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Abstract 

Amid growing environmental concerns, the UK energy sector faces considerable 

challenges in order to comply with national and regional commitments to 

decarbonisation.  In light of these challenges, the government has implemented a 

number of policies aimed at ensuring sustainability in the UK energy sector (both in 

terms of environmental impact and security of supply), while ensuring that the 

reforms and changes to the sector are achieved at the lowest costs to consumers. 

Innovation in energy technologies are expected to play a large role in reaching this 

sustainability objective. The focus of this thesis is to explore the economic and 

environmental impacts of two UK sustainable energy policies, while considering the 

role that technological innovation might play in delivering on these objectives. The 

thesis is divided in two parts; each focusing on the system-wide economic impact of 

a specific energy policy instrument, in presence of technological change.  

Part A focuses on the supply side of the electricity sector. It explores the impact of 

introducing targeted subsidies in a renewable energy sector in Scotland, in presence 

of endogenous learning-by-doing effects. The literature review highlights the 

growing awareness in the role of technological change in energy policy. 

Correspondingly, system-wide energy-economy-environment models used to analyse 

these policies have increasingly introduced endogenous technological change as a 

major design feature, whether it is induced through R&D spending or learning 

effects. Because the latter is the most commonly adopted, it is the focus of the 

modelling exercise in Part A. A number of alternative specifications of learning-by-

doing are identified in the literature and are explored first through micro-simulations. 
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Then, in a CGE model for Scotland, learning-by-doing is introduced in the presence 

of a production subsidy in the marine energy sector.  

As the subsidy stimulates the marine electricity generation sector through costs 

reductions in production, electricity generation from other sources is displaced and 

the Scottish economy experiences a small expansion. The presence of learning 

effects is found to accentuate the stimulus from the subsidy. Indeed the costs of 

marine generation are further reduced as the sector expands. The choice of 

assumptions to represent endogenous learning-by-doing is found to matter greatly for 

the speed and paths of adjustments. In particular, the use of an “economic” functional 

form (inspired by endogenous growth theory and originating in the top-down 

modelling literature) to represent learning is favoured in the model, but only when 

negative returns-to-knowledge are imposed.  

Part B focuses on the demand side of the energy system and more specifically on 

households.  It examines the economy-wide rebound effects from efficiency gains as 

a side effect of a one-off energy innovation at UK level: the roll-out of smart 

electricity meters. First, the household and total rebounds in electricity use in the UK 

are calculated using an Input-Output model, where reductions in household 

electricity expenditures are redistributed to other consumption goods. Results show 

that total rebound is generally smaller than household rebound, reflecting a negative 

indirect rebound from reductions in the industrial use of electricity. This is due to the 

relative electricity intensity of electricity compared to other sectors. A disaggregation 

of the electricity sector into network and generation activities reduces the indirect 

rebound, and thus the gap in household and total rebound and confirms the strong 

backwards linkages in electricity activities.  
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The analysis is extended to a CGE model incorporating endogenous prices and 

incomes. The same efficiency gain is simulated and its system-wide economic and 

environmental impacts (CO2 emissions) are established. Using findings from the 

econometric literature on household energy demand, several simulations are 

conducted to explore rebound effects with alternative consumption structures, where 

households have different substitution possibilities between electricity and gas. 

Increased substitution between fuels increases the household electricity rebound (as 

households substitute more efficient electricity for gas) and in turn total rebound; 

leading to the extreme case of backfire, but accompanied by the largest CO2 

emissions reductions. CGE results persistently show a smaller total rebound than 

household rebound, (similarly to the IO results) suggesting that the reduction in total 

UK electricity use could be larger than the reduction in household consumption 

estimated by the policy-makers, by considering economy-wide effects. 

Overall, the results of the modelling exercises of this thesis confirm the crucial role 

of technological change in achieving the goals of sustainability in energy policies, 

while providing insights on the assumptions for the analysis and modelling of these 

policies in an economy-wide framework.  
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Chapter 1: Introduction 

In line with the European Union targets, the UK is committed to reducing its 

greenhouse gas emissions by 42% (compared to 1990 levels) by 2020, as part of a 

longer-term objective of 80% emission reductions by 2050. Since the energy sector 

represents more than one third of total UK greenhouse gas emissions (DECC, 

2013a), it has been a major sector of interest for policies targeting emission 

reductions. A number of policies have been implemented to achieve the 

decarbonisation of the energy sector while respecting the other two objectives of UK 

energy policy: affordability and security of supply. The focus of this thesis is to 

explore the economic and environmental impacts of two energy policies aimed at 

sustainability in the UK, while considering the role that technological innovation 

might play in delivering on these objectives. 

1. Policies for a Sustainable Energy Future 

Most of the targeted emission reductions in the energy sector are expected to be 

obtained from the decarbonisation of energy supply. As set out in the European 

Renewable Energy Directive (EU, 2009), the UK is committed to a target of 15% of 

its gross energy consumption coming from renewable resources by 2020. In this 

objective, a number of policy instruments have been introduced, focused on 

incentivising the increased use of renewable resources and technologies in energy 

supply for both heating and electricity generation. While a number of instruments 

have been put in place to incentivise the use of renewable heat (i.e. the Renewable 



15 

 

Heat Incentives
1
, Renewable Heat Premium Payment Plan

2
), the decarbonisation of 

electricity generation has been the major focus of the government.  

Policy-makers have relied on two major instruments to promote the increased 

penetration of renewables in the electricity mix. The first is the Feed-In-Tariffs 

(FiTs) scheme which encourages small-scale renewable electricity generation (less 

than five megawatts capacity) through fixed guaranteed payments for every unit 

generated, as well as additional payment for every unit exported to the grid. The 

second and major policy instrument for electricity decarbonisation has been the 

establishment of a traded renewable certificate scheme. Since 2002, the Renewable 

Obligations (RO) system has particularly aided the deployment of large-scale 

renewable energy generation by setting minimum requirements for suppliers to 

source a share of their electricity from renewable sources (the “obligations”), and by 

ensuring a price premium to renewable electricity generators (through the sale of 

certificates).  

Since 2009, the new “banded” RO system has introduced differentiated policy 

support to renewable technologies based on their cost competitiveness compared 

with traditional generation. In effect, banded Renewable Obligation Certificates act 

as a targeted subsidy to renewable electricity generators, depending on the maturity 

level of the technology they use. Under this policy framework of ROs and FiTs, the 

share of renewable electricity has increased from less than 3% in 2002 to 11.3% of 

the total UK electricity generation in 2012. The pending Electricity Market Reform 

                                                 
1
 The RHI offers payments to the non-domestic sector for installing and generating heat from 

renewable technologies, through a fixed 20 year tariff designed to cover the cost of the installation. 
2
 The RHI scheme is extended to the domestic sector in the spring of 2014, to replace the Renewable 

Heat Premium Payment (RHPP) Plan, under which households could claim grants to finance 

renewable heat installations (such as solar thermal water heater). 
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(EMR) is designed to maintain this policy focus in a fully-integrated system. While 

the FiTs system will remain in place for small-scale renewable installations, 

investments in larger scale generation are expected to be incentivised in a similar 

manner (DECC, 2013b), but differentiated by technology, with new Contracts for 

Difference (CfDs). Contracts for difference will ensure renewable generators receive 

a fixed payment, generally guaranteed for 15 years, through set of differentiated 

strike prices by technology
3
. These differentiated “subsidies” for renewable energy 

technologies are the supply-side policy instrument explored in part A of this thesis. 

In addition to policies aimed at decarbonising energy supply, the possibilities for 

managing energy demand are increasingly put forward on the policy agenda for a 

sustainable energy system. The term demand-side management is often used to refer 

to any actions that can help reducing or shifting energy demand from peak to off-

peak consumption periods. The Green Deal is the UK government’s main policy 

incentive for energy demand-side management, which encourages efficiency 

improvements in UK homes
4
. In parallel, there are a number of measures targeted at 

managing energy demand from the non-domestic sector such as the Enhanced 

Capital Allowances
5
 or the CRC energy efficiency scheme

6
. In addition to these, the 

UK government has announced the mass roll-out of smart meters to equip all homes 

and small businesses by the end of 2020 (DECC, 2013c). This new technology is 

expected to reduce energy consumption by improving the visibility of energy usage 

                                                 
3
The level of strike prices for future CfDs will evolve over time as technology costs are expected to 

fall (DECC, 2013b). 
4
 The Green Deal enables home-owners to make investments in energy efficiency, through loans that 

are repaid over time on their energy bills, while ensuring that repayments will not exceed energy 

savings from the improvements. 
5
 The ECA scheme gives businesses financial incentives for investments in new energy-saving 

technologies 
6
 The CRC scheme requires reporting and monitoring of energy use, and corresponding emissions for 

large organisations which must then purchase allowances 
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to consumers. It is also expected to play a role in the implementation and monitoring 

of demand-side response measures, as planned in the Electricity Market Reform 

(DECC, 2013b).  Demand-side response refers to changing electricity-users’ 

behaviour through the use of incentives, in order to smooth domestic electricity 

demand and reduce peaks. Described as a major component of the planned capacity 

market (created through the EMR to ensure security of supply in the UK market), 

demand-side response measures may include automated or user-controlled measures 

and will require a number of new technologies to be installed in UK homes to 

facilitate electricity consumption  monitoring (POST, 2014). The smart meter roll-

out is the demand-side policy focus of part B of this thesis. 

Overall, this thesis examines the economic impact of two UK sustainable energy 

policies described above. These two policies will be studied in the specific context of 

technological change. 

2. The Importance of Technological Change  

Underlying all policy measures targeted at reducing carbon emissions from the 

energy sector is the essential requirement for innovation and technological 

improvements, both on the demand and supply sides. On the one hand, innovations 

will be crucial to deliver a low-carbon energy supply. While policies are targeted at 

investments in renewable technologies, technological improvements are expected to 

reduce the costs of these technologies and further incentivise their deployment: 

Indeed this is essential if renewables are ultimately to become competitive with 

conventional technologies. Likewise, innovations in carbon capture and storage 

technologies, as well as new electricity storage solutions will be crucial to make 
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them commercially-accessible and further contribute to carbon emission reductions. 

On the other hand, innovations in products and processes are also central to demand-

side management. The large scale deployment of smart meters and the gradual 

efficiency improvements in household appliances are two examples of how new (or 

improved) technologies contribute to the wider UK energy policy goals. 

Technological change is widely accepted and cited in policy documents as a crucial 

component of energy policy. Policies directly targeted at innovations contributing to 

decarbonising the energy sector are already in place. In the UK, such policies include 

direct public funding of research and development activities in low carbon energy 

technologies, as well as the creation of a “Low-carbon Innovation Co-ordination 

Group” to assess and prioritise the need for public sector support for specific 

technologies (LCICG, 2014).  

However, technological change is a complex process. Innovations in products and 

processes are dependent on a wide range of factors, both internal and external to the 

innovation or the innovator. Understanding the process of innovation, and its 

interactions with policy interventions in the energy sector is of primary importance. 

The design, testing, demonstration and wide-adoption of a technology are likely to be 

strongly affected by policies incentivising investments in low-carbon technologies. 

Also, some new technologies might change the costs and potential impacts of energy 

policies, and in turn alter the trade-off faced by policy-makers. 

Due to the complex interactions between energy policy and technological 

innovations, it is crucial to study them jointly, in a framework that allows for the 

representation of both. Accordingly, in this thesis, I have chosen to use economy-
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wide modelling methods to analyse the impacts of various energy policies, 

represented in conjunction with technological change. 

3. Economic Modelling of Sustainable Energy Policies 

System-wide models are widely-used tools for the system-wide analysis of policy 

impacts. Although a wide variety of macroeconomic model types and objectives 

exists, this thesis adopts a multi-sectoral general equilibrium approach to economic 

modelling. First, General Equilibrium models are commonly used tools to determine 

the impact of policy shocks on the wider economy. Second, as my objective is to 

represent the interactions of the energy system, the economy and the environment 

into one framework, the use of a multi-sectoral model is essential. First, such model 

is able to represent the sectoral interactions between the energy system and the rest 

of the economy, exposing the system-wide impacts of a policy targeted at the energy 

system. Second, the multi-sectoral framework (depending on its level of aggregation) 

allows for a specific representation of technological change by sector. Finally, it also 

enables the attribution of environmental impact to specific economic activities, and 

this is essential as energy and emission intensities vary significantly across sectors. 

Whereas the simulation of a policy intervention in a multi-sectoral equilibrium model 

is often relatively straightforward, the representation of technological change or 

innovation seldom is. Depending on the component of technological change under 

consideration, different representations might be appropriate in different cases. 

This thesis focuses on modelling policies in coordination with two major types of 

innovation. First, in addition to simulating policy support to the marine renewable 

energy sector, Part A of the thesis focuses on representing technological change as a 
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gradual process, using the concept of learning-by-doing. Then, in Part B, the impact 

of a one-off product innovation will be explored, through the modelling of the roll-

out of smart meters to UK households, and its impact on electricity efficiency and the 

wider economic system.  

4. Thesis Structure 

Part A: Learning-by-doing and Subsidies for Marine Energy 

Generation in Scotland 

In Part A of the thesis, I model the impact of policy support to marine electricity 

generation in Scotland in the presence of learning effects, which reduce the 

production cost of this sector. A major challenge is to determine the appropriate 

representation of learning effects in a Computable General Equilibrium model. 

Chapter 2 presents a literature review relating to the economics of technological 

change in the context of energy and environmental policy. This literature review 

takes a general approach to technological change in environmental economics, in 

order to inform the understanding of modelling exercises that have related 

technological change and environmental and energy policies. First, in a 

microeconomic context, a number of market failures are identified relating to 

innovation and investments in environmentally-friendly energy technologies. The 

existence of these market failures, namely environmental externalities, knowledge 

externalities and uncertainty or diffusion externalities (Clarke and Weyant, 2002; 

Jaffe et al., 2005; Popp et al., 2010) is presented as a rationale for policy 

intervention. In response to these market failures, two approaches to innovation 

policy are then identified and discussed, specifically supply-push and demand-pull 
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(Nemet, 2009) policies. Supply-push policies refer to measures that promote 

investments in R&D activities. Based either on public spending, or incentivising of 

private spending, they usually aim at reducing the private costs of R&D and 

countering the knowledge externalities. In contrast, demand-pull policies focus on 

promoting the diffusion of new technologies to benefit from incremental process and 

product improvements. Both approaches to innovation policies are shown to be 

important because they target different parts of the technological change process. 

The review also indicates that each policy approach affects different technologies in 

different ways. Finally, the literature review addresses the need to study the complex 

interactions of energy policy, technological change, the economy and the 

environment in a comprehensive framework, namely Energy-Economy-Environment 

(EEE) models. Typically designed for the analysis of environmental or energy 

policies, EEE models have accounted for the importance of technological change. 

After initial modelling attempts focused on exogenous improvements in technology, 

endogenous technological change has been introduced in various ways, depending on 

the type and purpose of each model. The literature review identifies two major types 

of technological change in EEE models. Traditionally, R&D-driven technological 

change has been the focus of economic “top-down” models influenced by growth 

theory, while learning-by-doing is mostly included in “bottom-up” engineering 

models focusing on the energy system. Learning-by-doing is however increasingly 

used in recent modelling exercises of energy policies. 

Chapter 3 follows up on the literature review by focusing on the learning-by-doing 

process and its variety of representation in EEE models. After defining the concept 

of learning-by-doing in more detail, it presents a review of the wide range of 
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econometric work on learning rates for energy technologies, and proposes a number 

of explanations for the variation in estimates, including the use of one or two-factor 

learning curves, choice of variables, endogeneity issues). Next, in a detailed review 

of the EEE modelling literature, I identify three major distinctions in the 

representation of learning-by-doing in models with endogenous technological 

change. These three distinctions relate to the choice of equation form to represent the 

learning curve, the choice of variable to embody experience accumulation, and 

assumptions about returns to knowledge. Comparative micro-simulations are 

conducted to represent these alternative definitions of learning-by-doing in a 

simplified economic model with a Cobb-Douglas production function. The analysis 

highlights the dramatic differences in modelling results when using different 

learning-by-doing specifications. 

Using the findings from Chapter 3, Chapter 4 proposes the first introduction of 

endogenous learning-by-doing in a CGE model for Scotland. Chapter 4 introduces 

learning-by-doing in an emerging renewable energy sector with high development 

potential in Scotland: the marine electricity generation sector. In a multi-sectoral 

Computable General Equilibrium (CGE) model for Scotland, marine electricity is 

stimulated through the implementation of a production subsidy in combination with 

learning-by-doing for the sector. Learning effects are introduced as an endogenous 

Hicks-neutral technological progress in the value-added production function. In an 

electricity-disaggregated version of AMOS (A Micro-Macro Model of Scotland, 

Harrigan et al., 1991), the alternative specifications of learning-by-doing identified in 

Chapter 3 are implemented successively. The modelling results confirm the 

expansionary effects of the subsidy on the targeted sector and the economy as a 
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whole, while revealing some displacement of electricity use from traditional towards 

renewable sources. The introduction of endogenous learning-by-doing reinforces the 

positive impact of the subsidy by leading to efficiency gains in production. The 

comparison of alternative specifications confirms that modelling results are highly 

sensitive to technological change assumptions. Major findings show that the use of 

the so-called “economic” equation form (based on endogenous growth theory) is 

qualitatively closest to the empirical definition of learning-by-doing when using 

decreasing-returns to knowledge (i.e. the case referred to as “fishing-out”). The 

choice of variable embodying experience also affects modelling results. The results 

show that the use of cumulative production is the only specification leading to an s-

shape diffusion curve of marine electricity production. Part A of this thesis represents 

the first attempt to introduce endogenous technological change in a CGE model for 

Scotland. By implementing alternative specifications in a comparative analysis, this 

study identifies the advantages and drawbacks of alternative representations of 

learning-by-doing in renewable energy sectors in a system-wide context. 

Part B: Modelling the impact of the adoption of smart meters in the 

UK in an electricity rebound context  

Whereas Part A is concerned with the modelling of endogenous and incremental 

technological change in the supply-side of the energy sector, Part B addresses the 

issue of a one-off product innovation introduced on the demand-side of the energy 

system. The objective is to analyse the impact of the mass adoption of smart meters 

by UK households. After a brief introduction presenting the policy background to the 

mass roll-out of smart meters, Chapter 5 introduces the concept of feedback in 

energy consumption. A review of major studies indicates that by improving the 
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information households receive about their energy consumption (i.e. improving 

“feedback”), they can better manage and control their consumption, ultimately 

leading demand reductions through energy efficiency gains. Although the level of 

energy savings and their persistence in time is still debated in the literature, there is a 

general consensus that by improving feedback, particularly through the deployment 

of smart meters technologies with in-home displays, demand reductions can be 

achieved in the domestic sector. This is found to be the case for electricity demand 

only; there is limited evidence that gas savings will occur. It is generally recognised 

in the literature that improvements in energy efficiency can lead to rebound effects, 

whereby energy savings from efficiency improvements are mitigated (or fully offset 

in the case of backfire) by the implicit reduction in the price of energy services (in 

efficiency units). Although the focus of the energy rebound literature is generally on 

the production-side, a few studies have highlighted the potential for rebound effects 

from efficiency gains in energy consumption. Consequently, Part B models the 

system-wide economic and environmental impacts of efficiency gains in household 

electricity consumption in the UK, framed in the context of electricity rebound. 

Chapter 5 focuses on modelling these impacts in an Input-Output framework. 

Calibrating our shock to the expected three percent reduction in household electricity 

consumption from the adoption of smart meters in the UK, the saved expenditures 

are redistributed to other consumption goods. The direct, indirect and induced 

impacts of the shock on sectors and the overall economy are identified. Two 

rebounds are calculated: the rebound in household electricity consumption and the 

rebound in total UK electricity use. Despite the general expectation that total rebound 

might be larger than household rebound, the analysis shows that this is not the case 
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here:  rebound in total electricity use in the UK is smaller than the rebound in 

household consumption, because the electricity sector is characterized by strong 

internal backwards linkages. 

Rebound results are compared for two IO tables with an increasing level of 

disaggregation in the electricity sector. The disaggregation of electricity generation 

and distribution activities leads to a reduction in indirect rebound, suggesting that the 

aggregation of the electricity sector might lead to over-estimation of total rebound 

effects. Overall, total rebound is still smaller than the household rebound, suggesting 

that the reduction in total UK electricity use could be larger than the estimated three 

percent reductions in household consumption, due to economy-wide effects. Another 

contribution is the consideration of alternative substitution possibilities between gas 

and electricity in household consumption, informed by econometric estimates from 

the literature. In the case of increased substitution, gas consumption falls as a 

consequence of the fall in electricity price in efficiency units. Total rebound is then 

reduced, leading to further reductions in total UK electricity use. In contrast, if gas 

and electricity are complementary goods in household consumption (as suggested by 

econometric estimates for the UK in Baker et al., 1989), total rebound actually 

increases and is larger than direct rebound, mitigating the electricity savings in 

consumption suggested in the literature. 

The analysis of system-wide rebound effects is expanded in Chapter 6, through the 

use of a Computable General Equilibrium model for the UK. Based on the same 

AMOS framework as used in Chapter 4, the version used in Part B is a national 

model, called UKENVI, which disaggregates the energy sector and endogenises 

sectoral CO2 emissions by fuel use. The analysis of the total rebound in the CGE 
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framework enables us to relax the static assumptions of the IO analysis (no supply 

constraints, Leontief production structure, no changes in price). The same efficiency 

shock in household electricity consumption is simulated in the CGE model, in order 

to identify the impact of endogenizing prices and income on the rebound. In the 

dynamic CGE model, the existence of supply constraints lead to an excess in 

capacity in electricity sectors in the short-run, which drives the electricity price down 

in relative terms. This changes the rebound results.  

Four scenarios are identified to emulate the simulations conducted in the Input-

Output analysis. First, one scenario recreates the base IO simulations closely and 

confirms that total rebound is usually smaller than household rebound following an 

efficiency shock in household electricity consumption. However, household and total 

rebounds are smaller in the CGE than in the IO, suggesting that short and medium-

term disinvestment effects in electricity sectors have driven the electricity price up in 

the long-run. In the three other scenarios, the household consumption structure is 

modified so that households can substitute between electricity and gas in a distinctive 

manner. This allows for identification of the impact of changing the elasticity of 

substitution between gas and electricity on the rebound results.  

The findings show that the smaller elasticity of substitution, the smaller the 

household and total rebounds are. Decreasing the elasticity of substitution makes it 

harder for households to substitute in favour of the more efficient commodity 

(electricity). Therefore, when gas and electricity are complements, household 

electricity consumption, and total electricity use are reduced further. The case of 

increased substitution confirms that when the elasticity of substitution between 

electricity and gas is higher than one, backfire may occur, and households actually 
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increase their electricity consumption, leading in turn to backfire in total electricity 

consumption. However, the environmental results show that in this case, CO2 

emissions reductions are the largest, as household gas consumption and the output of 

the gas sector are drastically reduced. 

In conclusion, Chapter 7 offers an overview of the major contributions both from 

Part A and Part B of this thesis. A number of areas for future research are identified, 

in the context of modelling technological change and energy policy, as well as in the 

more general context of economic research in energy policy. 
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Part A: Modelling: Learning-by-Doing and Subsidies 

in the Marine Electricity Sector in Scotland 

The increased penetration of renewable energy technologies (wind, solar, marine, 

photovoltaic, hydro, etc.) presents a number of advantages, which contribute to the 

goals of decarbonisation and security of supply in energy policy. These technologies 

rely on renewable resources, improving sustainability of supply. They do not emit 

greenhouse gases during operations, reducing the climate change impact of the 

energy system. Additionally, their deployment reduces the system dependency on 

fossil-fuel resources, in a context of increasing global demand and high price 

fluctuations, contributing to security of supply. Scotland has recognised the 

importance of these new technologies in delivering a low-carbon energy system, and 

has affirmed its commitment to their deployment by setting a leading target: 

renewable technologies must provide the equivalent of 100% of gross annual 

electricity consumption by 2020.  

Despite the clear benefits from renewables, the technologies used to extract the 

resource are still largely uncompetitive with traditional generation. In terms of 

levelised costs, often used to compare energy technologies
7
, renewable technologies 

remain far from competitive compared to gas, coal and nuclear generation. In the 

latest estimates from the Department of Energy and Climate Change (DECC, 2013), 

the levelised costs of onshore wind are estimated at £100/MWh, while offshore wind 

would lie between 148 and £179/MWh. Marine technologies are estimated to 

become commercialized in the next few years at levelised costs of £261/MWh for 

                                                 
7
 Levelised costs embody the economic costs of a generation technology over its lifetime. 
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wave electricity generation, and between 157 and £225/MWh for tidal generation. In 

comparison, the levelised costs of standard Combined Cycle Gas Turbine generation 

(CCGT) are estimated at £71/MWh, while those of nuclear may reach £89/MWh
8
.  

Therefore, to achieve its ambitious renewables target, Scotland relies on policy 

support to incentivise investment in these less competitive technologies. The Scottish 

Renewable Obligation system has been modified, like the wider UK policy, to 

introduce “bands” for different technologies, according to their level of development. 

For example, wave electricity is still considered in the early demonstration stages and 

thus receive particularly strong support (with 5 ROCs per megawatt hour produced) 

while offshore wind and tidal, with lower levelised costs receive 2 certificates, and 

onshore wind, 1. Acting as differentiated subsidies to renewable technologies, the 

banded Renewable Obligation system essentially attempts to internalise the positive 

externalities from renewable energy in private investment decisions, while targeting 

technologies in light of their technological development (embodied in their cost 

level). Ultimately, the objective of this policy support is to encourage investments in 

newer technologies, in order to reduce the costs of these technologies. The 

underlying assumption to this policy strategy is that through diffusion of the 

technology, technological improvements will reduce costs.  

Part A of this thesis focuses on these issues and formally models the relationships 

between the deployment of renewable energy technologies (in particular, marine 

electricity generation), cost reductions (through learning effects), the rest of the 

energy sector and the overall economy. Chapter 2 presents a review of the literature 

                                                 
8
 The estimated costs of coal generation are higher (£111-126/MWh), due to the new requirement of 

equipping them with carbon capture and storage technology. 
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on the issues of technological change and energy policy, and its representation in 

models linking the economy, the environment and the energy system. Chapter 3 

focuses on the modelling of learning-by-doing as a phenomenon of costs reductions 

through technology adoption. Chapter 4 presents the modelling of the impact of 

learning-by-doing in marine electricity generation in presence of subsidies targeted 

to the sector on the Scottish economy.  
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Chapter 2: Technological Change and the Modelling 

of Energy and Environmental Policy 

1. Introduction 

The relationships between the energy system, the environment and the economy are 

particularly complex. While a reliable and adaptive energy system is required to fuel 

economic growth, our energy systems, in their current state, are largely reliant on 

polluting technologies, resulting in damages to the environment. In parallel, future 

prospects of economic growth are subject to the potential environmental impacts of 

today’s decisions in terms of energy policy. Amid growing climate change concerns, 

the coordination of environmental, energy and economic policies becomes necessary. 

Within this energy-economy-environment (EEE) system, technological innovations 

play a crucial role in harmonizing often contradictory objectives. Innovations in 

environmental and energy technologies are expected to make significant 

contributions to reduce the environmental impact of economic activities. These 

innovations are a necessary component in the objective of sustainable development 

and green growth.  Therefore, technological change should be, and increasingly is, 

regarded as a policy objective in itself.  

Section 2 presents the underlying rationale for support to innovation and 

technological change in energy and environment technologies. In a microeconomic 

argument, the so-called innovation market failures are identified, and rationale for 

countering these market failures through policy intervention is provided. Section 3 

reviews the literature evaluating the different policy mechanisms (supply-push vs. 

demand-pull) that have been designed to have an impact on the technological change 
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process of energy and environment technologies in particular. In order to understand 

the complex interactions between the energy, economy and environment (EEE) 

system, sophisticated tools for policy analysis have emerged, referred to as EEE 

models. These modelling tools are crucial to further our understanding of the short, 

medium and long-term impacts of policies on the EEE system. Since a modelling 

methodology is used throughout this thesis, the second half of this literature review 

chapter is centred on the economic concept of technological change in the context of 

environmental and energy policy modelling. Section 4 reviews the major 

contributions to the EEE modelling literature.  Due to the scope of this thesis, the 

focus is centred on models that have introduced technological change. 

2. Innovation Market Failures and Policy Intervention 

The underlying concerns about climate change and its impact on our economies has 

triggered a renewed interest in the application of technological change theories to the 

environment and the energy sector. The development of environmentally-friendly 

and clean energy technologies has the potential to bring a “double dividend” to 

policy-makers. These technologies can both reduce our emissions of GHGs and other 

pollutants, but could also offer colossal cuts in the costs of these emission reductions, 

by providing cheaper and more efficient methods to produce or consume. 

Consequently, the development of such technologies is a crucial element of climate 

policy. 

A better understanding of the technological change process is necessary to the 

implementation of policies designed to influence it. Research on technological 

change in environmental economics has grown into a field of its own, unifying 



33 

 

theories from the economic, social, environmental and climate sciences. In light of 

standard economic theory, environmental economists have identified a number of 

market failures associated with technologies contributing to reduce the impact of our 

economies on the environment. Environmental and energy economics research has 

placed a strong emphasis on the obstacles to such technological developments, 

originating in the existence of these market failures. This provides a strong rationale 

in favour of policy intervention. This section identifies the most prominent market 

failures generally associated with innovation in environmental and energy 

technologies.  

2.1. Environmental externality 

Environmental economics is concerned with the analysis of policies targeted at 

correcting a market failure known as environmental externality. An externality is 

defined as a potential cost (or benefit) occurring as a side-effect of an economic 

activity, which does not enter the decision-making process of individual agents. An 

externality (which can be positive or negative) is defined as “an economically 

significant effect of an activity, the consequences of which are borne (at least in part) 

by a party or parties other than the party that controls the externality-producing 

activity” (Jaffe et al., 2005). Associated with a wide range of producing and 

consuming activities, environmental pollution is the most famed example of a 

negative externality. For an example of a negative production externality, take a firm 

that owns a coal-fired power plant. As it combusts coal to produce electricity, the 

power plant emits polluting gases such as carbon dioxide (CO2) or sulphur dioxide 

(SO2). These pollutants are responsible for major environmental damages, i.e., global 

warming and acid rains respectively. Contrarily to the costs of fuel or labour 
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involved in generating the electricity output, the costs associated with these 

environmental damages (the negative externality) are not borne by the firm, and thus 

are not taken into consideration when choosing to operate the coal-fired power plant. 

In such situations, the role of environmental policy is to correct for this market-

failure by providing incentives for reducing the polluting activities. Policies typically 

achieve this goal either by imposing monetary penalties that internalise the costs of 

pollution in the private decision function or by implementing a limit on the levels of 

pollution. To determine the optimal level of regulation for pollution, policies must 

compare the social costs of pollution to the social costs of abatement.  

This trade-off becomes more complex when considering the existence of 

technological change. First, the development of new technologies might enable to 

keep producing output while reducing the externality associated with it. In the case 

of pollution, such technologies can be cleaner production processes, substituting for 

cleaner inputs or installing pollution-controlling equipment (Popp et al., 2010). Thus, 

technological change can potentially reduce the costs of pollution abatement and 

alter the costs trade-off considered by policy-makers in regulating activities: the 

existence of technological change can influence environmental and energy policy. 

Further, environmental policies themselves are also likely to influence technological 

change through a “price-induced” process. By internalizing the costs of pollution in 

the private agent’s decision function, policies might guide the direction of 

technological improvements towards cleaner processes (Popp et al., 2010). In the 

example developed above, the firm that owns the coal-fired power plant can decide 

to invest in developing an alternative way of producing electricity if the cost of 

polluting outweighs the cost of abating. For example, this firm might invest in 
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carbon-capture technologies or simply switch its production towards renewable 

energy sources.  

While technological change can lower the costs of compliance to environmental 

regulation, policies can lead to technological change directed at cleaner technologies. 

This two-way interaction has to be considered when estimating the social costs and 

benefits of policies, particularly in a dynamic framework. If long-term time horizons 

are considered, this interaction becomes crucial for the timing of policies. The early 

estimates of policy costs can be excessive and lead to weak environmental 

regulation, while stronger regulation could have in fact reduced the overall costs of 

policy in the medium and long run. 

2.2. Knowledge externality 

Another important market failure identified in the economics of technological change 

literature is the public good nature of knowledge. In his seminal work on 

technological change, Arrow (1962a) explores the properties of “inventions as the 

production of knowledge”. Assimilating knowledge to information, he investigates 

the incentives to innovate for both a monopolistic firm and a firm acting on a 

perfectly competitive market. He finds that in any situation, firms under-invest in 

innovative activity. A firm’s inability to appropriate the gains from innovative 

activities would decrease the incentives to innovate (Arrow, 1962a). This research 

highlights the non-excludable and non-rival properties of knowledge as a public 

good. If a firm invest in innovating activities, it incurs all the costs of innovation. 

This knowledge being non-rival and non-excludable, other firms can use it and get 

the benefits associated with it. This creates a positive externality, known as 
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knowledge spillovers. Endogenous growth models such as Romer (1990) consider 

such spillovers a positive externality, and as the driver of economic growth.  

However, from a micro-economic point of view, these spillovers distort the firm’s 

decision process. A firm is reluctant to invest innovation and is tempted to free-ride 

on other firms’ innovations. Under-provision of investments in R&D becomes an 

issue, as these innovations would have been beneficial in a social context. Overall 

social benefits from technological change (such as costs reductions of environmental 

policies) are not reflected in economic agents’ private decisions.  

The existence of knowledge market failures accentuates the need for policy 

intervention. If the existence of spillovers is not considered in the design of 

environmental and energy policies, the impacts of these policies could be weakened 

by the under-response from private agents (Clarke and Weyant, 2002). As knowledge 

spillovers lead to underinvestment in innovative activities such as R&D, policies can 

focus on several options (that are not mutually exclusive). First, they can correct the 

positive externality through restoring the appropriability of knowledge, using legal 

actions (e.g. intellectual property and patents law). Jaffe et al. (2005) argue that such 

instruments are inherently imperfect and innovators will always receive only a 

fraction of the benefits from investments in innovative activities. Other policies 

could also attempt to incentivise investments in new technologies to bridge the gap 

between private and public returns to knowledge.  

2.3. Uncertainty 

Popp et al. (2010) note that, although all investments can be regarded as risky; it is 

particularly true for investments in innovative activities. Rosenberg (1996) identifies 
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several sources such as uncertainty about potential uses, the need for complementary 

technologies, potential for applications to other industries, etc. This uncertainty of 

returns to investments in technological change is associated with a different sort of 

market failure: incomplete information (Jaffe et al. 2005). As investors face large 

variances in expected returns to innovation (Scherer et al., 2000), incomplete 

information translates into a risk, which investors need to be compensated for.  

This uncertainty poses a challenge to policy. On the one hand, the need for 

consistency and continuity in policies, as well as government and institution 

credibility is highlighted in the literature as a major determinant of uncertainty for 

investments in environmental technologies, and particularly so for investment in 

renewable energy. Kohler et al. (2006) point out that wind technology for instance 

needs guarantees of continued policy support to sustain competition with traditional 

technologies using cheaper fuels such as coal.  

On the other hand, the costs of compliance to climate change regulations are highly 

dependent on these innovations, leading to uncertainty in policy making. Policies 

must address these uncertainties by correcting investors’ exposure to risks and ensure 

the good implementation of regulations. Policies providing compensation for these 

risks and long-term engagements from governments have the potential to minimize 

uncertainty and at least partly counteract this market failure. Environmental and 

energy economics research focuses on the effectiveness of such policies and will be 

reviewed in Section 3.2.  
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2.4. Market failures influencing technology diffusion 

Additional market failures associated with technological change for environmental 

and energy technologies have to do with the process of technology diffusion. 

Stoneman and Battisti (2010) define technological diffusion as “the process by which 

the market for a new technology changes over time”. Broadly defined, technology 

diffusion refers to the dynamic process of market penetration where economic agents 

progressively adopt a new technology. As technologies develop over time, the 

process of adoption is not linear, and generally follows an S-shaped curve where 

market diffusion is plotted against time (Rogers, 1962). At early stages of 

technological development, the rate of adoption is relatively slow as agents face high 

costs and large uncertainties about the future. Adoption speeds-up as the technology 

enters a commercially-viable phase, to then plateaus once the market reaches a 

saturation phase.  

During this diffusion process, new environmental and clean energy technologies are 

often highly dependent on policy support. Because the environmental and knowledge 

externalities are not fully reflected in the costs of these technologies, and because of 

uncertainty, they experience a basic dependence on regulation. Popp et al. (2010) 

reports that while general technological change research focuses on the spread of 

information and strategic behaviour of firms to explain technology diffusion, most 

studies of environmental technologies shows that their diffusion is mostly dependent 

on policy mechanisms.  

A market failure directly associated with the diffusion process is the existence of 

increasing returns to adoption. Jaffe et al. (2003) provide a review of the literature on 
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the causes of increasing returns to adoption. Because of the existence of learning 

effects
9
 and network externalities

10
, technologies becomes more attractive to 

investors, as the technology is increasingly used. This in turn leads to further 

adoption and diffusion of the technology, bringing more costs reductions. This 

virtuous circle (Jaffe et al, 2003) can be viewed as a positive externality which may 

cause delays in adoption, and suggests that early investments in a new technology 

could be sub-optimal.   

The existence of increasing returns to adoption has also been linked to the problem 

of technological lock-ins. Technological lock-in corresponds to a situation where a 

technology becomes dominant with widespread diffusion through increasing returns 

effects (Kohler et al., 2006).  This process might create additional barriers to entry 

for new technologies, when the costs associated with changing the system outweigh 

the benefits. Therefore increasing returns to adoption create a technological bias 

eliminating the conditions for competition amongst technologies and also produce 

the need for policy intervention. 

3. Renewable Energy Policy and Technological Change 

The previous section of the literature review identified market failures associated 

with environmental and energy technologies that might hinder the technological 

change process. These market failures all rationalise the need for policy intervention 

                                                 
9
 Learning effects refer to the observation of costs reduction as the technology is increasingly used 

(learning-by-doing or learning-by-using). Learning-by-doing is explained in details in Section 4, and 

is the focus of Chapter 3 and 4 of this thesis.  
10

 Network externalities encompass learning effects but can be defined more broadly. They refer to 

any benefits to an individual agent that arise from a wider adoption of a technology. In an example 

relating to energy technology, a wider adoption of wind turbines leads to costs reduction in the 

production of the technology through learning effects, but also provides positive network externality 

through the larger geographic dispersion counteracting the variability of the wind resource. 
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to support environmentally-focused energy technologies.  Although this need is well 

established in the literature, the choice of policy instruments is much discussed. 

Because of the focus of the next chapters on renewable energy generation, this 

section examines the policy options that are available to generate technological 

change for renewable energy technologies. First, the traditional dichotomy between 

supply-push and demand-pull technology policy approaches is presented. Secondly, 

the evaluation of these approaches in the literature is presented in the context of 

renewable energy policy.  

3.1. Supply push Vs. Demand-pull policies 

The major debate in the literature compares and contrasts “demand-pull” and 

“supply-push” policy approaches to technological change. On the one hand, demand-

pull instruments originate in the price-induced theory of technological change 

(Hicks, 1932, Schmookler, 1966). If technological change can be induced by changes 

in prices from shifts in market forces, then policy instruments that influence market-

demand for cleaner technologies can direct technological change towards them. On 

the other hand, supply-push instruments are justified primarily by the existence of 

uncertainty. Originating in the work of Rosenberg (1982) who described 

technological change as a dynamic process and a sequence of event, the justification 

of supply-push instruments lies in the uncertainty of investments in innovation which 

would hinder the expected effects of market forces.  

Nemet (2009) distinguishes between these two approaches to policy in terms of the 

way they influence technological change: Where supply-push policies aim at 

decreasing the private costs and risks associated with investment in innovative 
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activities, demand-pull policies increase the private pay-offs to innovation. This 

section of the literature review reports empirical and theoretical evidence in support 

of or challenging each of these two approaches, in the context of renewable energy 

policy.  

3.1.1. Supply-Push instruments 

Supply-push theory originates in the establishment of a strong correlation between 

R&D expenditures and innovation. Focusing on the innovation phase of 

technological change rather than the diffusion phase, supply-push policies are aimed 

at decreasing the private costs of R&D activities. As technological change is 

associated with the knowledge externality, measures are needed to correct for the 

suboptimal provision of investment in R&D. The objective of supply-push policies is 

to stimulate investments in early stages of technological development, where the 

knowledge externalities (spillovers) and uncertainty are the most prominent
11

.  

Supply-push policies include direct government spending in innovative activities. 

Examples of such spending include direct public R&D expenditures, in the form of 

research grants and programs, direct public support to education and training, public-

funded and public-run research such as research in universities and national 

laboratories,  direct funding of installations and demonstration projects (Nemet, 

2009). Supply-push policies can also provide incentives for private investments in 

technological change. Examples include tax credits for firms investing in R&D 

activities or in knowledge exchange activities. The objective of supply-push policies 

                                                 
11

 Clarke and Weyant (2002) argue that early basic research has the most potential for wide 

application across technologies and therefore is less appropriable. This suggests that knowledge 

spillovers are largest in early basic research stages. 
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is to obtain ex-ante technological change which would reduce the subsequent costs 

for deployment of the technology.  

Such policies can be designed for stimulating innovation in the economy as a whole, 

in the objective of fuelling economic growth, and are in that case often referred to as 

general “technology” policies. Recently, the need for supply-push policies targeted 

directly at renewable energies has been emphasised in order to offset for the 

additional market failures they face. An example of this is the European Union 

Strategic Energy Technology Plan (SET-Plan) adopted in 2008 which focuses on the 

development of new technologies in the energy sector (European Commission, 

2007).  

3.1.2. Demand-pull instruments  

Aside from direct support to renewable energy technologies, another type of 

available policies to promote innovation is “demand-pull”. Based on the idea that 

market demand is a large determinant in the diffusion of new technologies, demand-

pull mechanisms correct for the uncertainty and diffusion market failures. Demand-

pull policies are justified by the importance of “post-introduction” technological 

change, such as learning effects. Demand-pull mechanisms can attempt to reduce the 

risks associated with future returns on investments in new technologies. Moreover, 

demand-pull mechanisms can also attempt to offset the network externalities 

associated with diffusion, by encouraging early adoption. The objective of demand-

pull policies is to create a market for new technologies which will support investment 

in these technologies and in turn reduce their costs. Examples of such policies 

include intellectual property regulation, subsidies to adoption, regulatory standards or 

taxes and subsidies on competing technologies (Nemet, 2009). 
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Several demand-pull mechanisms are available to policy-makers focusing on the 

energy technology system. Environmental economists often differentiate between 

price and quantity mechanisms. This distinction is also referred to as “market-based” 

vs. “command and control” instruments and the effectiveness and efficiency of each 

method is highly debated in the literature (Popp et al., 2010). Quantity mechanisms 

impose quotas or standards to economic agents. Such policies allow little flexibility 

in the way firms and consumers can achieve the quantity objectives and are 

traditionally used for pollution control policies. Examples include standards relating 

to car emissions or energy-efficiency of appliances. In contrast, price mechanisms 

induce investments in new technology through the manipulation of prices as market-

signals. Allowing for more flexibility than “command and control”, price 

mechanisms are widely used in energy policy. Subsidies to renewable energy, taxes 

on fossil-fuels and guaranteed prices are examples of price mechanisms.   

The two major policy instruments often debated for the development of renewable 

energy technologies are Feed-in Tariffs (FITs) and Green Certificates (GC). FIT 

schemes ensure a guaranteed price for electricity generated from renewable energy 

sources for a delimited time period (often more than 10 years). Generally, FIT 

programs provide an obligation on the electric utility company to buy generated 

electricity from renewables at a tariff decided by the regulator. This acts as a subsidy 

to the electricity generator to compensate for the competitive disadvantage of 

renewable technologies to traditional electricity generation.  While FITs are a price-

based instrument, green certificates can be considered a hybrid price-quantity 

measure.  Traditionally in such schemes, electricity suppliers must ensure that a fixed 

portion of their electricity supplied to consumers comes from renewable energy 
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sources. The quota can also be applied to electricity producers or consumers. The 

number of green certificates is determined centrally as a target of electricity to be 

supplied from renewables. The GC can then be acquired by the suppliers along with 

the renewable electricity; and in the case of tradable GC, they can be exchanged 

independently. Suppliers must provide a certain number of certificates at the end of a 

given period or pay a penalty. This flexible quantity-based instrument allows a 

specific target to be reached while minimizing the cost of compliance, as suppliers 

marginal costs are equalised throughout the market via trade of the certificates.  

3.2. Assessing the impact of energy policies on innovation 

The supply-push and demand-pull policy mechanisms discussed above are designed 

in the same policy objective: delivering a larger penetration of renewable 

technologies in the energy system at the lowest costs possible by enabling 

technological change and innovation. The effectiveness of different policy 

instruments in increasing the penetration of renewable is addressed in the literature. 

With particular attention to wind and PV renewable technologies, studies have 

compared the ability of different instruments (such as FITs and Green Certificates) to 

increase the capacity of renewable technologies. Menanteau et al. (2003) point out 

that although quantity and price-based mechanisms should theoretically bring 

equivalent outcomes, price mechanisms such as FITs prove superior to quotas in 

achieving renewable energy targets. Mitchell et al. (2006) attributes the success of 

FITs (in Germany) compared to the UK system of certificates to its stronger ability 

to reduce investors’ risks. In a cross-country analysis of policies in 12 countries, 

Lewis and Wiser (2007) point out the superiority of market-based approach to 
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renewable energy policy (like FITs) and mention the existence of a home market as a 

pre-requisite to wind energy penetration.  

However, the focus of this section is another important aspect of policy assessment: 

the effectiveness of supply-push and demand-pull mechanisms to induce 

technological change in energy technologies and reduce the overall costs of policy 

intervention.  

Few empirical studies have looked at the impact of energy policy measures on 

innovation for renewable energy technologies. In the environmental economics 

literature, early studies confirmed the link between environmental policy (such as 

pollution control) and innovation towards cleaner technologies. For good reviews of 

this literature, see Jaffe et al. (2002) and Popp et al. (2010). With the relatively recent 

availability of data indicators of innovation (such as patent or R&D expenditures), 

studies have attempted to estimate the relationship between policy instruments and 

innovation in environmentally-friendly technologies. Lanjouw and Mody (1996) in a 

study of the US and 16 other countries, and Brunnermeier and Cohen (2003) 

focusing on the U.S. both conclude that pollution abatement expenditures 

(considered as a proxy for environmental regulation stringency) increases the number 

of patents in environment-friendly technologies. Jaffe and Palmer (1997) and 

Hamamoto (2006) find a significant correlation between abatement expenditures and 

the level of R&D expenditures in the U.S. and in Japan respectively. Fewer studies 

have directly looked at the choice of environmental policy instruments and 

environmental innovation. Newell et al. (1999) relate changes in energy prices and 

energy efficiency standards to the evolution of appliances models characteristics. 

They find that the price effects lead to both the adoption of new models and the 
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decline of old ones, while standards just eliminate the old inefficient appliances.  

Popp (2003) investigates the number of patents under the implementation of SO2 

tradable permits and finds evidence of improvements in technologies, while Popp 

(2006) provides cross-country comparisons of SO2 policies and patents.  

A very limited number of studies focus on the impact of renewable energy policy and 

the choice of instruments on technological change. Johnstone et al. (2010) conduct a 

cross-country analysis of renewable energy policies and renewable energy patent 

data. This panel data study of  25 countries (high-income) for 26 years (1978-2005) 

includes a database of policy instruments constructed at the IEA and patent 

applications counts for renewables energy disaggregated between 5 technologies 

(Wind, Solar, Geothermal, Ocean and Biomass). When possible, each policy 

instrument is transformed into a continuous variable in order to represent regulation 

stringency. This is the case for R&D expenditures, FITs, certificates. For policies 

that differ too drastically amongst countries (e.g. tax credits), the authors used 

dummy variables to represent the effect of implementation itself.  

The authors find that environmental and energy regulations (such as the Kyoto 

Protocol) have a strong impact on patenting activities in renewable energy 

technologies. In terms of supply-push policies, they confirm the significant influence 

of public R&D expenditures on overall renewable technology patenting. 

Disaggregating the data by technology, technology-specific R&D expenditures are a 

significant determinant of patenting for Wind, Solar and Geothermal technologies 

only. For demand-pull policies, differences also appear between technologies. 

Renewable certificates only affect patenting activities in wind and geothermal 

technologies while FITs affect solar technology more strongly than wind. The 
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authors explain the differences in effectiveness of policy instruments with the 

differences in technology costs. As wind and geothermal power seem to be the 

cheapest, the use of a flexible instrument such as certificates enables firms to invest 

in the lowest-cost technologies. In contrast, FITs are often differentiated by 

technology and can be beneficial to more expensive technologies such as solar. 

These findings suggest that different policy instruments might be required to trigger 

innovations and costs reductions for technologies depending on their costs (reflecting 

different stages of technology maturity). 

In an analysis of the UK innovation systems for renewable energy technologies, 

Foxon et al. (2005) confirms this intuition and argues that an effective renewable 

energy policy should enable a technology to smoothly move along the s-shaped 

technology development curve.  

Figure 2.1: Energy technology maturity and policy measures 
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They further point out the necessary diversity of an effective renewable energy 

policy which must vary alongside the development of the technology. They provide 

an idealised picture of the required policy for each stage of development (Figure 2.1) 

An analysis of these findings can be traced back to the supply-push vs. demand-pull 

debate. At early stages of technology maturity, namely R&D and Demonstration and 

Pre-commercial, the adequate policies cited are examples of supply or technology-

push policies. As the technology moves towards the supported-commercial phase, 

the adequate policies change to demand-pull measures in order to create a demand on 

the market. In simple terms, the link between policy and innovation relates to the 

theory explained above, supply-push policies are appropriate for inducing early 

stages, non-incremental (radical) innovation while demand-pull policies focus on 

creating incentives for diffusion incremental technological change. 

Foxon et al. (2005) highlight the difficulties associated with the transition periods 

between technology development phases and the need for suitable transitions in 

policies as well. Nemet (2009) reports that a consensus has been reached in the 

literature that a combination of both types of policies is needed but raises the 

question of the allocation of public resources to each type of policy. In a case study 

of wind energy, the paper credits a lack in valuable patents to the difficulties from 

demand-pull policies to bring out non-incremental innovation and the early 

convergence towards a dominant design. In a recent paper, Laleman and Albrecht 

(2012) advocate for a mix of demand-pull and supply-push measures for wind and 

PV technologies in Europe, but recommends that the ratio of pull-to-push measures 

be increased through raising R&D expenditures while decreasing subsidies. 

Similarly, in a case study for PV technology, Nemet and Baker (2009) argue that 
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R&D are more critical to long-term technology costs reductions than subsidies, but 

also point out that subsidies can provide a hedge against the risk of R&D only-

policies offering uncertain R&D outcomes. 

In light of this literature review, policy intervention in favour of renewable energy 

developments appears justified. In addition, the technological change process for 

these technologies is of primary importance to determine the type of policy support 

that should be put in place, as different policy affect the technological process in 

different ways. Finally, innovations in renewable energy are also likely to change the 

costs of climate change mitigation and environmental policy.  

To capture these complex interactions when estimating the impact of renewable 

energy policies, it is necessary to represent them in a system-wide context to 

determine their environmental and economic impact, while considering technological 

progress. Energy-Economy-Environment (EEE) models have been developed in 

recent years to systematically address these complex interactions. They are 

particularly useful tools to assess the impact of renewable energy policies. But they 

must be augmented to include endogenous technological change, in order to 

accurately represent the interactions. The next section of this literature review 

focuses on the introduction of technological change in EEE models  

4. Technological Change in Energy-Economy-

Environment models 

Global efforts have been directed towards designing a range of climate and energy 

policy instruments, in response to the growing challenge of climate change.  The 

need for adaptive tools to evaluate the impacts of these policy instruments has led to 
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the rapid development of models encompassing one or several aspects of the energy-

environment-economy system interactions. These models are very diverse in their 

design, theoretical underpinnings, objectives and geographical focus but are widely 

referred to as energy-economy-environment (EEE) models. Most of the recent EEE 

models provide a dynamic analysis of policy enabling to determine both short-run 

and long-run policy impacts. In these dynamic frameworks, the importance of 

technological change is widely recognised as a key feature of EEE models (Loschel, 

2002). Therefore, models have generally incorporated some form of technological 

change in their framework.  

This section aims to review the major recent contributions to the EEE modelling 

literature, with a particular focus on the treatment of technological change. Section 

4.1 introduces the well-known distinction between two energy-economy-

environment modelling approaches reported in the literature, namely bottom-up and 

top-down, but highlights the recent emergence of hybrid models attempting to 

combine strengths from both approaches. Section 4.2 identifies the different methods 

by which leading EEE models (of all types) have introduced technological change, 

looking at the origins of these methods in the theoretical economics literature.  

4.1. Modelling approaches: Bottom-Up vs. Top Down 

Different types of models have been developed over the years to assess the long-term 

impact of energy and environment policies. Before proceeding to the detailed review 

of these models incorporating technological change, an important observation from 

the literature is the distinction between two broad modelling approaches: namely 

bottom-up and top-down (IPCC, 1996). Bottom-up and top-down models differ 
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mainly by the level of details in their representation of the economy and energy 

systems (Bohringer, 1998, Loschel, 2002). Bottom-up models are centred on a highly 

detailed disaggregation of the energy system and the technologies it includes. On the 

other hand, top-down models put the emphasis on a comprehensive representation of 

the economy. Models in each category generally feature different degrees of 

detailing of the energy and economy systems. This section develops in turn the main 

features of top-down and bottom-up models and identifies their strengths and 

weaknesses. It concludes with the emergence in the literature of hybrid models and 

the difficulties associated with integration techniques. 

4.1.1. Top-down 

Top-down refers to models that focus on economy-wide impacts of environmental 

and energy policies. Traditionally, top-down models are based upon economic theory 

foundations. They concentrate on representing economic agents (such as households 

or industries) and their interactions on markets (such as goods or factor markets) 

through well-established macroeconomic functions.  They generally make use 

econometric estimation techniques for calibration from historical economic data. 

Top-down EEE models are often described as general macroeconomic models which 

represent the economy and the energy systems in highly aggregated terms (Sjim, 

2004).  

This top-down approach to modelling encompasses different types of models, 

identified in the Innovation Modelling Comparison Project report (Edenhofer et al., 

2006): 
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- General equilibrium models balance demand and supplies between economic 

agents on all markets. Each agent uses relative-price signals to optimise their 

decisions. Computable General Equilibrium models are most commonly 

used. They offer a multi-sectoral representation of the economy and are 

solved for multiple time periods. They generally calculate a static equilibrium 

for each time period where all markets clear, creating dynamic adjustments 

over time. Examples of such models and their treatment of technological 

change are considered in more details in section 4.3.  

- Optimal Growth models aim for the inter-temporal optimisation of social 

welfare. Such models are based on neoclassical (early models) or endogenous 

growth theories (introducing drivers of endogenous technological change). 

Based on the idea that economic growth drives emissions, this approach 

models growth dynamics over long-term horizons and is a preferred method 

for global climate change impact assessment models. The examples of 

optimal growth models include Goulder and Mathai (2000), DEMETER (Van 

der Zwaan et al., 2002), RICE (Nordhaus, 1994, 2002, and Castelnuovo et al., 

2005) and MIND (Edenhofer et al., 2006). 

- Econometric models are a less-common method for EEE modelling and use 

time-series data to estimate a system of differential equations for simulations.  

Top-down models are found particularly suitable for analysis of macro-economic 

impacts of environmental and energy policies due to their ability to model sectoral 

and geographical interactions and feedback effects (Sjim, 2004). Their focus on 

macroeconomic theory is at the expense of a disaggregation of the energy system 

(Bὂhringer, 2008). They often (but not always) consider the energy system as a 
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single economic sector represented through a smooth production function (usually 

Cobb-Douglas or Constant Elasticity of Substitution functions). They are seen as 

sacrificing important technological details specific to each energy technology for 

economic theory consistency. 

4.1.2.  Bottom-up 

In contrast, bottom-up models refer to partial models of the energy system and are 

based on engineering principles. Also commonly called “energy-system” models, 

bottom-up models provide a great degree of disaggregation of the energy system: 

they offer a detailed representation of current individual energy technologies and 

processes as well as projections on their technological improvement potential. 

Bottom-up models are a more unified approach to modelling and are mostly based on 

similar objectives and assumptions. They usually make use of linear programming 

techniques to optimise energy supply systems (through cost-minimization). They 

generally incorporate exogenously determined energy-demand projections which 

represent their only link to the wider economic framework.  

Examples of bottom-up models are MESSAGE (Messner, 1997, Grübler and 

Messner 1998), GENIE (Mattson, 1998, Mattson and Wene, 1997), and MARKAL 

(Seebregts et al., 2000) and are discussed further later in subsequent sections. 

Bottom-up models have the advantage of a more accurate representation of the 

energy systems and the future possibilities for changes in the system, since they are 

based on engineering data and assessments. Their weak link to the rest of the 

economy and inability to model feedback effects with energy demand limits their 

applications to economy-wide impact assessment exercises, and questions their 

abilities for long-tern projections. 
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4.1.3. Hybrid 

Since strengths and weaknesses of these two model approaches have been identified, 

great effort has been put into combining both methods to take advantage 

simultaneously of the level of technological details in the energy sector from bottom-

up models and the disaggregated representation of the economy in top-down model. 

The Third Assessment Report of the IPCC (2001) provides an overview of the 

distinctions between bottom-up and top-down models but recognises that it has 

become increasingly ambiguous, as more efforts are made to integrate bottom-up 

structures of the energy sector into macro-economic top-down models. However, 

combining these models can pose problems, such as inconsistencies in structure and 

philosophy, a lack of data convergence, a loss in flexibility and transparency. The 

most straightforward approach to combine them is to focus on one type of models 

and include a reduced- form of the other.
12

 The examples of hybrid models presented 

in Section 4.3 are MERGE (Manne et al., 2006) and MESSAGE-MACRO (Rao et 

al., 2006). 

Despite their underlying differences, bottom-up and top-down modelling literatures 

have both accepted the importance of endogenizing technological change in the 

energy sector to analyse the impacts of energy and environmental policies. The next 

section reviews several top-down, bottom-up and hybrid EEE models that have 

introduced technological change. 

                                                 
12

 However, Bὂhringer (1998) identifies the origins of the difficulties to integrate both approaches in 

the way energy technologies are represented. While in top-down models such as CGE models use 

restrictive CES production functions, bottom-up models often capture many technological options 

represented through discrete Leontief functions. Bὂhringer (2008) proposes the introduction of a 

mixed-complementarity problem (MCP) with weak inequalities in the Arrow-Debreu equilibrium 

framework. For a detailed mathematical description of the MCP see Bὂhringer (2008). 
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4.2. Introducing Technological Change in EEE models  

Most recent EEE models have recognised the importance of introducing 

technological change in order to accurately represent short-run and long-run impacts 

of policies. Due to the large number of models introducing technological change, this 

section will focus on a few selected EEE models of the top-down, bottom-up and 

hybrid literature which have all introduced a new element of technological change. A 

few reviews of technological change in EEE models already exist in the literature. 

Loschel (2002) first surveyed models of environmental policies introducing 

technological change. Edenhofer et al. (2006), Gillingham et al. (2008), Kahouli-

Brahmi (2008) and Popp et al. (2010), among others, offer more recent reviews of 

this modelling literature. The objective of this section is not to present a new 

exhaustive survey of this literature. It is rather to focus on representative examples of 

the major techniques used to introduce technological change in EEE models. 

Identifying these techniques by model type is of particular interest to this thesis since 

the next chapters focus on introducing technological change in a Computable 

General Equilibrium for Scotland. Section 4.2.1 describes early attempts to introduce 

technological change as an exogenous feature of EEE models (where technological 

change is only a function of time). Section 4.2.2 details how more recent models 

have introduce endogenous technological change in different ways, through R&D 

accumulation, learning-by-doing effects or both. 

4.2.1. Exogenous TC 

Most EEE models assume some exogenous rate of overall Hicks-neutral productivity 

growth (Loschel, 2002). However, this form of exogenous technological change 
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pertains to the overall economy and is not specific to energy or environmental 

technologies. Early EEE models introduce an additional element of technological 

change through exogenous improvements to environmental or energy-related 

activities.  The most common approach to introducing this kind of technological 

change is to include an Autonomous Energy Efficiency Improvement (AEEI) 

parameter to increase energy-efficiency overtime (Nordhaus, 1994). The AEEI 

parameter can exogenously improve the energy-efficiency of total output in the 

economy in each modelling period or be sector-specific (Popp et al., 2010). It is 

introduced as an exogenous parameter in the production or cost function, as a factor 

productivity-improving or factor price-reducing parameter (Loschel, 2002). For 

example, Hanley et al. (2009) introduce an AEEI parameter in the CGE model for 

Scotland in the context of rebound and back-fire effects of energy-efficiency 

improvements.  

Another common method of exogenous technological change in EEE models is the 

introduction of backstop technologies. These technologies usually represent low-

carbon or carbon-free energy sources that are not yet commercialised (e.g. nuclear 

fusion). They are assumed to be available in unlimited supply and to have high and 

constant marginal costs compared to traditional technologies, reflecting the need for 

large R&D investments to make them competitive (Loschel, 2002). The switch to the 

backstop technology occurs when the price of traditional energy sources (inclusive of 

carbon policy) rises above the costs of the backstop technology (Popp et al., 2010). 

This switch occurs suddenly, and generally leads to full adoption of the backstop 

technology thereafter. Although the use of AEEI parameter and backstop 

technologies is relatively simple and transparent, our literature review has pointed 
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out that technological change depends on more complex drivers than only the 

passage of time. Particularly in the analysis of environmental and energy policies, 

feedback effects between technological change and policy can only be represented 

endogenously. 

4.2.2. Endogenous TC 

Much like technological change has the potential to reduce the costs of energy and 

environmental policy, the policies themselves (whether demand-pull or supply-push) 

can induce technological change through promoting innovation and diffusion. This 

feedback effects between policy and technological change have been recognised by 

EEE modellers, moving away from exogenous representation of technological 

change. This section describes a few selected models that have introduced 

endogenous technological change. The methods and techniques to do so vary 

between models but are mostly consistent amongst models of the same type (top-

down or bottom-up).  

4.2.2.1. R&D Technological Change 

The first common approach to endogenous technological change in EEE models is to 

introduce R&D-induced technological change. Almost exclusively used in top-down 

models, this method has strong theoretical foundations in endogenous growth theory 

(Romer, 1990, Lucas, 1988, Grossman and Helpman, 1994 and Aghion and Howitt, 

1998). 

Theoretical Underpinnings   

First introducing the concept of technological change in a growth model, Solow 

(1957) included an exogenous technology parameter in the production function to 
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account for changes in attainable output for a given level of inputs. Solow described 

technological change as “any kind of shift in the production function” (Solow, 1957, 

p.312). It is important to note that this economic definition of technological change 

as a “change in the production function” is narrower than one used in other fields 

(such as engineering). Solow (1957) finds that the long-run rate of economic growth 

is exogenously determined by the rate of technological progress, which proved 

unsatisfactory in explaining the origins of technological progress, as a source of 

growth. In reaction, a new class or models emerged to introduce endogenous 

technological change, in the so-called “endogenous growth theory”. Major 

contributions to this theory include Romer (1990, 1996), Grossman and Helpman 

(1991), Aghion and Howitt (1992) and Jones (1995). Instead of being exogenously 

determined (as a function of time only), technological change can now be determined 

in the economic system itself. 

Romer (1990) was the first to propose a growth model which would encompass an 

endogenous technological progress driven by R&D activities. Extending the 

neoclassical growth model, endogenous growth models introduce a new R&D-

producing sector, which determine technological change. Similarly to the 

neoclassical model, Romer (1990)’s model is based on an economy-wide Cobb-

Douglas production function based on two factor-inputs, namely capital and labour. 

     [        ] [            ]
    (2.1) 

Where      represents production,      and     are the capital and labour stock 

respectively.    and      represent respectively the shares of capital and labour that 

are used in the production of output.      can be considered as a stock of knowledge 

which embodies technology as a determinant of the productivity of inputs. An 
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important observation is that in endogenous growth models, technological change 

often applies to the labour inputs only, reflecting the so-called Harrod-neutral 

technological change (Harrod, 1942).  

Hicks (1932) first introduced the classification of technological change between 

labour-augmenting, capital augmenting and neutral technological change. He defines 

neutral technological change as leaving the ratio of marginal product of capital to 

marginal product of labour unchanged. In a general functional form, Hicks-neutral 

technological change assumes that an increase in technological change improves the 

productivity of capital inputs and labour inputs simultaneously. In contrast, Harrod 

(1942) and Solow (1970)-neutral technological change refers to improvements in the 

productivity of labour and capital respectively.  

The knowledge stock      is made endogenous to the model through the 

introduction of a new sector. This sector represents the production or accumulation 

of new knowledge  ̇   , which contributes towards the knowledge stock     . It 

takes the following Cobb-Douglas form: 

 ̇     [          ] [          ]
       (2.2) 

Where B is a shift parameter, B ≥ 0,  β ≥ 0 and  γ ≥ 0. 

Labour and capital stocks are shared between the good producing sector and the 

R&D accumulating sector.      and        represent respectively the shares of 

capital and labour that are used in the production of R&D. Knowledge is non-rival; 

this is reflected in the full use of the knowledge stock A(t) in both production 

functions. This introduces an important observation from endogenous growth 

models, namely the influence of the stock of knowledge on the R&D production 
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sector. The parameter ϕ embodies this influence and can be referred to as a “returns-

to-knowledge” parameter. Depending on the value of ϕ, the influence of past-

knowledge on the accumulation of new knowledge changes drastically. Several 

options are considered in the literature. 

-     corresponds to the case where increases in the level of knowledge 

decrease with the current knowledge stock. This is referred to as “fishing-

out”. 

-     corresponds to constant return to scale where the accumulation of 

knowledge is independent from the current stock of knowledge 

-     assumes that the current stock of knowledge has a positive impact on 

knowledge accumulation, the so-called “standing on shoulders” case. 

-     is the initial assumption in the Romer model, and corresponds to one 

specific case of standing-on-shoulders. 

Based on these theoretical foundations from the neoclassical economics literature, a 

number of EEE models have introduced and R&D driven endogenous technological 

change process. 

EEE Models with R&D technological change  

EEE models introducing R&D-driven innovation usually represent technological 

change through a knowledge stock which increases with investments in R&D 

expenditures. Endogenous technological change is entirely driven by R&D activities. 

Early examples of these models focus on climate change mitigation and CO2 

emission abatements. Some of these models consider R&D activities as reducing 

carbon emissions. The RICE model (Regional Integrated model of Climate and the 
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Economy, Nordhaus and Yang, 1996) was the first integrated assessment model of 

climate change to be modified to introduce this type of technological change in a 

neoclassical growth framework. In its early versions, the RICE model considers the 

rate of emissions as a function of the flow of carbon-saving R&D expenditures. 

Nordhaus (2002) develops the R&DICE version of the model where carbon-intensity 

(carbon emission per unit of GDP) is determined by an innovation production 

frontier as a function of R&D spending in the carbon-energy sector. Buonanno et al. 

(2003) extend the RICE model to include a knowledge production function (called 

“innovation”) increasing with R&D investment. They configure it to the situation of 

“standing-on-shoulders”, where new innovations build on past knowledge. The 

knowledge stock in turn improves energy-intensity. In another top-down example, 

Goulder and Mathai (2000), R&D technological change decreases the costs of 

abatement activities
13

.  

In multi-sectoral top-down models with R&D technological change, the treatment of 

R&D expenditures is different. They are interested in a more general specification of 

technical change, in contrast with climate models focusing on carbon emission 

abatement). In such models, R&D spending influences sectoral productivity, so as to 

reduce the costs of more energy-efficient technologies. In a General equilibrium 

framework, Goulder and Schneider (1999) introduce an R&D-producing sector 

(based on endogenous growth theory) which provides R&D services to other sectors. 

The other sectors invest in R&D in the same way as they invest in capital stocks. The 

knowledge stock then reduces production costs or improves factor efficiency.  

                                                 
13

 Goulder and Mathai (2000) also introduce learning-by-doing technological change. This will be 

discussed in the next subsection.  
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As pointed out in Gillingham et al. (2008) the advantage of using R&D-driven 

technological change in CGE models is that it provides additional information on 

inter-sector interactions, such as spillovers or crowding-out. Spillovers and 

crowding-out from R&D have opposite influences. While R&D spillovers between 

industries diffuses costs-reductions or productivity improvements, crowding-out can 

counterbalance this positive effects if R&D is in limited supply, and R&D in energy-

saving activities reduces the potential for R&D activities in the rest of the 

economy
14

. This non-exhaustive review of models with R&D technological change 

presents a first approach to endogenous technological change. The next section 

focuses on learning-by-doing effects. 

4.2.2.2. Learning-by-doing Technological change (LBD TC) 

The second most common approach to endogenous technological change in EEE 

models uses the empirically strong phenomenon of learning-by-doing. Learning-by-

doing describes the process of cost reductions resulting from gains in cumulative 

experience (Arrow, 1962a).  

Origins in the literature 

The first article to acknowledge the existence of learning effects in manufacturing 

was published by Wright (1936). From observations in the airframe manufacturing 

sector, he found that unit labour costs tend to decrease with accumulated workers 

experience. More precisely, he named the “progress curve” the fact that costs showed 

a constant percentage decrease with each doubling of cumulative output. A decade 

later, Wright’s finding was developed and applied to war material by the RAND 

                                                 
14

 Wing (2003) and Popp (2004) address this crowding-out effects in more details. 
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Corporation, a think-tank created by the U.S. government to develop a “Science of 

warfare” during the Cold War, and the concept was named “Learning-By-Doing” 

(Yeh et al., 2007). Extended in 1968 by the Boston Consulting Group (BCG, 1968), 

Learning-by-Doing theory was applied to the relationship between output price and 

cumulative industry output; it was redefined through the “experience curve” as the 

learning phenomenon at the industry level. Subsequent studies of learning have 

revealed the existence of LBD in a large number of industries (Argote and Epple, 

1990).  

In its original form, learning-by- doing (LBD) is expressed as an exponential 

function of cumulative experience as below:  

                (2.3) 

Where      is the unit cost of production at time t,      is cumulative experience, C0 

is the cost of the first unit produced, and α is the learning elasticity. The learning rate 

is then defined as the percentage decrease in unit cost for every doubling of 

experience, as in equation (2.4): 

         
(2.4) 

The economic implications of learning-by-doing (LBD) have been expressed by 

Arrow (1962b). In a simplified economic model, he chooses to use cumulative gross 

investment as an index of experience. Sheshinski (1967) generalises the Arrow 

model of learning. Consider the following production function where output is 

produced using labour and capital:  

                 (2.5) 
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  is the factor productivity parameter, and is defined here as a function of cumulative 

experience   and time
15

.  The learning hypothesis formulated by Arrow (1962b) is an 

attempt to explain the growth of output through accumulation of experience. Two 

alternative assumptions can be used to account for cumulative experience. Arrow 

(1962b) proposes to depart from previous models where experience was only 

represented by output and to use a new proxy: cumulative gross investment. He 

justifies this choice through the idea that technological change is embodied in new 

capital goods; therefore investments in capital are the main drivers of learning 

effects. This will be discussed further in the next chapter. 

Models with Learning-By-Doing 

Due to its strong empirical roots in manufacturing industries, learning-by-doing 

(LBD) is the preferred method for bottom-up models to endogenise technological 

change in energy sectors
16

. The first energy-economy model to introduce LBD was 

developed by Messner (1997) and Grübler and Messner (1998) in the MESSAGE 

model (Model for Energy Supply Strategy Alternatives and their General 

Environmental Impact). In this dynamic linear model of the energy system, the 

objective function minimises the sum of discounted overall costs of the energy 

system. Technological change is represented through a LBD function where costs of 

the technology are a decreasing exponential function of cumulative experience 

embodied in cumulative installed capacity. Following this advancement in the 

MESSAGE model, many other bottom-up models have adopted this specification of 

LBD to introduce endogenous technological change. In the GENIE model (Global 

                                                 
15

 This accounts for technological progress that is not explained by experience gains. 
16

 Although recent top-down models have also recognised its importance and increasingly include a 

LBD component. 
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ENergy system with Internalized Experience curves), Mattson and Wene (1997) use 

LBD technological change in a model where the total costs of the global energy 

systems are minimised. In turn, Kypreos and Barreto (1998) and Seebregts et al. 

(1998, 2000) introduce LBD for energy technologies in the well-know MARKAL 

model for optimizing a simple global electricity system and for Western Europe 

respectively.  

Moreover, some hybrid bottom-up/top-down models have also adopted this learning 

curve specification. This choice is motivated by the method used to construct them, 

as they typically incorporate the technological details of the energy system from 

bottom-up models into top-down macro-economic frameworks. Manne and Wene 

(1992) present the first formal link between the MARKAL model and the top-down 

economic growth model MACRO, using an iterative process where MARKAL 

informs MACRO in terms of energy costs, while MACRO informs MARKAL in 

terms of energy demands.  

Another example of such hybrid top-down/bottom-up model is MESSAGE-MACRO 

(Messner and Schrattenholzer, 2000) and incorporates technological change. It 

combines a version of the energy system MESSAGE model described above with 

LDB, and the top-down MACRO model framework as well. Rao et al. (2006) extend 

this hybrid model through a link with climate model (MAGICC), to impose a GHG 

concentration target in the running of the MESSAGE model. Manne and Richels 

(2004) develop MERGE (Model for Estimating the Regional and Global Effects of 

greenhouse gas reductions) which links nine regions of the globe each represented by 

an individual bottom-up energy system model through a macro-economic growth 

model. In all these hybrid models, endogenous technological change is represented 
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through the use of learning curve in energy technologies detailed in the bottom-up 

part. 

Furthermore, a few top-down models have introduced LBD to respond to the 

growing bottom-up literature confirming the importance of learning effects. 

Influenced by the endogenous growth literature, Goulder and Mathai (2000) is the 

first example in the literature of a top-down model combining R&D and LBD 

technological change. In a partial equilibrium model of knowledge accumulation 

with a central planner, this model examines two specifications for endogenous 

technological change where increases in the stock of knowledge reduce the costs of 

emission abatement activities sector. In the first specification, the stock of knowledge 

is an increasing function of investments in R&D. In the LBD case, the stock of 

knowledge is an increasing function of the abatement activities themselves 

(reflecting this idea of costs reduction associated with experience). In an effort for 

consistency in the analysis, they introduce both R&D TC and LBD in the same 

knowledge accumulation function where “fishing-out” occurs.
17

  

In the spirit of Goulder and Mathai (2000), other models have introduced LBD as a 

stock-updating production function. Rasmussen (2001) presents a multi-sector 

general equilibrium model for Denmark to examine the influence of learning-by-

doing in renewable energy technologies. The model differentiates between the 

renewable energy generation sector and the renewable energy capital sector, which 

provides capital inputs to the first one. In this model, LBD increases the stock of 

knowledge in the production function of renewable energy capital sector, 

                                                 
17

 The importance of this specification for the endogenous technological change modelling literature 

will be discussed in greater details in Chapter 3. 
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representing improvements in the productivity of inputs. The renewable energy 

capital sector becomes more efficient, embodying improvements in the technologies, 

and lowering the costs of the renewable generation sector. 

However, other top-down models have been more greatly influenced by the bottom-

up approach to energy modelling and have introduced LBD using the traditional 

learning curve specifications. Van der Zwaan et al. (2002) develop the DEMETER 

model (Decarbonisation Model with Endogenous Technologies for Emission 

Reductions) introduces LBD. DEMETER is a macroeconomic model of climate 

change with two energy producing sectors (fossil and non-fossil) used as inputs in 

production. Cumulative capacity for both energy sectors generate costs reductions in 

both investments in new capital and operation and maintenance activities
18

.  Another 

example is the MIND model (Model of INvestment and Technological Development, 

Edenhofer et al., 2005) where learning is a side effect of extraction activities in the 

fossil-fuel sector and as a function of cumulative capacity in the renewable energy 

sector. All these models, their introduction of learning-by-doing and their findings 

are explored in more details in the next chapter. 

5. Conclusion 

Learning-by-doing appears to currently be the most popular method to incorporate 

endogenous technological change in EEE models. It originates in bottom-up models, 

but is more and more widely used in hybrid and top-down models as well. This 

superiority can be attributed to both the strong empirical validation of the LBD 

phenomenon and the relative simplicity of application in models. Based on a single 

                                                 
18

 Although they assume costs reduction potential to be much more limited for fossil-fuel energy 

technologies compared to non-fossil-fuel. 
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equation relating costs and cumulative experience, the ease of application of the LBD 

technological change approach has also been identified as a weakness. Nordhaus 

(2009) warns against the risk that using this method places too much emphasis on the 

LBD mechanisms of technological change, while undermining the importance of 

R&D mechanisms.  

Nevertheless, the learning-by-doing process appears to be an ideal first-step in the 

introduction of endogenous technological change in an EEE model. Part A of this 

thesis represents the first attempt to introduce endogenous technological change in 

the AMOS model framework. A learning curve is introduced in the marine energy 

sector, in order to represent technological improvements in this emerging renewable 

sector in Scotland.  However, the learning-by-doing process and its representation in 

an EEE model are complex. The next chapter of this thesis will focus uniquely on 

learning-by-doing for energy technologies. It will identify the different specifications 

of LBD in EEE models in more details than this chapter. After presenting some 

results of previous modelling attempts, a number of learning-by-doing specifications 

are identified to be implemented in the model. They are individually tested in a 

micro-simulation context first, before being introduced in the AMOS model in 

Chapter 4. 
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Chapter 3: Learning-by-doing in Energy-Economy- 

Environment models 

1. Introduction 

The methods employed to represent technological change in EEE models have 

evolved over the past two decades, moving away from exogenous towards 

endogenous representations. Technological change has been recognized as a process 

that does not simply occur on its own over time. The literature review of Chapter 2 

discussed the introduction of both R&D and LBD-induced technological change in 

different types of EEE models. The latter (LBD) seems to be a common method used 

in most models focusing on energy issues.  

This chapter focuses on the implementation of learning-by-doing, hereafter referred 

to as LBD, into EEE models, and particularly LBD applied to the energy system. 

Section 2 reviews the recent econometric literature focused on the estimation of 

learning rates for energy technologies. Section 3 develops the literature review of 

EEE models begun in Chapter 2, with a special emphasis on models incorporating 

LBD. This review brings to light a variety of representations of LBD in EEE models 

including differences in equation forms, experience proxies and parameter values. 

These differences in specifications and their implications for the modelling exercise 

are then explored in Section 4 through the use of micro-simulations. Finally, Section 

5 concludes the chapter on LBD theory and practices and introduces Chapter 4, 

which implements LBD in marine renewable energy generation into a Computable 

General Equilibrium model for Scotland. 
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2. Estimation of Learning Rates for Energy Technologies: 

a Literature Review 

2.1.  Estimating the learning curve 

Many EEE models put the emphasis on modelling technological change for the 

energy sector, due to its crucial role in determining carbon emissions (see for 

example Messner, 1997; Miketa & Schrattenholzer, 2004; Rasmussen, 2001). These 

models have mostly implemented endogenous technological change through LBD 

functions. In order to calibrate such functions, estimates of learning rates for energy 

technologies are required, reflected in the parallel increase in the number of 

econometric studies of learning rates for energy technologies.  

These studies have focused on estimating the empirical learning curve, first 

identified by Wright (1936), which defines costs as a decreasing exponential function 

of cumulative experience. This learning curve function is repeated in this chapter in 

equation 3.1 below.  

          
   (3.1.) 

   is the costs of the technology at time t,    is the costs of the first unit produced,    

is the cumulative experience variable and α is the learning elasticity parameter.  

From this equation, the learning rate (  ) is expressed as a function of the learning 

elasticity parameter, as follows: 

         (3.2) 

Accordingly, the learning rate represents the costs reductions (in percentage terms) 

that occur with every doubling of cumulative experience   . The learning elasticity α 



71 

 

can be estimated econometrically by transforming equation 3.1 into a logarithmic 

form. A general specification for the learning curve estimation model is given in 

equation 3.3 below. 

                         (3.3) 

where ε is the error term 

Econometric studies have focused on estimating the learning rate for different energy 

technologies and have produced a wide-range of estimates, which have been 

surveyed in McDonald and Schrattenholzer (2001) and more recently in Kahouli-

Brahmi (2008). McDonald and Schrattenholzer (2001) reports 42 learning rate 

estimates, which are either re-estimated from available datasets (for 26 estimates) or 

simply reported when the data was not available (for 16 estimates). These estimates 

cover a large number of technologies (oil extraction, gas turbines, nuclear power 

plants, coal and lignite power plants, GTCC power plants, wind turbines, PV 

modules, biomass and others) over different geographical locations (e.g. OECD, US, 

North Sea, Germany, Japan, Denmark) and different time periods. They find a 

median value for learning rate estimates of 16-17% which they conclude is 

comparable with another study of overall manufacturing learning rates (Dutton and 

Thomas, 1984). The major observation from the review is the wide variation in 

estimates, even for similar technologies. The 42 estimates range from -11% for 

global learning rate for GTCC power in the 1980s (Claeson, 1999)
19

 to 34% for 

OECD learning rates for GTCC power between 1984 and 1994 (Kouvaritakis et al., 

                                                 
19

 Claeson (1999) uses prices as a dependent variable. Price data can be considered inferior to costs as 

a performance measure in this estimation process; as prices are affected by other external factors than 

costs. One explanation provided for the negative learning rate in this study is short-term oligopolistic 

pricing behaviour  (Claeson, 1999) 
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2000). This wide range illustrates the importance of underlying assumptions in the 

estimation model. Another important finding from McDonald and Schrattenholzer 

(2001) is that studies using more recent data generally report lower learning rates, 

suggesting that technologies at more mature development stages experience smaller 

learning effects
20

. In addition to issues with price data and possible depreciation of 

learning rates, the review points out five additional factors that might have generated 

variation in estimates, namely: differences in performance proxies (investment costs 

or production costs) and/or experience proxies (cumulative installed capacity or 

cumulative production), differences in variable definitions, differences in R&D 

intensity, differences in economies of scale, and some costs variability driven by 

labour and financial markets (i.e. land costs, wages or interest) across locations over 

time. 

Kahouli-Brahmi (2008) provides a more recent review of econometric studies, 

including a larger number of estimates reflecting the growing research interest in 

LBD for energy technologies. This review provides 94 estimates, classified in the 

same manner as McDonald and Schrattenholzer (2001) including the energy 

technology studied, the geographical scope of the study, the time period covered, the 

choice of dependent variable (performance measure) and independent variable 

(experience measure). However, an important distinction is added to the Kahouli-

Brahmi (2008) review. It differentiates between one-factor and two-factor learning 

curves. This distinction is highlighted in Section 2.2 below, while Section 2.3 

addresses the issue of time-varying learning rates. Section 2.4 discusses the choice of 

performance and experience proxies in the estimation and finally Section 2.5 

                                                 
20

 This issue is addressed in more detail in section 2.4. 
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discusses other issues in the econometric estimation of learning rates, such as 

endogeneity and omitted variable bias. 

2.2. One-factor or two-factor learning-curve 

The distinction between one-factor and two-factor learning curves resides in the 

variable(s) which are assumed to influence costs. In the case of one-factor learning 

curves, costs reductions are obtained only with increases in cumulative experience. 

In contrast, two-factor learning curves have been developed recently to include the 

impact of R&D activities on costs, described as learning-by-researching (LBR). 

Thus, two-factor learning curves represent cost reductions from experience gains and 

R&D expenditures into one model. 

        
     

  
 (3.4) 

Equation 3.1 in the previous section represents the one-factor learning curve, while 

equation 3.4 represents the two-factor learning curve
21

. The only difference between 

the two equations is the addition of the variable   , representing an R&D knowledge 

stock. To the same extent that α is the LBD elasticity, β is the elasticity of learning-

by-researching. Ht is considered a function of the previous knowledge stock and 

R&D expenditures, as represented in equation 3.5
22

. 

                     (3.5) 

     represents research and development expenditures at time t, while x is a time 

lag between the expenditures and their contribution to the knowledge stock
23

. 

Another generalisation is the existence of depreciation δH of the knowledge stock 

                                                 
21

 Adapted from Kahouli-Brahmi (2008) for consistency with the notation used in this thesis. 
22

 A general formulation is adopted here to match the notation in this thesis and to reflect the equation 

chosen in Kahouli-Brahmi (2008). 
23

 The time lag is included here to keep the equation general. 
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which refers to the general treatment of the capital stock in economics. This two-

factor learning curve leads to a new regression model in the same form as equation 

3.3 but with an additional independent variable (equation 3.6). 

                                 (3.6) 

Originating in Kouvaritakis et al. (2000), two-factor learning curve estimation 

models became popular in the mid-2000s with Klaassen (2005). Kahouli-Brahmi 

(2008) reports a large number of studies, using one and two-factor learning curves. 

Comparing both LBD and LBR rates, the review also finds a wide range of 

estimates. The 77 Learning-By-Doing rate estimates range from -17% for wind 

turbines between 1981 and 2000 in Europe (Neij et al., 2003)
 24

, to 41.5% for waste 

to electricity technology globally from 1990 to 1998 (Jamasb, 2007). Similarly, 

variability exists in the 17 Learning-by-Researching estimates. LBR rates range from 

1.25% for global coal conventional technologies to 43.7% for waste to electricity 

technology (Jamasb, 2007). Although both specifications (one and two-factor 

learning curves) seem to provide a wide range of estimates, the choice of 

specifications is a factor generating variation in itself. Soderholm and Sundqvist 

(2007) address the issue of modelling specification as a major cause of variability in 

estimates. Using a single panel dataset of wind power in four European countries 

from 1986 to 2000, they allow the model specification to vary and find that the use of 

one or two factor learning curves changes the LBD estimates
25

. This observation is 

also made in Jamasb (2007). In a recent meta-analysis of learning rate estimates for 

wind power, Lindman and Soderholm (2012) also address this issue and confirm that 

                                                 
24

 Once again, some negative estimates are found in the review. Neij et al. (2003) also uses price data 

of wind turbines instead of costs, corresponding with the negative findings of Claeson (1999) found 

for GTCC power plants. 
25

 Other model specifications explored in Soderholm and Sundqvist will be explored in section 2.4. 
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the use of single-factor learning curves tends to produce higher LBD estimates than 

two-factor learning-curves, as it incorrectly attributes some costs reductions from 

R&D to experience accumulation. 

2.3. Different learning rates for different phases of technological 

maturity? 

The time period covered in the data has also been identified as a major source of 

variations in estimates. McDonald and Schrattenholzer (2001) and Kahouli-Brahmi 

(2008) report different estimates for the same technologies over different time 

periods. For instance, MacGregor et al. (1991) find a decrease in learning rates for 

gas turbines between 1958 and 1990. They find a rapid learning rate of 22% between 

1958 and 1963, and a 9.9% learning rate between 1963 and 1980. McDonald and 

Schrattenholzer (2001) attributes part of the variation in LBD rates between time 

periods to the possibility that experience depreciates over time. According to this 

argument, as technologies mature with time, lower gains from learning-by-doing are 

available.  Jamasb (2007) furthers this argument taking into consideration both the 

LBD and LBR effects. Referring to the different stages of the technological change 

process from Schumpeter (1942), as well as the demand-pull vs. supply-push debate, 

the paper points out that LBD and LBR rates differ at different stages of technology 

maturity. Using a two-factor learning curve model, Jamasb (2007) differentiates 

between 12 technologies according to their “perceived” level of technological 

development. The technologies are broadly classified into 4 stages of development: 

Emerging (solar thermal and off-shore wind power), evolving (nuclear power, waste 

to electricity and onshore wind power), mature (supercritical coal, conventional coal, 

lignite, GTCC from 1990-1998 and large hydropower) and reviving technologies 
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(GTCC 1980-1989
26

, CHP and small hydropower). Using this classification, he finds 

significantly different LBD and LBR rates for technologies at different stages of 

maturity. The estimations show that both emerging technologies and mature 

technologies exhibit low LBD and LBR rates, suggesting that technological change 

is more difficult at very early and very late stages of the technology development 

process. In contrast, evolving technologies display high LBD and LBR rates 

signifying that opportunities for future development promotes technological progress 

through both increases in experience and R&D expenditures. Finally, reviving 

technologies exhibit low LBD rates but high LBR rates. These findings are reported 

from Jamasb (2007) in Table 3.1. 

Table 3.1: Technology maturity and learning rates 

 

These findings have important implications for both the econometric and modelling 

literature. The current specification of the learning curve (whether it is one or two 

factor learning curves) does not allow for time-varying learning rates. This 

specification suggests that as long as experience increases, cost reductions are 

achievable, without bounds, which is likely impossible in industries. Jamasb (2007) 

                                                 
26

 The combined cycle gas turbines data was separated into two technologies due to the existence of a 

structural break in the data (Jamasb, 2007). 
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confirmed that once technologies have entered the evolving phase, the learning 

opportunities for these technologies might reduce in the future. These findings 

advocate in favour of an alternative functional form that would introduce more 

flexibility in the learning-by-doing behaviour. 

2.4. The choice of performance and experience indicators 

Another important observation on the econometric estimation of learning rates was 

identified in McDonald and Schrattenholzer (2001). They point out that variations in 

the estimates are likely to be caused by differences in the choice of performance and 

experience indicators. In the context of the learning curve, a performance indicator 

refers to the variable affected by technological change (e.g. technology costs or 

price) while an experience indicator refers to the variable embodying experience 

accumulation (e.g. cumulative production, cumulative capacity). In the econometric 

studies of learning rates, the performance indicator is the dependent variable while 

the experience indicator is the independent variable.  

In terms of performance indicators, econometric studies cited in the reviews tend to 

use either cost measures or price measures. Cost measures include technology 

investment costs in $/kW of installed capacity (see for example Kouvaritakis et al., 

2000; Klaassen et al., 2005; Jamasb, 2007; or Soderholm and Klaassen, 2007) or 

production costs in $/kWh of electricity production (see for example Wene, 2000; 

IEA, 2000; Ibenholt, 2002; and Neij et al., 2003). Price measures, such as the 

technology price in $/kW for investment in new capacity (see for example Claeson, 

1999 and Neij, 2003) or the sale price of electricity generated in $/kWh (see for 
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example Fisher, 1974 or IEA, 2000), are used as a proxy for technology costs and are 

less commonly used.  

In terms of experience indicators, most econometric studies have used one of two 

main options. Some papers use cumulative installed capacity in MW, as it embodies 

investments in new capital goods, e.g. new wind turbine or a new gas power plant. 

Examples of such studies are numerous and include MacGregor et al. (1991); 

Kouvaritakis et al. (2000); Klaassen et al. (2005); Jamasb (2007); and Soderholm & 

Klaassen (2007). Other studies have used cumulative production in TWh, embodying 

the experience in producing electricity using one technology. Examples of these 

studies include Fisher (1974); IEA (2000); and Wene (2000). Fewer studies have also 

represented experience using cumulative sales of electricity (for example Solar PV 

estimates in IEA, 2000). In these studies, performance and experience indicators are 

closely linked. Studies using investment costs or price in new capacity usually chose 

cumulative capacity to embody experience, while studies using production costs or 

prices to represent performance generally use cumulative production to embody 

experience
27

.  

Recent papers (since 2005) and interestingly most studies considering two-factor 

learning curves, have used investment costs ($/kW) as a measure of technological 

progress and cumulative capacity as a measure of experience. McDonald and 

Schrattenholzer (2001) observe that using production costs and cumulative 

production leads to higher learning rate estimates than when using investment costs 

and cumulative capacity. For example, IEA (2000) estimates LBD rates for wind 

                                                 
27

 Studies using production price for a performance measure can sometimes use cumulative sales to 

represent experience (IEA, 2000). 
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power both with production costs and cumulative production (32% for the US and 

18% for the EU) and investment costs and cumulative capacity (8% for Germany and 

4% for Denmark). Production costs decrease faster with cumulative production than 

investment costs with cumulative capacity. 

2.5. Other issues with econometric estimation 

Other issues have been raised recently with regards to the econometric estimation of 

learning rates for energy technologies. These issues have been recognised to be 

factors in the variability of the learning rate estimates and are often cited as 

weaknesses of the learning curve estimation. Two major issues are explored in this 

section: omitted variable bias and the endogeneity problem. 

Soderholm and Sundqvist (2007) suggest that omitted variable bias is a major 

problem in the estimation of the learning rates for wind power
28

. They suggest the 

existence of other explanatory variables such as input prices and scale effects. Isoard 

and Soria (2001) first explore the implications of differentiating between economies 

of scale and learning-by-doing for energy technologies. They refer to returns to scale 

as a short-term issue as they change with changes in output, whereas learning effects 

are long-term issues, since they shift the production possibility frontier. Both Isoard 

and Soria (2001) then Soderholm and Sundqvist (2007) derive a Cobb-Douglas cost 

function in which advances in technology are determined through a three-factor 

learning curve. This enables them to introduce scale effects in the regression model.  

                                                 
28

 In econometrics, if an independent variable with a non-zero coefficient is excluded from a 

regression model but is correlated with any of the other variable in the model, then the coefficients 

estimates are biased. 



80 

 

They obtain a logarithmic econometric specification of the Cobb-Douglas cost 

function as shown in equation 3.7: 

                                     (3.7) 

Where α and β are the LBD and LBR elasticity parameters respectively, and γ is an 

unknown parameter representing   
   

 
 where r is the return to scale parameter. Qt 

is the level of output at time t. In the case of constant returns to scale r = 1, μ = 0 and 

the model returns to a simple two-factor learning curve.  

Soderholm and Sundqvist (2007) find a negative μ estimate implying increasing 

returns to scale. The introduction of the scale effect is found to be significant at the 

1% level when added to the one-factor learning curve and the LBD rate decreases 

from 5% (without scale effects) to 1.8% (with scale effects). However, in the two-

factor learning curve they find that the addition of scale effects is not significant. 

They also explore the impact of another omitted variable on the model, namely 

prices. In their study for wind technology, they add a variable to the regression 

model in equation 3.7, representing feed-in tariffs set by policy-makers
29

. They find 

this new variable to be statistically significant and the associated coefficient to be 

positive. This signifies that an increase in feed-in prices lead to increases in 

technology costs. This may be due to wind power generator receiving higher tariffs 

that gives them an incentive to choose less favourable sites or to the decrease in 

competition leading to less cost reduction efforts.     

                                                 
29

 Their analysis is restricted to wind energy technology in four countries, where the feed-in price 

(received by wind electricity generators) is determined either in a fixed tariffs system (Denmark, 

Germany, Spain) or a competitive bid system (UK). 
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Another issue raised by Soderholm and Sundqvist (2007) is the presence of 

endogeneity in the regression model. Cumulative capacity does not only reduce 

investment costs through LBD, it is also likely to be influenced by investment costs 

as well, so that its inclusion as an experience indicator creates a potential 

endogeneity problem. As investment costs decrease, more capacity will be installed, 

while more capacity leads to decreases in costs. Using Instrumental Variable (IV) 

estimation to counteract endogeneity, they find higher LBD rates and lower LBR 

rates than previously. In parallel to this research, Soderholm and Klaassen (2007) 

and Jamasb (2007) deal with the endogeneity problem by using a system of 

simultaneous equations; they introduce the concept of a diffusion equation which 

would be simultaneously solved with the learning curve. Soderholm and Klaassen 

(2007) introduce a diffusion equation where cumulative capacity is determined by 

the investment cost (per KW), the feed-in price for wind power, the price of coal as 

input for electricity production and finally a variable representing the “legal” or 

policy environment towards the technology
30

. Using the same two-factor learning 

curve model as Soderholm and Sundqvist (2007), they find a LBD rate of 3.1% and a 

LBR rate of 13.2% which are both smaller than previously reported estimates.  

Jamasb (2007) uses a slightly different diffusion model where the capacity is 

determined by the investment costs (per kW) and a time trend only. This issue of the 

time trend, also raised by Papineau (2005) and Soderholm and Sundqvist (2007), 

relates to the importance of separating the effects of learning from the effects of time 

on technological change. The latter find that including a time trend significantly 

impacts on the LBR rates whereas it has little impact on LBD rates. However, in the 

                                                 
30

 This “environment” variable is hard to quantify and therefore the amount of government R&D 

spending on each technology is used as a proxy (Soderholm and Klaassen, 2007). 



82 

 

meta-analysis of learning rates for wind power estimations, Lindman and Soderholm 

(2012) find that the inclusion of the time trend does not significantly explain 

variations in estimates. 

2.6.  Summary 

Energy technologies have been the object of many recent econometric studies 

attempting to estimate technological change through learning effects. The estimates 

produced by these studies vary across technologies according to their level of 

technological development, but they also vary across studies looking at the same 

technology. These variations have been explained through differences in estimation 

models, different time periods and geographical scope as well as differences in the 

variables and definitions used. Despite the large consensus that learning rates may 

vary across a technology’s life-cycle, no dynamic estimation model has been 

proposed to address this issue. Similarly, the role of spillovers (both geographical 

and between technologies) has not yet been properly addressed
31

.  

Despite the econometric issues associated with estimating the learning rates, the 

Energy-Economy-Environment (EEE) modelling literature has implemented 

endogenous learning curves and used the estimates to calibrate models. The next 

section of this chapter reviews the EEE modelling literature that has implemented 

learning curves. It identifies several forms of learning curves which reflect some of 

the issues addressed in this section.  

                                                 
31

 Soderholm and Klaassen (2007) propose a first attempt at quantifying the impact of R&D spillovers 

on costs reductions. They report statistically insignificant results but a lack of data limits their 

analysis. 



83 

 

3. Learning-by-doing in Energy-Economy-Environment 

models 

As noted in the literature review of Chapter 2, Energy-Economy-Environment (EEE) 

models have recently transitioned from modelling innovations exogenously to 

introducing endogenous specifications of technological change. Two methods have 

been the most commonly applied to represent technological change in models: R&D-

driven knowledge accumulation and Learning-by-doing (LBD). As noted previously, 

the choice of preferred method mostly depends on the theoretical foundations of the 

model. Bottom-up models, which are developed in the engineering literature, tend to 

introduce LBD technological change due to its strong empirical foundations, while 

R&D-technological change is preferred by top-down models influenced by the 

macroeconomic endogenous growth literature.  

However, LBD has increasingly been implemented in top-down models as well, in 

response to numerous studies showing its crucial role in technology development. 

LBD is currently the most popular method to represent technological change in EEE 

models, as can be explained by the simplicity of LBD in its original functional form. 

The implementation of LBD in EEE models is the focus of this chapter. Although 

most bottom-up models have introduced the simple learning curve specification 

described above, this specification can pose theoretical, methodological and 

computational problems for some models. In particular, some top-down models 

modify the traditional R&D technological change process to accommodate 

endogenous LBD, modifying the LBD function itself. This section reviews the 

modelling literature of all types, which have introduced LBD. In doing so, it 
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identifies the major variations in LBD specifications and their origins in the 

modelling literature.  

3.1. Traditional learning curves origins in engineering models 

3.1.1. First Bottom-up models with LBD 

Because of their high degree of technological detail on the energy system, bottom-up 

models have been the preferred tool for the analysis of energy policy instruments that 

target specific technologies. They have also been the first models to integrate 

learning-by-doing as an endogenous feature. The first bottom-up model to introduce 

LBD is the MESSAGE model (Model for Energy Supply Strategy Alternatives and 

their General Environmental Impact) developed by Messner (1997) and Grübler and 

Messner (1998). In this dynamic linear model of the energy system, the objective 

function minimises the sum of discounted overall costs of the energy system. Using 

the traditional learning curve, MESSAGE introduces endogenous technological 

change, as follows: 

           
   (3.8) 

Where    represent investment costs of the technology,    represent the costs of the 

first unit,     is the cumulative installed capacity and α is the learning elasticity. 

Investment costs are a decreasing exponential function of cumulative experience 

embodied here in cumulative installed capacity. This corresponds to the major one-

factor learning curve model used in the econometric literature estimating learning 

rates for energy technologies, as shown in equation 3.1 previously. 

Introducing this LBD specification for six energy technologies at stages of different 

technological development (Advanced Coal, Gas combined cycle, Nuclear, Wind, 
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PV and Solar thermal), Messner (1997) shows that early investments in new energy 

technologies are needed in order to lower the overall costs of the energy system. 

Messner (1997) concludes that the traditional “backstop” technology modelling 

method, which assumes that a low-cost technology will become available at some 

point in time without requiring upfront investments, is misleading for policy analysis. 

Furthermore, early investments in new technologies are crucial to realise their 

technological improvement potential. Grübler and Messner (1998) subsequently use 

the MESSAGE model with endogenous learning in a climate policy context. Their 

simulations explore the emission adjustment paths to a few IPCC scenarios with CO2 

concentration limits, and the results confirm that early investment in demonstration 

of new technologies is a requirement to meet long-term emission targets at lower 

costs.  

Following this advancement in the MESSAGE model, other bottom-up models have 

adopted this specification of LBD. Mattsson and Wene (1997) introduce LBD 

technological change in another engineering model of the energy sector. In the 

GENIE model (Global ENergy system with Internalized Experience curves), the 

objective is the cost-minimization of the global energy system; and learning curves 

are applied to photovoltaic and fuel cells technologies. The best of the known 

solution is identified, where advanced coal and GTCC dominate electricity 

production.  This results in the quadrupling of CO2 emissions from 1995 levels, 

illustrating the risk of technology lock-in, which could prevent emerging 

technologies from gaining experience through investments and significantly 

penetrating the energy mix. A CO2-constrained scenario is also presented, PV and 

fuel cells dominate electricity production, but with an increase in the overall costs of 
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the energy system. However results show that in this scenario, the costs of fuel cells 

and PV are considerably reduced through earlier investments in capacity.  

In parallel to the MESSAGE and GENIE models, applications of the MARKAL 

model (acronym for MARKet ALlocation) also introduced endogenous learning 

curves (Baretto and Kypreos, 1998 and Seebregts et al., 1998; 2000). Seebregts et al. 

(1998) present a European version of MARKAL with 15 European Union countries 

and 500 energy technologies and processes. In the majority of scenarios analysed, 

LBD is endogenized for only 3 key technologies
32

 (on-shore wind, fuel cells and 

solar cells) to limit the impact of endogenous LBD on the model results. The same 

learning curve described above is used. Several scenarios with and without learning 

are run introducing a CO2 emission limit or a carbon tax. There are compared to a 

base case scenario, where growing environmental concerns only displace a 

comparatively limited amount of polluting and energy-intensive industries. In the 

base case scenario, two of the three key technologies do not penetrate the system 

significantly if LBD is not present (fuel and solar cells). Results also show that, in 

the presence of learning, technologies with high costs but with previously limited 

applications tend to get installed to their maximum capacity levels to optimally 

exploit the costs reduction potential, leading to cases of technology “lock-in” (e.g. 

PV). But if the investments do not start in the short term due to competitiveness 

issues, then this can lead to long-term technological “lock-out” (e.g. fuel cells).  

                                                 
32

 “Key technologies” are defined as technologies that are “clearly distinctive with respect to the 

energy conversion process” (Seebregts et al., 1998 p. 41). These key technologies can each have 

numerous applications, e.g. 20 different types of heat pumps, heat pump being a key technology.  
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3.1.2. Further advancements with hybrid models 

Hybrid bottom-up/top-down models have also adopted this “traditional” learning 

curve specification. This choice is motivated by the method used to construct them: 

they typically incorporate the technological details of the energy system from 

bottom-up models into top-down macro-economic frameworks. In an example of 

such model, Kypreos and Bahn (2003) and Manne and Richels (2004) develop 

MERGE-ETL (Model for Estimating the Regional and Global Effects of greenhouse 

gas reductions with Endogenous Technology Learning). MERGE-ETL is specifically 

designed to clarify the role of LBD with respect to the choice of CO2 abatement 

policy. MERGE links nine regions of the world, each represented by an individual 

bottom-up energy system model, into a global macro-economic growth model. 

Endogenous technological change is represented by a traditional learning curve for 8 

technologies in the bottom-up part of the model.  

Bahn and Kypreos (2003) compare different CO2 limit scenarios, with and without 

learning, and find that LBD reduces energy production costs over time: the energy 

factor becomes cheaper compared to capital and labour, as the capacity of learning 

technologies builds up. In terms of the economic impact of CO2 policy, results show 

that LBD reduces the GDP losses from CO2 constraints, and the tougher the 

constraint, the larger the benefits from LBD.  

Manne and Richels (2004) use a later version of MERGE where a traditional learning 

curve is implemented on a non-defined energy technology entering the system in 

later years (backstop). The model is used to compare CO2 abatement scenarios 

where constraints are imposed on the LBD technology, in terms of its potential for 

cost reductions and for expansion. Results show that with high cost reduction 
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potential and no expansion constraints, the CO2 emission pathway is lower than 

otherwise. In terms of the costs of CO2 abatement, LBD is found to substantially 

reduce the overall costs of the transition to the CO2 constraint. 

Another example of hybrid model is MESSAGE-MACRO (Rao et al., 2006), which 

combines a version of the MESSAGE model described above with LBD, with the 

MACRO top-down framework also used in MERGE (endogenous growth model). 

Their findings confirm that LBD can lead to overall long-term costs reduction of the 

energy system under a carbon constraint through short-and medium-term investments 

in technologies with learning potential.  

3.1.3.  Extensions with two-factor learning curves 

Some bottom-up and hybrid models have recognised the importance of R&D effort, 

especially in the early stages of a technology development. These models have 

extended the traditional specification of LBD in order to represent two-factor 

learning-curves, including R&D-induced technological change, in addition to 

experience gains. An example of such bottom-up model is ERIS (Baretto and 

Kypreos, 2004 and Miketa and Schrattenholzer, 2004). ERIS (Energy Research and 

Investment Strategies) introduces a two-factor learning curve where costs are a 

decreasing function of cumulative installed capacity and knowledge stock, which 

grows with R&D investments and depreciates over time.  

With a two-factor learning curve applied to wind and photovoltaic energy, Miketa 

and Schrattenholzer (2004) look at both the optimal R&D expenditures and capacity 

deployment for each technology in two scenarios: one in a world where there is no 

constraints on total R&D expenditures, and the other where the technologies are 



89 

 

competing for R&D. They find that in the non R&D-constrained world, R&D 

expenditures increase late in the technology development phase, because R&D is 

better utilised when a market is already established for the technology. Interestingly, 

in the R&D-competition case, neither technological lock-in nor crowding-out (where 

one technology crowds-out the other by being attributed most of the finite R&D 

expenditure supply) occurs.  R&D expenditures are found to lead to overall energy 

system costs reductions compared to the case without opportunity for R&D. 

Most of the models (bottom-up and hybrid) described above focus on total system 

costs under climate change policy constraints and confirm that introducing learning 

curves for energy technologies can drastically change the costs of abatement policies 

and change the time paths of renewable technology diffusion.  

3.1.4. Top-Down models with traditional learning curves 

A few top-down economic models have been influenced by the engineering approach 

to energy modelling and have introduced LBD using the same traditional learning 

curve specification as bottom-up models. Van der Zwaan et al. (2002) develop the 

DEMETER model (DE-carbonisation Model with Endogenous Technologies for 

Emission Reductions). This study presents a global macroeconomic model of climate 

change, where fossil and non-fossil energy inputs enter a CES production function of 

consumer goods. Learning curves are implemented in both energy sectors, through 

which cumulative capacity leads to costs reductions in both investments in new 

capital and maintenance and operation efforts; although the costs reduction potential 

is assumed much more limited for fossil-fuel than non-fossil-fuel energy. Alternative 

scenarios are designed: with targets for global temperature increase, corresponding to 

CO2 concentration limits, with and without endogenous learning and with 
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endogenous or exogenous energy demand. The results largely confirm the 

conclusions of bottom-up models, that the presence of LBD leads to earlier emission 

abatement to meet the imposed carbon constraints and also reduces the overall costs 

of compliance.  

MIND (Model of INvestment and technological Development, Edenhofer et al., 

2005, 2006) is another example of top-down model with endogenous learning in a 

renewable and non-renewable energy sectors. In MIND, learning occurs as a side 

effect of extraction activities in the fossil-fuel sector and as a function of cumulative 

capacity in the renewable energy sector. Findings show that the introduction of 

endogenous technological change reduces the costs of climate change mitigation; 

LBD reduces the losses in global welfare from carbon constraints. 

 All the models described in this section have used the empirically derived 

specification of the learning curve, where specific investment costs for technologies 

are a decreasing function of cumulative installed capacity; while a few have used a 

two-factor learning curve specification. These models confirm that introducing 

endogenous technological change leads to earlier investments in cleaner technologies 

and reduce the overall costs of the energy system.  

However an alternative specification of LBD has been applied in EEE models, 

emerging from the top-down economic literature, influenced by the emergence of 

endogenous growth theory in macroeconomics. This is explored in details next. 



91 

 

3.2.  The influence of Endogenous Growth theory on Learning-by-

Doing 

The link between economic theory and the treatment of endogenous technological 

change in top-down models is strong. This has led to the development of new 

specifications for learning-by-doing, based on the principles advocated in the 

endogenous growth literature. 

3.2.1. Endogenous Growth Theory and R&D 

Informed by the extensive economic theory literature of endogenous growth (Romer, 

1990; Lucas, 1988; Aghion and Howitt, 1992; Grossman and Helpman, 1994; Jones, 

1995), early top-down models with endogenous technological change focus on the 

effects of R&D spending on knowledge accumulation (Loschel, 2002). In contrast to 

the traditional neoclassical growth models with exogenous technological change and 

diminishing returns to capital, new endogenous growth theory treats innovation as an 

economic activity in and of itself, resulting from private profit-maximizing decisions. 

Generally, the stock of knowledge (representing the level of technology in the 

production function) accumulates over time through the use of a separate 

“knowledge” sector production function, as formally described in Chapter 2, and 

shown again in equation 3.9 below: 

 ̇   [        ]
 [        ]

   
 
  (3.9) 

Knowledge, or efficiency, At grows in every period through a production 

(accumulation) function, depending on the shares of labour and capital stocks 

devoted to research activities. Thus, technological change is dependent on the 

allocation of capital and labour between R&D and output. Another important concept 
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is that of “returns to knowledge”. The value of the ϕ exponent determines the 

influence of the stock of knowledge on the accumulation of new knowledge and 

embodies returns to knowledge. In the simplifying case      , the creation of new 

ideas is independent of the past stock of knowledge. If      , there are positive 

external returns to knowledge, i.e., idea creation is made easier by previous 

accumulation of knowledge. This concept is commonly referred to as “standing-on-

shoulders”. Finally if    , there are negative external returns to knowledge; the so-

called situation of “fishing-out”, where the pool of knowledge is considered finite, 

thus any past advancements renders future accumulation harder. Technology 

(knowledge) is voluntarily treated as non-rival in this theory, and it enters both the 

R&D and general production function entirely, creating the potential for infinite 

growth. 

Influenced by the prevalence of such economic models in the 1990s, early models of 

climate change and policy have introduced endogenous technological change through 

an R&D production function. These models have different objectives than traditional 

engineering energy models, and focus on the environmental and economic impact of 

technological change. A number of these models were cited in Section 4.3 of Chapter 

2. Because the focus of this chapter is learning-by-doing, these models are not listed 

here. However, their influence on top-down models with LBD is crucial, and this is 

discussed in the next section. 

3.2.2. Introducing Learning-by-Doing in R&D models 

Goulder and Mathai (2000) is the first example in the literature of EEE top-down 

models which combines the R&D approach with LBD. In a partial equilibrium model 

of knowledge accumulation with a central planner, this paper examines two 
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specifications for endogenous technological change, where increases in the stock of 

knowledge in general, reduce the costs of emission abatement activities sector. In the 

first specification, the stock of knowledge is an increasing function of investments in 

R&D. In the LBD case, the stock of knowledge is an increasing function of the 

abatement activities themselves (reflecting this idea of costs reduction associated 

with experience). In an effort for consistency in the analysis, they introduce both 

R&D and LBD technological change in the same knowledge accumulation function 

where “standing on shoulders” occurs.  

This treatment of LBD is different from the traditional learning curve as LBD is 

effectively treated as a knowledge production function increasing the knowledge 

stock in each period. Importantly, the production of new knowledge from learning 

effects is dependent on previous levels of learning-by-doing (here “standing-on-

shoulders” occurs
33

). Goulder and Mathai (2000) explore analytically and 

numerically both specifications under two central planner objective functions: a cost-

effectiveness criterion (obtaining and maintaining a given level of atmospheric CO2 

concentration at the lowest cost) and a benefit-cost criterion (where the concentration 

target is set endogenously to optimise the trade-off between benefits from carbon 

abatement and costs of abatement). The paper finds that including R&D or LBD 

technological change reduces the overall costs of reaching a concentration target and 

reduces the optimal carbon tax. The results also point out that the presence of LBD 

and R&D technological change leads to larger abatement efforts (in the benefit-cost 

criterion) than otherwise. Finally, they find that despite an overall increase in 

                                                 
33

 They also conduct a sensitivity analysis on the case of “fishing-out” and find as expected that the 

effects of technological change on the results are diminished. 



94 

 

abatement efforts, the R&D technological change leads to delayed abatement due to 

the potential for costs reductions in the future.  

3.2.3. A new approach to learning from Endogenous Growth Theory 

In the spirit of Goulder and Mathai (2000), other models have introduced LBD as a 

stock-updating production function. Rasmussen (2001) presents a multi-sectoral 

general equilibrium model for Denmark to examine the influence of learning-by-

doing in renewable energy technologies. Renewable energy is represented in two 

sectors: a renewable energy production sector and a renewable energy capital supply 

sector. Learning affects the production function of the renewable energy capital 

sector, through technological improvements in the productivity of inputs. In this way, 

technological change is only embodied in new vintages of capital. The stock of 

knowledge, embodying input productivity, is increased (updated) every period, as a 

function of the renewable capital sector production in that period. Like Goulder and 

Mathai (2000), knowledge is also affected by previous knowledge stock, but in 

Rasmussen (2001) it corresponds to the case of fishing-out, where past accumulation 

in the knowledge stock lead to less technological change potential in the future.  

This paper compares a business-as-usual scenario, with a CO2 abatement scenario 

(where a cap and trade of emission is set up to be consistent with the Danish 

commitments to the Kyoto Protocol). Both scenarios are run with and without 

endogenous LBD. Including LBD for energy technology is found to significantly 

reduce the total welfare costs of CO2 abatement. Rasmussen (2001) also finds that 

including LBD leads to less short-term abatement efforts and less short-term 

investments in the renewable sector, which seems to contradict models with 

traditional learning curves but confirm Goulder and Mathai (2000) findings with 
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R&D technological change. This delayed abatement is explained by the tendency of 

forward-looking firms to postpone their investments since the costs of renewable 

energy will reduce in the future. Rasmussen (2001) also observes that because of the 

formulation chosen for LBD with strong diminishing returns, the long term impact of 

technological change on productivity growth is not very sensitive to abatement 

efforts.   

Castelnuovo et al. (2005) propose a modification to the original RICE model 

(Nordhaus and Yang, 1996), in which learning occurs directly in the production 

function. Following the idea of Goulder and Mathai (2000), Castelnuovo et al. (2005) 

investigate technological change with two formulations: one with R&D expenditure 

augmenting a knowledge stock and the other one with LBD. Alternative formulations 

are included directly in the production function. In the case of R&D-driven 

technological change, the knowledge stock increases the productivity of both labour 

and capital factors. In contrast with LBD, increases in the capital stock raise 

productivity, by augmenting the output elasticity of capital by the learning elasticity 

in the Cobb-Douglas production function (generating increasing returns to scale). 

Additionally, the emissions to output ratio is also modified to be reduced with R&D 

or LBD knowledge. The model is divided into 6 regions (USA, Japan, Europe, 

Former Soviet Union, China, and the Rest-of-the-World) each with a central planner 

that can decide the level of abatement. A business-as-usual scenario is compared 

with two Kyoto abatement commitment scenarios: one where trade of CO2 permits 

between regions is allowed and one where is it not. Each scenario is optimised under 

R&D and under LBD technological change specifications. Findings show that both 

endogenous R&D and LBD technological change reduce the costs of compliance to 
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the Kyoto Protocol. A flexible compliance mechanism with trade is confirmed less 

costly than the alternative scenario. Other findings show that LBD specification leads 

to larger welfare losses than R&D technological change, due to the addition of one 

control variable (investments in R&D) in the latter case, which better redistributes 

abatement efforts between agents. 

A different version of this LBD specification is proposed by Bosetti et al. (2006) in 

another extended version of the RICE  model (Nordhaus and Boyer, 1999) in which 

they incorporate endogenous technological change from both LBD and R&D 

sources. In the FEEM-RICE model (Fondazione Eni Enrico Mattei), Bosetti et al. 

(2006) create an Energy Technological Change Index (ETCI) to embody 

technological progress in the production function. ETCI is an exponential function of 

cumulative abatement efforts and the knowledge stock, which increase period-by-

period with the abatement flow and R&D expenditures respectively
34

. Increases in 

the ETCI raise the productivity of energy inputs in the economy-wide production 

function, and also enters the carbon emission function, which is linked to energy 

inputs into production. In contrast with the RICE model where carbon-intensity of 

energy input decreases exogenously over time (Boyer and Nordhaus, 2000), in 

FEEM-RICE, carbon intensity is a decreasing function of ETCI. Bosetti et al. (2006) 

compares three different carbon stabilisation scenarios optimised by the central 

planner, in terms of their impact in inducing technological change and their impact 

on GDP losses from the carbon constraint. Findings suggest that including both R&D 

and LBD technological change reduces the costs of compliance with carbon policy.  

                                                 
34

 Representing learning-by-doing and R&D technological change respectively. 
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In comparison with the bottom-up literature which implements a traditional learning 

curve, for the energy sector specifically, top-down models have been focused more 

largely on the costs of compliance to CO2 emission reduction policies. These models 

have largely been influenced by endogenous growth theory and have adopted a 

variety of LBD specification deriving from the concept of production of a knowledge 

stock. Moreover, where bottom-up models seem to provide unified conclusion about 

the impact of endogenizing technological change, results from top-down models are 

less in agreement. Although most models predict that endogenous technological 

change reduces the overall costs of abatement, they differ in their conclusions 

concerning the impact of policy measures on induced technological change. Overall, 

the observations made in Sections 2 and 3 confirm that the specification of the 

learning-by-doing phenomenon is an important determinant of modelling results. The 

objective of the next section is to explore and compare the alternative specifications 

identified in this literature, through implementing them in micro-simulations of 

learning-by-doing, in a partial economic model of production. 

4. Micro-simulations of alternative LBD specifications 

Since the representation of learning-by-doing varies between Energy-Economy-

Environment models, it is likely that the choice of specification will impact 

simulation results. In this section, this is explored by testing the several alternative 

specifications identified in the previously discussed literature
35

. The objective of this 

section is to explore these alternative specifications of LBD in a simple micro-

simulation exercise, and draw preliminary conclusions about the choice of models 

                                                 
35

 The differences between these specifications originate either in the review of econometric 

estimations of learning curves in Section 2 or in the review of models used for policy analysis which 

endogenize LBD in Section 3 



98 

 

for our subsequent chapter.  Section 4.1 develops the simple partial microeconomics 

model of production used for this exercise. Section 4.2 identifies the alternative 

specifications of LBD. Section 4.3 reports and compares the results of the micro-

simulations.  

4.1. Choice of model 

4.1.1. The Production Function 

In order to provide a clear picture on the impact of LBD specification on modelling 

results, a simple model is chosen to represent LBD in production. One production 

function is represented where LBD increases the productivity of inputs. A simple 

Cobb-Douglas production function is chosen for this analysis. The production 

function is described in equation 3.10: 

      [  
     

  ] (3.10) 

In this equation,    is the output of production at time t,    is the total factor 

productivity parameter,    and    are the stock of capital and labour used in 

production at time t respectively.    and    are the positive output elasticities of 

capital and labour respectively. Constant returns to scale in this simple modelling 

exercise so that          . 

The learning-by-doing phenomenon influences the production function through the 

total factor productivity parameter   . This is an important assumption, where costs 

reductions from learning-by-doing are embodied in improvements in the productivity 

of both factors. This assumption is explained in more details in section 4.1.2. 
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4.1.2. Should technological progress be embodied in costs reductions or in 

productivity gains? 

As shown in Sections 2 and 3, the variable embodying technological progress varies 

between different studies. Studies looking at the econometric estimation of learning 

curves use both production and investment costs, but have recently preferred 

investment costs. In the modelling literature, bottom-up engineering models are 

concerned with energy system costs and embody technological progress in 

investment costs. In contrast, economic top-down models are based on production 

functions, where technological progress corresponds to a change in a knowledge 

parameter, which improve input productivity. It is important to differentiate between 

these alternatives because they all technically refer to different technological 

improvements.  

Investment costs, as used in the bottom-up engineering models, encompass all the 

costs associated with the installation of new capacity (planning, construction, 

equipment, etc…). With LBD, these investments costs reduce with cumulative 

experience, generally a result of installing new capacity. In bottom-up models, this 

LBD relationship is directly described in the cost function. In contrast, representing 

LBD in top-down models is more complex, as noted in Section 3. Economic models 

with endogenous technological change are based on foundations from growth theory 

and generally use production functions, where technological change is embodied in a 

knowledge stock. Improvements in the knowledge stock improve the productivity of 

inputs. More precisely, the knowledge stock can improve the productivity of capital, 

labour or both equally, corresponding to the Solow, Harrod and Hicks-neutral 

definition of technological change respectively. With input price held constant, the 
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productivity of inputs is inversely related to cost reductions. The major distinction 

between investment costs in engineering models and the economic cost function is 

that the latter costs are influenced not only by the level of technology, but also by the 

prices of inputs to production. 

It can be noted that the issue of technological change that is labour, capital or even 

energy-saving is not raised with the use of the Cobb-Douglas function.  In Cobb-

Douglas, improvements in either capital or labour productivity always correspond to 

a change in total factor productivity. This will however be relevant with a Constant 

Elasticity of Substitution production function, and is discussed in Chapter 4.  

In the simple model used in this chapter with a Cobb-Douglas production function 

and constant returns to scale, the parameter embodying technological change is total 

factor productivity   . As shown in equation 3.10, increases in    leads to Hicks-

Neutral technological change, i.e. less capital and labour are necessary to produce the 

same level of output (or more output can be produced using the same amount of 

capital and labour).  It can be shown that improvements in factor productivity 

translate into costs reduction if the Cobb-Douglas production function is expressed as 

a cost function. An example formulation of the Cobb-Douglas cost function is 

described in Isoard and Soria (2001) and Soderholm and Sundqvist (2007).  

The cost function minimises the costs of production given a specific amount of 

output   and a set of input prices, r and w, which embody the unit cost of capital and 

labour respectively. The Cobb-Douglas cost function with constant returns to scale is 

derived from the production function in appendix A and the final result is shown in 

equation 3.11.  
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From this function, we can see that total factor productivity (TFP) At in inversely 

related to production costs. With constant input prices, the costs of producing y 

decrease with improvements in TFP. 

4.2. Alternative Learning-by-doing specifications 

Using the model described in Section 1, several alternative specifications of the LBD 

are explored in this Chapter.  Three criteria of the specifications are identified and 

discussed here.  

4.2.1. Equation form 

The first and most important criteria for specifying LBD identified in the literature is 

the choice of equation form. As noted in Section 3, top-down and bottom-up models 

do not typically represent learning-by-doing with the same functional form. Bottom-

up engineering models (and a few hybrid and top-down models) have used the 

traditional learning curve specification which is described (now using TFP) in 

equation 3.12 below: 

  
        

  (3.12) 

 

In this equation,   
  is the total productivity parameter at time t, calculated with the 

engineering specification,    is the initial value of TFP,    is the cumulative 

experience up to time t and   is the learning elasticity. This specification is derived 

from equation 3.1 but modified to reflect improvements in productivity rather than 

reductions in cost. Thus, the exponent (the learning elasticity α) is positive in this 
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relationship, as cumulative experience increases TFP. This specification is hereafter 

referred to as the “engineering” learning curve
36

. 

The second major LBD equation form is identified in the top-down economic 

literature and is influenced by endogenous growth theory. This specification is based 

on the concept that knowledge is created during each period (like output) in a 

production function. This specification is represented in equation 3.13: 

  
      

    
  (3.13) 

In this equation,    is the flow of experience, as opposed to cumulative experience    

in equation 3.12.    
 

 is the Total Factor Productivity (TFP) in period t, calculated 

with the economic specification. TFP increases in each period through a stock-

updating function, with the flow of experience. This specification is hereafter 

referred to as the “economic” learning curve.  

There major difference between these two specifications is based on the use of 

cumulative or flow experience. In the economic learning curve specification, the 

stock of knowledge At is increased periodically with an exponential function of the 

new flow of experience. In contrast, the engineering learning curve is based on an 

exponential function of the cumulative experience recalculated in every period. This 

distinction leads to large differences in results when using the engineering or the 

economic learning curves. This is explored in section 4.3.1. 

                                                 
36

 The engineering learning curve is the only specification used in the econometric literature to 

estimate the learning rates. The estimated learning rates applied to alternative functional forms are 

taken from this literature, and could be inappropriate in these cases, but we are restricted by existing 

estimates. 
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4.2.2. Returns to knowledge 

As discussed in the literature review, the concept of learning-by-doing has been 

adapted to top-down economic models through a new definition of the learning curve 

and a new equation form. So far, the economic learning curve was defined without 

returns to knowledge. In other words, the past stock of knowledge, embodied in the 

TFP level of the previous period did not impact the accumulation of new knowledge. 

 This specification can be tested in comparison to alternatives, by modifying equation 

3.13 to introduce the influence of past knowledge on the accumulation of new 

knowledge. This can be seen in equation 3.14. 

  
      

    
  (    
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 (3.14) 

In this equation adapted from the Top-Down EEE modelling literature from Section 

3, the past stock of knowledge (or level of TFP) influences the accumulation of new 

knowledge, according to the parameter ϕ. This parameter represents the returns-to-

knowledge parameter. Three possibilities are explored in this chapter:  

- If ϕ = 0, equation 3.14 can be simplified back to 3.13. The past level of 

technological change does not influence the accumulation of new knowledge. 

Therefore, the returns to knowledge are constant. 

- If ϕ < 0, the past level of technological change influences the accumulative of new 

knowledge negatively. This is referred to as “fishing-out”. This situation represents a 

case where there is a finite amount of TFP gains to be achieved, and the more 

learning is achieved in the past, the more difficult it becomes to improve TFP. 
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-   If ϕ > 0, the past level of productivity has a positive influence on the accumulation 

of learning effects. This is referred to as “standing-on-shoulders”. This situation 

occurs when past experience gains improves the feasibility of future TFP gains. The 

more improvements in TFP which occurred in the past, the more TFP improves with 

experience. These three alternative specifications are compared in micro-simulations 

in section 4.3.2. 

4.2.3. Experience proxy 

As noted in Sections 2 and 3, early definitions of learning curves focus on the 

empirical relationship between unit costs of production and cumulative production. 

Following work by Arrow (1962) exploring the economic implications of LBD, 

investment in new capacity is a preferred measure of experience, as Arrow argues 

that technological progress is embodied in new capital stock.  

The distinction between production and capital as a proxy for experience is crucial 

for some models. For multi-period Computable General Equilibrium (CGE) models 

for example, this distinction matters greatly. In such models with price substitution, 

production of one sector is driven by the demand for this sector’s output. In the 

absence of a shock in the model, sectoral production continues at its current level in 

each period. This leads to a steady increase in cumulative production over time. In 

contrast, in the absence of a shock, investment in new capital stock only occurs to 

replace depreciated capital. Capital stock does not increase. Thus, whether 

cumulative experience is represented by cumulative production or by capital stock 

will matter for the model results.  
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Finally, an additional distinction can be made between capital stock and cumulative 

investments. Capital stock takes into consideration the depreciation of capital. Using 

capital stock as cumulative experience is equivalent to depreciating experience itself.  

Such depreciation would correspond in a certain level of forgetting (vs. learning) by 

doing. Depreciation of knowledge in energy sectors has been documented in the past. 

Nemet (2012) finds that knowledge acquired from experience in installing and 

operating wind farms loses its value overtime, suggesting the existence of knowledge 

depreciation in the context of learning-by-doing. Grübler and Nemet (2012) also 

review the literature for evidence of knowledge depreciation in industries, and 

particularly in energy industries such as nuclear power. They associate knowledge 

depreciation to two main phenomena: “innovation-driven technological 

obsolescence”
37

 and the turnover of knowledge holders in organisations and sectors 

(human capital volatility)
38

. While the authors acknowledge that learning-by-doing 

knowledge can be subject to depreciation, this has seldom been tested in the context 

of learning-by-doing in energy sectors.  

Three alternative definition of experience are explored and modelled in this section: 

experience as cumulative gross investment, cumulative production and capital stock. 

The results will be discussed in section 4.3.3. 

4.3. Results 

This section presents the results of the micro-simulations using the model listed in 

Section 4.1 and alternative specifications identified in Section 4.2. The simulations 

are run using excel for 20 periods. For each simulation, two sets of results are 

                                                 
37

 New investments are made to replace old capital, some knowledge previously accumulated is lost, 

as capital vintages become obsolete. 
38

 Particularly important when a technology relies heavily on tacit knowledge from individuals 
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presented graphically, reporting the percentage change from the base value in total 

factor productivity    and the level of output   . Because quantitative results are not 

the objective of this section, the use of percentage change from base value is 

justified. Rather, the micro-simulations are meant to provide qualitative comparisons 

between specifications. 

In terms of parameters for the production function, we assume no increase in the 

labour force (    ̅ , a depreciation rate of capital δ of 0.1 where the capital stock 

increases with gross investment  ̅. The base values of   ,   ,    and    are all set 

equal to 1 in period 0. The output elasticity of labour is equal to the output elasticity 

of capital and their sum is equal to 1 (corresponding to constant returns to scale, 

with          ). In all simulations, gross investments in each period are 

constant   ̅   ), thus cumulative gross investments grow at a constant rate. 

While     is endogenous, these parameters are kept constant, to compare 

specifications based only on the modifications of the LBD function identified in the 

previous section, which determine the behaviour of total factor productivity. Unless 

stated otherwise, the default learning elasticity parameter is 0.322. This corresponds 

to a learning rate LR=20%
39

, which is a standard learning rate used in the literature
40

. 

The next three sections compare the LBD specifications according to the criteria 

described previously, i.e. the equation form (engineering or economic learning 

curve), the returns to knowledge (constant, increasing or decreasing) and finally the 

                                                 
39

 The learning rate corresponds to the percentage costs reduction for every doubling of cumulative 

experience. It is calculated using the learning elasticity using equation 3.2. 
40

 Although recent LR estimations using two-factor learning curves tend to produce estimates of LBD 

smaller than 20%. 
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choice of experience proxy (cumulative gross investment, capital stock or cumulative 

output). 

4.3.1. Equation form 

This section explores the differences between the two LBD equation forms, namely 

the engineering learning curve and the economic learning curve. The two functions 

in equation 3.12 and 3.13 are restated in Table 3.2 below for convenience. 

Table 3.2: Engineering and Economic Learning Curves 

 Engineering Economic 

At  as a function of 

experience embodied in 

gross investment g 

  
    (∑  

 

   

)

 

   
     ∑   

  

 

   

 

With constant gross 

investment (      

    ̅ ) 

 

  
        ̅   

 

  
          ̅    

Calibrating A0 so that 

A0
n  

= 1 and A0
c 
= 0, we 

find 

  
  (  )

 
   

     
   

 

The two specifications can be simplified to express    as a function of the constant 

gross investment. Comparing the two newly found expressions, several observations 

can be made. First, using the same value for the learning elasticity α leads to 

different learning rates in the two specifications. The use of learning elasticity 

estimates computed with the traditional engineering learning curve in the economic 

learning curve specification might lead to over or under-estimation of the learning 
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rates
41

. The second observation is the difference in exponential form for these two 

models. The engineering learning curve is essentially a power function of the sum of 

gross investment, while the economic learning curve is a sum function of powered 

terms. This distinction leads to drastic differences in the behaviour of these two 

functions depending on the value of the exponent (namely, the learning elasticity). 

Thus, in order to compare these equations, two sets of results are presented, using 

two values of the learning elasticity, either smaller or larger than 1. If α =1, both 

functions follow the same linear growth with the economic TFP value being always 

superior to the engineering TFP by the value of A0. If α > 1, the engineering learning 

curve leads to exponential increases in TFP (convex pattern), while the economic 

learning curve still leads to linear increases in TFP. When α < 1, the increase in TFP 

with the engineering learning curve follows a concave pattern, while the economic 

learning curve still leads to a linear increase in TFP. The economic specification will 

always lead to lower level of TFP than the engineering learning curve when α > 1, 

while it will always lead to larger value of TFP when α < 1.  

These analytical observations are better verified graphically using micro-simulations. 

Two values of alpha are chosen for the modelling: α = 0.32 corresponds to a standard 

learning rate of 20%, while α = 1.32 corresponds to a large learning rate of 60%. 

Figures 3.1 and 3.2 represent the evolution of TFP in terms of percentage change 

from their base value, when α > 1 and α < 1, respectively. These graphs confirm that, 

given constant investment, the economic learning curve produces a linear increase in 

TFP regardless of the value of α. In contrast, the engineering specification of the 

                                                 
41

 However, since there are no estimates using the economic specifications in the literature, we are 

constrained to use the available ones. 
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learning curve leads to either a convex increase in TFP when α > 1 in Figure 3.1 or a 

concave increase in TFP when α < 1 in Figure 3.2.  

Figure 3.1: Percent Change in TFP with alpha =1.32. 

  

Note:   
  is represented on the secondary axis 

Figure 3.2: Percent change in TFP with alpha = 0.32 

 

Note: At
c
 is represented on the secondary axis 
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The economic specification imposes a linear relationship with constant gross 

investment, while the engineering specification offers more flexibility, and linearity 

as a special case.  

Another important finding is the influence of the TFP specification on the output 

results. The output functions are shown in Table 3.3 as a function of each of the two 

TFP specifications. 

Table 3.3: Output 

 Engineering Economic 

Output function Qt 

as a function of 

TFP, Kt and Lt 

 

 

  
      ̅       

 
      

 
  

 

 

  
         ̅        

 
      

 
  

 

Output is an increasing function in TFP, labour and capital. While in our case labour 

is fixed, the capital stock increases with constant gross investment  ̅, so output 

increases in both TFP and Capital Stock until K reaches a threshold, where gross 

investment is equal to the depreciation of the capital stock, expressed as:     ̅  ⁄ . 

We can rewrite the equations from Table 3.3, by replacing the capital stock by its 

threshold value, eliminating    as it equals     . Table 3.4 below shows these 

modifications and the 1
st
 and 2

nd
 derivatives of the output functions at the threshold. 

In both specifications, output increases with both TFP and capital stock up until the 

capital stock reaches the threshold. 
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Table 3.4: Output derivatives at the threshold 

 Engineering Economic 

Output Qt as a 

function of TFP 

and K
*
 

 

  
      ̅  (

 ̅

 
)
   

 

 

  
        ̅   (

 ̅

 
)
   

 

First derivative of 

output at the 

threshold 

 

   
 

  
   

 ̅
 
 
  

 
 
 

       

 

   
 

  
 

   
 
 

 
 
 

 

Second derivative 

of output at the 

threshold 
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At    
 ̅

 
, output increases only with TFP as the capital stock only renews itself 

through gross investment. At this point, the behaviours of the two output functions 

differ from each other. In the case of the engineering learning curve, output continues 

to increase in TFP (first derivative positive) but at a decreasing (or increasing) rate 

when α < 1  (or (α > 1) as shown by the second derivative. In contrast, regardless of 

the value of the learning elasticity, once the threshold is reached in the economic 

learning curve specification, output increases (positive first derivative) at a constant 

rate. Figures 3.3 and 3.4 below represent the evolution of output without learning and 

with the economic and engineering curve specifications, when the value of alpha is 

higher and lower than one respectively. 
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Figure 3.3: % change in Output from base year when alpha =1.32 

 

Note: Qt without learning is represented on the secondary axis 

Figure 3.4: % change in output from base year when alpha = 0.32 

 

First, with constant TFP, and constant gross investment, output converges towards a 

constant increase of around 2% in our simulations. The economic learning curve 

leads to a roughly linear increase in output towards the end of the simulation in both 

cases. The engineering learning curve shows a convex pattern in Figure 3.3 and a 

concave one in Figure 3.4.  
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The micro-simulation results confirm the analytical study. When the learning 

elasticity is larger than 1, the engineering specification is stronger than the economic, 

i.e. the TFP and the output grow larger in the engineering specification. Whereas 

when the learning elasticity is smaller than 1, the economic specification is stronger 

and leads to larger increases in TFP and in output. An important note must be drawn 

here regarding the value of the learning elasticity. A value of α equal to 1 is 

equivalent to a learning rate of 50%
42

, which is larger than any of the empirical 

estimates from the econometric literature. A value of α < 1 is therefore expected and 

confirms that the traditional engineering learning curve specification leads to 

diminishing returns. Indeed, as experience accumulates, it becomes harder and harder 

to double it, and thus to obtain the 20% costs reductions. In contrast, the economic 

learning curve specification leads to linear increases in both TFP and output, which 

are likely to be overestimated using the empirically estimated learning rates. 

4.3.2. Returns to knowledge 

In the previous section, the economic learning curve was defined with no returns to 

knowledge. In other words, the past stock of knowledge, embodied in the TFP level 

of the previous period, did not impact the accumulation of new knowledge. 

In this section, the existence of positive or negative returns to knowledge in the 

economic specification is explored. These returns to knowledge represent the way 

past gains in TFP influence the accumulation of new TFP gains.  

                                                 
42

 This is calculated using the engineering curve specification, where LR = 1-2
α
. 
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Three cases are explored by running micro-simulations on the economic learning 

curve specification, namely positive, negative or zero returns to knowledge. For this, 

equation 3.14 is used and repeated below: 

          
      

 
 (3.14) 

Changing the returns to knowledge corresponds to changing the value of parameter 

ϕ. Three simulations are run for 3 different values of  = 0, -0.5 and 0.5. Introducing 

positive or negative returns to knowledge changes the behaviour of the function
43

. It 

enables to bring in non-linearity to the economic learning curve specification. We 

expect a positive  parameter to introduce increasing returns to TFP and thus 

increasing returns to production. In contrast, a negative ϕ parameter corresponds to 

decreasing returns to TFP and decreasing returns to production. These two cases 

correspond to “fishing-out” and “standing-on-shoulders” respectively. The results of 

the simulations for TFP are shown in Figure 3.5. 

In the case of ϕ = 0, the evolution of TFP is linear, as highlighted in the previous 

section. The results for this simulation are the same as the economic specification 

with α < 1 above. In the case of fishing-out, the accumulation of past knowledge 

reduces the opportunity for future knowledge accumulation, representing a situation 

with a limited amount of knowledge. When ϕ is negative in fishing-out, TFP still 

increases with experience, but at a decreasing rate, revealing a TFP accumulation 

pattern similar to the common engineering learning curve specification (with α < 1).  

                                                 
43

 When ϕ= 0, the specification is equivalent to the economic learning curve analysed in the previous 

section, with a learning rate of 20%.  
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Figure 3.5: TFP as % change from base year 

 

Note: Standing-on-shoulders case is represented on the secondary axis (right) 
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specification in the cases of fishing-out, no returns, and standing-on-shoulders.  

0.00

100.00

200.00

300.00

400.00

500.00

600.00

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Fishing-out No returns Standing-on-shoulders



116 

 

Figure 3.6: Output as % change from base year 

 

 

Note: Standing-on-shoulders case is represented on the secondary axis (right) 
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cost reduction does not stay constant but actually decreases with cumulative 

experience, as it becomes harder and harder to double cumulative experience as it 

increases. This case of fishing-out is the only version of the economic specification 

which exhibits a concave shape of efficiency gains, like the engineering learning 

curve. This could be considered a more realistic representation of the LBD process in 

economic models. 

4.3.3. Experience Proxy 

Three alternative definition of cumulative experience are explored and modelled in 

this section. Each alternative definition is embodied through a different variable and 

is only presented here in the engineering learning curve equation form, to allow for 

simpler comparison. Up to now, all simulations conducted in this chapter have used 

cumulative gross investment as the proxy for experience. The simulations presented 

here also use two other variables to proxy for experience, namely capital stock and 

cumulative production. The engineering learning curve functional form is 

represented in equation 3.12 and repeated in Table 3.5 for convenience. Table 3.5 

also details each alternative learning-by-doing function where experience is 

embodied in three alternative variables. 

As pointed out previously, the capital stock also represents the accumulation of 

investment over time but includes depreciation in each period. Therefore, changing 

the experience proxy from gross investment to capital stock is expected to produce 

qualitatively similar (although lower overall) results in the evolution path of TFP. 
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Table 3.5: Engineering Learning Curve with Alternative Experience Proxy 

Learning curve 

with cumulative 

experience G 

 

         
  

With the flow of 

experience g 
     (∑  
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Alternative 

experience Proxy 

Cumulative Gross 

Investment 

Cumulative 

Production 

Capital Stock 

 
     (∑   

 

   

 )

 

      (∑  

 

   

 )

 

           
  

Note: GIt is Gross Investment, Qt is output and Kt is the capital stock. 

However, when using cumulative production to embody experience, the results are 

expected to change significantly. While cumulative gross investment is assumed to 

grow at a constant rate in the simulations, cumulative output increases with both 

capital stock and TFP. Therefore, the use of cumulative output to embody the stock 

of experience is expected to lead to a larger and faster increase in TFP, and in turn 

larger increases in output. 

The results for the evolution of TFP and output for the three alternative experience 

proxies are presented in Figures 3.7 and 3.8 below. 



119 

 

Figure 3.7: TFP as % change from base year 

 

Figure 3.8: Output as % change from base year 
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this case, also translates to depreciation in experience and knowledge itself. The 

evolution of output follows a similar trend to that of TFP, as highlighted in the 

previous simulation. Output also increases less overall when using capital stock as a 

proxy for experience, as TFP is lower, when compared to cumulative investments.  

In the third alternative, cumulative output is used to proxy for experience. In this 

case, TFP still increases at a decreasing rate (driven by the functional form of the 

engineering learning curve), but TFP increases at a much larger proportion than 

when using cumulative investment. This is explained by the fact that cumulative 

production itself increases faster than cumulative investment, which is assumed to 

grow at a constant rate.  

While cumulative production as a proxy for experience originates in the early 

discovery of learning-by-doing, economists have argued that experience is better 

embodied through investments in new capital. The use of capital stock as a proxy for 

experience enables the modeller to account for depreciation of the knowledge stock. 

However, this corresponds to the limited assumption that knowledge depreciation 

corresponds to capital depreciation. 

The exact consequences on modelling results of the choice of proxy to embody 

experience are likely to vary drastically between models, depending on their focus 

and their type. The implications of the choice of proxy should thus be discussed in 

the context of each EEE model representing learning-by-doing. This will be 

discussed in more details in the context of CGE models in the next chapter of the 

thesis. 
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5. Conclusions 

The study of learning-by-doing for energy technologies has become the focus of a 

large area of research, driven by the potential economic and environmental benefits 

of technological innovation in such a central industry in climate change mitigation. 

Many econometric studies have estimated the learning rates for a range of energy 

technologies from conventional generation, such as fossil-fuel or nuclear, to new 

renewable options like wind and solar photovoltaic. These estimates have been 

constructed on a variety of datasets mostly in developed economies. The review of 

this literature reveals a wide range in learning rate estimates, which vary not only 

across technologies but also across datasets covering the same technology. These 

variations have been explained through differences in estimation models, time 

periods and geographical scope, as well as differences in the variables and definitions 

used.  

The literature review has identified several factors of particular importance in 

explaining variations in estimates. First, the choice of model to estimate the learning 

rates matters. One-factor learning curves tend to produce larger LBD estimate than 

two-factor learning curves which consider also the impact of R&D on technology 

costs. Some studies have also pointed out additional issues with the econometric 

specifications of the models. Omitted variables such as economies of scale or feed-in 

prices may lead to overestimations of learning rates. The endogeneity of investment 

costs and installed capacity of technologies has also been pointed out, leading to the 

development of simultaneous equation estimation models introducing a diffusion 

equation in addition to the learning curve. Additionally, the variations in estimates 

can also be driven by differences in the choice of variables to represent experience 
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and performance. Reviews found that studies using production-linked variables tend 

to generate larger learning rate estimates than studies using investment variables. 

Finally, recent contributions have suggested that variations in learning rate estimates 

could be due to the systematic variation in the learning rates, as the technology 

matures over time. In particular, learning-by-doing opportunities appear to be largest 

after an initial introduction phase, while they tend to decrease as the technology 

reaches maturity. This hypothesis has however never been formally tested in a model 

allowing for a flexible learning rate over time, highlighting an opportunity for future 

research in the evolution of learning-by-doing over a technology’s life-cycle. 

In parallel to these econometric studies, learning-by-doing has recently become a 

common feature of Energy-Economy-Environment (EEE) models, representing 

endogenous technological change. Traditionally, bottom-up models are developed in 

the engineering literature to represent the energy system and tend to introduce LBD 

technological change due to its strong empirical origins in manufacturing. As 

explained in Chapter 2, R&D-technological change is often preferred by top-down 

models influenced by the macroeconomic literature on endogenous growth. 

However, LBD has also been increasingly implemented in top-down models, 

inspired by numerous studies showing its crucial role in representing technological 

change.  

While bottom-up models usually introduce learning-by-doing in its most traditional 

form, top-down models have introduced new definitions and specifications of the 

learning-by-doing phenomenon. Using general production functions, top-down 

economic models generally represent the effects of learning-by-doing as 

improvements in labour, capital or total factor productivity, where more experience 
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reduces the quantity of inputs needed to produce the same output. In addition, 

influenced by advances in endogenous growth theory, top-down models have 

introduced the learning process through a different functional form than the 

traditional learning curve, where learning-by-doing is an accumulating stock of 

knowledge, increasing gradually with a flow of experience. Overall, the observations 

made in the literature review sections of this chapter confirm that the specification of 

the learning-by-doing phenomenon is an important determinant of modelling results. 

Using a simple model of Cobb-Douglas production, the alternative specifications 

identified in the literature are tested with regards to three important criteria through a 

set of simple micro-simulations. First, the differences in equation forms of learning-

by-doing between engineering and economic models are explored, where total factor 

productivity improves with experience. The results suggest that the economic 

specification, with a period-by-period building of a knowledge stock through 

learning-by-doing, leads to linear improvements in total factor productivity when 

investment (experience) is constant, regardless of the value of learning elasticity. In 

comparison, the engineering equation form of learning-by-doing, which calculates 

total factor productivity in each period using total experience accumulation, leads to 

either concave or convex shapes in the paths of TFP over time, when the learning 

elasticity is superior or inferior to one respectively. A learning elasticity value of less 

than one is expected from the literature since it corresponds to a learning rate smaller 

than 50%, and confirms that the traditional engineering learning curve specification 

leads to diminishing returns.  

A closer look at the economic specification through the introduction of a non-zero 

returns-to-knowledge parameter reveals that the economic specification can become 
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qualitatively similar to the engineering specification in the case of fishing-out. In this 

case, improvements in TFP are rendered more difficult by experience gains in 

previous periods, reflecting one property of the traditional learning curve, in that 

each doubling of experience becomes more difficult to obtain as experience 

increases. In contrast, the situation of standing-on-shoulders modelled in some 

instances in top-down studies appears far removed from the traditional learning 

curve. The results of standing-on-shoulders lead to exponential growth in TFP and 

output, compared to an increase at a decreasing rate in the case of engineering 

specification.  

Finally, a set of simulations looking at alternative experience proxy reveal that the 

choice of variables does impact modelling results significantly. A comparison of 

gross investment and output as measures of experience reveals that the latter leads to 

much larger improvements in TFP and output as there is a feedback effect entering 

the output function. Finally, the use of gross investment or capital stock as the 

experience proxy leads to qualitatively similar results in the evolution of TFP and 

output; but capital stock always reduces the potential for technological improvements 

since it includes depreciation. While a few studies suggest that experience can 

depreciate as a knowledge stock in the same way as knowledge accumulated through 

R&D, this treatment could be seen as restrictive as it assimilates experience 

depreciation to that of the capital stock.  

In conclusion, this chapter highlights the importance of model specification when 

introducing learning-by-doing in Energy-Economy-Environment models. Several 

distinctions can lead to drastically different results depending on functional form and 

key parameter values, and modellers should be aware that their assumptions about 
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the technological change process have a dramatic impact on the modelling results, 

particularly in a policy recommendation context. The next chapter of this thesis 

develops the first attempt to introduce endogenous technological change in a 

Computable General Equilibrium model for Scotland. Chapter 4 makes use of the 

observations of this chapter to explore the economic and impact of learning-by-doing 

improvements in an emerging renewable energy sector in Scotland, namely marine 

electricity generation.  
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Chapter 4: Introducing Endogenous Learning-By-

Doing in Marine Electricity Generation in a CGE 

Model for Scotland 

1. Introduction 

This chapter introduces endogenous technological change in a Computable General 

Equilibrium model for Scotland, through learning-by-doing effects in the marine 

electricity sector. As demonstrated in the previous chapters, technological change is a 

fundamental factor to consider in both the design and analysis of energy and 

environmental policies. The choice of assumptions about technological change is 

equally important when using modelling tools to inform policy-making. Considering 

these observations, the objective of the modelling research conducted in this chapter 

is twofold. First, this chapter aims to observe the economic impact of policy support 

for a renewable energy technology, in presence of endogenous technological change 

in the CGE model. The second objective is to inform the choice of assumptions for 

modelling endogenous technological change through learning-by-doing in the CGE 

model for Scotland. This chapter introduces endogenous learning-by-doing in the 

marine electricity generation sector. Through a number of simulations where the 

marine electricity sector receives a production subsidy, the analysis explores how 

this newly introduced technological change affects the general and sectoral economic 

impacts of policy support to the sector.  

Marine electricity generation has become a primary objective in the Scottish 

renewable energy policy agenda. The Scottish government has set the very ambitious 

target to generate the equivalent of 100% of gross annual electricity consumption 
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from renewable energy sources by 2020. As of the first quarter of 2013, onshore 

wind represents the largest share of renewable electricity capacity in Scotland with 

4,109 MW installed capacity (DECC, 2013a), followed by hydropower (1,499MW) 

and offshore wind (190MW). In contrast, marine technologies are still in the early 

stages of technology development and represent 5 MW of installed capacity in 

Scotland and accounted for less than 0.5% of renewable electricity generated in 

2012. However, the resource potential is huge, as Scottish waters are estimated to 

hold 25% of Europe's tidal power and 10% of its wave power (Scottish Government, 

2014). Therefore, the development of marine electricity technologies is subject to 

growing interest in the Scottish renewable energy policy. 

The choice of simulating a production subsidy is determined by the current type of 

policy support to renewable energy generation in Scotland: namely the Renewables 

Obligation system
44

. Renewables Obligation Certificates (ROCs) are tradable 

certificates which are issued to eligible electricity generators for each MWh 

generated from renewable resources. These ROCs are then sold electricity suppliers, 

which must meet a certain level of renewable obligation (i.e. a certain share of the 

electricity supplied must be from renewable sources,) and provide the regulator, 

Ofgem, with a certain number of certificates. The RO system effectively acts a quota 

system for renewable electricity generation and a production subsidy to renewable 

electricity generators. The banding of ROCs introduced differentiation between 

renewable energy technologies. Designed to incentivize investment in less-developed 

technologies, the different bands in ROCs represent the number of certificates 

attributed to a MW generated by a specific technology. While onshore wind support 

                                                 
44

 The Renewable Obligation System is planned to be replaced by a Feed-in-Tariffs system from 2015 

onwards under the UK Government’s pending Electricity Market Reform (DECC, 2013b).  
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is limited to 1 ROC/MWh, offshore wind and marine technologies are favoured by 

the system, with 2 ROCs/MWh for wind and tidal and 5 ROCs/MWh of wave-

generated electricity (Scottish Government, 2011). In this chapter, the introduction of 

a production subsidy in the marine electricity generation sector is designed to 

represent this targeted policy support to the sector.  

The relatively early stage of development of the marine electricity sector makes it an 

optimal testing subject for the learning-by-doing hypothesis. The levelised costs of 

marine generation technologies (namely wave and tidal) are currently much larger 

than these of fossil-fuel technologies (Allan et al., 2011). DECC (2013d) projects the 

levelised costs of future wave installations commissioned by 2025 between £215 and 

£259 per MWh generated, and those of future tidal installation between £148 to £207 

per MWh. In comparison, levelised costs of traditional generation technologies are 

rarely estimated to be higher than £80 per MWh. The potential costs reductions from 

learning-by-doing could considerably reduce the levelised-costs of wave and tidal 

technologies to make them competitive against traditional generation. This is 

precisely the rationale behind policy support attributed to marine technologies in 

Scotland which benefit from specific Renewable Obligation treatment. In light of 

these objectives, the simulations are run with a production subsidy to the marine 

electricity generation, which is also subject to costs reduction from endogenous 

learning-by-doing. 

The remainder of the chapter is structured as follows. After a brief discussion of the 

theory underlying CGE modelling, Section 2 introduces the Computable General 

Equilibrium model for Scotland used in this chapter. The method chosen for the 

introduction of learning by-doing in the model is also discussed. Section 3 describes 
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the simulations reported in this chapter. All simulations represent a production 

subsidy to the marine electricity sector, but the definition of learning-by-doing 

differs in each simulation. Eight simulations are conducted to address the major 

variations identified in the literature review in Chapter 3. Section 4 reports and 

compares the results of these alternative simulations, by focusing on the optimal 

representation of learning-by-doing in the model. Section 5 provides conclusive 

comments, as well as policy and modelling recommendations in terms of the choice 

of assumptions regarding learning-by-doing. 

2. The CGE Model for Scotland 

Computable General Equilibrium (CGE) models have become standard tools for 

policy analysis, as they offer a balanced combination of strong theoretical 

foundations from neoclassical economics and empirical grounding through real 

economic data requirements. In this section, I first give a brief account of the theory 

and structure underlying CGE modelling. This section then introduces the AMOS (A 

Micro-Macro Model of Scotland) modelling framework used in the thesis (Harrigan 

et al., 1991). After a general description of the model, the modifications implemented 

in this thesis to introduce endogenous technological change are discussed.  

2.1. Computable General Equilibrium modelling 

Originating in the work of Walras (1874), the concept of General Equilibrium is the 

theoretical foundation underlying CGE models. The Walrasian General Equilibrium 

mathematically refers to a system of simultaneous equations representing the 

economy in a state of equilibrium, where market prices are set so that demand equals 

supply for all commodities simultaneously. The mathematical foundations of general 
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equilibrium theory were further developed in the work of Arrow and Debreu (1950), 

Debreu (1959) and Arrow and Hahn (1971), and the concept began to attract 

attention for applied policy analysis. CGE modelling, or Applied General 

Equilibrium modelling, developed in the 1960s and 1970s, incorporates actual 

economic data about specific regions or countries into this mathematical equilibrium 

representation of the economy, in order to provide insights into the welfare impacts 

of policy decisions. 

In general terms, a CGE model is based on a mathematical framework representing 

an economy. This framework is defined as a set of equations characterizing the 

behaviour of economic agents and institutions, as well as their interactions on a given 

number of markets. Generally consistent with neoclassical theory, CGE models 

incorporate the assumptions of utility-maximizing consumers and profit-maximizing 

producers, which constitute the basis for setting demand and supply respectively. 

Households maximize their utility from consumption of goods and services 

according to their preferences under a budget constraint, determined by the income 

received as owners of the factors of production, namely wages and capital rental. 

Producers determine the optimal output to supply to the market in order to minimize 

costs and maximize profits. Output is produced with a combination of factors of 

production (labour and capital, purchased or rented from households) and 

intermediate inputs (purchased from other producers). Some CGE models also 

include a government sector, which produces and purchases public goods, as a tool to 

induce policy shocks. The government can interact with both consumers in 

producers; it receives income through the collection of taxes and redistributes this 

income through subsidies, transfers and direct consumption of goods and services. 
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Finally, external transactors are included models to represent trade with other regions 

or nations. Firms can choose to import some of their intermediate inputs, while 

consumers (and government) can choose to consume some imported goods. Import 

(or export) decisions are determined by the relative price of domestic goods 

compared to their foreign equivalent. Most models incorporate an Armington 

assumption which reflects product differentiation between domestic and foreign 

goods, operationalised through the use of an elasticity of substitution (Armington, 

1969). Overall, the behaviour of each agent described above is determined in each 

CGE model by the choice of specific functional form (for example, Leontief, Cobb-

Douglas and Constant Elasticity of Substitution are commonly-used functional forms 

in production). The model closure is determined by defining the sets of exogenous 

and endogenous variables, as constrained by the number of equations to solve in the 

model. CGE models differ greatly in the way they represent agent behaviours, their 

level of disaggregation, as well as their model closure. These are mostly determined 

by the intended use of the model, and often depend on data availability.  

Once the mathematical framework of the model has been determined, it is then 

calibrated using a benchmark of real economic data for one specific year. This 

benchmark dataset consists of a Social Accounting Matrix (SAM), which represents 

all the transactions and transfers that take place within an economy. A SAM takes the 

form of a square matrix, incorporating all economic agents (households, producers, 

government, external trade partners). It details the income and expenditures of each 

of these agents for a given year. A SAM incorporates production data from Input-

Output tables as well as disaggregated demand data from national accounts, data on 

public revenues and expenditures from government accounts, and import and export 
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data from trade accounts. Through the structural relationships defined by the 

imposed functional forms, the SAM data, and existing literature are used to assign 

exogenous values to parameters describing the behaviour of agents (e.g. elasticity 

parameters). This complete SAM dataset and new parameter values, represent a 

snapshot of the economy in a given year and are used to calibrate the model as an 

initial benchmark equilibrium. Once defined mathematically and calibrated using 

real data, CGE models can be used to simulate exogenous changes determined by 

policy decisions or external shocks. The simulations are often conducted by 

exogenously changing the value of a policy instrument or variable of interest. The 

model is then solved to produce a new equilibrium following this shock, which can 

be compared to the benchmark equilibrium. Alternative simulations can be compared 

by changing the exogenous shock or changing the model configuration.  

CGE models have been widely used as tools for policy analysis in a wide range of 

fields, but they are particularly favoured tools in the evaluation of environmental and 

energy policy. They have been used extensively to model the impact of a variety of 

policy instruments, principally in the context of GHG reductions and climate change 

mitigation. Numerous CGE modelling application exists looking at the carbon tax, 

emission permits, emission trading schemes, taxation of fossil-fuels, energy 

efficiency measures, or the rise of renewable energy sectors. Several goods reviews 

of this literature can be found in Bhattacharyya (1996), Conrad (1999) and more 

recently Bergman (2005). As pointed out in Sue Wing (2007), the popularity of CGE 

models for energy and environmental policy analysis lies in the multi-sectoral 

possibilities of the framework. As energy constitutes a standard input in production 

as well as an important component of final demand, policies affecting the quantities 
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or prices of energy goods are likely to propagate across a large number of markets. 

CGE models are designed to represent economy-wide interactions and allow for the 

identification of these propagation effects. While CGE models have become a 

standard tool in this context, there are few examples of such models that have 

implemented endogenous technological change. A brief review of top-down model 

with endogenous technological change was presented in chapter 2, and differentiated 

between R&D and learning-by-doing as the two methods. Examples of environment 

and energy-focused CGE models with endogenous technological change include 

R&D-driven models (Sue Wing, 2003; Goulder and Schneider, 1999) and learning-

by-doing models (Rasmussen 2001; Goulder and Mathai, 2000). Chapter 3 provided 

a review of the models incorporating learning-by-doing. 

2.2. The CGE model for Scotland – AMOS  

The model used in this thesis is a version of the AMOS model (A Micro-Macro 

Model of Scotland). The AMOS model is a computable general equilibrium 

framework which allows a great deal of flexibility in functional form, parameter 

values and assumptions concerning different markets (Harrigan et al., 1991). The 

standard AMOS model, its extended environmentally-focused version, and its 

extended UK version, have all been used for a number of energy or environmental 

policy-focused studies including the impact of energy efficiency improvements and 

rebound effects (Hanley et al. 2006; Hanley et al. 2009; Turner, 2009) the 

development of new renewable energy sectors (Allan et al. 2008) and the 

introduction of a carbon tax (Allan et al., 2014, Winning et al., 2012). This chapter is 

the first attempt to introduce endogenous technological change in the AMOS 

framework. 
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In AMOS, there are three domestic transactor groups, namely households, firms and 

government, as well as two external transactors: the rest of the UK (RUK) and the 

rest of the world (ROW). The version of the model used in this chapter is multi-

sectoral and highly disaggregated at the energy level. Based on the electricity 

disaggregated Input-Output tables for Scotland in 2000 (Allan et al. 2007a), the 

model includes 17 sectors, of which 13 are energy related-activities, including three 

fossil-fuel sectors and 10 electricity sectors. The 10 electricity sectors include nine 

electricity generation sectors and one electricity transmission sector embodying all 

electricity transmission and distribution activities. This structure offers a more 

realistic representation of the electricity system, where all the generation sectors feed 

into the transmission sector, which is responsible for distributing electricity to the 

intermediate and final demands
45

. Thus, the transmission sector stands as an 

intermediate sector between electricity generation activities and the rest of the 

economy, and reflects the homogenous characteristic of electricity as a commodity. 

A list of all sectors in this model can be found in Appendix B. 

In terms of production structure, firms in all these sectors are cost-minimizing and 

subject to nested Constant Elasticity of Substitution (CES) production functions. For 

all sectors of activity, the nested structure of the production function is represented in 

Figure 4.1, except for the electricity transmission sector which is subject to a specific 

structure shown in Figure 4.2. The trade structure for inputs to production is 

presented separately in Figure 4.3 for simplification. 

                                                 
45

 This details of the sectoral disaggregation of energy activities and the construction of the dataset can 

be found in Allan et al. (2007).  
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Figure 4.1: Production Structure (16 sectors) 

In each sector, output is a CES combination of a value-added composite (CES of 

capital and labour) and intermediate inputs. Intermediate inputs are an aggregate of 

energy and non-energy inputs. The question of where energy ought to enter the 

production structure is still widely debated in the modelling literature. Lecca et al. 

(2011) systematically examine the sensitivity of the CGE model results to 

assumptions about the structure of the KLEM production function (Capital, Labour, 

Energy and Materials). In a simple demand shock exercise, simulation results are 

compared where energy enters the nested CES production function either as in the 

intermediate inputs composite or is combined with capital inputs to enter the value-
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produced commodity; thus it is introduced in the intermediate input composite, 

instead of with factors of productions in the value-added composite. 

The energy composite is itself a CES combination of electricity and non-electricity 

(fuel) commodities. Non-electricity energy is a composite of oil and non-oil sectors, 

which comprise coal and gas. All sectors represented by Figure 4.1 (all sectors other 

than electricity transmission) receive their electricity inputs through the transmission 

sector only. 

The entire output of electricity generation sectors feeds into the electricity 

transmission sector. Electricity generation sectors have no other forward links with 

the rest of the economy or between each other. Figure 4.2 details the production 

structure of the transmission sector and shows how electricity generation 

technologies enter the multi-level CES production function. Electricity generation is 

a CES combination of intermittent and non-intermittent generation technologies. 

Three intermittent generation technologies are identified: marine (including wave 

and tidal), onshore wind and offshore wind. These are combined into a separate 

composite, to reflect the fact that the electricity output they produce is variable with 

the intermittent renewable resource they use. Of the six non-intermittent generation 

technologies, three are based on renewable resources as well:  hydropower, biomass 

and landfill gas. They are combined with two fossil-fuelled generation technologies 

(gas and coal) and nuclear generation. The choices of structure and elasticities of 

substitution between the electricity generation technologies will be of importance for 

the results of the modelling exercise and are discussed below. 
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Figure 4.2: Production structure of the transmission sector 
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Elasticities of substitution at every point in the CES production functions take a 

default value of 0.3, with the exception of substitution between energy inputs which 

are higher. The substitution between electricity and non-electricity intermediate 

inputs, and oil and non-oil is 2, to reflect more flexible substitution between fossil-

fuels energy and electricity generation. This is done to reflect the policy objective of 

replacing fossil-fuel use with cleaner technologies in the energy system. In addition, 

in production structure of the transmission sector, the elasticity of substitution 

between electricity-generation technologies is set to 5 to further emphasize the 

relative homogeneity of electricity as a commodity
46

. Table 4.1 provides a summary 

of the elasticities of substitution used at each level of the production function. 

Table 4.1: Elasticities of Substitution 

Nod in CES function Elasticity of Substitution 

Electricity and Non-electricity 2 

Oil and Non-oil 2 

Transmission and Generation 2 

Intermittent and Non-intermittent 5 

Between Intermittent 5 

Between non-intermittent 5 

All other CES nods 0.3 

 

Firms in each sector sell their output on competitive markets. Intermediate demand 

represents the inter-sectoral purchases and is determined by the backward linkages, 

identified in the Input-Output tables. Firms can substitute between imported and 

domestic intermediate goods to produce their output. Imports and exports are 

                                                 
46

 Although we are conscious that this assumption can be contested in light of the intermittency of 

electricity output from technologies relying on variable renewable resource (e.g. wind). 
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sensitive to changes in relative prices between endogenous domestic prices and 

exogenous RUK and ROW prices. The trade structure is represented in Figure 4.3 

and is subject to standard CES Armington relationships (Armington, 1969). The 

Armington link is applied to both interregional and international trade with an 

elasticity of 2 (Gibson, 1990).  

Figure 4.3: Trade 

 

In addition to the external transactors (RUK and ROW), there are three other 

components of final demand, namely consumption, investment, government 

expenditures. In this modelling exercise, government demand is considered 
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period’s stock, adjusted for depreciation and gross investment. The economy is 

assumed initially to be in long-run equilibrium, where desired and capital stocks are 

equal. In the long run, capital stock is optimally adjusted as well. 

Although the AMOS framework allows for a variety of closures of the labour 

market, we choose just one for this modelling exercise. Our representation of the 

Scottish labour market is a single market characterized by perfect sectoral mobility. 

Wages are assumed to be determined in a regional-bargaining process, where the 

regional real take-home wage is inversely related to regional unemployment rate 

(Blanchflower and Oswald, 1994; Minford et al, 1994). Endogenous migration is 

incorporated in the model, so that population is also updated between periods. We 

take net migration to be positively related to the real wage differential and negatively 

related to the unemployment rate differential between Scotland and the RUK, in 

accordance with the econometrically estimated model reported in Layard et al. 

(1991). The net migration flows in each period are used to update population at the 

beginning of the next period, in a manner equivalent to the updating of the capital 

stock. The regional economy is initially assumed to have zero net migration and 

ultimately net migration flows re-establish this population equilibrium. A formal 

description of the version of AMOS used in this chapter is provided in Appendix C. 

The dataset informing the model is a 2000 Social Accounting Matrix for Scotland, 

which augments the I-O tables by introducing transfers and payments between the 

production side of the economy, the three transactor groups and the two external 

transactors.  
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2.3. Introducing endogenous technological change 

As the objective of this chapter is to explore the impact of learning-by-doing on 

simulation results, the model must be augmented to allow for the possibility of 

endogenous technological change. As stated in Chapter 3, the theoretical foundations 

of top-down models in macroeconomics require an interpretation of the LBD 

process, in order for it to be introduced directly into the production function. To 

follow previous examples of top-down models with endogenous technological 

change, learning-by-doing in this chapter is assumed to lead to improvements in the 

productivity of factors, and therefore is introduced directly in the value-added 

production function.  

Learning-by-doing refers to the process of costs reductions with experience 

accumulation. In the case of CGE models, the costs of production are embodied in 

the costs of inputs into production. With constant factor prices, a reduction in the 

costs of production is therefore equivalent to changes in technology which lead to 

improvements in the productivity of factors (capital and labour). However, several 

possibilities can be explored when determining where the LBD process should enter 

the value-added production function (Arrow, 1962a). In this exercise, using a 

standard CES function, value-added is determined in the following equation: 

      [      
 
           

 
]
 
 
  

(4.1) 

 

where VA(t) is the value-added at time t, A(t) is a technology parameter, referring to 

Total Factor Productivity (TFP). K (t) is the capital stock, L(t) is labour inputs,    

represents the capital intensity in production and ρ is the elasticity of substitution 
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between capital and labour. B and C represent the efficiency of capital and labour 

inputs respectively. By changing the value of A, B or C, it becomes possible to 

change the productivity of all factors of production, and capital or labour separately. 

In previous modelling exercises, the value-added function used in AMOS has only 

reflected exogenous changes in technology, by introducing exogenous shocks on the 

efficiency parameters A, B or C. If technological progress is introduced through 

changes in A, improvements in efficiency will be Hicks-Neutral (Hicks, 1932), i.e. 

the TFP will increase, and for given input prices, i.e. the ratio of marginal product of 

capital to labour remains unchanged. In this chapter, the simulations presented are 

typically run using this Hicks-neutral technological change assumption. Some results 

will also be presented exploring the change from Hicks-Neutral to capital-

augmenting technological progress.  

The major contribution of this chapter is the introduction of endogenous 

technological change through transforming the efficiency parameter (generally Total 

Factor Productivity) into a function of experience, as suggested by the learning-by-

doing literature. Total Factor Productivity (TFP) becomes endogenous to the model 

and an increasing function of experience. Several equations and choices for the 

experience proxy will be explored in the simulations and are detailed in the next 

section. 

2.4. Alternative specifications of LBD 

Several simulations are run in the CGE model, which differ with the specification of 

the learning-by-doing process. Reflecting the differences in specifications identified 

in Chapter 3, this chapter also explores alternative ways to define learning-by-doing 
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in order to determine how it should be best represented in the CGE model for 

Scotland. Differences in specifications explored in this paper fall into four main 

categories. First, two major equation forms (describing the learning-by-doing 

process) are compared, namely the engineering and economic learning curves, as 

identified in Chapter 3. Secondly, simulations are compared with alternative 

variables representing cumulative experience. Third, different values for the 

economic learning curve returns to knowledge parameter are compared. Finally, the 

variable impacted by improvements in experience is changed from TFP to the 

efficiency of capital, reflecting a change from Hicks to Solow-neutral technological 

change. Each of these variations will be explored in a number of simulations 

presented in Section 3. In this chapter, each specification is adapted to best fit the 

CGE model for Scotland notation. 

3. Simulations 

All the simulations presented in this chapter combine a targeted policy support 

scheme to the marine electricity generation sector with endogenous sectoral 

technological progress. Specifically, each simulation is run for a 10% production 

subsidy on the marine electricity generation sector, which is also the only sector 

subject to learning-by-doing This enables us to identify both the aggregate and the 

sectoral impacts of changing the endogenous LBD specifications. For each 

simulation with endogenous technological change, a default value of the learning 

rate is chosen at 20%, as a regular estimate in the LBD literature. 

The model is solved period-by-period for 25 years in all cases. In each time period, 

the model is solved as a set of simultaneous equations, to find a set of prices that 
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clears all markets: the supply of each produced good equals its demand.  In period 1, 

representing the short-run, the labour supply and the capital stock are fixed to their 

base-year values. The assumption is relaxed from period 2 onwards, and the capital 

and labour market can adjust through investment and migration. The results 

presented in the final period (i.e. period 25) do not correspond to the long-run 

results
47

. This is due to the exponential nature of the endogenous technological 

change used in some specifications, which make it impossible to run the model for 

longer. These results however illustrate the modelling difficulties associated with 

more complex representation of technological progress
48

. 

Each simulation differs from the others in the treatment of the LBD process.  When 

possible, a simulation was run for each combination of equation form (engineering or 

economic learning curve) and experience proxy (cumulative gross investment, 

cumulative output or capital stock). Additional simulations were run with the 

economic specification when changing the value of the returns to knowledge 

parameter. The results of eight selected simulations are presented in this chapter and 

provide useful insights in the modelling of endogenous technological change in 

AMOS.  

Simulation 1 corresponds to the base case simulation, where the marine electricity 

sector receives the subsidy but there is no endogenous learning-by-doing in the 

model. This simulation corresponds to running the model in its original form, with 

constant (exogenous) factor efficiency parameters. This simulation is then compared 

                                                 
47

 In the long-run, the model will have reached a new equilibrium following the shock, both capital 

and employment levels will be at their optimal levels and the real wage and unemployment rate return 

to their original values. 
48

 This reflects limitations of this type of top-down model using certain specifications from the 

literature. This is discussed further in the results section. 
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to seven simulations where factor efficiency is endogenous (either through TFP or 

capital efficiency). 

Simulations 2, 3 and 4 correspond to the engineering specification of the learning 

curve but with three alternative proxies for experience, namely gross investment, 

output and capital stock. Comparing these three simulations can therefore provide 

insight into the importance of the choice of variable as experience proxy on 

modelling results. The three specifications, under the engineering learning curve 

specification are repeated in Equations 4.2, 4.3 and 4.4 below. 
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In equation 4.2, TFP is an exponential function of cumulative gross investments 

GI(t). In equation 4.3, TFP is an exponential function of cumulative output Q(t). In 

equation 4.4, it is an exponential function of the capital stock K(t).  

Three simulations are also run using the economic specification of learning-by-

doing, i.e. the equation form identified in top-down economic models. For these 

three simulations, only one experience proxy is selected: gross investment. Each of 

these specifications is based on the equation form, shown in equation 4.5: 

             
      

 
 (4.5) 
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Effectively, following the endogenous growth literature, technological change is 

represented through the period-by-period accumulation of a knowledge stock. The 

difference between Simulation 5, 6 and 7 resides in the value of the returns to 

knowledge parameter ϕ, determining how the past accumulation of knowledge may 

impact future efficiency gains. Simulation 5 uses the economic learning curve 

equation form with a ϕ value of zero. In this case, the past accumulation of 

knowledge neither facilitates nor hinders future efficiency gains. This specification 

enables a straight forward comparison with Simulation 2, to determine the influence 

of equation form on modelling results. It can also be compared to Simulation 6 and 7 

which correspond to the cases of fishing-out and standing-on-shoulders respectively.  

Simulation 6 uses a negative value for ϕ, making it harder to improve factor 

efficiency as the stock of knowledge increases. Simulation 7 corresponds to the 

opposite case of a positive ϕ, where past knowledge accumulation facilitates future 

gains in efficiency.  

Finally, an additional simulation is included in the modelling of this chapter, where 

the efficiency parameter affected parameter is capital efficiency only, rather than 

total factor productivity. Simulation 8 is configured so that it is optimal to compare it 

with Simulation 2 as well, as shown in equation 4.6.  

     (∑   

 

   

)

 

 (4.6) 

B(t) is the capital efficiency parameter in the value-added production function 

defined in equation 4.1. It becomes endogenous in simulation 8, while A remains 

unchanged. B(t) is an exponential function of cumulative investments. This 

specification suggests that the capital factor becomes more efficient in production. 
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This has a combined effect of costs reduction and substitution in the value-added 

production function. Production costs reduce as capital becomes more efficient (with 

constant labour inputs, less capital is required to produce the same amount of value-

added) but substitution also occurs in favour of the more efficient factor (away from 

labour).  

Details of each simulation in terms of equation form, experience proxy, value of the 

returns to knowledge parameter and efficiency parameter affected by learning are 

summarized in Table 4.2. 

Table 4.2: Simulations 

 Simulations Equation form Experience 

proxy 
Value of ϕ Efficiency 

parameter 

1 No_learning  N/A  N/A  N/A  N/A  

2 EngGI Engineering LC  
Gross 

Investment  
N/A  TFP 

3 EngQ  Engineering LC  
Cumulative 

Output  
N/A  TFP  

4 EngK  Engineering LC  Capital Stock  N/A  TFP  

5 Econϕ=0 Economics LC  
Gross 

Investment  
0  TFP  

6 Econϕ<0  Economics LC  
Gross 

Investment  
-0.5  TFP  

7 Econϕ>0  Economics LC  
Gross 

Investment  
0.5  TFP  

8 EngB Engineering LC  
Gross 

Investment  
N/A B (Capital) 
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4. Results 

In each simulation described above, the shock to the model is a 10% production 

subsidy on the marine electricity generation sector. Designed to represent the 

mechanisms of renewable obligation certificates, this subsidy reduces production 

costs for firms generating electricity from marine technologies (tidal and wave 

powered). Effectively, this subsidy incentivizes the production of electricity from the 

renewable resource. We expect the introduction of learning-by-doing on the same 

sector to further decrease the costs of productions, through improvements in factor 

efficiency as experience in the sector increases. Each simulation is run on a multi-

period basis, and Table 4.3 reports the impact of the shock on key macroeconomic 

variables for the last period considered (period 25). All results are presented as 

changes from base year values and expressed in percentage points. Additionally, the 

results for energy sector outputs in period 25 are summarized for all eight 

simulations in Table 4.4. 
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Table 4.3: Macroeconomic Results – Period 25 

 1 2 3 4 5 6 7 8 

Simulation No LBD Eng. GI Eng. Q Eng. K Econ. Econ. ϕ<0 Econ.  ϕ>0 Eng. B 

Efficiency gains n/a 44.55 59.81 35.41 53.52 8.78 138.49 38.86 

GRP Income measure 0.39 0.91 0.93 0.79 0.91 0.59 1.13 0.78 

Consumer Price Index -0.09 -0.18 -0.18 -0.16 -0.18 -0.12 -0.21 -0.16 

Unemployment Rate -0.06 -0.24 -0.36 -0.27 -0.32 -0.11 -0.51 -0.19 

Total Employment 0.34 0.82 0.84 0.72 0.83 0.54 1.03 0.71 

Nominal Gross Wage -0.09 -0.16 -0.14 -0.12 -0.14 -0.11 -0.15 -0.14 

Real Gross Wage 0.01 0.03 0.04 0.03 0.04 0.01 0.06 0.02 

Replacement cost of capital -0.53 -1.15 -1.24 -1.04 -1.20 -0.71 -1.54 -0.98 

Labour supply 0.33 0.80 0.80 0.69 0.80 0.52 0.97 0.69 

Households Consumption 0.20 0.52 0.54 0.46 0.53 0.35 0.67 0.45 

Net investment 0.50 1.23 1.34 1.12 1.30 0.76 1.69 1.04 

Capital Stock 0.46 1.06 1.08 0.92 1.07 0.69 1.31 0.91 

Export RUK 0.23 0.60 0.58 0.51 0.58 0.40 0.69 0.52 

Export ROW 0.25 0.56 0.55 0.48 0.55 0.38 0.64 0.49 

 



150 

 

Table 4.4: Energy Sectors Output – Period 25 

 1 2 3 4 5 6 7 8 

Energy Sector output No LBD Eng. GI Eng. Q Eng. K Econ. Econ. ϕ<0 Econ.  ϕ>0 Eng. B 

Coal 0.43 0.60 0.56 0.50 0.57 0.41 0.65 0.52 

Oil 0.33 0.70 0.70 0.60 0.69 0.46 0.84 0.60 

Gas 0.27 0.66 0.66 0.57 0.66 0.44 0.79 0.57 

Transmission 0.52 1.22 1.25 1.07 1.23 0.79 1.54 1.04 

Nuclear Generation 0.29 0.66 0.61 0.55 0.62 0.47 0.71 0.58 

Coal Generation 0.12 0.30 0.24 0.23 0.26 0.23 0.27 0.27 

Hydro Generation -0.18 -0.31 -0.36 -0.29 -0.34 -0.17 -0.48 -0.25 

Gas Generation -0.08 -0.11 -0.19 -0.13 -0.16 -0.03 -0.27 -0.08 

Biomass Generation -0.67 -1.36 -1.50 -1.26 -1.45 -0.82 -1.93 -1.15 

Wind Onshore Generation 0.35 0.76 0.71 0.64 0.73 0.54 0.84 0.67 

Wind Offshore Generation 0.23 0.53 0.48 0.43 0.50 0.37 0.56 0.46 

Landfill Generation -0.55 -1.11 -1.22 -1.02 -1.17 -0.67 -1.56 -0.93 

Marine Generation 23.72 69.87 81.43 61.87 76.82 34.66 120.54 54.45 
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As expected, the production subsidy in the marine electricity sector has an 

expansionary effect on the Scottish Economy. In all simulations, GDP has increased 

in period 25. Household consumption, investment, employment and net exports have 

all been stimulated as a result of the policy. The subsidy reduces the cost of marine 

electricity generation, leading to a drop in the output price of the marine sector and 

stimulates the demand for its output. In all simulations the increase in marine 

electricity generation can be seen clearly in Table 4.4, where marine output increases 

much more than in any other sectors. Because marine electricity is combined in 

production with other generation technologies, the prices of other electricity 

composites drop as well, leading to a reduction in the consumer price index. This 

increases competitiveness, and leads to an increase in net exports. Consumption and 

intermediate demand are also stimulated. The percentage changes in aggregate 

economic results presented in this illustrative comparison of different LBD 

specifications are relatively small due to the relative size of the sector shocked for 

the analysis. However the large variations in these small numbers reveal the 

sensitivity of model results to equation form, variable choice and parameter values, 

as explored in the next few sections Focusing on simulation 1, which does not 

include learning-by-doing, first conclusions can be drawn from the modelling of the 

policy.  

4.1. Results without learning  

Simulation 1 represents the result of the subsidy only, and the marine electricity 

sector is not subject to any technological progress. In period 25, the production 

subsidy leads to an increase in the output of the marine generation sector of 23.72% 

from the base year. Indirectly, other sectors are affected by the supply shock in 
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marine electricity production. Figure 4.4 shows the sectoral output changes for the 

16 sectors (other than marine generation) for Simulation 1.  

In the first few periods, the increase in the marine sector output has to be sustained 

by increases in employment and investments in the sector. Due to the limited 

availability of factors in the short-run, this leads to upward pressure on the real wage 

and some sectors are initially crowded-out by the expansion of marine generation. 

From the SAM data, the marine generation sector is relatively value-added intensive. 

The output of most sectors falls in the short-run as the results of this crowding-out 

effect. After a few periods, the supply constraints are slowly relaxed as investment 

and migration adjust the desired and actual levels of factors of production. After 24 

periods, all but four sectors are actually stimulated by the expansion, due to indirect 

demand effects from the backward linkages of the marine sector, as well as changes 

in price. A closer look at the electricity generation sectors in particular reveals that 

they are differently affected by the shock. Figure 4.5 presents the sectoral output 

changes separately for the eight electricity generation sectors other than marine
49

.  

The only four sectors that are still negatively affected by the shock in period 25 are 

electricity generation sectors. The shock to the marine sector displaces some 

generation from traditional technologies, towards the newly subsidised sector. 

Hydro, gas, biomass and landfill electricity generations are crowded-out by the 

growing marine sector.  

                                                 
49

 Marine output is excluded here for an easier interpretation of Figure 4.5. 
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Figure 4.4: Simulation 1 No learning – output changes 
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Figure 4.5: Electricity generation sectors output changes 
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On the other hand, some generation sectors actually beneficiate from the shock and are 

stimulated in the long run. Onshore and Offshore wind generation is stimulated, and so 

is generation from coal and nuclear technologies. 

These differences in sectoral results reflect a number of effects. First, sectors which 

provide a large portion of inputs to the marine electricity sector are positively affected 

by the shock. There are few sectors that are directly linked to marine generation. As for 

every other electricity generation sectors, the output of marine generation is sold 

entirely to electricity transmission. On the other hand, its domestic inputs are limited to 

the manufacturing and utilities and transport sectors. The utilities and transport sector is 

directly stimulated by the shock from period 1 (see Figure 4.4). Another determinant of 

differences in sectoral output changes is the choice of nested production structure, as 

well as the elasticities of substitution chosen at different nods. As wind generation and 

marine generation form one composite of intermittent electricity generation, some 

generation is initially displaced from wind towards marine, but after a few periods, wind 

generation increases, benefiting from the price reductions in the intermittent electricity 

composite.  

Non-intermittent technologies effectively act as substitutes for intermittent generation, 

and since the elasticity of substitution in the CES function has been set to high value, 

generation is displaced from traditional generation towards marine and wind. However, 

this substitution effect is mitigated by the overall expansionary impact of the shock on 

the economy. The sectoral differences amongst non-intermittent generation sectors 

require deeper analysis. Landfill gas and biomass generation are the most negatively 

affected, their output fall continuously over the longer time horizon to stabilize in the 

long-run around -0.70% and -0.80% respectively. Gas and hydro generation are also 
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negatively affected by the shock, but stabilize in period 25 at higher levels (-0.30% and 

-0.10% respectively). In contrast, coal and nuclear generations are stimulated in the 

long-run by 0.15% and 0.45% respectively.  These differences can be explained by the 

input composition of these sectors. As the marine generation sector is stimulated, 

upward pressure is put on wages, and the most labour-intensive sectors suffer from this 

rise. Landfill and biomass generation are the most labour-intensive sectors in the model 

(approximately 40% of total inputs). In contrast, highly capital-intensive sectors, after 

an initial period of crowding-out in the short-run, beneficiate from the drop in the 

replacement cost of capital. Nuclear and coal are highly capital intensive generation 

sectors (with more than 62% and 41% of total inputs respectively). 

 This observation of sectoral differences has large implications for renewable energy 

policy-makers. If less-developed energy sectors (often renewable-based sectors) suffer 

crowding-out effects from policy support targeted at one technology, renewable policies 

should be developed to jointly encourage the development of several less-developed 

technologies, in the hope of displacing traditional (generally more polluting) generation. 

These general findings about the impact of targeted policy support to marine generation 

through a production subsidy can be further explored in the context of endogenous 

technological change. Simulations 2 to 8 introduce learning-by-doing in a variety of 

forms to improve factor efficiency in marine electricity generation.  

4.2. Introducing learning-by-doing 

The introduction of endogenous learning-by-doing has a large impact on the simulation 

results. The expansionary effect of the subsidy on the Scottish economy is reinforced by 

the efficiency gains in marine electricity generation, which further reduce the 
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production costs for the sector. The increase in marine generation output is higher in all 

simulations including learning than in Simulation 1. Accordingly, the change in GDP in 

period 25 (from the base year) increases from 0.39% in Simulation 1 without learning, 

to levels between 0.59% and 1.13% in Simulations 2 to 8. All the aggregate and sectoral 

effects discussed above are deepened. The decrease in production cost decreases the 

price of marine generation and in most sectors in the long-run.  

The larger costs reduction from endogenous learning increases the boost to 

competitiveness, to consumption and to investment. The lasting crowding-out of some 

generation sectors is also deepened with learning effects. These results support the 

generally accepted view that policy support is more beneficial when targeted at sectors 

with high technological progress potential. However, these results also differ from a 

shock where the marine sector would have been subject to an exogenous improvement 

in production technology.  

In this chapter, technological change is introduced as an endogenous process, and this 

has implications. The learning-by-doing effects will have implications for the speed and 

path of adjustment of the model, depending on the actual specification of the process. 

Next, the results of each simulation are compared to others according the criteria 

identified previously in Chapter 3: in terms of equation form, returns to knowledge 

assumptions and experience and performance proxies
50

. 

4.3. The equation form  

In order to compare the engineering and economic learning curves in their simplest 

form, we must look at Simulations 2 and 5. They both use the same variable to embody 

                                                 
50

 The results are presented in this way to be easily compared to the results of the micro-simulations in the 

previous chapter. 
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experience:  cumulative gross investment; the same variable to embody performance or 

technology (TFP); and Simulation 5 uses the economic learning curve with no returns to 

knowledge. The first observation from this comparison is that the economic learning 

curve in Simulation 5 generates larger gains in total factor productivity (TFP) than the 

engineering learning curve (53.52% against 44.55%).  

Despite the differences in TFP improvement, the aggregate macroeconomic results are 

remarkably similar between simulations 2 and 5. Increases in GDP are of the same 

magnitude. The economic learning curve leads to slightly larger increases in 

employment, consumption and net investment, while the engineering learning curve 

leads to very slightly larger increases in exports. The sectoral results in period 25 reveal 

more significant differences between the two specifications than the aggregate results 

(Tables 4.3 and 4.4). The increase in marine output reaches 76.82% with the economic 

learning curve, against 69.87% for the engineering learning curve.  

As shown, in Chapter 3, the flow-updating form of the economic specification explains 

this difference between the two specifications. It generates larger LBD gains when the 

learning elasticity is smaller than 1 (here α = 0.32, corresponding to a learning rate of 

20%). The adjustment paths of TFP and marine output are shown in Figures 4.6 and 4.7 

respectively, for all simulations.  

Although the final period results are relatively close on the graph for the two 

simulations, the paths of adjustments of TFP and marine sectoral output are different. 

The engineering specification initially creates faster growth in TFP and output, while 

the economic specification appears slower at bringing efficiency improvements, but 

eventually overtakes the engineering specification. The path of TFP with the economic 
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learning curve is more linear (as confirmed in the micro-simulations of chapter 3) and 

therefore continues to increase after period 25
51

, whereas the engineering learning curve 

leads to concave TFP path and seems to converge towards a long-run equilibrium value. 

The adjustment path of the marine sector output roughly corresponds to that of the TFP 

adjustments. 

The economic learning curve leads to larger and steady marine sector growth after 25 

periods, while the simulation with the engineering learning curve leads to a decreasing 

rate in marine sector growth overtime. These results confirm that the engineering 

learning curve is designed to represent the difficulties associated with further doubling 

of experience over time. The simple economic specification, when ignoring potentially 

negative returns to knowledge, ignores this difficulty and is equivalent to assuming that 

unlimited learning-by-doing improvements are achievable, as long as investments 

continue to grow. 

                                                 
51

 Although it is not perfectly linear, since the sequence of investment shocks predicted by the model is 

not linear, as opposed to the fixed investment shocks in Chapter 3. 
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Figure 4.6: TFP (% Change from base year)-  Simulations 1 to 7
52

 

 

 

                                                 
52

 Note: Simulation 8 is excluded from this graph as the parameter impacted by learning-by-doing is capital efficiency, and not TFP. 
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Figure 4.7: Marine Output (% change from base year) – Simulations 1 to 8 
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4.4. Returns to knowledge in the economic learning curve 

Simulations 5, 6 and 7 illustrate the comparison of alternative returns-to-knowledge, 

and thus focus only on the economic specification of the learning curves.  Three cases 

are analysed, which vary with the value of the parameter ϕ (in equation 4.5.). The case 

of “fishing-out” is shown in Simulation 6, where past increases in efficiency make 

future efficiency gains more difficult. In this simulation, TFP improvements in early 

periods reduce the possibility for future TFP gains. This suggests the limited availability 

of learning potential for a technology. With “standing-on-shoulders”, Simulation 7 

presents the opposite case, and refers to a situation of increasing returns to efficiency 

gains. Here, early gains in TFP actually increase the future possibilities for more 

technological progress. In other words, there is an infinite potential for learning 

improvement, and “the more you learn, the more you can learn”. Both simulations are 

compared to the case of no external returns to knowledge, with ϕ=0 in Simulation 5.  

The value of parameter ϕ has significant implications for modelling results. In the case 

of fishing-out, the expansionary economic impact of the subsidy is the most limited of 

all the scenarios introducing learning-by-doing. Implementing decreasing returns to 

knowledge weakens the economic specification, which shows a concave shape. As 

pointed out in Chapter 3, this specification produces adjustment paths that are 

qualitatively similar to the engineering learning curve, although the parameterisation 

chosen leads to smaller quantitative results. TFP increases by 8.8% and marine output 

increases by 34.6%. In contrast, the case of standing-on-shoulders leads to exponential 

improvements in TFP. At the end of period 25, it has increased by 138.5% and Figure 

4.6 shows that growth in TFP continues to accelerate over time. This huge positive 
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competitiveness shock leads to an increase of 120.5% in marine output and the largest 

GDP increase of 1.13%. The economic specification with standing-on-shoulders leads 

to very different shapes of adjustments in total factor productivity gains. These do not 

resemble the existing empirical findings of learning-by-doing. The case of fishing-out 

appears to be the economic learning curve specification with results that are closest to 

the empirically defined learning curve from the engineering literature. This simulation 

exercise suggests that the choice of returns-to-knowledge parameter should be kept 

within negative values in economic models with endogenous learning, to ensure that the 

concave shape of learning-by-doing improvement is respected. This should also lead to 

further research in estimation of learning rates using alternative functional forms. The 

exact value of the returns to knowledge parameter should be the object of specific 

estimation exercises. The objective would be to determine an “economic” learning rate 

and corresponding returns to knowledge parameter that would best fit the data on costs 

reductions and experience gains. 

4.5. The experience proxy 

Focusing on the engineering curve, different experience proxies can be compared, to 

determine the impact of the choice of variables on modelling results. Simulations 2, 3 

and 4 represent the engineering specification where experience is embodied in 

cumulative gross investment, cumulative output and capital stock respectively.  

Using cumulative output (Simulation 3), rather than cumulative investments 

(Simulation2) to account for experience increases the total factor productivity gains in 

the results, and therefore enhances the positive aggregate economic impact and the 

displacement of electricity generation towards the marine sector. The aggregate 
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economic impact remains of similar magnitude, although the growths in marine sector 

TFP and output are much larger in simulation 3 than simulation 2 (with 59.81% and 

44.55% respectively for TFP and 81.43% and 69.87% respectively for output). This 

result is mainly driven by the fact that in the model, cumulative output always grows 

more than cumulative investment in the CGE model.  

The adjustment paths in Figure 4.6 and 4.7 also reveal new observations (absent from 

the micro-simulations of Chapter 3), reflecting the more complex structure of the CGE 

model, than the partial framework of Chapter 3. When using cumulative output to proxy 

for experience, marine output and total factor productivity follow an S-shape adjustment 

path. The increase in TFP is initially slower with cumulative output, as the sector begins 

to respond to the shock. It then accelerates as output increases with TFP and TFP 

increases with output. This feedback effect leads to fast TFP and output growth. Finally, 

the growth in TFP appears to slow down again, as the doubling of cumulative output 

becomes more and more difficult to achieve. At this threshold, the growth in marine 

sector output slows down. This finding is interesting as it coincides with the economic 

theory of the s-shaped diffusion of innovation (Davies, 1979). While not specific to 

economics research, the S-shaped diffusion theory suggests that innovations are 

successively adopted by different groups, and will different stage of maturity, during 

which the speed of adoption changes. Innovations ultimately reach a maturation stage, 

where it has reached its maximum adoption or market-share. Interestingly, the output-

driven learning specification is the only one to bring an s-shaped output adjustment path 

in the model. 

Both the cumulative investment and cumulative output (Simulations 2 and 3) results 

show larger aggregate impacts than the third case, where experience is embodied in 



165 

 

capital stock (Simulation 4). The increase in TFP is smaller at 35% and accordingly, the 

increase in GDP is also smaller (at 0.79%). However, using capital stock as a proxy for 

experience produces qualitatively similar results as cumulative gross investment. As 

expected, the adjustment paths for TFP and output follow roughly the same pattern as 

with cumulative investment, but lower at any point. Capital stock grows with gross 

investments in each period but also includes depreciation. This corresponds to 

depreciating the stock of experience, thus using capital stock reduces the speed and 

magnitude of TFP gains.  

Overall these results suggest that the choice of experience proxy matters greatly, in 

particular depending on the model type. Cumulative output offers a qualitatively 

different proxy for experience, due to the reciprocal growth effects between output and 

TFP. In a CGE model, using output as a proxy for experience might over-estimate the 

increase in total factor productivity, as output is produced in every period, regardless of 

a shock to the sector. In contrast, increases in gross investment in marine is only 

triggered by a shock, otherwise gross investment stays constant to replace depreciated 

capital stock (in equilibrium). The use of capital stock as a proxy for experience tends to 

decrease the potential for TFP improvements, as depreciation of capital is made 

equivalent to depreciations to the stock of knowledge. However, when using capital 

stock, this assumption should be carefully informed by estimates of learning-by-doing 

depreciation in the industry in question. To my knowledge, estimates of knowledge 

depreciation in renewable energy sectors are not yet available.  
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4.6. Efficiency of Capital 

Finally, an additional simulation in included in this chapter, illustrating the impact of 

changing the parameter affected by LBD. In the engineering learning curve discussed 

previously (Simulations 2 to 4), TFP increases with experience. In the additional 

simulation (Simulation 8), a new parameter is chosen to embody technological change: 

here, the efficiency of capital in the production of value-added (B) increases with 

experience. This simulation is best compared with Simulation 2, which also uses gross 

investment to embody experience. 

Simulation 8 is motivated by the economic assumption that costs reductions from 

experience are embodied in new capital. Thus, as experience increases with cumulative 

gross investments, the efficiency of the capital stock increases, which also reduces the 

costs of production in the marine sector, further than just the subsidy. However, the 

efficiency of labour in that sector remains unchanged. This has two impacts. First, the 

cost of value-added reduces less than in previous simulations, because labour is not 

more efficient. Second, there is a degree of crowding-out in the value-added function. 

The increase in employment is reduced in Simulation 8 compared to Simulation 2. This 

will reduce the expansionary impact of the shock. 

The same shapes of adjustment paths in marine sector output are observed in Figure 4.6 

whether TFP or capital efficiency is improved with LBD. TFP and capital efficiency are 

increased through the same functional form, with the same proxy for experience. 

However, learning in capital efficiency leads to a smaller expansionary economic 

impact than learning in TFP, as suggested above. The aggregate results also show a 

smaller increase in all key macroeconomic variables. The increase in capital efficiency 
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is smaller than the increase in TFP, due to the smaller increase in cumulative gross 

investments.  The smaller increase in employment has reduced the induced effects from 

the shock; the positive impact on consumption is smaller, which lessen the potential for 

positive returns to learning-by-doing on the whole economy. 

5. Conclusions 

Assumptions about learning-by-doing in terms of equation form, variable choices and 

parameter values have been shown to have vast implications for modelling results. In a 

first attempt to introduce endogenous technological change in a CGE model for 

Scotland, this chapter explores alternative specifications of the learning-by-doing 

process, informed by findings of Chapter 2 and 3.  

The AMOS model used in the Chapter is modified to enable the introduction of 

endogenous technological change in the value-added production function. This way, 

cost reductions in production from learning effects can be modelled through 

improvements in factor productivity (capital and labour). In order to model policy 

support to a new renewable energy sector, as implemented with the Scottish 

Government’s banded Renewable Obligation Certificates, a production subsidy in the 

marine electricity generation sector is simulated in the model. 

A set of simulations are presented in a multi-period analysis. Simulations all represent 

the same production subsidy shock but differ in their definition of learning-by-doing, in 

that they use different equation forms, experience proxies, parameter values or 

performance proxies (TFP or the efficiency of capital only). The simulation results 

highlight several major observations. First, the economic learning curve inspired from 

endogenous growth theory leads to larger efficiency gains than the traditional 
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engineering learning curve, due to its flow adjustment form. Top-down models using 

this specification are likely to find lower compliance costs to climate policies or larger 

benefits from LBD than bottom-up models. Second, the introduction of decreasing 

returns-to-knowledge in the economic learning curve weakens the specification and 

leads to results qualitatively closer to the engineering learning curve, despite being 

quantitatively smaller. The case of fishing-out appears consistent with the hypothesis 

that learning-by-doing opportunities decrease as the technology develops. In contrast, 

the introduction of increasing returns-to-knowledge in the standing-on-shoulders case 

completely alters the behaviour of the learning-by-doing function, and leads to 

exponential growth in efficiency. These results illustrate the need for a more detailed a 

throughout testing of these specifications using econometric estimation techniques. This 

exercise might be limited by the availability of data for a number of energy 

technologies. Third, the use of cumulative gross investments or capital stock as a proxy 

for cumulative experience is strongly backed by economic theory insisting that 

technological change is embodied in new capital. However, the simulation using 

cumulative production, as argued in early models of learning-by-doing, generates 

different results and is the only case where marine output shows an S-shape adjustment 

path, which coincides with S-shape diffusion curve referred to in the economic literature 

on innovation diffusion. This also suggests the need for further research in the 

estimation of learning curves for energy technologies. 

These results have implications for the CGE model for Scotland and for the broader 

EEE modelling literature that introduces LBD. The engineering specification is a 

preferred method for incorporating learning-by-doing due to the simplicity of its 

equation and the decreasing returns associated with it, providing the possibility for 
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adjustments towards a long-term equilibrium. The economic specification is 

theoretically preferable to introduce in a CGE economic model, and can also lead to a 

long-term equilibrium but only in the case of fishing-out. The cases of constant returns 

to knowledge and standing-on-shoulders lead to ever-expanding experience gains, 

which destabilise the model in the long run. Finally, the choice of variable embodying 

experience is of relatively modest importance, although the use of cumulative 

production appears consistent with the literature on the s-shape diffusion curve. This 

chapter highlights the high sensitivity of modelling results with regards to assumptions 

in the learning-by-doing process. Policy modellers need to clearly identify these 

assumptions and their impact on results and policy conclusions. Technological change 

is a complex process of interactions between technological, economic and policy-driven 

influences. The development of more complex estimation tools are required to fully 

encompass these interactions and identify an optimal representation of learning-by-

doing. 
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Part B: The UK Roll-out of Smart Meters, Efficiency 

Gains in Electricity Consumption and Rebound Effects 

The UK government has announced its commitment to a mass roll-out of smart meters, 

set to equip all British homes and small businesses with electricity and gas smart 

metering devices by the end of 2020. This commitment takes place in the larger policy 

context of transitioning to a low-carbon energy system. Smart meters are expected to 

play an important role in reaching ambitious CO2 emission reductions targets, through 

promoting efficiency gains in energy consumption. In addition, they are crucial to the 

large-scale development of a national smart-grid, which would introduce flexibility into 

the demand-side management of the energy sector. The UK commitment to smart 

meters is largely influenced by recent extensions to European legislation on energy 

efficiency and smart grid requirements for member states. As part of the “Third 

Package” of EU legislation on the liberalization of electricity and gas markets published 

in August 2009 (OJEU, 2009), EU member countries must ensure that at least 80% of 

electricity consumers are equipped with intelligent metering devices by 2020. 

Additionally, in its 2012 directive on energy efficiency (2012/27/EU), the European 

Union restates its target of a 20% reduction in annual primary energy consumption by 

2020 compared to projections. Among its general guidelines for member states to 

contribute to this target with energy efficiency measures, the directive highlights the 

need for the diffusion of informative metering technologies. The installation of these 

“smart meters”, providing accurate information on actual energy consumption and time-

of-use, is regarded as a necessary step towards reductions in final electricity 

consumption (OJEU, 2012).  
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The UK target for the adoption of smart meters is more ambitious than EU 

recommendations and the plan is to equip all domestic and non-domestic customers (30 

million homes and small businesses) by 2020
53

. This programme has been subject to a 

series of evaluations and consultations conducted by DECC, assessing the costs and 

benefits of such a policy, as well as addressing policy concerns such as data use and 

consumer privacy. The latest impact assessment in April 2012 estimates the net present 

value of the roll-out at £4.8 billion up to 2030, with costs and benefits of £10.9 billion 

and £15.7 billion, respectively (DECC, 2012). The installation and operation costs of 

the new meters and communication equipment make up the largest share of the total 

costs of the roll-out, and are to be borne by the suppliers. The estimated benefits are 

largely driven by assumptions about savings on three counts. These are suppliers’ cost 

savings (through eliminating the need for bill estimates, visits for meter readings and 

reducing the volume of customers’ enquiries), consumer energy savings and associated 

carbon savings (driven by improvements in energy efficient behaviour).  

These impact estimates have been the object of significant interest from both academic 

and popular press, due to the uncertainty surrounding the scale of the energy savings 

and the distributional impacts of the roll-out. Consumer concerns gravitate around data 

privacy and the risk that suppliers might pass the costs of the meter onto customers’ 

bills, while denying costs savings to be passed on as well. In addition, some question 

the ability of smart meter technology to generate energy savings on their own without 

accompanying policy to develop time-of-use pricing (Thomas, 2012). 
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 The original target of 100% of meters installed by the end of 2019 has been pushed to the end of 2020 

as of 10 May 2013, reflecting the industry’s need for a longer testing period (DECC, 2013). 
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There exists a growing body of literature showing that smart meters can contribute to 

the reduction of household energy consumption, through a better understanding of 

energy use and bills
54

. However, despite evidence of energy savings, there is continued 

uncertainty about the scale of household response to the new technology and about the 

actual channels through which these reductions will take place. The household energy 

savings from the adoption of smart meters is assumed to originate in energy efficiency 

gains in consumption and should lead to reductions in household bills. However, these 

efficiency gains are also likely to have wider economic consequences by reducing 

household electricity and overall electricity demand in the UK, leading to changes in 

prices and in turn to further demand adjustments. In particular, efficiency gains in 

household electricity consumption might lead to rebound effects in household and total 

UK electricity use, through a decrease in the effective price of electricity services in 

consumption. These issues are best addressed in an economy-wide framework. 

Part B of this thesis is devoted to explore these rebound issues using modelling tools 

that can identify the economy-wide effects of a change in household energy technology 

on the rest of the economy. Chapter 5 explores the household and total rebound in 

electricity use in an Input-Output framework. Chapter 6 extends the analysis to a 

Computable General Equilibrium model, to identify the added-value from endogenizing 

prices and income in the economy-wide rebound analysis.  

                                                 
54

 This literature is reviewed in Chapter 5. 
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Chapter 5: An Input-Output Analysis of the Rebound 

Effects from Efficiency Gains in Household Electricity 

Consumption 

1. Introduction  

The UK Government mass roll-out of smart meters is planned to equip all domestic 

energy customers with the technology by 2020. This policy is mostly targeted at 

improving the demand-side management of the energy system, and in particular, at 

improving consumers’ visibility of their energy consumption. It has been shown in the 

literature that with a better access to information about their energy consumption, 

households tend to reduce their overall consumption (see for example Darby, 2006 for a 

review
55

). These energy savings are assumed to originate in energy efficiency 

improvements that enable households to enjoy the same “energy services” with lower 

consumption of energy in natural units. While these households’ energy savings have 

been an area of debate in the literature, little (or no) attention has been given to the 

knock-on effects of this policy on the rest of the energy system, the economy and the 

environment. By inducing an improvement in household energy efficiency, this policy 

is likely to have wider implications for the overall economy, the rest of the UK energy 

demand, the supply side of the energy system and in turn on the UK emissions of 

greenhouse gases.  

The aim of this chapter is to explore the economy-wide impacts of an efficiency gain in 

household electricity consumption from the mandated roll-out of smart meters
56

. This 
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 This literature is reviewed in more details in Section 2 of this chapter. 
56

 This Chapter focuses on an efficiency gain in electricity consumption only, as there has been limited 

evidence linking gas savings to smart meters. 
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analysis is framed in the context of rebound effects from an efficiency gain in household 

electricity consumption. While the rebound effect has been extensively studied in the 

context of energy efficiency gains in the production side of the economy (see Turner, 

2013 for a review), there are relatively few studies that have looked into the rebound 

effects from efficiency gains in household consumption. These studies have mostly 

focused on direct rebound effects, i.e. the rebound in household energy use only (e.g. 

Dubin et al., 1986; Frondel et al., 2008; Greene et al., 1999; Klein et al., 1985 and 1987; 

Schwarz & Taylor, 1995; West, 2004). By focusing on the direct rebound only, these 

studies ignore the potential economy-wide impacts of efficiency gains in energy 

consumption. The use of Input-Output analysis in this chapter is largely motivated by 

this gap in the literature. To our knowledge, multi-sectoral modelling has only tackled 

efficiency improvements in household energy use as a whole: Druckman et al. (2011) 

and Freire-Gonzalez (2011) use Input-Output analysis to examine the direct and indirect 

rebounds from efficiency improvements in energy consumption, whilst Lecca et al. 

(2014) generalise this research by identifying the value-added of using a Computable 

General Equilibrium model to investigate this phenomenon.  

This chapter uses an Input-Output (IO) model for the UK to estimate the total rebound 

effects from efficiency gains in household electricity use from the adoption of smart 

meters. This exercise is innovative in several ways. First, this work represents the first 

attempt to estimate the economy-wide impacts of the large scale deployment of smart 

meters in the UK. This is the first time that IO analysis is used to determine the direct, 

indirect and induced economic and environmental impacts of efficiency gains in 

household electricity consumption. It is also the first attempt at determining the extent 
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of the economy-wide rebound in electricity from this policy. Additionally, the chapter 

addresses a range of other innovative issues relating to the policy, such as:  

 the general relationship between the direct and total rebound in the context of 

efficiency gains in household electricity consumption 

 the impact of disaggregating the electricity sector on electricity rebound results 

 the sensitivity of the rebound to assumptions about substitution possibilities in 

household energy expenditures (by extending our modelling method to 

incorporate econometric work on household energy consumption)  

The remainder of the chapter is organised as follows. Section 2 reviews the literature 

estimating the impact of the introduction of smart meters on household consumption 

behaviour. In addition to highlighting the major uncertainties surrounding the issue of 

the impact of smart meters, this review is employed to identify a value for the efficiency 

gain in household electricity consumption, which is used to parameterize the exogenous 

efficiency shock in our simulation exercise. Section 3 focuses on the definition of 

rebound effects in this thesis. Based on the energy rebound literature, it defines 

household and total rebound effects by differentiating between household and total 

electricity use. Section 4 details the methods and the IO framework used for the 

analysis. It also introduces the definitions of the direct, indirect and induced effects of 

the efficiency shock, to define the total Type I and Type II total rebound effects in 

electricity use. Section 5 presents the first results of the IO analysis of the rebound 

effect from an efficiency gain in household electricity consumption. The results are 

shown in terms of direct, Type I and Type II sectoral and economy-wide impacts on 

output and CO2 emissions. The corresponding direct, Type I and Type II rebounds are 

calculated as well. In Section 6, the electricity sector is disaggregated to differentiate 
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between generation and transmission and distribution activities. The new IO tables are 

used to discuss the impact on the rebound results of the aggregation of all electricity 

activities into one sector. Section 7 compares the results of a set of simulations 

illustrating how consumption substitution possibilities between energy commodities 

affect the rebound results. This exercise uses findings from the econometric estimation 

of substitution in household energy consumption. It compares scenarios where gas and 

electricity are substitutes and complements in household consumption. Section 8 

concludes the chapter and discusses the need to extend this modelling exercise of the 

roll-out of smart meters, using a Computable General Equilibrium framework, which is 

the focus of Chapter 6. 

2. Smart meters and feedback on energy consumption 

In the UK, as in most countries, domestic energy meters are often placed out of sight. 

Therefore, household consumers are typically unaware of the energy that is used in 

running domestic appliances. The impact of providing enhanced information to 

households on their energy use has been the focus of a number of surveys and pilot 

studies since the 1970s. This literature, which refers to this enhanced information as 

“improved feedback”, generally argues that improving the information communicated to 

consumers about their energy use leads to a better control over their consumption and 

ultimately leads to energy savings (Fisher, 2008). This section reviews the major 

findings of this experimental literature about the level of savings by households when 

subject to improved feedback
57

. 
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 Many of these studies have looked at the impact of feedback on energy consumption in combination 

with the impact of time-of-use pricing methods. Due to the scope of the chapter, the literature review only 

reports findings relating to energy savings. 
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Darby (2006) presents the first review of this literature and includes 38 feedback studies 

conducted between 1979 and 2006.  The evidence gathered in the review largely 

confirms the potential for energy savings resulting from the use of technologies that 

improve customer feedback. While improved feedback consistently appears to lead to 

energy savings, the degree of response varies with the type of informative feedback 

considered in the studies. Direct feedback, such as in-home displays, leads to savings in 

the range of 5-15%, while the impact of indirect feedback (e.g. monthly billing or 

comparative feedback) is more modest at 0-13%. A later review by Fisher (2008) 

includes 26 studies but restricts the analysis to studies designed exclusively to 

determine the impact of feedback on consumption. It largely confirms the findings in 

Darby (2006) with typical savings of around 5-12% and concludes that computerized 

feedback is a regular feature of successful programs. Other factors determining the 

success of the feedback in reducing consumption include an interactive element, an 

appliance breakdown
58

 and a high feedback frequency (daily or more). A more recent 

review funded by the European Smart Metering Industry Group (Stromback et al., 

2011) regroups and analyses the results of 100 pilot studies from Australia, Canada, 

Europe, Japan and the U.S.A. Through a direct comparison of different feedback 

methods, this report concludes that In-Home-Display (IHD), which provides direct and 

easily accessible reading possibilities to consumers in their homes, is the most efficient 

method. On average it reduces energy consumption by 8.68%, as compared to 

informative billing (5.90%) or web feedback (5.13%).  This international review 

highlights a number of factors which impact on the results. For example, they observe 

stronger response to feedback in European countries, and find that longer pilots tend to 
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 Feedback with appliance breakdown details energy use for each appliance in the home. 
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have longer lasting effects (suggesting some habit formation). In terms of feedback 

content, they conclude that In-Home-Displays are more effective when they provide real 

time consumption, real time bill information and/or historical comparison, whereas 

comparative feedback can have a negative impact on savings. A recent meta-analysis of 

information-based energy conservation experiments reviews the results of 156 

published field trials between 1995 and 2012 (Delmas et al.,  2013). The results of the 

meta-analysis confirm the potential for information campaigns to reduce household 

energy usage. These results validate the use of new technologies, such as smart meters, 

that can provide low-cost feedback on energy consumption and are likely to lead to 

energy savings. While the results of the meta-analysis show an average reduction in 

electricity consumption of 7.4%, they also provide a quantitative comparison of 

alternative information-based strategies, such as historical or real-time feedback, 

information about energy saving approaches, normative strategies or strategies 

involving monetary incentives
59

. Their findings confirm the superiority of real-time 

feedback strategies when compared to comparative feedback or monetary incentives.  

In addition to reviews that compare all types of feedback, a number of recent papers and 

reports focus specifically on real-time feedback (Faruqui et al., 2010, Foster and Mazur-

Stommen, 2012, Houde et al., 2013). This type of feedback gives households real-time 

information about their energy use (level of consumption, cost, carbon emission, etc.) 

and is the closest to the information that smart meters will deliver in the UK. These 

studies confirm the advantage of In-Home Displays technologies (IHDs) compared to 

other feedback methods in delivering savings.  Focusing on this IHD technology itself, 
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 Historical feedback corresponds to information about past energy usage, energy costs, etc. Real-time 

feedback is information about current or near-present energy usage, energy costs, energy price, etc. 

Normative strategies refer to comparative feedback based on social norms 
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Faruqui et al. (2010) review 12 pilot studies and find energy savings in the range of 3-

13% with an average of 7%. A report by the American Council for an Energy Efficient 

Economy (Foster and Mazur-Stommen, 2012) over 9 real-time feedback studies finds a 

range of energy savings of 0-19.5% with an average of 3.8%. The report also reveals 

that the more advanced the IHD technology, the more customers engage, which leads to 

more energy savings. Additionally, they observe that real-time costs and real-time 

consumption are the most relevant information to consumers in terms of delivering 

savings. Houde et al. (2013) conduct an experiment looking at the impact of a new 

Google device that graphically displays historical and current electricity consumption at 

10 minute intervals. They find that exposure to this feedback leads to an average 5.7% 

electricity consumption reduction.  

The UK also conducted its own pilot studies funded by the regulator Ofgem in 

collaboration with four energy suppliers (EDF ENERGY, E.ON, Scottish Power and 

Scottish and Southern Energy). These studies were conducted over the period 2007-

2010 for a total of 61,344 household including 18,370 equipped with smart meters. The 

findings suggest that no consumption reductions occur in interventions without smart 

meters (e.g. more informative billing or consumer engagement strategies). Smart meters 

are found to work best in combination with IHDs, confirming the findings from other 

studies and reviews. The reported estimated electricity savings were however, smaller 

than previous estimates with an average 3% reduction in consumption, while little 

evidence of reduction in gas consumption is discovered (AECOM, 2011). 

This literature seems to converge on the success of real-time feedback to reduce 

electricity consumption through the use of smart meters and IHD technologies. The 

recent UK Energy Demand Research Project estimate of 3% savings on electricity 
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consumption from the introduction of smart meters (AECOM, 2011) appears as a 

reasonable value to use to calibrate the efficiency shock in the simulations conducted in 

this chapter. This value is chosen as it is estimated for the UK and relates to the same 

(or similar) technology that will be deployed during the mass roll-out.  This value of 3% 

is relatively conservative compared with the average energy saving findings in the 

literature as a whole.  

3. Rebound effects 

As shown in the previous section, it is generally expected that improving feedback to 

consumers about their energy use will lead to conservation behaviour. Through the 

introduction of smart meters, UK households will receive real-time information about 

their electricity use, and from this feedback, they are likely to reduce their consumption. 

This conservation behaviour can be explained by improvement in efficiency in 

electricity consumption, i.e. households use electricity units more efficiently when more 

information about their usage becomes available to them. This chapter attempts to 

model the efficiency gain in household electricity consumption and determine the extent 

of the rebound it will generate, both in terms of household and total UK electricity use. 

First, it is necessary to define formally the concept of rebound effects from efficiency 

gains in electricity consumption
60

.  

The rebound effect corresponds to the difference between the change in electricity use 

and the change in electricity efficiency. In effect, the proportionate decrease in 
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 In this thesis, the rebound effects are defined and discussed only in the context of electricity use, and 

not energy in general. This is due to the policy focus on reductions in electricity consumption from the 

introduction of smart meters. The impact on gas use and CO2 are also discussed but not in terms of 

rebound. 
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electricity use will be smaller than the proportionate increase in efficiency when it is 

mitigated by a rebound effect. 

An increase in efficiency in household electricity consumption can be assimilated to a 

change in “consumption technology”, through which households can extract more 

energy services from each physical unit of electricity. This implies that following an 

efficiency gain in electricity consumption, households can, ceteris paribus, maintain 

their previous level of utility with lower electricity consumption in physical units. This 

efficiency gain should in principle reduce household electricity consumption, but this 

conservation mechanism has been shown to be mitigated by a rebound effect: the 

efficiency gain in electricity consumption essentially reduces the price of electricity 

services in efficiency units for households. The price of electricity in efficiency units    

is defined as follows: 

   
  

    
 (5.1) 

where    is the price of electricity in natural units and γ is the shock to efficiency in 

household electricity consumption. Following the increase in efficiency, there is an 

implicit reduction in the electricity price in efficiency units and households substitute 

electricity in efficiency units for other consumption goods. In effect, the reduction in 

electricity consumption is mitigated by this household rebound effect, and will be 

smaller than the improvement in efficiency. The household rebound effect   , from an 

efficiency gain (γ) is formally defined in equation 5.2: 

   (  
 ̇ 

 
)      

(5.2) 



182 

 

where   ̇ is the proportionate change in household electricity consumption in natural 

units. When the proportionate decrease in household electricity consumption equals the 

proportionate increase in efficiency, the household rebound is zero. However, when the 

decrease in household consumption is lower than the increase in efficiency, there is a 

partial household rebound effect (0 < RH < 100). Finally, if household consumption 

actually increases in natural units, then RH > 100 and we have the case of backfire
61

. 

In this economy-wide analysis, the household electricity rebound represents only one 

element of the impact of efficiency gains. The economy-wide impact of the efficiency 

gains must be measured through the total rebound in electricity use. The total rebound 

is calculated using the change in total UK electricity use, as given in equation 5.3: 

   (  
  ̇

  
)      (5.3) 

where   ̇ is the proportionate change in total electricity use, and   is the initial share of 

household electricity consumption in total UK electricity use.  

Although the rebound effect has been defined here in relation to efficiency 

improvements in household’s electricity consumption, it is a well-documented 

phenomenon arising from efficiency gains in energy use in general. It is commonly 

accepted that any improvement in energy efficiency will be subject to a rebound effect. 

The possibility that energy savings from efficiency gains can be reduced by the rebound 

effect (or more than offset, in the case of backfire) has widely debated, depending on 
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 Sorrell (2007) and Saunders (2008) also identify the theoretical possibility of a case of “super-

conservation”, corresponding to a negative rebound, where energy use decreases by more than the 

efficiency gain. However, no empirical evidence exists to support the existence of super-conservation in 

practice.  
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the definition used. For good reviews of this literature, see Greenings et al. (2000), 

Dimitropoulos (2007) and Sorrell (2007). 

4. Input-Output Analysis 

4.1. The Input-Output Model 

In this chapter, Input-Output (IO) is chosen as a method of analysis to explore the 

direct, indirect and induced effects from the efficiency gains in household electricity 

consumption from the adoption of smart meters. In this chapter, a demand-side IO 

analysis is performed to model the total impact of households’ consumption switching 

behaviour following the efficiency shock in electricity consumption.   

The 2004 UK industry-by-industry IO tables are used to show the impact of a decrease 

in household final demand for electricity. While the focus of this chapter is mainly to 

determine the magnitude of rebound effects in total electricity use, another major issue 

of interest is the impact of this demand change on aggregate CO2 emissions. Thus, the 

UK 2004 IO tables are aggregated from the original 123 sectors into 67 sectors, in order 

to reflect the availability of CO2 data by industry
62

. The list of sectors used in this 

chapter is presented in Appendix D, with the corresponding IO and Environmental 

Accounts sector classifications. CO2 emissions are attributed to each sector’s output 

according to the CO2-intensity derived from the Environmental Accounts. Among the 

67 sectors, 2 are energy commodities, namely electricity and gas.  

In the simulations, we represent the introduction of smart meters in British homes as an 

efficiency gain in household electricity consumption. The direct effect from this 
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 The 67 sector aggregation is driven by the sectoral classification of the Environmental Accounts, as 

explained in Hermannsson and McIntyre (2013)  
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efficiency gain is represented as an exogenous change in household final demand for 

electricity consumption. In order to calibrate the reduction in household electricity 

consumption in natural units, the empirical estimates from Section 2 are used.  The 

introduction of smart meters in UK households is estimated to produce a 3% reduction 

in electricity consumption. This corresponds to a £286.87m reduction in household 

demand for the electricity sector in the 2004 UK IO accounts. This reduction in 

household electricity consumption is compensated by a corresponding redistribution of 

expenditures towards all other consumption sectors
63

.  

In this demand-driven IO analysis, the objective is to determine the impact of a change 

in final demand on the rest of the economy, through the determination of direct, indirect 

and induced effects. This analysis is conducted under the general IO assumption of 

passive supply. Under this assumption, supply is able to fully satisfy changes in final 

demand, i.e., there are no supply-side constraints on factors of production. The IO tables 

can be read as a set of simultaneous equations representing how each sector’s output is 

used by other sectors or agents in an economy.  The matrix form of the IO tables 

enables a clear representation of the complex interdependencies between industry and 

final demand, as well as the inter- and intra-sectoral linkages. The advantage of IO 

analysis is the possibility of relatively simply transforming this system of equations to 

determine the “knock-on” impacts of a change in final demand for one sector on all 

other sectors, and thus on the economy as a whole. 

                                                 
63

 A number of assumptions about the redistribution of expenditures to non-electricity sectors are 

explored in this thesis, particularly with regard to substitution between electricity and gas. These 

assumptions are embodied in several scenario analyses and are clearly stated in the next sections. 
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The conventional model can be formulated in order to express the output as a function 

of the exogenous final demand: 

 

           (5.4) 

 

where X, I, A and Y are respectively the vector of output, the identity matrix, the matrix 

of input coefficients and final demand.         is the Leontief inverse matrix that 

summarises the economic structure of a country. The elements of the Leontief matrix 

identify the backward linkages of each sector. If sector j increases its output, there will 

be increased demand from sector j (as a purchaser) for other sectors whose goods are 

used as inputs to production in j. This is the direction of causation in the usual demand-

driven model and the term backward linkage is used to indicate the interconnection of a 

particular sector with those sectors from which it purchases inputs. Equation (5.4) 

illustrates the dependence of sectoral output on final demand components (Miller and 

Blair, 2009). This relationship is used to determine the Type I (direct and indirect) and 

Type II (direct, indirect and induced) impacts of a change in final demand on sectoral 

output.  

The direct effect is the initial adjustment to the change in final demand. This impact 

corresponds to the adjustment of supply in response to a direct change in demand for 

one or several sectors’ output.  In turn, the demand for inputs by these sectors changes 

as well, resulting in further adjustments in sectoral outputs. This is the indirect effect. 

While the direct impact only represents the change in outputs in the sectors which are 

subject to the change in final demand, the indirect impact reflects the backward linkages 

of the directly impacted sector. For example, if final demand for the electricity sector 

decreases, the direct impact is the decrease in electricity output to adjust to the change 
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in final demand. However, other sectors in the supply-chain of the electricity sector will 

be negatively impacted by the decrease in electricity output. These sectors’ output will 

decrease as an indirect impact, thus the total negative impact on the economy will be 

larger than the initial direct impact. The total Type I impact represents the sum of direct 

and indirect impact and can be calculated using Type I multipliers. Multipliers are 

defined as the sum of elements in each column of the Leontief inverse.   

In addition, Type II multipliers can also be derived, in an open Leontief model, to 

include induced effects. Induced effects are obtained from changes in households’ 

income, as a result of the change in final demand. As sectoral outputs adjust to the new 

vector of final demands, households’ income (payment for labour inputs into 

production) adjusts as well. This change in income results in a change in household 

final consumption, a component of final demand. The induced effects are obtained in 

the model by incorporating the employment-output multipliers in the calculation of the 

Leontief inverse. 

Once the Type I and Type II sectoral impacts have been calculated using the multipliers, 

we can determine the associated impacts on sectoral and total CO2 emissions using 

CO2-output multipliers. Using equation (5.4) the impact of an exogenous increase in 

final demand Y on total output X can be formulated as follows: 

             (5.5) 

 

This model is based on a number of assumptions. The supply side is passive, so that the 

final demands drive economic activity. Prices are assumed to be fixed and therefore no 

crowding-out effects occurs. This approach assumes excess capacity; therefore the 

economy can expand without putting any upward pressure on wages and prices. This 
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means that the supply side of the economy reacts passively to changes in demand. In the 

simulations performed in this chapter, it is assumed that production technology (the 

Leontief coefficients), and thus the cost structure of each economic activity, do not 

change over time. Therefore, the results described here provide estimates for the 

economic impact in the absence of structural change in the economy over the period 

under consideration. All the results tables for this chapter are presented in Appendix E. 

4.2. Direct, Indirect and Induced Rebound 

In the IO context of this chapter, three major components of the rebound effect are 

investigated. These components correspond to the three effects that are identifiable from 

the IO analysis: namely the direct, indirect and induced rebound. These components are 

defined and explained below in the Input-Output context of this chapter. 

4.2.1. The Direct Rebound 

Following the typology of the rebound proposed by Greening et al. (2000), the direct 

rebound in this thesis refers exclusively to the rebound at the micro-level, which 

corresponds to the direct increase in household electricity consumption from the 

reduction in the price of electricity services. Effectively, the direct rebound represents 

the adjustment of household electricity consumption in efficiency units following the 

decrease in the price of electricity services. Because the analysis of this chapter is based 

in an Input-Output framework with fixed prices (in natural units) and fixed income in 

the Type I analysis, the direct rebound is equivalent to the household rebound defined in 

Section 3
64

.  
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 The household rebound will be different than the direct rebound in the next chapter which employs a 

Computable General Equilibrium approach. 
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The direct rebound in this chapter is defined in the same way as household rebound (in 

equation 5.2.). It represents the household response to the implicit decrease in electricity 

price following the efficiency shock. Thus, the direct rebound is assumed to be fully 

defined by the price elasticity of household electricity demand     .This corresponds to 

the simplest definition of the direct rebound (Khazzoom, 1980, Sorrell and 

Dimitropoulos, 2007)
65

.  

The price elasticity is defined in equation (5.6), as the proportionate change in 

household electricity demand in efficiency units,   ̇ following a change in the electricity 

price in efficiency units,   ̇: 

   
  ̇

  ̇
 

(5.6) 

 

In other words, in this IO analysis, the household rebound is equal to the direct rebound, 

which is also equal to the own price elasticity of household electricity demand, as 

shown in equation 5.7: 

             (5.7) 

If the direct rebound is positive but lower than 100, households decrease their electricity 

consumption following the efficiency shock. This is the case that is expected in the 

analysis of this chapter, since the literature review reveals a decrease in household 

consumption following the introduction of smart meters.  
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 although the estimates of the elasticities of energy demand may be biased depending on the trends of 

energy prices at the time of estimation. Time series estimates during periods of rising energy prices could 

overestimate the rebound (Sorrell and Dimitropoulos, 2007). 
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4.2.2. Indirect Rebound 

In addition to the direct rebound in household electricity consumption, the analysis aims 

to determine the impact of efficiency improvements on the change in total electricity 

use. Following the efficiency shock in household electricity consumption, the change in 

household electricity consumption is determined by the extent of the direct rebound. 

With a direct rebound lower than 100, household electricity consumption decreases and 

this will impact the demand for other goods, through consumption-switching effects.  

This consumption-switching in turn changes the total demand for electricity as it is used 

as an intermediate input in production. The indirect rebound measures this embodied 

electricity effect. The sign and magnitude of the indirect rebound is therefore influenced 

by the relative level of electricity-intensity of the preferred goods and services for 

household consumption, as compared to the electricity commodity itself. If households 

switch their consumption from the electricity sector towards more electricity-intensive 

goods, the indirect rebound will be positive. Conversely, if consumption switches 

towards less electricity intensive goods, the indirect rebound will actually be negative.  

This can be expressed formally in the following system: A change in household 

expenditures on electricity consumption (∆E) is fully redistributed towards the 

consumption of non-electricity goods (∆NE), and can be expressed as a function of total 

household expenditure C, as in equation 5.8: 

         (
  

   
  )    (5.8) 

Where λ is the share of electricity in total household expenditures 
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The combination of direct rebound in household consumption and indirect rebound 

from embodied-electricity effects give a measure of the Type I total rebound in 

electricity in the economy. Given the fact that the electricity sector is highly energy 

(electricity) intensive, shifting consumption towards non-electricity goods is likely to 

generate a negative indirect rebound, and thus to reduce the total rebound. 

4.2.3. Induced Rebound 

Induced effects are also considered in the analysis. As households demand changes 

through consumption-switching effects, sectoral activity adjusts, leading to further 

adjustments in income for households and in turn further adjustments in total 

consumption. The total rebound which includes direct, indirect and induced effects is 

defined as the Type II total rebound effect. If households’ income increases as a result 

of indirect effects, there will be an induced increase in household consumption, which 

will increase total electricity use. In this case, the Type II total rebound, which 

incorporates indirect and induced effects, will be larger than the total Type I rebound 

which only includes indirect effects. In the reverse case, a decrease in household income 

will lead to a decrease in total UK electricity use, and a smaller total Type II rebound 

effect. 

4.2.4. Total Rebound 

The total rebound measures the rebound in total electricity use(in both consumption and 

production). It was defined in equation 5.3 in Section 3 using the proportionate change 

in total electricity use   ̇. It can also be defined in terms of the absolute change in total 

electricity use    , defined in equation 5.9 

            
            

    (5.9) 
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ET, the total Type I (or Type II) change in UK electricity use is determined by the 

electricity embodied directly and indirectly (and induced) in the change in household 

consumption of electricity and non-electricity goods. Here,   
  represents the 

embodied-electricity in the electricity commodity and   
  the electricity-intensity of 

non-electricity goods. 

The relationship between direct rebound (in household consumption) and total rebound 

(incorporating economy-wide effects) is determined by the difference between the 

embodied-electricity in the electricity commodity and non-electricity goods, ∆m
E
, as 

shown in Equation 5.10:  

( 100) E

T D DR R R m     (5.10) 

 

where       
    

 . If the electricity commodity is more electricity-intensive than 

other goods, then ∆m
E
 is positive, and the relationship between the direct and total 

rebound is shown in Figure 5.1. 

Several observations about the rebound can be drawn from this graph. First, if the direct 

rebound is 100 (RD = 100), there is no change in the household use of electricity 

following the efficiency gain. In this case, there is no consumption-switching behaviour, 

and no adjustment to production. Therefore the total rebound is equal to the direct 

rebound, and equals 100. If direct rebound is larger than 100, households increase their 

consumption of electricity because of the efficiency gain. This is the case of backfire. In 

this situation, households spend a larger share of their income on electricity, and the 

relative electricity-intensity of consumption increases, leading to positive indirect 

rebound from production effects. The total rebound is larger than the direct rebound.  
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Figure 5.1: The relationship between direct and total rebound 

 

In contrast, if direct rebound is lower than 100, then households reduce their electricity 

consumption and redirect their consumption towards less (electricity-intensive) non-

electricity goods. In this case, the indirect rebound is negative and the total rebound is 

lower than direct rebound. Finally, it is theoretically possible for the total rebound to be 

negative, if the negative indirect rebound is large enough to more than offset the 

positive direct rebound. Formally, this corresponds to a direct rebound     

        ⁄  .  

If the value of total rebound equals 100, the efficiency gains in household consumption 

from the introduction of smart meters are fully offset by the increase in total electricity 

use in the economy. If 0 < RT <100, the roll-out generates some savings in total UK 

Source: Lecca et al. (2014) 

RD 

R
T
 

R
D  
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electricity use. Input-Output analysis is chosen as a useful tool to examine the 

implications of the above observation that indirect (and in turn total) rebound is highly 

dependent on the electricity-intensity of consumption goods, and thus highly dependent 

on inter-sectoral linkages in the economy. Using the total Type I or Type II change in 

the electricity output by shocking the IO model, it is possible to calculate the change in 

total UK electricity use, and therefore to calculate the total Type I or Type II UK 

rebound from the efficiency gain. 

5. “Base-Case” Scenario: BASE67 

In the first simulation, the IO tables are shocked with a 3% reduction in electricity 

demand, corresponding to a £286.87 reduction in household expenditure on electricity. 

It is assumed that this 3% reduction in household consumption is observed (as noted in 

Section 2) and therefore already takes into account the direct rebound on household 

electricity consumption.  

Assuming no change in household preferences, the reallocation of consumption 

expenditures away from electricity and towards non-electricity goods and services is 

solely determined by the initial distribution of household consumption given in the IO 

tables. The results of the base case simulation, referred hereafter as BASE67 are 

presented using this reallocation principle. The newly available household income from 

savings in electricity consumption is redistributed to all other sectors according to their 

initial shares of household consumption. These shares are shown in Figure 5.2 for the 

top 15 sectors in household consumption. The five dominant sectors, namely Property, 

Retail Distribution, Hotels, Catering and Pubs, Food and Drink and Wholesale 

Distribution together make up about 50% of total household consumption.  
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Figure 5.2: Sectoral shares in household consumption (Top 15 Sectors) 

 

 

5.1. IO results – BASE67 

The aggregate results of simulation BASE67 are presented in Table 5.1. The table 

summarizes the direct, Type I and Type II impacts in terms of changes in: total output, 

output of the electricity sector, aggregate output of non-electricity sectors and total CO2 

emissions
66

. The “Direct” results correspond to the effect of the direct shock, i.e. the 

reduction in electricity demand, and the simple reallocation of household expenditures 

to the other sectors. Households save 3% of their electricity consumption as a result of 

the introduction of smart meters. The corresponding £286.87m saved by households in 

the Electricity Production and Distribution sector are redistributed as expenditures on 

the 66 non-electricity sectors. In the direct effect, there is no change in total household 
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 The rebound results are also presented in Table 5.1 but will be discussed further in Section 5.2. 
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expenditures, but only consumption-switching effects. All non-electricity sectors are 

directly stimulated by the shock, in proportion to their share in household consumption. 

Table 5.1: BASE67 Aggregate Results 

 

Direct Type I Type II 

Total Output (£ms) 0.00 -163.99 -80.73 

Electricity Output (£ms) -286.87 -407.68 -405.94 

Total non-electricity output (£ms) 286.87 243.70 325.21 

CO2 emissions (000ts) -1,517.93  -2,230.34  -2,208.95  

    

Change in household electricity use (%)  -3.00% -3.00% 

Change in total electricity use (%)  -1.24% -1.24% 

Household rebound  75.80 75.80 

Indirect Rebound  -10.72 -10.72 

Induced Rebound   -0.15 

Total Rebound  65.09 65.23 

  

Table E1 (in Appendix E) presents the detailed sectoral output results of the shock for 

this first simulation. These figures represent the changes in output (in £ms) for each of 

the 67 sectors. The five dominant sectors identified previously experience large 

increases in demand, such as £41.51m for Property or £41.36m for Retail Distribution. 

Other significant sectors in household consumption include Recreational Services, 

Education, Insurance and Pension Funds. These sectors are also stimulated significantly 

by the shock. 

The reallocation of household expenditure also has a significant impact on CO2 

emissions. In essence, the redistribution of household consumption will lead to an 

increase (or decrease) in total CO2 emissions where stimulated sectors are more (or 
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less) CO2-intensive than the electricity sector. Figure 5.3 ranks the Top 15 sectors in 

terms of CO2 intensity. Appendix F.1 presents the full list of CO2-output coefficients 

by sector. Electricity Production and Distribution is the second most CO2 intensive 

sector, after Cement & Clay. Other CO2-intensive sectors include transportation sectors 

(Water Transport, Air Transport, Other Land Transport), manufacturing processes (e.g. 

Iron and Steel, Industrial Gases and Dyes, Glass products, Textiles) or resource 

extraction (Oil and Gas Extraction). These sectors do not account for a large share of 

household consumption; therefore they should not be significantly stimulated by the 

direct redistribution of expenditures, and thus we would not expect CO2 emissions to 

increase as a result of the direct shock. 

Figure 5.3: CO2-Output coefficients (Top 15 Sectors) 

 

As expected, the redistribution of expenditures away from the CO2-intensive Electricity 

Production and Distribution sector leads to a large direct reduction in total CO2 

emissions of 1.52 mT. This is explained by the relatively high CO2-intensity of the 
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electricity sector compared to other sectors of activity, which is likely driven by the 

high emissions from traditional electricity generation technologies, such as coal, gas and 

oil-fired power plants
67

. Table E2 in appendix summarizes the sectoral CO2 results for 

the base case scenario (BASE67). The largest sectoral increase in CO2 emissions is 

attributed to the Air Transport sector at 13,000 tons but is very small compared to the 

reduction of 1.56 mT of CO2 from reduced activity in the Electricity Production and 

Distribution Sector.  

In addition to the direct impact of the shock, indirect effects can be derived as the 

changes in intermediate demand as a result of the direct shock. The combination of 

direct and indirect effects (i.e. Type I) are presented in column 2 of Table 5.1, while the 

detail sectoral impacts are shown in appendix. The direction and size of indirect output 

changes are determined by the backward linkages of sectors and are embodied in Type I 

output multipliers. The total Type I impact on industrial output is negative at -£164m, 

and can be disaggregated between some negative and some positive sectoral output 

changes. While most sectors are indirectly stimulated by the shock as intermediate 

inputs to non-electricity consumption sectors, there are 10 sectors for which the output 

indirectly falls.  

Given that electricity is the only sector whose direct output decline, any subsequent 

decline in non-electricity sectors suggests that these sectors have strong indirect links 

with electricity. In particular, all energy-related sectors experience an indirect fall in 

output including: Coal Extraction, Gas and Oil Extraction, Gas Distribution and 

Electricity Production and Distribution. The Electricity sector is the most affected by 

                                                 
67

 These generation sectors are part of the Electricity Production and Distribution sector. The role of 

generation sectors in the rebound and in the carbon impact of smart meters is explored in more details 

later in this Chapter. 



198 

 

the intermediate negative demand shock, confirming the strong internal linkages within 

the sector itself between electricity generation, transmission and distribution activities. 

Using the Input-Output table, the electricity intensity of each sector can be derived with 

the electricity-output coefficients
68

. Appendix F.2 details the electricity-output 

coefficients for all 67 sectors. The top 15 sectors’ coefficients are ranked by electricity 

intensity and presented in Figure 5.4. The electricity sector is highly electricity-

intensive with about 30% of its input sourced internally. However, none of the major 

household consumption sectors listed previously ranks highly in terms of electricity-

intensity, explaining the indirect decline in total output. 

Figure 5.4: Sectoral Electricity Intensity (Top 15 Sectors) 

 

The increase in demand for electricity as an intermediate input to consumption sectors is 

fully offset by the indirect fall in demand by the electricity sector itself. Overall total 
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 These coefficients represent the direct share of electricity inputs in each unit of the sector output. They 

are the direct input-output coefficients in the A Matrix. In other words, they embody the electricity 

requirements of each sector. 
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industrial output is reduced by the shock due to the large negative shock on the 

electricity sector, and major internal linkages within the sector. Correspondingly, when 

incorporating indirect effects, total CO2 emission reductions are larger than when only 

the direct effect is included. The total type I CO2 emission reductions equal -2.23mT. 

Finally, Type II output and CO2 results can be computed by incorporating induced 

effect. Induced effects represent the impact of the changes in household income and 

consumption from the indirect effects. While the direct shock is a simple reallocation of 

expenditures, the indirect effects adjust sectoral demand for intermediate inputs, 

ultimately affecting payments for factors of production, i.e. household income. As a 

result of the increase or decrease in income, household consumption will be affected. 

Column 3 in Table 5.1 summarizes the Type II results of the shock. (Appendix E.1 and 

E.2 show the Type II changes in output and CO2 respectively for each sector). Larger 

numbers in Column 3 compared to Column 2 reflects an increase in household income 

and their corresponding increase in expenditures in all consumption sectors. Overall, 

there are small positive induced effects from the efficiency shock. While the indirect 

effects on output and CO2 were negative, induced effects are positive. This is shown in 

a Type II output change of -£80.73m and CO2 change of -2.20mT (less negative than 

Type I results).  This result suggests that the sectors indirectly stimulated by the shock 

are more highly labour intensive than the sectors that are negatively affected. Thus, 

households’ income increases from the indirectly stimulated sectoral outputs. This is 

confirmed in the IO tables, where services and retail industries appear more labour 

intensive when compared to manufacturing and energy sectors. 
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5.2. Rebound Results – BASE67 

From the results of the IO analysis on output, the total Type I (direct and indirect 

rebound) and Type II (direct, indirect and induced) rebound effects in electricity 

consumption can be computed in an economy-wide framework. The total Type I or 

Type II rebound effect determines whether electricity use in the UK will decrease (RT < 

100), stay constant (RT=100) or actually increase (in the case of backfire, RT >100). 

The rebound results for BASE67 are presented in Table 5.1. 

As stated previously, the direct rebound corresponds to the increase in household 

electricity consumption from the implicit fall in the price of electricity in efficiency 

units. It is assumed to be fully determined by ηe, the price elasticity of household 

electricity demand. Household energy expenditures have been the focus of a large 

number of econometric studies, which have often produced estimates of the own-price 

elasticity of household electricity demand (Jamasb and Meier, 2010).  In this analysis, 

the Baker et al. (1989) estimates of this elasticity for the UK are chosen. This estimate 

is ηe = -0.758. Thus, a direct rebound of 75.8 is assumed in the analysis.   

In this case, we are assuming a positive direct rebound which is lower than 100. 

Therefore the simulation corresponds to a negative demand shock on the electricity 

distribution sector. The magnitude of the efficiency shock required to obtain the 3% 

reduction in household electricity consumption from the literature is calibrated to 

include the 75.8 rebound. Rewriting the definition of the household rebound in equation 

5.2, to express the efficiency shock, we find:  

  
  ̇

      ⁄    
 (5.11) 
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Using Equation (5.11), a 3% reduction in household electricity consumption, which 

incorporates a direct rebound of 75.8, corresponds to an efficiency shock of 12.40%
69

. 

The rebound results are summarized in the last four rows of Table 5.1. The indirect 

rebound is negative at -10.72, corresponding to the overall indirect decrease in UK 

electricity use from backwards linkages. Combining direct and indirect rebound, the 

Type I total rebound equals 65.09, and is lower than the direct rebound of 75.80. The 

direct rebound is mitigated by the negative indirect rebound in electricity demand. This 

negative indirect rebound is driven by the large negative indirect shock on the 

Electricity Production and Distribution sector, as an intermediate input in its own 

production. Through a decrease in household electricity demand, the need for electricity 

as an intermediate input falls, generating a lower Type I total rebound effect compared 

to the household rebound.  

The induced rebound is small and positive 0.15, as the income effect slightly increases 

electricity demand overall. This induced effect leads to a Type II total rebound of 65.23. 

Overall, the results show that despite a positive rebound in the total use of electricity, 

the benefits from the introduction of smart meters might go further than originally 

expected. In addition to the 3% reduction in household electricity consumption, 

industrial use of electricity will decrease, leading to a smaller economy-wide rebound. 

However, these results are strongly driven by the size and internal linkages of the 

electricity sector as it incorporates a variety of activities from generation to distribution. 

The large negative indirect effect on electricity demand is mainly driven by the high 

electricity-intensity of the electricity sector itself. This observation is explored further 
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 This value will be used in subsequent simulations in the next chapter to calibrate the efficiency shock. 
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through replicating the base simulation in a UK Input-Output table where the electricity 

sector is disaggregated between generation, transmission and distribution activities. 

6. Disaggregated Electricity Sector 

6.1. Disaggregating generation, transmission and distribution 

In order to observe how the composition of the Electricity Production and Distribution 

sector impacts the rebound results, the sector can be disaggregated in the IO tables by 

differentiating between generation, transmission and distribution activities. First, 

electricity transmission and distribution network activities are separated from the 

generation activities. Generation activities are then disaggregated into 9 technologies, 

namely Nuclear, Coal, Oil and Gas, Hydro, Biomass, Wind Onshore, Wind Offshore, 

Marine and Solar, and other technologies. The disaggregation of the electricity sector 

follows the methodology used for disaggregating the Scottish IO tables in Allan et al. 

(2007a) referred to in Part A of this thesis. Following this methodology, the 

disaggregation of electricity activities is repeated in Winning (2012) for the UK tables, 

and the same disaggregation of electricity sectors is used in this chapter. The model is 

now composed of 76 industrial sectors including 10 electricity-related sectors. 

Electricity generation sectors sell the totality of their output to the Electricity 

Transmission and Distribution sector that redistributes electricity to the rest of the 

economy. Through this disaggregation, households have no direct purchases of 

electricity from the generation sectors, so all household electricity expenditures are 

made in the Electricity Transmission and Distribution sector. Using the newly 

disaggregated tables, the same simulation of a 3% reduction in household electricity 

expenditures is conducted to represent the introduction of smart meters. The major 
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difference in simulation in the DISAG76 scenario compared to BASE67 is that the 

household efficiency gain, and the corresponding £286.87m reduction in household 

expenditures, is applied only to the Electricity Transmission and Distribution sector. In 

this simulation, this expenditure is again redistributed to all other sectors according to 

their initial share in household consumption. 

6.2. IO Results – DISAG76 

The aggregate results of the simulation are presented in Table 5.2. Again, the detailed 

sectoral results are presented in Appendix E (in Table E3 and E4 for output and CO2 

emission respectively). Using the same reallocation principle as in BASE67, the direct 

impact from the shock is neutral on total output, as the saved electricity expenditures are 

redistributed to non-electricity sectors. 

Table 5.2: DISAG76 Aggregate Results 

 Direct Type I Type II 

Total Output (£ms) 0.00 -164.04 -96.97 

Electricity Output (£ms) -286.87 -305.79 -304.66 

Total non-electricity output (£ms) 286.87 141.75 380.73 

CO2 emissions (000ts) -51.90 -2,230.96 -2,215.08 

    

Change in household electricity use (%)  3.00% 3.00% 

Change in total electricity use (%)  -1.24% -1.23% 

Household rebound  75.80 75.80 

Indirect Rebound  -1.97 -1.97 

Induced Rebound   -0.10 

Total Rebound  73.83 73.93 
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There is no redistribution of household income to the newly disaggregated generation 

sectors, since households have no direct purchase in these sectors. The direct 

redistribution of expenditures to non-electricity sectors is therefore identical to the 

BASE67 simulation. Every non-electricity sector is stimulated in the same proportion 

after disaggregation (see appendix E for sectoral details).  

Although the direct change in total output is zero in both simulations, the disaggregation 

of the electricity sector impacts the magnitude of Type I and Type II impacts. Although 

the total Type I impact of the shock in DISAG76 is negative at -£164.04m and very 

similar to the BASE67 results (-£163.99m), the sectoral results reveal some large 

differences. The indirect impact of the shock on the electricity sectors can now be 

disaggregated between different activities. The Electricity Transmission and 

Distribution sector is still negatively impacted by the indirect shock (-£305 m), as it is 

still an important direct input to its own production, but less drastically than when the 

electricity sector was fully aggregated (-£407m).  

However, the newly created generation sectors are also negatively impacted by the 

indirect shock, as they represent more than 30% of intermediate inputs to the Electricity 

Transmission and Distribution sector. The negative indirect shock on generation sectors 

is proportional to their share of total generation. Oil and Gas generation experiences the 

largest decrease in outputs with -£42m, followed by Coal generation (-£34m), nuclear 

generation (-£20m) and finally by renewable generation sectors. By aggregating the 

negative indirect impact on both generation and distribution activities, we obtain the 

negative indirect impact on the aggregated electricity sector of the BASE67 simulation. 

In this disaggregation exercise, we can observe the actual impact of household 

efficiency gains between different electricity sector activities. 
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In all non-electricity sectors, the indirect impact on output is similar to this of the 

BASE67 simulations, except in a few sectors, which are affected by the altered 

backward linkages of the electricity sectors. For example, the output of the Metal 

Product sector indirectly decreases less (-£1.76m) with the fall in Electricity 

Transmission and Distribution than in BASE67 (-£2.21m).   

The induced effects after disaggregation are still positive overall. The total Type II 

change in output is -£96m, which is larger than the total Type I output change. This 

result confirms the observation from the BASE67 simulation, that households’ income, 

and thus consumption increases when considering induced effects. However, the 

positive impact of induced effects on output is lower in DISAG76 than in BASE67. 

This suggests that some electricity generation sectors are actually relatively labour 

intensive, and that their indirect decrease in output generates some loss of income for 

households. This is the case for the Biomass Generation and Other Generation sectors.  

6.3. Impact on CO2 Emissions 

An interesting finding arises when comparing the direct, Type I and Type II changes in 

CO2 emissions before and after disaggregation. In addition to the change in total CO2 

emissions shown in Table 5.2, the sectoral CO2 emissions changes for DISAG76 are 

presented in Table E4 (in appendix). 

While the direct sectoral output results are the same in both simulations, the direct CO2 

results are different. The decrease in CO2 emissions associated with a reduction in 

Electricity Transmission and Distribution output is lower than when the sector was 

aggregated with generation activities. Figure 5.5 presents the new sectoral CO2 

intensities once the electricity sector has been disaggregated (for the top 15 sectors). 
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The complete list of 76 sector CO2 intensity is included in Appendix F.3. Fossil-fuel 

electricity generation sectors now dominate the list in terms of CO2-output coefficients.  

Coal Generation is the most CO2 intensive followed by Gas and Oil Generation.  

When all electricity activities were aggregated, the Electricity sector was the most CO2 

intensive. After disaggregation, the Electricity Transmission and Distribution sector is 

now the 17
th

 most CO2 intensive sector (and consequently is not shown in Figure 5.5) 

with a coefficient of 0.32. The reduction in output from the Electricity Transmission and 

Distribution sector reduces CO2 emissions by 91,560 tons which are partially offset by 

the direct reallocation to other sectors. Total direct CO2 emission reductions amount to 

51,900 tons in DISAG76, compared to 1.52mTs in BASE67.  

 Figure 5.5: DISAG76-Sectoral CO2 intensity (Top 15 sectors) 

 

Figure 5.6 represents the comparison of direct, Type I and Type II CO2 emission 

changes for the two simulations. The total Type I CO2 emission reductions in DISAG76 

are extremely close to these of BASE67. As the generation sectors outputs have 
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adjusted indirectly to the shock, emissions from generation sectors have decreased in 

the indirect impact. The decrease in Coal Generation and Gas and Oil Generation 

outputs contribute to the largest CO2 emission reductions with 1.42mTs and 0.70mTs 

respectively.  

Similarly, the total Type II CO2 emission changes are similar whether or not the IO 

table is aggregated. The induced increase in CO2 emissions in DISAG is slightly 

smaller than the induced increase in BASE67 (approximately 16,000 tons vs. 21,000 

tones). This slight difference in Type II CO2 emission changes reflects the output 

results. In DISAG76, there is a slightly smaller induced positive impact from the shock. 

Figure 5.6: Total CO2 emissions changes (BASE67 and DISAG76) 

 

Overall, the impact of disaggregation on total Type I or Type II CO2 emission changes 

results is minor. The impact of the disaggregation is however significant on sectoral 

output results, and it is likely that it will significantly impact rebound results in 

electricity use. This is discussed in Section 6.4. 
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6.4. Rebound Results – DISAG76 

Rebound results for the 76 sectors simulation are summarized in the last four rows of 

Table 5.2. The rebound is calculated on the Electricity Transmission and Distribution 

sector results only, reflecting more precisely the changes in the use of electricity in the 

economy. The direct rebound is the same in both simulations BASE67 and DISAG76, 

since we consider the direct rebound to be already incorporated in the 3% reduction in 

household electricity consumption and determined by the price elasticity.  

However, the total Type I and Type II rebounds differ significantly between the two 

simulations. In the aggregated tables (BASE67), the total type I rebound was reduced by 

a large negative indirect rebound (-10.19, see Section 4.3). This negative impact on the 

electricity sector was largely triggered by the strong internal linkages within the 

electricity sector itself. In DISAG76, the indirect rebound is also negative but with a 

smaller value of -1.97, reflecting the decrease in electricity use by industries. This 

translates into a total Type I rebound of 73.83, which is larger than in BASE67. The 

backwards linkages of the Electricity Transmission and Distribution sector within itself 

are still strong (negative indirect rebound) but they are largely mitigated by the 

disaggregation. Externalising the generation activities from the sector drastically 

reduces these internal linkages, and leads to a larger Type I rebound overall.  

The total Type II rebound in UK electricity use can also be computed. The induced 

rebound (from households’ income adjustments) is still positive at 0.10 but is smaller 

than in the BASE67 simulation. As pointed out in the analysis of the IO results, 

household income increases as a result of the direct and indirect stimulations of 

relatively labour-intensive sectors. However, after disaggregation, some individual 
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electricity generation sectors are relatively more labour intensive than the aggregated 

electricity sector. These sectors being indirectly negatively affected by the shock 

mitigate the increase in household income and in turn mitigate the induced rebound. 

Overall, Type I and Type II rebound effects are larger after disaggregation (73.83 and 

73.93 respectively). With a more disaggregated electricity sector, the indirect negative 

effect is reduced and the difference between direct and total (either Type I or Type II) 

rebound is smaller. Overall, these results confirm that the efficiency gains from the 

introduction of smart meters could still lead to further reductions in electricity use when 

considering economy-wide effects (total rebound is still smaller than direct household 

rebound), but the negative indirect rebound in industrial use of electricity is reduced 

when disaggregating the electricity sector. 

7. Substitution in Household Energy Consumption 

Up to now, the IO simulations have been conducted as a simple consumption 

reallocation exercise, by redistributing household’s expenditures away from electricity 

to all other consumption sectors according to their initial shares of consumption. 

Effectively, this assumption suggests that households substitute between electricity and 

all other consumption goods in the same way, using the same elasticity.  One major 

issue that is ignored in the previous analysis is the particular nature of the substitution 

possibilities between energy sources in household consumption. Household energy 

demand is often a composite of several fuels, such as electricity and gas. It is likely that 

substitution between these fuels is different from substitution between energy and non-

energy goods. In particular, as households’ electricity consumption is changed through 
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efficiency gains, it is likely that their consumption of gas will be impacted in a more 

direct fashion than their consumption of other goods.  

7.1. Cross-price elasticity 

In the simple microeconomic sense, the impact of a change in electricity consumption 

on gas consumption is determined by the value of the cross price elasticity between 

these two goods. The cross-price elasticity of gas consumption with respect to the 

electricity price (    ) represents the change in household demand for gas ( ̇    as a 

result of a change in the electricity price. It is defined as follows: 

     
 ̇

 ̇ 
 (5.12) 

If the cross-price elasticity      is positive, gas and electricity are substitute goods in 

consumption. In other words, a decrease in the price of electricity in efficiency units 

leads to a decrease in gas consumption, as households substitute electricity for gas in 

consumption. Alternatively, if the cross-price elasticity is negative, gas and electricity 

are complements. If the price of electricity decreases in efficiency units, household 

consumption of gas and electricity will rise together in this case.  

Whether gas and electricity are complementary or substitute goods in household 

consumption is not a straight-forward question. While gas and electricity are used by 

households to deliver similar energy services, such as heating or cooking, the 

substitution possibilities between them is highly dependent on existing installations and 

appliances in the home. The cross-price elasticities of household energy demand have 

been estimated in a number of econometric studies. Baker et al. (1989), which was 

previously used in this chapter to calibrate the efficiency shock to the own price 
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elasticity, presents estimates of cross-price elasticities for gas and electricity demands. 

The results show that the cross-price elasticity of household electricity demand to the 

gas price is low and positive at     = 0.185. This suggests that households increase their 

electricity demand when the price of gas increases. This corresponds to the case of 

substitute goods, households substitute electricity for gas when gas prices increase. 

However, the econometric findings on gas demand show complementarity with 

electricity. The cross-price elasticity of gas demand to the electricity price is negative at 

    = -0.373. The findings of complementarity are confirmed in Baker and Blundell 

(1991) and Jamasb and Meier (2010), although little explanation is provided. 

In light of this evidence, the substitution possibilities in household energy consumption 

appear to be more complex than other consumption goods. This section aims to 

incorporate the findings from this econometric literature into the determination of the 

household electricity rebound. This work represents the first attempt to examine the 

impact of substitution elasticities in household electricity and gas consumption in a 

system-wide analysis of the electricity rebound effects
70

.  

7.2. Substitutes Case – SUBS76 

The first substitution case analysed in this section, is the case of gas and electricity 

being substitutes in consumption. As opposed to the first two simulations where the 

reduction in household electricity consumption is redistributed directly to all other 

consumption sectors including gas, this new simulation requires us to treat the gas 

sector differently from other consumption goods when determining the direct sectoral 

                                                 
70

 Due to the scope of the thesis, the issue of other consumption fuels is not discussed here.  

Although oil and coal represent 24% and 1% of all household energy expenditures (2004 IO Tables).  

These sectors will be treated differently from other non-energy goods in the CGE analysis of Chapter 6, 

where they are included in a separate nest of the consumption function. 
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impacts of the efficiency gain ex-ante. In the following simulations, the change in 

household gas consumption is determined as a function of the change in the price of 

electricity in efficiency units
71

. Once the changes in household electricity and gas 

consumption are determined, they are summed to determine the total change in 

household energy expenditures. This is then reallocated to other non-energy goods 

according to their initial shares in household consumption. 

Equation 5.12 can be re-formulated to express the change in gas demand as a function 

of the cross-price elasticity,      and the change in the price of electricity in efficiency 

units   ̇: 

 ̇           ̇ (5.13) 

In the case of fixed prices, (assuming a constant price of electricity in natural units), the 

decrease in the electricity price in efficiency units for households is equal to the increase 

in efficiency in electricity consumption: 

  ̇     (5.14) 

Using the cross-price elasticity estimates in Baker et al. (1989), it is now possible to 

determine the change in household demand for gas following the change in household 

electricity demand in efficiency units.   

In the case of substitutes, it is assumed here that the cross-price elasticity of gas demand 

to the electricity price is positive, and we use the Baker et al. (1989) estimate of the 

cross-price elasticity of electricity demand to the gas price. In other words,      

                                                 
71

 Effectively, this assumes that electricity and gas form a separate nest in the consumption function. This 

will be explored formally in Chapter 6. 
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     0.185. Substituting this value into equation 5.13 (and calibrating the efficiency 

shock at  = 12.40%
72

), the change in household gas demand is calculated and we find  

   ̇ = -2.29%. 

From the Input-Output tables, this corresponds to a decrease in household gas 

consumption of £120m. As electricity demand in efficiency units increases from the 

efficiency gain (the direct rebound), households substitute electricity for gas, i.e. they 

consume more of the efficient commodity. Using the 76-sector IO tables, the direct, 

indirect and induced impact of the shock can be calculated to determine the total 

rebound effects of the introduction of smart meters in the case of increased substitution 

between gas and electricity
73

. The aggregate results of the simulation where gas and 

electricity are complements, called SUBS76, are summarized in Table 5.3. 

In this simulation, the overall direct change in households’ energy consumption is the 

sum of the reduction in household electricity consumption in natural units with the 

reduction in household gas consumption. This corresponds to a decrease in household 

energy expenditures of £406.98m. This is redistributed to non-energy consumption 

sectors according to their initial share of household consumption (excluding electricity 

and gas). Like for previous simulations, the detailed sectoral results are presented in 

Appendix E, Tables E5 and E6, for output and CO2 emissions respectively. 

  

                                                 
72

 as explained in Section 4.4 
73

 Relative to the equi-proportionate change in consumption of non-electricity goods analysed in earlier 

sections 
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Table 5.3: SUBS76 Aggregate Results 

 Direct Type I Type II 

Total Output (£ms) 0.00 -189.79 -92.95 

Electricity Output (£ms) -286.87 -327.21 -325.58 

Gas Output (£ms) -120.11 -164.39 -163.48 

Total non-electricity/gas output (£ms) 406.98 301.82 396.12 

CO2 emissions (000ts) -55.62 -2,403.43 -2,380.51 

    

Change in household electricity use (%)  3.00% 3.00% 

Change in total electricity use (%)  -1.32% -1.32% 

Household rebound  75.80 75.80 

Indirect Rebound  -3.81 -3.81 

Induced Rebound   -0.14 

Total Rebound  72.00 72.14 

 

As households substitute electricity in efficiency units for gas, their consumption of gas 

decreases as a results of the efficiency shock
74

, whereas before it has increased like 

other consumption goods. Like in the previous simulations, the reallocation of 

expenditures to other consumption goods stimulates the activity of large consumption 

sectors like Property and Distribution sectors, etc. Electricity Transmission and 

Distribution, and Gas Distribution are the only two sectors negatively impacted by the 

direct shock.  Again, the indirect impact is fully dependent on the backward linkages of 

each sector. The overall negative impact on output is -£190m. Energy-related sectors, 

such as fuel extraction sectors or electricity generation sectors are negatively impacted 

by the indirect shock as they represent a large share of the electricity and gas 

                                                 
74

 The price of electricity in efficiency units decreases, leading to an increase in electricity consumption in 

efficiency units (direct rebound), which in turn leads to a decrease in gas consumption. 
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distribution sectors’ inputs. The Electricity Transmission and Distribution sector is 

again the most negatively impacted with -£327m in output while the Gas Distribution 

sector also has a large Type I reduction in output of £164m. Both of these indirect drops 

in output are larger than in the previous simulations due to indirect effects driven by the 

high interdependency between these two sectors. Both sectors are highly gas and 

electricity intensive, and therefore have strong internal linkages, as well as strong 

linkages with each other. The direct drop in output in both of these sectors leads to 

larger indirect decreases in output in these two sectors compared to DISAG76. Also 

worth noting in this analysis is the larger drop in the Oil and Gas Extraction sectoral 

output compared to previous simulations; this sector represents the second major 

intermediate input to the gas distribution sector, after Electricity Transmissions and 

Distribution. Most other sectors are positively impacted in the indirect shock. 

In terms of induced effect, the sectoral results for the total Type II effect are close to 

those of the Type I. But there is once again an overall positive induced impact, leading 

to a smaller reduction in total Type II output compared to total Type I output. The 

positive induced effect is larger in SUBS76 than in DISAG76. This result is explained 

by the larger redistribution of expenditures to non-energy sectors, which contribute to a 

larger increase in household income. Overall the total Type II impact on output is -

£92m. 

The impact of substitution on CO2 emission changes is discussed in comparison with 

the case of increased complementarity in section 6.3, while the rebound results are also 

shown and explained comparatively in Section 6.4. 
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7.3. Complementarity Case – COMP76 

As stated previously, despite the fact that households have the opportunity to choose 

between electricity, gas or a combination of both for their energy needs, there is 

econometric evidence of complementarity in household energy expenditures. Baker et 

al. (1989), Baker and Blundell (1991) and Jamasb and Meier (2010) find evidence of 

this complementarity in UK households’ energy expenditures.  

Although a positive cross-price elasticity of household electricity demand to the gas 

price is found, the cross-price elasticity of household demand for gas to the electricity 

price is found to be negative, with a value ηg,e = -0.373. In this scenario, households 

increase their demand for gas, alongside their demand for electricity when the price of 

electricity falls. This suggests a complementarity in the use of gas and electricity in UK 

homes. As a result of an efficiency shock in electricity consumption, households 

increase their demand for electricity in efficiency units. To explore the case of 

complementarity in electricity and gas consumption, a simulation is run with the 

negative cross-price elasticity estimate, called COMP76. 

The direct impact on household gas demand from the shock can be determined in 

equation 5.12, as shown in Section 6.1. Combining the negative cross-price elasticity 

with the 12.40% efficiency shock, we find that household gas demand increases by 

4.62%, as a result of the efficiency gain in electricity consumption. This corresponds to 

an increase in household gas consumption of £242m. As in the previous simulation, the 

direct shock corresponds to the combined shock on total household energy expenditures 

(gas and electricity). Thus the direct shock in COMP76 corresponds to a large decrease 

in electricity consumption combined with a large increase in gas consumption, which 
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amounts in total to a small decrease in household total energy consumption (gas and 

electricity). The change in total household energy expenditures is a decrease of 

£44.69m, which is redistributed to all non-energy consumption sectors according to 

their initial share of consumption. The aggregate results of this simulation (COMP76) 

are presented in Table 5.4 while sectoral results are shown in Appendix E, Tables E7 

and E8 for output and CO2 emissions respectively. 

Table 5.4 COMP76 Aggregate Results 

 Direct Type I Type II 

Total Output (£ms) 0.00 -113.55 -104.85 

Electricity Output (£ms) -286.87 -263.78 -263.63 

Gas Output (£ms) 242.18 239.66 239.74 

Total non-electricity/gas output (£ms) 44.69 -89.43 -80.95 

CO2 emissions (000ts) -44.61 -1,892.80 -1,890.74 

    

Change in household electricity use (%)  3.00% 3.00% 

Change in total electricity use (%)  -1.07% -1.07% 

Household rebound  75.80 75.80 

Indirect Rebound  1.62 1.63 

Induced Rebound   0.00 

Total Rebound  77.43 77.44 

 

The direct positive impact on all non-energy consumption sectors is smaller than in 

previous simulations, as the fall in electricity expenditures is partly offset by the 

increase in gas expenditures. Correspondingly, the indirect effect is negative overall, 

once again driven by the backward linkages of the Electricity Transmission and 

Distribution sector. But in this case, the overall indirect effect is the smallest negative 
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impact on output (-£113m) of all the conducted simulations, due to the offsetting effect 

of the positive shock on Gas Distribution. Although Gas Distribution is stimulated by 

the direct increase in households’ gas expenditures, the indirect effect on Gas 

Distribution is slightly negative, as explained by the backward linkages of the electricity 

sectors. As electricity-related industries are negatively impacted by the efficiency shock, 

the Gas Distribution sector experiences an indirect drop in demand as an intermediate 

input in these sectors. This indirect effect partially offsets the direct rise in Gas 

Distribution output, but the Type I impact on the sector is still largely positive. On the 

basis of a similar reasoning, the Type I shock on Electricity Transmission and 

Distribution is the least negative in this simulation, due to the mitigation from the 

positive indirect shock in demand for electricity as an intermediate input to the Gas 

Distribution sector.  

Once again, the total induced impact on output is slightly positive, but to a lesser exent 

proportions than in SUBS76. The negative Type II impact on total output is greatest in 

COMP76, and is very close to the Type I overall impact (-£104m). This small induced 

effect in the case of complements is explained by the relatively low stimulation of non-

energy sectors. Since the reduction of household energy expenditures is the smallest 

when gas and electricity are complement in consumption, non-energy sectors receive a 

smaller reallocation of expenditures. The increase in non-energy sectors output still 

stimulates household income, but in lower proportions than in previous simulations. 

This leads to a reduced positive induced impact, and an overall larger Type II decrease 

in total output.  
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7.4. Substitution and CO2 emission changes 

When the substitution possibilities between energy sources change, the direct, Type I 

and Type II impacts on output change as well, as illustrated in Sections 7.1 and 7.2. 

This will have an impact on the CO2 emissions changes resulting from adoption of the 

new technology. The CO2 emission results, summarized in Figure 5.7, show that in the 

simulation with higher substitution between gas and electricity (SUBS76), there is a 

larger drop in CO2 emissions (-2.38 mTs), than the standard case (DISAG76). This 

result is mainly driven by the negative shock on the Gas Distribution sector. In 

SUBS76, households reduce their gas consumption, as they substitute for the more 

efficient fuel (electricity). This reduces emissions directly (as gas is a CO2-intensive 

sector) and also indirectly; by negatively impacting the output of all energy-related and 

generally CO2-intensive sectors.  

Figure 5.7: A comparison of CO2 emission changes 
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The results also show that the case of complementarity in household energy 

consumption limits the reduction of CO2 emissions from the efficiency shock.  In 

COMP76, the Electricity Transmission and Distribution sector exhibits the smallest 

reduction in output, and the output of Gas Distribution actually increases. Thus CO2 

emission reductions only reach 1.89m tons compared to 2.21m tons and 2.38m tons in 

the DISAG76 and SUBS76 scenarios respectively. 

7.5. Substitution and Electricity Rebound  

In determining the impact of the introduction of smart meters on total UK electricity 

use, it is useful to compute the electricity total rebound and compare it with alternative 

substitution possibilities. Table 5.5 summarizes the electricity household and total 

rebound results for each of the three simulations in the 76 sector tables, namely 

DISAG76, SUBS76 and COMP76.  

Table 5.5: The impact of energy substitution possibilities on rebound results 

  DISAG76 SUBS76 COMP76 

Standard IO Substitutes Complements 

Direct Rebound 75.80 75.80 75.80 

Total Type I Rebound 73.83 72.00 77.43 

Total Type 2 Rebound 73.93 72.14 77.44 

 

While it is assumed here that the direct rebound is the same for all three simulations and 

determined by the price elasticity of electricity demand for households, the indirect and 

induced rebound effects are determined by the changes in electricity use in the UK as a 

whole, and depend on sectoral output changes. 
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Although household demand for gas increases in both DISAG76 and COMP76 

simulations, the results in terms of total Type I and Type II rebounds are different. In 

the base case scenario with the disaggregated IO tables (DISAG76) gas consumption is 

treated as all other non-electricity consumption sectors. The indirect rebound in this 

case is negative. Indirect effects have reduced the total UK electricity use, and the total 

Type I rebound is smaller than the direct rebound. Still in DISAG76, the induced 

rebound effect is small and positive at 0.10 representing a slight increase in electricity 

use when considering positive household income effects from the stimulated sectors 

(non-electricity sectors). Overall the total Type II rebound is 73.93. 

In the case of complementarity (COMP76), gas distribution is treated differently from 

other non-energy sectors, and gas consumption is considered complementary to 

electricity consumption for households. In consequence, household gas consumption 

increases as consumption of electricity increases in efficiency units. While it also 

increased in DISAG76, the increase in household gas consumption in COMP76 is 

approximately 100 times larger than in DISAG76, as it is calculated before the 

redistribution to non-electricity sectors. Due to the large positive shock on the gas 

distribution sector, the total Type I rebound in UK electricity use is larger in COMP76 

than in DISAG76 (77.43 against 73.83). The indirect rebound is actually positive in 

COMP76, where the large stimulation to the Gas Distribution sector leads to a 

significant indirect boost in electricity consumption. The positive indirect rebound is 

mainly driven by the high interdependencies between electricity and gas sectors. The 

induced rebound is still positive but very small, reflecting the relatively smaller re-

distribution to non-energy sectors. As gas consumption increases in the complement 

case, other sectors are less stimulated than in DISAG76, leading to a smaller increase in 
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induced consumption, and a smaller induced positive rebound on electricity use. 

Incorporating direct, indirect and induced effects, COMP76 shows a total Type II 

rebound of 77.44, the highest rebound effect in the three simulations presented. 

When gas and electricity are substitute goods in consumption in SUBS76, the rebound 

results are again different from the base case. The increase in efficiency in household 

electricity consumption leads to a decrease in household gas consumption, combined 

with the decrease in electricity consumption. Households consume less energy and as a 

result redistribute their expenditures towards non-energy goods. Because of the high 

internal linkages within and between the electricity and gas distribution sectors, the 

indirect impact from the shock reduces the total UK electricity use, reflecting in a 

negative indirect rebound effect of -3.81. The total Type I rebound is 72.00 in SUBS76, 

and is the smallest Type I rebound recorded in the table. The SUBS76 simulation also 

shows a small positive (although the largest of the three simulations) induced rebound 

as household income rises from the large reallocation of expenditures to non-energy 

sectors. When energy sources are substitutes in household consumption (SUBS76), the 

total Type II rebound is the lowest of all simulations at 72.14. This is explained by the 

fact that the Electricity Transmission and Distribution sector experiences the largest 

reduction in output, due to the joint decrease in the output of the Gas Distribution 

sector.  

These results show the sensitivity of the rebound in electricity to assumptions about the 

substitution possibilities in household energy consumption. If gas and electricity are 

more easily substitutable in household consumption, then the total electricity rebound 

will be smaller. In this case, the total reduction in electricity use in the UK from the 

adoption of smart meters might go further than the estimated direct reduction in 



223 

 

household consumption. If, on the contrary, households consider gas consumption as a 

complement to electricity consumption, gas consumption might increase as a result of 

the introduction of smart meters, and the total rebound on UK electricity use could be 

larger, and mitigate this projected 3% reduction in household electricity consumption. 

8. Conclusions 

The mass roll-out of smart meters mandated for all British homes by DECC is expected 

to bring energy savings of an estimated 3% in household consumption. While in the 

presence of efficiency gains from new technologies, some reductions in household 

electricity consumption may be expected, the rebound effect literature predicts that 

these reductions could be mitigated by the rebound effect. As households consume 

electricity more efficiently, the price of electricity in efficiency units will drop and 

consumption will readjust to this new price. The magnitude and sign of the rebound is 

determined by several factors, including the price elasticity of household electricity 

demand.  More importantly, the overall impact of smart meters is not limited to change 

in households’ electricity consumption, and is likely to have further impacts on the rest 

of the economy as household redistribute their total consumption. The impact of this 

new technology should be assessed in an economy-wide framework. In this Input-

Output analysis, inter-sectoral linkages are incorporated to estimate the total rebound in 

UK electricity use from the adoption of smart meters. The use of CO2 emissions data by 

industry also enables the modelling of changes in CO2 emissions as a result of the 

shock on household efficiency in electricity consumption. The simulations conducted in 

this chapter consist of reducing household expenditures on electricity, and reallocating 

these expenditures across all other sectors according to their initial share in household 

consumption.  
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Once the direct impact of this reallocation is determined, indirect and induced effects on 

sectoral and total output (and CO2 emissions) are calculated through the use of Type I 

and Type II output multipliers (and CO2-output coefficients). With these results, the 

total Type I (direct and indirect) and Type II (direct, indirect and induced) rebounds are 

calculated to determine the economy-wide rebound from the adoption of smart meters. 

This simulation was conducted on both a 67 sector and a disaggregated 76 sector IO 

tables for the UK (BASE67 and DISAG76 respectively). While the overall impact on 

output and CO2 emissions are similar before and after disaggregation, the magnitude of 

the indirect rebound is greatly decreased when the electricity-sector is disaggregated 

between transmission and distribution and generation activities. 

Overall, the simulation on the 76 sector IO tables (called DISAG76) shows a negative 

indirect rebound effect from the shock, driven by the internal linkages of the Electricity 

Transmission and Distribution sector. The large direct decrease in this sector output also 

translates to a large indirect decrease in output when considering backwards linkages. 

Combined with a relatively small but positive induced effect, the total Type II rebound 

amounts to 73.93, which is smaller than the direct rebound (on household consumption 

only of 75.80). These results suggest that despite a positive rebound effect, the 

reduction in total UK electricity use could be larger than the 3% reduction in household 

consumption due to economy-wide effects. Although it is generally expected that total 

rebound should be larger than direct rebound, this analysis shows that this is not always 

the case. Because of the strong internal linkages within the electricity sector, the indirect 

rebound is found to be negative, and total rebound is smaller than household rebound. 

This analysis also considers CO2 emissions changes in the UK economy. In addition to 

CO2 reductions from a decrease in household electricity consumption, the overall 
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change in emissions is further reduced by the indirect sectoral linkages and this leads to 

significant reductions in CO2 in the economy as a whole. 

The IO 76 sector tables were also used to explore the role of the interactions between 

gas and electricity use in household consumption on the total rebound results. The 

simple reallocation simulation (DISAG76) was compared with two simulations with 

special treatment of gas consumption. Using UK cross-price elasticity estimates for the 

responsiveness of household demand for gas to the electricity price, the change in gas 

consumption was estimated in two alternative scenarios. In SUBS76, electricity and gas 

consumptions were treated as substitutes, so that gas consumption decreased as a result 

of the efficiency gain in household electricity consumption. In COMP76, the rebound 

was determined in the case where electricity and gas are complements in consumption, 

as suggested by some estimates on UK energy demand. When gas and electricity are 

complementary goods, household gas consumption actually increases as a result of the 

efficiency gain in electricity consumption. The results of the comparative exercise show 

the sensitivity of the total electricity rebound to assumptions about the substitution 

possibilities in household energy consumption. If gas and electricity are preferred 

substitutes in household consumption, then total electricity rebound is reduced. If, on 

the contrary, households consider gas consumption as a complement to electricity 

consumption, gas consumption might increase as a result of the introduction of smart 

meters, and the total rebound on UK electricity use would be larger.  

This analysis highlights the need for estimating the impact of a new technology like 

smart meters in an economy-wide framework. In a case of a large-scale policy such as 

the UK mandated roll-out of meters, the consideration of inter-sectoral linkages is 

crucial to determine the impact on the total use of electricity. Rebound effects are 
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commonly accepted as a consequence of efficiency shocks in both production and 

consumption. In the case of efficiency gains in household electricity consumption from 

the adoption of smart meters, this chapter finds that total rebound effects are lower than 

the direct rebound due to the size and strong backwards linkages of the electricity 

sector. Additionally, substitution possibilities between household energy sources are a 

crucial determinant of the total rebound, suggesting the need for more precise estimates 

of price elasticity in household energy demands.  

This chapter has focused on calculating the economy-wide impact of a gain in 

efficiency in household electricity consumption using a demand-driven Input-Output 

model. In this context, the rebound is calculated assuming a fully passive supply-side of 

the economy and fixed prices. However, in practice, as household demand for electricity 

changes, the sectoral supply adjustments are likely be constrained by the availability 

and distribution of factors or production. This will lead to relative price variations, and 

further adjustments in both the consumption and production sides of the economy. The 

IO framework is unable to capture these effects, though these are likely to be important 

in determining the total economy-wide rebound. This issue is addressed in Chapter 6 

which explores the impact of the roll-out of smart meters in a CGE model of the UK.  
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Chapter 6: Rebound effects from efficiency gains in 

household electricity consumption: The value-added 

from General Equilibrium Modelling 

1. Introduction 

In line with the concept of rebound detailed in Chapter 5, efficiency gains in electricity 

consumption, brought to UK households through the adoption of smart meters, are 

likely to generate a rebound effect, both in household consumption, and in total UK 

electricity use. The Input-Output framework used in Chapter 5 has in effect provided a 

partial equilibrium analysis of the household and total rebound effects. While the 

household rebound was determined entirely by the responsiveness of electricity 

consumption to the decrease in the price of electricity in efficiency units
75

, the total 

rebound was calculated by incorporating the direct and indirect (and often induced) 

changes in sectoral outputs, and determined fully by the backward linkages of the 

electricity sector. A major finding from Chapter 5 was that, although it is generally 

expected that total rebound should be higher than household rebound, it was shown that 

the strong internal linkages within the electricity sector tend to reduce the total rebound 

compared to the household rebound. While the IO analysis provided helpful insights 

into the structure of UK sectoral linkages, and their implications for the size of the 

electricity rebound, it has imposed the restrictive assumption of fixed prices and has 

often assumed fixed incomes. These assumptions are imposed by the nature of Input-

Output modelling as a static exercise with no supply constraints. 
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 In effect, in the input-output model, the household rebound was considered and defined as equivalent to 

the direct rebound. 
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However, it is likely that household electricity consumption and total UK electricity use 

will both be highly dependent on the relative price changes, which would certainly 

occur in reaction to the efficiency shock. In order to observe the impact of endogenous 

prices on the rebound results, a Computable General Modelling framework is used in 

this chapter
76

. Because supply constraints are incorporated in the CGE model, a drop in 

demand for electricity would lead to excess capacity in electricity-supplying sectors, 

which would decrease the price of the electricity output. This relative price change will 

impact household and total rebound. For example, while households’ electricity 

consumption is expected to rebound as a result of the fall in the electricity price in 

efficiency units, this rebound could be reinforced by a fall in the relative price of 

electricity in natural units. Further, a decrease in the price of electricity in natural units 

would improve competitiveness and increase export demand for electricity, while it 

would also boost industrial demand for electricity. Thus, a drop in the price of 

electricity could increase total electricity use, and increase the scale of the total rebound 

effect. Using the more encompassing CGE modelling framework, the analysis of the 

rebound can be extended to fully encompass “economy-wide” rebound effects, which 

will arise from changes in relative prices and income. 

An additional issue explored in the IO chapter is the impact of substitution possibilities 

between gas and electricity in household consumption on the rebound results. In the 

CGE model, this issue can also be addressed in more detail by formalising a new 

consumption structure, where gas and electricity can be substituted directly and 

independently from other goods. In this representation, household electricity rebound 
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 CGE models have been widely used in the energy rebound literature, but mostly in the analysis of 

efficiency gains in production (for a good review, see Allan et al., 2007b). Lecca et al. (2014) introduces 

efficiency gains in household energy consumption. 
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will not only be determined by the change in electricity price in efficiency units but also 

by the elasticity of substitution between electricity and gas. 

In this chapter, these issues are addressed using a version of the AMOS framework 

(Harrigan et al., 1991) described in Part A of the thesis, but this one is adapted and 

calibrated to UK data
77

. Section 2 summarizes the main attributes of the model. Special 

attention is given to model features that differ from the version used in Chapter 4. 

Section 3 describes the shock simulated in the model: the efficiency gains in household 

electricity consumption. Alternative scenarios are defined following those of Chapter 5 

in the sense that a direct link is identified between the household demand for gas and 

electricity. Simulation using different elasticities of substitution between gas and 

electricity are implemented. Section 4 presents and compares the results of these 

simulations. Section 5 provides a discussion of these results of the CGE modelling and 

offers general conclusions on the second part of the thesis. 

2. The UKENVI Model 

The UKENVI model is a multi-sectoral, energy-economy-environment computable 

general equilibrium model of the UK. It is based upon the AMOS framework (Harrigan 

et al., 1991), like the regional version used in Chapter 4 of this thesis. The two models 

share a number of similarities. They are both built on the same broad framework 

(allowing for great flexibility in functional form and parameter values) with a structure 

that emphasises the energy sector. There is however a number of differences in model 

closures due to the difference in spatial focus. In this chapter, I attempt to model the 

                                                 
77

 The model in Part A looking at learning-by-doing effects was a model of Scotland. 
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impact of a national policy (the roll-out of smart meters), and therefore I use a national 

version of AMOS. 

The UKENVI model structure is such that final demand has four components: 

household consumption, investment, government expenditure and exports. There are 

two external sectors with which the UK trades: Rest of European Union (REU) and Rest 

of World (ROW). An Armington (1969) link determines the extent of imports and 

exports to and from the UK; under this assumption, domestic and imported goods are 

imperfect substitutes and respond to relative prices. In this modelling exercise, 

government expenditures are assumed to be exogenous and are determined by the initial 

base-year calibration. In every period, all markets are in equilibrium, with price equal to 

marginal cost.  

2.1. Production 

The model consists of multi-level production functions representing cost-minimizing 

firms producing in competitive markets. For all sectors, the production functions used 

are Constant Elasticity of Substitution (CES), which allows for input substitution when 

relative prices change; although Leontief or Cobb-Douglas functional forms are also 

available. Production structures are the same for all sectors with the exception of the 

electricity supply sector. This specific treatment of the electricity sector is the same as 

in the version of the AMOS model previously used for Scotland in Part A. The general 

production structure and the production structure specific to the electricity sector are 

both discussed in Chapter 4 of this thesis. They are replicated in Figures 6.1 and 6.2 

respectively.  
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Figure 6.1: General Production Structure  

 

As explained in Chapter 4, by using these different production structures, we require 

that all sectors purchase their electricity inputs only through the electricity supply 

sector, which acts as an intermediate sector between electricity generation sectors and 

the rest of the economy.  
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Figure 6.2: Production structure of the electricity transmission and distribution sector 

 

Output 

Value-Added 

Capital Labour 

Intermediate 

Energy 

Electricity 

Generation 

Intermittent 

Wind 

Onshore Offshore 

Marine 

Non-Intermittent 

Hydro Nuclear Landfill gas Hydro 

Coalf-fired 
electricity 
Generation 

Gas-fired 
electricity 
generation 

Transmission 

Non-Electricity 

Oil Non-Oil 

Gas Coal 

Non-Energy 



233 

 

Intermediate goods, both energy and non-energy, can either be produced domestically 

or are imported. Imports from the Rest of the EU (REU) and the Rest of the World 

(ROW) are determined via an Armington link and are relative-price sensitive 

(Armington, 1969), as shown in Figure 6.3. The Armington elasticities are set equal to 2 

(Gibson, 1990). 

Figure 6.3: Trade Structure 

 

Elasticities of substitution at every point in the CES production functions take a default 

value of 0.3 (Harris, 1989), with the exception of substitution between energy inputs 

which are higher. The substitution between electricity and non-electricity intermediate 

inputs, and oil and non-oil are set to 2 to introduce more flexible substitution among 

fossil-fuels energy and electricity generation. In addition, in the transmission sector 

production sector, the elasticity of substitution between electricity-generation 

technologies has been increased to 5. Table 1 provides a summary of the elasticities of 

substitution used at each level of the production function, which are the same as used in 

the Scottish model in Chapter 4
78

.  
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 Since the simulations in this chapter are based on an efficiency gain in household consumption, the 

values of the production elasticities are less crucial in this chapter than in the learning-by-doing exercise. 
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Table 6.1: Elasticities of Substitution in Production 

Nests in the CES production function Elasticity of Substitution 

Electricity and Non-electricity 2 

Oil and Non-oil 2 

Coal and Gas 2 

Transmission and Generation 2 

Intermittent and Non-intermittent 5 

Among Intermittent 5 

Among non-intermittent 5 

All other CES nests 0.3 

 

2.2. Consumers 

The present modelling exercise differs from previous applications of UKENVI, in that it 

is formulated as an inter-temporal optimization model, where consumption and 

investment decisions are characterized by perfect foresight (Lecca et al., 2013a). In 

contrast with the modelling of Chapter 4 where agents’ behaviour was myopic (i.e., 

decisions were determined within each period without consideration of future periods), 

the modelling of this chapter assumes that investment and consumption decisions are 

determined through inter-temporal functions and then optimally allocated within 

periods. The forward-looking model closure has become a standard feature of national 

CGE models (Lecca et al., 2013a). 

In this forward-looking context, households maximize their inter-temporal utility in 

consumption which takes the following form: 

   ∑ (
 

   
)
   

     

   
 
    (6.1) 
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where Ct is aggregate consumption at time t, σ is the constant elasticity of marginal 

utility and ρ is the constant rate of time preference. According to the dynamic budget 

constraint, the discounted present value of consumption must not exceed total 

household wealth, W. Total wealth is the sum of non-financial wealth (net income from 

labour plus transfers from institutions) and financial wealth (determined by capital 

income and accumulated through savings
79

). The inter-temporal utility function 

determines the optimal path of consumption, which is then allocated for each period.  

Within each period, total consumption is disaggregated between different goods through 

CES consumption functions. As shown in Chapter 5, the way households substitute 

between energy goods is a major determinant of the rebound. In this chapter, this issue 

is addressed in a more direct manner by implementing two alternative characterizations 

of household consumption, capturing different ways in which households can substitute 

between electricity and non-electricity goods.  

Base Case Consumption Function 

In our base case scenario, total consumption is defined as a CES combination of 

electricity and non-electricity goods. In this case, designed to emulate the base case 

scenario in the IO analysis, gas consumption is considered and represented in the same 

way as every other non-electricity good. Effectively, to represent this assumption in the 

CGE model, household consumption is a combination of electricity and non-electricity 

goods, as shown in equation 6.2. 

   [      
   
          

   
 ]

  
   

 (6.2) 
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 Here the savings rate is exogenous (Lecca et al., 2013a) 
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where    is total household consumption,   is the share of electricity in total household 

consumption,    and     are household consumption of electricity and non-electricity 

goods respectively,    is the elasticity of substitution and   is the efficiency gain. 

Consumption of non-electricity goods is a Leontief composite of all other goods, in 

order to reflect the simple IO assumption of redistribution of expenditures from Chapter 

5. 

In this structure, an improvement in efficiency in household electricity consumption 

should in principle reduce household consumption of electricity in natural units (if the 

direct rebound is lower than 100) and free-up some income for households to spend on 

non-electricity goods. However, because prices are now endogenous, an increase in 

efficiency could reduce the relative price of electricity in natural units, and therefore 

lead to more substitution towards electricity consumption. The household rebound will 

be determined in this endogenous price context, and will therefore differ from the IO 

analysis. 

Multi-level CES Consumption Function (Scenario Analysis)  

In the previous chapter, it was shown that fuel substitution in household energy 

consumption is a central determinant of the rebound effect. In an IO context, it was 

shown that increased substitution between electricity and gas in household consumption 

would reduce total rebound because gas consumption would decrease as a result of the 

efficiency shock. In contrast, increased complementarity leads to higher total rebound.  

In order to address this issue formally in the CGE model, the consumption structure 

must be amended to reflect more accurate substitution possibilities in household 

consumption. The consumption structure used in this case is a nested CES consumption 
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function, differentiating between energy and non-energy goods, as well as between fuels 

in energy goods consumption. This structure was used in Lecca et al. (2014) to evaluate 

the rebound effects from household energy efficiency gains and is presented in Figure 

6.4.  

Total consumption is defined as a CES combination of energy and non-energy goods. 

The energy good composite is made up of a coal and oil composite (which in the base 

year represents approximately 25% of total household energy consumption
80

) and a gas 

and electricity composite. 

Figure 6.4: Household Consumption Structure 

 

The gas and electricity composite is of primary importance in this chapter. It is also 

defined as a CES function as follows: 
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    [        
     

             

     

   ]

    

     

 (6.3) 

where     is household consumption of the gas and electricity composite, εge is the 

constant elasticity of substitution between gas and electricity and    is the share of 

electricity in household energy (gas and electricity only) expenditures. In the UK 2004 

Input Output tables, electricity represents approximately 64% of household gas and 

electricity expenditures, so that    = 0.64. 

In this CES composite, efficiency improvements in household electricity consumption 

lead to changes in the price of the gas and electricity composite in the production 

function. The change in household gas consumption following the efficiency shock is 

determined the elasticity of substitution. Here, if an efficiency gain generates a relative 

decrease in the price of electricity, gas consumption will decrease to an extent 

determined by the elasticity of substitution. Using this new consumption structure, it is 

possible to vary the elasticity of substitution between electricity and gas to reflect the 

cross-price elasticity estimates found in the econometric literature on household energy 

expenditures and discussed in the IO analysis.  

However, with this CES specification of the household gas and electricity consumption 

composite, a major distinction will arise compared to the IO analysis. In the previous 

chapter, the direct rebound in household consumption was fully determined by the own 

price elasticity of electricity demand. In the CGE context of this chapter, the household 

rebound in electricity is determined endogenously, through the CES consumption 

function described above. The change in household electricity consumption following 

the efficiency shock will therefore be determined by the substitution elasticity with gas. 
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It is expected that the higher the elasticity of substitution between gas and electricity, 

the more households will substitute in favour of the more efficient fuel, leading to an 

increase in household rebound (and potentially in total rebound). In contrast, with an 

elasticity of substitution close to zero, households’ substitution away from gas will be 

more limited, and household electricity rebound is expected to be smaller. Several 

simulations are run in this chapter, which vary this elasticity of substitution to allow us 

to observe the impact on the rebound results. The simulations are defined in Section 3. 

While the elasticity of substitution between electricity and gas is varied systematically 

among the simulations, other substitution elasticities at the different levels of the nested-

CES consumption function are fixed throughout. Their values are listed in Table 6.2. 

The elasticity of substitution between energy and non-energy goods is set at 0.61. This 

corresponds to the long-run elasticity of substitution in UK households estimated 

through the generalized maximum entropy (GME) method, as detailed in Lecca et al. 

(2011, 2013b). The same elasticity value is set at other energy sub-nests in the 

consumption function, to remain as close to the IO analysis as possible using this 

consumption structure, in which households simply reallocate their consumption to non-

electricity goods without a change in preference.  

Table 6.2: Elasticities of Substitution in Consumption 

Nests in CES Consumption function Elasticity of Substitution 

Energy and Non-Energy  0.61 

Coal and Oil & Electricity and Gas 0.61 

Coal and Oil 0.61 

Electricity and Gas Varies in simulations 
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2.3. Investment 

Like household consumption, investment is determined through inter-temporal 

optimization. Firms, like consumers, have perfect foresight. Following Lecca et al. 

(2013a), the investment path is obtained by maximizing the present value of firms’ cash 

flow, determined by capital income (or profit π), less investment expenditures, which 

are subject to adjustment costs      , as summarized in the following system: 

       ∑
 

      
[     (       )]

 

   

 

With    
  

  
 

Subject  to capital accumulation   ̇         

(6.4) 

The solution to this dynamic problem gives the time path of investments.  

2.4. Labour Market 

In the AMOS framework, the labour market can be modelled in a variety of ways. In the 

regional version previously used, the choice of labour market closure was a regional 

wage bargaining curve where wage was inversely related to unemployment. In addition, 

endogenous migration was incorporated to reflect inter-regional mobility as a function 

of the wage rate differential and the unemployment differential.  

Here, in order to represent the UK national labour market, another closure is selected.  

Once again, the labour market is characterized by imperfect competition, and the wage 

rate is determined through a wage bargaining function (Blanchflower and Oswald, 

1994), according to which real wages and unemployment are negatively related: 
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where w is the nominal wage rate, cpi is the consumer price index and u is the 

unemployment rate. Here, although wages are endogenous, labour supply is fixed 

through population; no endogenous migration is allowed in the model
81

. Adjustments in 

the labour market only come through changes in the unemployment rate and the wage 

rate. 

2.5. Dataset 

The UKENVI model is calibrated on a UK Social Accounting Matrix (SAM) for 2004 

(Allan et al., 2007c; and Turner, 2009, Lecca et al. 2014). Based on the same Input-

Output tables as the ones used in Chapter 5, the SAM is augmented with information on 

income transfers between the different agents. Additional data used in the construction 

of the SAM are drawn mainly from National Statistics (2004). 

In this Chapter, the SAM is aggregated into twenty-five intermediate sectors, listed in 

Table  

2, with the corresponding original classification of the sectors. This disaggregation is 

intended to identify emissions-intensive sectors which are likely to prove important in 

the analysis. In contrast to the IO where CO2 emissions were calculated simply through 

sectoral output intensities, emissions in the CGE model are linked to energy use, and 

thus allows for substitution effects to be captured in the CO2 emission results as well 

(Allan et al., 2006). 
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 Although migration is currently an issue on UK government policy agenda, it is not allowed to vary 

endogenously in the model. 



242 

 

Of the 25 sectors in the model, thirteen are energy sectors, which comprise 3 fossil fuel 

sectors (Coal, Gas and Oil), an electricity supply sector (electricity distribution and 

transmission) and nine electricity generation sectors, which sell their output only to the 

electricity supply sector. Originally, this energy disaggregation of the UK 2004 Input-

Output tables has been designed to estimate the impact of the introduction of a carbon 

tax on the UK economy (Winning, 2012). It is used in the present analysis due to the 

similar focus on energy policy and its economic and environmental impacts. 

3. Simulations 

The shock introduced in the model is a 12.4% efficiency gain in household electricity 

consumption. The efficiency shock is calibrated on the projected 3% household 

electricity demand reduction from the introduction of smart meters, using the 

econometric estimate of -0.758 for the own-price of electricity demand (see Chapter 5). 

In this chapter, it is expected that the 12.40% efficiency shock will not produce the 

same 3% reduction in household electricity consumption, as relative prices will 

change
82

. However, using the same efficiency shock in both chapters enables the 

identification of the added-value of allowing for endogenous prices in the calculation of 

the rebound. 

The 12.40% efficiency shock in household consumption is run successively in four 

scenarios. The first scenario (BASE) uses the basic CES consumption function 

described in Section 2.2.1. In BASE, households substitute between electricity and all 

other non-electricity goods, according to their initial share of consumption. The 

elasticity of substitution between electricity and non-electricity goods in 
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 In other words, the household rebound in the CGE model will not be fully determined by the direct 

rebound (change in electricity consumption as a result of the decrease in the electricity price in efficiency 

units), but also by the relative change in price in natural units. 
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consumption   ) is derived using the own-price elasticity of household electricity 

demand, and is given for a CES consumption function as: 

  
    

   
 (6.6) 

where    is the own price elasticity of electricity demand and   is the share of electricity 

in total household consumption (Gørtz, 1977). Using the Baker et al. (1989) 

econometric estimate of the own price elasticity as in Chapter 5 (  = - 0.758), and the 

share of electricity in total household consumption from the IO tables (  = 1.62%), the 

elasticity of substitution is estimated at   = 0.754. The BASE simulation aims to 

replicate the IO results, while endogenizing household income and prices
83

.  

The other three scenarios run in this chapter use the multi-level CES consumption 

function, where households’ substitution in energy goods is disaggregated between 

fuels. The three scenarios use the same consumption function, but differ in the value of 

the elasticity of substitution between households’ gas and electricity consumption. The 

three scenarios correspond to three values of cross-price elasticity of household gas 

demand to the electricity price.  

Scenario 1 corresponds to the central case and is parameterized using the default price 

elasticity of substitution in the UKENVI model (Lecca et al., 2014). It uses the value of 

0.61 at every level of the nested-CES consumption function. Scenarios 2 and 3 

correspond to the cases of increased complementarity and substitution respectively, and 

are calibrated using the cross-price elasticity estimates in Baker et al. (1989), which also 

used in the IO analysis. 
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 Some differences are also expected to arise from the different level of aggregation of the IO tables, 

from 76 sectors to 25 sectors. However, the disaggregation is identical in the energy sectors, so the 

differences in rebound results are likely to be limited. 
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For each scenario, the value of the cross-price elasticity is transformed into the constant 

elasticity of substitution between gas and electricity in consumption, using the 

following equation (Ramskov and Munksgaard, 2001): 

     (     )    (6.7) 

where εge is the constant elasticity of substitution between electricity and gas and    is 

the share of electricity in household gas and electricity expenditures. In Scenario 1, the 

0.61 elasticity of substitution corresponds to a cross-price elasticity of -0.250. In 

Scenario 2, the cross-price elasticity of -0.373 is used to explore the case of increased 

complementarity. It corresponds to a low elasticity of substitution of 0.418. Finally, 

Scenario 3 represents the case of increased substitution between gas and electricity in 

consumption. It is calibrated using the positive cross-price elasticity of demand of 

0.185, corresponding to a large elasticity of substitution of 1.289. 

The assumptions of cross-price elasticity of demand and the corresponding elasticity of 

substitution are summarized for each simulation in Table 6.3. It can be noted that in the 

Scenario 1, the value of 0.61 for the elasticity of substitution between electricity and gas 

reflects a degree of complementarity between the commodities. We thus expect the 

results of Scenario 1 to be qualitatively more similar to Scenario 2 (complements) than 

Scenario 3 (substitutes). 
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Table 6.3: Simulations and Substitution 

 Base Case Scenario 1 Scenario 2 Scenario 3 

Replicate IO Standard Case Complements Substitutes 

Consumption 

Structure 
Basic CES Nested CES Nested CES Nested CES 

Substitution Electricity and 

Non-Electricity 

Electricity and 

Gas 

Electricity and 

Gas 

Electricity and 

Gas 

Own-price 

elasticity 
0.758 N/A N/A N/A 

Cross-price 

elasticity 
N/A -0.250 -0.373 0.185 

Elasticity of 

substitution 
0.754 0.610 0.418 1.289 

 

The model is solved for 40 years. In each time period, the model is solved as a set of 

simultaneous equations, to find a set of prices that clears all markets: the supply of each 

produced good equals its demand.  In period 1, representing the short-run, the capital 

stock is fixed to the base-year value. The assumption is relaxed from period 2 onwards; 

the capital market can adjust through investment. Because labour supply is fixed in the 

national model closure, the labour market can only adjust through changes in 

unemployment rates. In the long-run, capital supply constraints are fully relaxed. 

Forward-looking consumption and investment adjust fully in the long-run. 

In the Input-Output analysis, the direct rebound in household consumption was 

determined ex-ante from the own-price elasticity of demand for electricity. Likewise, 

the reduction in household electricity consumption was the same in all scenarios and 

calibrated using findings from the feedback literature. We imposed a 3% reduction in 
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household electricity consumption, corresponding to a 12.40% efficiency shock and a 

direct rebound of 75.8. In effect the direct rebound in household electricity consumption 

was determined where prices in natural units were held constant. Thus, direct rebound 

results were the same in all scenarios, and it was only total rebound which was 

determined using different cross-price elasticities of demand, from different households’ 

reaction in terms of gas demand.  

In the modelling of this chapter, however, the value of households’ response to the 

efficiency shock in terms of electricity consumption is not imposed as a constraint. In 

the CGE model, the rebound in household electricity consumption is determined 

endogenously. In this context, it is the system-wide price and income effects resulting 

from the efficiency shock that will influence the household rebound. Accordingly, by 

changing the cross-price elasticity of demand between electricity and gas, the household 

rebound is expected to change significantly between the simulations. In turn, the 

comparison of total rebound results in the four scenarios should reveal much larger 

differences. 

4. Results 

For each of the four simulations, a set of aggregate and sectoral results are obtained. In 

the BASE simulation, the one-level CES consumption function is used to represent 

household consumption, while in the other three scenarios, the other consumption 

function, with a multi-level CES structure is employed. 

4.1. Base Case Results 

In the BASE simulation, households can substitute between electricity and all other 

non-electricity goods with a constant elasticity of substitution of 0.754. The 12.40% 
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efficiency gain is applied to household electricity consumption. As a consequence, 

household electricity consumption falls in the short-run and households redistribute 

their expenditures towards non-electricity goods. Gas consumption increases, in the 

same proportion as consumption of other non-electricity goods. The aggregate results of 

the BASE simulation are presented in Table 6.4. 

Table 6.4: Base Case Aggregate Results 

 Short-run Long-run 

GDP 0.02 0.09 

Emissions 0.01 -0.01 

Consumer Price Index 0.14 0.15 

Unemployment Rate -0.25 -0.72 

Total Employment 0.03 0.08 

Nominal Gross Wage 0.17 0.23 

Real Gross Wage 0.03 0.08 

Households Consumption 0.13 0.12 

Investment 0.02 0.11 

Export -0.26 -0.27 

Household Electricity Use -3.88 -4.36 

Industrial Electricity Use 0.86 -0.17 

Total Electricity Use -0.92 -1.77 

Household Rebound 68.69 64.86 

Total Rebound 80.53 62.64 

Percentage change in key macroeconomic variables 

The 12.40% increase in efficiency gains lead to a 3.88% reduction in household 

electricity consumption in the short-run. The reallocation of expenditures to other non-

electricity goods (according to the one-level CES consumption function) has a small 

expansionary impact on the UK economy. GDP increases by 0.02% in the short-run, 
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stimulated by an increase in consumption (0.13%) and in investment (0.02%). There is a 

corresponding small increase in CO2 emissions of 0.01%. As non-electricity sectors are 

stimulated by the redistribution in the short-run, the demand for labour increases in 

those sectors. The rigidity of labour supply generates a decrease in the unemployment 

rate (-0.25%) and an increase in the real wage (0.03%). Overall, competitiveness is 

reduced as the consumer price index (cpi) increases in the short-run by 0.14%, leading 

to a drop in exports of 0.26%. 

The reduction in household electricity consumption, and the redistribution towards other 

consumption activities, should in principle (and according to the I-O analysis) lead to a 

reduction in the industrial use of electricity, through the strong backward sectoral 

linkages of the electricity sector with itself. However, in the CGE model, prices are now 

endogenous. The fall in household demand for electricity and corresponding increase in 

non-electricity consumption generate short-run price drifts because of capacity 

constraints (in both capital and labour). Overcapacity in the electricity transmission and 

distribution sector, as well as sectors that are strongly linked to it (e.g. generation 

activities or fuel extraction sectors) leads to a fall in those sectors’ output price in the 

short-run (See Figure 6.5). In contrast, limited capacity in sectors stimulated by the 

redistribution leads to a short-run increase in their output prices (e.g.  Services and 

Transport). As a result of the drop in the electricity price, there is a substitution effect in 

production towards the more efficient commodity. This generates an increase in the 

industrial use of electricity in the short-run (0.86%), contrary to the findings of the IO 

analysis. The internal linkages effects are offset by this substitution effect. Overall, as a 

combination of the fall in household consumption and increase in industrial use, total 

electricity use in the UK still falls by 0.92%. The household and total rebound results 
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are shown in the last two rows of table 6.4. In the short-run, total rebound (80.53) is 

larger than household rebound (68.69) due to the increase in industrial electricity use. 

In the long-run, the capacity constraints on the capital stock have been lifted, and 

investment can adjust fully to the desired level of capital. Thus, the expansionary impact 

is greater than in the short-run, as there is a greater response to the demand stimulus 

from the redistributed expenditures. GDP increases by 0.09%, consumption and 

investment increase by 0.12% and 0.11% respectively. The net increase in investment 

includes both the decrease in investments in the electricity and other related sectors, as 

well as the increase in investments in stimulated sectors. The adjustments in capacity 

correct the short-run price drifts observed in electricity and non-electricity sectors, as 

seen in Figure 6.5. 

Figure 6.5: 40-period sectoral price adjustments 
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Labour supply is fixed in the model through the assumption of no-endogenous 

migration. Thus, employment can only adjust through changes in the unemployment 

rate, which falls in the long-run. However, the demand stimulus still puts upward 

pressure on the real wage, which translates into an increase in commodity prices in the 

long-run, for all commodities, including electricity and electricity-related activities. This 

can be seen in Figure 6.5. Adjustments on the labour market in relations to GDP and 

price levels are shown in Figure 6.6. In the long-run, the cpi is 0.15% higher than in the 

base year, which reduces competitiveness and exports further. In the long-run, CO2 

emissions decrease slightly, despite the larger expansionary impact, reflecting the fact 

that the economy is less electricity-intensive than in the base-year. 

Figure 6.6: Labour Market Adjustments  
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electricity has increased in natural units. Similarly, industrial use of electricity now falls 

in the long-run by 0.28%, due to this price increase. Overall, there is a drop in the total 

use of electricity in the UK by 1.78%. It is worth noting that the decreases in household 

and total electricity use are larger than the direct and total effects calculated in the IO 

analysis, due to the increase in the price of electricity in natural units in the CGE model. 

The falls in household and total electricity use correspond to a household rebound of 

64.86 and a total rebound of 62.64, which are smaller than in the IO. However, in the 

long-run, the total rebound is smaller than the household, reversing the short-run 

findings. The reduction in total rebound effectively reflects the disinvestment effects in 

the electricity sector, which have reduced the industrial use of electricity in the long-

run. 

4.2. Substitution between gas and electricity (Scenarios 1 to 3) 

In the BASE simulation, households can substitute between electricity and non-

electricity goods, without distinction in the latter. If household rebound is lower than 

100, households save on their electricity expenditures, and can redistribute across other 

consumption goods according to their initial consumption choices. However, it is likely 

that households have different substitution preferences for consumption goods which 

can provide the same or similar services. In particular, the literature on household 

energy expenditures shows that the substitution possibilities between fuels in household 

consumption are not straightforward. As discussed in the final section of Chapter 5, 

econometric work has shown that in the UK, gas consumption has been shown to be 

complementary to electricity consumption (negative cross-price elasticity), while 

electricity seems to be substitutable to gas consumption (positive cross-price elasticity). 
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These observations reveal the underlying uncertainty surrounding the cross-price 

elasticities of household energy demands. 

This section explores to what extent the rebound from efficiency gains in household 

electricity consumption is sensitive to the cross-price elasticity between gas and 

electricity. As pointed out in Section 2, this exercise requires modifying the 

consumption function to disaggregate household energy consumption. A new nested 

CES consumption function is used where households can substitute between energy and 

non-energy goods. The energy composite is also made up of two composites: coal & oil 

and electricity & gas (the consumption structure is detailed in Section 2.2.2). The 

impacts of substitution possibilities on the results can be explored, by varying the 

elasticity of substitution in the gas and electricity composite in the CES consumption 

function. Three simulations are run and analysed in this section. In Scenario 1, the 

elasticity of substitution is set at the same value at other energy nests in the 

consumption function, namely    = 0.61. In Scenario 2, the value of the elasticity of 

substitution is decreased (   = 0.418) to reflect increased complementarity between gas 

and electricity. Finally in Scenario 3, the elasticity of substitution is set at    = 1.289, to 

reflect increased substitutability
84

. The aggregate economic results for each of the three 

scenarios are presented in Table 6.5. Each case will be discussed separately, before 

focusing on a comparison of rebound results across simulations. 

  

                                                 
84

 The calibration of the elasticities of substitution to the econometric findings of Baker et al. (1989) is 

detailed in Section 3 of this Chapter.  
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4.2.1. Scenario 1 

In the standard case, Scenario 1, where the elasticity of substitution between electricity 

and gas is set at the default value, the aggregate results appear very similar to the BASE 

simulation. As households reduce their electricity consumption and re-distribute their 

expenditures to non-electricity goods there is a small expansionary impact on the 

economy in the short-run (GDP increases by 0.02%).  

Table 6.5: Aggregate Results – Scenarios 1 to 3 

 Scenario 1 Scenario 2 Scenario 3 

 Standard Complements Substitutes 

 SR LR SR LR SR LR 

GDP 0.02 0.08 0.02 0.07 0.02 0.10 

Emissions -1.08 -1.26 -0.70 -0.85 -2.37 -2.75 

Consumer Price Index 0.08 0.17 0.08 0.15 0.09 0.22 

Unemployment Rate -0.29 -0.83 -0.29 -0.75 -0.32 -1.08 

Total Employment 0.03 0.09 0.03 0.08 0.04 0.12 

Nominal Gross Wage 0.12 0.26 0.12 0.24 0.12 0.34 

Real Gross Wage 0.03 0.09 0.03 0.09 0.04 0.12 

Households Consumption 0.21 0.14 0.19 0.13 0.30 0.19 

Investment -0.09 0.05 -0.11 0.04 -0.04 0.07 

Export -0.10 -0.31 -0.12 -0.28 -0.03 -0.40 

Household Gas Use -10.87 -11.33 -7.22 -7.63 -23.00 -24.65 

Household Electricity Use -3.62 -4.34 -5.71 -6.50 3.32 3.56 

Industrial Electricity Use 1.12 -0.40 1.46 -0.43 -0.02 -0.30 

Total Electricity Use -0.65 -1.90 -1.23 -2.74 1.26 1.16 

Household Rebound 70.83 65.02 53.95 47.59 126.79 128.73 

Total Rebound 86.20 59.79 73.98 42.05 126.57 124.61 

 

However, the impact of the reallocation on the gas sector, and in turn on CO2 emissions 

differ significantly from the previous simulation. As electricity and gas are now directly 

substitutable in the consumption function, an improvement in efficiency in electricity, 

generates a move away from gas towards the more efficient electricity commodity. 
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Electricity consumption decreases by 3.62% in the short-run, which is less than in the 

BASE simulation, and correspondingly, gas consumption decreases by 10.87%. As 

different demand shocks apply to the electricity and gas sector, this will lead to different 

short-run price drifts. The short- and long-run price changes for electricity and gas in all 

simulations are show in Figure 6.7. 

Figure 6.7: Electricity and Gas prices (% change from base year) 
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The negative demand shock on the gas sector leads to a drop in the gas price in the short 

run, to a much larger extent than in BASE case. In this simulation, the direct demand 

reduction from household for gas is combined with the indirect demand reduction from 

the electricity generation sectors. Because of the strong internal linkages of gas and 

electricity, the electricity price also drops more in Scenario 1 than in the BASE 

simulation, due to the indirect demand reduction in electricity inputs from the gas 

sector. This was also pointed out in the Input-Output chapter. 

In the long-run, the expansionary impact of the shock is slightly smaller in Scenario 1 

(0.08% against 0.09% in BASE), due to the decrease in demand for the gas sector. The 

net increase in investments is smaller (0.05%), as disinvestment effects also take place 

in the gas sector. The major difference in aggregate results between the two scenarios is 

the change in CO2 emissions. As the economy moves away from gas, both in 

consumption and industry, CO2 emissions are reduced by 1.26% in the long-run. 

In terms of electricity, households reduce their consumption in the long-run by 4.34%, 

which is similar to the BASE scenario (-4.36%), corresponding to a household rebound 

of 65.02. Total electricity use falls by 1.90%. This is more than in the BASE scenario, 

from the negative indirect demand effects from the gas sector. This corresponds to a 

smaller total rebound of 59.79. 

4.2.2. Scenario 2: Increased Complementarity 

The aggregate results of Scenario 2 are shown in columns 3 and 4 of Table 6.5. Looking 

at the case of increased complementarity, the results show qualitatively and 

quantitatively similar changes in aggregate economic indicators compared to previous 

simulations. However, using a smaller elasticity of substitution between gas and 



256 

 

electricity, the changes in household gas and electricity consumption following the 

efficiency shock are different. In this case, gas and electricity are less substitutable in 

household consumption. Households cannot substitute the more efficient electricity 

commodity for gas, as much as in Scenario 1. Thus, there is a larger decrease in 

household electricity consumption, and a smaller decrease in gas consumption than in 

Scenario 1
85

.  

Household electricity consumption decreases by 5.71%, and household gas 

consumption decreases by 7.22% in the short-run. The larger drop in electricity 

consumption leads to more excess capacity, and a larger drop in the price of electricity 

output, as shown in Figure 6.7. In Scenario 2, the electricity price falls by 1.34% in the 

short-run, the most of all the simulations. Accordingly, Scenario 2 also shows the 

largest increase in the industrial use of electricity at 1.12% in the short-run. 

In the long-run, the electricity price still increases in Scenario 2 as the capacity has 

adjusted. Household electricity consumption decreases by 6.50% while gas 

consumption decreases by 7.63%. The industrial use of electricity decreases by more 

than in Scenario 1, because the gas distribution sector experiences a large negative 

shock, and as shown in the IO Chapter, it is one of the most electricity intensive sectors 

after electricity itself. Accordingly, total electricity use decreases by 2.74%, which is 

more than Scenario 1. This corresponds to the smallest total rebound at 42.05. Despite 

the smaller rebound in electricity use, total emissions in Scenario 2 decrease by less 

than in Scenario 1. This is explained by the smaller drop in household gas consumption, 

and in turn the smaller fall in the output of the gas sector. 

                                                 
85

 The lower the elasticity of substitution, the smaller the decrease in gas as a result of the efficiency 

shock. Essentially, if gas and electricity were perfect complements, then the efficiency gain would 

actually lead to an increase in gas consumption. 



257 

 

4.2.3. Scenario 3: Increased Substitution 

Finally, in Scenario 3, the elasticity of substitution is increased to reflect a positive 

cross-price elasticity of gas demand to the electricity price. In this case, the elasticity of 

substitution is increased to 1.28, and this has a large impact on the results, relative to 

other scenarios. In this case of high substitution, as household electricity consumption 

becomes more efficient; households can substitute away from gas, and consume more of 

the efficient commodity. Accordingly, the results of the “substitutes” case show an 

increase in household electricity consumption of 3.32% and 3.56% in the short and long 

runs respectively. Calculating the household rebound, the increase in electricity 

consumption reflects the case of backfire. Household electricity consumption actually 

increases as a result of the efficiency gain. The household rebound is 126.79 in the 

short-run and 128.73 in the long-run. 

Because household use more of the efficient fuel (electricity), their expenditures on gas 

decrease dramatically (by 23.00% and 24.65% in the short and long-run respectively). 

This has major implications for sectoral results, as shown in Figure 6.8. In contrast to 

the other simulations where the outputs of most sectors (particularly for electricity 

activities) were falling as a result of the shock, the increase in substitution boosts the 

demand for all electricity-supplying sectors, in addition to the previously stimulated 

sectors. This leads to a lasting increase in output in all but a few sectors. The gas sector 

is highly negatively impacted by the shock with a drop in output of 3.45%.   

The increase in household electricity consumption leads to a lack of available capacity 

in electricity-supplying sector, but the drop in demand for the gas sector (and the strong 

linkages between gas and electricity) generate a drop in demand for electricity in the 

short-run. The combination of these conflicting effects generates a slight drop in the 
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electricity price (shown in Figure 6.7), to a much lesser extent than the other two 

scenarios (0.08%).  

Figure 6.8: Sectoral Output – Scenario 3 

 

In consequence, the industrial use of electricity falls in the short run (as opposed to the 

increase from substitution effects in all other simulations). However, the total use of 

electricity in the short run is fully dominated by the increase in household consumption. 

We find a short-run total rebound of 126.57, which is marginally smaller than the 

household rebound (126.79)
86

. 

This is also the case in the long-run, but to a lesser extent. The electricity price has risen 

by 0.18%, decreasing industrial use by 0.30%. In the long run, total electricity use 

increases by 1.16%, mainly determined by the 3.56% increase in household electricity 

consumption. This results in a total long-run rebound of 124.61. Total rebound is still 

                                                 
86

 This is the inverse result than in Scenarios 1 and 2, where household rebound was smaller than total 

rebound due to increased competitiveness and industrial electricity use in the short-run. 
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smaller than household rebound, but the difference is mitigated by the smaller increase 

in electricity price in the long-run. In the long-run, the results of Scenario 3 suggest that 

high substitution between electricity and gas consumption leads to backfire. 

 Interestingly, the aggregate results of the shock in Scenario 3 are very similar to the 

other three scenarios, despite the large differences in sectoral results. GDP and 

consumption are stimulated in the long run. Employment and capital stock are also 

slightly stimulated, while the lasting price increase has a negative impact on exports. 

However, one major finding of Scenario 3 is the large drop in CO2 emissions (-2.75% 

in the long-run). Despite the small expansion in the economy and the increase in 

electricity use, the large drop in the use of gas has a very positive environmental impact. 

This result suggests that the 25% decrease in household gas consumption, drastically 

reduces emissions, while the boost to fossil-fuelled electricity-supplying sectors does 

not offset it. 

4.3. A comparison of Rebound Results 

The results of the CGE modelling confirm the observation from the IO analysis that the 

rebound results are sensitive to assumptions about the substitutability of fuels in 

household energy consumption. However, the impact on the rebound values of 

increasing substitution between gas and electricity is not the same in the IO and the 

CGE analyses. Thus, this section provides a clear comparison of all the rebound results 

(household and total) obtained in the Input-Output and CGE models. The rebound 

values for all simulations in Chapter 5 and 6 are summarized in Table 6.6.  
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Table 6.6: Summary of Rebound Results 

 
Short-Run Long-run 

Model Simulation Substitution HH Total HH Total 

Input-

Output 

BASE67 Standard - - 75.80 65.23 

DISAG76 Standard - - 75.80 73.93 

COMP76 Complements - - 75.80 77.44 

SUBS76 Substitutes - - 75.80 72.14 

CGE 

BASE Case One-level CES 68.69 80.53 64.86 62.64 

Scenario 1 Standard 70.83 86.20 65.02 59.79 

Scenario 2 Complements 53.95 73.98 47.59 42.05 

Scenario 3 Substitutes 126.79 126.57 128.73 124.61 

 

In the IO analysis, several conclusions were drawn about the rebound from efficiency 

gains in household electricity consumption. First, using a simple reallocation of 

household expenditures, the IO simulation BASE67 suggests that total rebound is lower 

than the household rebound. This result is mainly driven by the high internal linkages of 

the electricity sector. The indirect decrease in demand for the electricity sector 

generated a negative indirect rebound, as the sector is more electricity intensive than the 

non-electricity sectors stimulated by the redistribution. Additionally, the same 

simulation is conducted using a model calibrated with disaggregated Input-Output 

tables, within which the electricity sector is disaggregated between generation and 

network activities (nine generation sectors and one electricity transmission and 

distribution sector). In this DISAG76 simulation, the negative indirect rebound from 

backwards linkages is reduced, but the previous observation holds: total rebound is 

smaller than household rebound following efficiency gains in household electricity 

consumption. Two additional IO simulations are presented looking at the impact of 

treating gas differently from other non-electricity good. In COMP76 and SUBS76, the 
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change in household gas expenditures is determined prior to the redistribution to other 

sectors, by multiplying an estimate of cross-price elasticity of demand for gas with 

regards to the electricity price and the change in the price of electricity in efficiency 

units. In COMP76, gas and electricity are complements (negative cross-price elasticity) 

and gas consumption increases as a result of the efficiency gain in electricity 

consumption. This leads to a positive indirect rebound effect, from the increase in the 

output of the gas sector. In that case, the total rebound is larger than the direct 

household rebound. In SUBS76, the cross-price elasticity was assumed to be positive, 

leading to a large decrease in household gas consumption. The results show the largest 

negative indirect rebound due to the mutually strong backward linkages of the 

electricity and gas sectors. 

In order to determine the rebound in an economy-wide framework with endogenous 

prices and endogenous income, Chapter 6 repeats these simulations in a Computable 

General Equilibrium model of the UK, the UKENVI model. In this framework, the 

household rebound is not only determined by the direct effect (the change in household 

consumption resulting from the change in electricity price in efficiency units). The 

household rebound is also dependent on the relative price of electricity in natural units, 

and changes in income. Similarly, the total rebound is not only dependent on the direct 

and indirect changes in sectoral output determined by backwards linkages, but can also 

be affected by relative price changes and crowding-out effects. 

Because of the dynamic nature of the CGE model, the results allow for calculating both 

short-run and long-run rebounds, while the IO results were static are assumed to 

represent long-run rebound results only, when all supply constraints are relaxed. The 

BASE simulation described in Section 3 in the CGE model is the closest replicate of the 
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DISAG76 and BASE67 simulations in the IO. Using a simple CES consumption 

function as a composite of electricity and non-electricity goods, this simulation 

estimates a smaller household rebound (both in the short and long run) than the IO 

analysis. The household rebound in the IO was considered equal to the direct rebound 

and determined by the own-price elasticity of demand (75.80 in all simulations). In the 

CGE, the household rebound responds to endogenous prices and income. In the BASE 

simulation in the short run, the smaller household rebound is explained by a smaller 

household income (lower real wage), whereas in the long run, it is explained by an 

increase in the price of electricity in natural units.  

The total rebound results also reveal short-run and long-run differences between the 

base cases in IO and CGE models. In the short run, the total rebound is larger than 

household rebound, due to the temporary excess capacity in electricity-supplying 

sectors pushing down the electricity price. Industrial use of electricity actually increases 

in the short run. The positive substitution effect outweighs the negative effect from 

backwards linkages, resulting in different results from the IO analysis. In the long run 

however, total rebound is smaller than direct rebound, as disinvestment effects have 

taken place, and industrial use of electricity has decreased. The difference between 

household and total rebound is larger in the CGE than in the IO analysis (comparing 

long-run rebounds), due to the increase in electricity price. In the long run, in addition 

to the negative indirect demand shock for the electricity sector, industrial use of 

electricity drops due to the increase in electricity price. The reversion of the substitution 

effect in the long run (away from more expensive electricity) generates a larger 

difference between household and total rebound. 



263 

 

Finally, by changing the structure of the CES consumption function to introduce more 

flexibility in household energy substitution, we can identify the impact of increased (or 

decreased) substitution between electricity and gas in the CGE model as well. 

Comparing the three simulations with alternative values of elasticities of substitution 

between gas and electricity in a separate nest of the consumption function, the rebound 

results vary drastically. The first observation is that increasing the elasticity of 

substitution between electricity and gas, increases the household rebound. It is the 

smallest in Scenario 2 (complements), followed by Scenario 1 (middle-case) and is the 

largest in Scenario 3 (increased substitution). When the elasticity of substitution is 

larger than 1 in Scenario 3, the case of backfire occurs; and household and total 

rebounds are larger than 100. With higher substitution, household can substitute more in 

favour of the more efficient commodity. Household electricity consumption decreases 

by less (or even increases in Scenario 3), as substitutability increases. In all cases, the 

total rebound is smaller than the direct rebound in the long-run, as suggested in the IO 

analysis. In Scenarios 1 and 2, this observation reflects the negative indirect demand 

and disinvestment effects in the electricity sector. In Scenario 3, total rebound is still 

larger than 100, but the total backfire is smaller than the household backfire. This 

suggests that the negative indirect demand shock from the large decrease in household 

gas consumption and the increase in the electricity price decreases the industrial use of 

electricity, and in turn total electricity use. 

Ultimately, the CGE results comparing substitution possibilities produce contrasting 

results with the IO comparison of Chapter 5. In the IO, complementarity suggests higher 

total rebound while substitutability led to lower total rebound. In the CGE, 

complementarity is found to decrease both household and total rebound, while high 
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substitution is found to lead to both household and total backfire. The difference 

originates in the way that household consumption is structured in the CGE model, and is 

a crucial determinant of the rebound. By creating a gas and electricity composite in 

consumption, the household rebound is not only determined by the direct response to 

the efficiency gain, but also by the elasticity of substitution between electricity and gas; 

while in the IO, the household rebound is not allowed to vary with the cross-price 

elasticity. Since the household rebound determines the size of the redistribution of 

expenditures, it is the most important determinant of total rebound. When 

complementarity is assumed in the CGE model, the total rebound is the smallest, and 

the difference between household and total rebound is the largest (5.54). Indeed, 

households reduce their electricity use the most, which generates the largest negative 

demand effects and disinvestment in electricity sectors. In contrast, when substitution is 

increased (Scenario 3), the difference between household and total backfire is the 

smallest (4.12), reflecting that the negative demand shock to the gas sector does not 

reduce industrial use of electricity in the same proportions as other scenarios.  

5. Discussion 

The CGE modelling of efficiency gains in household electricity consumption in this 

chapter presents two advantages. First, by endogenizing prices and incomes, the model 

can capture the full system-wide impacts of the shock. Relative price changes 

particularly affect the economy’s response to the efficiency gains. Households’ response 

to the efficiency gains are determined jointly by the change in the price of electricity in 

efficiency units (direct rebound) but also by relative price changes in natural units and 

changes in incomes. Thus, the household electricity rebound in the CGE is different 

from the IO (where it was equivalent to the direct rebound) and also differs depending 
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on the consumption structure chosen and the elasticity of substitution between 

electricity and other goods. Similarly, industrial use of electricity is not only determined 

by static indirect sectoral responses through backwards linkages (like in the IO), but 

also responds to relative price changes. If the price of electricity decreases in the short 

run, industrial use of electricity actually increases, and short-run rebound results show a 

larger total rebound than the household rebound.  

Comparing the IO and CGE results in terms of the rebound results reveals that the CGE 

model captures a much more detailed picture of the economy-wide adjustments to an 

efficiency gain in household electricity consumption. In addition to the insights in 

relative price changes affecting sectoral and aggregate variables in the short-run, the 

CGE model identifies their adjustment paths to explain the long-run results. Through 

this analysis, the added-value from endogenizing prices and income becomes apparent. 

When replicating the IO simulations in the CGE analysis, the household and total 

rebound results are mitigated by the changes in relative prices. 

The CGE simulations provide interesting insights about the economic and 

environmental impacts of an efficiency gain in household electricity consumption, 

which can be used to draw some policy conclusions. In all simulations, the efficiency 

gain leads to a small expansionary impact on the UK economy in the long-run.  

However, the different simulations reveal major differences in household and total 

electricity use as well as in CO2 emission reductions. With lower substitution between 

gas and electricity in household consumption, there are larger decreases in household 

and industrial electricity uses, leading to a larger decrease in total electricity use and 

thus a lower total rebound. In contrast, increasing substitution between gas and 

electricity consumptions can lead to the case of household and total backfire, where 
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households substitute electricity (which is more efficient) for gas, leading to an increase 

in household and total electricity use. In the case of high substitution, the significant 

decrease in gas consumption generates the largest decrease in CO2 emissions, while the 

aggregate expansionary impact is still present, and total electricity use increases. 

Considering the great variation in rebound results when applying alternative elasticities 

of substitution between electricity and gas, there is a clear need to conduct further 

research on estimating substitution in household energy expenditures. 

These results have strong implications for policy-makers, who have typically focused 

on household electricity reductions as a major benefit of a smart metering policy. 

Although demand reductions are considered a crucial part of achieving the goals of 

security of supply and carbon reductions, it is important to consider their system-wide 

impacts, depending on substitution possibilities. If gas and electricity are complement 

goods in household consumption, the efficiency gains in electricity consumption can 

result in large reductions in electricity and gas consumption, as well as reduction in total 

UK electricity use. However, if the goods are close substitutes, backfire may occur, and 

electricity use increase, as shown in Scenario 3. Although counterintuitively, this result 

might not be undesirable from the policy-makers point of view, as it is associated with a 

large reduction in the use of gas, leading to a decrease in CO2 emissions and a decrease 

in fossil-fuel dependence. 
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Chapter 7: Conclusions 

The primary objective of this thesis is to consider the economy-wide impact of two UK 

policies aimed at sustainability in the energy sector, in the presence of technological 

change. In two separate modelling exercises, this work presents a number of original 

contributions to modelling innovation/technological change and its consequences in the 

context of sustainable energy policies for Scotland and the UK. This chapter provides a 

summary of the major research findings and contributions of each part of this thesis in 

turn, while highlighting the potential for extending this research in future work. 

Part A 

The production side of the energy system is the focus of Part A. The impact of a 

targeted production subsidy to marine electricity generation is estimated in an energy-

focused CGE model for Scotland, while incorporating learning-by-doing technological 

change for the sector. This exercise represents the first attempt to incorporate 

endogenous technological change in the AMOS framework.  

The targeted review of the energy-economy-environment (EEE) modelling literature 

reveals the range of existing assumptions to represent endogenous technological change. 

The literature review focuses on learning-by-doing within energy technologies, as this is 

identified as the most common form of endogenous technological change in EEE 

models. Learning-by-doing, which is defined as the costs reductions associated with 

cumulative experience is generally treated as one process in the literature. However, 

Chapter 3 identifies a clear list of alternative approaches that have been used to 

represent this technological change process. Methods differ in terms of the choice of the 

equation form, the variables chosen to embody experience and performance, and 
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particular parameter values used to calibrate the different equation forms, and even the 

learning rates themselves. 

In addition, Part A of this thesis represents, to my knowledge, the first modelling 

exercise to test these alternative specifications of learning-by-doing for an energy 

technology. Both the micro-simulations and the CGE modelling under the different 

learning-by-doing specifications reveal how crucial the modelling assumptions are in 

determining the paths and speed of technological improvements. 

The empirically defined learning curve equation, used primarily by engineers, 

consistently leads to increasing efficiency improvements at a decreasing rate, which 

reflects the realistic observation that each doubling of experience is increasingly 

difficult to achieve. In contrast, the equation form inspired by economic theory and 

endogenous growth can lead to a range of outcomes, depending on the assumptions 

made about returns-to-knowledge. In the case of “fishing-out”, where past accumulated 

experience diminishes the possibility for future learning, the results are qualitatively 

similar to the concave adjustments of the engineering curve. In contrast, the case of 

“standing-on-shoulders” leads to ever-increasing efficiency gains, and does not generate 

a convergence towards a new long-run equilibrium. In addition, decisions over which 

variable is chosen to embody experience accumulation is also shown to matter in 

determining the period-by-period adjustments in the economy. While using either the 

typical gross investment or capital stock proxies does not alter the adjustment paths, the 

use of output to embody experience through production generates an S-shape diffusion 

of marine electricity output, reflecting findings from the technological adoption curve 

literature. 



269 

 

In addition to contributions to the modelling literature, the findings of Part A of this 

thesis provide a number of insights which are important to consider in both policy-

initiation and evaluation. First, the development of an early-stage renewable energy 

sector (marine in this case) is shown to be dependent not only on the targeted policy 

support, but also on the potential for learning-by-doing. The relative success of a 

subsidy policy to marine generation is contingent on costs reductions in the sector 

through learning effects. As the level of support to renewable technologies is 

determined through their relative cost-effectiveness, the long-term evolution and 

effectiveness of the policy itself will be affected by the potential for costs reductions. 

This analysis shows that policy design and evaluation should be conducted in light of 

these findings and attention should be given to the sensitivity of results to technological 

change modelling assumptions. 

Future work could extend the analysis conducted in Part A in a number of ways. First, 

the introduction of endogenous technological change into the CGE model for Scotland 

has been restricted to learning-by-doing effects. This choice is motivated by the dense 

literature on the topic and the relative dominance of these effects in the modelling 

literature. However, Chapter 2 has highlighted the importance of R&D-driven 

technological change, particularly in economic-theory informed models. Both R&D and 

learning effects have been shown to influence costs reductions in new technologies 

depending on their level of development, calling for different policy instruments at 

different stages of maturity (Foxon et al., 2005). A comprehensive modelling of 

endogenous technological change would include both R&D-driven and learning- or 

experience-driven cost reductions (or efficiency improvements). Similarly, an optimal 

policy to encourage newer renewable technologies could include early R&D support, 
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encouraging R&D-driven costs reductions, followed by subsidies to encourage learning 

in production and further costs reductions. While such a modelling exercise would be of 

major interest to policy-makers and to the wider academic community, it requires a 

step-by-step approach, to identify the additional effect from each layer of policy. Part A 

of this thesis represents the first step in meeting this challenge of introducing a 

comprehensive endogenous technological change process in the CGE model for 

Scotland. 

One limitation of the modelling in Part A is that it considers the government 

intervention in subsidizing marine electricity as costless. In practice, such policy is not 

costless. A new government subsidy would have to be compensated through a reduction 

in government expenditures in other parts of the economy, or through an increase in 

taxes. Both of these would have further repercussions on the overall economy, and this 

would impact the system-wide modelling results. The reasoning for considering a 

costless policy in this analysis is twofold. First, from the point of view of policy 

evaluation, it is important to isolate the economic impact of the policy itself from the 

impact of consequent adjustments in government budgets.  Second, due to the complex 

nature of adjustments when considering endogenous technological change in a CGE 

model, it is again important to adopt a step-by-step approach. In a context where both a 

policy and a new endogenous process must be modelled simultaneously, it is necessary 

to avoid over-complicating the interpretation of results. By considering this a costless 

policy, the analysis has focused on identifying the implications of endogenous 

technological change in the model. 

Finally, as is made clear in the literature review, there is no consensus in the 

representation of learning-by-doing, neither in the econometric nor the EEE modelling 
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literatures. Some of the assumptions identified in the review have already been 

highlighted and tested in econometric models for renewable energy technologies (e.g. 

the proxy for experience or for performance). However, this is not the case for the 

specific form of the equation. The econometric literature estimating learning rates has 

so far only focused on the engineering learning curve; the economic-theory-based 

specification has not been tested. This represents an opportunity for future research, as 

the estimated learning rates in such new models would likely differ from those derived 

from previous attempts and provide better estimates to parameterize the economic 

equation in EEE models. In particular, an such estimation exercise could provide 

estimates on the returns-to-knowledge (with regards to experience).  

Part B 

In Part B, the policy focus is shifted to the consumption side of the energy sector. This 

part considers the impact of the roll-out of smart meters on the wider-economy, through 

the modelling of efficiency gains in households’ electricity consumption. This work 

represents the first attempt to model both the system-wide economic and environmental 

impacts of the UK smart meter roll-out and the associated expected reduction in 

household electricity consumption. The analysis builds on previous work on rebound 

effects from efficiency improvements in energy-use. This literature usually focusses on 

the production-side, rather than on the consumption side of the economy. Part B is the 

first modelling exercise to consider system-wide rebound effects from efficiency gains 

in household electricity consumption.  

The Input-Output and CGE analyses show that the total rebound is consistently smaller 

than the household rebound, reflecting the reductions in the industrial use of electricity, 
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through the strong internal backwards linkages within electricity sectors (i.e. the relative 

electricity-intensity of electricity activities). In line with previous findings in the 

literature on system-wide modelling of rebound effects from household energy 

efficiency improvements (Lecca et al., 2014), the move from the partial equilibrium 

Input-Output framework towards the CGE with endogenous prices and incomes put a 

number of upward or downward pressures on both the household and economy-wide 

rebounds. The household rebound is reduced in the CGE model compared to the IO 

analysis, due to downwards pressures from income effects in the short-run and price 

effects (in natural units) in the long-run. In contrast, the total rebound is increased in the 

short-run in the CGE model, due to the drop in electricity prices (because of short-run 

over capacity). In the long-run, the price effect is reversed and the total rebound is again 

reduced in the CGE framework. 

Another major contribution of Part B is the innovation in the modelling of household 

energy consumption and substitution possibilities. This is the first modelling exercise 

formally to consider the impact of gas and electricity consumption substitution on the 

rebound effect from efficiency gains. Second, the econometric parameterization of 

substitution possibilities in household energy consumption to investigate the cases of 

substitutability or complementarity between gas and electricity is the first of its kind and 

proves to be crucial in determining the rebound effects. The successive simulations with 

different elasticities of substitution between fuels in household consumption reveal that 

the household and total rebounds increase with the elasticity of substitution.   

The analysis conducted in Part B has important implications for the smart-meter roll-

out, and more generally for policies aimed efficiency improvements in household 

electricity consumption. The analysis shows that the benefits from these improvements 
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might be larger than the expected three percent reductions in household electricity 

consumption, when the economy-wide rebound is taken into account. In particular, 

industrial use of electricity is also expected to decrease, which would further contribute 

to the government’s objective of demand-side management. However, this finding is 

crucially dependent on the size of the elasticity of substitution between electricity and 

gas in household energy consumption. The parameterization from the econometric 

literature on UK household energy demand reveals that if electricity and gas are close 

substitutes, the case of backfire may occur, where households actually increase their 

electricity use but decrease their consumption of gas. While this result appears to 

conflict with the policy’s objectives, the case of backfire is also accompanied by a 

larger decrease in total CO2 emissions, driven by the move away from gas. This 

contributes more strongly to the overall energy policy goal of decarbonisation. 

As in Part A, a number of opportunities for future research arise from the findings in 

Part B. First, the sensitivity of the rebound to assumptions about the consumption 

structure and the values of key elasticities suggests the need for further work in that 

area. The econometric estimates used to parameterize substitution between electricity 

and gas in household consumption do not give a clear picture of household energy 

consumption. In fact, the cross-price elasticity estimates between gas and electricity 

give contradictory results, indicating that these goods might be substitutes or 

complements in consumption. It is likely that the contradictory findings from the 

econometric literature are due to the nature of household energy consumption, which is 

fully determined by relatively long-term investments. Indeed, whether through the 

choice of appliance or heating system, there is a tendency to technological lock-ins in 

electricity or gas consumptions. The dependence of the rebound on these estimates 
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reflects the need for more precise modelling of household energy demands, taking into 

consideration the longer-term “energy capital” goods. 

Finally, a number of policy extensions to Part B could be considered in future research. 

First, in the analysis, the smart meter roll-out is again treated as a costless policy. 

Efficiency improvements in household consumption are modelled here without any 

investment costs, whereas in practice the costs of smart meters are expected to be borne 

by electricity suppliers. This could have a potential effect of further increasing the price 

of electricity and further reducing electricity use and the rebound. Second, the impacts 

of such a policy could be compared with other measures aimed at efficiency 

improvements in household consumption, where the costs of the policy could be borne 

directly by households. An interesting area of future research would be a comparison of 

rebound effects from alternative policies aimed at improving household electricity 

efficiency in terms of their economy-wide impacts as well as redistribution effects.  

Whether focused on the production or consumption-side of the economy, this thesis has 

shown the importance of considering technological innovation when modelling the 

system-wide economic and environmental impacts of energy policies. Overall, the 

findings suggest that technological change in energy technologies can generate several 

benefits, such as costs reductions and energy and carbon savings, and thus technological 

change is a crucial factor contributing to bridging the gap between the conflicting 

energy policy goals of security of supply, decarbonisation and affordability.  
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Appendix List 

Appendix A: Cobb-Douglas Cost Function with Constant Returns to 

Scale 

Total Costs of production are given in equation: 

                

Here,   and   are the prices of capital and labour inputs respectively. The Cobb-

Douglas cost function for a given level of output y can be derived from the optimisation 

problem: 

                   

Given that           

This constraint can be solved for Lt, so the problem is equivalent to: 

                                   

The first order condition of this optimisation problem is 
  

  
  , which translates to: 

                           

From this, we can derive the conditional demands for capital and labour: 
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Replacing these conditional demands into the cost function, we find: 
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Simplifying, costs become: 
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With the assumption of constant returns to scale, costs become: 
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Appendix B: 17 Sector Disaggregation of the Scottish IO Tables 

 Sector Name abbreviation  

1 Primary PRY 

2 Manufacturing MAN 

3 Utilities and transport UAT 

4 Services SER 

5 Coal (Extraction) COAL 

6 Oil and other fuels OIL 

7 Gas GAS 

8 Electricity Transmission and Distribution ELETD 

9 Generation - Nuclear GNUC 

10 Generation - Coal GCOAL 

11 Generation - Hydro GHYDRO 

12 Generation - Gas GGAS 

13 Generation - Biomass GBIO 

14 Generation - Wind onshore GWINDON 

15 Generation - Wind offshore GWINDOFF 

16 Generation - Landfill gas GLAN 

17 Generation - Marine GMAR 
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Appendix C: A Mathematical Summary of the AMOS Model 

Structure 

The characteristics of the version of AMOS (A Micro-Macro Model of Scotland) 

used in this thesis are developed in the main body of text. This appendix is provided 

to summarize the AMOS model structure in mathematical form, where the main 

interactions between variables of interests are represented. The mathematical 

description is kept as general as possible, to reflect the possibilities of AMOS as a 

flexible CGE framework. It is based largely on AMOS model descriptions by 

Harrigan et al. (1991), McGregor et al. (1995) and Lecca et al. (2013). However, the 

model summarised here is adapted for Scotland, as a region of the UK, and is 

characterized by myopic agents. This is the model version used in Chapter 4 of this 

thesis
87

.  

The model listing summarizes the price setting equations, technology in production, 

trade interactions, the behaviour of households and other institutions, the government 

sector, production factor accumulation, the trade balance, private, foreign and public 

assets. Finally the short-run and steady-state conditions are outlined. 

Note: the time subscript has been omitted in some equations for clarity.   

Prices   

Commodity price     
             

     

 C.1 

                                                 
87

 Forward-looking agents are an extension of the AMOS model used here (Lecca et al., 2013). The 

version with forward-looking agents is used in Chapter 6 of this thesis. The main changes to the 

model equations for the version in Chapter 6 are listed in Appendix G. 



294 

 

Import price                      C.2 

Export price                    C.3 

National commodity price      
∑            ∑           

∑        

 C.4 

Value added price       
       (            )  ∑     

     
 

 C.5 

Consumption price    
    

 ∑   
 
      

    

 
 C.6 

Price of government 

consumption 

     
    

 ∑   
 
      

    

 
 C.7 

User cost of capital               C.8 

Rate of return to capital           
      (

  

  

)

    

 C.9 

Capital good price    
∑      ∑       

∑ ∑        

 C.10 

After tax wage   
  

  

                       
 C.11 

Real Wage (Reg. barg.)   (
  

    
)             C.12 

Production technology   

Total output       (
  

  
  

    

    
 )? C.13 

Value-added      (    
   

        
   

  )
 
   C.14 
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Trade   

Total intermediate inputs         
   (    

     

  
 

     
       

  
 

)

 

  
 

 C.15 

National intermediate 

inputs 
           

    (    
     

  
 

     
     

  
 

)

 

  
 

 C.16 

Total exports       (
   

   

)
  
 

 C.17 

Total Regional Demand    ∑      
 

                C.18 

Total production          C.19 

Households and other 

non-government 

institutions 

  

Aggregate Household 

consumption 

   ∑            
        

 ∑            
        

       ∑             
       

 
C.20 

Wealth 
            C.21 

Non-financial wealth  

                

        
             ∑        

 

 ∑             
      

            

      

C.22 

Financial wealth 
                      

  ∑         
 

      
C.33 
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Armington household 

consumption 

      
 (  
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 C.34 

CES Household 

consumption 

       
 
   

 
(
   

   

)
  
 

 C.35 

Total non-government 

institutional income 
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       ∑   

 

 ∑           
      

          

        

C.36 

Transfers from non-

governmental institutions 
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Transfers from 

government 
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Institution Savings (non-

government) 
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Government 
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Fiscal Deficit 
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C.40 

Government expenditures    ∑                 
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Armington government 

expenditures 
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 C.42 

Investment Demand   

Investment by sector of 

origin 
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 C.43 

Total investment       
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 C.45 

National investment         
   (  
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 C.46 

Investment path   

Investment by destination        (     
       )          C.47 

Desired capital stock      
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C.48 
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Factors accumulation   

Capital stock                         C.49 

Labour supply         (        )       C.50 

Net in-migration 

           (         ( 
 
))

   (  (
  

    
)    (

  

    
)) 

C.51 

Factors market clearing   

            C.52 

           ∑     
 

 C.53 

Taxes and subsidies   

Production subsidy 

                         

 

C.54 

Import tax        ∑                    
 

 C.55 

Current Account   

Total import demand      ∑         
 

∑        
 

                      C.56 
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Trade Balance 

    ∑           
 

 ∑                ∑          
       

    

C.57 

Assets   

Value of firms                 C.58 

Foreign debt                     C.59 

Government debt 

              (      (
     

   

  ))         

     

C.60 

Steady-state conditions   

              C.61 

      (     
     

   
  )            C.62 

              C.63 

Short-run conditions   

                 C.64 

             C.65 
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Subscripts: 

     Sectors 

   Time 

     Institutions 

      Domestic institutions 

        Domestic non-government institutions 

   Households 

   Government 

 

Endogenous Variables: 

     Commodity Price 

     Regional Price 

    Regional Supply 

     Import Price 

      World Import Price 

    Imports 

       Rate of Import Tax 

     Export Price 

     Rate of Export Subsidy 

      World Export Price 

     Regional Intermediate Inputs 

     RUK Intermediate Inputs 

     RUK Price 

      National Price (Scotland + RUK)  

      National Intermediate Inputs (Scotland + RUK) 

     User Cost of Capital 

    Capital Good Price 

    Total factor productivity 

    Physical capital demand 

    Labour demand 

    Regional Nominal wage 

    National wage  

  
   After tax wage 

    Total output 
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    Value-added 

      Intermediate input 

    Capital productivity 

    Labour productivity 

     Total intermediate inputs 

     ROW intermediate inputs 

    Total exports 

      Regional household consumption 

      Regional investment by sector of origin 

      Regional government consumption 

   Household wealth 

     Household non-financial wealth 

    Household financial wealth  

        Transfers from non-government institution 

        Transfers from government  

        Institution remittance 

         Institution savings 

        Domestic non-government institution income 

    Aggregate government expenditures 

     Total Government expenditure on good i 

      Government savings 

      Regional government expenditures 

      Imported government expenditures 

       Physical capital matrix 

      Total household tax 

    Investment by destination  

     Investment by origin 

       National investment (Scotland +RUK) 

      ROW investment demand 

      Regional investment demand 

      RUK investment demand 

    Investment by destination 

     Capital stock 

   
   Desired capital stock 
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     Labour supply 

      Net in-migration 

    Regional unemployment rate 

    National unemployment rate 

      Total import tax 

       Production subsidy  

      Total demand for imports 

     Trade Balance (positive is trade deficit, negative is trade surplus) 

     Value of firms 

    Foreign debt 

     Government debt 

    Shadow price of capital 

 

 

Elasticities 

    Elasticity of substitution between labour and capital in sector j 

  
   Armington elasticity 

   Elasticity of real wage to the unemployment rate 

  
   Elasticity of exports to the regional price 

    Elasticity of substitution in government consumption 

  
    Elasticity of substitution in household consumption 

    Elasticity of migration to the unemployment differential 

    Elasticity of migration to the real wage differential 

 

 

Parameters 

    
   Input-Output coefficient for i used in j 

  
   Share of value added in production  

       Business tax 

      Production subsidy 

   Interest rate 

   Depreciation rate 
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  Shares of capital and labour in the value-added function 

       Rate of social security paid by employees  

        Rate of social security paid by employers 

     Rate of income tax 

    
      

  Shift parameters in intermediate goods CES functions 

  
   Shift parameter in household consumption  

  
 

  Shift parameter in government consumption  

  
            

 Share parameters in intermediate goods  

  
     

  Share parameters in household consumption  

    
   Share of capital in institution income 

    
   Share of labour in institution income 

  
 
  Share of good i in household consumption 

  
     

  Share parameters in government consumption   

        Institution rate of savings 

   Investment path accelerator mechanism 

    Calibrated migration parameter 

      Import tax rate 

      Production subsidy rate 

   Proportion of subsidised debt (region) 
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Appendix D: 67 Sector Disaggregation of the UK IO Tables 

67 Sectors aggregation 123 Sector IO  

93 Sector 

Environmental 

Accounts  

1 Agriculture 1 1 

2 Forestry 2 2 

3 Fishing 3 3 

4 Coal Extraction etc. 4 4 

5 Oil & Gas Extraction 5 5 

6 
Metal Ores Extraction, Other Mining 

And Quarrying 
6 & 7 6 & 7 

7 Food & Drinks 8-19 8 

8 Tobacco 20 9 

9 Clothing 21-27 10 

10 Wearing Apparel & Fur Products 28 11 

11 Leather Goods 29 & 30 12 

12 Wood & Wood Products 31 13 

13 Paper Manufacturing 32-34 14 & 15 

14 
Coke, Refined Petroleum & Nuclear 

Fuel 
35 16-18 

15 Industrial Gases & Dyes 36 19 

16 Organic & Inorganic Chemicals 37 & 38 20 & 21 

17 Fertilizers, Pesticides, etc. 39-41 22-24 

18 Paints, Varnishes, Printing Ink, etc. 42 25 

19 Pharmaceuticals 43 26 

20 Soap & Toilet Preparations 44 27 

21 Other Chemicals & Manmade Fibres 45 & 46 28 & 29 

22 Rubber Products 47 30 

23 Plastic Products 48 31 

24 Glass & Glass Products 49 32 

25 Ceramic Goods 50 33 

26 Cement & Clay 51 & 52 34 & 35 

27 Articles Of Concrete, etc. 53 36 

28 Iron & Steel 54 - 56 37-40 

29 Metal Products 57-61 41 

30 Machinery & Munitions 62-68 42 

31 Office Machinery & Computers 69 43 

32 Elec. Equip. 70-72 44 

33 TV Equip., etc. 73-75 45 

34 Medical & Precision Instruments 76 46 

35 Motor Vehicles 77 47 

36 Earth & Space Transportation 78-80 48 

37 Misc. Products 81-84 49 
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38 Electricity Production & Distribution 85 51-55 

39 Gas Distribution 86 56 

40 Water Supply 87 57 

41 Construction 88 58 

42 
Motor Vehicle Distribution & 

Repair, etc. 
89 59 

43 Wholesale Distribution 90 60 

44 Retail Distribution 91 61 

45 Hotels, Catering & Pubs, etc. 92 62 

46 Railway Transport 93 63 

47 Other Land Transport 94 64-68 

48 Water Transport 95 69 

49 Air Transport 96 70 

50 Ancillary Transport Services 97 71 

51 Communications 98 & 99 72 

52 Banking & Finance 100 73 

53 Insurance And Pension Funds 101 74 

54 Auxiliary Financial Services 102 75 

55 Property 103-105 76 

56 Renting Of Machinery 106 77 

57 Computing Services 107 78 

58 Research & Development 108 79 

59 Professional Services 109-114 80 

60 Public Administration 115 81 & 82 

61 Education 116 83 

62 Health Services 117 & 118 84 

63 Sewage & Sanitary Services 119 85-87 

64 Membership Organisations 120 88 

65 Recreational Services 121 89 

66 Other Service Activities 122 90 

67 
Private Households With Employed 

Persons 
123 91 
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Appendix E: Input-Output Result Tables for Chapter 5 

Table E1: BASE67 Sectoral Output Results 

Change in Output (£ms) Direct Type I Type II 

Agriculture 4.85 8.77 10.27 

Forestry 0.08 0.15 0.18 

Fishing 0.03 0.29 0.33 

Coal Extraction etc. 0.11 -9.61 -9.55 

Oil & Gas Extraction 0.02 -68.07 -67.30 

Metal Ores Extraction, Other Mining 

And Quarrying 

0.01 0.08 0.12 

Food & Drinks 16.59 28.16 33.06 

Tobacco 1.25 1.25 1.46 

Clothing 2.44 3.36 3.94 

Wearing Apparel & Fur Products 4.67 4.70 5.49 

Leather Goods 1.15 1.19 1.39 

Wood & Wood Products 0.46 0.96 1.19 

Paper Manufacturing 3.90 6.70 8.55 

Coke, Refined Petroleum & Nuclear 

Fuel 

2.80 1.75 2.57 

Industrial Gases & Dyes 0.04 -0.28 -0.23 

Organic & Inorganic Chemicals 0.03 -0.15 -0.06 

Fertilizers, Pesticides, etc. 0.06 0.90 1.08 

Paints, Varnishes, Printing Ink, etc. 0.13 0.40 0.49 

Pharmaceuticals 0.64 0.90 1.07 

Soap & Toilet Preparations 1.64 1.89 2.22 

Other Chemicals & Manmade Fibres 0.68 0.75 0.89 

Rubber Products 0.49 0.70 0.83 

Plastic Products 0.76 2.85 3.46 

Glass & Glass Products 0.16 0.56 0.67 

Ceramic Goods 0.36 0.41 0.49 

Cement & Clay 0.02 0.05 0.08 

Articles Of Concrete, etc. 0.07 0.16 0.26 

Iron & Steel 0.01 0.47 0.70 

Metal Products 0.68 -2.21 -1.53 

Machinery & Munitions 2.13 0.24 0.85 

Office Machinery & Computers 0.32 0.35 0.43 

Elec. Equip. 0.57 -0.12 0.12 

TV Equip., etc. 2.18 2.40 2.83 

Medical & Precision Instruments 0.80 0.98 1.20 

Motor Vehicles 9.84 11.21 13.14 

Earth & Space Transportation 1.00 1.00 1.25 
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Misc. Products 4.36 5.00 5.97 

Electricity Production & Distribution -286.87 -407.68 -405.94 

Gas Distribution 2.25 -27.91 -27.19 

Water Supply 1.22 1.06 1.33 

Construction 2.12 1.10 3.17 

Motor Vehicle Distribution & Repair, 

etc. 

9.68 11.49 13.79 

Wholesale Distribution 13.12 11.62 15.71 

Retail Distribution 41.36 41.43 48.43 

Hotels, Catering & Pubs, etc. 29.66 30.44 35.58 

Railway Transport 1.92 1.99 2.42 

Other Land Transport 3.60 8.19 9.93 

Water Transport 1.17 0.94 1.19 

Air Transport 5.13 5.88 7.01 

Ancillary Transport Services 0.82 7.40 9.51 

Communications 6.31 9.46 11.87 

Banking & Finance 5.16 -2.03 1.32 

Insurance And Pension Funds 10.87 12.53 15.52 

Auxiliary Financial Services 0.59 1.47 1.81 

Property 41.51 47.99 56.43 

Renting Of Machinery 2.00 2.41 3.21 

Computing Services 0.03 3.53 4.90 

Research & Development 0.12 -0.13 0.00 

Professional Services 0.52 15.57 20.80 

Public Administration 1.06 2.07 2.53 

Education 11.80 13.30 15.75 

Health Services 8.04 9.57 11.30 

Sewage & Sanitary Services 1.27 2.11 2.56 

Membership Organisations 2.05 2.82 3.33 

Recreational Services 12.32 14.77 17.50 

Other Service Activities 3.69 4.28 5.07 

Private Households With Employed 

Persons 

2.18 2.19 2.55 

Total 0.00 -163.99 -80.73 

  

 

  



308 

 

Table E2: BASE67 Sectoral CO2 Results 

Change in CO2 Emissions (000tns) Direct Type I Type II 

Agriculture 1.38 2.50 2.93 

Forestry 0.01 0.01 0.01 

Fishing 0.01 0.12 0.14 

Coal Extraction etc. 0.02 -2.06 -2.05 

Oil & Gas Extraction 0.02 -59.22 -58.55 

Metal Ores Extraction, Other Mining 

And Quarrying 

0.00 0.02 0.03 

Food & Drinks 2.51 4.26 4.99 

Tobacco 0.03 0.03 0.03 

Clothing 0.83 1.14 1.33 

Wearing Apparel & Fur Products 0.23 0.23 0.27 

Leather Goods 0.10 0.10 0.12 

Wood & Wood Products 0.15 0.32 0.40 

Paper Manufacturing 0.54 0.92 1.18 

Coke, Refined Petroleum & Nuclear 

Fuel 

2.87 1.80 2.65 

Industrial Gases & Dyes 0.02 -0.18 -0.15 

Organic & Inorganic Chemicals 0.02 -0.08 -0.04 

Fertilizers, Pesticides, etc. 0.04 0.52 0.62 

Paints, Varnishes, Printing Ink, etc. 0.01 0.03 0.03 

Pharmaceuticals 0.08 0.11 0.13 

Soap & Toilet Preparations 0.17 0.19 0.22 

Other Chemicals & Manmade Fibres 0.13 0.14 0.17 

Rubber Products 0.14 0.20 0.24 

Plastic Products 0.14 0.51 0.62 

Glass & Glass Products 0.08 0.30 0.35 

Ceramic Goods 0.10 0.11 0.14 

Cement & Clay 0.12 0.37 0.57 

Articles Of Concrete, etc. 0.01 0.02 0.03 

Iron & Steel 0.02 0.84 1.25 

Metal Products 0.06 -0.18 -0.13 

Machinery & Munitions 0.11 0.01 0.05 

Office Machinery & Computers 0.01 0.01 0.01 

Elec. Equip. 0.04 -0.01 0.01 

TV Equip., etc. 0.08 0.08 0.10 

Medical & Precision Instruments 0.03 0.03 0.04 

Motor Vehicles 0.49 0.56 0.66 

Earth & Space Transportation 0.06 0.06 0.07 

Misc. Products 0.73 0.84 1.01 

Electricity Production & Distribution -1557.57 -2213.54 -2204.09 
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Gas Distribution 0.38 -4.70 -4.58 

Water Supply 0.29 0.25 0.32 

Construction 0.12 0.06 0.18 

Motor Vehicle Distribution & Repair, 

etc. 

0.59 0.70 0.84 

Wholesale Distribution 0.73 0.64 0.87 

Retail Distribution 2.24 2.24 2.62 

Hotels, Catering & Pubs, etc. 1.18 1.21 1.41 

Railway Transport 0.54 0.56 0.67 

Other Land Transport 2.38 5.42 6.57 

Water Transport 3.60 2.91 3.67 

Air Transport 13.68 15.69 18.71 

Ancillary Transport Services 0.02 0.15 0.20 

Communications 0.21 0.32 0.40 

Banking & Finance 0.02 -0.01 0.01 

Insurance And Pension Funds 0.07 0.08 0.10 

Auxiliary Financial Services 0.01 0.02 0.03 

Property 0.32 0.37 0.44 

Renting Of Machinery 0.11 0.14 0.18 

Computing Services 0.00 0.02 0.03 

Research & Development 0.00 -0.01 0.00 

Professional Services 0.01 0.23 0.31 

Public Administration 0.08 0.16 0.20 

Education 0.47 0.53 0.63 

Health Services 0.31 0.37 0.43 

Sewage & Sanitary Services 0.21 0.35 0.42 

Membership Organisations 0.10 0.13 0.16 

Recreational Services 0.31 0.37 0.44 

Other Service Activities 0.22 0.25 0.30 

Private Households With Employed 

Persons 

0.09 0.09 0.11 

Total -1517.93 -2230.34 -2208.95 
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Table E3: DISAG76 Output Results 

Change in output (£ms) Direct Type I Type II 

Agriculture 4.85 8.77 9.94 

Forestry 0.08 0.15 0.17 

Fishing 0.03 0.29 0.32 

Coal Extraction etc. 0.11 -9.61 -9.57 

Oil & Gas Extraction 0.02 -68.08 -67.55 

Metal Ores Extraction, Other Mining 

And Quarrying 

0.01 0.08 0.11 

Food & Drinks 16.59 28.16 31.49 

Tobacco 1.25 1.25 1.34 

Clothing 2.44 3.36 3.55 

Wearing Apparel & Fur Products 4.67 4.70 4.79 

Leather Goods 1.15 1.19 1.20 

Wood & Wood Products 0.46 0.95 1.12 

Paper Manufacturing 3.90 6.71 8.20 

Coke, Refined Petroleum & Nuclear 

Fuel 

2.80 1.75 2.16 

Industrial Gases & Dyes 0.04 -0.28 -0.25 

Organic & Inorganic Chemicals 0.03 -0.16 -0.09 

Fertilizers, Pesticides, etc. 0.06 0.90 1.02 

Paints, Varnishes, Printing Ink, etc 0.13 0.40 0.46 

Pharmaceuticals 0.64 0.90 0.97 

Soap & Toilet Preparations 1.64 1.89 2.05 

Other Chemicals & Manmade Fibres 0.68 0.73 0.78 

Rubber Products 0.49 0.70 0.78 

Plastic Products 0.76 2.87 3.31 

Glass & Glass Products 0.16 0.56 0.63 

Ceramic Goods 0.36 0.41 0.45 

Cement & Clay 0.02 0.05 0.08 

Articles Of Concrete etc. 0.07 0.16 0.25 

Iron & Steel 0.00 0.11 0.17 

Metal Products 0.69 -1.76 -1.27 

Machinery & Munitions 2.13 0.25 0.59 

Office Machinery & Computers 0.32 0.35 0.41 

Elec. Equip. 0.57 -0.05 0.10 

TV Equip., etc. 2.18 2.27 2.38 

Medical & Precision Instruments 0.80 0.99 1.07 

Motor Vehicles 9.84 11.21 12.35 

Earth & Space Transportation 1.00 1.00 1.16 

Misc. Products 4.36 4.95 5.45 

Electricity Transmission And 

Distribution 

-286.87 -305.79 -304.66 
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Generation - Nuclear 0.00 -20.84 -20.77 

Generation - Coal 0.00 -34.34 -34.21 

Generation -Gas + Oil 0.00 -42.13 -41.98 

Generation - Hydro 0.00 -1.26 -1.26 

Generation - Biomass 0.00 -1.99 -1.98 

Generation - Wind 0.00 -0.45 -0.45 

Generation - Wind Offshore 0.00 -0.05 -0.05 

Generation - Other 0.00 -0.80 -0.79 

Generation - Marine/Solar 0.00 -0.06 -0.06 

Gas Distribution 2.25 -27.92 -27.29 

Water Supply 1.22 1.06 1.30 

Construction 2.12 1.10 2.95 

Motor Vehicle Distribution & Repair, 

etc. 

9.68 11.49 13.57 

Wholesale Distribution 13.12 11.57 14.93 

Retail Distribution 41.36 41.43 48.04 

Hotels, Catering & Pubs, etc. 29.66 30.44 34.66 

Railway Transport 1.92 1.99 2.35 

Other Land Transport 3.60 8.19 9.61 

Water Transport 1.17 0.94 1.06 

Air Transport 5.13 5.88 6.45 

Ancillary Transport Services 0.82 7.39 9.13 

Communications 6.31 9.46 11.59 

Banking & Finance 5.16 -2.00 0.68 

Insurance And Pension Funds 10.87 12.52 15.23 

Auxiliary Financial Services 0.59 1.47 1.77 

Property 41.51 47.99 55.83 

Renting Of Machinery 2.00 2.42 3.10 

Computing Services 0.03 3.54 4.68 

Research & Development 0.12 -0.13 -0.03 

Professional Services 0.52 15.58 19.96 

Public Administration 1.06 2.07 2.48 

Education 11.80 13.30 15.57 

Health Services 8.04 9.57 11.11 

Sewage & Sanitary Services 1.27 2.11 2.51 

Membership Organisations 2.05 2.82 3.29 

Recreational Services 12.32 14.77 17.06 

Other Service Activities 3.69 4.28 5.01 

Private Households With Employed 

Persons 

2.18 2.19 2.53 

Total 0.00 -164.04 -96.87 
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Table E4: DISAG76 Sectoral CO2 emission results 

Change in CO2 Emissions (000tons) Direct Type I Type II 

Agriculture 1.38 2.50 2.83 

Forestry 0.01 0.01 0.01 

Fishing 0.01 0.12 0.13 

Coal Extraction etc. 0.02 -2.06 -2.06 

Oil & Gas Extraction 0.02 -59.23 -58.77 

Metal Ores Extraction, Other Mining 

And Quarrying 

0.00 0.02 0.03 

Food & Drinks 2.51 4.26 4.76 

Tobacco 0.03 0.03 0.03 

Clothing 0.83 1.14 1.20 

Wearing Apparel & Fur Products 0.23 0.23 0.23 

Leather Goods 0.10 0.10 0.10 

Wood & Wood Products 0.15 0.32 0.37 

Paper Manufacturing 0.54 0.93 1.13 

Coke, Refined Petroleum & Nuclear 

Fuel 

2.87 1.80 2.23 

Industrial Gases & Dyes 0.02 -0.18 -0.16 

Organic & Inorganic Chemicals 0.02 -0.09 -0.05 

Fertilizers, Pesticides, etc. 0.04 0.52 0.59 

Paints, Varnishes, Printing Ink, etc 0.01 0.03 0.03 

Pharmaceuticals 0.08 0.11 0.12 

Soap & Toilet Preparations 0.17 0.19 0.21 

Other Chemicals & Manmade Fibres 0.13 0.14 0.15 

Rubber Products 0.14 0.20 0.22 

Plastic Products 0.14 0.52 0.60 

Glass & Glass Products 0.08 0.30 0.33 

Ceramic Goods 0.10 0.11 0.13 

Cement & Clay 0.12 0.36 0.54 

Articles Of Concrete etc. 0.01 0.02 0.03 

Iron & Steel 0.01 0.33 0.53 

Metal Products 0.05 -0.12 -0.08 

Machinery & Munitions 0.11 0.01 0.03 

Office Machinery & Computers 0.01 0.01 0.01 

Elec. Equip. 0.03 0.00 0.00 

TV Equip., etc. 0.12 0.13 0.13 

Medical & Precision Instruments 0.03 0.03 0.04 

Motor Vehicles 0.49 0.56 0.62 

Earth & Space Transportation 0.06 0.06 0.07 

Misc. Products 0.73 0.83 0.92 

Electricity Transmission And -91.56 -97.60 -97.24 
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Distribution 

Generation - Nuclear 0.00 -0.56 -0.55 

Generation - Coal 0.00 -1415.37 -1410.14 

Generation -Gas + Oil 0.00 -700.21 -697.63 

Generation - Hydro 0.00 0.00 0.00 

Generation - Biomass 0.00 0.00 0.00 

Generation - Wind 0.00 0.00 0.00 

Generation - Wind Offshore 0.00 0.00 0.00 

Generation - Other 0.00 0.00 0.00 

Generation - Marine/Solar 0.00 0.00 0.00 

Gas Distribution 0.38 -4.70 -4.60 

Water Supply 0.29 0.25 0.31 

Construction 0.12 0.06 0.17 

Motor Vehicle Distribution & Repair, 

etc. 

0.59 0.70 0.83 

Wholesale Distribution 0.73 0.64 0.83 

Retail Distribution 2.24 2.24 2.60 

Hotels, Catering & Pubs, etc. 1.18 1.21 1.38 

Railway Transport 0.54 0.56 0.65 

Other Land Transport 2.38 5.42 6.35 

Water Transport 3.60 2.91 3.26 

Air Transport 13.68 15.69 17.20 

Ancillary Transport Services 0.02 0.15 0.19 

Communications 0.21 0.32 0.39 

Banking & Finance 0.02 -0.01 0.00 

Insurance And Pension Funds 0.07 0.08 0.10 

Auxiliary Financial Services 0.01 0.02 0.03 

Property 0.32 0.37 0.43 

Renting Of Machinery 0.11 0.14 0.18 

Computing Services 0.00 0.02 0.03 

Research & Development 0.00 -0.01 0.00 

Professional Services 0.01 0.23 0.30 

Public Administration 0.08 0.16 0.19 

Education 0.47 0.53 0.62 

Health Services 0.31 0.37 0.42 

Sewage & Sanitary Services 0.21 0.35 0.41 

Membership Organisations 0.10 0.13 0.15 

Recreational Services 0.31 0.37 0.43 

Other Service Activities 0.22 0.25 0.30 

Private Households With Employed 

Persons 

0.09 0.09 0.10 

Total -51.90 -2230.96 -2215.08 
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Table E5: SUBS76 Sectoral output results 

Change in output (£ms) Direct Type I Type II 

Agriculture 6.93 12.54 14.23 

Forestry 0.12 0.20 0.24 

Fishing 0.04 0.41 0.46 

Coal Extraction etc. 0.16 -10.24 -10.18 

Oil & Gas Extraction 0.03 -87.61 -86.84 

Metal Ores Extraction, Other Mining 

And Quarrying 0.01 0.12 0.16 

Food & Drinks 23.72 40.33 45.14 

Tobacco 1.78 1.79 1.92 

Clothing 3.49 4.81 5.09 

Wearing Apparel & Fur Products 6.68 6.71 6.86 

Leather Goods 1.64 1.71 1.72 

Wood & Wood Products 0.65 1.40 1.64 

Paper Manufacturing 5.58 8.65 10.80 

Coke, Refined Petroleum & Nuclear 

Fuel 4.00 2.76 3.36 

Industrial Gases & Dyes 0.05 -0.30 -0.25 

Organic & Inorganic Chemicals 0.05 -0.10 -0.01 

Fertilizers, Pesticides, etc. 0.09 1.29 1.46 

Paints, Varnishes, Printing Ink, etc 0.19 0.57 0.66 

Pharmaceuticals 0.91 1.30 1.40 

Soap & Toilet Preparations 2.35 2.71 2.94 

Other Chemicals & Manmade Fibres 0.97 1.06 1.13 

Rubber Products 0.69 1.01 1.12 

Plastic Products 1.08 4.03 4.66 

Glass & Glass Products 0.23 0.80 0.91 

Ceramic Goods 0.52 0.59 0.64 

Cement & Clay 0.02 0.08 0.12 

Articles Of Concrete etc. 0.10 0.24 0.37 

Iron & Steel 0.00 0.23 0.33 

Metal Products 0.99 -0.97 -0.27 

Machinery & Munitions 3.04 1.07 1.56 

Office Machinery & Computers 0.45 0.49 0.57 

Elec. Equip. 0.82 0.11 0.33 

TV Equip., etc. 3.12 3.26 3.41 

Medical & Precision Instruments 1.14 1.49 1.60 

Motor Vehicles 14.07 16.07 17.72 

Earth & Space Transportation 1.43 1.49 1.72 

Misc. Products 6.23 7.23 7.95 

Electricity Transmission And 

Distribution -286.87 -327.21 -325.58 
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Generation - Nuclear 0.00 -22.30 -22.19 

Generation - Coal 0.00 -36.74 -36.56 

Generation -Gas + Oil 0.00 -45.08 -44.86 

Generation - Hydro 0.00 -1.35 -1.34 

Generation - Biomass 0.00 -2.13 -2.12 

Generation - Wind 0.00 -0.48 -0.48 

Generation - Wind Offshore 0.00 -0.06 -0.06 

Generation - Other 0.00 -0.85 -0.85 

Generation - Marine/Solar 0.00 -0.07 -0.07 

Gas Distribution -120.11 -164.39 -163.48 

Water Supply 1.74 1.49 1.84 

Construction 3.02 1.02 3.70 

Motor Vehicle Distribution & Repair, 

etc. 13.85 16.64 19.64 

Wholesale Distribution 18.77 20.05 24.90 

Retail Distribution 59.15 59.26 68.80 

Hotels, Catering & Pubs, etc. 42.41 43.54 49.63 

Railway Transport 2.75 2.92 3.43 

Other Land Transport 5.15 12.11 14.15 

Water Transport 1.67 1.41 1.58 

Air Transport 7.33 8.49 9.31 

Ancillary Transport Services 1.18 11.27 13.77 

Communications 9.02 14.09 17.17 

Banking & Finance 7.37 -2.83 1.04 

Insurance And Pension Funds 15.54 18.70 22.60 

Auxiliary Financial Services 0.84 2.15 2.59 

Property 59.36 67.26 78.59 

Renting Of Machinery 2.86 3.75 4.73 

Computing Services 0.04 5.60 7.24 

Research & Development 0.17 -0.14 0.01 

Professional Services 0.74 23.17 29.50 

Public Administration 1.52 2.99 3.58 

Education 16.88 19.08 22.35 

Health Services 11.50 13.71 15.94 

Sewage & Sanitary Services 1.82 3.13 3.70 

Membership Organisations 2.93 4.04 4.73 

Recreational Services 17.61 21.32 24.64 

Other Service Activities 5.27 6.17 7.21 

Private Households With Employed 

Persons 3.12 3.12 3.62 

Total 0.00 -189.79 -92.95 
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Table E6: SUBS76 Sectoral CO2 Emissions Results 

Change in CO2 Emissions (000tons) Direct Type I Type II 

Agriculture 1.98 3.57 4.05 

Forestry 0.01 0.01 0.02 

Fishing 0.02 0.17 0.19 

Coal Extraction etc. 0.03 -2.20 -2.19 

Oil & Gas Extraction 0.03 -76.22 -75.56 

Metal Ores Extraction, Other Mining 

And Quarrying 

0.00 0.03 0.04 

Food & Drinks 3.58 6.09 6.82 

Tobacco 0.04 0.04 0.04 

Clothing 1.18 1.63 1.72 

Wearing Apparel & Fur Products 0.33 0.33 0.33 

Leather Goods 0.14 0.14 0.14 

Wood & Wood Products 0.22 0.47 0.55 

Paper Manufacturing 0.77 1.19 1.49 

Coke, Refined Petroleum & Nuclear 

Fuel 

4.11 2.84 3.46 

Industrial Gases & Dyes 0.03 -0.19 -0.16 

Organic & Inorganic Chemicals 0.03 -0.06 -0.01 

Fertilizers, Pesticides, etc. 0.05 0.75 0.85 

Paints, Varnishes, Printing Ink, etc 0.01 0.04 0.04 

Pharmaceuticals 0.11 0.16 0.17 

Soap & Toilet Preparations 0.24 0.27 0.30 

Other Chemicals & Manmade Fibres 0.18 0.20 0.21 

Rubber Products 0.20 0.29 0.32 

Plastic Products 0.19 0.72 0.84 

Glass & Glass Products 0.12 0.43 0.48 

Ceramic Goods 0.15 0.16 0.18 

Cement & Clay 0.17 0.60 0.85 

Articles Of Concrete etc. 0.01 0.03 0.05 

Iron & Steel 0.01 0.71 1.00 

Metal Products 0.07 -0.06 -0.02 

Machinery & Munitions 0.16 0.06 0.08 

Office Machinery & Computers 0.01 0.01 0.01 

Elec. Equip. 0.04 0.01 0.02 

TV Equip., etc. 0.17 0.18 0.19 

Medical & Precision Instruments 0.04 0.05 0.06 

Motor Vehicles 0.70 0.80 0.89 

Earth & Space Transportation 0.09 0.09 0.10 

Misc. Products 1.05 1.22 1.34 

Electricity Transmission And 

Distribution 

-91.56 -104.44 -103.92 
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Generation - Nuclear 0.00 -0.60 -0.59 

Generation - Coal 0.00 -1514.53 -1506.99 

Generation -Gas + Oil 0.00 -749.27 -745.54 

Generation - Hydro 0.00 0.00 0.00 

Generation - Biomass 0.00 0.00 0.00 

Generation - Wind 0.00 0.00 0.00 

Generation - Wind Offshore 0.00 0.00 0.00 

Generation - Other 0.00 0.00 0.00 

Generation - Marine/Solar 0.00 0.00 0.00 

Gas Distribution -20.23 -27.68 -27.53 

Water Supply 0.41 0.36 0.44 

Construction 0.17 0.06 0.21 

Motor Vehicle Distribution & Repair, 

etc. 

0.85 1.02 1.20 

Wholesale Distribution 1.04 1.11 1.38 

Retail Distribution 3.20 3.21 3.73 

Hotels, Catering & Pubs, etc. 1.68 1.73 1.97 

Railway Transport 0.77 0.81 0.96 

Other Land Transport 3.41 8.01 9.36 

Water Transport 5.15 4.36 4.87 

Air Transport 19.56 22.66 24.84 

Ancillary Transport Services 0.02 0.23 0.29 

Communications 0.31 0.48 0.58 

Banking & Finance 0.03 -0.01 0.00 

Insurance And Pension Funds 0.10 0.12 0.15 

Auxiliary Financial Services 0.01 0.04 0.04 

Property 0.46 0.52 0.61 

Renting Of Machinery 0.16 0.21 0.27 

Computing Services 0.00 0.04 0.05 

Research & Development 0.01 -0.01 0.00 

Professional Services 0.01 0.35 0.44 

Public Administration 0.12 0.23 0.28 

Education 0.67 0.76 0.89 

Health Services 0.44 0.52 0.61 

Sewage & Sanitary Services 0.30 0.51 0.61 

Membership Organisations 0.14 0.19 0.22 

Recreational Services 0.44 0.54 0.62 

Other Service Activities 0.31 0.36 0.43 

Private Households With Employed 

Persons 

0.13 0.13 0.15 

Total -55.62 -2403.43 -2380.51 
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Table E7: COMP76 Sectoral Output Results 

Change in Output (£ms) Direct Type I Type II 

Agriculture 0.76 1.38 1.53 

Forestry 0.01 0.03 0.03 

Fishing 0.00 0.04 0.05 

Coal Extraction etc. 0.02 -8.37 -8.37 

Oil & Gas Extraction 0.00 -29.79 -29.73 

Metal Ores Extraction, Other Mining 

And Quarrying 0.00 -0.01 0.00 

Food & Drinks 2.60 4.30 4.73 

Tobacco 0.20 0.20 0.21 

Clothing 0.38 0.52 0.54 

Wearing Apparel & Fur Products 0.73 0.74 0.75 

Leather Goods 0.18 0.18 0.19 

Wood & Wood Products 0.07 0.07 0.09 

Paper Manufacturing 0.61 2.91 3.10 

Coke, Refined Petroleum & Nuclear 

Fuel 0.44 -0.24 -0.19 

Industrial Gases & Dyes 0.01 -0.24 -0.24 

Organic & Inorganic Chemicals 0.01 -0.26 -0.25 

Fertilizers, Pesticides, etc. 0.01 0.14 0.16 

Paints, Varnishes, Printing Ink, etc 0.02 0.06 0.07 

Pharmaceuticals 0.10 0.13 0.14 

Soap & Toilet Preparations 0.26 0.29 0.31 

Other Chemicals & Manmade Fibres 0.11 0.10 0.10 

Rubber Products 0.08 0.10 0.11 

Plastic Products 0.12 0.61 0.67 

Glass & Glass Products 0.02 0.08 0.09 

Ceramic Goods 0.06 0.05 0.06 

Cement & Clay 0.00 -0.01 -0.01 

Articles Of Concrete etc. 0.01 -0.01 0.00 

Iron & Steel 0.00 -0.14 -0.13 

Metal Products 0.11 -3.29 -3.23 

Machinery & Munitions 0.33 -1.36 -1.32 

Office Machinery & Computers 0.05 0.08 0.09 

Elec. Equip. 0.09 -0.38 -0.36 

TV Equip., etc. 0.34 0.35 0.36 

Medical & Precision Instruments 0.13 0.01 0.02 

Motor Vehicles 1.55 1.68 1.83 

Earth & Space Transportation 0.16 0.05 0.07 

Misc. Products 0.68 0.50 0.56 

Electricity Transmission And 

Distribution -286.87 -263.78 -263.63 
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Generation - Nuclear 0.00 -17.98 -17.97 

Generation - Coal 0.00 -29.62 -29.60 

Generation -Gas + Oil 0.00 -36.34 -36.32 

Generation - Hydro 0.00 -1.09 -1.09 

Generation - Biomass 0.00 -1.72 -1.72 

Generation - Wind 0.00 -0.39 -0.39 

Generation - Wind Offshore 0.00 -0.04 -0.04 

Generation - Other 0.00 -0.69 -0.69 

Generation - Marine/Solar 0.00 -0.05 -0.05 

Gas Distribution 242.18 239.66 239.74 

Water Supply 0.19 0.20 0.23 

Construction 0.33 1.25 1.49 

Motor Vehicle Distribution & Repair, 

etc. 1.52 1.39 1.66 

Wholesale Distribution 2.06 -5.07 -4.63 

Retail Distribution 6.50 6.48 7.33 

Hotels, Catering & Pubs, etc. 4.66 4.76 5.31 

Railway Transport 0.30 0.17 0.22 

Other Land Transport 0.57 0.50 0.68 

Water Transport 0.18 0.02 0.03 

Air Transport 0.80 0.76 0.83 

Ancillary Transport Services 0.13 -0.21 0.01 

Communications 0.99 0.38 0.66 

Banking & Finance 0.81 -0.37 -0.02 

Insurance And Pension Funds 1.71 0.41 0.76 

Auxiliary Financial Services 0.09 0.13 0.17 

Property 6.52 10.20 11.22 

Renting Of Machinery 0.31 -0.18 -0.09 

Computing Services 0.00 -0.49 -0.35 

Research & Development 0.02 -0.11 -0.10 

Professional Services 0.08 0.69 1.26 

Public Administration 0.17 0.27 0.33 

Education 1.85 1.97 2.27 

Health Services 1.26 1.44 1.65 

Sewage & Sanitary Services 0.20 0.12 0.18 

Membership Organisations 0.32 0.41 0.47 

Recreational Services 1.93 1.91 2.21 

Other Service Activities 0.58 0.59 0.69 

Private Households With Employed 

Persons 0.34 0.34 0.39 

Total 0.00 -113.55 -104.85 
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Table E8: COMP76 CO2 Emissions results 

Change in CO2 Emissions (000tons) Direct Type I Type II 

Agriculture 0.22 0.39 0.44 

Forestry 0.00 0.00 0.00 

Fishing 0.00 0.02 0.02 

Coal Extraction etc. 0.00 -1.80 -1.80 

Oil & Gas Extraction 0.00 -25.92 -25.86 

Metal Ores Extraction, Other Mining 

And Quarrying 0.00 0.00 0.00 

Food & Drinks 0.39 0.65 0.72 

Tobacco 0.00 0.00 0.00 

Clothing 0.13 0.18 0.18 

Wearing Apparel & Fur Products 0.04 0.04 0.04 

Leather Goods 0.01 0.02 0.02 

Wood & Wood Products 0.02 0.02 0.03 

Paper Manufacturing 0.08 0.40 0.43 

Coke, Refined Petroleum & Nuclear 

Fuel 0.45 -0.25 -0.19 

Industrial Gases & Dyes 0.00 -0.15 -0.15 

Organic & Inorganic Chemicals 0.00 -0.14 -0.14 

Fertilizers, Pesticides, etc. 0.01 0.08 0.09 

Paints, Varnishes, Printing Ink, etc 0.00 0.00 0.00 

Pharmaceuticals 0.01 0.02 0.02 

Soap & Toilet Preparations 0.03 0.03 0.03 

Other Chemicals & Manmade Fibres 0.02 0.02 0.02 

Rubber Products 0.02 0.03 0.03 

Plastic Products 0.02 0.11 0.12 

Glass & Glass Products 0.01 0.04 0.05 

Ceramic Goods 0.02 0.02 0.02 

Cement & Clay 0.02 -0.09 -0.07 

Articles Of Concrete etc. 0.00 0.00 0.00 

Iron & Steel 0.00 -0.41 -0.39 

Metal Products 0.01 -0.22 -0.21 

Machinery & Munitions 0.02 -0.07 -0.07 

Office Machinery & Computers 0.00 0.00 0.00 

Elec. Equip. 0.00 -0.02 -0.02 

TV Equip., etc. 0.02 0.02 0.02 

Medical & Precision Instruments 0.00 0.00 0.00 

Motor Vehicles 0.08 0.08 0.09 

Earth & Space Transportation 0.01 0.00 0.00 

Misc. Products 0.12 0.08 0.09 

Electricity Transmission And 

Distribution -91.56 -84.19 -84.14 
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Generation - Nuclear 0.00 -0.48 -0.48 

Generation - Coal 0.00 -1220.93 -1220.26 

Generation -Gas + Oil 0.00 -604.02 -603.69 

Generation - Hydro 0.00 0.00 0.00 

Generation - Biomass 0.00 0.00 0.00 

Generation - Wind 0.00 0.00 0.00 

Generation - Wind Offshore 0.00 0.00 0.00 

Generation - Other 0.00 0.00 0.00 

Generation - Marine/Solar 0.00 0.00 0.00 

Gas Distribution 40.78 40.36 40.37 

Water Supply 0.05 0.05 0.06 

Construction 0.02 0.07 0.08 

Motor Vehicle Distribution & Repair, 

etc. 0.09 0.09 0.10 

Wholesale Distribution 0.11 -0.28 -0.26 

Retail Distribution 0.35 0.35 0.40 

Hotels, Catering & Pubs, etc. 0.18 0.19 0.21 

Railway Transport 0.08 0.05 0.06 

Other Land Transport 0.37 0.33 0.45 

Water Transport 0.57 0.06 0.11 

Air Transport 2.15 2.01 2.21 

Ancillary Transport Services 0.00 0.00 0.00 

Communications 0.03 0.01 0.02 

Banking & Finance 0.00 0.00 0.00 

Insurance And Pension Funds 0.01 0.00 0.00 

Auxiliary Financial Services 0.00 0.00 0.00 

Property 0.05 0.08 0.09 

Renting Of Machinery 0.02 -0.01 -0.01 

Computing Services 0.00 0.00 0.00 

Research & Development 0.00 0.00 0.00 

Professional Services 0.00 0.01 0.02 

Public Administration 0.01 0.02 0.03 

Education 0.07 0.08 0.09 

Health Services 0.05 0.06 0.06 

Sewage & Sanitary Services 0.03 0.02 0.03 

Membership Organisations 0.02 0.02 0.02 

Recreational Services 0.05 0.05 0.06 

Other Service Activities 0.03 0.03 0.04 

Private Households With Employed 

Persons 0.01 0.01 0.02 

Total -44.61 -1892.80 -1890.74 
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Appendix F: Sectoral and CO2-intensities in the UK IO Tables 

Table F1: 67 Sectors CO2 Intensities 

Sector  CO2-Output 

Coefficient 

Rank 

1 Agriculture 0.285 17 

2 Forestry 0.071 36 

3 Fishing 0.407 13 

4 Coal Extraction etc. 0.215 22 

5 Oil & Gas Extraction 0.870 7 

6 Metal Ores Extrac., Other Mining & Quarrying 0.235 21 

7 Food & Drinks 0.151 28 

8 Tobacco 0.022 59 

9 Clothing 0.338 14 

10 Wearing Apparel & Fur Products 0.049 48 

11 Leather Goods 0.083 33 

12 Wood & Wood Products 0.334 15 

13 Paper Manufacturing 0.138 29 

14 Coke, Refined Petroleum & Nuclear Fuel 1.028 6 

15 Industrial Gases & Dyes 0.637 9 

16 Organic & Inorganic Chemicals 0.559 11 

17 Fertilizers, Pesticides, etc. 0.578 10 

18 Paints, Varnishes, Printing Ink, etc. 0.065 37 

19 Pharmaceuticals 0.122 31 

20 Soap & Toilet Preparations 0.101 32 

21 Other Chemicals & Manmade Fibres 0.189 23 

22 Rubber Products 0.285 16 

23 Plastic Products 0.180 24 

24 Glass & Glass Products 0.531 12 

25 Ceramic Goods 0.281 18 

26 Cement & Clay 7.070 1 

27 Articles Of Concrete, etc. 0.127 30 

28 Iron & Steel 1.774 5 

29 Metal Products 0.082 34 

30 Machinery & Munitions 0.054 46 

31 Office Machinery & Computers 0.018 61 

32 Elec. Equip. 0.064 38 

33 TV Equip., etc. 0.035 55 

34 Medical & Precision Instruments 0.035 56 

35 Motor Vehicles 0.050 47 

36 Earth & Space Transportation 0.060 40 

37 Misc. Products 0.169 25 

38 Electricity Production & Distribution 5.430 2 
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39 Gas Distribution 0.168 26 

40 Water Supply 0.238 20 

41 Construction 0.056 43 

42 Motor Vehicle Distribution & Repair, etc. 0.061 39 

43 Wholesale Distribution 0.055 44 

44 Retail Distribution 0.054 45 

45 Hotels, Catering & Pubs, etc. 0.040 53 

46 Railway Transport 0.279 19 

47 Other Land Transport 0.661 8 

48 Water Transport 3.089 3 

49 Air Transport 2.668 4 

50 Ancillary Transport Services 0.021 60 

51 Communications 0.034 57 

52 Banking & Finance 0.004 67 

53 Insurance And Pension Funds 0.006 66 

54 Auxiliary Financial Services 0.017 62 

55 Property 0.008 64 

56 Renting Of Machinery 0.057 42 

57 Computing Services 0.007 65 

58 Research & Development 0.041 51 

59 Professional Services 0.015 63 

60 Public Administration 0.077 35 

61 Education 0.040 52 

62 Health Services 0.038 54 

63 Sewage & Sanitary Services 0.164 27 

64 Membership Organisations 0.047 49 

65 Recreational Services 0.025 58 

66 Other Service Activities 0.059 41 

67 Private Households With Employed Persons 0.041 50 
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Table F2: 67 Sectors Electricity Intensities 

Sector  Elec-Output 

Coefficient 

Rank 

1 Agriculture 0.022 31 

2 Forestry 0.037 15 

3 Fishing 0.068 7 

4 Coal Extraction etc. 0.061 8 

5 Oil & Gas Extraction 0.013 47 

6 Metal Ores Extrac., Other Mining & Quarrying 0.047 11 

7 Food & Drinks 0.026 26 

8 Tobacco 0.015 44 

9 Clothing 0.029 20 

10 Wearing Apparel & Fur Products 0.017 37 

11 Leather Goods 0.011 57 

12 Wood & Wood Products 0.028 23 

13 Paper Manufacturing 0.026 25 

14 Coke, Refined Petroleum & Nuclear Fuel 0.019 32 

15 Industrial Gases & Dyes 0.088 4 

16 Organic & Inorganic Chemicals 0.060 9 

17 Fertilizers, Pesticides, etc. 0.054 10 

18 Paints, Varnishes, Printing Ink, etc. 0.024 29 

19 Pharmaceuticals 0.017 35 

20 Soap & Toilet Preparations 0.019 33 

21 Other Chemicals & Manmade Fibres 0.034 17 

22 Rubber Products 0.034 18 

23 Plastic Products 0.043 12 

24 Glass & Glass Products 0.070 5 

25 Ceramic Goods 0.043 13 

26 Cement & Clay 0.095 3 

27 Articles Of Concrete, etc. 0.035 16 

28 Iron & Steel 0.069 6 

29 Metal Products 0.038 14 

30 Machinery & Munitions 0.028 22 

31 Office Machinery & Computers 0.012 51 

32 Elec. Equip. 0.024 28 

33 TV Equip., etc. 0.018 34 

34 Medical & Precision Instruments 0.017 36 

35 Motor Vehicles 0.024 27 

36 Earth & Space Transportation 0.023 30 

37 Misc. Products 0.027 24 

38 Electricity Production & Distribution 1.437 1 

39 Gas Distribution 0.248 2 

40 Water Supply 0.029 19 
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41 Construction 0.012 53 

42 Motor Vehicle Distribution & Repair, etc. 0.013 46 

43 Wholesale Distribution 0.013 50 

44 Retail Distribution 0.016 42 

45 Hotels, Catering & Pubs, etc. 0.017 39 

46 Railway Transport 0.029 21 

47 Other Land Transport 0.013 49 

48 Water Transport 0.008 62 

49 Air Transport 0.010 58 

50 Ancillary Transport Services 0.011 56 

51 Communications 0.012 52 

52 Banking & Finance 0.006 64 

53 Insurance And Pension Funds 0.013 48 

54 Auxiliary Financial Services 0.016 40 

55 Property 0.002 66 

56 Renting Of Machinery 0.016 41 

57 Computing Services 0.010 59 

58 Research & Development 0.014 45 

59 Professional Services 0.007 63 

60 Public Administration 0.015 43 

61 Education 0.011 54 

62 Health Services 0.011 55 

63 Sewage & Sanitary Services 0.017 38 

64 Membership Organisations 0.005 65 

65 Recreational Services 0.009 61 

66 Other Service Activities 0.010 60 

67 Private Households With Employed Persons 0.000 67 
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Table F3: 76 Sectors CO2-Output coefficients 

Sectors  CO2-Output 

Coefficient 

Rank 

1 Agriculture 0.285 19 

2 Forestry 0.071 37 

3 Fishing 0.407 14 

4 Coal Extraction etc. 0.215 24 

5 Oil & Gas Extraction 0.870 8 

6 Metal Ores Extrac., Other Mining &  Quarrying 0.235 23 

7 Food & Drinks 0.151 30 

8 Tobacco 0.022 62 

9 Clothing 0.338 15 

10 Wearing Apparel & Fur Products 0.049 51 

11 Leather Goods 0.083 35 

12 Wood & Wood Products 0.334 16 

13 Paper Manufacturing 0.138 31 

14 Coke, Refined Petroleum & Nuclear Fuel 1.028 7 

15 Industrial Gases & Dyes 0.637 10 

16 Organic & Inorganic Chemicals 0.559 12 

17 Fertilizers, Pesticides, etc. 0.578 11 

18 Paints, Varnishes, Printing Ink, etc 0.065 39 

19 Pharmaceuticals 0.122 33 

20 Soap & Toilet Preparations 0.101 34 

21 Other Chemicals & Manmade Fibres 0.189 25 

22 Rubber Products 0.285 18 

23 Plastic Products 0.180 26 

24 Glass & Glass Products 0.531 13 

25 Ceramic Goods 0.281 20 

26 Cement & Clay 7.070 3 

27 Articles Of Concrete etc. 0.127 32 

28 Iron & Steel 3.029 5 

29 Metal Products 0.066 38 

30 Machinery & Munitions 0.054 48 

31 Office Machinery & Computers 0.018 64 

32 Elec. Equip. 0.049 50 

33 TV Equip., etc. 0.055 46 

34 Medical & Precision Instruments 0.035 58 

35 Motor Vehicles 0.050 49 

36 Earth & Space Transportation 0.060 41 

37 Misc. Products 0.169 27 

38 Electricity Transmission And Distribution 0.319 17 

39 Generation - Nuclear 0.027 60 

40 Generation - Coal 41.220 1 

41 Generation -Gas + Oil 16.619 2 

42 Generation - Hydro 0.000 71 

43 Generation - Biomass 0.000 71 

44 Generation - Wind 0.000 71 
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45 Generation - Wind Offshore 0.000 71 

46 Generation - Other 0.000 71 

47 Generation - Marine/Solar 0.000 71 

48 Gas Distribution 0.168 28 

49 Water Supply 0.238 22 

50 Construction 0.056 44 

51 Motor Vehicle Distribution & Repair, etc. 0.061 40 

52 Wholesale Distribution 0.055 45 

53 Retail Distribution 0.054 47 

54 Hotels, Catering & Pubs, etc. 0.040 56 

55 Railway Transport 0.279 21 

56 Other Land Transport 0.661 9 

57 Water Transport 3.089 4 

58 Air Transport 2.668 6 

59 Ancillary Transport Services 0.021 63 

60 Communications 0.034 59 

61 Banking & Finance 0.004 70 

62 Insurance And Pension Funds 0.006 69 

63 Auxiliary Financial Services 0.017 65 

64 Property 0.008 67 

65 Renting Of Machinery 0.057 43 

66 Computing Services 0.007 68 

67 Research & Development 0.041 54 

68 Professional Services 0.015 66 

69 Public Administration 0.077 36 

70 Education 0.040 55 

71 Health Services 0.038 57 

72 Sewage & Sanitary Services 0.164 29 

73 Membership Organisations 0.047 52 

74 Recreational Services 0.025 61 

75 Other Service Activities 0.059 42 

76 Private Households With Employed Persons 0.041 53 
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Appendix G: The UKENVI Model 

This appendix summarises the new equations of the UKENVI model used in Chapter 

6. The equation listed represent the changes made to the AMOS model in Appendix 

C in order to reflect the national closure for the UK economy, and the adoption of 

forward-looking agents’ behaviour. For additional details on this model closure see 

Lecca et al. (2013, 2014). 
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Labour Market 
Replace C.50 and C.51 with  

Fixed Labour supply 
              G.8 

No migration 
       

G.9 

 

 

   Utility 

    Pure rate of marginal time preference 

 ,     Parameters in the adjustment cost function 

    Rate of distortion or incentive to investment 

    Adjustment cost function 

      Shadow price of capital 

     Rate of return to capital 

    Constant elasticity of marginal utility 

    Corporation tax 

    Investment by sector of origin 

    Investment by sector of destination wit adjustment costs 

     Labour supply 

      Net migration 
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Appendix H: 25 Sector Disaggregation of the UK IO Tables 

25 sectors Sector Title 123 sectors 

1 Coal Mining and quarrying 4 

2 Gas Mining and quarrying 5, 86 

3 Coke ovens, refined petroleum and nuclear fuel 35 

4 Other traded e.g. Food and drink 6-19, 21-31, 34, 36-38, 77-80 

5 Pulp and Paper 32-33 

6 Glass and Ceramics 49-50 

7 Clay, cement, lime and plaster 51-52 

8 Iron and Steel; non-ferrous metals 53-56 

9 Generation - Coal 85 

10 Generation -Gas + Oil 85 

11 Electricity distribution and supply 85 

12 Generation - Nuclear 85 

13 Generation - Hydro 85 

14 Generation - Biomass 85 

15 Generation - Wind 85 

16 Generation - Wind Offshore 85 

17 Generation - Other 85 

18 Generation - Marine/solar 85 

19 Agriculture; Forestry and fishing 1-3 

20 Water 87 

21 Construction 88 

22 Other Manufacturing and wholesale retail trade 20, 39-48, 57-76, 81-84, 89-92 

23 Air Transport 96 

24 Other Transport 93-95, 97-99 

25 Services 100-123 

 

 

 


