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Abstract 
 

Cognitive Wireless Sensor Networks (CogWSNs) are an adaptive learning 

based wireless sensor network relying on cognitive computational processes to 

provide a dynamic capability in configuring the network. The network is formed by 

sensor nodes equipped with cognitive modules with awareness of their operating 

environment. If the performance of the sensor network does not meet requirements 

during operation, a corrective action is derived from stored network knowledge to 

improve performance. After the action is implemented, feedback on the action taken 

is evaluated to determine the level of improvement. 

 

Example functions within CogWSNs can be as simple as to provide robust 

connectivity or as complex as to negotiate additional resources from neighbouring 

network groups with the goal of forwarding application-critical data. In this work, 

the concept of CogWSNs is defined and its decision processes and supporting 

architecture proposed. The decision role combines the Problem Solving cognitive 

process from A Layered Reference Model of the Brain and Polya Concept, consisting 

of Observe, Plan, Implement, and Evaluate phases. The architecture comprises a 

Transceiver, Transducer, and Power Supply virtual modules coordinated by the 

CogWSN’s decision process together with intervention, if necessary, by a user. 

 

Three types of CogWSN modules are designed based on different 

implementation considerations: Rule-based CogWSN, Supervised CogWSN, and 

Reinforcement CogWSN. Verification and comparison for these modules are 

executed through case studies with focus on power transmission and communication 

slot allocation. Results show that all three modules are able to achieve targeted 

connectivity and maintain utilisation of slots at acceptable data rates. 
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Chapter 1: Introduction 
 

The Chapter is an overview of the research starting with the motivation for the 

work and identifying the challenges to be addressed. Objectives are then defined and 

main contributions arising out of the research highlighted. The organisation of the 

Thesis is outlined. Finally, a list of related publications is recorded. 

 

 

1.1 Motivation 

The requirements and demands of monitoring physical environments with low 

cost devices have stimulated the development of Wireless Sensor Networks (WSNs) 

[1, 2], a technology able to be deployed at large scale and widely used in various 

applications such as military [3], agriculture [4, 5], health care [6], home [7], and 

commercial [8]. 

 

In general, a WSN is formed by a group of sensor nodes equipped with a short 

range communication capability. Each of the sensor nodes consists of at least a 

transceiver, a transducer, a processing unit, and a power unit [9]. The sensor node is 

small in size comprising inexpensive components; the size of the sensor node often 

restricts the power supply capacity. Due to the cost of manufacturing and market 

demand, low data rate transceivers operating in license-exempt Industrial, Scientific 

and Medical (ISM) frequency bands are most often used [10]. The nodes are also 

capable of forming self-organised networks using multi-hop communications [11]. 

 

The limited radio capability and uncertainty in physical operating 

environments pose fundamental constraints in optimizing WSN connectivity [12]. 

Currently, a WSN lacks the capability of fine tuning its radio configuration 

dynamically to meet the challenges of a changing operating environment. As a result, 

degradation in radio link performance and unreliable network connectivity can be 

expected [13]. 
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Applying artificial intelligence, especially cognitive approaches, has been 

identified as a viable solution to circumvent the above challenges. Solutions such as 

Cognitive Radio [14] and Cognitive Networks [15] exploit tuneable parameters on 

the hardware to create and maintain optimum network communications. 

 

The Thesis addresses the intersection of WSN technology and cognitive 

computational intelligence. Cognition has been used in communication [16], sensing 

[17], or system application [18] of WSNs. As WSNs comprise transceivers, 

transducers, processors, and power units, cognition could be applied across all core 

elements. 

 

Here, the concept of Cognitive Wireless Sensor Network (CogWSN) is 

defined, and its decision processes and architecture proposed. The decision process 

methodology consists of four phases; Observe, Plan, Implement, and Evaluate. The 

architecture comprises three core virtual modules; Transceiver, Transducer, and 

Power Supply. These virtual modules are coordinated by the CogWSN’s decision 

process but have the option for intervention by the user. Each virtual module 

contains ‘State Information’, the storing of information about the operating 

conditions and a ‘Tuneable Function’, defining the actuating function. 

 

Three types of CogWSN are designed based on different implementation 

considerations: Rule-based CogWSN [19], Supervised CogWSN [20], and 

Reinforcement CogWSN [21]. Verification of each method is carried out to evaluate 

performance in terms of power transmission and communication slot allocation. 

Comparison of the three options is executed to quantify the performance in different, 

repeated, representative scenarios. 

 

 

1.2 Objectives 

The performance of WSNs is often compromised by dynamic changes in their 

operating environment [22]. The environment in this context refers to the 

communication medium, hardware, energy resource and data traffic flows. When 
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these changes occur post deployment, human intervention is needed in order to 

diagnose their impact and to resolve problems through manual configuration. Several 

questions arise related to these scenarios: 

1. Can human intervention in tuning a WSN configuration during deployment 

be eliminated? 

2. What modifications or additional elements are required in order to support 

the proposed solutions? 

3. How to embed, within the solution the capability to be aware of the 

configuration that it needs to tune? 

4. How well does the proposed solution perform? 

 

In order to provide answers to the above questions, the following objectives 

form the focus of the study: 

1. To define the concept of CogWSN providing a solution to reduce human 

intervention in tuning WSN configurations during deployment. 

2. To define appropriate decision processes and architectures in order to 

support the methodology. 

3. To equip the decision processes with three learning approaches: rule-based 

learning, supervised learning, and reinforcement learning. 

4. To verify and compare the performance of the three decision strategies in 

terms of power transmission and communication slot allocation. 

 

 

1.3 Main Contributions 

The main contributions of the research are: 

1. Proposed a concept and determined the elements of CogWSNs. The term 

‘CogWSN’ is defined as a networked group of sensor nodes capable of 

sustaining performance in a dynamic environment using an embedded 

cognitive capability, whilst meeting user requirements. CogWSN is 

supported by an architecture which comprises Transceiver, Transducer, and 

Power Supply modules. Each module contains ‘State Information’, the 
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storing of information about the module’s operating condition and a 

‘Tuneable Function’ defining the actuating function. 

2. Proposed and defined the CogWSN decision process and design of the 

architecture merging cognitive computational intelligence with sensor 

network technologies. The CogWSN architecture comprises Transceiver, 

Transducer, and Power Supply modules coordinated by a decision process 

accepting intervention, if necessary, by a user. The decision role combines 

the Problem Solving cognitive process from A Layered Reference Model of 

the Brain and Polya Concept [23], comprising Observe, Plan, Implement, 

and Evaluate phases. During the Observe phase, the desired parameters are 

monitored closely, and if a parameter is detected to be out with the 

controlled range, it is identified as a problem. In the Plan phase, a plan is 

derived to solve the identified problem. The solution is implemented 

according to the plan in the Implement phase. Finally in the Evaluate phase, 

an evaluation is carried out to determine how well the problem is solved. 

The evaluation result is stored as a reference for similar problems in the 

future. 

3. Implemented CogWSN operation using rule-based learning, supervised 

learning, and reinforcement learning. Rule-based CogWSN requires full a 

priori knowledge of the target goals to be established; Rule-based CogWSN 

with Greedy Scoring requires all possible actions with parameters to be 

defined but not the decision; Supervised CogWSN only requires partial 

trained knowledge; and Reinforcement CogWSN does not need any 

knowledge to be installed at the outset. 

4. Validated the performance of CogWSN. The proposed CogWSN 

performance in terms of transmission power and communication slots 

allocation has been evaluated. The solutions are benchmarked with 

algorithms drawn from reported research. 
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1.4 Organisation of the Thesis 

The Thesis is organised as follows. A review of the literature on the history, 

evolution, architecture, and application of WSNs is presented in Chapter 2. The 

Chapter also discusses cross-layer design, machine learning, cognitive techniques 

applied to WSNs, and standardisation in relation to WSNs. In Chapter 3, the 

principles underpinning CogWSN are defined together with a proposal for its 

decision process and architecture. Three types of CogWSN learning approaches are 

introduced and designs presented in the following three Chapters; in Chapter 4, Rule-

based CogWSN; in Chapter 5, Supervised CogWSN; and in Chapter 6, 

Reinforcement CogWSN. Case studies are established, their performance 

characterised and results presented in all three Chapters. Relative performance 

among these three implementations is documented in Chapter 6. Finally, conclusions 

on the research and suggestions for future work are presented in Chapter 7. 

 

 

1.5 List of Publications 

1. K. H. Kwong, T. T. Wu, H. G. Goh, K. Sasloglou, B. Stephen, I. Glover, C. 

Shen, W. Du, C. Michie, and I. Andonovic, “Practical Considerations for 

Wireless Sensor Networks in Cattle Monitoring Applications,” Computers and 

Electronics in Agriculture, vol. 81, pp. 33-44, Feb. 2012. 

 
2. H. G. Goh, S. Y. Liew, K. H. Kwong, C. Michie, and I. Andonovic, “Abstract 

Reporting and Reformation Schemes for Wireless Sensor Networks”, Lecture 

Notes of the Institute for Computer Sciences, Social Informatics and 

Telecommunications Engineering (LNICST) Vol. 72, The 1st International 

Conference on Wireless Communications and Applications (ICWCA 2011), 

Hainan Island, China, pp. 69-74, 1-3 Aug. 2011. 

 

3. K. H. Kwong, T. T. Wu, H. G. Goh, K. Sasloglou, B. Stephen, I. Glover, C. 
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Chapter 2: Review 
 

The Chapter presents a review of the literature relating to the research 

undertaken. The review begins with the history of WSNs, and although origins 

dating back to the start of the ‘Cold War’ can be identified [24], the area still remains 

subject to extensive research. The evolution of WSNs is then related to an 

introduction to architectures, performance limitations and challenges. Related 

research in cross-layer design [25], machine learning [26], cognitive techniques 

applied in WSNs [27], and standardisation [28] are discussed. The Chapter ends with 

a summary and analysis of the state-of-the-art in WSNs. 

 

 

2.1 History and Evolution of WSN 

Research on sensor networks has its roots as far back as the ‘Cold War’ period 

[29]; similar to many other networking technologies, military applications have 

primarily driven WSN research progress and development. During the Cold War, a 

network of sensors on the seabed – the Sound Surveillance System (SOSUS) [30] - 

was deployed at strategic locations to provide warning of Soviet submarines 

approaching the continental United States. SOSUS is a network of acoustic sensors 

(hydrophones [31]) placed at the bottom of the ocean; even more sophisticated 

acoustic sensor networks have been developed for submarine surveillance over more 

recent years [32]. SOSUS is currently being used by the National Oceanographic and 

Atmospheric Administration (NOAA) [33] for monitoring events, such as seismic 

activity. Networks of air defence radar installations were also developed and 

deployed to defend the United States and Canada during the Cold War. The system 

has evolved over the years to include aerostats as sensors [34] and Airborne Warning 

and Control System (AWACS) aeroplanes [35], and is also used for the purpose of 

detecting illegal drugs carried by aircraft [36]. 

 

The start of modern research on sensor networks was stimulated by the 

‘Distributed Sensor Networks (DSN)’ programme at the Defence Advanced 

Research Projects Agency (DARPA) [24]. Kahn [37], the co-inventor of the TCP/IP 
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protocol and responsible for originating DARPA’s Internet Program, wanted the 

Advanced Research Projects Agency Network (ARPANET) [38] (predecessor of the 

Internet) extended to support sensor networks. Initial testing was executed on 

minicomputers, such as PDP-11, VAX machines running UNIX and Virtual Memory 

Systems (VMS) with Modems operating at 300 Baud to 9600 Baud [24]. 

 

In 1978, DSN was identified as a technology component within the Distributed 

Sensor Nets Workshop [39] held in Carnegie Mellon University (CMU). Distributed 

acoustic tracking was chosen as the target for demonstration; this foundation 

spawned several streams of research summarised in Table 2.1. 

 

Table 2.1. Research carried out on the DSN test-bed. 

Research Institute Research Focus Area [references] 

Carnegie Mellon 

University (CMU), 

Pittsburgh, 

Pennsylvania 

Provided a network operating system that allows flexible, 

transparent access to distributed resources needed for fault-

tolerant DSNs [40]. 

Massachusetts Institute 

of Technology (MIT), 

Cambridge, 

Massachusetts 

Implemented knowledge-based signal processing 

techniques for tracking helicopters using a distributed array 

of acoustic microphones by means of signal abstractions 

and matching techniques [41]. 

Advanced Decision 

Systems (ADS), 

Mountain View, 

California 

Developed a multiple-hypothesis tracking algorithm [42, 

43]. 

MIT Lincoln 

Laboratory, Lexington, 

Massachusetts 

Developed a real time test-bed for acoustic tracking of low-

flying aircraft [44]. 

University of 

Massachusetts, 

Amherst, 

Massachusetts 

Developed a test-bed for distributed vehicle monitoring 

[45]. 



 11 

 

Although early research on sensor networks projected that large numbers of 

small form factor sensors were needed for any deployment, the technology for 

manufacturing these families of sensors was immature and hence costly. However, 

planners of military systems recognized the benefits of these sensor networks and 

their potential to become a crucial component of network-centric warfare [46]. In 

network-centric warfare applications, sensors and weapons are mounted with and 

controlled by separate platforms that operate independently [46]; sensors and 

weapons collaborate over a communication network. Examples are Cooperative 

Engagement Capability (CEC) [47] using multiple radar antennas to collect data on 

air targets, Fixed Distributed System (FDS) [48], Advanced Deployable System 

(ADS) [49] using acoustic sensors arrays for anti-submarine warfare, Remote 

Battlefield Sensor System (REMBASS) [50] and Tactical Remote Sensor System 

(TRSS) [51] using unattended ground sensors across battlefield terrain. 

 

Latterly, advances in computing and communication technologies have 

stimulated a significant shift in sensor networks research and progressed the 

implementations nearer to that of the original vision. Small and inexpensive sensors 

based on Micro-Electro-Mechanical Systems (MEMS) [52], cost effective wireless 

networking chipsets [53], and inexpensive low-power processors allow large 

deployments of wireless sensor networks for various applications. Again, DARPA 

initiated a research program on sensor networks to leverage the latest technological 

advancements through the ‘Sensor Information Technology (SensIT)’ [54] program. 

There were two core themes within SensIT; to develop new networking techniques 

for ad-hoc operation within highly dynamic environments and to deploy networked 

information processing to extract useful, reliable, and timely information from the 

deployed sensor network. SensIT networks would exhibit new capabilities such as 

interactivity and programmability with dynamic tasking and querying; one early 

example of this concept is the Tactical Automated Security System (TASS) [55]. 

 

Today, WSNs represent a new generation of real-time embedded systems with 

significantly different communication constraints from traditional networked systems 
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[11]. WSNs can self-organize [56], achieve multi-hop connections and have become 

the foundation for the potential realization of the Pentagon-inspired “smart-dust” 

concept [57] proposed by researchers at DARPA. The principle is to sprinkle 

thousands of tiny wireless sensors across a battlefield to monitor enemy movements 

without alerting the enemy to their presence. A “smart dust” optical mote [58, 59] 

uses MEMS to realise sub-millimetre-sized mirrors for establishing communication 

paths. By self-organizing into a sensor network, ‘smart dust’ filters raw data for 

relevance before relaying only the important findings to central command. 

 

From the outset, to maintain the stringent principles underpinning the operating 

strategy and value of WSNs, the nodes/motes have to be low cost and of small form 

factor. Many of the early WSN deployments are best viewed as “proof of concept” 

[60, 61]. The transceivers were built using simple radio chips, only allowing single 

channel transmission at a time. Frequencies such as 315MHz, 433MHz, 868MHz, 

915MHz, and 2.4GHz are chosen simply since they all fall under unlicensed ISM 

bands [62, 63]. The data rate was low, usually less than 1Mbps for a point-to-point 

link. The communication layers only consisted of the application, transport, network, 

data link and physical layers [1]. The sensor node utilised the most basic low 

computing power such as 8-bit or 16-bit microcontrollers [64]. Overall, node power 

consumption had to be low and power saving strategies formed one of the main 

design considerations. Since limited power sources were available, most routinely a 

battery, complex transducers that require external power sources were not considered 

in early deployments [65]. 

 

The desire to derive more information from deployed sensors was the seed to 

the development of the next stage of the WSN design evolution, with particular 

emphasis on WSNs comprising a large number of nodes [66, 67]. More sophisticated 

techniques were proposed such as Ultra-Wide Band (UWB) [68, 69] and 

implementing diversity techniques like Multiple-Input and Multiple-Output (MIMO) 

[70] operation in order to provision enhanced communication. The direct impact of 

these advanced designs was increased cost when compared to more traditional WSN 

implementations. As more communication capabilities were provided, the point-to-
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point data rate exceeded 1Mbps [71]. More sophisticated network protocols [72, 73] 

are being considered for implementations of next generation WSNs for the 

realisation of the Internet of Things (IoT) [74]. The sensor node is expected to offer 

more computing power, providing more memory and be able to execute more 

instructions per second (IPS). Consequently it is expected that the sensor node will 

consume more of the limited energy resource, which prompts the integration of 

sensor nodes with energy harvesting or energy recharging modules [75]. 

 

 

2.2 WSN Architecture 

A WSN is a wireless ad-hoc network formed by a group of sensor/actuator 

devices (nodes). A minimal WSN node consists of a transceiver, a transducer, a 

processor, and a power unit. It has a small form factor and is implemented with 

inexpensive components (Figure 2.1). WSN nodes are capable of forming a self-

organised multi-hop network. 

 

 

 

Figure 2.1. A WSN development platform (MICAz with MTS310 sensor board) [76]. 

 

In more detail, there are several core components that comprise a WSN node; a 

sensor and/or actuator, microcontroller or microprocessor, unique identifier chip, 

external flash memory, radio chip, antenna, and batteries (Figure 2.2). A sensor is a 

component that detects a parameter in one form and presents/transduces that 

measurement into an electrical signal, while an actuator converts electrical control 
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signals into non-electrical energy such as kinetic energy; both of are often referred to 

as transducers. A microcontroller with Read-Only Memory (ROM) and Random 

Access Memory (RAM) is effectively a modest computer on a single integrated 

device that can either store data and/or execute software routines/programs [77]. It 

consists of a relatively simple central processing unit (CPU) combined with support 

functions such as a crystal oscillator, timers, interrupts and interfaces [78]. The 

variety of interfaces can be Analog-to-Digital Converter (ADC), General Purpose 

Input/Output (GPIO), Pulse Wave Modulation (PWM), Universal Asynchronous 

Receiver/Transmitter (UART), Universal Synchronous/Asynchronous 

Receiver/Transmitter (USART), Inter-Integrated Circuit (I2C), and/or Serial 

Peripheral Interface (SPI) bus [78]. An identity is provided on each chip (can be a 

unique identifier chip and/or radio chip), imparting a unique identification to each 

sensor node. A Flash Memory [79] may be used as external storage for storing data 

locally on each node; Flash can be optional. A Radio chip [80] is responsible for the 

transmission of data signals wirelessly within the Radio Frequency segments of the 

electromagnetic spectrum, frequencies well below visible light, employing a range of 

modulation techniques [81]. An antenna is used to transmit or receive 

electromagnetic waves. A recent evolution of the platform [82] offers an integrated 

microcontroller and radio on a single chip. 
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Figure 2.2. A general hardware block diagram of a typical WSN node [76]. 

 

WSN architectures can be represented in a simple block diagram as shown in 

Figure 2.3. The Transducer(s) interacts with the physical world; the Processor 

manages the signal transfer between transducer and transceiver; the Transceiver 

manages the transmit/receive function of the radio signal. All components are 

powered by a power unit. 

 

 

Figure 2.3. A bock diagram of a generic WSN architecture. 
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Sensor nodes are usually scattered across an environment/process/structure 

(Figure 2.4). Each node has the capability to acquire and route data back to a sink 

node [83]; the sink node is usually connected to existing networks which can 

backhaul that data to another appropriate location through the Internet, a cellular 

network, or a satellite network. After appropriate levels of data processing, the 

information is disseminated to end users through personal computers or mobile 

devices [84]. 

 

The roles most often implemented by WSNs include data gathering in 

continuous sensing environments and data reporting in event-triggered sensing. Data 

gathering for continuous sensing is used in applications that closely monitor a 

process or asset for analysis purposes [85, 86]. Data reporting for event-triggered 

applications only report when a pre-specified event occurs [87]. The application must 

define the exact function a WSN is designed to provide. 

 

 

Figure 2.4. An example of communication routes from a sensor network to end users. 
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2.2.1 Transceiver 

Due to the cost and market demand, WSN transceivers use low data rate 

chipsets and operate in ISM unlicensed bands. Many transceivers are equipped to 

form a self-organised network using multi-hop routes [9]. 

 

Although there is no doubt that advanced radio chip designs comprising 

multiple RF interfaces/antennas are useful in WSNs in order to achieve enhanced 

data rates, energy consumption renders their use questionable; a trade-off exists 

between power consumption and communication capability [88, 89, 90]. A bigger 

power resource can be used but the size of the sensor node and the ease of 

deployment becomes a major deployment constraint. 

 

The WSN architecture can be referenced to the 5-layer profile through the OSI 

Reference Model as shown in Table 2.2; Physical, Data Link, Network, Transport, 

and Application layers [1]. 

 

Table 2.2. A 5-layer profile through the OSI Reference Model for WSN. 

Layer Data unit Function 

Application Data Network process to application 

Transport Segment End-to-end connections and reliability 

Network Packet Path determination and logical addressing 

Data Link Frame Physical addressing and access control 

Physical Bit Media, signal and binary transmission 

 

2.2.1.1 Physical Layer 

The Physical Layer is responsible for bit-level transmission between nodes, 

comprising basic hardware network transmission technologies. The layer defines the 

means of transmitting raw bits rather than logical data packets over physical links 

inter-connecting nodes. The bit stream may be grouped into code words or symbols 

and converted to a physical signal transported over a transmission medium. 
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The performance of this layer is affected by three major factors; hardware, 

software, and the medium of propagation. The hardware relates to factors such as the 

shape of antenna, antenna gain, and operating frequency; the software relates to 

modulation, bit synchronization, and transmission power. The wireless environment 

is however dynamic, uncontrollable and poses multiple challenges: 

1. Free Space Path Loss (FSPL) [91]: the loss in signal strength of a radio 

wave owing to line-of-sight path transmission through free space. The loss 

depends on the frequency and the distance between transmitter/receiver 

and can be calculated as; 

                                  )
4

(log20)(log20)(log20 101010 c
fdFSPL

π++=                 (2.1) 

where FSPL  is the loss measured in dB, d  is the distance between 

transmitter and receiver in metres, and f  is the selected frequency in Hz. 

As the distance between transmitter/receiver increases, the path loss also 

increases. For the same transmission distance, the higher frequencies 

suffer a higher path loss (Figure 2.5). 

 

 

Figure 2.5. FSPL comparison at 315MHz, 433MHz, 868MHz, 915MHz, and 
2.4GHz. 
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2. Attenuation [91]: represents any reduction in signal strength of a radio 

wave when the signal penetrates through solid objects, due for example to 

the absorption of the signal power. Attenuation can vary depending upon 

the structure of the object e.g. metal greatly increases the attenuation. 

Object thickness is also a contributory factor. 

3. Scattering: is the diffusion of the radio wave when incident on a rough 

surface (Figure 2.6). Scattering is often most detrimental when the object 

size is on the order of the wavelength of the signal or less [91]. 

 

 

Figure 2.6. A schematic representation of scattering. 

 

4. Reflection: is the change in direction of a radio wave when the signal 

encounters a surface relatively large to the wavelength of the signal. As 

shown in Figure 2.7, the radio wave may be reflected from various 

substances or objects as it traverses along the path between 

transmitting/receiving sites. The level of reflection depends on the material 

encountered. Smooth metal surfaces have good electrical conductivity and 

are efficient reflectors of radio waves [91]. When a radio wave is reflected 

from a flat surface, it suffers a phase shift; the shift in the phase of 

reflected radio waves is one of the major causes of signal fading [92]. 
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Figure 2.7. A schematic representation of reflection. 

 

5. Refraction: is the change in direction of a radio wave due to a change in its 

speed occurring when a wave passes from one type of medium to another 

type of medium [93]. As shown in Figure 2.8, when a radio wave passes 

from a less dense to a more dense medium, the direction of the wave is 

changed, when �1 > �2. 

 

 

Figure 2.8. A schematic representation of refraction. 

 

6. Diffraction: occurs when a radio wave encounters an obstacle and 

effectively ‘bends’ around that obstacle (Figure 2.9). The resultant change 

1θ  

2θ  

Incoming signal 

Refracted signal 

Lighter 
medium 

Heavier 
medium 

Incoming signal 

Reflected signal 

Large object 



 21 

in direction of part of the wave from the normal line-of-sight path makes it 

possible to receive energy around the edge of the obstacle [91]. 

 

 

Figure 2.9. A schematic representation of diffraction. 

 

7. Frequency Dispersion (Doppler Spread): motion of a node produces 

Doppler shifts of incoming received signals (Figure 2.10) [91]. This also 

occurs when a transmitter node is moving whilst transmitting; this 

phenomenon causes, amongst other effects [91], Inter-symbol interference 

(ISI) [93]. 

 

 

Figure 2.10. A schematic representation of Frequency Dispersion. 
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a manner similar to a large optical fibre, trapping the radio wave within a 

high refractive index layer [92]. 

9. Interference: is the interaction of waves that are correlated or coherent with 

each other, either because they originate from the same source and/or 

because they are at the same or nearly the same frequency (same node 

characteristic from other network domains). Radio signals based on the 

prevailing conditions, may be in phase (constructive interference) or out of 

phase (destructive interference) [92]. 

10. Noise: are unwanted random signals impairing the quality of the wanted 

signal. A number of noise terms must be considered to obtain network 

performance, predominately generated on transmission and reception but 

can also originate from nodes/devices within the network [81]. 

 

2.2.1.2 Data Link Layer (DLL) 

The Data Link Layer ensures that an initial connection has been established, 

segments output data into data frames, and handles acknowledgements from 

receivers confirming the data has been received successfully by analyzing bit 

patterns at standardised locations in the frames. 

 

In WSN Media Access Control (MAC) design, energy-efficiency is always a 

main design criterion with other performance metrics considered as secondary 

objectives [94, 95]. Energy could be wasted due to several mechanisms at the MAC 

stage through packet collision, overhearing, control packet overhead and idle 

listening [94, 96]. 

 

Sensor-MAC (S-MAC) [97] is one of the earliest protocols proposed to solve 

the above issues at the expense of sacrificing per-hop fairness and latency. It operates 

at a pre-defined low duty cycle in a multi-hop networking environment. Nodes form 

virtual clusters based on common sleep schedules to reduce the control overhead and 

enable traffic-adaptive wake-up cycles. S-MAC uses in-channel signalling to avoid 

‘overhearing’ unnecessary traffic [97] and instigates message (the collection of 

meaningful, interrelated units of data) passing to reduce contention latency for 
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applications that require in-network data processing. Some studies [98, 99] highlight 

that S-MAC with fixed sleep and wake periods does not perform well under variable 

traffic loads. Solutions such as Timeout-MAC (T-MAC) [98] and the Traffic-

Adaptive Medium Access Protocol (TRAMA) [99] improve on S-MAC by 

introducing an adaptive duty cycle; T-MAC ends an active period if no traffic occurs 

for a TA duration (the minimal amount of idle listening per frame) as shown in 

Figure 2.11 [98]; TRAMA uses an adaptive, dynamic approach based on current 

traffic patterns to switch nodes to low power mode [99]. 

 

 

Figure 2.11. A comparison between S-MAC and T-MAC duty cycles. 

 

In terms of simplicity, variants of Carrier Sense Multiple Access (CSMA) [11, 

100], such as Berkeley-MAC (B-MAC) [100] and Sparse Topology and Energy 

Management (STEM) [101], are strong options. B-MAC uses a mechanism based on 

outlier detection to improve the quality of the communication channel. If a node 

detects an outlier during channel sampling, it declares the channel clear to send. If 

the node does not locate an outlier within five samples, it declares the channel is 

busy [100]. STEM separates the data transmission from the wake-up channel by 

using two different radios/channels. There are 2 types of STEM schemes: STEM 

Tone (STEM-T) and STEM Beacon (STEM-B) [101]. STEM-T uses a bit stream 

while STEM-B sends a series of beacon packets as the preamble. When there is no 

beacon collision, STEM-B has the advantage of providing lower setup latency and 

better energy efficiency. However, if frequent data transmission is not required, the 
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channel sampling period for STEM-B must be longer than the inter-beacon interval; 

a shorter time is required for STEM-T to detect a wake-up tone. 

 

Zebra MAC (Z-MAC) [102] is a hybrid MAC protocol combining TDMA [91] 

and CSMA principles to offset the weaknesses of each individual approach. Under 

low contention, Z-MAC behaves like CSMA and under high contention, like TDMA. 

The protocol uses knowledge of topology and loosely synchronized clocks to 

improve MAC performance under high contention. Under low contention, and when 

these hints are not reliable, the protocol behaves like CSMA. Z-MAC is also robust 

to dynamic topology changes and time synchronization failures that commonly 

plague WSNs [102]. 

 

2.2.1.3 Network Layer 

The Network Layer is responsible for establishing paths for data transfer 

through a network, extending the DLL beyond the local network into an inter-

network by providing the routing and forwarding of packets mechanisms. 

 

In WSNs, routing protocols can be categorised into four main types; network 

structure, communication model, topology based, and reliability. Each type can be 

further classified as shown in Table 2.3 [83, 103]. 
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Table 2.3. Categorisation of routing protocols and its further classification. 

Types of routing Further classification 

Network Structure 

 

- Flat-based 

- Hierarchical-based 

Communication Model - Query-based 

- Negotiation-based 

- Non-coherent-based 

- Coherent-based 

Topology Based - Location-based 

- Mobile agent-based 

Reliability - QoS-based 

- Multipath-based 

 

A number of routing strategies have been reported; in flat-based routing, all 

nodes are homogeneous and provide the same functionality [104, 105, 106, 107]. In 

hierarchical-based routing, the nodes execute different roles distributed throughout 

the network [108, 109]. In query-based routing [110, 111], destination nodes 

propagate a query for data (e.g. sensing task) from a node throughout the network, 

and a node with the correct data sends the data matching the query back to the node 

that initiated the query. Usually these queries are described in natural language or 

high-level query languages [110]. Negotiation-based routing [112] uses high-level 

data descriptors in order to eliminate redundant data transmissions through 

negotiation. In non-coherent data processing routing [113], nodes will locally process 

the raw data before transmitting to other nodes for further processing. The nodes that 

perform further processing are referred to as aggregators [56]. In coherent routing 

[56], data are forwarded to aggregators after minimal processing, typically tasks like 

time-stamping and duplicate suppression. Location-based routing [114] requires 

location information to determine the data forwarding route; location information 

could be obtained through the Received Signal Strength Indicator (RSSI) [115], 

relative coordinates of neighbouring nodes [116], or external devices such as the 

Global Positioning System (GPS) [117]. Mobile agent-based routing [118] uses 

agents to explore and create routing paths. When agents discover shorter or more 
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efficient paths, the paths in routing tables are updated accordingly. Quality-of-

Service (QoS)-based routing [119] requires the network to balance energy 

consumption and data quality. In particular, the network has to satisfy certain QoS 

metrics such as delay, energy consumption, bandwidth during the delivery of data. 

Multipath-based routing [120] utilises multiple paths rather than a single path in 

order to enhance network performance. Maintaining multiple paths between source 

and destination increases energy consumption and an overhead is generated in the 

level of traffic [121]. A balance between network reliability and path maintenance 

overhead is required for this kind of routing.  

 

In general, two main operating scenarios drive the selection of an appropriate 

WSN routing strategy - static and mobile topologies. For static topologies, the 

routing path can be optimised [122] while for mobile topologies, frequent 

broadcasting of beacons is required to discover the state of the network and its 

constituent nodes in order to implement effective routing [123]. 

 

2.2.1.4 Transport Layer 

The Transport Layer is a group of protocols responsible for encapsulating 

application data blocks into data units referred to as datagrams or segments suitable 

for transfer through the network to the destination host, or managing the reverse 

transaction by abstracting network datagrams and delivering their payload to an 

application. Thus the Transport Layer protocols establish a direct and virtual host-to-

host transport capability for applications [124]. 

 

The Reliable Multi-Segment Transport (RMST) [125] is one of the earliest 

transport protocols designed for WSNs. RMST is developed to operate in 

conjunction with Directed Diffusion Routing [110], acting as a filter to any diffusion 

node improving reliability but with no real time guarantees.  

 

Pump-Slowly, Fetch-Quickly (PSFQ) [126] is another transport protocol 

designed for WSNs aimed at improving network reliability. The protocol distributes 

data from a source node by pacing data at a relatively slow speed (so-called pump 
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slowly) but allowing nodes that experience data loss to fetch any missing segments 

from their local immediate neighbours aggressively (so-called fetch quickly). Lost 

messages are detected when a higher sequence number than expected is received at a 

node, triggering the fetch operation. The solution is able to achieve loose delay 

bounds while minimising the lost recovery cost by using localised recovery of data 

amongst immediate neighbours. 

 

Event-to-Sink Reliable Transport (ESRT) [127] is a transport protocol not only 

developed to achieve reliable event detection but also to enable congestion control. 

ESRT runs on the sink, with sensor nodes subject to resource constraints. Protocol 

operation is governed by the prevailing network state based on the reliability 

achieved and the congestion condition of the network. If the ‘event-to-sink’ 

reliability is lower than required, ESRT adjusts the reporting frequency of source 

nodes aggressively in order to reach the target reliability level as soon as possible. If 

the reliability is higher than required, then ESRT reduces the reporting frequency 

conservatively in order to conserve energy while still maintaining reliability. 

 

In summary, WSN transport protocols are usually classified into three 

categories: reliability support, congestion control, and a combination of both. 

 

2.2.1.5 Application Layer 

WSN application environments are often inhospitable or difficult to access. 

Executing local maintenance tasks performed by technicians or users is challenging 

and on occasion almost impossible; therefore, a pressing need to manage the 

deployed nodes exists. A study [128] highlights that traditional management 

protocols, such as the Simple Network Management Protocol (SNMP) [129] and Ad-

hoc Network Management Protocol (ANMP) [130] are not suitable implementations 

for WSNs due to the energy, hardware, and software restrictions. 

 

Sensor Management Protocol (SMP) [131] is a general management protocol 

for WSNs. It provides functions needed to perform administrative tasks such as 

introducing procedures related to data collection, exchanging data related to location 
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finding algorithms, time synchronisation, node mobility, controlling node sleep 

cycles, data querying, network reconfiguration, and security [131]. 

 

Task Assignment and Data Advertisement Protocol (TADAP) is a management 

protocol for task assignment and data dissemination [132]. The protocol allows users 

to post their interest to a sensor node, a subset of nodes, or the entire network. This 

interest can be a certain attribute of the phenomenon or a triggering event. Another 

application for this protocol is the advertisement of available data, in which sensor 

nodes advertise available data to users, and the users query the data of interest. 

 

Sender Query and Data Dissemination Protocol (SQDDP) enables user 

applications by providing interfaces to issue queries, respond to queries, and collect 

incoming replies [110]. These queries are attribute-based such as “the places that 

sense temperature higher than 40ºC” or location-based naming such as “temperatures 

read by the nodes in area N1”. 

 

Other examples of application specific protocols developed to fulfil the 

requirement of various application needs for WSN have been object tracking [133], 

security [134], and multimedia services [135]. 

 

2.2.2 Transducers 

WSN implementations are not restricted to sensors such as light, temperature, 

humidity, and accelerators but can be embedded with actuators such as servo motors 

for controlling purposes [136, 137]. Although the cost of microcontrollers and radio 

chipsets are low, adding sensors and actuators bring about a cost penalty. Transducer 

interfacing is not restricted to using GPIO but can be integrated through ADC, PWM, 

UART, USART, I2C, or SPI. Some transducers require higher voltages to operate 

and need to be powered using a separate source, compromising the overall size of the 

sensor node. Therefore, the selection of the most appropriate transducer is a major 

design criterion. 
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2.2.3 Processors 

WSN nodes are essentially low-power computing platforms, the core being 8-

bit or 16-bit microcontrollers. Since WSNs are limited by the available power and 

are low cost distributed systems, the use of advanced and complex processors is not 

aligned with these principles. Recent designs combine the processor and radio units 

into a single chip, such as the CC1110/CC1111 [82]. 

 

2.2.4 Power Units 

WSN nodes are most often powered by batteries such as non-rechargeable AA 

format, coin lithium, or a rechargeable pack. Although sensor nodes are amenable to 

energy harvesting options, improper management of the power consumption will 

result in compromised network functionality as the time the node takes to harvest 

energy may be longer than the time over which the node dissipates that energy [138]. 

An additional device is normally needed to generate the harvested energy e.g. solar 

panel, and this translates into both a cost penalty and an increase in form factor [75]. 

Therefore, the selection of the most appropriate power unit is a key consideration in 

WSN designs. 

 

 

2.3 Cross-Layer Design 

Cross layer design [139] allows direct connection between the layers of the 

system through sharing of key information between non-adjacent or adjacent layers 

[140]. One of the main drivers for cross-layer approaches is the limitations of the 

layered architecture which although serves well for wired system development, is not 

wholly appropriate for wireless networks [139]. There are several approaches to 

cross layer architecture design: creation of new interfaces (upward information flow 

[139], download information flow [141, 142], back-and-forth information flow [143, 

144]), merging of adjacent layers [123], design coupling without new interfaces 

[145], and vertical calibration across layers [146]. 

 

In general, cross layer design is motivated by three main drivers: the unique 

problems created by wireless links, the possibility of opportunistic communication 
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on wireless links, and new modalities of communication offered by the wireless 

medium. The risk of cross layer design is it may result in the degradation of overall 

system or connection performance [147]. It also creates inseparable coupling 

between layers at the expense of performance improvement [147]. 

 

In sensor networks, cross layer design has been shown to improve data traffic 

flow performance e.g. Cross-Layer Protocol (XLP) [148] integrates the 

functionalities of all layers from physical to transport through a protocol in order to 

achieve congestion control, routing, and MAC in a WSN. This approach significantly 

improves performance, outperforming traditional layered protocol architectures in 

terms of both network performance and implementation complexity. The Address-

light, Integrated MAC and Routing Protocol (AIMRP) [123] is another protocol that 

combines the MAC and network layers to achieve energy savings in mobile 

environments. The direct connection from the MAC to the application layer in order 

to achieve excellent performance for certain applications has been reported by [149]. 

 

 

2.4 Machine Learning 

Machine Learning [26, 150] is a sub research area of Artificial Intelligence 

[151]. It is normally classified based on problem domains into 3 major categories; 

classification and regression, acting and planning, and interpretation and 

understanding [152]. 

 

Classification determines how to assign a test case to one of a finite set of 

classes. Regression is used to predict a case value based on partial or all historical 

data inputs. There are 3 types of learning methods used to solve the issues of 

classification and regression; supervised learning [153], unsupervised learning [154], 

and semi-supervised learning [155]. Supervised learning determines an output based 

on a given training case with associated classes or values for the attribute to be 

predicted. Unsupervised learning decides an output based on a given training case 

without any associated class information or any specific attribute singled out for 

prediction. Semi-supervised learning falls between these two approaches; in this 
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learning approach, partial of the training instances come with associated classes or 

values for predicted attributes. 

 

Acting and planning approaches are used to optimise problem solving, 

planning, and scheduling tasks. These approaches address the selection of actions or 

plans based on an agent with knowledge in a given world state. Several approaches 

such as learning apprentice [156], adaptive interface [157], programming by 

demonstration [158], and behavioural cloning [159] can be used to address issues 

related to formulation of action learning. For planning, methods such as 

reinforcement learning [160] and learning from problem solving and mental search 

[161] can be considered. 

  

Lastly, interpretation and understanding approaches aim to interpret and 

understand situations, scenarios, events, or environments. For interpretation 

approaches, more constructive observations are needed by combining a number of 

separate knowledge elements to explain the data. Therefore, models are required to 

explain the data in terms of deeper structures. Methods such as induction over 

explanations [162], constructive induction [163], and explanation-based 

generalisation [164] can be useful for interpretation. Understanding approaches 

induce its own explanatory structures from regularities in the data and then utilised to 

clarify new test instances. Approaches such as natural language [165] and theory 

revision [166] are the examples to be considered. 

 

 

2.5 Cognitive Technique Applied in WSNs 

The term “cognitive” in the Cambridge dictionary is “an adjective related to 

thinking or conscious mental processes” [167]. From the networking perspective 

[168, 169], cognition is used in association with a technology that operates inside a 

complex environment (for example the congested radio frequency spectrum), 

observes it, makes behaviour choices, and receives feedback from it, all the while 

learning i.e. assembling a data set that will help determine future behaviours based 

on past and current feedback. 
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The continually rising number of users and capacity requirements of radio 

systems are fuelling an ever increasing demand for spectrum. Cognitive Radio [14] 

offers a tempting solution to this problem by proposing opportunistic usage of 

frequency spectrum bands not occupied by licensed users. Cognitive radio 

architectures were first proposed by Mitola [170] in 1995 addressing the organization 

of the knowledge of the radio domain into data structures process able in real-time 

that integrate machine learning and natural language processing technology into 

software radio. The features embedded in the architecture are derived from cognitive 

radio use cases, such as inferring user communications context, shaping access-

network demand, and realizing a management protocol for real-time radio spectrum. 

This architecture is based on the set-theoretic ontology of radio knowledge defined in 

the Radio Knowledge Representation Language (RKRL) [171] layered on top of 

Software Defined Radio (SDR) [172, 173]. Three on-line tasks are required to be 

executed in cognitive radio: 1) radio-scene analysis (estimation of interference of the 

radio environment and detection of spectrum holes), 2) channel identification 

(estimation of Channel-State Information (CSI) and prediction of channel capacity 

for use by the transmitter), and 3) transmit-power control and dynamic spectrum 

management. Cognitive radio is expected to meet 4G requirements at up to 1Gbps 

throughput with multiple asynchronous concurrent data streams on mobile handsets, 

base stations and small cells [174]. 

 

Cognitive networks [15] extend the idea of cognitive radio to improve resource 

management, QoS, security, access control, and many other network goals. In a 

network, a cognitive process can perceive current network conditions, plan, decide, 

and act on the basis of those conditions. The network is able to learn to make future 

decisions taking into the consideration the end-to-end goals. The implementation of 

the mechanism is achieved by interfacing the cognitive process on top of the 

Software Adaptable Network (SAN), similar to cognitive radio [168]; the entire 

cognitive network framework comprises End-to-end Goals, Cognitive Processes, and 

SAN. The goals or requirements determine cognitive behaviours by identifying, 

prioritizing, and weighting the user requirements of the network. The Cognitive 
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Process consists of three components: the specification language, cognition layer, 

and network input [168], the SAN containing Network Application Programming 

Interface (API) and Modifiable Network Elements. A Network API is an interface 

implemented through middleware between the user or application and the network 

elements, including the network stack. Modifiable Network Elements [168] include 

any object or element used in a network able to be modified for control purpose. 

 

Cognition in WSNs has been cited in a number of papers [175, 176]. However 

the implementation of cognition in WSNs remains limited and the opportunity to 

develop solutions to key design issues such as network lifetime maximization, 

energy efficient routing, the reliability of event detection and transfer, optimization 

of multiple or conflicting objects, and application-specific design exists. Early 

reports on potential cognitive frameworks for WSNs simply extend a spectrum 

sensing capability on to the existing architectures [177, 178], while others introduced 

a cognitive feature into a specific scenario, similar to context-aware applications [18, 

179, 180]. 

 

In general, there are two high level categories of cognition in networking; 

• “cognitive radio”, focusing on efficient bandwidth usage, sharing the 

spectrum among primary and secondary users, through the use of cost 

effective spectrum sensing algorithms [181]. 

• all the layers of the network together optimize the application 

objectives [19, 182], referred to as “cognitive networking”. In the 

Thesis, the term “cognition in networking” is best aligned to this 

category. 

 

 

2.6 Standardisation 

Most standards in wireless communications are defined by the IEEE [183]. For 

the wireless Internet infrastructure, there are three on-going streams under the IEEE 

802 LAN MAN Standards committee [184], namely IEEE 802.11 [185], IEEE 

802.15 [186, 187, 188, 189], and IEEE 802.16 [190]. 
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ZigBee is an industrial standard designed for a series of high level 

communication protocols from network to application layers using small, low-power 

digital radios based on the IEEE 802.15.4 standard for Personal Area Networks 

(PANs) [191, 192]. ZigBee devices are able to form mesh networks to transport data 

over longer distances through ad-hoc multi-hop communications with decentralised 

control. ZigBee is purposely designed to be much simpler and less expensive than 

other existing WPANs, such as Bluetooth. The current ZigBee protocols support 

beacon and beaconless networking. 

 

6LoWPAN is a standard defined to allow IPv6 packets to be transmitted and 

received over IEEE 802.15.4 based networks [193, 194]. The 6LoWPAN concept 

originated from the philosophy that “the Internet Protocol could and should be 

applied even to the smallest devices” [195]. The standard has wide applications such 

as automation, home entertainment, office, and factory environments. One of the 

popular applications of 6LoWPAN is in Smart Grids [196], enabling energy meters 

and other devices to form micro mesh networking prior to transmitting data to the 

billing system using the IPv6 backbone. 

 

Standardisation is also being pursued for Cognitive Radio and Networks, 

Dynamic Spectrum Access, and Coexistence [197]. IEEE 802.22 [198] is the first 

cognitive radio-based standard with tangible operating frequency bands. Several 

standardization organizations such as the SDR Forum [199] and the International 

Telecommunications Union-Radio Sector (ITU-R) [200] are developing standards in 

this area. The IEEE 802.22 is an extension of IEEE 802.16 and was initiated in 2004 

to specify the air interface, including MAC and PHY layers, of fixed point-to-

multipoint wireless regional area networks operating in the VHF/UHF TV broadcast 

bands between 54MHz and 862MHz. The unique requirements of operating on a 

strict non-interference basis in spectrum assigned to, but unused by, the incumbent 

licensed services requires a new approach using purpose-designed cognitive radio 

techniques that permeate the PHY and MAC layers. 
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Another standard aimed at defining Cognitive Radio operation is IEEE SCC41 

[201]. IEEE SCC41 addresses issues related to the deployment of next generation 

radio systems and advanced spectrum management. IEEE SCC41 was preceded by 

the IEEE 1900 task force jointly established in 2005 by the IEEE Communications 

Society and the IEEE Electromagnetic Compatibility Society. Finally in 2007, the 

IEEE created a new governing body for all IEEE 1900 standards and named it 

SCC41 on Dynamic Spectrum Access Networks. 

 

Although rudimentary cognitive capabilities (detection of other signals with 

application of dynamic frequency assignment, power control, and other techniques in 

response) already exist, the view remains that existing standards have not yet 

matured to the point of being truly cognitive. But the promise and potential value of 

such techniques is clearly recognized, and almost all existing and future wireless 

standards are attempting to incorporate cognitive radio, dynamic spectrum access, 

and coexistence dimensions. 

 

 

2.7 Summary 

Wireless Sensor Networks have been the subject of development for many 

years motivated initially by military applications. Over the last twenty years, as 

technology options evolved in terms of storage, processing and wireless transmission 

cost, the range of applications blossomed; today a number of WSN motivated 

products are bringing significant commercial benefits to key industry sectors. 

 

Modern WSNs provide a rich mix of functionalities such as UWB, OFDM, 

MIMO, self-healing, to note but a few. WSNs are thus able to operate with more 

options driven by the application. The evolution of WSNs in terms of functionality 

and applications is summarised as in Table 2.4. 
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Table 2.4. Evolution of WSNs in terms of functionality and applications. 

Evolution 

Stage 

Functionality Application 

Initial 

stage 

Low processing power, small storage, 

short range optical communication, 

self-organised 

Realisation of “smart-dust” 

concept in military 

applications 

Early stage Low processing power, small storage, 

longer communication range using 

simple radio transceiver, self-

organised, simple sensing capability 

“Proof of concept” and small 

scale deployment in various 

monitoring applications 

Modern 

stage 

Advanced processing power, higher 

storage, advanced radio 

communication to support higher data 

traffic, self-organised, self-healing, 

complex sensing capability   

Realisation of IoT and large 

scale deployment 

 

The rapid progress in WSN technologies - which have provided increased 

processing power/storage capacity at no cost penalty - has stimulated the next phase 

of WSN research, that of embedding intelligence within the network. Cognitive 

techniques have the potential to enhance WSN functionality facilitating extensions of 

the applications spectrum to encompass operation in complex environments, 

observation of network states, executing behaviour choices based on the prevailing 

state, and providing feedback whilst formulating future behaviours. Cognitive 

behaviour should not be confined at the spectrum level but should enable the network 

to achieve end-to-end goals through efficient resource management. The evolution of 

cognition in WSNs in terms of functionality and application is summarised as in 

Table 2.5. 

 

 

 

 

 



 37 

Table 2.5. Evolution of cognition in WSNs in terms of functionality and applications. 

Evolution 

Stage 

Functionality Application 

Cognitive 

Radio (from 

1995) 

Radio-scene analysis, channel 

identification, transmit-power 

control and dynamic spectrum 

management 

Multiple asynchronous concurrent 

data streams on mobile handsets, 

base stations and small cells 

Cognitive 

Networks 

(from 2005) 

Resource management, QoS, 

security, access control, and 

other network goals 

Identifying, prioritizing, and 

weighting the user requirements of 

the network 

Cognitive 

Sensor 

Networks 

(from 2008) 

Spectrum sensing and context-

aware 

Network lifetime maximization, 

energy efficient routing, the 

reliability of event detection and 

transfer, optimization of multiple 

or conflicting objects, application-

specific design 

 

In general, there are two categories of cognition in networking; “cognitive 

radio”, focusing on efficient bandwidth usage through sharing of the spectrum, and 

cost effective spectrum sensing. In the Thesis, the term “cognition in networking” is 

more appropriate and considers all layers of the network to optimize the application 

objectives. 
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Chapter 3: CogWSN Architecture and 
Decision Process 

 

 

3.1 Definition of Cognitive Wireless Sensor Network (CogWSN) 

The term “cognitive” is an adjective related to thinking or conscious mental 

processes [167]. From the networking perspective [182], cognition is used in 

association with a technology that operates inside a complex environment (for 

example the congested radio frequency spectrum), observes it, makes behaviour 

choices, and receives feedback from it, all the while learning i.e. assembling a data 

set that will help determine future behaviours based on past and current feedback. 

 

In the Thesis, CogWSN is proposed through the integration of two 

technologies: cognitive artificial intelligence and wireless sensor networks. Thus, 

CogWSN is defined as a networked group of sensor nodes capable of sustaining 

performance in a dynamic environment using an embedded cognitive capability, 

while meeting user requirements. 

 

 

3.2 Hardware; Issues and Limitations 

Since the founding principles of WSNs are built upon harnessing small and 

inexpensive components, bounds in the degree of operation are inherent. The 

limitations are [1, 2, 9, 10, 11, 64]: 

1. A WSN is a packet-radio network and its radio interface cannot normally 

transmit and receive at the same time. 

2. Data are aggregated at a Base Station (BS) which also issues commands. 

3. The BS is connected to a PC using a wired cable and effectively enjoys 

unlimited power. 

4. By default, a WSN device is normally powered using a small capacity, 

non-rechargeable battery. 

5. The radio operates in the ISM band. 

6. A single, low gain antenna is normally used. 
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7. Normally several PANs are in operation, not coordinated. 

 

 

3.3 CogWSN’s Decision Process 

A Layered Reference Model of the Brain (LRMB) [23] has been proposed as 

the basis for an integrated framework for modelling the behaviour of the human mind. 

LRMB encompasses 37 cognitive processes classified in six layers known as 

sensation, memory, perception, action, meta-cognition, and higher cognitive layers 

from the bottom-up. The higher layers enable more complicated and diversified life 

functions to be implemented, totalling 16 cognitive processes. In the CogWSN 

research presented here, the Problem Solving cognitive process is selected as the 

decision process. 

 

According to Polya [202, 203], 4 steps must be followed when solving a 

mathematical problem;  

1. Understand the problem 

2. Devise a plan 

3. Carry out the plan 

4. Look back 

 

Problem Solving [204], as defined in LRMB, is a higher layer cognitive 

process of the brain that seeks a solution for a given problem or finds a path to reach 

a given goal. Within the CogWSN concept, a Problem Solving cognitive process 

enhances the functionality of the WSN to have the ability to observe the 

environment/process, derive a plan, execute the plan, and provide feedback after 

execution. 

 

For CogWSN, the decision process following the Problem Solving cognition 

from LRMB embodies the Polya principle. Hence the CogWSN decision process is 

formulated through 4 phases, illustrated in Figure 3.1. 

1. Observe; monitor and identify if there is a problem 

2. Plan; derive a plan to solve the problem 
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3. Implement; implement according to the plan 

4. Evaluate ; feedback whether the problem has been solved 

 

 

Figure 3.1. CogWSN decision process. 

 

 In the process, observation is performed to identify any potential issue in the 

monitored environment. If an issue is found, a plan is derived based on existing 

knowledge; however initial knowledge can be pre-installed before the deployment. 

Then an action is taken according to the derived plan. Finally, an evaluation is 

carried out by monitoring the concomitant changes in the environment for a short 

period to determine whether the action taken yields benefits. The result of the 

evaluation is recorded into the knowledge system for future reference. It should be 

noted that the situation may be improved or degraded as a consequence of the action 

taken, and the process continues to loop by reverting to the Observe phase. 

 

 

3.4 CogWSN Architecture 

Each component in the WSN other than the processor unit (holds the required 

operation and all virtual modules) contains information about its operating status and 

actuating function. All information is embedded into virtual modules integrated to 

Environment 

Observe 

Plan 

Knowledge 

Evaluate 

Implement 
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inter-operate with the required task specified by the user. CogWSN operate co-

operatively between the transceiver, transducer, and power supply virtual modules. 

Each module contains two elements defined as State Information (SI) which stores 

the information on the operating state and Tuneable Function (TF) which defines the 

actuating function (Figure 3.2). 

 

 

Figure 3.2. CogWSN architecture. 

 

SI and TF subcomponents in the virtual modules can be defined as shown in 

Table 3.1. The CogWSN module coordinates all virtual modules to the required 

operational goal specified by users. 

 

 

 

Transducer 

Power supply 

Processor 

Transceiver 

Required operation by the user 

CogWSN 

TF 

SI 

Transceiver 
virtual module 

TF 

SI 

Transducer 
virtual module 

TF 

SI 

Power supply 
virtual module 
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Table 3.1. Definition of the virtual modules. 

Virtual 

Module 

State Information (SI) Tuneable Function (TF) 

Transceiver RSSI, link quality, data error 

rate, data throughput, channel 

congestion, beacon rate, parent 

node communication slot, nodes 

communication slot, routing 

information, data buffer, priority 

packet information, data transfer 

rate 

Power transmission, antenna 

selection [205], channel 

switching, radio sleep/wake 

control, beacon rate control, 

parent node communication slot 

control, children nodes 

communication slot control, 

routing control, priority packet 

control [206], data transfer rate 

control 

Transducer Data sampling rate, threshold 

check, sensor/actuator status 

Data sampling rate, sensor 

sleep/wake control, sensor 

offset, actuator sleep/wake 

control, actuator control 

Power supply Voltage of the power supply, 

duty cycle of activities 

Tune to secondary power supply 

 

3.4.1 Transceiver Module 

Transceiver module captures the performance of the communications in terms 

of reliable connectivity, energy-efficiency, channel utilisation optimisation, error rate, 

and data throughput. To demonstrate the functionality of this module within 

CogWSN, a case study is presented where the SI is the RSSI and TF is the power 

transmitted [19]. 

 

The goal is to fine tune the transmission power so that a packet can be received 

successfully at the receiver with signal strength between -85dBm to -65dBm but not 

at the expense of additional energy. For example, if a packet can be received 

successfully at a destination node using 0.1mW, transmitting the same packet using 

1mW is wasteful of power, impacting negatively on overall network lifetime. For 
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this scenario, a test bed is established to evaluate the performance of the module. It 

should be noted that the receiver sensitivity does not exceed -94dBm [207]. 

 

The foundation of the decision process is triggered by observing the operating 

environment and making decisions based on rule-based knowledge. When a decision 

has been derived, a series of actions is taken in an attempt to manage prevailing 

network inefficiencies. It is highly desirable to have the problem resolved at the first 

attempt but commonly, a progression of subsequent actions is required to provide 

further enhancements; subsequent decisions are made through feedback from 

previous actions. In each cycle, the degree of improvement can be monitored from 

the feedback. The cognitive module assesses the changes in conditions and a score is 

given to each pairing of ‘action and its result’. Therefore, when a similar condition 

comes to pass in the future, the module naturally applies the action with the highest 

score. 

 

The experiment is conducted using a MICAz platform [208]. The cognitive 

module is coded into a MICAz node at the transmitter to adjust its transmission 

power so that signal strength is maintained at an acceptable level for successful 

reception. The receiver is required to acknowledge every packet received with an 

ACK, containing the signal strength of the received packet. This forms the basis of 

the observation phase with which radio link quality can be assessed. To verify the 

correctness of the performance, two experiments are conducted, shown in Figure 3.3 

and Figure 3.4. 

 

In Figure 3.3, 2 nodes are placed close to each other 50cm apart. A node is 

configured as transmitter and another node acts as receiver. It is observed that the 

transmission power of the transmitter has adjusted 3 times. After the first adjustment, 

the transmission power is reduced from 1mW to 0.316mW whereupon the received 

signal strength drops from -56dBm to -60dBm; the signal strength is still above         

-65dBm, indicating unnecessary power overuse. Hence, further fine tuning is 

conducted and the decision process eventually stops when the transmission power is 

reduced to 0.0316mW and received signal strength of -70dBm. In this case study, the 
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benefit of embedded cognition is clear as it reduces the power consumption by 

96.8% whilst maintaining acceptable link quality. 
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Figure 3.3. Transmission power adjustment to prevent energy overuse. 

 

In Figure 3.4, an experiment is established to evaluate the network response to 

a bad radio link; 2 nodes, the transmitter and the receiver, are separated at 15m. Here, 

the transmitter is initially set to very low transmission power (0.00316mW). After 

several retries, the transmitter autonomously increases the transmission power so that 

packets reach the receiver at an appropriate signal strength. 
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Figure 3.4. Transmission power adjustment to improve link quality. 

 

The experiments in Figure 3.3 and Figure 3.4 verify the correctness of the 

performance of the transceiver virtual module where the goal is achieved after some 

power transmission adjustments. 

 

3.4.2 Transducer Module 

Sensor nodes may be furnished with a function that controls when to report 

data at a rate determined by the prevailing network condition e.g. available power 

unless over-ridden by a request from the user. In limited power resource scenarios, it 

is important to ensure data are transported in an energy-efficient manner; at the 

transducer module, data can be abstracted for transport and reformed on arrival at the 

base station [209]. 

 

An experiment is conducted to demonstrate the operation of this module within 

CogWSN; SI in this case is the data reporting rate and TF is the parameter 

representative of the degree of sensor sensitivity. Sensor sensitivity is determined 

through the Arithmetic Progression Threshold [210] and Geometric Progression 

Threshold algorithms [211]. 
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In practice, configuring the sampling rate for data capture directly under user 

control is non-trivial. Thus to circumvent this, the approach adopted is to apply some 

intelligence at the sensor node that governs the reporting of a processed stream of 

original data without compromising the application. In this example, the amount of 

data to be reported is reduced by transporting modified, abstracted samples only 

when the difference between the current and the previous reported data samples 

exceeds pre-defined thresholds. The thresholds are set according to Equation 3.1 and 

Equation 3.2. 

 

snathn )1( −+=  

1−= n
n arth  

(3.1) 

(3.2) 

  

where a is an assigned value based on the degree of sensor sensitivity, s is the sensor 

sensitivity value obtained from its datasheet and n is a variable incremented by 1 

after each threshold comparison until a maximum value is reached. After a data 

sample is reported, n is reset to 0. Assume that the previous reported sample has a 

value of x0 and after i-1 unreported sampling phases, the current reading of the 

sensed data is xi. The algorithm illustrated in Figure 3.5 is applied to determine 

whether or not to report the data sample. 

 

increase i by 1 

n ← min(i, nmax) 

if arithmetic progression is selected, then 

  thn ← a + (n – 1) × d 

if geometric progression is selected, then 

  thn ← a × rn-1 

if |xi – x0| ≥ thn, then 

  report the values of i and xi  

  x0 ← xi  

  i reset to 0 

Figure 3.5. Arithmetic Progression and Geometric Progression Threshold algorithms. 
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For comparison purposes, another three thresholding methods are considered; 

fixed threshold value [212], difference between current sample and previous sample 

values [213], and difference between current sample and previous reported values 

[214]. The experiments are designated as: 

1. Threshold methodology 1; Complete data 

2. Threshold methodology 2; Threshold value >= 25 

3. Threshold methodology 3; Difference between current sample value and 

previous sample value by 0.1 

4. Threshold methodology 4; Difference between current sample value and 

previous report value by 0.1 

5. Threshold methodology 5; Arithmetic Progression Threshold with a = 0.1, d 

= 0.1, nmax = 10 

6. Threshold methodology 6; Arithmetic Progression Threshold with a = 0.5, d 

= 0.05, nmax = 10 

7. Threshold methodology 7; Geometric Progression Threshold with a = 0.1, r = 

1.3, nmax = 10 

8. Threshold methodology 8; Geometric Progression Threshold with a = 0.5, r = 

1.1, nmax = 10 

 

Figure 3.6, Figure 3.7, and Figure 3.8 show the abstraction with burst data, 

slowly incremented and decremented data, and randomly generated data, respectively. 
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Figure 3.6. Data abstraction with burst data. 
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Figure 3.7. Data abstraction with slowly incremented and decremented data. 
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Figure 3.8. Data abstraction with randomly generated data. 

 
Figure 3.9 shows the total number of transmitted packets with the assumption 

that one packet is required for each sensor reading. Threshold methodology 6 and 
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Threshold methodology 8 are able to reduce the number of packets transmitted by 

more than 50%. 

 

 

Figure 3.9. Number of packet transported to the base station for different traffic 
types. 

 

When the abstracted data reaches the sink, the unreported data is re-established 

using a recovery scheme as in [209]. This scheme merges the unreported data with 

the previous updated data, thus generating new reported data. Figure 3.10, Figure 

3.11, and Figure 3.12 show complete data after the application of the recovery 

scheme for burst, slowly incremented and decremented, and randomly generated data 

respectively. 
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Figure 3.10. Complete data after the application of the data recovery scheme for 
burst data. 
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Figure 3.11. Complete data after application of the the data recovery scheme for 
slowly incremented and decremented data. 
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Figure 3.12. Complete data after the application of the data recovery scheme for 
randomly generated data. 

 
In Figure 3.13, after the data is reformed, the means of the temperature 

measurements following Threshold methodologies 4 to 8 are less than 0.5. For these 
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five Threshold methodologies, the average values after the recovery scheme are less 

significant as compared to the means obtained from full sensor readings. 

 

 

Figure 3.13. Mean of the temperature after the data recovery scheme. 

 

In Figure 3.14, the sum of differences for measurements after data recovery is 

presented. Equation 3.3 is used to evaluate the sum of differences where d is the 

recovered data and d0 is the data obtained from full sensor readings; 

 

� −= 0_ dddsum  (3.3) 
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Figure 3.14. The sum of differences after the data recovery scheme. 

 

For Threshold methodologies 4 to 8, the sums of differences are on average 

less than 320 for each methodology. This implies that each reading has a maximum 

error of 0.267 degree Celsius, acceptable since according to the datasheet [215], the 

error of the sensor reading is 0.2 degree Celsius. 

 

Abstract Reporting and Reformation schemes [209] can be further enhanced 

into Zeroth-, First- and Second-order Data Abstraction and Reformation algorithms 

[216] to manage linear and non-linear data patterns. 

 

3.4.3 Power Supply Module 

It is important to always monitor the condition of the battery in WSNs. Usually 

the operating voltage ranges from 2.7V to 3.3V [217], and when the voltage drops 

below 2.7V, the device moves into the ‘critical battery condition’ (Equation 3.4). In 

this case, any further operation moves into a limited power resource scheme such as 

discussed in Section 3.4.2 using Threshold methodology 6 and 8. 
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A model can be established to estimate the power consumption and hence 

network lifetime [218]. The model can define an estimated current consumption per 

related activity as shown in Table 3.2, allowing the WSN to self-monitor its duty 

cycle over the operational timeline. 

 

Table 3.2. Current consumption for a number of key functions. 

Activity Current consumption (mA) [217] 

Processor in sleep 0.008 

Processor in operation 8 

Radio in sleep 0.002 

Radio in transmit 12 

Radio in receive 8 

Logger memory in sleep 0.002 

Logger memory in write 15 

Logger memory in read 4 

Sensor in sleep 0.005 

Sensor in operation 5 

 

The estimated power consumption can be calculated through Equation 3.5, 

where a is the current consumption of the related activity, c is the duty cycle on the 

activity, and i is the activity number; 

 

�=
n

i
iicanConsumptio  

 

(3.5) 
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3.5 CogWSN Operation 

A CogWSN is expected to self-organise, implying an automatic multi-hop 

network configuration capability. Link establishment starts at a base station with a 

beacon broadcast with an interval, for example every 5sec. A node that receives the 

beacon requests to join as a ‘child’ node. Upon the successful establishment of the 

link between parent and child, the node continues to broadcast the same beacon. This 

process is repeated until the entire network is formed. It should be noted that upon 

reception of each beacon, child nodes may reselect its parent based on certain metrics 

such as lesser number of hops or better link quality. 

 

A time slot cycle is defined as shown in Figure 3.15, showing nodes operating 

on a TDMA basis; which assumes synchronized clocks amongst nodes so that all are 

awake at the same time in order to receive the broadcast. The time slot is divided into 

‘Wake Early and Receive Parent’s Beacon’, 150ms (WB), ‘Broadcast Beacon’, 30ms 

(B), ‘Allow a Child to Join’, 150ms (J), ‘Slot Communication to Parent’, to be 

determined (P), ‘Slot Communication to Children’, to be determined (C), and ‘Sleep 

and Perform Decision Process’, to be determined (SC). For each data packet 

transmitted by a child node, an acknowledgement packet from the parent node is 

expected in return. 

 

A flow diagram of the operation of the CogWSN is shown in Figure 3.16. 

 

 

 

 

 

Figure 3.15. Time cycle for CogWSN operation. 

 

WB B J P C SC WB 
… … 

a time slot 
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Figure 3.16. Flow diagram for CogWSN operation. 

 

The proposed CogWSN operation is fully implemented into the MICAz 

platform. The operation allows multi-hop networks to be formed rooted at a base 

station. Several learning modules as discussed in Chapters 4 to 6 can be adopted to 

perform the cognitive process. 
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3.6 Conclusions 

CogWSN has been defined as a networked group of sensor nodes capable of 

sustaining performance in dynamic environments using a cognitive capability, while 

meeting user requirements. The particular approach adopted centres on a decision 

process founded in the Problem Solving cognitive process from LRMB in 

combination with the algorithm reported by Polya. The approach is designed drawing 

from principles in Cognitive Radio and Cognitive Networks (Section 2.4), which also 

rely on cognitive decision processes. 

 

The CogWSN decision process is formulated through 4 phases: Observe, Plan, 

Implement, and Evaluate.  A CogWSN architecture has been proposed based on the 

creation of transceiver, transducer, and power supply virtual modules executing on 

the cognitive processes through software implementations. Each module contains 

two elements defined as the State Information (SI), which stores information on the 

device operating condition, and the Tuneable Function (TF), which defines the 

actuating function, as mentioned in Section 3.4. 

 

It is essential for all virtual modules to participate in realising energy-efficient 

operation. In Section 3.4.1, the Transceiver Module has the capability that the 

transmitter monitors the signal strength received at the receiver and adjusts its power 

transmission so that packets can be sent within an optimal RSSI range. In Section 

3.4.2, the Transducer Module has a similar goal where it reduces the number of 

transmissions through a controllable abstraction method and reconstitutes all data 

through a reformation scheme. The Power Supply Module in Section 3.4.3 records its 

battery operation status by estimating its power consumption through an established 

model. When the battery falls in the ‘critical battery condition’, it alerts other 

modules to move any operation into the minimum operation mode. 
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Chapter 4: Rule-based CogWSN 
 

Problem Solving as defined in LRMB is searching for a solution to a given 

problem or finding a path to reach a given goal. The representation of the problem is 

central and must include a description of the given situation, pre-defined operations 

for changing the situation, and assessment criteria to determine whether the goal has 

been achieved or not [219]. Rules are used to represent transitions between states of 

the problem. The Chapter starts with an overview of the rule-based approach and 

rule-based learning and illustrates how these can be used within a CogWSN decision 

process. The detail of each phase of the decision process is discussed. 

 

 

4.1 Rule-Based Learning 

Rule-based learning has roots in cognitive psychology [219, 220, 221] and 

early computer models of learning implemented through a high level computer 

language with computational statements such as if: then production rules [219]. 

The design of rule-based approaches is based on a strict and static predefined set of 

policies hard-coded, generating responses accordingly. Figure 4.1 shows an example 

of a traditional rule-based approach. 

 

if (state S1) then (action A1); 

elseif (state S2) then (action A2); 

elseif (state S3) then (action A3); 

... ... 

else (state Sn) then (action An); 

end if; 

Figure 4.1. An example of a traditional Rule-Based approach. 

 

Rule-based approaches can be enhanced to exhibit a learning capability for 

example, by adding some information that allows the best rule to be selected for the 

action based on that information. A decision made from the rule-based learning is 

based on properties alone and relies on simple criteria that do not require a 
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significant amount of memory. Figure 4.2 shows an example of the application of 

rule-based learning using greedy scoring [222]. 

 

if (state S1) then (action A1 with the highest score 

scr1 and then the greatest tuning); 

elseif (state S2) then (action A2 with the highest 

score scr2 and then the greatest tuning); 

elseif (state S3) then (action A3 with the highest 

score scr3 and then the greatest tuning); 

... ... 

else (state Sn) then (action An with the highest 

score scrn and then the greatest tuning); 

end if; 

if (action is correct) then (increase the score by 

1); 

else (action is incorrect) then (decrease the score 

by 1); 

end if; 

Figure 4.2. An example of Rule-based learning using greedy scoring. 

 

In this work, the rule-based approach and rule-based learning using greedy 

scoring are considered in the implementation of a CogWSN. Neither approach 

consumes significant computation and memory resources; however, the limitation is 

that all correct inputs and outputs must be matched before the deployment. Any input 

not matched properly will not produce the correct output. 

 

 

4.2 Observe Phase 

This phase requires continuous observation to identify any potential issue in 

the monitored conditions. The status of the monitored conditions is captured to 

determine whether there is an issue; if any issue is identified, the next phase, the Plan 

Phase, is triggered. 
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Normally, a summary is compiled for each attribute as in Figure 4.3, where u is 

the type of condition and v is the value assigned to the status. An example of a 

summary is shown in Figure 4.4 for the observation of RSSI, slot utilisation to parent 

node, and slot utilisation from child nodes. 

 

Condition(u1): status(v1) 

Condition(u2): status(v2) 

… … 

Condition(un): status(vn) 

Figure 4.3. A summary created from observation. 

 

Condition(RSSI): status(-62dBm) 

Condition(Slot utilisation to parent node): status(6 

packets) 

Condition(Slot utilisation from children nodes): 

status(9 packets) 

Figure 4.4. An example of a summary from observation. 

 

To determine whether to trigger the Plan Phase, a mapping between the 

observed conditions and the pre-defined goals is executed as shown in Table 4.1. If 

any pre-defined goal is not achieved, the Plan Phase is triggered. 
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Table 4.1. A mapping between observed conditions and pre-defined goals. 

Observed Conditions Pre-Defined Goals 

Condition(RSSI): status(-62dBm) Target 1: Received power for data packet 

between -85dBm to -75dBm. 

Condition(Slot utilisation to parent 

node): status(6 packets) 

Target 2: Slot utilisation to parent node, 

x is ½s1 � x � s1, where slot allocation to 

communicate with parent node, s1 = 2, 4, 

8, 16, 32, or 64. 

Condition(Slot utilisation from children 

nodes): status(9 packets) 

Target 3: Slot utilisation from child node, 

y is ½s2 � y � s2, where slot allocation to 

communicate with child node, s2 = 2, 4, 

8, 16, 32, or 64. 

 

Observation is triggered under two scenarios; event-based and timer-based [14, 

15, 19]. For event-based observation, when the monitored condition experiences 

critical changes, a report is compiled and the Plan Phase is triggered. For timer-based 

observation, conditions are monitored at a fixed interval. If any condition requires 

further attention, the Plan Phase is triggered. Based on CogWSN operation as 

implemented in Section 3.5, the event-based observation is most suitable as the 

Observe Phase; when the wake cycle ends, the communication unit is turned off and 

the resource can be used to perform the cognitive decision process. Timer-based 

observation may trigger the cognitive decision process when all components in the 

WSN are busy with their own tasks. 

 

 

4.3 Plan Phase 

This phase is invoked on any condition requiring further action to resolve 

outstanding issues from the Observe Phase. There are two ways to derive a plan, 

based on the first detected symptom in order or based on all detected symptoms. 

 

For example, based on Table 4.1, a scenario as shown in Figure 4.5 is detected. 

For a plan to be derived based on the first detected symptom in order, only condition 
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1 is considered; for a plan based on all detected symptoms, all conditions are taken 

into consideration. 

 

Condition 1: above the expected range 

Condition 2: below the expected range 

Condition 3: in the expected range 

Figure 4.5. An example of a summary of detected symptoms. 

 

For rule-based approaches, the solution is pre-determined according the 

conditions based on the if: then statement. For this approach, a plan is derived 

based on the first detected symptom in order, where a high priority symptom such as 

radio link connectivity is arranged at the beginning of the order. If a plan is derived 

for all detected symptoms, all recommended solutions for the states require to be 

crafted manually through a significant amount of the multiplication of monitored 

conditions, dramatically increasing the size of the ROM and the RAM in order to 

accommodate all possible solutions in the degree of pn, where n is the number of 

condition and p is the possible status for a particular condition. 

 

The same recommendation is appropriate for rule-based learning using greedy 

scoring. This solution is determined by selecting the highest score in the action list. If 

there is more than one solution with the same highest score, the action with the 

greatest tuning is selected as in Figure 4.2, allowing the node to solve the problem 

more rapidly. However it must be noted that this strategy may cause the function to 

be over-tuned in some cases [223]. A look-up table can be added to act as a filter in 

order to prevent over-tuning, discussed in Section 5.5. 

 

 

4.4 Implement Phase 

In this phase, an action is performed according to the derived solution. The 

solution could be in two forms viz. ‘level-up’ or ‘level-down’ a setting [12] or ‘tune 

a setting’ with a parameter [19]. The advantage of the ‘level-up’ or ‘level down’ a 

setting is the action is adjusted step by step; however this approach suffers in that the 
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adjustment is slow and may require several cognitive cycles to achieve the goal. The 

advantage of ‘tuning a setting’ with a parameter is the rapidity of adjustment but the 

selection of the correct parameter is difficult without a priori knowledge, which has 

to be embedded into the system at the Plan Phase. For the Rule-based CogWSN, the 

option of ‘level up’ or ‘level down’ a setting is chosen for the implementation, and 

for the Rule-based CogWSN with Greedy Scoring, ‘tune a setting’ with a parameter 

is preferred since the setting can be tagged with the score information. 

 

 

4.5 Evaluation Phase 

The Evaluation Phase creates feedback on the action taken to check the 

accuracy and validity of the derived solution. The evaluation result is stored so that it 

can be used as ‘experience’ for future Plan Phases. The Rule-based approach is 

crafted as an ideal solution and as such feedback is not needed and no learning is 

involved [224]. However, feedback is required for rule-based learning as shown in 

Figure 4.6 as each rule is assigned a score. 

 

if (action is correct) then (increase the score by 

1); 

else (action is incorrect) then (decrease the score 

by 1); 

end if; 

Figure 4.6. Feedback in Rule-based CogWSN with Greedy Scoring. 

 

 

4.6 Verification 

Several case studies are carried out to verify the performance of Rule-based 

CogWSN and Rule-based CogWSN with Greedy Scoring. The objective of the case 

studies is to drive the CogWSN to achieve optimum performance in terms of point-

to-point connectivity and slot utilisation. The case studies focus on three domains; 

power transmission, slot allocation to the parent node, and slot allocation to the child 

node. Efficient use of power for transmission and slot allocation conserves energy 
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and prolongs network lifetime. For Rule-based CogWSN, the targets are framed 

according to the order, monitored conditions, and derived actions for each domain, as 

shown in Table 4.2. For Rule-based CogWSN with Greedy Scoring, the targets are 

framed according to the monitored conditions, and derived actions for each domain 

are shown in Table 4.3. By default, the score for each rule for Rule-based CogWSN 

with Greedy Scoring is set to 127, where the minimum score is 0 and the maximum 

score is 255. 
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Table 4.2. The targets to achieve, monitored conditions, and derived actions for 
Rule-based CogWSN. 

Test Metrics Targets Monitored 

Conditions 

Derived Actions 

Power 

transmission 

Received power between 

-85dBm to -75dBm 

-85dBm � RSSI 

� -75dBm 

None 

RSSI < -85dBm Increase transmit 

power by 1 level 

up 

RSSI > -75dBm Decrease 

transmit power 

by 1 level down 

Slot utilisation to 

parent node 

Slot utilisation to parent 

node, x is ½s1 � x � s1, 

where slot allocation to 

communicate with parent 

node, s1 = 2, 4, 8, 16, 32, 

or 64 

½s1 � x � s1 None 

x > s1 Increase slot 

allocation by 2s1 

x < ½s1 Reduce slot 

allocation by 

s1/2 

Slot utilisation 

from child node 

Slot utilisation from 

children nodes, y is ½s2 � 

y � s2, where slot 

allocation to 

communicate with child 

node, s2 = 2, 4, 8, 16, 32, 

or 64 

½s2 � y � s2 None 

y > s2 Increase slot 

allocation by 2s2 

y < ½s2 Reduce slot 

allocation by 

s2/2 
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Table 4.3. The targets to achieve, monitored conditions, and derived actions for 
Rule-based CogWSN with Greedy Scoring. 

Test metrics Targets Monitored 

conditions 

Derived Actions 

Power 

transmission 

Received power between 

-85dBm to -75dBm 

-85dBm � RSSI 

� -75dBm 

None 

RSSI < -85dBm Increase transmit 

power by 1, 2, 3, 

or 4 levels up 

RSSI > -75dBm Decrease 

transmit power 

by 1, 2, 3, or 4 

levels down 

Slot allocation to 

parent 

Slot utilisation to parent 

node, x is ½s1 � x � s1, 

where s1 = 2, 4, 8, 16, 32, 

or 64 

½s1 � x � s1 None 

x > s1 Increase slot 

allocation by 

2s1, 4s1, 8s1, 

16s1, or 32s1 

x < ½s1 Reduce slot 

allocation by 

s1/2, s1/4, s1/8, 

s1/16, or s1/32 

Slot allocation for 

child node 

Slot utilisation from 

children nodes, y is ½s2 � 

y � s2, where s2 = 2, 4, 8, 

16, 32, or 64 

½s2 � y � s2 None 

y > s2 Increase slot 

allocation by 

2s2, 4s2, 8s2, 

16s2, or 32s2 

y < ½s2 Reduce slot 

allocation by 

s2/2, s2/4, s2/8, 

s2/16, or s2/32 
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Six experiments were conducted using the MICAz platform [76]. Experiments 

1 and 2 are to verify the connectivity performance of CogWSN; Experiments 3 and 4 

are to ensure the slot allocation for parent node can be dynamically adjusted 

according to the requirement; lastly, Experiments 5 and 6 are to determine that the 

slot allocation for a child node can be adjusted according to the child node’s data 

traffic. A base station is directly connected to a PC through a USB-serial cable and 

each node is either coded with rules for Rule-based CogWSN or with rules and 

scores for Rule-based CogWSN with Greedy Scoring. CogWSN operation is 

implemented as defined in Section 3.5; the series of experiments, setup and the initial 

parameters are shown in Table 4.4. 

 

Table 4.4. Experimental setup for 1 to 6 with initial parameters for Rule-based 
CogWSN and Rule-based CogWSN with Greedy Scoring. 

Experiments and Set-up Initial Parameters 
Experiment 1 
Setup: Node is placed close to the 
base station. 

Power transmission, 0dBm; slot allocation 
for parent node, 2; slot allocation for child, 

2; sampling rate, 0.5Hz 
Experiment 2 
Setup: After the node is placed close 
to the base station and is stable, the 
node is moved far from the base 
station but still within the 
communication range. 

Power transmission, -25dBm; slot allocation 
for parent node, 2; slot allocation for child, 

2; sampling rate, 0.5Hz 

Experiment 3 
Setup: Node is placed close to the 
base station. 

Power transmission, -25dBm; slot allocation 
for parent node, 64; slot allocation for child, 

2; sampling rate, 0.5Hz 
Experiment 4 
Setup: Node is placed close to the 
base station. 

Power transmission, -25dBm; slot allocation 
for parent node, 2; slot allocation for child, 

2; sampling rate, 5Hz 
Experiment 5 
Setup: Node is placed close to the 
base station. Child node is placed near 
to the parent node. 

Power transmission, -25dBm; slot allocation 
for parent node, 2; slot allocation for child, 

64; sampling rate, 0.5Hz; its’ child sampling 
rate, 0.5Hz 

Experiment 6 
Setup: Node is placed close to the 
base station. Child node is placed near 
to the parent node. 

Power transmission, -25dBm; slot allocation 
for parent node, 2; slot allocation for child, 
2; sampling rate, 0.5Hz; its’ child sampling 

rate, 0.5Hz 
 

In Experiment 1, a node is placed initially in close proximity to the base station; 

the power transmission by default is set to the maximum, 0dBm and sensor data is 
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sampled at 0.5Hz. The slot allocation to communicate with both the parent node and 

child node are both set to 2. For Rule-based CogWSN, (Figure 4.7) owing to the 

relatively short distance between node and base station, a received power above -

75dBm at the beginning of the experiment results. After 4 cycles, the received power 

is adjusted step by step and successfully maintained between -85dBm and -75dBm. 

The adjustment continues for slot allocation to the parent node; the slot allocation is 

adjusted to 4 (Figure 4.8) clearing the buffer in each wake up cycle. The data in the 

buffer indicates the number of packets pending in the node to be transmitted to the 

parent node. Slot allocation is maintained from the 6th cycle onwards, at which time 

slot utilisation is almost constant. 
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Figure 4.7. RSSI as a function of the number of cycles for Rule-based CogWSN in 
Experiment 1. 

 

 
Figure 4.8. Slot allocation and buffer condition as a function of the number of cycles 

for Rule-based CogWSN in Experiment 1. 

 

For Rule-based CogWSN with Greedy Scoring, at the outset, since the RSSI is 

above -75dBm, adjustment is needed to reduce the power for transmission. At the 
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first cycle, the action of decreasing transmission power by 1, 2, 3, and 4 levels down 

are assigned the same score. The most significant adjustment is selected, reducing 

the transmission power requirement gradually. In this case, only one cycle of 

adjustment is needed to maintain the transmission power between -85dBm to -

75dBm (Figure 4.9). The power adjustment is followed by adjustment of the slot 

communication with the parent (Figure 4.10). The first increment in slot allocation is 

performed with the most significant adjustment but since the allocated slot utilisation 

is low, a decrement is executed in the next cycle; the decrement is implemented with 

the most significant level of adjustment. The high utilisation causes the adjustment to 

be repeated. Feedback on the outputs from the first increment alerts the system that 

the rule was incorrectly selected; therefore the next increment is performed with the 

next most significant adjustment and so on. At the 6th cycle, the adjustment is tuned 

and the slot allocation to communicate with the parent node is maintained at 4. 
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Figure 4.9. RSSI as a function of the number of cycles for Rule-based CogWSN with 
Greedy Scoring in Experiment 1. 

 

 

Figure 4.10. Slot allocation and buffer condition as a function of the number of 
cycles for Rule-based CogWSN with Greedy Scoring in Experiment 1. 
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In Experiment 2, the transmission power is set to the minimum -25dBm by 

default and sensor data is sampled at 0.5Hz. Slot allocation to communicate with the 

parent and child nodes are both set to 2 maintaining the same setting as in 

Experiment 1. At the outset, a node is placed in close proximity to a base station until 

the goal is achieved. At the 10th cycle, the node is moved at walking speed away 

from the base station but is still within communication range. When the node stops 

receiving an acknowledgement packet, it increases its transmission power towards 

the maximum. The consequence is that the node receives feedback from the base 

station on the overuse of the necessary transmission power. For Rule-based 

CogWSN, after 2 cycles, the received power is reduced and successfully maintained 

between -85dBm to -75dBm (Figure 4.11).  No appreciable adjustment is carried out 

for slot allocations (Figure 4.12) since connectivity is maintained and thus slot 

utilisation is almost constant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 76 

 

Figure 4.11. RSSI as a function of the number of cycles for Rule-based CogWSN in 
Experiment 2. 

 

 
Figure 4.12. Slot allocation and buffer condition as a function of the number of 

cycles for Rule-based CogWSN in Experiment 2. 

 

For Rule-based CogWSN with Greedy Scoring, at the 21st cycle at which time 

no more adjustment is performed, the node is moved away from the base station but 
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remains within communication range. The node increases its transmission power 

towards the maximum. Due to power overuse, a reduction of its transmission power 

is required. Although the most significant reduction of the transmission power is 

selected, the goal is not achieved. Thus the adjustment is reversed to increase the 

transmission power, incremented until a power transmission between -85dBm to       

-75dBm is successfully maintained after 4 cycles (Figure 4.13). Note that a minor 

increase of the RSSI in the 32nd cycle, results in the further reduction in transmission 

power to -15dBm. No significant adjustment is performed for slot allocations (Figure 

4.14) as connectivity is maintained and slot utilisation remains almost constant. 
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Figure 4.13. RSSI as a function of the number of cycles for Rule-based CogWSN 
with Greedy Scoring in Experiment 2. 

 

 

Figure 4.14. Slot allocation and buffer condition as a function of the number of 
cycles for Rule-based CogWSN with Greedy Scoring in Experiment 2. 
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In Experiment 3, for Rule-based CogWSN, a node is placed close to a base 

station; the slot allocation to communicate with both the parent and child nodes is set 

to 64 and 2, respectively, to emulate a situation where too many slots are allocated to 

communicate with the parent. The sensor data is sampled at 0.5Hz and the 

transmission power set to -25dBm. No adjustment is carried out for the transmission 

power since the RSSI is maintained between -85dBm to -75dBm (Figure 4.15). The 

allocation of 64 slots to communicate with the parent node is excessive, leaving too 

many unused allocated slots; therefore, the number of slots must be reduced. After 4 

cycles, the slot allocation to communicate with the parent node is reduced to s1 

equals 4, satisfying the slot utilisation criterion of between ½s1 to s1 as shown in 

Figure 4.16. 
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Figure 4.15. RSSI as a function of the number of cycles for Rule-based CogWSN in 
Experiment 3. 

 

 

Figure 4.16. Slot allocation and buffer condition as a function of the number of 
cycles for Rule-based CogWSN in Experiment 3. 
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For Rule-based CogWSN with Greedy Scoring, no adjustment is carried out for 

the transmission power since the RSSI remains between -85dBm to -75dBm (Figure 

4.17). Once again, the allocation of 64 slots to communicate with the parent node is 

excessive, leaving too many unused allocated slots; therefore, the number of slots 

must be reduced. After 4 cycles, the slot allocation to communicate with the parent 

node reduces to s1 equals 4, satisfying the slot utilisation criterion of between ½s1 to 

s1 as shown in Figure 4.18. The adjustment is similar to the scenario in Figure 4.10. 

Rule-based CogWSN with Greedy Scoring allows tuning directly from the maximum 

to the optimum slot allocation. 
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Figure 4.17. RSSI as a function of the number of cycles for Rule-based CogWSN 

with Greedy Scoring in Experiment 3. 

 

 
Figure 4.18. Slot allocation and buffer condition as a function of the number of 

cycles for Rule-based CogWSN with Greedy Scoring in Experiment 3. 
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In Experiment 4, a node is placed close to a base station, the slot allocation to 

communicate with the parent node by default is set to 2, the slot allocation to 

communicate with the child node is set to 2 also, and the sensor data is sampled at 

0.5Hz. The transmission power is set to -25dBm. For Rule-based CogWSN, no 

adjustment is required for the transmission power since the RSSI remains between    

-85dBm to -75dBm (Figure 4.19). As there are too many packets to be transmitted to 

the parent node and too few slots allocated, the slot allocation has to be increased. 

After 9 cycles, the slot allocation to communicate with the parent node is 

successfully increased to s1 equals 32, satisfying the slot utilisation criterion of 

between ½s1 to s1, as shown in Figure 4.20. 
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Figure 4.19. RSSI as a function of the number of cycles for Rule-based CogWSN in 
Experiment 4. 

 

 

Figure 4.20. Slot allocation and buffer condition as a function of the number of 
cycles for Rule-based CogWSN in Experiment 4. 
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For Rule-based CogWSN with Greedy Scoring, there is also no adjustment 

being carried out for the transmission power since the RSSI remains between             

-85dBm to -75dBm (Figure 4.21). The slot allocation required to successfully 

download the data to the parent node is achieved in 8 cycles (Figure 4.22). As a 

consequence of the buffer filling quickly, adjustment is not able to maintain the goal, 

and the solution is not able to converge after the goal is initially reached. As a 

consequence of the buffer being highly utilised and the insufficient slot allocation to 

communicate with the parent, packets suffer long delays. Conversely when there are 

fewer packets in the buffer and too generous a slot allocation to communicate with 

the parent, unnecessary power consumption results owing to idle communication. 
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Figure 4.21. RSSI as a function of the number of cycles for Rule-based CogWSN 
with Greedy Scoring in Experiment 4. 

 

 
Figure 4.22. Slot allocation and buffer condition as a function of the number of 

cycles for Rule-based CogWSN with Greedy Scoring in Experiment 4. 

 

In Experiment 5, a node is placed close to a base station and the slot allocation 

to communicate with the parent and child nodes is set to 2 and 64 respectively. 
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Another child node is placed near to this node, the latter becoming the parent node as 

illustrated in Figure 4.23. The mentioned results in the following figures (Figures 

4.24 to 4.31) are based on Node 1 in Figure 4.23. Both nodes are sampled at a rate of 

0.5Hz. For Rule-based CogWSN, no adjustment is made to the transmission power 

(Figure 4.24) since the task is to manage the slot allocation. As shown in Figure 4.25, 

the goal is achieved in 8 cycles. In this case the data is buffered inconsistently and 

consequently the slot allocations to communicate with parent and child nodes have to 

be adjusted accordingly. 

 

 

Figure 4.23. A scenario where a node is a child of the base station and is a parent of 
another child node. 

 

 

Base station Node 1 – 
child of the 

base 
station; 

parent of 
Node 2 

Node 2 – 
child of 
Node 1 
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Figure 4.24. RSSI as a function of the number of cycles for Rule-based CogWSN in 
Experiment 5. 

 

 

Figure 4.25. Slot allocation and buffer condition as a function of the number of 
cycles for Rule-based CogWSN in Experiment 5. 
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For Rule-based CogWSN with Greedy Scoring, no adjustment of the 

transmission power is required since the RSSI remains between -85dBm to -75dBm 

(Figure 4.26). The slot allocation to communicate with the parent node the goal is 

achieved in 13 cycles as shown in Figure 4.27; subsequently, this slot allocation is 

maintained to s1 equals 8. Although the buffer size is 3, it should be noted that the 

node is able to send more than 3 packets during the transmission with the parent node, 

thus satisfying the slot utilisation criterion of between ½s1 to s1. 
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Figure 4.26. RSSI as a function of the number of cycles for Rule-based CogWSN 

with Greedy Scoring in Experiment 5. 

 

 
Figure 4.27. Slot allocation and buffer condition as a function of the number of 

cycles for Rule-based CogWSN with Greedy Scoring in Experiment 5. 

 

In Experiment 6, a node is placed close to a base station and the slot allocation 

to communicate with both parent and child nodes are both set to 2. Another child 
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node is then placed near to this node, the latter becoming the parent node as 

illustrated in Figure 4.23. Both nodes are sampled at rate of 0.5Hz. For Rule-based 

CogWSN, no adjustment of the transmission power is instigated (Figure 4.28) since 

the main task is that of slot allocation. As shown in Figure 4.29, both slot allocations 

to communicate with parent and child nodes increment until the 6th cycle and 

subsequently fluctuate due to the inconsistent data occupancy in the buffer. 
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Figure 4.28. RSSI as a function of the number of cycles for Rule-based CogWSN in 
Experiment 6. 

 

 

Figure 4.29. Slot allocation and buffer condition as a function of the number of 
cycles for Rule-based CogWSN in Experiment 6. 
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For Rule-based CogWSN with Greedy Scoring, no adjustment is being carried 

out for the transmission power since the RSSI remains between -85dBm to -75dBm 

(Figure 4.30). The slot allocation to communicate with the parent node, the goal is 

achieved in 9 cycles as shown in Figure 4.31. At the 20th cycle and onwards, the slot 

allocation is maintained at s1 equals 8, satisfying the slot utilisation rule of between 

½s1 to s1. 
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Figure 4.30. RSSI as a function of the number of cycles for Rule-based CogWSN 

with Greedy Scoring in Experiment 6. 

 

 
Figure 4.31. Slot allocation and buffer condition as a function of the number of 

cycles for Rule-based CogWSN with Greedy Scoring in Experiment 6. 

 

The goal of each task is achieved when all targets are met. In some cases, the 

adjustment continues in a repeated pattern even once the target is initially reached. 
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Figure 4.32 summarises the number of cycles required to achieve the goal for Rule-

based CogWSN (RBA) and Rule-based CogWSN with Greedy Scoring (RBL) from 

Experiments 1 to 6 (Exp1 to Exp6), where the goal are the combined targets of; 

• received power between -85dBm to -75dBm, 

• slot utilisation to parent node, x is ½s1 � x � s1, where slot allocation to 

communicate with parent node, s1 = 2, 4, 8, 16, 32, or 64, and 

• slot utilisation from children nodes, y is ½s2 � y � s2, where slot 

allocation to communicate with child node, s2 = 2, 4, 8, 16, 32, or 64.  

RBA outperforms RBL for Experiment 5 and Experiment 6 since additional cycles 

are needed for RBL to obtain the correct score for the rules to achieve the goal; for 

the remaining experiments, RBL and RBA exhibit similar performance. It is noted 

that the RBA performs dynamic adjustment in order to maintain its goals; 

thresholding with hysteresis can be used to control the fluctuations [225]. 

 

 

Figure 4.32. Number of cycles required to achieve the goal for Rule-based CogWSN 
and Rule-based CogWSN with Greedy Scoring. 

 

In order to compare the performance of the CogWSN for different approaches, 

the average of the result for additional 10 cycles (average number of cycles required 

to achieve the goal) after the goal is achieved are taken into the consideration, to 
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investigate how well the CogWSN performs in maintaining the goal after it is 

achieved. Two performance metrics are defined; 

• the power usage, i.e. the average of power transmission used to 

transmit data packets as defined in Equation 4.1; 

• and the slot utilisation, i.e. the average of buffer utilisation over slot 

allocation as defined in Equation 4.2. 

 

Power usage = Sum of the additional cycles of transmission power / The 
number of additional cycles 

(4.1) 

 

Slot utilisation = Sum of (current buffer / slot allocation to parent) / The 
number of additional cycles 

(4.2) 

 

Figure 4.33 shows the transmission power comparison between RBA and RBL. 

For Experiment 2, when the power transmission for RBA and RBL are at -10dBm, 

the received power lies around the limit of receiver sensitivity of -75dBm. In cycles 

where the received power is slightly above -75dBm, RBL attempts to lower its power 

transmission to -15dBm, resulting in less power consumption as compared to RBA. 

For the remaining experiments, little difference in performance between RBL and 

RBA is evident. Overall, both RBA and RBL are able to minimise the transmission 

power to 0.1mW and below for this set of experiments. 
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Figure 4.33. Power transmission comparison between Rule-based CogWSN and 
Rule-based CogWSN with Greedy Scoring. 

 

Figure 4.34 shows the slot utilisation comparison between Rule-based 

CogWSN and Rule-based CogWSN with Greedy Scoring; ideally slot utilisation 

should lie between 0.6 to 0.8 [226]. If the slot utilisation is below 0.6, a significant 

number of slots allocated are not utilised; if the slot utilisation is above 0.8, there is a 

risk that slots allocated are insufficient to transport packets on slight increases in the 

number of buffered packets. For the purposes of the present comparison, a slot 

utilisation of between 0.5 to 1 is deemed acceptable since at least half of the slots 

allocated are utilised [96]. Overall, RBL and RBA exhibit a similar performance for 

Experiments 1 to 3. For Experiment 4, RBL provides very poor performance when 

the target is not achieved; it needs several cycles in order to tune its score to correctly 

match the rules. Consequently RBL suffers from delays in allocating additional slots 

and captures a large number of packets in the buffer. For Experiment 5, RBL 

produces low utilisation of the allocated slots, with more slots allocated than required. 

For Experiments 6, RBA and RBL cannot meet the acceptable level of performance 

due to, on average, the number of slots allocated is smaller than the slots required. 
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Figure 4.34. Slot utilisation comparison between Rule-based CogWSN and Rule-
based CogWSN with Greedy Scoring. 

 

 

4.7 Conclusions 

Rule-based CogWSN without learning capability and rule-based learning are 

presented. The adaptation of the proposed schemes is embedded into the CogWSN’s 

cognitive cycle. Overall Rule-based CogWSN is expected to present an ideal 

performance in any situation since the intelligence capturing the task is pre-installed, 

comprising a complete set of rules on the sensor nodes before deployment. An 

extension to the cognition to enhance the performance can be implemented by 

assigning a score to each rule, implemented through tuning a setting with a parameter, 

an example being the Rule-based CogWSN with Greedy Scoring. Since Rule-based 

CogWSN with Greedy Scoring requires feedback in order to search for the correct 

rule (as highlighted in Section 4.5), a time penalty results to achieve the goal. 

 

Six experiments were designed, based on a subset of practical scenarios of 

WSN deployment as shown in Table 4.5. 
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Table 4.5. Experiments designed based on a subset of practical scenarios. 

Scenario Experiments and 
Set-up 

Initial Parameters Goals 

A node that is 
close to a base 
station where its 
power 
transmission is 
too high. 

Experiment 1 
Setup: Node is placed 
close to the base 
station. 

Power transmission, 
0dBm; slot allocation 
for parent node, 2; 
slot allocation for 
child, 2; sampling 
rate, 0.5Hz 

1) Received 
power between -
85dBm to -
75dBm 
 
2) Slot utilisation 
to parent node, x 
is ½s1 � x � s1, 
where slot 
allocation to 
communicate 
with parent 
node, s1 = 2, 4, 
8, 16, 32, or 64 
 
3) Slot utilisation 
from children 
nodes, y is ½s2 � 
y � s2, where slot 
allocation to 
communicate 
with child node, 
s2 = 2, 4, 8, 16, 
32, or 64 

A node that is 
moving far away 
from a base 
station where 
initially its 
power 
transmission is 
low due to it is 
close to the base 
station. 

Experiment 2 
Setup: When the node 
is placed close to the 
base station and 
became stable, the 
node is moved far 
from the base station 
but still within the 
communication range. 

Power transmission, -
25dBm; slot 
allocation for parent 
node, 2; slot 
allocation for child, 
2; sampling rate, 
0.5Hz 

A node that 
allocates too 
many slots to 
communicate 
with a parent 
and the traffic is 
suddenly 
reduced. 

Experiment 3 
Setup: Node is placed 
close to the base 
station. 

Power transmission, -
25dBm; slot 
allocation for parent 
node, 64; slot 
allocation for child, 
2; sampling rate, 
0.5Hz 

A node that 
allocates too few 
slots to 
communicate 
with a parent 
and the traffic is 
suddenly 
generated at a 
higher rate. 

Experiment 4 
Setup: Node is placed 
close to the base 
station. 

Power transmission, -
25dBm; slot 
allocation for parent 
node, 2; slot 
allocation for child, 
2; sampling rate, 5Hz 

A node that has 
a child or 
children that 
sending packets 
at low rate and 
its slot 
allocation to the 
child or children 
is too much. 

Experiment 5 
Setup: Node is placed 
close to the base 
station. Child node is 
placed near to the 
parent node. 

Power transmission, -
25dBm; slot 
allocation for parent 
node, 2; slot 
allocation for child, 
64; sampling rate, 
0.5Hz; its’ child 
sampling rate, 0.5Hz 

A node that has 
a child or 

Experiment 6 
Setup: Node is placed 

Power transmission, -
25dBm; slot 



 100 

children that 
sending packets 
at low rate and 
its slot 
allocation to the 
child or children 
is too little. 

close to the base 
station. Child node is 
placed near to the 
parent node. 

allocation for parent 
node, 2; slot 
allocation for child, 
2; sampling rate, 
0.5Hz; its’ child 
sampling rate, 0.5Hz 

 

In Experiment 1, both Rule-based CogWSN and Rule-based CogWSN with 

Greedy Scoring have the same performance in terms of number of cycles needed to 

achieve their goals. From Figure 4.7, Rule-based CogWSN requires 4 cycles to 

reduce its power transmission while from Figure 4.9, Rule-based CogWSN with 

Greedy Scoring only needs 1 cycle. Rule-based CogWSN tunes step by step while 

Rule-based CogWSN with Greedy Scoring can adjust at maximum tuning. Both 

maintain their power transmissions so that packets arrived at the base station with 

signal strengths between -85dBm to -75dBm for the next 10 cycles after their goals 

are achieved. From Figure 4.8 and Figure 4.10, both require 6 cycles in order to 

adjust their slot utilisations to between 0.6 to 0.8. 

 

In Experiment 2, both Rule-based CogWSN and Rule-based CogWSN with 

Greedy Scoring exhibit almost the same performance in terms of number of cycles 

needed to achieve their goals. On significant distances from the base station, nodes 

increase their power transmissions in order to transmit packets to the base station at 

signal strength between -85dBm to -75dBm in 3 to 4 cycles as shown in Figure 4.11 

and Figure 4.13. 

 

In Experiment 3, both Rule-based CogWSN and Rule-based CogWSN with 

Greedy Scoring take 4 cycles to achieve their goals. Both do not adjust their power 

transmission as it does not contribute to the problem to be solved as shown in Figure 

4.15 and Figure 4.17. In Figure 4.16, each adjustment for Rule-based CogWSN is an 

improvement towards solving the problem. In Figure 4.18, Rule-based CogWSN 

with Greedy Scoring always invokes the maximum adjustment. 

 

In Experiment 4, at the outset, the buffer fills up at a faster rate since the slots 

allocated to transmit packets to the base station are too few. Both use almost the 
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same number of cycles to achieve the goals. Rule-based CogWSN provides a 

constant slot allocation to communicate with the base station after the goals are 

achieved but Rule-based CogWSN with Greedy Scoring has to adjust dynamically as 

shown in Figure 4.20 and Figure 4.22 respectively. Again, both do not adjust their 

power transmission as it is not the problem to be solved as shown in Figure 4.19 and 

Figure 4.21. Since for this scenario, Rule-based CogWSN with Greedy Scoring 

requires dynamic adjustment in order to maintain its goals, thus rendering the 

learning mechanism ineffective. 

 

In Experiment 5, Rule-based CogWSN with Greedy Scoring requires more 

cycles than Rule-based CogWSN in order to achieve its goals. From Figure 4.27, 

after the goals are achieved, Rule-based CogWSN with Greedy Scoring allocates a 

constant number of slots to communicate with the base station while from Figure 

4.25, Rule-based CogWSN has to adjust dynamically. 

 

In Experiment 6, again, Rule-based CogWSN with Greedy Scoring requires 

more cycles than Rule-based CogWSN in order to achieve its goals. A similar 

behaviour as in Experiment 5 is observed for Figure 4.29 and Figure 4.31. For both, 

after the goals are achieved, on average the number of slots allocated is slightly 

smaller than the slots required. 

 

In conclusion, Rule-based CogWSN makes adjustment step by step. Each 

adjustment contributes some level of improvement in solving the problem, while 

Rule-based CogWSN with Greedy Scoring tends to solve the problem as fast as it 

can; in some scenarios, the outcome is not as expected. Both have their own 

strengths and weaknesses in different scenarios as shown in Table 4.6. 
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Table 4.6. Strengths and weakness for Rule-based CogWSN and Rule-based 
CogWSN with Greedy Scoring. 

 Rule-based CogWSN Rule-based CogWSN with 

Greedy Scoring 

 Strengths Weakness Strengths Weakness 

Experiment 1 Fast in Goal 2 

achievement 

Slow in Goal 1 

achievement 

Fast in Goal 1 

achievement 

Slow in Goal 2 

achievement 

Experiment 2 Fast in Goal 1 

achievement 

None None Slow in Goal 2 

achievement 

Experiment 3 None None None None 

Experiment 4 Constantly 

maintain the 

goals once the 

goals are 

achieved 

None None Dynamically 

adjust in order 

to maintain the 

goals 

Experiment 5 None Dynamically 

adjust in order 

to maintain the 

goals 

Constantly 

maintain the 

goals once the 

goals are 

achieved 

None 

Experiment 6 None Dynamically 

adjust in order 

to maintain the 

goals 

Constantly 

maintain the 

goals once the 

goals are 

achieved 

None 

 

 

 



 103 

Chapter 5: Supervised CogWSN 
 

The approach developed in Chapter 4 relies on the ability to learn parameters 

embedded within pre-determined rules derived from real scenarios. There are a few 

potential disadvantages to such an approach: (1) in some situations the rules may be 

difficult to derive, and (2) rules derived by humans may not be able to capture the 

more subtle features of the decision process. In this Chapter, CogWSN is considered 

in the framework of supervised learning (based on the review in Section 2.4) i.e. the 

decision process is assumed to be a function to be learned from given examples, and 

an Artificial Neural Network (ANN) is used to codify an approximation to the 

function. 

 

The Chapter starts with an introduction to ANNs and their suitability for the 

CogWSN’s decision process. The detail of each phase of the decision process is 

discussed and characterised in the following sections. 

 

 

5.1 Supervised Learning 

An ANN is a machine learning technique frequently used for function 

approximation [151]. It consists of an interconnected group of artificial neurons, a 

model based on the biological network of neurons in the brain. There are two issues 

which influence the performance of ANNs in application implementation; the 

representation of the power of the network and the learning algorithm. The 

representation of power of an ANN refers to its ability to represent a desired function 

accurately whilst the learning algorithm is a procedure to find a set of optimal 

weights in the network. 

 

A basic ANN is formed through a single-layer network (also called as single-

layer perceptron), which consists of one or more outputs, o , each of which is 

connected with a weighting factor, iow , to all of the inputs, i  (Figure 5.1). 
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Figure 5.1. A single-layer ANN network. 

 

The network rule uses the output of a threshold function. Take a simple case in 

which a network has two inputs, x1 and x2, a single output, y, and a bias term or offset, 

θ  (Figure 5.2). 

 

 

Figure 5.2. An example of a simple ANN single-layer network. 

 

The output of the artificial neuron is the weighted sum of the inputs plus the bias 

term. The output of the network is formed by the activation of the output artificial 

neuron, some function of the input as in the Equation 5.1; 
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The activation function F  can be linear or non-linear depending on the threshold 

such as Signum, Heaviside, or Sigmoid [151]. An example of the activation function 

using the Heaviside step function is (Equation 5.2); 
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(5.2) 

 

From the above example, the output of the network is either +1 or -1. If the total 

input is positive, the output is assigned to class +1; if the total input is 0 or negative, 

then the output is -1. 

 

Consider a set of learning samples consisting of inputs x  (x1, x2, …, xi) and a 

desired output )(xd . The perceptron learning rule can be stated as: 

1. Start with random weights for the connections; 

2. Select an input vector x  from the set of training samples; 

3. If )(xdy ≠  (incorrect response), modify all connections iw  according to: 

ii xxdw )(=∆ ; 

4. Go back to 2 until all the training samples are exhausted. 

 

The threshold is modified according to (Equation 5.3); 
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For each weight, a new value is computed by adding a correction to the old value as 

in Equation 5.4. The same computation is also carried out for the offset as in 

Equation 5.5. 

 

)()()1( twtwtw iii ∆+=+  (5.4) 
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)()()1( ttt θθθ ∆+=+  (5.5) 

 

A single-layer network can also use the delta learning rule [151]; the delta 

learning rule uses the network output without further mapping into desired output 

values. As shown in Figure 5.3, the output is defined as in Equation 5.6; 
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Figure 5.3. A feed-forward network with Delta rule. 

 

The network is trained with input values px  and desired output values pd . For every 

given input sample, the output of the network differs from the target value pd  

by )( pp yd − , where py  is the actual output for this pattern. The delta-rule now uses 

a cost- or error-function based on these differences to adjust the weights. The error 

function, referred to as Least Mean Square (LMS), is the sum of squared error, where 

E  is defined as (Equation 5.7) [227]; 
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where the index p  ranges over the set of input patterns and pE  represents the error 

on pattern p . The LMS procedure finds the values of all weights that minimise the 

error function by the gradient descent method [151] viz. a change in the weight is 

made proportional to the negative of the derivative of the error as measured on the 

current pattern with respect to each weight (Equation 5.8) [227]; 
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(5.8) 

 

where γ  is a constant of proportionality. The updated weight can be written as 

(Equation 5.9); 

 

)()()1( twtwtw iii ∆+=+  (5.9) 

 

where ii xyxdtw ))(()( −=∆ η  and γη = , also known as the learning rate. 

 

The delta learning rule can be written as: 

1. Start with random weights for the connections; 

2. Select an input vector x  from the set of training samples; 

3. If 0≠E  (incorrect response), modify all connections iw  according to: 

ii xyxdtw ))(()( −=∆ η ; 

4. Go back to 2 until all the training samples are exhausted. 

 

Generally, a single-layer network operates well for AND, OR, any m-to-n 

function, NOT, NAND, NOR, but has limitations with XOR [228]. Therefore, one of 
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the routes to removing this limitation is to add hidden layers to modify the single-

layer into a multi-layer network implementation. In order to adjust the weights of 

each artificial neuron in such a way that the error between the desired and the actual 

output is reduced requires that the network compute the error derivative of the 

weights. The back-propagation algorithm is a widely used method for determining 

the error derivative of weights, calculating how the error changes as each weight is 

increased or decreased slightly. For Supervised CogWSN, a multi-layer network with 

back-propagation learning rule (Figure 5.4 with the activation function as in Figure 

5.5) is applied. The reason for using a multi-layer network is its capability to solve 

any function, not restricted to linear functions. The multi-layer network does not 

require large processing power or memory. As long as initial inputs and desired 

outputs are mapped, it provides solutions even when inputs are not mapped in 

advance at the expense of certain errors that can be corrected later using a lookup 

table. 

 

 
Figure 5.4. A multi-layer ANN network with l layers of artificial neurons [227]. 
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Figure 5.5. A model of the activation function for a multi-layer ANN network [227]. 

 
The activation function is as in Equation 5.10; 
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squared error for pattern p at the output units as in Equation 5.11; 
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where p

od  is the desired output for unit o. The weight can be written as in Equation 

5.12 [227]; 
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where γ  is a constant of proportionality. p
kδ  for each unit k in the network can be 

found through Equation 5.13 [227]; 
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Assuming k is an output unit k=o of the network, Equation 5.14 [227] can be 
obtained for any output unit o; 
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Assuming k is not an output unit but a hidden unit k=h, ,...),...,,( 21

p
j

pppp sssEE = , 
then Equation 5.15 [227] can be obtained; 
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(5.15) 

 

Substituting Equation 5.15 into Equation 5.13, then Equation 5.14 and Equation 5.16 

provide a recursive procedure for computing δ ’s for all units in the network, which 

are then used to compute the weight changes according to Equation 5.12; 
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For Supervised CogWSN, weight adjustments with the Sigmoid activation 

function are used [151] since not all combination of inputs can be precisely mapped 

to the desired outputs. The activation function F is defined as (Equation 5.17); 
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The change of the weight is updated through (Equation 5.18) [227]; 
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where t indexes the presentation number and α  is a constant which determines the 

effect of the previous weight change. Finally, the updated weight can be obtained 

through Equation 5.19; 
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5.2 Observe Phase 

The Observe phase is implemented using event-based observation as defined in 

Section 4.2. 

 

 

5.3 Plan Phase 

For this phase, the trigger is best derived based on all detected symptoms since 

the Supervised CogWSN is able to make decisions using a combination of inputs. 

Due to space allocation executed when the ANN network is created, a combination 

of the input will not increase the overhead in terms of space complexity on the 

decision. 
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5.4 Implement Phase 

With Supervised CogWSN, the option of ‘level up’ or ‘level down’ a setting is 

chosen for the implementation. Referring to Section 4.4, the option of ‘tune a setting’ 

with a parameter requires more artificial output neurons to be added from the ANN 

network, thus increasing the space complexity. 

 

 

5.5 Evaluate Phase 

To increase the accuracy of the decision making, a look up table to filter any 

incorrect decisions made during the Plan Phase is implemented in this phase. If an 

incorrect decision is made, a record will be entered into the look up table. The size of 

the table depends on the memory capacity. 

 

Feedback to retrain the neurons at the nodes is possible but impractical due to 

limited computation capability of micro-controllers. Another route is to transport 

feedback to the PC, retrain at the PC, and update the nodes with new trained 

knowledge. It should be noted that this would generate additional load on the 

network due to increased communication traffic. 

 

 

5.6 Verification 

 A case study is performed to verify the performance of Supervised CogWSN. 

The objective of the case study is the same as specified in Section 4.6 i.e. to drive the 

CogWSN to achieve optimum performance in terms of connectivity and slot 

utilisation. The case study focuses on three metrics; transmission power, slot 

allocation to parent, and slot allocation to child node. The targets to achieve, 

monitored conditions, and derived actions for each domain are as shown as in Table 

4.2. 

 

The experimental setup as defined in Section 4.6 is configured. A multi-layer 

network with back-propagation learning using 3-input, 5-hidden [229], and 6-output 
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artificial neurons is implemented. The learning rate γ  and momentum α  are set to 

0.25 and 0.1 respectively. An extremely low learning rate of around 0.001 to 0.005 

combination and momentum term between 0.5 to 0.9 do not give satisfactory results 

for certain specific data set [230]. An average slow learning rate is preferred to avoid 

oscillation or divergence of the right solution. Momentum is used to prevent the 

network from converging to local minima. It is noted that a slow learning rate and 

low momentum results in a longer time to reach convergence, but since the network 

is trained on a PC, the training time does not impact the overall system performance. 

The network is trained according to the training inputs and desired outputs as stated 

in Table 5.1. During link establishment, the knowledge is transferred to a child when 

the child connects to the parent. 

 

Table 5.1. Training inputs and desired outputs. 

Training Inputs Desired Outputs 

RSSI < -85dBm Increase transmit power by 1 level up 

RSSI > -75dBm Decrease transmit power by 1 level down 

Slot utilisation to parent node, x > s1, 

where slot allocation to communicate 

with parent node, s1 = 2, 4, 8, 16, 32, or 

64 

Increase slot allocation by 2s1 

Slot utilisation to parent node, x < ½s1, 

where slot allocation to communicate 

with parent node, s1 = 2, 4, 8, 16, 32, or 

64 

Reduce slot allocation by s1/2 

Slot utilisation from children nodes, y > 

s2, where slot allocation to communicate 

with child node, s2 = 2, 4, 8, 16, 32, or 64 

Increase slot allocation by 2s2 

Slot utilisation from children nodes, y < 

½s2, where slot allocation to 

communicate with child node, s2 = 2, 4, 

8, 16, 32, or 64 

Reduce slot allocation by s2/2 

 



 114 

Experiments are established as defined in Table 4.4. 

 

In Experiment 1, a node is placed in close proximity to the base station and at 

the outset, the transmission power is set to the maximum, 0dBm; as a consequence 

the received power is above -75dBm. After 4 cycles, the received power is adjusted 

step by step and remains between -85dBm to -75dBm (Figure 5.6). No significant 

adjustment is carried out for slot allocations as shown in Figure 5.7 since 

connectivity is maintained and slot utilisation is almost constant. 
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Figure 5.6. RSSI as a function of the number of cycles for Supervised CogWSN in 
Experiment 1. 

 

 
Figure 5.7. Slot allocation and buffer condition as a function of the number of cycles 

for Supervised CogWSN in Experiment 1. 
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In Experiment 2, the transmission power is set to the minimum -25dBm and 

sensor data is sampled at 0.5Hz. At the outset, a node is placed in close proximity to 

a base station until the received power stabilises. Thereafter, the node is moved 

further away from the base station but still remains within its communication range. 

Whenever the node stops receiving an acknowledgement packet, it increases its 

transmission power towards the maximum. Once the node receives feedback on ‘too 

excessive transmission power’, the increments stop. After 2 cycles, the received 

power is reduced and successfully maintained between -85dBm to -75dBm (Figure 

5.8). No adjustment is being carried out for slot allocations as shown in Figure 5.9 

since connectivity is maintained and slot utilisation remains almost constant. 
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Figure 5.8. RSSI as a function of the number of cycles for Supervised CogWSN in 
Experiment 2. 

 

 
Figure 5.9. Slot allocation and buffer condition as a function of the number of cycles 

for Supervised CogWSN in Experiment 2. 
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In Experiment 3, a node is placed in close proximity to a base station, the slot 

allocation to communicate with the parent node is set to 64 and sensor data is 

sampled at 0.5Hz. The transmission power is set to -25dBm; so no adjustment to the 

transmission power is carried out since RSSI remains between -85dBm to -75dBm 

(Figure 5.10). Since a significant number of allocated slots remain unused, the 

number of slots is reduced. After 4 cycles, the slot allocation to communicate with 

the parent node reduces to 4, where s1 is 4, satisfying the slot utilisation criterion 

between ½s1 to s1 as shown in Figure 5.11. 
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Figure 5.10. RSSI as a function of the number of cycles for Supervised CogWSN in 
Experiment 3. 

 

 

Figure 5.11. Slot allocation and buffer condition as a function of the number of 
cycles for Supervised CogWSN in Experiment 3. 
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In Experiment 4, a node is placed in close proximity to a base station; the slot 

allocation to communicate with the parent node is set to 2 as is the slot allocation to 

communicate with the child node, with sensor data sampled at 5Hz. The transmission 

power is set to -25dBm; no adjustment is carried out for the transmission power since 

the RSSI remains between -85dBm to -75dBm (Figure 5.12). As a consequence of 

the number of packets needed to be transmitted to the parent node and too few 

allocated slots, the allocation of slots has to be increased. After 13 cycles, the slot 

allocation to communicate with the parent node is successfully increased to 32, 

where s1 is 32, satisfying the slot utilisation of between ½s1 to s1 (Figure 5.13). 
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Figure 5.12. RSSI as a function of the number of cycles for Supervised CogWSN in 
Experiment 4. 

 

 

Figure 5.13. Slot allocation and buffer condition as a function of the number of 
cycles for Supervised CogWSN in Experiment 4. 
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In Experiment 5, a node is placed in close proximity to a base station and the 

slot allocation to communicate with the parent and child nodes are set to 2 and 64 

respectively. Another child node is placed near to this node, the latter becoming the 

parent node as illustrated in Figure 4.23. Both nodes run at a sampling rate of 0.5Hz. 

No active adjustment is carried out for the transmission power as in Figure 5.14 since 

the focus of the task is to optimise slot allocation. As shown in Figure 5.15, after 23 

cycles, both slot allocations to communicate with the parent and child nodes are 

maintained between 2 to 8. 
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Figure 5.14. RSSI as a function of the number of cycles for Supervised CogWSN in 
Experiment 5. 

 

 

Figure 5.15. Slot allocation and buffer condition as a function of the number of 
cycles for Supervised CogWSN in Experiment 5. 
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In Experiment 6, a node is placed in close proximity to a base station and the 

slot allocation to communicate with both the parent and child nodes is set to 2. 

Another child node is placed near to this node, effectively becoming its parent node. 

Both nodes run at a sampling rate of 0.5Hz. Once again, no adjustment to the 

transmission power is necessary (Figure 5.16) since the focus of the task is to 

optimise slot allocations. As shown in Figure 5.17, both slot allocations to 

communicate with parent and child nodes have been increased from the 14th cycle 

onwards and fluctuates due to the data in the buffer being filled up quickly and 

inconsistently from the child node. 
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Figure 5.16. RSSI as a function of the number of cycles for Supervised CogWSN in 
Experiment 6. 

 

 

Figure 5.17. Slot allocation and buffer condition as a function of the number of 
cycles for Supervised CogWSN in Experiment 6. 
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Table 5.2 and Figure 5.18 show a speed of adjustment comparison between 

Rule-based CogWSN (RBA), Rule-based CogWSN with Greedy Scoring (RBL), and 

Supervised CogWSN (SL) derived from Experiments 1 to 6 (Exp1 to Exp6). 

Supervised CogWSN is able to achieve a performance close to that of a Rule-based 

CogWSN except for Experiment 5. Referring to Table 5.1, Supervised CogWSN is 

not trained with a combination of inputs; too few slots are allocated to the parent and 

too many slots are allocated to the child. Under this scenario, more cycles are 

required in order to find the correct output. It should be noted that if Supervised 

CogWSN is trained with a combination of inputs, the performance of Supervised 

CogWSN from Experiments 1 to 6 is further improved. 

 

Table 5.2. Number of cycles to achieve targets for Rule-based CogWSN, Rule-based 
CogWSN with Greedy Scoring and Supervised CogWSN. 

Experiments 
and Initial 
Setup 

No. of cycles to 
achieve the goal 
for Rule-based 

CogWSN 

No. of cycles to 
achieve the goal 
for Rule-based 
CogWSN with 

Greedy Scoring 

No. of cycles to 
achieve the goal for 

Supervised CogWSN 

Experiment 1 
 

6 6 5 

Experiment 2 
 

3 4 2 

Experiment 3 
 

4 4 4 

Experiment 4 
 

9 8 13 

Experiment 5 
 

8 13 23 

Experiment 6 
 

6 9 10 
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Figure 5.18. Speed of adjustment comparison between Rule-based CogWSN, Rule-
based CogWSN with Greedy Scoring, and Supervised CogWSN. 

 

Figure 5.19 shows a transmission power comparison between RBA, RBL, and 

SL; SL exhibits a similar performance to RBA. In general, all methods maintain the 

minimum power consumption needed for all communication after the goals are 

achieved. 

 

 

Figure 5.19. Power transmission comparison between Rule-based CogWSN, Rule-
based CogWSN with Greedy Scoring, and Supervised CogWSN. 
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Figure 5.20 shows a slot utilisation comparison between RBA, RBL, and SL. 

As discussed in Section 4.6, ideally, slot utilisation should lie between 0.6 to 0.8. If 

the slot utilisation falls below 0.6, a significant  number of slots allocated are not 

utilised; if the slot utilisation is above 0.8, there is a risk that the slots allocated are 

insufficient to transport all packets with a modest increase in the number of buffered 

the packets. For the purposes of the present comparison, a slot utilisation of between 

0.5 to 1 is deemed acceptable since at least half of the slots allocated are utilised. 

Overall, RBL offers better performance except for Experiment 4 since RBL allocates 

fewer slots and captures a significant number of packets in the buffer. SL exhibits 

similar performance to RBA for Exp 1 to Exp 4. For Exp 5, SL sometimes allocates 

fewer slots than required; therefore, on average, it provides the highest slot utilisation. 

For Exp 6, after the goals are achieved, RBL allocates more slots than required; 

therefore, it suffers from low slot utilisation. 

 

 

Figure 5.20. Slot utilisation comparison between Rule-based CogWSN, Rule-based 
CogWSN with Greedy Scoring, and Supervised CogWSN. 

 

 

5.7 Conclusions 

Rule-based approaches have some potential limitations since in some scenarios, 

the rules may be difficult to derive, and may not be able to capture the more delicate 

features of the decision process. One route to resolving these limitations is though 
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ANNs. ANNs operate based on the training of key inputs and desired output; the 

complete solution set of inputs and desired output is not compulsory. For the inputs 

that are not defined, the ANN is able to recommend an output (may not be the correct 

output) based on the existing trained inputs and desired outputs. 

 

Training inputs and the desired output as in Table 5.1 are embedded into a 

Supervised CogWSN implementation and a range of performance evaluation 

experiments as defined in Table 4.4 are conducted. From Table 5.2, for Experiments 

1 to 4, since the scenarios are exactly matched in terms of the trained inputs and 

desired output, the implementation adjusts accordingly using a smaller number of 

cycles to achieve the goals. For Experiment 4, the expected number of packets is not 

transmitted to the parent node. Therefore, more cycles are needed to transmit all 

packets to the parent node. For Experiments 5 and 6, the Supervised CogWSN is not 

trained with combination inputs. Therefore, some errors in the output are expected 

and a filter table to refine the decision is required (as mentioned in Section 5.5). In 

this case, it is noted that more cycles are required as compared to Rule-based 

CogWSN and Rule-based CogWSN with Greedy Scoring. 

 

In conclusion, utilising Supervised CogWSN as a core decision process 

element provides a performance close to that of a Rule-based CogWSN and Rule-

based CogWSN with Greedy Scoring. At the outset, it is necessary to train the multi-

layer ANN network with correct pairing of inputs and desired outputs. More 

extensive training will result in improved performance, but excessive training pushes 

the solution towards that obtained through the rule-based approach at the expense of 

memory and computational resources. With more computational and memory 

resources, a greater number of neurons can be added in the hidden layer to enhance 

performance. 
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Chapter 6: Reinforcement CogWSN 
 

Supervised Learning requires prior training before it can be applied to non-

training data. Training the network with all possible training inputs and desired 

outputs, however, still does not guarantee perfect solution. Therefore, additional fine 

tuning has to be integrated at the feedback phase. Unsupervised learning is also 

applicable to CogWSN. Fulfilment of correct goals can be defined as rewards, 

viewed as important feedback to existing knowledge. Reinforcement Learning is one 

of the approaches to perform unguided learning for CogWSNs [231]. 

 

The Chapter starts with an overview of reinforcement learning and the manner 

in which it can be deployed within the CogWSN’s decision process. The detail of 

each phase of the decision process is discussed in the following Sections. 

Benchmarking algorithms are introduced in Section 6.7 and compared with the four 

proposed CogWSN implementations. Several experiments are conducted to evaluate 

the performance of the approach. 

 

 

6.1 Reinforcement Learning 

Reinforcement Learning [231, 232] differs from standard supervised learning 

in that correct input and output pairs are never presented, nor sub-optimal actions 

explicitly corrected. As illustrated in Figure 6.1, a reinforcement learning cycle 

involves the interaction of an agent and its operating environment. There are three 

important representations in the reinforcement learning model for the agent: 

1. State: represents the factors from the operating environment being 

observed by an agent. The state affects the reward (or network 

performance) as well as action selection in the next iteration. 

2. Action: represents an agent’s action, which may change or affect the state 

(or operating environment) and reward (or network performance); so the 

agent learns to take optimal actions at most times. 

3. Reward: Reward represents the gains (losses) achieved (incurred) by an 

agent for taking an action on its operating environment in the previous 
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time instant. In other words, it is the consequence of the previous action on 

the operating environment, here in the form of network performance. 

 

The representations are modelled with states S, a set of actions per state A, and 

rewards R. Decision cycles are denoted by ,...}3,2,1{=∈Tt . By performing an action, 

an agent, Aa ∈ , can move from a state, Ss ∈ , to another state. Each state provides 

the agent with a reward, Rr ∈ . The goal of the agent is to maximise its total reward 

over time learning the optimal action for each state. 

 

Figure 6.1. Reinforcement Learning cycle. 

 

Q-Learning is a popular technique in Reinforcement Learning [233]. The 

algorithm calculates the Quality of a state-action combination, defined as in Equation 

6.1; 

 

ℜ→× ASQ :  (6.1) 

 

The core of the algorithm is the value iteration update, in which the Q-value for a 

state-action pair is updated as in Equation 6.2; 

 

)],(max)([),()1(),( 11111 ++∈+++ ++−= ttAatttttttt asQsrasQasQ γαα  (6.2) 

 

where α is the learning rate, 10 ≤≤ α , γ is the discount factor, 10 ≤≤ γ . 

ta  

Agent 

Environment 

tr  

1+tr  

1+ts  

ts  

State Action Reward 
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At decision time t, the agent observes states st from its operating environment. 

Based on st, the agent chooses an action at. Next, at decision time t+1, the state st 

changes to st+1 as a consequence of the action at, and the agent receives delayed 

reward )( 11 ++ tt sr . Subsequently, the agent updates Q-value ),(1 ttt asQ + (Equation 6.2). 

Since the agent is expected to take optimal actions with regard to any state in the 

remaining decision cycles at time t, t+1, t+2, …, the agent updates the Q-value using 

the maximum discounted future reward ),(max 1 asQ tAa +∈γ . As this procedure 

evolves through time, the agent receives a sequence of rewards and the Q-values 

converge to optimal actions. Q-learning searches for an optimal policy through 

maximizing the value function )( tsV π : 

 

)),((max)( tttAat asQsV ∈=π  (6.3) 

 

The policy (or action selection) for the agent is described as; 
 

)),((maxarg)( tttAat asQs ∈=π  (6.4) 

 

 

6.2 Observe Phase 

The Observe phase is implemented using event-based observation, introduced 

in Section 4.2. 

 

 

6.3 Plan Phase 

For this phase, triggering is recommended based on a plan derived based on all 

detected inputs. The inputs are mapped into the defined states. The state S can 

represent conditions of the sensor node and action A can represent a tuning function 

that can be harnessed. The action is selected based on the policy as in Equation 6.3 

and Equation 6.4. 
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6.4 Implement Phase 

For the Reinforcement CogWSN, the option of ‘level up’ or ‘level down’ a 

setting is chosen for the implementation since tuning with parameters requires more 

actions to be implemented which in turn causes an increase in the time to 

convergence. 

 

 

6.5 Evaluate Phase 

For the Evaluation Phase, the Quality of a state-action pair is updated as in 

Equation 6.5. 1),(),(1 +=+ ttttt asQasQ  is added as a criterion in the evaluation to 

reduce the time to achievement of the goal: 

 

�
�
�

��
�

�
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+
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100
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11
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γ
αα  

, if goal 

, if improvement 
 
, otherwise 

 

 

 

(6.5) 

 

where 100),(0 1 ≤≤ + ttt asQ . Without this equation, the learning process takes a 

relatively long time to achieve the goal and to formulate the necessary knowledge for 

the next search towards the goal. 

 

 

6.6 Verification 

A case study is performed to evaluate the performance of the Reinforcement 

CogWSN. The objective of the case study is the same as specified in Section 4.6, 

driving the CogWSN to achieve optimum performance in terms of connectivity and 

slot utilisation. The case study focuses on three metrics; power transmission, slot 

allocation to parent, and slot allocation to child node. The targets to achieve, 

monitored conditions, and derived actions for each domain are shown in Table 4.2. 
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The experimental setup is configured as described in Section 4.6. A 

reinforcement learning model with 27 states (Table 6.1) with 6 actions (Table 6.2) in 

each state is embedded into all sensor nodes. These states are formed from 6 states 

with 1 non-goal status, 12 states with 2 non-goal status, 8 states with 3 non-goal 

status and 1 goal. For the actions, there are 3 functions to adjust and in each function, 

the adjustment will be increased or decreased; therefore, in total there are 6 actions. 

It should be noted that State 0 is the goal. 

 

To determine the learning rate, discount factor, and reward value for a 

particular scenario, a simulation was conducted for a reinforcement learning model 

with 36 states and 6 actions for each state. The simulation was run for 100000 times, 

changing each parameter. For each time, the starting state and ending state were 

randomly selected. As shown in Figure 6.2, the learning rate should be set between 

0.1 to 0.5 in order to achieve the minimum number of searches to finding the goal. In 

Figure 6.3, the best discount factor should be set to 0.5 to reach the goal using the 

minimum number of searches. From Figure 6.4, the reward value can be selected 

from -1 to 10 to maintain a low number of searches to finding the goal. Therefore, 

for the case studies, the learning rate α and discount factor γ  were set to 0.5 and 0.7 

respectively as an average. The average learning rate is the preferred metric since a 

low learning rate will result in more time to determine the correct action while a high 

learning rate will result in oscillation or divergence of the right solution. The 

discount factor is able to determine the current state against the goal state; an average 

higher value is preferable as it indicates a closer representation of the state towards 

the goal. 
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Table 6.1. List of states of the reinforcement learning model used in CogWSN. 

States Description of the State 

0 -85dBm � RSSI � -75dBm; ½s1 � x � s1; ½s2 � y � s2 

1 RSSI < -85dBm; ½s1 � x � s1; ½s2 � y � s2 

2 RSSI > -75dBm; ½s1 � x � s1; ½s2 � y � s2 

3 x > s1; -85dBm � RSSI � -75dBm; ½s2 � y � s2 

4 x > s1; RSSI < -85dBm; ½s2 � y � s2 

5 x > s1; RSSI > -75dBm; ½s2 � y � s2 

6 x < ½s1; -85dBm � RSSI � -75dBm; ½s2 � y � s2 

7 x < ½s1; RSSI < -85dBm; ½s2 � y � s2 

8 x < ½s1; RSSI > -75dBm; ½s2 � y � s2 

9 y > s2; -85dBm � RSSI � -75dBm; ½s1 � x � s1 

10 y > s2; RSSI < -85dBm; ½s1 � x � s1 

11 y > s2; RSSI > -75dBm; ½s1 � x � s1 

12 y > s2; x > s1; -85dBm � RSSI � -75dBm 

13 y > s2; x > s1; RSSI < -85dBm 

14 y > s2; x > s1; RSSI > -75dBm 

15 y > s2; x < ½s1; -85dBm � RSSI � -75dBm 

16 y > s2; x < ½s1; RSSI < -85dBm 

17 y > s2; x < ½s1; RSSI > -75dBm 

18 y < ½s2; -85dBm � RSSI � -75dBm; ½s1 � x � s1; 

19 y < ½s2; RSSI < -85dBm; ½s1 � x � s1 

20 y < ½s2; RSSI > -75dBm; ½s1 � x � s1 

21 y < ½s2; x > s1; -85dBm � RSSI � -75dBm 

22 y < ½s2; x > s1; RSSI < -85dBm 

23 y < ½s2; x > s1; RSSI > -75dBm 

24 y < ½s2; x < ½s1; -85dBm � RSSI � -75dBm 

25 y < ½s2; x < ½s1; RSSI < -85dBm 

26 y < ½s2; x < ½s1; RSSI > -75dBm 
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Table 6.2. List of actions of reinforcement learning model used in CogWSN. 

Actions Description of the Action 

1 Increase transmit power by 1 level up 

2 Decrease transmit power by 1 level down 

3 Increase slot allocation by 2s1 

4 Reduce slot allocation by s1/2 

5 Increase slot allocation by 2s2 

6 Reduce slot allocation by s2/2 

 

 

 

Figure 6.2. Average number of searches needed to achieve the goal with different 
learning rates, discount factor equals 0.5, and reward equals -1 for 36 states. 
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Figure 6.3. Average number of searches needed to achieve the goal with different 
discount factors, learning rate equals 0.5, and reward equals -1 for 36 states. 

 

 

Figure 6.4. Average number of searches needed to achieve the goal with different 
reward values, learning rate equals 0.5, and discount factor equals 0.5 for 36 states. 

 

Experiments are setup as summarised in Table 4.4.  

 

In Experiment 1, a node is placed in close proximity to the base station. At the 

outset, the transmission power is set to the maximum, 0dBm resulting in a received 
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power >-75dBm. After 14 cycles, the received power is adjusted and successfully 

maintained between -85dBm to -75dBm (Figure 6.5). Before that goal is achieved, 

there are several attempts to adjust the slot allocation (Figure 6.6), a consequence of 

the time taken to reach the goal. After the goal is achieved, no additional adjustment 

is carried out for slot allocation since connectivity is maintained and slot utilisation 

remains almost constant. 
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Figure 6.5. RSSI as a function of the number of cycles for Reinforcement CogWSN 
in Experiment 1. 

 

 
Figure 6.6. Slot allocation and buffer condition as a function of the number of cycles 

for Reinforcement CogWSN in Experiment 1. 
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In Experiment 2, the transmission power is set to the minimum -25dBm and 

sensor data is sampled at 0.5Hz. At the outset, a node is placed in close proximity to 

a base station until the received power stabilises. Thereafter, the node is moved away 

from the base station but still within communication range. When the node no longer 

receives an acknowledgement packet, it increases its power towards the maximum 

until the node receives feedback that it is using too excessive a transmission power. 

After 5 cycles, the received power is successfully managed to be between -85dBm to 

-75dBm (Figure 6.7). Before the goal is achieved, several attempts are made to adjust 

the slot allocation (Figure 6.8) as a consequence of the time taken to reach the goal. 

On achieving the goal, no additional adjustment is carried out for slot allocation 

since connectivity is maintained and slot utilisation remains constant. 
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Figure 6.7. RSSI as a function of the number of cycles for Reinforcement CogWSN 
in Experiment 2. 

 

 

Figure 6.8. Slot allocation and buffer condition as a function of the number of cycles 
for Reinforcement CogWSN in Experiment 2. 
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In Experiment 3, a node is placed in close proximity to a base station, the slot 

allocation to communicate with parent node is set to 64 and sensor data is sampled at 

0.5Hz. The transmission power is set to -25dBm. No adjustment is carried out to the 

transmission power since the RSSI remains between -85dBm to -75dBm (Figure 6.9). 

The allocation of 64 slots to communicate with the parent is excessive; allocated 

slots are unused and thus the number of slots can be reduced. After 6 cycles, the slot 

allocation to communicate with parent node is reduced to s1 equals 4, satisfying the 

slot utilisation of between ½s1 to s1 (Figure 6.10). 
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Figure 6.9. RSSI as a function of the number of cycles for Reinforcement CogWSN 
in Experiment 3. 

 

 

Figure 6.10. Slot allocation and buffer condition as a function of the number of 
cycles for Reinforcement CogWSN in Experiment 3. 
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In Experiment 4, a node is placed in close proximity to a base station, the slot 

allocation to communicate with the parent node is set to 2, as is the slot allocation to 

communicate with the child node, and sensor data is sampled at 5Hz. The 

transmission power is set to -25dBm. No adjustment is required for the transmission 

power since the RSSI remains between -85dBm to -75dBm (Figure 6.11). Too few 

slots are allocated for the transmission to the parent node and consequently the 

allocation has to be increased. After 23 cycles, the slot allocation to communicate 

with parent node is increased to s1 equals 32, satisfying the slot utilisation of between 

½s1 to s1 (Figure 6.12). 
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Figure 6.11. RSSI as a function of the number of cycles for Reinforcement CogWSN 
in Experiment 4. 

 

 

Figure 6.12. Slot allocation and buffer condition as a function of the number of 
cycles for Reinforcement CogWSN in Experiment 4. 
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In Experiment 5, a node is placed in close proximity to a base station. The slot 

allocation to communicate with parent and child nodes is set to 2 and 64 respectively. 

Another child node is placed near to this node, effectively becoming a parent node. 

Both nodes are at a sampling rate of 0.5Hz. No active adjustment is required for the 

transmission power (Figure 6.13) as the task concerns the allocation of slots. As 

shown in Figure 6.14, after 23 cycles, both slot allocations to communicate with 

parent and child nodes remain between 4 to 8. 
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Figure 6.13. RSSI as a function of the number of cycles for Reinforcement CogWSN 
in Experiment 5. 

 

 

Figure 6.14. Slot allocation and buffer condition as a function of the number of 
cycles for Reinforcement CogWSN in Experiment 5. 
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In Experiment 6, a node is placed in close proximity to a base station. The slot 

allocation to communicate with both parent and child nodes is set to 2. Another child 

node is placed near to this node, effectively becoming a parent node. Both nodes are 

at a sampling rate of 0.5Hz. As shown in Figure 6.15, the adjustment occurs from the 

17th to the 33th cycle, after which the RSSI remains between -85dBm to -75dBm. As 

shown in Figure 6.16, the goal in terms of slot allocation is achieved in 25 cycles. 

From 25 cycles onwards, the buffer occupancy fluctuates since it is populated 

quickly and randomly by data from the child node. 
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Figure 6.15. RSSI as a function of the number of cycles for Reinforcement CogWSN 
in Experiment 6. 

 

 

Figure 6.16. Slot allocation and buffer condition as a function of the number of 
cycles for Reinforcement CogWSN in Experiment 6. 
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6.7 Comparison and Discussion 

In order to benchmark the proposed solutions, a combination of research from 

[12] (through experiment) which concentrates on transmission power control and 

[234] (through simulation) which focuses on slot allocations is used. The 

benchmarking algorithms from the combined work (to solve the transmission power 

control first and then slot allocation) are shown as in Figure 6.17. α , LT , and HT  are 

set to 0.8, -85dBm, and -75dBm respectively. The experimental setup and goals 

remain the same. 

 

Require: R  {RSSI from the current sample} 

Require: R  {Average RSSI} 

Require: BUF  {Buffer size} 

Require: OBS  {Occupied buffer space} 

Require: PPS  {Packet per slot} 

Require: TSA {Total slot allocation} 

RRR )1( αα −+←  

if LTR <  then 

  Increase transmit power by 2 levels 

else if HTR >  then 

  Decrease transmit power by 1 level 

else 

  No action is required 

end if 

PPSOBSBUFTSA /)( −←  

Perform TSA for slot allocation to communicate with 

parent node 

Perform 1/3 × TSA for slot allocation to communicate 

with child node 

Figure 6.17. The algorithms from a combination of reported research for 
benchmarking. 
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In Experiment 1, a node is placed in close proximity to the base station, the 

transmission power is set to the maximum, 0dBm and sensor data is sampled at 

0.5Hz. For the benchmarking algorithms, as shown in Figure 6.18, those parameters 

result in a received power -75dBm from the outset. After 4 cycles, the received 

power is adjusted and successfully maintained between -85dBm to -75dBm. As 

shown in Figure 6.19, the slot allocation to communicate with the parent node is 

adjusted to lie between 40 to 65. However a significant number of slots allocated (at 

least 90%) is not being utilised. The algorithms allocate too many of slots if the node 

is equipped with large buffer size (BUF), low occupied buffer space (OBS), and low 

packet per slot (PPS). 
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Figure 6.18. RSSI as a function of the number of cycles for benchmarking algorithms 
in Experiment 1. 

 

 

Figure 6.19. Slot allocation and buffer condition as a function of the number of 
cycles for benchmarking algorithms in Experiment 1. 
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In Experiment 2, the transmission power is set to the minimum -25dBm and 

sensor data is sampled at 0.5Hz. At the outset, a node is placed in close proximity to 

a base station until the received power stabilises. Thereafter, the node is moved 

gradually away from the base station but still remains within communication range. 

When the node no longer is in receipt of an acknowledgement, the transmission 

power is incremented towards the maximum. On receipt of feedback indicating 

excess use of transmission power, after 3 cycles, the received power is successfully 

managed (Figure 6.20). As shown in Figure 6.21, the slot allocation to communicate 

with the parent node is adjusted to lie between 40 to 65; again, a significant number 

of slots allocated (at least 90%) are not being utilised. 
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Figure 6.20. RSSI as a function of the number of cycles for benchmarking algorithms 
in Experiment 2. 

 

 

Figure 6.21. Slot allocation and buffer condition as a function of the number of 
cycles for benchmarking algorithms in Experiment 2. 
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In Experiment 3, a node is placed in close proximity to a base station, the slot 

allocation to communicate with parent node and child node is set to 64 and 2 

respectively. Sensor data is sampled at 0.5Hz and the transmission power is set to      

-25dBm. No adjustment is required for the transmission power since the RSSI is 

maintained between -85dBm to -75dBm (Figure 6.22). As shown in Figure 6.23, the 

low utilization of the slot allocation remains an issue; the slot allocation to 

communicate with the parent node is adjusted to lie between 40 to 65. 
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Figure 6.22. RSSI as a function of the number of cycles for benchmarking algorithms 
in Experiment 3. 

 

 

Figure 6.23. Slot allocation and buffer condition as a function of the number of 
cycles for benchmarking algorithms in Experiment 3. 
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In Experiment 4, a node is placed in close proximity to a base station, the slot 

allocation to communicate with the parent node is set to 2 as is the slot allocation to 

communicate with the child node, and sensor data is sampled at 5Hz. The 

transmission power is set to -25dBm. For the benchmarking algorithms, no 

adjustment is required for the transmission power since the RSSI is maintained 

between -85dBm to -75dBm (Figure 6.24). The slot allocation to communicate with 

the parent node is successfully increased and maintained between 15 to 30 (Figure 

6.25); however the slot allocation to communicate with the child node has been over 

allocated. 
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Figure 6.24. RSSI as a function of the number of cycles for benchmarking algorithms 
in Experiment 4. 

 

 

Figure 6.25. Slot allocation and buffer condition as a function of the number of 
cycles for benchmarking algorithms in Experiment 4. 
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In Experiment 5, a node is placed in close proximity to a base station. The slot 

allocation to communicate with the parent and child nodes is set to 2 and 64 

respectively. Another child node is placed near to this node, becoming its parent 

node. Both nodes operate at a sampling rate of 0.5Hz. No major adjustment is 

required for the transmission power (Figure 6.26). As shown in Figure 6.27, although 

the buffer is cleared most of the time, the slot allocation to communicate with the 

parent node is nevertheless over-estimated. 
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Figure 6.26. RSSI as a function of the number of cycles for benchmarking algorithms 
in Experiment 5. 

 

 

Figure 6.27. Slot allocation and buffer condition as a function of the number of 
cycles for benchmarking algorithms in Experiment 5. 
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In Experiment 6, a node is placed in close proximity to a base station, and the 

slot allocation to communicate with both the parent and child nodes is set to 2. 

Another child node is placed near to this node, becoming its parent node. Both nodes 

operate at a sampling rate at 0.5Hz. No major adjustment is required for the 

transmission power (Figure 6.28). As shown in Figure 6.29, the slot allocation to 

communicate with parent node is over estimated. 
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Figure 6.28. RSSI as a function of the number of cycles for benchmarking algorithms 
in Experiment 6. 

 

 

Figure 6.29. Slot allocation and buffer condition as a function of the number of 
cycles for benchmarking algorithms in Experiment 6. 
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Table 6.3 and Figure 6.30 show a comparison of the rate of adjustment for 

Rule-based CogWSN (RBA); Rule-based CogWSN with Greedy Scoring (RBL); 

Supervised CogWSN (SL); Reinforcement CogWSN (RL); and the benchmarking 

algorithms (OT) for Experiments 1 to 6 (Exp1 to Exp 6). Supervised CogWSN is 

able to achieve a performance close to Rule-based CogWSN except for Experiment 5. 

Supervised CogWSN is not trained with multiple inputs: too few slots to the parent 

and too many slots to the child are allocated. Under this scenario, more cycles are 

required in order to provide the correct output. Benchmarking algorithms outperform 

all others. As expected, Reinforcement CogWSN exhibits the worst performance; the 

approach requires more cycles in order to achieve the targeted goals since no a priori 

knowledge is embedded and a number of trials (cycles) are needed to acquire the 

requisite learning. 
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Table 6.3. Number of cycles to achieve the targets for Rule-based CogWSN, Rule-
based CogWSN with Greedy Scoring, Supervised CogWSN, Reinforcement 

CogWSN, and benchmarking algorithms. 

Experiments 
and initial 
setup 

No. of 
cycles to 

achieve the 
goal for 

Rule-based 
CogWSN 

No. of 
cycles to 

achieve the 
goal for 

Rule-based 
CogWSN 

with 
Greedy 
Scoring 

No. of 
cycles to 

achieve the 
goal for 

Supervised 
CogWSN 

No. of cycles to 
achieve the goal 

for 
Reinforcement 

CogWSN 

No. of 
cycles to 

achieve the 
goal for 
bench-

marking 
algorithms 

Experiment 
1 

 

6 6 5 13 4 

Experiment 
2 
 

3 4 2 8 3 

Experiment 
3 
 

4 4 4 6 1 

Experiment 
4 
 

9 8 13 23 9 

Experiment 
5 
 

8 13 23 23 5 

Experiment 
6 
 

6 9 10 39 4 
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Figure 6.30. A comparison of the speed of adjustment between Rule-based 
CogWSN, Rule-based CogWSN with Greedy Scoring, Supervised CogWSN, 

Reinforcement CogWSN, and benchmarking algorithms. 

 

Figure 6.31 shows a comparison of the transmission power optimisation for 

RBA, RBL, SL, RL, and OT. In Exp 2, OT is able to tune its power transmission 

even lower; however, in Exp 5 and Exp 6, its power transmission adjustment is 

slightly over-estimated. Overall, all methods exhibit nominally the same 

performance. 
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Figure 6.31. Transmission power comparison between Rule-based CogWSN, Rule-
based CogWSN with Greedy Scoring, Supervised CogWSN, Reinforcement 

CogWSN, and benchmarking algorithms. 

 

Figure 6.32 shows a comparison of the slot utilisation optimisation for RBA, 

RBL, SL, RL, and OT. Again, as discussed in Section 4.6, ideally slot utilisation 

should lie between 0.6 to 0.8. If the slot utilisation is below 0.6, a significant number 

of slots allocated are not utilised; if the slot utilisation is above 0.8, there is a risk that 

the slot allocation is insufficient to transport all packets with concomitant slight 

increases in the number of packets in the buffer. For the purposes of the present 

comparison, a slot utilisation between 0.5 to 1 is deemed acceptable since at least 

half of the slots allocated is utilised. Overall, RBL yields the best performance except 

for Experiment 4 owing to the fact that although it allocates an optimum number of 

slots, a lot of packets are stored in the buffer. SL and RBA exhibit similar 

performance. In most scenarios, OT presents the worst performance due to poor slot 

utilisation, especially for large buffer size; the exception is in Exp4 due to relatively 

higher occupied buffer space (OBS) and packet per slot (PPS). 
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Figure 6.32. A comparison of the slot utilisation between Rule-based CogWSN, 
Rule-based CogWSN with Greedy Scoring, Supervised CogWSN, Reinforcement 

CogWSN, and benchmarking algorithms. 

 

An additional three experiments were conducted to evaluate the performance of 

the three approaches under repeated scenarios. Generally, CogWSN with learning 

capabilities need to acquire the knowledge and experience from repeated scenarios in 

order to enhance the existing knowledge. The experiment setup, initial parameters, 

and targets are as stated in Table 6.4. 
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Table 6.4. Experiment setup, initial parameters, and targets for Experiments 7 to 9. 

Experiments and Initial Setup Initial Parameters Target 1 Target 2 
Experiment 7 
Setup: The node is placed close to 
the base station and becomes 
stable; the node is then moved far 
from the base station but still with 
the communication range. Target 
1 is performed. After Target 1 is 
achieved, the node is moved back 
near to the base station. Target 2 
is performed. This cycle is 
repeated three times. 

Power 
transmission, -
10dBm; slot 
allocation for 

parent node, 16; 
slot allocation for 

child, 16; sampling 
rate, 1Hz 

To test how 
fast the 
received 

power will 
achieve 

between -
85dBm to -

75dBm 

To test how 
fast the 
received 

power will 
achieve 

between -
85dBm to -

75dBm 

Experiment 8 
Setup: When the node is placed 
close to the base station and 
became stable, the node is moved 
very far away from the base 
station until it is out of the 
communication range. After 5 
minutes (data will accumulate in 
the flash), the node is moved back 
near to the base station. Target 1 
is performed. After the buffer is 
empty (almost empty), target 2 is 
performed. This cycle is repeated 
until the third time. 

Power 
transmission, -
10dBm; slot 
allocation for 

parent node, 16; 
slot allocation for 

child, 16; sampling 
rate, 1Hz 

To check 
how fast the 

slot 
allocation 

will tune to 
the 

maximum 
and 

successfully 
uploaded all 

the data 

To test how 
fast the slot 
allocation 

will back to 
the normal 

Experiment 9 
Setup: Parent node is placed close 
to the base station. Child node is 
placed near to the parent node. 
Child node is turned on. Target 1 
is performed. Afterthat, child 
node is turned off. Target 2 is 
performed. This cycle is repeated 
until the third time. 

Power 
transmission, -
10dBm; slot 
allocation for 

parent node, 16; 
slot allocation for 

child, 16; sampling 
rate, 1Hz; its’ child 
sampling rate, 5Hz 

To test how 
fast the slot 
allocation 
for parent 
and child 

will tune to 
the 

optimum 

To test how 
fast the slot 
allocation 
for parent 
and child 
will tune 

back to the 
normal 

 

In Experiment 7, at the outset the node is placed in close proximity to a base 

station. After the goal is achieved, the node is gradually moved away from the base 

station but still remains within communication range. Target 1 is performed to test 

how fast the received power reaches between -85dBm to -75dBm. After Target 1 is 

achieved, the node is then moved back nearer to the base station. Target 2 tests how 

fast the received power is maintained between -85dBm to -75dBm. The cycles are 

repeated two more times. 
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For Rule-based CogWSN, it takes 2 cycles to achieve Target 1 as in Figure 

6.33. The node is moved away from the base station at cycles 9, 23, and 37. After 

Target 1 is achieved, another 2 cycles are also needed to achieve Target 2. The node 

is moved nearer to the base station at cycles 17, 32, and 45. Since the slot allocation 

to communicate with the parent and child nodes are both set to 16, several cycles are 

needed to meet the goal from the outset (Figure 6.34). 
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Figure 6.33. RSSI as a function of the number of cycles for Rule-based CogWSN in 
Experiment 7. 

 

 

Figure 6.34. Slot allocation and buffer condition as a function of the number of 
cycles for Rule-based CogWSN in Experiment 7. 
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For Rule-based CogWSN with Greedy Scoring, the node is moved away from 

the base station at cycles 14, 101, and 115. A significant adjustment period (64 

cycles are needed to achieve the goal) is required to meet Target 1 as shown in 

Figure 6.35. Any subsequent adjustments to meet Target 1 are much improved, 

executed in only 2 cycles. The node is moved nearer the base station at cycles 86, 

110, and 123; 1 to 2 cycles are required to maintain the RSSI between -85dBm to -

75dBm. Since the slot allocation to communicate with the parent and child nodes are 

both set to 16, 7 cycles are needed to meet the goal from the outset (Figure 6.36). 
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Figure 6.35. RSSI as a function of the number of cycles for Rule-based CogWSN 
with Greedy Scoring in Experiment 7. 

 

 

Figure 6.36. Slot allocation and buffer condition as a function of the number of 
cycles for Rule-based CogWSN with Greedy Scoring in Experiment 7. 
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The Supervised CogWSN follows the same performance as for the Rule-based 

CogWSN (Figure 6.37). Since the slot allocation to communicate with the parent and 

child nodes are both set to 16, several cycles are needed to meet the goal from the 

outset (Figure 6.38). 
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Figure 6.37. RSSI as a function of the number of cycles for Supervised CogWSN in 
Experiment 7. 

 

 

Figure 6.38. Slot allocation and buffer condition as a function of the number of 
cycles for Supervised CogWSN in Experiment 7. 
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The Reinforcement CogWSN, as shown in Figure 6.39, requires more cycles to 

achieve Target 1 and Target 2 as compared to both the Rule-based CogWSN and 

Supervised CogWSN. The slot allocation adjustment is executed during the 2nd cycle 

owing to the training (Figure 6.40). 
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Figure 6.39. RSSI as a function of the number of cycles for Reinforcement CogWSN 
in Experiment 7. 

 

 

Figure 6.40. Slot allocation and buffer condition as a function of the number of 
cycles for Reinforcement CogWSN in Experiment 7. 
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For benchmarking algorithms, which lack any learning capability, the 

adjustments needed are shown in Figure 6.41 and Figure 6.42. 

 

 

Figure 6.41. RSSI as a function of the number of cycles for Benchmarking 
Algorithms in Experiment 7. 

 

 

Figure 6.42. Slot allocation and buffer condition as a function of the number of 
cycles for Benchmarking Algorithms in Experiment 7. 
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In Experiment 8, at the outset the node is placed in close proximity to the base 

station. After the goal is achieved, the node is moved away from the base station 

until it falls out of communication range. After 5 minutes (the accumulated data are 

stored in the flash memory), the node is moved nearer to the base station. Target 1 is 

initiated. After the buffer is empty (or almost empty where number of packet in the 

buffer is less than the slot allocation to communicate with the parent node), Target 2 

is initiated. This process is repeated three times. 

 

The Rule-based CogWSN is expected to experience connectivity issue when 

the node approaches and leaves the coverage of the base station as shown in Figure 

6.43. Since the node is continually seeking to establish a connection with the base 

station, the normal mode is to adjust its power transmission to 0dBm. When the node 

enters the communications range of the base station, it takes a maximum of 4 cycles 

to adjust its power transmission to -25dBm so that packets can be received 

successfully. The time to achieve Target 1 and Target 2 is almost constant at between 

4 to 8 cycles (Figure 6.44). 
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Figure 6.43. RSSI as a function of the number of cycles for Rule-based CogWSN in 
Experiment 8. 

 

 

Figure 6.44. Slot allocation and buffer condition as a function of the number of 
cycles for Rule-based CogWSN in Experiment 8. 
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The Rule-based CogWSN with Greedy Scoring is also expected to experience 

connectivity issues when the node approaches and leaves base station coverage 

(Figure 6.45). The adjustment to achieve Target 1 is difficult to execute as shown in 

Figure 6.46, since scoring the correct rule complicates the process. Therefore, 

adjustment is initiated when the emptying of the buffer starts until empty. It is on the 

3rd cycle that the correct order of the rules scoring is initiated. At the 4th cycle, 108th 

cycle, the correct adjustment is implemented and the approach exhibits a 

performance close to that of the Rule-based CogWSN. It is noted that the comparison 

result is only for 3 cycles. Rule-based CogWSN with Greedy Scoring is able to 

achieve acceptable performance like the Rule-based CogWSN but requires more 

cycles to achieve the goal. 
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Figure 6.45. RSSI as a function of the number of cycles for Rule-based CogWSN 
with Greedy Scoring in Experiment 8. 

 

 

Figure 6.46. Slot allocation and buffer condition as a function of the number of 
cycles for Rule-based CogWSN with Greedy Scoring in Experiment 8. 
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The Supervised CogWSN, as shown in Figure 6.47 and Figure 6.48, solves the 

problem using the same principles as in Rule-based CogWSN. For the 2nd and 3rd 

cycles, it chooses to adjust the slot allocation to clear the buffer, followed by a 

reduction in the transmission power. In this case, the number of cycles to achieve 

Target 1 is reduced by at least 50%. 
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Figure 6.47. RSSI as a function of the number of cycles for Supervised CogWSN in 
Experiment 8. 

 

 

Figure 6.48. Slot allocation and buffer condition as a function of the number of 
cycles for Supervised CogWSN in Experiment 8. 
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The Reinforcement CogWSN exhibits a consistent performance for Target 1 

and Target 2 as shown in Figure 4.49 and Figure 4.50. Several cycles to adjust are 

required due to no training or access to any a priori knowledge. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 185 

 

Figure 6.49. RSSI as a function of the number of cycles for Reinforcement CogWSN 
in Experiment 8. 

 

 

Figure 6.50. Slot allocation and buffer condition as a function of the number of 
cycles for Reinforcement CogWSN in Experiment 8. 
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For benchmarking algorithms, no adjustment of the power transmission is 

required since the RSSI is maintained between -85dBm to -75dBm as shown in 

Figure 6.51. For the slot allocation, benchmarking algorithms struggle to optimize 

performance as shown in Figure 6.52. When occupied buffer space (OBS) and packet 

per slot (PPS) are relatively high, the total slot allocation (TSA) is low; while 

occupied buffer space (OBS) is high and packet per slot (PPS) is relatively low, total 

slot allocation (TSA) is high. This causes the slot allocation to fluctuate when the 

buffer is downloading. 
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Figure 6.51. RSSI as a function of the number of cycles for Benchmarking 
Algorithms in Experiment 8. 

 

 

Figure 6.52. Slot allocation and buffer condition as a function of the number of 
cycles for Benchmarking Algorithms in Experiment 8. 
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In Experiment 9, a node is configured and placed in close proximity to the base 

station. The node is turned on until the goal is achieved. Then, a child node is 

configured and placed near to the deployed node (becoming its parent node). The 

child node is turned on and Target 1 is initiated. After a period (until the node 

achieves its goal or if not, around 20 cycles), the child node is turned off and Target 

2 is initiated. This cycle is repeated three times. 

 

For Rule-based CogWSN, the adjustment of transmission power is only 

performed when the received power falls outside the targeted range of -85dBm to -

75dBm (Figure 6.53). When the child node is turned on, 6 to 7 cycles are required to 

adjust the slot allocation to communicate with the parent and child nodes to the 

maximum requirement; when the child node is switched off, 2 to 3 cycles are 

required to reduce the slot allocation to the minimum requirement (Figure 6.54). 
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Figure 6.53. RSSI as a function of the number of cycles for Rule-based CogWSN in 
Experiment 9. 

 

 

Figure 6.54. Slot allocation and buffer condition as a function of the number of 
cycles for Rule-based CogWSN in Experiment 9. 
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For Rule-based CogWSN with Greedy Scoring, the adjustment of the 

transmission power is only performed when the received power falls outside the 

targeted range of -85dBm to -75dBm (Figure 6.55). When the child node is turned on, 

2 to 7 cycles are required to adjust the slot allocation to communicate with the parent 

and child nodes to the maximum requirement; while when the child node is switched 

off, 2 to 3 cycles are required to reduce the slot allocation to the minimum 

requirement (Figure 6.56). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 191 

 

Figure 6.55. RSSI as a function of the number of cycles for Rule-based CogWSN 
with Greedy Scoring in Experiment 9. 

 

 

Figure 6.56. Slot allocation and buffer condition as a function of the number of 
cycles for Rule-based CogWSN with Greedy Scoring in Experiment 9. 
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For Supervised CogWSN, no adjustment is done for the power transmission 

when the child node is turned on and off as shown in Figure 6.57. When the child 

node is turned on, 2 to 5 cycles are required to adjust the slot allocation to 

communicate with parent and child nodes to the maximum requirement, while when 

switched off, 1 to 2 cycles are required to reduce the slot allocation to the minimum 

requirement (Figure 6.58). 
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Figure 6.57. RSSI as a function of the number of cycles for Supervised CogWSN in 
Experiment 9. 

 

 

Figure 6.58. Slot allocation and buffer condition as a function of the number of 
cycles for Supervised CogWSN in Experiment 9. 
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For Reinforcement CogWSN, the adjustment of the transmission power only 

occurs when the received power falls outside the targeted range of -85dBm to -

75dBm (Figure 6.59). When the child node is turned on, 2 to 20 cycles are required 

to adjust the slot allocation to communicate with parent and child nodes to the 

maximum requirement; while when the child node is switched off, 2 to 6 cycles are 

required to reduce the slot allocation to the minimum requirement (Figure 6.60). 
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Figure 6.59. RSSI as a function of the number of cycles for Reinforcement CogWSN 
in Experiment 9. 

 

 

Figure 6.60. Slot allocation and buffer condition as a function of the number of 
cycles for Reinforcement CogWSN in Experiment 9. 
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For the Benchmarking Algorithms, no adjustment is required when the child 

node is turned on and off (Figure 6.61). When the child node is turned on, no 

appreciable adjustment is evident; however adjustment is performed continuously 

until the child node is switched off (Figure 6.62). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 197 

 

Figure 6.61. RSSI as a function of the number of cycles for Benchmarking 
Algorithms in Experiment 9. 

 

 

Figure 6.62. Slot allocation and buffer condition as a function of the number of 
cycles for Benchmarking Algorithms in Experiment 9. 
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A summary of the number of cycles needed to achieve the goal for each 

approach is summarised as in Table 6.5 for the three repeated scenarios. 

 

Table 6.5. Number of cycles to achieve the goal for repeated scenarios. 

 No. of cycles to achieve the goal (first time, second time, third time) 
RBA RBL SL RL OT 

Experiment 7 
– Target 1 

2, 2, 2 64, 2, 2 2, 2, 2 3, 6, 2 3, 4, 1 

Experiment 7 
– Target 2 

2, 2, 2 1, 2, 2 2, 2, 2 2, 3, 2 2, 2, 2 

Experiment 8 
– Target 1 

8, 7, 4 18, 10, 18 8, 3, 3 8, 8, 8 10, 8, 10 

Experiment 8 
– Target 2 

3, 3, 3 1, 1, 1 3, 5, 6 3, 3, 3 1, 1, 1 

Experiment 9 
– Target 1 

6, 7, 6 2, 7, 6 3, 5, 2 2, 20, 7 14, 12, 18 

Experiment 9 
– Target 2 

3, 3, 2 3, 2, 2 2, 2, 1 6, 4, 2 1, 1, 1 

 

Scenarios emulated in Experiments 7 to 9 have elements of behaviour 

encountered in real deployments. Experiment 7 is a scenario encountered in for 

example, cattle monitoring applications [5, 218]. A cow equipped with a collar (a 

node) can move close to and far from a base station many times in a day. Experiment 

8 emulates for example, an agricultural field monitoring application [5] in which a 

node stores a certain number of packets and downloads to a base station several 

times over a period of a day or a week. In the latter application [5] most of the nodes 

are unable to reach a base station directly and consequently packets are transmitted to 

their parent nodes. Experiment 9 emulates unpredictable, dynamically shifting 

scenarios. Figure 6.63 shows the average cycles needed per each change to achieve 

the goal for the first to the third repeated run in Experiments 7 to 9. On average, 

Supervised CogWSN (SL) requires the fewest cycles per change to achieve the goal, 

closely followed by Rule-based CogWSN (RBA). Reinforcement CogWSN (RL) has 

similar performance to Benchmarking Algorithms (OT). Rule-based CogWSN with 

Greedy Scoring requires the most cycles per change. 
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Figure 6.63. Average cycles per each change needed for 1st to 3rd repeated runs in 
Experiments 7 to 9. 

 

Figure 6.64 shows the number of cycles needed for the 3rd repeat run in 

Experiment 7 to 9. CogWSN with learning capability (RBL, SL, and RL) require 

some time to learn and enhance its knowledge of the target goals. At the 3rd repeat, 

CogWSN with learning capability is able to reduce the number of cycles per change 

in a more efficient manner compared to the 1st or the 2nd cycle. 

 

 

Figure 6.64. Number of cycles per change needed for the 3rd repeat run in 
Experiment 7 to 9. 
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Figure 6.65 shows the average number of cycles per each change for the 3rd 

repeat run. Supervised CogWSN (SL) provides the best performance, followed by 

Rule-based CogWSN (RBA), Reinforcement CogWSN (RL), Rule-based CogWSN 

with Greedy Scoring (RBL), and Benchmarking Algorithms (OT). 

 

 

Figure 6.65. Average cycles per each change for the 3rd repeat run in Experiments 7 
to 9. 

 

 

6.8 Conclusions 

In some WSN deployments [4, 5, 218], there are rules that cannot be defined 

since the optimal solution is unknown. However, it is still possible to identify 

suitably bounded targets or goals. For this scenario, it is most appropriate to apply 

Reinforcement Learning in CogWSN since the deployment cannot utilise a priori 

knowledge in the decision process. 

 

In order to integrate Reinforcement Learning into CogWSN, 27 states and 6 

actions are defined, where the states are formed from 6 states with 1 non-goal status, 

12 states with 2 non-goal statuses, 8 states with 3 non-goal statuses, and 1 goal. The 

actions are formulated from 3 functions to adjust and in each function the adjustment 

can be increased or decreased. The Observe Phase is implemented using event-based 

principles. In the Plan Phase, all inputs are mapped into the defined states. The action 
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is selected based on the policy. In the Implement Phase, the selected setting is ‘tune 

up’ or ‘tune down’. In the Evaluation Phase, the quality of the state-action pair is 

updated accordingly based on goals. 

 

Reinforcement CogWSN is always expected to take a longer time to achieve its 

targeted goal at the outset, as a consequence of the lack of pre-installed a priori 

knowledge. Once the goal is achieved, the experience acquired is foundation 

knowledge to be used in repeating scenarios. Results show that Reinforcement 

CogWSN is able to achieve the goals without any pre-installed knowledge during the 

deployment. The disadvantage is, on average, at least twice as many cycles are 

needed to reach the goal compared to other methods; in the first cycle, a longer 

period is consumed to explore its states in order to determine the correct solution. As 

more and more scenarios are repeated, the knowledge acquired is core to reducing 

the number of cycles required to find the solution. Based on the Experiments 7 to 9, 

in Figure 6.63, it is clear that Reinforcement CogWSN is able to achieve better 

performance as compared to the Rule-based CogWSN with Greedy Scoring and is on 

par with Benchmarking Algorithms. Furthermore in Figure 6.65, it has the best 

performance after Supervised CogWSN and Rule-based CogWSN in a repeated 

scenario. 

 

Table 6.6 presents the program size and memory in bytes requirements for each 

solution. RBA, RBL, and OT are best from an implementation perspective since they 

consume relatively small levels of ROM and RAM resource. However in scenarios 

where optimal rules and solutions cannot or are too difficult to be pre-determined, SL 

and RL can be considered solutions at the expense of an additional 25% of ROM and 

50% of RAM resource as compared to RBA, respectively. SL occupies more ROM 

compared to RL due to the resource allocated to artificial neurons in Supervised 

CogWSN which is more than the resource used to represent the states in 

Reinforcement CogWSN. The maximum allocation for ROM is 131072 bytes and 

RAM is 4096 bytes. The proposed algorithms only occupy a maximum 20% of ROM 

and 23% of RAM overall. 
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Table 6.6. Program size and memory for Rule-based CogWSN, Rule-based CogWSN 
with Greedy Scoring, Supervised CogWSN, Reinforcement CogWSN, and 

benchmarking algorithms. 

 Program size and memory (Bytes) 
Without 

any 
enhanced 
algorithm 

RBA RBL SL RL OT 

ROM 20198 20896 21876 25134 23848 21244 
RAM 508 612 672 858 939 613 
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Chapter 7: Conclusions and Future Work 
 

 

7.1 Conclusions 

The demands of monitoring applications drive the design and development of 

WSNs, a system comprising a group of sensor nodes equipped with a short range 

communication capability which are often deployed over large scale at low cost. Due 

to the cost goals and market dynamics, low data rate transceivers operating in 

license-exempt ISM frequency bands are most often used. 

 

The limited radio capability and uncertainty in physical operating 

environments pose fundamental constraints in optimizing WSN connectivity. 

Currently, a WSN lacks the ability to fine tune its radio configuration to meet the 

challenges of a dynamic operating environment. As a result, degradation in radio link 

performance and unreliable network connectivity plague operation. 

 

Manual configurations and settings for WSN deployment are labour intensive 

and cumbersome. Cognition embedded in WSNs - CogWSNs - offers a route to 

enhancing WSN functionality, providing the ability to self-tune depending on 

changes in the operational environment without human intervention. Such evolution 

necessitates new concepts and designs to be developed in order to support the 

implementation. 

 

In this Thesis, the concept of CogWSN is defined. The CogWSN decision 

process is formed using Problem Solving cognitive processes drawn from Layered 

Reference Model of the Brain (LRMB) in combination with the Polya algorithm. The 

CogWSN decision process is formulated through 4 phases; Observe, Plan, 

Implement, and Evaluate. Since the base WSN node consists of a processor, 

transceiver, transducer, and power unit, an architecture that comprises three core 

virtual modules; Transceiver, Transducer, and Power Supply is adopted. CogWSN 

operates co-operatively between these three virtual modules. Each module contains 

two elements, defined as its State Information (SI), which stores information about 
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operating conditions, and its Tuneable Function (TF), which defines the actuating 

function. SI is used by the Observe Phase while TF is used by the Implement Phase. 

The Plan and Evaluate phases operate within the decision process on the selected 

action and feedback to the knowledge, respectively. 

 

CogWSN are applicable in scenarios where: 

1. all triggered conditions that are exact matches to the tuning actions are 

known, fine-grained, incremental corrections can be made to achieve goals 

2. all triggered conditions that are exact matches to the tuning actions are 

known, sufficient additional information is available to enable more coarse-

grained corrections to achieve goals 

3. partial matches of tuning actions are known 

4. the goals are known but the manner in which the goals are achieved is not 

known 

 

Therefore, four types of CogWSN based on different methodologies are 

implemented and evaluated: Rule-based CogWSN, Rule-based CogWSN with 

Greedy Scoring, Supervised CogWSN, and Reinforcement CogWSN. Rule-based 

CogWSN requires full a priori knowledge of the target goals to be known (for the 

above item 1); Rule-based CogWSN with Greedy Scoring requires all possible 

actions with parameters to be defined but not the decision (for the above item 2); 

Supervised CogWSN only requires partial trained knowledge (for the above item 3); 

and Reinforcement CogWSN does not need any knowledge to be installed at the 

outset (for the above item 4). 

 

Rule-based CogWSN is expected to present the ideal performance in any 

situation since the intelligence capturing the task is embedded in a complete set of 

rules on the sensor nodes before deployment. An extension to the cognition to 

enhance performance can be implemented by assigning a score to each rule, 

implemented through tuning a setting with a parameter, an example being the Rule-

based CogWSN with Greedy Scoring. Since Rule-based CogWSN with Greedy 

Scoring requires feedback in order to converge to the correct rule, (as mentioned in 
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Section 4.5), a time penalty results to achieve the goal. The Observe Phase requires a 

routine to be performed that identifies any potential issue in the monitored conditions, 

implemented using event-based principles. To determine whether to trigger the Plan 

Phase, a mapping between the observed conditions and the pre-defined goals is 

executed. A plan is derived based on the first detected symptom in order, where a 

high priority symptom such as radio link connectivity is arranged as the beginning of 

the order. For rule-based approaches, the solution is pre-determined according to the 

conditions based on an if: then statement. The same recommendation is 

appropriate for Rule-based CogWSN with Greedy Scoring. This solution is 

determined by selecting the highest score in the action list. If there is more than one 

solution with the same highest score, the action with the greatest tuning is selected, 

allowing the node to solve the problem more rapidly. In the Implement Phase, an 

action is performed according to the derived solution. The solution could be in two 

forms viz. ‘level-up’ or ‘level-down’ a setting or ‘tune a setting’ with a parameter. 

The advantage of the ‘level-up’ or ‘level down’ a setting is the action is adjusted step 

by step; however the approach suffers in that the adjustment is slow and requires 

several cognitive cycles to achieve the goal. The advantage of ‘tuning a setting’ with 

a parameter is the rapidity of adjustment but the selection of the correct parameter is 

difficult without prior knowledge which has to be embedded into the system at the 

Plan Phase. For the Rule-based CogWSN, the option of ‘level up’ or ‘level down’ a 

setting is chosen for the implementation and for the Rule-based CogWSN with 

Greedy Scoring, ‘tune a setting’ with a parameter is preferred since the setting can be 

tagged with the score information. The Evaluation Phase provides feedback on the 

action taken to check the accuracy and validity of the derived solution. The 

evaluation result is stored so that it can be used as ‘experience’ for future plan phases. 

The rule-based approach is crafted as an ideal solution and as such feedback is not 

needed and no learning is involved. However, feedback is required for rule-based 

learning where each rule is assigned a score. 

 

ANNs operate based on the training using key inputs and desired outputs. 

Ideally, the full set of inputs and desired outputs are required; for Supervised 

CogWSN, the full set of inputs and desired outputs are not compulsory. For inputs 
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that have not been used in training, the ANN is able to recommend an output (may be 

not the correct output) based on the training set of inputs and desired outputs. The 

Observe Phase is implemented using event-based observation. For the Plan Phase, 

the trigger is best derived based on all detected symptoms since the Supervised 

CogWSN is able to make decisions using multiple inputs without the overhead of 

space complexity on the decision. For the Implement Phase, the option of ‘level up’ 

or ‘level down’ a setting is chosen. For the Evaluate Phase, a look up table to filter 

any incorrect decision made during the Plan Phase is implemented to increase the 

accuracy in the decision making. If an incorrect decision is made, a record is entered 

into the look up table. The size of the table is governed by memory capacity. 

 

In some WSN deployments, there are rules that cannot be defined since the 

optimal solution is unknown. However, it is still possible to identify suitable 

bounded targets or goals. For this scenario, it is most appropriate to apply 

Reinforcement Learning in CogWSN since the deployment cannot utilise a priori 

knowledge in the decision process. In order to integrate Reinforcement Learning into 

CogWSN, 27 states and 6 actions are defined (as discussed in Section 6.6), where the 

states are formed from 6 states with 1 non-goal status, 12 states with 2 non-goal 

statuses, 8 states with 3 non-goal statuses, and 1 goal, while the actions are 

formulated from 3 functions to adjust and in each function, the adjustment can be 

increased or decreased. The Observe Phase is implemented using event-based 

principles. In the Plan Phase, all inputs are mapped into the defined states. The action 

is selected based on the policy (as discussed in Section 6.3). In the Implement Phase, 

the selected setting is tune up or down. In the Evaluation Phase, the quality of the 

state-action pair is updated based on goals. Reinforcement CogWSN is always 

expected to take more cycles to achieve its targeted goal at the outset, as a 

consequence of no embedded a priori knowledge. Once the goal is achieved, the 

experience acquired is the foundation knowledge to be used in repeating scenarios. 

Results show that Reinforcement CogWSN is able to achieve the goals without any 

pre-installed knowledge during deployment. The disadvantage is, on average, at least 

twice as many cycles are needed to reach the goal compared to other methods; in the 

first cycle, a longer time period is consumed to explore its states in order to 
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determine the correct solution. As more and more scenarios are repeated, the 

knowledge acquired is core to reducing the number of cycles required to find the 

solution. 

 

Verification is performed through several case studies, centering on the 

optimisation of transmission power and communication slot allocation. All four 

methods are able to achieve the goal over different periods of time. Rule-based 

CogWSN makes adjustment step by step. Each adjustment contributes some level of 

improvement in solving the problem, while Rule-based CogWSN with Greedy 

Scoring tends to solve the problem as fast as it can but, in some scenarios, the 

solutions are unstable over time (constant readjustment). Supervised CogWSN 

exhibits similar performance to the Rule-based CogWSN and Rule-based CogWSN 

with Greedy Scoring. At the outset, it is necessary to train the multi-layer ANN 

network with ground truth inputs and desired outputs. With more computation and 

memory resources, a greater number of neurons can be added in hidden layers to 

enhance precision. Reinforcement CogWSN is always expected to take a longer time 

to achieve its targeted goal at the outset, as a consequence of no embedded a priori 

knowledge. Once the goal is achieved, the experience acquired is the foundation 

knowledge to be used in repeating scenarios. Further enhancements through the 

addition of improvement criteria in the Evaluate Phase to reduce the training time are 

possible. 

 

Comparisons have been performed and the results show that Supervised 

CogWSN requires the least number of cycles per change to achieve the specified 

goals, followed by Rule-based CogWSN. Reinforcement CogWSN exhibits similar 

performance to the Benchmarking Algorithms. Rule-based CogWSN with Greedy 

Scoring requires the most number of cycles per change. In the case of CogWSN with 

learning capability, at the 3rd repeated scenario, Supervised CogWSN provides the 

best performance, followed by Rule-based CogWSN, Reinforcement CogWSN, 

Rule-based CogWSN with Greedy Scoring, and Benchmarking Algorithms. 
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In terms of the program size and memory requirement, RBA, RBL, and OT are 

best from an implementation perspective since they consume relatively small levels 

of ROM and RAM resource. However in scenarios where optimal rules and solutions 

cannot or are too difficult to pre-determine, SL and RL are potential solutions but at 

the expense of an additional 25% of ROM and 50% of RAM resource compared to 

RBA, respectively. SL occupies more ROM compared to RL due to the resource 

used to allocate artificial neurons in Supervised CogWSN which is more than the 

resource used to represent the states in Reinforcement CogWSN. The maximum 

allocation for ROM is 131072 bytes and RAM is 4096 bytes. The proposed 

algorithms only occupies a maximum 20% of ROM and 23% of RAM overall. 

 

In summary, the Thesis has provided robust evidence with which to answer the 

four main research challenges stated at the outset; 

 

1. What can be done to minimize human intervention in tuning WSN 

configuration during deployment? 

The thesis has reviewed the existing cognitive approaches currently being 

reported in wireless communications. From the review, a concept of a 

Cognitive Wireless Sensor Network (CogWSN) is proposed that provides a 

solution to obviate or limit human intervention in tuning the WSN 

configuration during deployment in dynamically changing environments. The 

term CogWSN is defined and a CogWSN’s decision process consisting of 

Observe, Plan, Implement, and Evaluate Phases is described. 

 

2. What kinds of modification or additional elements are required for WSNs in 

order to support the proposed solution? 

The CogWSN decision processes are designed from a combination of 

Problem Solving cognitive processes inspired by A Layered Reference Model 

of the Brain, (LRMB) and Polya’s concept. A CogWSN architecture is 

developed where Transceiver, Transducer, and Power Supply virtual modules 

are introduced, coordinated by CogWSN’s decision process with the required 

intervention from the user. Each virtual module consists of State Information 
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(SI), which stores information about the operating conditions, and Tuneable 

Function (TF), which defines the actuating function. 

 

3. How to ensure the proposed solution is able to be aware of the configuration 

that it needs to tune? 

The proposed CogWSN is equipped with four learning methods: Rule-based 

Approach, Rule-based Learning with Greedy Scoring, Supervised Learning, 

or Reinforcement Learning. Rule-based CogWSN requires full knowledge to 

be pre-installed in order to operate. Rule-based CogWSN with Greedy 

Scoring requires all possible actions with parameters to be defined but not the 

decision. The decision on actions is scored during operation, the highest score 

being the preferred action. Supervised CogWSN needs at least partial 

knowledge to be trained on a PC and to be transferred to the nodes upon link 

establishment with the parent node. Reinforcement CogWSN requires no a 

priori knowledge to be installed. The nodes learn based on experience during 

operation and gradually establish the required knowledge. As a consequence, 

this kind of learning is expected to occur over a longer period of time to 

achieve its goal from the outset. After several repeated runs, the time to goal 

improves markedly. 

 

4. How is the performance of the proposed solution? 

The proposed CogWSN solutions performance has been verified in terms of 

transmission power and communication slot allocation. The solutions are 

benchmarked against Benchmarking Algorithms which combine the best 

reported research. After several repeated runs, Supervised CogWSN exhibits 

the best performance, followed by Rule-based CogWSN, Reinforcement 

CogWSN, Rule-based CogWSN with Greedy Scoring and Benchmarking 

Algorithms. 
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7.2 Future Work 

Each CogWSN solution can be improved through enhancement of its 

algorithms and rules. For example, Rule-based CogWSN and Rule-based CogWSN 

with Greedy Scoring can be refined using case-based reasoning, where the process of 

solving new problems can be based on solutions of similar past problems; the 

problems are formed into a case. Supervised CogWSN can be enhanced by adding 

more neurons in its hidden layers and arranged in multiple layers. However all these 

software enhancements require additional computation power and memory capacity. 

For Reinforcement CogWSN, a heuristic approach [235] can be applied utilising 

partial knowledge pre-installed before deployment, continuing the operation using 

reinforcement learning. 

 

There are still many other cognitive approaches worthy of consideration for the 

enhancement of CogWSN, such as Learning Automata [236] and Evolutionary 

Algorithms [237]. Those solutions are also able to provide adaptive control. 

CogWSN can be also applied in various areas of application such as routing, 

transport, security, resource management and spectrum sensing. All present unique 

research challenges. 
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