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Abstract

Increasingly tight emission regulations put a pressure on control engineers to
come up with improved engine control systems. The task is difficult, as it is desired
to minimize complexity, cost and maximize reliability and performance, all at the
same time. Fortunately, modern control techniques offer assistance in achieving
these goals. This motivation resulted in a range of topics developed in this thesis. A
modelling, estimation and fault detection theory is presented. The estimation theory
is often used for the system identification, but its main application is the model-based
filtering, so important in real systenis. The real systems are subject to failures. A
theoretical development of the fault detection algorithm for non-linear systems is
presented. The emphasis moves then to the control algorithms design. The non-linear
algorithms based on the state-dependent model structure are introduced. An
extension of the state-dependent Riccati equation method with a future trajectory
prediction is developed. Also, the non-linear version of generalized predictive
control algorithm is presented. Optimality of solutions is analyzed and corrections to
algorithms are introduced to preserve the optimality. The theory needs practical
verification. The identification of the spark ignition engine is presented next. A data-
driven system identification method is developed. It provides an accurate model for
control design purposes. The predictive control algorithm design is presented next. A
simple air-fuel ratio control as well as a full multivariable control system design,
with a torque as an output, is introduced. Improved tracking and tighter air-fuel ratio
regulation is achieved. The control system efficiency may be impaired by the system
noise and the model uncertainty. For that reason the model-based estimation
techniques are very important. It is demonstrated that not only the noise immunity,
but also robustness is significantly improved when Kalman filtering methods are
employed. Last important topic of fault diagnosis is then presented. Faults must be

detected, isolated and identified to enable successful control System re-configuration.
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Chapter 1

Introduction

In this introductory chapter a motivation for work presented in this thesis is
given. The discussion starts in section 1.1 with the justification for control, or more
precisely, non-linear control. The control engineering is a multidisciplinary area and
system modelling is a foundation for design methods presented in this thesis. For that
reason a brief introduction to the modelling is given in this opening chapter in
section 1.2. A control theory requires some justification and demonstration of
potential benefits. That point will be supported by the application. The identification,
control, estimation and fault detection for the spark ignition engine is a subject of
consideration in this thesis. A short introduction of the problem is given in section
1.3. Finally the overview of the thesis is presented in section 1.4 followed by the

main contributions in section 1.5 and the list of publications in section 1.6.

The control is an extremely important area of engineering. However, the
importance of control is very different across the industries. The automotive
powertrain control is one of the areas where control stands out as the main area of
interest. Automotive application requires a comprehensive approach to the control
design. A wide scope of issues ranging from the system identification, estimation
through the control to the fault detection and condition monitoring should be

considered. To be able to tackle this wide array of engineering challenges the non-



linear control and estimation techniques must be well understood. This will give the
momentum that will be utilized during the automotive application. The algorithms
proposed in this thesis are not assumed to be restricted by the computational
capabilities of the target hardware. The developments are intended to find the upper
bound for achievable performance. However, a range of algorithms is introduced and

some of them require only modest computing power.

1.1  Real-world control engineering

The control engineer must possess a vast range of both theoretical and
practical skills. The multidisciplinary nature of control engineering necessitates
achieving a high level of understanding of physics of the considered problem. In
addition to that, the mathematical analysis tools, programming skills and
implementation knowledge involving modern microprocessor technology and data

processing must be involved.

The physical phenomena must be well understood during modelling.
Sufficient system knowledge allows necessary simplifications in the model to be
introduced. It is always advantageous to use the system-specific engineering
knowledge for modelling. However, some models are developed purely from
measurements and for these models both: the model structure and parameters must
be identified. The model must capture key system features and, at the same time, be
simple enough for control system design. For the data driven system identification
simplicity of the model is a key to success. Parameter estimation for complex models
of a non-linear nature may be extremely difficult. This brings the problem of the
model parameter identification to attention. The model parameter identification may
be considered as an estimation problem. It can be advantageous if the model
structure is based on the physical insight. Some simplifications are often considered
but it is important to make sure that these do not introduce too significant mode!
mismatch. Most well established estimation techniques may be employed for

parameter identification. Although modelling is extremely important, it attracts far



less attention in the literature in favour of control algorithms design. This is mainly
due to the application dependent nature of the identification problem. Each system is
different and methods that are successful on one application may fail when used
somewhere else. In most control system design applications modelling and
identification is the most involved task. Sometimes it takes years of effort and

significant expertise to establish a reliable model.

Control algorithm design is by far more rigorous than the modelling. The
choice of a design technique depends purely on the requirements. The concept of
feedback is a central idea in control engineering. A parameter of interest, if
measured, may be compared with its desired value and action is taken according to
the error signal. This however requires a parameter measurement to be available to
the control system. This seemingly easy philosophy gets complicated when the
parameter of interest is not measured. In that case the model may be used to extract
unmeasured information from the available input and output signals. This of course
requires the model to be as accurate as possible. Some uncertainty is inevitable and
must be accounted for. A convenient way to represent the uncertainty in the model is
to use stochastic disturbance signals. The state estimator uses this information and
unmeasured parameters reconstruction is achieved in the optimal fashion. The model
however represents the nominal system, even if stochastic disturbances are included.
Faults occurring in the system may cause a significant change in the system
properties. If not accounted for, faults may cause estimation errors and potentially
control system instability. This brings out the problem of fault detection, isolation
and identification. For most systems this task is extremely important. The efficient
fault detection is necessary to guarantee safety of people, environment and the
system itself. The failure if not detected may cause risks to life, environmentally

harmful operation and lead to far more serious failures with their financial

consequences.



1.2 System modelling

The modelling is one of the most important tasks that have to be carried out
in order to use modern control techniques. There are a number of reasons why

models are so important for the control system design [1]. These include:

e The requirement for better process or product performance,
¢ The increasing complexity of advanced technological systems,
¢ The growing need for competitive advantage, e.g., efficiency, economy,

e The phenomenal increase in available computer power and decrease in cost,

The automotive industry is a good example of technological advances. The
performance which is determined by the power output, emissions, safety and comfort
has greatly increased in the last 25 years. At the same time the complexity of the
entire package of engine, powertrain, chassis and other features has increased at least
10-fold [1]. Control algorithm design for a complex system, without the global
knowledge of its behaviour, would be extremely difficult, if not impossible. With the
advent of advanced computing facilities and with a plant model, the analysis, design
and testing may be carried out without the necessity for using the hardware.
Theoretically complex issues like stability, robustness and immunity to faults may be
assessed in simulation. This however relies strongly on the model of the system. For

complex objects modelling is a difficult issue, especially if the system is non-linear.

Modelling is often regarded as a combination of art and science. Models may
be classified based on their application [2]. Intuitive models which are located at the
most heuristic level exist only in the engineer’s mind as his/her personal conception
of the system. These models have no physical or mathematical representation. Next,
models intended for investigation of fundamental properties of the system may be
distinguished. Simulation models are aimed at investigating basic phenomenological

features of the system or process. This class of models includes two types:



Computer simulation models based on mathematical formulation of plant’s
behaviour. Such simulations may be extremely complex and can include all
possible system details,

Scale models that are small-scale replicas of the process under study. Such
models allow detailed study of the variety of design and operational

conditions in controlled environment.

Finally, the class of dynamic models that are intended for control law design is

outlined. These models will be analyzed in this thesis and in principle can be less

complex than computer simulation models [1], [2]:

Dynamic analysis (“white box’) models obtained from the analysis of
physical systems at the fundamental level. These use scientific principles
like Newton’s law, Kirchhov’s laws, laws of thermodynamics, reaction
kinetics, to derive an analytical model. The feasibility of building such a
model varies a great deal from one discipline to another. The task may be
easier for electro-mechanical systems, but very often difficult in some
biological application areas,

Dynamic identification models (“black box”) inferred from the observed
behaviour of the physical system (data-driven). For these models the
structure must be defined first and the model parameters identified. A large
number of methods and software packages exist for such model
identification. These packages identify both: the model structure (e.g. order)
and parameters based on time-series data. These include frequency response
(nonparametric) modelling, regression, least squares techniques, maximum

likelihood, instrumental variables [1], [3], [4].

A “grey-box” modelling is an attempt to bridge the “black box” (purely data

based) modelling with the “white box™ (purely theory based) modelling. It is

intended to combine the best of two worlds: knowledge-based modelling and the

data-driven model estimation [5]. The underlying dynamics of a practical

engineering system and some of its physical parameters are usually known a-priori



[6]. The “white-box” mathematical model equations are derived in order to describe
a process, based on a physical (or chemical, biological, etc.) analysis. However,
some of the, mostly minor, dynamics cannot be modelled, due to the system
nonlinearity, complexity and constraints on physical ability to measure. The “black-
box” modelling is used to introduce parameters of the model that are estimated solely
from measurements made on the process. The “grey-box” modelling technique is
very valuable whenever a knowledge-based model exists, but is not fully satisfactory
and cannot be improved by further analysis (or can only be improved at a very large
computational cost). The “grey-box™ model identification is a systematic approach to
the problem of making models for industrial processes by combining physical
modelling with experimental data. The “grey-box” model should explicitly use the
knowledge such as the dynamic structure derived from physical laws. In the “grey-
box” model, the system structure is not replaced by an artificial structure
approximation as it takes place in the “black box” modelling [6]. As a consequence
the physical meaning of model parameters may be retained, which is beneficial
during identification. The “white-box” models are physically based and may be
constructed based on physical constants and other measurable parameters (e.g.
volume, length, mass). For the “grey-box” and “black-box” models values of
parameters need to be identified. The estimation methods outlined later in this thesis

may be used for that purpose.

In recent years the significant popularity of neural and fuzzy-neural black-
box models has emerged. These methods are claimed to provide a convenient
solution for vast array of non-linear modelling problems. Neural networks are able to
approximate any continuous mapping to a sufficient accuracy if they have resources
to do so [7], [8]. These resources are simply number of neurons, layers and structure
of the network. An important part of the modelling with neural networks is the so
called training of the network which assigns values of parameters. Learning
procedure must be carefully designed. The neural network as a data driven model
relies heavily upon a training set. This is especially important for non-linear systems.
The training data should cover all non-linearities and excite all dynamics. Failure to

do so may lead to a significant model mismatch if a neural network model is used in



the region where a sufficient amount of data was not supplied. Since the neural
network model parameters have no physical significance it is almost impossible to
predict if the model is likely to fail in operating regions where insufficient data was

supplied during training.

The models based on fuzzy logic allow incorporating rules based on
linguistics [9] in the model. Consequently expert knowledge about the object may be
used during modelling. This makes the technique useful when intuitive engineering
knowledge about the plant behaviour is available from an experienced operator. This
knowledge may be combined with measurements collected from the sensors. The
main advantage claimed of models based on fuzzy logic is the direct interpretation
that can be obtained from their rule structure. Each rule in the model represents an
operation zone of the process [9]. So far, methods for systematic structure

identification are still lacking, and this is a subject of current research.

1.3 Automotive powertrain application

The identification, estimation, control and fault detection methods presented
in this thesis are applied to the automotive powertrain control problem. The
automotive powertrain control problem is characterized by two main objectives:
torque tracking and emissions control. The spark advance is not considered here and
is assumed to be controlled separately as a function of current engine state by its
dedicated controller. Torque tracking is achieved by varying the mass of combustible
gas which enters engine cylinders. Composition of this mixture determines both: the
amount of torque that is generated by the engine and the emissions. The
minimization of engine emissions is achieved by maintaining the air-fuel ratio at
stoichiometry, which allows a complete combustion. The air-fuel ratio is often scaled
to unity which is then denoted by lambda. The lambda is then air-fuel ratio scaled by

Air mass 1

. For a
Fuel mass AF,,,

the stoichiometric ratio specific for a particular fuel: A=




stoichiometric mixture the efficiency of catalytic converter is optimal and the best

conversion is achieved for the combined pollutant fraction (HCs, NOx and CO).

The engine block diagram is shown in Figure 1-1. The following

measurements are often available in the system: P, T, — ambient pressure and

temperature respectively; m, - measured throttle flow rate (often referred to as

[

T,

im

MAF); TPS - indicated throttle position; P,

et - intake manifold pressure (often
referred to as MAP) and temperature respectively; P, , 7, - exhaust manifold

pressure and temperature respectively; 4;, 4 - lambda measurements; N - engine

speed [rpm].
FPW
P, TPS [ Intake manifold Exhaust manifold |
Lo i (s
Ta —t Ay g A

Pem Tem

Figure 1-1: Engine block diagram

The manipulated variables used for engine control are the injector command:
fuel pulse width (FPW) and the throttle position command (SP) used in the
multivariable control case. The fuel pulse width is the injector opening time applied
as an electrical pulse signal to the injector solenoid. The solenoid opens the fuel flow
valve and the amount of injected fuel is proportional to the pulse width. The throttle
position setpoint changes alter the air flow into the manifold. In that way the amount

of air that enters the cylinder is manipulated. With the advent of electronically



actuated throttle it is possible to decouple the driver (or the accelerator pedal) from
the engine (or the position of the throttle plate - throttle angle). This allows
compensation of the intake manifold filling dynamics and faster torque response is
achieved. In a conventional control strategy, with the driver controlling the throttle
position directly, faster change of the throttle position meant significant excursions
of the air-fuel ratio from stoichiometry. The only way to prevent this effect was to
inject fuel on open valves resulting in increased hydrocarbons (HCs) emissions. It
will be demonstrated that a full multivariable control strategy is capable of

improving both: emissions and torque response.

14 Overview of the Thesis

The thesis consists of two distinct parts: the theory and automotive
application. It was aimed to carry out research in the field of non-linear control
theory and fault detection for non-linear systems. The advantages of the developed
theory are demonstrated on a number of academic examples. The theoretical research
was the basis for the application development. A significant amount of time was
spent on the engine model identification. Innovative approaches to the model
construction and the problem solving strategy were required. The identification was
followed by the application of the air-fuel ratio controller. The controller code was
used on the vehicle and tests were carried by the General Motors (GM) at their
laboratories. Finally, the additional work based on the simulation and real
measurements taken from datasets was performed. This was aimed at developing
multivariable control strategies for the combustion engine. Next, the effort was
concentrated on the simulation analysis of the application of non-linear estimation
and fault detection methods to the engine control/diagnosis.

In Chapter 2 the basic estimation and parameter identification theory is
briefly presented. This is followed by the formulation of the non-linear estimation
theory, namely the extended and state-dependent Kalman filters. The fault detection
theory is presented next. The methods for sensor and components fault detection are

elaborated. The fault detection filter presented there follows developments presented



in [10], which are extended in this thesis with the improved state estimation when a
fault is present in the system. The filter provides detection, isolation and
identification capabilities for process faults. For the sensor fault detection and
isolation the discrete time state-dependent Kalman filter the open-loop residual
generation techniques are employed. The fault isolation based on the Generalized
Observer Scheme. This enables simultaneous isolation of the process and sensor
faults.

In Chapter 3 developments in the non-linear optimal and predictive control
algorithms are presented. The development of algorithms is based upon state-
dependent state-space models. Two groups of algorithms are presented. The
extensions of the well-known linear-quadratic control algorithm are presented. The
discrete version of the state-dependent Riccati equation (SDRE) method is first
elaborated. This is followed by the suboptimal predictive extension of the SDRE
technique, which offers a simple solution of the non-linear control problem [11]. The
analysis of the optimality of the solution followed next and the method that
recovered the optimality was presented [12]. In the next section the development of
the non-linear predictive control algorithms is presented. The application of the non-
linear predictive control algorithm presented earlier in [13] [14] is then introduced
[15]). The method providing the optimal solution for non-linear predictive control
algorithm follows next [16]. Finally, the non-linear Generalized Predictive Control
algorithm is presented that provides the trajectory tracking capabilities.

The second part of the thesis includes the implementation of the theoretical
developments presented in Chapter 2 and Chapter 3 to Powertrain problems. The
powertrain control developments presented in this thesis will start with the model
identification. The spark ignition combustion engine model identification is
elaborated in Chapter 4. The accurate modelling of the engine is of great importance
for the control system design. The identification data used in this thesis is collected
during a driving cycle test. The usual identification procedure requires the data to be
collected at a series of steady state operating points by performing small
perturbations. That involves creating a dense grid within the full operating range and
the identification of a large number of local linear models scheduled with the

operating point. The labour intensity of that task is enormous and the development
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time very long. The driving cycle data used in this thesis for the identification was
sampled at a frequency determined by the current engine speed (event based
sampling). The sampling event was triggered every 90 degrees of the crankshaft
position. There are clear advantages and disadvantages of such a sampling technique.
Advantages are associated with the fact that some components of system’s time
delays become constant if event based sampling is used. Intake manifold dynamics
depend on the engine speed and consequently the sampling rate variable with the
speed provides the best discretization of the model for control purpose. Also, since
the control action is required every event (e.g. 90 degrees for 8 cylinders engine), the
sampling based on that frequency gives a good performance. Controllers with fixed
sampling rate generate a control signal update at the same rate regardless the engine
speed. It has a very important advantage for the hardware implementation. For an
eight cylinder engine, in steady state at 600RPM, injection takes place every 25ms.
However, for 6000RPM this time is reduced to only 2.5ms. Event based controllers
have to cope with the fastest sampling rate and consequently the processing power
demand is increased. Now, the important question may be asked: Why would the
identification use the same type of data? The same remarks on the sampling
properties apply here. There is also a disadvantage associated with the identification
based on event sampled data. Some sensor dynamics are too fast to be identified at
the slowest sampling rates. While event based sampling is suitable for the intake
manifold dynamics it may not be possible to identify fast sensor dynamics at the
minimum speed required for reliable identification. The mass flow sensor is a good
example and with the typical time constant of Sms the measurements collected every
25ms are by far not sufficient. Probably the most important advantage of the
presented identification strategy based on driving cycle data is the on-line model
identification/adaptation. If it is possible to identify the model from that type of data
off-line it will also be possible to do it on-line. The increased processing power
demand to match the shortest possible sampling period (i.e. 2.5ms) means that when
sampling is much slower (i.e. 25ms) there will be at least 22.5ms of processor time
available to run the model adaptation task. The task could run in the background and
use only any excess of processing power and would aim to accommodate for the

slow engine parameter changes due to wear and tear. The analysis of the sampling
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issues is presented in [17]. The air-fuel ratio model identification task is split in this
thesis in two distinct parts:
¢ Intake manifold model identification which consists of the throttle, the
intake manifold and the cylinder air charge model identification. This is
performed without the necessity of considering the fuelling path, from only
upstream measurements (e.g. intake manifold pressure, temperature).
¢ Fuel delivery dynamic model identification consisting of the wall fuel
dynamics, injector parameters identification and the varying exhaust gas

transport time delay modelling (based on the lambda measurements).

Additionally an approximate torque modelling will be carried out with the
assumption that air-fuel ratio is controlled close to its stoichiometric value. With this
assumption the net torque produced by the engine is proportional to the cylinder air

charge.

To justify the split of the model identification into two distinct parts the
following should be analyzed. The air-fuel ratio output of the system is simply given

Air charge

. If only the ratio is given as a measurement some reference
Fuel charge

as AF=

measurement is necessary since the ratio itself does not contain sufficient
information. There are two options for a choice of the reference measurement. These
are either air or fuel charge. The air charge may be obtained using the upstream
measurements (€.g. pressure, throttle flow rate, throttle position) without the need for
using air-fuel ratio measurements (obtained from the lambda sensor). The fuel
charge, because of the complex character of fuel delivery and because no other
measurements are present in the system, can not be determined without using the air-
fuel ratio measurement. Therefore, the intake manifold model identification (air
charge model) is performed first and is followed by the fuel path identification based

on the air-fuel ratio measurement.
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With the accurate model identified the controller design may begin. The
accurate air fuel ratio control helps to keep pollution caused by the operation of the
engine at minimum level. Due to the engine operating cycle and a significant
transport delay in the exhaust, the measurement of air-fuel ratio is available only
long after the control decision has to be made. This constrains the maximum
performance (or bandwidth) which may be achieved by the feedback control. The
performance is maintained by the feedforward controller. The feedforward controller
is a model-based device which uses the disturbance measurement to counteract its
effects. The disturbance for the air-fuel ratio control is a change in the throttle
position, which causes changes in the cylinder air charge. The fuel charge should
match the air charge to achieve stoichiometric gas mixture in cylinders. The
feedforward controller should control the mass of injected fuel to ensure that the gas
which gets in the cylinder has the required composition. The possible inaccuracies of
the feedforward control are subject to the feedback correction. With an accurate
model, the feedforward control action becomes better and consequently the control
system relies less on the feedback controller. This is very important, since the
performance of any feedback loop is limited by the significant time delay in the air-

fuel ratio measurement.

The study and implementation of the model based engine predictive control is
presented in Chapter 5. The engine tests with the model-based feedforward controller
were carried out with the main intention of the data driven model assessment. The
performance of the air-fuel ratio feedforward controller is limited by the time delay
in the fuel delivery path and the uncertainty associated with unpredictable driver’s
behaviour. The time delay in the fuel delivery path implies that the feedforward
controller must have a built-in predictor. The accuracy of the predictor depends on
the model precision. The predictive feedforward fuel control algorithm was
developed and tested in the vehicle. Further improvements in the air-fuel ratio
control are achieved by multi-input multi-output (MIMO) nonlinear control strategies
presented in this thesis. Models of exhaust gas air-fuel ratio and generated torque are
used for the design of the control system. Improvements in the air fuel ratio

regulation may be achieved by decoupling the accelerator pedal and thé throttle
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opening through the introduction of a simple delay in the application of throttle
command.. Additional improvements in transient torque control are achieved through
the magnitude decoupling of the throttle movement and the accelerator pedal position
as well. The compensation of cylinder air charge dynamics using simple
conventional control methods is used to speed-up the torque response. Finally, the
focus is moved on to the multivariable predictive air-fuel ratio and torque control
methods. This provides a suitable solution for the torque tracking problem and the
air-fuel ratio control. The control algorithm design procedures are described in the

Chapter 5.

In Chapter 6 a very important aspect of the control system that requires
careful consideration is finally analyzed. The noise filtering and fault detection for
the intake manifold is the last major subject of this thesis. The results are based on
the simulation of the engine model identified earlier. The faults and
process/measurement noise are fed into the simulated system. It is demonstrated in
simulation how the model-based non-linear estimation methods substantially
improve the performance of the system in the presence of noise as well as model
uncertainties. The fault detection of the intake manifold system and sensor faults
analysis follows next. The proposed fault detection algorithm is based upon
theoretical developments of Chapter 2. The efficient operation of the fault detection
algorithm is demonstrated in simulation. The control system reconfiguration provides

superior performance in a presence of faults.

1.5 Contributions

The main contributions in this thesis fall in two groups: the theory and

application developments. The following work is presented in the thesis:

e Developments of the non-linear fault detection filter, including the state

estimation method for the system being subject to process fault
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Analysis of the sensor fault residual generation based on open loop and state-
dependent estimation for non-linear systems

Development of the sub-optimal predictive state-dependent Riccati equation
control method

Optimality recovery methods developed for the predictive control algorithms
based on the state-dependent models

Engine identification executed in two stages: the intake manifold identification
based on the upstream measurements followed by the time delays removal and
the fuel delivery path identification

The lookup-table construction method based on clusters of data and the
extrapolation methodology

Intake manifold constant parameter identification based on the engine cycle re-
sampled data offering improved convergence

Modified intake manifold heat transfer model formulation

Exhaust manifold time delay model structure formulation and the identification
method

Development of the improved air-fuel ratio control based on the pedal and
throttle position decoupling ranging from a simple variable time delay
introduction to the full dynamic compensation of the intake manifold filling
dynamics

Application of the non-linear predictive control to the multivariable torque and
air-fuel ratio control with the innovative structure

The application and the robustness analysis of the intake manifold estimation
with the state-dependent and extended Kalman filter

The fault detection and isolation for the intake manifold with the control system

reconfiguration
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Chapter 2

Non-linear Estimation and Fault detection

The estimation and the fault detection are closely related tasks. The model
identification employs estimation techniques for parameters estimation. Once the
model is identified estimation techniques may be used for filtering and reconstruction
of unmeasured states of the dynamic system. The model based estimation techniques
use data fusion to remove the noise that is ever present in real systems. This allows
using cheaper sensors and less accurate models while still achieving acceptable
performance. Real systems are subject to faults occurring in sensors or system
elements. The fault detection techniques are based on the same as the estimation data
fusion principle. In the context of fault detection, the data fusion is referred to as
analytical redundancy. This allows detecting faults sﬁbject to the certain minimum
number of measurements being available. The analytical redundancy removes the
necessity of having multiple sensors installed in the system and is known as a
hardware redundancy. In this chapter the theoretical foundations of state and
parameter estimation are presented. The theoretical development of fault detection
algorithm for non-linear system is carried out next. The developments are based on

the application of state dependent models to the estimation and the fault detection.
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2.1 Linear Estimation methods

Linear estimation methods are well researched and only a short overview of
available techniques will be presented as a reference. For the parameter identification
the most commonly used is the Least Squares method. The least squares method is a
deterministic approach to estimation. It means that the measurements and quantities
being estimated are not modelled as random variables or random signals [18]. It
minimizes the squared sum of model output estimation errors. In that sense the
minimized function is an indication of the parameter estimation error and the Least
Squares parameters estimate is obtained.

Consider the discrete time signal y, given by the following equation [4]:

y, =, O+€, 2.1)

where

T 3
0= [G)l, 0,,..., G)q] is a vector of g unknown parameters

o(n)= [(p,'n,(oz',,,..., Do ]T is the vector of known functions of n.

It is aimed to find an estimate © of © at time n using the measurements y,, ¥y ,---, ¥y
and ¢,,9,,...@y . Given these measurements a system of linear equations is obtained,

which in a matrix form is given by the following equation:

Y=0O+E 2.2)

where

Y=[y19y2’-..’yN]Ts (D=[¢1,¢2’-.-,¢N]T, E=[£l,€2,.u,€~]T

Assuming that E=0 it is possible to find © if N=g and @ is non-singular. In

practice the noise and disturbances are the reason to use more measurements: N>g.
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An exact solution will then, in general, not exist [4]. The least squares estimate of ©

is defined as the vector © that minimizes the following function:

V(®)=%ETE 2.3)

Lemma 2.1

The function V(©) (2.3) has a unique minimum point if the matrix ®'® is positive

definite and is given by:

-1

6=(2"®) v (2.4)
Proof: See [4], [18].

The estimate (2.4) is unbiased if £, is a zero mean white noise. Least squares method

may be used for the state estimation for state-space systems. The following system

may be considered for that purpose:

xn+1 = Axn (2 5)
y,=Cx, +v, )
where

x, € RP is a state vector, u,€ R? is a control vector, v,€ R" is the zero

mean white noise vector

Note that only the noise in the measurement equation is included in the system model
(2.5). The derivation of the least squares estimate may be found in [18]. The full
derivation of the recursive least squares method may be found in [4], [18]. There are
similarities between the recursive least squares method and the Kalman filter for

which the equations will be presented in sequel.

Consider the system given by the following state-space model [19]:
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=Ax,+Bu,+Gw,

yll = Cnxn + vn (2‘6)

where

x, € R? is a state vector, u, € R? is a control vector, y, € R is an output
vector, w, is a zero mean white process noise, cov(w,)=0,, v, is a zero

mean white measurement noise, cov(v,) =R, .

It is assumed that Q, is semi positive and R, is positive definite and symmetric. The

initial condition vector is assumed to be uncorrelated with the noise processes, the
expected value m,=E{x,} and the initial covariance P,=E {(xo—mo)(xo—nq,)r}.

The optimal discrete linear filter minimizes the following estimation error criterion:

J,=trace E {x ,,,,,} .7

The solution of this optimal estimation problem was presented by Kalman [20]. The
full derivation of Kalman filter equations is given in [18], [21]. The final result given

by the recursive equations is presented below.

nln-l An—IP —1in— lAh-l lQ -1 n-l
Kn = Rnh-lCnT (CnPnIn—lCnT + Rn )_

P Pnln 1 KnCnPnh—l (2’8)
w1 = A X g + B,

'fnln = xnln-—l + Kn (yn - Cnxnln—l)

For a system, whose model is time-invariant and the noise sources are stationary the
Kalman filter, in the steady state reduces to a time invariant filter [19]). The solution
for the steady state Kalman filter is obtained by solving the algebraic Riccati

equation. The algebraic Riccati equation is derived by substituting for P, , =P, in
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(2.8). The following equation has a positive definite and symmetric matrix P,

solution that results in the steady state gainK .

P = A(P,, ~P.C"(CR.CT+R)" CP,,) AT +GOGT
j 2.9)
K=PC"(CP.C"+R)

The constant gain K is used for the correction of the state estimate in the same way

as the time-varying gain K, was employed in equation (2.8).

2.2 Estimation extensions for Non-Linear systems

The Kalman filter derived originally for linear systems was extended to

systems described by the non-linear state-space representation:

xn+l =fn (xn’un)+Gn (xn)wn

2.10
Yo =h, (x,) +v, (10

where

f,(x,,u,) and h,(x,,u,) are vector-valued functions, G,(x,) is a matrix-

valued function.

It is required that partial derivatives of f,(x,,u,) and A, (x,,u,) with respect to all
components of x, are continuous. Statistical properties of signals w, and v, are

identical to assumptions made for the linear filter. Using the linear Taylor series
approximation of the system (2.10) the linear approximation at current estimated

state is derived. A detailed analysis of the method is presented in [18], [21] and [22].
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a ) . T
Fopr = l:-aﬁil—(x"-lln-l Uy )]Pn-un-l I:%(xn—lm—l 2 Uy )]
n~1

n-1

. N T
+G,, ('xn-lln—l ) Q-1 (xn-lln—l )
Xops = f (xn—lln—l LT )

. I ([on, . o, T Y @.11)
K,=P,, [-a_.'x_n'(xnh—l )] [l:'é;i(x,,,,,_l ):|P,,,,,_1 Iia"—(x"h_l ):l + R"J

n n n

oh, .
F,=P, -k, l:éx—n(xm"_l )] By

n

X = Zoipr + K, (yn —h, (j‘nln-l ))

The main difference between the linear Kalman filter and its non-linear

extension is the non-linear model (2.10) used in the state X, , update in (2.11). Also,

the covariance P and gain K are propagated using the Jacobian linearization of the

, : . 9 . d
non-linear model at the estimated state X,_,,, , for {E‘— and %, , for 3 2. For non-
X

n-1 n

linear systems due to approximations made during linearization the state estimates
convergence is not guaranteed. Convergence problem may occur especially, if the
initial state value is far from the actual. The linearized model matrices are functions
of the state about which the linearization was carried out. The model mismatch is a
consequence of the state estimation error. This may lead to improper state update and

consequently to the divergence.

An alternative for the extended Kalman filter is presented in sequel. In this
thesis the emphasis is put on state-dependent models. The estimation problem using
state-dependent models is now analyzed. A class of non-linear models given by the

following non-linear discrete time state-space equations is considered [23]:

X0 =f(x,)+B(x,)u,+w,

y’l=h(x’l)+vﬂ (2.12)

where
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x, € R? is a state vector, u, € R* is a control vector, y, € R is an output

vector.
The model (2.12) is re-arranged into the state-dependent coefficient form [23]:

X,y =Ax,+Bu,+w,
=4 (2.13)
y’l = Cnxn +v’l

where
A,=A(x,); B,=B(x,); C,=C(x,); F,=F(x,) are state-dependent

matrices.

Note that the model (2.1) is identical to (2.12) if A(x,)x,=f(x,) and
C(x,)x,=h(x,). Additionally it is assumed that V {C..A,} is point-wise

observable in the operating region € [23].

The way how the system is parameterized provides an additional degree of freedom

for the design. As a guideline the following strategy might be adopted. The vector-

valued function f(x,) is often given by the following non-linear structure:

S (xl_,,,...,xp,,, ) +...+ f“p (xl‘,,,...,xp‘,,)
f(xn) = : : (2.14)

fos (xl_,,,...,x,,l,l ) +ot+f,, (x,_,,,...,xp‘,, )

It is important to assess which state contributes the most in each of elements in each

row of the vector in equation (2.14). It is assumed that the row components in
equation (2.14) (e.g. f; (x,_,,,...,xp‘,,)+...+ Jip (xl',,,...,xp_,,)) are ordered according to

the most significant dependence upon the corresponding state. The natural

parameterization will be carried out as follows:
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T R N
Xin Xpn
A(x,)= : : (2.15)
fp'l(xl'n,...,xp'n) fp'p(x,‘,,,...,xw,)
i X Xpn ]

Additional analysis of the state-dependent parameterization methods is given in [24].

The process noise w, and measurements noise v, are independent white Gaussian
signals with cov{w,}=0Q, and cov{v,}=R,. O, and R, are diagonal semi-positive

and positive definite matrices respectively.

The system (2.12) is non-linear and the non-linear state dependent Kalman
filter is employed. The state-dependent Kalman filter was originally presented by
Mracek et al. [25]. This was an extension of the state-dependent Riccati equation
control method. Using the duality of control and estimation problems the filter
equations follow. The discrete version of the state-dependent Kalman filter is given

by the following equations:

(2.16)

The state dependent model matrices are denotes as A,=A(%,), B,=B(%),

~

C,=C(%,). The filter gain K, is given by the following equation:

n

~

K,=PCT(CBCT+R) 2.17)

The P, is a solution of the discrete algebraic Riccati equation:

P=A|n-Re (ReCRET)CR]AT 40 2.18)
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The solution of the Riccati equation (2.18) minimizes a frozen system’s (2.1)
expected squared state estimation error in the same way as for the linear steady state
Kalman filter given by equations (2.9) [18], [19], [20], [21], [22].

It should be noticed that the system matrices A, =A(%,), B, =B(%,),

C,=C(%,) are based on state estimates. An estimation bias may result in the model

mismatch. This may cause state estimates divergence. The estimates convergence
analysis for the general non-linear system representation is very difficult. This
property of the filter should be analyzed for particular application. The type of non-
linearity is an important feature that should be analyzed. The solution of the Riccati
equation results in the local convergence of estimates. This however is not sufficient
to guarantee global properties. In practice the convergence analysis may have to be

limited to simulation tests.

2.3 Parameter Identification with the Extended Kalman Filter

The extended Kalman filter may be applied for the parameter identification
[18], [21]. Suppose that the system is given by the following state-space model with
the following structure:

X, =fn(e’xn’un)+Gn(®’xn)Wn

n+1

y, =h,(0,x,)+v, (2.19)

The usual assumptions about the noise statistics must be made as for the extended

Kalman filter. To identify constant parameters vector © it is augmented with the

system state x,. Consequently the following non-linear system is subject of

estimation:
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B el 1

For an identification the parameter vector ©, is often treated as a random constant

vector (0,,,=0,+¢,) and {, is a zero mean Gaussian white noise sequence

n+l

uncorrelated with w, [21]. The covariance of the signal ¢, is used to achieve the

adaptive capabilities of the filter. For the identification of the constant parameters it

is sufficient to initialize the covariance F,. The noise {, may be assumed to be zero.

x’l

Defining the augmented state vector as y, = [@

n

:' and process noise vector

Wa

asf,.:lign

] the model (2.23) may be written in the following form:

Zn+l = f~n (xn,u") +Gn (Zn)én

- 2.21
y, = (2.)+v, @20

The model (2.21) has the identical structure to (2.10) and the extended Kalman filter
algorithm equations (2.11) may be applied directly. In order to apply the extended

Kalman filtering to the system (2.21) the initial state J, that consists of the system

states as well as the initial guess of the parameter vector (:)0 must be supplied to the
algorithm. For the system for which some physical insight exists — namely for grey-
box models — initial guesses for states and for parameters are usually available. This
makes the identification procedure relatively easy as opposed to black-box
identification.

The system process and measurement noise covariances must be known for the
extended Kalman filter identification. The measurement noise covariance will

usually be supplied by the sensor manufacturer. The process nose w, covariance

reflects the confidence in the model structure accuracy. The initial state error
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covariance F, is often assumed as high as possible with the requirement that the state

estimates convergence is maintained. As more accurate estimates of parameters are

obtained the covariance F, is reduced. The covariance adjustment is often a trial and

error process and requires running a number of estimation experiments.

2.4 Fault detection, isolation and identification

The fault detection improves the safety and may help to avoid major
breakdowns. The fault detection consists of three tasks: fault detection, fault isolation
and fault identification [26]. Aforementioned three tasks are subsequent actions and
in some applications not all are required. The fault detection is the most crucial task
and in most practical applications must be carried out. The isolation comes as the
second, but is not less important. The isolation aims to pinpoint the fault and may be
used for the system reconfiguration. In that sense the system operation may continue
even in a presence of the fault. The fault identification attracts far less attention. The
task requires numerical estimates of the extent of a fault. For some applications the
fault identification may be needed if controller re-configuration requires a numerical

estimate of the fault.

The fault detection methods may fall in two major categories: model-free
methods and model based methods. The model-free methods include [26]:

e Sensor outputs limit checking for sensor fault detection (e.g. using the
normal range for sensor output)

e Installation of special sensors that monitor plant parameters (e.g. pressure,
vibrations)

e Installation of multiple sensors and comparing sensor outputs (voting
system)

e Frequency analysis that gives indication of fault occurrence if the signal
spectrum differs from its usual signature

¢ Expert system approach uses logical rules based on symptoms obtained by

the detection hardware and software
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Several survey papers on fault detection theory based on analytical
redundancy were written by Frank [27], [28], Gertler [26], [29], [30] and Patton and
Chen [31]. Books by Chen and Patton [32], Gertler [33] also provide a wide scope of
the fault detection methods. The model based methods are built around an analytical
redundancy. The analytical redundancy combines measurements collected at
different points of the system with the model. The parameter of interest is
reconstructed and its measurement is compared with the analytically obtained value
based on other measurements. To facilitate fault detection diagnosis signals called
residuals are generated. The residuals generation employs the model and
inputs/outputs of the system. The residual signals indicate that the fault has occurred.
In practice residuals, even if faults are not present, will not be zero. The
measurements in real systems are always noisy and models have a finite accuracy. In
this case important information is the signal to noise ratio. If the noise level is
relatively low the fault detection algorithm will be highly sensitive to the system
faults, which results in highly reliable fault detection method. For systems with
higher signal to noise ratios the fault detection algorithm must take this fact into
account and consequently only faults of higher magnitude may be detected. The
noise and uncertainty, if not considered carefully, could cause false alarms. To avoid
that, residuals properties should be analyzed to create the algorithm that is not
sensitive to the noise/uncertainty. The residual analysis employs logical analysis of

residual patterns which are called signatures.

To enhance the isolability of faults, the directional properties of the residuals
in response to a particular fault may be used. The fault detection filter, a special
dynamic observer that generates directional residuals, was first developed at the
beginning of the seventies [34], [35]. After that the problem was studied by several
authors employing different approaches [36], [37], [38], [39]. Keller [40] developed
a fault isolation filter for the linear stochastic systems with multiple faults and
unknown inputs. This filter is a particular form of the Kalman filter that can isolate ¢
faults given at least ¢ output measurements. In Giovanini and Dutka [10] the fault

detection filter for non-linear system with unmeasured inputs and multiple faults is
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presented. It uses the state-dependent coefficient parameterization. This methodology
transfers the non-linear system into a quasi linear structure. Then, the fault
detectability matrix is used by the filter to update the state estimate with specially
designed gain matrix. The remaining freedom of design is used to shape the
dynamics of the filter. For stochastic systems, additional degrees of freedom may be

used to minimize the effect of the noise on generated residuals.

2.4.1 Fault modelling

The faults in the system may be modelled in an additive or a multiplicative
way. The additive measurement faults are the discrepancies between measured and
true values and these naturally model biases. The multiplicative faults may represent
loss of sensitivity in sensors or actuators. The additive process faults are the
disturbances that may act upon the system as additional unknown inputs like loads or
leaks. The multiplicative process faults describe changes like a gradual or abrupt
deterioration of the plant equipment. The actual nature of the fault should be
considered based on the application and the fault model chosen accordingly. In this
work the additive faults are considered. The multiplicative faults like a loss of the

sensor gain may also be modelled as the additive time-varying signal.

The following state-space system model with additive faults will be

considered:

Xps1 =A(xn)xn +Bn(xn)un +Fn(x")f" +W"

2.22
yn=C(xn)xn+fS,n+vn ( )

where

x, € N7 is a state vector, u, € R’ is a control vector, y, € R is an output,
fsn€ R is sensor faults vector, f,€ R™ is an actuator and a component
faults vector, w, is the process noise, v, is the measurement noise, A(x,),

B,(x,), F,(x,), C(x,) are the model non-linearities.
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2.4.2 Sensors fault detection

The fault detection is linked to the residuals analysis. The residuals are
generated based on system inputs/outputs and the model. With the hypothesis that
input faults f, are not present in the system (2.22) the residuals that are sensitive to
only one output fault are generated using the dedicated observer structure [41].

Dedicated output estimators based on the state-dependent Kalman filter may be used

for that purpose. The system block diagram is shown in Figure 2-1.

N

" | Residual Generator 1

—>

> System Residual Generator 2| 1o

Residual Generator m{

Figure 2-1: Dedicated observer scheme

The state-dependent Kalman filter requires state estimates for the model
update. In the presence of the additive sensor fault, state estimates will diverge from

the actual system state values. It may be demonstrated using the following equation:

in-&»l = (‘an —AnKnén )in +AnKnCnxn + AnanS,n + ‘a'nKnvn +§uun (2'23)

The senor fault fg, which is assumed to have a non-zero mean value acts as an

additional input to the estimator resulting in the state estimation offset. This offset

may result in the discrepancy between model matrices A =A(%), B, =B(%,),
B, =

C,=C(#,) and the actual system matrices 4, =A(x,), B(x,), C,=C(x,).
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The discrepancy depends on particular system non-linearity and the general analysis
for an arbitrary non-linear system model is not possible. For the linear systems, the
system matrices are constant and model mismatch does not occur. The state-
dependent Kalman filter error signal generated for i-th output and used as a residual

is given by the following expression:

f=CoXy=Co% + fsn ¥V, (2.24)

The residual r, will directly reflect the sensor fault f;,. Unfortunately, the past
values of the fault signal f;, are also present in the state estimate X, (see equation
(2.23)). This results in rather unpredictable response of the residual r,, to the fault
fs.- This is due to the non-linear nature of the system (2.22). Aforementioned state-

dependent model mismatch may have the negative effect on the residual signal

sensitivity to the fault. This negative influence is caused by the state estimate X, bias

and the model matrix €, mismatch.

For systems that are open loop stable a direct use of the non-linear system
model (2.22) may provide better results. The state of the system may be obtained

using the following equation:

Xotne1 = AopnRoLn + Bopakty 2.25)
where

L ~

Appn = A('%OL.n) ’ éOL.n =B (201.,;.) and é'OL,.. = é(im..n ) .

The state X,,, estimation mismatch results from the process noise w, that is not

attenuated in the open loop estimation (as opposed to the closed-loop estimation is

the equation (2.23)). However, the fault f;, does not influence the state estimate in

any way. The residual is proportional to the state estimation error (C,x, — éo:. wXoLa)s
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the measurement noise v, and the fault magnitude f; ,. Note, that the negative effect

of the state estimation error C,x, —C,%, that was present in (2.24) is eliminated in

(2.26).

A

Torin = CaXa = Corn¥orn + fs.n +V, (2.26)

n

The above dedicated observer based residual generator given either be the equation
(2.24) or by the equation (2.26) must be built for each output that is equipped with
the sensor being subject to the fault. Note that the choice of the residual generation

method ((2.24) or (2.26)) depends on the particular application.

2.4.3 Process faults detection

For the process (or input, actuator) fault estimation a fault detection filter
with directional residuals must be designed. The filter generates directional residuals
that reflect unknown inputs magnitudes and the remaining residuals are orthogonal to
the system fault(s). The orthogonal residuals are used for unbiased estimation and the

process and measurement noise attenuation. The system model of interest is given by

the equation (2.22) with the assumption that that output faults f;, are not present in
the system. In this section the following notation for the model (2.22) matrices is
used: A, =A(x,), B,=B(x,), C,=C(x,) F,=F(x,).

It is assumed that ¥/ {C,.A,} is point-wise observable [23] in the operating

region Q. The process noise w, and the measurements noise v, are independent
white Gaussian signals with cov{w,}=Q and cov{v,}=R. Q and R are diagonal

semi-positive and positive definite matrices respectively.
The actuator and component faults may be modelled by unknown inputs to
the system. With the model, unknown inputs may be de-coupled from residuals. The

unknown input observer that de-couples the state-dependent Kalman filter innovation
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sequence from the fault/unknown input is constructed as in [10]. The following

assumption is made:

rank(C,)=r, rank(F,)=m, r2m .27

The above assumption must be fulfilled for the system’s operating state space. It
defines that the number of faults/unknown inputs cannot be greater than the number

of outputs.

The Fault Isolation Filter design

The following notation is introduced: ﬁ‘n=[ﬁ;_n...ﬁ ], F,=F(%,),

A =[ Sime fm]. Definitions of fault detectability index and matrix for state

dependent model are established in a similar way as it was done for the time

invariant continuous time system by Liu and Si [39].

Definition 1: The state-dependent system (2.22) has fault detectability indexes
p={p1,...,pn} defined as

p,=min{o: C,A,F, , #0,0=12,.} (2.28)
where

A I o=1

e = {&_,/3,.-2 wh oy 0>l (2.29)

It is assumed, that for the operating space Q, state detectability indexes for

faults/'unmeasured inputs are invariant.

Definition 2: Assuming that the system (2.22) has finite detectability indexes, the fault

detectability matrix ¥, is defined as

a~

[t

\iln= nn

(2.30)
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>

g, =[ApFinp = Ay Funy | | .31)

Faults associated with detectability matrix (2.31) are given in the following form

T
= finp = funp ] (2.32)
The output of the system is defined as follows:
».=C%+CEQD, +v, (2.33)

where
%, is the state of the system without the last fault that may be seen on the

output.

The dynamic observer is given by the following equation:

>0

=Ax +Bu,+K.q,
n+l éAnxn n“n nq (2.34)

<o
>0

n

where

§,, and fr,, are state and output estimate vectors.
In the equation (2.34) the output residual g, is given by:

9= Yo =y =Coe, +C,5,@,+v, (2.35)

where

e, is the estimation error and

=0

e, =%, =X, (2.36)
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Observe that the residual g, has three components: the estimation error due to state
errors e,, the effect of the last faults/unmeasured inputs over the system outputs and

the measurement noise. The second component may lead to the biased estimation and
to the divergence of estimated states. To solve this problem two matrix coefficients

T, and X, are introduced in a similar way as in Keller [40]. The residual g, is now

represented by two auxiliary residuals, which are given by the following expression:

[;" ] - [i ] a, (2.37)

Replacing for the residual g, the equation (2.37) is rewritten as

>
>

én = Z"C’len + n ’lén¢n (2 38)
(i)n - 'I:u(f; n '*"I‘n Aué::nq)n )
where

&, e R™ are residuals associated with the faults/unmeasured inputs and

d,€ R"™™ are residuals decoupled from faults/unmeasured inputs.

To obtain this decoupling an effect of faults/unmeasured inputs has to be removed

from the estimation error. Thus, the matrix £, must satisfy:

,=0e R7T™" ‘ (2.39)

[1)>

z,C,

where

. must be a matrix of full rows rank (r-m) and orthogonalto €,

n*

The directional residuals ((i)n) should contain unchanged information about

faults/unmeasured input magnitudes, therefore T, is required to satisfy:
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[ll>

T,C,E, =Ie R™ (2.40)

where

T, is generalized inverse or pseudo-inverse matrix.

n n

T,=(¢, &) (2.41)
Finally auxiliary residuals are given by:

E,,C,,e,, ,
(2.42)

(Dn = T’lCne'l + (Dn

With the equation (2.42) the dynamic observer may be written in the following form:

2 z
=AX, +B, n+[ UIKF »n ] l:Til 9,

¥, =C,%,

(2.43)

where

Kyir,, 1s the filter gain and W, is the matrix that propagates the effect of

faults/'unmeasured inputs into the next time instant and

=AE,

[Il)

(2.44)

By performing the feedforward update of the state estimate it is maintained

that the state of the filter contains information about all but the last fault/unmeasured

input. The dynamic properties of the filter are determined by the gain K-, . To

design this gain, the fault isolation filter (2.43) is re-written as follows

fin;x + l; u 4~1K;]Hﬂ’;;)c1’

a 2.45
¢ (2.45)

‘«:1) ><t>
><1)
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where

41 = Am —“,nTnén —KUIKF.nznén’

(2.46)
KUIKF.n = KUIKF.nzn +W,T,

The gain K, for deterministic systems is designed to place poles of the closed

loop system matrix A, such that the desired dynamic properties of the observer are
obtained. For stochastic systems the gain K, , is obtained from the solution of the

Riccati equation [40]:

(2.47)

where
¢, =G,
R, =%,RE]

System state estimation

It should be noticed that the state estimates % and X, will differ in the

presence of faults. For the state-dependent model (A,.B,,C,.F,) the accuracy of
state estimates is very important. Any discrepancy results in the model mismatch as a
consequence of the state-dependent model nature. The state X, is the estimate of

artificially introduced state. This state does not reflect the state of the real system
since it has no information about the last fault and faults which occurred in less than
the detectability index discrete time steps in the past. The detectability index

determines the time delay after which the fault may by observed on the output. It is
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possible to use directional residuals to estimate state of the system, but s steps behind

the current time (s = max{p,, i =1...m}) as given by the equation (2.48).

A

xn—.H-l

A’l-‘l’ ('in-s + KII—S (yn—s - n—s“x\"n-s )) + Bn—sun—-.\‘ + F:l-.lfn—s

>

~

yll—S Il—-'x’l—.‘ (2.48)

fn—.r = [(‘i)l,m-p, -~ ém.n+p,,,—s ]T

The filter gain K,_, is computed using equations (2.17) and (2.18) with the system

model computed at the state estimate %, __ . The second stage of the estimation

involves projection of the past state estimate to the current time instant. The Kalman

filter equations are iterated until the current time (i =s-1,5-2,...,0). The dynamic

observer is used alongside with the past output measurements as in the equation
(2.49).

X = A (‘in-l +K, (yn—i -C X )) +B, _u,  +F_f,,

S,n—l = é"_‘i”__‘
(2.49)

A A

T
Joi = [q)l.nﬁll(n,n+l’|-i) * Pmintrnss "‘i)]
i=s-15-2,.,0

The equation (2.49) is very similar to (2.48). The fault estimates with the fault

detectability index greater than i are not available therefore the most recent fault
estimate @,'mi,,(,,',,,,pk_,-) is used instead. It is assumed that the fault/unmeasured input

did not change until n-th (current) time instant. This implies that the method should
be used for systems where fault magnitudes are stationary or slowly varying. As the

result of the iteration i =s5~1,5~2,...,0 the state estimate X, is obtained. The current

state estimate is used for the state-dependent model matrices calculation.
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2.4.4 Generalized Observer Scheme, fault detection and isolation

To detect the fault a threshold tests for residuals are carried out. The result of
these tests is the fault detection statement. The fault isolation is the next task. The
dedicated observer scheme requires a separate estimator for each fault [42], [43]. For
the sensor fault detection the hypothesis that process faults are not present must be
made. The dedicated observer scheme was elaborated in section 2.4.2. For the
process faults the non-linear fault detection filter that generates directional residuals
is employed (see section 2.4.3). The hypothesis that sensor faults are not present

must be made to facilitate the fault detection. Based on the fault detection filter
formulated in section 2.4.3 the signal @, being the estimate of the fault may be used
as the residual. Alternatively, the signal g, that is orthogonal to the fault could also

be used.

For stochastic or uncertain systems the residuals are not zero for the fault-free
system. The thresholds for residuals must be established. If residuals are within pre-
defined boundaries, the system is assumed to be fault-free. The residual(s) exceeding
threshold(s) indicate the presence of the fault in the system. It is important to define
thresholds in a way that the noise or the system uncertainty does not trigger false
alarms. In practice, thresholds should be based on the information about extreme
values of the fault-free system residuals. The formal analytical derivation of
thresholds for complex systems is not possible in practice. Thresholds may be
determined based on the simulation results for the fault-free system. The same
procedure for the threshold formulation may be used with the real experiment. The
safety margin should be included in the design to achieve the robustness. The fault in
the system is detected if the value of any residual violates its threshold. This

indicates that the fault is present in the system but does not locate the fault.

The fault isolation method based on the generalized observer scheme uses the
table with ‘fault signatures’ [43]. In this way the hypotheses made for the residual
generation are managed. The sensor faults may be detected since the sensor fault

results in its dedicated residual change. The other sensors residuals are insensitive to
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such fault. The sensor faults also interact with process fault residuals. The process
faults result in the change of its directional residual and all process faults are
mutually decoupled. The sensor observer directional residuals also change their
values as the effect of the process fault. Based on such analysis the relationship
between faults and residuals is established, as in the Table 2.1, for the fault isolation.
The logical value 1 denotes that the relationship exists, O that it does not. The value
X denotes that the relationship is not specified (could be 1 or 0 depending on system

structure specific to the particular application).

S S fS.n fi 5 S
rs" l 0 e e 0 x X K x
Iia 0 1 0 X X X
T 0 0 1 X X X
)i X X X X 1 0 0
"2 X X X X 0 1 0
r, X X X X 0 0 e 1

Table 2.1: Fault signatures table

The sensor fault f associated with i-th output affects only the residual ry,. For

process faults, the fault f; results in the process fault residual 7, being affected.

Based on the Table 2.1 the logic rules for fault isolation may be devised. Since the
non-linear systems are subject of this analysis, the ability to efficiently isolate
multiple faults depends on the particular application. This is due to the unknown

behaviour of the system shown in Table 2.1 and associated with unspecified states X.

If senor faults are not considered (i.e. there is a hardware redundancy in
sensors) the ability of the process fault detection filter to detect multiple faults is
determined by the fault detectability matrix as explained in section 2.4.3. In general
it is not possible to detect number of faults that is greater than number of outputs.
Sometimes, the fault isolation is carried out with the assumption that only one fault

occurs at a time. In that case number of faults may exceed number of measured
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system outputs. The fault isolation technique may be irhproved by introduction of the
statistical analysis of residual signals. The variance and mean value of residuals may
be tested for that purpose. Additionally the specific system knowledge may be
incorporated to improve the fault detection speed and robustness. This however
depends on the particular application and is not considered in this chapter. The

application of the fault detection theory presented here will be given in section 6.4.

2.5 Summary

In Chapter 2 the basic estimation theory and the non-linear fault detection
methods were introduced. The chapter started with the introduction of the parameter
and state estimation methods for linear systems. These methods were outlined to give
the basis for the non-linear techniques analysis. The estimation methods for the non-
linear system include the extended Kalman filter that may be used for the parameter
and state estimation. An alternative to the extended Kalman filter was given and the
state-dependent Kalman filter for the discrete time systems was presented. Next, the
analysis of the application of the dedicated observer scheme for the sensor fault
detection was given. The fault detection filter based on the state-dependent models
was elaborated next. The filter provided the ability to detect multiple process faults.
The fault directional and orthogonal residuals were generated for the process fault
detection and isolation. Finally, the methodology of the simultaneous detection of
process (or input) and sensor (or output) faults was given. The methodology used

both: sensor and process fault residuals generators within the logic-based framework.

41



Chapter 3

Non-linear Optimal and Predictive Control

The non-linear control techniques attract now most of the attention of
researchers working in the field of control engineering. This stems from the fact that
the majority of real objects is non-linear. For that reason efforts presented in this
chapter are directed on the development of non-linear control algorithms. The model
based techniques are employed here. It is important to remember that a good model

of the system is required if these techniques are to be considered.

The state space control techniques analyzed in this chapter require state to be
available to the controller. In some cases the state is measured directly. Sometimes
when the noise distorts measurements filtering techniques presented in previous
chapter have to be used. If the state in not measured directly the state estimator must
be constructed. The extended and state-dependent Kalman filters presented in
Chapter 2 may be used for the noise filtering and the state estimation. With the state
assumed available two main types of control techniques will be presented. In section
3.1 the Riccati equation based techniques are introduced. These methods extend the
linear-quadratic (LQ) techniques to non-linear systems through the state-dependent
model parameterization. In a similar way in section 3.2, with the same state-
dependent model parameterization, the state-space predictive control algorithm is

used in a non-linear context.
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In section 3.1.1 the discrete state-dependent Riccati equation (DSDRE)
method is presented. In section 3.1.2 a prediction of the trajectory is used to
approximate the non-linear system with the time-varying linear model. The
difference Riccati equation is employed in the solution. This method significantly
improves the closed loop system response. However, it does not lead to the optimal
solution is a sense of the minimal value of the cost function. The remedy is presented
in section 3.1.3 where the correction tensors are introduced in the solution. The
numerical example in section 3.1.4 shows results obtained with the discrete SDRE,
the discrete SDRE with the predicted trajectory and its optimized version. Next, in
section 3.2 the predictive control algorithms are presented. Two first algorithms are
similar to the discrete SDRE with the prediction and its optimized version. It is
aimed to drive the state of the system to the origin. The main difference here is a
predictive context. The future control action vector from previous iteration of the
predictive control algorithm is used. This methodology is different from Riccati
equation based solution where previous state-feedback gains were used. The direct
use of control vector is less demanding from the computational point of view but the
robustness may suffer. This regulatory predictive algorithm is presented in section
3.2.1. Its optimized version follows in section 3.2.2. The numerical example is
presented in section 3.2.3. Lastly, the non-linear GPC algorithm with the explicit
reference trajectory is presented in section 3.2.4. The algorithm provides the ability
to use the future reference signal if such is available in the system. This will be used

within the engine control algorithm in section 5.4.

3.1 State-Dependent Riccati Equation with Predicted
Trajectory

There is a need for control laws that are simple to compute, suitable for
nonlinear systems [44] that may be optimized in some sense [45]. The family of LQ
and LQG design methods [46], [19] have been very successful for linear systems and
it is desired to provide an equally simple method that can be used for nonlinear
systems. Over the past three decades several non-linear versions of LQG algorithm

have emerged. In 1962 Pearson [47] used a linear state-dependent representation of
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the non-linear system for the first time. The assumption was that the non-linear
system described by the non-linear state space model may be re-arranged into a so-
called ‘state dependent’ linear form. The non-linear behaviour of the system in such
a representation is determined by the state dependent matrices. Later, in 1969
Boughart [48] continued this work but there was little interest in this method for a
period. In 1996 Cloutier [49], [S0] resurrected this idea using a stricter mathematical
justification for the method. It was reported [51] that the state-dependent Riccati
Equation (SDRE) method has many advantages over other non-linear design
methods. The main drawback is the lack of a guarantee of global asymptotic stability
which in general is a difficult issue for non-linear systems. The local stability at the
origin of the closed loop system results from the stabilizing properties of the solution
of the algebraic Riccati equation. Unfortunately, so far, one of the most efficient
methods of assessing the stability of the SDRE controller is by simulation. Recent
work in the stability analysis of the SDRE method either gave rather difficult
conditions to check or imposed difficult requirements. In [52] the region of attraction
for the SDRE controller, around the origin of the closed loop, is determined and for
this region the stability of the controller is guaranteed. This may be difficult since
closed-loop system equations are usually not known explicitly. In [53], [54] the
stability of the system controlled by the SDRE method is ensured via “satisficing”
provided that a Control Lyapunov Function for considered system is known. The
main difficulty with this technique is to find the global control Lyapunov function for
the non-linear system. For some systems such a function may easily be determined
and in this case the method may be employed. In [55] the estimation of the region of
stability is substituted by the functional search problem. The state-dependent model
matrices were assumed to be polynomial functions of the state and the stability

region estimate was obtained though optimization.

The evidently questionable assumption made by the state-dependent Riccati
equation (SDRE) method will be tackled in this section. In the SDRE method the
calculations are performed, assuming the system remains fixed (time-invariant) at the
state value measured or estimated at current operating conditions. The frozen system

matrices calculated at this point are used for the solution of the algebraic Riccati
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equation. To remove that inaccurate assumption the linear quadratic optimal control
[56] results for time-varying linear systems will be used in section 3.1.2. The main
idea is to estimate the future variations in the nonlinear system characteristics [57]
and apply the linear time-varying optimal control results. A restricted class of
nonlinear systems is used, which is the same as that employed in papers on the state-
dependent Riccati equation approach [49], [50]. The state-dependent Riccati
equation technique with predicted trajectory assumes that the system may be

approximated using the linear time-varying system model.

The optimality of the solution will be analyzed next in section 3.1.3. For
some applications a sub-optimal solution of the minimization problem may not be
sufficient. The optimal solution based on the infinite horizon cost function will be
derived. The improvements in terms on the value of the performance index will be

demonstrated in section 3.1.4.

3.1.1 Discrete Time SDRE Method

The SDRE method was originally developed for continuous time systems
[50], [23]. The solution is a direct result of adopting the linear continuous time
optimal control method that was based on the algebraic Riccati equation [16]. Thus,
the theory that is well established for linear systems may be used in the context of

non-linear systems.

In this thesis, the attention is focused on non-linear discrete time systems. For
the linear discrete time systems the control minimizing an infinite horizon quadratic
performance index is given by the solution of the discrete algebraic Riccati equation
(DARE). In a manner similar to the original SDRE the solution of the algebraic
Riccati equation, or rather its discrete version [11] is used in the context of non-linear
discrete time systems. The non-linear discrete time system considered here is given
by the following control affine non-linear difference equation. The control-affine
structure may pose restrictions in applicability of presented algorithm. The

assumption may however be dropped in the algorithm proposed in section 3.1.2.
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xn+l =f(xn)+B(xn)un (31)

The model (3.1) is re-arranged and the state-dependent form (3.2) of the system is

obtained:

xn+l =A(xn)xn +B(xn)un (32)

where

x, - state vector, u, - control vector.

Detailed discussion of possible methods of getting the state-dependent form is given
in [58]. In general there are an infinite number of such re-arrangements. This may be

regarded as an additional degree of freedom of design. An assumption on point-wise

controllability must be made here, ie. V(A(x,)B(x,)) is controllable. The infinite

horizon cost function being minimized is given by the following expression:

J, =%i{x,.eri +ulRu) | (3.3)

=n

where

Q and R are symmetric and semi-positive and positive definite matrices

respectively.

Note that the assumption on positive definite properties of weighting matrix R may
pose limitations if one of control signals is not desired to the penalized. The solution
of the minimization problem (3.3) is obtained by solving the discrete state-dependent
Riccati equation (DSDRE). This yields, in general, a sub-optimal solution. The

DSDRE is obtained by freezing the system (3.2) at current state x, and assuming

that it will remain time-invariant in the future. The solution of such problem is well
known from the linear optimal control theory [59], [60] and will not be presented
here. The DSDRE is given by the following equation:
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P(x,) = A(x,)" [P(x,, )= P(x,)B(x,)T x

r -1 (3.4
(R +B(x,)T P(x, )B(x,,)) B(x,)P(x, )] A(x,)+0Q

The non-linear control action is computed from the expression (3.5). It is similar to

the linear-quadratic optimal control law for linear systems [59], [60]:

u'l = -K’lxﬂ

4 3.5
K, =(B(x.) RB(x,)+R) B(z) B4, )
If the analytical solution of DSDRE (3.4) exists, the state feedback gain (3.5) based

on the solution for P(x,) from the equation (3.4) is used as a non-linear feedback

control law. Otherwise, the equation is solved at each sampling instant numerically.
It is also possible to pre-compute solutions of the Riccati equation and state feedback
gains. These may be used for the gain scheduling control with the state employed as
a scheduling parameter. Note that if number of states (order of the system) is high,
the gain scheduling may require a significant amount of memory to store pre-

computed gains.

The solution of the DSDRE for the system (3.1) results in a locally stabilizing
control. As mentioned earlier, the most efficient method of the stability analysis for
the DSDRE controller is by simulation. Recent work in the stability assessment for
the SDRE method either gave rather difficult to check conditions or imposed difficult
to fulfil requirements. The optimality of the solution depends on the form of the
state-dependent parameterization (3.2) and in general the solution is sub-optimal.
The non-linear control method extending the DSDRE method by removing the
assumption about the frozen state will now be analyzed. The problem of the

optimality of the solution will follow that development.
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3.1.2 Discrete Time SDRE with Predicted Trajectory

The discrete time state-dependent Riccati equation (DSDRE) method
employs a solution of the discrete algebraic Riccati equation (DARE). The state-
space matrices in the equation (3.2) must be frozen at current state to obtain the
linear time invariant model representation. This is equivalent to the assumption that
the system will remain fixed at the current operating point in the future. This
assumption represents a severe approximation since it is only true for the steady state
at the origin.

In this section it is assumed that prediction of the future state trajectory may
be determined. With this knowledge, the DARE may be solved not just for the
current state (as it was done in the DSDRE) but also for the prediction of the future
state. For a discrete time system controlled at time » it would mean that the DARE is
solved at n+N, where N is the last state prediction available. If the state at n+N time
instant represents the steady state of the system then the solution of the DARE may
be used as a boundary condition for the solution of the difference Riccati equation
which is iterated backwards using predictions of the system matrices. Finally the
state feedback gain and the control signal may be obtained. The assumption on the
knowledge of the state trajectory may be satisfied at a given time instant n by using
the model of the system and predicting the future control and state values for n, n+1,
n+2,..., n+N-1. These values might for example be approximated using the last

calculated value of the gain matrix K.(n-I) (or the sequence of time-varying gains

from previous iteration of the control algorithm).and the state-dependent model of
the system. The future trajectory provides an indication of the likely time variation of
the system matrices. Given the time-varying system matrices the linear time-varying
quadratic optimal controller results may then be applied. Thus, the solution of the
DARE is first determined using the system model at time » + N, which is assumed
time invariant from that point on. The solution of the algebraic Riccati equation (say

P.o) can then be used to initialize the time-varying Riccati difference equation to

solve backwards in time. The values of the Riccati solution {P(.)} at times n+N-1,

n+N-2 ,.., n+1 may then be computed. The gain at time n, which is to be used to
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compute the control signal at time instant n then follows. The whole process must be
repeated at the next time instant in a receding horizon control fashion.

If the system is controllable the state may be driven sufficiently close to the
origin in a finite number of steps. It is important to make sure that the DSDRE
method is capable of stabilizing the system. The stability issues are analyzed in [52],
[53], [55]. If those methods cannot be applied it is quite common for non-linear
systems that the stability is evaluated though simulation. As was already stated, the
matrices in the state-dependent linear parameterization (3.2) are implicit functions of
time through the dependence on state. With the knowledge of the future trajectory
the non-linear system may be approximated by a linear time varying system [11].
The future trajectory is obtained with the state feedback gain computed in the

previous iteration. The minimization of the cost function may be split in two parts:

J, = %nfl {xiTQ x,+u'R u,}+—12— i {x,.TQ x, +u’R u,.}

i=n & i=n+N
v v

Jy Ja

(3.6)

The state feedback drives the system (3.1) to the steady state at the origin after a
finite number of steps N. The solution of the discrete algebraic Riccati equation

(DARE) (3.7) computed for the system (3.2) at state x,,y minimizes J, part of the

cost function (3.6).

Fon= A(xn+N)T [Pn+N -Rz+NB(xn+N)T
T -1 3.7
(R+B(x,,+N) Pn+NB(xn+N)) B(x,,+N)P,,+N]A(x,,+N)+Q

The state of the system from the current value to the steady state at the origin evolves
in time and so the state dependent model matrices do. The DARE solution P,y is
used as a boundary condition for the time-varying optimal control problem.
Derivation of the optimal control solution for the linear time varying systems is
presented in [60]. The solution for the finite horizon part J, minimization in (3.6) is
based upon the time-varying approximation of the non-linear system. This requires

the following difference Riccati equation:
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B = AG)T [ Pay = BB (R+Boc,-)’1°,-+119(x,->)'1 B(x,-)ml]A(x,-HQ (3.8)

The equation is iterated from i=n+N-1 using the solution of the DARE
P

> N = P(x,,n) given by equation (3.4). The iterations of (3.8) are terminated at

i =n+1. The state feedback gain resulting from the linear time-varying solution [60]

is given by the following expression:

ull = —Kn'xn

K, =(B(x,) PuB(5)+R) B(x,) Pusd, (3.9)

The idea behind this control strategy is similar to the dual mode control solution for
model predictive control algorithms [61]. The following algorithm summarizes the
described control technique. This provides the refined DSDRE method. The state

feedback gain K, is obtained and the receding horizon technique is used in the

algorithm.

Algorithm 3.1

e Use the state feedback gains computed in previous iteration for the finite
horizon N and simulate the closed loop system with the model (3.1) starting
from the current state x,. This provides prediction of the state trajectory.

e The solution of the Riccati equation (3.4) is calculated at x,,, 5 . The state-

dependent model matrices are assumed time invariant after the time n+ N .

e Within the finite horizon the state dependent matrices are calculated along
the prediction of the state trajectory. This results in the linear time varying
model that is an approximation of the non-linear system.

o Within the finite horizon N the equation (3.8) is iterated and P,_,...P,,, are

computed. Based on that, the state feedback gains K,...K, ., are obtained

and the first gain K, is used for the control.
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¢ In the next discrete time event the algorithm is repeated and the remaining

from the current iteration gains X, ,,...K,,,_, are used. Note, that for the
discrete time algorithm, the state x,,, prediction is obtained using gain

Kn+N-—l *

The use of the prediction of future trajectory results in a better performance of the
controller which will be demonstrated on the numerical example that will follow.
This is due to more realistic assumptions about the future state. In the next section
the optimality of the solution, which is determined by the value of the cost function,

will attract attention.

3.1.3 Optimized Discrete SDRE Method

The continuous time state-dependent Riccati equation (SDRE) method gives,
in general, a suboptimal locally stabilizing solution of the infinite horizon
minimization problem of a quadratic (in control) cost-function, subject to non-linear
differential constraints [50]. For scalar systems the solution of the SDRE yields an
optimal solution [23]. For systems of higher order the optimality of the solution is
determined by the state-dependent parameterization of the system matrix [62]. The
proper choice of that parameterization may be difficult, if not impossible, since that

may require the solution of the Hamilton-Jacobi-Bellman equation.

The attention is now focused on the optimality of the solution for discrete
time systems. The discrete state-dependent Riccati equation (DSDRE) is not
guaranteed to give an optimal solution of the minimization of the performance index.
For some systems the state-dependent parameterization giving an optimal solution
may not exist at all. This may be demonstrated by solving the DSDRE problem for a

simple discrete time scalar non-linear system given by the following equation:

(3.10)
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The DSDRE controller with the only possible state-dependent parameterization
(x,)’ = x, - x, does not provide an optimal solution, which may easily be verified by

the simulation. The numerical optimization provides a lower value of the cost
function when compared with the DSDRE solution. This clearly indicates sub-
optimality of the DSDRE solution.

The refinement of the DSDRE with the predicted trajectory, given by
Algorithm 3.1, brings the improvement. However, the optimality still depends on the
state dependent parameterization. The method of recovering optimality will now be
presented. The method may also be seen as an alternative to the numerical
optimization.

In this section the optimal control for the system (3.1), with the infinite horizon cost

function, is analyzed. In the preparation to the controller derivation substitute for

P

> o Xy 1D the cost function (3.6). The resulting performance index is

Jz=2 n+N

given by the following expression:

1 n+N-1

J=3 Z {x"0x +u, Ru,}+ =Xy Poon X (3.11)

The matrices Q, P,,, and R are assumed symmetric and semi-positive and positive
definite respectively. The P,,, is a final state penalty matrix for the finite horizon

optimization. Assume that the system is driven to the origin (or sufficiently close)
within the horizon N. The value of the terminal penalty matrix may be obtained from
the solution of the discrete algebraic Riccati equation for the system matrices frozen

at x.,, . If the state x,,, is in the neighbourhood of the origin, the fixed gain control

n+N *
is capable of stabilizing the system within this closed region. The stability region for
the system controlled by the linear state feedback controller may be determined using

Lyapunov theory [63], [61].
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The Hamiltonian for the minimization of the cost function (3.11) subject to
equality constraints of the original non-linear system representation (3.1), is given
by:

H, =%(xiTQx‘. +ulRu)+ AT, (f (x)+B(x)u,) (.12)

The optimality conditions for the minimization problem solution are given as follows

[16]:

?%:Ru‘.+3(x,.)r Ay =0 (3.13)
oH, _ of (x,) , 9B(x) i -

E”Qxl +[ axi + axi ; ;{'Hl - /11 (3'14)
aaZ'l = f(x)+B(x)u4 =x, (3.15)

The boundary condition for the co-state in the equation (3.14) is A,y =P, v X,.n -

The initial condition for the state in the equation (3.15) (the system state) is x, . The

optimization with the initial value given for the state equation and the final value

available for the co-state is known as a two point boundary problem.

To find a solution to the problem introduce the matrix coefficient

P, = P(X;, X,y ses X ) - Without loss of generality it may be assumed that the

following expression for the co-state 4, holds [60]:

A =Px, (3.16)

From the system equation (3.15), the stationary condition (3.13) and the assumption

(3.16) the following expression may be computed:
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% =(I=B(x)R'B(x)" By)f (%) (3.17)

From the co-state equation (3.14), the assumption (3.16) and the equation (3.17) the

following expression is obtained:

ox, ox,

i

Px, =(af (x‘)+aB("‘)u.-]T Ra(I-B(x)R'B(x) P.)f(x)+0x, (3.18)

The above equation should hold for all x; in the state-space. The equation (3.18) is

re-arranged using the matrix inversion Lemma [60]. The state-dependent
parameterization of the system (3.1) given by (3.2) is employed. The following

equation is obtained:

Pz(af(xi)_'_aB(xi)uijT
‘ B 3.19)
[~ BB () (B Ba(5)+R) BxY B |4(5)+0

The equation (3.19) has a similar structure to the difference Riccati equation (3.8).
Only the following term which can be re-written using the state-dependent

parameterization makes two equations different:

af(x;) aB(xi) _aA(xl) aB(xi)
ox, * ox; = ox, xi+ A(x)+ ox, “ (3:20)
A( x. oB(x,
The derivatives @ aix‘) and aix') are tensors (third dimension has to be

introduced to accommodate derivatives of each element of A matrix). Note that for
the linear system where A and B are constant or time varying but state-independent
the equation (3.18) becomes the ordinary difference Riccati equation (3.8). The same

result is obtained if matrices A and B are frozen.
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The optimal control minimizing the cost function (3.11) is computed from
equations (3.13), (3.15), (3.16), which results in the equation (3.9).
The value of P

n+l

is obtained by iterating the equation (3.19) from i =n+ N -1 back

intimeto i =n+1. The equations (3.19), (3.20) must be used with the predicted
0A(x; B(x,
(1) g 220)

X, ox,

future trajectory. For this trajectory, tensors as well as

A(x;),B(x;) are computed.

(]

Algorithm 3.2

e Use the state feedback gains for the finite horizon N computed in previous
iteration and simulate the closed loop system with the model (3.1) starting
from the current state x, . This provides prediction of the state and control
trajectory.

o The solution of the Riccati equation (3.4) is calculated at x,,, 5 . The state-
dependent model matrices are assumed time invariant after n+ N .

e Within the finite horizon the state dependent matrices and tensors are
calculated along the prediction of the state trajectory.

¢ Within the finite horizon N the equation (3.19) is iterated and P, ,...P,,, are
computed. Based on that, state feedback gains X,...K,,,_, are obtained, the
first gain K, is used for the control.

e In the next discrete time step the algorithm is repeated and gains

K, .-K

n+l* n

vt are used.

The optimality of the solution depends strongly on the accuracy of the trajectory that

is itself based on the gain sequence obtained in previous iteration.
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3.1.4 Numerical Example and Conclusions

As an example a discrete-time model of the driven inverted pendulum is

employed. The pendulum diagram is shown in Figure 3-1.

Figure 3-1: Inverted Pendulum

The control task is to find the optimal control sequence for the pendulum from the
assumed initial level to the unstable equilibrium point. The model derivation is based
on the moment balance at the axis of rotation. The physical model is discretized
using the Euler method. Assuming that the state-space origin corresponds to the

unstable equilibrium the model is given as follows:

Xigs1 = Xpp T T.x,,

Ly Tg . (3.21)
xz.,,,,, = ( _-A—IZ) 2 +Tsm(x,‘,,) +un
where

T,=0.05M =0.1, L=0.1, g =10, 7 =0.05

The state-dependent parameterization of the system (3.21) is given as follows:
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1 T,

’ 0
X, =| T,gsin(x,,) (1 T,}') X, +Hun (3.22)
Lx, , ML
. P T;gSin(xln) . . .
To avoid a division by zero the ——————= term in (3.22) is substituted for at
1.n
T;g Sin(xl.n)

X, =0 by the limit lim = T;Jg. The cost function employed in the

X0 Lxl "

example is given by the equation (3.11). The following weights and the control

horizon were chosen:
0=I,R=1, N=40

The boundary condition P, is obtained from the solution of the discrete state-

dependent Riccati equation at the origin. The length of the control horizon is chosen
such that the state is driven to zero within that time frame. The following results are
obtained. The state trajectories for the DSDRE, predictive DSDRE (Algorithm 3.1)
and predictive optimized DSDRE (Algorithm 3.2) are shown in Figure 3-2.

...... DSDRE
=== Predictive DSDRE
= Predictive Optimised DSDRE |4

oo,
......
v,

I

6 === Predictive DSDRE
= Predictive Optimised DSDRE
a L L ' L L 1 1
[ 3 10 16 20 25 30 35 40

Figure 3-2: State Trajectory for the DSDRE, P-DSDRE, PO-DSDRE
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It may be noticed that speed of response is fastest for the predictive DSDRE
algorithm. The optimized predictive DSDRE provides slower response and the
DSDRE is the slowest. This would suggest that the predictive DSDRE provides the
best performance. However, one may measure the performance of the control system
with the value of cost function (3.11). This performance index is used for the
derivation of the control algorithm. Thus, it is a good indicator of the controller
performance. The slower response of the optimized predictive DSDRE algorithm
may be explained by the lower control effort. The control effort trajectories are

shown in Figure 3-3.

]
1 ! et «wse DSDRE
H === Predictive DSDRE
- Predictive Optimised DSDRE

1 ' L L
0 1] 10 15 20 25 30 35 40

Figure 3-3: Control effort for the DSDRE, P-DSDRE, PO-DSDRE

The value of the performance indexes (3.11) calculated along state and control

trajectories for three algorithms are given below.

=557.72 : DSDRE controller,

JDSDRE

= 554.78 : The predictive DSDRE (Algorithm 3.1),

JP-DSDRE

Joo.pspre = 341.53: The predictive optimized DSDRE (Algorithm 3.2).

The optimized predictive DSDRE algorithm provides the best performance.
The predictive DSDRE and DSDRE algorithms result in higher costs. The system

trajectories for three controllers plotted in state-space in Figure 3-4.
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The main advantage of the presented non-linear control techniques is the
simplicity of the approach. In the steady-state the control law reduces to the optimal
control for a time-invariant system, which for small perturbations is sufficient.
When there are large reference or disturbance signal changes the control law is
evaluated taking into account the future changes in the system parameters brought
about by the presence of non-linearities. This is an improvement over the state-
dependent Riccati equation method, which assumes the system remains fixed at the

nonlinear function values at the time n.

71| ~©- DsoRE ., ,)‘
“T| == Predictive DSDRE N
~4= Predictive Optimised DSDRE
e L 1 L. 1 1
0 0.5 1 15 2 2.6 3

Figure 3-4: State Trajectory for the DSDRE, P-DSDRE, PO-SDRE method in State Space

For most nonlinear control design approaches stability issues are central to
the theory and this requires either elegant mathematical results or empirical
procedures [64]. The presented approach is optimization based and the focus is more
on the performance, under different operating conditions. The analysis of
performance is rather easier to achieve, either from operating records, or from
theoretical results. Thus, the confidence necessary to encourage the use of the
approach is more likely to be achieved by this optimization method. This does not
imply that a measure of stability is not important, but it changes the focus of the

design onto property, which is easier to measure and benchmark.
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The method which uses the predicted trajectory and tensors provides the
control law that results in lower values of the cost function. The method is based on
the state dependent Riccati equation (SDRE) for the discrete-time non-linear
systems. This method does not give an optimal solution to the cost function
minimization problem. Originally, the SDRE was developed for the continuous time
systems. For these systems, optimality was achievable theoretically, e.g. for the
scalar case, or for higher order systems - providing the state dependent representation
was selected properly. In the discrete-time case the DSDRE is not guaranteed to

provide optimality even in the simplest first-order case.

The reference signal tracking may be achieved by augmenting the reference
signal model with the plant model. With the appropriate reference signal modelling
the desired time variation of trajectory may be approximated. It was noticed that if
the prediction of the future trajectory was refined iteratively at a given time instant,
the method not only decreased the value of the cost function. Additionally, the
control trajectory converged to the globally optimal control sequence, minimizing the
given cost function. This however has been tested only for a limited number of

examples and only in simulation.

3.2 Non-Linear Predictive Control

The non-linear predictive cont/rol methods presented in this section are based
on the state-dependent class of models that were previously used in section 3.1. The
underlying idea is similar to the discrete state-dependent Riccati equation algorithm
with the predicted trajectory. The main difference is the predictive control context of

the method that is utilized in this section.

The model based predictive control (MBPC) algorithms became very popular
in recent years and are used extensively in the petrochemical industry for large scale
supervisory systems (Richalet et. al. 1978 [65], 1993 [66]). The best known

predictive control approach is probably dynamic matrix control (DMC), which was
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introduced for complex multivariable plants with strong interactions and competing
constraints (Cutler and Remarker 1980 [67]). In Garcia [68] proposed an extension of
the DMC to non-linear processes (NLQDMC). In this approach although a non-linear
model is used, only a single Quadratic Program is solved on-line. The predictive
control algorithms based upon multi-step cost functions and the receding horizon
control law, were generalized by Clarke and co-workers in the Generalized
Predictive Control (GPC) algofithm (Clarke et. al. 1987 [69], 1989 [70]). The future
set-point information has been used in a number of Linear Quadratic (LQ) optimal
control problems (Tomizuka and Rosenthal 1979 [71]) and summarized in the
seminal work of Bitmead et. al. (1989 [72]). The use of state-space models for
Generalized Predictive Control (GPC) was proposed by Ordys and Clarke (1993

[73D).

It is well known that the early predictive control algorithms did not have
guaranteed stability property. Several extensions were proposed to overcome this
difficulty. Mainly, the idea was to extend the optimization horizon (possibly to
infinity). This can be shown to be equivalent to assuming equality (or set) constraints
on the final value of the state in the standard, finite horizon, e.g. multistep cost
function. In Mosca, Zhang (1992) [74] stability of predictive control was assured by
the constraint that the terminal state goes to zero. In 1992 a GPC algorithm with
guaranteed closed loop stability was presented by Kouvaritakis et. al. [75]. This
approach deploys most of the ideas of GPC but yields control configurations with
guaranteed stability. The algorithm first stabilizes the system by a feedback and then

the GPC controller is used for optimization in the outer loop.

In Mayne and Michalska (1993) [61] stability of the predictive algorithm was
assured by introducing inequality constraint for the state at the end of the prediction
horizon. This approach is also called a dual-mode control. After a finite number of
steps (equal to the prediction horizon) the state of the system is assumed to reach the
neighbourhood of the origin where it is stabilized by the linear feedback law. A
similar methodology was used in the previous section in the optimized predictive

state-dependent Riccati equation method. The part of the cost function after the
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horizon N was replaced by the final state penalty. In Kothare and Morari (2000) [76]
the inequality end constraint is introduced and is called the contractive constraint.
Comparing to the inequality end constraint presented in [61] no region of attraction
W needs to be computed. The contractive constraint is a Lyapunov function for the

closed loop system itself and stability can be easily proved.

The approach to the non-linear predictive control employing the optimal
control trajectory calculated in the previous time instant of the predictive control
algorithm was used by Kouvaritakis et. al. (1999) [77]. The extension of the previous
optimal trajectory to the current time instant is referred to as the “tail”. The system is
linearized around this trajectory and this linearized time varying system is employed
to obtain the optimal control, which is calculated as a perturbation from the “tail”
trajectory. A similar non-linear control approach with the model linearized about
predicted trajectory and the optimization based on generalized predictive control
algorithm was presented in [78]. In Lee et. al. [79] the similar methodology
employing linearization at points of the seed trajectory is introduced using a discrete
time model representation of the system. Asymptotic stability of the algorithm can be

guaranteed by the proper selection of the terminal penalty term of the predicted cost.

In the sequel two non-linear predictive regulators will be presented. Both use
the remainder of the control trajectory from the previous iteration to compute the
time-varying approximation of the non-linear system. The first algorithm, elaborated
in section 3.2.1, uses this approximation directly while the second, presented in
section 3.2.2, will concentrate on the optimality of the solution. The discussion of the
performance will be given in section 3.2.3 based on the academic example. Finally,

the non-linear tracking GPC algorithm will be presented in section 3.2.4.

3.2.1 Non-linear predictive regulator

The approach to the non-linear predictive control method presented in this

section employs the control trajectory calculated in the previous time instant of the
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control algorithm. The technique presented here [13] [14] [15] uses a similar idea to
[77], [79], but with the different model representation and optimization technique.
The non-linear system described by the discrete time non-linear state space model is
re-arranged into the state and control dependent linear form of the state-space model
[23], [62]). The non-linear behaviour of the system in such a representation is
included in the state and control dependent matrices. Such a system along with the
predicted trajectory can be treated as linear and time-varying. The linear GPC control
technique can easily be extended to this class of non-linear systems. The cost
function is minimized through a static optimization. Note that the state dependent
representation is equivalent to the original non-linear system model. It results from
an algebraic re-arranging of the original state-space model. For such a model the
main source of errors is the difference between the predicted trajectory calculated in
previous time instant and the actual one of the object. The difference between the
trajectory prediction at current time and the trajectory from the previous time instant

results in the model-object mismatch.

The non-linear predictive control algorithm will now be presented. The

system is represented by the following difference equation:

Xy = f (%,04,) (3.23)

The finite horizon cost function is given by the following expression:

N

Jn Z{xnﬂrA'Exnﬂ + unﬂ'—lTA:JunH—l} (3 .24)

i=l

The vector form of the cost function is given as follows:

J,=X TAEXM»I +U:AUU,, (3.25)

n+l

where

T T T T r .71 T T
Xon "[xm Xns2 "0 Xpen ]’ U, —[“n Upsp 0 Upna ]v
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Ay, A - positive definite symmetric matrices.

The equation (3.23) is re-arranged in the state and control dependent linear state-

space representation.

X, = A(x,,u,)x, +B(x,,u,)u, (3.26)

In general, the number of possible linear representations (3.26) of (3.23) is infinite.

As a general rule A(x,,u,) and B(x,,u,) should exhibit as small variations with

state and control signals as possible. Also, the pair A(x,,u,), B(x,,u,) should be

controllable in the operating region. Similar rules as for the state-dependent Riccati
equation method apply here. Note that the matrices in (3.26) are permitted to depend
upon control action. At each iteration of the predictive control algorithm not only the
current control action, but the full vector of future control trajectory is computed. In
the receding horizon predictive control algorithm only the first element of the control
vector is used. The algorithm presented here uses all elements of the vector of future
control predictions. The first element is used for the controlled object input

manipulation and the remaining elements for the future trajectory prediction.

T

n-1

. . T
At the time instant n, the vector U, = l:“ u,,_,+,T,...,u,,_,+~_,T] calculated

at previous iteration of the control algorithm is considered. The first element of this

T

. T
vector has already been used, but the remaining part [“nr’“m . “,.m_zT] can be

employed to predict the future trajectory. At the time n it is assumed, that current
state x, is available either by direct measurement or from the state estimator. Using
the control vector, the state predictions x,,,x,,,,...X,,5_; are obtained from the
model. Using the past control trajectory and the resulting state trajectory, matrices
A(x,,u,), B(x,.u,) are calculated at subsequent points on the trajectory. Note that
the control action u,,,, is not available and its value is assumed to be

U,y = U,.n_2- Due to what was stated, the non-linear system (3.23) is approximated



by the linear time-varying state-space model with the following matrices:

An = A(xn’un)"“' An+N-I = A(xn+N—l’un+N-l ) * Bn = B(xn’un )""’ Bn+N-l = B(xn+N—l’un+N—l ) .

The prediction of the future state as a function of current state and future
control actions is given by the following equation based on the time-varying

approximation:

Xney = [An«rj—lij-Z'"An]xn + [A'l+!-1Al+1-2"'A"*1 ]B"u" +

3.27)
+ [An+j—lAn+j-2"'An+2 ]Bn+lun+l + [Ah+]—lA'n+j—2"'An+N“ ]Bn—l+jun-l+j
For the time varying linear model the linear relationship between X,,, and U, may
be established:
Xn+l = ann + SnUn (3.28)
where
A B 0 0
F,= Add S, = AsB, B o
: : : .. 0
A:m-l s Amv-l Tenet AmB: AH»N-I et ALBL e B.+~-|

The future state prediction equation (3.28) is substituted in the cost function (3.25)

and the static minimization carried out. The control U, minimizing (3.25) is finally

derived as:

-
Un = -(SnTAEsn + AU) SnTAEFn'xn (3.29)

The control vector is computed based on the current state x, , matrices S,, F, based

on the time-varying model approximation and the weighting matrices A, and A,.
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3.2.2 Optimal Non-Linear Predictive Regulator

The problem of the minimization of the cost function subject to the non-linear
system dynamics was substituted in previous section by the linear time-varying
approximation. The optimality of the solution based on the static optimization of the
time-varying approximation of the non-linear system may depend on the
parameterization employed. In the receding horizon control scheme employed by the
predictive control algorithm presented in section 3.2.1, the predicted trajectory
derived in the previous iteration may differ from the actual trajectory. This may also
affect optimality of the solution. To analyze this, the optimal regulation problem over
a finite horizon is considered with respect to its convergence propertics. The
prediction of the future trajectory is calculated, the time-varying approximation of
the model is re-calculated and the updated future trajectory is computed. The time-
varying model refinement is repeated until the trajectory based on the time-varying
model approximation does not change. In this case the model mismatch between the
time-varying approximation and the original non-linear model is completely
removed. In fact, if the final time-varying model is compared with the original non-
linear model simulated with the derived control sequence, the two are identical.
Unfortunately the value of the cost function after that procedure, still, may not be
optimal. The optimality depends on the state-dependent form chosen. To recover the
optimality, consider an optimization for the non-linear system model (3.23) subject

to (3.25) without using a time-varying approximation of the system.

The future state prediction derived from the non-linear system model (3.23) is

given by the following equation:

S (x4,

f (f (xn’un)’unH)
: (3.30)

xn+N f(f"‘(f(xn’un)’un+l)"'un+N—l )J

e

n+l

ne

Xn+l(U xn)= ";2
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To find the minimum of the cost function (3.25) the derivative with respect to the

control vector is calculated. For the extreme point this derivative must be equal zero.

T
aazjj 1 =% 2A;X,., +2A,U, =0 (3.31)

The derivatives matrix %‘-‘- in equation (3.31) is defined as follows:

[ 0%, X, 0%, ]
aun aun+l aun+N-l
ox axm»z axn+2 . :
ntt =1 Jy aum— ) ' . .
aUn :" . l . . (3 32)
axn+N aanV ven axn-c-N
aun aunﬂ aun+N—l B

The state at any time instant does not depend on future (and also current) control

. . 0X,, . . .
action. The matrix —2L is therefore lower triangular. This results from Bellman’s

U,
principle of optimality [80]:
ox.., -
hal T o .. 0
ou,
axn+2 axn+2 . :
%‘%ﬁl: wu, ow, | (3.33)
" : SN 0
aan ax;|<'»N .o axn+N
L aun aun+l aun+N-l 4

For the arbitrary non-linear model and for the arbitrary control horizon the derivative

X

—=L is a complicated function of the current and future controls and states. Also,
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to solve the equation (3.31) with the definition (3.30) and (3.33) a numerical method
would have to be employed since the control vector appears in the problem in an
implicit form. For the solution of the problem presented here, it is assumed that the
initial guess of the optimal control trajectory is known. This may be a control
trajectory calculated at previous iteration of the algorithm if the receding horizon

control strategy is employed. The control trajectory is given by the following vector:

Un.OT = [“n,or un+l.0r ot un+N—l.OT:| (3°34)

For this control trajectory, the state trajectory may be obtained easily using the

current state and the model.

f(x»'“u.o)

TV A GRS I
Xouo = Ul _,_) ) (3.35)

f(f-"(f(xn.o’“n.o)'un+1.o)'"“n+~-|.o)d

b

Using the Taylor series the state X, is represented by the following expression:

X,
aU . (Un -Un.0)+pn (3.36)

" Xpe10Un0

X,awW)=X,,,+

If the initial guess of the optimal trajectory is sufficiently close to the actual optimal

trajectory then the higher order terms p, are negligible. In the receding horizon

approach this is fulfilled if the prediction horizon is sufficiently long and the control
trajectory from the previous iteration differs from the current control trajectory only
by a small perturbation. With this assumption the following relationship is
established from (3.36):

aanrl(Un) - AXn+|(Un) P aXnH
ouU, AU, oU,

(3.37)

Xne10Un0
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Using the chain rule for (3.33) the following matrix is defined with the assumption

that subsequent control actions are independent (the open loop control within the

horizon):
B, o - 0
Sy, =Xa = Z"*.IE" l_?’”'l O
1% R _ O
ApnarwAgyBy 0 v By (3.38)

Xk uk

where A*ééﬂgrk,_lﬂ)l' Bkéaf(x"’"")
k. 0%1.0

Xk ,0%k,0

The S,, matrix is defined using the predicted trajectory U, ,, X,.,,. To find a

stationary point the derivative of the cost function (3.31) must be zero. The quadratic
cost function (3.25) has a semi-positive and positive definite state and control
weighting matrices respectively. If the system dynamics are linear, the minimization
of this cost results in a global minimum. For general non-linear system this property

does not hold.

oo . . dJ
The necessary condition for the cost function extremum is —%=0. From

U,

equations (3.30), (3.31) it is clear that the derivative of the cost is a nonlinear
function of the control vector. To solve this problem a state and control dependent
form of the non-linear system model (3.26) is used. Also, an approximate derivative

aXnﬂ(Un)

resulting from equations (3.37) and (3.38) are employed. Now substitute

X,,, from(3.28) in (3.31) and find the extremum of the cost g‘l’]" =0:

n

T T
aaXl}+| As&xn +§a§(};l AES"U" +AUUn =0 (3.39)

The control U, is finally derived as:
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-1
U,= ‘(SL,.-TAES» +Ay ) Sia AeFyx, (3.40)

where

The optimal control sequence minimizing the finite horizon cost function is obtained
in an iterative way. The initial guess of the trajectory is required to be known. It
might be a part of the control trajectory from the previous iteration of the predictive

control algorithm. The control algorithm follows:

Algorithm 3.3

e Use the initial control trajectory and compute the state trajectory from
(3.35).
e Update the time-varying approximation of the model using the trajectory

and the state-dependent model description (3.26). Update the S, ,, S,, F,

matrices and calculate the control vector from (3.40).
e Check the difference between the control vector from previous and current
iterations. If it is larger then a stop condition the algorithm continues from

the step 2 otherwise it returns the final optimal control vector.

Note the difference between the control vector given by (3.29) and (3.40).
The equation (3.29) obtained for the predictive algorithm that uses only the time-

varying approximation of the non-linear system uses matrices S, F, A, A.:

=—(SA:S. +A,) STA.Fx,. In the equation (3.40) the gradient S, is

introduced. This provides the corrected search direction and the minimization of the
performance index gives the lower cost value. This will be demonstrated on the

numerical example in the next section.
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3.2.3 Predictive Regulation Numerical Example and Conclusions

As an example a discrete model of the driven pendulum shown in Figure 3-5
is employed.

The control task is to find the optimal control sequence to drive the pendulum
from the certain initial level to the steady state (origin) using the minimum control

energy which is consistent with minimizing the performance index.

Figure 3-5: Pendulum

The system model is given as follows:

xl,;nl = xl.n + T;xln

T, Tg . (3.41)
'x2.n+l =( -_A_l%)xln --_L&SIH(xl.n)-*-un

where
T, =0.05M =0.1, L=0.1, g =10, y=0.05

The state-dependent parameterization of the system (3.41) is given as follows:

! T,
. 0

X =| _Tgsin(x,) (1_ T,r) ﬂ+[1]un (3.42)
Lx,, ML
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Trg Sin (xl.n )

To avoid the division by zero the term in (3.22) is substituted for

1n

T;g Sin (xl.n)

1.n

x,, =0 by the limit lim = T;‘g. The cost function employed in the

xl,,,—>0

example is given by the equation (3.24). The following weights and control horizon

were chosen:

AL=1,A,=1,N=30

The length of the control horizon is chosen so that the state reaches zero at
the end of it. The following results are obtained. The state trajectory for the non-
linear GPC (NLGPC) controller and the optimal NLGPC (ONLGPC) controller are
shown in Figure 3-6. The control trajectories are shown in Figure 3-7. The
trajectories for both controllers in state-space are shown in Figure 3-8. The trajectory
of the ONLGPC controller presented in section 3.2.2 is optimal. The optimal
trajectory obtained using numerical optimization (MATLAB fminunc function) is
identical to the ONLGPC.

Y T
= = numerical optimization

+ optimal NLGPC H
~—— NL-GPC

~ = numaerical optimization
+ optimal M.-GPC
— NL-GPC

&b & & & b X o
T

Figure 3-6: State trajectory for the MATLAB fminunc, Optimal NL-GPC and NL-GPC
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The values of the cost function for algorithms are:

Jinene = 356.373: the MATLAB fminunc
Jonigre = 356.373: the Optimal Non-linear Generalized Predictive Control

J niope = 385.217 : the Non-linear Generalized Predictive Control

X T

~ = numerical optimization CTRL
+ optimal NL-GPC CTRL

—— NL-GPC CTRL

Figure 3-7: Control trajectory for the MATLAB fininunc, Optimal NL-GPC and NL-GPC

= = numerical optimization
+ optimal NL-GPC
afb -6- NLGPC i
2k
[
’
3 ’
\Y ,{
\ 4
* Pl
h)
4 N ’
\, X,
- -
~ ~ *l
L .
.- -

Sk -
Py L '

[ 08 1 1.5 2 25 3

Figure 3-8: State trajectory for the MATLAB fminunc, Optimal NL-GPC and NL-GPC in state space
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The predictive control algorithm that provides the optimal control solution for
the non-linear systems was presented in section 3.2.2.The algorithm preserves the
optimality when the non-linear system is approximated by the linear time varying
model. The optimized method may be used for benchmarking of the state-dependent
form that would normally be used for the time-varying model approximation (as in
section 3.2.1). The cost was compared with the result of the numerical optimization
that provided the identical to the optimal non-linear predictive control algorithm

solution.

3.2.4 Non-Linear GPC Algorithm with Explicit Reference
Trajectory

In sections 3.2.1 and 3.2.2 the predictive control regulator was presented. In
this section the explicit setpoint information will be incorporated in the predictive
control algorithm [13], [14]. The regulatory algorithm presented there aimed to drive
the state to the origin. The non-zero setpoint could be introduced there by changing
the coordinates of the system. The predictive algorithm presented in this section aims

to track any deterministic reference signal.

The system model is given by the following state-dependent model:

Xpel = A(xn )x, + E(xn Jup (343
Yn = é(xn )xn ' (3.49)
Further, for the state dependent discrete time model (3.43), (3.44) an integral action

is incorporated. Instead of control signal in the model (3.43) the control increment is

used and the following state space model is obtained:

Xn+1 = AXn) Xn + B(2)Auy, (3.45)
Yn =C(Xa) Xn (3.46)
where
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xn
A(Zn)=[A(-xn) B(X"):l, B(x”)=[8(xn)]’ C(xn)r.[c(x") 0] Zn =[ ],
0 1 I Uy

Aup, =u,—u,_,

State-space model (3.45), (3.46) matrices are calculated along the predicted
trajectory. The time-varying linear model approximation is used for the controller
design. The following notation is employed A, = A(¥,) B,=B(x,) C,=C(x,).

For the state-space model (3.45), (3.46) the following GPC cost function is

considered:

N,
J,= NZ{(rm = Yuad) Nt = 3O 2 [ Bt WA} (3.47)
i=l =1

Where

r, is a vector of size n, of the setpoint at time n, A%,i=1..N, and

A{), Jj=1..N, are weighting matrices (symmetric) and N, N, are positive

integer numbers greater or equal one.

The following vectors containing current and future values of the control u,

and future values of state x,, and output y, are introduced:

Xn+|,~, = [anﬂv"vl’:w, ]T ’AUn.N,, = [A“:’---’A“:+N,,-l ]T

T T
=7 T 1,7 T
Yoan, —[}’nw"-’ yn+~,] R, = ['Huv“"hm,]

(3.48)

The cost function (3.47) with the notation (3.48) may be written in the vector form:

J, = (Rn+l.~, - Yn+|,~, )TAE(RMI.N, - Yn+1.~, )+AU :.N“AUAUn,Nu (3.49)

where

Ay =diag(ALAL,.. . ATe), Ay =diag(Ay,Al,..,A}")
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It is possible now to determine the future state prediction. For j=1..N, the future

state predictions may be obtained from:

Anej = (A juAsjoae AV AL 0 AL g Ay 1B A0, +

(3.50)
+[ An+j-lAn+]-2"°An+2 ]Bn+IAun+l + [An+j—1An+j-2"'An+Nu ]B —l+min(],N,,)Aun—l+min( JNY)

Note that to obtain the state prediction at time instance n+ j the knowledge of
matrix predictions A,..A,; and B,..By,_jymin¢j.n,) I8 required. The control

increments after the control horizon are assumed to be zero. From (3.48) and (3.51)

the following equation for the future state prediction vector X,,, y is obtained:

Xpun, =SURAZ,+V,AU, (3.51)
where
1 B, 0 0
o= M e M B o
: : : " 0
Au»N,-l e Aml A:‘+N,-l Teeet AMBt AH—N,-I Teeet A:+ZBt+l o B:+N“—l

From the output equation (3.46) it is clear that

Vs = CrejXnsj (3.52)

Combining (3.48) and (3.52) the following relationship between vectors X,,,, and

Y,

.« is obtained:

Youn, =60, Xoan, . (3.53)

where

O, =diag(CpusCrizsrsCran, )
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Finally substituting in (3.53) for X,,, 5 with (3.51) the following equation for output

prediction vector is obtained:

Yn+l.N, = q)nAnZn + SnAUn.N, (3.54)
where
® =00, S,=0,Y¥,

The output predictions vector Y,,, 5 given by the equation (3.54) is combined with

the cost function (3.49). The static optimization of the quadratic cost function yields

the following control vector:

AU, x, = (S:AESn + Au)—l S\ e ( LN, nAnln) (3.55)

All elements of the vector of future control predictions are going to be used by the

algorithm. The first element is utilized for the controlled input manipulation, and the

remaining elements to predict the future trajectory. At the time instant n, the vector
T

AU, n, I:Au,,_l ,Au,,_MT,...,Au,,_HNu_IT] calculated at previous iteration of the

control algorithm is considered. The first element of this vector has already been

T
used, but the remaining part [Au,,r,Au,,“r,...,AuMN“_ZT] can be used to predict the

future trajectory. At the time n it is assumed, that current state y, is available either

by direct measurement or from the state estimator. Using the control vector with the

assumption that after the control horizon N, control increments are zero and that the
state-space model is given by (3.45), (3.46) the state predictions ,,;, 7,25+ yny

are obtained. Next the future matrices for the model (3.45), (3.46) are calculated and

the resulting @, ,S,y, matrices are obtained. The control vector AU,, is
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computed from (3.55). The above control algorithm consists of the following

operations (at time instance n):

Algorithm 3.4

e Measure the current state vector Y, (or estimate its value)
T T T .
e Take the vector AU,y =[Au, ", Au,",., A,y "] calculated in

previous iteration and remove the first element Aun_lT , which has already

been used in the previous iteration for control. Using this vector get the
f dicti - =17~ 1 = 717
uture state predictions X, ., v, =| Zs s Znsz 3o Xnen, ]

e Using the predictions X aan, and the known , calculate the future matrix
predictions A,,;, C,,,, for i=0..N,~1 and B,,, for i=0..N, -1 and
finally obtain @, ,S, » matrices

¢ From (3.55) calculate AU, , and control u, =u,_, + Au, for the plant input

manipulation

The Algorithm 3.4 summarizes Non-Linear GPC control technique presented
in this section. The main difference between the algorithm presented here and ones in
preceding sections is the explicit reference trajectory used as an input to the
controller. Previous algorithms could be used for tracking, after augmenting the
system with the reference signal model. This however does not provide in general a
sufficient degree of freedom for the deterministic tracking and a direct use of the

reference signal is more useful from the practical standpoint.

3.3 Summary

In this chapter a development of non-linear control algorithms was presented.
The algorithms were based on the state-dependent models. Two groups of algorithms

were analyzed. The first group uses the linear-quadratic optimal control theory as a
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basis and extends its applicability to non-linear systems. The optimality of the
solution was also subject of consideration. The second group of algorithms uses the
generalized predictive control algorithm as a basis and extends these control
techniques to the non-linear systems using state-dependent models. Depending on
control system requirements the basic non-linear or their optimal versions may be
used. For control systems where the cost function and weighting matrices are
introduced as tuning parameters, the optimality of the solution may not be of interest.
However, for some applications where the cost function determines some meaningful
energy used in the process, achieving the minimum value may be of interest. In such
cases, the optimal versions of the presented algorithms should be used. The
following chapters will present how the theory developed in this and previous

chapters may be used in practice in the automotive application.
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Chapter 4

Identification of Combustion Engine model

In this chapter the combustion engine modelling and identification is
considered. The modelling and identification may follow several paths as described
in the introduction in Chapter 1. The white-box modelling for a system of high
complexity is extremely difficult. Such models have a limited applicability for
control system design and will not be considered here. The accurate physical
modelling often results in distributed parameters models that are of limited use for
control design. At the beginning of this chapter, in section 4.1, the comparison of two
main modelling philosophies for control purpose will be analyzed.

The methodology introduced in this thesis is aimed at using as few parameters as
possible. Also, only the data collected during the driving cycle is used for modelling.
Consequently, the identification procedure can naturally be adopted for on-line
engine operation. This in turn will allow model adaptation to gradual parameter
variations. Associated engine modelling was presented in the literature many times
over the past two decades. The mean value engine models are regarded as sufficient
for control purpose [82] [83] [84] and this type of model will be used in this thesis.

The engine model identification based on the driving cycle data was a subject of
research in [85]. This however presented the model for the idle speed control only.
This implies that only a restricted range of engine speeds and loads was considered.
Event based sampling will be employed throughout this thesis which has a numerous
advantages over time-based sampling [86], [87], [89]. There are also disadvantages

associated with the main system noise resulting from the engine pumping
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fluctuations [88]. The analysis of advantages and disadvantages of the event based

sampling was also carried out in [89].

The identification task presented in this chapter is split in two distinct parts: i)
intake manifold model identification (air charge model) using upstream engine
sensor information from the driving cycle data (sections 4.2 and 4.3) and, ii) fuel
path identification using the measured air-fuel ratio from the driving cycle data
(section 4.4). Additionally an approximate engine torque model is identified, where it
is assumed that the air-fuel ratio is maintained at around the stoichiometric value
(section 4.5). The air-fuel models developed have been validated using three
different sets of criteria: an integrated absolute, integrated squared error and a
correlation between the measured and estimated variables. Depending on the
complexity of the model structure selected, various measures of accuracy are
developed and presented. Good model accuracy was achieved as more measured
variables and model parameters were incorporated in the model structure. These
measures include the transient as well as steady state errors in the air-fuel ratio model
during the FTP (Federal Test Procedure) driving cycle. These models are intended
for predictive feedforward fuel control and subsequent vehicle testing presented in

Chapter 5.

As already mentioned, it is assumed that the identification procedure
presented in this chapter uses only the driving cycle data. The driving data is
collected during the test driving sequence. In this chapter the FTP driving cycle data
collected from Chevrolet Corvette with V8 5.7L engine was used. Due to the engine
operating cycle and a significant transport delay in the exhaust manifold, the actual
air-fuel ratio is measured long after the fuel injection is completed. Therefore,
accurate modelling of the engine forward path is of great importance for accurate air-
fuel ratio control. The delayed measurement of the actual air-fuel ratio imposes an
inherent limitation in the maximum achievable performance using any classical
feedback control method. The performance may, however, be improved through

extensive use of accurate models in a feedforward control loop.
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4.1 Model analysis for air-fuel ratio and torque control: grey-
box vs. black-box approaches

The identification of the engine using ‘black-box’ and ‘grey-box’ models is
now considered. The term ‘grey-box’ represents parameter estimation methods with
the model derived from physical principles. Some simplifying assumptions are
usually made during the development. The ‘grey-box’ is therefore a combination of

the ‘black-* and ‘white-box’ models.

Throttle Angle Mass Air Flow | |Intake Manifold Intake Manifoid Exhaust Manifold
(TA) (MAF) Pressure (MAP emperature (Tman Pressure (Pem) and
4

T.
Temperature (Tem) |
Throttle Exhaust
SP_15] actuator Throttle mass ») Intake manifold manifold »| Lambda
dynamics flow dynamics delay,
TA | chanacteristic Lambda
MAP sensor
| dvnamics |
CFC o] Net Torque
FPW FPW delay Injector and Net Torque e
d 7| Fuel Fi.lm production,
dynamics Engine '
dynamics $eez«-fplingine Speed
H [rpm]
v
Ambient lAmbient Temperature] | Coolant temperature
Pressur: mb)j (Tamb) {Tcool)

Figure 4-1: System diagram

The structural block diagram of the spark ignition engine model with the
relevant measured signals is shown in Figure 4-1. The inputs to the model are the
throttle angle setpoint (SP) signal and the fuel pulse width (FPW) command. For the
throttle sub-system, the indicated throttle angle (TA), mass airflow rate (MAF),
ambient pressure (Pamb) and temperature (Tamb) are measured. For the intake
manifold, intake manifold pressure (MAP) and intake manifold gas temperature
(Tman) are available. In the exhaust manifold, gas pressure (Pem) and gas
temperature (Tem) and exhaust air-fuel ratio (commonly referred to as AFR or

lambda) are measured. Additionally, engine torque on the crankshaft is directly
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measured. The engine speed and the coolant temperature measurements are also

available.

For engine identification purposes, it is important to determine the type of
model structure (i.e. black- or grey-box). First, we analyze the conventional control
strategy with feedback and feedforward control. This strategy considers the air-fuel
ratio as the only controlled parameter. The ‘Throttle mass flow characteristic’,
‘Intake manifold dynamics’ and the ‘Injector and Fuel Film dynamics’ blocks must
be identified as separate elements. In the conventional control strategy, torque is
commanded by the driver through the pedal position and is controlled indirectly by
the throttle position. For the air-fuel ratio this control action is regarded as a
disturbance. Consequently the feedforward command is a function of the throttle
position as well as other upstream (e.g. MAF, MAP) engine parameters. The blocks
mentioned earlier are important for the feedforward control. The cylinder air charge
estimate that is the output of the ‘Intake manifold dynamics’ block is important for
the control strategy. To identify the model of cylinder air charge (CAC) its
measurement is required. This however is not possible and the only way of obtaining
CAC is to use a physical model of the intake manifold. This however implies that
some physical insight is required and the grey-box modelling method must be used.
Lack of accurate measurement of important engine parameters is an important issue
for black-box identification methods. For grey-box methods internal parameters
represent physical quantities. The cylinder air charge may be determined from the
mass and energy balance established for the intake manifold and the identification is
based entirely upon other measured parameters (i.e. MAP, Tman, MAF). The black-
box identification considers only input-output relationships and its internal states or
model coefficients have no physical meaning. The cylinder air charge is not directly

measurable and consequently cannot be modelled in a pure black-box structure.

The other problem for black-box modelling is associated with the fact that the
lambda measurement represents both the air and fuel path. The non-linearity
associated with the division (ratio) may cause problems during identification. This is

due to changes in the operating point following changes in engine states over the
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driving cycle. For the grey-box identification method the intake manifold is
identified separately with the CAC being one of the physically modelled outputs. The
lambda measurement is then used only for the identification of the fuel delivery
model. This will be demonstrated in the later parts of this chapter. Since CAC is
determined from only upstream measurements, the additional non-linearity
associated with the fact that lambda represents a ratio of two unknown variables does
not pose any problem. The CAC may be used as a parameter in the identification of
the fuel delivery and lambda measurement paths. In the black-box modelling
approach, separate models for the intake manifold and fuel dynamics will not be
identified effectively. This results from the fact that black-box methods aim to model
input-output relationships only and the use of lambda is not sufficient for proper

identification of air and fuel parameters.

This problem with black-box methods is not so apparent for multivariable
control where both throttle position and the fuel pulse width are used for the air-fuel
ratio and torque control. For the multivariable controller the full model with ‘Throttle
actuator’ and ‘Net torque production’ is required. The throttle must be available as a
manipulated input (drive-by-wire) and the accelerator pedal position may be used as
the setpoint for the torque. In the conventional engine control structure, a
feedforward controller is used to compensate for throttle position changes introduced
by the driver. In the multivariable control framework, the throttle position is
manipulated by the controller and the feedforward action may not be required. The
necessity for the feedforward controller to be present in the system is determined by
the type of multivariable controller being used. For that reason fuel and air paths do

not have to be separated during modelling.

For multivariable control purposes (i.e. torque and air-fuel ratio control) the
input-output non-linear model, in general, should be sufficient. The non-linear black-
box modelling techniques such as neural networks or neuro-fuzzy techniques may
also be considered. The use of such models in control design is the subject of
separate studies outside the scope of this thesis. The estimation of the model

parameters from the driving data may be a challenging task. This is due to fast
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changes of the operating point and significant nonlinearities encountered in the
system. The excitation of non-linear dynamics is also relatively deterministic and
may not be sufficient to guarantee a convergence. The linear model structures will
not be sufficient, especially if the driving cycle"data has to be used. For fully non-
linear model structures lack of physical meaning makes the analysis of its global
validity difficult and only the validation through simulation may be possible. Also,
model parameter identification and convergence is expected to be a real problem.
Again, lack of physical insight will not give any indication on what initial parameter
values should be used during the identification phase. The black-box non-linear
modelling approach will not be attempted in this chapter. The difficulties with
changing operating point and the need for a physical model to extract the internal

(not measured) variables indicate that the grey-box techniques are advantageous.

The black-box model identification methods could, however, be used with the
data collected in a controlled experiment. Many problematic issues, like time delays,
would be resolved, since these in steady state are almost constant and may easily be
removed from the data. Also the cylinder airflow in steady state is equal to the
throttle flow rate and cylinder flow characteristics may easily be obtained. The
required perturbations for identification may be added to system inputs to obtain all
parameters of interest. The system identification based on the driving cycle data is by
far more complex. The engine operation includes fast transients and the identification
algorithm must cope with these fast changes. The identification based on the driving
cycle data imposes some limitations on the complexity of the system model
employed for the identification. However, the important benefit must not be
overlooked. If it is possible to identify the system off-line from the driving cycle
data, the same may be performed on-line. The identification method introduced here
combined with the model-based control techniques will provide better control
accuracy for the benefit of reduced emissions and improved performance. In section

4.2 the identification of engine models starts with the throttle actuator dynamic

model.
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4.2 Throttle model

The identification of the throttle model is presented in this section. The model
for the electronic throttle actuator dynamics and for the flow rate as a function of the

throttle position will be given.

4.2.1 Throttle actuator dynamic model

The throttle is controlled by its local controller at higher than the main
(engine control system) sampling rate. The input to the throttle actuator (or
Electronic Throttle) is the setpoint command supplied either by the driver or the
engine controller (PCM). The actuator model is identified from the driving cycle
dataset. The FTP driving cycle data was used for the analysis presented in this
section. For this study, the structure of the model is assumed to be linear. The order
of the linear model is chosen after evaluation of the validation result. The linear
model is only an approximation of the real non-linear characteristic of the throttle,
but its accuracy is sufficient for control design purposes. For this purpose, the model
of the throttle dynamics must be discretized according to the current sampling rate
that is inversely proportional to the engine speed. If on the other hand the
identification process first identified the continuous time model which then was
discretized with the variable sampling rate, the identification of the continuous model
parameters would certainly be difficult. This is due to the fact that the data used for

the identification is provided at discrete events and the temporal sampling rate varies.

An alternative method is to re-sample the date with a fixed sampling rate
using interpolation between the original sampling events. The re-sampled signal is
used for identification of the discrete model. The identification is carried out using
the ordinary Least Squares method. The discrete model parameters for the sampling
rate at which the event-based signal was re-sampled is identified. The following

second order discrete time model structure was chosen for the identification:
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TPS,, =-P|(Nn)'TPSn"Pz(Nn)'TPSn-l +P3(Nn)'SR.+P4(Nn)'SB.-l (4.1)

where

TPS, - the indicated throttle position [V]
SP, - the throttle setpoint (input to the ET) [V]
2(N,),p,(N,),ps(N,),ps(N,) - discrete model parameters at given

engine speed

N, - engine speed [rpm]

The least squares parameters regression is repeated for a number of different engine
speeds. As a result a number of discrete time models is obtained. For the control
algorithm, the nearest discrete time model parameters (via a lookup table) will be
used. This will be done according to the current engine speed and the sampling rate

that is given by 7,, =15/N, for 90 degrees sampling event.

The alternative approach of using the continuous time model would require
on-line discretization of the continuous dynamics at the current engine speed.The
location of the poles and zeros for the models identified for sampling rates resulting
from engine speed between 200 and 3100 rpm (i.e. 15/RPM) are shown in Figure 4-2
and in Figure 4-3.

Im(z), . E L Im(2), SN

g M " i i . " a . " " " " " "
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Figure 4-2: Discrete-time model poles Figure 4-3 Discrete-time model zeros
locations locations
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The discrete time dynamics change with the engine speed. This is a result of the

continuous time dynamics combined with the variable event-based sampling.

More accurate modelling of the throttle actuator requires a detailed
knowledge of the internal controller structure. Also, additional internal signals and
measurements sampled at a rate higher than the event-based rate may be required for
that purpose. The model validation carried out against the measured throttle position

response during FTP driving cycle is shown in Figure 4-4. The model parameters

2(N,),p,(N,),ps(N,),p.(N,) are given only at discrete values of the vector
N, =[200, 250,...,1200,1300,...,3100] . The nearest value is used for engine speeds

different to the discrete values of N, .

TPV measured
~—— TPV modelled

14 16 18 20

Time [s]

Figure 4-4: Throttle actuator model validation

4.2.2 Throttle flow rate model

The throttle flow rate model is aimed to capture the relationship between the
indicated throttle position (obtained from the throttle position measurement) and the

mass air flow through the throttle. The angle between the closed throttle plate
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position and the actual position will be denoted as «. The angle « is derived from

equation (4.2) as a linear function of TPS,. In this way the output of the position

sensor given in volts is scaled into radians.

a =k, TPS, +Op,,

where

ky, s Op, - constant parameters

(4.2)

The throttle body model structure is assumed to be given by the one-

dimensional isentropic compressible flow equation for flow across the orifice [90].

For non-choked flow the equation is given by:

1 x-1

. B (B, ) |2« P, )"
’”“'=C“*"(“)'F.—T(7) *-1 1‘(‘?)

ar

where:

m,, - throttle mass flow rate

C,=C, (P% ,a) - discharge coefficient

A, (@) - throttle cross-sectional area

P, - upstream pressure (ambient)

T, - upstream temperature (ambient)

P,, - downstream pressure (intake manifold)

x - ratio of specific heats for dry air

R, - ideal gas constant for dry air

For choked flow or when:

L 5(.._2_.)'(_'
P, \«x+1
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the throttle mass flow is given by the following equation:

X+l

i, =Cy Ay (Q) . ‘/;(_z—)m (4.5)

x-1

a

The cross-sectional area A, (@) is a function of the throttle body dimensions and the

angle between closed and current throttle position. In a very simplified form it may

be given by the following equation:

cos(a+ao)]

cos(a,)

A,(@)=7-R, (1- (4.6)

where

R, - radius of the throttle
a, - throttle offset angle (minimum throttle angle)

a - throttle angle

4.2.2.1 Air flow sensor

Air flow sensor (MAF) may be modelled by the first order dynamic system:

MAF=—1 4 | 4.7

5Ty +1

where:
MAF - throttle mass flow measurement

T, - MAF sensor time constant

m, - throttle mass flow rate
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The MAF sensor is sampled internally at a higher rate than the event based
sampling rate. The measurements are averaged over the sampling time and that value
is read at this lower rate (every event). The overall dynamics seen on that output may

be modelled by (4.7). The typical time constant of the MAF sensor is 7,,,, = 5[ms].

The output of that sensor is sampled every engine event (i.e. for 8 cylinder engine
every 25ms for 600RPM). Under these circumstances dynamics of that sensor cannot
be identified from the data (the response of the sensor is too fast relative to sampling
rate). To be able to identify the sensor dynamic model, data would have to be
sampled with the shorter sampling period (by the rule-of-thumb at least five times
faster than the time constant i.e. typically 1[ms]). With the time constant of the MAF
sensor available from a separate experiment, it is possible to reconstruct the actual
flow rate using the inversion of the model in (4.7). Note however the dynamics of
this sensor may be neglected for the typical driving pattern without loss of accuracy.
This was confirmed during the identification experiment. With that assumption

parameters of the model (4.3) will be identified with 1, = MAF .

4.2.2.2 Air flow parameter estimation

The physical dimensions (radius of the throttle and throttle offset angle) may
easily be measured and therefore are known for the identification. Note, that any

inaccuracies of these measurements will be accounted for in the identified discharge

coefficient map C, =C,(F,,/F, ,a). This coefficient is a function of P, /P, and

o . The structure of this dependence is very complex and in practice is modelled by
the lookup table. The inaccuracies of the equation (4.6), which is a simplified version
of the exact relationship for the cross section area of the throttle, are also
compensated by the C, coefficient. The procedure of the lookup table construction
will be explained in the sequel. The dynamics of the MAF sensor are neglected and
only the non-linear static model (4.3) or (4.5) which describes the mass air flow
through the throttle as a function of the upstream pressure (ambient), upstream

temperature (ambient), downstream pressure (intake manifold) and the throttle angle
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is considered during parameter estimation. Measurements of all these parameters are

available in the vehicle dataset.

The value of the discharge coefficient may easily be calculated from the flow
equations (4.3), (4.5) based on the measurements. The calculated discharge
coefficient value for the given throttle position and the pressure ratio is used for the
lookup table construction. The result of direct calculation is contaminated by the
measurement noise contributed by all parameters used for the calculation. However,
the method employed for the lookup table construction uses least squares parameter
fitting that efficiently removes the noise. It is assumed that the noise signal is white.

As was mentioned earlier the discharge coefficient C, is not constant and is a

function of the throttle position and the pressure ratio. The discharge coefficient
resulting from the calculation is a function of other measured states. The relationship

between the C, and &, P, /P, is of unknown structure, therefore the lookup table is

employed for our modelling purposes. This is an example of a grey-box modelling
technique. The physical principles model structure derived from (4.3), (4.5) is
complemented by the black-box type of model implemented as a lookup table.
Lookup table gives the relationship of a variable as a function of & underlying

parameters only at its discrete levels.

For the discharge coefficient C, a two-dimensional lookup table is used.
Values of time-varying parameter C,,, in general, are not available at desired grid
values of @, and P, /P, which are used as coordinates of the lookup table. The
example time-varying series for C,,, &, and F,, , / P,, is shown in Figure 4-5. The
method of constructing the lookup table is now explained. The C,, datais given as a

function of the two dimensional pressure ratio - throttle angle space (Figure 4-6).
This space is partitioned, but the important issue is how the grid is chosen. The
following has to be ensured: for regions where change of the value of parameter is
significant the grid density must be higher. Also, the density of the data available has
to be sufficient for the purpose. Increased density of the grid requires sufficient data

density. The density of the data available in the FTP driving pattern is shown in
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Figure 4-6. The rate of change of the discharge coefficient may be observed there.

The data around one lookup table grid point is shown in Figure 4-7. A visible amount

of noise is evident there. This however will be filtered out by the regression

procedure described in the sequel.
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Figure 4-5: Time-varying trace of discharge coefficient, throttle angle
and pressure ratio

Figure 4-6: Data points in Lookup-Table Figure 4-7: Example limited data range used
coordinates for the FTP driving cycle Jor the modelling
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The way the data points (&,, P,,/F,.» C,,) shown in Figure 4-6 in (¢,,
P, .[F.,) are used for the lookup table construction is now considered. For the

calculation of the encircled parameter of the lookup table shown in Figure 4-8 the

data points that fall into clusters 1-4 are considered.

Figure 4-8: Lookup table construction

The discharge coefficient C,, data point for &, and P, ,/P,, is associated with one

of clusters. If, for the point of interest (encircled in Figure 4-8), data is available only
for one cluster (1 or 2 or 3 or 4 ) then the lookup table entry for these coordinates
cannot be computed. If data is available in all clusters (1,2,3,4) then quadratic surface
equation is computed using the regression by the Least Squares. The lookup table
entry is calculated from the surface equation. Additionally, the minimum number of
points required for reliable regression is defined for each cluster. If number of data
points within a cluster is below this threshold the available data is discarded. If data-
points are available at least in either 1 and 4 or 3 and 2 (also the combination e.g. 1,
2, 3 falls into this category) the plane equation parameters are fitted in the data.
Similarly to the quadratic surface case, the lookup table entry is calculated from the

plane equation.

By following this methodology subsequent discharge coefficient values at
grid points in the lookup table are computed. For some lookup-table coordinates
there is an insufficient amount of data available (observe the FTP cycle data in

Figure 4-6). For these points the available lookup-table entries are extrapolated. The
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extrapolation procedure is as follows. First borders of the data points that are
available in the lookup-table are found. Grid points which are adjacent to the border
which were not computed due to insufficient amount of measurements are now
computed. The mask is applied (grey area in Figure 4-9) that defines that only the
data in a limited distance from the point of interest is used. Black points in Figure 4-9
indicate data points that are available, white denote points at which there is no data in

the lookup table.

D

Figure 4-9: Extrapolation mask

Following the procedure all empty grid points in the lookup table are filled up
using available entries which are extrapolated. Either a plane or quadratic surface is
fitted in the available lookup table data entries. The equation of the fitted surface is
used for the calculation of the discharge coefficient being a function of throttle angle
and pressure ratio coordinates. This operation is applied for all points that are
adjacent to the lookup-table available entries. It is repeated until the lookup table is

filled with the data entries.

4.2.2.3 Throttle flow model validation

The discharge coefficient C, is modelled by the lookup table shown in

Figure 4-10. The lookup table is obtained using the method described above. The
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lookup table was built using three FTP datasets. The validation of the model against

the throttle flow measurement is shown in Figure 4-11.

discharge coefl. LUT 2

0.4 L : 3
0

5 10 15 20 25 30 35 40 45
Theottle Angle time [s)

Figure 4-10: Throttle discharge coefficient Figure 4-11: Throttle model validation
lookup table

4.3 Intake manifold dynamic model

The intake manifold is represented by two types of models. The first employs
only the mass conservation law. It is widely accepted that it gives a high degree of
accuracy for the intake manifold modelling. The second type employs both: mass and
energy conservation law and, is by far, more non-linear than the first but offers better
accuracy. The intake manifold model is built based on the physical laws. However,
the volumetric efficiency — the parameter of the model — is a non-linear function of a
number of engine variables with an unknown structure. It is modelled by a lookup
table similar to the representation of the throttle discharge coefficient. This again

defines the grey-box nature of the modelling procedure employed here.

4.3.1 One-state model analysis

The one state intake manifold parameters are identified in this section. As
was mentioned before, the model structure is a hybrid of the known non-linear

physical and the unknown black-box types of relationship. The black-box part of the
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model -~ the volumetric efficiency requires its dependence to be defined. The
volumetric efficiency is known to be a complicated function of the number of engine
variables. It will therefore be modelled with the lookup-table, a method typically

used for this parameter.

4.3.1.1 The model

In this scction the identification of the one-state intake manifold is carried
out. Assuming that the temperature is slowly varying and using the ideal gas law the

intake manifold pressure time derivative is given by the following equation:

B® =£«"§ﬂ(m‘ =1 (1)) 4.8)

im

where;

. oP
p =—in
oo

T,, - intake manifold temperature (assumption: perfect mixing) [K]

, P, - intake manifold pressure [kPa]

m,, - air flow rate through the throttle [g/s]

m,. - air flow rate into the cylinder [g/s]
R, - gas constant [J/gK]

V,, - intake manifold volume

The cylinder (valve) flow rate may be modelled by the following speed-density

equation.

1, (1) = et (P (1), N®) By (ON () 49
“*7 120R,T.(0) " " 4.9)

where:
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V, - engine displacement [din’]
n(P,.N)=n - volumetric efficiency [-]
N - engine speed [rpm]

The continuous time model of the intake manifold obtained as a combination of (4.8)

and (4.9) follows:

. V,N(n R, T, (1) .
P.(n= ——liz—o—‘;;— P, (1) +T'na, 0 (4.10)

Note that the dynamics of that model strongly depend on engine speed. The model

(4.10) discretized with the event based sampling rate is given by the following

equation.
P l V(‘\‘l P + R("'IT;MJIT;.H )
d = -—— ) ——— 1
im.n+1 V‘,,, r’n im.n V‘-n at.n (4.11)
where:
Vd . . 3
V= e cylinder displacement [din” ]

T = 0.25[rev])-60{s/ min])
i N [rev/min]

- sampling period

The discrete model (4.11) pole location does not depend upon the engine
speed. This is a very important feature of the event sampled discrete description of
the intake manifold. The time-based discretization of (4.10) would result in a model
with the root of the characteristic equation approaching the unit circle as engine

speed increases.
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4.3.1.2 Identification of model parameters

Equation (4.11) contains the following parameters:

e The constant parameters are V, , V,,. Those parameters are typically known, but
the estimation of the ‘effective’ values may be carried out.

e The intake manifold air charge per event T, -1, is the input of the system and is
measured.

e The pressure P, is the measured output of the system.

e The temperature of the intake manifold 7, is measured and assumed as a given

paramcter for the one-state model.

e The volumetric efficiency is an unknown function of the intake manifold pressure
and engine speed. It is modelled by a table lookup. The volumetric efficiency
lookup table is to be identified. Assuming that all constant parameters (i.e.

VsV, ) and the input (7, -»i,, ) and the output ( F,,) are known, the volumetric

efficiency n(P,.M,N,) may easily be calculated as at each discrete event n. The

lookup table is built using the method described in section 4.2.2.

Ideally, the constant parameters V,, , V_, should be available. However, these
are not necessary for the identification. The identification becomes slightly more

complex if these physical quantities are not known. The cylinder displacement V_,

and the volumetric efficiency 7 in the model (4.11) may be substituted by one

variable 7,:
P - 1 770..' P +Rair7;n.uTl.n 'h 4 12
ima+l = V‘M im.n Vlm ar.n 4.12)
where
= Vm”
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The model parameters 7, =V_n7 and V,, may be identified using an extended

Kalman filter (EKF). The unknown parameters are defined as additional states and

are modelled as follows:

770.,. = 770,;. + gn
VooV 4.13)
where

£, is the Gaussian noise.

Parameter 73, depends on the intake manifold pressure and the speed of the
engine; therefore, the requirement for £ to be Gaussian may not be fulfilled and

may also depend on a particular realization of the driving cycle. In this situation, the

identification of the volume V,, may be biased if the assumptions made during the

identification about parameters such as covariance and whiteness of & are incorrect.

In practice, the bias is negligible if the noise distribution function is close to

Gaussian.

4.3.1.3 Intake manifold volume identification based on event

sampling of data

To investigate the statistical properties of the volumetric efficiency variation

noise &,, the volumetric efficicncy is calculated assuming that V,, is known. The
autocorrelation of the signal &, sequence is calculated. The volumetric efficiency 7,

may directly be calculated from the following equation:

(Hm.n‘l - Pim.n )Vm = Raer;n.nT;.n'hal.n
”o,u = P . (414)
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For a Gaussian sequence, the autocorrelation between the original signal and
the signal shifted by a number of events should be zero. In Figure 4-12 the
autocorrelation based on 10000 subsequent values of calculated volumetric

efficiency noise &, computed from (4.13) is plotted for time shifts of 0...2500. The
autocorrelation for the shifted signal being non-zero suggests that the noise &, is not

white. A part of the trace shown in Figure 4-12 is presented in Figure 4-13.

0.6 n i S L L 1 L
1500 2000 250« 455 460 465 470 475

0 500 IO‘(I)
Event shift Event shift
Figure 4-12: Auwtocorrelation of the Figure 4-13: Autocorrelation of the volumetric
volumetric efficiency noise sequence efficiency noise sequence — limited range

It may be noticed that the autocorrelation is periodic with a period of 8 events
(8-cylinder engine). This suggests (as expected) that the intake manifold pressure is
not uniform in the manifold. In these figures, the imprint of individual cylinder

pulses in the intake manifold pressure signal is evident.

The above analysis is in preparation for the intake manifold volume
identification. The effect of non-whiteness of the noise on the volumetric efficiency
model (4.13) is first demonstrated. The nominal (physical) volume of the intake

manifold is V, =12[dm’]. Using this volume, the volumetric efficiency is calculated

im

from the equation (4.14). The mean value of the volumetric efficiency

mean(1,)=0.41 is used as an initial value for this state and the covariance of the

noise &, cov(&)=0.0093, is used in the covariance matrix. The extended Kalman
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filter (EKF) estimation with the model (4.12), (4.13) is carried out. The results of the

estimation are shown in Figure 4-14 and Figure 4-15 for the intake manifold volume,

and in Figure 4-16 and Figure 4-17 for the volumetric efficiency 7 =7, /Vm (where

Vo =0.708[dm’]). The initial volume state was assumed to be V, =12[dm’]. The

volume estimate diverges to 24[{dm’]. For the slightly changed covariance of the

signal &, cov(&£)=0.0001, the result of the estimation of the volume is completely

different: 9.45[dm*]. The non-Gaussian properties of &, explain the erratic observed

behaviour of the estimates. After this test, the data will be processed to achieve the

situation where the stochastic properties of &, are significantly improved.
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Figure 4-14: Intake manifold volume identification
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4.3.1.4 Cycle-based sampling intake manifold volume identification

The periodic behaviour of the autocorrelation function suggests that the
sampling period of one engine cycle (8 events for 8-cylinder engine) should be

employed. In that case the sampling time is 7, ,, =8-T, =120/N . The event based

data is pre-processed and the estimation is repeated with the engine cycle sampled
data. The throttle air flow measurement 1, is averaged over 8 events. The pressure
measurement samples taken from the dataset every 8 events are used. This is based
upon mass conservation principle for the intake manifold. The cycle-based procedure
may not be suitable for the volumetric efficiency 77, lookup table identification, i.e.
the averaging process may remove high-frequency information in the data. However,
for the identification of the constant intake manifold volume, the filtering process

will not negatively impact the estimate.

The autocorrelation of the volumetric efficiency noise &, obtained based on

the model discretized on the engine cycle basis is shown in Figure 4-18. In contrast

to earlier results shown in Figure 4-12, this indicates that the signal £, may now be

regarded to be much closer to the ideal white noise autocorrelation characteristic.
Relatively speaking, the frequency spectrum in Figure 4-19 does not have any
significant dominant component as opposed to the frequency spectrum in Figure

4-17.
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Figure 4-18: Awtocorrelation of engine-cycle Figure 4-19: Frequency analysis engine-cycle
based volumetric efficiency based volumetric efficiency error
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So far it has been demonstrated that cycle-based sampling improves the
estimation accuracies. The nominal volume of intake manifold is V, =12[dm*]. For
this volume, the volumetric efficiency, again, is calculated in the same way as for the

signal statistics analysis. The noise £, covariance cov(£)=0.016 and mean value of

the volumetric efficiency mean(n,)=3.27.

The EKF estimation with the model (4.12) and (4.13) is performed. The

results of the estimation are shown in Figure 4-20 for the intake manifold volume

and Figure 4-21 for the volumetric efficiency 7=n,/V,,, (where V,, =5.67 [dm’]).

sp isp
The initial volume estimate was V, =12[dm’]. The volume estimate converges to
11.87[din’]. Changes in covariance only have a marginal impact on the final volume
estimate: repeating the experiment several times and decreasing the values of the
initial covariance, the volume always converged to a value close to V, =12[dm’].

Changes in the initial estimate do not affect the final estimation of the volume either.

The intake manifold pressure and engine speed profiles are shown in Figure 4-22 and

Figure 4-25.
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Figure 4-20: Intake manifold  volume Figure 4-21: Volumetric efficiency 0
identification

104



riake MAvbid presewe MAP (kPa) Engine speed N [pm]

90 - -
2400
Lds 200
- 0 ﬂ i
1800
[
1000 q
8o 1400 m
40} 1200
it 1000 4
30y
800 u L 4
L 600
10 . . . n . s . 00 . L L N " L L
0 2000 4000 €000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 10000 12000 14000 16000
Oiecrow Bme (cycies) Discrete time {cycles]

Figure 4-22: Intake manifold pressure profile — Figure 4-23: Engine speed profile ~ cycle based
cycle based sampling sampling

4.3.1.5 Identification of the Volumetric Efficiency model

Given the volume of the intake manifold (either typical value or identified
from the data), the volumctric efficiency may be computed using the available

measurements and equation (4.15).

R.T T m V (R,,..u-ﬂm.n)

air“im.n® s.n" Carm

VP

n,= (4.15)

Note that the cylinder displacement volume V_, is not necessary, since it may be

identified togecther with the volumetric efficiency. However, the displacement
volume will give the physical insight into the estimated volumetric efficiency values.
Typically the volumetric efficiency must be positive and lower than 1. As an effect

of the measurement and process noise the value may temporarily violate these limits.

A lookup table for the volumetric efficiency 7(F,,N) is built using the method

explained in scction 4.2.2. The engine speed and the intake manifold pressure are

used as the lookup table coordinates.

The modcl with the volumetric efficiency lookup table and the intake

manifold volume identified in previous section is validated. The pressure model

105



output, simulated with the throttle flow rate measurement as an input, is compared
with the pressure measurement. The data used during validation is taken from the
FTP driving cycle. The validation will indicate the accuracy of the model. The
computed error measures will later be used for a comparison with a two-state model.
An integrated squared and absolute error performance index are computed during

validation:

J( ' g Z(MAPMUDEL v WPMEASURED). =40959, J| |5 Z |M4PMODEL ez mPMEASUREDl =46278

The volumetric efficiency lookup table is presented in Figure 4-24. The intake

manifold pressure validation trace is shown in Figure 4-25. For clarity, only for the

limited range is presented there.

:

Intake manifold pressure [kPa]
g
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Engine speed [rpm] Intake man. prassure [kPa] discrete time | 1 o
Figure 4-24: Volumetric efficiency lookup Figure 4-25: Pressure validation (one-state

table (one-state model) model)

4.3.2 Two-state model analysis

The two state intake manifold parameters are identified in the sequel. As was
mentioned before, the model structure is a hybrid of the known non-linear structure
based on physical principles with the volumetric efficiency given by the lookup-
table. The volumetric efficiency is a function of other engine variables. Other

parameters (i.e. heat transfer coefficients) are assumed constant.
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4.3.2.1 The model

The model for the intake manifold is given by the equation (4.16) [91]. This
model may be easily derived using the mass and energy balance. The derivation will
not be presented here for brevity. The heat transfer equation used in [91] was
modified to accommodate the intake manifold wall terﬁperature variations (different

to the ambient temperature).

K.Rmrn(') : _T:’"(t) N _K—I_Q'_"i
B, (H=P, () VP )( m, (1) T m (1) + R, T, )

(4.16)

7, =T, XRulal i n]1-
VB

T _'Im,;,“(;)(l _l) +_E;lgﬂ.
kII" 7; K KRair T;

where
0., =" (T =T )+ (T, - T,,) - heat transfer equation
h, - heat transfer coefficient (from engine temperature)
h, - heat transfer coefficient (from ambient temperature)
P,, - intake manifold pressure [kPa]
T,, - intake manifold temperature [K]
T, - ambient temperature [K]

T,

ol - €Ngine coolant temperature [K]

1, - air flow rate through the throttle [g/s]

m,, - air flow rate through the intake valve (in-cylinder) [g/s]
R,, - gas constant [J/gK]

V,, - intake manifold volume [[ dn’ ]]

In contrast to the original formulation of the two-state model, the heat transfer
equation was changed. Two heat transfer components are considered. This implicitly

assumes that the intake manifold temperature may be expressed as a weighted
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average of ambient and coolant temperatures. The main difficulty for the parameter
identification results from the fact that the intake manifold wall temperature is not
measured, and more importantly, is not uniform. To maintain simplicity, the
manifold wall is modelled as a weighted average of the ambient and coolant

temperature. The heat transfer equation given by Q. =h, (Teoviars =T )+ 1, (T, - T;,,)

is equivalent to the following:

Ora =ho[Tus =T ] 4.17)
where
KT, s + 1T,
T, =—=r—
hy
hhy=h+h

The assumption, that the wall temperature in (4.17) is the average of coolant
and ambient temperatures gives a sufficient degree of freedom for modelling with
minimum number of unknown parameters. Note that if the intake wall temperature
was modelled separately to the heat transfer equation, the weighted average
coefficients would not necessarily be the same as coefficients used in the heat
transfer equation. The best alternative to the methodology that assumes the intake
manifold wall temperature derived as an average value would require a direct
measurement of the intake manifold wall temperature. The thermo-resistive material
could be wrapped around the manifold, which would measure an average
temperature. This would take into account the fact that the upper part of the manifold

is usually cooler.

The port (valve) flow rate is modelled by the speed-density equation (4.9) in
the same way as for the one state model in section 4.3.1. The temperature sensor is

modelled by a first-order lag. The model parameter 7,,,,, [1/s] is the inverse of the

time constant of the sensor.
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T (4.18)

im,measured = -TIM’vaTbn.m.\'ur(d + TIanempTim

The model (4.16) is discretized on the 90° event basis (T, =15/N ) and the following

equations are obtained after some algebra:

KRairT;.n . x-1 .
Pwl ndl = (l Z'Vninn ) Pim.n + Vim Il.nmat.n + _{/:Z.an
1
T (l ——Vn,ﬂ" (1 _—)JT‘M .t
Vin (4.19)
x-1 .
RirTan Ro, T m +T  ———rT
( m L] V P ] sn ar.n mn VimP‘_m‘n J.nQ&ﬂ,n

I,,T,

T‘m measured,n+l — (l 2.lmTemp N )Tm measured .n + Tlanemp s.n*imn

where

Qu:.u =hl(7:-mlml.n )+hz(7; T;mn)

V,= -‘—;‘1- - cylinder displacement, V, - engine displacement

ovl

4.3.2.2 Identification of two-state model parameters

In the model (4.19) the following constant parameters are subject of the

identification: A, h,, V,, V,, Tpym,- The engine displacement V, and the
volumetric efficiency may be combined as 7,=V,,n7. The engine cycle based

sampling period (720 degrees of the crankshaft revolution) is used for the

identification of constant parameters.

109



The model parameters are estimated using an extended Kalman filter (EKF).

The unknown parameters are augmented with the model (4.19) as additional states:

770,,.+| = 770.,. + gn

Vim.n+l = Vim.n
hl.n+l = hl.n (420)
hz,m = h’l.n

Tlanmp.Ml = Tlm'Tmp.n

where

£, is the white noise.

Unlike the one-state model, the noise analysis cannot be performed until the
parameters are identified. The values of the heat transfer are unknown and physically

justified assumptions are difficult to make. To limit the number of parameters,

initially the intake manifold volume was fixed and assumed to be V,, =11.87 [dm3]

(value identified using the one-state model). Performing the identification of the heat

transfer coefficients and the temperature measurement sensor dynamics, the

following values are obtained: Tz, =0422 [Us] h=13.2[W-K*] and

h, = 4[W- K "] . The identified 7,,r,,, =0.422 [1/s] is relatively close to the typical

sensor time constant estimate given by the sensor manufacturer: 7, ., ~=0.5[1/s].

vIemp
Autocorrelation analysis of the volumetric efficiency noise &, performed after the
identification experiment gives identical results to the one-state model. The noise &,

may be regarded as white. The conclusion is that a sampling period equal to the

engine cycle should be used for the identification of constant parameters.
An experiment leading to the simultaneous identification of all parameters is

carried out next. The investigation of the convergence dependency on the number of

unknown parameters was conducted. The model validation was carried out at each
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step of the experiment. The results obtained using sets of fixed parameters are

collected in Table 4-1 together with costs (integrated squared errors) obtained during

the validation phase.

Parameterset | B | k| Vi Fintemp 2 (Prsost = Prostwens ) | 2 Trsre =T’
I 16 |45 | 135 0422 3.9691c+4 1.3118¢+5

2 105]36 [537 |0.58 28.981c+4 0.62447¢+5

3 1324 11.87° | 0.42 2.4315c+4 1.1466+5

7 4 |415 | 1187 |05 2.4496c+4 1.1498c+5

fixed using identified from 1 state model value, ~ fixed using manufacturer’s default value

Table 4-1: ldentified parameters and cost associated with each validation

The results for the full set of parameters identified simultaneously are not

satisfactory (rows one and two of Table 4-1). The intake manifold volume V, for
different choices of initial state error covariance values converges to either higher or

lower level. The temperature sensor time constant 7,,,r,,, converges to a value in the
range of 7,7, =0.4..0.6 [1/s]. Parameters A, h, also converge to different values.

This indicates that by increasing the number of parameters the convergence becomes

an issue and the identification results depend on the assumed covariance.

In the last row (4) of Table 4-1, only parameters 4 and A, are identified. The
intake manifold volume and the temperature sensor time constant must be known for
the identification. In the third row, only the intake manifold volume is fixed to the
volume identified with the one-state model. Using integrated squared errors index for
the temperature model validation, the errors range from 0.62e+5 to 1.31e+5 for all
experiments and different parameter sets. At the same time the pressure validation
gives a wider parameter range: 2.43e+4...28.98¢+4. The wide span of identified
parameters suggests that it is inevitable that some of them should be supplied (or
identified in a separate experiment) and fixed during the identification. Comparing
costs in Table 4-1, it may be concluded that the procedure where the intake
manifold volume is identified using the one-state model gives the most reliable

results. The intake manifold temperature model identification in this experiment may
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not be as reliable as the pressure model identification, due to the relatively small and
slow variation of the intake manifold temperature in the dataset used here. The
temperature measurements also contain significant measurement noise; therefore, it
is sensible to put a stronger emphasis on the accuracy of the model for pressure and

the cost for pressure validation should be regarded as the most important one.

As a final conclusion the identification of the intake manifold volume
should be carried out using the one-state model. There is a slight difference between
the heat transfer coefficients identification with or without using the temperature
sensor time constant supplied by the manufacturer. The assumption on the sensor
time constant may clearly be made as it does not have a strong impact on the model
accuracy. However, it will simplify the identification procedure and reduce the
computational power requirements for on-line execution of the algorithm, if required.
The volumetric efficiency lookup table identification for the two-state model will

now be carried out.

4.3.2.3 Volumetric Efficiency model Identification using 2-state
model

Using the already identified parameters, the volumetric efficiency may easily
be estimated. The EKF state parameters estimation for the model (4.19) and (4.20) is
carried out. The estimated time-series for the volumetric efficiency is used along
with the pressure and engine speed measurements. The lookup table is built using the
method used for the throttle discharge coefficient in section 4.2.2 and later for the

one state model in section 4.3.1. The constant parameters are fixed (given in
parameter set 3 in Table 4-1): h =13.2[W/K], h,=4W/K], V, =11.87[dm’].
Some model parameters (i.e. the intake manifold volume and temperature sensor
time constant) may alternatively be assumed as known. The intake manifold volume
is a known physical parameter for the considered engine type. Also, the temperature
sensor time constant value may be assumed to be equal to the typical value quoted by

the manufacturer of the sensor. In that case it would not have to be identified
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(compare the validation results in Table 4-1, row 3 and 4). After the volumetric
efficiency lookup table is constructed the model (4.19) is validated against the
pressure and temperature measurements logged in the driving cycle. The following
integrated squared and absolute errors performance indexes are calculated during
validation:

2
J( Wi Z(MAPmuu = MAP,supep ) =23695 5 J[ |Press ZIWPMODEL _WPMEASUREDI = 40740,

-/( ! Temp =Z(Tm _Tmznsum:o)2 =115150, J| | remp -~ ZITMODEL ‘Tuusuneo|=90433 s

The volumetric efficiency lookup table is shown in Figure 4-26 and the intake
manifold pressure validation (for clarity only for the limited range) is shown in

Figure 4-27. The intake manifold temperature validation is given in Figure 4-28.

The integrated squared and absolute errors of the intake manifold pressure
validation are lower for the two-state model when compared with the one-state

model (J( p = 40959, JI | = 46278 ). This indicates that the two-state model gives a

more accurate description of the intake manifold dynamics. At the same time, the
temperature model gives relatively accurate estimates (Figure 4-28). Note that for the

one state model the temperature measurement obtained from the slow sensor is very

Tlnv Temp

slow (identified time constant 7, =}/ =2.38[s]). For fast transients this

sensor is not capable of providing an accurate temperature measurement. For control

purposes, this suggests that the temperature should be estimated.

3

|
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$

Intake manifold pressure [kPaj
g

8

Engine speed (rpm| Intake man. pressure (kPa] discreie time [overia) -
Figure 4-26: Volumetric efficiency lookup Figure 4-27: Pressure validation (two-state
table (two-state model) model)
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Figure 4-28: Intake manifold temperature
validation (two-state model)
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4.3.3 Cylinder air charge estimation

After validation of the one-state and two-state models, it is clear that the two-
state model gives better results. The following procedure for parameters

identification was established:

e In the first stage, the volume of the intake manifold is identified using the
one-state model with cycle-sampled data,

e In the second stage, the heat-transfer parameters and temperature-sensor time
constant (if not known) are identified — using the two-state model and cycle
sampled data,

e In the third stage, employing constant parameters identified at stage one and
two, the volumetric efficiency is estimated and the lookup table built that
describes the volumetric efficiency as a function of intake manifold pressure

and engine speed

The port (or cylinder) airflow rate is computed as:
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Va

h =—=2 P N
e l2ORai,T,.,,,n - 4.21)
n=1(FpN)

The volumetric efficiency lookup table, the measurement of the intake-manifold
pressure, the engine speed and the intake-manifold temperature estimate are
employed. The temperature estimate may be obtained using the second equation of
the two-state model (4.19) using the extended Kalman filter. Alternatively, one can
employ an EKF-generated estimate of the volumetric efficiency for port flow

estimation in equation (4.21).

During experiments it was noticed that the port flow estimates obtained from
the lookup table gave more accurate results. The problem with the directly estimated
flow rate using EKF estimates of volumetric efficiency is the high level of noise. By
changing covariances in the EKF, it is possible to remove the noise, but
unfortunately side effects of filtering removes high frequency signal information and
deteriorates the transient response. It will have an impact on the identification of the
rest of the engine model (fuelling and exhaust), too. In contrast, each value of the
volumetric efficiency lookup table is based on many measurements; this results in
better noise rejection. Thus, the filtering is performed during model identification
rather than on the time-based data estimates and therefore mostly the noise (not ‘real’
changes in flow-rate) is filtered out. Accuracy of the cylinder air charge is
dectermined by a number of factors. First is the model structure. The structure
mismatch between the actual intake manifold and its model introduces an upper limit
for the model accuracy. Even for optimal parameters values there will still be a
model mismatch. The other factor that determines the model precision is the
measurement accuracies of various engine states. Inaccuracies may results in the
model parameter mismatch and consequently biased cylinder air charge estimates. To
show this, we analyze the steady state conditions where the intake manifold pressure,
throttle air flow (MAF) and intake manifold temperature remain constant. From

equations (4.8) and (4.9), assuming steady-state conditions, the following expression

may be computed:
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> — RairT;'m(t) > - ___Vd P N =0
P,,,(t)————m m, (1) V,.,,,IZOU(I) m(DON(1) (4.22)
Finally
R.T (1)120 .
air = im t =P t
v D= a0 (4.23)

From the equation (4.23) it is clear that any offset or noise with non-zero
mean value in measurements will result in volumetric efficiency modelling errors.
Throttle flow measurement bias will result in a corresponding bias in the port flow

estimation.

4.4 Fuel delivery and lambda model

The cylinder air charge (CAC) is computed from the equation (4.24) below

using the estimate of the port flow rate m, ,at the event n. It provides the

information about the amount of the air that enters the cylinders over the time of

event (i.e. 90°).

.15
CAC,=m,, N (4.24)

In an 8-cylinder engine as much as three cylinders may be charged at the
same time. Therefore the amount of the air inducted during one engine event cannot
simply be associated with only one cylinder. But it may be argued, that only one
cylinder gets a major part of the estimated air charge. For a mean-value model, it is
assumed that the estimated air charge is associated with only one cylinder. Thus, it is
assumed that the amount of the air per cylinder for the 8 cylinder engine equals the
amount of air that enters all cylinders over one event. This results from the division
of the 720 degrees cycle (two full revolutions of the crankshaft) by the number of
cylinders that are being filled with the air over one cycle. With the knowledge of
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CAQC, the fuel delivery path (with the FPW delay, injector parameters and fuel film
dynamics) and the lambda path (with the exhaust manifold transport delay and the

lambda sensor dynamics) may be identified.

The in-cylinder air-fuel ratio represents both the air and fuel path. The non-
linearity associated with the division (ratio) may cause problems during
identification since the operating point changes over a wide range during the driving
cycle. To circumvent this problem, the intake manifold is identified separately and
the lambda measurement used for identification of the fuel delivery parameters only.
In this way the problem of additional non-linearity associated with lambda

representing the ratio of two unknown variables is eliminated.

The time delays must be tackled in an unconventional way. The method used
here removes the time delays from the data since these are either on input or output
of the system. The data pre-processing may simplify the problem to the identification

of the delay-free system. However, time delays must first be determined.

CAC
N
FPW from \gi;V/ ’ Fuel Film \l}mbda detay Lambda sensor LAMBDA
dataset cldy M| dynamics e dynamics > from
/ \ dataset
-
CAC
FPW Injector and Lambda sensor LAMBDA
w/o delay Fucel Film dynamics »| w/odelay
dynamics

Figure 4-29: Structure conversion diagram

Finally, the identification of the simplified model structure is carried out. The
structure conversion is presented in Figure 4-29. The pre-processed FPW signal
without the time delay is used as an input of the system which is being identified.
The output of the model is the pre-processed lambda measurement with the time

delay removed. The cylinder air charge (CAC) obtained from the port flow estimate
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from section 4.3.3 is used as a known time-varying parameter. In the subsequent

sections, the details of this approach are addressed.

4.4.1 Fuel injection delay

The fuel injection delay results from the pulse width modulation used for the
fuel measuring and the injection strategy. There are two possible strategies for the

port fuel injection:

o the injection starts, when the intake valve opens

e the end of the injection is fixed at a few degrees of crankshaft rotation

before intake valve opening

As part of the fuel injection strategy and for the vehicle under study, the fuel
injection at every event is ended before the intake valve opens. To pre-process the

data and remove the correct time delay the injection strategy must be well
understood. The engine cycle takes 720° of the crankshaft rotation with the 90°

event. The beginning of the engine cycle is associated with the position of the 60° of

the crankshaft before TDC (Top Dead Centre) on compression. For the k-th cycle at

this position assume that C," =0" (position of crankshaft relative to the beginning of

the cycle 60° before TDC). An illustration of this is given in Figure 4-30.

[ ] ]
FPW command issued} CAC representative event |
[} 1
' E Intake Valve opened
| . - -
| ] . Ll .y 1] 2
+  [Injection period = FPW !
720 v v 0
| I ] I I I I [ I |
0 90 180 270 360 450 540 630 720
- FPW delay time
< >

k-th cycle (full 720 degrees)

Figure 4-30: The FPW delay timing
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Consider the engine with the following valve timing for one cylinder (Figure 4-30).

The intake valve opens at a,,,=403" and closes at «,,, =697°. Note, that the

close

angles are calculated relative to the 60° before TDC on compression.

The discrete events between the opening and closing of the intake valve occur at:

C,‘S =450", Cf =540, C,: =630°. Assume, that the event with the highest port
flow rate is C,° =540". The injection must end ¢, degrees before the intake valve

opens. The last discrete event before the valve opens occurs at C,* =360°.

Now, depending on the amount of the fuel which has to be injected the

duration of injector opening FPW,, and the current engine speed, the angle of the

injection may be calculated.

Q,oion =6- N, - FPW,,, (4.25)

injection

where

N, - speed of the engine [rpm]

The injection should end at &, , -a, degrees. If &, —&, — @, .1i,, 2360° then the
command should be available from the controller at time C,*'=360". If

a <360° then C,’=270" is considered. Using the information

open a. -

injection

about the fuel pulse width FPW,, and the speed of the engine N, , the time delay is

determined.

As a numerical example, assume that speed N, and FPW,, are their
maximum values in the dataset. From equation (4.25) the following value may be
obtained: &, =149.1°. Assume, that a, =5":

aﬂan = ac _CVinjecrion = 403a _50 - 149.1° = 2489°
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Therefore the C,” =180 event determines the amount of the injected fuel which gets

into the cylinder at C,° =540° which determines the time of the air induction. The

discrete time delay equals 4.

180 270 360 450 540 630
CAC estimate P
FPW command ]

Figure 4-31: Fuel delivery time delay processing

4.4.2 Exhaust manifold delay

The in-cylinder air-fuel ratio is determined by the amount of the air and the
fuel that enters the cylinder at each event. The homogeneous charge is compressed,
combusted and finally released through the exhaust valves. This takes about 6 engine
events. A further delay is introduced in the exhaust manifold and pipes. This time
delay is a variable; it is inversely proportional to the exhaust gas flow rate. A full

analysis of the time-delay estimation follows.

The exhaust manifold and pipe may be considered as a duct that introduces
pure time delay. Since it is difficult to determine the time constant of the exhaust
manifold gas mixing it is better to assume that most of the lag is lumped in the
lambda sensor. Some of the mixing effect may also be accounted for in the lambda
sensor dynamics. Assume that the volume of the exhaust manifold and pipe are
known. The time delay may be calculated as a parameter proportional to the
integrated exhaust gas flow rate into the exhaust manifold. The identification of the
variable time delay is rather difficult to carry out. An iterative identification method

that uses an additional lambda measurement is proposed.

Using the air mass flow into the cylinder the volume gas flow out of the

cylinder is obtained. For this purpose the ideal gas law is used. It is assumed that any
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cylinder blow-by during compression and combustion is negligible. Also, it is
assumed that the stoichiometric Air-Fuel ratio is maintained at all times. Using the
exhaust manifold pressure and the exhaust manifold gas temperature measurements,
the volume of the gas entering the exhaust manifold over one engine event is given

by the following expression.

V.= stoich (4.26)
o P EM .
where

R., - ideal gas constant for the exhaust gas
Ty . - €xhaust gas temperature

P, , - exhaust gas pressure

m,, - mass of the air trapped in the cylinder

AF,,, - stoichiometric air-fuel ratio

The discrete time delay kg, , at time #n is implicitly given by the following equation:

LLLT*VIN

Vau = 2 Vo (4.27)

i=n

where

V., - exhaust manifold volume (with the pipe)

The meaning of the equation (4.27) is that the exhaust gas has to be pushed out of the
exhaust manifold by gases leaving the combustion chamber in the next engine

events. This is illustrated in Figure 4-32.
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Figure 4-32: Exhaust manifold delay modelling

In practice the volume of the exhaust manifold will not be equal to an integer

number of volumes of exhaust gas entering the manifold. The k., , that is required

to be an integer number in the equation (4.27) will be determined with some

approximations. Define the discrete time delays kg, , < kg, , <k, , as:

K Vo2 3 Vi (4.28)
n+kiy .

Kewn: Ve < ; Vi (4.29)

and

Kert.n = Keng o +1 (4.30)

The corresponding continuous time (or real time) delays are determined by the

sampling times:7, =1 t, =t. resulting from discrete events kg, ,, kg,

- l
‘EM - " EM

obtained from equations (4.28), (4.29).

The exact time delay is denoted as #° and may be calculated from the

following equation.

nkgy o
VEM 5 Z chl.i
£ =t +(1;=1;) i=n

ol mvkga o

(4.31)
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This time delay determines the sampling period for the lambda sensor. If the sample

is not available at this time, then the lambda value may be calculated from the

samples /1(t+t;' ) and /l(H»t; ) using the following approximate relationship:

0 -

/l(t+t,‘,’)=,l(t+t;)+(l(r+t:)—l(t+t;))% (4.32)

The above method of calculation of the time delay may be implemented on-
line using shift registers and storing the required data there. The lambda sensor
ideally should be sampled at the time given by the equation (4.31). In the FTP dataset
the lambda sensor is sampled at each event. The lambda value is therefore obtained
using the linear interpolation given by the equation (4.32). Since the lambda sensor
response is lagged, the interpolation will result in a sufficiently good accuracy.

Alternatively, for simplicity, the transport time delay may be assumed to be equal to

kzy . (or kg, ). The six- event time delay due to gas entrapment in the cylinder has

to be added to the exhaust manifold transport delay. The resulting delay is removed

from the data as it is shown in Figure 4-33. The lambda measurement associated with

the considered intake event is therefore logged kg, , +6 events later.

450 540 630
CAC estimate
'\,— *
Lambda —
measured T —
4 s
The reference time The lambda measurement associated

with the reference time

Figure 4-33: Exhaust time delay processing

The mathcmatical representation of the variable time delay is quite complicated. In
the state-space model additional states have to be introduced, with the associated
changes in the model structure. During off-line model identification, the time delay
may be removed from the data. The same data processing procedure may be

implemented on-line employing shift registers.
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4.4.3 Exhaust manifold delay identification

To continue with the identification procedure, the exhaust manifold time
delay has to be determined and removed from the data. The exhaust manifold volume

V., may be measured and used directly with the measurements of the pressure and

the temperature. However, the effective volume of the exhaust manifold may be
different from the value measured. To determine the effective exhaust manifold
volume an additional lambda measurement (known as wraf5) close to the one of
exhaust valves is employed. An iterative solution to the problem is presented. The
physical volume of the exhaust manifold (sum of volumes of two manifolds for ‘V’
engine) is a known engine parameter. The series of hypotheses on the effective
exhaust manifold volume is made (e.g. 2.5L, 2.6L,...,3.5L). The correlation between
the lambda measurement at the exhaust valve location and the shifted main lambda
measurement (known as wraf3) is computed. The lambda time shift results from the
assumed exhaust manifold volume (e.g. 2.5L, 2.6L,...,3.5L) and the estimated
exhaust gas flow rate based on the cylinder air charge estimates. It is calculated from
equations (4.31) and (4.32). The correlation analysis [93], [94] for different
hypotheses is shown in Figure 4-34.

Air-Fuel ratio |-}
0.905 v v v ~ . v v v . : e ——— .

‘7A5 - ' ' .
17r 1

s

’ ! . 4 z ‘ ¥ : N " L : L L : L " L " " "
0“3.5 286 27 28 29 3 31 32 33 34 a3S e ‘gr;..?n.]m;m R ey
Exhaust manifold volume

0.9031

E ot

0.901}

0.8p

P

Figure 4-34: Correlation coefficient between wraf5  Figure 4-35: wraf3 shifted using 2.9-litre exhaust
and shifted wraf3 manifold volume and wraf5

The maximum correlation occurs at 2.9L. The volume of 2.9L is concluded to

be the effective exhaust manifold volume is used for the final exhaust manifold
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transport delay calculation. The lambda signal at the exhaust valve position and the
main lambda measurement shifted using the Cylinder Air Charge estimate and the
volume of 2.9L is shown in Figure 4-35. Two signals are plotted to show the
efficiency of the time delay removal. The estimated effective volume of 2.9L is very
close to the actual physical measured exhaust manifold volume (two banks of

cylinders) which is 3.0L.

4.4.4 Lambda sensor dynamics

The air-fuel ratio is measured in the exhaust manifold by the lambda sensor.

The sensor is modelled by a first-order lag:

(4.33)

where

7, - time constant of the lambda sensor

A - lambda measured

Agy - ‘real’ lambda of the exhaust gas

The model is discretized as follows

T, 4.34)

;l.n )/l,. + Txl.n IlEM

) 7,

'{Ml = (1 =
where

T, - sampling period

L

Exhaust manifold mixing is modelled together with the lambda sensor.
Exhaust manifold mixing in general is a complicated process and may not be

accurately modelled by the first-order lag. By increasing the time constant of the
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lambda sensor, the exhaust manifold mixing may be modelled in an approximate
way. It is expected that for control purposes, the accuracy of that method is

sufficient. No additional dynamics is introduced in the exhaust manifold mixing

modelling.
1/ T, correlation
5 0.6639
6 0.6753
7 0.6801
7.5 0.6809
8 0.6810
8.5 0.6804
9 0.6721
11 0.6721
13 0.6627

Table 4-2: Correlation for a different lambda time constants

The exhaust manifold time delay is computed based on the effective exhaust
manifold volume. It was identified using an additional lambda measurement in
section 4.4.3. With the lambda measurements pre-processed by removing the delay,
the lambda sensor time constant is now determined. With the time delay already
removed from the data, the correlation coefficient for the measured and the modelled
lambda is computed. This is a good parameter that may be exploited for the

identification of the sensor time constant 7,. The series of hypotheses on the lambda
sensor time constant 7, is tested. For each time constant average parameters for the

injector (gain and offset) are identified using the EKF methodology. The X and 7
parameters of the fuel film dynamics (detailed model will be presented later) are
neglected for the lambda sensor time constant identification. As was mentioned
earlier, the model accuracy is tested through correlation analysis done for the lambda
measurement and the lambda modelled with assumed lambda sensor time constant.
The test was performed over 10000 samples from the dataset. The results are

presented in Table 4-2. The maximum correlation is at 1/z, =8[1/s] which is

equivalent to 7, =125[ms].
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The above method was introduced for the 7, parameter because the extended

Kalman filter (EKF) estimation did not give satisfactory results. The estimate of the
time constant converged to an infeasible value (1[s]). The possible reason for that
might be a significant uncertainty in the system if several parameters are identified
simultancously. It could also be due to non-persistency of the data (the peril of a
data-driven approach). This may become particularly important for large number of
parameters and most importantly due to noise. The estimation algorithm tends to
filter the modelled lambda signal heavily by increasing the lambda sensor time
constant. It may occur if the modelled exhaust time delay is slightly different from
the actual, encountered in the real system. The method presented here does not result
in aforementioned lambda sensor time constant divergence. The results obtained with
hypothesis-based method are physically justified in a way that are within the typical
for the lambda sensor range of 50...150[ms]. Other lambda sensor identification
techniques may use the step response to the fuel injection command under steady
state conditions. The step response test simultaneously provides an estimate of the
exhaust time delay. The method however is tedious and may not be accurate enough.
Visual inspection of the response may, however, provide a value for the sensor lag at
the operating condition. In this chapter, only the driving cycle data from a vehicle is

used for the identification and the alternative method referred to was not exploited.

4.4.5 The fuel injector model

The fuel injector may be modelled by the following equation:
mﬂ.n = kﬁ.n (FPW a Oﬁ.n) (4.35)
where

m,, - mass of injected fuel [g]

kg, - injector gain [g/sec]
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FPW,, - pulse-width command [sec]

0,., - offset [sec]

Additional corrections of the injector gain (state-dependent gain) will be
introduced in the sequel. The equation presented here reflects the most important part

of the injector characteristics.

4.4.6 Fuel Film dynamics model

The fuel film dynamics may be modelled by the first-order X-7 model [95],

[91]:

.1 ]

, ==—m,+ X,y (4.36)
A | .

m,r—-z_—mw+(l-X,)mﬁ 4.37)
where

m,, - mass of the wall fuel

i, - fuel mass flow rate through the injector
i, - fuel mass flow rate into the cylinder

7,X - model parameters

Assuming linearity, the model may be discretized using the Euler method:

T
mw,m-l = (l - ;" )'nw.n + Xn’nﬁ.n (438)
1.,
m., =—T_m” +(1-X,)m,, (4.39)
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where

T, , - sampling period at current engine event
mg, =T, hg, - mass of the fuel injected during one event

m., =T, m,, -cylinder fuel charge for one event

The input for the injector is the time of its opening. Pulse-width modulation is used

to control the amount of fuel injected.

4.4.7 Fuel film and fuel injector parameter identification

Three models for the injector and the fuel film dynamics are identified in this
section. Three models are of increasing degree of complexity. The objective is to

identify the least complicated but satisfactory models for use in the next stage (i.e.

control).

4.4.7.1 Model 1

The following model is considered for the parameter identification. This

model includes the injector and the fuel film dynamics.

mwn+l =(1—7;n-1—)’nwn+xumin
s " s v

. n . (4.40)
A,H,I = (l _ sAn Jl,, + sd.n l mar.n

TA Tl T;.n r_mw.n +(1—Xn)mi.n
M,y =kyo(FPW;,=0,,) (4.41)

where
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m,., =m, T, -the Cylinder Air Charge used as a parameter
Unknown parameters are defined as additional states for parameter estimation

with the extended Kalman filter.

Opin =Ouin 4.42)

where

T
1
GMl.n =[Xn’;_’kﬁ,n’0ﬁ.n:|

"

The model (4.40) identification will only provide the average values of the actual
wall wetting parameters. This is the case since it is known that the X, and 7, are not
constant and depend on other states. This feature of the system will be accounted for
later in this section. Also, the injector parameters may depend on other engine
parameters (e.g. intake manifold pressure, engine speed...). However, in this
simplest structure parameters (4.42) are modelled to be time-invariant. The main
difficulty associated with extended Kalman filter parameter estimation is the choice

of initial values and the initial covariance F,. The following initial parameters in
(4.42) are used: m,,=0005, A,=1457, X,=005, 17 =5, k,,=36,
Oﬁ'0=5e_4.

The above values are initial guesses of parameters being subject of the

identification. These were established based on an approximate knowledge about the

system.

The extended Kalman filter (EKF) identification is repeated several times
with the state estimate obtained at the end of the FTP driving cycle. These final
values were used as initial estimates for the next iteration. The initial state estimate

covariance Fy is always scaled as 20% the value of the state estimate value. This was

an experimentally derived tuning parameter. Alternatively, the covariance may

130



simply be decreased from iteration to iteration. It was noticed that when the EKF
algorithm started with different initial states and covariances, the parameters
converged to slightly different values at the end of the driving cycle data. For this
reason the final estimates for several identification experiments are collected (see
illustration in Figure 4-36). The mean values of these final parameter estimates are

calculated as the identified parameters sought.
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Figure 4-36: Subsequent values for identified parameters for identification experiments

The mean values of parameters are computed from a set of subsequent results

of the identification experiments (starting from 5-th) are:

X =0.122, %:4.169. ky=3.692, 0,=4912e4.

4.4.7.2 Model 1 validation

The validation of the model (4.40) was performed and the result is shown in

Figure 4-37 and in Figure 4-38. The performance index as the sum of the absolute or
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squared values of the difference between the model and measurement lambda values

was employed. The following modelling error indexes were computed:

i =Y Ponosea =4 |=29531.6636, J; ures = 2 (Amotet = Ameasuremens). =13038.3385.
Additionally the correlation coefficient for the modelled and measured lambda
signals was computed. Its value for Model 1 is J, ., =0.7049.
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Figure 4-37: AF ratio model validation for model 1
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Figure 4-38: AF ratio model validation for model 1 (expanded view)

4.4.7.3 Model 2

Model 2 contains the state-dependent injector gain as a linear function of
battery voltage and intake manifold pressure. The same procedure with repeated EKF
identification is employed. The model (4.40) is employed with the following injector

model:

ma',n - (kl.ﬁ.n +k2.ﬁ.nUball.n * kJ.ﬁ,nEm.n ) (FPWﬁ.n ¥ Oﬁ.n) (443)

For the extended Kalman filter parameter estimation, as before, unknown parameters

are defined as states. The additional states are:
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(4.44)

euz,m =0,,.

where

T
1
e“zﬁ = [X"r_’kl-ﬁ-”’kztﬁv"’ ks-ﬁl"’oﬁl"]

The Extended Kalman Filter identification is repeated several times as for

Model 1.
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Figure 4-39: Subsequent values for identified parameters for identification experiments

The mean values of the identified parameters are computed to be: X =0.123,

T

L_4273, k, =6.251, k,, =0.747, k, , =-0.00687, O, =5.787 c-4.
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4.4.7.4 Model 2 validation

The results of the model validation are shown in Figure 4-40 and Figure 4-41.
The following modelling error indexes were computed as the sum of the absolute and

squared values of the difference between the model and measurement lambda values:

i = Y s =2 |=23327.1708,  J; snared = 2. (Amoter = Ameaswoment ). = 8902.3906 .
The correlation of the modelled and measured signals was computed to be

0y =0.8033.
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Figure 4-40: AF ratio model validation for model 2
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Figure 4-41: AF ratio model validation for model 2 (expanded view)

4.4.7.5 Model 3

Model 3 is a further extension of Model 2 where state-dependent X and 7
parameters are employed. These are assumed to be linear functions of the intake
manifold pressure. The injector gain is defined as a state-dependent linear function of
the battery voltage and the intake manifold pressure. The model (4.40) is employed

with the following injector model and fuel film dynamics coefficients.

M, = (K pn 6 g aUscin + K3 B,,)(FPW,,-0,,)

1 1 1
—=—+—"107F, 4.45
T, 1'-l.» rl.n g ( )

Xn =X",+X1',P“',

where

m,, =m, T, -cylinder air charge (over one event)

ac.nTs.n
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For the extended Kalman filter parameter estimation, the unknown parameters are

defined as states are:
Ousan =Ousa (4.46)

where

T
1 1
QMJJI = [Xl."Xz-"?—’;_, kl-ﬂ-"’kztﬂ-”’ k’-ﬁ'"’ Oﬁ'”]

(] 2,n

Finally, the mean values of the identified parameters are obtained:

X,=00334, X,=000168, 1/f=3511, 1/r,=00166, & ,=-6.174, K ,=0.740,
k; o =-0.00647, O, =5.687 ¢4 . Note that some of the estimates were removed from the

calculation due to large excursions from the mean values (Figure 4-42).
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Figure 4-42: Subsequent values for identified parameters in identification experiments
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4.4.7.6 Model 3 validation

The results of the model validation are shown in Figure 4-43 and Figure 4-44.

The following modelling error indexes were computed as an indication of the model

ACCUTACY: Jj 0 = . [ nctet = Assmremee| = 23233.7806 , J; = Y (Anster = Aacsremene). =8758.5762 .
The correlation of modelled and measured signals was computed as: J,_,, =0.8015. It

may be noticed that the state-dependency of X-7 parameters do not contribute to a

substantial improvement in modelling accuracy.
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Figure 4-43: AF ratio model validation for model 3
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Figure 4-44: AF ratio model validation for model 3 (expanded view)

4.4.7.7 Model 3 with the correction

During the identification of the fuelling and lambda models, the cylinder air

charge (CAC) was assumed to be given by the intake manifold model. In the case of

a model structure mismatch (either for CAC or fuel models) or measurement errors,

the lambda model becomes inaccurate. For this purpose, Model 3 (equations (4.40),

(4.45) and (4.46)) is used with the already identified parameters and a static

correction is developed.

m, pn = (l = T;.n l) m,,+ Xnmi.n

tn
T n T; n koan- nmac
/1"”:[ —_’:_")An*' - l . .
A

r‘ T.'r.n r_mw,n +(1_Xn)mi,n
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where

m,_,=m_T,, -cylinder air charge

o8

-;_1-,X .»Mm,, - are given by equation (4.45)

For the extended Kalman filter parameter estimation, the k., parameter is
defined as additional state. It is assumed that &, , is modelled by the stochastic
model with the white noise &,. The estimation with such model generates the time
series for k., which is used for the construction of a lookup table. The method of

lookup table construction is identical to that used for the throttle flow discharge
coefficient and the intake-manifold volumetric efficiency modelling (see section
4.2.2).

Koy mot = Kepor n + 6 (4.48)

corr

4.4.7.8 Corrected Model 3 validation

The results of the model validation are shown in Figure 4-45 and Figure 4-46.
The following modelling error indexes were computed as the sum of the absolute and

squared values of the difference between the model and measurement lambda values:
Tt = 2 Pooter = Aesworen| 2197678396, 3 = 3 (Aris = Aecsiramens). =6537.3500. The
correlation of model and measurement signals was computed as: J, . =0.8548. It

may be noticed that the correction significantly improved both the correlation and the
integrated errors. This leads to the conclusion that either the intake manifold model
has a limited accuracy, or that measurements are not accurate. The correction lookup
table uses the same grid as the volumetric efficiency table. It may be noticed that the
resulting lookup table is noisy. However, it may be claimed that the noise will be

removed if more data is used in the identification process,
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CAC correction

RPM MAP

Figure 4-47: CAC correction lookup table

4.4.8 Air-fuel ratio model: analysis and conclusions

The analysis of the air-fuel ratio measurements from two sensors (one on
each bank of the V8 engine) are related to the model output. Results are shown
together with the modelled air-fuel ratio. Note, that the averages of the two air-fuel
ratio measurements were used for the identification. It may be noticed that the
differences between the air-fuel ratio measurements for each bank may be quite
significant. In some parts of the trace shown in Figure 4-48 the model output follows
closely one sensor and then the other. This suggests that with the uncertainty present

in the measurements, further significant improvement of the air-fuel ratio model

accuracy may not be possible.
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Figure 4-48: AF ratio model validation for model 3 with correction — 2 AF measurements

To draw the final conclusion about the accuracy of each model the following

summary Table 4-1 is generated. It may be noticed that among models without

correction lookup-table, Model 3 gives the lowest integrated and absolute error

measures. At the same time, the output of Model 2 has the highest correlation with

the measured air-fuel ratio.

Model 2 | Model 3
/3
Performance measure Model I | Model 2| Mode corrected | corrected
J =
A 29531.6636 | 23327.1708 | 23233.7806 | 19815.3417 | 19767.8396
Z 'lmodel = 2‘memurrmnl|
2 13038.3385 | 8902.3906 | 8758.5762 | 6617.7776 | 6537.3500
Z ( ’lmod a3 A’munlrrmenl )
J“-“”’ 0.7049 0.8033 0.8015 0.8562 0.8548

Table 4-1: Model accuracy comparison
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The most significant improvements are achieved for models with the use of
correction coefficients. Again, Model 2 and Model 3 give very similar performance
with either integrated squared or absolute error measures. These are better for Model
3, but correlation coefficient is lower than for Model 2. The reason for similar
performance of Models 2 and 3 is the nature of the validation data. For warmed-up
engine the major part of the injected fuel enters the cylinder in the first event. This
may suggest that the wall-wetting dynamics are less important than the fuel injector
(static) characteristics. Please note that the differences between the accuracy of
Model 1 and Models 2 and 3 are significant. This is the direct result of improved
injector model. The same level of improvement is achieved by adding a static
correction table to the model. This corrects for system behaviour that was not

included in the model.

4.5 Net torque model

For identification of the model of net torque produced, a brake torque
measurement between the engine and the transmission is utilized. The net torque
produced is the gross torque generated by the combustion reduced by energy
dissipation (which includes friction, pumping and the load torque of accessories
attached directly to the crankshaft). The data collected during the FTP driving cycle
was used for the analysis presented in this section. The block diagram describing the

engine dynamics is shown in Figure 4-49.

N[rpm] <
MAP Torque Time M, [Nm] .

. production ¥ el [ﬂd.] [’_"d_ N[_"ﬁ.]
CAC, Function Y e s min.
AF +q M[Nm]

1 J’ | 60
Mecasured engine - I 2n
load [Nm) M, [Nm]

Figure 4-49: Engine dynamics block diagram
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The data used in the study is sampled using the event-based sampling period

(every 90° crank angle). The engine speed N, at the event n is differentiated. First, it

. . _2r Y
is represented as ¢, =36N" and next the acceleration ¢, is computed. The

acceleration is given by the following expression:

¢, =0, _Z(N,=N,.)N,

b= 50 (4.49)
The net torque is computed by the following equation:
Mp,=M,, +19, (4.50)

where

M,, - nct torque (after subtracting friction and the accessories load)

produced by the engine

M, - measured brake torque

I, - engine incrtia, (e.g. for Corvette I = O.35[kg ~m2])

From equations (4.49), (4.50) and the FTP driving cycle datasets the net

torque M,, is computed. This derivation assumes that the engine inertia (with

flywheel and accessories) was identified in a separate experiment and for the work
presented in this chapter is known. Non-linear torque modelling employs data
clustering and lcast-squares fitting introduced in section 4.2.2. The same method was
used for the throttle flow modelling and the intake manifold volumetric efficiency

lookup table construction.

The results of the non-linear torque model identification are presented in
Figure 4-50 and Figure 4-51. The torque model using MAP and RPM
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(M, = function(MAP,_,,N,_,)) as scheduling inputs is shown in Figure 4-50. The

intake manifold temperature influence is not considered in this model. Such a
temperature-compensated model may only be used with the additional intake
manifold temperature correction function. In the model that uses the Cylinder Air
Charge (CAC) as an input, the temperature is already taken into account through
CAC. The cylinder air charge estimated value is obtained from the equation (4.24).
This model is shown in Figure 4-51. The following relationship between the net

torque and the cylinder air charge / engine speed is established.

MP.n = function ( CACn—4’ Nn—4 ) (45 1)

In this study, the spark advance is assumed to be obtained from the existing
controller (based on engine load and speed) and is implicitly included in the model
(4.51). The torque modelling method assumes that the lambda is controlled close to
unity (i.e. the air-fuel ratio at stoichiometry). Lambda deviations from that level may

be regarded as a disturbance with zero mean value. In a torque/lambda control

strategy where lambda is regulated at one, such a model is sufficient.
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Figure 4-50: Net Torque model: f(MAP,RPM)

146



Net Torque [Nm]

CAC RPM

Figure 4-51: Net Torque model: f(MAP,RPM)

4.6 Summary

In this chapter the identification of the combustion engine model was
presented. The methodology introduced here aimed to use as few parameters
supplied by the engine manufacturer as possible. Also, the identification procedure
may be adopted for the on-line operation. This in turn would allow the model
adaptation that is desired since some engine parameters may be subject to gradual
change as a result of wear and tear. The model presented in this chapter may be
further developed. The additional model parameters may be introduced. For example,
the fuel film dynamics depend upon the engine temperature. This is a very important
dependence, especially for the cold start conditions. In this work only the warmed-up
engine identification was considered. The data collected during the driving cycle was
used for the modelling. Consequently, the identification procedure can naturally be
adopted for on-line engine operation. This in turn will allow model adaptation to

gradual parameter variations in engine variables in online operation of the vehicle.
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Due to the engine operating cycle and a significant transport delay in the
exhaust manifold, the actual air-fuel ratio is measured long after the fuel injection is
completed. Therefore, accurate modelling of the engine forward path is of great
importance for the precise air-fuel ratio control. The delayed measurement of the
actual air-fuel ratio imposes an inherent limitation in the maximum achievable
performance using any classical feedback control methods. The performance may,
however, be improved through extensive use of accurate models in a feedforward
control loop. The real vehicle data was used in conjunction with physical models of
engine processes and system identification techniques, to determine accurate engine
models. This process was executed offline, however as more powerful
microcontrollers are adopted for the engine control, some of the system identification
and parameter estimation techniques may be carried out in a real time. This would
bring the advantage of real-time compensation of modelling inaccuracies. In
addition, the use of nonlinear models so identified will reduce the required memory,
development time and effort in conventional open-loop fuel control systems where

dense grids are used to approximate the engine nonlinearities.

The chapter contains the following separate identification tasks: i) intake
manifold model identification (air charge model) using upstream engine sensor
information from the driving cycle data and, ii) fuel path identification using the
measured air-fuel ratio from the driving cycle data and, iii) an approximate engine
torque model where it is assumed that the air-fuel ratio is maintained at around the
stoichiometric value. The air-fuel models developed have been validated using three
different sets of criteria: an integrated absolute, squared error and a correlation
between the measured and estimated variables. Depending on the complexity of the
model structure selected, various measures of accuracy are developed and presented.
Good model accuracy was achieved as more measured variables and model
paramcters were incorporated in the model structure. These measures include the
transicnt as well as steady state errors in the air-fuel ratio model during the FTP
driving cycle. These models are intended for control system design presented in the

next chapter.
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Chapter 5

Predictive Control of the Combustion
Engine

The model identified in Chapter 4 will be used her for the control system
design. The model identification presented in Chapter 4 used the driving cycle data
for the model estimation. This implies that the methodology presented there could be
embedded in the controller and used for the on-line adaptation. The aim of this
chapter is to present the model-based control system design strategy. Depending on
allowed complexity of the target control technique two control approaches will be

considered.

The first approach called ‘conventional’ presented in section 5.1 will assume
that there is a direct mechanical link between the accelerator pedal and the throttle
plate movement. Only current throttle position is available and the control system
cannot interact with that manipulated input. The predictive control strategy uses
available at the time engine state information with the model. The Fuel Pulse Width
command is used to change the amount of injected fuel and maintain the desired air-
fuel mass ratio.

The drive-by-wire throttle control is becoming more and more common on
current production engines. The drive-by-wire strategy uses the pedal position as a
sctpoint for the electronic throttle actuator. Between the pedal position and the
throttle position sctpoint signals the non-linear mapping is applied. This mapping is

aimed to scale the position of the accelerator pedal with the torque achieved by the
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engine in steady state. Additionally the pedal-throttle position characteristic may be
used to shape the response according to driver’s requirements (e.g. sporty response,
more aggressive to the pedal movement). The static torque control through the
throttle position mapping is presented in section 5.2. The feedforward controller is

used to maintain the desired air-fuel ratio.

The drive-by-wire brings also some benefits to the conventional air-fuel ratio
control. The pedal position passed through the non-linear torque mapping function
drives the throttle actuator. The actuator dynamic model (given in section 4.2.1) may
be used to for the future throttle position prediction. The actuator filters driver’s
command through its limited speed of response. This property is used in section 5.3
to improve the air-fuel ratio control precision. Finally, the multivariable control
strategy is discussed in section 5.4. The analyzed approach uses a cost function since
the torque-lambda control problem is a trade-off. The conclusion given at the end of
this section lcads to the simplified MIMO control strategy presented in section 5.4.1.
In this section the throttle setpoint and the fuel pulse width signals are used to
achieve two objectives: tight lambda regulation and torque tracking. The non-linear
predictive control algorithm introduced in section 3.2.4 is employed there. The
comparison of the simulation results obtained using the conventional and
multivariable control methods is presented. The US06 — an aggressive driving cycle

profile is used during simulations.

The results presented in section 5.1 are based on engine tests. The rapid
prototyping dSpace equipment was used during the implementation at the GM. The
controller was built in Simulink and compiled into a dSpace code. The driving tests
in the GM testing facilities were carried out. The remaining results presented in this
chapter are based on the simulations using the model identified in Chapter 4 and the
data collected during driving cycles for unmodeled engine variables (e.g. engine

speed, ambicnt conditions).

150



5.1 Conventional predictive air-fuel ratio control

The accuracy of the air charge estimates is essential for the tight air-fuel
(A/F) ratio control. Due to the time delay present in the fuelling path, the future, not
the current, value of the cylinder air charge (CAC) estimate is needed [91], [92],
[84]. The accuracy of the estimate is determined by two important factors: model
accuracy and the model input information. The model accuracy is the most important
factor responsible for the feedforward controller performance. The engine modelling
and identification was presented in Chapter 4. The overall model accuracy is
determined by the identification procedure, sensors precision and the complexity of
the model structure. The second important factor is the information about the future
engine parameters that are required by the controller. Assuming that the model
obtained during the identification is 100% accurate, A/F excursions are still
unavoidable due to the lack of the future throttle position information. The injection
must stop before the valve opens and the fuel vapour enter the cylinders. The future
throttle position information is required for an accurate future air charge prediction.
However, the throttle position under the command of the driver and/or the computer,
is a priori unknown (ie. depends on driving condition and the driver). An
improvement may be made by introducing intentional delays [91] (or filter) in the
throttle position command. Depending on the length of delay introduced, this may
negatively impact the driveability. In Figure 5-1 the air-fuel ratio is shown assuming
a perfect model and 6-event prediction horizon for the CAC (6 events delay from the
beginning of the FPW computation to the cylinder charging event). The simulation
results presented here are based on the throttle position and other engine
measurements taken from the FTP driving cycle and using the model identified in
Chapter 4. The throttle position is assumed to be fixed at the current indicated value
over the prediction horizon for the CAC prediction calculation. The engine speed and
the intake manifold pressure profiles are shown in Figure 5-3 and Figure 5-4

respectively.
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For more aggressive driving patterns, the lack of future throttle information
will result in even higher A/F excursions. As was mentioned, other important
parameters of interest within the prediction horizon are the engine speed, battery
voltage and ambient conditions. The future values of these variables are available

and they may change with the driving conditions (i.e. load, traffic and environment).

The most efficient way to improve the performance of A/F ratio regulation,
which is affected by both the model accuracy and quality of the input information, is
to reduce the prediction horizon. Results of the prediction horizon reduction to 3 and

2 events are shown in Figure 5-4 and Figure 5-5, respectively.
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The reduction of the fuel delivery delay results in lower A/F excursions due
to lower uncertainty associated with the future variations of engine parameters.
However, when the delay is reduced there may not be sufficient time for fuel vapour
formation. This is particularly important for engine operation under cold conditions.
This implies that in practice it is not possible to minimize the time delay and the

aforementioned performance limitation will always be present in the system.

Other Engine Parameters
Indicated Distribution
Throttle block ENGINE
Position
'
'
""""""" | :
FB Controller :‘__________".

Figure 5-6: The basic control structure diagram

The feedforward controller employed in this section computes the fuel pulse
width (FPW) command based on upstream (e.g. intake manifold, throttle)
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measurements. The variable prediction horizon is proportional to engine speed (N)
and FPW signal itself. The FPW signal is then utilized by the ‘Distribution block’ to

generate the individual signals for injectors.

The way the ‘Distribution block’ operates determines the time delay length
and its variability. While the additional correction from the feedback controller is
incorporated for improved response, the transient performance is mostly determined
by the quality of the feedforward controller. The block diagram of the control system
structure is shown in Figure 5-6. In this section only the feedforward controller
design is presented. The mathematical model of the controller is presented. The
throttle flow and the intake manifold models are used for the future cylinder air
charge (CAC) prediction. The prediction horizon is determined by the duration of the
injection and the engine speed. The fuel film dynamic model together with the wall

fuel mass estimate is used and the FPW command is computed.

Intake
Wall fu
Measured | manifold e e
engine Temperature
parameters: ‘ (o
Intake/ambicent
pressure, 4 Cylinder Injector and
temperature, Air Charge Fuel Film
N » prediction » Dynamics —>
throttle position block inverse
and flow rate FPW
Coolant
temperature

Figure 5-7: The Feed-Forward controller diagram

5.1.1 Determination of the prediction horizon

The delay between the time of fuel (or FPW) command and the cylinder

charging (sce Figure 4-30) are now explained.
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Figure 5-8: The FPW delay timing

It is assumed that the delay, expressed in crankshaft angle, consists of four

components:

Computational and data transfer delay. This delay covers the time elapsed
between the start of the calculation of the FPW command, and the actual
start of fuel injection. The assumptions made here are: The discrete-time
fuel controller is ‘called’ once during each engine event, i.e. once every 90°
of crankshaft angle rotation (for an eight-cylinder, four-stroke engine). The
transfer delay refers to the signal transfer delay resulting from the memory
read-write cycles. This is due to control algorithm implementation using

rapid prototyping controllers (e.g. dSpace). The overall computational delay

is assumed to be 180° of crankshaft angle rotation: r,, =180°

FPW duration. The output of the feedforward controller is the FPW
duration, given in seconds. Conversion to an angle is through multiplication

by engine speed: @py, = 360-%- FPW =6-N-FPW .

The time between the end of injection and intake valve opening. The
injection strategy seeks to maintain an angle e, (in crankshaft angle)
between the end of fuel injection and the opening of the cylinder intake
valve. In this case, this angle is assumed to be zero.

Duration of cylinder intake valve opening. The actual flow of air (and fuel

vapour) into the cylinder during intake valve opening is not instantaneous,
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but takes place over the full duration of valve opening. It is reasonable to
assume that the mean ‘delay’ in air and fuel charging of the cylinder is half
the angle over which the intake valve is  open.

_a. .-, 637-343

ive 0

Oy mean = > 5 =147. The nearest discrete event is at

480°. This leads to a value for the in-cylinder delay of:
o, =480-343=137.

The total fuel injection delay between the fuel command and cylinder

charging is therefore:

aFPdeay=ard +a".w +a‘.+a‘.yl=3l7+6'N'FPW (5.1)

Converted to a number of engine events or controller time steps, this becomes:

_a,.-pw*[ay =3l7+N'FPW

= 52
Bepw detay % 90 15 (5.2)

The time delay in the delivery path may be determined from the equation
(5.2). For the FTP driving cycles, the engine speed varies between 600 rpm and 2500
rpm. The fuel demand results in the FPW command varying between 2 ms to 12 ms.
In the worst «case, the maximum number of delays s

_ 317 + 2500-0.012

Mepwacay = "o T =5.52 events. The maximum integer time delay is

therefore 6 events. However, the typical delay may be shorter by one or two events.

Since, in general, Agpy 4y, iS NOt an integer, the nearest higher integer number is
used. The integer prediction horizon length will be denoted Ny 4., = ceil(ngpy, delay)

(Note, ceil(.) - MATLAB® function).

As shown above, the estimated time delay Nppy,,,,, depends on the applied

FPW and the engine speed. The FPW in turn depends on the predicted time delay,
through the prediction of the future CAC coinciding with the currently applied FPW.
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In principle, this forms an algebraic loop, which would have to be solved in the

controller:

v

(RPM,, FPW,) = Ny sy n = CAC, — FPW,

The algebraic loop introduces additional computational burden. Assuming that the
FPW changes little from one step to the next, it is possible to use the previous FPW

value in the time delay and CAC prediction:

(RPM,,FPV,

n-l) - nFPWdelay.n - CACn - FPVVn
This simplified method has been employed in the FPW controller built in the
Simulink code. Employing the past FPW command, the prediction horizon is

computed from the nepy 4, -

5.1.2 Cylinder Air Charge prediction

The Cylinder Air Charge is computed based on the measurements of the
current engine states. The following states are used as inputs: engine speed, throttle
position, ambient pressure and temperature, coolant temperature, intake manifold
pressure, and the throttle mass flow rate.

The cylinder air charge predictor is based on the intake manifold model identified in
section 4.3. The intake manifold pressure measurement is used directly as a starting
point for the prediction. This is due to the relatively fast sensor that was used for the
intake manifold pressure measurement. The intake manifold temperature open loop
estimate is gencrated internally within the feedforward controller. This is due to very
slow response of this element. This approach has also a practical justification. Quite

often only the air temperature that enters the intake manifold is measured and in that
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case the open loop temperature estimation is the only option. The length of the
prediction horizon is based on the previous FPW command and the current engine
speed measurement. The maximum prediction horizon is estimated to be 6 events.
The output of the prediction block in Figure 5-9 is selected according to the

computed delay in the fuel delivery path.

Intake
engine Temperature

parameters: T Cylinder Air Charge prediction block
Intake/ambicrt ' ----------------------------.:
pressure, 4 H One step One step One step :
temperature, ' Cylinder Cylinder Cylinder !
. : Air Charge | Air Charge | Air Charge !
throttle position \ prediction prediction prediction i
and flow rate ! block 1 block 2 block 6 i
[) 1
Coolant ' :
temperature : :
: i
) ]
' [}

CAC prediction

Figure 5-9: The Cylinder Air Charge Prediction block with the variable horizon

5.1.3 Wall wetting dynamics and injector compensation

The wall fuel dynamics is modelled by the X-tau model [95]. The Model 2
identified in section 4.4.7 with the cylinder air charge compensation function
constructed for this model structure is employed by the feedforward (FF) controller.
The fuel injection must take into account the amount of the fuel on the wall. This fuel
mass is estimated in an open-loop fashion within the FF controller. The mass of the

wall fuel is consequently an internal state of the controller.

The wall fuel model is given by the equation (4.40). The mass of the fuel

m, .y on the wall is available from the built-in observer based on the equation

(4.40). The mass of the fuel required to enter the cylinder is derived from the
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equation (5.3) as the function of the cylinder air charge prediction and the air-fuel

ratio stoichiometric target.

CAC,.,

n

Mppan =
AlF o

(5.3)

From the equation (4.40) the mass of the fuel mg,,, that needs to be injected is

derived using the result of equation (5.3) and the wall fuel mass estimate m,,,, , .

n

Me men = m, pen
_ r (5.4)
mﬁ.n#N (l - X )

The sampling period in the equation (5.4) is inversely proportional to the engine

speed (T,, =15/RPM, ). The assumption that the engine speed change is negligible

within the prediction horizon must be made. The injector is modelled by the equation

(4.43). The FPW, command is computed from the equation (4.43) and is given by

the following equation:

FPW, = P pnen +0, (5.5)
kl.ﬂ + kZ.ﬂUbua.n + kl.ﬂ le.n )

The equation (5.5) provides the FPW signal that is used for the control. This
formulates the Feed-Forward control strategy. Note that due to the comprehensive set
of engine measurements used for the FPW signal calculation the described strategy is
not purely feedforward. Some feedback elements are also present. For instance, the
intake manifold pressure is one of the output measurements. The use of output

measurements is a feature of feedback controller.
The control algorithm presented in this section provides the best possible

control action with the assumption that driver’s actions are purely stochastic. In that

case the best guess about the future throttle position is to assume that it remains fixed
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at current point. If however it was possible to characterize (model) driver’s behaviour
the extra information could be used to improve the future the cylinder air charge
prediction. In the next section the driving test results will be presented to
demonstrate performance of the controller. Also, the accuracy of the model used for

the controller design will be confirmed in this test.

5.1.4 Engine Test Results

The driving cycle tests were carried out using the designed predictive
feedforward controller. The engine model employed by the controller uses the model
identified from the driving cycle data. The controller was built using Simulink™ and
implemented using dSpace® rapid prototyping controllers. The test vehicle is a
Chevrolct Corvette with 5.7 L. V8 engine. The FTP and US06 driving cycles were
employed during tests. The US06 provide a more aggressive driving pattern of

driving than the FTP cycle.

Results in Figure S-10 present lambda measurements collected in the exhaust
for the gas entering the catalytic converter. For the FTP tests, engine load and speed
profiles are shown in Figure 5-11. The V8 engine used in the test has two banks of
cylinders and separate measurements for each were collected. Simulation results are
presented in Figure 5-12. The data show the best possible measured lambda trace that
may be achieved assuming perfect model information and perfect measurements are
available. The lambda excursions visible there reflect only the uncertainty introduced

by the inaccuracies in the prediction of future cylinder air charge estimate.
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Figure 5-10: FTP driving cycle test: pre-catalyst lambda for 2 banks of cylinders
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Figure 5-11: FTP driving cycle intake manifold pressure and speed profiles

It should be noticed that the lambda variations in real-time test results do not

differ significantly from the simulated results shown in Figure 5-12. This indicates

good

Simulated Lambda

accuracy of the model.
11
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Figure 5-12: FTP driving cycle test: simulated pre-catalyst lambda
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The driving test results with the US06 cycles are presented in Figure 5-13.
Simulation results for US06 cycle are presented in Figure 5-14. The data show the
best possible measured lambda trace that may be achieved assuming perfect model
information and perfect measurements are available (e.g. the upper bound for the
performance). It should be noticed that the lambda variations for real-time test results
do not differ significantly from the simulation results shown in Figure 5-14. The
intake manifold pressure and engine speed profile of the US06 driving cycle is

presented in Figure 5-13.

0.85

time (s}

Figure 5-13 USO06 driving cycle test: pre-catalyst lambda for 2 banks of cylinders

Figure 5-14: USO6 driving cycle test: simulated pre-catalyst lambda
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Figure 5-15: US06 driving cycle test pressure and speed profiles

5.2 The Basic Torque Controller

In the previous section the air-fuel ratio control was the only task of interest
for the control system. The fuel pulse width command was computed as a function of
measured engine paramcters and current indicated throttle position that was assumed
to be time-invariant in the future. The approximate torque model was identified in
section 4.5 with the assumption that the lambda is controlled with sufficient accuracy
and the air-fuel ratio remains at stoichiometry. During modelling it was assumed that
the spark advance signal was derived from the engine load and implicitly included in
the estimated torque model. Such a model is sufficient for a control strategy that aims
to maintain stoichiometry at all times. The static (feedforward) torque control system
with conventional air-fuel ratio control is shown in the block diagram in Figure 5-16.
The air-fuel ratio is controlled through the fuel pulse width command by the
feedforward controller. The feedback controller may also be included in the
structure. The throttle angle command is derived from the accelerator pedal position
and it controls the engine torque. The conventional torque control strategy is based
on a static mapping. The throttle angle that provides desired torque in steady state is

a function of the pedal position and other engine parameters. The most important
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parameter that influences the conversion of the pedal position into desired throttle
angle is the engine speed. The basic torque control strategy is purely static. The air-
fuel ratio is indcpendently regulated at stoichiometry by the feedforward (and

feedback) controller.

{Pedal position.]
-
I PP->TSP 1
map | In-cyl.
(Static 1 CAC A/F
torque > Throttle actuator - o '»O »{ Exhaust delay + >
controller) | dynamics, Throttle mass . K lambda sensor
I— - flow characteristic 1 dynamics
Intake manifold dynamics [eesssecgechueass R
- - 1
1 Feed- .
I Forward | !
Controller I .
e o o= L-pn---. .Bmkes
FPW delay + fuel film Engine ; Torque ;
> dynamics #{ Dynamics and Secsaceserne :
r(vw CFC Torque model >
 RCLLITUITTTTTIvES PYT)
Engine Speed [rpm]
[ Y
REEE Jm i '
= . External Load , _.
Feedback Controller

Figure 5-16: Air-Fuel ratio control diagram

The static torque control strategy is based on the engine model identified in
Chapter 4. The pedal position is used as an indication of the torque demand.
According to the model, the maximum and minimum achievable torque for current
operating conditions is dctermined mainly by engine speed, but also by ambient air
conditions and heat transfer in the intake manifold. The maximum and minimum

static torque is computed from the engine model and sensor measurements.

The net torque sctpoint Mg, , is computed from the pedal position using the

equation (5.6).

Mg, = M p minn +m“ (Alfmun -hlP‘l'HilUl) (5.6)
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where

M - minimum achievable torque at current operating conditions

P.minn

M - maximum achievable torque at current operating conditions

P.max.n

PPS . - scaled pedal position ( PPS =0...1).

Next, the cylinder air charge (CAC) required to achieve the demanded torque

is computed from the model identified in section 4.5:
M,, = funaion(CAC,_‘.N,,_‘). It is assumed that the fuel is regulated by the

feedforward (and feedback) controller such that the stoichiometric air-fuel ratio is
maintained. The pedal position that maintains the required steady state airflow rate
must be computed. For this purpose, the steady state intake manifold air temperature

is computed from the following equation:

KR T, L8 4 (1) (T i + BT,
T,n= (R .7
KR, ———=+(x=1)(h +h,)

" 15

where
CAC, -required cylinder air charge obtained from the torque map

N, - engine speed [rpm]

x - ratio of specific heats for dry air

R,, - idcal gas constant for dry air

h, - heat transfer coefficient (from engine)

h, - heat transfer cocfficient (from ambient temperature)
P,, - intake manifold pressure [kPa]

T,, - intake manifold temperature [K]

T, - ambient temperature (K]

T, .. - €Nginc coolant temperature [K]

i - air flow rate through the intake valve (in-cylinder) [g/s]
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R,, - gas constant [J/gK]

V,, - intake manifold volume [[ din*]]

After the steady state temperature T, is calculated, the intake manifold pressure is

computed from the following non-linear equation:

_8R,T,, 15m,,

air© im.n

V, N

5.8)

where
V, - engine displacement [ din’]

n - volumetric efficiency [-]

Finally the throttle angle a that results in the required flow rate may be

computed. This requires a solution of the following non-linear equation:

P CAC
C (a’_’."'_J.Am (a) = n
d P, __llvi\y(a‘l)mn'n) 5.9

where:

1, - air flow rate through the throttle [g/s]

C, - discharge coefficient

cos(a+a,)

- throttle cross-sectional area
cos ()

Ah(a)=fr-R.:(l-

P, - upstream pressure (ambicnt)

a - throttle angle [rad]
a, - throttle offsct angle (minimum throttle angle)

R, - radius of the throttle
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The above procedure may be implemented using simplifications and/or

T,

¥(P.P..T,

.

lookup tables. Finally, the multidimensional lookup table that returns the required
throttle angle as a function of pedal position, engine speed, ambient temperature,
pressure and coolant temperature can be constructed. This lookup table provides the
simplest static torque controller. A variant of the torque control method described
above is used in current production systems and will not be elaborated in more detail.
However, the proposed model based procedure linked to the identification method
presented in Chapter 4 will minimize the development time for dynamometer tests

and simplify the engine calibration procedure.

5.3 Conventional predictive air-fuel ratio control including
throttle actuator dynamics

The conventional predictive air-fuel ratio feedforward controller presented in
section 5.1 was designed with the assumption that the throttle position is fixed over
the prediction horizon. This assumption does not always hold true as the throttle
position is manipulated by the driver. For an engine equipped with the electronic
throttle control, the pedal position is passed through a non-linear function that maps
the pedal position into the throttle position. The non-linear function reflects the

engine torque characteristic that was the subject of analysis in section 5.2.

The throttle actuator model identified in section 4.2.1 may be used for the
prediction of the future throttle position. In this approach, the current pedal position
is assumed to be fixed (at the current level) over the horizon and the current

measured throttle position is used as the starting point. The only modification in the
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conventional air-fuel ratio controller is with respect to the computation of the
cylinder air charge (CAC) prediction. The modified CAC prediction block is
presented in Figure 5-17. Six one-step throttle prediction blocks are added to the
controller. Output of each block is linked with the corresponding CAC prediction
block. In that way the future throttle position information is improved by using the

information about the throttle dynamics.

Pedal position Throttle setpoint signal
sctpoint 2 vy vy v
Throttle Throttle Throttle
position position o position
It peediction prediction prediction :
Mcasured [ block 1 | | block2 | | block6 |
engine P — L
meters: ' H
pare ' One step One step One step E
Intake/ambient H Cylinder Cylinder Cylinder 1
pressure, ' o Air Air Air :
temperature, ' Charge Charge Charge !
H prediction prediction prediction !
throttle position : e s L block2 | Lblock6 1 | 1
flow rat i
and flow rate ! [ Intake manifoid E
' Temperature
Coolant ! obgaacr !
temperature 1 SeTY 1
Lecranecncccanne
Cylinder Air Charge
prediction block CAC prediction

Figure 5-17: The Cylinder Air Charge Prediction block with the variable horizon

5.3.1 Impact of throttle model accuracy on CAC precision

The dynamic throttle actuator model was identified in section 4.2.1 using the
linear structure. The air-fuel ratio control precision was significantly improved when
the feedforward controller utilized knowledge of the throttle setpoint command
combincd with the model and the throttle position measurement. The approach taken,
however, assumed that the (throttle) model was perfect. No model mismatch or
process noise was considcred. Clearly, such omissions could lead to inaccuracies and
hence have a ncgative impact on the accuracy of the cylinder air charge prediction

calculation. The cylinder air charge prediction accuracy is assessed using the
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structure prescnted in Figure 5-18 and compared with the controller that uses only

the current indicated throttle measurement (Figure 5-19).

Throttle
I L 2 Y L 4
setpoint signal Throtile Throttle Throtile
position position »] Pposition
‘hrottie position | prediction prediction prediction
Measured measurement | block ] | |_block2 | | block6 |
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Intake/ambicnt ! Cylinder Cylinder Cylinder :
pressure, L Air »  Air » Ar e !
tempcrature, ! Charge Charge Charge H
' prediction prediction prediction 1
throttle position ! block 1 block 2 block 6 H
and flow rate ! H
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Coolant : Intake manifold :
' Temperature t
temperature : observer :
] ]
Cylinder Air Charge cacY
prediction block prediction
Figure 5-18: System diagram: controller prediction block — with throttle trajectory
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Figure 5-19: System diagram: controller prediction block — with fixed at current value throttle
trajectory

The intake manifold block model structure used for the simulation is
presented in Chapter 4. Two alternative setups are used. The first employs only the
throttle mcasurement logged in the dataset. The second uses the throttle setpoint

signal and computcs the throttle angle based on the throttle model. The first setup, in
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conjunction with the throttle actuator model used for the CAC prediction, provides a
realistic robustness test. The simulation test results provide information on controller

performance in the presence of modelling errors.
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Figure 5-20: Engine simulation block

The simulation results are summarized in Table 5-1. Cylinder air charge
prediction accuracy results obtained in four simulation setups are presented. Two

main groups are:

e engine simulation where the throttle flow characteristic and the intake
manifold model are used with indicated throttle position as an input

e engine simulation where the throtile position dynamic model, throttle
flow characteristic and the intake manifold model are used with throttle

position setpoint as an input

Both simulation setups are used with the cylinder air charge predictor, which
assumes that either the throttle position remains fixed over the prediction horizon or
the throttle position trajectory prediction is computed. The throttle trajectory
prediction is obtaincd from the setpoint, current throttle position measurement and

the throttle modcl.
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Throttle position prediction has greatly improved the CAC prediction

accuracy. When model mismatch is present in the system (row 2 and 3 in Table 5-1

or in Figure 5-21), substantial improvement can still be achieved. In Figure 5-21 the

simulation results with the model mismatch being created in the controller are

presented. The improvement resulting from the introduction of better future throttle

position prediction is substantial. This improvement is, however, less significant than

the result achicved from the theoretical analysis (rows 4 and 5 in Table 5-1 or in

Figure 5-22). In Figure 5-22 the simulation results with the ideal model assumption

are presented. Again, the improvement resulting from the introduction of better

future throttle position is substantial. In Figure 5-21 and in Figure 5-22 the trace of

the CAC error is shown. The error is required to stay as low as possible.

Throttle Model

Future throttle prediction in

controller

Y ICAC s = CAC pat|

Y (CAC o ~CAC, )

Throttle direct

Throttle direct measurement

fixed over prediction 7501.9 39700
measurement .
horizon
Throttle prediction obtained
Throttle direct from current throttle
.. . 5965.5 29734
measurement position, throttle setpoint
and the model
Throttle direct measurement
Throttle modelled (modelled) fixed over 6069 35317
prediction horizon
Throttle prediction obtained
from current throttle
Throttle modelled 3938.7 26767

position (modelled), throttle
setpoint and the model

Table 5-1: Simulation results with throttle measurements/throttle model and with/without throttle

position prediction
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Figure 5-21: Simulation results with the throttle measurements used as an input to the engine

simulation model
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Figure 5-22 Simulation results with the throttle setpoint used as an input to the engine simulation with
the throttle model
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5.4 Multivariable Torque and Air-Fuel Ratio control

The MIMO control task may be formulated as a mixed tracking and
regulation problem. The net torque produced by the engine must follow the driver’s
requirements expressed by the accelerator pedal position. At the same time, the air-
fuel ratio must be regulated at the stoichiometric value. Manipulated inputs are the
throttle position setpoint signal and the fuel pulse width command. The block

diagram of the MIMO control system is shown in Figure 5-23.
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Figure 5-23: The MIMO control problem diagram

It is also known that the control solution is a trade-off between torque
tracking and air-fuel ratio regulation. The trade-off may be formulated as a cost
function. Minimization of the performance index leads to the optimal control

solution. The cost function structure given by the equation (5.10) will be considered.

J _"%’:” "AF;M -AFSrdch‘|+|lMP.n+4-MSP,n+4 + 5.10
‘" & ||FPw, - FPW,_,|+||SP, - SB_ ||+ |FPW, >-10)
Where
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|AF, ., = AF; ]| - measure of the air-fuel regulation error

HM pnet—Mspnia || - measure of the torque tracking error — 4 events delay is

incorporated in this measure

||F PW, - FPW,,_," - measure of the fuel pulse width increment
ISP, = SP,_,| - measure of the throttle setpoint increment

|FPW,| - measure of the fuel pulse width duration (may be used for

minimization of the fuel consumption)

The cost function (5.10) is minimized subject to the system dynamics given

in a gencral form by the equation (5.11).

Xy = f(x,.N,.SP,,FPW,)
(5.11)

M,
" |=h(x,,N,,SP,,FPV,
[AF;] (xﬂ lsl 'l)

Additionally, the system constraints on inputs given by the equation (5.12) must be

considered during the optimization.

TPS_. <SP <STPS,,
(5.12)

FPW, 20

There are two questions that have to be answered before the control strategy

is designed:

The first one is *how is the cost function (5.10) formulated?’ The norms | || used in

the cost function must be defined. In reality a simple quadratic norm may not reflect
the actual requirements. Also, special care must be taken in choosing the weights in
the cost function. While quadratic norm is preferred due to simplicity of the
optimization solution it may be desired to use other norms like L'orI’ 1t may also

be beneficial to introduce hard constraints on the error. That is especially important
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for the air-fuel ratio control since large excursions may lead to misfires and even
may stall the engine.

The second important question is *how is the minimization of the cost function (5.10)
carried out?” The minimization, subject to non-linear system dynamics (5.11) and
constraints (5.12), is not a trivial task. It may not be possible to guarantee
convergence to the true minimum as the solution may be trapped in one of local
minima leading to a non-optimal performance. Also, the computational burden
associated with the optimization is substantial. Simulation tests using a simple
quadratic cost function (performed with MATLAB® Optimization toolbox) indicated

aforementioned convergence problems.

The above problems pose serious difficulties that can be faced if the usual
MIMO control strategies based on the minimization of a cost function (5.10) were to
be used. Moreover, to take into account the dependency of the torque on the air-fuel

ratio, the torque model with an A/F correction coefficient shown in Figure 5-24 is

introduced.
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Figure 5-24: Air-Fuel ratio torque correction coefficient

The torque model M, = function(CAC,_,,N,_,) presented in section 4.5 is

combined with the air-fuel ratio correction shown in Figure 5-24 [90]. The resulting

torque model block diagram is shown in Figure 5-25.
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Figure 5-25: Net Torque production model

In the optimization criterion given by (5.10), the goals of torque tracking
problem and air-fuel ratio regulation may, however, be in conflict. Since torque
generation is a function of the air-fuel ratio, the optimal control algorithm may try to
maximize the torque by reducing the air-fuel ratio to a value where the coefficient in
Figure 5-24 has its maximum value. Also, to reduce the torque, minimization of the
cost function may indicate that the optimal solution is to reduce/increase the air fuel

ratio to obtain required torque tracking performance. To prevent this from happening,
the penalty function defined by the norm [AF,,, — AFy,,|| on the air-fuel ratio
excursion from stoichiometry needs to be increased significantly. This however

results in the air-fuel ratio kept at the stoichiometric value at all times. The engine

block diagram that will help to analyze the system properties is shown in Figure
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Figure 5-26: Engine block diagram
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The complex problem of optimizing the cost function (5.10) may be

simplified further using the following arguments. Since the excursion penalty in

|AF,.; = AFs.ia]] must be high, it gives the effect that CAC/CFC= AF, ... The

Stoich *

AF,

oic

, is constant thus the CAC and CFC should be controlled such that
CAC =CFC: AF,,, . The torque setpoint My, may be expressed by CAC,, based
on the torque model M, , = function(CAC,_,,N,_,) and current engine speed N,.

This recasts the torque tracking and air-fuel regulation problem into a CAC and

CFC tracking problem with the CACy, and the CFCg, =CAC,,/AF

Stoich

respectively. The detailed analysis of this control strategy will be in the next section.

5.4.1 Simplitied MIMO control strategy

In the conventional air-fuel ratio control, the throttle position is directly
controlled by the driver. The result of this approach is an indirect torque control
presented in scction 5.2. The fuel is directly controlled by the feedforward (and
feedback) controller. In the multivariable control approach, the throttle position and
the fuel pulse width are both manipulated with the objectives of meeting driver’s
torque demand (dctermined by the pedal position) and regulation of air-fuel ratio at

the stoichiometric value.

The block diagram of the fuel and air delivery paths is shown in Figure 5-27,

SP CAC
a. - -’(/} ——
Throttle actuator Intake y ¥ In-cyl.
dynamics, manifold A/F
Throttle mass dynamics
flow characteristic {g.eueee
MAP
CFC
Fuel Film Engine Speed
FPW FPW dclay dynamics {rpm]
~ CCLIT L LYY I

Figure 5-27: Engine block diagram
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The important task for the control system is the maintenance of the air-fuel
ratio at the stoichiometric level. The system structure suggests that if air-fuel ratio is
to be maintained at the desired level at all times, the time delay in the fuel delivery
path must be exactly predicted. In some situations even this stringent requirement
does not guarantee achieving the stoichiometric target. For example, if fuel
evaporation from the wall is already higher than the required cylinder fuel charge the
desired air-fuel ratio will not be achieved. This however takes place orﬂy if the
engine is cold and there is a significant change (decrease) in the power demand. In
most of the operating conditions the knowledge of the future cylinder air charge and
the fuel delivery model is sufficient to guarantee the required strength of the

combustion mixture.

The future cylinder air charge is computed using the throttle position and
intake manifold model. The difficulty in accurate prediction stems from the
uncertainty in the future driver command. For a system where the accelerator pedal
position is not directly linked to the position of the throttle plate, the delay introduced
between the pedal and the throttle setpoint brings about a clear improvement in the

performance of air-fuel ratio controller.

To demonstrate the benefits of introducing delays between the driver’s
command and the throttle position setpoint, a simulation study is undertaken.

The torque model used in the simulation is shown in Figure 5-25. It employs the map

M., = function(CAC,_,,N,_,) with the air-fuel ratio correction coefficient shown

in Figure 5-24. The block diagram of the engine with the controller is presented in
Figure 5-28. Two control scenarios are analyzed. In the first one the standard
controller setup with the model-based predictive feedforward controller presented in
section S.1 is employed. The controller uses the current throttle position
measurement. Within the prediction horizon, it is assumed that the throttle position

remains fixed at the currently measured level.
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Figure 5-28: Engine model block diagram with the controller

The second scenario assumes that the driver’s command is delayed. The FPW
time delay used during simulation is 5 events (i.e. 5x90°) with an additional 1-event
delay for control signal computation. This assumption will be used in the control
system design in this section. This is a slight simplification of the injection strategy
described in section 5.1.2. It may however be argued that the injectors driver circuit
may work in a way that the injection duration is updated up to the certain fixed time
delay. This results in a fixed FPW time delay measured by the engine events. This
delay is assumed here to be equal to 5 events. As a consequence the driver’s
command will also be delayed by 5 events. In that way the throttle position
prediction within a 6-event horizon is computed (from 5 future throttle input signals
the discrete model for a sample-and-hold control provides 6 events ahead prediction).
The delay introduced in the driver’s command path would suggest that the torque
responsec may deteriorate. This however is not necessarily the case. The simulation
results in Figure 5-29 demonstrate the performance. The simulated driver’s command

(pedal position after applying the static torque mapping) is shown in Figure 5-30.
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Figure 5-29: Simulation test results

During tip-ins, the in-cylinder air-fuel ratio excursion is so significant that
proper combustion may not take place and the expected torque not produced for a
short period of time (visible in upper left trace in Figure 5-29). This results in a
visible hesitation in the brake torque. It is observed that the overall engine speed
response during heavy transients shown in Figure 5-29 is improved if the

commanded signal is delayed.

Figure 5-30:Throttle command used during simulation
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Improvements in both emissions and drivability, due to the throttle command delay,
are expected mainly during heavy transients. For moderate changes in demand, the
torque response may slightly deteriorate. The proper trade-off must be made to
satisfy both the emission standards and driver’s torque demand. This implies that the
time delay added in the throttle path may depend on current engine conditions, load
and driver’s torque demand. In the sequel, two simple MIMO torque and air-fuel
ratio control methods will be analyzed. The torque model identified at stoichiometry

will be used during the design.

5.4.2 Intake manifold response analysis

To analyze system properties knowledge of the system dynamic response is
essential. The step responses of the engine sub-systems shown in Figure 5-27 for the

intake manifold and fuel delivery models identified in Chapter 4 are plotted in Figure
5-31.
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Figure 5-31: Cylinder air and fuel charge step
responses (1500 RPM, initial MAP=50kPa)

The cylinder air charge response to the throttle position change is of fourth

order-with non-lincar dynamic behaviour (see the model development presented in
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section 4.2.1). The cylinder fuel charge response is modelled by the first order
system with the direct through term and the time delay. The direct through term
present in the wall wetting dynamics suggests that the fuel delivery may be
controlled with good precision. However, the time delay present in the fuelling path

poses a difficult limitation to the control system and trade-offs must be considered.

The following control situation may be analyzed to give some insight into the
control problem. Assume that the engine operates at constant speed with a constant
load. The throttle position setpoint is derived from the accelerator pedal position in a
conventional way. The dynamics of the throttle actuator and the intake manifold act
as a filter for the abrupt change in pedal position and the cylinder air charge increases
gradually as presented in Figure 5-31. The time delay present in the fuelling path
makes it impossible to supply the fuel immediately and, as a result, the initial
increase in the cylinder air charge will lead to an increase in the air-fuel ratio. It may
also be noticed that the cylinder air charge reaches its steady state long after the

throttle position changes.

Closer analysis of the problem may lead to the following conclusions. Due to
the time delay in the fuel delivery path the torque response to the driver’s command
cannot be faster than the combined time delay in the fuel delivery path and the
intake-to-power torque production delay. The faster response may only be achieved
by moving away from stoichiometry. This may not necessarily mean better torque
response as it was presented in the simulation in Figure 5-29. To achieve optimal
torque and stoichiometric combustion mixture the response time of the intake
manifold and fuel delivery path should be similar. In the case of the intake manifold
and throttle actuator dynamics it will not be possible to achieve the ideal response of
the cylinder air charge. The ideal response would have a shape of a pure time delay
followed by the dynamic response with the direct through term. This type of
response is obscrved in the fuel delivery path. However the dynamic compensation is

possible and the transicnt cylinder air charge response may be improved.
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In next sections the dynamic control of the throttle position will be analyzed.
Two possible methods will be introduced. The first one presented in section 5.4.3
will only manipulate the length of the additional time delay and the second (in
section 5.4.4) will not only introduce the time delay but also compensate the intake

manifold dynamics.

5.4.3 Algorithm with additional time delay in throttle setpoint path

As a motivation for the work presented in this section, analyze the situation
where the engine runs at steady speed and load conditions and the throttle setpoint is
suddenly increased. Due to the time delay in the fuel delivery path the change in the
fuel command will have an effect on cylinder fuel charge only after the time that
equals the delay time. The simulation of this situation is presented in Figure 5-32.

The throttle position setpoint was increased from 15.8° to 36.8°.
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Figure 5-32: The cylinder air charge response to change of the throttle setpoint
and the in-cylinder air-fuel ratio response (assuming the best possible
control N=1500 rpm, initial MAP=50kPa)
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There are two ways that the air-fuel ratio excursion may be avoided. The first
one is to reduce the time delay in the fuel delivery path. This may entail injection on
open valves and consequently increased emissions. The second solution of the

problem requires dynamic shaping of the cylinder air charge response.

Analysis of the cylinder air charge response presented in Figure 5-33 will
help in understanding the effects of the additional time delay in the throttle setpoint
path. As before, the throttle position setpoint was increased from 15.8° to 36.8°. This
change takes place at time t=0[s]. The time t=0 denotes the time when the control
output is already computed and transferred to the injector timing subsystem (slave)
and the throttle actuator. The fuel delivery time delay equals 5 engine events
(90°/event). The additional 1-event delay for microcontroller computation is already
removed from analysis. The effect of the additional delay introduced in the throttle
command signal path may be observed in Figure 5-33, Figure 5-34 and Figure 5-35.
The results presented in these figures differ since the simulation was carried out at

different engine speeds.
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Figure 5-33: The cylinder air charge response to change of the throttle setpoint
and the in-cylinder air-fuel ratio response (assuming the best possible
control and additional delays in throttle setpoint path, N=800 rpm, initial
MAP=50kPa, Throttle setpoint 15.8°-> 36.89)
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The conclusion is that for lower engine speeds longer time delay must be
introduced to improve the air-fuel ratio response. To compute the optimal number of
delay steps that are required in the throttle command path, the maximum acceptable
air-fuel ratio excursion must be established. For the analysis that will follow it is
assumed that the maximum permitted lean excursion is 16. From results presented in
Figure 5-33 the delay of 3 engine events is needed to meet the requirements at
N=800 rpm. From results presented in Figure 5-34, 2-event delay is sufficient to
meet demands for N=1500 rpm. At the higher speed N=2200 rpm, 1-event delay is

already sufficient.
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Figure 5-34: The cylinder air charge response to change of the throttle setpoint
and the in-cylinder air-fuel ratio response (assuming the best possible control
and additional delays in throttle setpoint path, N=1500rpm, initial
MAP=50kPa, Throttle setpoint 15.8%>36.89)
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Figure 5-35: The cylinder air charge response to change of the throttle setpoint
and the in-cylinder air-fuel ratio response (assuming the best possible
control and additional delays in throttle setpoint path, N=2200 rpm, initial
MAP=50kPa, Throttle setpoint 15.8°-> 36.8 9

The simulation results show the dependency of the minimal additional delay length
on engine speed. However, engine speed is not the only factor that will alter the
optimal duration of the delay. If the magnitude of the throttle setpoint change is less
significant — e.g. throttle angle changes from 15.8° to 26.3° — the minimum delay that
fulfils the maximum excursion constraint will also be different. In Figure 5-36 it is
demonstrated that for N=1500 rpm the delay of 1 event is now sufficient. Recall that,
at the same engine speed and for the throttle angle change from 15.8° to 36.8°, 2-

event delay was required to keep the air-fuel ratio excursion below 16.

The presented analysis of the required time delay that needs to be introduced
to keep AF excursions below 16 may be extended to the full operating range of the
engine. The experiments conducted off-line for the full engine space resulted in
series of lookup tables containing the optimal number of additional delays. The
lookup tables for different levels of the throttle setpoint change are shown in Figure
5-37 and in Figure 5-38. The lookup tables were constructed assuming that a step

change of the throttle setpoint occurred at steady state at a given engine speed and
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pressure. In practice, only the air-fuel ratio control poses a problem for the control
system analysis during transients and a step change covers the most challenging
situation. In discrete time control strategy (with sample and hold), the throttle

setpoint change is regarded as a step change from the previous sampling event.
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Figure 5-36: The cylinder air charge response to change of the throttle setpoint
and the in-cylinder air-fuel ratio response (assuming the best possible control
and additional delays in throttle setpoint path, N=1500 rpm, initial
MAP=50kPa, Throttle setpoint 15.8°-> 26.39)

Depending on the required accuracy, additional scheduling parameters may
be considered. The throttle actuator is modelled by a 2" order discrete time model.
The intake manifold has two states — air pressure and temperature. In steady state the
intake manifold air temperature is determined by manifold pressure and engine
speed. During heavy transients this should also be considered as a scheduling

parameter.

For accurate scheduling of the additional time delay, a 6-dimensional lookup
table is required. The following parameters have to be used: the throttle actuator
states TPS, - current throttle position, 7PS, , - previous throttle position, SP_, -
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previous throttle setpoint, SF, - current throttle setpoint and the intake manifold
parameters: P, - intake manifold pressure and 7,, - intake manifold temperature.

Additionally, parameters like ambient temperature, pressure and coolant temperature
(that contributes to the intake manifold wall temperature) may also be considered
depending on the computational power of the target processor. For the study
presented in this chapter the simplest method consists of a limited number of
scheduling parameters which include changes in the throttle setpoint value (that may

be regarded as SP, - TPS, ), current engine speed N and intake manifold air pressure
P, . Any extension of the number of scheduling parameters is straightforward and

requires only minor modification of the off-line algorithm that computes the required
time delay based on the intake manifold model. The lookup tables for a negative
change to the throttle position are shown in Figure 5-39 and in Figure 5-40. For this
change to the throttle position the maximum rich excursion level is set at 13.4. It may
be noticed that the rich excursions are less significant and in general less additional

time delays are required.

3
MAP [kPa) N [rpm)

Figure 5-37: Time delay lookup table for throttle setpoint change of +1V (i.e. ~21 9
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Figure 5-40: Time delay lookup table for throttle setpoint change of -0.5V (i.e. -10.59

5.4.4 Algorithm with the cylinder air charge response shaping

The introduction of the time delay improves the air-fuel ratio response. Given
the maximum limit of the air-fuel ratio excursion, the desired air-fuel ratio control
performance has to be achieved. From the performance point of view, the desired
cylinder air charge (and the torque) should be achieved as fast as possible. The
analysis of this problem is presented in Figure 5-41. Initially the cylinder air charge
should remain unchanged, since the amount of the fuel that enters cylinders cannot
be changed (i.e. not to be taken back as already injected). This however will not be
the case after the time of the fuel delivery path delay. After the time of the delay,
commanded an amount of fuel will enter the combustion chamber. At that moment
(after the delay), it is desired that the cylinder air charge reaches the desired level as
soon as possible. The ideal response of the system is shown as the blue line. This, of

course, is not achievable due to the constraints in the throttle actuator and system

non-linear dynamics.

Two types of constraints are responsible for this: the maximum throttle flow

rate (for the wide open throttle) and the finite rise time of the throttle actuator. The
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throttle is manipulated by its own controller that operates at a rate higher than the
main (event-based) sampling rate. As a consequence, due to constraints in the
electronic throttle control system, the maximum rate of change of the throttle plate
position is limited. The throttle actuator linear model gives only an approximate
description of the non-linear dynamics of the electronic throttle module. This is

however sufficient for the control strategy synthesis.
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Figure 5-41: The cylinder air charge response to change of the throttle setpoint
and the in-cylinder air-fuel ratio response (assuming the best possible control

N=1500 rpm, initial MAP=50 kPa)

For the current engine speed the pedal position provides information about
the torque demand (e.g. using the procedure described in section 5.2). For the desired

torque the cylinder air charge may be computed from the torque model

M, = function(CAC, ,,N, ). Additionally, the amount of fuel entering the

cylinder over the time of the fuel delivery delay (i.e. the amount of fuel already
injected) is known. It is desired that the air-fuel ratio is kept at stoichiometry at all
times. Based on that requirement the desired cylinder air charge trajectory can be
computed. This is indicated by the green dotted arrows in Figure 5-42. The cylinder
air charge that results in the desired torque should ideally be achieved at event k=6.

The actual CAC trajectory differs from the ideal due to the system dynamics and
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constraints. The optimal trajectory must satisfy the maximum AF excursion
constraint. This means that the trajectory for k=1...5 should not diverge from the
desired trajectory by more than the maximum allowed level. At the event k=6, the
actual CAC trajectory should be as close as possible to the desired value determined
by the torque demand. Based on the actual reachable cylinder air charge value at k=6
the cylinder fuel charge is calculated (the red dotted arrow). The fuel pulse width
command is a function of the desired fuel charge that is given by the fuel-film
dynamics model. This FPW command computed here is the output of the controller.
Also, the current throttle setpoint is obtained through the optimization of the CAC

trajectory and is used for control. The throttle position setpoint is another output of

the controller.
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Figure 5-42: Optimal throttle and fuel control strategy

5.4.4.1 Feedback compensation solution

The tracking of the given reference trajectory shown in Figure 5-42 may be

achieved using dynamic compensation or PID control theory.
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The required response of the system (e.g. like in Figure 5-42) is achieved in two
steps. The faster dynamic response of the system is achieved by the compensation of
the cylinder air charge response of the intake manifold and throttle systems. The

results of such compensation are shown in Figure 5-43.
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Figure 5-43: Pl compensation of the cylinder air charge (CAC) response
(SPy.=1.22[V])

The result demonstrates a well-known property of feedback control which
makes it possible to achieve a faster dynamic response. The feedback action is
capable of increasing the bandwidth and speed of transient response. This however
comes at the expense of increased actuation effort. Note, that the feedback from the
CAC signal is used. The CAC is not measured, but may be determined using the
model as a virtual sensor for the CAC estimation. For the non-linear system a PID
controller with gain scheduling could be used. Also other dynamic control methods
may be used here. The compensated (faster) cylinder air charge (CAC) response will
definitely result in higher excursions in the air-fuel ratio if CACsp (proportional to

driver’s torque demand) was used directly as the setpoint SP (see Figure 5-44).

193



Torque SP,

dﬂl':intd CACe Sp Throttle actuator Intake
waled to > )-—b »  dynamic ™~ 2 ) R
Cylinder Air Delay PID Thr};nttle mz,ss manifold >

Charge -1 3 flow characteristic dynamics AC

(Engine Spoed
(rpm]
Wassansesnsesssensnens as?

L---—u----—l---t—n---o-l—--‘—

Figure 5-44: PID intake manifold response compensation

r
r
| ;
;
;
;
A

This problem may be tackled in the same way as it was done for the uncompensated
system in section 5.4.3. The appropriate time delay must be added in the throttle
command path. Note that in section 5.4.3, the torque demand was expressed by the
corresponding throttle angle which provides the required CAC under steady state
conditions. The setpoint SPy is already the CAC setpoint and the throttle flow

characteristic and the intake manifold dynamics are only needed during PID tuning,

As a result of the additional time delay, the setpoint CACsp command is
delayed by n, where n is the number of event delays introduced in the throttle
command path (see Figure 5-44). The additional time delay depends on the operating
point (state) which also determines the PID controller gains. The desired CAC
setpoint values over the horizon n are indicated in Figure 5-45 by the green dotted
arrows. In this example additional delay in the CACsp command path n=3. The
change of the setpoint occurs at event k=n+/ and is indicated by the magenta arrows.
The closed-loop system response with a PID controller is shown by the green line in
Figure 5-45. The green line is intended to be as close as possible to the ideal CAC
trajectory indicated by the blue line in Figure 5-45. For this reason it is desirable to

change the setpoint SPy earlier (red line, change at k=4).

The MIMO control strategy manipulates both the throttle position and the
injection time. In this case, the required throttle setpoint command is delayed and
effectively proportional to the fuel already injected, e.g. at the event k=1 in Figure

5-45. To compute the fuel command, the model with the PID controller must be
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simulated over the horizon that equals the time delay in the fuel delivery path. The
setpoint signal SPy is determined by the additional delay introduced in the throttle
command path (Figure 5-44) and the CACsp level which is proportional to the
desired torque. The fuel pulse width command results from the achievable cylinder
air charge at time k=6. Due to hard constraints on the throttle actuator, the PID

controller must be equipped with anti-windup protection.
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Figure 5-45: Optimal throttle and Fuel Pulse Width control strategy for PID controller
Discrete Time [k]

The control algorithm consists of the following steps:

e The current throttle setpoint SP command is proportional to the delayed CAC
setpoint (and effectively is based on the amount of fuel that is predicted to
enter the cylinder in the event k=I) and the current state of the throttle
actuator (position). It is the output of the PID controller

e The CAC is assumed to follow the desired trajectory with the PID controller
manipulating the setpoint SP value supplied with the SPy signal. The CAC
trajectory may be computed using the model of the system and the controller

over the prediction horizon (k=6 in Figure 5-45)
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e The CAC after the fuel delivery delay (at 6-th event in Figure 5-45) is used
for the fuel control. The wall-wetting dynamics and the injector model are

taken into consideration and the fuel pulse width command is issued.

The fuel pulse width (FPW) command is computed based on the required
cylinder fuel charge which in turn is computed from the cylinder air charge
(assuming stoichiometric air-fuel ratio). The wall fuel mass estimate, wall fuel
dynamic model and fuel injector model are also required. The fuel feedforward

control procedure was presented in section 5.1.

5.4.4.2 Predictive Control solution

The desired cylinder air charge response presented in Figure 5-42 may be
achieved in a number of ways. A very natural method is to use the Model Predictive
Control strategy. The desired CAC trajectory in Figure 5-42 may be used as a
reference signal for the predictive controller. Within the predictive control algorithm
the future control trajectory prediction is the solution to an optimization problem. For
the assumed 6-event delay between the control signal and the cylinder charging, the

CAC prediction at 6-th event is used for the computation of the fuel command.
Given the system model (developed in Chapter 4):
TPSMI =-pl (Nn)TPSu _pZ(Nn)'TPSn-—l +p3 (Nn)SPn +P4(Nn)'SPn_1

T,

imn+l

[P;,...m:l___ f (K.E-Pm.anm.n'TPSn) (5.13)

CAC, = h(Pm.n'Tbn.n'Nn)

The following performance index is minimized:
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i+Tppeny
J= Y [CAC,, ~ CACus || +]SP. - SP. | (5.14)
k=0

where

| | denotes the norm - e.g. absolute value, quadratic.

Tprep - prediction horizon — must be longer than the fuel path time delay

The model predictive control algorithm performs the minimization of the cost
function (5.14) subject the system dynamics (5.13). Additionally, hard constraints on

input and output may also be considered.

TPS,. <SP, STPS,,,
TPS_ <TPS, <TPS,,, (5.15)

CACyer, (1-9)SCAC, SCAC,,, (1+9) for k=i+l..i+Tg,

where

@- the coefficient that determines the maximum excursion of the air-fuel
ratio. For assumed maximum AF=16, minimum A/F=13.4: ¢ =0.088.
T;pw - determines the number of events when the cylinder air charge is

desired to track the fuel already injected — in Figure 5-42 T, =5.

The predictive control algorithm (5.13), (5.14), (5.15) requires an on-line
numerical solution of the optimization problem. The convergence properties of the
optimization algorithm have to be addressed. In general, for non-linear problems,
there is no guarantee that the global optimum is achieved. The numerical
optimization algorithm may find a local minimum which may not provide

satisfactory performance.

Due to the above implementation issues, some simplifications to the

predictive control algorithm must be made. The first simplification considered
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attempts to remove hard constraints from the optimization algorithm and substitute
them with the weights in the cost function. Also, a quadratic norm is used in the cost

function.

i+Trprn 2
Ji= f {(CACM —CACREF.k-H) 9 +(SP; -SSP, )2 uN +SB‘2r2 (TPSk )} (5.16)

k=i

where

g, - weight on CAC tracking error (time-varying)
r, - weight on control change
r,(TPS,) - state-dependent weight on control action that is effective only

when the constraint is violated

The simplified predictive control solution presented next uses the Non-Linear
Generalized Predictive Control method [15]. This predictive control method requires

model (5.15) to be re-arranged into the state-dependent coefficient form.

The discrete electronic throttle state-space model is given by the equation
(5.17). A non-minimal representation of the 2-nd order system with 3 states was used

to improve the numerical properties for systems discretized with a variable sampling

rate [89].

xET,n+l = AEr.anT.n + BETnSPn

TPS, = CprXera 5.17)
Where
SP., 0 0 0 1
Xga=| TPS, [ Ag,=| Pi(N,) -p(N,) -p,(N,) B, =| ps(N,)|:
TPS, , 0 1 0 0
Cr=[0 1 0);
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It should be noted that in the model (5.17) matrices A.,, B, depend on
engine spced N, and consequently are state-dependent. The throttle angle is a

function of the TPS, signal. The following relationship is established.

an =(TPSA—TPSmin)ﬂ (518)

where

a

max

) (TPSn —TPsmin)

i

TPS_ .. - minimum throttle position sensor voltage associated with the 0

angle

TPS,,, - maximum throttle position sensor voltage associated with the angle

a

For the Corvette the following parameters were used: 7PS . =046,

TPS_, =4.76, a,, =7/2. The throttle flow is modelled by one-dimensional

isentropic compressible flow equation for the flow across the orifice [90]. The intake
manifold model is based on the energy and mass balance and is derived from the
ideal gas law. The intake manifold pressure sensor is very fast and its dynamic
response may be neglected. The temperature sensor dynamic response is relatively

slow and is modelled by the first order lag. The model is given in section 4.3.

The port flow rate is modelled as a function of the intake gas density, engine
displacement and the volumetric efficiency and is given by the equation (5.19). The

cylinder air charge CAC, is derived from the port flow and the current sampling
rate. The sampling rate for 90 degrees event timing equals 15/N, . The cylinder air

charge is given by the following expression:

Vrvl
CAC, = T /N . (5.19)

air” im.n
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The non-linear intake manifold model is parameterized in the state dependent
coefficient form. The parameterized discrete form of the intake manifold model is

given by the following equation:

n

CAC,=CpXpa (5.20)

Xt net = Ay a¥mnt By,

The state dependent matrices of the model (5.20) are of the following form:

KV - .
(l— o m] 7.0
P AIM N = Vim Em.nvim
Ximn =|:T‘:'M]' 0 Ay n ’
m.n K-V 1 K._l T;nQ. ]
Am 22 =(1"_VM . (1‘;))"'( V.)P’ =
[ xR.T, T m T

air®antsn tatn

B, . = ;C,, =| —— 0
M. ( XR.T R. \T. m m=|\ g

T air_a.n __ 2 air J s’ Catn air® im,n

m VimPim.n m VimP'm.n TPSn

Qe =1 (Trstan = Tin) + 1o (T, = i)
The final augmented model is given by the following set of equations:

Zm = AnZn + Bnun

3. =Cox (5.21)

where

A 0
7= Xerm 3y, =CAC; A, =[B £T.n jl;

| Xim ma Cer Aman
L
B, = g‘ :C,=[0 Cp i u,=SP.
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An additional state associated with the integral action is introduced next. The

modification of the state-space model (5.21) is carried out as follows:

xn+l = Anxn + Bnuu

Yn = én'xn (5'22)
where
[P, ,
xn= xéT.n ;A“n=ASPn; ASRI=SI:::—SP’|—1’
| XM .
- [t o].- [17 =
= 1B =1 |;C, =]0 .
i, Aaloferto a

Note that the above model introduces a one-step delay in the input. This is -
due to the discrete-time implementation of the control strategy. A one-step delay

reflects time required for computations preformed by the microcontroller.

5.4.4.3 NLGPC solution -results

The first set of results show the comparison of engine response to an abrupt
change in the torque demand at time t=0.1[s]. For a given torque demand the
corresponding cylinder air charge (CAC) is computed. This CAC setpoint is used by
the predictive control algorithm. The CAC response for the conventional control
algorithm (sece section 5.1) and the conventional algorithm that uses a throttle
actuator model are presented. For the NLGPC algorithm the following parameters in
the cost function (5.16) are used:

Predictive control 1:
Torep =10
g, =100 for k=0..4, g, =1 for k=5..10, r, =0.1 for k=0...10

5 (TPS,)=0 for k=0..10
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Predictive control 2:

Topep =8

g, =100 for k=0..4, g, =1 for k=5..8
r,=0.1 for k=0.8, 5(TPS,)=0/brk=0...8

Note that for simplicity the constraint violation penalty term was set to zero.
The hard constraints in the throttle actuator were dealt with by using hard constraints
on the integral action state in model (5.22) outside of the control algorithm. The
penalty term g, for the initial part of the horizon is increased to minimize the air-fuel
ratio excursions — the initial desired cylinder air charge is already determined by the

amount of fuel that was injected in past events.

The cylinder air charge response is presented in Figure 5-46.

CAC response
0.44 T 1 1 T T
0.42+ < 4
0.4F D e S 7 g
0.38 ™ / ~
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0.34} 8
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' ‘\ ~— Conventional ctrl
Conventional ctrl with throttle actuator model
0.28 Predictive control 1
~— Predictive control 2
0.26 k d : 1 :
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time [s]

Figure 5-46: CAC response to step change in torque demand
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Proportional to the cylinder air charge, torque production response is presented in
Figure 5-48. It may be noticed that the tracking is improved with the predictive
control method. This results in better drivability. At the same time good regulation of
the air-fuel ratio is achieved. The lambda is shown in

Figure 5-47. It should be noticed that the performance of the conventional control
strategy is largely improved when the throttle actuator model is used. This improves
the accuracy of the future throttle position information. Results may be related to the
conventional control strategy (see section 5.1) which did not use throttle position
setpoint derived from the pedal position and was only using the measurement of the
current throttle position. The indicated throttle position was assumed to remain fixed

over the algorithm’s internal prediction horizon.

Lambda response

1.3 T T T T T
~Conventional ctrl
Conventional ctrl with throttle actuator model

1.08 - N Predictive control 1 L

A /| ~Predictive control 2
1.06 | A

\
1.04 + { 2
1.02 q
1 i
0.980 0.2 0.4 0.6 0.8 1
time [s]

Figure 5-47: In-cylinder Lambda response to step change in torque demand

The choice of the prediction horizon has an impact on the torque response
and the precision of lambda regulation. The weighting coefficients serve as a ‘tuning
knob’ which is used to achieve a desired trade-off between the air fuel ratio

regulation accuracy and the torque tracking performance. This trade-off may be
observed in
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Figure 5-¢7 and in Figure 5-48. The “predictive control 1” algorithm gives
higher lambda excursion but at the same time torque response is better when
compared to “predictive control 2”. Faster torque response is achieved through a

more aggressive throttle actuation.

Torque response
2& T T T T

240

200 F

Torque setpoint
\\ ~ Conventional ctrl

180 K Conventional ctrl with throttle actuator model
Predictive control 1
— Predictive control 2
160 -1
140 =
i 0 0.2 0.4 0.6 0.8 1
time [s]

Figure 5-48: Torque response to step change in torque demand

The throttle setpoint signal is presented in Figure 5-50 and the throttle
response is shown in Figure 5-49. The faster throttle actuator response guarantees
better accuracy of the cylinder air charge control and improved torque response. The
throttle dynamic response is the limiting factor in the control system performance

and for faster torque tracking the slew rate of the throttle actuator has to be increased.
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Figure 5-49: Throttle position response to step change in torque demand
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The conventional control strategies and the predictive controller with two
control horizons were tested. The throttle setpoint was extracted from the US06
driving cycles. The engine speed, a parameter in the model, was taken from the same

dataset. The benchmark of four control algorithms is presented in Table 5-2.

Conventional Conventional Predictive Predictive control 2
control control with control 1 (with (with q=100, T=8)
throttle actuator q=100, T=10)
model
Integrated squared 0.2938 0.0203 0.0290 0.0207
AF error
Integrated absolute 28.393 9.059 10.703 8.616
AF error
Integrated squared 3.823e+6 3.772e+6 2.114e+6 2.874e+6
torque tracking
error
Integrated absolute 10.516e+4 10.462¢+4 7.672¢+4 8.865¢+4
torque tracking
error

Table 5-2: Comparison of control algorithms for US06 driving cycle

In rows of the table the four benchmark indexes are gathered. The columns
are associated with four algorithms being subject of comparison. The air-fuel ratio
regulation performance of the conventional algorithm with the throttle actuator
(presented in section 5.3), offers a significant improvement over the basic
feedforward control algorithm (used for control in section 5.1). The air-fuel ratio
regulation performance offered by “predictive control 2” algorithm is better based on
the integrated absolute value index (by 5%) and worse by 2 percent when compared
to the conventional algorithm with the throttle actuator model. This, of course, is
subject to tuning. Retaining the lambda performance, the torque response was
improved. The tracking performance improvement for the “predictive control 1” is
higher (when compared with “predictive control 2”) but the lambda regulation
performance is worse. This relates the predictive control algorithms to the
conventional algorithm with the throttle prediction. However, if the results of the
predictive controls are compared with those of the conventional control (without the
throttle actuator model), a significant improvement in both lambda and torque

response is observed.
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To demonstrate the performance of predictive control algorithms, a part of
US06 driving cycle simulation is plotted. The responses of cylinder air charge and
torque are shown in Figure 5-51 and Figure 5-53, respectively. The speed of response
is visibly improved by the predictive control method. It should be emphasized that
the minimum time delay in the torque response is on average 4 events and the effect
of other delays is added on top of that. The lambda (Figure 5-52) response is similar
for the predictive algorithm and conventional algorithm with the throttle model. The
low performance in Figure 5-52 is attributed to the conventional control algorithms.
A close examination of Figure 5-54 and Figure 5-55 reveal that the improvement in
the torque response may be attributed to the aggressive throttle control action using

the predictive control techniques.

CAC response
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Figure 5-51: CAC US06 response
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Figure 5-52: Lambda US06 response
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Figure 5-53: Torque US06 response
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Figure 5-54: Throttle position US06 response
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Figure 5-55: Throttle setpoint for US06
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5.5 Summary

The performance of the air-fuel ratio feedforward controller is limited by the
delay in the fuel delivery path. This implies that the feedforward controller must
have a built-in predictor. The accuracy of that element depends on the model
precision. A predictive fuel control algorithm was developed and tested in the vehicle
and good results were achieved. Further improvements in the air-fuel ratio control
are obtained with multi-input multi-output (MIMO) nonlinear control strategies
presented in this chapter. Models of exhaust gas air-fuel ratio and generated torque
are used for the design of the control system. The MIMO control strategy is based on
the predictive control approach as the most natural way of obtaining an optimal
solution. The multivariable solution is a trade-off between the accuracy in the
regulation of air-fuel ratio (i.e. tailpipe emissions) and tracking of the requested
torque profile (i.e. torque responsiveness). Considering the complexity of the non-
linear engine model and constraints on actuators ranges of operation, the
straightforward optimization of the cost function to obtain a solution is
computationally intractable. Therefore, some simplifications based on the specific
nature of the problem (e.g. relationship between torque and cylinder air charge) are

made to reduce the amount of computational effort required.

Improvements in the air fuel ratio regulation may be achieved by decoupling
of the accelerator pedal and throttle opening through the introduction of a simple
delay in the application of throttle command. The length of the time delay may be
optimized to allow for the maximum permissible air-fuel ratio excursion during the
transient operations. While the introduction of the time delayed throttle actuation
may slightly slow down the torque response, the benefits in terms of significantly
reduced transient air-fuel ratio deviations from the stoichiometric value will
outweigh the slower torque response. This is due to the fact that the development of
partial burns and misfires in leaner combustion cycles during fast pedal movements
can potentially reduce the generated torque with implications for driveability and
performance. Therefore, the decoupling of the throttle and pedal movements and the

optimization of actuator signals through the introduction of additional delays in the
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air path is a reasonable approach. In addition, using a throttle actuator model and the
throttle setpoint command, a more accurate throttle position is predicted and, hence,
a more accurate cylinder air charge estimated. The estimated cylinder air charge is

then used to provide a more accurate fuel injection command.

Additional improvements in transient torque control are achieved through the
magnitude decoupling of the throttle movement and the accelerator pedal position as
well. The compensation of cylinder air charge dynamics using simple classical
control methods (e.g. PID control) is used to speed-up the torque response. Such
dynamic corrections cannot be performed without due consideration of interactions
between the air-fuel ratio and torque loops. The additional time delay ~ this time in
the cylinder air charge setpoint rather than the throttle position — is introduced to
improve the lambda regulation performance. The focus of this chapter has been on
the predictive air-fuel ratio and torque control methods. This provides a suitable
solution for the torque tracking problem. The predictive method is based on the
minimization of a cost function defined in terms of cylinder air charge only. The
amount of the fuel to be injected is then derived from the cylinder air charge
prediction that is available through the predictive control algorithm. By changing the
weights (i.e. tuning) and the prediction horizon, the required performance of lambda

regulation and torque tracking can be influenced simultaneously.
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Chapter 6

Signal Filtering, Estimation and Fault
detection for the Intake manifold

In this chapter the simulation analysis and the development of filtering and
fault detection techniques is presented. The simulation is based on the model
developed in Chapter 4. The intake manifold subsystem of the combustion engine
that consists of the electronic throttle actuator and the intake manifold will be the
subject of investigation. The electronic throttle actuator is modelled here by the
linear second order continuous time model. The intake manifold is modelled by the
two-state model (sce section 0) and is equipped with the intake manifold pressure
and temperature scnsors. The analyzed intake manifold and throttle subsystem is part
of the engine model presented in Figure 4-1. The results presented in this chapter are

based on simulation expcriments.

In real systems mcasurements are expected to be subject to noise and/or
quantization errors. Limited sensors precision is the usual engineering problem that
has to be dealt with. The model based estimation greatly improves the accuracy and
provides optimal solution to the noise rejection problems. The model based cylinder
air charge (CAC) estimation employs extended and state-dependent Kalman filtering
methods introduced in section 2.2. In contrast to the speed-density technique that
uses the model given by equations (4.21) and (4.24) with parameter measurements,
the estimation techniques will provide improved accuracy. This is a direct result of
the data fusion. All available measurements, not only the pressure, the temperature

and the engine speed. are uscd for the air charge estimation. This however requires
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an accurate model which is of great importance for the estimation. Unfortunately,
even with the perfect model and well designed estimation technique the CAC
prediction may still be mismatched. This may be caused by faults occurring in the
system components or in sensors. The standard sensor output signal limits checking
is capable of dectecting only large malfunctions. For detection of faults of lower
magnitudes (e.g. moderate biases) more sophisticated algorithms are necessary. In
the CAC estimation not only senor faults introduce the bias. The leak present in the
intake manifold results in unmeasured increase in the air flow. This should not only
be detected but also the extent of the leak should be identified. The solution to the
problem is offered by fault detection and isolation theory. Traditionally fault
diagnosis was based on physical redundancy that required multiple sensors. The
electronic throttle may be equipped with a set of position sensors. The sensors output
voltages are evaluated and unreliable sensors are excluded from the system. The
method is highly reliable, but may increase the cost if used with expensive sensors.

For that reason there is a significant interest in the model-based approach to the fault

detection and isolation.

In this chapter the extended and state-dependent non-linear Kalman filters
presented in section 2.2 are used for the noise attenuation. The generalized observer
scheme is employed for the fault detection. Dedicated output observers are designed
for pressure and tempcrature sensors (see section 2.4.2). The fault detection filter
presented in section 2.4.3 is used for process faults detection. The filter generates the
directional residual for the intake manifold leak. The threshold test for residuals
generated by all dedicated observers is performed, which leads to the fault detection.
The fault isolation based on residuals analysis is carried out next, as was described in
section 2.4.4. To achieve increased reliability and improve the robustness of the fault
isolation, the fault detection signal triggers the fault signature diagnosis algorithm.
The sct of measurements over the period of time is gathered and the properties of
residuals are analyzed. The detection of temperature or pressure sensor faults triggers
the observer structure reconfiguration. As a result an unbiased CAC estimate is

obtained. For the intake manifold leak not only the detection and the isolation, but
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also the identification of its extent is required. The non-linear fault detection filter

presented in section 2.4.4 provides the solution to that problem.

6.1 The model for filtering, estimation and fault detection

The block diagram of the intake manifold and the throttle subsystem is shown

in Figure 6-1.
Temperature T
TASF Sensor Dynamics gt im,measured
Throttle Intake
———f dymamics L} Manifold
+ flow ] P

model Dynamics im
> (94

Figure 6-1: System diagram

The electronic throttle is powered by an electric motor and is controlled
locally by its dedicated controller. The drive-by-wire actuator with its controller may

be modelled by the second order continuous time linear system [91]:

a (24
= p) 6.1)
o, $'+200.5+0;

where:
a - throttle angle [rad]

a,, - throttle angle sctpoint command [rad]

The throttle flow is modelled by one-dimensional isentropic compressible
flow equation for the flow across the orifice (see the equations (4.3), (4.4), (4.5) and

(4.6) in scction 4.2.2). In a similar way to the throttle flow rate an additional air flow
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into the intake manifold is modelled. This additional flow will be referred to as the

intake manifold leak.

t x-1 x
P P\ | 2x P, )" ; 2 e
a —im, —]-] - s —.
. j;“" Ralr 7; ( Rl ) x=1 (Pa ] lf a (K+1)
My = 1 l 6.2)
P, J—( 2 )2(r-l) P ( 2 P
K| — if =2<|—ro
kf""‘ JRT, x-1 / P, " \k+1

where:

m,, - leak flow rate,

Jieak = Casear Aear* A - leak area,

C, ..« - discharge coefficient for the flow through the leak area.

Note that f,_, is regarded as a constant parameter if the leak is present in the

system. The total air flow into the intake manifold is a combination of the main
throttle flow and the leak. The intake manifold model is based on the energy and
mass balance and on the ideal gas law. The intake manifold pressure sensor is very
fast and its dynamic response may be neglected. The temperature sensor dynamic
response is relatively slow and is modelled by the first order lag. The model is given
by equations (4.16), (4.17), (4.18) and (4.19) that was introduced in section 0.

6.2 The model discretization and disturbance modelling

The model is discretized using the crank-based sampling rate of 90 degrees.
This implies that the sampling rate varies with the crankshaft’s angular speed. The
throttle and the temperature sensors are given by the linear models and the discrete
model is easily obtained. However, it is necessary to consider variable sampling rate
during discretization. Consequently the discrete model parameters will vary with the

engine spced. As was mentioned earlier, the sampling period is a function of the
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engine speed and is given as T, =12%Nn [s], where N, is the engine speed in

revolutions per minute at the discrete event n.

The electronic throttle model is discretized as follows. A non-minimal
representation with three states was used due to better numerical properties for
systems discretized with variable sampling rate [89]. The process noise is also

included in the model.

Xer o = AeraXera t By JAge . + Wer ,

TA, =CypXerp+ Vira 6.3

where

Wer., is the throttle actuator process noise,

Ver o is the throttle position measurement noise,

0O 0 O 1
AET.n = bz.n al,n a2.n ;BET.n = bl.n ’CEI' =[0 1 O]
0 1 0 0
{@Yer.n $aYer.n
b,=1-a,, (ﬂz‘r.n + w,_:r. 3Dy = aEI'.n2 +, ‘Z)bj%__z;n ;

2 o 2
ha= —2aﬂ,n ﬂLT.n n = 6rE'l'.n

Gyr =exD(~(AT,, ) 0er = A1~ ey, = c08(0 T, )3 ey, =sin (@, T,,,

It should be noticed that due to the variable sampling rate T, the model must

be re-discretized at each discrete event. For the non-linear intake manifold dynamics
an approximate Euler discretization method was used. After the discretization, the
model is paramcterized into a state-dependent coefficient form (see section 2.2). The

parameterized discrete form of the intake manifold model is given by the following

equation:
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Xistnet = A Xt By Corxera+ Fyy 'ﬁeak.n +Weyn

P measa =CruXunt Soont Veu n (6.4)
where
fs_ . is the intake manifold pressure sensor fault,
fiear 1s the product of the leak area and the discharge coefficient,
Wy o is the intake manifold process noise,
Vew » is the intake manifold pressure measurement noise,
_[Poa
xIM K -Ti"ﬁ
AV, - . ]
-2, *1,0.,
VIM T;m n‘/lm
Ayn=
0 1- ,
L. ( ( K.)J un im (k) anext
( air a : n al n x
E'I‘ ET n
B . ;C =|1 0
" T xRaera n R —gir " [ ]
- Vuann - Vlm im,n ’" ‘“" I:T El‘nj
[ xR, T,
( air® a,n T m“ak nj 1
f;eak
F‘IM.u =
K-Rm‘rn R
Ta‘n L] im.n a mleak n
. VinPim.n Vun im,n f;eak
V.
V,=—=%
o 8
The temperature sensor discrete time model with noise components is given
by the equation (6.5).
Tlm.mm.nol = aTTm meas A +bTxIM AT W meas.n 6.5
T/,,,,,..M = Tn’n meas A +fT_,_.,,, vim.mu.t.n ( ) )
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where:

fr__... is the intake manifold air temperature sensor fault,

W,mmeas.n 1S the temperature sensor process noise,
Vimmeas.» 15 the temperature measurement noise,

oy =exp(=T, [Tropp )3 by =[0 1=exp(~T, /Tr,,)]-

For the intake manifold estimation/fault detection only the throttle/intake
manifold model and its sensors are considered. The engine speed is used as an
external parameter extracted from the driving cycle test data.

The final augmented model is given by the following set of equations:

xn+l = Anxn + Bnun + an;zak.n + Wn

yn = Cnxn + fS.n + Vn (66)
where
I XET TA, WeT 0 Vera
Xa =] Xmm sWn| T Pz’m,n s Wy = WlM,n sV = le.n ’
_Tim.mm.n Tim.out.n Wim.meas,n vim.meax.n
A, 0O O B,
A, =By,Cq Ay O;B,=| O |;
0 b, a; 0
C, 0 O 0
Cn = 0 CIM 0 i Fn = F;M,n
(0 0 1 0

T
fsa= [O Son fr_.,..,,.] is the sensor faults vector. Note that the throttle position

sensor fault is not considered here due to physical redundancy present in the actuator

[104]. w, and v, are independent white Gaussian noise signals with cov{w,}=0

and cov{v,}=R. Q and R are diagonal semi-positive and positive definite matrices

respectively.
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6.3 Intake manifold filtering and estimation

In this section the filtering and estimation for the intake manifold subsystem

is presented.

6.3.1 Stochastic process and measurement noise simulation

setup

The filtering and estimation simulation experiment uses the model presented

in section 6.2 with faults f;, and f_,, assumed to be zero. Unmodeled engine

parameters logged in the driving cycle dataset (i.e. the engine speed, ambient
conditions, the throttle position setpoint) are used in the simulation as external
parameters. The air-fuel ratio control system performance strongly relies on the
precision of the cylinder air charge (CAC) prediction. The CAC prediction precision
relies on the accuracy of the engine parameter measurements. Noise and
deterministic biases deteriorate the model-based CAC prediction. The assessment is
effected by comparing the simulated delayed engine CAC with the controller internal
prediction (see Figure 5-18, Figure 5-19 and Figure 4-1). Stochastic process and
measurement noise is added. Since the air-fuel ratio control accuracy is

proportionally influenced by the accuracy of the future CAC estimation, the CAC
CAC _,-CAC

pred actual

CAC,

actual

prediction mismatch computed as £ = -100% is a good metric for

the control system performance.

Process noise introduced in the system has the following covariance Q:

Q =cov{w,}=diag (cov{wn‘n } , cov{ w,M‘,,} ,COV {wl.,,,_mm',,})
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cov{w , } = diag (0,1.95¢-6, 0)
cov{w,, .} = diag(2.5¢-3, 1e-2)
cov{wmm.,} =[1e-4]

The measurement noise is characterized by the covariance R:

R=cov{v,}=diag (cov{vm,,},cov{v,M_,,},cov {v,.m_ms'n})

cov{ver,} =7.62e-5
cov{v,, .} =le=2

cov { vmm,_,,} =2.5e~3

The extended and state-dependent Kalman filters (EKF and SDKF) were used
for the noisy measurements filtering and reconstruction of the state. The simulation
setup uses the throttle actuator, the throttle flow and the intake manifold two-state
models. The cylinder air charge (CAC) is used within the feedforward (FF) controller
(see section 5.3). The accuracy of the CAC prediction is used as a benchmark of the
control performance. The FF controller inputs are either direct measurements of
intake manifold pressure, indicated throttle position and intake manifold temperature
or estimates of these variables obtained from the EKF or SDKF. Also, for fair
comparison, a test where the intake manifold temperature is supplied by an open-
loop observer is carried out. The SDKF results are compared with the direct
measurements approach results. The simulation tests are carried out with the engine
parameters taken from the driving cycle data shown in Figure 6-2. The controller
inputs that are either estimates or direct measurements are compared with the actual

intake manifold and throttle states. The results of this comparison are presented in

Figure 6-3.
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Figure 6-2: Simulation engine parameters
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Figure 6-3: FF controller input parameters: direct measurements and Open-Loop observer
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The most significant improvement is visible in the throttle angle and intake
manifold temperature estimates. The pressure estimate during transients is less
accurate than a direct measurement. This may be a result of the assumed noise
covariance for process and measurement noise. The time plot presented in Figure 6-3
provides only an indication of the filtering efficiency. More information is obtained

from analysis and comparison of integrated absolute error and squared error values

for the signals in Table 6-1.

Simulation setup | Y lows = Cmse| | 3 (s = Crontr)* | 2Pt = P o] 3 (P = Prororn )
Direct 59.2848 0.6478 6.9491e+2 88.0750
measurements
Direct 59.2848 0.6478 6.9491¢e+2 88.0750
measurements +
OL estimator
SDKF 28.8459 0.1587 8.8323e+2 1.5804e+2
EKF 28.7192 0.1573 9.2527e+2 1.7474e+2

Simulation setup 3 [Tom st = Tomcomrotir] | 2 (Timstnst = Tsomrmtr)

Direct 4.0395¢+4 5.1528e+5

measurements

Direct 4.3142e+3 3.5022e+3

measurements

with OL estimator

SDKF 2.7874¢+3 1.6566¢+3

EKF 3.2856e+3 2.7266e+3

Table 6-1: Simulation results: error signal parameters — 80 seconds, USO6

The results in Table 6-1 indicate that the SDKF/EKF methods provide better
results with respect to throttle angle and temperature than the direct measurement
methods with and without open-loop estimation. The only exception is that the
SDKF/EKF method results are slightly worse for the intake manifold pressure. It
may be difficult to conclude which strategy provides better overall result.
Fortunately, the most effective indicator of ‘method efficiency’ is the cylinder air
charge prediction. As was described before, the feedforward (FF) controller used in
the simulation employs a throttle actuator model for future throttle trajectory
prediction. This trajectory prediction is used by FF controller to generate the cylinder
air charge (CAC) prediction. The 6 events prediction is compared with the actual

cylinder air charge being an internal variable of the simulated intake manifold. The
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accuracy of the CAC prediction over the simulation time of 80 seconds is evaluated
based on the integrated absolute and squared error value. The traces showing the
cylinder air charge signal precision are given in Figure 6-4. Additionally the error

signal statistics are presented in Table 6-2.

Cylinder Air Charge error

40 T T T T T T T
—— Meas. only
| —— Meas.+ OL Temp.
30+ —— SDKF -
—— BIF
20+ -

_20 1 A I 1 ] I . 3
0 10 20 30 40 50 60 70 80

time [s]

Figure 6-4: Cylinder Air Charge estimation error [ %]

Simulation SeUp | Y'|CAC, ., ~CAC, | | (CAC,.. ~CAC, )]
Direct 15.376e+3 6.1437e+4
measurements

Direct 9.9426e+3 2.5435e+4
measurements

with OL estimator

SDKF 7.1240e+3 1.5913e+4
Recursive EKF 7.1006¢+3 1.5817e+4

Table 6-2: Cylinder air charge error signal parameters

The results indicate that the extended Kalman filter provides the best
accuracy. The state-dependent Kalman filter, however, gives very similar results.
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Results obtained using the estimation methods when compared to direct
measurement methods indicate that improved prediction of cylinder air charge
prediction is achievable. This improved CAC prediction, of course, directly results in

significantly improved air-fuel ratio control precision.

6.3.2 Parameter variation analysis simulation setup

The results presented in the previous section indicate improved cylinder air
charge (CAC) prediction accuracy when either extended or state-dependent Kalman
filters (EKF, SDKF) are used. The derivation of the EKF (or SDKF) is based on the
assumption that the process and measurement noise signals are stochastic. This
method of modelling - especially for the model mismatch represented by the process
noise is not always correct. In this section parameter variation is introduced in the
intake manifold and throttle model. Additionally, sensor gain errors are introduced
for throttle position, intake manifold pressure and temperature measurements. The
system diagram including an indication of the point of introduction of the parameter

variation/uncertainty is shown in Figure 6-5.

Throttle Angle Intake Manifold Intake Manifold
(TA) Pressure (MAP) Temperature (Tman)
R4 3.4 5.4
L] ] 3
*® ® 4
Throttle 3 1, Throttle »| Throttle mass > Intake Delay = ol CAC
setpoint (SP) actuator | TA flow Ly manifold Ly, CAC prediction delayed
dynamics. Iy charactst;isﬁe‘ dynami@p' * horizon
sos*®’ ‘,"" MAP ‘,-"‘
Lo ool ®
A
s T v -
Engine Speed Ambient Ambient g i Coolant
[rpm] Pressure § Temperature { i temperature
(Pamb) H (Tamb) H ¢ (Tcool)
(1] -: Lsesuncassesnanses
measurements E ...... h Throttle actuator model - the alternative .." Parameter
fromthedataset o ______ +  setup uses the Throttle angle o*’ variation

measurement from the dataset

Figure 6-5: Engine simulation block — parameter variation
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A Monte-Carlo parameter variation analysis was conducted in a similar way
to that in [96]. The parameters that were determined to be subject to variation are
displayed in Table 6-3. A truncated Gaussian probability density is assumed within

the parameter variation limits.

Parameter of Error definition Parameter variation
interest limit

{T in (6'1) 8(,. = 100((;T.modellcd - ;T.actual )/;T,actual ) 8{1 = i5[%]

a)" in (6'1) = 100((@.modellcd - a’r.actual /a)l'.actual) a)fr =15 [%]

C, A, in(4.3),
(4.5)

= 100( C Alh modelled C Alh actual
C Alh actual

|

Ec, 4, =13[%)]

hl m (4 16) = OO((hl.modelled - h1.actunl /hl.actual) ghl = i5[%)]
h'z in (4.16) = OO((hz.modeued - h2.actual )/h2.actual) &, = 15 [%]
7’=7](N9Pm) in 8]] =100(('7m0delled —naclual)/nactual) 817 =i4[%]
4.16)
Ti”'v'"““’ im,meas measure —I:'m.measac a erimm: = _2[%]
measurement error e = 100[ : ) | = ]

im,meas pctug
P, measurement | &, =100((Pynocanred = Prrscra )/ Pomscrat) | € = £2[%]
error
«a measurement ea = 100(( measured ac(ual / uctual) é‘a = i3[%)]
error

Table 6-3: The assumed parameters and measurement error variation

The results of the simulations are presented and analyzed below. The
histograms based on 2000 simulations are presented (Figure 6-6...Figure 6-13). The
analysis of histograms in Figure 6-6 and in Figure 6-7 reveals that the SDKF and
EKF filters improve the robustness of the cylinder air charge estimation to the
combination of modelling and measurement errors proposed in Table 6-3. Better
performance is indicated in any given histbgram by a higher number of simulation
results (with either absolute or squared integrated error values) occurring at the lower
error levels. In each container in the histogram the number of simulation results with
the integrated squared or absolute error within the limits is counted. Obviously the

best possible result would have all results in the container with the lowest error
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limits. The accuracy of the statistical method used here relies on a high number of

simulations being carried out. The actual distributions of varied parameters are

presented in Figure 6-14.
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Figure 6-6: CAC int. squared error histogram
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Figure 6-10: Press. int. squared error histogram
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Figure 6-14: Distributions of parameter variations
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[t can be seen in the histogram for the intake manifold pressure estimation accuracy

in Figure 6-10 and Figure 6-11 that filtering does not provide obvious improvement.

A similar result for the pressure estimation was noted in section 6.3.1. The mean

error values computed based on all of 2000 simulations indicate, however, an

improvement for the EKF/SDKF methods over the conventional methods based on



direct measurements. The results are gathered in Table 6-4. The SDKF provides the
overall best results in this comparison. This indicates that in the presence of model

mismatch, this filtering method is likely to provide the best performance among the

considered techniques.

P,,a,meas., | P,,a,T,,.. SDKF EKF
O-L T s measured

mean{3(CAC s ~CAC, i) | | 13264.95 23384.67 11487.33 | 11516.52
mean{ ¥ |CAC, s ~CAC, ]} | 3646.21 4849.68 3222.27 | 3230.37
mean{Y (@ ot = Comr) | 0.02763 0.02763 0.01684 | 0.01673
mean{ 3|0 = Xeomoter|} 5.8347 5.8347 4.3570 4.3437
mean] ¥ (Prsons = Poris) | | 300-28 300.28 283.66 295.65
mean{Y |Pu s = Pronrir} | 615.33 615.33 595.72 605.96
mean{3. (T s ~ Tt} | 8705.99 49366.81 4684.20 | 5301.60
mean{ Y [T s = T}~ | 3178.60 12384.92 2374.85 | 2520.68

Table 6-4: Mean values of the integrated errors computed based on 2000 tests

The last comparison of presented methods uses the worst case analysis. The
512 simulations with all possible combinations of parameters assumed to be equal to
its extreme values (as in Table 6-3) is carried out. The results are gathered in Table
6-5. The overall best result measured by the CAC error is obtained using the EKF.
The SDKEF in that respect is just slightly worse and methods without the model based
filter provide higher errors. Only the ‘worst case’ intake manifold pressure

estimation error is higher.

The simulation analysis of the accuracy of the cylinder air charge prediction
carried out in this section indicated a significant improvement. Robustness was
assessed using two different approaches. The presented simulation analysis involved
feeding of process and measurement stochastic noise into the simulated intake
manifold model. To provide more realistic robustness test environment, the system

parameter variation was introduced. The extended Kalman filter (EKF) brought the
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best performance. The state-dependent Kalman filter (SDKF) was only slightly
worse in terms of integrated squared and absolute prediction errors. In the robustness
test (Monte-Carlo) the SDKF provided slightly better performance. One important
advantage should not be overlooked. The state-dependent form of the model is
simpler than the linearized form. This fact may be important during on-line

implementation of the filter. In the next section the fault detection algorithm design

will be elaborated and tested.

P, T 5 (BT SDKF EKF
meas., O-L measure&

| Fp—
max{(CAC..o ~CAC, )} 113872.52 151555.06 102645.97 | 102116.67
max {CAC, i = CAC pins} 15266.07 17508.07 14455.24 | 14413.58
X {( @ = Crrnier) '} 0.18340 0.18340 0.12424 | 0.12343
X { @~ oertr} 18.5219 18.5219 14.5168 14.4713
— {(pﬂ_m, it )’} 2165.56 2165.56 6409.40 | 6689.56
X { P st = P corotir} 2049.08 2049.08 3497.53 3559.48
0 {(Te st = T ) | 258522.06 276463.23 135201.03 | 152228.06
S R 21655.53 19771.30 16400.31 | 17267.74

Table 6-5: Maximum error values for the worst case analysis

6.4 The fault detection

Fault detection for the combustion engine was the subject of a number of
research papers [98], [99], [100]. Current production systems are based mainly on
simple limit and plausibility checks of measured signals. Some simple signal-based
methods like frequency analysis are also employed [97]. This however may not be
sufficient in a future. The analysis of the intake manifold system is presented in
[101], [102]. The hypothesis testing framework based on the system model was used
for the intake manifold leaks and sensor faults detection. In this section the non-

linear observer-based fault detection for the intake manifold is considered. The fault
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detection, isolation and identification is carried out based on the generalized observer

scheme.

The system state-space model with faults modelled as an additive signals is
given by the equation (6.6). The intake manifold pressure and the temperature sensor
faults are modelled as additive perturbations in equations (6.4) and (6.5) respectively.
The intake manifold leak is modelled in a similar way to the throttle flow in the state-
space model (6.4). The product of the leak area and the discharge coefficient is

defined as the unknown input f,,, . The pressure sensor fault f, , is modelled as an

additive saturated ramp signal. The signal saturates after 1s at the level of -5kPa. The

temperature fault f; _, is also modelled in the same way as an additive signal that

saturates after 1s at -20K. These changes simulate the measurement offset. In
practice, a quite common situation is when the sensor measurement freezes at certain
value. This fault may be simulated by the time-varying additive signal. The features
(e.g. saturated ramp) of the sensor fault signal used for the simulation are not
exploited by the fault detection algorithm. The results obtained in this chapter may
be generalized to faults modelled by any time-varying additive signal of sufficient
magnitude. The intake manifold leak is assumed to appear in a more abrupt way. The

initial ramp part lasts only 0.2s and the leak fault reaches a value of

2[,/N ‘m-g /s-kPa]. This may be seen as a vacuum hose being pulled off the

intake manifold [103]. The constant value of the leak fault signal will be important

for the fault isolation method employing the variance analysis.

For the work presented here it is assumed that faults are not appearing
simultaneously. The Electronic throttle is assumed to be equipped with redundant
position sensors and consequently its fault diagnosis may be based on the physical
redundancy within its dedicated control system [104]. The fault detection is carried
out in three stages (see section 2.4 for details): Failure detection, Isolation and
Identification. The first task that is analysed is the residual signals generation

presented in the next section.
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6.4.1 Residuals generation — Dedicated observer scheme

First and the most important task of the fault detection is residuals generation.
On the system diagram in Figure 6-15 three faults: two sensor faults and one system
failure are shown. Sensor faults are modelled as additive signals on outputs in
equations (6.4), (6.5). The system fault is modelled as an unknown input to the

system in the equation (6.4).

r —_— -' -l
aup.  Residuals |
: h Gl - . -
%r \ T, A
Intake Manifold TP g fotEkE Alr temperatuce
.
MIC Dynamics H <
dynamics + :
flow model +temperature Bm‘meas'n _E p| Intake air pressure |
sensor r-l S..q| Scnsorestimator |
| A a, o !
-
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L....__.: Leak Estimator
Process noise,
sensors noise v -

Figure 6-15: System faults and dedicated estimator scheme

The dedicated estimator scheme requires a separate residual generator for
each fault. For sensor faults two separate observers are constructed. For the intake
manifold leak the fault detection filter with the directional residual is built (see

section 2.4.3).

The sensor faults directional residuals generation

Each dedicated observer uses the throttle angle setpoint command «,, the

throttle angle measurement e, and either the temperature T,

im.out,n

or the pressure
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P

Ymmeas.n Measurement (Figure 6-15). Each observer carries out diagnosis of only one

output signal that is subject to the failure. This provides an isolation of each
individual estimator. The intake air temperature sensor estimator detects the
temperature sensor failure and is not sensitive to the pressure sensor fault. Similarly
the intake air pressure sensor estimator detects the pressure sensor failure and is
insensitive to the temperature sensor fault. Under hypothesis that the intake manifold
leak is not present, the sensor fault detection is established through analysis of
residuals (difference between estimated and measured output) generated by each
estimator. The residuals for the fault-free system and the system with fault for

pressure and temperature sensor fault are shown in Figure 6-16 and in Figure 6-17

respectively.
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Figure 6-16: Pressure measurement residual Figure 6-17: Temperature measurement
residual

Residual signals throughout this chapter are pre-filtered using the discrete filter
0.1z
1-0.9z7"
(given at the beginning of section 6.4) that are acting as an additive signals on
outputs. The residuals do not reflect the actual level of faults. This is due to the
feedback action from residuals to the state estimates and to the model used by the

G(Z" ) = The generated residuals may be related to the fault magnitudes

estimator. This feedback action results in the state estimation offset. This problem

was analysed in section 2.4.2. The actual and estimated states are shown in Figure
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6-18 and in Figure 6-19 for the pressure and the temperature faults respectively. The
state estimation bias introduces model mismatch in the state dependent model. That
may have a negative impact on fault representation in residuals. It is extremely
difficult to analyze this internal feedback in the model due to the complexity of non-
linear structure. Note that in Figure 6-16 the value of pressure residual varies with
operating conditions (e.g. the intake manifold pressure shown in Figure 6-18 as the

state 4) while it is known that the fault magnitude is constant.
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Figure 6-18: State estimates (blue) and actual states (red) for the pressure

estimator and sensor fault

The temperature residual in Figure 6-17 also varies with operating conditions.
It is important to assess the signal to noise ratio with respect to the residual signals.
For situations where the noise results in a significant variation of residuals only faults
of higher magnitude may be detected. The detection of faults is facilitated through
the analysis of residuals. The threshold tests are the most common fault detection
method. The fault is indicated when the value of residual reaches certain pre-defined
level. The level must be set such that in the fault-free operating conditions residuals
stay below the threshold level. The process noise that may also be regarded as model
mismatch is the main factor that determines the robust level of thresholds. It is
desired that the fault-free residuals differ significantly from the fault-present values.
This allows setting the threshold with a sufficient safety margin. The faults of

relatively low magnitude may thus be detected. The Kalman filter (or an observer)

233



due to feedback action may decrease fault sensitivity of residuals. It must be
remembered that Kalman filtering methods rely upon the process and measurement
noise being stochastic signals and provide optimal results for disturbances that are
characterized by the noise covariances information provided to the filter. The fault
enters the system in the same way as the sensor noise. It does not have the same

statistical properties and the state update may result in poor residual sensitivity to the

system fault.
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Figure 6-19: State estimates (blue) and actual states (red) for the

temperature estimator and sensor fault

The intake manifold system model is open-loop stable. The estimator
undesired state estimation offset and lower sensitivity of residuals to faults provided
a motivation to use the open-loop estimation. The analysis and justification for use of
such approach was given in section 2.4.2. The system may be split in two
subsystems. In Figure 6-20 a separate state-dependent Kalman filter for the throttle
angle estimation is designed. The throttle angle estimate is used by the open-loop
observer to compute the intake manifold pressure and temperature. The residuals are
the difference between the estimates and the measurements. The residual for the
pressure sensor fault is presented in Figure 6-21. The relative difference in
magnitude between fault and fault-free residual is better than for the Kalman filter
residuals in Figure 6-16. Also the residuals are less dependent upon operating
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conditions. The same conclusion may be reached after analysis of temperature sensor
fault detection residuals in Figure 6-22. The Kalman filter counterpart for the same
fault magnitude and simulation test cycle is presented in Figure 6-17. This indicates
that for the intake manifold sensor fault residuals generation mixed structure (in
Figure 6-20) gives the best results. The state-dependent Kalman filter for the throttle

angle estimation is combined with the open loop observer for the intake manifold

pressure and temperature.
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The intake manifold leak directional residual generation

The intake manifold leak is estimated by the fault detection filter presented in
section 2.4.3. The system diagram with the leak estimator is shown in Figure 6-20.
The filter generates a directional residual that is sensitive to the leak. The intake
manifold leak directional residual is shown in Figure 6-23. The remaining estimator
residuals decoupled from the fault are shown in Figure 6-24. These facilitate
unbiased estimation and the process and the measurement noise attenuation. The leak
estimation is carried out under the assumption that output (sensor) faults are not

present in the system.
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Figure 6-23: The intake manifold leak  Figure 6-24: The intake manifold leak decoupled
directional residual residuals

ica itivity to other faults

In the analysis the sensor faults residuals were generated with the assumption
that the leak is not present in the system. A similar assumption about sensor faults
was made for the leak directional residual generation. It is important to assess the
result of the leak on the pressure and temperature sensor residuals. Also, the intake
manifold leak directional residual reaction to the pressure and temperature fault is

important for the design of fault detection logic. Reaction of the pressure and
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temperature dedicated residuals to the intake manifold leak is shown in Figure 6-26

and in Figure 6-25 respectively. It should be noticed that the leak entails the change

in pressure and temperature residuals levels. It is important to notice that the level for

these residuals varies with the operating condition. For the intake manifold it may be

difficult to detect the leak when the throttle is wide open. The influence of such

failure may, depending on the extent of leak, be negligible. In such a situation the

fault detection is not critical. The product of the throttle area and discharge

coefficient over the simulation is shown in Figure 6-29. This may be related to the

leak f,..,=2. Over the full simulation the leak is at least 12.5% relative to the

throttle area.
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The intake manifold leak estimation is carried out with the assumption that
sensor faults are not present in the system. The residuals are affected by the sensor
faults since the pressure and temperature measurements are used by the leak
estimator. The pressure sensor fault results in the leak directional residual trace
shown in Figure 6-30. For the temperature sensor fault the leak directional residual is
plotted in Figure 6-31. It should be noticed that the leak residual strongly relies on
the pressure sensor information. This is due to the lower fault detectability index for

this output. The temperature sensor fault results in a significantly lower residual

change.
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6.4.2 Determination of thresholds

The residuals generation is the first step towards fault detection. For
stochastic or uncertain systems the residuals are not zero for the fault-free system.
The threshold for residuals must be established. If residuals are within the pre-
defined boundaries the system is assumed to be fault-free. The residual(s) exceeding
threshold(s) indicate the fault in the system. It is important to define thresholds in a
way that the system noise or uncertainty does not trigger the fault alarm or system
reconfiguration. In practice thresholds should be based on the information about
extreme values for the fault-free system. The formal analytical derivation of
thresholds for complex system like the intake manifold may not be possible in

practice. It may also be too conservative if a multiple models approach or worst case

analysis is used.

In the work presented in this chapter, thresholds are determined based on the
simulation of the system and the fault-free trace of residuals shown in Figure 6-34
(also in Figure 6-21, Figure 6-22 and Figure 6-23). A safety margin was also
included to improve robustness of the design. For the pressure sensor residuals, the

threshold of +2[kPa| was determined. For the temperature sensor residual the

threshold is set to #0.5[K]. The intake manifold leak residual in Figure 6-23 is
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assumed to stay between iO.7[JN ‘m-g /s-kPa] for the fault-free system. The

fault in the system is detected if the value of any of residuals violates the threshold.
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Figure 6-34: Fault-free residual trace for thresholds determination

6.4.3 Fault isolation and identification

The faults occurring in the system result in residuals violating the thresholds.
The threshold violation indicates that the fault is present in the system but does not
locate the fault. The fault isolation method based on the generalized observer scheme
uses the table with ‘fault signatures’ (see section 2.4.4). The pressure sensor fault
causes its dedicated residual to violate the threshold and the temperature sensor
residual remains unchanged. The temperature sensor fault moves the residual over
the threshold while the pressure sensor residual remains within the usual limits. The
intake manifold leak results in the pressure sensor and temperature sensor directional
residuals moving over the thresholds. The fault signatures Table 6.6 is extracted from

the analysis of the residuals behaviour presented in section 6.4.1. Note that the leak
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directional residual does not provide much of the information for the fault isolation
system. The logical value 1 denotes that the threshold is violated, O denotes that the

residual is within the limits. The ‘X’ value denotes that both 0 and 1 are possible to

occur.
Pressure sensor fault Temper?;:g:: sensor Intake manifold leak
Pressure directional 1 0 1
residual over threshold
Temperature
directional residual 0 1 1
over threshold
Leak directional
residual over threshold X X 1

Table 6.6: Fault signatures table

The fault isolation is carried out with the assumption that only one fault
occurs at the time. Due to the intake manifold dynamic nature the thresholds
established for pressure, temperature and leak directional residuals are not violated
simultaneously. The timing is also influenced by the system noise and the driving
pattern, which interacts with the fault detection system. The time window that allows
checking which thresholds are violated must be established. For the 90 degrees event
based sampling and the allowed fault detection lag the number of events for the
algorithm time window is established. For this work in order to achieve good
robustness properties a 100 events window was chosen. This results in the delay of
e.g. 1.5[s] for 1000[rpm] or 0.3[s] for 5000[rpm)]. This delay may be reduced in some
cases with the method that will be presented in sequel. An alternative robust method

will rely on statistical analysis and a wide window is required to increase reliability.

Threshold-based method

The threshold-based fault isolation method relies upon the Table 6.6 and uses
Boolean logic and tests for residuals. The logical test may be structured in a way that
the fault isolation lag is reduced. The test must detect zeros that identify the type of
the fault in Table 6.6. In case of the intake manifold leak all three residuals violate
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the thresholds. If three threshold violations are detected the conclusion that the leak
is present in the manifold is made. If within the permitted data analysis window
either of residuals does reach the threshold by the end of the lag period, it is checked
if it was the pressure or the temperature residual. This completes the fault isolation
procedure. The simulation results of the fault detection and isolation are shown in
sequel. The pressure sensor fault detection is shown in Figure 6-35. The fault in the
system is detected when the pressure sensor directional residual moves below the
threshold. Within 100 events from that moment the temperature sensor residual stays
within the threshold range. This gives the signature of the pressure sensor fault. The
temperature sensor fault detection is shown in Figure 6-36. In a similar way to the
pressure sensor, the fault is first detected and finally isolated. The fault signature
reveals the temperature sensor fault. The intake manifold leak detection is shown in
Figure 6-37. The procedure is faster than for sensor faults. The event when the fault
is isolated is determined by the moment when all directional residuals move over

their thresholds.
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Figure 6-35: The pressure sensor fault isolation
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Figure 6-36: The temperature sensor fault isolation
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Figure 6-37: The intake manifold leak fault isolation
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Threshold method with statistical and expert analysis

The fault isolation methods may be enhanced by incorporating system
specific knowledge and statistical analysis. The system knowledge may be used with
respect to the pressure sensor fault. The fault detection is triggered by the pressure
sensor and leak directional residuals violating the thresholds. The leak residual
violating the negative threshold immediately indicates that the pressure sensor fault
had occurred. The leak, for naturally aspirated engine, can only be positive. If the
leak directional residual is detected to be negative immediate fault isolation is
possible. The pressure sensor fault isolation shown in Figure 6-35 may be completed

much quicker (i.e. within 0.1 [s] after the fault detection).

To test the fault detection efficiency the following test was carried out. The

pressure sensor fault f, ., and the temperature fault f, . are modelled as ramp

signals that saturate after 1 sec. at the level of +5kPa and -20K respectively. Note
that during this test the pressure sensor fault will be simulated with positive values to
avoid trivial detection when the leak residual becomes negative. The intake manifold

leak is assumed to appear in more abrupt way and is modelled as a ramp signal that

saturates after 0.2 sec. at the level of 2[,/N m-g / s kPa:l . The fault detection speed

is shown in Figure 6-38. The time required for the detection of pressure and
temperature faults is determined by the time when residuals move over thresholds
and the window width — 1100 events. Unfortunately due to non-linearities the fault
isolation algorithm fails to detect the leak for faults which start to ramp up at 15.1
and 20.1 second. This is due to fact that within the test window the temperature
residual does not cross the threshold. Similar problems occurred during the intake

manifold fault isolation presented in [102].

A more robust method presented now aims to improve the fault isolation
accuracy by using the assumption that the leak area and the discharge coefficient of
the leak source are constant. With this assumption the variance of the leak directional
residual is monitored to help reliably isolate the fault. For the statistical analysis the

number of data points determines the accuracy and the window length will be
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increased to 200 events. Within the 200 events window from the moment of the fault
detection (see in Figure 6-37) the temperature directional residual only marginally
violates the threshold. If the temperature did not violate the threshold within the data
window the pressure sensor fault would be isolated. Such a situation is shown in
Figure 6-38 for the leak occurring at the time of 15.1 seconds. The pressure sensor
fault is wrongly isolated. This clearly is a problem if control system re-configuration

was to be used.
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Figure 6-38: Fault detection efficiency: simple threshold method

The monitoring of the variance of the leak directional residual will improve
the robustness. The leak directional residual that represents the leak area is assumed
to be constant. For that reason it is possible to establish the upper bound of this
parameter. The upper bound for the variance of the leak residual was determined
based on the test simulation to be 0.04. If the variance of the leak remains below its
maximum value, it indicates that there might be a leak in the intake manifold. The

data window is shifted forward in time until the temperature residual violates the
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threshold which indicates the leak, or until the variance violates its threshold, which

indicates the pressure sensor fault.

Pressure Temperature Intake Extend the
sensor fault sensor fault manifold leak data
window
Pressure directional residual over 1 0 1 1
threshold
Temperature directional residual 0 1 1 0
over threshold
Leak directional residual over X X 1 1
threshold
Leak directional residual variance 1 X 0 0
over threshold

Table 6.7: Extended fault signatures table

The fault isolation logic is formulated in Table 6.7. The improved robustness
of the method is presented in Figure 6-39. It should be noticed that the robustness of

the method comes at the expense of the speed of isolation.
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Figure 6-39: The intake manifold faults robust isolation
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The accurate isolation is important for the control system re-configuration.
For the re-configuration, the identification of the fault extent is essential. The fault

identification is only required for the intake manifold leak. The directional residual
estimate fh,mk.n provided by the process fault detection filter is used for that purpose.

The residual is a combination of the product of the leak discharge coefficient, the

leak area estimate and the noise. Since the fault f, , is assumed to be constant and

the noise is filtered out, the leak estimate may be used by the control algorithm. The

system re-configuration will be demonstrated in the next section.

6.4.4 System reconfiguration and the cylinder air charge
estimation

The system estimation with the state dependent Kalman filter is combined
now with the fault detection, isolation and the identification algorithm. The system
diagram with the fault detection functional block and the estimator is shown in
Figure 6-40. The state dependent Kalman filter is re-configured in a way that if
pressure or temperature sensor faults are detected the faulty sensor is excluded from
the system. In case of the intake manifold leak, state estimates obtained from the

intake leak dedicated filter are used by the controller.
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The system re-configuration results in the improved control when faults are
present in the system. A more accurate cylinder air charge prediction without a bias
is achieved. The in-cylinder air-fuel ratio comparison for the system with and

without the re-configuration is presented in Figure 6-41.
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Figure 6-41: CAC prediction error reduction with the system re-configuration

The fault detection, isolation and identification combined with the control
system re-configuration provides improved accuracy of the air-fuel ratio control. As
a result bias-free estimates of parameters are obtained, the cylinder air charge
prediction is more accurate and the feedforward control, based on the fuel-film
dynamics model inversion, is improved. The control system provides good control
performance in presence of faults. The system reconfiguration is intended to
maintain acceptable engine operation to reach the service station. However, if the re-
configured control system was capable of maintaining legislated emission levels, the

fault could be fixed during the scheduled servicing. The engine management system
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could give a fault indication to the driver to let him know that the engine experiences
technical difficulties. In the meantime the engine control system would allow a

continuation of the journey.

6.5 Summary

A simulation analysis of the accuracy of the cylinder air charge (CAC)
prediction was carried out. Robustness was assessed using two different approaches.
The first approach involved the feeding of the process and the measurement
stochastic noise into the simulated intake manifold model. The improvement in the
CAC prediction accuracy was found to be significant. The extended Kalman filter
(EKF) provided the best performance. The state-dependent Kalman filter (SDKF)
was only slightly worse in terms of the integrated squared and the absolute prediction
errors. The second approach introduced the parameter and the measurement gain
errors. Monte-Carlo analysis based on a population (2000 with truncated Gaussian
probability distribution) of simulations was carried out in order to obtain the CAC
error distributions. The EKF and SDKF methods once again provided superior

performance compared to direct measurement methods. The SDKF provided the best

robustness to errors introduced in the simulation.

Fault detection schemes such as presented later in the chapter are a very
important part of the modern control algorithms. For the intake manifold presented
solution delivers an unbiased estimation, if combined with the re-configuration. The
fault detection and isolation method used in this chapter performed threshold tests for
directional residuals. The fault detection was followed by the isolation. To increase
robustness, the fault detection signal triggered the fault signature diagnosis
algorithm. The set of measurements over the period of time was gathered and the
properties of residuals were analysed. The fault isolation may be improved by the
introduction of residual statistical analysis. The variance of the leak residual signal
was tested. Additionally system specific knowledge was incorporated to improve the

robustness of the fault detection.
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Chapter 7

Conclusions and Future work

7.1 Summary and conclusion

The thesis presented a number of areas of control engineering theory and
practice applied to the spark ignition engine. The motivation for that is a
multidisciplinary nature of control engineering. The control engineer must be able to
understand the process being subject of control, be able to model it, design the

control algorithm and implement it.

In Chapter 2 the basic theory for estimation and more advanced fault
detection algorithms were elaborated. The chapter introduced parameter and state
estimation methods for linear systems. The theoretical background was briefly
presentéd to give a basis for the non-linear techniques analysis. This led to the
estimation methods for the non-linear systems, out of which the extended Kalman
filter is probably the most popular. An alternative formulation of the non-linear
estimation method is introduced next in a form of the state-dependent Kalman filter.
A discrete time formulation of the state-dependent Kalman filter was introduced.
This was a basis for the fault detection algorithms development. The dedicated
observer scheme for sensor fault detection was outlined next. This was followed by
the development of the non-linear fault detection filter based on state-dependent
models. The fault detection filter can isolate, to no higher than the output
measurements, the number of faults’unmeasured inputs. Two types of residuals are

generated by the filter: the orthogonal residual vector decoupled from faults (or
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disturbances) and the fault/unmeasured input estimate. The residuals may be used for
the fault detection, the isolation and even the identification. For plants with both:
process and sensor faults appearing in the system, the methodology for simultaneous

detection of both types of faults is described.

In Chapter 3 the design methods for non-linear control algorithms were
presented. The algorithms were based on state-dependent models. Two distinct
design approaches were analyzed. First the well-known linear-quadratic optimal
control theory was used as a basis and its applicability was extended to non-linear
systems. The development was based on the state-dependent Riccati equation method
and improved its performance with the linear time-varying approximation of the non-
linear system. The optimality of the solution was also a subject of consideration and
the algorithm that provides the optimal solution to the cost function minimization
problem was introduced. The second group of algorithms used the generalized
predictive control algorithm as a basis and extended this control technique to non-
linear systems using state-dependent models. The time-varying approximation was
used together with the predicted control trajectory computed in previous iteration of
the predictive control algorithm. The method of recovering the optimal solution of
the minimisation problem was presented in the predictive control context. Depending
on control system requirements the basic non-linear or their optimal versions may be
used. For systems where the cost function and weighting matrices are introduced as
tuning parameters, the exact value of the performance index may not be of interest.
For some applications where the cost function determines the energy used in the

process, achieving the minimum value may be of interest. In such cases, the optimal

versions of presented algorithms should be used.

The developments described above are of a theoretical nature. This work was

intended to be a preparation for the subsequent application effort.
In Chapter 4 the identification of the combustion engine model was

presented. The methodology presented there aimed to use as few parameters supplied

by the engine manufacturer as possible. Most importantly, the identification
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procedure used the driving cycle data which implies that presented methods may be
adopted for the on-line operation. This in turn allows the model adaptation to the
gradual changes of the system as a result of wear and tear. The use of the driving
cycle data required the specific identification procedure to be developed. The
identification task was split in two sub-tasks. The intake manifold with the throttle
model was identified first. The exhaust and fuel delivery time delays were then
removed from the data and fuel delivery, torque and air fuel ratio models identified.

The model complexity determines its accuracy and various model structures were

employed and validated.

The engine model was utilized in Chapter 5. A feedforward fuel control
algorithm with a built-in predictor was developed and tested in the vehicle using the
rapid prototyping hardware. Test results indicated that good performance had been
achieved. This also provided an additional test for the identified model accuracy. In
addition, by using the throttle actuator model and the throttle setpoint command,
more accurate future throttle position is predicted and, hence, more accurate cylinder
air charge estimated. The estimated cylinder air charge is used by the controller and
more accurate fuel injection command is computed. Further improvements in the air-
fuel ratio control are achieved by multi-input multi-output (MIMO) nonlinear control
strategies which were tested in sirhulation. Models of the exhaust gas air-fuel ratio
and generated torque are used for the design of the control system. The MIMO
control strategy is based on the predictive control approach. The multivariable
solution is a trade-off between the accuracy in the regulation of air-fuel ratio and the
tracking of the requéstcd torque profile. Considering the complexity of the non-linear
engine model, some simplifications based on the specific nature of the problem are
made to reduce the amount of computational effort required. Improvements in the air
fuel ratio regulation are achieved by decoupling of the accelerator pedal and the
throttle opening through the introduction of a simple delay in the application of the
throttle command. The length of the time delay may be optimized to allow for the
maximum permissible air-fuel ratio excursion during transient operations. Additional
improvements in transient torque control are achieved through the magnitude

decoupling of the throttle movement and the accelerator pedal position as well. The
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compensation of the cylinder air charge response dynamics using simple classical
control methods is proposed. The attention is then turned to the multivariable
predictive air-fuel ratio and torque control methods. This provides a suitable solution
for the torque tracking problem. The predictive method is based on a minimization of
the cost function defined in terms of the cylinder air charge only. The amount of fuel
injection is then derived from future cylinder air charge prediction that is available
through the predictive control algorithm. By changing the weights (i.e. tuning) and
the prediction horizon, the required performance of lambda regulation and torque
tracking can be influenced simultaneously. Presented algorithms provide significant

improvements in the control system performance.

In Chapter 6 the robustness to the modelling inaccuracies, noise and faults are
analysed. The simulation analysis of the accuracy of the cylinder air charge (CAC)
prediction was carried out. Robustness was assessed using two different approaches.
The first approach involved feeding of the process and the measurement stochastic
noise into the simulated intake manifold model. The improvement in the CAC
prediction accuracy was substantial. The presented non-linear filtering methods were
capable of providing a better performance. The second approach benchmarked
robustness of the control system to parameter and measurement errors. Monte-Carlo
analysis based on a population of simulations was carried out in order to obtain the
CAC prediction error distributions. The non-linear filtering algorithms once again
provided superior performance compared to direct measurement methods. The fault
detection scheme that was presented later in Chapter 6 is a very important part of the
modern control algorithms. The legislation requires the engine control system to be
equipped with the diagnosis of parts that determine emissions. The fault detection
scheme developed for the intake manifold delivered unbiased estimation, if
combined with the system re-conﬁguration. The fault detection and isolation method
presented used threshold tests for residuals. To increase robustness, the fault
detection signal triggered the fault signature diagnosis algorithm. The set of
measurements over the period of time was gathered and properties of residuals were

analysed. The fault isolation robustness was improved by introduction of the residual
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statistical analysis and the system specific knowledge. The control system re-

configuration was a natural consequence of the fault isolation.

The range of methods presented in this thesis aims to address most of the
control problems associated with the spark ignition engine. The emphasis was put on
both theoretical research and the application with a slight shift towards application.
The presented work will not provide a solution to all problems encountered during
the engine control system development. However it gives a good insight in the
application and shows how the model-based techniques may be employed to reduce

the development time and effort required.

7.2 Future work

The theoretical and application research results presented in this thesis may
be further developed. Especially, when the engine control application is considered
there are number of issues that may and should be researched more thoroughly. The
results presented in this thesis should be considered as an indication of what are the
possible directions in modelling, control, estimation and fault detection methods
development. It must be stressed that the developments presented here are not a

complete solution for the presented application. The following directions for the
future research should be considered:

e Theoretical analysis of non-linear system structures and the optimal state-
dependent model parameterization for these systems. It is known that the
performance of state-dependent control algorithms depends strongly upon
the system parameterization. The guidelines for the model parameterization
should be a subject of research

e Stability analysis and real-time implementation of the presented algorithms
will be analysed. Rigorous analysis of the stability for non-linear systems is
a difficult issue. It may not be possible to formulate stability conditions for

general non-linear system structures. However, the stability for a class of
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non-linear systems may be considered and rigorous analysis methods
developed.

The engine identification presented in this thesis may be extended to the
cold-start conditions. Additional thermal parameters must be added and the
estimation carried out. Also, alternative model structures for fuel-film
dynamics may be employed to achieve improved accuracy. A more
accurate non-linear model of the throttle actuator and an improved torque
model will be introduced

The real-time implementation and tests of multivariable engine control
strategies should be attempted. This will require consideration of the
computational burden and some simplifications resulting in scheduled
control strategies. Also, the optimization based multivariable control
strategy with the efficient optimization algorithm will be analyzed

The implementation of the estimation methods will require careful
consideration of the computational burden. This will be a preparation for
the real-time implementation of the presented model-based intake manifold
filtering methods. The estimation for the full system with the fuelling path
should also be subject of research. More comprehensive robustness analysis
for the full system should be carried out.

The estimation and fault detection applied to the intake manifold should be
extended to the full engine. The important parameter of interest is the
. estimate of the wall fuel mass. The solution that is expected to give the best
results leads to a separation of tasks between the intake-manifold and wall-
fuel estimators and follows the methodology used for the system
identification. The main difficulty of considered filtering problem results
from nonlinearities and variable time delays in the system.

The application of the hybrid system control theory [105], [106](i.e. mixed
logical and dynamic systems) to the engine control is expected to provide
good results. The combination of the logic based controls with other
methods, widely used on the engine, provides the motivation. The other

feature of hybrid systems that is found in combustion engines is the natural
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combination of continuous and discrete event system behaviour. Hybrid

systems theory addresses these issues for both: simulation and control.
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