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Abstract

A range of theoretical studies regarding the static and dynamic behaviour of

smectic liquid crystals will be presented. The thesis is mainly concerned with the

smectic A phase as modelled by the continuum theory of Stewart [69], though

a working knowledge of the smectic C phase, modelled using the Leslie-Stewart-

Nakagawa continuum theory [41], proves necessary.

In Chapter 3, reductions of Stewart’s theory by appeal to certain physically-

motivated assumptions upon the smectic and the flow pattern to which it is

subjected are outlined. The linear stability of each of the resultant systems is

then analysed. Chapter 4 presents the derivation of a “lubrication-type” theory

based on one of these resultant systems of equations, which is then analysed in

general terms before being applied to the problem of flow past a finite obstacle.

Chapter 5 presents an investigation of a shear wave incident at a planar

boundary between an isotropic elastic solid and a smectic A liquid crystal. The

behaviour of the wave upon reflection and refraction at the interface is estab-

lished, as is the response of the smectic; a comparison with the smectic C case as

considered by Gill and Leslie [25] concludes the chapter.

Finally, Chapter 6 discusses the static configuration of a smectic A liquid crys-

tal in the presence of an isolated edge dislocation. After constructing the energy

density to fourth order, we first recover the results of previous investigations by

assuming the director and layer normal always coincide, in addition to examining

a perturbation to a known solution [9]. We then relax the constraint director-layer

normal equivalence, obtaining exact solutions for the smectic’s configuration for

a quadratic energy density and deriving equilibrium equations for special cases

for the fourth order formulation.

vii



Chapter 1

Introduction

This chapter provides a brief introduction to a collection of phases of matter whose

properties are mysterious, complex and still not fully understood, collectively

known as liquid crystals. Section 1.1 gives information regarding the discovery of

liquid crystals, as well as some historical background. For a fuller account, the

interested reader is directed to the books by Dunmur and Sluckin [14], Mitov [50,

Chapter 3] and the comprehensive review by Kelker [33]. Section 1.2 provides

basic descriptions of two types of liquid crystal: nematics and smectics. Finally

Section 1.3 concludes with a note on some essential background material.

1.1 “Un Nouvel État de la Matière” [28]

Most people have, at some stage, been taught that matter exists in three common

states: solids, liquids and gases. Observation, however, has shown that this rather

simple system of classification is not suitable for many materials. Other phases

of matter falling outwith this restrictive framework that have been discovered

over the years include plasmas, Bose-Einstein and Fermionic condensates, and

superfluids, to name but a few. Liquid crystals are yet another example of a

material for which the straightforward solid/liquid/gas distinction fails to provide

an adequate classification system for matter as we know it. Liquid crystals are

in fact examples of mesomorphic phases or mesophases: intermediate states of

matter. As the name suggests, these bizarre and fascinating materials display

flow properties like those of viscous fluids, while at the same time possessing

structural features reminiscent of solid crystals, details of which will be discussed

below.

The discovery of liquid crystals is attributed to the Austrian botanist and

chemist Friedrich Reinitzer [54, 55]. Whilst heating a sample of cholesteryl ben-
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zoate (a solid at room temperature), he observed that it appeared to “melt”

twice: first, at around 145.5◦C, where the substance appeared to take the form

of a “cloudy liquid”, then again at around 178.5◦C, at which it became a fully

transparent liquid. It is now known that this “cloudy liquid” was a particular

phase of liquid crystal: a cholesteric (also known as a chiral nematic). Further,

the higher “melting point” is now termed to be the clearing point, that is, the

point at which the material is no longer in a mesomorphic phase, and is a fully

isotropic liquid1; see Fig. 1.1 for a representation of the molecular arrangement

in the smectic A and nematic phases.

Reinitzer, aware of the work of the German physicist Otto Lehmann on the

observation of birefringence during crystallisation, sent a letter to Lehmann, along

with two samples, asking him to confirm these observations [33]. After examina-

tion of the samples, Lehmann originally used the expression “flowing crystals” [38]

to describe them, eventually coining the term “liquid crystal” some years later,

in 1900.

In 1907, Vorländer, a German chemist, noted that anisotropic (either rod-

like or disc-like) molecules were essential for a given material to exhibit the two

melting points described above [61, 78]. Knowledge of the structure of these

constituent molecules has proved invaluable for theoretical modelling of liquid

crystalline phases of matter exactly as undertaken in this thesis.

In 1922, Friedel, the French mineralogist, proposed a classification scheme

for liquid crystals consisting of three categories [19]: nematic, cholesteric and

smectic. Before and during the years of the second world war, experimental

investigations into the viscosities of liquid crystals were undertaken [47]. See,

for example, reference [46], in which Miesowicz first reports the determination of

the anisotropic viscosities for nematics. A historical review containing details of

experiments carried out by Miesowicz may be found in [48]. This was also the

time period during which the order parameter (discussed in more detail below

in Section 1.2.1) was first defined and used.

After the Second World War, the study of liquid crystals went into something

of a decline, then underwent a rekindling in the late 1950s and early 1960s in the

UK, USA and the Soviet Union. Liquid crystals are now the focus of an active

and highly interdisciplinary research community, with the widely-attended bi-

ennial International Liquid Crystal Conference, European Conference on Liquid

Crystals, International Conference on Ferroelectric Liquid Crystals and Interna-

tional Liquid Crystal Elastomers Conference (in addition to multiple other events

1A material is said to be isotropic when its physical properties are uniform in all directions.
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(a) A crystalline solid. (b) Smectic A.

(c) A nematic. (d) An isotropic liquid.

Figure 1.1: Schematic representation of the molecular arrangements in different
phases of matter.
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such as the annual meeting of the British Liquid Crystal Society and the Optics of

Liquid Crystals Conference), testifying to the worldwide endeavour to understand

the properties and applications of these materials.

1.2 Basic Descriptions of Liquid Crystals

Most of the materials that are known to exhibit liquid crystal phases are organic

substances. There are two ways of bringing about a liquid crystal phase in a

given material:

1. by changing the temperature of the material. Such materials are referred

to as thermotropic liquid crystals;

2. by changing the concentration of material in a given solvent: lyotropic

liquid crystals.

This thesis will treat only thermotropic liquid crystals in an isothermal setting.

As has been alluded to in the previous section, liquid crystals tend to be

thought of as consisting of elongated molecules with a preferred local average di-

rection. Details of both nematic and smectic liquid crystals are presented below,

cholesterics being outwith the scope of the present work. Moreover, while we

do not concern ourselves with any in-depth study of the behaviour of nematics,

a discussion of their properties and a detailed summary of the Ericksen-Leslie

continuum theory for nematics [17, 40] will be presented. The reason for this

is as follows: nematics have been studied to a far greater extent and their be-

haviour is successfully described by the aforementioned theory. As a consequence

of this, comparisons and analogies between the two types of material may be

drawn via the physical predictions of their respective continuum theories, allow-

ing for an understanding of which physical processes in smectics are attributable

to “nematic-like” effects, and which are a consequence of the layering that is

unique to smectics. For details on the various liquid crystal phases (including,

for example, cholesteric and columnar phases), see the book of de Gennes and

Prost [23] or the Handbook of Liquid Crystals [27].

1.2.1 Nematics

The term “nematic” has its origins in the Greek word νήµα, meaning thread, so

named for the thread-like structures observed in materials exhibiting this phase.

(These lines are a consequence of a type of defect referred to as disclinations.)
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The molecules making up a nematic tend to align parallel to one another along an

average preferred direction, which is termed the anisotropic axis. The deviation

in the degree of local alignment is represented by the order parameter S, given

by

S = 〈P2(cos θ)〉 =

〈
3

2
cos2 θ − 1

2

〉
, (1.2.1)

that is, the average of a single molecule over time or the average over an ensemble

of molecules of the second Legendre polynomial, The Legendre polynomials Pn(x)

are solutions to Legendre’s differential equation [1]:

d

dx

[
(1− x2)

d

dx
Pn(x)

]
+ n(n+ 1)Pn(x) = 0.

Nematics exhibit no long-range positional order, being able to translate freely

while remaining approximately parallel to one another, as is depicted schemat-

ically in Fig. 1.2. These materials have a rotational symmetry about their

anisotropic axis, which means that nematics are uniaxial. Although the con-

stituent molecules may themselves be polar, there is no reason to suppose that

this polarity should be apparent on a larger scale. As such, the axis of uniaxial

symmetry is not assumed to have polarity. This is the case in classical contin-

uum mechanics, and is assumed to hold throughout this thesis. The molecules

of para-Azoxyanisole (PAA), a typical nematic, are rigid rods with a length of

roughly 20Å and a width of 5Å. (Note that 1Å is one Angstrom: 10−10 metres.)

The local direction of average molecular alignment of a given sample is de-

scribed by the unit vector n, commonly referred to as the director. In mathe-

matical terms, the absence of polarity in nematics corresponds to an invariance

under the transformation n → −n. As such, any physical properties modelled

mathematically (such as the elastic energy, introduced in Section 2.1.1) must be

invariant under this transformation.

1.2.2 Smectics

The word “smectic” is taken from the Ancient Greek word σµήγµα, which means

soap. The name for these media was chosen based on the fact that they display

mechanical properties reminiscent of soaps. The smectic phase, along with ex-

hibiting the characteristic alignment property of nematics, also tends to arrange

itself into a layered structure with a well-defined interlayer spacing, meaning that

5



Figure 1.2: Schematic representation of a nematic liquid crystal. The anisotropic
axis, which denotes the local average molecular alignment and defines the director
n, is represented by the arrow.

smectic phases are more ordered than nematic phases. This thesis is mainly con-

cerned with the smectic A phase, though we will also require an understanding

of the smectic C phase, particularly in Chapter 5. Schematic representations of

both of these phases are given in Fig. 1.3 below. Continuum theories will be pre-

sented for both in Sections 2.2 and 2.3 below. It should be noted that there are

several more smectic phases that will not be discussed here; the reader is again

referred to [23,27] for further details regarding such phases.

a

n

(a) Smectic A.

a

n

θ

(b) Smectic C.

Figure 1.3: Schematic representation of the molecular arrangement in smectics A
and C.

In the smectic A phase, whose properties will be the main focus of this thesis,

the molecules form layers such that the director n is, on average, perpendicular

to the layers; that is, n is often taken to be equivalent to the unit layer normal, a

vector referred to in the literature (and in the pages of this thesis) as a. However,
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for reasons to be discussed in greater detail in Section 2.3, we will allow for the

possibility of decoupling of n and a. The physical properties are invariant under

the simultaneous transformations n → −n and a → −a; the smectic A phase

also displays uniaxial symmetry. In the thermotropic case, the interlayer distance

ranges from roughly the length of the constituent molecules to around double their

length. For lyotropics, the distance can be up to several thousand Angstroms.

In smectic C liquid crystals, the director n is tilted by an angle θ relative to

the layer normal a; θ is known as the smectic tilt angle or smectic cone angle,

and is generally dependent on the temperature of a given sample of smectic C

material. Smectic C is an example of a biaxial phase. The director will tend to

align uniformly in the absence of any external influences.

Chiral smectic C phases can occur when the constituent molecules are enan-

tiomorphic, that is, different from their mirror image. Again, such considera-

tions would prove an unnecessary digression from our present considerations, and

so we do not pursue this topic here, once again referring the interested reader to

reference [23].

1.3 A Note on Background Material

Throughout the course of the thesis, we rely upon a working knowledge of con-

tinuum mechanics. There exists a plethora of textbooks on this subject from

undergraduate to advanced graduate level, making the compilation of an exhaus-

tive list of references on the field a task possibly tantamount in both time and

effort to the completion of a Ph.D. thesis. The reader is referred to the books

by Malvern [43], Spencer [66], and Tanner [74, Chapter 2]. In particular, we will

make extensive use of index notation and the Einstein summation convention for

vectors and tensors, of which a cursory account is presented in Appendix A. Some

introductory accounts on this topic are the books of Aris [4] and Goodbody [26],

though again this list is by no means comprehensive.

Further, the results in Chapter 6 follow from application of standard methods

of the Calculus of Variations. Appendix C provides an overview of the key results

for dealing with the case where there is only one function of one independent

variable. For introductory accounts of the theory, the reader is directed to [20,59].

A generalisation to several multivariable functions may be found in [11].

7



Chapter 2

A Review of Some Continuum

Theories for Liquid Crystals

In this section, an outline of continuum theories for nematics as well as smec-

tics A and C are given. As discussed above, nematics are described using the

Ericksen-Leslie continuum theory, while the smectic C and smectic A phases will

be modelled using the theories of Leslie, Stewart & Nakagawa and Stewart, re-

spectively.

2.1 Nematics

The first attempt at a theory describing the dynamics of nematics was under-

taken by Anzelius in 1931 [3]. Some thirty years later, Ericksen made use of

the balance laws of classical continuum mechanics in order to construct the first

widely-accepted theory [16,17]. In 1968, Leslie derived constitutive equations [39],

proposing expressions for dynamic contributions. The combined results of these

two works form what is referred to as Ericksen-Leslie theory. This model is

one of the most successful and widely-employed theories used in the modelling

of nematics. Leslie published an alternative derivation of the theory under the

assumptions of incompressibility and isothermality [40]. Given that this thesis

will only deal with incompressible liquid crystals under isothermal conditions, it

makes sense for us to outline the results of the latter derivation. We will follow

the book of Stewart [68] and start in Section 2.1.1 by introducing various kine-

matic quantities and pieces of terminology that frequently arise in the modelling

of fluids possessing a mechanically significant microstructure (for example, polar

fluids [12] and polymeric fluids [74]).
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2.1.1 Kinematics

The Eulerian description of the instantaneous motion of a fluid with a microstruc-

ture makes use of two independent vector fields: the velocity vector v(x, t) and

an axial vector w(x, t) which, in a polar fluid, represents the angular velocity of

the polar fluid particle at position x at time t. In the context of liquid crystals,

w is the local angular velocity of the liquid crystal material element i.e. the

local angular velocity of the director n. In “ordinary” continuum theory, the only

independent field is the velocity of the fluid, since the angular velocity in such

theories is given by 1
2
∇× v. For liquid crystals, this particular angular velocity

is referred to as the regional angular velocity, denoted ŵ, and defined, as

previously stated, by

ŵ(x, t) = 1
2
∇× v. (2.1.1)

This provides a measure of the average rotation of the fluid over a neighbourhood

of the material element. We define ω to be the relative angular velocity, that

is, the angular velocity of the material element relative to the regional angular

velocity in which the material element is embedded, viz.,

ω = w − ŵ = w − 1
2
∇× v, (2.1.2)

the difference between the local angular velocityw of the director and the regional

angular velocity ŵ of the fluid in the neighbourhood of the director.

The director itself is a unit vector, and is therefore required to satisfy

n · n = nini = 1. (2.1.3)

Since w represents the angular velocity of n, it follows from the above constraint

that

ṅ = w × n, (2.1.4)

with the superposed dot representing the material time derivative:

D

Dt
:=

∂

∂t
+ (v · ∇) = ∂t + vi∂i. (2.1.5)

Details on the physical interpretation of the material time derivative may be

found in the books by Acheson [2] and Aris [4], while useful discussions regarding

angular momentum and axial vectors are to be found in [34].

The usual rate of strain tensor or velocity gradient tensor A and vor-

ticity tensor W have components Aij and Wij, respectively, defined in the usual
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way by

Aij = 1
2
(vi,j + vj,i) and Wij = 1

2
(vi,j − vj,i). (2.1.6)

Note that A is symmetric, while W is anti-symmetric. Leslie introduced the vector

N [40], defined by

N := ω × n. (2.1.7)

It then follows from this and equations (2.1.2), (2.1.4), (2.1.6) and (A.7) that

Ni = εijkωjnk = ṅi + 1
2
(vk,i − vi,k) = ṅi −Wijnj, (2.1.8)

so that equation (2.1.7) is equivalent to

N = ṅ−Wn. (2.1.9)

The vector N is sometimes referred to as the co-rotational time flux of the

director, for example in the terminology employed by Truesdell & Noll [76]. From

the definition (2.1.7), it is clear that N is connected to the relative angular veloc-

ity ω: it is a measure of the rotation of n relative to the fluid. The requirement

(2.1.3) leads to

niṅi = 0, (2.1.10)

while equation (2.1.7) gives

niNi = 0. (2.1.11)

Material Frame-Indifference

A well-known fundamental principle of classical physics is that of material frame-

indifference, which states that the constitutive equations for a given material

must be invariant under changes of reference frame. Formally, under a motion

defined by

x∗(t− τ) = Q(t)x(t) + c(t), (2.1.12)

where τ is any real number, c(t) an arbitrary function of time, and Q(t) an

arbitrary rotation represented by a proper orthogonal tensor function of time, a

vector a and second-order tensor B are frame-indifferent or objective if they

transform according to

a∗ = Qa, B∗ = QBQT , (2.1.13)
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a starred symbol corresponding to its non-starred quantity after the motion

(2.1.12) has occurred. The components Qij of Q will be identified with entries in

a matrix. Note that a matrix Q is proper orthogonal if

QQT = I ⇐⇒ QikQjk = QkjQki = δij, detQ = 1, (2.1.14)

where I represents the identity matrix, whose components are Iij ≡ δij.

Of the quantities introduced above, ni, Ni and Aij are frame-indifferent. De-

tails of the calculations involved in proving this are omitted here for brevity, but

the interested reader is directed to [68, Section 4.2.1].

The Frank-Oseen Elastic Energy

It is, at this point, pertinent to introduce a free energy density associated with

distortions of n, that is, corresponding to deformations of a given sample of

nematic material. This is referred to as the Frank-Oseen elastic energy, and

is assumed to be of the form

wf = wf (ni, ni,j); (2.1.15)

wf is also taken to be quadratic in the gradients of n. Assuming incompressibility,

the free energy is generally defined to within the addition of an arbitrary constant;

it proves advantageous to choose this constant such that wf = 0 for any relaxed

orientation (in the absence of forces, fields and boundary conditions) and suppose

that any other configuration produces an energy greater than or equal to that of

this relaxed orientation. This leads to the inequality

wf (n,∇n) ≥ 0. (2.1.16)

Given the general absence of polarity in nematics, n and −n are physically

indistinguishable. In fact, this holds even if the constituent molecules are polar,

as they can be thought of as having a local arrangement at any given point such

that they are divided equally into two groups possessing opposite orientations.

This means that wf is required to be invariant under the change n→ −n:

wf (n,∇n) = wf (−n,−∇n). (2.1.17)

The free energy is also subject to the condition of frame-indifference, so that

wf (n,∇n) = wf (Qn,Q∇nQT ). (2.1.18)

11



With these restrictions in mind, it is possible to construct the Frank-Oseen elastic

energy for nematics in the form

wf = 1
2
K1(∇ · n)2 + 1

2
K2(n · ∇ × n)2 + 1

2
K3(n×∇× n)2

+ 1
2
(K2 +K4)∇ · [(n · ∇)n− (∇ · n)n], (2.1.19)

or, equivalently, in component form:

wf = 1
2
(K1 −K2 −K4)(ni,i)

2 + 1
2
K2ni,jni,j + 1

2
K4ni,jnj,i

+ 1
2
(K3 −K2)njni,jnkni,k. (2.1.20)

Again, details of the derivation of these terms may be found in [68, Section 2.2].

Respectively, K1, K2, K3, and K2 + K4 are known as the splay, twist, bend,

and saddle-splay constants. See p.16 of [68] along with relevant comments to

be found on pages, 21, 38 (“Null Lagrangians”), and 47 (problems involving

strong anchoring) for details on the physical interpretation of these constants.

The reader is also directed to Section 3.3 of the book by Virga [77]. Finally, it

is worth pointing out that another derivation of (2.1.19) has been provided by

Clark [10].

2.1.2 Balance Laws

As stated above, we only deal with isothermal conditions, so thermal effects are

ignored. For a volume Ω ⊂ R3 of nematic bounded by the surface S, the conser-

vation laws for mass, linear momentum and angular momentum are, respectively,

D

Dt

∫
Ω

ρ dV = 0, (2.1.21)

D

Dt

∫
Ω

ρv dV =

∫
Ω

ρf dV +

∫
S

t dA, (2.1.22)

D

Dt

∫
Ω

ρ(x× v) dV =

∫
Ω

ρ(x× f +K) dV +

∫
S

(x× t+ l) dA, (2.1.23)

where dV and dA denote, respectively, the volume and area elements, ρ is the

mass density, x the position vector, v the velocity, f the external body force

per unit mass, t the surface force per unit area (traction), K the external body

moment per unit mass, and l the surface moment per unit area (or couple stress

vector). We note that no director inertial term has been incorporated into the

12



above formulation, since it is generally regarded as negligible in nematic flow

problems. (A discussion of such terms is to be found on pp. 147-149 of [68].)

Also, there seems to be a convention in static theory whereby f will appear in

place of ρf , so that in static considerations, f will represent the external body

force per unit volume. An analogous comment applies to K.

The mass conservation law may be manipulated via the well-known Reynolds’

transport theorem (see, for instance, [68, Appendix B] or [74, Section 2.4.1]) to

yield the continuity equation

∂tρ+∇ · (ρv) = 0. (2.1.24)

A fluid is said to be incompressible if its mass density is constant: that is,

ρ̇ = 0. It follows that the mass conservation law for an incompressible fluid may

be replaced with

∇ · v = vi,i = 0, (2.1.25)

with the density constant throughout the volume Ω. Note that (2.1.25) is equiv-

alent to

TrA = Aii = 0. (2.1.26)

The usual tetrahedron argument [66] allows the surface force ti and the surface

moment li to be written in terms of the stress tensor tij and the couple stress

tensor lij, respectively, as

ti = tijνj, li = lijνj, (2.1.27)

where ν denotes the outward unit normal to the surface S. The last term in

equation (2.1.22) may be re-written via the divergence theorem as∫
S

ti dA =

∫
Ω

tij,j dV. (2.1.28)

Inserting this back into (2.1.22), making further use of Reynolds’ transport the-

orem and noting that the balance law holds for an arbitrary choice of volume

finally allows us to write it in point form as

ρv̇i = ρfi + tij,j. (2.1.29)
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Yet another application of the transport theorem gives

D

Dt

∫
Ω

ρεijkxjvk dV =

∫
Ω

ρεijkxj v̇k dV, (2.1.30)

whilst the divergence theorem may be employed to show that∫
S

εijkxjtk dA =

∫
Ω

εijk(tkj + xjtkl,l) dV. (2.1.31)

Using the second relation in (2.1.27) and the divergence theorem, the balance law

for angular momentum (2.1.23) may be cast into the form∫
Ω

εijkxj(ρv̇k − ρfk − tkl,l) dV =

∫
Ω

(ρKi + εijktkj + lij,j) dV. (2.1.32)

But, by (2.1.29), the left-hand side of this must vanish. Recalling that this holds

for arbitrary V allows the angular momentum balance equation to be expressed

in point form:

ρKi + εijktkj + lij,j = 0. (2.1.33)

The specific forms of tij and lij may be deduced from the rate-of-work postu-

late proposed by Leslie [40],∫
Ω

D dV =

∫
V

ρ(fivi +Kiwi) dV +

∫
S

(tivi + liwi) dA

− D

Dt

∫
Ω

(
1
2
ρvivi + wf

)
dV, (2.1.34)

where w is the local angular velocity and wf the Frank-Oseen elastic en-

ergy as discussed in Section 2.1.1 above, and D is the rate of viscous dissipation

per unit volume, most commonly referred to as the dissipation function. For

brevity, we simply state the forms of the stress and couple stress tensors, directing

the interested reader to the book by Stewart [68, pp.141-142] for details on the

necessary calculations.

tij = −pδij − nk,i
∂wf
∂nk,j

+ t̃ij, (2.1.35)

lij = εiklnk
∂wf
∂nl,j

+ l̃ij, (2.1.36)

with p an arbitrary pressure arising from incompressibility and t̃ij, l̃ij denote

dynamic contributions. Note that here and in subsequent discussion t̃ij is referred
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to as the viscous stress. Further calculation allows for the establishment of the

following inequality:

D = t̃ijvi,j + l̃ijwi,j − wiεijk t̃kj ≥ 0. (2.1.37)

This proves very important when considering constitutive equations and in es-

tablishing restrictions on the forms of the dynamic terms.

2.1.3 Constitutive Equations

To proceed further, it proves necessary to make further assumptions about the

dynamic contributions to the stress and couple stress tensors. We therefore need

to introduce relations between the stresses t̃ij, l̃ij and the motion of the material.

Such relations lead to the establishment of constitutive equations. It seems

natural to use the director, velocity gradients and local angular velocity of the

director as the continuum variables. As such, it is assumed that at any material

point at any instant, the terms t̃ij and l̃ij are functions of these terms evaluated

at that point at that instant. In fact, the viscous couple stress l̃ij is assumed not

to be dependent on the gradients of the local angular velocity wi,j of the director.

It may then be deduced from inequality (2.1.37) that

l̃ij = 0, (2.1.38)

so that

D = t̃ijvi,j − wiεijk t̃kj ≥ 0, (2.1.39)

which imposes restrictions on the form of t̃ij.

By considering a rigid-body motion, straightforward calculations show that

t̃ij may be equivalently taken to be a function of ni, Ni and Aij. Further, material

frame-indifference requires that t̃ij be a hemitropic function of these variables2.

This gives

t̃∗ij(n
∗
i , N

∗
i , A

∗
ij) = Qik t̃kl(ni, Ni, Aij)Qjl, (2.1.40)

where Q is a second order proper orthogonal tensor. Further, the experiments of

Miesowicz [46] suggest that t̃ij is a linear function of its above named variables,

i.e.

t̃ij = Xij + YijkNk + ZijklAkl, (2.1.41)

2A material is hemitropic if its symmetry group consists of all rotations but no reflections [66].
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where the coefficients are subject to

X∗ij = QikQjlXkl, Y ∗ijk = QilQjmQkpYlmp,

Z∗ijkl = QimQjpQkqQlrZmpqr, (2.1.42)

and are functions of ni. Nematic symmetry requires that these coefficients are

transversely isotropic [66, p.110] with respect to ni. Smith and Rivlin [62] showed

that such tensors are expressible as a linear combination of products of ni and

δij−ninj (or, equivalently, δij and ni), so that, expanding these coefficients in their

general forms and making use of equations (2.1.11), (2.1.26) and the symmetries

Aij = Aji, ninj = njni, allows, after some tedious but routine manipulation,

for the following expressions to be deduced for the viscous stress and dissipation

function, respectively:

t̃ij = α1nkAklnlninj + α2Ninj + α3niNj + α4Aij

+ α5njAiknk + α6niAjknk, (2.1.43)

D = α1(niAijnj)
2 + (α2 + α3 + γ2)NiAijnj

+ α4AijAij + (α5 + α6)niAijAjknk + γ1NiNi ≥ 0, (2.1.44)

where γ1 := α3 − α2 and γ2 := α6 − α5. The coefficients αn, n ∈ {1, . . . , 6} are

known as the Leslie viscosity coefficients, or simply the Leslie viscosities.

Restrictions on the Leslie viscosities may be derived via inequality (2.1.44). An

elementary example is given on p.146 of reference [68].

2.1.4 The Ericksen-Leslie Dynamic Equations

Making use of the expressions for tij and lij in equations (2.1.35) and (2.1.36)

(keeping in mind that l̃ij = 0), along with the Ericksen identity

εijk

(
nj
∂wf
∂nk

+ nj,l
∂wf
∂nk,l

+ nl,j
∂wf
∂nl,k

)
= 0, (2.1.45)

and the assumption that the external body moment per unit mass K is related

to the generalised body force G via

ρKi = εijknjGk, (2.1.46)
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calculations allow the final form of angular momentum balance to be given as(
∂wf
∂ni,j

)
,j

− ∂wf
∂ni

+ g̃i +Gi = λni, (2.1.47)

where

g̃i = −γ1Ni − γ2Aijnj, (2.1.48)

and λ is an arbitrary scalar function. Taking the scalar product of equation

(2.1.47) with ni,k and some straightforward manipulation then gives the final

form of the balance of linear momentum equation as

ρv̇i = ρfi − p̃,i + g̃jnj,i +Gjnj,i + t̃ij = 0, (2.1.49)

where

p̃ = p+ wf . (2.1.50)

Summary of the Ericksen-Leslie Dynamic Equations

For convenience, a summary of the complete Ericksen-Leslie equations will be

given. Similar summaries will be given for the smectic A and C dynamic theories

proposed below without any discussion of the derivation; these derivations follow

a similar approach to that outlined above. For further details, it is suggested that

the interested reader consult the appropriate references.

In isothermal conditions, an incompressible nematic liquid crystal is subject

to the constraints

nini = 1, (2.1.3)

vi,i = 0. (2.1.25)

and the balance laws

ρv̇i = ρfi − p̃,i + g̃jnj,i +Gjnj,i + t̃ij, (2.1.49)

and (
∂wf
∂ni,j

)
,j

− ∂wf
∂ni

+ g̃i +Gi = λni, (2.1.47)

for linear and angular momentum, respectively. In the above, fi denotes the

external body force per unit mass, Gi is the generalised body force, which is

related to the external body moment per unit mass Ki via equation (2.1.46), ρ

is the mass density, p̃ = p + wf with p the pressure and wf the elastic energy of
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the nematic, given by

wf = 1
2
(K1 −K2 −K4)(ni,i)

2 + 1
2
K2ni,jni,j + 1

2
K4ni,jnj,i

+ 1
2
(K3 −K2)njni,jnkni,k, (2.1.20)

The Ki (i ∈ {1, . . . , 4}) are the elastic constants discussed in Section 2.1.1 above.

The scalar function λ is a Lagrange multiplier, which is generally evaluated on

taking the scalar product of (2.1.47) with n. The constitutive relations for the

viscous stress t̃ij and the vector g̃i are

t̃ij = α1nkAklnlninj + α2Ninj + α3niNj + α4Aij

+ α5njAiknk + α6niAjknk, (2.1.43)

g̃i = −γ1Ni − γ2Aijnj, (2.1.48)

with γ1 = α3 − α2, γ2 = α6 − α5, and

Ni = ṅi −Wijnj. (2.1.8)

The result

γ2 = γ1, (2.1.51)

known as the Parodi relation [69], is often taken to be the case, so that only

5 of the Leslie viscosities are linearly independent. The stress tensor and couple

stress tensor are given by

tij = −pδij − nk,i
∂wf
∂nk,j

+ t̃ij, (2.1.35)

lij = εiklnk
∂wf
∂nl,j

, (2.1.36)

on recalling that the dynamic contribution to the couple stress must be zero in

order to satisfy the dissipation inequality. This concludes our summary of the

Ericksen-Leslie equations.

2.2 Smectic C

In this section, we present a brief outline of the nonlinear continuum theory for

smectic C (SmC) liquid crystals as presented in Chapter 6 of [68], which in turn

is drawn from the continuum theory originally proposed by Leslie, Stewart, and
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Figure 2.1: Configuration of (a) the constituent molecules and (b) the vectors a,
b and c, as well as the fictitious cone on which the director n in constrained to
lie. (Figure reproduced from reference [68] with permission from the author.)

Nakagawa in 1991 [41]. Essentially, the principles used in deriving this theory are

analogous to those found in the continuum theory for nematics as discussed above

in Section 1.2.1. Because of this, and for the sake of brevity, only a summary need

be presented. However, as remarked by Stewart [68], the extensions presented

are by no means trivial, and the reader is directed to the relevant literature for

further details.

2.2.1 Static Theory and the Elastic Energy

As mentioned above, the director in the SmC phase makes a so-called smectic

tilt angle θ with the layer normal, which is generally temperature-dependent.

However, as this thesis concerns itself only with the incompressible isothermal

case, θ may be taken as a constant angle for our purposes. Further, it will be

supposed that the layers are spaced equidistantly by some interlayer distance

d. Note that, while these assumptions have proved reasonable in a variety of

circumstances, for certain situations they may be considered too restrictive (for

example, in the case of a sample of SmC under a high level of stress). The basic

mathematical description follows that of de Gennes and Prost [23], introducing

two unit vectors: a, which defines the layer normal; and c, referred to as the

c-director, which is the unit orthogonal projection of the director n onto the

plane of the layers. Referring to Fig. 2.1, it is easily seen that

19



n = a cos θ + c sin θ. (2.2.1)

It also proves convenient to employ the vector b, defined by

b = a× c. (2.2.2)

Based on this, along with the restriction in equation (2.1.3), it is readily observed

that

a · a = 1, c · c = 1, a · c = 0. (2.2.3)

It is worth noting that these restrictions, via a straightforward exercise in partial

differentiation, lead to the results

aiai,j = 0, cici,j = 0, aici,j + ciai,j = 0. (2.2.4)

In addition, we have the Oseen constraint [52]:

∇× a = 0, (2.2.5)

which holds in the absence of any defects or singularities. This constraint was

first derived by Oseen for the smectic A phase (that is, when θ ≡ 0), and may be

derived in the following way. Given incompressible, equidistant smectic layers,

with the constant interlayer spacing d, the integral

1

d

∫ x2

x1

a · dx (2.2.6)

represents the number of layers crossed by an observer travelling along the path

from point x1 to point x2. Given the absence of defects, the layer normal a must

be differentiable at all points. Now, considering the scenario where x1 = x2, the

path traversed will form a closed loop Γ, from which it follows that the number

of layers crossed “going up” is the same as those crossed when “coming down”.

Therefore ∫
Γ

a · dx = 0 =⇒
∫
S

(∇× a) · ν dA = 0, (2.2.7)

by an application of Stokes’ Theorem, with ν denoting the outward unit normal to

the area S enclosed by the contour Γ. Given that Γ, and therefore S, is arbitrary,

this result yields exactly the Oseen constraint as given in (2.2.5): ∇ × a = 0.

Expressing this in component form allows for the deduction

εijkak,j = 0 =⇒ ai,j = aj,i. (2.2.8)
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The Elastic Energy

As for nematics, it will be assumed that there is a free energy density associated

with deformations of the material, which may be related to distortions in n and,

thereby, distortions in a and c. The resulting energy is taken to be of the form

w = w(ai, ci, ai,j, ci,j), (2.2.9)

and is assumed to be quadratic in the gradients of a and c. As before, the

condition of frame-indifference is imposed on the material, so that

w(a, c,∇a,∇c) = w(Qa,Qc,Q∇aQT ,Q∇cQT ), (2.2.10)

where Q denotes a proper orthogonal matrix. Note that this requirement also

holds for chiral SmC, denoted by SmC∗. In fact, for achiral smectic C, requirement

(2.2.10) must hold for any orthogonal matrix Q – that is, detQ = ±1. The energy

is also invariant under the simultaneous changes

a→ −a and c→ −c, (2.2.11)

this being a natural requirement of invariance under the transformation n →
−n. Imposing these requirements leads, through extensive calculation, to the

expression

w = 1
2
K1(∇ · a)2 + 1

2
K2(∇ · c)2 + 1

2
K3(a · ∇ × c)2 + 1

2
K4(c · ∇ × c)2

+ 1
2
K5(b · ∇ × c)2 +K6(∇ · a)(b · ∇ × c) +K7(a · ∇ × c)(c · ∇ × c)

+K8(∇ · c)(b · ∇ × c) +K9(∇ · a)(∇ · c), (2.2.12)

or the equivalent component form

w = 1
2
K1(ai,i)

2 + 1
2
(K2 −K4)(ci,i)

2 + 1
2
(K3 −K4)ci,jcjci,kck + 1

2
K4ci,jci,j

+ 1
2
(K5 −K3)(ciai,jcj)

2 +K6ai,i(cjaj,kck)−K7ci,jcjci,kak

+ (K8 −K7)ci,i(cjaj,kck) +K9ai,icj,j. (2.2.13)

The reader is directed to Section 6.2.1 and the references therein for an exhaus-

tive account of the interpretation of the constants Ki (i ∈ {1, . . . 9}) and how

they relate to the elastic constants found in, for example, the work of the Orsay

group [23] and those introduced by Saupe in an earlier description of smectics [60].

21



2.2.2 The Dynamic Theory

Recall the balance laws for mass, linear momentum and angular momentum,

which still apply to a given sample volume Ω of SmC enclosed by a bounding

surface S:

D

Dt

∫
Ω

ρ dV = 0, (2.2.14)

D

Dt

∫
Ω

ρv dV =

∫
Ω

ρf dV +

∫
S

t dA, (2.2.15)

D

Dt

∫
Ω

ρ(x× v) dV =

∫
Ω

ρ(x× f + k) dV +

∫
S

(x× t+ l) dA. (2.2.16)

Consequently, we arrive, as before, at the incompressibility condition, expressed

in the form

vi,i = 0, (2.2.17)

along with the linear and angular momentum balance laws

ρv̇i = ρfi + tij,j, (2.2.18)

ρKi + εijktkj + lij,j = 0, (2.2.19)

with the symbols retaining their meanings as set out in Section 2.1.2, with iden-

tical comments applying to fi and Ki. Again the director inertial term has been

assumed negligible and therefore is omitted in the present formulation. The

derivation of the theory relies on an analogous rate-of-work postulate to that

given in equation (2.1.34), with the nematic energy wf replaced by w as given in

equations (2.2.12), (2.2.13) and the assumption that the rate of viscous dissipa-

tion per unit volume, D, is non-negative. Therefore, by considering the rate of

work done on an arbitrary volume of smectic C material, it is readily shown that

tijvi,j + lijwi,j − wiεijktkj = ẇ +D, (2.2.20)

where the vector w represents the local angular velocity of a material element of

SmC and must satisfy

ȧ = w × a, ċ = w × c, (2.2.21)
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the smectic analogues of equation (2.1.4). Motivated by the static theory (see

equations (6.70) and (6.90) in [68]), we take

tij = −pδij + βlεljkak,i − ak,i
∂w

∂ak,j
− ck,i

∂w

∂ck,i
+ t̃ij, (2.2.22)

lij = βkakδij − βiaj + εikl

(
ak

∂w

∂al,j
+ ck

∂w

∂cl,j

)
+ l̃ij, (2.2.23)

where t̃ij and l̃ij denote dynamic contributions to stress and couple stress, respec-

tively. Following a similar procedure to that outlined for nematics, the viscous

terms are taken to be functions of ai, ci, wi and vi,j, with frame-indifference re-

quiring the dependences to instead be upon the variables ai, ci, Ai, Ci and Dij,

where

Ai = ȧi −Wijaj, Ci = ċi −Wijcj, (2.2.24)

with

Dij = 1
2
(vi,j + vj,i), Wij = 1

2
(vi,j − vj,i). (2.2.25)

The vectors A and C denote the co-rotational time flux of the vectors a and c,

respectively; these are analogous to the vector N as defined in equation (2.1.8)

above. The terms Dij and Wij are simply the components of the velocity gradient

and vorticity tensors, and we note the change in symbol for the velocity gradient

tensor from Aij to Dij: this is to avoid any notational confusion with the co-

rotational time flux of the vector a, i.e. A as given in equation (2.2.24) above.

Working backwards with an analogous argument to that used in the derivation

of equation (2.1.8), it is readily shown that

A = ω × a, C = ω × c, (2.2.26)

with ω denoting the relative angular velocity as in (2.1.2).

Given the assumed form of the viscous stress and viscous couple stress in

(2.2.22) and (2.2.23), the rate-of-work postulate of equation (2.2.20) may be ex-

pressed in the form

D = t̃ijvi,j + l̃ijwi,j − wiεijk t̃kj ≥ 0. (2.2.27)

As outlined in reference [41], this inequality combined with the assumption that

l̃ij is a function of the above named variables (and therefore not wi,j) leads to the

requirement

l̃ij = 0, (2.2.28)
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reducing the inequality (2.2.27) to

D = t̃ijvi,j − wiεijk t̃kj ≥ 0. (2.2.29)

Assuming that t̃ij is a linear function of Ai, Ci and Dij and that the requirement

that w, the elastic energy, be frame-indifferent, the dependence of t̃ij on the

variables listed above can easily be shown to require that t̃ij must then be an

isotropic function of its variables [66, p.22]. It can then be shown [70] that the

viscous stress consists of forty-one terms. Four of these are found to equate to

zero via use of the dissipation inequality (2.2.29) and another five may be shown

to be linearly dependent on others, reducing the total to thirty-two. Finally, the

use of Onsager relations allows us to reduce this number further to twenty. The

final form of the viscous stress is given via

t̃ij = t̃sij + t̃asij , (2.2.30)

where t̃sij denotes the symmetric part

t̃sij = µ0Dij + µ1alD
a
l aiaj + µ2(Da

i aj +Da
j ai) + µ3ckD

c
kcicj + µ4(Dc

i cj +Dc
jci)

+ µ5ckD
a
k(aicj + ciaj) + λ1(Aiaj + Ajai) + λ2(Cicj + Cjci)

+ λ3ckAk(aicj + ciaj) + κ1(Da
i cj +Da

j ci +Dc
iaj +Dc

jai)

+ κ2 {akDa
k(aicj + ciaj) + 2alD

c
l aiaj}

+ κ3 {ckDc
k(aicj + ciaj) + 2akD

c
kcicj}+ τ1(Ciaj + Cjai)

+ τ2(Aicj + Ajci) + 2τ3ckAkaiaj + 2τ4ckAkcicj, (2.2.31a)

and t̃asij is the anti-symmetric part

t̃asij = λ1(Da
j ai −Da

i aj) + λ2(Dc
jci −Dc

i cj) + λ3ckD
a
k(aicj − ciaj)

+ λ4(Ajai − Aiaj) + λ5(Cjci − Cicj) + λ6ckak(aicj − ciaj)

+ τ1(Da
j ci −Da

i cj) + τ2(Dc
jai −Dc

iaj) + τ3alD
a
k(aick − ciaj)

+ τ4ckD
c
k(aicj − ciaj) + τ5(Ajci − Aicj + Cjai − Ciaj), (2.2.31b)

where we have introduced the notation

Da
i = Dijaj, Dc

i = Dijaj. (2.2.32)

The twelve viscosity coefficients µ0 to µ5 and λ1 to λ6 are associated with dynamic

stress contributions even in the vector c; the remaining eight viscosities, τ1 to τ5
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and κ1 to κ3, are associated with those terms which are odd in c.

Some of the above expressions may be written in a more convenient fashion

via certain manipulations. Without going into detail, we note that the intrinsic

torque arising from equation (2.2.31b) may be expressed in the form

εijk t̃
as
kj = εijk(aj g̃

a
k + cj g̃

c
k), (2.2.33)

on introducing the terms

g̃ai = −2
(
λ1D

a
i + λ3cicjD

a
j + λ4Ai + λ6cicjAj + τ2D

c
i

+ τ3ciajD
a
j

)
, (2.2.34)

g̃ci = −2 (λ2D
c
i + λ5Ci + τ1D

a
i + τ5Ai) . (2.2.35)

This allows for a reformulation of the dissipation inequality:

D = t̃sijDij − g̃aiAi − g̃ciCi ≥ 0, (2.2.36)

which may be obtained in an analogous fashion to that used in deriving the result

(2.1.39). This inequality can be used to derive restrictions on the smectic viscosity

coefficients.

Similarly to the form given for nematics, the external body moment may be

assumed to obey the relation

ρKi = εijk(ajG
a
k + ckG

c
k), (2.2.37)

Ga and Gc denoting the external body forces introduced in a similar way to those

mentioned in the static theory [68]. Making use of the technique as employed

in nematic theory, it is possible to employ certain constitutive relations, along

with the above result for the external body moment and equation (2.2.28), apply

these to the balance law for angular momentum (2.2.19), and thereby obtain the

smectic analogue of equation (2.1.47) in the form of two coupled sets of component

equations:(
∂w

∂ai,j

)
,j

− ∂w

∂ai
+Ga

i + g̃ai + γai + µci + εijkβk,j = 0, (2.2.38a)

(
∂w

∂ci,j

)
,j

− ∂w

∂ci
+Gc

i + g̃ci + τci + µai = 0, (2.2.38b)
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where the scalar functions γ, µ, and τ , and the vector function β are Lagrange

multipliers arising from constraints (2.2.3) and the Oseen constraint (2.2.5). In

turn, these equations allow for convenient reformulation of the balance of linear

momentum equation (2.2.18); viz.,

ρv̇i = ρfi − p̃,i +Ga
jaj,i +Gc

jcj,i + g̃aj aj,i + g̃cjcj,i + t̃ij,j, (2.2.39)

where p̃ = p+w, p denoting an arbitrary pressure arising from incompressibility.

2.3 Smectic A

The continuum theory of Stewart [69] will provide the model used for the de-

scription of smectic A liquid crystals, which will be the main focus of this thesis.

This continuum theory allows for the separation of the director n and the layer

normal a where many others do not. This decoupling was motivated by the work

of Auernhammer et al. [5–7] and Soddemann et al. [65], which established that

this phenonmenon does indeed occur for smectic A subjected to simple shear.

The theory also incorporates the possibility of permeation between the smectic

layers. Finally, the Oseen constraint on the layer normal a as discussed above

in Section 2.2.1 at equation (2.2.5) is not imposed. The theory is derived using

principles identical to those used in the derivation of Ericksen-Leslie theory for

nematics (another reason for the inclusion of a somewhat more detailed account

of that derivation in Section 1.2.1 above), and is based on ideas used in a vari-

ety of treatises on smectic A dynamics, such as those of Martin et al. [45], de

Gennes [21,23] and E [15].

Finally, we note that the layers are conveniently described by a scalar function

Φ such that

a =
∇Φ

|∇Φ|
. (2.3.1)

For example, in an undistorted sample of SmA whose director and layer normal lie

parallel to the z-axis, the layer function is given by Φ = z, so that ∇Φ = (0, 0, 1),

|∇Φ| = 1 and thus a = (0, 0, 1). This is a particularly trivial example: for samples

exhibiting departure from equilibrium, ∇Φ and its magnitude are generally non-

constant, giving rise to the possibility ∇ × a 6= 0 and requiring us to discard

the Oseen constraint under general perturbations to the smectic layer structure.

As discussed by Stewart [69], the phenomenon of permeation turns out to be

intricately linked to Φ.

While the presentation of the theory to be outlined will follow the paper of
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Stewart from which said theory is taken [69], a great deal of detail will be omitted

in the interest of brevity.

2.3.1 Balance Laws

The balance laws as given in equations (2.2.14) - (2.2.16) once again allow us to

write

ρv̇i = ρfi + tij,j, (2.3.2)

and

ρKi + εijktkj + lij,j = 0, (2.3.3)

where all the algebraic terms remain as before. A slightly altered rate-of-work

postulate is required for smectic A:∫
Ω

D dV =

∫
Ω

ρ(fivi +Kiwi) dV +

∫
S

(tivi + liwi + Φ̇τiνi) dA

− D

Dt

∫
Ω

(
1
2
ρvivi + wDS

)
dV, (2.3.4)

where we find all the same physical quantities as in our previous rate-of-work

postulates, as well as the terms wDS corresponding to the smectic A energy energy

density, which is that proposed by De Vita and Stewart [13] to be discussed

below in Section 2.3.2 and Φ̇τiνi, the rate of work done by the layers at the

boundary surface S as introduced by E [15]. Since Φ provides a description of

the orientation of the smectic layers, Φ̇ is interpreted as their rate of displacement,

with τ representing the permeation force at the bounding surface S applied to

the layers in the volume Ω. Following a process analogous to that for SmC in

Section 2.2.2 above, the equation (2.3.4) reduces for arbitrary volumes to the

dissipation function,

D = tijvi,j + lijwi,j − wiεijktkj + (Φ̇τi),i − ẇDS, (2.3.5)

which is, as before, taken to be non-negative.

The energy will be assumed to take the form

wDS = wDS(ni, ni,j, ai, ai,j,Φ,i). (2.3.6)

Given that a may by derived directly from Φ, it is equally valid to suppose

that the dependence of wDS is only on n, ∇n and ∇Φ; however, it proves useful
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to consider contributions that can be expressed in terms of a or Φ, or both.

Following the argument put forward by Stewart, one finds the forms of the stress

and couple stress tensors to be

tij = −pδij + |∇Φ|aiJi − nk,i
∂wDS

∂nk,j
− ak,i

∂wDS

∂ak,j
+ t̃ij, (2.3.7)

lij = εikl

(
nk
∂wDS

∂nl,j
+ ak

∂wDS

∂al,j

)
+ l̃ij, (2.3.8)

respectively, where p is the usual arbitrary pressure arising from incompressibility,

and t̃ij and l̃ij denote the viscous stress and viscous couple stress, respectively.

The permeation force τ has components given by τi = −Ji, where, for conve-

nience, the vector J is defined via

Ji = −∂wA

∂Φ,i

+
1

|∇Φ|

{(
∂wA

∂aj,k

)
,k

− ∂wA

∂aj

}
(δji − ajai). (2.3.9)

The forms given above allow the dissipation inequality to be expressed in the

form

D = t̃ijvi,j + l̃ijwi,j − wiεijk t̃kj − Φ̇Ji,i ≥ 0. (2.3.10)

This inequality, in an analogous fashion to those considered for the nematic and

smectic A continuum descriptions, will be vital in the establishment of the ap-

propriate constitutive equations in Section 2.3.3 below, imposing restrictions on

the possible forms of dynamic contribution.

2.3.2 The Energy Density

In this section, we depart from the formulation set forth by Stewart, and instead

present the energy density wDS as provided by De Vita & Stewart [13], which

takes the form

wDS = 1
2
Ka

1 (∇ · a)2 + 1
2
Kn

1 (∇ · n− s0)2 + 1
2
K2∇ · {(n · ∇)n− (∇ · n)n}

+ 1
2
B0|∇Φ|−2 (1− |∇Φ|)2 + 1

2
B1

{
1− (n · a)2

}
+B2(∇ · n)

(
1− |∇Φ|−1

)
, (2.3.11)

where Ka
1 , Kn

1 , and K2 are elastic constants and and B0, B1, and B2 are constant

energy densities. The first term on the right-hand side is the energy associated

with bending of the smectic layers; the second term is the splay energy, with s0

denoting the spontaneous splay; the third term is the saddle-splay energy; the
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fourth is the energy associated with layer compression/expansion; the fifth is the

energy attributed to coupling between n and a; the sixth and final term is the

energy due to coupling between splay and compression of the layers. This energy

density provides a general description of the deformation of a lipid bilayer. Note

that we will be concerned only with SmA liquid crystals with no polarisability,

i.e. those which have no spontaneous splay. We will therefore assume s0 = 0 in

all that follows. In this case K2 = 0 and B2 = 0 [13, equation (10)], and thus the

energy we require is given by

wA = 1
2
Ka

1 (∇ · a)2 + 1
2
Kn

1 (∇ · n)2 + 1
2
B0|∇Φ|−2 (1− |∇Φ|)2

+ 1
2
B1

{
1− (n · a)2

}
. (2.3.12)

Note that, for completeness, the calculations presented in this section will retain

all six of the material constants of wDS above, as well as the spontaneous splay,

while in subsequent sections it will be assumed that we are working with wA

unless it is explicitly stated otherwise.

A comprehensive account of the physical properties of the energy density in

equation (2.3.11), as well as a range of applications to problems concerning the

behaviour of lipid bilayers, may be found in the paper of De Vita and Stewart [13].

Some Useful Identities

For convenience, we present some identities for the energy and derivatives thereof

to be utilised in subsequent sections. First, note that wDS has the equivalent

representation

wDS = 1
2
Ka

1 (δijai,j)
2 + 1

2
Kn

1 (δijni,j − s0)2

+ 1
2
K2{nj,ini,j − (δijni,j)

2 + ni(nj,ij + nj,ji)}

+ 1
2
B1

{
1− (δijniaj)

2
}

+B2(δijni,j)
{

1− (δklΦ,kl)
−1/2

}
, (2.3.13)

from which it follows that(
∂wDS

∂ni,j

)
,j

− ∂wDS

∂ni
= Kn

1 (∇ · n− s0),i + 1
2
K2 (nj,ij − nj,ji)

+B1(n · a)ai +
B2

|∇Φ|2
ajΦ,ji. (2.3.14)
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This expression will often be employed in a simplified form where spontaneous

splay is neglected and partial derivatives commute:(
∂wDS

∂ni,j

)
,j

− ∂wDS

∂ni
= Kn

1 (∇ · n),i +B1(n · a)ai +
B2

|∇Φ|2
ajΦ,ji. (2.3.15)

Furthermore, (
∂wDS

∂ai,j

)
,j

− ∂wDS

∂ai
= Ka

1 (∇ · a),i +B1(n · a)ni, (2.3.16)

and
∂wDS

∂Φ,i

=
B0

|∇Φ|3
(|∇Φ| − 1) ai +

B2

|∇Φ|2
(∇ · n)ai. (2.3.17)

Substitution of the latter two of these relations into equation (2.3.9) yields

Ji =
1

|∇Φ|
{Ka

1 (∇ · a),j −B1(n · a)nj}(δij + ajai) +
B0

|∇Φ|3
(1− |∇Φ|)ai

− B2

|∇Φ|2
(∇ · n)ai (2.3.18)

and thus

Ji,i =
Ka

1

|∇Φ|2
{
aiΦ,ij

[
ak(∇ · a),kaj − (∇ · a),j

]
+ |∇Φ|

[
aj,jii − (aj(∇ · a),jai),i

]}
+

B0

|∇Φ|4
{

(2|∇Φ| − 3)aiΦ,ijaj + |∇Φ|(1− |∇Φ|)(∇ · a)
}

+
B1

|∇Φ|2
{

(n · a)aiΦ,ij

[
(n · a)aj − nj

]
+ |∇Φ|

[
(ni − 2(n · a)ai)(n · a),i

+ (n · a)(∇ · n− (n · a)(∇ · a))
]}

+
B2

|∇Φ|3
{

(∇ · n)aiΦ,ijaj − |∇Φ|
[
ai(∇ · a),i + (∇ · n)(∇ · a)

]}
. (2.3.19)

2.3.3 Constitutive Equations

The simplest constitutive assumption on Φ̇ is that it is linear in Ji,i, subject to

the satisfaction of the dissipation inequality. This gives the permeation equation

Φ̇ = −λpJi,i, λp ≥ 0, (2.3.20)
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where λp is the permeation coefficient, based upon concepts first discussed by

Helfrich [29] in the study of cholesteric and smectic liquid crystals. This version of

the permeation equation is clearly consistent with the special case as considered

by E [15] as well as that calculated by Sukumaran & Ranganth [73] for smectic

C.

Following arguments outlined above for nematics and smectic C, it is possible

to establish that l̃ij = 0, allowing us to express the dissipation inequality in the

form

D = t̃ijvi,j − wiεijk t̃kj + λp(Ji,i)
2 ≥ 0, (2.3.21)

and, in a notation consistent with that introduced in previous sections, we con-

clude that t̃ij is a function of ai, ni, Ni and Aij, with frame-indifference requiring

it to be a hemitropic function in the given variables. In fact, the symmetry of

the SmA phase requires the dependence to be isotropic, as for nematics. The

viscous stress t̃ij will be taken to be invariant under simultaneous changes in sign

n→ −n and a→ −a.

Comment 2.1. Treating the director n as if it were nematic in type should be

feasible when it decouples from a. When the layers are not allowed to distort

independently of n, results similar to those in equation (2.1.7) are available in

terms of a. Of course, one such example is to be found in the fixed layer Leslie-

Stewart-Nakagawa theory for SmC, as given above in Section 2.2, in which the

smectic analogue of N was introduced. However, in the current framework, this

analogy breaks down on no longer constraining n and a to be mutually parallel.

It is therefore taken as a constitutive assumption that t̃ij cannot be dependent

upon A as given in equation (2.2.24).

On supposing that t̃ij has a linear dependence upon its variables, it follows

that we may write

t̃ij = Xij + YijkNk + ZijklAkl, (2.3.22)

where the coefficients Xij, Yijk, Zijkl are functions of ai and ni, and are required

to be transversely isotropic by virtue of the symmetry of the SmA phase. This,

in addition to the invariance under simultaneous changes in sign of n and a, the

properties

Aii = 0, Aij = Aji, niNi = 0, (2.3.23)

the restrictions imposed by the dissipation inequality (2.3.21), and the use of

Onsager relations, one arrives, after lengthy calculations [69] at the final form of
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the viscous stress tensor

t̃ij = α1(nkAklnl)ninj + α2Ninj + α3niNj + α4Aij + α5(njAiknk + niAjknk)

+ (α2 + α3)niAjknk + τ1(akAklal)aiaj + τ2(aiAjkak + ajAikak)

+ κ1(aiNj +Niaj + niAjkak − njAikak) + κ2(nkAklnl)(niaj + ainj)

+ κ3 {(nkAklnl)aiaj + (akAklal)ninj}

+ κ4 {2(nkAklal)ninj + (nkAklnl)(ainj + niaj)}

+ κ5 {2(nkAklal)aiaj + (akAklal)(niaj + ainj)}

+ κ6(njAikak + niAjkak + aiAjknk + ajAiknk). (2.3.24)

Noting the anti-symmetric part of the viscous stress, it follows that

εijk t̃kj = εijknj g̃k, (2.3.25)

where

g̃i = −(α3 − α2)Ni − (α2 + α3)Aijnj − 2κ1Aijaj. (2.3.26)

It follows that the dissipation inequality (2.3.21) may be expressed in the form

D = t̃ijAij −Nig̃i + λp(Ji,i)
2 ≥ 0. (2.3.27)

The form of D as given in (2.3.27) suggests that we may also write

t̃ij =
1

2

∂D
∂vi,j

, (2.3.28)

provided the Onsager relations, as stated in [69, equations (3.21)–(3.24)], hold.

There are thirteen viscosity coefficients, and it proves instructive to consider

certain special cases of the expression in equation (2.3.24) as a means of inter-

preting these viscosities physically. First, note that, if terms involving the layer

normal a are neglected and the Parodi relation for nematics (2.1.51) holds, the

viscous stress takes the form

t̃ij = α1(nkAklnl)ninj + α2Ninj + α3niNj + α4Aij

+ α5(njAiknk + niAjknk) + (α2 + α3)niAjknk,

the coefficients α1 to α5 denoting the Leslie viscosities. One may therefore in-

terpret these viscosities as being “nematic-like”, with α4 being related to usual

Newtonian isotropic fluid viscosity η by α4 = 2η. Secondly, if instead the terms
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involving n are neglected, the viscous stress takes the form

t̃ij = α4Aij + τ1(akAklal)aiaj + τ2(aiAjkak + ajAikak)

This is exactly the form known for from other descriptions of the SmA phase [15,

45], and coincides with the incompressible case as outlined by de Gennes &

Prost [23, p.415] for a linearised description of planar samples. This will be

explored further in Section 3.2 below. It follows that the viscosities τ1 and τ2 are

“smectic-like”. Finally, the coefficients κ1 to κ6 appear in contributions involving

both a and n, so may be interpreted as “coupling terms”, illustrating how the

nematic-type and SmA-type modes of behaviour are linked.

2.3.4 The Dynamic Equations

From the balance laws (2.3.2), (2.3.3) and the incompressibility condition vi,i =

0, it is possible to derive the main dynamic equations using the constitutive

equations outlined above and the identity

εijk

(
ak
∂wDS

∂aj
+ ak,l

∂wDS

∂aj,l
+ al,k

∂wDS

∂al,j

+ ak
∂wDS

∂nj
+ nk,l

∂wDS

∂nj,l
+ nl,k

∂wDS

∂al,j
+ Φ,k

∂wDS

∂Φ,j

)
= 0, (2.3.29)

derived from a modified version of the Ericksen identity for nematics [16, 68] or

SmC [41]. Details of the derivation, omitted here for brevity, may be found in

reference [69]. The dynamic equations for SmA may be summarised as follows.

The layer normal a is defined via a scalar function Φ(x, y, z, t), and satisfies

a =
∇Φ

|∇Φ|
, i.e., ai =

Φ,i

|∇Φ|
. (2.3.30)

Further, the layer normal, along with the director n, is a unit vector, so that the

constraints

aiai = 1 and nini = 1 (2.3.31)

hold. Incompressibility requires that the velocity v satisfies

vi,i = 0. (2.3.32)
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The balance of linear momentum equation takes the form

ρv̇i = ρfi − p̃,i + g̃jnj,i +Gjnj,i + |∇Φ|aiJj,j + t̃ij,j, (2.3.33)

with ρ denoting the density, fi the external body force per unit mass, p̃ = p+wDS,

where p is the pressure and wDS is the energy density, as discussed in Section 2.3.1

given by

wDS = 1
2
Ka

1 (∇ · a)2 + 1
2
Kn

1 (∇ · n− s0)2 + 1
2
K2∇ · {(n · ∇)n− (∇ · n)n}

+ 1
2
B0|∇Φ|−2 (1− |∇Φ|)2 + 1

2
B1

{
1− (n · a)2

}
+B2(∇ · n)

(
1− |∇Φ|−1

)
, (2.3.11)

g̃i is as given in (2.3.26), Gi denote the components of the generalised external

body force, which is related to the external body moment K = (Ki) per unit

mass via

ρKi = εijknjGk, (2.3.34)

J is the negative of the permeative force τ , and has components as

Ji = −∂wDS

∂Φ,i

+
1

|∇Φ|

{(
∂wDS

∂aj,k

)
,k

− ∂wDS

∂aj

}
(δji − ajai), (2.3.9)

and t̃ij is the viscous stress, as given above in equation (2.3.24). Balance of

angular momentum may be expressed in the form(
∂wDS

∂ni,j

)
,j

− ∂wDS

∂ni
+ g̃i +Gi = λni, (2.3.35)

where λ is a Lagrange multiplier arising from the unit vector constraint on n as

given in equation (2.3.31), which can generally be either evaluated or manipulated

on taking the scalar product of (2.3.35) with n. Finally, the permeation equation

is

Φ̇ = −λpJi,i, λp ≥ 0, (2.3.20)

where λp is the permeation coefficient.
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Chapter 3

General Considerations for the

Study of Flow Patterns in

Smectic A Dynamic Theory

3.1 Introduction

In this chapter, we investigate a selection of properties and applications of Stew-

art’s dynamic theory for SmA as outlined in Section 2.3 in the previous chapter.

First, in Section 3.2, we show that the theory of Stewart reduces to a system of

equations considered by de Gennes, provided the flow pattern considered satis-

fies certain conditions to be specified below. It will be seen, however, that this

system must in general include an additional equation relating the director align-

ment to the component of velocity normal to the smectic layers. Next, a linear

stability analysis of this system in the context of flow past a finite obstacle is

presented in Section 3.3. In particular, it will be seen that the inclusion of this

additional equation does not affect the stability properties of solutions in this

framework. Section 3.4 is concerned with the derivation of a two-dimensional

system of linear equations from Stewart’s theory, incorporating all viscosity and

energy terms. These allow for the study of a whole host of flow patterns, some

elementary examples of which are outlined in Section 3.5. In section 3.6, we

present a linear stability analysis of the system derived in Section 3.4, demon-

strating via both analytical examinations and plots based on typical numerical

values of SmA physical parameters, that instabilities in flow patterns of SmA are

anticipated by Stewart’s theory. The realisation of linear instability is found to be

contingent upon the violation of a set inequalities, determined by the appropriate

Routh-Hurwitz stability criteria (Appendix B), which involve the SmA material
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parameters and the incident perturbative wave numbers.

3.2 An Important Simplification

In this section, it will be shown that the dynamic equations outlined above in

Section 2.3.4 reduce to those considered by de Gennes in his seminal paper,

“Viscous Flow in Smectic A Liquid Crystals” [22], provided that the flow pattern,

and the consequent response thereto of the smectic, satisfies a particular set of

assumptions. (The viscous flow equations of de Gennes are themselves derived

as a simplification of the theory set forth by Martin et al. [45] under a set of

physically pertinent assumptions similar to those to be considered below.) While

de Gennes’ equations do not take into account director motion, we show that this

reduced form of Stewart’s equations leads to an additional equation relating the

component of velocity the perpendicular to the plane of the layers to the spatial

gradient of the director across the sample. It will be shown that, in requiring

such gradients to vanish, the resultant system is not valid for velocity profiles

with zero (or at least vanishingly small) velocity perpendicular to the layers.

Consider a sample of SmA such that the layer normal a lies along the positive

z-axis in an appropriately chosen Cartesian coordinate system. This corresponds

to flat layers:

Φ ≡ z =⇒ a ≡ (0, 0, 1). (3.2.1)

Let us assume that, on subjecting the system to flow, the director n may deviate

only a small amount from its unstrained alignment along the z-axis. More pre-

cisely, if θ denotes the angle between n and the z-axis (and hence between n and

a by equation (3.2.1)), terms of order θ2 and above may be considered negligibly

small in the calculations to follow.

Recall the balance of linear momentum equation from Section 2.3:

ρv̇i = ρfi − p̃,i + g̃jnj,i +Gjnj,i + |∇Φ|aiJj,j + t̃ij,j. (2.3.33)

Let us first consider flows in which body forces are absent, so that fi = Gi = 0.

Further, it is readily checked that wA = O(θ2) and thus p̃ = p+O(θ2). Equation

(2.3.33) may then be written in the approximate form

ρv̇i = −p,i + g̃jnj,i + aiJj,j + t̃ij,j. (3.2.2)

The permeation equation, Φ̇ + λpJj,j = 0, reads Jj,j = −vz/λp, which, on substi-
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tuting into (3.2.2), leads to

ρ(∂tvi + vj∂jvi) = −p,i + g̃jnj,i −
vzai
λp

+ t̃ij,j. (3.2.3)

It is natural to expect that high velocities and velocity gradients would signifi-

cantly affect the alignment of the sample, rendering our assumption that n·a ≈ 1

invalid. We therefore impose the requirements that flow is sufficiently slow and

velocity gradients sufficiently small that the advection term vj∂jvi may be ne-

glected and aivz ≈ nivz, and thus equation (3.2.3) may be approximated by

ρ∂tvi = −p,i + g̃jnj,i −
vzni
λp

+ t̃ij,j. (3.2.4)

Finally, if we take the often-employed symmetric approximation [80,81]

t̃ij,j ≈ σij = α4Aij + τ1(akAklal)aiaj + τ2(aiAjkak + ajAikak), (3.2.5)

so that the physical properties that play a significant role lead to the elemen-

tary inclusion of only the isotropic and “smectic-like” viscosities, equation (3.2.4)

reduces further to

ρ∂tvi = σij,j − p,i −
nivz
λp

, (3.2.6)

where the terms g̃jnj,i vanish due to our neglect of the anti-symmetric part of

the viscous stress in equation (3.2.5). (One could instead impose the additional

constraint that spatial director gradients are negligibly small if it proved desirable

to retain asymmetries in the viscous stress, though see Comment 3.1 below.)

Equation (3.2.6) is exactly as in [22, equation (4)], provided one sets 2ν1 = α4,

2ν1 = α4 + τ1 + 2τ2, and 2ν3 = α4 + τ2.

The angular momentum balance equations simply read

B1ai = λni =⇒ λ = B1 +O(θ2). (3.2.7)

We have therefore shown that the dynamic equations of Stewart collapse to a

reduced system of four equations in four continuum variables for a sample of

SmA subject to the following set of physically motivated assumptions:

1. flat layers (though very slight deviations from this will still render equa-

tions (3.2.6) approximately valid).

2. No dislocations or other defects in the sample.

3. Sufficiently slow velocities to ensure little decoupling between n and a.
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4. A symmetric viscous stress tensor.

This system reads

ρ∂tvi = σij,j − p,i −
nivz
λp

. (3.2.6)

vi,i = 0, (3.2.8)

Comment 3.1. Recall equation (2.3.19); when spontaneous splay is absent, it

reads

Ji,i =
Ka

1

|∇Φ|2
{
aiΦ,ij

[
ak(∇ · a),kaj − (∇ · a),j

]
+ |∇Φ|

[
aj,jii − (aj(∇ · a),jai),i

]}
+

B0

|∇Φ|4
{

(2|∇Φ| − 3)aiΦ,ijaj + |∇Φ|(1− |∇Φ|)(∇ · a)
}

+
B1

|∇Φ|2
{

(n · a)aiΦ,ij

[
(n · a)aj − nj

]
+ |∇Φ|

[
(ni − 2(n · a)ai)(n · a),i

+ (n · a)(∇ · n− (n · a)(∇ · a))
]}
. (3.2.9)

It is readily observed that, under the assumptions of completely flat layers and

very little decoupling of n and a, one arrives at Ji,i ≈ B1θ,x, which, on substitu-

tion into the permeation equation, gives

vz ≈ −λpB1θ,x, (3.2.10)

providing a fifth governing equation relating the z-component of the velocity to

the spatial variation of the director alignment. Imposing the strict equality n ≡ a
would require that either n = (0, 0, 1), from which vz ≡ 0, or that a is allowed

to vary via

Φ = z − u(x, y, z, t).

The former case restricts us to the study flows whose velocity components lie

strictly in the xy-plane. In this case, equations (2.1.25) and (3.2.6) may be

written

vx,x + vy,y = 0, (3.2.11)

ρ∂tvx + p,x = 1
2
α4 (vx,xx + vx,yy + vx,zz) + 1

2
τ2vx,zz, (3.2.12)

ρ∂tvy + p,y = 1
2
α4 (vy,xx + vy,yy + vy,zz) + 1

2
τ2vy,zz, (3.2.13)

p,z = 1
2
(α4 + τ2)(vx,zx + vy,zy) = 0. (3.2.14)

In the latter case, we would then require a further governing equation relating u
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to the other variables in the system, though the requirement n = a to order θ

would imply u+ θ,x ≈ 0.

It follows from this comment that, for de Gennes’ equations to be a complete

description of SmA subject to flow under assumptions 1– 4 outlined above, they

must be supplemented by equation (3.2.10), leading to a system of five equations

in five variables.

The more general case of flows in which both n and a are allowed to vary

with n 6= a is considered below in Section 3.4.

3.3 Linear Stability Analysis of Flow Past a

Finite Obstacle

We now examine the stability of a two-dimensional system of equations, derived

from (2.1.25) and (3.2.6) above, governing rectilinear flow of a sample of SmA in

the presence of an obstacle. Specifically, consider a finite barrier of unit length

placed in the sample. The barrier is taken to lie along the z-axis with its centre

at the origin, as outlined in reference [82]. In addition to the assumptions 1– 4

outlined above, we impose steady flow and a sufficiently high aspect ratio to allow

for the validity of a lubrication approximation (see [22] and Chapter 4). With

the possible exception of the region in the immediate vicinity of the obstacle,

flow within the xy-plane will be a straight line (in fact, we anticipate vz = 0 in

regions far from the obstacle, so for the most part flow is a straight line parallel

to the xy-plane), and thus we may choose our axes such that there is no velocity

component in the y-direction, and none of the terms has any y-dependence. In

this case, the governing equations (3.2.6) and (3.2.8) reduce to

vx,x + vz,z = 0, (3.3.1)

p,x = ν3vx,zz, (3.3.2)

p,z = −vz/λp, (3.3.3)

with 2ν3 = α4 + τ2. Boundary conditions are given by

vx(0, z) =

0 when |z| < 1/2,

v0 when |z| > 1/2,
vz(0, z) = 0. (3.3.4)
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Figure 3.1: Schematic representation of the obstacle problem, with the finite
barrier of unit length located at the origin. See also references [75,82].

An exact solution for this problem has been found [82]:

vx = v0 +
v0

2

{
erf

(
2z + 1

4
√
δ|x|

)
− erf

(
2z − 1

4
√
δ|x|

)}
, (3.3.5)

vz = ± v0

√
δ√

π|x|
sinh

(
z

4δ|x|

)
exp

(
−4z2 + 1

16δ|x|

)
, (3.3.6)

where v0 is the value of vx far downstream of the obstacle, erf is the usual error

function, defined via

erf(x) :=
2√
π

∫ x

0

e−t
2

dt,

and δ =
√
λpν3. The plus (minus) sign is taken for x < 0 (x > 0). The pressure p

may be found by integrating (3.3.3) with respect to z and applying an appropriate

boundary condition.

We now investigate the response of this system by imposing time-dependent

perturbations to the known solutions of the form

v̂x = vx + ε exp{ωt+ i(kxx+ kzz)}, (3.3.7)

v̂z = vz + ζ exp{ωt+ i(kxx+ kzz)}, (3.3.8)

p̂ = p+ ϕ exp{ωt+ i(kxx+ kzz)}, (3.3.9)
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where kx, kz ∈ R. Substitution of these into the unsteady system

vx,x + vz,z = 0, (3.3.10)

ρvx,t + p,x − ν3vx,zz = 0, (3.3.11)

ρvz,t + p,z +
vz
λp

= 0, (3.3.12)

leads to the linear system ikx ikz 0

ωρ+ ν3kz
2 0 ikx

0 ωρ− 1/λp ikz


 ε

ζ

ϕ

 =

 0

0

0

 . (3.3.13)

For non-trivial solutions, the determinant of the 3 × 3 matrix on the left-hand

side of (3.3.13) must be zero [34], which leads to the condition

ω = − 1

ρ(kx
2 + kz

2)

(
kx

2

λp
+ ν3kz

4

)
. (3.3.14)

Given that ρ, λp, ν3 > 0, it is clear that ω < 0 for all kx, kz, and hence the

solutions (3.3.5) and (3.3.6) to equations (3.3.1)–(3.3.3) are linearly stable to

small oscillatory perturbations.

Comment 3.2. Including the equation θ,x = −vz/λpB1 and carrying out the

same stability analysis for the resultant 4×4 system does not change this outcome:

ω is exactly as given in (3.3.14).

The problem of flow past an obstacle will be discussed further in Section 4.3

below.

3.4 Linearising the Full System of Equations

Motivated by the stability properties displayed by solutions to the system of

equations above, we wish to ascertain in a more general setting the linear stability

of solutions for flow patterns and resultant configurations in Stewart’s theory.

It has already been shown by Stewart [69, Section 5] that, if one assumes the

viscous stress to be of the form given above in equation (3.2.5) and a somewhat

simplified energy density, a sample of planar-aligned SmA remains stable to small

oscillatory perturbations of the form of those given in equations (3.3.7)–(3.3.9).

It is as yet unknown whether the full system of equations which form Stewart’s

theory permits instability, and, if so, under what conditions on both the physical
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parameters characterising the smectic, and the frequency and wave number of the

perturbation such instability should arise. It is towards the aim of investigating

such properties that the work of this section is directed.

As above, we consider a sample of SmA, initially in an unstrained configura-

tion such that Φ ≡ z and n = a ≡ (0, 0, 1), and subject to the following

1. The sample is free of defects and remains so in the presence of flow. Again,

this requires sufficiently slow velocities, and small spatial gradients thereof.

2. The flow may be treated as two-dimensional, enabling a choice of axes such

that

v = (vx(x, z, t), 0, vz(x, z, t)) , |vx|, |vz| � 1, (3.4.1)

for simplicity.

3. The director and layer normal are allowed to vary and, moreover, to do so

independently of one another. We take

Φ = z − u(x, z, t), |u| � 1, (3.4.2)

n = (θ(x, z, t), 0, 1) , |θ| � 1. (3.4.3)

Equation (3.4.2) suggests that

∇Φ = (−u,x, 0, 1− u,z) , |∇Φ| ≈ 1− u,z, (3.4.4)

from which

a ≈ (−u,x, 0, 1) . (3.4.5)

Once again, we assume that body forces are absent. Stewart’s equations may

then be written in the form

nini = 1 +O(θ2), (3.4.6)

vx,x + vz,z = 0, (3.4.7)

Φ̇ + λpJj,j = 0, (3.4.8)

ρv̇i = −p,i + ΦiJj,j + g̃jnj,i + t̃ij,j, (3.4.9)(
∂wA

∂ni,j

)
,j

− ∂wA

∂ni
+ g̃i = λni. (3.4.10)
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The vector g̃ = (g̃x, 0, g̃z) is given by

g̃x = −(γ1θ,t + ν1vx,z + ν2vz,x), (3.4.11)

g̃z = (γ1 + 2ν2)vx,x, (3.4.12)

where

ν1 = α2 + κ1, ν2 = α3 + κ1, γ1 = α3 − α2 = ν2 − ν1. (3.4.13)

Then, since we anticipate only small director gradients, it follows that the terms

g̃jnj,i are of a magnitude which allows us to treat them as negligibly small in

equation (3.4.9). Making use of identity (2.3.18) in Section 2.3.2, one finds

J = (B1(θ + u,x)−Ka
1u,xxx, 0, B0u,z) , (3.4.14)

=⇒ Ji,i = B0u,zz +B1(θ,x + u,xx)−Ka
1u,xxxx, (3.4.15)

while some tedious calculations yield

t̃xj,j = η1vx,xx + η2vx,zz + ν1θ,tz, (3.4.16)

t̃yj,j = 0, (3.4.17)

t̃zj,j = η3vz,xx + η4vz,zz + ν2θ,tx, (3.4.18)

where

2η1 = α4 − α2 − α5 − τ2 − 2κ6, (3.4.19)

2η2 = α4 − α2 + α5 + τ2 − 2κ1 + 2κ6, (3.4.20)

2η3 = α2 + 2α3 + α4 + α5 + τ2 + 2(κ1 + κ6), (3.4.21)

2η4 = 2α1 + α2 + 2α3 + α4 + 3α5 + 2τ1 + 3τ2

+ 4(κ2 + κ3) + 8(κ4 + κ5) + 6κ6. (3.4.22)

Finally, if we take advective terms to be negligible as above, the balance of linear

momentum equations read

ρvx,t + p,x = η1vx,xx + η2vx,zz + ν1θ,tz, (3.4.23)

p,y = 0, (3.4.24)

ρvz,t + p,z = η3vz,xx + η4vz,zz + ν2θ,tx

−Ka
1u,xxxx +B0u,zz +B1(θ,x + u,xx). (3.4.25)
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On employing relation (2.3.15), it follows that the balance of angular momen-

tum equations may be written

Kn
1 θ,xx −B1u,x − γ1θ,t − ν1vx,z − ν2vz,x = λθ, (3.4.26)

Kn
1 θ,xz +B1 + (γ1 + 2ν2)vx,x = λ. (3.4.27)

Equation (3.4.27) provides us with an exact expression for λ, and, on substitution

into (3.4.26), yields the relation

Kn
1 θ,xx −B1(θ + u,x)− γ1θ,t − ν1vx,z − ν2vz,x = O(θ2). (3.4.28)

Finally, the permeation equation may be written

vz − u,t = λp {Ka
1u,xxxx −B0u,zz −B1(θ,x + u,xx)} . (3.4.29)

Equations (3.2.8), (3.4.23), (3.4.25), (3.4.28) and (3.4.29) provide a system of five

equations in the five unknown variables p, vx, vz, θ and u. A detailed analysis of

this system will be carried out in Section 3.6.

3.5 Flows Between Parallel Plates: Some

Illustrative Examples

This section serves to illustrate some applications of the linearised two-dimensional

system derived above, which consists of equations (3.6.1), (3.4.23), (3.4.25), (3.4.28)

and (3.4.29). Via three simple examples, we show that the velocity profiles of flow

parallel to the layers displays Newtonian behaviour in this limit, while flow nor-

mal to the layers leads to a plug-like velocity profile as derived by de Gennes [22].

We also establish solutions for the director profile and layer configurations via

the equations for angular momentum balance and permeation.

3.5.1 Simple Shear Flow

Consider a sample of SmA confined between two infinite parallel plates placed

at z = 0 and z = d. The sample is initially at rest, then, at a given moment, is

subject to a simple shear induced by moving the top plate at a constant velocity

v0 along the x-axis. We ignore transients that may be induced by the initial

acceleration of the top plate, and seek steady-state (i.e., time-independent) solu-

tions for the velocity profile, pressure, director, and layer normal. It is natural to
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z

xxz = 0
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Figure 3.2: Configuration for simple shear flow. The top plate is moved with a
constant velocity v0, while the constant pressure gradient G = p,x is applied in
the plane parallel to the smectic layers.

assume that the velocity takes the form

v = (v(z), 0, 0), (3.5.1)

automatically satisfying requirement (3.2.8). The balance of linear momentum

equations reduce to

p,x = η2v
′′(z), p,y = p,z = 0, (3.5.2)

Then, with Φ and n as given in (3.4.2) and (3.4.3), the equations governing

angular momentum balance and permeation are, respectively,

Kn
1 θ,xx = B1(θ + u,x) + ν1v

′(z), (3.5.3)

Ka
1u,xxxx = B0u,zz +B1(θ,x + u,xx). (3.5.4)

Equations (3.5.2) show that p is a function of x only, and, on integrating the first

of these equations with respect to x, we see that

p = η2xv
′′(z) + f1(z) =⇒ v′′′(z) = −f

′
1(z)

η2x
,

but, since v is a function of z only, it follows that f ′1(z) = 0 and thus p,x = G

(say), a constant. Thus

v(z) =
Gz2

2η2

+ b1z + b2, (3.5.5)

45



where the constants b1 and b2 may be determined by imposing no-slip conditions

at the bounding plates, viz., v(0) = 0, v(d) = v0; from this, we have

v(z) =
Gz(z − d)

2η2

+
v0z

d
. (3.5.6)

Note that this is exactly the velocity profile one finds when analysing the same

problem for an isotropic Newtonian fluid with viscosity η2. In order to determine

the director profile and the layer displacement we must substitute this expression

into equation (3.5.3) then solve this and equation (3.5.4) together. For instance,

if it is assumed that the director alignment and layer displacement do not vary

along the x-direction and the layer normal is fixed, we obtain

θ = −ν1v
′(z)

B1

=
Gν1(d− 2z)

2B1η2

− ν1v0

B1d
, u ≡ u(z) = b3z + b4, (3.5.7)

for some constants b3 and b4. The local layer normal remains undisturbed. Other

configurations of the SmA may of course be possible under this simple shear flow,

but for brevity we omit such explorations from this illustrative digression.

3.5.2 Plane Poiseuille flow

Here, we choose to fix two bounding plates at z = ±d and impose a constant

pressure gradient G = p,x along the x-direction; assuming the velocity is as

in (3.5.1), we arrive at the following relations for balance of linear momentum

v′′(z) = G/η2, p,y = p,z = 0. (3.5.8)

The boundary velocities are now v(−d) = v(d) = 0, so that

v(z) =
G(z2 − d2)

2η2

. (3.5.9)

The equations for angular momentum balance and permeation are then

Kn
1 θ,xx = B1(θ + u,x) +

Gν1z

η2

, (3.5.10)

Ka
1u,xxxx = B0u,zz +B1(θ,x + u,xx). (3.5.11)

Combining these yields

Ka
1u,xxxx = B0u,zz +Kn

1 θ,xxx. (3.5.12)
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Figure 3.3: Schematic demonstrating plane Poiseuille flow. The top and bottom
plates are stationary and a constant pressure gradient G = p,x is applied in the
x-direction.

There are a few possible cases here, of which we consider only the following

three.

Case 1: Director Alignment Independent of x

We may solve equation (3.5.12) by assuming variables-separable solution for u of

the form u(x, z) = ϕ(x)ψ(z), which leads to the following eigenvalue problem:

λ2
a

ϕ(4)(x)

ϕ(x)
=
ψ′′(z)

ψ(z)
= κ, (3.5.13)

where λ2
a = Ka

1/B0 and κ is some constant to be determined. We anticipate

symmetry about the z-axis in the layer displacement u and director θ, so that

u(x, z) = u(x,−z), and require that both remain finite as x→ ±∞, from which

it readily follows that equations (3.5.13) yield non-trivial solutions only when

κ > 0. The general solutions are

ϕ(x) = c1 sinh

{(
κ

λ2
a

)1/4

x

}
+ c2 cosh

{(
κ

λ2
a

)1/4

x

}

+ c3 sin

{(
κ

λ2
a

)1/4

x

}
+ c4 cos

{(
κ

λ2
a

)1/4

x

}
, (3.5.14)

ψ(z) = c5 sinh
(√

κz
)

+ c6 cosh
(√

κz
)
. (3.5.15)
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Imposing the conditions that u is finite for all x and that u(x, z) = u(x,−z) yields

u(x, z) =

{
c7 sin

[(
κ

λ2
a

)1/4

x

]
+ c8 cos

[(
κ

λ2
a

)1/4

x

]}
cosh

(√
κz
)
, (3.5.16)

where c7 = c3c6, c8 = c4c6. The director alignment θ is then determined by

differentiation with respect to x of our expression for u in (3.5.16) and substitution

into equation (3.5.10), viz.,

θ(x, z) = −∂xu−
Gν1z

η2B1

=

(
κ

λ2
a

)1/4
{
c8 sin

[(
κ

λ2
a

)1/4

x

]
− c7 cos

[(
κ

λ2
a

)1/4

x

]}
cosh

(√
κz
)

− Gν1z

η2B1

. (3.5.17)

Since the director alignment has been assumed independent of x, it follows that

either

(i) κ = 0, or

(ii) c7 = c8 = 0.

Both cases correspond to constant u and therefore no change in the layer dis-

placement, with the director simply a linear function of z.

Case 2: Layer Displacement Independent of x

This is equivalent to the assumption that the layer normal remains constant. The

equations for angular momentum balance and permeation read

Kn
1 θ,xx = B1θ +

Gν1z

η2

, (3.5.18)

0 = B0u,zz +B1θ,x. (3.5.19)

From the latter of these, it is evident that θ,x = θ,x(z) =⇒ θ = xθ,x + g1(z).

Substitution into (3.5.18) then yields

θ = xθ,x + g1(z) =
Gν1z

η2B1

, (3.5.20)

revealing that θ is a function of z only. Finally, one finds from equation (3.5.19)

that u is a linear function of z.
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Taken together, cases 1 and 2 reveal that the director is independent of x if

and only if the layer displacement is also independent of x, and making either of

these assumptions leads to the solution θ = Gν1z/η2B1 as well as no change in

the local layer normal.

Case 3: No Decoupling of n and a

In this case, θ + u,x = 0, and thus we may use separation of variables to obtain

the solution (3.5.16) for u. However, angular momentum balance then requires

Kn
1 θ,xx = −Kn

1 u,xxx =
Gν1z

η2

, (3.5.21)

leading to an immediate inconsistency. If instead one solves the angular momen-

tum balance equation first, it follows that u must be an arbitrary linear function

of z in order to preserve finiteness of u as x→∞. It then follows that θ ≡ 0 and

both the director and layer normal remain unchanged from their initial states.

3.5.3 Plug Flow

As a final example, consider a sample of SmA confined between two parallel plates,

this time lying along the yz-plane at x = ±d. Applying a constant pressure

gradient G = p,z and anticipating a velocity profile of the form

v = (0, 0, v(x)), (3.5.22)

we find that condition (3.2.8) holds and equations (3.4.23)-(3.4.25) may be written

p,x = p,y = 0, v′′(x)− v(x)

δ2
3

=
G

η3

, (3.5.23)

where δ3 =
√
λpη3, while equations (3.4.28) and (3.4.29) reduce to

Kn
1 θ
′′(x) = B1{θ(x) + u′(x)}+ ν2v

′(x) (3.5.24)

and
v(x)

λp
= Ka

1u
(4)(x) +B1{θ(x) + u′(x)}′, (3.5.25)

respectively. Note that we have assumed that θ and u are functions of x only.

The general solution of equation (3.5.23)3 is

v(x) = β1 sinh(x/δ3) + β2 cosh(x/δ3)− λpG, (3.5.26)
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x

z

x= d

x= -d

Figure 3.4: Schematic diagram showing the geometry for plug flow. A constant
pressure gradient G = p,z is applied in the z-direction, normal to the planar
layers.

where the constants β1 and β2 are determined via the no-slip boundary con-

ditions: v(±d) = 0, yielding

v(x) = λpG

{
cosh(x/δ3)

cosh(d/δ3)
− 1

}
. (3.5.27)

Note that this is exactly the velocity profile derived by de Gennes [22, equation

(8)] for this problem. Differentiation of equation (3.5.24) with respect to x yields

B1(θ′ + u′′) = Kn
1 θ
′′′ − ν2v

′′,

which may be substituted into (3.5.25) to give

Ka
1u

(4) = Kn
1 θ
′′′ − ν2v

′′ + v/λp, (3.5.28)

i.e.,

Ka
1 (θ + u′)′′′ = (Kn

1 +Ka
1 )θ′′′ +G

{(
1− λpν2

δ2
3

)
cosh(x/δ3)

cosh(d/δ3)
− 1

}
. (3.5.29)

Integration of equation (3.5.25) three times with respect to x yields

Ka
1 (θ + u′) = (Ka

1 +Kn
1 ) θ +G

{
δ3(δ2

3 − λpν2) sinh(x/δ)

cosh(d/δ3)
− x3

6

}
+ β3x

2 + β4x+ β5, (3.5.30)

for some constants β3, β4, β5. There are two cases to consider: one in which the

director and layer normal are coincident, and the more general case in which they
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are not.

Case 1: n = a

In this case the left-hand side, and thereby the right-hand side, of equation (3.5.30)

is zero. One simply rearranges this relation to obtain

θ =
G

Ka
1 +Kn

1

{
δ3(λpν2 − δ2

3) sinh(x/δ3)

cosh(d/δ3)
+
x3

6

}
+ β6x

2 + β7x+ β8. (3.5.31)

It is reasonable to expect asymmetry in the director profile, so that θ is an odd

function of x, leading us to conclude that β6 = β8 = 0. An anchoring condition at

either boundary will serve to uniquely determine the constant β7. The function

u is then given by rearranging and integrating θ + u′ = 0 to give

u =
G

Ka
1 +Kn

1

{
δ2

3(δ2
3 − λpν2) cosh(x/δ3)

cosh(d/δ3)
− x4

24

}
+
β7x

2

2
+ β9, (3.5.32)

where β9 is an arbitrary constant.

Case 2: n 6= a

Substitution of equation (3.5.30) into (3.5.24) yields the differential equation

Kn
1 θ
′′ =

B1(Ka
1 +Kn

1 )θ

Ka
1

+

{
δ3(δ2

3 − λpν2)

Kn
1

+
λpν2

δ3

}
GB1 sinh(x/δ3)

cosh(x/δ3)

− GB1x
3

6Ka
1

+ p1x, (3.5.33)

where, as in case 1 above, we have assumed that the director profile is such that

θ(x) = −θ(−x). Solving this equation for θ, we find that

θ =

{
δ2

3(δ2
3 − λpν2)

Ka
1

+ λpν2

}
GKa

1B1δ3 sinh(x/δ3)

{Ka
1 +Kn

1 −B1δ2
3(Ka

1 +Kn
1 )} cosh(d/δ3)

+ p2 sinh

{√
B1

(
1

Ka
1

+
1

Kn
1

)
x

}
+

Gx3

6(Ka
1 +Kn

1 )
+ p3x, (3.5.34)

where p2 and p3 are constants to be determined via anchoring conditions. Finally,

a solution for u may be obtained by substitution of (3.5.34) into (3.5.30) and
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integrating with respect to x. Performing the integration, we obtain

u =
ΓGδ2

3

cosh(d/δ3)
cosh(x/δ3) + p4 cosh

{√
B1

(
1

Ka
1

+
1

Kn
1

)
x

}

+

{
Kn

1

(Ka
1 +Kn

1 )
− 1

}
Gx4

24Ka
1

+
p5x

2

2
+ p6, (3.5.35)

where

Γ =
Kn

1B1

Ka
1K

n
1 −B1δ2

3(Ka
1 +Kn

1 )

[
δ2

3(δ2
3 − λpν2)

Ka
1

− λpν2

]
+
δ2

3 − λpν2

Ka
1

(3.5.36)

and

p4 =
Kn

1 p2

Ka
1

{
B1

(
1

Ka
1

+
1

Kn
1

)}−1/2

,

while p5 and p6 are constants to be determined by suitable conditions on the layer

displacement.

Note that a more detailed account of pressure-driven flow applied perpendic-

ularly to the layered structure may be found in the work of Stewart et al. [72], in

which the asymptotic properties of the fully nonlinear system are analysed and

multiple boundary layers identified.

3.6 Linear Stability Analysis for the Full System

The theory of Stewart under the simplifying assumptions 1-4 in Section 3.4 above

takes the approximate reduced form

vx,x + vz,z = 0, (3.6.1)

ρvx,t + p̃,x = η1vx,xx + η2vx,zz + ν1θ,tz, (3.6.2)

ρvz,t + p̃,z = η3vz,xx + η4vz,zz + ν2θ,tx

−Ka
1u,xxxx +B0u,zz +B1(θ,x + u,xx), (3.6.3)

Kn
1 θ,xx = B1(θ + u,x)− (γ1θ,t + ν1vx,z + ν2vz,x), (3.6.4)

vz − ut = λp{Ka
1u,xxxx −B0u,zz −B1(θ,x + u,xx)}, (3.6.5)

Following our approach in Section 3.3, we assume that we have a sample of SmA,

either initially at rest and in a relaxed configuration or subject to a flow pattern

such that equations (3.6.1)–(3.6.5) are valid. We therefore anticipate a velocity
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profile of the form

v = (vx(x, z, t), 0, vz(x, z, t)) , (3.6.6)

while the director and layer normal are given by

n = (θ(x, z, t), 0, 1), a = (−∂xu(x, z, t), 0, 1), |θ|, |u| � 1, (3.6.7)

with θ + ∂xu ≈ 0. We wish to consider a set of oscillatory perturbations to the

quantities vx, vz, p, θ, and u. Motivated by Section 5 in [69], in which solutions

to a simplified version of this system was shown to be linearly stable to all such

perturbations, we assume the perturbed quantities take the form

v∗x = vx + v̂x exp{ωt+ i(qxx+ qzz)}, (3.6.8)

v∗z = vz + v̂z exp{ωt+ i(qxx+ qzz)}, (3.6.9)

p∗ = p+ p̂ exp{ωt+ i(qxx+ qzz)}, (3.6.10)

θ∗ = θ + θ̂ exp{ωt+ i(qxx+ qzz)}, (3.6.11)

u∗ = u+ û exp{ωt+ i(qxx+ qzz)}, (3.6.12)

where the amplitudes of the perturbations denoted by hats have modulus � 1

and qx, qz ∈ R are wave numbers making up the wave vector q = (qx, 0, qz).

Substitution of these quantities into the dynamic equations (3.6.1)–(3.6.5) leads

to a 5× 5 linear system of the form Λijξj = 0, where

[Λij] =


0 0 0 qx qz

iqx −iqzν1ω 0 X 0

iqz −iqx(B1 + ν2ω) Q 0 Y

0 B1 +Kn
1 q

2
x + γ1ω iB1qx iν1qz iν2qz

0 iλpB1qx −(ω + λpQ) 0 1

 , (3.6.13)

with

X = ρω + η1q
2
x + η2q

2
z , (3.6.14)

Y = ρω + η3q
2
x + η4q

2
z , (3.6.15)

Q = Ka
1 q

4
x +B0q

2
z +B1q

2
x, (3.6.16)

and

ξ =
(
p̂, θ̂, û, v̂x, v̂z

)T
. (3.6.17)
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This linear system yields non-trivial solutions for the quantities making up the

entries of the vector ξ provided the determinant of the matrix [Λij] is zero. That

is,

0 = q2
x

{
Y
[(
B1 +Kn

1 q
2
x + γ1ω

)
(ω + λpQ)− λpB2

1q
2
x

]
+ q2

x ν2 [λpQB1 − (B1 + ν2ω) (ω + λpQ)]

−B1q
2
x (B1 + ν2ω) +Q

(
B1 +Kn

1 q
2
x + γ1ω

)}
+ q2

x q
2
z

{
ν1 [(B1 + ν2ω)(ω + λpQ)− λpQB1] + ν1

[
ν2(ω2 + λpQω) +B1ω

] }
+ q2

z

{
X
[(
B1 +Kn

1 q
2
x + γ1ω

) (
ω + λpQ− λpB2

1q
2
x

)]
− q2

z ν
2
1

(
ω2 + λpQω

) }
. (3.6.18)

After some tedious but routine algebraic manipulation, equation (3.6.18) may be

written in the form

ω3 + p1ω
2 + p2ω + p3 = 0, (3.6.19)

where

ργ1q
2p1 = γ1

{
(η1 + η4)q2

x q
2
z + η2q

4
z + η3q

4
x

}
+ ρq2

(
B1 +Kn

1 q
2
x + γ1λpQ

)
−
(
ν1q

2
z − ν2q

2
x

)2
, (3.6.20)

ργ1q
2p2 =

{
(η1 + η4)q2

x q
2
z + η2q

4
z + η3q

4
x

} (
B1 +Kn

1 q
2
x + γ1λpQ

)
+ ρλpq

2
{
B1

(
Ka

1 q
4
x +B0q

2
z

)
+QKn

1 q
2
x

}
− λpQ

(
ν1q

2
z − ν2q

2
x

)2

+ q2
x

[
γ1Q+ 2B1

(
ν1q

2
z − ν2q

2
x

)2
]

(3.6.21)

ργ1q
2p3 = λp

{
(η1 + η4)q2

x q
2
z + η2q

4
z + η3q

4
x

}{
B1

(
Ka

1 q
4
x +B0q

2
z

)
+QKn

1 q
2
x

}
,

(3.6.22)

on introducing the notation q2 = q2
x + q2

z . The criteria for stability are simply

the Routh-Hurwitz conditions for a cubic polynomial (see Appendix B): for the

zeros of equation (3.6.19) to lie in the left half-plane, we require:

p1 > 0, p3 > 0, p1p2 > p3. (3.6.23)
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Since ργ1q
2 > 0, these criteria are equivalent to

0 < γ1

{
(η1 + η4)q2

x q
2
z + η2q

4
z + η3q

4
x

}
+ ρq2

(
B1 +Kn

1 q
2
x + γ1λpQ

)
−
(
ν1q

2
z − ν2q

2
x

)2
, (3.6.24)

0 <
{
λp
[
(η1 + η4)q2

x q
2
z + η2q

4
z + η3q

4
x

]
+ q2

x

}{
B1

(
Ka

1 q
4
x +B0q

2
z

)
+QKn

1 q
2
x

}
,

(3.6.25)

0 <
{
γ1

[
(η1 + η4)q2

x q
2
z + η2q

4
z + η3q

4
x

]
+ ρq2(B1 +Kn

1 q
2
x + γ1λpQ)

−
(
ν1q

2
z − ν2q

2
x

)2
}{ [

(η1 + η4)q2
x q

2
z + η2q

4
z + η3q

4
x

] (
B1 +Kn

1 q
2
x + γ1λpQ

)
+ ρλpq

2
[
B1

(
Ka

1 q
4
x +B0q

2
z

)
+QKn

1 q
2
x

]
− λpQ

(
ν1q

2
z − ν2q

2
x

)2

+ q2
x

[
γ1Q+ 2B1

(
ν1q

2
z − ν2q

2
x

)2
]}
− ργ1q

2
{
λp
[
(η1 + η4)q2

x q
2
z + η2q

4
z

+ η3q
4
x

]
+ q2

x

}{
B1

(
Ka

1 q
4
x +B0q

2
z

)
+QKn

1 q
2
x

}
, (3.6.26)

respectively.

3.6.1 Analytical Examination of the Stability Criteria

If one or more of the conditions (3.6.24)-(3.6.26) is not satisfied for a given set of

values of the physical parameters and incident wave numbers, the SmA structure

and flow pattern will exhibit an instability. Let us first consider condition (3.6.24):

setting qx = q cosψ and qz = q sinψ allows us to write this inequality in the form

χ2q
4 + χ1q

2 + χ0 > 0, (3.6.27)

where

χ0 = ρB1, (3.6.28)

χ1 = γ1

{
(η1 + η4) sin2 ψ cos2 ψ + η2 sin4 ψ + η3 cos4 ψ

}
+ ρ

{
Kn

1 cos2 ψ + γ1λp
(
B0 sin2 ψ +B1 cos2 ψ

)}
−
(
ν1 sin2 ψ − ν2 cos2 ψ

)2
, (3.6.29)

χ2 = λpγ1K
a
1 cos4 ψ. (3.6.30)

We know from references [13, equation (9)], [69, equation (3.1)], and [79, equation

(B.9)] that

Ka
1 ≥ 0, B1 ≥ 0, λp ≥ 0, γ1 ≥ 0, (3.6.31)
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from which it follows that

χ0 ≥ 0, χ2 ≥ 0. (3.6.32)

From the inequalities in (3.6.32) and an application of Descartes’ rule of signs (see

Appendix B, Theorem B.1), we deduce that criterion (3.6.24) is always satisfied

provided χ1 ≥ 0. If, however, χ1 < 0, the polynomial yields either two or zero

positive real values of q2, and thus either one or zero positive real value(s) for q.

The roots of the polynomial on the left-hand side of inequality (3.6.27) are given

by

q2
0 =
−χ1 ±

√
χ2

1 − 4χ0χ2

2χ2

=⇒ q0 = ±

√
−χ1 ±

√
χ2

1 − 4χ0χ2

2χ2

. (3.6.33)

Clearly q2
0 is real and positive if and only if the following conditions hold

χ2
1 − 4χ0χ2 ≥ 0 and χ1 < 0. (3.6.34)

Otherwise, the polynomial has no positive real roots, and inequality (3.6.27) is al-

ways satisfied. We are therefore guaranteed that the flow pattern will be unstable

to small oscillatory perturbations provided conditions (3.6.34) are satisfied.

By further appeal to [13, equation (9)], it follows that the second stability

criterion in equation (3.6.25) may be recast in the form

λp
{

(η1 + η4)q2
x q

2
z + η2q

4
z + η3q

4
x

}
+ q2

x > 0, (3.6.35)

or, making further use of the substitutions qx = q cosψ, qz = q sinψ,

λpq
2
{

(η1 + η4) sin2 ψ cos2 ψ + η2 sin4 ψ + η3 cos4 ψ
}

+ cos2 ψ > 0. (3.6.36)

The polynomial on the left-hand side of the above inequality has one positive real

root (q+
0 , say) if and only if

(η1 + η4) sin2 ψ cos2 ψ + η2 sin4 ψ + η3 cos4 ψ < 0, (3.6.37)

a criterion which guarantees instability. Otherwise, the second Routh-Hurwitz

stability criterion (3.6.25) holds.

Applying this substitution to the final stability criterion leads to a polynomial
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of order ten in q, which is of the form

σ5q
10 + σ4q

8 + σ3q
6 + σ2q

4 + σ1q
2, (3.6.38)

where the coefficients are given by

σ5 =
(λpK

a
1 cos4 ψ)2

2ργ1

{
γ1

[
(η1 + η4) sin2 ψ cos2 ψ + η2 sin4 ψ + η3 cos4 ψ

]
+ ρKn

1 cos2 ψ −
(
ν1 sin2 ψ − ν2 cos2 ψ

)2
}
, (3.6.39)

σ4 =
λpK

a
1 cos4 ψ

(ργ1)2

{[
γ1

(
(η1 + η4) sin2 ψ cos2 ψ + η2 sin4 ψ + η3 cos4 ψ

)
+ρ
(
γ1λp(B0 sin2 ψ +B1 cos2 ψ) +Kn

1 cos2 ψ
)
−
(
ν1 sin2 ψ − ν2 cos2 ψ

)2
]

×
[
γ1

(
(η1 + η4) sin2 ψ cos2 ψ + η2 sin4 ψ + η3 cos4 ψ

)
+ ρKn

1 cos2 ψ

−
(
ν1 sin2 ψ − ν2 cos2 ψ

)2
]

+ ργ1

[
γ1λp

(
(η1 + η4) sin2 ψ cos2 ψ + η2 sin4 ψ

+ η3 cos4 ψ
) (
B0 sin2 ψ +B1 cos2 ψ

)
+ ρλp cos2 ψ

(
Ka

1B1 cos2 ψ

+ Kn
1 (B0 sin2 ψ +B1 cos2 ψ)

)
− λp

(
ν1 sin2 ψ − ν2 cos2 ψ

)2 (
B0 sin2 ψ

+ B1 cos2 ψ
)

+ γ1K
a
1 cos6 ψ

] }
, (3.6.40)
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σ3 =
λpK

a
1 cos4 ψ

ργ2
1

{
2γ1B1

[
(η1 + η4) sin2 ψ cos2 ψ + η2 sin4 ψ + η3 cos4 ψ

]
+ ρB1

(
γ1λpB0 sin2 ψ +Kn

1 cos2 ψ
)
−B1

(
ν1 sin2 ψ − ν2 cos2 ψ

)2

+ γ2
1 cos2 ψ

(
B0 sin2 ψ +B1 cos2 ψ

)}
+

1

(ργ1)2

{
γ1

[
(η1 + η4) sin2 ψ cos2 ψ

+ η2 sin4 ψ + η3 cos4 ψ
]

+ ρ
[
γ1λp

(
B0 sin2 ψ +B1 cos2 ψ

)
+Kn

1 cos2 ψ
]

−
(
ν1 sin2 ψ − ν2 cos2 ψ

)2
}{ [

(η1 + η4) sin2 ψ cos2 ψ + η2 sin4 ψ

+ η3 cos4 ψ
] [
γ1λp

(
B0 sin2 ψ +B1 cos2 ψ

)
+Kn

1 cos2 ψ
]

+ ρλp cos2 ψ
[
Ka

1B1 cos2 ψ +Kn
1

(
B0 sin2 ψ +B1 cos2 ψ

)]
− λp

(
ν1 sin2 ψ

− ν2 cos2 ψ
)2 (

B0 sin2 ψ +B1 cos2 ψ
)

+ cos2 ψ
[
γ1K

a
1 cos4 ψ

+ 2B1

(
ν1 sin2 ψ − ν2 cos2 ψ

)2
]}

+
cos2 ψ

ργ1

{
Ka

1K
n
1 cos6 ψ

+ λp
[
(η1 + η4) sin2 ψ cos2 ψ + η2 sin4 ψ + η3 cos4 ψ

] [
Ka

1B1 cos2 ψ

+ Kn
1

(
B0 sin2 ψ +B1 cos2 ψ

)]}
, (3.6.41)

σ2 =
B1

ργ2
1

{ [
(η1 + η4) sin2 ψ cos2 ψ + η2 sin4 ψ + η3 cos4 ψ

] [
γ1λp

(
B0 sin2 ψ

+ B1 cos2 ψ
)

+Kn
1 cos2 ψ

]
+ ρλp cos2 ψ

[
Ka

1B1 cos2 ψ +Kn
1

(
B0 sin2 ψ

+ B1 cos2 ψ
)]
− λp

(
ν1 sin2 ψ − ν2 cos2 ψ

)2 (
B0 sin2 ψ +B1 cos2 ψ

)
+ cos2 ψ

[
γ1K

a
1 cos4 ψ + 2B1

(
ν1 sin2 ψ − ν2 cos2 ψ

)2
]}

+
1

(ργ1)2

{
γ1

[
(η1 + η4) sin2 ψ cos2 ψ + η2 sin4 ψ + η3 cos4 ψ

]
+ ρ

[
γ1λp

(
B0 sin2 ψ +B1 cos2 ψ

)
+Kn

1 cos2 ψ
]
−
(
ν1 sin2 ψ − ν2 cos2 ψ

)2
}

×
{
B1

[
(η1 + η4) sin2 ψ cos2 ψ + η2 sin4 ψ + η3 cos4 ψ

]
+ ρλpB0B1 sin2 ψ

+ γ1 cos2 ψ
(
B0 sin2 ψ +B1 cos2 ψ

)}
− 1

ργ1

{
cos4 ψ

[
Ka

1B1 cos2 ψ

+ Kn
1

(
B0 sin2 ψ +B1 cos2 ψ

)]
+ λpB0B1 sin2 ψ

[
(η1 + η4) sin2 ψ cos2 ψ

+η2 sin4 ψ + η3 cos4 ψ
]}
, (3.6.42)

σ1 =
B2

1

ργ2
1

{
sin2 ψ

[
ρλpB0 + (η1 + η4) cos2 ψ + η2 sin2 ψ

]
+(η3 + γ1) cos4 ψ

}
. (3.6.43)

It follows that for sufficiently high values of q, the negativity of σ5 is enough

to guarantee violation of the third criterion, inequality (3.6.26), and destabilise

the system. However, as will be seen in the following subsection, such values of
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Parameter Representative value Parameter Representative value
Kn

1 , Ka
1 5× 10−12 N α1 −0.0060 Pa s

B0 8.95× 107 N m−2 α2 −0.0812 Pa s
B1 4× 107 N m−2 α3 −0.0036 Pa s
λp 10−16 m2 (Pa s)−1 α4, τ1, τ2 0.0652 Pa s
ρ 103 kg m−3 α5 0.0640 Pa s

Table 3.1: Representative values of the SmA physical parameters as discussed in
the text.

q are several orders of magnitude higher than those at which the first criterion

is violated for typical values of the parameters characterising the sample. It is

interesting to note that the sign of each of the coefficients σ2, . . ., σ5 is determined

by the magnitudes of the viscosities ν1 and ν2: it follows that the viscosities α2,

α3 and κ1 play important roles in determining whether instabilities are possible in

a given sample of SmA, which is exactly as found by examining the first criterion.

This will be demonstrated in Subsection 3.6.2 below, in which the quantities p1,

p3 and p1p2 − p3 are plotted against κ1, allowing for the observation of a critical

value of this coefficient above which one would expect to observe the onset of

instability.

3.6.2 Plotting the Stability Criteria

In what follows, we explicitly demonstrate the prediction of instability in SmA

via a series of plots of the quantities on the left-hand sides of the Routh-Hurwitz

criteria (3.6.24)–(3.6.26) for physically plausible values of the SmA material pa-

rameters. Consideration of various parameter regimes demonstrates that instabil-

ities can occur for sufficiently high wave numbers, with the instability threshold

being determined by the particular values of the physical constants as well as

the direction of the wave vector. We note the parameter values as given in Ta-

ble 3.1 courtesy of Stewart & Stewart [71] and the following inequalities due to

Walker [79, Appendix B]:

2κ2
1 ≤ (α4 + τ2)(α2 − α3), (3.6.44)

0 ≤ 1
2
(α2 + α3) + α4 + α5 + τ2 + κ2, (3.6.45)

(α4 + κ3)2 ≤ 2
(
α4 + 1

2
τ1 + τ2

)
{α1 + α2 + α3 + 2(α4 + 2α5)} , (3.6.46)
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2(κ4 + κ6)2 ≤
{

1
2
(α2 + α3) + α4 + α5 + τ2 + κ2

}
{α1 + α2 + α3

+2(α4 + α5)} , (3.6.47)

(κ5 + κ6)2 ≤
(
α4 + 1

2
τ1 + τ2

) {
1
2
(α2 + α3) + α4 + α5 + τ2 + κ2

}
, (3.6.48)

κ2
6 ≤ (α4 + τ2)

{
1
2
(α2 + α3) + α4 + α5

}
, (3.6.49)

from which one readily deduces that, for this particular sample,

|κ1| ≤ 0.0712 Pa s, κ2 ≥ −0.1520 Pa s, |κ6| ≤ 0.1063 Pa s, (3.6.50)

as well as

−0.1685 Pa s ≤ κ3 ≤ 0.2989 Pa s, 0.0340 Pa s ≤ κ4 ≤ 0.1660 Pa s,

0.0007 Pa s ≤ κ5 ≤ 0.1920 Pa s. (3.6.51)

Plots may be found at the end of the chapter. In Figs. 3.5–3.12, each of the

quantities which determine the stability of the system, p1, p3, and p1p2 − p3, is

plotted against increasing magnitude q of the wave vector for selected directions

of said vector (determined by the value of the angle ψ) and physically permissible

values of the viscosities κi (i ∈ {1, . . . , 6}). Note that, in the interest of brevity,

a vast number of plots produced for various different values of these viscosity

coefficients have been omitted. These plots neither add to nor detract from the

conclusions to be drawn below, and the data for these figures may be obtained

from the author upon request. As was established by the analytical work set forth

in the previous subsection, sufficiently high values of q will lead to destabilisation

of the system. What is apparent from these figures is that the first quantity to

become negative as q increases is p1, at least for physically realisable values of the

material constants. Moreover, the threshold value of q at which this instability

manifests itself varies substantially according to the wave vector’s direction and

the values of the SmA parameters.

The latter fact is demonstrated both by this set of plots and those contained

in Figs. 3.13–3.17, in which the effect of varying the viscosity κ1 across its per-

missible range upon the threshold value of q is shown. It is evident from our

analytical considerations that this particular viscosity plays a significant role in

determining whether the Routh-Hurwitz criteria remain satisfied via its presence

in the apparent viscosities ν1 and ν2, hence our choosing to focus on its role here.

In the case of the first stability criterion, one sees a nonlinear dependence of p1

upon κ1, so that, as q is increased, the curve cuts the line p1 = 0 at two points;
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samples of SmA with values of κ1 between these points will not exhibit any insta-

bility for this wave vector, but those with values either side of these two points

will. Once q is increased past a certain threshold, however, p1 is always negative

and one would expect to see instabilities for all samples. Generally speaking,

for a particular range of q, the viscosity κ1 acts as something of a “destabilising

agent” for the material, as anticipated by the forms of the stability conditions

outlined above.

3.7 Conclusions and Discussion

This chapter has outlined the details of some important predictions regarding the

behaviour of SmA arising from Stewart’s dynamic theory. Firstly, it was shown

that the hydrodynamic description due to de Gennes [22] arises straightforwardly

as a simplification of this framework provided one imposes the set of physical

assumptions exactly as outlined by de Gennes in the above referenced seminal

work. However, the resultant system is supplemented by additional governing

equation (relation (3.2.10) above). A linear stability analysis of this reduced

model in two dimensions allows us to conclude that solutions are always predicted

to be stable to small oscillatory perturbations; interpreting this in the context of

two-dimensional flow past a finite obstacle, however, one readily sees that this

system cannot provide a complete description of flow in SmA, as both further

theoretical investigation (see Chapter 4) and experimental evidence [75] clearly

point to the existence of linear instability of the flow pattern.

Going a step further, we have linearised the full system of equations compris-

ing Stewart’s theory and utilised the resultant system to describe some simple

two-dimensional flow patterns. Moreover, a linear stability analysis using this

system of equations yields regimes in which one could realistically expect to see

instabilities arise, as demonstrated by examination of the three stability crite-

ria (3.6.24)–(3.6.26). Given that these criteria will vary between different samples

of SmA, it follows that while one sample may exhibit instabilities for one partic-

ular range of values of perturbative wave vector (or, indeed, none at all), another

sample may exhibit these for a different range of such values. An example of this

is demonstrated in the figures below, in which each of the quantities determining

stability is plotted against physically allowable values of the viscosity coefficient

κ1, where all other physical parameters were held at some constant value. In-

creasing the value of κ1 was seen to cause an instability in the system. Such

information could, in principle, be useful in the synthesis of materials exhibiting
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SmA phases for particular applications to which the stability (or instability) of

the material is conducive.

While the particular case of flow past a finite obstacle in two-dimensions is

revisited in Chapter 4, let us now outline some possible general lines for future

research following on from the work set forth in this chapter. The linearised two-

dimensional simplification of Stewart’s theory as derived in Section 3.4 could read-

ily be be made three-dimensional by relaxing the assumption of two-dimensional

flow independent of the y coordinate, by which we may readily hope to describe

more complicated flow patterns via an approach not dissimilar to that employed

in Section 3.5, though of course it may prove more convenient in certain cases to

work in an alternative choice of coordinate system. Alternatively, it may be of

interest to work in two dimensions but relax the assumptions leading to the lin-

earity of the system. This may lead to significantly more complicated governing

equations, potentially resulting in the need to appeal to computational methods

to obtain the resultant flow pattern and SmA configuration; however, such a

framework might enable us to consider flow in the presence of defects, for exam-

ple an edge dislocation as considered in Chapter 6, for which a key assumption

regarding the validity of the linear model, that of flat layers, must break down, at

least in a small region of the sample. For a problem such as this, an asymptotic

approach should enable one to utilise equations (3.2.8), (3.4.23), (3.4.25), (3.4.28)

and (3.4.8) in regions sufficiently far from the defect core, but a modified nonlinear

system in a small neighbourhood around this core.

Finally, we note that further investigation is necessary in order to obtain a

fuller understanding of the stability properties of SmA. It may be of interest to

investigate the effects of the application of an oscillatory electric and/or mag-

netic field upon the aforementioned stability criteria, and thereby whether the

stability/instability threshold might be “tuned” by variation of the applied field

strength, direction or frequency. Preliminary calculations in this direction have

already been undertaken by the author, and it is hoped that such considerations

will form the basis of future work. It may also prove fruitful to consider the

effects of varying other viscosity coefficients on stability, and how each of these

coefficients “balance” one another and/or the applied electric/magnetic field and

thereby establish a complete picture of stability across the material’s entire pa-

rameter space. Such principles may also be tentatively applied across a range

of temperatures at which the given material exhibits its SmA phase, though one

would have to look beyond this isothermal framework for a realistic study re-

garding this matter. As has already been mentioned, full characterisation of the
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stability properties of a complex material such as this can only be hoped for by

analysis of the nonlinear system, and it is only by appeal to more sophisticated

method that one can hope to fully describe the transition to instability and what

may happen thereafter. It is hoped that the material in this chapter will provide

a starting point from which such considerations and many more will naturally

follow.
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Figure 3.5: Variation of the quantity p1 with modulus q of the wave vector when
ψ = 0. The threshold value of q which determines the onset of instability is
increased by increasing the value of κ1: see Fig. 3.13. Note that for these plots,
and for all others that follow unless otherwise stated, κ2 = κ3 = κ6 = −0.1 Pa s,
κ4 = κ5 = 0.1 Pa s.
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Figure 3.6: As in Fig. 3.5 with ψ = π/8. In this case, increasing the value of
κ1 has led to the instability no longer being visible for comparable and even
significantly higher values of q.
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Figure 3.7: As in Fig. 3.5 with ψ = π/4. Altering the direction of the wave vector
leads to no violation of the first Routh-Hurwitz criterion for values of q at which
instability was previously realisable.
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Figure 3.8: As in Fig. 3.5 with ψ = 3π/8.
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Figure 3.9: Variation of the quantity p3 with modulus q of the wave vector when
ψ = 0.
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Figure 3.10: Variation of the quantity p3 with modulus q of the wave vector when
ψ = π/4.
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Figure 3.11: Variation of the quantity p1p2−p3 with modulus q of the wave vector
when ψ = π/8.
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Figure 3.12: Variation of the quantity p1p2−p3 with modulus q of the wave vector
when ψ = π/4.
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Figure 3.13: The variation of p1 against all permissible values of κ1 for values of
q increasing from 1–5× 106 m−1; ψ = π/2.
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Figure 3.15: (From previous page.) The variation of p3 against all permissible
values of κ1 for various values of q.
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Figure 3.17: (From previous page.) The variation of p1p2− p3 against all permis-
sible values of κ1 for various values of q.
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Chapter 4

A Two-Dimensional Lubrication

Approximation

In this chapter, a preliminary investigation regarding a lubrication theory for

SmA liquid crystals will be presented. In Section 4.1, we introduce dimensionless

variables and thereby derive a system of lubrication equations, allowing for the

approximation of equations (3.6.1)–(3.6.5) on omitting terms of sufficiently small

magnitude. However, it will be shown in Section 4.2 that the process of truncation

is somewhat more involved than in classical lubrication theory for both Newto-

nian and non-Newtonian fluids, with the nature of the leading-order system being

intricately dependent upon the values of the many dimensionless combinations of

physical parameters governing the system, in addition to the length and velocity

scales characterising the problem. The ideas outlined here will then be demon-

strated in Section 4.3, in which our simplified system is applied to the example of

flow past a finite obstacle considered above in Section 3.3, enabling us to deter-

mine expressions for the director profile and layer displacement at leading order,

as well as allowing for more in-depth considerations of the stability properties of

the observed configuration by examining the higher-order systems of equations.

The chapter will close with some concluding remarks and potential applications

amenable to further deployment of this system, as well as ways in which it might

be extended, in Section 4.4.
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4.1 Non-Dimensionalisation of the Equations

Recall equations (3.6.1)–(3.6.5), restated here for ease of reference:

vx,x + vz,z = 0, (3.6.1)

ρvx,t + p̃,x = η1vx,xx + η2vx,zz + ν1θ,tz, (3.6.2)

ρvz,t + p̃,z = η3vz,xx + η4vz,zz + ν2θ,tx

−Ka
1u,xxxx +B0u,zz +B1(θ,x + u,xx), (3.6.3)

Kn
1 θ,xx = B1(θ + u,x)− (γ1θ,t + ν1vx,z + ν2vz,x), (3.6.4)

vz − ut = λp{Ka
1u,xxxx −B0u,zz −B1(θ,x + u,xx)}, (3.6.5)

Dimensionless quantities are introduced as follows:

x = Lx′, z = hz′, vx = v0vx′ , vz =
v0hvz′

L
(4.1.1)

p̃ =
η2v0L

h2
p′, t =

Lt′

v0

, S =
L

δ3

, u = Lu′, (4.1.2)

where L and h are characteristic length scales in the x-direction and z-direction,

respectively, and are taken to satisfy

ε =
h

L
� 1 (4.1.3)

(though see comments in the following section), and δ is a length scale given by

δ3 =
√
λpη3. (4.1.4)

Finally, we introduce the quantity β as

β =
B0

B1

. (4.1.5)

With these scalings, equation (3.6.1) is readily shown to reduce to

vx,x + vz,z, (4.1.6)

where the primes have been immediately dropped for convenience. The dimen-

sionless form of equation (3.6.2) reads

ρv2
0

L
vx,t =

η1v0

L2
vx,xx +

η2v0

h2
vx,zz −

η2v0

h2
p,x +

ν1v0

hL
θ,tz, (4.1.7)
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i.e.,

R(2)
e ε2vx,t + p,x =

η1

η2

ε2vx,xx + vx,zz +
ν1

η2

εθ,tz, (4.1.8)

where we have identified

R(2)
e =

ρv0L

η2

(4.1.9)

as a Reynolds number for the flow. The magnitude ofR(2)
e will determine whether

we are in a strongly or weakly time-dependent flow regime, the latter case corre-

sponding to approximately steady flow.

In a similar manner, the z-component of linear momentum balance given by

equation (3.6.3) may, after non-dimensionalisation and some algebraic manipula-

tion, be written

R(3)
e ε3vz,t + p,z = εS2(u,t − εvz) + ε2

(
ε2vz,xx +

η4

η3

vz,zz +
ν2

η3

εθ,tx

)
, (4.1.10)

where

R(3)
e =

ρv0h

η3

. (4.1.11)

The balance of angular momentum equation transforms to give

ε2θ,xx =
B1h

2

Kn
1

(θ + u,x) + Er
(
εθ,t +

ν1

γ1

vx,z +
ν2

γ1

ε2vz,x

)
, (4.1.12)

where

Er =
γ1v0h

Kn
1

(4.1.13)

is an Ericksen number [68, Section 5.6.1], a dimensionless quantity which deter-

mines the ratio of viscous to elastic forces. Finally, the dimensionless permeation

equation is found to be of the form

Lv0

λpB0

ε2(u,t − εvz) =
ε2

β
(θ,x + u,xx)−

λ2
a

L2
ε2u,xxxx + u,zz, (4.1.14)

where λ2
a = Ka

1/B0.
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4.2 General Remarks on Truncation and

Applicability

In summary, the dimensionless system of dynamic equations reads

vx,x + vz,z = 0, (4.1.6)

R(2)
e ε2vx,t + p,x =

η1

η2

ε2vx,xx + vx,zz +
ν1

η2

εθ,tz, (4.1.8)

R(3)
e ε3vz,t + p,z = εS2(u,t − εvz) + ε2

(
ε2vz,xx +

η4

η3

vz,zz +
ν2

η3

εθ,tx

)
, (4.1.10)

ε2θ,xx =
B1h

2

Kn
1

(θ + u,x) + Er
(
εθ,t +

ν1

γ1

vx,z +
ν2

γ1

ε2vz,x

)
, (4.1.12)

Lv0

λpB0

ε2(u,t − εvz) =
ε2

β
(θ,x + u,xx)−

λ2
a

L2
ε2u,xxxx + u,zz. (4.1.14)

Given the number of dimensionless quantities present in this system, it is imme-

diately apparent that the best means of truncating and thereby obtaining a more

tractable system in the spirit of “classical” lubrication theory depends very much

upon

1. the values of the various physical constants characterising the particular

SmA material under consideration;

2. the velocity, pressure, and spatial gradients thereof, as well as inertial forces

to which the sample is subjected. In general, the directions in which these

are applied have the potential to significantly influence the resultant flow.

3. The characteristic length scales and geometry of the problem, generally as

determined by the sample’s container.

Referring to standard lubrication theory, it is generally assumed that ε� 1 and

that vx � vz, though in the case of smectics this is somewhat more limiting given

the anisotropy. This particular system of equations follows from assuming that

the layers lie parallel to the x-axis, and thus the flow is always predominantly in

the plane of the layers. Should one wish to consider the case in which vx � vz,

that is, flow directed primarily perpendicular to this plane, it makes more sense to

impose the requirement ε� 1. It should be noted, however, that this may lead to

our linear system not being valid on the grounds that significant layer distortion

may occur in this case. Of course, a nonlinear or quasi-linear modification may
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prove of use in this instance; such considerations fall outwith the scope of the

present work, however, and will form the basis of future investigations.

As a demonstration of these ideas, consider first equation (4.1.8). Given that

ε � 1, it follows that, unless inertial forces are sufficiently high that R(2)
e =

O(1/ε2), we may disregard all terms of O(ε2) and write this equation in the

approximate form

p,x = vx,zz +
ν1

η2

εθ,tz.

Now, if ν1 = η2O(ε), the latter term on the right-hand side of this relation is also

discarded; if, however, ν1 = η2O(1/ε), it must be retained. It follows that the

magnitude of the ratio ν1/η2, as well as the aspect ratio ε, play an important role

in determining the behaviour of leading-order solutions to this balance law.

Let us now turn to relation (4.1.10): it is tempting to apply the same ap-

proach to the previous equation and erroneously conclude that the leading order

behaviour in all cases is described by

p,z = εS2u,t,

or, in the case of steady flow and/or when S2 = O(ε),

p,z = 0.

However, noting that S = L/δ3, it follows that, for physically relevant values of δ3

(see Section 4.3.1 below), S2 � 1/ε2. On physical grounds, then, a more realistic

truncated form of equation (4.1.10) is

p,z = εS2(u,t − εvz),

in spite of the presence of the factor of ε2 multiplying vz. In fact, for S sufficiently

large relative to the pressure gradient normal to the layers, a more accurate

approximation may be given by

u,t = εvz.

In this case, the value of the permeation coefficient λp, as well as the viscosity

coefficient η3 and the characteristic lengths of the problem serve to significantly

affect the dominant behaviour of solutions vz as well as the layer displacement

u and pressure p. Of course, for much smaller values of S and/or significantly

higher values of any or all of the terms R(3)
e , η4/η3 and ν2/η3, the governing
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equations and resultant solutions would start to look entirely different at leading

order. However, such considerations may be of limited interest in terms of their

physical relevance given the anticipated values of these parameters, as will be

seen in the example of Section 4.3 below.

The angular momentum balance law as stated in equation (4.1.12) features

several parameters. Discarding terms of O(ε2) leads to

B1h(θ + ux) + γ1v0

(
εθ,t +

ν1

γ1

vx,z

)
= 0.

Three regimes present themselves:

1. B1h� γ1v0. In this case, it immediately follows that

θ + u,x = 0,

unless ν1/γ1 is of a large magnitude, which may be deemed physically un-

reasonable.

2. B1h/γ1v0 = O(1). Here, several possibilities present themselves. First, if

ε � 1 is sufficiently small that the term εθ,t is also negligible, it may be

discarded. Further, if ν1/γ1 = O(ε), case 1 above is recovered. Alterna-

tively, for ε sufficiently large that terms of O(ε) must be retained, we must

either work with the full equation or, if ν1 = γ1O(ε2), drop the final term

and retain εθ,t.

3. B1h� γ1v0. In the case where ν1/γ1 = O(ε), the equation reads

γ1v0

(
εθ,t +

ν1

γ1

vx,z

)
= 0.

Moreover, if ε is sufficiently large, this will also be the case for ν1/γ1 = O(ε2)

or ν1/γ1 = O(1). For ε very small, we have vx,z = 0; this is also the case

for ν1/γ1 = O(1/ε2). Finally, if ν1/γ1 = O(ε2), we have θ,t = 0.

It readily follows that the leading order behaviour of this equation has a subtle

dependence upon the material coefficients γ1 and B0, in addition to the sample

dimensions and the characteristic velocity to which it is subjected.

Finally the permeation equation (4.1.14) admits many possibilities. First,

näıvely discarding all terms featuring ε2 leads to the simple relation

u,zz = 0.
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Of course, on supposing that that β, λa/L and Lv0/λpv0 are all O(1), this is

indeed the case. However, while λ2
aε

2/L2 may be assumed negligibly small for all

systems of practical interest, this is not necessarily so for β and Lv0/λpv0. We

therefore see a whole host of possibilities for the leading order behaviour, which

is determined by the terms B0, B1 and λp for the given SmA sample, as well as

the container’s dimensions and the velocity applied to the sample.

These ideas will be made more concrete in the following section, in which we

revisit the problem of flow past a finite obstacle as outlined in Section 3.3 above.

4.3 Application: Flow Past a Finite Obstacle

Revisited

In this section, we apply the lubrication equations (4.1.6), (4.1.8), (4.1.10), (4.1.12)

and (4.1.14) to the obstacle problem considered above in Section 3.3, with the

aim of gaining further insight into the resultant flow pattern and its influence on

the behaviour of the SmA, as well as illustrating the principles discussed in the

preceding section. First, in Subsection 4.3.1, we determine the magnitudes of the

various dimensionless parameters within the equations by appeal to various values

quoted in the literature, allowing us to pick out the dominant behaviour, which

is then outlined in Subsection 4.3.2. The subsequent order of approximation is

then presented in Subsection 4.3.3.

4.3.1 Some Order-of-Magnitude Calculations

Assuming a constant pressure gradient applied in the x-direction, we may take

20 Pa to be a representative value of the pressure difference across the sample [53];

following references [75, 82], we take L = 1.5 × 10−3 m, h = 10−4 m. It is then

readily shown that

ε = 1/15 (4.3.1)

and

p,x '
4

3
× 104 Pa m−1.

Note that this value of ε is such that dropping terms of O(ε) in a particular

equation would lead to a poor approximation of the leading-order behaviour,

though terms of O(ε2) may be considered negligible when compared with those

of O(1). In order to estimate the viscosity combinations ηi, i ∈ {1, 2, 3, 4} and

νj, j = 1, 2, we once again appeal to inequalities (3.6.44)–(3.6.49) and assume
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that the parameter values as stated above in Table 3.1 are representative of the

sample under consideration. It then readily follows that

−0.0397 Pa s ≤ η2 ≤ 0.3153 Pa s, (4.3.2)

so that we may select η2 = 0.1500 Pa s, discarding the possibility of a negative

viscosity combination. Selecting ν1 = 0.0600 Pa s implies that κ1 = 0.0636 Pa s

and thus ν2 = −0.0176 Pa s; then η3 = η2 + ν1 + ν2 = 0.0024 Pa s. Finally, it is

necessary to obtain an estimate for the velocity v0. The steady-state version of

equation (4.1.8) is given by

p,x = vx,zz +O(ε2),

from which
∆p

L
' η2v0

h2
=⇒ v0 '

8

9
× 10−3 m s−1. (4.3.3)

We are now in a position to calculate the orders of magnitude of the parameter

combinations involved in the dimensionless governing equations above. These are

R(2)
e '

8

9
× 10−4, R(3)

e ' 4.68× 10−4, Er '
7

5
× 103, (4.3.4)

S2 ' 5

3
× 108,

B1h
2

Kn
1

' 4

5
× 1011,

v0L

λpB0

' 148. (4.3.5)

4.3.2 The Leading-Order Equations

Retaining only the dominant terms as a first approximation, the system of equa-

tions (4.1.6), (4.1.7), (4.1.10), (4.1.12) and (4.1.14) may be written in the approx-

imate forms

vx,x + vz,z = 0, (4.1.6)

p,x = vx,zz, (4.3.6)

η2p,z = η3εS
2(u,t − εvz), (4.3.7)

θ + u,x = 0, (4.3.8)

u,zz =
v0L

λpB0

ε2 (u,t − εvz) . (4.3.9)

Returning to dimensional variables, the incompressibility condition reads as in

equation (3.2.8). Equation (4.3.6) takes the form

p,x = η2vx,zz, (4.3.10)

83



while equation (4.3.7) is equivalent to

p,z =
u,t − vz
λp

, (4.3.11)

the term u,t vanishing in the case of steady flow. Equation (4.3.8) looks identical

in dimensional variables, and simply tells us that n = a at this order of approxi-

mation (c.f., equations (3.4.3) and (3.4.5)). Finally, rewriting equation (4.3.9) in

terms of dimensional variables yields

u,t − λpB0u,zz = vz, (4.3.12)

where, as above, the term u,t vanishes in the case of steady flow.

Steady Flow

Our time-independent leading-order equations take the form

vx,x + vz,z = 0, p,x = η2vx,zz, p,z = −vz/λp, (4.3.13)

θ + u,x = 0, vz = −λpB0u,zz. (4.3.14)

Note that equations (4.3.13) are identical in form to those due to Walton et al. [82]

(c.f. equations (3.3.1)–(3.3.3) with ν2 → η3), with boundary conditions on the

velocity as above, viz.,

vx(0, z) =

0 when |z| < 1/2,

v0 when |z| > 1/2,
vz(0, z) = 0. (3.3.4)

The velocity is then given by

vx = v0 +
v0

2

{
erf

(
2z + 1

4
√
δ2|x|

)
− erf

(
2z − 1

4
√
δ2|x|

)}
, (4.3.15)

vz = ± v0

√
δ2√

π|x|
sinh

(
z

4δ2|x|

)
exp

(
−4z2 + 1

16δ2|x|

)
, (4.3.16)

where the upper (lower) sign corresponds to z < 0 (z > 0) as before, and we have

introduced the notation

δ2 =
√
λpη2 (4.3.17)
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in analogy with equation (4.1.4). The second of equations (4.3.14) may then be

integrated twice with respect to z, yielding

u = ± v0δ2

2λpB0

{(
z +

1

2

)
erf

(
2z + 1

4
√
δ2|x|

)
+

(
1

2
− z
)

erf

(
2z − 1

4
√
δ2|x|

)

−
√
δ2|x|
π

sinh

(
z

4δ2|x|

)
exp

(
−4z2 + 1

16δ2|x|

)}
+ zα(x) + β(x). (4.3.18)

Then, making use of equation (4.3.14)1, we obtain for the director profile

θ(x, z) = ±v0 sgn(x)

4λpB0

√
δ2

π|x|

{
(2z + 1)2

4|x|
exp

[
−(2z + 1)2

16δ2|x|

]

− (2z − 1)2

4|x|
exp

[
−(2z − 1)2

16δ2|x|

]
+ δ2

[(
1 +

4z2 + 1

8δ2|x|

)
sinh

(
z

4δ2|x|

)
− z

2δ2|x|
cosh

(
z

4δ2|x|

)]
exp

(
−4z2 + 1

16δ2|x|

)}
− zα′(x)− β′(x), (4.3.19)

where sgn(x) denotes the sign function (or signum function), defined as

d

dx
(|x|) = sgn(x) =


−1 when x < 0,

0 when x = 0,

1 when x > 0.

(4.3.20)

By imposing the requirements that θ is an odd function of z and that it is zero at

the boundary of the sample, it readily follows that α′ = β′ = 0, yielding an exact

solution for the director profile and defining the layer displacement u to within

an arbitrary constant.

Unsteady Flow: Linear Stability of the Leading-Order System

Our equations are

vx,x + vz,z = 0, p,x = η2vx,zz, p,z = (u,t − vz)/λp, (4.3.21)

θ + u,x = 0, vz = u,t − λpB0u,zz. (4.3.22)

Rather than immediately seeking solutions to these equations, let us assume

small perturbations to the terms vx, vz, p, θ and u in the same form as those given

above in equations (3.6.8)–(3.6.12). One readily finds that non-trivial solutions
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to this system of equations exist if and only if

ω = −B0(q2
x + δ2

2q
4
z)

η2q2
z

< 0, (qz 6= 0), (4.3.23)

from which it follows that the flow pattern is stable at leading order, as may be

expected on recalling the result of Section 3.3.

4.3.3 Truncation at Higher Order

Taking the lubrication equations to the next order of approximation, i.e., discard-

ing terms at O(ε3) and above, the dimensionless equations read

vx,x + vz,z = 0, (4.1.6)

p,x =
η1

η2

ε2vx,xx + vx,zz +
ν1

η2

εθ,tz, (4.3.24)

η2p,z = η3εS
2(u,t − εvz), (4.3.25)

θ + u,x = 0, (4.3.26)

v0L

λpB0

ε2 (u,t − εvz) =
ε2

β
(θ,x + u,xx) + u,zz, (4.3.27)

the first term on the right-hand side of (4.3.27) vanishing by virtue of (4.3.26).

These are almost identical to the leading order equations, bar the addition of the

first and third terms on the right-hand side of equation (4.3.24). To see why none

of the other equations is modified by additional terms, one need only look at the

order-of-magnitude calculations presented above in Subsection 4.3.1: the factors

εS2 and B1h
2/Kn

1 are so large in magnitude that the terms containing them

significantly dwarf the other terms in the equations in which they appear and,

similarly, the coefficients ε2/β and λ2
a/L

2 are substantially smaller in magnitude

than the dominant terms of the equations in which they feature.

As to the question of whether the inclusion of this extra term alters the sta-

bility result outlined in Section 4.3.2, we simply assume oscillatory perturbations

as above to find the following requirement for non-trivial solutions:

ν1qxω
2 + i

(
η1q

2
x + η2q

2
z

)
ω + iB0

{
q2
x + λpq

2
z

(
η1q

2
x + η2q

2
z

)}
= 0, (4.3.28)
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from which

ω =
±
√
− (η1q2

x + η2q2
z)

2 + 4iν1B0qx {q2
x + λpq2

z (η1q2
x + η2q2

z)}
2ν1qx

− i(η1q
2
x + η2q

2
z)

2ν1qx
, (4.3.29)

and thus it follows that we can always expect one value of ω with a positive

real part provided ν1 and qz are non-zero. It is evident from the form of equa-

tion (4.3.28) that the presence of the term ν1θ,tz leads to the destabilisation of

the system at this order of approximation. Of course, we could continue to work

to higher order, eventually building up to the full system as considered in Sec-

tions 3.4 and 3.6 and leading to the rather involved expressions which show a

somewhat more subtle dependence of the system’s behaviour upon the value of

ν1; however, the simpler analysis presented herein has led us to an account of

the dominant behaviour for this particular example. Time will tell whether this

approach yields similar insight for the stability properties of other model systems,

which we will leave as topics for further research.

4.4 Discussion and Further Considerations

This chapter has presented the results of a preliminary investigation regarding the

possibility of applying a lubrication approximation to the study of flow phenom-

ena in SmA liquid crystals. After deriving the model from the two-dimensional

system and discussing in general terms various limiting cases for each of the equa-

tions, we showed how the framework can be applied to the problem of flow past a

finite obstacle, obtaining exact solutions for all the relevant physical quantities to

leading order and examining in-depth the stability properties at the subsequent

higher order of approximation, in effect enabling us to determine which physical

parameters play dominant roles in the onset of instability.

We have but scratched the surface: it is hoped that analytical progress on

a range of flow problems satisfying the criteria required for the validity of this

approach will be the subject of much future work. For example, bearing-type sit-

uations involving a range of geometries as well as squeeze-film flows (examples of

such for both Newtonian and non-Newtonian fluids may be found in [74]), would

make for interesting problems in terms of solving for the physical quantities of

interest, as well as potentially providing a suitable means of comparison of ex-

perimental results with predictions made by the theory. Another “classical” fluid
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mechanics problem which could realistically be extended to SmA is that of thin-

film flow down an inclined plane with a free surface; the theory would of course

require slight modifications to account for body forces (i.e., gravity) and surface

tension due to the presence of a free surface; these should not prove difficult to

implement. In all cases, comparison with similar studies in Newtonian and other

non-Newtonian fluids as well as recent work on thin-film flows in nematics [42]

would no doubt prove fruitful.

Some further generalisations could be made, such as working in three spatial

dimensions or introducing nonlinearities to account for defects or boundary-layer

flows. Further, as alluded to in Chapter 3, one might employ a nonlinear system

in the region of some defect, the edge dislocation to be considered in Chapter 6,

for instance, while working with the linear system in regions sufficiently far from

the defect “core” and employing some form of matching condition between the

boundary and far-field regions.
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Chapter 5

Behaviour of a Shear Wave at a

Solid-Smectic Interface

5.1 Introduction

The analysis presented herein will consider a perturbation to a sample of bookshelf-

aligned SmA induced by a shear wave incident at the plane interface between the

smectic and an isotropic elastic solid such that the wave first propagates through

the solid then undergoes a reflection and refraction on contact with the inter-

face, as shown in Fig. 5.1. Section 5.2 will present the analysis for a sample of

bookshelf-aligned SmA with the director n strongly anchored to lie parallel to

the interface. On utilising the method of normal modes [34], we will derive dis-

persion relations governing the behaviour of the anticipated perturbations to the

director and layer normal, as well as the velocity of the refracted wave within the

smectic. Two possibilities for director motion will be considered, though it will be

shown that one of these leads to an inconsistency. Using these and the interfacial

conditions, expressions will then be obtained for the refracted wave number and

the amplitudes of both reflected and refracted waves in terms of the problem’s

physical parameters. In Section 5.3 we will summarise the analogous problem,

first studied by Gill & Leslie [25], in which the region occupied by the SmA is

instead occupied by a sample of SmC, similarly anchored in such a way that n

lies parallel to the interface, which will then be extended to provide expressions

for the reflected and refracted wave amplitudes in an analogous fashion to those

presented in Section 5.2 in terms of the relevant parameters. Section 5.4 features

plots which demonstrate how the amplitudes of the reflected and refracted waves

vary with the angular frequency and angle of incidence of the initial disturbance,

and Section 5.5 will close the chapter with some concluding remarks.
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Figure 5.1: On contact with the interface, the incident wave is both reflected and
refracted. The region z < 0 is occupied by an isotropic elastic solid, while the
region z > 0 contains bookshelf-aligned SmA.
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Figure 5.2: Problem set-up for bookshelf SmA.

5.2 The “Bookshelf” SmA Case

In a configuration analogous to that set forth by Gill & Leslie [25], consider a

plane interface between an isotropic elastic solid and a smectic A liquid crystal,

as depicted in Fig. 5.2, with the interface taken to lie along the y-axis, and the

smectic taken to be initially undistorted, so that the director n is parallel to

the interface. In this unperturbed state, n coincides with the unit layer normal

a. Following [25], it is assumed that both solid and smectic are unbounded, as

any other boundaries involved in the set up are expected to bear no relevance to

the problem to be considered. With respect to the Cartesian reference frame as

depicted in Fig. 5.1,

n = n0 = (0, 1, 0), Φ = Φ0 = y, (5.2.1)
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and the incident wave displacement u = (ux, uy, uz) takes the form

ux = A exp{i[ωt− k(y sinφ+ z cosφ)]}, uy = uz = 0, (5.2.2)

where A is the constant amplitude of the wave, which may be assumed to be a real

number without any loss of generality, and φ the constant angle of incidence (to

the interface’s normal); ω and k denote the constant incident frequency and wave

number, respectively. As each of these constants would be prescribed according to

the experimental set up, they will be assumed known in the analysis that follows.

This displacement must satisfy the wave equation for an isotropic solid [36, p. 87];

noting that u as given in equation (5.2.2) is divergence-free, this leads to

ρsu,tt = µs∇2u, (5.2.3)

where ρs and µs denote, respectively, the mass density and shear modulus (or

bulk modulus) of the solid. It then follows from (5.2.2) that

ρsω
2 = µsk

2. (5.2.4)

It is natural to suppose that the displacement of the reflected wave ur = (urx, u
r
y, u

r
z)

takes the form

urx = B exp{i[ωt− k(y sinφ− z cosφ)]}, ury = urz = 0, (5.2.5)

with B a constant amplitude which will be shown to depend upon the prescribed

parameters discussed above.

It is expected that the incident wave will induce a perturbation to the smectic,

and we anticipate that this disturbance may cause small changes to the alignment

of the constituent molecules (that is, to the director) and to the layer normal;

further, as discussed in Section 2.3, a potential separation of a and n will be

allowed for on employing the dynamic theory of Stewart [69].

The velocity v = (vx, vy, vz) in the smectic is assumed to take the form

vx = v exp{i[ωt− k(y sinφ+ qz)]}, vy = vz = 0, (5.2.6)

with v and q to be determined. Note that this form of v automatically satisfies

the condition of incompressibility vi,i = 0. The scalar Φ will be given by

Φ = y − u(y, z, t), u� 1, (5.2.7)
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for small perturbations u = û exp{i[ωt−k(y sinφ+qz)]} such that |û| � 1. Then

a =
∇Φ

|∇Φ|
= (0, 1,−uz) (5.2.8)

to first order in u and derivatives thereof.

While Gill and Leslie considered only one form of disturbance to their di-

rector c, a small perturbation in the x-direction, it is necessary to consider two

possibilities here for our director n:

1. a disturbance in the x-direction corresponding to the director moving out

of the yz-plane;

2. a disturbance in the z-direction, corresponding to a change in the angle by

which the director n tilts with respect to the y-axis.

This follows as a consequence of the fact that, on fixing the smectic cone angle θ

for the problem considered in [25], Gill and Leslie removed a degree of freedom

in the set up of their problem. In general, it is necessary to consider, along with

the out-of-plane disturbance already studied, the possibility of there being an

oscillation of n in the yz-plane.

5.2.1 Ansatz 1

The director n = (nx, ny, nz) is perturbed so that

nx = n exp{i[ωt− k(y sinφ+ qz)]}, ny = 1, nz = 0, n� 1. (5.2.9)

There are no body forces, and linearisation allows for the elimination of the terms

g̃jnj,i, so that the balance of linear momentum equation (2.3.33) reduces to

ρv̇i = −p̃,i + |∇φ|aiJj,j + t̃ij,j. (5.2.10)

Calculations reveal that

J = (B1nx, B0u,yy, B1u,z −Ka
1u,zzz), (5.2.11)

=⇒ Ji,i = B0u,yy +B1u,zz −Ka
1u,zzzz, (5.2.12)

so that, to first order,

|∇Φ|aJi,i = (0, B0u,yy +B1u,zz −Ka
1u,zzzz, 0). (5.2.13)
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The divergence of the stress tensor has only one non-zero component:

t̃xj,j = 1
2
k2vx

(
η sin2 φ− α4q

2
)

+ ωknx(α2 + κ1) sinφ, (5.2.14)

where

η = α2 − α4 − α5 − τ2 + 2(κ1 − κ6). (5.2.15)

The balance of linear momentum equations (5.2.10) then read

iρωvx = −p̃,x + 1
2
k2vx

(
η sin2 φ− α4q

2
)

+ ωknx(α2 + κ1) sinφ, (5.2.16)

0 = −p̃,y +B0u,yy +B1u,zz −Ka
1u,zzzz, (5.2.17)

0 = −p̃,z. (5.2.18)

The last of these clearly requires p̃ to be a function of x, y and t only. Now, vx

and nx are functions of y, z and t, so that (5.2.16) is only satisfied if p̃,x = 0;

similarly, (5.2.17) contains derivatives of u, a function of y, z and t, so p̃,y must

also be zero. We therefore conclude that p̃ = p̃(t), an arbitrary function of time

t. It then follows that we need only consider the equations

iρωvx = 1
2
k2vx

(
η sin2 φ− α4q

2
)

+ ωknx(α2 + κ1) sinφ, (5.2.19)

0 = B0u,yy +B1u,zz −Ka
1u,zzzz. (5.2.20)

The balance of angular momentum equations may similarly be reduced to(
∂wA

∂ni,j

)
,j

− ∂wA

∂ni
+ g̃i = λni. (5.2.21)

Recalling the expressions given in Section 2.3 for the derivatives of the free energy

density, the linearised component equations are

i{(α2 + κ1)kvx sinφ+ (α2 − α3)ωnx} = λnx, (5.2.22)

B1 = λ, (5.2.23)

−B1u,z = 0, (5.2.24)

so that, on combining the first two of these, one may write

i{(α2 + κ1)kvx sinφ+ (α2 − α3)ωnx} = B1nx, (5.2.25)

u = 0. (5.2.26)
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Noting that Φ̇ = −u,t = 0 by equation (5.2.26) above, the permeation equation

is simply Ji,i = 0, so that

Ji,i = B0u,yy +B1u,zz −Ka
1u,zzzz = 0, (5.2.27)

in agreement with equation (5.2.20). Cancelling exponentials in equations (5.2.19)

and (5.2.25) gives the dispersion relations

{
2iρω + k2

(
α4q

2 − η sin2 φ
)}
v − 2ωk(α2 + κ1)n sinφ = 0, (5.2.28)

(α2 + κ1)kv sinφ+ {(α2 − α3)ω −B1}n = 0. (5.2.29)

Equations (5.2.28) and (5.2.29) provide non-trivial solutions for v and n provided

that the determinant of the 2× 2 matrix[
2iρω + k2(α4q

2 − η sin2 φ) −2ωk(α2 + κ1) sinφ

(α2 + κ1)k sinφ (α2 − α3)ω −B1

]

is zero; thus

{
2iρω + k2(α4q

2 − η sin2 φ)
}{

(α2 − α3)ω −B1

}
+ 2ωk2(α2 + κ1)2 sin2 φ = 0. (5.2.30)

Rearranging this gives an expression for q2 in the form

q2 = β1 − 2iβ2, (5.2.31)

where β1 and −2β2 are the real and imaginary parts of q2, respectively, given by

β1 =

{
η +

2ω(α2 + κ1)2

B1 + γ1ω

}
sin2 φ, β2 =

ρξ

α4

, (5.2.32)

in which the notation

ξ = ω/k2 (5.2.33)

has been introduced for later comparison with Gill & Leslie’s work [25], which

features the same parameter, and γ1 ≡ α3 − α2. It then follows that

q = χ− iψ, ψ > 0, (5.2.34)
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where

χ =
β2

ψ
, ψ =

√
1

2

(√
β2

1 + 4β2
2 − β1

)
, (5.2.35)

Note that the requirement ψ > 0 in (5.2.34) is to ensure that the solution for

q is physically meaningful [25]; since the imaginary part of q corresponds to the

shear attenuation of the refracted wave, the case ψ < 0 in (5.2.34) would lead to

an unbounded solution, as is readily seen on substitution back into (5.2.6) and

(5.2.9). Note that normal incidence corresponds to

q =
β2

ψ
− i
√
β2 = (1− i)

√
ρξ

α4

. (5.2.36)

The penetration depth, that is the analogue of the Stokes boundary layer

thickness in an isotropic Newtonian fluid [37, p.84], is given by

δ = 1/kψ, (5.2.37)

which, at normal incidence, reduces to

δ|φ=0 =
1

k

√
α4

ρξ
=

√
α4

ρω
, (5.2.38)

which is exactly the Stokes layer for an isotropic Newtonian fluid (recall from

Section 2.3 that α4 = 2µ, µ denoting the viscosity of such a fluid), and is identical

to the Stokes layer that occurs in oscillatory flow of SmA [49].

Boundary Conditions

Following the arguments set forth by Gill & Leslie [25], continuity of velocity and

surface traction are imposed at the interface between the solid and the smectic.

With the displacements of the incident and reflected waves as given above in

equations (5.2.2) and (5.2.5), respectively, and the refracted wave velocity taking

the form in (5.2.6), continuity of velocity at the interface reads

iω(A+B) = v. (5.2.39)

In the solid, the surface traction t is required to satisfy the constitutive equations

for isotropic elasticity [66, p.115], so that

t|z=0 = (ikµs(B − A)ei(ωt−ky sinφ) cosφ, 0, 0). (5.2.40)
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Calculating the same for the smectic and imposing the requirement of continuity

leads to the condition

2µs(A−B) cosφ = α4qv. (5.2.41)

5.2.2 Ansatz 2

The other possible form of the director is

nx = 0, ny = 1, nz = n exp{i[ωt− k(y sinφ+ qz)]}. (5.2.42)

In this instance, calculations analogous to those used to obtain equations (5.2.11)–

(5.2.14) give the components of the balance of linear momentum equation as

iρωvx = −p̃,x + 1
2
k2vx

(
η sin2 φ− α4q

2
)
, (5.2.43)

0 = −p̃,y + (α3 + κ1)ωkqnz +B0u,yy

+B1(u,zz − ikqnz)−Ka
1u,zzzz, (5.2.44)

0 = −p̃,z + (α2 + κ1)ωknz sinφ. (5.2.45)

Equation (5.2.43) implies that p̃,x is a function of y, z and t, so that

p̃ = xp̃,x + p1(y, z, t);

by (5.2.44) and (5.2.45), however, p̃,y and p̃,z are functions of y, z and t, suggesting

that

p̃,y = xp̃,xy + p1,y, p̃,z = xp̃,xz + p1,z,

which means these derivatives must be functions of x also, in direct contradiction

of equations (5.2.44) and (5.2.45) unless p̃,x = 0. We can therefore re-write

equation (5.2.43) as

{
iρω − 1

2
k2
(
η sin2 φ− α4q

2
)}
vx = 0. (5.2.46)

and assume a solution for the pressure of the form

p̃ = p0 + p̂ exp{i[ωt− k(y sinφ+ qz)]}, (5.2.47)

where p0 and p̂ are constants such that |p̂| � 1.
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The angular momentum equations are

i(α2 + κ1)kvx sinφ = 0; (5.2.48)

−Kn
1 k

2qnz sinφ+B1 = λ; (5.2.49)

−Kn
1 k

2q2nz −B1u,z + i(α2 − α3)ωnz = λnz, (5.2.50)

and the permeation equation yields the relation

u,t = λp{B0u,yy −Ka
1u,zzzz +B1(u,zz − ikqnz)}. (5.2.51)

Clearly, the only way to simultaneously satisfy (5.2.46) and (5.2.48) is to have v =

0. This means that, to first order, we may discard the possibility of perturbations

to the director in the z-direction in the case of bookshelf geometry.

5.2.3 Expressions for the Wave Amplitudes

Having eliminated the second ansatz as inconsistent when working to first order,

we may therefore return to ansatz 1, as outlined in Section 5.2.1 as our only

possibility. Having established dispersion relations and thereby obtained the wave

number and penetration depth for the refracted wave, in addition to establishing

boundary conditions at the interface, we may now utilise these to progress further.

Recalling expressions (5.2.39), (5.2.41), it follows that

2µs(A−B) cosφ = iωα4q(A+B),

which leads to

B = A

(
2ρsξ cosφ+ iα4q

2ρsξ cosφ− iα4q

)

= A

{
4ρ2

sξ
2 cos2 φ− α2

4(χ2 + ψ2)− 4iα4χρsξ cosφ

4ρ2
sξ

2 cos2 φ+ α2
4(χ2 + ψ2) + 4α4ψρsξ cosφ

}
, (5.2.52)

on making use of equations (5.2.4) and (5.2.34). At normal incidence, equation

(5.2.52) reduces to

B|φ=0 = A

(
2ρ2

sξ − ρα4 − 2iρs
√
ρξα4

2ρ2
sξ + ρα4 + 2ρs

√
ρξα4

)
. (5.2.53)
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On making further use of (5.2.41), it is readily seen that

v = iωA

{
1 +

4ρ2
sξ

2 cos2 φ− α2
4(χ2 + ψ2)− 4iα4χρsξ cosφ

4ρ2
sξ

2 cos2 φ+ α2
4(χ2 + ψ2) + 4α4ψρsξ cosφ

}

= 4Aωρsξ cosφ

{
2iρsξ cosφ+ α4(χ+ iψ)

4ρ2
sξ

2 cos2 φ+ α2
4(χ2 + ψ2) + 4α4ψρsξ cosφ

}
, (5.2.54)

and, at normal incidence

v|φ=0 = 2Aρsω

{
2iρsξ + (1 + i)

√
ρξα4

2ρ2
sξ + ρα4 + 2ρs

√
ρξα4

}
. (5.2.55)

Taking moduli of the complex amplitudes given in equations (5.2.52) – (5.2.55)

gives the measurable amplitudes of the reflected and refracted waves. (Note that

their argument corresponds to a phase shift and therefore plays no part in our

analysis.)

|B| = A
√

16ρ2
sξ

4 cos4 φ+ α4
4(χ2 + ψ2)2 + 8ρ2

sξ
2α2

4(χ2 − ψ2) cos2 φ

4ρ2
sξ

2 cos2 φ+ α2
4(χ2 + ψ2) + 4α4ψρsξ cosφ

, (5.2.56)

=⇒ |B|φ=0 =
A
√

4ρ4
sξ

2 + ρ2α2
4

2ρ2
sξ + ρα4 + 2ρs

√
ρξα4

, (5.2.57)

and

|v| = 4Aωρsξω cosφ√
4ρ2

sξ
2 cos2 φ+ α2

4(χ2 + ψ2) + 4α4ψρsξ cosφ
, (5.2.58)

=⇒ |v|φ=0 =
2Aρsω

√
2ξ√

2ρ2
sξ + ρα4 + 2ρs

√
ρξα4

. (5.2.59)

Then, for a refracted wave displacement of the form

us = (C exp{i[ωt− k(y sinφ+ qz)]}, 0, 0), (5.2.60)

|C| is given by

|C| = 4Aρsξ cosφ√
4ρ2

sξ
2 cos2 φ+ α2

4(χ2 + ψ2) + 4α4ψρsξ cosφ
, (5.2.61)

from which

|C|φ=0 =
2Aρs

√
2ξ√

2ρ2
sξ + ρα4 + 2ρs

√
ρξα4

. (5.2.62)

98



The moduli of these amplitudes as stated above will be plotted in Section 5.4

below, in which their dependencies on a selection of the problem’s parameters

will be examined in detail.

5.3 The SmC Case

In this section, a review of Gill & Leslie’s results [25] for Smectic C will be

presented, followed by extensions to their work by the present author analogous

to those carried out in Section 5.2.3. For brevity, full details of the calculations

will not be presented here; instead, the reader may consult references [24,25].

5.3.1 Dispersion Relations and Interfacial Conditions

z

y

θ

Figure 5.3: Schematic depiction of the SmC case contained in [25].

Consider Fig. 5.3, which depicts a plane interface between an isotropic solid

and a sample of SmC material. For an incident wave of the form given in equation

(5.2.2), the relation

ρsω
2 = µsk

2 (5.3.1)

still holds in the isotropic solid. The reflected wave displacement is exactly as

given in (5.2.5), while the refracted wave velocity is the same as above in equation

(5.2.6). Gill & Leslie’s analysis also allows for perturbations in the vector c as

introduced in Section 2.2 of a similar form, viz.,

cx = c exp{i[ωt− k(y sinφ+ qz)]}, cy = sin θ, cz = − cos θ, (5.3.2)

where θ denotes the usual smectic cone angle. (Note that c 6= |c|.) Insertion of

these perturbations into the balance laws for linear and angular momentum at
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(2.2.39) and (2.2.38), respectively, yields the two dispersion relations

{2iρω + k2η(q)}v − 2ωkν(q)c = 0, (5.3.3)

ikν(q)v − {2iλ5ω + k2σ(q)}c = 0, (5.3.4)

from which we obtain the following analogue of the determinant condition

contained in equation (5.2.30):

{η(q) + 2iρξ}{σ(q) + 2iλ5ξ} − 2iξν2(q) = 0. (5.3.5)

In the above, η(q) and ν(q) denote the somewhat unwieldy combinations of SmC

viscosities

η(q) = η1q
2 + η2q sinφ+ η3 sin2 φ, (5.3.6)

where

η1 = η11 sin2 θ + η12 sin(2θ) + η13 cos2 θ,

η2 = 2η12 cos(2θ) + (η11 − η13) sin(2θ), (5.3.7)

η3 = η11 cos2 θ − η12 sin(2θ) + η13 sin2 θ,

with

η11 = µ0 + µ2 − 2λ1 + λ4,

η12 = τ1 + τ2 − τ5 − κ1, (5.3.8)

η13 = µ0 + µ4 − 2λ2 + λ5,

and

ν(q) = ν1q + ν2 sinφ, (5.3.9)

where

ν1 = (τ1 − τ5) sin θ − (λ2 − λ5) cos θ,

ν2 = (τ1 − τ5) cos θ + (λ2 − λ5) sin θ. (5.3.10)

The term σ(q), meanwhile, denotes a similar combination of SmC elastic con-

stants, and is given by

σ(q) = σ1q
2 + σ2q sinφ+ σ3 sin2 φ, (5.3.11)
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where (in the notation of Stewart [68, equations (6.15), (6.34), and (6.25)]),

σ1 = K4 sin2 θ +K7 sin(2θ) +K3 cos2 θ,

σ2 = 2K7 cos(2θ) + (K4 −K3) sin(2θ), (5.3.12)

σ3 = K4 cos2 θ −K7 sin(2θ) +K3 sin2 θ.

Notice that (5.3.5) is a quartic in q, so that there are four solutions for q; as

discussed in Section 5.2.1 above, only those solutions q with a negative imaginary

part are of physical relevance. These are [24]

q1 = (1− i)

√
ξΓ1

η1σ1

, q2 = ε− iζ, ζ > 0, (5.3.13)

where

ε =
b2

ζ
− Γ2 sinφ

2Γ1

, ζ =

√
1

2

(√
b2

1 + 4b2
2 − b1

)
, (5.3.14)

b1 =

(
Γ2

2

4Γ2
1

− Γ3

Γ1

)
sin2 φ, b2 =

ρξλ5

Γ1

, (5.3.15)

on setting

Γ1 = λ5η1 − ν2
1 , Γ2 = λ5η2 − 2ν1ν2, Γ3 = λ5η3 − ν2

2 , (5.3.16)

and making use of certain approximations, for instance ρσ1 � Γ1 [25]. At normal

incidence, we have

q1 = (1− i)

√
ξΓ1

η1σ1

, q2 = (1− i)
√
ρξλ5

Γ1

, (5.3.17)

from which the Stokes layer for mode 1 and mode 2 are, respectively,

δ1 =

√
η1σ1

ωΓ1

, δ2 =
1

kζ
, (5.3.18)

the second of these reducing at normal incidence to

δ2|φ=0 =

√
Γ1

ρωλ5

. (5.3.19)

As remarked by Gill [24], the dependence of q1 on the elastic constants leads to it
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being regarded as an orientational mode relating to attenuation of reorientation of

the c-director, while mode 2 is a hydrodynamic mode, characterising attenuation

due to the diffusion of a vorticity. Note that the corresponding dependence of δ1

on σ1 leads to the conclusion that δ1 � δ2, and thus mode 2 will be dominant

after a depth ∼ δ1 into the smectic.

In what follows, it is the behaviour of mode 2 which will be of interest, since

it is this mode which is analogous to the SmA solution for q at (5.2.34) in SmA.

Recall that, in this case, the depth of the Stokes layer is given by equation (5.2.37),

or (5.2.38) in the case of normal incidence.

Interfacial Conditions

Recalling that there are two modes to be considered, a slight modification of the

interfacial conditions (5.2.39) and (5.2.41) in Section 5.2.1 is required. Specifi-

cally, we have continuity of velocity

iω(A+B) = v1 + v2 (5.3.20)

and traction

2µs(A−B) cosφ = η1(q1v1 + q2v2) + 1
2
η2(v1 + v2) sinφ, (5.3.21)

the latter reducing at normal incidence to

2µs(A−B) = η1(q1v1 + q2v2). (5.3.22)

Further, strong anchoring at the boundary requires that

c1 + c2 = 0. (5.3.23)

5.3.2 Expressions for the Amplitudes

In a similar manner to the calculations carried out to obtain the results in Sec-

tion 5.2.3 for SmA, we obtain for the SmC (where we will henceforth, when

required, denote any physical quantities relevant to SmA or SmC with subscript

A or C, respectively):

BC =
A{f+f− − g2 − ig(f+ + f−)}

(f+)2 + g2
, (5.3.24)
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where, for convenience, we have defined

f± = 4ρsξλ5 cosφ± 2Γ1ζ, (5.3.25)

g = 2Γ1ε+ Γ2 sinφ. (5.3.26)

It then follows that

|BC| =
A
√

(f+f− − g2)2 + g2(f+ + f−)2

(f+)2 + g2
, (5.3.27)

and the corresponding quantities at normal incidence are

BC|φ=0 = A

{
2ρ2

sξλ5 − ρΓ1 − 2iρs
√
ρξλ5Γ1

2ρ2
sξλ5 + ρΓ1 + 2ρs

√
ρξλ5Γ1

}
(5.3.28)

and

|BC|φ=0 =
A
√

4ρ4
sξ

2λ2
5 + ρ2Γ2

1

2ρ2
sξλ5 + ρΓ1 + 2ρs

√
ρξλ5Γ1

. (5.3.29)

In order to solve for the refracted wave velocity amplitudes v1,2, it proves necessary

to solve for the c-director; making use of the strong anchoring condition above at

(5.3.23) and [25, eqs. (5.6), (4.3)], one obtains

c2 = −c1 =
Ak(f+ + f−) {f+l2 + gl1 + i(f+l1 − gl2)}

2λ5 {(f+)2 + g2}
(5.3.30)

in which

l1 = ν1ε+ ν2 sinφ, l2 = ν1ζ. (5.3.31)

We record that, for mode one, the velocity amplitude is given by

v1 =
Akν1(f+ + f−)

2λ5

√
ωσ1

η1Γ1

{
f+h− + gl + i(f+l − gh+)

(f+)2 + g2

}
, (5.3.32)

where

h± = ±{ν1(ε− ζ) + ν2 sinφ} (5.3.33)

and l = l1 + l2 as given in (5.3.31). As for the second mode, it is tedious but

relatively straightforward to find that

v2 =
Aω(f+ + f−)(g + if+)

(f+)2 + g2
, (5.3.34)
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and the modulus is simply

|v2| =
Aω(f+ + f−)√

(f+)2 + g2
. (5.3.35)

At normal incidence, it follows that these quantities are given by

v2|φ=0 = 2Aρsω

{
2iρsξλ5 + (1 + i)

√
ρξλ5Γ1

2ρ2
sξλ5 + ρΓ1 + 2ρs

√
ρξλ5Γ1

}
, (5.3.36)

|v2|φ=0 =
2Aρsω

√
2ξλ5

2ρ2
sξλ5 + ρΓ1 + 2ρs

√
ρξλ5Γ1

. (5.3.37)

We therefore obtain the analogous quantities to those given in equations (5.2.61)

and (5.2.62) (recalling that we are seeking the hydrodynamic modes in each of

the smectics):

|CC| =
A(f+ + f−)√
g2 + (f+)2

, (5.3.38)

with normal incidence easily following from (5.3.36), viz.,

|CC|φ=0 =
2Aρs

√
2ξλ5√

2ρ2
sξλ5 + ρΓ1 + 2ρs

√
ρξλ5Γ1

. (5.3.39)

5.4 Comparison of the Responses of Smectics A

and C

In this section we present some numerical examples demonstrating the response of

both smectics A and C for a set of physical parameters typical of these materials.

The values for SmA may be found above in Table 3.1, while the SmC parameters

used are tabulated in Table 5.1.

Parameter Value [68, p. 301] (Pa s)
η11 0.0377
η12 −0.0366
η13 0.0533

λ5 − λ2 0.0325
τ5 − τ1 0.0273

Table 5.1: Values of the SmC viscosity coefficients used in the plots to follow.
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5.4.1 Normal Incidence

The graphs presented in Figs. 5.4 and 5.5 compare the behaviour of both the re-

flected and refracted wave amplitudes in smectics A and C at normal incidence.

From the two graphs contained in Fig. 5.5, it is readily observed that the be-

haviour of each of these expressions in (5.2.62) and (5.3.38) is qualitatively the

same, and we deduce that, until ω ∼ 1010Hz,

|CA|φ=0 ∼
(
2− 1.01× 10−6

√
ω
)
A, (5.4.1)

|CC|φ=0 ∼
(
2− 4.12× 10−7

√
ω
)
A, (5.4.2)

from which it is evident that |CA|φ=0 + 1.9A and |CC|φ=0 + 1.96A when ω =

1010Hz, both showing comparatively little change over the range 0 ≤ ω . 1010Hz.

Thereafter, the refracted wave amplitudes begin to fall off more noticeably, and

by ω = 1014Hz, |CA|φ=0 is just over one tenth of its initial value, while |CC|φ=0 is

somewhat below thirty percent of its initial value.

5.4.2 Oblique Incidence

The plots contained in Figs. 5.6 and 5.7 demonstrate the variation of angle of

incidence of the shear wave upon the amplitudes of the reflected and refracted

wave amplitudes, respectively. In Figs. 5.6 (a),(b), one sees different qualitative

behaviour of the reflected wave amplitude as a function of φ for values of ω above

1010Hz: in the SmC case, the angle of incidence has little apparent effect upon

the value of this amplitude, while in the case of SmA, increasing the value of φ

from 0 to ∼1 rad leads to a significant increase in the value of this amplitude.

In an analogous fashion, Figs. 5.7 (a),(b) show that, while the SmC refracted

wave amplitude does not show an especially strong dependence on φ for a given

value of ω, the SmA refracted wave amplitude varies in a striking nonlinear man-

ner as φ is increased for values of ω above 1011, first increasing slightly, then

falling off rapidly.
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Figure 5.4: The amplitudes |BA|φ=0 and |BC|φ=0 of the reflected waves at normal
incidence with (a) a linear scale and (b) a logarithmic scale for the horizontal
axis. See Table 3.1 and Table 5.1 for material parameter values. Note that for
all plots we have normalised by setting A = 1
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Figure 5.5: The amplitudes |CA|φ=0 and |CC|φ=0 of the refracted waves at normal
incidence with (a) a linear scale and (b) a logarithmic scale for the horizontal
axis.
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Figure 5.6: The variation of the amplitudes (a) |BA| and (b) |BC| of the reflected
waves with angle of incidence φ for selected values of ω.
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Figure 5.7: The variation of the amplitudes (a) |CA| and (b) |CC| of the refracted
waves with angle of incidence φ.
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5.5 Discussion and Possibilities for Further Work

Results have been presented regarding the behaviour of a shear wave at a plane

interface between an isotropic elastic solid and a semi-infinite sample of SmA,

fully establishing the behaviour of the reflected and refracted waves in terms of

the problem’s physical parameters. In particular, the refracted wave number q,

which characterises the attenuation of the wave in the SmA case, was provided

in terms of the parameters characterising the solid and the smectic by equa-

tion (5.2.34). Further, expressions for the amplitudes of both the reflected and

refracted waves have been derived in terms of the incident wave amplitude and

these parameters, where the general case of oblique incidence is as stated above

in equations (5.2.56), (5.2.61). For the purpose of a qualitative comparison, we

derived analogous terms via the results of Gill and Leslie [25], who performed

calculations for the identical experiment for a sample of SmC, utilising the LSN

theory for this phase. It is readily seen that, at normal incidence, the behaviour

of the two phases is qualitatively the same, with the refracted wave amplitudes

showing a departure in behaviour from the approximate expressions given in

equations (5.4.1) and (5.4.2) as ω attains values ∼ 1010Hz and above. Before

ω attains this value, the aforementioned expressions provide a very accurate ap-

proximation to the respective solutions for the refracted wave amplitudes given

in (5.2.62) and (5.3.38).

In the case of oblique incidence, we see an interesting difference in the be-

haviours of the two types of smectic, with varying angle of incidence having a

significant effect on the both the reflected and refracted wave amplitudes in the

SmA case while barely changing the analogous quantities in the SmC case. This

may come as something of a surprise: one might expect that the amplitude of

oscillations would depend upon the angle of incidence for both phases, given their

anisotropy and not entirely dissimilar molecular structure. It remains unclear to

the author as to why this is the case.

It could be argued that the comparison of the behaviour of the two smectics

considered in this chapter is not quite a fair one: as previously mentioned, the

SmA dynamic theory of Stewart allows for both permeation between the smectic

layers and variability of the layers themselves, while the LSN theory for SmC

accounts for neither. Nevertheless, the linear analysis outlined in this chapter

requires that the layer displacement of the SmA is treated as zero (recalling

equation (5.2.26)) and thus the phenomenon of permeation plays no role; it stands

to reason that we would expect the same to be true for SmC.

The assumption of spatially semi-infinite samples is valid when the sample
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depth is greater than the penetration depth of the relevant smectic. It may prove

instructive to consider a smectic confined to a region with at least one of its

boundary lengths less than that of these penetration depths and investigate the

effects of sample boundaries in this case. Further, the stability of the material’s

layered structure to perturbations will presumably be valid for sufficiently small

amplitudes of incident wave; just how sensitive this structure is to disturbances of

higher amplitude and what exactly the threshold for the onset of damage might

be are matters for further investigation. For the latter case, however, it is worth

noting that a linear analysis may not be able to capture fully the behaviour of the

SmA: at the very least, permeation of molecules between the layers may prove a

non-negligible effect. This being the case, one would need to look beyond LSN

theory for SmC to a model allowing for flexible layers and permeation.

Finally, it is worth noting that both the SmA and SmC cases could be gen-

eralised further to account for arbitrary tilts of the layer normal and/or direc-

tor alignment with respect to the solid/smectic interface, weaker anchoring con-

straints on the director at the boundary, or considering a curved interface sepa-

rating the solid and smectic. In each case, especially the latter, the mathematical

work may be significantly more involved.
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Chapter 6

Edge Dislocations in Smectic A

Liquid Crystals

6.1 Introduction

This chapter is concerned with the problem of determining the configuration

of the layer normal and director profile of a sample of SmA in the presence of

an edge dislocation. Background material on the theory of edge dislocations in

crystalline solid media may be found in references [30, 35, 36]; for information

regarding dislocations in smectics, the reader may consult the latter two of these

references or the book of de Gennes and Prost [23]. While previous works have

derived expressions for the smectic layer displacement u in the presence of these

defects, all the aforementioned references have failed to take into account any

independent distortion of the director field, assuming that it always coincides

with layer normal. Moreover, the authors have predominantly operated under

the assumption that the energy density associated with deformations caused by

the edge dislocation is quadratic in spatial derivatives of the layer displacement,

thus leading to linearity of the resultant Euler-Lagrange equation whose solution

determines the layer displacement which minimises the energy cost associated

with the presence of the dislocation.

More recent work due to Brener and Marchenko [9] deals with an energy

density which contains an extra term, which is quartic in a spatial derivative of

u. A summary of their work, which will be shown to arise as a special case of the

considerations to follow, will be given in Section 6.2 below. As before, however,

the authors still operate under the assumption that the layer normal and director

profile are always coincident, and are therefore confined to an energy with only

two material constants.
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z

xx

Figure 6.1: Schematic representation of the configuration of the smectic layers in
the presence of an edge dislocation. The Burgers vector in this case is b = dez,
where d denotes the smectic interlayer distance.

In this chapter, the problem will be revisited under the framework of the

De Vita-Stewart energy for non-polarisable SmA, as outlined above in Subsec-

tion 2.3.2 and recalled here for ease of reference:

wDS = 1
2
Ka

1 (∇ · a)2 + 1
2
Kn

1 (∇ · n− s0)2 + 1
2
K2∇ · [(n · ∇)n− (∇ · n)n]

+ 1
2
B0|∇Φ|−2 (1− |∇Φ|)2 + 1

2
B1

[
1− (n · a)2

]
+B2(∇ · n)

(
1− |∇Φ|−1

)
, (2.3.11)

First, Section 6.2 provides a derivation of the energy density under the assump-

tion of small deviations of both director and layer normal from the unstrained

planar configuration n = a = (0, 0, 1). Section 6.3 presents the case where n and

a are constrained to coincide, allowing for the recovery of the above noted results

of previous investigations, as well as considering small time-independent pertur-

bations to the layer displacement. In Section 6.4, we allow for separation of the

director and layer normal. Taking the energy density to quadratic order allows

us to formulate and solve the equilibrium equations, obtaining exact solutions

for both the layer normal and director to this order of approximation. Tentative

calculations in the direction of obtaining solutions to fourth order are outlined

in Section 6.5, and we close the chapter with a summary of the results obtained

and a discussion of potential further explorations in Section 6.6.
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6.2 Calculating the Energy Density to Fourth

Order

Consider a sample of SmA subject to an edge dislocation such that the Burgers

vector of the dislocation, which will be taken to have magnitude b, and the dislo-

cation axis are parallel to the z- and y- axes, respectively. We wish to measure the

deviation of the configuration of the SmA away from that of the corresponding

“relaxed” reference configuration, described by

n = n0 ≡ (0, 0, 1), Φ = Φ0 ≡ z. (6.2.1)

The imposed dislocation will then lead to a director profile of the form

n = (sin θ, 0, cos θ), (6.2.2)

while the function Φ is modified to read

Φ = z − u(x, z). (6.2.3)

From the latter equation, it readily follows that ∇Φ = (−ux, 0, 1− uz), and thus

a =
(−ux, 0, 1− uz)√
1− 2uz + u2

x + u2
z

, (6.2.4)

where, for the remainder of this chapter, we employ the convention that a variable

appearing in a subscript denotes partial differentiation with respect to that vari-

able for ease of notation. Given the somewhat unwieldy form of equation (6.2.4)

for a, it makes sense as a first step to follow previous work [9, 36] and assume

that only small deviations away from the reference configuration are anticipated,

and that such deformations occur sufficiently slowly that we need only take into

account terms to quartic order in a Taylor series of the various terms involved

when computing the energy density. In spite of the lengthiness of some of the re-

sultant expressions, working to fourth order allows for the possibility of capturing

behaviour which could be missed on only retaining only lower-order terms. (Note,

however, that numerical methods probably provide the best route for determin-

ing this given the intractable nature of the expressions which arise; these are not

pursued in this thesis.) Further, it follows that all results in the aforementioned

previous work should be readily attained by truncation of at the appropriate

lower order.
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Equation (6.2.2) may be approximated by

n =
(
θ − 1

6
θ3, 0, 1− 1

2
θ2 + 1

24
θ4
)
, (6.2.5)

from which it is readily deduced that n ·n = 1 +O(θ6). Further, on noting that,

for v � 1

√
1 + v = 1 +

1

2
v − 1

8
v2 +

1

16
v3 − 5

128
v4 +O(v5),

1√
1 + v

= 1− 1

2
v +

3

8
v2 − 5

16
v3 +

35

128
v4 +O(v5),

it is easy to show that the approximations

|∇Φ| = 1− uz + 1
2
u2
x + 1

2
u2
xuz − 1

8
u4
x + 1

2
u2
xu

2
z, (6.2.6)

|∇Φ|−1 = 1 + uz − 1
2
u2
x + u2

z + u3
z − 3

2
u2
xuz + 3

8
u4
x + u4

z − 3u2
xu

2
z, (6.2.7)

hold to fourth order, and thus we may approximate a as

a =
(
−ux − uxuz + 1

2
u3
x − uxu2

z(1 + uz) + 3
2
u3
xuz,

0, 1− 1
2
u2
x − u2

xuz + 3
8
u4
x − 3

2
u2
xu

2
z

)
. (6.2.8)

It readily follows that a is also a unit vector to fourth order. We may now

use equations (6.2.5) and (6.2.6)–(6.2.8) to compute the terms comprising wDS.

Firstly, a simple calculation yields

(∇ · a)2 = u2
xx + 2u2

xxuz + 4uxuxxuxz + 3u2
xxu

2
z + 4u2

xu
2
xz − 3u2

xu
2
xx

+ 2u2
xuxxuzz + 12uxuxxuzuxz, (6.2.9)

while

(∇ · n− s0)2 = θ2
x − 2θθxθz + θ2(θ2

z − θ2
x)

+ s0

(
s0 − 2θx + 2θθz + θ2θz − 1

3
θ3θz

)
. (6.2.10)

Tedious but straightforward calculations allow us to conclude that

(n · ∇)n− (∇ · n)n = (θz, 0, −θx),

=⇒ ∇ · {(n · ∇)n− (∇ · n)n} = 0, (6.2.11)
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where it is assumed that partial derivatives of θ commute. Squaring both sides

of equation (6.2.7) leads to

|∇Φ|−2 = 1 + 2uz − u2
x + 3u2

z + 4u3
z − 4u2

xuz + u4
x + 5u4

z − 10u2
xu

2
z, (6.2.12)

which, taken in conjunction with (6.2.6), allows us to conclude

|∇Φ|−2 (1− |∇Φ|)2 = u2
z + 2u3

z − u2
xuz + 1

4
u4
x + 3u4

z − 4u2
xu

2
z. (6.2.13)

Taken together, equations (6.2.5) and (6.2.8) yield

n · a = 1− θux − 1
2
θ2 − u2

xuz + 1
2
θu3

x − θuxu2
z + 1

6
θ3ux + 3

8
u4
x

− 3
2
u2
xu

2
z + 1

24
θ4 + 1

4
θ2u2

x, (6.2.14)

from which

1− (n · a)2 = θ2 + u2
x + 2θux + 2u2

xuz + 2θuxuz − 1
3
θ4 − u4

x − 2θu3
x

− 4
3
θ3ux − 2θ2u2

x + 2θuxu
2
z + 3u2

xu
2
z. (6.2.15)

Finally, since

∇ · n = θx − θθz − 1
2
θ2θx − 1

6
θ3θz, (6.2.16)

it may be deduced by further appeal to equation (6.2.7) that

(∇ · n)
(
1− |∇Φ|−1

)
= −θxuz + 1

2
θxu

2
x − θxu2

z + θθzuz − θxu3
z

+ 3
2
θxu

2
xuz − 1

2
θθzu

2
x + θθzu

2
z + 1

2
θ2θxuz. (6.2.17)

Putting all this together, the energy density wDS may be expressed to fourth order

in the form

wDS = 1
2
Ka

1 (u2
xx + 2u2

xxuz + 4uxuxxuxz + 3u2
xxu

2
z + 4u2

xu
2
xz − 3u2

xu
2
xx

+ 2u2
xuxxuzz + 12uxuxxuzuxz) + 1

2
Kn

1

{
θ2
x − 2θθxθz + θ2(θ2

z − θ2
x)

+ s0

(
s0 − 2θx + 2θθz + θ2θz − 1

3
θ3θz

)}
+ 1

2
B0

(
u2
z + 2u3

z − u2
xuz + 1

4
u4
x

+ 3u4
z − 4u2

xu
2
z

)
+ 1

2
B1

(
θ2 + u2

x + 2θux + 2u2
xuz + 2θuxuz − 1

3
θ4 − u4

x

− 2θu3
x − 4

3
θ3ux − 2θ2u2

x + 2θuxu
2
z + 3u2

xu
2
z

)
+B2

(
−θxuz + 1

2
θxu

2
x

− θxu2
z + θθzuz − θxu3

z + 3
2
θxu

2
xuz − 1

2
θθzu

2
x + θθzu

2
z + 1

2
θ2θxuz

)
. (6.2.18)
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As stated in Subsection 2.3.2, the energy density wA for samples of SmA consisting

of non-polarisable molecules is recovered when s0 = K2 = B0 = 0.

6.3 Director and Layer Normal Coincident

In this section, we impose the requirement that the director and layer normal

show no decoupling, thus enabling us to recover the results of the aforementioned

previous work. In this instance, the energy density simplifies further still, viz.,

wA = 1
2
(Ka

1 +Kn
1 )(∇ · a)2 + 1

2
B0|∇Φ|−2 (1−∇|Φ|)2

= 1
2

(B0w0 +K1w
a
1) , (6.3.1)

where K1 = Ka
1 +Kn

1 and

w0 =
(
uz − 1

2
u2
x

)2
+ u3

z(2 + 3uz)− 4u2
xu

2
z, (6.3.2)

wa1 = u2
xx + 2u2

xxuz + 4uxuxxuxz + 3u2
xxu

2
z + 4u2

xu
2
xz − 3u2

xu
2
xx

+ 2u2
xuxxuzz + 12uxuxxuzuxz. (6.3.3)

In order to obtain an expression for the layer displacement u, we require the

minimum of the energy per unit length in the y-direction, which may be written

W =

∫
D

wA dA, (6.3.4)

whereD denotes the two-dimensional domain occupied by the SmA sample, which

in this chapter is taken to be all of R2. This necessitates an appeal to standard

methods of the calculus of variations, a cursory overview of which is presented in

Appendix C. For an overview of the methods to be utilised here, the reader may

also consult reference [11]. Let us calculate the first variation of the energy δW ,

defined for admissible variations h (see Appendix C) by

δW =
d

dt

∫∫
R2

η dxdz

∣∣∣∣
t=0

=

∫∫
R2

{∂t(η0 + ηa1)}|t=0 dxdz, (6.3.5)

where we have set

η0 = w0(u+ th)− w0(u), ηa1 = wa1(u+ th)− wa1(u), (6.3.6)

and

η = η0 + ηa1 = wA(u+ th)− wA(u). (6.3.7)
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It is a tedious but simple matter to compute the following:

η0 = t
{
hx(u

3
x − 2uxuz − 8uxu

2
z) + hz(2uz + 6u2

z − u2
x + 12u3

z − 8u2
xuz)

}
+O(t2), (6.3.8)

ηa1 = t
{
hxx(2uxx + 4uxxuz + 4uxuxz + 6uxxu

2
z − 6u2

xuxx + 2u2
xuzz

+ 12uxuzuxz) + hxz(4uxuxx + 8u2
xuxz + 12uxuxxuz) + 2hzzu

2
xuxx

+ hx(4uxxuxz + 8uxu
2
xz − 6uxu

2
xx + 4uxuxxuzz + 12uxxuzuxz)

+hz(2u
2
xx + 6u2

xxuz + 12uzuxxuxz)
}

+O(t2), (6.3.9)

from which it readily follows that the integrand of δW is simply the sum of the

terms enclosed in curly brackets within equations (6.3.8) and (6.3.9). Writing

δW = δW0 + δW a
1 , where

δW0 =
1

2
B0

∫∫
R2

(∂tη0)|t=0 dxdz, δW a
1 =

1

2
K1

∫∫
R2

(∂tη
a
1)|t=0 dxdz,

it follows that we may, on integrating by parts and requiring that any admissible

h and spatial derivatives thereof vanish at the limits of integration, rewrite δW0

and δW1 in the respective forms

δW0 = B0

∫∫
R2

h
{
uxx
(
4u2

z − 3
2
u2
x + uz

)
+ uzz(4u

2
x − 18u2

z − 6uz − 1)

+ 2uxuxz(8uz + 1)
}
dxdz, (6.3.10)

δW a
1 = K1

∫∫
R2

h
{
uxxxx(3u

2
z − 3u2

x + 2uz + 1) + 4uxuxxxz(3uz + 1)

+ 6u2
xuxxzz + 6uxxx(3uzuxz − 2uxuxx + uxuzz + uxz)

+ 6uxxz(3uxxuz + 5uxuxz + uxx) + 12uxuxxuxzz

+ 3uxx(uxxuzz − u2
xx + 6u2

xz)
}
dxdz. (6.3.11)

The energy W is then minimised by setting δW = δW0 +δW a
1 = 0 for all admissi-

ble variations h, which yields a highly nonlinear and intractable partial differential

equation for u. Progress regarding solutions u to the full equation is probably

best achieved by appeal to computational means, and this will not be considered

here. However, assuming small layer displacements with sufficiently small spatial

derivatives, analytical progress can be made in the following manner: according to

both theoretical studies [23, Subsection 9.2.1] and experimental observations [32],

the distortion of the layered structure is essentially confined to parabolic regions

described by x2 = cλz for some constant c, where λ =
√
K1/B0, which tells us
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that this configuration relaxes back to planar layers rapidly along x but signifi-

cantly more slowly along z. Thus, if one assumes that ux ∼ u/ξ and uz ∼ u/L for

some characteristic length scales ξ and L of displacement in the x and z directions,

respectively, with ξ2 = O(λL), it is apparent from equations (6.3.10) and (6.3.11)

that, on regarding terms of magnitude smaller than ∼ 1/ξ4 as negligible, one

immediately arrives at the truncated equilibrium equation

λ2uxxxx + uxx
(
uz − 3

2
u2
x

)
− uzz + 2uxuxz = 0, (6.3.12)

for the case z > 0; a similar equation is obtained in the case z < 0. This is

exactly the PDE obtained by Brener and Marchenko [9, equation (4)], which is

then non-dimensionalised by means of measuring all lengths in terms of λ; the

non-dimensional form reads

uxxxx + uxx
(
uz − 3

2
u2
x

)
− uzz + 2uxuxz = 0, (6.3.13)

which may be solved by first noting that solutions to this equation also solve

a lower-order PDE and solving this latter equation by appeal to the similarity

variable v = x/
√
z (see Appendix D for an outline of the method) subject to the

condition

lim
v→∞

u(v)− lim
v→−∞

u(v) =
b

2

to give

u = 2λ ln

{
1

2

[
1 + eb/4λ + (eb/4λ − 1) erf

(
x

2
√
λz

)]}
, (6.3.14)

on returning to dimensional form. In the limit where b� λ, it is simple to show

that eb/4λ ∼ 1 + b/4λ, which leads to

u ∼ 2λ ln

{
1 +

b

8λ

[
1 + erf

(
x

2
√
λz

)]}

∼ b

4

{
1 + erf

(
x

2
√
λz

)}
, (6.3.15)

this being exactly the result derived in the classical case [35,36], which may also

be obtained by only considering terms to quadratic order in u and its derivatives

in the energy density.

As yet, the approach of Brener and Marchenko has not been found to be ap-

plicable when truncating the energy density at higher order, and the resultant
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equilibrium equations certainly do not admit solutions of the form u (x/
√
z).

Moreover, given the unwieldy equations which arise from this higher order trun-

cation, little is to be gained from an attempt at their analysis without appeal to

computational means.

6.3.1 Perturbing Brener & Marchenko’s Solution

In this subsection, we consider subjecting the solution for layer displacement of

Brener and Marchenko, as stated in equation (6.3.14), to a small time-independent

perturbation to in a bid to ascertain whether other equilibrium solutions may be

found in the vicinity of that determined in reference [9]. Motivated by the work

of Bogomol’nyi [8], the modified solution to the PDE (6.3.12) will be assumed to

take the form

û = u+ ε(x, z), (6.3.16)

with |ε| � 1. Substitution into the dimensionless equilibrium equation (6.3.13)

leads to the requirement that ε approximately satisfies the PDE

εxxxx = εzz − 2(uxεxz + uxzεx)− uxxεz − uzεxx + 3
2
u2
xεxx + 3uxuxxεx. (6.3.17)

The solution û is then a solution of equation (6.3.12) with the same energy as u

for any ε satisfying this equation. Moreover, if ε is also a similarity solution of

the form ε(v) where v = x/
√
z, the PDE (6.3.17) may be rewritten to read

ψ′′′ = 3
4
vψ + 1

4
v2ψ′ + 2φψ + 3

2
v(φψ)′ + 3

2
(φ2ψ)′, (6.3.18)

where φ = u′(v) and ψ = ε′(v). For ease of reference, we record here that

φ =
2
(
eb/4 − 1

)
e−v

2/4

2
√
π +

(
eb/4 − 1

) ∫ v

−∞
e−t

2/4 dt

=
2e−v

2/4

√
π {coth(b/8) + erf(v/2)}

. (6.3.19)

The modified solution û should satisfy the condition

lim
v→∞

û(v)− lim
v→−∞

û(v) =
b

2
,

which leads to

lim
v→∞

ε(v)− lim
v→−∞

ε(v) =

∫ ∞
−∞

ψ dv = 0.
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Now, equation (6.3.18) may be written in the form

ψ′′′ = a(v)ψ′ + b(v)ψ, (6.3.20)

where

a(v) =
1

4
v2 +

3

2

(
vφ+ φ2

)
, b(v) = 2φ+

3

2

{
v + vφ′ +

(
φ2
)′}

. (6.3.21)

From our expression for φ in equation (6.3.19), it follows that we may expand

about an arbitrary point v = v0 to obtain

φ = Γ0 − Γ1(v − v0) + Γ2(v − v0)2 + Γ3(v − v0)3 +O
(
(v − v0)4

)
, (6.3.22)

where

Γ0 = φ(v0) =
2e−v

2
0/4

√
π {coth(b/8) + erf(v0/2)}

, (6.3.23)

Γ1 = φ′(v0) =
2e−v

2
0/2

π {coth(b/8) + erf(v/2)}2 +
v0e
−v20/4

√
π {coth(b/8) + erf(v/2)}

, (6.3.24)

Γ2 = φ′′(v0) =
2e−3v20/4

π3/2 {coth(b/8) + erf(v/2)}3 +
3v0e

−v20/2

2π {coth(b/8) + erf(v/2)}2

+
(v2

0 − 2) e−v
2
0/4

4
√
π {coth(b/8) + erf(v0/2)}

(6.3.25)

Γ3 = φ′′′(v0) =
(6− v2

0) e−v
2
0/4

24
√
π {coth(b/8) + erf(v0/2)}

+
(8− 7v2

0) e−v
2
0/2

12π {coth(b/8) + erf(v0/2)}2

− 2v0e
−3v20/4

π3/2 {coth(b/8) + erf(v/2)}3 −
2e−v

2
0

π2 {coth(b/8) + erf(v/2)}4 .

(6.3.26)

Note that, for a given value of v0, we have x2 = λv2
0z (in dimensional variables): a

parabola in the xz-plane with vertex at the origin and focus at (x, z) = (0, λv2
0/4).

The expansion (6.3.22) is thus an approximation to the behaviour of φ about this

parabola. In the special case v0 = 0, the approximation is valid about the straight

line x = 0.
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Using equation (6.3.22), we may deduce the following to quadratic order:

φ2 = Γ2
0 − 2Γ0Γ1(v − v0) +

(
Γ2

1 + 2Γ0Γ2

)
(v − v0)2, (6.3.27)

φ′ = −Γ1 + 2Γ2(v − v0) + 3Γ3(v − v0)2, (6.3.28)

φφ′ = −Γ0Γ1 +
(
Γ2

1 + 2Γ0Γ2

)
(v − v0) + 3 (Γ0Γ3 − Γ1Γ2) (v − v0)2, (6.3.29)

so that, on substitution into equations (6.3.21), we may write

a(v) =
v2

4
+

3

2

{(
Γ2v + Γ2

1 + 2Γ0Γ2

)
(v − v0)2 − Γ1 (v + 2Γ2) (v − v0)

+Γ0 (v + Γ0)}+O
(
(v − v0)3

)
, (6.3.30)

b(v) = {2Γ2 + 9 (Γ0Γ3 − Γ1Γ2)} (v − v0)2 +
(
3Γ2v + 3Γ2

1 + 6Γ0Γ2 − 2Γ1

)
(v − v0)

+
3

2
(1− Γ1) v + Γ0 (2− 3Γ1) +O

(
(v − v0)3

)
. (6.3.31)

It follows that, if the layer displacement is modified by some small perturbation ε

which may be expressed as a function of a similarity variable and which satisfies

the ODE (6.3.18), then the function û is a solution with approximately the same

energy as the solution u due to Brener and Marchenko. In the neighbourhood of

a given parabola x2 = λv2
0z, this ODE may be approximated by setting the coef-

ficients a(v) and b(v) to the expressions stated in equations (6.3.30) and (6.3.31)

above. Unfortunately no method attempted by the author led to an explicit so-

lution ε to equation (6.3.18), though it is hoped that future work will enable

progress in this direction.

6.4 Separation of Director and Layer Normal:

Quadratic Order

In this section, we depart from the precedent set forth in previous work and allow

n and a to separate. As a first step, we extend the most simple case by only

retaining quadratic terms in u, θ and spatial derivatives thereof, obtaining exact

solutions for both u and θ which we then compare with previous results via plots

of their spatial variations for typical values of the constants appearing in the

energy density.
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6.4.1 Equilibrium Equations and Solution for the Layer

Displacement

Recalling equation (6.2.18), it follows that the energy density wA may be written

to second order as

wA = 1
2

{
Ka

1u
2
xx +Kn

1 θ
2
x +B0u

2
z +B1(θ + ux)

2
}
. (6.4.1)

As above, we seek minimisers u and θ of the total energy per unit length in y,

given above in (6.3.4), for which we require δW = 0. It is readily shown [11] that

this requirement is equivalent to the following two PDEs

∂2

∂x2

(
∂wA

∂uxx

)
=

∂

∂x

(
∂wA

∂ux

)
+

∂

∂z

(
∂wA

∂uz

)
, (6.4.2)

∂

∂x

(
∂wA

∂θx

)
=
∂wA

∂θ
. (6.4.3)

Carrying out the required partial differentiation shows that these may be ex-

pressed in the forms

Ka
1uxxxx = B0uzz +B1(θx + uxx), (6.4.4)

Kn
1 θxxx = B1(θx + uxx), (6.4.5)

respectively. Note that requiring n = a to second order gives θ + ux = 0 again,

allowing for the recovery of the classical case provided we also set Kn
1 = 0; we

proceed with the general case n 6= a. Differentiating (6.4.5) twice with respect

to x and rearranging gives

θxxx =
Ka

1

B1

uxxxxxx −
B0

B1

uzzxx − uxxxx,

so that, on substitution into (6.4.5), it follows that

B1(θx + uxx) = Kn
1

(
Ka

1

B1

uxxxxxx −
B0

B1

uzzxx − uxxxx
)
,

which may then be substituted into (6.4.4) to yield

λ2
n

(
uzzxx − λ2

auxxxxxx
)

+ β
{(
λ2
a + λ2

n

)
uxxxx − uzz

}
= 0, (6.4.6)
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where we have introduced the length scales

λa =
√
Ka

1/B0, λn =
√
Kn

1 /B0 (6.4.7)

to facilitate later comparisons with previously-established results, along with the

dimensionless parameter β, given by

β =
B1

B0

, (6.4.8)

identical to the quantity introduced at equation (4.1.5) in Chapter 4 above.

Following the observation by Kleman and Lavrentovich [35] for the classical

case, let us assume that the general solution to the PDE (6.4.6) in the region

z > 0 may be expressed in the form

u(x, z) =
b

4

(
1 +

1

π

∫ ∞
−∞

g(z)eiσx

iσ
dσ

)
. (6.4.9)

Substitution into (6.4.6) readily yields the following ODE for g(z) in terms of the

combination of parameters Γ(σ):

g′′(z) =
σ4 {σ2λ2

aλ
2
n + β (λ2

a + λ2
n)}

σ2λ2
n + β

g(z) ≡ Γ2(σ)g(z), (6.4.10)

whose general solution is

g(z) = A(σ)e−Γ(σ)z +B(σ)eΓ(σ)z.

Since we require g(z) to be finite for all z > 0, it immediately follows that

B(σ) = 0. Further, the boundary condition u(x, 0) = b/2 leads to the requirement∫ ∞
−∞

A(σ)eiσx

iσ
dσ = π. (6.4.11)

Now, it may readily be shown by expanding eiϑ = cosϑ + i sinϑ, substituting

xσ → τ and integrating along an appropriate contour in the complex plane that∫ ∞
−∞

eiσx

iσ
dσ = 2

∫ ∞
0

sin τ

τ
dτ = π,
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from which it is evident that we may take A(σ) ≡ 1, and thus

u(x, z) =
b

4

(
1 +

1

π

∫ ∞
−∞

eiσx−Γ(σ)z

iσ
dσ

)

=
b

4
+

b

2π

∫ ∞
0

e−Γ(σ)z sin(σx)

σ
dσ. (6.4.12)

In Subsection 6.4.3 below we will go on to compute an exact solution for the

director and compare its behaviour to that of the layer normal. First, however,

we compare the behaviour of this solution u with its counterpart in the two-

constant case as outlined by multiple authors [23, 35,36].

6.4.2 Comparison with the Two-Constant Case

Let us denote the layer displacement in the classical case by υ(x, z). This may

be written in the form [35]

υ(x, z) =
b

4

(
1 +

1

π

∫ ∞
−∞

eiσx−λaσ
2z

iσ
dσ

)

=
b

4
+

b

2π

∫ ∞
0

e−λaσ
2z sin(σx)

σ
dσ, (6.4.13)

which is simply u(x, z) in the limit as either (or both) of λn, β → 0. To facil-

itate graphical comparison of this displacement with that given above by equa-

tion (6.4.12), it proves convenient to write each of the expressions υ and u above

in terms of integrals over a finite domain. This is achieved by appeal to the

substitution

ζ =
1

1 + λaσ
=⇒ dσ = − dζ

λaζ2
, (6.4.14)

so that equation (6.4.12) may, after appropriate substitution and rearrangement,

be written in the form

u(x, z) =
b

4
+

b

2π

∫ 1

0

g(ζ) dζ, (6.4.15)

where

g(ζ) =
exp {−∆(ζ)z} sin {(ζ−1 − 1)x/λa}

ζ − ζ2
, (6.4.16)
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with

∆(ζ) =
(1− ζ)2

λa

√
λ2
n (ζ−1 − 1)2 + β (λ2

a + λ2
n)

λ2
n (ζ − ζ2)2 + βλ2

aζ
4

. (6.4.17)

One readily deduces that

∆(ζ)→∞ as ζ → 0+, while ∆(ζ)→ 0 as ζ → 1−, from which

g(ζ)→ 0 as ζ → 0+ and g(ζ)→ x

λa
as ζ → 1−, (6.4.18)

ensuring that the integral on the right-hand side of (6.4.15) does not diverge.

Further, it is evident that the two displacements agree at the endpoints of inte-

gration by virtue of these limits being independent of both β and λn. Taking the

appropriate limit in equation (6.4.12) shows that (6.4.13) is equivalent to

υ(x, z) =
b

4
+

b

2π

∫ 1

0

f(ζ) dζ, (6.4.19)

where

f(ζ) =
exp

{
− (ζ−1 − 1)

2
z/λa

}
sin {(ζ−1 − 1)x/λa}

ζ − ζ2
. (6.4.20)

We note that the diffusion-like property of the spatial derivatives of υ

∂zυ = λa∂
2
xυ, (6.4.21)

does not hold for u when Kn
1 and B1 are non-zero; instead, the following gener-

alised relationship holds:

λa∂
2
xu− ∂zu =

b

2π

∫ ∞
0

{
Γ(σ)

σ
− λaσ

}
e−Γ(σ)z sin(σx) dσ. (6.4.22)

The properties stated in equations (6.4.18) allow for numerical integration of

the expressions for υ and u outlined in equations (6.4.15)–(6.4.17) and (6.4.19),

(6.4.20), respectively, by defining the function g(ζ) in a piecewise manner over

the interval [0, 1] and appealing to the ApproximateInt command in Maple [44].

From this, a range of plots has been generated for typical SmA parameter values.

Displayed in Figs. 6.2(a),(b), we see the displacements u and υ due to the

dislocation plotted as functions of z for varying orders of magnitude of the pa-

rameter β. Also shown is the difference between the two quantities in certain

cases. Note that we have set x = λa, and the value b = λa/2 has been chosen to

126



ensure the validity of the quadratic energy density and the resultant linear equi-

librium equations. A noticeable variation is observed across the different orders of

magnitude of β; while the case β = 10 may be deemed physically irrelevant [56],

we nevertheless observe a difference of up to ∼ 5% between the “far-field” limit

of the displacement due to the dislocation in the cases β = 0 and β = 1.

Next, Figs. 6.3(a)–(c) show the effects of varying the constant Kn
1 in the case

x = λa as before; plots are shown for λn = λa/10, λa, and 10λa with values of β

as indicated in the relevant captions. Whilst clearly having an influence on the

values of u, it is clear that increasing the value of β makes this influence far more

pronounced.

6.4.3 Solution for Director Profile and Layer Normal

It still remains for us to derive an expression for θ. To this end, equation (6.4.5)

is easily rearranged to yield

θx = λ2
auxxxx − βuzz − uxx. (6.4.23)

Carrying out the required differentiation leads to the following expressions for

the spatial derivatives of u:

uxx = − b

2π

∫ ∞
0

σe−Γ(σ)z sin(σx) dσ,

uxxxx =
b

2π

∫ ∞
0

σ3e−Γ(σ)z sin(σx) dσ,

uzz =
b

2π

∫ ∞
0

Γ2(σ)e−Γ(σ)z sin(σx)

σ
dσ,

so that

θx =
b

2π

∫ ∞
0

{
λ2
aσ

3 + σ − βΓ2(σ)

σ

}
e−Γ(σ)z sin(σx) dσ. (6.4.24)

Integration of equation (6.4.24) with respect to x gives the general solution

θ =
b

2π

∫ ∞
0

χ(σ) {cos(σx) + τ(z)} dσ, (6.4.25)

where

χ(σ) =

{
βΓ2(σ)

σ2
− λ2

aσ
2 − 1

}
e−Γ(σ)z, (6.4.26)
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(a) The normalised layer displacements for various values of the parameter β.
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(b) The difference between the solution u as seen in equation (6.4.12) and the classical
solution υ stated in equation (6.4.13).
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Figure 6.2: Effect of variation of β upon the layer displacement, plotted as a
function of z for x = λa = λn.
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Figure 6.3: The normalised layer displacements for various values of the param-
eters λn and β (continued on next page).
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(a) β = 1/10.
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(c) β = 10.

and τ(z) is an arbitrary function of z arising from the integration. On physical

grounds, we must have θ(x, z) → 0 as x → ∞ ∀ z; then, since χ(σ) has only a

finite number of maxima and minima and no discontinuities for σ ∈ [0,∞), we

may utilise [63, Section 3, Theorem 4] to determine that

lim
x→∞

θ(x, z) =
b

2

{
lim
x→∞

∫ ∞
0

χ(σ) cos(σx) dσ + lim
x→∞

∫ ∞
0

χ(σ)τ(z) dσ

}

=
b

2

{
0 +

∫ ∞
0

χ(σ)τ(z) dσ

}
= 0, (6.4.27)

and hence

θ(x, z) =
b

2π

∫ ∞
0

{
βΓ2(σ)

σ2
− λ2

aσ
2 − 1

}
e−Γ(σ)z cos(σx) dσ. (6.4.28)

We have thus computed exact expressions for both the director profile and layer

normal in the presence of an isolated edge dislocation.

Following the approach of the preceding section, let us write the expres-

sion (6.4.28) as an integral over the finite interval [0, 1]. Employing the sub-

stitution (6.4.14) once more, it follows that θ may be expressed in the equivalent
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form

θ(x, z) =
b

2πλa

∫ 1

0

h(ζ) dζ, (6.4.29)

where

h(ζ) =

{
λ2
aβ∆2(ζ)

(1− ζ)2
− (1− ζ)2 + ζ2

ζ4

}
e−∆(ζ)z cos

{(
ζ−1 − 1

)
x/λa

}
. (6.4.30)

It is readily deduced that, as ζ → 0+,

|h(ζ)| = O
(

1

ζ4
e−1/ζ2

)
,

and thus

h(ζ)→ 0 as ζ → 0+, h(ζ)→ −1 as ζ → 1−, (6.4.31)

and thus it is evident that the integral will not diverge. In order to directly

compare the director profile with that of the layer normal, let us introduce the

angle between a and the positive z-axis and agree to denote it by δ. It follows

that the layer normal may be expressed in the form

a = (sin δ, 0, cos δ) ≈
(
−ux(1 + uz), 0, 1 + uz + u2

z − 1
2
u2
x

)
,

from which it is evident that, to quadratic order,

δ = arcsin {−ux(1 + uz)} . (6.4.32)

Recalling equation (6.4.15), it is straightforward to conclude that

ux =
b

2πλa

∫ 1

0

µ(ζ) dζ, (6.4.33)

uz =
b

2π

∫ 1

0

ν(ζ) dζ, (6.4.34)

where we have defined

µ(ζ) =
e−∆(ζ)z cos {(ζ−1 − 1)x}

ζ
, (6.4.35)

ν(ζ) =
∆(ζ)e−∆(ζ)z sin {(ζ−1 − 1)x}

ζ − ζ2
. (6.4.36)
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We record that

µ(ζ)→ 0 as ζ → 0+, µ(ζ)→ 1 as ζ → 1−, (6.4.37)

ν(ζ)→ 0 as ζ → 0+, ν(ζ)→ 0 as ζ → 1−. (6.4.38)

6.5 Separation of Director and Layer Normal:

Preliminary Fourth Order Calculations

In the case where Kn
1 = 0, the energy density wA may be written in the form

wA = 1
2

(Ka
1w

a
1 +B0w0 +B1w1) , (6.5.1)

where w0 and wa1 are as given above by equations (6.3.2) and (6.3.3), respectively,

while

w1 = (θ + ux)
2 + 2uxuz(θ + ux)− 1

3
θ4 − u4

x − 2θu3
x − 4

3
θ3ux − 2θ2u2

x

+ 2θuxu
2
z + 3u2

xu
2
z. (6.5.2)

The equilibrium equations are given by

∂2

∂x2

(
∂wA

∂uxx

)
=

∂

∂x

(
∂wA

∂ux

)
+

∂

∂z

(
∂wA

∂uz

)
, (6.5.3)

∂wA

∂θ
= 0. (6.5.4)

Carrying out the required differentiation and substitution gives the two equations

as, respectively,

λ2
auxxxx = uzz − 2uxuxz + uxx

(
3
2
u2
x − uz

)
+ β

{
2uxz(θ + 2ux) + θzux + uxx [1

+ 2uz − θux(1 + θ)− 2θ2
]

+ θx
(
1 + uz − 3u2

x − 4θux
) }
, (6.5.5)

0 = B1

{
(θ + ux)(1− 2θux) + uxuz − 2

3
θ3 − u3

x

}
. (6.5.6)

There are two possible means of approaching these equations: first, equation (6.5.6)

could be solved for θ to yield three roots in terms of ux and uz, which may then be

differentiated and substituted back into equation (6.5.5) to yield a messy equation

for u. Alternatively, one could instead examine the case in which the coupling

energy term is of a magnitude such that terms of sufficiently high order may be

considered vanishingly small; for instance, assuming that terms of quartic order
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in (6.2.15) may be discarded, equations (6.5.5) and (6.5.6) may be approximated

by

Ka
1uxxxx = B0

{
uzz − 2uxuxz + uxx

(
3
2
u2
x − uz

)}
+B1(uxx + θx), (6.5.7)

θ = −ux(1 + uz). (6.5.8)

Differentiation (6.5.8) with respect to x and substituting into (6.5.7) yields

λ2
auxxxx = uzz − (2 + β)uxuxz − (1 + β)uxxuz + 3

2
u2
xuxx, (6.5.9)

after dividing by B0. This is almost identical in form to the equation of Brener

and Marchenko, equation (D.1) in Appendix D with a = 1/2, but with two some-

what modified coefficients incorporating the dimensionless parameter β. This

modification of the coefficients unfortunately renders the method outlined in Ap-

pendix D of no use here, though it is hoped that this method may be generalised

to be applicable to an equation of this type. It is worth remarking that, while

a regular perturbation expansion approach may yield results in the case of small

values of β, this has as yet not been investigated by the author; such an approach

will be pursued in future work.

6.6 Conclusions and Discussion

This chapter has examined the effects of an isolated edge dislocation on the static

behaviour of a SmA liquid crystal. After setting up the problem and deriving an

expression for the energy density to fourth order, two cases were considered. First,

working under the assumption that n ≡ a, the relevant equilibrium equation

was obtained; while proving intractable, this allows for the recovery of results of

previous investigations after truncating at the relevant order, provided the scaling

property discussed in Section 6.3 holds. Next, it was shown that relaxation of

the constraint that n must always coincide with a allows for the construction of

exact solutions for both when the energy density is truncated at quadratic order.

Moreover, the solution u for the layer displacement differs from the “classical”

case in which n and a always coincide, as was demonstrated by the modified

identity expressed in equation (6.4.22), as well as the plots contained in Figs. 6.2–

6.3 for various values of the relevant elasticity and energy terms. Finally, some

tentative steps towards formulating equilibrium equations for the fourth order

energy density in the particular case Kn
1 = 0 have been presented; unfortunately

no method attempted by the author has yielded solutions, and so this must be
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made the goal of future investigations.

Many further avenues of investigation present themselves. Having explored

the isolated edge dislocation case, it may be of interest to investigate configura-

tions of multiple dislocations and ask what sort of distortion is to be anticipated

and how different strengths and configurations of these defects would alter the

smectic structure. It might also prove pertinent to examine the dynamics to

which this would lead or, conversely, how the imposition of flow (for example by

the application of a pressure gradient across the sample) might affect the config-

urations both as considered in this chapter and of various other configurations.

Finally, it has been assumed throughout that the sample under consideration has

infinite spatial extent: physically speaking, this corresponds to assuming that the

sample boundaries are sufficiently far from the core of the defect so as to have

no effect on the resultant configuration. It may prove worthwhile to examine the

case of a dislocation near to a boundary under a variety of anchoring conditions.

Such matters certainly warrant a great deal of further exploration.
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Chapter 7

Concluding Remarks

7.1 Outline of Work Undertaken

This thesis is the result of a series of theoretical investigations into a range of

phenomena in smectic A (SmA) liquid crystals employing the dynamic theory of

Stewart [69] in conjunction with the energy density of De Vita and Stewart [13].

For convenience, a summary of the key findings is provided. In Chapter 3,

• a linearised two-dimensional version of the theory was derived, valid subject

to suitable physical conditions;

• in particular, it has been shown that the theoretical framework of de Gennes [22]

arises as a special case of the resultant system of equations, and that one

can predict simple flow patterns and the corresponding alignment of the

smectic using these.

• Moreover, a linear stability analysis served to establish regimes of expected

stability and instability of solutions when subject to small oscillatory per-

turbations, as dictated by the relevant Routh-Hurwitz criteria, the satis-

faction of which is ultimately determined by values of the various material

parameters and perturbative wave numbers involved.

In Chapter 4,

• the system of equations derived in Chapter 3 was non-dimensionalised, al-

lowing for the use of a lubrication approximation in the case of flows meeting

the appropriate physical conditions.

• After discussing various regimes of leading-order behaviour on an equation-

by-equation basis, the approximation was utilised to determine the velocity
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profile for pressure driven flow of SmA in agreement with previous work

on the subject [82], as well as providing solutions for the director field and

layer displacement to leading order.

• The leading-order theory predicts stability of the flow pattern, in agreement

with the calculation using de Gennes’ theory in Section 3.3. Stepping up to

the next order of approximation, however, it was shown that instability is

to be expected provided the component of the wave vector parallel to the

plane of the layers and a particular viscosity coefficient are non-zero.

In Chapter 5, the behaviour of a shear wave incident at a plane boundary

separating an isotropic elastic solid from a sample of SmA was established.

• After considering two possible ansätze for director motion in response to the

wave-induced perturbation, it was determined that one leads to an incon-

sistency, while the other enables us to calculate the physical quantities of

interest, namely the refracted wave number and penetration depth, as well

as the reflected and refracted wave amplitudes, in terms of the problem’s

pre-determined quantities.

• Moreover, on extending the analogous investigation for a sample of smec-

tic C (SmC) [25], we were able to compute expressions for the analogous

quantities for this material, thereby enabling us to compare the responses

of these two smectic phases.

Finally, Chapter 6 revisited the problem of determining the configuration of

a sample of SmA in the presence of an edge dislocation.

• First, the energy density was calculated to fourth order in the director

deflection and layer displacement, under the assumption that deformations

are sufficiently small that such an approximation is valid.

• The case where director and layer normal are coincident was examined.

After calculating the first variation of the energy density, we established that

previous results for the layer displacement may be recovered on truncation

of the resultant equilibrium equation; this equilibrium equation at third

and fourth order is intractable, and no attempt was made at its solution.

• On allowing for separation of the director and layer normal, exact solu-

tions for each of these were obtained in the case where deformations are
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sufficiently small to allow for truncation at quadratic order. A quantita-

tive comparison between the results obtained here with those found for the

two-constant case was presented.

• Finally, preliminary investigations into higher order calculations have been

carried out, with a “weak” decoupling case considered and the resultant

equilibrium equation presented; as yet no method attempted has led to its

solution.

7.2 Outlook

Many ideas for next steps in following up the work which constitutes this thesis

have been presented within the concluding remarks of each chapter, and the

reader’s patience will not be tried by having them rehashed in this short afterword.

As is so often the case, there remain many loose ends that remain to be tied up,

but it is hoped that the studies undertaken as part of this thesis will provide some

useful insights and play their role in furthering the community’s understanding

of the physical properties of the SmA phase, in addition to pointing out some

useful mathematical approaches to the modelling of its behaviour.

Electric and magnetic field effects are known for their remarkable interactions

with liquid crystals, giving rise to such phenomena as the Freedericksz transition

in nematics and smectics [68, Sections 3.4, 5.9] and the Helfrich-Hurault effect

found in smectics [23, Subsection 7.1.6], [68, p.286]. The study of such interactions

is therefore conspicuous by its absence from the pages of this thesis. There is

certainly scope for modification of the problems considered in Chapters 3–6 to

include the presence of an electromagnetic field; this would no doubt serve to

significantly alter the behaviour of the smectic. Also absent are any studies

featuring free surfaces, in which surface tension effects would need to be taken

into consideration for sufficiently small scales; examples include the modelling

of thin films of SmA (for which a lubrication approach of the sort outlined in

Chapter 4 may play a useful part) and the behaviour of small drops in various

settings.

Generally speaking, the description of SmA as furnished by the dynamic the-

ory of Stewart in conjunction with the energy density proposed by De Vita and

Stewart presents a wealth of opportunities for studying features of its behaviour

in these settings and many more, allowing novel descriptions of phenomena that

may not be predicted by other models. Where possible, comparison with both

predictions of previously-constructed theories in addition to experimental studies
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is key for those who wish to obtain a clear understanding of the behaviour of this

phase and the mathematical approach to predictions thereof. It is certain that

there is a great deal more work to be done in pursuit of this goal, and it is hoped

that the studies contained within this thesis play their part, however small, in

moving further towards that goal, both directly by means of the results obtained

and indirectly via the further research directions to which they have led.
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Appendix A

Index Notation and the Einstein

Summation Convention

We follow the account set out by Stewart [69, Section 1.4]. Given the usual system

of basis vectors {e1, e2, e3} in R3, a vector x may be expressed as

x = x1e1 + x2e2 + x3e3 =
n∑
i=1

xiei. (A.1)

The terms xi, i ∈ {1, 2, 3}, are the components of x. Employing the Einstein

summation convention allows for equation (A.1) to be written in a more concise

form. The convention is as follows: if an index i appears twice in a given term,

the repetition of that index is taken to be a summation over all the contributions

obtained by allowing the index to assume all its possible values. This is the case

throughout the thesis unless an explicit statement is made to the contrary. In

this way, equation (A.1) is equivalent to

x = xiei, i = 1, 2, 3. (A.2)

This convention is also applicable to tensors and matrices. Given two n × n

matrices A = [aij], B = [bij], their product AB = C = [cij] has components as

cij = aikbkj, (A.3)

where, again, the repeated index k is summed from 1 to n. The index k is referred

to as a dummy index; a summation over a particular index is independent of

the choice of letter, so that aikbkj is indistinguishable from aimbmj, aitbtj, etc. The
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trace of a matrix A = [aij] is defined to be

Tr(A) := aii. (A.4)

It proves convenient to define, for i, j, k ∈ {1, 2, 3} the Kronecker delta δij by

δij :=

1 if i = j,

0 if i 6= j,
(A.5)

and the alternator εijk

εijk :=


1 if ijk is an even permutation of {1, 2, 3},

−1 if ijk is an odd permutation of {1, 2, 3},

0 if any of i, j, k are equal.

(A.6)

Two useful identities for alternators are the contraction rule

εijkεipq = δjpδkq − δjqδkp, (A.7)

and the determinant expression

εijkεpqr =

∣∣∣∣∣∣∣
δip δiq δir

δjp δjq δjr

δkp δkq δkr

∣∣∣∣∣∣∣ . (A.8)

Note that equation (A.7) is simply a special case of (A.8).

The partial derivative of a given scalar quantity ϕ with respect to its ith

variable is denoted by ∂iϕ or ϕ,i for brevity. For example, the partial derivative of

the scalar function f(x1, . . . , xn) with respect to its ith variable is ∂f/∂xi = ∂if =

f,i. Similarly, ai,j = ∂jai denotes the partial derivative of the ith component of

the vector a with respect to its jth variable. This may be extended in an obvious

way to tensors of order two or higher.

The scalar product of two vectors x = (x1, x2, x3) and y = (y1, y2, y3),

written x · y, is defined as

x · y := xiyi. (A.9)

The magnitude of x is |x| = √xixi. It is readily seen, then, that x ·x = 0 if and

only if x = 0. Two non-zero vectors x and y are orthogonal to one another

if and only if x · y = 0. The simple geometrical interpretation of this is that
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x · y = |x||y| cos θ, where θ is the angle between x and y. If θ = π/2, the two

vectors are indeed orthogonal.

The ith component of the vector product x× y is given by

(x× y)i := εijkxjyk, (A.10)

and the scalar triple product is defined as

x · (y × z) = xiεijkyjzk. (A.11)

The tensor product of two vectors is defined by its action on a third vector via

the relation

(x⊗ y)z = (y · z)x. (A.12)

The gradient of the scalar field f is

∇f = eif,i. (A.13)

The divergence of a vector x is given by

∇ · x = xi,i, (A.14)

and its curl is defined as

∇× x = eiεijkxk,j. (A.15)

The divergence of a second order tensor with components tij has a divergence

whose ith component is given by tij,j. Again, this extends in an obvious way to

tensors of arbitrary order.
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Appendix B

Two Useful Results Regarding

the Roots of Polynomials

For convenience, two of the major results employed in Chapter 3 are presented.

Theorem B.1 (Descartes’ rule of signs). If the terms of a single-variable

polynomial with real coefficients are ordered by descending variable exponent, the

number of positive roots is either equal to the number of sign differences between

consecutive (non-zero) coefficients or is less than it by an even number. (Multiple

roots of the same value are counted separately.)

The following theorem is an extension to the Routh-Hurwitz stability crite-

ria [31, 57] for polynomials with complex coefficients.

Theorem B.2 (Frank [18]). Let p(z) be a complex polynomial of degree n of

the form

p(z) := zn + (a1 + ib1)zn−1 + . . .+ (an−1 + ibn−1)z + an + ibn, (B.1)

with aj, bj ∈ R (j = 1, . . . , n). Then p(z) has all its zeros in the left half-plane if

and only if the determinants ∆k, k = 1, . . . , n, defined by

∆1 := a1, (B.2)
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∆k :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a3 a5 · · · a2k−1 −b2 −b4 · · · −b2k−2

1 a2 a4 · · · a2k−2 −b1 −b3 · · · b2k−3

...
. . .

...
. . .

...

0 · · · ak 0 · · · −bk−1

0 b2 b4 · · · b2k−2 a1 a3 a5 a2k−3

0 b1 b3 · · · b2k−3 1 a2 a2k−4

. . .
. . .

...
. . .

...

0 · · · bk 0 · · · ak−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, k ≥ 2, (B.3)

are all positive. (Note that aj, bj = 0 for all j > n.)

Proof. A proof of the result may be found in the paper by Frank [18].

As an example, let us consider an arbitrary polynomial of degree 2: f(z) =

z2 + (a1 + ib1)z + a2 + ib2. The roots of f lie in the left half-plane if and only if

the inequalities

∆1 = a1 > 0, ∆2 =

∣∣∣∣∣∣∣
a1 0 −b2

1 a2 −b1

0 b2 a1

∣∣∣∣∣∣∣ > 0 (B.4)

are satisfied. We see that the latter of these inequalities simplifies to a2 > 0 in

the case where b1 = b2 = 0, thus reproducing the Routh-Hurwitz criteria for a

quadratic polynomial with real coefficients. The case a1 = a2 = 0 is demonstrated

above in Section 4.3.3.

Note that this is easily extended to a cubic polynomial of the form g(z) =

z3 + (a1 + ib1)z2 + (a2 + ib2)z + a3 + ib3. Again, g(z) has its roots in the left

half-plane if and only if

a1 > 0,

∣∣∣∣∣∣∣
a1 a3 −b2

1 a2 −b1

0 b2 a1

∣∣∣∣∣∣∣ > 0,

∣∣∣∣∣∣∣∣∣∣∣∣

a1 a3 0 −b2 0

1 a2 0 −b1 −b3

0 a1 a3 0 −b2

0 b2 0 a1 a3

0 b1 b3 1 a2

∣∣∣∣∣∣∣∣∣∣∣∣
> 0. (B.5)

It readily follows that, on setting bj = 0 for j ∈ {1, 2, 3}, one obtains the usual

Routh-Hurwitz criteria as employed above in Section 3.6, viz.,

a1 > 0, a1a2 − a3 > 0, a3(a1a2 − a3)2 > 0, i.e., a3 > 0. (B.6)
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Appendix C

A Primer on Basic Variational

Calculus

This appendix contains some essential definitions and techniques of the calculus of

variations utilised in Chapter 6 above. For comprehensive introductory accounts

to this vast topic and its powerful methods, the reader is directed to the books

of Gel’fand & Fomin [20] and Sagan [59].

C.1 Differentiation of Functionals

Let J : X 7→ R be a functional; that is, a mapping from the normed linear space

X into the real numbers. The increment of J corresponding to an increment of

h ∈ X applied to the function y ∈ X is given by

∆J(h) = J(y + h)− J(y), y ∈ X. (C.1)

Definition C.1 (Fréchet Differential). The functional J : X 7→ R is said to be

Fréchet differentiable if

∆J(h) = dfJ(h) + α(y, h), h ∈ X,

where dfJ(h) is the Fréchet differential of J at y, a continuous linear functional

of h, and

lim
‖h‖→0

α(y, h)

‖h‖
= 0,

that is α(y, h) = o (‖h‖) as ‖h‖ → 0.

Definition C.2 (Gâteaux Differential). The functional J : X → R is said to be

144



Gâteaux differentiable if

∆J(h) = dgJ(h) + α(y, h), h ∈ X,

where dgJ(h) is the Gâteaux differential of J at y, a continuous linear func-

tional of h, and

lim
t→0

α(y, th)

t
= 0,

i.e., α(y, th) = o(t) as t→∞.

Lemma C.3. Let J : U 7→ R for some open subset U of X. If J is Fréchet

differentiable then it is also Gâteaux differentiable. In this case, dfJ(h) = dgJ(h).

Note that

1. the converse of Lemma C.3 is not true in general: there exist Gâteaux

differentiable functions that are not Fréchet differentiable.

2. This Lemma holds in the particular case U = X.

Definition C.4. For y, h ∈ X and t ∈ R, define

d

dt
J(y + th)

∣∣∣∣
t=0

:= lim
t→0

{
J(y + th)− J(y)

t

}
.

Lemma C.5. If the functional J : X 7→ R is Gâteaux differentiable,

d

dt
J(y + th)

∣∣∣∣
t=0

= dgJ(h).

Definition C.6 (First Variation). The first variation (or Gâteaux variation)

of J(y) at y = y0, denoted by δJ , is defined by

δJ :=
d

dt
J(y0 + th)

∣∣∣∣
t=0

, (C.2)

provided the right-hand side exists for all h ∈ X.

Note that if the right-hand side does not exist for all h ∈ X, the first variation is

said not to exist.

C.2 Extrema

Suppose that J : U 7→ R for some open subset U of the normed linear space X.

On considering the difference J(y+h)−J(y), we must concern ourselves only with
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admissible functions: elements h such that, if y ∈ U , then y+h ∈ U also. The

functional J(y) is said to have a relative extremum at ψ ∈ U if J(ψ+h)−J(ψ)

has the same sign for all admissible functions h in some neighbourhood of the

origin in X. The function ψ for which J has an extremum is called an extremal.

Definition C.7. The functional J(y) is said to have a weak extremum at

y = ψ if there exists ε > 0 such that J(ψ + h) − J(ψ) has the same sign for all

admissible h such that ‖h‖1 < ε, where ‖·‖1 denotes the norm in C1[a, b].

Definition C.8. The functional J(y) is said to have a strong extremum at

y = ψ if there exists ε > 0 such that J(ψ + h) − J(ψ) has the same sign for all

admissible h such that ‖h‖ < ε, where ‖·‖ denotes the norm in C[a, b].

Theorem C.9. In order for a Fréchet differentiable functional J : X 7→ R to

have an extremal ψ, the Fréchet differential dfJ(h) must satisfy the following

property:

dfJ(h) = 0 for all admissible h.

Moreover, we have

Theorem C.10. In order for a Fréchet differentiable functional J : X 7→ R to

have an extremal ψ, the Gâteaux differential dgJ(h) must satisfy the following

property:

dgJ(h) = 0 for all admissible h,

which implies a further necessary condition for J to have an extremal ψ is that

δJ = 0 for all admissible h.

C.3 The Euler Equation

Consider the integral

J(y) =

∫ b

a

f(x, y, y′(x)) dx. (C.1)

We outline the problem of determining an extremal y = ψ(x) of this integral

satisfying ψ(a) = ya and ψ(b) = yb. While we only illustrate the method for

one function of one independent variable, the approach readily generalises to

multiple functions of multiple independent variables; see [11]. Denote the set of

admissible functions by

F :=
{
y ∈ C1[a, b] : y(a) = ya and y(b) = yb

}
,
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and the set of admissible variations by

V :=
{
h ∈ C1[a, b] : h(a) = h(b) = 0

}
.

Theorem C.11. Let J , as given in equation (C.1), be defined on the set F and

such that f ∈ C1(R). Then, if J has an extremum at y = ψ(x), ψ(x) must be a

solution of Euler’s equation

d

dx

(
∂f

∂y′

)
=
∂f

∂y
. (C.2)

Proof. One readily computes the first variation of J as

δJ =
d

dt
J(y + th)

∣∣∣∣
t=0

=

∫ b

a

(h∂yf + h′∂y′f) dx.

By Theorem C.10, a necessary condition for ψ to be an extremum of J is δJ(h) = 0

at y = ψ for all admissible h. Thus∫ b

a

(h∂yf + h′∂y′f) dx = 0, ∀ h ∈ V .

It then follows from an integration by parts of the second term in the integrand

and [20, Section 3, Lemma 4] that

d

dx

(
∂f

∂y′

)
=
∂f

∂y
.
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Appendix D

A Method for Solving a Class of

Nonlinear PDE

Consider the nonlinear PDE

uxxxx = 4a2
(
uzz ± uxxuz ± 2uxuxz + 3

2
u2
xuxx

)
, (D.1)

where a is some real number. The case a = 1/2 with the lower signs chosen

corresponds to equation (6.3.12) above; the case a = 1 with the upper signs

chosen is the case considered by Nepomnyashchy and Pismen [51] for pattern-

forming systems. It is readily checked via differentiation that a solution u(x, z)

of the equation

uxx = a sgn(z)
(
2uz ± u2

x

)
(D.2)

also solves equation (D.1). Further, if one introduces the similarity variable v =

x/
√
z, the PDE (D.2) may be rewritten in the form

u′′ = a sgn(z)
{
±(u′)2 − vu′

}
, (D.3)

where ′ ≡ d/dv. To simplify notation, we will provide the general solution only

for the case z > 0. To solve equation (D.3), we introduce the transformation

u′ = γ(v)e−av
2/2.

We may then express the ODE (D.3) in the form

dγ

dv
= ±aγ2e−av

2/2, (D.4)
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a first-order separable ODE which may be integrated with respect to v to yield

−γ =

(
c1 ± a

∫ v

−∞
e−at

2/2 dt

)−1

, (D.5)

where c1 is a constant of integration. The general solution for u is therefore

u(v) = ∓1

a
ln

(
∓a
∫ v

−∞
e−at

2/2 dt− c1

)
+ c2, (D.6)

where the constants c1 and c2 are determined by appropriate boundary conditions

on u. For instance, the solution (6.3.14) to the PDE (6.3.12) may be deduced

from this by imposing the condition

lim
v→∞

u(v)− lim
v→−∞

u(v) =
b

2

and applying the definition of the error function

erf(x) :=
2√
π

∫ x

0

e−t
2

dt.

It is straightforward to apply the same approach and thereby obtain the solution

for z < 0.

It is readily deduced by substitution of a trial function of the form u = u(xzγ)

for some γ ∈ R into the PDE (D.1) that the only permitted value for a similarity

solution is γ = −1/2.

Whether the approach outlined here can be generalised to apply to a wider

class of PDE than that represented in equation (D.1) is a matter for further

investigation.

149



Bibliography

[1] Abrahamowitz, M., Stegun, I.A.: Handbook of Mathematical Functions.

Dover, New York (1970)

[2] Acheson, D.J.: Elementary Fluid Dynamics. Oxford University Press, Ox-

ford (1990)
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