can obtain the most

pragmatic estimate if we use the entire p(θ|D) distribution. If we can achieve

this then we are using all of the information about θ that we can get based

on our observed data, without throwing any of it away. This is the overriding

principle of the fully Bayesian method of estimation.

3.1.2 The Fully Bayesian Treatment

In Bayesian statistics, probabilities are interpreted as degrees of belief or mea-

sures of uncertainty rather than as being (essentially unknowable) parameters

of some well defined, and ultimately deterministic, experiment. In many cases

it is only really sensible to define probabilities as degrees of belief, rather than

the average ratios of some repeatable process. For example consider the job

of a juror; they are tasked with assessing whether or not the accused is guilty

of committing the crime and so may need to ask, “given the evidence I have

seen, what is the probability that the defendant is guilty?”. Clearly this is not

an experiment that the juror can run many times to get the long-run outcome

and therefore we must be able to consider a probability as a degree of belief

in something.

In Bayesian statistics we always use a prior probability p(θ) in which we

2Note that parameters of priors are commonly referred to as hyperparameters.
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encode our beliefs of the likely value of the parameter(s) before any data is

actually observed. This p(θ) should crucially be some probability distribution

and therefore will have a density over the range from 0 to 1. Given our prior

distribution p(θ) and the likelihood of the observed data D conditioned on pa-

rameters θ (p(D|θ)), we are concerned with generating a posterior distribution

p(θ|D) over all possible values of the parameter of interest [BS94]. We can use

Bayes’ formula to construct this distribution as follows:

p(θ|D) =
p(D|θ)p(θ)

p(D)
(3.3)

Where p(D), the marginal probability of the data, is the probability of witness-

ing the data D under all possible values of the parameter θ. It can be seen

as a normalising constant ensuring that the posterior sums to 1 and can be

calculated by marginalising over all possible values of the parameter θ:

p(D) =

∫
p(D, θ)dθ =

∫
p(D|θ)p(θ) dθ (3.4)

however if we are only interested in assessing each probability in this space

in relation to the other probabilities we need not calculate the denominator.

Since the p(D) is not dependant on θ, the numerators will all be proportional

to one another to within a constant. In this case we simply write:

p(θ|D) ∝ p(D|θ)p(θ) (3.5)

Now that we have a posterior distribution over the parameter θ we can use

this to estimate a “best fit” value for this parameter. We could, for example,

follow the methods introduced earlier in the chapter and calculate the mode

(maximal value) of the distribution θ̂ = argmaxθ p(θ|D). In doing so we would

be calculating the “MAP” or Maximum a-Posteriori estimate and even though

we are using a prior this is still a point estimate and therefore cannot be said

to be a Bayesian estimate. To be fully Bayesian we must utilise all of the
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information from the distribution in a better way by calculating expectation

of the distribution (mean value) given the posterior as follows:

θ̂ = E[p(θ|D)] =

∫
θ p(θ|D) dθ (3.6)

These concepts are perhaps best explained via the use of a simple exam-

ple problem and a figure showing the various distribution involved and the

parameter estimates obtained, this is shown in Figure 3.1. We will persevere

with the coin example and see where it leads us. Let’s say we have tossed a

coin 10 times and observed a total of 7 heads and therefore there must have

been 3 tails. The ML likelihood estimate for the parameter θ, the “fairness”

of the coin is simply 7
10 = 0.7, quite intuitive but as we have only observed

10 coins tosses it may turn out that the real value of this parameter is very

different. We can use the binomial distribution to visualise how likely each

possible parameter is given the data we have observed, this is shown as the

red dashed curve in Figure 3.1 and the ML estimate we calculated is the red

dashed vertical line. Notice as described earlier in this chapter that this is also

the stationary point of the derivative since the tangent line to the curve at this

point will have a gradient of zero. Since we believe that our coin is quite fair

we could choose to place a beta prior over the binomial, let’s use beta(11, 11),

this distribution has a mean of 0.5 stipulating that we believe the coin to be

fair and is shown by the blue dotted curve in the figure. Using Bayes’ rule

we can combine our prior and likelihood resulting in the posterior distribution

shown by the black solid curve in the figure.

In Bayesian analysis we move from a prior distribution to a posterior by

incorporating all of the information obtained from observations (the data). In

cases where we have a lot of observations the data will “overwhelm” the prior

(in the extreme case of infinite data we will essentially be left with the ML

estimate), but will fill in where we do not have a lot of data. In fact the scientific

method itself can be interpreted as simply an application of Bayesian inference

[HU93]. Scientific theory involves updating probabilities about hypotheses

conditional on any new observations or experiments; the more evidence we
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Figure 3.1: A simple example visualising Bayesian inference

have for something being true, the more we should believe that it is true.

We can see from the figure that the posterior is a compromise between the

prior and the likelihood and that it has a smaller variance than either, this is

a useful property and is not surprising given that the posterior combines the

information from both sources, giving a better estimate. If we simply calculate

the posterior mode we will get the MAP estimate, shown as a vertical dotted

black line. We can get a more truly Bayesian estimate by calculating the

expected value of the posterior (the mean) which in the figure is shown as a

solid black line. Notice that the expected value is slightly less than the modal

value because the posterior distribution is actually slightly positively skewed,

a subtle but potentially important factor that is not incorporated in the MAP

estimate. In this example the difference is not very significant, however in cases

where the posterior is very complicated and multi-modal these two estimates

can be very different and the benefits of an estimate over the whole distribution

rather than a point estimate will be greater.

For this simple problem the posterior is quite easy to calculate and the

result is easy to interpret however in many cases, particularly where latent
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variables are introduced, exact inference of the posterior is intractable. A

number of techniques have been developed to approximate complex posteriors

including Gibbs sampling [GS04] which is used for the work in this thesis and

will be discussed in more detail later.

The entire process of Bayesian modelling can in fact be generalised into 3

main parts [GCSR04]:

1. Creating a probability model to describe the observed and unobserved quan-

tities in a given problem. This model should be consistent with our

understanding of the underlying problem and also the data collection

method used.

2. Using Bayes’ rule to estimate, and then carefully interpreting the posterior

distribution - the conditional probability of the unobserved quantities

give the observed quantities (the data).

3. Evaluation of the final model both in terms of statistical likelihood but also

via empirical analysis and observation. How well does the model fit the

data we have observed and does the output of the model “make sense?”

If we find by step 3 that the model we have selected does not fit the data

observed particularly well or that inferences made based on the model do not

appear sensible then we may wish to consider alternative models and follow

through each of the 3 steps in the same manner. In many cases this results in an

iterative process where a number of different models are estimated, evaluated

and compared. It is worth noting that having a model with a good fit in

terms of likelihood may not actually be the best for the problem at hand. It

is therefore important to keep the original purpose of the work in mind and to

evaluate the performance on the model by applying it to real data. Once we

have our model in place we can use the posterior estimates to make inferences

about unseen data, allowing for a number of useful statistical applications.

The Bayesian viewpoint of statistics has often been challenged due to its

reliance of appropriate selection of a prior distribution, and in doing so in-

troducing a certain amount of subjectivity into the application of probability.

However this can be countered by the commonly held view that,
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You cannot learn in a vacuum, and cannot do inference without

first making some assumptions.

The work described in this thesis follows the Bayesian viewpoint of probabil-

ity in order to perform statistical inference as it benefits from a number of

attractive properties, particularly when dealing with sparse and noisy data.

I will discuss later the reason why I believe these features to be particularly

advantageous when applied to real-world socially generated data, particularly

when used to create complex latent variable models.

The experiment of flipping a coin serves as an excellent introduction to the

key ideas behind statistical modelling however it is only natural that we want

to proceed and use these techniques to model more interesting processes. We

will now proceed by briefly explaining the concept of generative models and

will show how latent (hidden) variables can be used in statistical inference.

3.2 Generative Models and Latent Variables

Earlier in this chapter we saw how it was possible to calculate the posterior

distribution where we have a single conditional distribution. However, we can

consider much more complex models where we are interested in working with

a joint distribution of perhaps many conditionals or where the marginal dis-

tribution is highly complex. We are generally interested in considering models

where there is a defined hierarchy of random variables with some structure

of dependancy between them. In these cases our model may have a number

of latent (or hidden) variables which are not actually observed and therefore

must be inferred from the data.

A common and simple example is the case of heights in human populations,

p(h). The distribution of these heights would likely be bimodal3 (having two

peaks) where one peak is at approximately the mean height for a woman and

another is at the mean height for a man. We prefer to model this complex

3Note that in practice it has been found that the distribution of human heights is not
strictly bimodal. This is because a mixture of two Gaussians is only visibly bimodal if the
difference between their means is less than two times their standard deviations. However
for the purposes of this discussion we will assume that the distribution is clearly bimodal.
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distribution as a mixture of two more simple distributions, where the complete

marginal p(h) is decomposed to become p(h) = p(θm)p(h|θm) + p(θf )p(h|θf ).
Where p(θm) is the prior probability of a person being male, p(θf ) is neces-

sarily 1− p(θm), p(h|θm) and p(h|θf ) are the distributions of heights for males

and females respectively. These would be Gaussian distributions centred at

the mean height for males and the mean height females and would each be

parameterised by means µm and µf .

An example problem given this assumption might be that we have been

given the heights of N people as our data and we wish to a) determine what

the means of these Gaussians are and b) which class (gender) we expect each

data point (person) to belong to. Since we have not been told the class of each

data point in our data, we must introduce an auxiliary latent variable for each

data point that indicates which class it belongs to.

For classification problems such as this there are two types of model that

can be considered: discriminative and generative. In a generative model a full

probabilistic model of all the variables is created from which a posterior can

be estimated, yielding parameter estimates. On the other hand, discrimina-

tive models only provide estimates for the target variables conditioned on the

observed training data. Generative models are generally able to deal better

in situations of missing, partially labelled or entirely unlabelled data and are

able to incrementally add new data and classes without needing to recalcu-

late the entire model. In fact, discriminative models are inherently supervised

and in many cases cannot be extended for unsupervised problems where no

class labels are given in the training data [LB07]. These advantages are par-

ticularly beneficial for the kinds of problems addressed in this thesis and as

a result generative models are used throughout. Blei also discusses the con-

trast between these model types in his thesis [Ble04] and also decides to use

generative models for similar reasons.

In a generative model for this problem we can say that each observed data

point xi (the height of person i) was generated by the following process: first

one of the two classes (male or female) is chosen at random based on the

distribution over the two classes θ (which we would model using a binomial

distribution) and is assigned to the variable zi then the value of the data point
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Figure 3.2: Graphical model for the distribution of human heights

is drawn at random from the class-conditional Gaussian distribution with mean

µz. By constructing such a model we can see that parameter estimation can

be loosely thought of as a reversal of this assumed generative process.

We can visualise these more complex hierarchies of dependency using graph-

ical models, Figure 3.2 shows the graphical model for this problem. In these

graphs each node represents a random variable, each edge a dependence be-

tween the random variables it connects and plates (squares) represent replica-

tion of the structure inside them. Each plate has a variable or number at its

bottom-right corner denoting the number of replications of the encompassed

structure, in this case the plate enclosing µz has cardinality two because they

are two classes in our model. Random variables that are observed (the data)

are shaded in and those which are unobserved (the latent variables) are un-

shaded. This technique for visualising graphical models is used to visualise the

models described later in this thesis. Note that if we have been given the class

of each data point then the zi RVs would be observed and therefore shaded in

and the parameter estimation procedure would be extremely simple.

3.2.1 Estimating a Posterior via Sampling

In cases where we have introduced unobserved latent variables we need to

have some way to estimate the unknown parameter values, the posterior. If

we choose to follow the fully-Bayesian route and place priors on the model

parameters then this allows us to compute the entire posterior distribution.

Unfortunately for many complex models, including those devised in this thesis,
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exact inference of the posterior distributions cannot be computed analytically

in a sensible time frame and are therefore intractable. However a number of

methods of approximating the posterior distribution exist including mean field

variational inference [BNJ03] and Gibbs sampling [GS04]. This work makes

use of Gibbs sampling methods to sample from the posterior which will be

briefly described now.

Gibbs sampling is a Markov Chain Monte Carlo (MCMC) sampling method

which allows us to work with the high-dimensionality probability distributions

which typically arise in complex Bayesian models that we would otherwise be

unable to construct or analyse. Monte Carlo techniques work by exploiting

the observation that we do not necessarily have to be able to construct the full

distribution of interest, we simply need to be able to draw samples from it that

can then be used to form an empirical estimate. The Monte Carlo approach was

originally devised by physicists to allow integration of very complex equations,

for example let’s say we wish to compute the integral of some complex function

f(x), i.e. we want:

∫
f(x) dx (3.7)

If this function is sufficiently complex that it cannot be integrated analytically

then we may be able to use Monte Carlo techniques to approximate the inte-

gral. If we can decompose the integral into the product of a function h(x) and

some probability density function p(x) then the following is true:

∫
f(x) dx =

∫
h(x)p(x) dx = Ep(x)[h(x)] (3.8)

This shows that the integral can actually be expressed the expectation of h(x)

under the probability p(x) and therefore if we can draw a large number N

of samples at random from the distribution p(x) then due to the law of large

numbers the following holds true:

Ep(x)[h(x)] ≈
1

N

N∑

i=1

h(xi) (3.9)
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To calculate the posterior distribution in a Bayesian model we need to be able

to compute
∫
p(y|x)p(x) dx and to accomplish this we can follow the principles

of Monte Carlo sampling. If we draw many samples xi from the prior p(x) then

the posterior can be approximated as follows:

p(x|y) ≈ 1

N

N∑

i=1

p(y|xi) (3.10)

Unfortunately in many cases (for example where we have introduced latent

variables) this is not sufficient to estimate the posterior as we may not be able

to directly calculate p(y|xi). Such problems necessitated the development of

modern Markov Chain Monte Carlo methods. A Markov process describes

random variables where the next state of the random variable is dependent

only on its current state and a Markov Chain is simply a sequence of random

variables generated from a Markov process. For example if we have a sequence

of random variables where Xt denotes the value of X at time t then we can

move from time t to t+ 1 via the following:

p(Xt+1|X0, . . . , Xt) = p(Xt+1|Xt) (3.11)

Appropriately designed Markov Chains will eventually reach a stationary or

equilibrium distribution and MCMC methods work by constructing a Markov

Chain where the equilibrium distribution is (an approximation of) the distri-

bution of interest, i.e. the posterior [GL97].

If we can construct such a Markov Chain then to sample from the posterior

we simply have to run the chain until it has reached this state (when the chain is

said to have converged) and then draw samples from the chain. These samples

can be shown to be drawn from a close approximation of the posterior and

can therefore be used to estimate parameter values of the model. The states

of the chain before it has converged are known as “burn-in” and are simply

discarded. When drawing from the converged chain it is common practise to

only use every nth sample in order to prevent auto-correlation as samples close

to each other in the chain are necessarily related, this is known as sample-lag.

In Gibbs sampling the next state in the chain is reached by sampling each
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Figure 3.3: Gibbs sampling over latent variables

variable from its distribution when conditioned on the current values of all the

other variables [GG84]. In the case of discrete latent variable models, each

state of the Markov chain is an assignment of a class to each latent variable

(i.e. to each zi). Then for each latent variable in order a distribution is

calculated over all of the possible latent classes conditioned on the current

values of all the other latent variables p(zi|z−i) (where z−i denotes all latent

variables except for i). A value is then drawn at random from this distribution

and this value is then allocated to zi. This routine proceeds in order until all

latent variables have been updated, this is said to be a complete “sweep” and

is a single iteration of the Gibbs sampler.

The process can be more easily understood by referring to Figure 3.3 which

shows the process for a simple example where there are only two latent vari-

ables. In Figure 3.3a we calculate the distribution of variable z1 conditioned

on the values of all the other latent variables which in this case is simply z2,

shown as a dotted line. A value for z1 is then sampled from this distribu-

tion and the sampler proceeds to carry out the same process for z2, shown in

Figure 3.3b. Note that the conditionals can be any distribution, however for

illustration purposes in this case we have chosen to show Gaussians. In many

cases, particularly in Information Retrieval applications where we are dealing

with textual data, these distributions will be discrete such as the multinomial

distribution.

Gibbs sampling is a preferable alternative to methods such as Expectation

Maximisation as it works by sampling from the entire posterior distribution

rather than attempting to locate a stationary point and is therefore unlikely
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to get “stuck” in local maxima and does not require the use of additional

machinery such as simulated annealing to get around this problem [SR93].

Furthermore Griffiths and Steyvers found that for large-scale hidden variables

problems such as LDA that Gibbs sampling provides better performance in

terms of convergence times than comparable algorithms [GS04].

In fact Gibbs sampling can be seen as a stochastic equivalent of the EM

algorithm where the expectation and maximisation steps are replaced with

sampling [Wal04]. Another benefit of this technique is the ability to quickly

and easily “fold-in” new data into the model. To include this new data into

the model we can simply run the Gibbs sampler over any new data, holding

all of the pre-existing latent variables from previous runs of the sampler fixed.

After the sampler has converged on this new data we can simply recalculate

any parameter estimates we require for our model. Convergence on this new

data usually occurs within less than 50 iterations, far less than required to

sample an entire new model as it can leverage information from the already

inferenced variables to more quickly hone in on the posterior.

Gibbs sampling is used extensively to calculate the posterior distributions

of the models described later in the thesis. The reader is referred to [GL97] for

more detailed information on MCMC methods including Gibbs sampling. The

next section will briefly introduce Latent Dirichlet Allocation (LDA), a com-

mon and extremely popular example of a latent variable model used to uncover

hidden topics present in document collections. LDA serves as a good starting

point for understanding the novel models introduced later in this thesis.

3.2.2 Topic Models and Latent Dirichlet Allocation

Topic models attempt to probabilistically uncover the underlying semantic

structure of a collection of resources based on analysis of only the vocabulary

words present in each resource. This latent structure is modelled over a number

of “topics” or dimensions which are assumed to be present in the collection.

These topics are represented in the model as latent variables and each word

position is assigned to one of these topics (like the two classes in the human

height example). Since the number of topics chosen is generally much less
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than the dimensionality of the original data points such models provide a form

of dimensionality reduction. This is of significant benefit as not only can it

uncover hidden clusters in the data but can also markedly reduce the size of

the model. This is similar to Singular Value Decomposition (SVD) in linear

algebra which has been used in the past for similar problems in the field of

Information Retrieval [DDF+90] and as we shall see shortly, its output can

be compared to that of SVD. However due to its probabilistic and generative

nature this new approach to the problem is far more adaptable, principled and

provides a more readily interpretable output.

In most cases the number of topics to use are chosen a priori, however recent

work has investigated how this value might be inferred automatically based on

the observed data, the most appropriate example for this work being Dirichlet

Processes [TJBB06]. These processes add significant further complexity and

as such it is generally acceptable to use empirical methods to choose the most

optimal parameterisation. Topic models have been used for various problems

including analysis of scientific papers [BL07], library books [MM07] and even

text-based image retrieval [BJ03]. Examples of such models include proba-

bilistic Latent Semantic Analysis (pLSA) [Hof01] which attempted to form

a probabilistic interpretation of SVD and Latent Dirichlet Allocation (LDA)

[BNJ03] which can be seen as a Bayesian interpretation of pLSA. LDA serves

as an excellent starting point for building more complex models for example

in [Wal06].

Figure 3.4 shows a graphical model diagram for LDA. Notice that it is not

the “standard” LDA diagram in which a second plate is drawn to represent

all of the samples (words and topics) from the same document. Instead, and

equivalently in terms of the generative process, this representation introduces

an observed variable di denoting the corresponding document ID for each word

wi in the corpus. This notation is used to facilitate easier comparison between

the LDA model and the newer models introduced later. Note that for all of

the models discussed in this thesis the subscript i always refers to a unique

word position in the corpus.

LDA represents documents as random mixtures over latent topics which

themselves are random mixtures over observed words in the vocabulary. So
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Figure 3.4: An alternate graphical model for Latent Dirichlet Allocation (LDA)

each document in the model is represented as a distribution over latent topics

z ∈ Z and has a distribution p(z|d) and each topic is a distribution over words

p(w|z). The original data can be represented as a very large matrix of size

D ×W where each cell id,w stores the count of word w in document d.

The model possesses a number of advantageous attributes; it is fully gen-

erative meaning that it is easy to make inferences on new documents or terms

and overcomes the over-fitting problem present in models such as pLSI [Hof01].

Also since in LDA each document is a mixture over latent topics it is far more

flexible than models that assume each document is only drawn from a single

topic. The generative process for LDA can be described as follows:

1. For each document d a distribution p(z|d) is drawn from Dirichlet(α)

2. For each word w a distribution p(w|z) is drawn from Dirichlet(β)

3. For each observed word position i

(a) a topic allocation zi is randomly chosen from the topical distribution

p(z|di) of the document the word position belongs to di
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Symbol Description

D number of resources/documents

Z number of topics

N number of unique word positions

U number of users

di resource for word at position i

zi topic allocation at position i

wi lexical term (word/tag) at position i

ui user who contributed tag at position i

θd distribution over topics for resource d

φz distribution over words for topic z

ψu distribution over topics for user u

θz distribution over resources for topic z (TTM2 only)

α Dirichlet prior over Θ

β Dirichlet prior over Φ

γ Dirichlet prior over Ψ

Table 3.1: List of notation for LDA and Tagging Topic Models

(b) a single word wi is drawn from that topic’s distribution over words

p(w|zi)

Note that, as with the vast majority of language models, the words are as-

sumed to be independent and therefore the presence of one word does not effect

the likelihood of observing another word. This simplifying assumption is also

known as the “bag of words” model as it does not take word order or grammar

into account. Also note that to truly make this generative model complete

some distribution would be required from which to sample the lengths of the

documents. In his paper [BNJ03] Blei uses a Poisson distribution to model

this process but notes that this may not be entirely appropriate as it can-

not accurately fit the distributions of documents lengths found in real-world

datasets. In any case this is not necessary for model estimation purposes since

the document lengths are known and it is therefore omitted from the following

discussion of the models.

LDA is based around two parameters which are represented as two matrices
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Φ and Θ containing estimates for the probability of a word given a topic p(w|z)
and a topic given a document p(z|d). Thus each column of the respective

matrices contains (estimates for) a probability distribution over words for a

particular topic and over topics for a particular document, denoted φz and θd

respectively. These two matrices can be compared to the U and V matrices

derived from an SVD of the original tag data matrix, however in the case of

LDA there is no requirement for a separate diagonal matrix Σ of scaling factors.

In order to prevent over-fitting the data, LDA places a symmetric Dirichlet

prior on both these distributions, resulting in the following expectations for the

parameter values under the respective posterior distributions p(φz|w, z) and

p(θd|z,d), where w is the vector of words occurrences wi in the corpus, z is an

assignment of topics to each word position zi and d is the vector of documents

di associated with each word position. Therefore given a complete set of topic

allocations the parameters can be estimated in the following manner:

φ̂w|z =
Nw,z + β 1

W

Nz + β
(3.12)

θ̂z|d =
Nz,d + α 1

Z

Nd + α
(3.13)

Here Nw,z, Nz,d and Nz are counts denoting the number of times the topic

z appears (in z) together with the word w, with the document d, and in

total, respectively. W is the vocabulary size and Z is the number of topics.

The hyperparameters α and β essentially act as a pseudo count indicating a

relation to smoothing in language models. This allows the model to fall back

on the priors in the event of sparse data.

As outlined earlier in this chapter, when designing and implementing any

statistical model it is necessary to choose how to represent the data within

the model in terms of probability distributions. The choice of distributions

for LDA is fairly straightforward; both the words and the topic allocations

are multinomial distributions which themselves are drawn from Dirichlet dis-

tributions. The multinomial distribution is a generalisation of the binomial

discussed earlier to any number of dimensions. So for example in the case of

the observed words in the corpus, they can be described as being distributed
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multinomial where the multinomial in question has dimensionality V , the size

of the vocabulary. Each time a single term is used this can be seen as being

a “success” for that word, in much the same way that a coin flip returning

heads is a success. The Dirichlet distribution is the beta distribution gener-

alised to any number of dimensions and describes a probability distribution

over multinomials. Not surprisingly this combination of a multinomial distri-

bution with a Dirichlet prior is a direct extension of the beta-binomial model

discussed earlier generalised to an arbitrary number of dimensions. Both the

multinomial and Dirichlet are described in more detail in Appendix A.

To estimate these parameter values we need to determine the topic al-

location zi for each word position wi and to achieve this we can use Gibbs

sampling. Each state of the Markov chain is (in this case) an assignment of a

discrete topic (from 1 to Z) to each zi, i.e. to each observed word in the cor-

pus. The Gibbs sampling procedure for LDA involves iteratively updating the

assignment of each topic zi in the topic vector z by sampling a value from the

distribution p(zi|w, z−i,d), which is conditioned on the current assignment to

all topic variables except zi. (As before, the vector z−i denotes all topic assign-

ments except zi.) In LDA the word assignment is conditionally independent

of the document given the topic assignment:

p(zi|wi, di) =
p(zi, wi|di)
p(wi|di)

∝ p(wi|zi)p(zi|di) (3.14)

In order to sample a topic allocation for each word position we need to

be able to calculate the full conditional posterior distribution p(zi|w, z−i,d).

However, Gibbs sampling only requires that this be a function that is pro-

portional to the true probability and therefore the expected value for this

conditional distribution can be derived as follows:

E[p(zi|w, z−i,d)] ∝ φ̂wi|zi θ̂zi|di (3.15)

∝
N−i

wi,z + β 1
W

N−i
z + β

N−i
di,z

+ α 1
Z

N−i
di

+ α
(3.16)

The estimates φ̂w|z and θ̂z|d are calculated over z−i rather than z. So z−i
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denotes the assignment of topics to all word positions (except the current topic

zi). In the full derivation N−i
wi,z is the number of times word wi is assigned to

topic z andN−i
z is the total number of words assigned to topic z (both excluding

the current position, zi). N
−i
di,z

is the number of times topic z occurs in resource

di (excluding zi) and N−i
di

is the total number of words in resource di (less 1).

After sufficient iterations of the sampler, the Markov chain converges and

the parameters of the LDA model can then be estimated from z using the

estimators outlined in Equations 3.12 and 3.13. It can be assumed that the

chain has converged when there is minimal change in the observed model

likelihood over successive samples, in the case of LDA the likelihood is:

p(w, z|Φ,Θ) =
∏

i

∑

z

φ̂wi|z θ̂z|di (3.17)

For increased accuracy, and to ensure that the resulting parameter values are

sampled from a large proportion of the posterior, estimates can be averaged

over consecutive complete samples of z from the Markov chain.

Note that in terms of implementation it is often preferable to represent the

document data by using a more compact form of a “ragged” (non-rectangular)

2D array where each cell wd,i is now the word at position i of document d

where the length of the 1D array wd is the length of d. This representation has

the added benefit of making the Gibbs sampling procedure easier as it simply

needs to iterate over this array. Furthermore we can also represent the array

of topic allocations in the same form where zd,i is the current topical allocation

to word position i of document d. The Gibbs sampling method allows for a

very compact and memory-efficient algorithm. It suffices to simply keep the

word and topic arrays w and z and the counts of topics over documents and

over words in memory.

3.3 Tagging Topic Models

The work in this thesis is concerned with the use of topic models to better

understand and utilise the vast amounts of information available from social

web sites. However, to use such models we must first have some form of
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Figure 3.5: The problem of adding an extra dimension

document data from which to estimate our distributions. In the case of social

systems where we have a small number of tags per user for some resources

we can simply conflate all users’ tags together to form a single “document”

describing the resource. Doing so can potentially exploit the group consensus

formed for more popular resources since tags chosen by multiple users will be

counted in the model multiple times. In modelling this data we must also

consider that we have another potential source of information: the user who

submitted each annotation. The tagging topic models presented now and the

later models for collaborative filtering are able to include this extra data to

improve the accuracy of the estimations and to allow for modelling of user

interests over the topic space.

Recall that social tagging data consists of 3 distinct entities: the resource

being tagged, the user who tagged the resource and the tag itself. This is

modelled as a tripartite graph with 3 disjoint sets of nodes: resources D =

{d1, . . . , dD}, users U = {u1, . . . , uU} and tags W = {w1, . . . , wV }4 In this

graph the edges between these nodes represent the individual annotations; a

user u annotating resource d with tag w. Each assignment of a tag to a resource

by a user - each edge - is denoted as the relation Y and is typically called a

tag assignment (tas for short). Therefore the complete folksonomy is actually

4Note that in order to remain in keeping with the notation from topic modelling literature
we use the character d to denote resources and that for all intents and purposes the words
documents and resources are interchangeable.
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a quadruple F := (U ,W ,D,Y). This data can be represented as a tensor as

shown in Figure 3.5.

In [WZY06b] it is noted that tags are usually semantically related if they are

used to describe the same resources many times. Correspondingly, resources

are similar if they are annotated with the same tags and users share similar

interests if their annotations share many related tags. These relationships can

be mapped onto a conceptual space of Z dimensions (or in the topic modelling

case, topics), that represent categories of knowledge. In this representation,

each entity’s component on a given dimension gives a measure of how similar

or related it is to that category. This provides a framework for the discovery of

meaningful relationships between entities and for reducing the dimensionality

of the problem down as Z ( W . To fully leverage social data we need to move

from the two-dimensional matrix of LDA to a 3 dimensional tensor, ND×W to

ND×U×W . In using latent topics the dimensionality of this tensor is reduced

down to ND×U×Z .

The prime motivation for using topical models for social annotation data

is that this intelligent reduction in dimensionality will deal with many of the

polysemy and synonymy issues present. As we shall see, they provide a means

in IR to match resources with user queries on a semantic meaning level, rather

than purely by lexical co-occurence as similarity can be discerned based over

several levels of co-occurence. Furthermore applying such models to social

tagging data does not present the same issues of information loss due to the

“bag of words” assumption as when they are applied to “normal” documents.

This is because social annotations do not have any meaningful notion of word

order, they are quite literally a bag of words with no grammatical structure

possible. As a result, applying such a simplification to this data does not

result in a loss as it would do were the tag data structured grammatically in

some manner. Also words co-occurring in documents tend to only be strongly

related in a local scope (in the same sentence or paragraph) and only very

generally related over the document as a whole. While in the case of social

tagging data all tags in a given social annotation can be assumed to be much

more strongly related.

As noted in chapter 2 the vast majority of research involving the modelling
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Figure 3.6: Graphical model of Tagging Topic Model 1 (TTM1)

of social tagging systems re-use mostly unadapted techniques and models from

information retrieval and collaborative filtering. As we have seen, the structure

and statistical properties of tagging data are very different to more traditional

documents and therefore it is necessary to consider new models and techniques

that are more thoroughly adapted to the data.

3.3.1 Tagging Topic Model 1 (TTM1)

In attempting to modify LDA to include user preferences the first, most natu-

ral step to take is to change the Θ matrix from representing the p(z|d) to the

p(z|d, u); i.e. the joint probability of topic z given both resource d and user u.

This new representation of users and resources over topics is a large, extremely

sparse, 3D tensor ∈ ND×U×Z . While this tensor is significantly smaller than

the tensor representing the original data due to the dimensionality reduction

over the topic space, the sheer size and inherent sparsity of this distribution

still presents significant problems. Particularly due to the increased danger

of over-fitting and the considerable amount of time required to fully sample

the conditional distribution, not to mention the increased memory capacity

required to work with it. Consider that for many combinations of users, re-
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sources and topics we will still have little or no information available from the

corpus. As a result, for the majority of cases the estimate would be reduced

to the symmetric un-informative prior over the distribution.

A solution to this problem is to make the simplifying assumption that the

probability of a user and a resource are independent given a topic allocation.

That is for each position in the corpus the probability of a topic given the

resource the tag is assigned to is independent of the probability of the topic

given the user who assigned the tag. The tensor is therefore split into a pair

of two-dimensional matrices Θ, representing the p(z|d) - as in LDA - and a

new set of parameters Ψ, the p(z|u) or probability over the topic space for

each user. Recall that for the Gibbs sampling algorithm to operate we require

a method of calculating the full posterior distribution, or at least a function

proportional to it. To do this we first need a way to calculate the value of

p(z|θd, ψu) which we can then use in our Gibbs sampling algorithm. Via direct

application of probability theory and based on the assumptions stated earlier,

the probability of a single topic assignment z given θd and ψu is:

p(z|θd, ψu) =
p(z)p(θd, ψu|z)

p(θd, ψu)
=

p(z)p(θd|z)p(ψu|z)
p(θd, ψu)

(3.18)

=
p(z)[p(θd)p(z|θd)p(z) ][p(ψu)p(z|ψu)

p(z) ]

p(θd, ψu)
∝ p(z|θd)p(z|ψu)

p(z)
(3.19)

In order to keep the model fully Bayesian a prior distribution γ can be placed

over the user-topic distributions ψu. This gives the user-topic distribution a

similar role to play in the generative story as the document-topic distribution.

Therefore the prior in this case will also be Dirichlet meaning that the distribu-

tion ψu is assumed to be drawn from a symmetric Dirichlet parameterised by γ.

This gives the following parameter estimation under the posterior distribution

p(ψu|z,u):

ψ̂z|u =
Nz,u + γ 1

Z

Nu + γ
(3.20)

where Nz,u and Nu are counts of the number of times the topic assignment z

appears in annotations made by user u and Nu is the total number of annota-
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tions made by u, respectively. Examples of the Θ and Φ matrices outputted

by a TTM model are shown below:

Θp(z|d) =





0.33 0.1 0.4

0.33 0.8 0.1

0.33 0.1 0.5



 Φp(w|z) =





0.2 0.9 0.2

0.3 0.05 0.5

0.3 0.05 0.3





In this example there are only 3 topics, 3 documents, 3 users and 3 words.

The Θ matrix indicates that document 1 has a completely uniform distribution

over the 3 latent topics, whereas document 2 draws predominantly from topic

number 2. The first column of the Φ matrix shows that almost all words drawn

from topic 2 will be word 1, with the other 2 words in the lexicon only having

a probability of 0.05, which is likely to simply be the model falling back on the

priors.

Intuitively we can therefore expect that document 2 is composed almost

entirely of word 1, since it has a high probability of drawing from topic 2 and

word 1 has a high probability of occurrence, given that one is drawing from

topic 2. Note that the form of the Ψ matrix is similar to that of the Θ matrix,

however each column instead represents a user rather than a document. Note

also that in order to be valid probabilities, the columns of the matrices much

sum to unity, however there is no requirement for the rows to also do so.

Since the estimate of the probability of a word given a topic has not changed

in order to derive the complete Gibbs sampling equation p(z|d) from LDA is

replaced with new the joint estimate p(z|θd, ψu) derived above. The Gibbs

sampling procedure of probability of a topic assignment z at position i in this

model is therefore:

p(zi|wi, di, ui) =
p(zi, wi, ui|di)
p(wi, ui|di)

∝ p(wi|zi)
p(zi|di)p(zi|ui)

p(zi)
(3.21)

(3.22)

Thus the expected value for the conditional distribution can now be estimated
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as:

E[p(zi| . . .)] ∝ φ̂wi|zi
θ̂zi|diψ̂zi|ui

ˆp(z)
(3.23)

∝
N (−i)

wi,z + β 1
W

N (−i)
z + β

(
N (−i)

di,z
+ α 1

Z

N (−i)
di

+ α

N (−i)
ui,z + γ 1

Z

N (−i)
ui + γ

)
ˆp(z) (3.24)

ˆp(z) can be simply estimated as Nz/N (less the current topic allocation

zi), however this estimate could also be smoothed via the application of a

Dirichlet prior. Also, since they are independent of the topic and are therefore

constants, the denominators in the resource and user topic estimates can be

removed from the calculation without affecting the sampling process. As with

the more compact representation of LDA discussed previously the user data

can also be presented as a ragged 2D array where each cell ud,i represents the

user who assigned the tag as position i to resource d.

The complete generative model is shown in Figure 3.6. Notice that the

model is extremely flexible on a per-resource-description level as each descrip-

tion is modelled over the entire topic space, this is also true for each user.

Also for each annotation a three-layer generative process is performed with

the topical distribution for each resource being sampled multiple times (once

for each tag). The model, however, suffers from the fact that it is not entirely

obvious what generative process could have produced such an output. This

observation gives rise to the development of a second model which still models

the entire folksonomy and makes similar independence assumptions, but also

possesses a more intuitive generative structure.

3.3.2 Tagging Topic Model 2 (TTM2)

The previous section described TTM1 and indicated that this model’s gener-

ative story (i.e. how we imagine that the data were originally generated) is

a little unclear and does not intuitively fit with how we might expect social

annotations to be generated. In both LDA and TTM1 it is assumed that each

document in the collection “chooses” its own topical distribution θd, leading

to an assignment of word positions in the document to topics based on this
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Figure 3.7: Graphical model of Tagging Topic Model 2 (TTM2)

distribution. In the case of TTM1 this is somehow also related to the user’s

topical distribution, however it is not clear exactly what this relationship may

be.

Such a generative story for documents fits in well in a normal information

retrieval setting where we are indexing the actual content of documents. How-

ever with social tagging data we are not using the content of the documents

as features but rather the words (tags) chosen to describe resources by users.

Therefore we propose an alternative model, shown in Figure 3.7, where the

resource is chosen by the topic rather than the other way round. In this model

the generative story for each individual word position i can be described as

the following:

1. For each word position i, a topic allocation zi is randomly chosen from

user u’s topical distribution p(z|ui)

2. A relevant resource is drawn randomly from topic zi’s document distri-

bution p(d|zi)

3. Finally, a tag wi to describe the resource is drawn from topic zi’s tags

distribution p(w|zi)
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This generative story seems to be intuitively a better fit for annotations as

the user initially chooses a topic (or topics) she is interested in and then based

on those topics will find resources to bookmark and annotate. As the tags

are a user’s description of the resource we can further assert that the tags will

be chosen from the same topical distribution as the document they describe.

In this model Θ now contains probability estimates of the form p(d|z) and

each column θz is a probability distribution over resources (documents) for a

particular topic. The expected value of these parameters under the posterior

are calculated as follows:

θ̂d|z =
Nz,d + α 1

D

Nz + α
(3.25)

Given this new parameterisation, the probability of a topic assignment z at

position i in this model can be factorised much more cleanly as:

p(zi|wi, di, ui) =
p(zi, wi, ui|di)
p(wi, ui|di)

∝ p(wi|zi)p(di|zi)p(zi|ui) (3.26)

(3.27)

Finally the expected value for the conditional distribution is:

E[p(zi|w, z−i,d,u)] ∝ φ̂wi|zi θ̂di|ziψ̂zi|ui (3.28)

∝
N (−i)

wi,z + β 1
W

N (−i)
z + β

N (−i)
di,z

+ α 1
D

N (−i)
z + α

N (−i)
ui,z + γ 1

Z

N (−i)
ui + γ

(3.29)

In this model only the denominator in the user-topic estimate can be safely

removed from the calculation but it is included here for completeness.

For both of these models, the resulting reduced-dimensionality distribu-

tions over the complete folksonomy can then be used to uncover relationships

between users, tags and resources and therefore make useful inferences about

new data. Given that LDA can be said to be a Bayesian equivalent of the

Singular Value Decomposition of a two-dimensional matrix, these models can

be described as being analogous Bayesian equivalents of 3 dimensional ten-

sor factorisation. These new models demonstrate how existing probabilistic

models can be scaled up to provide useful inferential machinery in domains
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involving multiple levels of structure. However they also demonstrate that

some care needs to be taken when choosing how to represent and model this

new data. Later in this thesis two different uses of these models within social

web sites are described and used to demonstrate their effectiveness for these

tasks. For more information please refer to Appendix B where the TTM2

model is derived mathematically from its joint likelihood and from this the

Gibbs sampling routine outlined above is also derived.

Note that during the initial investigation of models for this thesis an Ex-

pectation Maximisation-based alternative to Gibbs sampling was investigated

for the TTM1 model. This model was very similar to the model presented

by Wu et al. [WZY06b]. However in testing, it was found to be significantly

slower than the Gibbs sampling version and had to be run several times in

order to obtain a model with good fit as it tended to easily get stuck in local

maxima. Due to the size of the datasets and the range of latent topics tested

in the experiments presented later in this thesis, it would not have been a

feasible alternative. In addition, perhaps because of its non-Bayesian nature,

it was found to not be well suited to the sparse data typically found in social

tagging systems.

The next section considers the more complex problem of adapting the topic

modelling paradigm to collaborative filtering data where it is important to con-

sider continuous distributions within the models, significantly deviating from

the models described previously. This work also requires novel integration of

Gibbs sampling with fixed-point optimisation to create a cohesive and powerful

representation of ratings data. The next section details the choices required

to develop latent variable models that are more suitable for ratings data and

also are able to estimate an “interest” distribution for each user allowing for

personalised predictions to be made.

3.4 Models for Collaborative Filtering Data

In order to implement a new latent variable model appropriate for collabora-

tive filtering data it is necessary to choose how best to represent the latent

factors and how to incorporate the ratings data, both in terms of their statis-
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Figure 3.8: Latent Interest and Topic Ratings Model 1 (LITRM1)

tical distributions. Rating data obtained from collaborative filtering sites is

similar to tagging data in that it has a familiar tri-partite structure. The first

two elements of the data are the same; namely users and resources (hereafter

referred to as items) and therefore we can use the same assumptions and dis-

tributions as we have in the previous sections. Namely that the distributions

of topic allocations for resources and users will be distributed multinomial and

will be drawn from Dirichlet priors. However it differs significantly in that the

third of these elements is not a word drawn from a vocabulary but rather a

numerical rating and that each user can only have a single link with an item

(each user can only rate an item once). Since we are primarily interested in

predicting ratings with the smallest possible error in aggregate it is sensible

to consider models (and therefore distributions) that are continuous in nature.

In doing so the predictions will not be constrained to be bound to the finite

discrete values of the original ratings but will have the freedom to model the

complex interactions of biases in the data at infinite granularity.
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Symbol Description

M number of items

Y number of topics/genres

Z number of user interests

N number of ratings

U number of users

mi item for rating at position i

yi topic/genre allocation at position i

zi user interest allocation at position i

ri rating at position i

ui user who contributed rating at position i

φm distribution over topics for item m

θu distribution over interests for user u

bm bias due to item m

bu bias due to user u

byz bias due to interest/topic pair yz

α Dirichlet prior over Θ

β Dirichlet prior over Φ

σ standard deviation over all ratings

µ mean rating

Table 3.2: List of notation for Ratings Models

3.4.1 Basic Generative Model (LITRM1)

Perhaps the simplest possible prediction algorithm one could imagine would be

to use the mean rating over the training data, denoted µ (where µ̂ = 1
N

∑
i ri),

as a prediction for each item for every user, (i.e. r̂um = µ). This overly

simplistic model corresponds to a generative process in which each rating ri is

considered a normally distributed random variable with mean µ and standard

deviation σ:

ri ∼ N (µ, σ2) =
1√
2πσ2

e−
(x−µ)2

2σ2 (3.30)

This model makes a large number of assumptions and ignores a lot of the

complexity in the data. It assumes that ratings are completely independent
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of both the item and user and that there are no interactions between the

combinations of user and item that would affect the rating. We relax some of

these assumptions and extend this model by following similar conclusions to

both Hofmann [Hof04] and Marlin [Mar03], that the change in the rating is

dependent on the user and that each user can be characterised by a distribution

over a small number of latent interests.

In addition, (and in contrast to previous work) we then assume that the

change in rating is also equally dependent on the items, which themselves can

be characterised by a distribution over a small number of latent topics. For

example in the case of movies this may be more intuitively thought of as their

latent genres or for general items in a web store it could be the category/ies

to which they could be categorised. This conjecture leads to a more useful

generative model for personalised item filtering and ranking involving three

random variables: a user interest zi, an item topic (or movie genre) yi and a

rating ri, where only the last variable, the rating itself, is observed. Following

the models outlined earlier in this thesis we can then assume the user-interest

and item-topic variables are distributed multinomial5. The same assumption

could also be made regarding the ratings, as the original ratings assigned by

users are indeed drawn from a discrete set. However as noted earlier the flexi-

bility of the model can be increased, and also the granularity of its predictions,

by instead modelling them as being drawn from Normal distributions. These

assumptions can be summarised as follows:

zi ∼ Mult(θui) (3.31)

yi ∼ Mult(φmi) (3.32)

ri ∼ N (µ+byizi , σ
2) (3.33)

Thus the model consists of a discrete probability distribution over inter-

ests for each user denoted θu, a discrete distribution over topics for each item

denoted φm, a mean rating µ, a bias value byz for every pair of interests and

5The interest and topic variables are actually distributed according to a Categorical
distribution, which is equivalent to a Multinomial distribution with a fixed count of 1. We
use the term Multinomial in keeping with the literature.
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topics, and a standard deviation parameter σ. A graphical model correspond-

ing to this generative process is shown in Figure 3.8. The next question to

address is what the parameters byizi being added to the mean rating µ to ex-

plain each observed rating ri should be. We denoted these parameters as being

biases, perturbing the rating away from the mean rating and allowing for much

more statistical power than the extremely simple mean-rating model discussed

previously.

The intuition for introducing the bias byz in this model is that we believe

each interest and topic combination will likely have an effect on how the item

is rated and that we can somehow capture this bias over the latent spaces. For

example in the case of movies we might expect that a user who likes romance

would give a horror movie a lower than average rating, meaning that the bias

byz for this interest-topic pair would be negative. Similarly if the same user

was to rate a romance movie then we would expect them to give a higher than

average rating and the bias would therefore be positive. Since all of these

biases would be calculated over the low-dimensionality latent spaces they will

not be too sparse and should allow the model to generalise well to unseen

user-item combinations, a key objective of any collaborative filtering model.

Given some estimates for these parameters, we can predict the rating for a

user u and item m by calculating the expected value as follows:

r̂um = E[r|u,m] =
∑

y,z

E[r|y, z]p(y|m)p(z|u) (3.34)

= µ+
∑

y,z

byzφy|mθz|u (3.35)

Here θz|u and φy|m denote probability of an interest given a user and a topic

given an item respectively. This model is quite intuitive as it says that the

rating given by a user to an item will be the product of a user’s affinity for

an interest, the item’s probability of belonging to a topic and the average bias

for that interest-topic combination, summed over all possible combinations of

interests and topics.

We note that this new prediction model has far more flexibility than do

“standard” Singular Value Decomposition (SVD) based ratings prediction al-
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gorithms, since the number of interests used to characterise users may be

different from the number of topics used to represent items. This is not pos-

sible in the standard SVD approach, where the dimension of latent factors

is necessarily the same for users and items. Moreover and more importantly,

we have associated a possibly non-zero bias with every pair of interest topic

dimensions. Thus not only is a positive bias associated with “correspond-

ing”’ interests and topics (e.g. the user-interest “horror” and the movie-genre

“horror”) but also a possibly negative bias with “non-corresponding”’ interests

and topics. For instance if a user’s primary interest is “horror”, they may still

have a positive bias towards a “thriller” while having a negative bias against

a “comedy”. In SVD terms this is to some extent equivalent to replacing the

diagonal singular-value matrix with a matrix containing non-zero off-diagonal

values. These values then allow us to model both positive and negative corre-

lations across different factors. Finally, by defining the predictions in terms of

a generative model, we can interpret and explain the parameters of the model

in a way that is not possible with SVD based prediction algorithms.

Given vectors of latent variable assignments z = (z1, ..., zN) and y =

(y1, ..., yN), we can compute estimates of both the probability of an inter-

est given a user θz|u and a topic given an item φy|m. Following principles from

LDA, and in keeping with Bayesian statistics, we place symmetric Dirichlet

priors on both of these distributions, resulting in the following expectations

for the parameter values under their respective posterior distributions:

θ̂z|u =
Nzu + α 1

Z

Nu + α
(3.36)

φ̂y|m =
Nym + β 1

Y

Nm + β
(3.37)

HereNzu, Nym, Nu andNu are counts denoting the number of times the interest

z appears (in z) together with user u, the number of times topic y appears (in

y) with item m, and the total ratings by user u and for item m respectively. Z

is the number of interests and Y is the number of topics. The hyperparameters

α and β act as pseudo-counts, allowing the model to fall back on the (uniform)

prior probability in the event of sparse data, which is particularly useful in this
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setting where sparse data is common. They perform the same function as the

hyperparameters in the tagging topic models and are in effect performing the

same function. The only difference being that in this case they do not represent

prior counts of word occurrences but instead prior counts of rating occurrences.

Note that in calculating the values of these parameters we do not take into

account the magnitude of each rating but we simply use a binary indicator of

whether there is a rating or not.

In addition to estimating the distributions over interests and topics the

model also needs an estimate of the bias for each interest and topic pair denoted

byz. Given a complete set of assignments for these latent variables for each

observed rating ri an estimate of this bias can be calculated as follows:

b̂yz =

∑
i:(yi=y)∧(zi=z)(ri − µ)

Nyz + ρ
(3.38)

Here Nyz denotes the number of ratings for which y and z appear together and

ρ is a smoothing parameter. This estimate is quite intuitive, it is calculating

the mean perturbation from the mean rating for all ratings assigned to interest

z and topic y. The smoothing parameter ρ is related to the variance of the

zero mean Gaussian prior on byz, which keeps the model Bayesian and helps to

deal with sparsity in the data6. Note that it would also be possible to estimate

a variance parameter separately for each (y, z) pair, but this model instead

makes the simplifying assumption that all biases have the same fixed variance.

In common with the other latent variable models investigated in this the-

sis, analytic inference of this model is intractable and therefore approximations

of the posterior must be used. Gibbs sampling for this model involves sam-

pling first zi and then yi for each rating ri. To sample for zi the distribution

p(z|ri, yi, ui, µ, σ, z−i) is calculated, which is conditioned on the current assign-

ment to all interest variables except zi. Similarly for yi a sample is drawn from

the distribution p(y|ri, zi,mi, µ, σ,y−i). Note that the estimates for the pa-

rameters θz|u, φy|m and byz depend on the interest and topic assignments z and

y, so when calculating estimates using Equations 3.36, 3.37 and 3.38, the ith

rating is removed from the sample. The conditional probability distributions

6The value ρ is equal to the ratio of the variances of the likelihood and the prior.
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are then estimated as follows:

p(z|ri, yi, ui, ...) ∝ p(ri|yi, z)p(z|ui)

∝ exp

(
(ri−(µ+byiz))

2

σ2

)
Nzu + α 1

Z

Nu + α
(3.39)

p(y|ri, zi,mi, ...) ∝ p(ri|y, zi)p(y|mi)

∝ exp

(
(ri−(µ+byzi))

2

σ2

)
Nym + β 1

Y

Nm + β
(3.40)

Here p(r|y, z) denotes the conditional probability density at rating r for the

interest y and topic z. Since the algorithm only require estimates proportional

to the true probabilities the normalising factor of the Normal distribution is

not required. Therefore the first parts of Equations 3.39 and 3.40 are the

unnormalised probabilities of a Normal distribution. This new model provides

a method of predicting ratings by considering perturbations from the mean

rating over a number of latent interests and topics. The next section describes

an important extension of this base model that estimates individual biases for

each user and for each item whilst still considering the bias over the latent

topic and interest space.

3.4.2 Adding User and Movie Biases (LITRM2)

As noted in the previous chapter, the most successful models competing in

the Netflix prize also estimate a bias for each user and a bias for each item

as well as the bias due to the user and the item together. This is a sensible

assumption as some users may naturally rate items higher than others and

some may naturally choose from a lower baseline score. Similarly some items

are intrinsically better than others and are therefore likely to be rated higher

by all users, while the less quality items will be given a lower than average

score by most users. While we would expect that these biases would be at

least partially accounted for by the joint biases over the reduced genre and

interest spaces it is likely that users and movies that give/have unusually

high or low ratings (outliers) would affect the accuracy of the biases for other

users. By calculating a separate bias for each user and item separately we
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Figure 3.9: The extended Latent Interest and Topic Ratings Model (LITRM2)

effectively remove these eccentricities from the ratings, giving the joint biases

the freedom to deal purely with the variations caused by observing the various

interest/genres pairs. LITR2 is therefore an extension of the model described

previously to also include these biases in order to improve prediction accuracy.

The graphical representation for this model is shown in Figure 3.9.

The generative model is the same as the previous case, except that the mean

of the Gaussian distribution that generates the rating ri takes into account the

user and item biases bui and bmi as follows:

ri ∼ N (µ+bui+bmi+byizi , σ
2) (3.41)

Given estimates for the parameters of this more complicated model, the

predicted rating for a user u and an item m is now:

r̂um = E[r|u,m] = µ+ bu + bm +
∑

y,z

byzφy|mθz|u (3.42)

Note that predictions under this new model and the previous model can

both be viewed as perturbing the mean µ by a combination of biases. Both
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models add a bias for the likely interests and topics given the user and item

pair, while the second model adds also explicit biases for the user and for the

item.

Estimates for the parameters θz|u and φy|m are calculated as in the previous

model, while the estimate for the bias byz must now include the effects of these

extra biases as follows:

b̂yz =

∑
i:(yi=y)∧(zi=z)(ri − (µ+ bui + bmi))

Nyz + ρ
(3.43)

Furthermore estimates for the new user and item-dependent biases them-

selves must also be computed. The most obvious way to compute these biases

is to take the mean difference of all ratings for a given user/item from the mean

rating for all users/items. However since the model also includes a bias over

the latent interests and topics spaces (denoted bum) for each user-item pair,

these estimates need to also include the effects of this bias in their estimators.

The user and item biases are therefore estimated as follows:

b̂u =

∑
i:(ui=u)(ri − (µ+ bmi + bumi))

Nu + ρ
(3.44)

b̂m =

∑
i:(mi=m)(ri − (µ+ bui + buim))

Nm + ρ
(3.45)

where bum =
∑

y,z

byzφy|mθz|u (3.46)

Note that the Equations 3.44 and 3.45 are mutually dependent and thus

an iterative fixed-point calculation is required to estimate the biases. Holding

the joint bum biases fixed this procedure converges very quickly and stabilises

within less than ten iterations. Finally to complete the model estimation the

distributions used for the Gibbs sampling routine must also be updated to

include the new biases:

p(z|...) ∝ exp

(
(ri−(µ+bui+bmi+byiz))

2

σ2

)
Nzu + α 1

Z

Nu + α
(3.47)

p(y|...) ∝ exp

(
(ri−(µ+bui+bmi+byzi))

2

σ2

)
Nym + β 1

Y

Nm + β
(3.48)
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Since the user and item biases are not strongly dependent on the allocations

of ratings to y and z we can simply estimate them after every kth iteration

of the Gibbs sampler and the algorithm with still converge. Not only does

this speed up computation of the model but it also gives the sampler time to

re-converge after changes to the user and item biases. In all the experiments

performed later in the following chapters these biases are re-calculated after

every 10 Gibbs iterations.

3.5 Unified Model and Latent User Communities

As mentioned at the start of this section, there are a number of clear similarities

between the tagging models and the ratings models described in this thesis.

They all model something as being a result of draws from distributions over

some topic space dependent on a user and on a resource or item. It is therefore

important to discuss the possibility of there being a single unified “core” model

from which the 4 models presented could be derived.

This model would have the basic form of the first ratings model (LITRM1)

where the resources in the tagging models and the items in the ratings mod-

els are modelled via the same distributions. Clearly in the tagging case this

would require a joint distribution over words for each pair of topics and in-

terests, the same as the joint biases for the ratings. Unfortunately this would

further increase the sparsity of data for many of the estimates and may only

be applicable in cases where there is a large amount of data. However it is pos-

sible that the extra flexibility afforded by this massive increase in parameters

could further improve the accuracy of the models.

The modelling of user interests over a low-dimension topic space could

feasibly allow for the identification of implicit user communities of practise.

As discussed earlier, it is possible to discern communities of practise within a

social system by isolating groups of users who have shown an interest in similar

(or the same) resources or items. This assumption has been frequently used

as a crucial part of memory-based collaborative filtering algorithms. However

by having a representation of user interests over a latent topic space, we may

be able uncover more subtle relationships in the data than is possible using
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simply co-occurence.

A straightforward method of identifying such communities would be to

single-out groups of users who have high topical probability, under the model,

for the same latent topic. Alternatively, if we were interested in identifying

users who are in some sense similar to a given target user we could define a

basic similarity metric by summing topic probabilities over all latent topics

and then ranking the results in descending order. For example given a target

user u1 we could calculate a similarity measure for another user u2 as follows:

sim(u2, u1) =
Z∑

z=1

p(z|u1)p(z|u2) (3.49)

It may also be sensible to weight each product by the probability p(z) of

the topic so as to give a higher influence to frequently observed topics. These

measures could then be used for a number of useful tasks, for example to

suggest friends to users based on their shared interests or to suggest which

latent topics would be of interest to a given user.

Both of these possibilities illustrate interesting possibilities for future work,

other possibilities are briefly discussed in Chapter 7.

3.6 Conclusions

This chapter has described the mathematical and statistical theory underpin-

ning the models used in this thesis. It discussed the ideas behind Bayesian

probability and latent topic models and has motivated their use for applica-

tions using the sparse and noisy data obtained from social sites. The following

chapters of this thesis will show by experiment on real (non synthetic) data

that not only can these models be used to perform useful tasks on such data

but that they are also able to out-perform other state-of-the-art methods in

the field.
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Chapter 4

Experiment 1: Tag Suggestion

“Experiment is the sole source of truth. It alone can teach us some-

thing new; it alone can give us certainty”

Henri Poincaré

In this first experiment the aim is to suggest relevant tags that a user

may wish to use to annotate a resource. Given that the TTM models are

personalised these suggested tags can by chosen based on both the tags already

used to annotate the resource and the user’s own profile. The basic problem

of tag suggestion can be described as the following: conditioned on a pseudo-

query q consisting of tags already chosen by the user, q := {w1, . . . , wi} the

algorithm should rank the remaining tags in the vocabulary W in descending

order of probability. In doing so it must in some way calculate p(w|q); the
probability of a word w given the pseudo-query q. Attempts can be made to

improve the accuracy of predictions by also incorporating the user’s interests

and vocabulary choice into the estimate by calculating p(w|q, u).

4.1 Suggesting Tags

Given some initial tags provided by the user for a given resource and the output

from the topic model, the algorithm should predict which tags the user will

enter next and offer them as suggestions. To do this it must first estimate a

distribution over the latent topic space for the pseudo-query q comprising the
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tags supplied by the user. This can be calculated as a point estimate:

p(z|q) = N (q)
z + p(z)αd

N (q) + αd
(4.1)

where N (q) is the total number of tags in q and p(z) is the relative frequency

of topic z in the model. To calculate a value for the topic distribution p(z|q),
an estimate is required for the value of N (q)

z , the expected count for the topic z

in q. The expected value for N (q)
z can be calculated by summing over all tags

in the pseudo-query as follows:

E[N (q)
z ] =

∑

w∈q
p(z|w)N (q)

w (4.2)

where p(z|w) can be calculated using the φz distribution from the model via

Bayes’ rule : p(z|w) = φw|zp(z)/p(w), and N (q)
w is the number of times tag w

appears in the query q. Note that each N (q)
w will generally always be one since

it is highly unlikely that a single user will use the same tag more than once to

describe the same resource. Given this estimated distribution over the latent

topics for q an estimate can be made for the probability of observing a new

tag w:

p(w|q) =
Z∑

z=1

φw|zp(z|q) (4.3)

This returns the estimated probability of a term in the corpus given the pseudo-

query, if this is calculated for ∀w ∈ W and then ordered by probability in

descending order the top n terms can be chosen in this ranked list as tag

suggestions. The tagging topic models benefit from also having estimates for

user interests over the topics and this can be used to include the user’s personal

preferences in the suggestions. Based on the matrix Ψ from the tagging models,

the personalised distribution over terms can be calculated thus:

p(w|q, u) =
Z∑

z=1

φw|z
p(z|q)ψz|u

p(z)
(4.4)
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where u is the user who generated the tags for the pseudo-query (i.e. the user

currently tagging the resource). This final distribution over terms indicates

each term’s probability given the previously observed terms and the topical

interests of the user. These probabilities can then be used as a multiplier on

traditional tag suggestion methods (such as the one outlined in the description

of baseline method 3 below) and provides a smoothed, personalised weighting

for each term.

4.2 Experimental Set-up

In order to evaluate the applicability of the tagging models to this problem I

conducted experiments comparing them and LDA with 3 “baseline” methods

through empirical evaluation based on held-out data from a real-life data set

obtained from a large online social tagging system. This section outlines the

experimental set-up in more detail, explains the various methods for tag sug-

gestion and briefly describes the data set and the settings of parameters for

the tagging topic models.

4.2.1 Evaluation Method

In order to evaluate the accuracy of the tags suggested by each algorithm some

form of relevance judgement is necessary, for example a list of all accurate

and useful tags for each resource. One method for doing this that has been

utilised previously is a user study where users are asked if they think that tags

suggested for each resource are relevant or not. This work does not follow

this method as it is interested specifically in personalised results, therefore

only the user(s) who originally tagged the resource can really say whether a

tag is relevant or not. In this case a user study would likely provide an over-

estimate of the quality of the results and therefore it was chosen to evaluate

the systems based only on the tags provided by the user on the live system.

Given a set of l tags for a given resource m tags are chosen at random as input

for the suggestion algorithms and the remaining l-m are used as the set of

relevant suggestions. These resource are chosen from a set of held-out resources
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(i.e. resources that have not been used to train the model) and will give an

estimate of the quality of the suggested tags. Since these assessments were

derived from a sample of data from a working social network they are likely to

more accurately reflect the performance of a live system. This segmentation

of the data is described in Figure 4.1 where for each user there is a sequence of

annotated resources consisting of tags. Some of these annotations are used for

training and the rest are used for testing with each test-set annotation being

segmented into pseudo-query terms, shown in blue, and relevant terms, shown

in grey.

User u

d3

d7

d12

d6

training data

testing data

pseudo-query

relevant terms

Figure 4.1: Data segmentation method for tag suggestion experiment

Since this experiment is intended to test the ability of various algorithms

to return a good ranked list of suggested items the following evaluation metrics

are used:

P@k - “precision at rank k” the ratio of suggested tags that are relevant,

averaged over test resources. P@k is reported for k=1, k=5 and k=20.

S@k - “success at rank k” the ratio of times where there was at least 1

relevant item in the first k returned. S@k is reported for k=1, k=5

and k=20. S@1 and P@1 are the same and are therefore not reported

separately.

S@k = 1
|q|

∑|q|
i I(rank(di, qi) ≤ k)

where I is the indicator function.

MRR = “mean reciprocal rank” the multiplicative inverse of the rank of

the first relevant suggested item, averaged over test resources.

MRR = 1
|q|

∑|q|
i

1
rank(di,qi)
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Note the choice to evaluate the precision and success metrics for k values up

to 20 as this is the number of tags usually suggested on social tagging web

sites. k values of 1 and 5 are the most commonly reported in other literature

and people tend to pay more attention to the first few results in a ranked

list. When training the systems 20% of resources chosen at random and held-

out and then are “binned” into two sets; one (hereafter referred to as set1)

containing documents with between 4 and 8 annotations and the other (set2)

with 9 or more annotations. This allows for analysis of the performance of the

models for both well annotated and poorly annotated resources.

4.2.2 Baselines

So that the results from the tagging models are compared to the algorithms

already used in social tagging systems the above tests are run on 3 “baseline”

methods, LDA as well as on both of the Tripartite Topic Models (TTM1 and

TTM2). The first 2 of these methods simulate the tags that would be suggested

on sites such as Flickr and Delicious and the final baseline method represents

a slightly more sophisticated algorithm that has been proposed in previous

literature [SvZ08, Sch06].

TopSys the simplest set of suggestions; the top k tags in the system by fre-

quency of use.

TopUser the most frequently used tags by the user who tagged the resource,

if more than 1 user has tagged the resource the union of all users’ tags

is used.

CoTag tag co-occurence using asymmetric normalisation, as used in previous

research to find like terms in a folksonomy [Sch06]. This method is

described in more detail below.

CoTag

The third baseline measure used is based on the concept of normalised tag co-

occurence. The tag co-occurence between two tags i and j is simply the number
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of times those tags are both used to annotate a single resource, i.e. |i ∩ j| -
the union of the two tags. These raw co-occurence numbers do not provide

particularly useful information as they fail to take the frequency of individual

tags into account. Therefore these raw values are commonly normalised by the

frequency of the tags, this can be done either symmetrically or asymmetrically.

The symmetric method is also known as the Jaccard coefficient and normalises

the co-occurence frequency by the union of the two tag frequencies:

J(i, j) =
|i ∩ j|
|i ∪ j| (4.5)

The asymmetric method only normalises the frequencies by diving over the

number of times the second tag is used:

Sim(i, j) =
|i ∩ j|
|i| (4.6)

This can be interpreted as the probability of a resource being annotated

with tag j given that it has also been tagged by i. If these values are summed for

all terms in the psuedo-query then a ranked list of tags related to the pseudo-

query can be obtained, this can be seen as similar to the result from the topic

models described previously. This asymmetric method has been frequently

used in previous research in order to find like terms in a folksonomy [Sch06]

and so is used as a basis for the third baseline.

4.2.3 Data Set

Unlike more traditional forms of Information Retrieval, no standard data sets

are yet available for the evaluation of social tagging systems. This does intro-

duce the issue of acquiring sufficient data for testing, however it does mean

that data collected can be drawn from a system that is currently in use, thus

providing a more realistic setting for the analysis. For these experiments the

tests were conducted on data provided by Bibsonomy1 - a social bookmark and

publication sharing system and a good example of a large, broad folksonomy

1Knowledge and Data Engineering Group, University of Kassel: Benchmark Folksonomy
Data from BibSonomy, version of June 30th, 2007. http://bibsonomy.org/
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and as such is ideal for the research aims of this work. The Bibsonomy data

set shares similar characteristics with other large folksonomic data sets noted

in previous research, most notably the tag use frequency follows a power law,

as does the number of annotations per resource.

To filter out noise and to provide useful data for the evaluation methods

any resources that have less than 4 annotations are discarded and similarly any

tags that are used to annotate less than 5 resources are removed. This results

in a data set of 36167 resources from 992 users with a total vocabulary of 5116

terms, 28143 (77.8%) of the resources fit into set1, the remaining 8024 (22.2%)

fit into set2. Stratified random sampling was used to select test data resulting

in a total of 7235 (20%) held-out resources with 5630 (79.4%) from set1 and

1605 (20.6%) from set2. In order to ensure that the results returned are not

simply due to the held-out resources chosen all tests are performed over 10

different random folds. The unfiltered data set displays similar characteristics

to those of other folksonomies analysed in related literature; the mean number

of tags per resource is 3.27 (median 2), 68.6% of all resources have less than 3

tags. The filtered data therefore represents only 31.4% of the total Bibsonomy

data set, highlighting the wide applicability of a good tag suggestion system.

Figure 4.2 shows histograms of resource description count (i.e. the count

of all the tags, conflated over all users) and user count for the resources in the

data set. To better show the distribution, those resources only tagged by a

single user are not included in the user count plot. We can see that for both

metrics the distributions exhibit quite consistent exponential decay, indicating

that they may follow a Zifpian or Pareto distribution as would be expected

for such data. This clearly demonstrates the need for both tag suggestion

and use of robust and intelligent algorithms in such systems. Tag suggestion is

likely to shift the length distribution so that in expectation, resources are more

thoroughly annotated. Also, since for the vast majority of cases the data only

contains 1 or 2 users’ descriptions of resource, the “wisdom of crowds” effect

will not often be present and therefore understanding of the semantics of the

few tags available is key. It is in these cases that the topic models are likely

to have the greatest advantage, particularly the tripartite models as they are

able to also leverage understanding of the tagger’s interests and word choice
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Figure 4.2: Histograms of resource description length and user count

4.2.4 Parameter Settings and Determining Convergence

One very influential parameter that must be set in any latent topic model is

the value of Z; the number of latent topics in the model. In this analysis the

results in terms of precision and recall for the tag suggestion algorithms are

compared over a series of monotonically increasing values of Z. The value of

Z where the delta improvement in metrics over the previous value is small is

where the optimal value of Z lies. When run on the Bibsonomy data set a cor-

relation was found between both metrics for the values over successive values

of Z, with both indicating that around 200 latent topics provides the most opti-

mal fit for the data using the tagging models. In general, topic models are not

particularly sensitive to hyperparameter values, however it is still pragmatic

to make sensible choices for them and investigate their effect of performance.

Since all the hyperparameters in the models are symmetric Dirichlets in real-

ity only a single value needs to be chosen for each which will then be applied

over the Z dimensions of the model. Choosing large values will add significant

smoothing and may cause the distribution over latent topics to be quite even,

with all dimensions being assigned approximately the same probability mass

of 1
Z . On the other hand choosing a very small value will allow the data to

overwhelm the prior much more easily, resulting in a more peaked distribu-

tion. It is generally advisable to choose values that mediate between these 2
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extremes in order to allow the data to speak for itself whilst maintaining some

smoothing and parameter tying in the event of sparse data. The concentration

parameters α and β were set to 25.0 and 0.1W respectively, meaning that the

α setting is slightly lower than is common in the literature [GS04]. It was

found that a slightly smaller value provided better results, perhaps because

the average length of a “document” (resource) in these systems is much less

than in a more standard IR corpus. For both personalised models γ was set

to 25 and in the TTM2 model α was set to 0.1D.

The Rao-Blackwellised Gibbs sampling method proposed by Styvers and

Griffths [Hei08, GS04] is used to sample the models. It is important when

using methods such as Gibbs sampling to estimate a posterior distribution

that the Markov chain is given enough time to “burn-in”, i.e. when it begins

to approach a stationary distribution [SR93]. To determine when the chains

are beginning to approach a stationary distribution the perplexity1 or log-

likelihood of the model can be calculated given the currently sampled estimate

every n iterations. If the chain is converging correctly these values should ini-

tially decrease quite rapidly, however as the chain approaches convergence the

change (delta) in perplexity should become smaller until the deltas become

negligible. For all of the topic model estimations the first 300 iterations of

the chain were discarded and then averages were taken over samples of the

chain thereafter until reaching 400 iterations. FIgure 4.3 shows the normalised

perplexity scores for LDA and TTM1 over the iterations of the sampler. The

tagging model takes slightly longer to converge initially, which is not surprising

given its increased complexity, but eventually is able to attain a smaller per-

plexity than LDA, suggesting a better fit to the data. Both models appear to

have converged well within the first 300 iterations indicating that the samples

taken from the last 100 samples are being drawn from a close approximation

to the posterior, perplexity within the kept samples is still changing by small

amounts suggesting that the chain is mixing well and avoiding getting stuck in

local maxima. Due to it having a very different representation of documents,

perplexity results from TTM2 cannot be directly compared with those from

1The perplexity is monotonically decreasing in the likelihood of the data and is equivalent
to the inverse of the mean per-word likelihood.
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TTM1 and LDA. Figure 4.4 shows the perplexity of TTM2 over iterations of

the sampler where we can see that the chain appears to have converged well

within the first 200 iterations, is mixing well and in fact seems to converge

much more quickly than for TTM1.
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Figure 4.3: Perplexity over iterations of the sampler for LDA and TTM1

4.3 Results

This section presents the results from the series of experiments described in the

previous section. It first looks at overall performance of the 5 tag suggestion

methods for a “typical” scenario of a user providing 2 tags for the method to

base their suggestions on, the difference in performance over the two resource

“sets” is analysed and comments are made on how this is likely to relate to

real-world performance. Finally the section looks at how varying the number

of user tags provided affects the quality of tags suggested by the models.
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Figure 4.4: Perplexity over iterations of the sampler for TTM2

4.3.1 Tag Suggestion Performance

The results of the tag suggestion tests using resources from set1 (sparsely an-

notated resources) are presented in Table 4.1. Note that emboldened results

indicate the best result achieved for that metric and * indicates a statistically

significant improvement over CoTag at 95% confidence. The results for TopSys

over all metrics are extremely poor (as expected), the results for TopUser are

slightly better but still well below those returned by the other more sophis-

ticated methods. Statistically significant improvements of both tagging topic

models over both CoTag and basic LDA are observed over all metrics. These

results show that the tripartite models are able to fit the available training

data better than the other methods and therefore provide more useful and

accurate suggestions. The larger improvements in precision and MRR indicate

that the TTM methods are suggesting fewer incorrect tags and are returning

more relevant tags at a higher rank than the other methods. The results also

indicate that TTM2 is indeed a better model for tagging data than TTM1,

especially where information available is sparse. Table 4.2 shows examples

of the suggestions provided by TTM2 for 3 different resources, bold guessed
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terms are correct.

TopSys TopUser CoTag LDA TTM1 TTM2

S@1 0.0490 0.2269 0.3449 0.3197 0.3736* 0.4048*

S@5 0.1540 0.4495 0.5648 0.5494 0.6270* 0.6515*

P@5 0.0353 0.1329 0.1786 0.1705 0.2029* 0.2334*

S@20 0.3552 0.6853 0.7637 0.7583 0.8238* 0.8332*

MRR 0.1023 0.2718 0.3608 0.3574 0.4056* 0.4058*

Table 4.1: Results for sparsely annotated resources

Given Relevance judgements Suggestions

php, tool php, software, tools, opensource, software, internet, mysql,
internet, design, free, resources design, webservice
development freeware php cms

ocean, sea flickr, photos, sky, ocean, sky, water, scenery, sand,
sandy, beach, ocean, sky beach

reference, reference, education, free, learning, mp3,
podcasts learning, online, courses, education, online, lernen

podcasts, reference, education

Table 4.2: Examples of tag suggestions made by TTM2

The results from resources from set2 (densely annotated resources), pre-

sented in Table 4.3, show that while the tagging models are still able to out-

perform other methods over all metrics, the improvements are smaller. In this

case the difference in performance between CoTag and TTM1 is statistically

significant for all metrics except for S@20. Again the greatest improvements

are in precision and MRR, however all improvements over LDA and CoTag are

smaller with the success metric being fairly similar for all 3 methods. This is

likely because the small number of resources where the systems are unsuccess-

ful are annotated with terms that have either not been used together before or

do not exist at all in the training set. In this case the scope for performance

improvement over the CoTag method is very small. For these resources TTM2

does not show improvement over TTM1 as it did for the sparser resources and
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for some metrics TTM1 actually returns a better score however none of these

differences are significant. This is indicating that for resources where a large

amount of data is available the benefits gained from personalisation are less

significant.

TopSys TopUser CoTag LDA TTM1 TTM2

S@1 0.1576 0.3499 0.6312 0.5879 0.6437* 0.6441*

S@5 0.3829 0.5882 0.7811 0.7693 0.8132* 0.8117*

P@5 0.1258 0.2436 0.4007 0.3796 0.4236* 0.4241*

S@20 0.6593 0.8246 0.9376 0.9329 0.9516 0.9513

P@20 0.0749 0.1391 0.2022 0.1972 0.2181* 0.2179*

MRR 0.2244 0.2788 0.3857 0.3890 0.4125* 0.4118*

Table 4.3: Results for densely annotated resources

4.3.2 Varying the Number of Input Tags

Selected results from CoTag and TTM1 are presented in Table 4.4 for varying

numbers of input tags where the number of input tags is indicated by the

number in the square brackets. These results indicate that the performance

of CoTag at 2 and 3 input tags is significantly better than with 1, however

there is little difference between the performance with 2 or 3 tags. TTM

performs well when only given a single input tag to infer suggestions from and

its performance in terms of precision and MRR increases as the number of

input tags increases. This is a very useful property as in many cases users will

only supply a single tag so it is important that the method is able to make

good suggestions based on such a small amount of information. Success@k

metrics are not significantly different over varying numbers of input tags.

4.4 Conclusions

This experiment has demonstrated that the models for social tagging data de-

rived in the previous chapter can suggest more relevant tags than current sys-

tems by comparing these to held-out tags from annotated resources. In terms
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CoTag[1] CoTag[2] CoTag[3] TTM[1] TTM[2] TTM[3]

S@1 0.6058 0.6398 0.6186 0.6464 0.6594 0.6492

S@20 0.8986 0.9322 0.9388 0.9366 0.9522 0.9520

P@20 0.1936 0.2022 0.1948 0.2214 0.2245 0.2302

MRR 0.3494 0.4032 0.4061 0.3966 0.4172 0.4243

Table 4.4: Results from densely annotated resources from fold 10 for varying
number of input tags

of precision, the use of the new models improves upon the suggestions provided

by the CoTag method on sparsely annotated resources by between 7.87 and

30.6%, improves upon basic LDA by 11.4 to 36.9% and vastly outperforms

the more common TopSys and TopUser methods. The results are particularly

promising for sparsely annotated resources which are extremely common in

tagging systems, indicating that suggestions from the tripartite models would

work well in a live system. Analysis of the data obtained from BibSonomy

indicated that this might be the case and highlighted the importance of this

particular behaviour of the tripartite models as resource are frequently sparsely

annotated. The significant improvements over LDA highlight that the user’s

tagging profile can be successfully incorporated into the model and used to

improve estimation performance. For sparse resources where the user profile

information is able to be brought to bear most effectively, TTM2 is shown

to be a better model of the data than TTM1 and over some metric is able

to deliver significant performance improvements. However for more densely

annotated resources the differences between the 2 models are negligible and

are well within the bounds of normal statistical variation.
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Chapter 5

Experiment 2: Personalised Search

“Facts are meaningless. You could use facts to prove anything

that’s even remotely true!”

Homer Simpson

Following the successful results from the previous section this experiment

takes the idea of personalisation further by attempting to personalise search

results, again using a large sample of real data to validate the performance of

the models. The experiment is similar to the previous one in that items are to

be ranked based on both some new input data and the current user’s topical

interests, however in this case the models must provide personalised ranking

for resources rather than tags. This problem is clearly drawn from the field of

information retrieval and in particular, language modelling.

The field of Information Retrieval (IR) generally involves the ranking of a

set of documents from a corpus given a textual search query supplied by a user.

An ideal system would rank the documents in descending order of relevance

to the query provided therefore maximising the chance of the user finding the

one(s) that will best fulfil his information need. Viewing the problem from a

probabilistic viewpoint we could also describe this ideal system as ranking the

documents in descending order of the probability of utility to the query. In

Language Models a separate model is constructed of the language contained

within each document so that for each unique term in the corpus there is

the probability of that term given the document p(w|d). The assumption can
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then be made that each term in the query is drawn independently from this

distribution and therefore the probability of the document given the query can

be calculated in the following manner:

p(d|q) ∝ p(d)p(q|d) = p(d)
∏

w∈q
p(w|d) (5.1)

This requires an estimate for p(w|d), the probability of term w occurring in

the language model for document d. This can be calculated via the principle of

Maximum Likelihood thus: ˆp(w|d) = Nw,d/Nd where Nw,d is the count of term

w in document d and Nd is the length of d. These raw estimates do not work

well in practise due to the finite length of documents, particularly in the case

of socially generated documents descriptions which comprise a small number

of tags. It is therefore necessary to apply some form of smoothing to these

estimates where for each term some “extra” probability mass is added to the

term counts actually observed in the documents. These additional probability

masses are usually in proportion to that term’s frequency of occurrence in

the overall corpus. Regardless of how this is calculated the ranking formula

consists of the product of 2 distinct parts; a prior on the probability of the

resource, p(d), and the probability of the query given the resource, p(q|d).

5.1 Ranking Resources

Following these assumptions, formulas for ranking resources using the param-

eters estimated in the topic models described in section 3.3 can be derived. As

described above, given a query q the formula should return to the user a ranked

set of resources (d ∈ D) according to their likelihood given the query under the

model. In topical models, rather than using raw term probabilities, the p(w|d)
can be modelled by summing over the topics and can follow the assumptions

in the generative process to devise an appropriate ranking algorithm. In the

case of LDA this can be estimated as follows:
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p(d|q) ∝ p(d)p(q|d) = p(d)
∏

w∈q
p(w|d) (5.2)

= p(d)
∏

w∈q

∑

z

p(w|z)p(z|d) (5.3)

where p(d) = Nd/N (5.4)

Since the data also records which user has issued the query the formula for

the tagging models can also include that user’s preferences into the ranking.

Therefore they rank documents according to their likelihood given both the

query and the user, the ranking formula for TTM1 is:

p(d|q, u) ∝ p(d|u)p(q|d, u) = p(d|u)
∏

w∈q
p(w|d, u) (5.5)

where p(d|u) = p(d)
∑

z

p(z|d)p(z|u)πu

p(z)
(5.6)

and p(w|d, u) =

∑
z p(w|z)p(z|d)p(z|u)πup(z)−1

∑
z p(z|d)p(z|u)πup(z)−1

(5.7)

In the case of TTM2 the p(d|u) and p(q|d, u) are as follows:

p(d|u) =
∑

z

p(d|z)p(z|u)πu (5.8)

and p(w|d, u) =

∑
z p(w|z)p(d|z)p(z|u)πu

∑
z p(d|z)p(z|u)πu

(5.9)

Again notice that the formulas above are the product of 2 parts: a user-

specific document prior, p(d|u), and the probability of the query given the

resource and the user, p(q|d, u). Notice also that a weighting parameter πu has

been introduced in the range zero to one on p(z|u) so that its influence of the

user’s topical interests on the rankings can be varied. The intuition behind

this being that resources likely tell us more about their own topic distribution

than the users who annotated them.
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5.2 Experimental Set-up

In order to evaluate the relative performance of the tagging topic models on

real-world data a series of experiments were performed comparing them with

LDA and 3 other baselines, 2 of which are extremely competitive and represent

the best of traditional and more modern IR techniques. Data to perform

this experiment was obtained by conducting a crawl of the popular social

bookmarking site delicious, a process described in more detail later.

5.2.1 Evaluation Method

In order to generate queries to input into the ranking algorithms it is possible to

use sets of tags from a social bookmarking system. To do this each bookmark

in the test set (i.e. set comprising all tags for a resource contributed by a single

user) can be treated as a pseudo query. Clearly, to evaluate success some form

of relevance judgement for each pseudo-query is required and since it is known

which resource was chosen for each bookmark a ranked resource can be said to

be relevant if it is the same resource the user actually bookmarked. In keeping

with the beliefs outlined in the previous experiment on tag suggestion, this

method is chosen as we are interested in personalised results, therefore only

the user(s) who originally tagged the resource can really say whether it is truly

relevant to them or not. Again, this evaluation technique will more accurately

reflect the performance of a live system and is likely to in fact give a slight

under-estimate of the true performance.

In order to evaluate ranking performance the success at rank k (S@k)1 and

the mean reciprocal rank (MRR) can be calculated. These 2 measures were

described in detail in chapter 4. Since the primary interest is of how well these

models rank URLs, the S@k and MMR are reported up to rank 10 as they are

the most commonly reported in other literature since people tend to only pay

attention to the first page of results in a ranked list.

1Note that since one bookmarked URL per set of tags is available, precision at rank k
(P@k) is equal to S@k/k and thus it is not reported separately.
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5.2.2 Data Set

Again, there is no standard test set available for social tagging data and there-

fore it is necessary to obtain real data from a social tagging web site. In order

to demonstrate the abilities of the models it is important to choose a broad

folksonomy to draw the data from so that some information will be available in

the training set for each resource since more than one user is able to annotate

each resource. This also allows the models to demonstrate any performance

gains achieved due to personalisation and will show that they are able to deal

with different vocabulary being used to describe the same resource. For this

experiment a crawler was written in Java to obtain a large sample of tagging

data from the popular (and seminal) social bookmarking system delicious.

When crawling delicious for data it was important to ensure a random

sample of recent data, to do this the crawler began by downloading the 100

most recent URLs submitted to delicious and recorded the usernames of the

users who bookmarked them. It continued this process until a sample of 60,663

unique usernames had been collected. Then for each of these usernames the

respective user’s 100 most recent bookmarks were downloaded (as this is the

largest number of recent bookmarks the delicious API will allow access to).

Note that as 100 is the maximum number of bookmarks available via this

crawling method per user not all users had this many bookmarks available

resulting in 31% of the users having less than 100 bookmarks.

Each “document” (URL) is uniquely identified by computing a 32 bit MD5

hash of the complete URL, each URL and user in the data set was assigned a

unique and anonymous ID number. To clean the resulting data set, only the

URLs which had been bookmarked by more than 2 unique users were selected

to ensure that all resources will always exist at least once in the training data.

In order to give the systems reasonably complete user profiles to work from

only the users who had bookmarked more than 60 unique URLs from the

remaining data after the first pass were selected. Each remaining bookmark is

a triple consisting of a URL identifier, a user identifier and a set of tags. The

set of tags were parsed for each bookmark and finally all tags that appeared

less than 2 times in the data set were removed.
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Metric Original Reduced

users 60,663 9,587

URLs 476,248 111,232

vocab count 113,428 14,023

bookmarks 3,235,299 569,117

word occurrences 12,294,136 2,473,738

avg bookmarks/user 53.3 59.4

avg bookmarks/URL 6.79 5.1

avg annotations/URL 25.8 22.2

avg annotations/bookmark 3.8 4.3

Table 5.1: Counts and statistics for the original dataset created from the
delicious crawl (Original) and after reduction (Reduced)

The dataset was separated into training and testing subsets by retaining

the last 10% of bookmarks by each user for testing. Doing so ensures that

the test data is distributed over users in the same way as the training data.

Therefor the model is trained on the first 90% of all bookmarks tagged by each

user, i.e. all of the tags that each user assigned to those resources contained

within the first 90% of their complete set of bookmarks. This means that

for each user 10% of his/her bookmarks and associated tags are unknown to

the system and these can therefore be used to test the system. Given the

stipulation that each individual resource must be bookmarked by more than

one user this means that the system will still have some tags to describe each

resource, however it will not have been trained on the tags assigned by the

user doing the search.

The original data set and the resulting reduced set is described in more

detail in Table 5.1, notice that the averaged statistics for both datasets are

quite similar.

5.2.3 Baselines

In order to usefully evaluate the performance of the topic models they are

compared with 3 different baselines; SMatch - which emulates the kind of

simple matching formulas currently used when searching social tagging sites,
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Okapi BM25 - a popular and quite robust probabilistic retrieval framework and

BayesLM - a competitive baseline Language Model with Bayesian smoothing.

For each of the baseline methods any free parameters were optimised to ensure

a fair and unbiased comparison with the topic models. Here I briefly describe

the formulas for these models:

SMatch score(d, q) =
∑

w∈q Nw,d

BM25 score(d, q) =
∑

w∈q IDF (w). Nw,d(k1+1)

Nw,d+k1(1−b+b |d|
avgdl )

where IDF (w) = N−Nw+0.5
Nw+0.5 , |d| is the length of resource d and avgdl is

the average length of a resource over the whole training corpus. k1 and

b are free parameters which were optimised to 2.0 and 0.1 respectively.

BayesLM p(d|q) = p(d)
∏

w∈q
Nw,d+µ(Nd/N)

Nd+µ

where µ is the Bayesian smoothing parameter which was optimised to

0.75.

Note that BayesLM is the same as the non-personalised model used by

Wang et al. [WCY+10] except that it was adapted to deal with queries of

lengths greater than one and can be described as a language model with a

Bayesian prior on the term probabilities. The full personalised model described

in the paper was tested as a baseline, but was found to perform extremely

poorly. This is perhaps because this experiment uses a much larger data set

with a vocabulary 14 times larger than theirs. In this case their choice to

use raw tags as user profiles (rather than reduced dimensionality features as in

this thesis) may have resulted in significant overfitting and poor generalisation.

Therefore the results from their original personalised model are not reported.

5.2.4 Parameter Settings and Sampling

A large range of parameter settings for both the number of topics in each model

were tested, (discussed further below), and similarly for the hyperparameter

settings for each of the prior distributions. The same values for the hyperpa-

rameters as in the earlier tag suggestion experiment 4 were used. Again, none
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of the topic models were particularly sensitive to parameter value choice, pro-

vided one does not choose excessively low values, where almost no smoothing

is being applied or in the other extreme very high values; smoothing out the

information from the data completely.

For sampling the Rao-Blackwellised Gibbs sampler [GS04] is used. For all

models the chain is sampled for 300 iterations in total, as this appeared to

consistently give good convergence in terms of model likelihood, and the first

200 samples are discarded as chain “burn-in”. The remaining 100 samples

from the end of the chain were averaged over to obtain the final parameter

values.

5.2.5 Sampling Using the Weighted User-topic Distribution

As noted in the Ranking Resources section above the intuition is that while giv-

ing equal weight to both the resource and user distributions within the models

may work well for tag suggestion, this approach may not work quite so well

for ranking resources. In this case we can expect the resource to convey more

information about itself than the users who are annotating it, therefore in the

ranking formulas a weight, πu, is introduced on the user distribution to account

for this. However the assumption that both the resource and user distribu-

tions are equally important is still being made in the sampling. Unfortunately

incorporating such a weight into the sampling by simply raising the user dis-

tribution to a power will not have the same effect as it does in the ranking

formula. This is because, in the experiments conducted, the Gibbs sampling

routine still eventually tended towards the non-weighted full conditional dis-

tribution over successive iterations. Since the algorithm is always averaging

over multiple samples from the full distribution it simply takes slightly longer

to converge.

The solution to this problem is to only sample using the user distribution,

ψu, on every kth sample. By averaging over a large number of samples from the

end of the chain this approximates a weight of 1
k . In all of the experiments the

parameter k was set to 5, resulting in an effective weighting of 0.2. This was

found to have very little impact on the convergence time of the chain and has
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Model S@1 S@5 S@10 MRR@10

SMatch 0.0555 0.1372 0.1860 0.0900

BM25 0.1701 0.2975 0.3376 0.2238

BayesLM 0.1819 0.3299 0.3772 0.2440

LDA 0.1994 0.3397 0.3936 0.2579

TTM1 0.2030 0.3556∗ 0.4158∗ 0.2675∗
TTM2 0.2137† 0.3559∗ 0.4202∗ 0.2743†

Table 5.2: Ranking performance of all models on the test data set

the added benefit of slightly reducing the average computational complexity

of the sampling.

5.3 Results

Table 6.1 shows the results of the ranking experiments for all of the models, for

all of the topic models the number of topics is set at 250. ∗ indicates the result

is significantly better than LDA (paired t-test, 95% confidence, p < 0.05), †
indicates the result is significantly better than TTM1 and LDA (paired t-test,

95% confidence, p < 0.05). Between the more “conventional” ranking methods

the language model with Bayesian smoothing has the best overall performance

and considering its relative simplicity, it performs very well. BM25 is clearly

less suited to this kind of data than it is to more normal documents and the

SMatch algorithm - unsurprisingly - returns particularly poor results.

Comparing the “conventional” models with the topic models results show

that over all metrics the topic models perform significantly better than the

baselines. This is in contrast to results from previous work into ranking us-

ing topic models [WC06] and perhaps highlights the difference between the

“documents” constructed from social tagging data and much longer real-world

documents more commonly discussed in IR literature. In the case of social

tagging data, the topic model’s generalisation of the data and ability to deal

with some of the vocabulary problems noted earlier are much more beneficial

than perhaps they are with more normal corpora.

Comparing the 3 topic models it is clear that both personalised models are
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able to outperform the unpersonalised LDA baseline. TTM1 outperforms LDA

by a statistically significant margin on all but one of the metrics whereas TTM2

outperforms it significantly over all measures. Between the 2 personalised mod-

els TTM2, with its clearer and more straightforward modelling assumptions

and ranking formula, is able to outperform TTM1 over all measures (and as a

result also significantly outperforms LDA). TTM2 is able to outperform TTM1

by a significant margin on both S@1 and MRR@10 which, considering the task

at hand (ranking of resources), are arguably the most important metrics. This

is because a better Mean Reciprocal Rank indicates that the model is able to

rank the relevant resources higher more often where the user is most likely to

see and therefore click on them. This is confirmed by the significant improve-

ment in S@1 score where TTM2 is more able to identify the relevant resource

as being most likely given the user and query on the first attempt.

5.3.1 Varying the Number of Topics
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Figure 5.1: MRR@10 over varying numbers of topics

When using hidden topic models an important consideration is how com-
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Figure 5.2: S@10 over varying numbers of topics

plex a model should be used in terms of the number of latent topics. Each

model (in this case LDA, TTM1 and TTM2) can in fact be viewed as being a

class of an infinite number of different models, where the complexity in number

of topics is in the range {1, . . . ,∞}. There has been a considerable amount

of work published on so called non-parametric processes where the best model

is inferred automatically based on the training data, the most appropriate for

this work being Dirichlet Processes [TJBB06]. However these processes add

significant further complexity and as such it is generally acceptable to use

empirical methods to choose the most optimal parameterisation.

This work does not seek to optimise the models in terms of held-out likeli-

hood but in terms of retrieval performance where these techniques may not be

as appropriate. We would expect improvements in the held-out likelihood to

taper off before improvements in retrieval performance do. Therefore param-

eters were estimated for the 3 topics models over different numbers of topics

to see how retrieval performance was effected. Figures 5.2 and 5.1 show the

results for the metrics Success@10 and MRR@10 for the 3 topic models over

the range of topics from 100 to 250 with increments of 25. We also show
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the results from the 2 most competitive non-topic model baselines to allow

direct comparison, SMatch is omitted from the figure as its performance is

considerably worse than all the other models.

One can see quite clearly from the figure that as the number of topics is

increased, the performance also increases, not a particularly surprising result.

There appears to be a slight tailing off of performance improvement as the

number of topics increases, however it is apparent that even better ranking

performance could be achieved if the number of topics were to be increased

even further. The increase in topic counts was stopped at 250 due to time

constraints and because by this point it was clear that the topic models were

outperforming all of the baselines. There is no reason why in principle the

topic count couldn’t keep increasing, however it can be expected that at some

point performance would peak and the models could then be in danger of

overfitting. Furthermore when using such systems a balance should be made

between model complexity in terms of topics and ranking performance, since

the amount of time required to rank resources using the models is linear in the

number of topics.

Comparing between models, the data indicates that LDA needs approxi-

mately 175 topics before it begins to outperform BayesLM whereas the 2 per-

sonalised models only need somewhere between 125 and 150 topics, showing

the advantage of incorporating the extra user data. The 2 personalised models

have similar performance profiles over topics, however it appears that TTM2

begins to generally outperform TTM1 once it has enough topics to work with.

This trend is particularly clear in the MRR figure where we can see that the 2

models only begin to diverge at around 175 topics and are fairly similar before

this point.

5.3.2 Do We Have Enough Data?

As noted earlier in this chapter, due to restrictions imposed by the delicious

public API, a maximum of only 100 bookmarks per user was available for

download. Once all singleton resources and tags had been removed from the

data set this left a fairly small profile for each user on which to build interest
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S@10 MRR@10
Model 0-60 60-80 0-60 60-80

SMatch 0.1707 0.1667 0.0815 0.0811

BM25 0.3232 0.3271 0.2098 0.2180

BayesLM 0.3624 0.3776 0.2344 0.2291

LDA 0.3694 0.3941 0.2212 0.2534*

TTM1 0.3705 0.4175* 0.2361 0.2700*

TTM2 0.3719 0.4454* 0.2394 0.2804*

Table 5.3: Ranking performance over user profile size

profiles over the topic space (an average of 59.4 bookmarks per user). To

investigate how performance was impacted by the size of the user profiles users

were classified based on the number of resources they had bookmarked in the

training data into two classes. One class containing users who had between 0

and 60 resources in their profiles and the other containing users with between

60 and 80 resources. Table 5.3 shows the results of this analysis. * indicates

60-80 class significantly different from 0-60 class (p < 0.05).

The results show, unsurprisingly, that the non-topic model baselines do not

benefit from having more information about the user. There is no significant

difference in results between the 2 bins for SMatch, SM25 or BayesLM. In con-

trast, all of the topic models appear to show better performance when ranking

resources for users with longer profiles. For LDA, the difference between the

S@10 values for the 2 bins is not significant, however for the MRR@10 metric

it is significantly different.

This effect is far more pronounced in the personalised models, particularly

TTM2 where the increase in both measures is very large when it has more

information about the user. In fact the difference in performance between

the 2 bins over both metrics for both personalised models is significant. This

indicates that these models would perform even better if more information was

available for the users, which would be the case were these techniques to be

utilised on a live system. Note that results are not reported from users with

more than 80 resources as it only covers a very small percentage of the total

users (103 out of 9587).
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Topic 1 Topic 2 Topic 3 Topic 4
france car cat zoo
paris cars cats animals

brittany bike kitty animal
belgium motorcycles cute nature
alps japan kitten wildlife

europe motorcycle pet bird
geneva chiba animal birds

chamonix auto pets fish
switzerland motorsports animals aquarium
bourges automobiles feline monkey

Topic 5 Topic 6 Topic 7 Topic 8
nyc old portrait italy

newyork window selfportrait travel
newyorkcity rust face europe
manhattan sign people rome

ny wall self vacation
new door girl italia
york decay eyes roma

bigapple shadow me holiday
brooklyn blue smile florence

usa car man firenze

Table 5.4: Most probable terms for 8 topics

5.3.3 Analysis of Topics

One of the key motivations for using topic models (and dimensionality reduc-

tion in general) is their ability to uncover relationships between terms and

use these relationships to improve search results. As noted previously, in so-

cial tagging data there are many cases of polysemy and synonymy either due

simply to word choice or due to people tagging in different languages or with

different levels of knowledge. It is these significant and frequently observed

differences in word choice combined with the short length of descriptions that

make simple search algorithms less effective for social tagging data.

Table 5.4 shows the most probable terms (tags) for 8 different topics un-

covered by the TTM2 topic model. Manual analysis of these topics suggests

that they are extremely cohesive and that the model is indeed able to group
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together related terms and in doing so uncover the semantic meanings of those

terms. Note that this cohesiveness is not necessarily expected as the models

simply seek to minimise predictive error by maximising the likelihood of the

data, a process that may not result in “topics” easily identifiable by human

assessors. However, the fact that these models are able to return such coherent

word lists is certainly advantageous.

The top terms in topic 8 show several examples of this kind of semantic

grouping or clustering. For example the model has been able to group together

the same words from different languages, in this case English and Italian, i.e.

the pairs Italy - Italia, Rome - Roma and Florence - Firenze. It has also

uncovered the important synonym relationship between the British English

word ‘holiday’ and the US English equivalent ‘vacation’. Similarly in topic 5

we can see that many different synonyms for New York have been clustered

together. It is notable that all of these terms are never used to annotate a

single resource, indicating that the model is able to uncover 2nd order co-

occurence relationships. Other topics display evidence of basic level variation

and synonymy, particularly topics 2 and 4 where a variety of related tags have

been appropriately clustered together. Polysemy also appears to have been

dealt with well in the example topics with the tags ‘europe’, ‘animal’ and

‘animals’ having high probability over more than one topic.

5.4 Conclusions

Chapter 2 discussed the problems facing ranking algorithms when dealing with

social tagging data and Chapter 3 proposed the use of hidden topic models

to deal with its inherent sparsity and vocabulary ambiguity. This highlighted

the two most prominent issues resulting from this kind of data and indicated

how such models might be able to at least partially overcome these obstacles.

Reference to related work shows that topic modelling has been successfully used

in this area in the past, however it has not been used to provide personalised

search results based purely on tagging data.

Results from the experiments in this chapter showed that for social tag-

ging data, the topic modelling approaches provided better resource rankings
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than even the most competitive baselines and outperformed them all by a

statistically significant margin. They also demonstrated that the personalised

tagging topic models were able to effectively leverage the extra user informa-

tion to present better rankings than the unpersonalised LDA model. Over all

measures the TTM2 model was able to significantly outperform LDA and was

able to significantly outperform the less parsimonious TTM1 model on 2 key

metrics. Further analysis of the results indicated that the performance of the

tagging topic models could be improved further, relative to the other systems,

if more data could be obtained for each user.
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Chapter 6

Experiment 3: Collaborative

Filtering

This experiment uses a large sample of ratings from a popular movie ratings

web site to train the collaborative rating models introduced at the end of

Chapter 3. The output from these models is used to attempt to predict unob-

served ratings given by users. These predicted ratings are based on a number

of biases as outlined in chapter 3 and the primary goal is to minimise the error

of the predictions in the least-squares sense.

6.1 Predicting Ratings

The prediction problem is best described by saying that we would like to

“fill in” the original sparse ratings matrix, extrapolating (or predicting) a

rating r̂um for every possible user-item pair from the limited data available.

More practically we wish to define some function or model which will minimise

the prediction error over the test data. Two metrics are commonly used to

determine this average error; the Root Mean Squared Error (RMSE) and the

Mean Average Error (MAE).

RMSE =

√√√√ 1

Ntest

Ntest∑

i=1

(ri − r̂i)2 (6.1)
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MAE =
1

Ntest

Ntest∑

i=1

|ri − r̂i| (6.2)

The RMSE is commonly used in statistics for measuring the difference between

the set of values predicted by a model and the values actually observed from

the system being modelled. It is a good measure of precision and is an unbiased

estimator of the standard deviation of the predictions. Furthermore the mea-

sure assumes that errors are drawn from a Gaussian distribution which is the

same assumption generally made in collborative filtering models, it is therefore

a good choice of error function. The MAE is simply the mean absolute differ-

ence between the predicted rating and the actual rating, over the whole test

set. We report both metrics as they provide different information regarding

the performance of predictions: the RMSE penalises large errors much more

than small errors while the MAE penalises all errors equally relative to their

size.

6.2 Experimental Set-up

I now discuss the experiments performed on a large sample of rankings data

from the MovieLens1 movie rating web site, this data is freely available from

the GroupLens website.2 The data consists of 10 million ratings for 10,681

movies made by 71,567 users. The users are selected at random and have all

rated at least 20 movies. Consequently the average number of ratings per user

is 140 and per movie is 936. The ratings are all given on a scale of 0 to 5 stars

with increments of 0.5 stars. The mean rating over all users and movies is 3.53

and the variance is 0.96.

This data set is separated into training and test sets by randomly choosing k

percent of the ratings for each user to be kept for testing and used the remaining

ratings to train the models. Doing so ensures that the test data is distributed

over users in the same way as the training data. For these experiments k is

set to be 20%. The results reported are based on predictions over all of the

1http://www.movielens.org/
2http://grouplens.org/node/73
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test data, amounting to almost 2 million individual predictions. To evaluate

the relative performance of the various models the evauations report both the

RMSE and also the MAE as described above.

6.2.1 Baselines

In order to evaluate the utility of the new models it is important to choose

suitable baseline methods with which to compare their performance. In this

work the LITR methods are compared to 3 baselines from CF literature:

mean-r a näıve, simple baseline which returns the mean rating as an estimate

for all user-movie pairs.

neighbourhood a nearest-neighbour method using Pearson correlation coef-

ficient as the similarity metric with case amplification and significance

weighting [BHK98]. This method represents a best performing example

of earlier memory-based systems.

SVD a Singular Value Decomposition (SVD) model with user and movie bi-

ases providing a thoroughly modern and highly competitive baseline.

This model is similar to the LITR models in that it reduces the dimen-

sionality of the original ratings matrix down via the use of latent factors,

however it is neither generative nor Bayesian. The decomposition of the

matrix into latent factors is achieved via a gradient descent optimisation

routine with added regularisation terms to reduce the likelihood over the

model over-fitting the data. As in the LITR models, this gradient descent

optimisation is interspersed with iterative fixed-point optimisations for

the individual user and movie biases [Pat07].

6.2.2 Parameter Settings and Sampling

For the LITR models the concentration parameters of both α and β were set

to 5, providing some light smoothing to the user-interest and item-topic dis-

tributions. The settings for ρ and σ were 0.5 and 0.1 respectively. The models
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Prediction error Improvement
Model MAE RMSE MAE RMSE

µ rating 0.8516 1.0521 - -

n’hood 0.6582 0.8481 22.7% 19.4%

SVD 0.6516 0.8401 23.5% 20.1%

LITR1 0.6496 0.8384 23.7% 20.3%

LITR2 0.6334∗ 0.8236 ∗ 25.6% 21.7%

Table 6.1: Comparison of best results from each model

were not particularly sensitive to parameter values, provided excessively low

or high values were not chosen.

For the SVD method the parameter values were optimised based on per-

formance over a small sub-sample of the test set. The values obtained in doing

this are very similar to the standard best performing parameters values as

described in the literature [Pat07]. Specifically the learning rate was set to

0.002 and the 2 regularisation constants λ and λ2 were set to 0.02 and 0.05.

For the gradient descent algorithm prediction errors on a sub-sample of the

test set were observed to stabilise after approximately 30 iterations, however

to ensure convergence the process was allowed to continue until 50 iterations

had elapsed. For the neighbourhood method the number of neighbours used

for the estimates was set to 100.

Sampling in the LITR models is achieved via the use the Rao-Blackwellised

Gibbs sampler [GS04] outlined in Chpater 3. For both models the chain was

run for 300 iterations in total, as this appeared to consistently give good con-

vergence in terms of model likelihood. The first 200 samples from the chain

were discarded as “burn-in” and the remaining 100 samples from the end of

the chain were averaged to obtain the final parameter values.

6.3 Results

The results from these experiments are summarised in Table 6.1. For latent

factor/variable models the number of latent variables is set to 50, percentages

indicate improvement over baseline. ∗ indicates a result significantly better
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than both LITR1 and SVD (p < 0.05), emboldened results are the best for that

metric over all models. The results show that all of the methods significantly

outperform the most simple choice of estimate: the mean over all ratings.

The nearest-neighbour method performs surprisingly well, however the more

modern model-based approaches are all able to outperform it by a large margin.

During testing one of the main disadvantages of memory-based approaches

was encountered as prediction using the neighbourhood model took orders of

magnitude longer than any of the model-based approaches.

Comparing only the model-based approaches, the LITR1 model, which does

not include individual biases for each user and item, is still able to outperform

the SVD method, however not by a significant margin. The more complex

LITR2 model on the other hand, which is able to leverage predictive power

from the user and item biases as well as from the latent variable mixture of

Gaussians, is able to outperform all of the other methods over both reported

metrics by a statistically significant margin. In terms of MAE the LITR2

model outperforms SVD by 2.7%, and by 2% in terms of RMSE (paired t-test,

99% confidence, p-value = 4.5∗10−05 and 1.2∗10−05). Furthermore it improves

upon the nearest neighbour approach by 3.8% for the MAE metric and 2.9%

for the RMSE metric.

6.3.1 Varying the Number of Latent Factors

As with all reduced-dimensionality models the number of latent dimensions

in the SVD baseline and both of the LITR model is an important factor and

it is therefore sensible to look at how performance of the models vary as the

number of topics is increased. By referring to the chart in Figure 6.1 we can see

quite clearly that all of the model-based approaches increase in performance

as the number of latent dimensions is increased. Notice that when the number

of latent topics is set to 5 only LITR2 is able to outperform the memory-based

nearest neighbour model, however as the number of factors is increased all of

the model-based approaches begin to outperform it as the larger numbers of

topics increase their flexibility in describing the relationships within the data.

Initially the performance of the LITR1 model appears to be quite poor
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Figure 6.1: RMSE over different numbers of latent topics/factors

in comparison to the other latent variable models. This is because when the

number of latent variables is small both SVD and LITR2 can rely on user and

item biases to improve the prediction while LITR1 cannot. As the number of

factors increases the performance of LITR1 approached and then eventually

exceeds that of SVD, however it is still unable to come close to the performance

of LITR2. The performance of all of the models appears to have reached a

plateau by around 40 factors with any further improvements after this point

being quite small. This is likely approaching the limit of how much of the

variation within the data can be explained away via the reduced dimensionality

spaces. Notice also that it appears that the extra modelling flexibility afforded

by LITR2 allows its performance to continue to increase over a larger number

of latent dimensions than either SVD or LITR1.

6.3.2 Performance for “Difficult” Users

As discussed earlier, an important consideration for any collaborative filtering

algorithm is how well it is able to perform in the most difficult cases. Situations

leading to difficult rating predictions are generally due to users or items with a

very small number of ratings. Analysing the data set reveals that this situation
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Prediction error (RMSE)

≤ 20 ≤ 50 ≤ 100 all

SVD 0.9115 0.8840 0.8692 0.8401

LITR2 0.8536 0.8435 0.8379 0.8236

# users 9,404 33,965 50,297 71,567

Table 6.2: Comparison of results over different user profile sizes
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Figure 6.2: Prediction error and user count for varying profile sizes

is quite common; 13.4% of all users have 20 or fewer ratings and nearly half

(47.5%) have 50 or fewer. Therefore it is expected that these will be the users

for whom the algorithms struggle the most to make accurate predictions for.

Table 6.2 shows how the performance of the best performing baseline and

the best of the new models (SVD and LITR2) vary over different user profiles

sizes. The results show that the LITR model performs much better for smaller

profiles (relative to its performance over all users) than SVD. The SVD model’s

performance decreases by 8.4% when dealing with small user profiles (20 or

fewer ratings) whereas LITR2’s performance only sees a decrease of 3.6%.

This result is perhaps illustrated more clearly in Figure 6.2, which shows
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the mean error over varying user profile sizes, for all users with a profile size

smaller than or equal to the value on the x-axis. This is plotted for both SVD

(dotted red line) and BLITR (dashed blue lines). The figure also shows on the

right-hand y-axis the density of user counts over profile sizes (solid black line).

We can see clearly that a large proportion of the users have a small number of

ratings with very, very few having a large number. The maximum number of

ratings for any user is 2876, 97% of users have fewer than 500 ratings and the

minimum is 10 (this lower limit is imposed by the MovieLens web site). We

can see from this plot that SVD’s error for users with small profiles is quite

high and that it fairly rapidly decreases as the profile size increases. On the

other hand LITR has much smaller error for users with small profiles and is

able to produce much smaller errors than SVD over the whole range of profile

sizes.

This is an important outcome as it proves that the new LITR models per-

form much better when data is particularly sparse which is the most common

case and the situations for which we are most interested in improving per-

formance. This is likely to be at least partially a direct consequence of the

Bayesian nature of the models; allowing them to cope better when there is

little data available to base predictions on. It may also be because the LITR

models are better at leveraging the limited information obtained from the small

number of ratings that are available in these cases.

6.3.3 Variance of errors

The main focus of rating prediction is of course to make predictions with

minimal error, however of course there will always be some error and it is not

possible to always make perfect predictions. This being the case, a secondary

focus is to try to ensure that when errors are made that they are not too

large as this can frustrate and confuse users and even a single instance of poor

prediction can cause a user to lose faith in the system’s abilities. Figure 6.3

shows a density plot of the errors over the testing data made by both SVD and

the LITR2 model. The plot shows that the errors made by SVD have larger

variance (0.065 versus 0.045 for LITR2) and also have a much thicker tail at
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Figure 6.3: Density plot of errors

the higher end of the errors. This means that not only are the predictions

made by LITR2 better in the expectation but they are also less likely to be

extreme and as a result are less likely to frustrate users. It is also interesting

to note from this plot that the errors are indeed Gaussian in nature, validating

the assumptions made about errors in the models. This is confirmed by highly

significant Pearson chi-square normality tests (p ( 0.0001 for both SVD and

LITR2).

6.4 Conclusions

This chapter has shown that the collaborative filtering models described in

Chapter 3 are extremely competitive, with the extended model significantly

outperforming the most competitive baselines. In comparison to more tradi-

tional methods (represented in this experiment by the neighbourhood baseline)

it was found that the newer model-based methods outlined in this thesis rep-

resent a significant improvement in terms of both prediction accuracy and also

computational complexity and prediction time. Investigation of how well the

strongest baseline and the best of the two LITR models performed in cases

where the user profiles were very short (where the user had rated very few
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movies) showed that the latter is able to cope far better. This is an impor-

tant result as analysis of the data set showed this situation to be common

and is where an improvement in performance is most noticeable to the user.

Furthermore analysis of the residual errors showed that LITR2’s errors had

much smaller variance than those of SVD and as such it is much less likely

to generate extremely erroneous predictions which could frustrate and confuse

users.
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Chapter 7

Conclusions

“We can only see a short distance ahead, but we can see plenty

there that needs to be done”

Alan Turing

In this chapter I provide an outline of the main structure of the thesis

and the main contributions of this work to the fields of Information Retrieval

and Machine Learning and in particular to the narrower but growing field of

social web search. I conclude the chapter and indeed the thesis by suggest-

ing avenues of future work opened up by this research and consider how the

models presented may be improved upon to give better results or to speed up

computation.

The original aims of the work conducted throughout this thesis were to

design models that could allow us to gain a better understanding of the complex

dynamics of social data. Particularly by gaining some understanding of the

semantic meaning of tags and of user interests to allow for personalisation.

Chapter 1 began these investigations by discussing the main themes of social

and collaborative data on the web; where it comes from, how it is structured,

why it is useful and the motivations people have for actually taking the time

to contribute to such systems. I outlined a number of posited benefits of this

new form of data and surmised that it might be useful as a cheap source of

communally-validated metadata. However in investigating previous research

performed on social data I outlined a number of potential pitfalls of using such
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data including the vocabulary problem, an issue familiar to anyone working in

the field of Information Retrieval, but one that is exacerbated by the sparsity

and unrestricted vocabulary in this new setting. I concluded the chapter by

introducing collaborative ratings, another form of socially contributed data

now common on the web and discussed its various similarities and differences

when compared to tagging data.

In Chapter 2 I grounded the investigation of appropriate models by outlin-

ing three different problem areas on social web sites and commented on related

work in these areas, suggesting where improvements and refinements could be

made. These were identified as key areas of research where progress would

improve the experience of users and help to validate the suitability of any pro-

posed models. Chapter 3 provided a short introduction to the main techniques

of Bayesian statistical modelling and moved on to discuss contemporary meth-

ods of data modelling based on the idea of latent topics. In the second half of

this chapter I motivated and introduced a series of four new statistical models;

two for social tagging data and two for collaborative ratings data. I described

their structure, assumptions made in their development and showed how their

parameters could be estimated using Gibbs sampling and iterative fixed-point

optimisation methods.

Chapters 4, 5 and 6 described a series of three experiments motivated by

the earlier investigations of the literature that used the models derived to pro-

vide personalised tag suggestion, personalised search and personalised rating

prediction. The results from these experiments demonstrated the applicabil-

ity of the models to these key problems and showed that they were able to

consistently outperform competitive baseline methods. The experiments all

indicated that the models perform particularly well in the presence of sparse

and noisy data, a key attribute when working with socially generated data.

This evidence validates the earlier choice of Bayesian latent variable models

for these problem areas and clearly illustrates that such models are well suited

to this kind of data, perhaps much more so than for more traditional docu-

ments. Closer scrutiny of the results revealed that these new models are less

prone to excessive error and are therefore more consistently reliable than pre-

vious methods. Evaluation of the topics generated showed strong evidence of
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semantic grouping not possible from simple co-occurence analysis with many

synonymous terms automatically clustered together within the topic space.

Furthermore the topical analysis showed many examples of polysemous terms

appearing with high probability in several topics, demonstrating the potential

of these models for lexical ambiguity resolution.

Interestingly it appears from the results of the experiments that the cleaner

generative process used for the second tagging model (TTM2) does indeed yield

better performance than that of TTM1. This may be a result of this generative

process being closer to how one might expect the data were originally generated

or it may be a result of the alternate parameterisation over resources instead

of over topics. Another distinct possibility is that this alternate model places

more importance on the user as being the driving force behind the generation

of the observed tags, rather than the content and general themes of the original

document.

7.1 Future Work

The work presented in this thesis opens up a number of possible directions

for future work and the models presented can serve as a solid foundation for

more complex hierarchical models incorporating other forms of data or further

improving the fit of the models without loss of generality. Here I discuss a few

examples of potential future work made possible by the results of this thesis.

The experimental work presented in Chapters 4, 5 and 6 showed that these

new models can be applied to problems involving small to medium scale data

sets without requiring an unreasonable amount of computation time. However

it should be noted that these models are quite complex and rely on iterative

approximation methods and are therefore computationally complex and non-

deterministic in their convergence times. This means that in cases of very large

data sets of many millions of data points the model estimation procedures

described in this thesis may not be appropriate. A useful advancement of this

work would be to investigate methods to speed up or parallelise the model

estimation procedure so that they can be used for large problems or for near-

real-time applications. Recent work by Porteous et al. [PNI+08] has shown
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that Gibbs sampling methods for LDA can be sped up significantly without a

detrimental effect on the quality of the resulting parameter estimates.

More information could be introduced into the models, for example it is

likely that in many cases a user’s interests, or more specifically their currently

“active” interests, will vary considerably over time. While the form of social

data is normally described as being tri-partite it is actually true to say that

for each annotation event we generally have a fourth aspect to consider: the

timestamp when the annotation was made. Some early work has been con-

ducted into models that are able to construct representations of topical vari-

ability over time including the Topics over Time model [WM06] and Dynamic

Topic Models [BL06]. However at the time of writing these models are still

in a fairly early stage of development, but could potentially be combined with

the personalisation aspects of the Tagging Topic Models to form personalised,

temporally-sensitive models of social data.

One of the main assumptions made in the models presented in this the-

sis was that the priors on the topical distributions should be symmetric and

uninformative, serving only to smooth estimates and provide some parameter

tying but not contributing extra information. There prior distributions could

instead be made to be informative by either optimising them as part of the

parameters estimation process of using them to introduce prior knowledge into

the models. We may know in advance the prevalence of vocabulary words in

predefined topics, for example by exploiting data available from some cate-

gorised data source or we may be able to determine a user’s rough preferences

by consulting them or deriving this information from other sources. This ex-

tra data would likely improve the reliability of estimates, especially in cases of

sparse data where the prior is more influential, and would likely improve the

convergence behaviour of the sampler thus requiring fewer burn-in samples to

reach the posterior.

The collaborative rating models made the simplification of assuming that

the Normal distributions describing the biases had the same fixed variances.

These variances could instead be estimated during the sampling process with

the expectation that doing so would further improve the fit of the model and

therefore reduce the error of its predictions. During the development of these
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models several versions were tested that included these optimisations but were

found to lead to over-fitting and generally poor prediction performance. This

suggests that further machinery may be necessary to successfully augment the

models in such a manner. A further possibility would be to leverage the tag

data provided about the movies in the latest release of the MovieLens data set

to make up for some of the sparsity in the ratings data. It may be possible, for

example, to use this information to create an informative prior over P (y|m),

replacing the uniform prior currently used by estimating a distribution over

topical genres from the tag data.

7.2 Main Contributions

The main contributions of this work can be summarised as follows:

• An investigation into social tagging and collaborative rating systems and

the data they can provide, including discussion of the relationships be-

tween these two forms of socially-generated data.

• The development of two families of Bayesian hierarchical models designed

specifically for these two forms of social data including algorithms for

estimation of their parameters. The models represent significant devel-

opments over earlier work by incorporating more information about the

users and by introducing more flexibility.

• In the case of the most sophisticated ratings model (LITR2), this work

introduces the development of a novel method for parameter estimation

via interleaved Gibbs sampling and fixed-point optimisation methods.

• A series of three separate experiments to determine the performance, lim-

itations and behaviour of these models when applied to data obtained

from real-world sources including comparison with competitive contem-

porary baseline methods. In all cases the models designed in this thesis

were found to outperform the baselines.
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• Novel evaluation methods for evaluating models and algorithms for the

problems of social tag suggestion and personalised search of social book-

marks. This is necessary as at the time of writing there are no standard

test sets available for the evaluation of social tagging systems.

• A discussion of the behaviour of these models on the various data and

problem types in the experiments including the behaviour and charac-

teristics of the Gibbs sampling algorithms and a discussion of the cohe-

siveness and interpretability of their outputs.

In summation the work of this thesis serves to advance understanding of

how best to deal with the new forms of human-generated information now

available in abundance on the Internet. It has shown that despite the extremely

sparse and noisy nature of this data inferences can still be made allowing for the

extraction of useful information. However, it has also illustrated the difficulties

encountered in dealing with data of this nature and the importance of careful

and reasoned model selection. It is highly likely that as the web continues to

grow and evolve it will become ever more social giving us the opportunity to

exploit interactions such as tags and ratings to form a better understanding

of the contributed resources and of the users themselves. However in order to

do this we need machine learning systems that can operate on the raw data,

adapting to it as it evolves, and produce useful outputs. The work of this thesis

provides a solid grounding in new and robust methods able to fulfil these goals

and shows examples of how they could be used in real social systems on the

web.
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Appendix A

Distributions and Properties

Before deriving the TTM2 model in Appendix B it is useful to have an under-

standing of the 2 distributions used (the multinomial and the Dirichlet) and

also a couple of important properties of these distributions. The multinomial

distribution is a generalisation of the binomial distribution to an arbitrary

number of dimensions and therefore models the probability of success in trials

with more than 2 possible outcomes, the number of possible outcomes being

the dimensionality K of the distribution. Note that in the modelling of text,

such as in the models used in this thesis, we are actually using the categorical

distribution which is simply the multinomial distribution over a single obser-

vation. The distribution is parameterised by the vector p which denotes the

probability of observing each event and takes in a vector x denoting the num-

ber of times each value xi appeared in the observation. The probability mass

function for the multinomial is as follows:

Multinomial(x;p) =
n!

∏K
i=1 xi!

K∏

i=1

pxi
i

where n =
∑K

i=1 xi, i.e. the total count of observations.

When dealing with Bayesian models it is convenient to make use of con-

jugate priors wherever possible as it makes the mathematical derivation much

more straightforward. A prior p(θ) is said to be the conjugate of a likelihood

p(x|θ) if the posterior distribution p(θ|x) is of the same form as the prior. The
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Figure A.1: Examples of random draws from 4 Dirichlet distributions

prior distribution for the multinomial is the Dirichlet distribution which un-

surprisingly is a generalised Beta distribution and can be seen as a probability

distribution over probability distributions. It is parameterised by a vector α

of positive real numbers denoting that each possible outcome i has been pre-

viously observed αi − 1 times. It essentially returns the probability of a set

of probabilities x given the parameters α which explains why it is a natural

choice for a prior on the multinomial. Note that since it is itself a probability

distribution, the vector x must sum to 1 over all i, that is
∑K

i=1 xi = 1. Figure

A.1 shows plots of 100 samples drawn from 4 different 3 dimensional Dirichlet

distributions which are necessarily embedded on a K − 1 dimensional simplex

where each point represents a 3D multinomial. Notice that if all α values are

less than 1 then the distribution is in fact concave over the simplex and that as

the α values increase the distribution becomes more centred, i.e. the probabil-

ity mass become more equally spread across the dimensions. The probability
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density function for the Dirichlet is:

Dirichlet(p;α) =
1

B(α)

K∏

i=1

pαi−1
i

where the normalisation constant is the beta function which can be defined

via gamma functions as:

B(α) =

∏K
i=1 Γ(αi)

Γ(
∑K

i=1 αi)
(A.1)

where Γ(x) is the gamma function applied to x, this function is an extension

of the factorial function, with its argument shifted down by one (x − 1), to

real and complex numbers. This can be seen as necessary for normalising the

Dirichlet by comparing the beta function to the normalisation constant for

the multinomial remembering that the values of x in the Dirichlet are real

numbers and not integers. Since the Dirichlet is conjugate to the multinomial,

if we have a multinomial likelihood and a Dirichlet prior then the posterior

will also be Dirichlet as follows:

p(p|x, α) =
1

B(x+ α)

K∏

i=1

pxi+αi−1
i (A.2)

= Dirichlet(p;x+ α)

Given that equation A.2 is a valid probability distribution and all probability

distributions must sum (in the case of discrete distributions) or integrate (in

the case of continuous ones) to 1 then:

1 =

∫
1

B(x+ α)

K∏

i=1

pxi+αi−1
i dp

=
1

B(x+ α)

∫ K∏

i=1

pxi+αi−1
i dp
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This implies that the following holds true:

∫ K∏

i=1

pxi+αi−1
i dp = B(x+ α) (A.3)

As we shall see, this is an extremely useful property and it allows us to reduce

and solve seemingly very complex equations involving this posterior.
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Derivation of TTM2

Before deriving the full likelihood and Gibbs sampling routing for this model

it is worth referring to its generative process which is outlined in figure B.1.

for each topic z ! [1,Z]
draw word mixture !z ~ Dirichlet(")
draw document mixture #z ~ Dirichlet($)

for each user u ! [1,U]
draw topic mixture %u ~ Dirichlet(&)

for each word position i ! [1,N]
draw topic zi ~ Multinomial(%ui)
draw document di ~ Multinomial(#zi)
draw word wi ~ Multinomial(!zi)

Figure B.1: Generative model for Tagging Topic Model 2

To derive the complete model we begin by defining the joint distribution of the

variables conditioned on their prior distributions, after doing this we proceed

in the Bayesian style by integrating out the priors:

p(w, z,d|α, β, γ) = p(w|z, β)p(d|z, α)p(z|γ)

=

∫

Φ

p(w|Φ, z)p(Φ; β) dΦ
∫

Θ

p(d|Θ, z)p(Θ;α) dΘ

×
∫

Ψ

p(z|Ψ)p(Ψ; γ) dΨ
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The above equation can be separated into 3 distinct parts that depend on Φ,

Θ and Ψ respectively, since they are independent of each other, and as such

they can be derived separately.

p(Φ; β) is comprised of Z Dirichlet distributions as follows:

p(Φ; β) =
Z∏

z=1

p(φz|β) =
Z∏

z=1

1

B(β)

W∏

w=1

φβw−1
z,w

and p(w|Φ, z) has the following multinomial distribution:

p(w|Φ, z) =
N∏

i=1

p(wi|zi) =
Z∏

z=1

W∏

w=1

φNw,z
w,z

where Nw, z is the count of word positions where the word is w and the topical

allocation is z. Now from the second part, the distribution of p(Θ;α) is of the

very same form as that of p(Φ; β), it is also distributed Dirichlet. Its likelihood

can therefore be written as follows:

p(Θ;α) =
Z∏

z=1

p(θz|α) =
Z∏

z=1

1

B(α)

D∏

d=1

θβd−1
z,d

The corresponding likelihood p(d|Θ, z) is also very similar to that of the first

part:

p(d|Θ, z) =
N∏

i=1

p(di|zi) =
Z∏

z=1

D∏

d=1

θ
Nd,z

d,z

Finally the third part of the equation, based on the distribution of topics given

a user, p(Ψ; γ) is also Dirichlet distributed:

p(Ψ; γ) =
U∏

u=1

p(ψu|γ) =
U∏

u=1

1

B(γ)

Z∏

z=1

ψγz−1
z,u
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and the distribution of p(z|Ψ) is multinomial:

p(z|Ψ) =
N∏

i=1

p(zi|ui) =
Z∏

z=1

U∏

u=1

ψNz,u
z,u

We can now take the product of the 3 parts and integrate over the priors:

p(w, z,d|α, β, γ) =

∫

Φ

Z∏

z=1

W∏

w=1

φNw,z
w,z

Z∏

z=1

1

B(β)

W∏

w=1

φβw−1
z,w dΦ

×
∫

Θ

Z∏

z=1

D∏

d=1

θ
Nd,z

d,z

Z∏

z=1

1

B(α)

D∏

d=1

θβd−1
z,d dΘ

×
∫

Ψ

Z∏

z=1

U∏

u=1

ψNz,u
z,u

U∏

u=1

1

B(γ)

Z∏

z=1

ψγz−1
z,u dΨ

Combining like terms, using the properties of integration of a product and

taking the products over Z and U out of the integrals, this can be rewritten

as:

p(w, z,d|α, β, γ) =
Z∏

z=1

(
1

B(β)

∫

φz

W∏

w=1

φNw,z+βw−1
w,z dφz

)

×
Z∏

z=1

(
1

B(α)

∫

θz

D∏

d=1

θ
Nd,z+αd−1
d,z dθz

)

×
U∏

u=1

(
1

B(γ)

∫

ψu

Z∏

z=1

ψNz,u+γz−1
z,u dψu

)

Using the property of multinomial distributions with Dirichlet priors outlined

in appendix A in equation A.3 these integrals can be solved in closed form and

thus simplified to the following:

p(w, z,d| . . .) =
Z∏

z=1

B(β + ,Nwz)

B(β)

B(α + ,Ndz)

B(α)

U∏

u=1

B(γ + ,Nzu)

B(γ)
(B.1)

where ,Nwz denotes the vector over all words where each entry is the count of

topic allocations z for that word. Likewise ,Ndz is topic allocations over docu-

ments and ,Nzu is users over topics. Bear in mind that each of hyperparameters
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α, β and γ are also vectors, however in practise we are likely to simply use

symmetric (uniform) distributions for these. To derive the appropriate Gibbs

sampling equation for this problem we can use the chain rule of probabilities

to obtain the full conditional probability:

p(zi|w,d, z−i;α, β, γ) =
p(zi, wi, di|w−i,d−i, z−i;α, β, γ)

p(wi, di|w−i,d−i, z−i;α, β, γ)

∝ p(w,d, z|α, β, γ)
p(w−i,d−i, z−i|α, β, γ)

The numerator in the above equation is B.1 and the denominator is the same

but with the counts from the ith position removed as follows:

p(w−i, z−i,d−i| . . .) =
Z∏

z=1

B(β + ,Nw−1
z )

B(β)

B(α + ,Nd−1
z )

B(α)

U∏

u=1

B(γ + ,Nz−1
u )

B(γ)

We can now expand all of the Beta functions as in A.1 to obtain the following:

p(zi| . . .) =

∏W
w=1 Γ(Nw,zi+βw)

Γ(
∑W

w=1 Nw,zi+βw)
∏W

w=1 Γ(N
−1
w,zi+βw)

Γ(
∑W

w=1 N
−1
w,zi+βw)

.

∏D
d=1 Γ(Nd,zi

+αd)

Γ(
∑D

d=1 Nd,zi
+αd)

∏D
d=1 Γ(N

−1
d,zi

+αd)

Γ(
∑D

d=1 N
−1
d,zi

+αd)

.

∏Z
z=1 Γ(Nui,z+γz)

Γ(
∑Z

z=1 Nui,z+γz)
∏Z

z=1 Γ(N
−1
ui,z+γz)

Γ(
∑Z

z=1 N
−1
ui,z+γz)

Notice that if we sum ,Nw−1
z over all z ∈ Z then it is exactly the same as

,Nwz)+1. This means that any factors where z! = zi, d! = di and u! = ui drop

out and we get the following:

p(zi| . . .) =
Γ(Nwi,zi+βwi )

Γ(
∑W

w=1 Nw,zi+βw)

Γ(N−1
wi,zi+βwi )

Γ(
∑W

w=1 N
−1
w,zi+βw)

.

Γ(Ndi,zi
+αdi

)

Γ(
∑D

d=1 Nd,zi
+αd)

Γ(N−1
di,zi

+αdi
)

Γ(
∑D

d=1 N
−1
d,zi

+αd)

.

Γ(Nui,zi+γzi )

Γ(
∑Z

z=1 Nui,z+γz)

Γ(N−1
ui,zi+γzi )

Γ(
∑Z

z=1 N
−1
ui,z+γz)

Finally, remember that these are count values, we can use the rule that for

any y where y is a positive integer Γ(y) = (y − 1)! to derive the final Gibbs

sampling equation:

p(zi|w,d, z−i;α, β, γ) =
N (−i)

wi,zi + β 1
W

N (−i)
zi + β

N (−i)
di,zi

+ α 1
D

N (−i)
zi + α

N (−i)
ui,zi + γ 1

Z

N (−i)
ui + γ
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