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Abstract

Complex networks are everywhere. Many natural and synthesized phenomena

can be modelled as complex networks, examples include: social interactions,

brain functions or structures, protein-protein interactions, and even the Internet.

Since complex networks have features and structures that are not present in

simple networks, they receive a significant amount of attention and have become

a young but active area of scientific research which brings together researches

from many areas including mathematics, physics, biology, computer science and

sociology. The majority of this research is focused on discovering properties and

structures within a complex network.

Complex networks can be described as graphs and represented as matrices.

The Generalized Singular Value Decomposition (GSVD) can factorize a pair

of data matrices with the same column size simultaneously. The main aim of

this thesis is to show that it is possible to evaluate differences and similarities

between two complex networks using the GSVD.

In this dissertation, the GSVD was employed to compare structural differ-

ences between two complex netwoks in terms of clustering. A specific task was

to develop an intuitive understanding of why the GSVD is useful for processing

pairs of related data sets. Initially in this thesis, from an optimization viewpoint,

algorithms have been derived in an attempt to shuffle nodes by exploiting the

variational properties of the GSVD. Secondly, the standard algorithm for com-

puting the GSVD was interpreted as an iterative method in order to justify the
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approach in another way. Algorithms were tested with both synthetic data and

small scale real world complex networks. To verify the significance of all these

findings, a cluster validation method was designed by computing the p-values.

The corresponding p-values produced support that our findings are statistically

significant. Subsequently, these real tests were extended to use within large scale

biological complex data, such as the protein interaction networks, metabolic

networks and brain networks. The corresponding results produced show our

algorithms are useful for extracting some substructures which have specific bio-

logical functions. In addition, heuristic algorithms were proposed for processing

a pair of nonsquare data matrices, corresponding to bipartitie graphs, from an

optimization viewpoint and followed with a synthetic test. Finally, conclusions,

and a number of directions for further research subjects to pursue subsequent

to this work, were discussed.
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Chapter 1

Introduction

1.1 The SVD

The singular value decomposition (SVD) has been a well known entity for ap-

proximately a century as an important matrix factorization method which can

be used to express a matrix A ∈ R
M×N as the product A = UΣV T , where

U ∈ R
M×M and V ∈ R

N×N are orthogonal matrices with columns containing

the singular vectors, and Σ = diag(σ1, · · · , σp) ∈ R
M×N with p = min(M, N)

is diagonal containing the singular values σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0 [48]. A thin

SVD is also defined; if A = UΣV T ∈ R
M×N is the SVD of A and M ≥ N ,

then A = U1Σ1V
T is called a thin SVD when U1 = [u1, · · · , uN ] ∈ R

M×N and

Σ1 = diag(σ1, · · · , σN) ∈ R
N×N [48, 113]. A thin SVD is a trimmed down ver-

sion of the standard SVD. In practice, the SVD can be conveniently computed

by using the standard function svd in MATLAB1.

The SVD is a well known spectral clustering tool since the singular vectors

have been proved to be an extremely useful tool for data mining and dimension

reduction [113]. Spectral clustering/ordering algorithms have been designed and

1http://www.mathworks.com/

1



Introduction 2

implemented in many disciplines. Among all the related works, the study in [4]

is probably the first important work describing the use of the SVD in analyzing

genome-wide expression data, or more precisely, DNA microarray data. Microar-

ray data can be regarded as an array A ∈ R
M×N , where aij records the activity

of the ith gene in the jth sample. We will give more details of microarray data

sets in the end of section 9.4 in Chapter 9. The authors in [4] demonstrate

that the SVD is useful in finding an appropriate classification of the data so

that the genes and samples having similar function, or similar cellular state, are

put into the same group. This is completed by sorting the data according to

the corresponding eigenvectors, more generally, the singular vectors, that are

unique orthonormal superpositions of the genes and samples, respectively. In

another way, this approach works since the SVD can reduce the data from genes

× samples space to diagonalized “eigen genes” × “eigen samples” space.

Tracking the SVD in terms of some system parameters, such as cluster-

ing pattern, is a key approach to reveal emergent behaviour. Spectral cluster-

ing/ordering algorithms can be motivated from several different view points. In

2004, researchers formulated a discrete optimization problem on the symmetric

weight matrix W ∈ R
N×N and showed that spectral clustering may be viewed

as maximum likelihood partitioning under the assumption that the data is an

instance of a graph with random edge weights [62]. This viewpoint was only

tested with numerical synthetic experiments. This unified viewpoint of spectral

clustering was then generalized to the rectangular case A ∈ R
M×N [61]. Then

in [59], the authors proposed an optimization problem that can be used to give

a simple derivation of a spectral clustering/ordering algorithm for symmetric

data W ∈ R
N×N . Besides showing the numerical results on symmetric synthetic

data, they also applied this approach to tumor microarray data A ∈ R
M×N by

forming the weighted matrix W = AT A ∈ R
N×N where the entry wij can be

regarded as a measure of similarity between the corresponding two samples i
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and j. All the results support their analysis that this approach can be used to

find an accurate clustering of samples from the graph (microarray data), which

summarizes similarity of gene activity across different tissue samples. They also

generalized the above discrete optimization viewpoint of the spectral clustering

method and, more generally, the SVD, to the case of unsymmetric, nonsquare

data and applied it to tumor microarrays in [73]. The corresponding results

show the algorithm reveals interesting gene activity across tissue samples. On

the other hand, in [60] the authors showed that by interpreting the SVD as aris-

ing from both the optimization viewpoint and the power method applied to AT A

and AAT , spectral clustering and reordering of cancer microarray data can be

viewed as arising from a simple but maybe more intuitive iterative algorithm,

which shuffles nodes (genes or samples) according to their correlation in the

graph (network). Furthermore, the authors in [50] emphasizes the application

of the SVD to the DNA expression data—Microarrays. They also state how the

SVD comes into the application to these biological complex networks from the

ideas given in previous related work [59, 60].

In summary, the SVD can be regarded as the basis of a spectral cluster-

ing/ordering algorithm motivated by variational properties, or interpreted as

an iterative algorithm in order to shuffle nodes [59, 60]. The relevant algo-

rithms have been applied to bioinformatics [4, 73], especially for microarray

data [50, 59, 60, 61, 73, 75]. However, the SVD is mainly used on a single data

matrix. Our work in this thesis is to develop an intuitive understanding of a more

general tool, the GSVD, for processing pairs of related data sets, or more pre-

cisely, complex networks, simultaneously. Although spectral clustering/ordering

algorithms can can be motivated from several different viewpoints, we believe

that the power method viewpoint and the optimization viewpoint that used in

interpreting the principles of the SVD in analyzing a single network may be

more useful for our work.
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1.2 The GSVD

In this thesis, we aim to develop and study a method which can explore a pair

of networks simultaneously. One possible solution is to use the Generalized

Singular Value Decomposition (GSVD). The GSVD was initially studied in the

1970’s [129]. The GSVD expresses a pair of matrices A ∈ R
M×N with M ≥ N

and B ∈ R
P×N as the products

A = UCX−1 and B = V SX−1, (1.1)

where U ∈ R
M×M , and V ∈ R

P×P are orthogonal, C ∈ R
M×N and S ∈ R

P×N

are diagonal with nonnegative entries such that C = diag(c1, c2, . . . , cN) and S =

diag(s1, s2, . . . , sq) with q = min(P, N), and X ∈ R
N×N is nonsingular [48]. By

construction, the diagonal entries in C have an nondecreasing order so that

0 ≤ c1 ≤ c2 ≤ · · · ≤ cN and those of S have an nonincreasing order so that

s1 ≥ s2 ≥ · · · ≥ sq ≥ 0 [48]. A trimmed down version is also available for

the GSVD, which is called a thin size GSVD or alternatively economy-sized

GSVD [16, 85]. In this case, the resulting factors U ∈ R
M×N and V ∈ R

P×N ,

and diagonal matrices C and S are in R
N×N .

The authors of [95] construct a slightly different formulation of a GSVD of

A ∈ R
M×N and B ∈ R

P×N with no restrictions on M , N , or P . Additionally,

this idea has been widely used in standard software [16, 85] for computing the

GSVD such that we have A = UCQT , B = V SQT and CT C + ST S = I for

A ∈ R
M×N and B ∈ R

P×N , where the orthogonal matrix U is still in R
M×M

and V is still in R
P×P . The matrix Q is in R

N×q where q = min(M + P, N)

so that the common factor Q in this decomposition can be nonsquare while

the common factor X expressed in (1.1) is always square. Here the condition

M ≥ N or P ≥ N is not compulsory but this decomposition still requires that

the matrices have the same column size. The economy-sized GSVD, or a thin

GSVD, is just derived from this decomposition formulation for products U and
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V which have at most N columns, and C and S have at most N rows.

In pratice, a widely used method for computing the GSVD of two matrices A

and B is Paige’s [95] algorithm [7, 8, 16, 48]. In this computational method, the

two matrices are first factorized to the form A = Q1R and B = Q2R by using

the Orthogonal-triangular (QR) factorization. The second step is to compute

the Cosine-Sine (CS) decomposition Q1 = UCZT and Q2 = V SZT and order

the diagonals of C and S to satisfy 0 ≤ c1 ≤ c2 ≤ · · · ≤ cN and s1 ≥ s2 ≥ · · · ≥

sN . Then we compute orthogonal W and upper triangular T so TW = ZT R,

then X = W T T−1. In our computational examples in the following chapters,

we used the gsvd routine built in to MATLAB for computing the GSVD. In

MATLAB, gsvd uses the CS and the QR decompositions as described above

for the widely used computation method for the GSVD [85]. In MATLAB, the

QR decomposition is implemented by a separate qr function (M-file), whereas

the CS decomposition is implemented in a subfunction (csd) in the gsvd M-

file by using the built in qr and svd functions. Hence, the total computational

complexity of computing the GSVD depends on the computational cost of the

subfunctions (csd, svd and qr). As we stated above, this standard software

uses the formulation A = UCQT , B = V SQT for computing the GSVD, so the

output is Q = W TT T instead of X. The only error message produced by gsvd

occurs when the two input matrices, A and B, do not have the same column

size.

Currently, the GSVD is attracting the interest of researchers in light of its

applications within life science. Perhaps the most high-profile endeavors are pre-

sented in [5]. In [5], the GSVD was used to analyze simultaneously microarray

data from two different organisms; a common set of genes across two different

sets of samples. This work demonstrates that the GSVD provides a compara-

tive mathematical framework for two data sets in identifying common patterns

or exclusive patterns. The two data matrices have a different number of rows,
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which are used to represent the genes or genelets, over the same size of columns,

which are samples from two different organisms. The expression data they ex-

amined can be characterized as signals over a period/time so that the common

or exclusive patterns of the features of these signals, such as shape or frequency

as examples, are captured. Other biological applications of the GSVD can be

seen in [14, 15, 109]. In [14, 15], the GSVD is utilized to analyze different types

of genomic data by extracting similar and dissimilar patterns within both data

types. In [109], the GSVD is applied to analyze two different types of transcrip-

tional datasets produced from different lab platforms; this proves to be similar

to the approach in [5] since the expression data can be characterized as signals,

though it is claimed that two data sets over different sizes of arraylets, which

are arranged as the matrices’ columns, can be compared. In fact, the number of

genes, which are arranged as rows of the matrices of the original data, are the

same for two data sets. Hence the two data matrices are transposed to ensure the

matrices have the same column number. Then the GSVD is applied to process

the transformed data sets. However, these works merely report the application

of the GSVD to biological data without justifying its use. This dissertation is

aimed toward developing an intuitive understanding of why the GSVD works

for processing pairs of related data sets and, furthermore, to pick out common

or exclusive patterns of two data sets in terms of clustering.

1.3 Complex networks

Networks are usually described as graphs in the mathematical literature. In

mathematics and computer science (graph theory), a graph is denoted as G =

(V, E) comprising a set V of vertices or nodes together with a set E of edges

or lines [30]. The graph may be represented by a matrix of size |V | (number

of vertices) and the entries denote the relationship between the corresponding
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nodes, such as an adjacency matrix with the elements 0 or 1 to represent whether

the two vertices have a connection.

There are more general types of networks, such as directed (directional)

networks and undirected (bidirectional) networks. In a directed graph (network),

all the edges have directions, whereas an edge in an undirected network runs in

both directions. Many phenomena in nature and beyond can be modeled as

a network, for example brain structures, protein-protein interaction networks,

social interactions and the Internet and World Wide Web (WWW). All such

systems can be represented in terms of nodes and edges indicating connections

between nodes. Within the Internet, for example, nodes represent routers and

the edges represent the physical connections between them. In the same way, in

transport networks, the nodes represent cities and edges represent the highways

that connect them. These edges can have weights, which can represent the flux

of cars on a highway.

For clarity, researchers divide these real world complex networks into sev-

eral main categories [91]: Social networks, information networks, technological

networks and biological networks. A social network comprises sets or groups of

people with some pattern of contact or interaction between them. Traditional

social networks are small. One of the most well-known examples in complex in-

formation networks is scientific citation networks, which describe the networks

of citation between academic papers. The third complex networks category is

technological networks, which are man-made networks designed typically for dis-

tribution of some commodity or resource, such as electricity or information. A

widely studied technological network is the Internet. Thus, experiments and

applications encompassing some such real world complex networks are included

in the following chapters of this dissertation; witness the studies of social net-

works, protein interaction networks, metabolic networks and brain networks in

Chapters 2, 5, 6, 7 respectively.
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Figure 1.1 shows a family network, which is a classic example of a social net-

work. The upper and the lower pictures show two different types of interaction

over the same 16 nodes. Each node is a 15th century FLORENTINE FAMILY,

linked with the edges representing a business tie or a marriage tie for corre-

sponding nodes [127]. Figure 1.2 is another example of social network. Social

scientists use the Gahuku-Gama system of the eastern central highlands of New

Guinea [103], as described by Read, to illustrate a clusterable signed graph. The

signed graph [55] has been split into two patterns: friend tie, denoted as a black

wide line, and enemy tie as represented by the thin line in this figure. Here,

each node is a tribe.

Properties of complex networks have been studied and summarized in the

literature [3, 30, 91, 118]. Perhaps the simplest useful model of a network is

the classical random graph. A random graph is produced by placing edges

at random between a set of n vertices. The most commonly studied random

graph model is the Erdös-Rényi model [33, 122], denoted G(n, p), in which

every possible edge occurs independently with probability p. A closely related

model, denoted G(n, m), assigns equal probability to all graphs with exactly m

edges. However, real networks are not random. Nowadays, a large number of

real world complex networks have been studied and shown to exhibit the small

world effect. The small world effect was first studied in an experiment carried

out by Stanely Milgram in the 1960s [33, 132]. By using the average path

length, the experiments indicate that most pairs of people in a social friendship

network are connected by a short path. Many networks, such as social networks,

interaction on the internet and complex brain networks, can be modeled by

small world networks or exhibit the properties of small world networks [91]. To

evaluate other properties of complex networks, a number of statistical measures

have been defined [3, 30, 91]. The most frequently used statistics include degree

distribution, clustering coefficient, average path length and network diameter. In
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(a) Marriage tie.

(b) Business tie.

Figure 1.1: Family networks: marriage tie and business tie.
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Figure 1.2: Read Highland Tribes: friend tie (wide line) and enemy tie (thin

line).

graph theory, the degree of a node (vertex) is the number of edges connected to it.

In a directed graph, each vertex (node) has both an in-degree and an out-degree,

which are the numbers of in-coming and out-going edges, respectively. The

degree distribution captures the local neighbourhood diversity in the network.

The degree distribution n(k) is the number of nodes of degree k for all k ≥ 0.

The clustering coefficient is a measure of the average local neighbourhoods in a

graph/network. It defined by the probability that two neighbour nodes i and

j of a third node l are themselves connected. In graph theory, the distance

dij, which is also known as the geodesic distance or geodesic path, between two

nodes i and j in a graph is defined through the minimum number of edges in a

path connecting them. If the graph has n nodes, then the average path-length

< d > of the graph is defined as < d >= 2
n(n−1)

∑n
i=1,j=1,i6=j dij . The diameter of

a network is the maximum distance (or the length of the longest geodesic path

between any two nodes) in the network.



Introduction 11

The study of complex networks is a young and active area of scientific re-

search which brings together researchers from many areas including mathemat-

ics, physics, biology, computer science, sociology and epidemiology. As we stated

above, an important characteristic of these networks is that they are not ran-

dom, but have a more structured architecture. This motivates us to study the

problem of exploring pairs of complex networks with some mathematical method

in terms of clustering. Recalling section 1.2, we can decompose two networks

simultaneously by using the GSVD. Hence, in this dissertation, we will work un-

der the general title of “Complex Networks and the Generalized Singular Value

Decomposition”. The key aim is to develop an intuitive understanding of why

the GSVD is useful for processing pairs of related complex interaction networks.

In addition, an extended outline of my thesis is given in section 1.4.

1.4 Outline of Thesis

In Chapter 2, two computational algorithms are derived based on an optimiza-

tion problem combined with the variational properties of the GSVD. To show

their effectiveness, the algorithms are tested on a synthetic data set and some

real data sets from sociology and neuroscience.

To justify the significance of our findings in the tests in Chapter 2, a cluster

validation process was proposed by checking the corresponding statistical signifi-

cance in Chapter 3. The corresponding results support our findings in Chapter 2.

Here, the cluster validation process works on binary adjacency matrices, though

we will later generalize the corresponding process to the real-valued weighted

case.

In Chapter 4, an algorithm for computing the GSVD is interpreted as an

iterative method for attempting to shuffle the nodes. Interpreting the GSVD

this way enables processing of pairs of symmetric, real valued weighted graphs.
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In Chapter 5, our algorithms are used to compare large scale protein in-

teraction networks: Protein-Protein Interaction (PPI) networks and Genetic

Interaction (GI) networks. First, these two kinds of interaction networks are

introduced using related research which also outlines especially our motivation

towards studying their structural difference by indicating the biological process

or behavior exclusive to one graph then the other. Since these networks are huge

(over thousands of nodes), to avoid expensive computational cost, we use some

techniques to trim the data sets before applying computational algorithms to

them. All the details of these pre-processing steps are discussed in section 5.2

of Chapter 5.

Chapter 6 illustrates an example of the GSVD based algorithms being ap-

plied, this time to analyze metabolic data sets. First, the background in neuro-

science and metabolomics of this study is explained, then the algorithms derived

from Chapter 2 based on the optimization view are generalized from the binary

case to the symmetric, real-valued weighted case. Third, the materials and

methods used to prepare and analyze the metabolic data are described. Since

the metabolic data matrices are weighted, some steps in the previous cluster val-

idation method designed in Chapter 3 were no longer applicable. Accordingly, in

this chapter, a different cluster validation process is proposed to validate the sig-

nificance of the corresponding findings produced from the real-valued weighted

matrices. Then the results of the metabolic pathway disruption in the sub-

chronic phencyclidine model of Schizophrenia with our GSVD based algorithm

derived from the optimization view are given, followed by a further discussion

on metabolomics.

Similarly, work attempting to extend applications to brain networks is de-

scribed in Chapter 7. As an introduction, general brain networks research is

summarized. Then the materials and methods used to generate the brain data

matrices are described. Our algorithms were applied to pick out potentially
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exclusive good clusters which were present in one graph but not in the other.

In this chapter, we also validate our findings by applying the cluster validation

method designed for the weighted graphs in Chapter 6, and then discuss the

biological meaning of the results revealed in correspondence to neuroscience.

In Chapter 8, optimization problems for developing a theory for why the

GSVD works on pairs of nonsquare data matrices are set up, followed by a

numerical experiment. Testing the algorithm on synthetic data, it is shown that

the GSVD works well on a pair of weighted, nonsquare data matrices in picking

out good clusters which were present in one graph but not in the other. It is

also indicated that the algorithms developed from these optimization problems

can be used to process related nonsymmetric square data matrices too.

Finally, the entirety of this thesis is summarized in Chapter 9, with sugges-

tions and proposals towards study of remaining outstanding questions discussed,

and thereby indicating the likely directions of future work towards progress in

this area.

1.5 Publications and Presentations

The material presented in Chapter 6 and much of the material presented in

Chapters 2 and 3 has been written as an article� Exploring Metabolic Pathway Disruption in the Subchronic Phencyclidine

Model of Schizophrenia with the Generalized Singular Value Decomposi-

tion, X. Xiao, N. Dawson, L. MacIntyre, B. J. Morris, J. A. Pratt, D. G.

Watson and D. J. Higham, accepted for BMC Systems Biology (2011).

The material presented in Chapter 7 and part of the material presented in

Chapters 3 and 4 has also been written into the article



Introduction 14� Sustained NMDA receptor hypofunction induces compromised neural sys-

tems integration and schizophrenia-like alterations in functional brain net-

works, N. Dawson, X. Xiao, D. J. Higham, B. J. Morris and J. A. Pratt,

submitted (2011).

The material presented in Chapter 7 and much of the material presented in

Chapters 2 and 3 was presented as a poster entitled “Exploring Pairs of Brain

Networks with the Generalized Singular Value Decomposition” at SNG2010

(Scottish Neuroscience Group Meeting 2010), University of Strathclyde, August

2010.

The material presented in Chapter 2 was first given as a presentation enti-

tled “Exploring Pairs of Complex Networks with the Generalized Singular Value

Decomposition” at the Interdisciplinary International Workshop on Complex

Networks in Natural and Technological Science, University of Strathclyde, Jan-

uary 2009, and then was given as a presentation again together with material

presented in Chapter 5 at the 23rd Biennial Conference on Numerical Analysis,

University of Strathclyde, June 2009.



Chapter 2

Optimization Viewpoint

2.1 Background

Large, complex interaction networks arise across many applications in science

and technology [3, 91, 118]. Spectral methods, based on information computed

from eigenvectors or singular vectors, have been used successfully to reveal fun-

damental network properties. For example, we may wish to cluster objects into

groups [112], put objects into order [58] or discover specific patterns of connec-

tivity within subgroups [38, 40, 65, 89, 124]. In this chapter, we look at the

case where two interaction data sets are available and the aim is to discover

differences between the two sets in terms of clustering. Section 2.2 sets up the

problem and shows how a spectral algorithm can be derived. An alternative

viewpoint is given in section 2.3, and this leads to a variant of the algorithm.

Section 2.4 tests the two approaches on a synthetic data set, where results can

be judged accurately. In section 2.5 we then apply the most promising algorithm

to real data sets arising in sociology and neuroscience, showing that informative

patterns can be found.

15
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2.2 Algorithm Derivation

Suppose that the square matrices A and B in R
N×N represent two different

types of interaction between a set of N nodes. We use the convention that a

large weight aij or bij indicates that nodes i and j are strongly connected with

respect to interactions of type A or B, respectively. For example, in section 2.5

we consider the example from Figure 1.1 for a set of families where A records

inter-family marriage ties and B records inter-family business ties. In order to

reveal interesting differences between the two types of connectivity data, we may

then look for a set of nodes that form a good cluster with respect to A and a

poor cluster with respect to B, or vice versa.

As a starting point for a computational algorithm, we consider the identity

‖Ax‖22 =
N∑

k=1

x2
k degA

k +
N∑

i=1

N∑

k=1

N∑

l=1,l 6=k

aikailxkxl, (2.1)

for x ∈ R
N . Here ‖ · ‖2 denotes the Euclidean norm and degA

k :=
∑N

j=1 a2
kj is

one way to generalize the concept of degree to the case of a weighted network.

Suppose we wish to split the nodes into two groups such that nodes within each

group are well-connected but nodes across different groups are poorly connected.

We could use an indicator vector x ∈ R
N to denote such a partition, with xs = 1

if node s is placed in group 1 and xs = −1 if node s is placed in group 2.

Fixing on two nodes, k and l, we could argue that the existence of a third

node, i, such that aik and ail are both large is evidence in favor of placing k and

l in the same group (since they share a strong connection with node i). On the

other hand, a small value for either of both of aik and ail is evidence in favor

of placing k and l in different groups. In terms of the indicator vector, this

translates to

1. aikail large ⇒ try to choose xkxl = +1,

2. aikail small ⇒ try to choose xkxl = −1.
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Returning to the right-hand side of (2.1), we see that
∑N

k=1 x2
k degA

k is indepen-

dent of the choice of indicator vector, and
∑N

i=1

∑N
k=1

∑N
l=1,l 6=k aikailxkxl gives

a measure of how successfully we have incorporated the (possibly conflicting)

desiderata in points 1 and 2 over all pairs k, l and third parties i. So we could

judge the quality of an indicator vector by its ability to produce a large value of

‖Ax‖22, provided other constraints, such as balanced group sizes, were satisfied.

Analogously, we can argue that making
∑N

i=1

∑N
k=1

∑N
l=1,l 6=k aikailxkxl as neg-

ative as possible is a good way to avoid forming well-connected subgroups, and

so the problem

max
xs∈±1, 1≤s≤N

‖Ax‖22
‖Bx‖22

(2.2)

is a good basis for picking out strong clusters in A that are not present in B.

In general, optimizing over a large, discrete set of possibilities is computa-

tionally intractable, and hence we will follow the widely used practice of relaxing

to an optimization over R
N [59, 112]. So, instead of (2.2) we have

max
x∈RN , x 6=0

‖Ax‖22
‖Bx‖22

. (2.3)

At this stage we recall from Chapter 1 that a general pair of matrices A ∈

R
M×N with M ≥ N and B ∈ R

P×N can be simultaneously factorized using the

Generalized Singular Value Decomposition (GSVD) into

A = UCX−1 and B = V SX−1, (2.4)

where U ∈ R
M×M and V ∈ R

P×P are both orthogonal, X ∈ R
N×N is invertible,

C = diag(c1, c2, . . . , cN) and S = diag(s1, s2, . . . , sq) with q = min(P, N) are

diagonal, and 0 ≤ c1 ≤ c2 ≤ · · · ≤ cN and s1 ≥ s2 ≥ · · · ≥ sq ≥ 0 [48]. The

ratios λi = ci/si are the generalized singular values of A and B.

A key property of the GSVD is that the columns of X are stationary points

of the function f : R
N 7→ R given by f(x) = ‖Ax ‖2/‖Bx ‖2, with the general-

ized singular values λi giving the corresponding stationary values [21]. Hence,
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we may tackle the problem (2.3) through the GSVD. Columns 1, 2, 3, . . . of X

are candidates for finding good clusters in B that are poor clusters in A and,

analogously, columns N, N − 1, N − 2, . . . of X are candidates for finding good

clusters in A that are poor clusters in B.

In this work, we take a visualization approach. We will display the interaction

matrix that arises when x is used to reorder the nodes. More precisely, we relabel

row and column i of A and B as row and column pi, where

pi ≤ pj ⇐⇒ xi ≤ xj .

In this way, the existence or lack of clusters in the matrix becomes apparent

from inspection of the heat map of the matrix. A heat map is a graphical rep-

resentation of data where the values are represented as colors. It is widely used

in displaying the results of a cluster analysis by permuting the rows and the

columns of a matrix to place similar values near each other according to the

clustering [37, 134]. There are several different kinds of heat map [134]. In a

heatmap, larger values are usually represented by darker or warmer colors and

smaller values by lighter or colder colors. It is, of course, possible to perform

further computations in order to automate the process of finding and quantify-

ing clusters; see [46, 112] for examples that apply to a single network. However,

on the data sets used in this study, we found that visualization was intuitively

revealing, especially for the case of binary (unweighted) graphs, where a straight-

forward nonzero pattern can be displayed. Furthermore, we will also quantify

the significance of these visual findings by computing p -values [42, 86]. All the

corresponding details will be given in Chapter 3.
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2.3 A Variant of the Algorithm

In the context of this chapter, the matrices A and B are square, with M = N =

P . In this case, when A and B are invertible it is known that the GSVD is

closely related to the standard Singular Value Decompositions (SVD) of AB−1

and BA−1. To see this, we could rearrange (2.4) into

AB−1 = UCS−1V T and BA−1 = V SC−1UT . (2.5)

Alternatively, we may let z = Ax or y = Bx in (2.3), to obtain the quadratic

problems

max
z∈RN , z 6=0

‖z‖22
‖BA−1z‖22

or max
y∈RN , y 6=0

‖AB−1y‖22
‖y‖22

,

which can be solved through the standard SVD.

It is known from spectral graph theory that the dominant singular vectors

give good directions in which to look for clusters [112, 117]. Inverting the weight

matrix reverses their importance (the singular value σ becomes σ−1) and hence

a spectral clustering approach applied to A−1 will typically find the opposite

of good clusters—poorly connected nodes will be grouped together [39]. So,

intuitively, forming AB−1 in (2.5) should produce a data matrix for which the

SVD approach finds good clusters for A and poor clusters for B. Analogously,

the opposite holds for BA−1.

Having interpreted the algorithm this way, it is then natural to consider the

reverse products, A−1B and B−1A, or, equivalently, to form the optimization

problem

max
x∈RN , x 6=0

‖B−1x‖22
‖A−1x‖22

. (2.6)

We may interpret (2.6) from the point of view that making B−1x large encour-

ages poor clusters for B, while making A−1x small encourages good clusters for

A. In this case, we would base our algorithm on the GSVD of A−1 and B−1.
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In the situation where A and B are both symmetric, corresponding to undi-

rected networks, we have, from (2.4),

A−1 = (AT )−1 = (X−TCUT )−1 = UC−1XT

and

B−1 = (BT )−1 = (X−TSV T )−1 = V S−1XT .

Then we may appeal to the arguments in section 2.2 and use columns from the

inverse of the third factor in the GSVD as the basis for reordering. With this ap-

proach we use columns of X−T rather than columns of X. We emphasize that al-

though this heuristic derivation used an assumption that A and B are invertible,

the GSVD, and hence the final algorithm, applies in the non-invertible case. If

A and B are singular (not invertible), we still can write AB−1 = UCS−1V T and

BA−1 = V SC−1UT by using the pseudo-inverse of A and B. Another aspect we

want to emphasize is that although this variant of the algorithm is based on an

assumption that A and B are both symmetric, we could justify using columns

from X−T in this heuristic algorithm without the corresponding restrictions on

A and B by setting up an alternative optimization problem. This alternative

solution will be introduced in section 8.3 of Chapter 8.

To summarize, in terms of the GSVD (2.4), we will refer to the two reordering

approaches as

Algorithm 1: reorder the network via a column of X and

Algorithm 2: reorder the network via a column of X−T .

In both cases the first few columns should give orderings that favor clusters in

B rather than A and vice versa for the final few columns.
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2.4 Synthetic Test

In this section we test the algorithms in a simple, controlled case where we know

the “correct” answer. We generated adjacency matrices A and B as shown in

Figure 2.1. Here we have 20 nodes. In both networks, nodes 1–5 are well

connected. In A there is a well connected cluster consisting of nodes 6–15,

whereas in B there is a well connected cluster consisting of nodes 15–20. To

make the test more realistic, the clusters are not perfect; there are both missing

edges within the clusters and spurious edges outside the clusters. Our aim is to

test whether the algorithms can identify the clusters that are particular to each

data set.

We emphasize that the node labelling in Figure 2.1 was chosen purely to make

the inherent structure visually apparent. Any spectral reordering algorithm

should be invariant to a relabelling of the input data. In our context, this

follows from the fact that for any permutation matrix P , the factorizations

A = UCX−1 and B = V SX−1 are equivalent to PAP T = (PU)C(PX)−1

and PBP T = (PV )S(PX)−1. So, on the relabelled data matrices, (PX) plays

the role that was played by X, and Algorithms 1 and 2 reorder based on the

appropriately permuted columns of X and X−T , respectively, as required. In

Figure 2.2 we show the same two data sets with an arbitrary relabelling in order

to illustrate that the inherent structure is no longer apparent. In essence, we are

hoping that the algorithms will reveal the structure that is buried in Figure 2.2.

In Figure 2.3 we display the two adjacency matrices reordered with Algo-

rithm 1; we show reorderings with eight different columns of X, four from each

end of the spectrum. We see that none of these reorderings reveals the mutually

distinct clusters.

In contrast, Figure 2.4 shows results for Algorithm 2; the two matrices are

reordered with the first and last four columns of X−T . In this case we see that
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13
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B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 2.1: Adjacency matrices for the two synthetic graphs.
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3
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1
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5
8

13
9
4

18
14
17
11

shuffled A

12 15 2 20 16 7 3 10 6 1 19 5 8 13 9 4 18 14 17 11

12
15
2

20
16
7
3

10
6
1

19
5
8

13
9
4

18
14
17
11

shuffled B

12 15 2 20 16 7 3 10 6 1 19 5 8 13 9 4 18 14 17 11

Figure 2.2: Shuffled versions of the synthetic graphs in Figure 2.1.

mutually exclusive structures have been uncovered. The reordering from the

first column begins with nodes 18, 20, 16, 15, 19, 17, which form a cluster in B,

but not A. The final column begins by picking out nodes 7, 9, 10, 15, 14, 11, 6, 13,

which form the bulk of the 6–15 cluster in A. Nodes 8 and 12, which are missing

from this sequential ordering, are placed at the head of the ordering in the

penultimate column, which begins 12, 8, 7, 10, 15, 14, 9, 11. So in summary, the

19th and 20th columns of X−T each reveal almost complete information about

the exclusive cluster in A, and between them they capture the full cluster.
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Figure 2.3: Graphs reordered by the columns from X.

We also applied the test to prefect data (the clusters are prefect without

missing edges within the clusters and no spurious edges outside the clusters).
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Figure 2.4: Graphs reordered by the columns from X−T .

The clusters present in one synthetic data set but not in the other were all

revealed by reordering the data with the columns of X−T . Further experience



Optimization Viewpoint 25

on other synthetic data sets, and also on real networks, suggests that Algorithm 2

is more effective than Algorithm 1. Hence in the remainder of this work, we will

focus on results obtained from the X−T reordering.

2.5 Tests on Real Networks

The previous section indicated that the new algorithm can reveal the required

structure when it is known to be present in the data. We now use the reorder-

ing approach to search for substructures in real networks. We begin with the

adjacency matrices illustrated in Figure 2.5, which give the same information as

Figure 1.1. Here, the nodes represent sixteen 15th century Florentine families.

In matrix A, edges denote marriage ties and in matrix B they denote business

ties. This data, which was taken from UCINET IV at

http://vlado.fmf.uni-lj.si/pub/networks/data/Ucinet/UciData.htm

has been well studied by social scientists [17] and by researchers in network

science [41, 92], but we are not aware of any attempts to deal with the two

networks simultaneously. Figure 2.6 shows the data reordered according to the

first column of X−T . We see that a set of six families, Lambertes, Peruzzi,

Bischeri, Barbadori, Guadgani and Castellan, has been placed at the head of

the list, and these families form a well-connected group for B (nine out of the

possible fifteen edges present), but not for A (five out of the possible fifteen edges

present). This pattern emerges despite the fact that B is a sparser network than

A (fifteen compared with twenty edges). Reordering with the final columns

of X−T did not produce any reciprocal structure. Overall, the algorithm has

uncovered a set of six families having strong business ties but weaker marriage

ties, and there is no evidence of family groups having strong marriage ties but

weaker business ties.
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Figure 2.5: Adjacency matrices showing Florentine family connections.

Social network data from [51], also available at UCINET IV, appears in

Figure 2.7. Here there are sixteen tribes from the central highland of New

Guinea. In matrix A, two tribes are linked if they have a friendship relationship

and in B they are linked if they have an enemy relationship. We would intuitively

expect to find a group of tribes that shares strong friendship ties and weak enemy

ties (a friend of my friend tends to be my friend rather than my enemy). On

the other hand, there is no clear argument for finding groups of more than two

tribes that have (a) strong mutual enemy ties and (b) weak mutual friendship

ties (an enemy of my enemy could be my friend or my enemy).

The reordering results support this intuition. Figure 2.8 shows the reordering

from the final column of X−T , where six tribes, Masil, Gahuk, Ukudz, Asaro,

Geham and Ove, have thirteen out of a possible fifteen friendship ties and no

enemy ties. Also, four other tribes, Kotun, Nagad, Gama and Gavev are seen to

share all six possible friendship links and no enemy links. Reciprocal patterns

did not emerge from the initial columns of X−T .

Figure 2.9 shows networks arising in neuroscience. The two adjacency matri-

ces describe different kinds of interrelation within one hemisphere of the macaque
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Figure 2.6: Florentine family ties reordered by the first column of X−T .
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Figure 2.7: Adjacency matrices for highland tribe social connections.

brain, using data from [72] available at

http://www.biological-networks.org/?page_id=25

Here, each of the 94 nodes represents a region in the monkey brain. In the

first matrix, aij = 1 if region i has an anatomical connection to region j and

aij = 0 otherwise. In the second matrix, bij = 1 if regions i and j are physically

close and bij = 0 otherwise. (More precisely, we computed the reciprocal of the
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Figure 2.8: Highland tribe social networks reordered by the final column of X−T .

Euclidean distance between pairs of nodes, and binarized so that B has the same

number of edges as A.) We note that connections in A are directional, and A is

unsymmetric; however the asymmetry is very mild, with ‖A − AT ‖2/‖A ‖2 =

0.52. Furthermore, we stated in section 2.3 that we have another way to justify

the use of the columns from X−T even when A and/or B are asymmetric by

optimization in Chapter 8. So it does not matter whether symmetric matrices

are supplied or not.

This data set is larger than those presented earlier, and we found it more

useful visually to display the difference, A− B, under the reorderings from the

algorithm. In Figure 2.10 we show the result when the final column of X−T is

used for the reordering, with a gray scale. Because A and B are binary, the dif-

ference A−B may only take values −1 (dark gray), 0 (light gray) or +1 (white).

We see from the figure that there is a large group of nodes producing a cluster

of predominantly +1 values in the upper left-hand corner. More precisely, with

this reordering the leading 38× 38 submatrix of A has 1054 nonzeros, whereas

in B there are only 590. This corresponds to a set of nodes that have strong,

direct, anatomical connections but are typically not geographically close. Kaiser
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Figure 2.9: Adjacency matrices for macaque cortical connectivity networks.

and Hilgetag [72] argue that neural systems have a bias towards minimizing the

“number of processing steps” between nodes (i.e. the pathlength from traditional

graph theory), rather than the physical length of the connections. Figure 2.10

is consistent with this hypothesis, as it shows that the network harbors a well-

coordinated long-distance subnetwork. On the other hand, the initial columns of

X−T did not reveal any large clusters for B that were weak clusters of A. This

is intuitively reasonable—we would not expect to find a large group of brain

regions that where physically close but poorly interconnected.

2.6 Conclusions

This work addresses the situation where a pair of networks describes two different

types of connection between a common set of nodes. We argued from first

principles that the generalized singular value decomposition (2.4) provides a very

useful computational tool, and used data from social and neurological sciences

to confirm that
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Figure 2.10: Macaque cortical connectivity networks reordered by the final col-

umn of X−T .� the third factor of the decomposition can reveal communities that are well

connected in one network and poorly connected in the other, and� these patterns exist in physical networks and have meaningful interpreta-

tions.

In this chapter, the algorithms were developed for binary adjacency matri-

ces. These algorithms will be generalized to the real-valued weighted case in

Chapter 6.



Chapter 3

Cluster Validation

3.1 Background

In section 2.4, Algorithm 2 was successful at finding differences between pairs

of networks. It discovered nodes that give a good cluster for one graph while

giving a bad one for the other. But how can we quantify the significance of our

findings to reinforce the visual observations? We will discuss this issue in this

chapter.

In statistics, a result is called statistically significant if it is unlikely to have

occurred by chance [42, page 43][86]. Statistical significance is different from

the standard use of the term “significance”, which suggests that something

is important or meaningful. In statistics, significant loosely means probably

true. The amount of evidence required to accept that an event is unlikely to

have arisen by chance is known as the significance level α or critical p -value.

The p -value [42, 86] is the frequency or probability with which the observed

event would occur in a traditional statistical hypothesis test if the null hy-

pothesis were true. Hypothesis testing is the use of statistics to determine the

probability that a given hypothesis is true. The usual process of hypothesis

31
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testing consists of four steps: formulate the null hypothesis H0, identify a test

statistic, compute the p -value and compare the p -value to an acceptable sig-

nificance level α. If the obtained p -value is smaller than the significance level

(p ≤ α), then the null hypothesis is rejected. In simple cases, the significance

level is defined as the probability that a decision to reject the null hypothesis

will be made when it is in fact true and should not have been rejected. After

much research on hypothesis testing published in thousands of journals over the

past years, a common consensus has emerged. Following this convention: we

take p ≥ 5% as “not significant”, 1% ≤ p < 5% as “significant” and p < 1% as

“highly significant” [115].

A p -value is always computed in a hypothesis test. But in fact, there are

several different possible ways to compute the p -value. A commonly used ap-

proach in computing a p -value is based on the interpretation of probability as

the long-time frequency. In this case, the p -value is simply the proportion of

samples which support the null hypothesis. The main challenge of this approach

is to determine how many samples to take in the simulation. We do not need

to estimate the density function f̂ of the randomized data and do not need to

consider the error between the estimator f̂ and the real density function f . This

approach will be described in the tests in section 3.3.1.1. An alternative way

to compute a p -value is to fit a density curve to the frequency histogram. The

disadvantage of this method is that we need to decide which type of density f̂

is a good estimator of f . We will focus our attention and efforts on the disad-

vantages and challenges of both computing approaches mainly in section 3.3.1.1

and section 3.3.1.2. For convenience, we label the commonly used approach

Approach 1 and the alternative Approach 2 for computing the p -value in our

context.

In computing the p -value by Approach 2, it would be useful to know the

distribution F of the objective data in practice. The distribution is determined
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by its density f . In practice, it is not possible to compute the whole population

data to find its true distribution. A common method is to use samples to

estimate the population. To estimate a density curve this way is called density

estimation [130]. Here we have samples ξ1, . . . , ξn from a distribution F with

density f , written

ξ1, . . . , ξn ∼ f (3.1)

and we want to estimate the probability density function f .

Perhaps the most widely used and the simplest way for estimating the density

is to use the frequency histogram. A histogram is a simple method of nonpara-

metric density estimation [130]. The frequency histogram estimator f̂ can be

defined using intervals, or bins [57, 130]. Since histograms are not smooth, we

can move to a kernel density estimation [57, 130] of f . Although a histogram

or kernel density estimation may be sufficient to estimate the density curve and

help to decide the distribution density type, they are not problem free: distri-

butions which are almost the same can look different, depending on the choice

of bins. The main challenge of using a histogram or kernel density estimate is

to obtain the ‘just right’ density estimator f̂ of density f . The data are easily

biased from f when they are oversmoothed and the variance of the data will

be large if they are undersmoothed [130]. Particularly, for a kernel density es-

timate, the choice of a given smooth function, kernel K, is not crucial but the

choice of bin width is important.

A more powerful way to decide a proper distribution for a set of data is

using a “quantile-quantile plot” because this plot is independent of the choice

of the bin width. In statistics, a quantile-quantile plot is a probability plot, a

graphical method for comparing two probability distributions, by plotting their

quantiles against each other. A quantile-quantile plot can also be used as a

non-parametric method to compare two sets of data against each other, where

the data-set sizes may be unequal [22, page 144], or as a parametric method to
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compare a data set against a theoretical model distribution [47, page 199][123,

page 21], or, less commonly, two theoretical models against each other [45, page

144]. If the data sets agree or the observed set matches the theoretical, the plot

will be on a straight line.

In this context, we use the quantile-quantile plot as another technique for

estimating and examining the statistical distribution of data. That is, we do

not have two sets of data in practice. We just use the quantile-quantile plot

to see whether the randomized data quantiles match those of the candidate

distribution. The following is a description of the idea of using quantile-quantile

plot in this way.

For a given density function f(x) and a given 0 < p < 1 define the pth

quantile of f as z(p), where

∫ z(p)

−∞

f(x)dx = p. (3.2)

Suppose we are taking T samples, Given a set of data points ξ1, ξ2, · · · , ξT ,

a quantile-quantile plot is produced by

(i) placing the data points in increasing order: ξ̂1, ξ̂2, · · · , ξ̂T ,

(ii) plotting ξ̂k against z(k/(T + 1)).

The idea of choosing quantiles for equally spaced p = k/(T + 1) is that

it ‘evens out’ the probability [57]. For large T , if the quantile-quantile plot

produces points which lie approximately on a straight line of unit slope, then

we may conclude that the data points ‘look as though’ they were drawn from

a distribution corresponding to f(x). It is easy to justify this. If we divide the

x-axis into T bins where x is in the kth bin if it is closest to z(k/(T + 1)), then,

having evened out the probability, we would expect roughly one ξi value in each

bin.
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Figure 3.1 tests the quantile-quantile idea. There are T = 100 samples

from N(0, 1) and U(0, 1) random number generators. Here N(0, 1) denotes the

standard normal distribution: N stands for normal, 0 is the mean and 1 is the

variance. U(0, 1) denotes a uniform distribution over (0, 1). The N(0, 1) sample

means and variances approach the true values 0 and 1 and the U(0, 1) sample

means and variances approach the true values 1
2

and 1
12

. We plot ξ1, ξ2, · · · , ξT on

the x-axis against quantiles z(k/(T + 1)) on the y-axis. There are four pictures

here to show the four possible combinations arising from N(0, 1) or U(0, 1)

random number samples against N(0, 1) or U(0, 1) quantiles. A reference line

of unit slope is added to each plot. As expected, the data set matches well with

the ‘correct’ quantiles and very poorly with the ‘incorrect’ quantiles.
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Figure 3.1: Quantile-quantile plots using T = 100 samples.

In the rest of this chapter, section 3.2 sets up a basic validation method

that we use for the problem. We develop several alternative test routes in

section 3.3 and apply these approaches to the synthetic data. In section 3.4, we

pick out some typical approaches to test the findings in real data sets. Finally,

we summarize the results in section 3.5.
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3.2 Method

Now suppose we find τ nodes giving a good cluster for B but a poor cluster for

A when the graphs are reordered by column ε from X−T . The following general

approach can be used in order to determine a p -value:

Step 1: Compute a measure of cluster quality, c(A, B) ((3.3) or (3.4)), for the

promising substructure consisting of those τ nodes in networks A and B

reordered by column ε.

Step 2: Randomize the networks and obtain Â and B̂.

Step 3: Compute the GSVD for the randomized networks Â and B̂ and obtain a

matrix X̂−T .

Step 4: Compute the measure c(Â, B̂) for the τ node ‘cluster’ in Â and B̂ reordered

by column ε from X̂−T .

Step 5: Repeat Step 2 to Step 4 T times and finally compute a p -value based on

the value of c(A, B) and the samples c(Â, B̂).

In this process, we repeat Step 2 to Step 4 for many times and then for each

instance of randomized networks Â and B̂, we get a measure c(Â, B̂). After

the loop, we now have a value c(A, B) from our original experiment and lots of

samples c(Â, B̂) from randomized networks. Our goal is to test whether c(A, B)

is “unusually large”.

For convenience and consistency, we use a random variable ξ to represent

the randomized data c(Â, B̂). We then can compute and plot the histogram of

ξ and see whether c(A, B) lies in a low-probability region. More formally, we

are able to compute a p -value.

In order to produce a specific algorithm, we must decide how to compute the

quality measure c(A, B) in Step 1 and 4 and how to randomize the networks in



Cluster Validation 37

Step 2. In our test, we use two different ways to compute c(A, B), which are

denoted by c1 and c2 to avoid confusion.

c1 =
density of edges of the cluster in B

density of edges of the cluster in A
, (3.3)

c2 =
(density of edges within the cluster in B)/(density of edges outside the cluster in B)

(density of edges within the cluster in A)/(density of edges outside the cluster in A)
. (3.4)

The density f(s) of a cluster s was defined as

f(s) =
|E(s)|

|s|
. (3.5)

Here, |E(s)| represents the actual number of edges in the cluster s, and |s| is

the maximum possible number of edges.

Here, computing c1 is simpler than that of c2. In both definitions of c(A, B),

a large ratio corresponds to a better result since we assume in the beginning of

this section that we are aiming to validate a good cluster found in B which is a

poor cluster for A. To validate the opposite pattern: a good cluster found in A

which is a poor one in B, we can reciprocate the fraction in equation (3.3) and

equation (3.4). Then a large value of c(A, B) always corresponds to a better

result. An empty substructure with no edges may occur in graphs A and B.

So to avoid a zero value of the denominator in c1 and c2, we add one to the

corresponding denominator if the density of edges within a cluster in one graph

equals to 1. We also compute c(Â, B̂) in the same way for each instance during

the randomization in Step 4.

For the randomization in Step 2, we try these approaches:

1. Erdös-Rényi.

2. Permutation.

3. Redistribution.
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In the late 1950s, Erdös and Rényi introduced two random graph models.

These two models are usually referred to as G(n, p) (Here, p is not a p -value)

and G(n, m) [33, 122]. G(n, m) is a less commonly used version where one picks

m edges out of the n(n − 1)/2 possible ones between these n vertices at ran-

dom. G(n, p), sometimes called Gilbert [122], is a commonly studied approach

to generate the Erdös-Rényi random graphs with each of the n(n− 1)/2 possi-

ble edges between these n nodes assigned independently with probability p [33].

The properties of these random graph models have been well studied. When n

is large(n→∞), these two models are closely related for

p =
2m

n(n− 1)
.

Here, we can regard m as the average number of edges in G(n, p). In our computa-

tional examples, we generated the Erdös and Rényi random graphs in MATLAB

by using the functions from CONTEST1, which is a controllable Test Matrix

Toolbox for MATLAB. Particularly, we use the function erdrey(n, m) built in

to CONTEST to generate a adjacency matrix for a G(n, m) type random graph,

where n is number of nodes in the graph and m is number of edges produced in

the graph. The adjacency matrix for a G(n, p) type random graph is produced by

the function gilbert(n, p), where p is probability that any two nodes are neigh-

bours among the total n nodes in the graph. More details can be found in [122].

We will show the corresponding results from the randomized data generated by

Erdös-Rényi models in section 3.3.1.

In the second case, we permute the nodes in the original A and B. For

each iteration, we choose the first τ nodes randomly after one permutation.

We then simply apply the cluster quality measure onto it without computing

the GSVD for each permutation in Step 3. The details and results will be

described in the following section 3.3.2. The computation will take less time

1http://www.mathstat.strath.ac.uk/research/groups/numerical analysis/contest/toolbox
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than Erdös-Rényi and Redistribution since we ignore Step 3 in this method. For

convenience, we simply call this method permutation in the following context. In

our computational examples, we use the randperm routine built in to MATLAB

to generate a random permutation of graphs A and B. For example, if we have n

nodes originally ordered from 1 to n in graph A and B, we then use the reordering

from randperm(n) to permute the graphs and produce the randomized graph Â

and B̂. Then we directly compute the measure c(Â, B̂) for the ‘cluster’ consisting

of the first τ nodes in the randomized graphs.

We also try a third randomization way: First, we go along the rows of A one

at a time and redistribute the numbers in that row. We do this for every row

and then for every column of A to obtain Â. Then we apply the same operation

to B to produce B̂. We refer to this randomization method as redistribution

for convenience in the following context. The corresponding results are listed in

section 3.3.3.

In Step 5, we use both approaches mentioned in section 3.1, Approach 1 and

Approach 2, to compute the p -value. For Approach 1, the p -value corresponds

to the proportion of randomly sampled networks for which a better clustering

could be found than the clustering on the original data A and B in our context.

For Approach 2, we will focus on the log-normal density and this choice will be

described in section 3.3.1.2. Here, the p -value is our estimation of the probability

that a random network would give a better clustering result than the given data

set.

In our tests, our null hypothesis H0 is that the cluster quality that we dis-

covered could have arisen from the class of random networks defined by Step 2.

If the p -value is less than 0.05, this null hypothesis will be rejected and then we

can say that our finding is “statistically significant at the 5% level”. Or we can

express this significant finding in another way: it is very unlikely that this level

of cluster quality or higher from the real data would arise if we take a random
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network from the class defined by Step 2. For an even smaller p -value, we can

claim to classify that our findings is ‘significant’ if 1% ≤ p < 5% or ‘highly

significant’ if the p -value is even smaller than 0.01, as we stated in section 3.1.

3.3 Test on Synthetic Data

In this section, unless we specify, we will randomize the data in single test 1000

times.

3.3.1 Erdös-Rényi

In this section, we discuss the results from the randomized data generated by

either of the Erdös-Rényi random graph models. Since Algorithm 2 is more

promising, we apply our cluster validation method to the findings for the syn-

thetic data with Algorithm 2 (Figure 2.4). In the previous synthetic test, we

found the six nodes 18,20,16,15,19,17 form a cluster in B, but not in A, when

reordered with the first column of X−T . To verify the findings in the opposite

pattern, we also repeat the experiment for the same synthetic graphs reordered

by the final column from X−T . There is a cluster formed by the eight nodes

7,9,10,15,14,11,6,13, which is a good cluster for A and a poor one for B. For

clarity, we call the former cluster Cluster 1 and the latter one Cluster 2 in the

following tests.

3.3.1.1 Compute a p -value by Approach 1

We begin with Cluster 1. We use c1, the simpler definition of c(A, B), in the

initial trial. We use a marker ‘∗’ to point out the value of this original cluster

quality measure, c(A, B), in the histograms. Figure 3.2a and Figure 3.2b give the

histograms for the data randomized by G(n, p) and G(n, m) separately. For both
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cases, c1 = 13 and p -value = 0. As we stated in section 3.2 for the two random

graph models of Erdös-Rényi, we emphasize that the p -value has nothing to do

with the p of G(n, p) model of Erdös-Rényi. A p -value of 0 is perfect in the sense

that no observed event occurs to support H0. We can then claim that this good

cluster is highly significant in this simulation. More formally, we can conclude

that the level of success of the good cluster is unlikely to arise by chance.

We then try c2 (3.4), the second definition of c(A, B), to check the same

substructure again in Step 1 and Step 4 while other steps for the validation

process are the same as the previous test. The corresponding histograms of

the randomized data generated by G(n, p) and G(n, m) are given in Figure 3.2c

and Figure 3.2d individually. Here, c1 ≈ 5.4167, p -value = 0.01 for G(n, p) and

p -value = 0.007 for G(n, m). The p -values here are not zero but they are very

small so that we can make the same conclusion as before that the finding is

‘significant’.

We also extend the experiment to the object Cluster 2 with the opposite

pattern. We only use c2 to compute c(A, B) in this pattern but try both models

of Erdös-Rényi. Figure 3.2e and Figure 3.2f give the corresponding histograms.

In both cases, the marker ‘∗’ represents the value of c2 ≈ 6.1986 and p -value =

0.002. That is, we can say that this good cluster is ‘highly significant’ in the

graphs.

In the above tests, the p -values are all very small or zero. That is, our vali-

dation method is successful in showing that the good clusters we found in A and

B are both significant. Then we turn back to the disadvantage of Approach 1,

we need pay attention to the number of samples to be taken in the experiment

by Approach 1.

In theory, the risk R, which is error (3.10) between the estimated density

function and the real density function, decreases to 0 at rate T−2/3 [130] with

a choice of an optimal bin width for the histogram. This can be written in the
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Figure 3.2: Histograms of 103 samples produced by Erdös-Rényi.
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following formulation:

R ∼
C

T 2/3
, (3.6)

where C = (3/4)2/3(
∫

(f ′(x))2dx)1/3 at a fixed sample x and T represents the

number of samples and f denotes the probability density. More details of the

optimal number of bins will be given in section 3.3.1.2.

In practice, Approach 1 does not estimate the density so that in fact we

do not need to consider the optimal bin width. Equation (3.6) indicates that

the risk is smaller when we use a larger number of samples T . However, it is

difficult to test a huge number T in practice since the whole computation will

be very expensive. The risk will converge to 0 very slowly when the sample

size increases. We try to find a threshold value of so that we can take it as a

candidate as a proper sample size for the tests by Approach 1. We can complete

this task by plotting a relationship figure between the risk and sample size. A

difficulty is that we do not know the constant C in (3.6). We can simply use the

widely used Gaussian density to compute C here, since estimating f is not our

main task in Approach 1. Figure 3.3 shows the resulting relationship between

the number of samples and the risk.
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Figure 3.3: The estimated risk versus the number of samples.



Cluster Validation 44

An intrinsic choice of number of samples can be estimated by looking for the

“elbow” at which this curve ceases to decrease significantly with added number

of samples. In Figure 3.3, the most promising choice is around 103 or 104.

Therefore, we extend our test to 104 samples with the same validation process

used for sample size 103.

Figures 3.4a and 3.4b give the histograms using c1 and either models of

Erdös-Rényi to validate Cluster 1 with 104 samples, the corresponding p -

value = 0 for both tests. Figure 3.4c gives the results for Cluster 1 using c2

and G(n, p), p -value = 0.0072 in this test. The p -value = 0.0063 when we use

c2 and G(n, m) on 104 samples of Cluster 1, and the corresponding histogram is

given in Figure 3.4d. The histograms for Cluster 2 are given in Figure 3.4e and

Figure 3.4f. They use G(n, p) and G(n, m) to generate random data individually

with the same cluster quality measure c2. The corresponding p -value is 0.0033

and 0.003, respectively.

Table 3.1 gives a summary of the computations in this section by Approach 1.

All the p -values here are very small. That is, our findings are always significant.

It could be argued that c2 is more informative than c1 because using c1 always

makes p -value = 0. c2 is more expensive in computation but this does not make

a big difference to the overall computation time for the whole test. The G(n, p)

and G(n, m) models are similar in producing a small p -value but G(n, p) is more

sensitive to the number of samples. For example, from Figures 3.2c to the test

given in Figures 3.4c, the difference of p -values produced by c2 and G(n, p) from

103 samples to 104 samples is 0.01−0.0072 = 0.0028 while this difference is only

0.007− 0.0063 = 0.0007 by using G(n, m) and c2 in Figure 3.2d and Figure 3.4c.

In this degree, G(n, m) may be more reliable but G(n, p) is still more widely

used than G(n, m) as a random graph model. With a larger sample size 104,

the p -values are decreased slightly for Cluster 1 but increased for Cluster 2. No

matter what the slight differences in these p -values, the choices of sample size
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(e) Cluster 2 : use c2 and G(n, p)
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(f) Cluster 2 : use c2 and G(n, m)

Figure 3.4: Histograms of 104 samples produced by Erdös-Rényi.

103 and 104 are both acceptable. Considering that the computation cost will

increase rapidly with a increasing sample size, we generally take 103 samples in
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the following tests. We also list the value of c(A, B) in the table, which denotes

the location of the marker ‘∗’ in the corresponding histograms.

Table 3.1: Test onRandomizedData produced byErdös-RényiwithApproach 1.

Object c(A, B) Graph model T = 103 T = 104

Cluster 1

c1 = 13

G(n, p)
p = 0 p = 0

(Figure 3.2a) (Figure 3.4a)

G(n, m)
p = 0 p = 0

(Figure 3.2b) (Figure 3.4b)

c2 = 5.4167

G(n, p)
p = 0.0100 p = 0.0072

(Figure 3.2c) (Figure 3.4c)

G(n, m)
p = 0.0070 p = 0.0063

(Figure 3.2d) (Figure 3.4d)

Cluster 2 c2 = 6.1986

G(n, p)
p = 0.0020 p = 0.0033

(Figure 3.2e) (Figure 3.4e)

G(n, m)
p = 0.0.0020 p = 0.0030

(Figure 3.2f) (Figure 3.4f)

To show the applicability of our validation method, we also pick out some

‘poor’ patterns from the graphs and then apply the above validation process.

We arbitrarily select an object with no visual pattern. This object is composed

of the 12th to 18th components of the sorted final column from X−T in the

synthetic data (Figure 2.4). We use c2 and both Erdös-Rényi models to test it.

Figure 3.5a and Figure 3.5b give the corresponding results. The markers ‘∗’ in

these histograms do not fall into a small probability area. The corresponding

p -value is 0.769 and 0.798 for the two models. The large p -values show that vali-

dation fails since the object has no obvious pattern. In other words, this pattern

is not classified as significant, which is consistent with our visual observation.
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Figure 3.5: Histogram of bad pattern produced by Erdös-Rényi for 20th column

of X−T .

3.3.1.2 Compute a p -value by Approach 2

In this section, we use c2 and G(n, p) for most of the tests from the empirical

study in section 3.3.1.1. We use G(n, m) in some other tests, where specified. As

we stated in section 3.1, the main difficulty in using Approach 2 is to decide the

density type against which to compare the data.

We now go back to check the shape of the original histograms given in sec-

tion 3.3.1.1. Figure 3.2c is the histogram of the randomized data generated

by c2 and G(n, p) to validate Cluster 1. This histogram shows a more skewed

distribution different to a normal distribution. It is caused by the fact that all

the values of c(Â, B̂) are nonnegative by construction. There are some classic

skewed continuous distributions, such as the exponential distribution and the

log-normal distribution.

We try the exponential kernel first. Figure 3.6a gives the exponential kernel

density estimate of the data. The curve looks to fit the histogram well but

it is hard to conclude definitely that the data fits an exponential distribution

because the histograms only provide a rough visual clue to the distribution

of the randomized data. A more reliable method is to check the corresponding
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quantile-quantile plot. In some computational experiments, we used the optimal

bin width but do not give the accompanying figures. Nevertheless, in practice,

the optimal bin width, or the optimal number of bins, can be computed by a

simple formula for computing the cross validation score Ĵ(h) [105]:

Ĵ(h) =
2

h(T − 1)
−

T + 1

h(T − 1)T 2

b∑

j=1

p̂2
j , (3.7)

where T is the number of samples, b is the optimal number of bins, h is the

optimal bin width and h = 1/b.

However, it does not matter whether we use a optimal bin width or we assign

another fixed value of bin width. As we stated in section 3.1, we can use the

quantile-quantile plot to check the fitness of the data from the given density

further, because the quantile-quantile plot does not rely on the bin width of the

histograms.

We show the corresponding quantile-quantile plot of the test on Cluster 1 in

Figure 3.6b. Here, p -value = 0.004973.

In Figure 3.6a and 3.6b, the exponential density seems be a good choice

since the p -value is very small and the corresponding quantile-quantile plot is

matching well. But closer inspection reveals some difficulties. First, the shape

of the bars in the histogram is not monotonic as an exponential density curve

should be, even if we apply an optimal bin width onto it. Furthermore, recent

related research also provides evidence that skewed distributions in experimental

science often closely fit the log-normal distribution [83]. The log-normal is a

related continuous distribution to the normal distribution. We say ξ ∼ Log-

N(µ, σ2) is a log-normal distribution if ξ = eζ and ζ ∼ N(µ, σ2). The data can

be easily standardized to log-normal(0, 1). Hence, what we need to do next is

log scale the randomized data and see whether the log-scaled data fits a normal

density.

To check the idea of using log-normal density, we then log scale ξ to ζ , then
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(d) Quantile-quantile plot against N(0, 1)

quantile: use c2 and Value 3
Figure 3.6: Validating Cluster 1 by Erdös-Rényi with Approach 2.

standardize the data ζ to mean µ = 0 and standard deviation σ = 1. These

transformations can be computed from the following equations:

ζ = ln(ξ), (3.8)

ζ̂ =
ζ − µ

σ
. (3.9)

Here, we use µ and σ to represent the sample mean value and standard deviation

value of ζ , then use ζ̂ to represent the standard data that will be tested for

ζ̂ ∼ N(0, 1).
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With a given normal kernel, we utilize both techniques, kernel density estima-

tion and quantile-quantile plotting, to estimate the density of the randomized

data ζ̂ for Cluster 1. We show the Gaussian kernel density estimate in Fig-

ure 3.6c and the corresponding quantile-quantile plot in Figure 3.6d. Using the

log-normal fit, the p -value≈ 0 in this test. We also use the marker ‘∗’ to point

out the value of the original ratio c(A, B) (after standardization) on the x-axis

in the kernel density estimate figures.

Now, we have small p -values and good quantile-quantile plot for both kernels:

exponential and the log-normal . How can we choose the best density type

from these two candidates? In practice, there are several ways to measure the

error between the kernel density estimator f̂n(x) and the exact density functions

f(x) [130]. Among them, the squared error (or L2) loss function is a widely used

one. The squared error is:

L(f(x), f̂n(x)) = (f(x)− f̂n(x))2. (3.10)

The result of this computation shows that the error of using exponential

density is much larger than that of log-normal density, even though they both

have good quantile-quantile plots. This dictates that we choose log-normal as

our promising density type. This choice may also be explained by Central Limit

Theorem as discussed earlier.

We also consider some other issues in the tests. For example, to log scale ξ to

ζ , we remove all the zero values in ξ by letting them equal one of the followings

items:

Value 1. let ξi = δ if ξi = 0 and δ = minξ 6=0(ξi).

Value 2. let ξi = 1 if ξi = 0.

Value 3. let the numerator of the fraction ((3.3) or (3.4)) of ξi = 1 if ξi = 0.
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We try these different values in several tests: Figure 3.6c and Figure 3.6d we

use a Value 3 and the quantile-quantile plot is good. We now look at Figure 3.7,

this is an example using c1, G(n, p) and Gaussian kernel for ζ̂ on the same

Cluster 1. The only difference in Figure 3.7 is that we take Value 1 to replace all

the zero ξ values in this case. There is an obvious vertical line at the beginning

of the data and the whole sequence looks more discrete. This is consequence of

rounding the zero values to the same non-zero threshold. Although Figure 3.7 can

show the log-normal density of the data, we decide to use Value 3 in preference

thereafter considering that Value 1 and Value 2 may cause some vertical reference

line or pieces of discrete data to appear in the quantile-quantile plots. Another

important reason to encourage us to choose Value 3 is that we can get a smaller

L2 score.
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standarized log scale samples & N(0,1) quantiles

Figure 3.7: Quantile-quantile plot of ζ samples against N(0, 1) quantile for

Cluster 1 : use c1, G(n, p) and Value 1.

To verify the findings in the opposite pattern, we repeat the experiment with

c2 and G(n, p) model on Cluster 2. In this test, c2 ≈ 6.1986 and the p -value = 0.

Figures 3.8a and 3.8b give the corresponding results for both density estimation

techniques.

We also test Approach 2 with that same bad pattern that we use in sec-

tion 3.3.1.1. We first use c2, G(n, p) and Value 3 to generate the histogram
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(a) Gaussian kernel density estimate: use c2

and G(n, p)
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(b) Quantile-quantile plot against N(0, 1)

quantile
Figure 3.8: Validating Cluster 2 by Erdös-Rényi with Approach 2.

in Figure 3.9a. The kernel density estimate is given in Figure 3.9c and the

quantile-quantile plot is shown in Figure 3.9e. In this case, p -value≈ 0.1523.

This suggests that there is no pattern within the object, as we expected.

We change to G(n, m) instead of G(n, p) while other parameters stay the same,

then produce the histogram in Figure 3.9b. The kernel density estimate and the

quantile-quantile plot are given in Figure 3.9d and Figure 3.9f separately. Here,

p -value≈ 0.1172. Whether G(n, m) or G(n, p) is applied with Approach 2, the

findings within this arbitrarily selected object with no pattern are not significant

(p -values are larger than 0.05). These observations are consistent with those of

the poor cluster in section 3.3.1.1.

3.3.2 Permutation

In section 3.3.1, we used the random graph model to generate randomized data.

Here, we study the performance of the second way to randomize the data. As we

stated in section 3.2, we skip Step 3 and only compute the GSVD for the original

networks. We will describe results for Approach 1 and Approach 2 separately.
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3.3.2.1 Compute a p -value by Approach 1

Based on the study in the previous sections, we begin the test on Cluster 1 using

the two cluster quality measures in (3.3) and (3.4). Figure 3.10a and Figure 3.10b

give the corresponding histograms. We use c1 in the former one with a resulting

p -value = 0 and use c2 in the latter test with a resulting p -value = 0.029.

We then use c1 and c2 separately on Cluster 2 and produce the histograms

in Figure 3.10c and Figure 3.10d by permutation. We show the corresponding

p -values in Table 3.2.

Table 3.2: Test on Randomized Data produced by Permutation with Approach 1.

Object c(A, B) T = 103 T = 104

Cluster 1

c1 = 13
p = 0 p = 0

(Figure 3.10a) (Figure 3.11a)

c2 = 5.4167
p = 0.0290 p = 0.0328

(Figure 3.10b) (Figure 3.11b)

Cluster 2

c1 = 7.6667
p = 0.0090 p = 0.0098

(Figure 3.10c) (Figure 3.11c)

c2 = 6.1986
p = 0.0.0070 p = 0.0071

(Figure 3.10d) (Figure 3.11d)

To address the main challenge of Approach 1, we just increase the sample

size from 103 to 104. Figure 3.11a to Figure 3.11d show the histograms of the

randomized data with this larger sample size produced by permutation combined

with both c1 and c2.

Table 3.2 denotes the key features and corresponding results in all the tests

in this section. All the p -values are smaller than 5% so that all the tests show

our findings are significant for both 103 samples and 104 samples. Although it is

hard to decide the exact number of samples that should be used for every test,

we could compare a result with that of a larger sample size and make sure that
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the results are consistent. The data presented in Table 3.2 show that using a

larger sample size gives less conclusive results. For example, using c1 or c2 on

103 samples makes a smaller difference than that of 104 samples. Nearly all the

p -values are decreased slightly with a larger sample size 104. Furthermore, we

are inclined to take 103 samples in the test because we also need to consider the

computational cost. c2 may be a better choice to produce randomized data, in

the sense that it leads to a more stringent test, because c1 always makes the

p -value = 0.

3.3.2.2 Compute a p -value by Approach 2

Based on the study of the density estimate in section 3.3.1.2, in this subsection

we only adopt the log-normal distribution in kernel density estimate and the

quantile-quantile plot. We use Value 3 to replace all the zero values in ξ before

we log scale it.

Figures 3.12a-3.12d illustrate the corresponding kernel density estimate and

the quantile-quantile plot for Cluster 1 by c1 and c2 separately. The correspond-

ing p -values both approximate zero.

For Cluster 2, we repeat the same validation process and corresponding den-

sity estimate results are given in Figures 3.13a-3.13d, using c1 and c2 separately.

The p -values are zero in both tests.

We obtained very similar results to those produced by Permutation with

Approach 1, and reached the same conclusions with Approach 2 as we did with

Approach 1.

3.3.3 Redistribution

In this section, we undertake the cluster validation on the randomized data by

redistribution. We follow the same test route in section 3.3.2 except for the
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randomization method and show the corresponding results in the following two

subsections. This randomization method changes the structure of the graphs

and keeps the same number of edges for each graph, but destroys symmetry.

3.3.3.1 Compute a p -value by Approach 1

First, we use the two cluster quality measures on Cluster 1 and Cluster 2 with

103 samples. The corresponding results are given from Figure 3.14a-3.14d. We

only validate Cluster 1 with a larger sample size 104 and list the results in Fig-

ure 3.15a and Figure 3.15b. We list all the p -values for these tests in Table 3.3.

Table 3.3: Test onRandomizedData produced byRedistributionwithApproach 1.

Object c(A, B) T = 103 T = 104

Cluster 1

c1 = 13
p = 0 p = 0

(Figure 3.14a) (Figure 3.15a)

c2 = 5.4167
p = 0 p = 0.0001

(Figure 3.14b) (Figure 3.15b)

Cluster 2

c1 = 7.6667
p = 0.0010

(Figure 3.14c)

c2 = 6.1986
p = 0

(Figure 3.14d)

Table 3.3 gives the key features and corresponding results in all the tests

using redistribution with Approach 1. We do not apply the validation process

on Cluster 2 with a larger sample size 104 because the computation for redis-

tributing the graphs is the most expensive of the three randomization methods.

Redistribution also produces very small p -values for all the tests in this section,

quantifying that our findings are meaningful. There is only a small difference

in p -values when we increase the sample size from 103 to 104. We also list the

value of c(A, B) in the table because it denotes the location of the marker ‘∗’ in
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the corresponding histograms and helps us to confirm visually that the p -values

are very small.

3.3.3.2 Compute a p -value by Approach 2

We only use the log-normal density for kernel density estimation and only use

N(0, 1) quantiles in the corresponding quantile-quantile plots for the randomized

data ζ̂ in this section. We only use the Value 3 before log-scaling the data ξ.

First, we validate Cluster 1 with a kernel density estimate and quantile-

quantile plots on different quality measures. We give the corresponding results

in Figure 3.16a to Figure 3.16d. Then we continue to validate Cluster 2 in the

same way and show the corresponding results in Figure 3.17a to Figure 3.17d.

Here, all the p -values equal zero. We can also see how small the p -value is by

looking at the location of markers ‘∗’ on the histograms, since they denote which

bin the original ratio c(A, B) falls into on the histograms.

This randomization method is consistent with the other approaches for val-

idating the patterns, and we can even say in this case that all the findings are

highly significant.

3.4 Test on Real Data

In section 3.3, our validation methods confirm the significance of the clusters

found in synthetic data. Based on the insights gained from this study, we de-

signed two test routes for the real data sets, based on the two main approaches

that we investigated. We call them Test 1 and Test 2 as described in the follow-

ing:

Test 1. Compute the p -value by Approach 2 combined with c2, G(n, p) and use

Value 3 to replace the zero values in ξ for a log-normal given density kernel.
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Test 2. Compute the p -value by Approach 1 combined with c2, G(n, p).

In both tests, we choose to use c2 since c1 always resulted in a zero p -value.

Furthermore, in the aspect of randomization, we decided to adopt G(n, p) of

Erdös-Rényi in both tests since it is a widely used model to generate random

graphs, and G(n, m) performed very similarly. In Test 1, we choose a log-normal

distribution density for Approach 2 because it produced a good kernel density

estimate, good quantile-quantile plot and a smaller L2 score than an exponential

one. Value 3 is used to replace the zero values in ξ considering that it can produce

a smoother quantile-quantile plot.

In most of the following tests, we only apply these two tests with a sample

size of 103. But as an extra check we occasionally see larger values.

In the previous test on Florentine family networks, we see that the 6 families,

Lambertes, Peruzzi, Bischeri, Barbadori, Guadgani and Castellan, were placed

in a well-connected group in B but not for A when the data was reordered

according to the first column of X−T (Figure 2.6). Here, we test this cluster by

Test 1 and Test 2 separately. Figures 3.18a and 3.18b give the corresponding

kernel density estimate and quantile-quantile plot for Test 1, while Figure 3.18c

shows the histogram obtained from Test 2.

In Test 1, we obtain a small p -value of approximately 2×10−6. But in Test 2,

the p -value = 0.101. This p -value is larger than 0.05. Using c1 instead of c2

and G(n, m) instead of G(n, p) with a larger sample size 104 with Approach 1

in Test 2 makes a tiny difference, producing a p -value that remains larger than

0.05. Then we turn to the other two randomization methods, permutation and

redistribution, with Approach 1. Figures 3.18d and 3.18e illustrate that smaller

p -values are produced by Approach 1 with these two alternative randomization

methods. In these two alternative tests, we still use c2. The corresponding p -

values are 0.045 for permutation and only 0.033 for the redistribution. These p -

values are shown in Table 3.4. These tests suggests that the cluster is statistically
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significant, since the majority of the p -values are below 0.05. However, the

results also emphasize that the p -value computation depends on a number of

choices, most notably the underlying null hypothesis.

We also tested the cluster in family networks by Approach 2 with a exponential

density kernel. The results also suggest using a log-normal density type, since

the corresponding sample quantiles are highly biased against the exponential

reference line in the quantile-quantile plot.

In the previous test for Read highland tribes networks given in Figure 2.8,

we see that a set of six tribes, Masil, Gahuk, Ukudz, Asaro, Geham and Ove,

are well-connected in A but not in B from the reordering from the final column

of X−T . Meanwhile another set of four nodes, Kotun, Nagad, Gama and Gavev

are also seen to be grouped well. To avoid confusion, here we call the former

set of nodes the bigger cluster and the latter one the smaller cluster. Then we

apply Test 1 and Test 2 to these two clusters separately. We give the corre-

sponding kernel density estimate in Figure 3.19a and the quantile-quantile plot

in Figure 3.19c for Test 1 on the bigger cluster, and use Figure 3.19e to show

the histogram for Test 2 on the same bigger cluster. The corresponding p -values

are given in Table 3.4.

Then we repeat the tests on the smaller cluster of Read highland tribes.

Figure 3.19b and Figure 3.19d give the density estimate for this smaller cluster

by Test 1 and Figure 3.19f is the histogram of that smaller cluster by Test 2. The

p -value results are given in Table 3.4. These small p -values (< 0.05) suggest

that the bigger cluster and the small cluster are both statistically significant.

Finally, we apply Test 1 and Test 2 to macaque cortical connectivity networks

to validate that the leading 38 × 38 submatrix of A reordered with the final

column of X−T in Figure 2.10 is a good cluster. Figures 3.20a and 3.20b are

density estimates from Test 1 while Figure 3.21 shows the histograms produced

by Test 2. Table 3.4 lists the corresponding values of p for all these tests. The
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corresponding p -values obtained are 0 under both Test 1 and Test 2. This

suggests that the cluster consisting of the submatrix is statistically significant.

In Table 3.4, the value for the item “Location of ∗” denotes the value of

original cluster quality measure c(A, B) or that original value after log-scale

and standardization in Test 1. We can see where it lies in the histogram of the

randomized data and judge whether it falls into a low probability area. The item

“Test Method” is used to describe which test we apply to the object. Usually

we only use Test 1 and Test 2 as we described in the beginning of this section

but in some cases we also tested further with other randomization methods to

verify that we obtained a small p -value and show we do find a significant cluster

in the real data.

Table 3.4: Test on Real Data Sets.

Test method Object Figure Location of ∗ p -value

Test 1

family 3.18a,3.18b 4.6026 2 × 10−6

bigger cluster in tribes 3.19a,3.19c 6.4906 4.2746 × 10−11

smaller cluster in tribes 3.19b,3.19d 7.9259 1.1102 × 10−15

macaque brain 3.20a,3.20b 16.3178 0

Test 2

family 3.18c 4.5000 0.1010

bigger cluster in tribes 3.19e 5.6875 0.0140

smaller cluster in tribes 3.19f 4.9565 0.0040

macaque brain 3.21 2.4069 0

c2+permutation+Approach 1 family 3.18d 4.5000 0.0450

c2+redistribution+Approach 1 family 3.18e 4.5000 0.0330

3.5 Summary

In section 3.3 and section 3.4, we tested a pair of synthetic networks with built-in

clusters and three kinds of real networks with different approaches. The small
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p -values we obtain in these tests indicate that all of our findings are statistically

significant and some of them are highly significant. As a separate test, we ob-

tained large p -values for collections of nodes chosen arbitrarily, without attempt

to understand the structure. These results suggest that the validation method

described in section 3.2 is efficient and powerful. We summarize our findings as

follows:

1. As we stated in section 3.2, we tried two different definitions of c(A, B),

c1 and c2, in Step 1 and Step 4. In most cases, they produce similar p -

values. But we prefer c2 to c1 in the forthcoming tests for real data since

c1 always makes p -value = 0 while c2 can produce a slightly bigger but

still meaningful results.

2. The second key point arising from these computations concerns the ran-

domization methods in Step 2. In fact, there are many possible ways to

randomize the data but it is not practical to try every one. G(n, p) and

G(n, m) are useful random graph models with a very similar output of p -

values. We used G(n, p) for most cases since this model is more commonly

used in network science. Redistribution is much more expensive in compu-

tation time and breaks the symmetry of the original graphs. Permutation

is perhaps the easiest and fastest way to randomize the data because we

do not need to compute the GSVD in Step 3 for each instance for this

method. In practice, the three randomization methods that we tried have

similar performance.

3. In the final Step 5, we developed two approaches to calculate a p -value:

Approach 1 and Approach 2. Approach 1 is cheaper but more sensitive to

the number of samples we take in the test. From all of these studies we

can say that, with this size of network and cluster, 103 samples is enough

since it just makes a small difference to the p -values if we extend to 104.
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It is not practical for us to extend the experiment to a much larger sample

size than 103 because the computation task would exceed that possible

with our computers. So we adopted a sample size of 103 for the tests

on real data of corresponding size. Furthermore, we also computed the

estimated risk to support the choice of 103 for Approach 1. Approach 2

also produced small p -values. For the techniques that we tried, which were

kernel density estimate, quantile-quantile plot and L2 loss function score,

we found that the log-normal distribution is a more appropriate choice

than the exponential distribution.

4. Computationally, Approach 1 may be better than Approach 2 not only

because it is easier to compute but also because it produces more infor-

mative nonzero p -values. To show our validation method is appropriate,

we also checked it with a poor pattern in synthetic data and obtained big

p -values, corresponding to a lack of statistical significance.

In summary, we can claim that (a) it is possible to quantify the significance of

our results, and (b) our findings in previous chapters on real data are meaningful

with small p -values.

The cluster validation method in this chapter was designed for binary matri-

ces, that is, unweighted graphs. In Chapter 6, we will modify the corresponding

concepts and generalize this cluster validation method to the case of weighted

graphs.
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(a) Log-scaled histogram: use c2 and G(n, p)

−20 −15 −10 −5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Histogram of log−scaled sample data

(b) Log-scaled histogram: c2 and G(n, m)
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Standarized log−scaled sample data
N(0,1) density

(c) Gaussian kernel density estimate: use c2

and G(n, p)
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Standarized log−scaled sample data
N(0,1) density

(d) Gaussian kernel density estimate: c2 and

G(n, m)
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(e) Quantile-quantile plot against N(0, 1)

quantile: use c2 and G(n, p)
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(f) Quantile-quantile plot against N(0, 1)

quantile: use c2 and G(n, p)
Figure 3.9: Validating bad pattern by Erdös-Rényi with Approach 2 for 20th

column of X−T .



Cluster Validation 63

−2 0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a) Cluster 1 : use c1

−2 0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) Cluster 1 : use c2

−2 0 2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(c) Cluster 2 : use c1

−2 0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(d) Cluster 2 : use c2

Figure 3.10: Histograms of 103 samples produced by Permutation.
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Figure 3.11: Histograms of 104 samples produced by Permutation.
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Standarized log−scaled sample data
N(0,1) density

(a) Gaussian kernel density estimate: use c1
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(b) Quantile-quantile plot: use c1
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Standarized log−scaled sample data
N(0,1) density

(c) Gaussian kernel density estimate: use c2
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(d) Quantile-quantile plot: use c2

Figure 3.12: Validating Cluster 1 by Permutation with Approach 2.
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Standarized log−scaled sample data
N(0,1) density

(a) Gaussian kernel density estimate: use c1
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(b) Quantile-quantile plot: use c1
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Standarized log−scaled sample data
N(0,1) density

(c) Gaussian kernel density estimate: use c2
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(d) Quantile-quantile plot: use c2

Figure 3.13: Validating Cluster 2 by Permutation with Approach 2.
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(a) Cluster 1 : use c1

−2 0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Cluster 1 : use c2

−2 0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(c) Cluster 2 : use c1

−2 0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(d) Cluster 2 : use c2

Figure 3.14: Histograms of 103 samples produced by Redistribution.
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Figure 3.15: Histograms of 104 samples produced by Redistribution.
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Standarized log−scaled sample data
N(0,1) density

(a) Gaussian kernel density estimate: use c1
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(b) Quantile-quantile plot: use c1
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Standarized log−scaled sample data
N(0,1) density

(c) Gaussian kernel density estimate: use c2
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(d) Quantile-quantile plot: use c2

Figure 3.16: Validating Cluster 1 by Redistribution with Approach 2.
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Standarized log−scaled sample data
N(0,1) density

(a) Gaussian kernel density estimate: use c1
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(b) Quantile-quantile plot: use c1
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Standarized log−scaled sample data
N(0,1) density

(c) Gaussian kernel density estimate: use c2
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(d) Quantile-quantile plot: use c2

Figure 3.17: Validating Cluster 2 by Redistribution with Approach 2.
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Standarized log−scaled sample data
N(0,1) density

(a) Test 1: kernel density estimate
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(b) Test 1: quantile-quantile plot
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(c) Test 2: histograms
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(d) Histograms: use c2 and Permutation
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Figure 3.18: Validating the cluster in family networks.
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Standarized log−scaled sample data
N(0,1) density

(a) Bigger cluster: kernel density estimate by Test 1
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Standarized log−scaled sample data
N(0,1) density

(b) Smaller cluster: kernel density estimate by

Test 1
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(c) Bigger cluster: quantile-quantile plot by Test 1
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(d) Smaller cluster: quantile-quantile plot by

Test 1
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(e) Bigger cluster: histograms by Test 2
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(f) Smaller cluster: histograms by Test 2

Figure 3.19: Validating the clusters in tribes networks.
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(a) Kernel density estimate
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(b) Quantile-quantile plot

Figure 3.20: Validating the cluster in macaque brain networks by Test 1.
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Figure 3.21: Histogram of macaque brain networks by Test 2.



Chapter 4

Power Method Viewpoint

4.1 Introduction

In Chapter 2, we introduced our reordering algorithms using an optimization

viewpoint. In this chapter, we interpret the algorithms on an iterative basis.

This provides an alternative justification.

4.1.1 Power Method

We recall that the power method applied to a general square matrix W ∈ R
N×N

takes the form [48, 131, 133]

(1) choose y[0] ∈ R
N , set k = 0,

(2) let y[k+1] = Wy[k]/‖Wy[k] ‖,

(3) repeat step(2) until some convergence criterion is satisfied.

In this form, given y[0] ∈ R
N , the power method produces a sequence of vectors

y[k]. If W has eigenvalues |σ1| > |σ2| ≥ · · · ≥ |σN |, then we say that σ1 is a

unique dominant eigenvalue and |σ1| represents the maximum modulus of W ’s

72
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eigenvalues. The power method sequence y[k] converges to the corresponding

eigenvector of W if σ1 is unique and dominant.

The convergence rate of the power method is dictated by the ratio |σ2|/|σ1|.

Generally, the error at the kth step is proportional to (|σ2|/|σ1|)
k. When the

modulus of the dominant eigenvalue σ1 is close to that of a subdominant eigen-

value σ2, the power method has a slow convergence. This difficulty motivates al-

ternatives to the power method, such as the shifted power method [106, 131, 133].

The existence of a unique dominant eigenvalue σ1 is essential for confirming

the power method converges. The behavior of this iterative method without

the assumption would be different [79, 96, 131, 133]. A generalization of the

power method, called orthogonal iteration or subspace iteration, is useful when

|σ1| = |σ2| = · · · = |σr| > |σr+1| ≥ · · · ≥ |σN |, the corresponding iteration then

converges to some vector lying in the subspace spanned by the eigenvectors. The

corresponding rate of convergence is proportional to |σr+1/σr|
k.

Considering that the aim of this work is to interpret an algorithm for com-

puting the GSVD as an iterative method that is attempting to reorder the nodes,

we can simplify the iteration by replacing step (2) with y[k+1] = Wy[k]. This

normalization does not change the relative order of the components in each y[k].

We emphasize that our aim in this chapter is to develop a new interpretation of

the algorithm rather than a practical implementation.

4.1.2 Notation and Assumptions

As in Chapter 2, we suppose that the square, symmetric, real-valued matrices

A and B in R
N×N represent two different types of interaction on the same set

of N nodes. We assume that A and B are invertible with diagonal entries

aii = bii = 0. We consider general, weighted edges and use the convention that

a large weight aij or bij indicates strong connectivity between nodes i and j in
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A or B, respectively.

Recalling (2.4), which introduced the definition of the GSVD in Chapter 2, a

pair of square matrices A and B in R
N×N can be expressed as A = UCX−1 and

B = V SX−1, where U ∈ R
N×N and V ∈ R

N×N are orthogonal, C ∈ R
N×N and

S ∈ R
N×N are diagonal with nonnegative entries that 0 ≤ c1 ≤ c2 ≤ · · · ≤ cN

and s1 ≥ s2 ≥ · · · ≥ sN ≥ 0, and X ∈ R
N×N is nonsingular. We assume that

generalized singular values λi = ci/si satisfy

0 < λ1 < λ2 ≤ λ3 ≤ · · · ≤ λN−1 < λN . (4.1)

Let X be defined by X = [x[1], x[2], · · · , x[N ]], so that x[i] represents the ith

column of X. Analogously, we use u[i] to represent the ith column for orthogonal

matrix U and v[i] for the other orthogonal matrix V , and e[i] denotes the ith

column of the identity matrix I.

In Chapter 2, we derived two algorithms based on an optimization viewpoint.

We use the columns from X in Algorithm 1 and the columns from X−T in

Algorithm 2 to shuffle the nodes. Both algorithms can be used to explore two

different types of patterns between A and B. For clarity, we called these two

patterns Mode 1 and Mode 2 :� a group of nodes form good clusters in A that are not in B (Mode 1 ),� another group of nodes form good clusters in B that are not in A (Mode 2 ).

In section 4.2, we will first set up the iteration for Mode 1, accompanied by

an interpretation for the corresponding iteration to justify both algorithms from

Chapter 2. We will also explain that Mode 2 can be interpreted in the same

way by a corollary to the lemma developed for Mode 1. The final section of the

chapter summarizes the results.
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4.2 Algorithm Derivation

In this section, we begin with Mode 1 to derive the algorithm from an iteration

view. The reverse case, Mode 2, can be explored similarly.

4.2.1 The iteration

From our previous work in Chapter 2, we have

Algorithm 1 → use final column of X (Mode 1 ),

Algorithm 2 → use final column of X−T (Mode 1 ).

Recalling the form of the power method given in section 4.1.1, we have:

Lemma 4.2.1 Under the assumptions in section 4.1.2, the iteration defined by� solve

BT Bz[k+1] = AT Az[k], (4.2)� set z[k+1] ← z[k+1]/‖ z[k+1] ‖

converges to a multiple of the final column of X. Similarly, the iteration� solve

(AT A)−1ẑ[k+1] = (BT B)−1ẑ[k], (4.3)� set ẑ[k+1] ← ẑ[k+1]/‖ ẑ[k+1] ‖

converges to a multiple of the final column of X−T .

Proof Write z[k] = B−1y[k], so y[k+1] = Bz[k+1]. Then the iteration (4.2) be-

comes

BT y[k+1] = AT AB−1y[k].
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So

y[k+1] = B−T AT AB−1y[k]

= (AB−1)T (AB−1)y[k].

Recall the definition of the GSVD in (2.4). We have (AB−1)T (AB−1) =

V S−2C2V T , giving

y[k+1] = V S−2C2V T y[k]. (4.4)

This is the power method on the square matrix V S−2C2V T ∈ R
N×N . By

construction, this matrix has eigenvalues c2
i /s

2
i and eigenvectors given by the

columns of V . Considering the order of the elements ci and si defined in (2.4)

and the assumptions we made in (4.1), the ratio c2
N/s2

N is dominant. Hence the

iteration (4.4) will converge to the final column of V , which corresponds to the

unique dominant eigenvalue given by c2
N/s2

N .

Then we have, as k →∞,

z[k] = B−1y[k]

→ XS−1V T v[N ]

= XS−1e[N ]

= sN
−1x[N ]

∝ x[N ],

where v[N ], e[N ] and x[N ] represent the final column from V , I and X, respectively,

and sN is the smallest of the diagonal entries in S. Hence z[k] converges to a

multiple of the final column of X.

Analogously, let ẑ[k] = AT ŷ[k], so ŷ[k+1] = A−T ẑk+1. Then we can rewrite the

iteration (4.3) as

A−1ŷ[k+1] = (BT B)−1AT ŷk.
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So we have

ŷ[k+1] = AB−1B−T AT ŷ[k]

= (AB−1)(AB−1)T ŷ[k].

Recalling the definition of the GSVD in (2.4), we have (AB−1)(AB−1)T =

UC2S−2UT , giving

ŷ[k+1] = UC2S−2UT ŷ[k]. (4.5)

Iteration (4.5) is the power method on the square matrix UC2S−2UT ∈ R
N×N .

By construction, this matrix has eigenvalues c2
i /s

2
i and eigenvectors given by the

columns of U . Considering the order of ci and si in (2.4) and the assumptions

made in (4.1), the power method will converge to the final column of U , which

corresponds to the single dominant eigenvalue c2
N/s2

N of matrix UC2S−2UT .

Hence, as k →∞,

ẑ[k] = AT ŷ[k]

→ X−T CUT u[N ]

= X−T Ce[N ]

= cNx⋆

∝ x⋆,

so z[k] converges to a multiple of the final column of X−T . Here, x⋆ represents

the final column vector from matrix X−T , u[N ] is the final column of U and cN

is the largest diagonal entry of S. This completes the proof.

The lemma shows that iteration (4.2) is equivalent to Algorithm 1 and itera-

tion (4.3) is equivalent to Algorithm 2. Both iterations are described for Mode 1

in finding the good clusters in A that are not in B.
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4.2.2 Interpreting the iteration

In this section, we will use Lemma 4.2.1 to justify Algorithm 1 and Algorithm 2.

Our aim is to map the nodes onto the real line. Each node, i, will be given a real

coordinate, zi, and we will reorder the network according to their positions on

the real line. More precisely, our aim is as follows: If there is a Mode 1 cluster

then we aim to give the corresponding nodes the largest (most positive or most

negative) coefficients. To be definite, we will suppose that they will be given

large positive coefficients. Hence these nodes should appear together at one end

of the reordering and they will reveal a strongly-weighted sub matrix in A that

does not exist for B.

Consider

B̄z[k+1] = Āz[k]. (4.6)

This is a general iteration form for (4.2), with Ā = AT A and B̄ = BT B in R
N×N .

For clarity, we use Āij and B̄ij to represent the weights of Ā and B̄, respectively.

We will argue that the iteration (4.2), or (4.6), can be regarded as an attempt

to compute coefficients for the nodes, using the data in A and B. The iterations

shuffle the locations until an appropriate order is produced.

We will ignore the normalization step, as this does not affect the relative

ordering of the nodes. The iteration (4.6) may then be written as

z
[k+1]
i =

Āii

B̄ii︸︷︷︸
Part 1




z

[k]
i +

N∑

l=1,l 6=i

Āil

Āii

z
[k]
l

︸ ︷︷ ︸
Part 2




−

N∑

l=1,l 6=i

B̄il

B̄ii

z
[k+1]
l

︸ ︷︷ ︸
Part 3

, (4.7)

where

Āii =
N∑

j=1

a2
ji,

B̄ii =

N∑

j=1

b2
ji,






generalization of degree of node i
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Āil =

N∑

j=1,i6=l

(ajiajl),

B̄il =

N∑

j=1,i6=l

(bjibjl).

Here, Āii and B̄ii are generalizations of the degree of ith node in graph A and

B, respectively, for the case of weighted edges. Āil represents the connected-

ness node i and node l for graph A: this value is large if nodes i and l have

many strongly-connected neighbours in common, so this is a measure of sim-

ilarity where more positive means more similar. Analogously, B̄il denotes the

relationship between the nodes i and l for graph B.

So, we can interpret the iteration as follows: suppose that a collection of

nodes already has large positive coefficients because they represent a cluster in

A that is not a cluster in B. (Large negative coefficients can be discussed in a

similar way.) Should node i be moved closer or further away from this group?

To answer this question, we look at the right hand side of (4.7) and then see

that

Part 1. Āii

B̄ii

represents the relative importance of node i in A compared with B.

Part 2. Āil

Āii

, the relative strength of connection between node i and node l in A, is

used as the coefficient of z
[k]
l .

Part 3. Here, we have a minus sign, so the relative strength of connection between

nodes i and l in B counts negatively. That is, the relative strength of

connection between these two nodes in B contributes negatively to the

coefficient of z
[k]
l .

So, in (4.7), node i will tend to move towards this group if



Power Method Viewpoint 80� Āii/B̄ii is large, so node i is relatively important in network A, and� Āil/Āii is large for nodes in this current cluster, so that node i is relatively

well connected with this group in network A.

However, because of the minus sign of Part 3 in (4.7), the node i will move

away from this current cluster if� B̄il/B̄ii is large for nodes in this current cluster, so that node i is relatively

well connected with this group in network B.

Overall, node i will be given a large coefficient, and hence placed alongside the

other appropriate nodes, if

a) it is strongly connected to these nodes in A,

b) it is not strongly connected to those nodes in B.

Now we have justified the use of the final column of X for Algorithm 1 by

analyzing the ith component of iteration (4.2).

We could study the iteration (4.3) in a similar way. Alternatively, observe

that

AT Ax[N ] = X−T C2X−1x[N ]

= X−T C2e[N ]

= cN
2x⋆

∝ x⋆. (4.8)

Recalling the convergence of power method for Algorithm 1 in (4.2) and that

for Algorithm 2 in (4.3), we have

Power Method of Algorithm 2 is equivalent to

AT A× Power Method of Algorithm 1 (4.9)
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for Mode 1.

In other words, the vector arising from Algorithm 2 can be generated by

applying Algorithm 1 and then pre-multiplying by AT A. This extra step can be

interpreted as a single iteration from an algorithm that computes the dominant

singular value of A. Hence, we could argue that this extra step is using only the

information in A in order to improve that aspect of the clustering. As an aside,

we should note that we can also obtain the following expression

BT Bx[N ] = X−T S2X−1x[N ]

= X−T S2e[N ]

= sN
2x⋆

∝ x⋆. (4.10)

So we also have the following formulation

Power Method of Algorithm 2 is equivalent to

BT B × Power Method of Algorithm 1 (4.11)

for Mode 1. This can be interpreted in a similar way to (4.9). Then we can also

argue that this improves to the formulation of good clusters in B. Obviously,

this is inconsistent with the aims of the algorithm. So, how can we interpret

this incompatibility?

The iteration (4.2) can be written as

z[k+1] = (BT B)−1(AT A)z[k],

and we know that z[k] converges to a multiple of the final column of X. So

z[k] = (BT B)−1(AT A)︸ ︷︷ ︸
kth iteration

· · · (BT B)−1(AT A)︸ ︷︷ ︸
2nd iteration

(BT B)−1(AT A)︸ ︷︷ ︸
1st iteration

z[0],

and hence, from (4.10),

(BT B) (BT B)−1(AT A) · · · (BT B)−1(AT A)︸ ︷︷ ︸
k times iteration of Algorithm 1(Mode 1)

z[0] → x⋆.
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Replacing (BT B)(BT B)−1 with I, we see that

(AT A) (BTB)−1(AT A) · · · (BT B)−1(AT A)z[0]

︸ ︷︷ ︸
k-1 times power iteration of Algorithm 1

is equivalent to Power Method of Algorithm 2 (4.12)

for Mode 1. This expression (4.12) is, of course, equivalent to (4.9).

Hence, we can argue that performing the multiplication of BT B in (4.10)

is consistent with performing the multiplication of AT A in (4.8). Overall, the

vector arising from Algorithm 2 can be generated by applying Algorithm 1 and

then is pre-multiplying with AT A. Referring to the above arguments, using AT A

encourages the well connected nodes to group together in A.

Now we have interpreted the iteration (4.3). This means we have also justified

for Algorithm 2 that the final column of X−T can be used to group the strongly

connected nodes together in A.

Corollary 4.2.1 Under the assumptions in section 4.1.2, we can justify the use

of the first column of X in Algorithm 1 and the use of the first column of X−T

in Algorithm 2 for Mode 2 by using the power method.

Proof From Lemma 4.2.1, the iteration AT Az[k+1] = BT Bz[k] will converge

to a multiple of the first column of X if we set z[k+1] ← z[k+1]/‖ z[k+1] ‖, and the

iteration (BT B)−1ẑ[k+1] = (AT A)−1ẑ[k] will converge to a multiple of the first

column of X−T by setting ẑ[k+1] ← ẑ[k+1]/‖ ẑ[k+1] ‖. Hence, it follows that we can

use these two iterations to justify Algorithm 1 and Algorithm 2, respectively.

4.3 Summary

This work presents an alternative theoretical viewpoint for giving an intuitive

understanding of the GSVD algorithm, when it is used for exploring pairs of
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related data sets. The related data sets are a pair of square, symmetric, real-

valued matrices representing two different weighted networks on the same set of

nodes. Here, a motivation for Algorithm 1 and Algorithm 2, which were derived

in Chapter 2 via the variational properties of the GSVD, was given by viewing

the reordering vectors as the limiting values arising from an iterative method.



Chapter 5

Protein Networks Analysis

5.1 Background

5.1.1 Protein-Protein Interaction Networks

Physically-interacting proteins and their corresponding interactions can be rep-

resented in Protein-Protein Interaction (PPI) Networks [126]. In Protein-

Protein Interaction networks, each node is a protein and an edge exists between

a pair of proteins if a physical interaction has been detected by some tech-

niques [98]. In this context, interaction corresponds to the physical binding of

two molecules in three dimensional space.

Protein-Protein Interactions are intrinsic to virtually every cellular process.

Mapping this kind of physical connection is crucial in understanding cellular

system properties. There are various methods to discover Protein-Protein In-

teractions [20, 98]. Generally, these methods can be classified into three main

kinds: physical methods, library-based method and genetic methods [98]. Phys-

ical methods directly detect proteins which bind to another protein [98]. A

variety of indirect library-based methods have been developed to screen large

84
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libraries for genes or gene-fragments whose products may interact with a pro-

tein of interest. Genetic methods are maybe the most sophisticated strategies

amongst all of these investigation techniques. They can be designed to uncover

indirectly Protein-Protein Interactions via genes which show interactions with

other genes [98, 126], since genes encode proteins. The library methods dif-

fer from the physical, biochemical, methods, and also contrast with the genetic

methods in that they are generally performed on some special organisms such

as bacteria or yeasts [98].

The two-Hybrid system (Y2H) is a useful way to detect proteins which in-

teract. In [98], the Y2H is described as a library screening method. However,

in fact, it can be also regarded as a genetic method because it uses transcrip-

tional activity as a measure of Protein-Protein Interaction [98]. Furthermore,

the Y2H is also a molecular biology technique used to discover Protein-Protein

Interactions and protein-DNA interactions by testing for physical interactions

(binding) between two proteins or a single protein and a DNA molecule, respec-

tively. Some research shows the ability of this screening to produce high-quality

binary protein interaction maps for large-scale yeast proteins [68, 128, 137].

The term “yeast” is often taken as a synonym for Saccharomyces cerevisiae

(S. cerevisiae). This yeast species S. cerevisiae is closely related to people’s ev-

eryday life experience as the most widely used yeast in food industry [80]. In

fact, there are many different yeast species [78]. S. cerevisiae is a species of

budding yeast that reproduces asexually by budding. Other yeast species may

reproduce by fission. Schizosaccharomyces pombe (S. pombe) is the most fa-

mous example of a fission yeast species. Both yeast species, S. pombe and S.

cerevisiae, have been extensively studied [93] and are of importance as model

organisms in molecular and modern cell biology research. The yeast two-hybrid

technique investigates the interaction between fission yeast, and has also success-

fully been applied to S. cerevisiae yeast [68, 128, 137]. Other physical methods
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can also be applied to investigate the map of S. cerevisiae yeast Protein-Protein

Interactions [121].

Proteins, especially in yeast, can have direct or indirect interactions with

each other [20, 68, 137]. Indirect interaction refers to being a member of the

same functional module but without directly binding. In particular, two proteins

may be said to interact if they both from part of a large multi-protein complex,

even if they are not physically overlapping. In contrast, direct interaction refers

to two amino acid chains that bind to each other. Both direct and indirect

interactions reflect important information about the cell.

A Protein-Protein Interaction map is usually supposed to be non-directional

and thus modeled with undirected graphs [20, 38, 56, 101, 102, 125]. However,

a number of related studies consider the use of directed graphs for building

Protein-Protein Interaction networks [19, 43, 54, 68], especially in the case where

different types of interactions are presented for the whole system [43]. So PPI

networks can be described by either undirected graphs or directed graphs, or

even a mixture. Direct Protein-Protein Interactions, which are usually detected

by the two-hybrid method, are mainly used to generate undirected graphs [110,

121]. On the other hand, some researchers propose that PPI interactions have

directionality and therefore can be modeled by directed graphs [2, 88, 124].

Network visualization is a challenging task for large-scale Protein-Protein In-

teraction networks. Some of the popular analysis tools (methods) are based on

directed graphs [19, 43, 54], others are built on undirected graphs [88] or a mix of

the two [2]. GraphCrunch is a software tool which can compare large networks,

including Protein-Protein Interaction networks, using global and local proper-

ties [88]. The current version of GraphCrunch can only be applied to undirected,

simple, unweighted graphs, although self-loops (an edge that connects a node to

itself), or self-associations, are possible within PPI networks [19, 54, 98, 125].

Protein-Protein Interaction networks have been identified by some authors as
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scale-free networks due to the observation that the degree distribution by some

authors fits the power-law model best [6, 30, 126]. However, other observations

indicate that the behavior of the presented protein data is not pure power-law.

There have been studies applying geometric random graphs, which may be better

at describing Protein-Protein Interaction networks than scale-free models [63,

88, 100], towards explaining these real biological networks.

5.1.2 Genetic Interaction Networks

Exploring interactions among genes is essential to understanding how a genome

specifies the properties of an organism. Such gene interactions include protein-

protein physical interactions, described in section 5.1.1, in addition to gene-

gene and protein-gene interactions. The latter two types of interactions can

be called Genetic Interactions. Genetic Interactions can be understood as the

functional relationships between genes and the corresponding protein function in

the pathway [44, 102, 104, 140]. Some other work also suggests that the complete

genetic network is a map of functional relationships between genes [126]. In a

Genetic Interaction network, each node is a protein and the interactions between

proteins can be directional or bidirectional [32].

Genetic Interactions generally report that the function of one gene depends

on the presence of another one [104]. More specifically, Genetic Interactions can

be specified and imagined as two proteins being connected if removing both of

the corresponding genes or mutations in two genes causes a organism or cell to

die [32, 34, 81, 102, 104, 120, 126, 140]. The key point is that an individual

mutation from a pair of genes (who have Genetic Interactions between each

other) does not affect the organism, whereas double-mutation may cause the

organism to sicken or die [102].

The observed Genetic Interaction networks appear to behave like a small-
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world network: the shortest path length between the node pairs tends to be

small and the Genetic Interaction networks tends to exhibit a densely connected

local neighborhood [132].

5.1.3 Comparing Protein-Protein Interaction Networks

and Genetic Interaction Networks

As we described in section 5.1.1 and 5.1.2, Protein-Protein Interactions and Ge-

netic Interactions represent two different types of relationships between proteins,

and both of the interactions are essential to biological processes. Protein-Protein

Interaction networks contain the physical bindings while Genetic Interaction

networks map functional connections [126]. Protein-Protein Interaction and

Genetic Interaction data for different organisms are available from some online

databases such as http://www.thebiogrid.org.

Experimentally collected protein interactions can be given direction accord-

ing to whether the protein was the bait or the prey. In some literature, the re-

searchers use negative or positive to indicate the direction of the Protein-Protein

Interactions [124]. The labeling of these positive or negative Protein-Protein In-

teraction is completely arbitrary, therefore the edges of the related graphs appear

undirected. This is a reason why the Protein-Protein Interaction networks are

usually represented as undirected (symmetric) graphs [20, 38, 101, 102, 124, 125]

although the edge directions exist. Protein-Protein Interaction networks allow

self-interactions, which are noted as self-loops in the corresponding undirected

graph model [30, 38, 124, 125]. The connections of Genetic Interactions networks

also exist in different types, which can be directional or bidirectional [32]. The

Genetic Interaction networks can be modeled or visualized in a similar way to

the Protein-Protein Interaction networks. Thus Genetic Interaction data can

also be represented by undirected graphs [104, 126] or directed graphs [94]. In
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summary, although Genetic and Protein-Protein Interactions are different types

of protein interactions, their structures are similar. Both of them are usually

drawn using undirected graphs [30]. The density of the interaction networks can

be different. For example, the yeast Genetic Interaction network is much denser

than its Protein-Protein Interaction network [126].

Proteins of known function and cellular location tend to cluster together;

many interactions occurring between proteins have a common function and many

interactions occurring between proteins are found in the same subcellular com-

partment [110]. Based on this common feature of Genetic Interaction networks

and Protein-Protein Interaction networks, we may predict the function of the

uncharacterized yeast proteins that have physical connections to the partner

proteins of known function [68, 110]. More generally, the gene or corresponding

protein functions can be predicted from Protein-Protein Interactions in many

cases (organisms), since the newly uncovered genes encode proteins that physi-

cally interact with proteins encoded by the known genes [98].

Although the genetically interacted genes do encode proteins in the com-

plex, and the Genetic Interaction and Protein-Protein Interaction between the

corresponding gene pairs have a common part, this is limited in quantity [126].

However, the number of common neighbors between two genes in a Genetic In-

teraction network relates to a known Protein-Protein Interaction between the

corresponding proteins [6]. So we can also predict Protein-Protein Interactions

from Genetic Interaction networks by common neighbours. As we described in

section 5.1.1, the genetic method is but one of the useful methods to screen

(detect) or confirm the Protein-Protein Interactions [98, 121, 126].

In this work, we aim to investigate the difference, or exclusive part, existing

between Protein-Protein and Genetic Interactions. There is biological interest in

finding a set of proteins which are well connected in Protein-Protein Interaction

networks but not in Genetic Interaction networks, or vice versa. Dense clusters in
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a Protein-Protein Interaction network which are sparse in a Genetic Interaction

network may correspond to protein complexes, while parts which are dense in a

Genetic Interaction network but sparse in a Protein-Protein Interaction network

would correspond to pathways [102, 104].

In section 5.1, we have reviewed two types of interaction networks between

proteins: the Protein-Protein Interaction networks and Genetic Interaction net-

works. In Chapter 2, algorithms were applied to some real networks. However,

most of these real data sets arose from considering social networks. The protein

interaction network is coarsely distinguished as one of the main types of molecu-

lar networks, which are important biological networks [30]. This motivates us to

apply our algorithms to these important large scale complex biological networks.

The remaining parts of this chapter are laid out as follows: section 5.2 describes

how the raw protein data was preprocessed. Section 5.3 presents the numerical

results from the algorithm by reordering the trimmed data, and discusses how

we identify and validate the good clusters present in one graph that are not

in the other from the visual observations. Some interesting candidate protein

clusters are suggested in section 5.4.

5.2 Materials and Methods

Herein, the case where a Protein-Protein Interaction network and a Genetic

Interaction network on the same group of proteins are available is studied. The

aim is to discover differences between these two data sets in terms of clustering

detected with our algorithms. In other words, the aim is to find a group of

proteins which form dense clusters in a Protein-Protein Interaction network but

not in a Genetic Interaction network, and vice versa. Recalling section 5.1.3,

these clusters correspond to protein complexes and pathways, separately.

Our protein interaction data was originally taken from the web database
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http://www.thebiogrid.org of 5 different organisms: S. cerevisiae yeast (for

convenience, we use yeast to refer to S. cerevisiae yeast in the remaining parts

of this chapter), human, fly, mouse and worm. For each organism, there are

three edge list files: one stores the corresponding physical connections, another

contains the genetic (function) connections of the proteins, and the other saves

both types of connections between the corresponding node pairs. There are 4388

nodes in the yeast data sets, 7892 nodes in the human data, 2486 nodes in the

fly data, 329 nodes in the mouse data and 1702 nodes in the worm data. These

protein data have been used and well studied by some computer scientists [88].

However, their work is focused on visualizing large scale graphs, and we are not

aware of any previous attempts to explore the different patterns with these two

types of protein interaction networks simultaneously.

First, all the edge list files were imported into MATLAB so that the protein

data could be stored and organized as adjacency matrices. After this conversion,

two adjacency matrices plus a vector are formed for each organism. One matrix

contains the Protein-Protein Interaction network over a set of proteins and the

other represents the corresponding Genetic Interaction network over the same set

of proteins, whose names are saved in the accompanying vector. In the matrix,

each node is a protein, and each edge represents the corresponding nodes which

are strongly connected.

In the process of converting (importing), it was noted that the raw edge list

data consisted of a mix of bidirectional edges and directional edges between the

corresponding pairs of nodes (proteins). This phenomenon can be explained

by the background knowledge introduced in the previous section 5.1.3. In our

experiment, all the directions of the edges were ignored and both protein inter-

action networks were represented with undirected binary graphs. On the other

hand, all the self-loops in the graphs were retained. Therefore, non-zero diagonal

entries may be present in the corresponding adjacency matrices.
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Then further examination of the protein data matrices resolved some techni-

cal problems. The problems arose from two main aspects: first, much inconsis-

tency appears in the protein node names: the same protein may be denoted by

a different string of characters (this is caused by the fact that these protein data

were generated by different laboratories with slightly different naming conven-

tions); second, the sizes of protein interaction networks across some organisms

are very large, which is expensive for our facilities to compute. Consequently,

two steps were taken to resolve these problems in these experiments.

The first step was to remove the name inconsistency throughout the proteins

from the same organism. Techniques used in this step included converting all

the letters in the protein names to upper case, and removing the stop, comma,

hyphens and brackets in the protein names. Subsequent results reveal that the

yeast protein names are more consistent than the names across other organisms.

The second step was to reduce size in the protein interaction networks. Re-

lated studies suggest that the degree distribution in both Protein-Protein In-

teraction networks and Genetic Interaction networks is similar to a power law

degree distribution. In general, a power law degree distribution indicates that

there are a large number of nodes of very low degree, whereas a few nodes have

a high degree. Considering that fact, two different ways to trim the data size

were then designed with a given threshold: one way removed the nodes which

have lower degrees than the threshold in both the Protein-Protein Interaction

network and the Genetic Interaction network; the second only kept the nodes

which have higher degrees than the threshold in both networks. For simplicity

and convenience, these were called Way One and Way Two in the following

context. These trim methods are both simple, but perform differently. We can

imagine that Way Two will remove more nodes than Way One if we apply a

same threshold to the two methods in trimming a same pair of networks simul-

taneously, considering the existence of the nodes whose degree are higher than
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the given threshold in one network but lower than that in the other network, or

vice versa. The trimming results suggest Way Two was more promising than

Way One since Way Two enabled us to use a more consistent threshold, such

as a median value or a mean value of the degrees of the node in both protein

interaction networks, to trim all the protein data sets.

Related work suggests that the S. cerevisiae yeast data sets may be the most

consistent in protein names amongst 5 organisms [88]. This viewpoint is also

supported by the findings arising from the above two steps. In addition, it was

found that the protein interaction networks of some organisms (except yeast)

were too sparse to form a cluster of nodes. Considering that the aim of this

study is to pick out the pattern differences between related protein data sets

in terms of clustering, we then omitted further tests with these organisms. So

yeast data was focused on for the remainder of this work.

Figure 5.1 shows the two adjacency matrices for the two different types of

connections on YEAST proteins. In Figure 5.1, nz represent the number of

non-zero entries in a matrix. This number is approximately twice of the number

of edges in a matrix (because self-loops are only counted once). According to

the previous introduction in section 5.1, each node in both networks is a yeast

protein. These proteins have two kinds of relationship. Matrix A is a Protein-

Protein Interaction network which represents the physical connections of the

yeast proteins, and matrix B is the corresponding Genetic Interaction network

containing the genetic bindings of the same group of yeast proteins. As stated

above, both matrices present in Figure 5.1 are symmetric and the directions of

the edges are ignored. There are many hundreds of self-loops in matrix A, but

only a few noted in Genetic Interaction matrix B. We can see that neither of

the networks are sparse in Figure 5.1. Matrix B is denser than matrix A, which

is consistent with the observation from [126] stated in section 5.1.3.

Figure 5.2 illustrates yeast protein data matrices trimmed by Way Two. In
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Figure 5.1: Adjacency matrices representing original yeast data.

Figure 5.2, the yeast data size has been reduced from 4388 to 458 with a given

threshold (18, a mean degree of the nodes for both networks). Algorithms are

then applied to this pair of trimmed protein interaction networks in the following

section.
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Figure 5.2: Adjacency matrices representing trimmed yeast data.
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5.3 Results and Discussions

5.3.1 Reordering the Data

The trimmed yeast protein data shown in Figure 5.2 were tested with both

algorithms introduced in Chapter 2. All the corresponding results suggest that

Algorithm 2 is more effective than Algorithm 1 in picking out the clusters with

the relative reorderings. So, in this chapter, only the results of reordering the

yeast protein data with columns from X−T are presented. To illustrate the

performance of the algorithm, the corresponding reordered graphs are shown in

Figure 5.3 and Figure 5.4. Yeast protein data reordered with the final column of

X−T is shown in Figure 5.3. Recalling our algorithm, Figure 5.3 supplies visual

evidence identifying the exclusive clusters in graph A that are not present in

graph B. Visually, in Figure 5.3, we see there appears to be one cluster in A

which is not present in B (at the bottom right hand side) when both graphs

reorder with the final column of X−T . On the other hand, the first column from

X−T is used to reorder the yeast protein data in Figure 5.4. According to our

algorithm, Figure 5.4 allows a visual identification of the exclusive clusters in

graph B which are not present in graph A. There appears to be one cluster in

B that is not in A in Figure 5.4 (at the bottom right hand side) when the data

are reordered with the first column of X−T . For convenience and clarity, we call

the reordered graphs shown in Figure 5.3 reordering 1 and the reordered graphs

shown in Figure 5.4 reordering 2.

5.3.2 Producing the Cluster Name Lists

Based on the reordering results given in Figures 5.4 and 5.3 in section 5.3.1,

we began by considering the final 89 nodes in reordering 1 and the final 109

nodes of reordering 2 as the candidate exclusive cluster nodes with respect to



Protein Networks Analysis 96

0 50 100 150 200 250 300 350 400 450

0

50

100

150

200

250

300

350

400

450

Trimmed A reordered with col458

0 50 100 150 200 250 300 350 400 450

0

50

100

150

200

250

300

350

400

450

Trimmed B reordered with col458

Figure 5.3: Reordering 1 : Adjacency matrices representing yeast data reordered

by the final column of X−T .
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Figure 5.4: Reordering 2 : Adjacency matrices representing yeast data reordered

by the first column of X−T .

graph A and B, separately. Then we checked these two protein clusters further

and found 27 overlapping proteins between these two groups of nodes. Then

these two groups of proteins were carefully visually scanned from one end to the

other with the aim of selecting two new groups of proteins, which have smaller
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cluster sizes and much fewer overlaps (e.g. only 2-3 overlaps). Although it

is hard to determine the size of a cluster automatically, the number of overlaps

maybe a determining feature to help us to identify good clusters for both graphs.

Overlaps are discussed further at a later point in this section.

Following this method, 3 pairs of candidate clusters with different sizes for

Protein-Protein Interaction network A and Genetic Interaction network B of

yeast proteins were found, separately. For convenience, these 3 pairs of clusters

were labeled Choice 1, Choice 2 and Choice 3. These clusters (choices) are listed

with the corresponding p -values in Table 5.1. The p -values are calculated using

the approach introduced in Chapter 3. The small p -values (< 5%) identify the

significance of the clusters given in Table 5.1. As described in section 5.3.1,

reordering 1 reveals the corresponding significant clusters in network A but not

in network B, and reordering 2 represents the corresponding clusters in network

B but not in network A in this table. In addition, within each choice, there

are a few nodes overlapped between the identified cluster found in reordering

1 and that found in reordering 2. In Table 5.1, it can be seen that there are

2 overlapping nodes between the significant cluster consisting of 33 nodes in

reordering 1 and the identified cluster consisting of 22 nodes of reordering 2

for Choice 1. Analogously, 3 proteins are overlapped in Choice 2 between the

identified cluster containing 63 proteins in reordering 1 and that containing 22

proteins in reordering 2. With Choice 3, 2 nodes are found overlapped between

the identified cluster consisting of 17 proteins in reordering 1 and the significant

cluster containing 31 proteins in reordering 2. In each choice, the overlapping

nodes between the clusters in reordering 1 and reordering 2 are highlighted in

red in Table 5.1.
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Table 5.1: Identified clusters for PPI Network and GI Network of yeast proteins

Red highlights the overlapping nodes

Choice Reordering Cluster p -value Cluster size Protein names

1 1 nodes 426-458 0.002 33 ’SPT7’

’TAF6’

’UBP8’

’NUT1’

’HHF1’

’CSE2’

’RSC2’

’SEC27’

’SPT8’

’CDC39’

’SSN3’

’TAF7’

’MOT1’

’CDC28’

’GCN5’

’SRB2’

’RVB2’

’STH1’

’ISW1’

’SIN4’

’NGG1’

’ADA2’

’YAP1’

’RSC8’

’GAL11’

’TAF9’

’VPS1’

’MED4’

’TAF5’

’TAF12’

’TAF14’

’SPT15’

Continued on Next Page
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Choice Reordering Cluster p -value Cluster size Protein names

’GCN4’

2 nodes 437-458 0.000 22 ’LSM1’

’KEM1’

’SEC22’

’HFI1’

’ADA2’

’SSN2’

’EPL1’

’UBC4’

’CDC73’

’UBP3’

’SRB2’

’RFA2’

’HTZ1’

’CDC20’

’PHO23’

’YPT6’

’ESA1’

’YNG2’

’HSP82’

’BRE5’

’ARP4’

’SWC4’

2 1 nodes 396-458 0.000 63 ’SLT2’

’CDC36’

’NHP10’

’SGF11’

’RAP1’

’RSC1’

’MED1’

’BDF1’

’MED2’

’HOG1’

’YKU80’

’PGD1’

Continued on Next Page
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Choice Reordering Cluster p -value Cluster size Protein names

’SGF29’

’TAF4’

’TAF1’

’NPL6’

’MED8’

’HTL1’

’SRB5’

’DBF2’

’CCR4’

’MRE11’

’CDC24’

’NOT5’

’TAF13’

’SPT20’

’SPT3’

’RSC58’

’SGF73’

’SSN2’

’SPT7’

’TAF6’

’UBP8’

’NUT1’

’HHF1’

’CSE2’

’RSC2’

’SEC27’

’SPT8’

’CDC39’

’SSN3’

’TAF7’

’MOT1’

’CDC28’

’GCN5’

’SRB2’

’RVB2’

Continued on Next Page
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Choice Reordering Cluster p -value Cluster size Protein names

’STH1’

’ISW1’

’SIN4’

’NGG1’

’ADA2’

’YAP1’

’RSC8’

’GAL11’

’TAF9’

’VPS1’

’MED4’

’TAF5’

’TAF12’

’TAF14’

’SPT15’

’GCN4’

2 nodes 437-458 0.000 22 ’LSM1’

’KEM1’

’SEC22’

’HFI1’

’ADA2’

’SSN2’

’EPL1’

’UBC4’

’CDC73’

’UBP3’

’SRB2’

’RFA2’

’HTZ1’

’CDC20’

’PHO23’

’YPT6’

’ESA1’

’YNG2’

’HSP82’

Continued on Next Page
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Choice Reordering Cluster p -value Cluster size Protein names

’BRE5’

’ARP4’

’SWC4’

3 1 nodes 442-458 0.005 17 ’RVB2’

’STH1’

’ISW1’

’SIN4’

’NGG1’

’ADA2’

’YAP1’

’RSC8’

’GAL11’

’TAF9’

’VPS1’

’MED4’

’TAF5’

’TAF12’

’TAF14’

’SPT15’

’GCN4’

2 nodes 428-458 0.000 31 ’RPD3’

’RRP6’

’SRB8’

’RSC1’

’DIA2’

’NPL6’

’CTR9’

’TAF14

’GCN5’

’LSM1’

’KEM1’

’SEC22’

’HFI1’

’ADA2’

’SSN2’

Continued on Next Page
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Choice Reordering Cluster p -value Cluster size Protein names

’EPL1’

’UBC4’

’CDC73’

’UBP3’

’SRB2’

’RFA2’

’HTZ1’

’CDC20’

’PHO23’

’YPT6’

’ESA1’

’YNG2’

’HSP82’

’BRE5’

’ARP4’

’SWC4’

The appearance of overlapping nodes may seem counterintuitive. The same

nodes are being proposed as members of strong clusters for both networks. How-

ever, this phenomenon can be explained by the fact that a node may be a mem-

ber of a different cluster in each network. Figure 5.5 gives a visually intuitive

explanation for the occurrence of overlaps. In Figure 5.5, the ellipse filled in

blue represents an overlapping node well connected to a group of nodes, which

are represented with circles filled in red, in graph A and also well connected to

a different group of nodes, which are represented as squares filled in green, in

graph B. Here, picture (a) of Figure 5.5 illustrates the subgraph consisting of

nodes (a number of circles filled in red plus an ellipse filled in blue) forming a

good cluster in graph A and picture (b) shows that this same group of nodes are
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poorly clustered in graph B. In this case, the overlapping node (ellipse filled in

blue) has many connections to the remaining nodes (circles filled in red) within

the cluster given in (a) but few nodes (circles filled in red) are connected to this

overlapping node (ellipse filled in blue) in (b). Picture (c) shows a poor cluster

consisting of the same overlapping node (ellipse filled in blue) plus a different

group of nodes (a number of squares filled in green) in graph A, whereas these

nodes are well connected in graph B, as shown in picture (d). There are few

nodes (squares filled in green) connected to the overlapping node (ellipse filled

in blue) in the poor cluster given in (c) but in picture (d) the overlapping node

(ellipse filled in blue) has many connections to the remaining nodes (squares

filled in green) within the same cluster. The example given in Figure 5.5 shows

that the existence of an overlapping node is reasonable. However, in this case,

it is emphasized that the overlapping node is well connected to different groups

of nodes in reordering 1 and reordering 2, separately.

5.4 Summary

This chapter shows the results of applying our algorithm to protein interaction

networks, which have attracted much research interest in recent years. First,

the raw protein data was preprocessed and trimmed to a computationally con-

venient size. The promising algorithm introduced in Chapter 2 was applied to

the trimmed protein data and some candidate clusters were selected from the

reordering graphs. The clusters were validated by computing the p -values. As

for the overlapping nodes appearing in both reordering 1 and reordering 2, the

inner structure of the clusters was investigated carefully by checking the number

of connections to the overlaps. After the investigation, it was concluded that
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(a) Network A. (b) Network B.

(c) Network A. (d) Network B.

Figure 5.5: Overlapping node, represented by a yellow ellipse, in reordering 1

and reordering 2. (a)(b): reordering 1 (a cluster present in network A that is

not present in network B). (c)(d): reordering 2 (a cluster present in network B

that is not present in network A.)

some clusters are reasonable with the overlaps. There is an ongoing collabora-

tion with colleagues in bioinformatics in order to interpret the protein clusters

identified by the algorithm with reference to their known biological function. It

is hoped that this biologically-informed post-processing stage will� confirm that the clusters reflect known properties, and� suggest new relationships that could be confirmed experimentally.



Chapter 6

Metabolic Networks Analysis

6.1 Background

Schizophrenia is characterized by deficits in cognition known to be dependent

upon the functional integrity of the prefrontal cortex (PFC). Furthermore, com-

promised PFC function in schizophrenia is supported by a multitude of neu-

roimaging studies reporting hypometabolism (hypofrontality), as evidenced by

decreased blood flow or glucose utilization [25, 64]. While the pathophysiological

basis of PFC dysfunction in schizophrenia is not completely understood, a cen-

tral role for N-methyl-D-Aspartic acid (NMDA) receptor hypofunction is widely

supported. For example, subchronic exposure to the NMDA receptor antagonist

phencyclidine (PCP) induces cognitive deficits and a hypofrontality which di-

rectly parallels that seen in schizophrenia [23, 28, 35]. Furthermore, subchronic

PCP exposure induces alterations in GABAergic cell markers and 5-HT recep-

tor expression in the PFC similar to those seen in this disorder [23, 36, 116].

While this evidence places NMDA receptor hypofunction central to the patho-

physiology of PFC dysfunction in schizophrenia, the mechanisms through which

106
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NMDA hypofunction promotes PFC dysfunction are poorly understood.

Metabolomics, the untargeted and comprehensive quantitative analysis of

small bioactive molecule levels within a tissue of interest, represents a robust

approach through which alterations in diverse metabolic pathways may be de-

termined at a biological systems level. In this way a metabolomics approach

may prove useful in further elucidating the pathophysiological mechanisms con-

tributing to PFC dysfunction in schizophrenia. Furthermore, this approach may

also allow for the identification of PFC metabolic biomarkers for the cognitive

deficits in this disorder. While the metabolomics approach can provide a rich

and comprehensive set of data, the appropriate quantitative analysis of this data

has not been adequately developed. In particular, the identification of statisti-

cal differences in metabolic pathways between experimental groups rather than

the identification of statistical differences in individual metabolites alone rep-

resents a major challenge to quantitatively identifying metabolic alterations at

a systems level from metabolomic data. One method through which statisti-

cal differences in metabolic pathways can be identified from metabolomic data

involves the representation of this data as a large, complex network of nodes

(single metabolites) connected by real-value edges (the correlation coefficient

between two metabolites). This form of representation has high face validity as

the relationship between two metabolites, in a given pathway, is governed by a

single or series of enzymatic reactions that can be viewed as being represented

by the correlation between the concentrations of the two metabolites. Another

advantage is that metabolomic data consist of a range of metabolites detected

in both of the experimental groups of interest, meaning that these data can be

expressed as two complex networks based upon the same set of nodes. This

data structure is amenable to analysis through the application of the GSVD
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algorithm that we have developed in this thesis.

In this chapter we therefore describe the results of some collaborative work

with experimental biologists using previously unpublished data. We focus here

on the algorithmic and data aspects, referring to [136] for more biologically-

oriented material.

6.2 Generalizing the Algorithms

In Chapter 2, the algorithm derivation was set up on a pair of square, binary

matrices A and B. Here, we generalize the algorithms from the binary case to the

weighted case. Now suppose that the square, symmetric, real-valued matrices A

and B in R
N×N represent two different types of interaction between a set of N

nodes.We have in mind the case where the weights play the role of correlation

coefficients. Our aim is to discover clusters, in the sense of subsets of nodes

that are mutually, pairwise, strongly connected through positive weights. The

algorithm will also discover clusters of strong negative connectivity, although in

practice this type of pattern is less likely to be present. However, we note that

the arguments given below and the resulting algorithm remain valid in the case

where the weights are non-negative, with zero representing the minimal level of

similarity.

We use the identity (2.1) as a starting point for a computational algorithm.

We may consider the identity in the same way as we did in Chapter 2. Applying

the same indicator vector x ∈ R
N introduced in Chapter 2 to the identity, now

we could argue that the existence of a third node, i, on two nodes, k and l,

such that aik and ail are both large and positive or both large and negative,

is evidence in favor of placing k and l in the same group (since they have in
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common a strong similarity or dissimilarity with node i). On the other hand,

small or oppositely signed values for aik and ail is evidence in favor of placing k

and l in different groups. In terms of the indicator vector, this translates to

1. aikail large and positive ⇒ try to choose xkxl = +1,

2. aikail small or negative ⇒ try to choose xkxl = −1.

Returning to the right-hand side of the identity (2.1), we see that
∑N

k=1 x2
k degA

k is

independent of the choice of indicator vector, and
∑N

i=1

∑N
k=1

∑N
l=1,l 6=k aikailxkxl

gives a measure of how successfully we have incorporated the (possibly conflict-

ing) desiderata in points 1 and 2 over all pairs k, l and third parties i. So we

could judge the quality of an indicator vector by its ability to produce a large

value of ‖Ax‖22, provided other constraints, such as balanced group sizes, were

satisfied.

Thus, we could argue that

max
x∈RN , x 6=0

‖Ax‖22
‖Bx‖22

. (6.1)

is a good basis for picking out strong clusters in A that are not present in B. In

this way, we have generalized Algorithm 1 in Chapter 2 to case of the weighted

graphs.

Having interpreted the algorithm in the same way as described in Chapter 2,

it is then straightforward to generalize the justification for Algorithm 2 to the

weighted case. That is, the optimization problem

max
x∈RN , x 6=0

‖B−1x‖22
‖A−1x‖22

. (6.2)

is a good basis for picking out strong clusters in A that are not present in B.

We emphasize that here A and B are symmetric, real-valued matrices.
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6.3 Cluster Validation

In Chapter 3, we designed a cluster validation approach for identifying the sig-

nificance of a cluster. There are 5 steps in the cluster validation method. For the

cluster quality measure c(A, B) we designed c1 (3.3) and c2 (3.4) in Chapter 3.

In Chapter 3, we defined the density f(s) (3.5) of a cluster s for the binary

graphs.

For the experiments in this chapter, these concepts must be extended to

allow for weighted edges. In the case where the cluster is dominated by positive

weights, we will generalize f(s) in (3.5) to

f(s) =
w(s)

|s|
. (6.3)

Here, w(s) denotes the average weight in block s, and |s| is the maximum possible

number of edges. We note that the denominator |s| cancels when ratios are

computed in the cluster validation algorithm. In the case where all weights are

zero or one, the general version (6.3) collapses to (3.5).

As discussed in Chapter 3, we must also decide how to randomize the net-

works in Step 2 in order to produce a specific algorithm for validating a cluster.

Three randomization methods were tested in Chapter 3, all of which gave simi-

lar results. Of those three methods, permutation extends most naturally to the

case of weighted edges, so we use that approach here.

Suppose now that we find τ nodes giving a good cluster s for B but a

poor cluster for A when the graphs are reordered by column v from X−T . The

following general approach can be used in order to determine a p -value:

Step 1: Compute a measure of cluster quality, c(A, B) (3.4), for the promising

substructure consisting of those τ nodes in networks A and B reordered
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by column ε.

Step 2: Randomize the networks and obtain new data sets Â and B̂.

Step 3: Compute the measure c(Â, B̂) for the τ node ‘cluster’ in Â and B̂.

p -value: After performing T loops over Steps 1 to 2, compute a p -value as the

proportion of c(Â, B̂) samples that exceed c(A, B).

Here, the number of steps is slightly different to those in Chapter 3. In

this process, we repeat Step 2 to Step 3 for T times and then for each instance

of randomized networks Â and B̂, we get a measure c(Â, B̂). After the loop,

we now have a value c(A, B) from our original experiment and lots of samples

c(Â, B̂) from randomized networks. We use the cluster quality measure given

in (3.4) accompanied with the density defined in (6.3) for our weighted graphs.

We randomize the metabolic data matrices with the permutation test.

In this test, we use the same null hypothesis H0 from Chapter 3 that the

cluster quality that we discovered could have arisen from the class of random

networks defined by Step 2. So our goal is to test whether c(A, B) is “unusually

large”. In this case, as introduced in Chapter 3, the p -value is simply the

proportion of samples which support the null hypothesis. We therefore use the

following expression to compute the p -values in the last step

p =
|c(Â, B̂) ≥ c(A, B)|

T
,

where |c(Â, B̂) ≥ c(A, B)| represents the number of times that c(Â, B̂) is larger

than or equal to the original measure c(A, B). So the p -value corresponds to

the proportion of randomly sampled networks for which a better clustering could

be found than the clustering on the original data A and B. If the p -value is
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less than 0.05, the null hypothesis will be rejected and then we can say that

our finding is “statistically significant at the 5% level”. Or we can express this

significant finding in another way: it is very unlikely that the value c(A, B) from

the real data would arise if we take a random network from the class defined by

Step 2.

6.4 Results and Discussions

6.4.1 Quantitative determination of metabolic pathways

disrupted in the Prefrontal Cortex of PCP-treated

animals

SIEVE analysis (Thermo-Fisher Scientific) [84, 87, 107, 108, 111, 119, 139] per-

formed by biological colleagues in this collaboration revealed significant PCP-

induced alterations in the level of specific metabolites in the PFC of PCP-treated

rats. This included multiple metabolites from the phenylalanine, tyrosine and

tryptophan metabolic pathway (defined in the Kyoto Encyclopedia of Genes

and Genomes (KEGG) metabolite pathway database) and two involved in the

alanine, aspartate and glutamate pathway, butanoate metabolism and in purine

metabolism. This suggested that these metabolic pathways are disrupted in the

PFC of PCP-treated animals. However, this simple level of analysis prevents any

quantitative and statistically rigorous determination of the pre-defined (KEGG)

metabolic pathways disrupted in the PFC of PCP-treated animals, which moti-

vates the use of our GSVD algorithm.

In the context of this study the aim of applying the GSVD algorithm to

metabolomic data from control and PCP-treated animals was to quantitatively
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determine which pre-defined KEGG pathways. The inter-metabolite Pearson’s

correlation coefficient (partial correlation) was used as the metric of the func-

tional association between each pair of metabolites and was generated from

the metabolite peak intensities, as determined by Liquid Chromatography Mass

Spectrometry (LC-MS), across all animals within the same experimental group

(i.e. either control or PCP-treated). These correlations were Fisher trans-

formed [84, 87, 107, 108, 111, 119, 139] to give the correlation data a normal

distribution. This resulted in a pair of symmetric, square, real-valued {98× 98}

partial correlation matrices. Each within-group matrix represents the specific

association strength between each of the 9506 possible pairs of metabolites in

that experimental group. A simple biological interpretation is that the corre-

lation coefficient between two metabolites (nodes) in the matrix represents the

series of enzymatic reactions responsible for converting one metabolite into an-

other. However, it should be noted that this simple interpretation does not

account for the complex relationships that may influence the correlation be-

tween two metabolites, such as the involvement of metabolites in alternative,

often parallel, metabolic pathways. In essence we can view the real valued edges

in the matrix as defining how many molecules of each metabolite exist rela-

tive to other metabolite. Because of the nature of the data, our network treats

interactions between molecules as bidirectional, and so the set of interactions

between molecules forms an undirected weighted network. In essence the GSVD

algorithm allows the re-ordering of the two experimental matrices A (control

animals) and B (PCP-treated animals) with the aim of discovering a new node

(metabolite) ordering that reveals clusters of nodes that exhibit strong connec-

tivity (mutual weights) in one network but not the other. In the context of

this data the aim of applying the GSVD algorithm was to identify clusters of
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metabolites present in one of the experimental groups that were not present

in the other, in the hope of identifying those metabolic pathways in the PFC

disrupted by PCP-treatment. Once the matrices had been re-ordered through

the GSVD algorithm the significant presence of a cluster in the given network

was statistically tested by comparison of the cluster quality measure in the real

networks relative to that in 1000 random permutations of the initial matrices,

as described in section 6.3.

As stated in section 2.2 in Chapter 2, we display here the metabolic data

using the heat map of the matrices. The heatmap is nowadays widely used in

visualizing biological data sets, especially gene expression data, from a cluster

analysis view [37, 134]. The original metabolic networks are shown in Figure 6.1,

where matrix A represents control animals and B represents PCP-treated ani-

mals. Here, the warmer colors indicate larger weights in the network and colder

colors correspond to smaller entries. Figures 6.2 and 6.3 show the networks

reordered by the first and the final column of X−T , respectively. Figure 6.3

provides visual evidence of clustered nodes present in one experimental group

but not the other. In this figure, two discrete clusters are visually apparent

(top left hand side and bottom right hand side of the heatmap) signifying those

clusters present in network A (control) but not in B (PCP). For Figure 6.3 the

significance of the top cluster (first 22 nodes in the re-ordering, p < 0.001) and

the bottom cluster (last 18 nodes in the re-ordering, p < 0.001) was confirmed,

as outlined in section 6.3. Hence there were clusters of metabolites significantly

present in control (A) animals that were not present in PCP-treated (B) animals.

The identity of the metabolites, the KEGG pathways in which each metabolite

is involved, and the PCP-induced alteration in the overt level of each metabolite

(as determined by SIEVE analysis) are shown in Tables 6.1 and 6.3 for the top



Metabolic Networks Analysis 115

and bottom cluster, respectively. In contrast to the metabolite clustering shown

in Figure 6.3 there was no evidence in Figure 6.2 for any significant cluster of

metabolites present in PCP-treated animals (B) that was not present in control

(A) animals; for example: (i) potential top cluster [first 10 nodes] p = 0.421; (ii)

potential middle cluster [nodes 18-25] p = 0.494. Rigorous significance testing,

involving multiple potential metabolite clusters, confirmed that there were no

significant clusters of metabolites in PCP-treated animals that were not present

in controls (Figure 6.2). Following significance testing of potential metabolite

clusters in the GSVD re-ordered matrices, hypergeometric probability (described

in the Supplementary Material at the end of this chapter) was applied to test

the significance of KEGG defined metabolite pathway over-representation in

these clusters. The results for hypergeometric probability testing are shown in

Tables 6.2 and 6.4.
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Figure 6.1: Control (A) and PCP (B) metabolic networks: original ordering.

Table 6.1 shows the top cluster of metabolites identified by the GSVD algo-

rithm that are present in the PFC of control animals but not in PCP-treated

animals (Figure 6.3). The molecular formula, tentative molecular identity and
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A reordered by the first column of X−T
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Figure 6.2: Control (A) and PCP (B) metabolic networks: reordered with the

first column from X−T .
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Figure 6.3: Control (A) and PCP (B) metabolic networks: reordered with the

final column of X−T .

the KEGG metabolic pathways in which a given metabolite is involved are

shown. The p -values and ratio change reported for each metabolite in this

cluster were calculated by SIEVE analysis. KEGG pathways identified in this
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Table 6.1: Metabolite identities and their relevant KEGG pathways in the top

cluster of Figure 6.3

Formula Metabolite Identity
KEGG

Pathways

p -

value

PCP/
Direction of

Change
Control

Ratio

C5H10N2O3 Glutamine c, m, l, o 0.522 0.959 DECREASE

H3PO4 Phosphoric acid w 0.254 0.915 DECREASE

C5H7NO3

Pyrroline-4-hydroxy-
c 0.781 0.981 DECREASE

2-carboxylate

C4H9N3O2 Creatine c, g 0.551 0.953 DECREASE

C4H9NO2 GABA d, k, q 0.021 0.804 DECREASE

C4H7NO4 L-Aspartate
c, d, g, j, n,

0.319 0.916 DECREASE
p, q, r, s

C4H7NO2

1-Aminocyclopropane-
e, f, t 0.590 0.951 DECREASE

1-carboxylate

C5H5N5O Guanine o 0.035 0.593 DECREASE

C5H9NO4 Glutamate c, e, m, q, r, x 0.845 0.985 DECREASE

C4H7NO 2-pyrrolidinone 0.098 0.842 DECREASE

C6H6N2O Nicotinamide s 0.440 0.917 DECREASE

C4H6O2 Butanedione k 0.017 0.786 DECREASE

C6H12O4 (R)-Pantoate j 0.722 0.963 DECREASE

C15H23N5O14P2 ADP-ribose o 0.058 677.029 INCREASE

C3H7NO3 L-Serine e, f, g, u, v 0.316 0.856 DECREASE

C4H5N3O Cytosine l 0.019 0.665 DECREASE

C2H7NO3S Taurine h, q 0.936 0.995 DECREASE

C4H5NO3 Maleamate s 0.372 0.927 DECREASE

C2H8NO4P Ethanolamine phosphate g 0.373 0.889 DECREASE

Unknown ID 0.271 1.395 INCREASE

C5H11NO3 Hydroxyvaline 0.585 0.946 DECREASE

C6H13N3O3 L-Citrulline c,d 0.007 0.709 DECREASE

cluster included (c) arginine and proline metabolism (d) urea metabolism (e)

cysteine metabolism (f) methionine metabolism (g) glycine, serine and thre-

onine metabolism (h) taurine and hypotaurine metabolism (j) panthotheate
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and CoA metabolism (k) butanoate metabolism (l) pyrimidine metabolism (m)

glutamate metabolism (n) alanine, aspartate and glutamate metabolism (o)

purine metabolism (p) lysine metabolism (q) neuroactive ligands (r) histadine

metabolism (s) nicotinamide metabolism (t) propanoate metabolism (u) sul-

phur metabolism, (v) sphingolipid metabolism, (w) oxidative phosphorylation

and (x) glutathione metabolism. While SIEVE analysis fails to attribute sig-

nificance (p < 0.05) to PCP-induced alterations in the overt concentration of

many metabolites in this cluster, GSVD analysis reveals that the relationship be-

tween the levels of these metabolites are significantly altered by PCP-treatment

(p < 0.001) highlighting the specific metabolic pathways that may be disrupted

in the PFC of PCP-treated animals. The most prominent alterations in KEGG

defined pathways in this cluster were in arginine and proline metabolism (6

metabolites (c)), neuroactive ligands (4 metabolites (q)) and glycine, serine and

threonine metabolism (4 metabolites (g)).

In Table 6.2 we show the hypergeometric probability of at least the ob-

served number of metabolites arising by chance for a given KEGG pathway

in the top cluster of Figure 6.3 identified though the GSVD algorithm as be-

ing present in control animals but not in PCP-treated animals. Further com-

putational details are given in the Supplementary Material at the end of this

chapter. There was a significant over representation of metabolites of (c) argi-

nine and proline metabolism, (g) glycine, serine and threonine metabolism, (m)

glutamate metabolism (q) neuroactive ligands and (s) nicotinamide metabolism

(highlighted in bold). This suggests that these metabolic pathways are disrupted

in the prefrontal cortex (PFC) PCP-treated animals. Here, the cluster size is 22

metabolites from a total population of 98.

Table 6.3 concerns the bottom cluster of metabolites identified by the GSVD
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algorithm that are present in the prefrontal cortex (PFC) of control animals

but not in PCP-treated animals. The table shows the molecular formula, ten-

tative molecular identity and the KEGG pathways in which a given metabo-

lite is involved. The p -values and ratio change reported for each metabolite

in this cluster were calculated by SIEVE analysis. KEGG pathways identified

in this cluster included (e) cysteine metabolism (f) methionine metabolism (g)

glycine, serine and threonine metabolism, (h) taurine metabolism, (i) thiamine

metabolism (j) panthoate and CoA biosynthesis, (k) butanoate metabolism (n)

alanine, aspartate and glutamate metabolism, (o) purine metabolism, (r) his-

tidine metabolism, (s) nicotinamide metabolism, (u) sulphur metabolism, (v)

sphingolipid metabolism, (x) glutathione metabolism, (y) glycerophospholipid

metabolism, (z) beta-alanine metabolism, (aa) fatty actid metabolism, (bb) gly-

coneolysis and glucogenesis (cc) pyruvate metabolism and (dd) pentose phos-

phate pathway. While SIEVE analysis fails to attribute significance (p < 0.05)

to PCP-induced alterations in the overt concentration of many metabolites in

this cluster, the PCP/Control ratio suggests that the levels of many of these

metabolites are markedly altered. GSVD analysis reveals that the relationship

between the levels of these metabolites in this cluster are significantly altered

by PCP-treatment (p < 0.001) highlighting the specific metabolic pathways

that may be disrupted in the PFC of PCP-treated animals. There appears to

be an over-abundance of purine (4 metabolites (o)) and glycerophospholipid (2

metabolites (y)) in the bottom cluster.

Table 6.4 shows the hypergeometric probability of randomly selecting at least

the observed number of metabolites of a given KEGG pathway in the bottom

cluster of Figure 6.3, identified though the GSVD algorithm as being present

in control animals but not in PCP-treated animals. There was no evidence for
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a particular over-abundance of metabolites from any given KEGG pathway in

this cluster. Cluster size is 18 metabolites from a total population of 98.

6.4.2 Discussion

Through its application to metabolomic data we have demonstrated the added

value that can be gained from applying the GSVD algorithm to two sets of

complex, network data based upon the same set of nodes. In particular, we

have demonstrated that the combined application of the GSVD algorithm with

hypergeometric probability analysis provides an analytical framework by which

statistical alterations in predefined metabolic pathways between experimental

groups can be defined from complex metabolomic data. There is a great un-

met need for this type of analytical approach in metabolomics, as well as in the

other omics fields (e.g. transcriptomics), which allows the quantification of alter-

ations at the biological systems (pathways) level rather than simply identifying

significant alterations of discrete measures (i.e. single metabolites).

Through the application of this analytical approach, in collaboration with

biological colleagues who are able to interpret the quantitative results, we iden-

tified statistically significant alterations in specific, pre-defined metabolic path-

ways (KEGG database pathways) that may contribute to PFC dysfunction in

PCP-treated animals, and so in schizophrenia. This included the disruption of

the (1) Arginine and Proline (2) Glycine, Serine and Threonine (3) Nicotinamide

and (4) glutamate metabolic pathways as well as an imbalance in (5) neuractive

ligands, as defined by the KEGG database (Table 6.2). The detection of compro-

mised glutamate metabolism in the PFC of PCP-treated rats seems particularly

pertinent given the reported alterations in extracllular glutamate availability in
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the PFC following repeated PCP treatment [90] and the central hypothesis of

hypofunctional glutamatergic PFC neurotransmission in schizophrenia [53, 82].

Overall, our collaborators were able to draw a number of inferences concern-

ing pathway disruption, some of which agree with previous studies and others of

which appear to lead to novel insights . Further details concerning the biological

interpretations can be found in [136].

Supplementary Material

Chemicals

The solvents used for the study were purchased from the following sources:

Acetonitrile, methanol and chloroform (Fisher Scientific, Leicestershire, UK) and

formic acid (VWR, Poole, UK). All chemicals used were of analytical reagent

grade. A Direct Q-3® water purification system (Millipore, Watford, UK) was

used to produce HPLC grade water which was used in all analysis. Standards for

90 common bio-molecules were also purchased which were used to characterize

the ZIC-HILIC column (Sigma Aldrich, Dorset UK).

Animals

All experiments were completed using male Lister Hooded rats (Harlan-Olac,

UK) housed under standard conditions (21�, 45-65% humidity, 12-h dark/light

cycle (lights on 0600h) with food and drinking water available ad libitum). All

manipulations were carried out at least 1 week after entry into the facility and

all experiments were carried out under the Animals (Scientific Procedures) Act

1986. Animals received either sub-chronic treatment with vehicle (0.9% saline,
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i.p., n = 5) or 2.58mg.kg−1 PCP.HCl (i.p., Sigma Aldrich, UK) once daily

for five consecutive days (n = 5). At 72 hours after the final drug treatment

dose animals were sacrificed and the brain rapidly dissected out and frozen in

isopentane (-40�) and stored at -80� until sectioning. Frozen brains were

sectioned (20µM) in the coronal plane in a cryostat (-20�). Tissue sections

from the prefrontal cortex (PFC, Bregma +4.70mm to Bregma +3.20mm) were

collected in 4ml glass vials with reference to a stereotactic rat brain atlas [97]

and stored at -80� until further preparation for LC-MS analysis.

Preparation of Polar Tissue Homogenates for LC-MS Anal-

ysis

Extraction of polar metabolites from brain tissue was carried out using the two-

step extraction method described previously [135], using methanol, water and

chloroform for the optimal extraction of polar metabolites. A hand held homog-

enizer was used to homogenize the samples once in solution. For preparation of

samples for LC-MS analysis 200µl of the collected polar extract was added to

600µl of 1 : 1 acetonitrile:water solution to produce a final solvent:sample ratio

of 3 : 1. The samples were then filtered using Acrodisc 13mm syringe filters

with 0.2µm nylon membrane (Sigma Aldrich) before LC-MS analysis.

LC-MS Analysis of Polar Metabolites

Experiments were carried out using a Finnigan LTQ Orbitrap (Thermo Fisher,

Hemel Hempstead, UK) using 30000 resolution. Analysis was carried out in

positive mode over a mass range of 60-1000 m/z. The capillary temperature

was set at 250� and in positive ionization mode the ion spray voltage was 4.5
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kV , the capillary voltage 30 V and the tube lens voltage 105 V . The sheath

and auxiliary gas flow rates were 45 and 15, respectively (units not specified by

manufacturer). A ZIC-HILIC column (5µm, 150× 4.6 mm; HiChrom, Reading,

UK) was used in all analysis and a binary gradient method was developed which

produced good polar metabolite separation. Solvent A was 0.1% v/v formic acid

in HPLC grade water and solvent B was 0.1% v/v formic acid in acetonitrile.

A flow rate of 0.3 ml/min. was used and the injection volume was 10µl. The

gradient programme used was 80% B at 0 min. to 50% B at 12 min. to 20%

B at 28 min. to 80% B at 37 min., with total run time of 45 minutes. The

instrument was externally calibrated before analysis and internally calibrated

using lock masses at m/z 83.06037 and m/z 195.08625. Samples were analysed

sequentially and the vial tray temperature was set at a constant temperature of

4�.

Data preparation and analysis

Determination of overt alterations in metabolite levels between ex-

perimental groups

The software programme Xcalibur (version 2.0) was used to acquire the LC-MS

data. The raw Xcalibur data files from version 1.2 (Thermo Fisher, Hemel Hemp-

stead, UK). SIEVE software (Thermo-Fisher Scientific) was used to identify all

metabolites affected by drug treatment by calculating a p -value and ratio based

on the difference in average intensities of individual peaks, which correspond to

different metabolites, between wild-type and KO sample groups. A significant

difference in the level of each metabolite between groups was set at p -value< 0.05

and/or ratio less than 0.5 for downregulated metabolites and greater than 2 for
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upregulated metabolites. The ratio is the fold change in average peak intensities

from control and treatment groups. For metabolite identification the masses of

the polar metabolites were compared to the exact masses of 6000 biomolecules

using an inhouse developed macro (Excel, Microsoft 2007).

Hypergeometric probability testing

The hypergeometric probability test was used to calculate the probability of find-

ing at least the observed number of metabolites of a given pre-defined metabolic

pathway (as defined on the KEGG pathway database) in the clusters identified

through the GSVD algorithm, with knowledge of the total number of metabo-

lites present in that pathway detected by LC-MS in these samples. The hy-

pergeometric probability test was used to identify whether any of the KEGG

defined metabolic pathways were significantly over-represented in any of the

GSVD identified clusters. In its general form hypergeometric probability al-

lows the calculation of the probability of observing at least (k) metabolites from

a given defined KEGG pathway in a defined cluster of metabolites (n) given

the total number of metabolites (N) and the total number of metabolites from

the pathway in question (m). The probability mass function of hypergeometric

distribution is:

f(k; N, m, n) = P (X = k) =




m

k








N −m

n− k








N

n





. (6.4)
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So here the probability is calculated using the formula

P (X ≥ k) =

m∑

i=k




m

i








N −m

n− i








N

n





. (6.5)

Significant over-representation of a given functional group in any GSVD defined

significant cluster was set by a hypergeometric probability threshold of 0.05.
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Table 6.2: Hypergeometric probability of KEGG defined metabolic pathways in

the top cluster in Figure 6.3

KEGG Pathway

Number of

pathway

metabolites

in cluster(A)

Total

number of

pathway

metabolites

detected (B)

Hypergeometric

Probability

(P (X) ≥ k)

(a)
Phenylalanine, Tyrosine

0 4 1.000
and Tryptophan biosynthesis

(b) Thiamine metabolism 0 2 1.000

(c) Arginine and Proline metabolism 6 8 0.001

(d) Urea metabolism 3 7 0.186

(e) Cysteine metabolism 3 5 0.073

(f) Methionine metabolism 2 5 0.312

(g)
Glycine, Serine and

4 7 0.043
Threonine metabolism

(h) Taurine and Hypotaurine metabolism 1 3 0.538

(i) Thiamine metabolism 0 2 1.000

(j) Panthothenate and CoA biosynthesis 2 5 0.312

(k) Butanoate metabolism 2 4 0.217

(l) Pyrimidine metabolism 2 6 0.406

(m) Glutamate metabolism 2 2 0.049

(n)
Alanine, Aspartate and

1 6 0.792
Glutamate metabolism

(o) Purine metabolism 3 13 0.598

(p) Lysine metabolism 1 4 0.645

(q) Neuroactive ligands 4 7 0.043

(r) Histidine metabolism 2 5 0.312

(s) Nicotinamide metabolism 3 4 0.034

(t) Propanoate metabolism 1 1 0.224

(u) Sulfur metabolism 1 3 0.538

(v) Sphingolipid metabolism 1 3 0.538

(w) Oxidative phosphorylation 1 1 0.224

(x) Glutathione metabolism 1 4 0.645
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Table 6.3: Metabolite identities and their relevant KEGG pathways in the bot-

tom cluster of Figure 6.3

Formula Metabolite Identity
KEGG

Pathways

p -

value

PCP/
Direction of

Change
Control

Ratio

C5H4N4O2 Xanthine o 0.339 0.508 DECREASED

C10H16N2O7 Gamma Glutamylglutamic acid 0.143 0.54 DECREASED

C14H26O2 Myristoleic acid 0.689 0.623 DECREASED

C5H4N4O Hypoxanthine o 0.115 0.569 DECREASED

C17H37NO2 Heptadecasphinganine v 0.733 0.769 DECREASED

C10H13N4O8P IMP o 0.461 0.73 DECREASED

C10H17N3O6 Unknown ID 0.775 1.183 INCREASED

C6H15NO3 Triethanolamine y 0.691 1.207 INCREASED

C9H14N4O3 Carnosine n, r, z 0.872 1.128 INCREASED

C10H12N4O5 Inosine o 0.090 0.6 DECREASED

C15H12O5 narigenin 0.196 0.862 DECREASED

C10H17N3O6 gamma-Glutamylglutamine 0.007 0.673 DECREASED

C26H42N7O20P3S 2-Hydroxyglutaryl-CoA k 0.179 0.715 DECREASED

C31H54N7O17P3S Decanoyl-CoA aa 0.410 1.312 INCREASED

C25H44NO7P 2-Aminoethylphosphocholate z 0.243 0.662 DECREASED

C22H26O6 Eudesmin 0.084 0.493 DECREASED

C3H7NO2S L-Cysteine
e, f, g, h,

0.012 0.445 DECREASED
i, j, u, x

C3H7O6P ) Glycerone phosphate
s, y, bb,

0.063 0.381 DECREASED
cc, dd
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Table 6.4: Hypergeometric probability of metabolic pathways in bottom cluster

in Figure 6.3

KEGG Pathway

Number of

pathway

metabolites

in cluster(A)

Total

number of

pathway

metabolites

detected (B)

Hyper-

geometric

Probability

(P (X) ≥ k)

(e) Cysteine Metabolism 1 5 0.646

(f) Methionine metabolism 1 5 0.646

(g) Glycine, serine and threonine metabolism 1 7 0.770

(h) Taurine and hypotaurine metabolism 1 3 0.460

(i) Thiamine metabolism 1 2 0.335

(j) Panthothenate and CoA biosynthesis 1 5 0.646

(k) Butanoate metabolism 1 4 0.562

(n) Alanine, aspartate and glutamate metabolism 1 6 0.715

(o) Purine metabolism 4 13 0.191

(r) Histidine metabolism 1 5 0.646

(s) Nicotinamide metabolism 1 4 0.562

(u) Sulphur metabolism 1 3 0.460

(v) Sphingolipid metabolism 1 3 0.460

(x) Glutathione metabolism 1 4 0.562

(y) Glycerophospholipid metabolism 2 8 0.452

(z) Beta-alanine metabolism 1 3 0.460

(aa) Fatty acid metabolism 1 1 0.184

(bb) Glycolysis and Gluconeogenesis 1 2 0.335

(cc) Pyruvate metabolism 1 2 0.335

(dd) Pentose phosphate metabolism 1 2 0.335



Chapter 7

Brain Networks Analysis

7.1 Background

7.1.1 Background in Brain Networks

The brain has a complex structure (anatomical) and functional organization

that is yet to be fully elucidated. In vivo brain imaging techniques allow us to

gain further insight into the structural and functional organization of the brain.

Recently, it has been shown that structural and functional brain networks, as

detected using in vivo brain imaging, display the features of complex networks

that allow the brain to be modeled as networks or graphs [18, 24, 49, 70, 72,

114, 138, 141]. Properties of these networks can then be quantitatively defined

through the application of graph theory. Many studies have characterized the

properties of either functional [1, 9] or structural [52] brain networks indepen-

dently, using functional magnetic resonance imaging (fMRI) or diffusion tensor

imaging (dMRI), respectively. More recently, studies have been dedicated to

further elucidating the relationship between structural and functional brain net-

129
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works [18]. These studies have shown that both structural and functional brain

networks have a small-world organization, that is to say they display a high

clustering coefficient and short path length in comparison to networks with a

random organization [1, 9, 10, 12, 18, 49, 67, 69, 71]. This small-world organi-

zation is likely to be optimal for efficient information transfer throughout the

brain [9, 10, 11, 12].

In most studies brain networks are generated as weighted matrices of pairwise

associations between brain regions (nodes). A threshold is then applied to these

matrices resulting in the generation of a binary adjacency matrix (an undirected

graph). Properties of brain networks are then characterized through the prop-

erties of these undirected graphs. However, this binarization procedure is not

always applied and the properties of brain networks have also been investigated

using real-value weighted [24] or directional graphs [70].

Structural brain networks describe the anatomical connectivity of the brain

and can be represented as graphs comprised of nodes, representing different brain

regions, with edges describing a physical relationship (anatomical connectivity)

between these regions.

Functional brain networks describe another type of connectivity within the

brain where the nodes of the graph represent anatomically defined brain re-

gions and the edges represent the functional connectivity between those brain

regions. Here functional connectivity quantifies how the activity in one brain

region affects that of others within the network [1, 11, 12, 18, 31, 49, 114]. For

example, this may be measured via correlations in electrical activity over time.

While structural brain networks can help us to understand the fundamental

architecture of the brain, functional brain networks reveal how this architec-

ture supports neurophysiological dynamics in the brain. While the structural
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organization of brain networks is not altered by specific stimuli, the organiza-

tion of functional brain networks is. Therefore, the coordinated study of the

structural-functional relationship in complex brain networks is also an impor-

tant theme [18, 66, 114, 138, 141].

In this dissertation we aim to characterize the properties of brain networks

gained through different imaging methods. We have already considered the ap-

plication of our algorithm to structural brain imaging data, from the macaque

monkey (Chapter 2). In this chapter, we consider the usefulness of applying these

algorithms to functional brain imaging data from the rat. Other important dif-

ferences exist between the brain networks in these two studies. For example, the

macaque brain networks, produced from anatomical tract tracing, are binary

and not completely bidirectional. In contrast, the brain networks investigated

in this chapter are real-valued weighted and undirected. As we stated above, a

binary adjacency matrix can be produced from a weighted matrix by applying a

threshold. However, the choice of threshold used to generate the binary matrix

is crucial: different thresholds will generate graphs with different sparsity or

connection density [18]. An uninformative threshold leads to a loss of informa-

tion and the corresponding binary matrices produced are often heavily biased.

For this reason, we chose to apply the algorithm to the weighted networks di-

rectly. In Chapter 4, we set up the algorithms to process a pair of real-valued

weighted networks simultaneously. This enables us to explore the weighted,

undirected brain networks generated from this brain imaging data. The work

described in this chapter has evolved out of a collaboration with experimental

neuroscientists, using previously unpublished data. We refer to [29] for further

experimental details.
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7.1.2 Motivation in NeuroScience

As we stated in section 6.1 in Chapter 6, NMDA receptor hypofunction con-

tributes to pathophysiology of schizophrenia. Phencyclidine (PCP) is an NMDA

receptor antagonist and treating rats with this drug provides a translational

model for schizophrenia [23, 99]. Similar to Chapter 6, here we investigate the

effects of PCP on functional brain networks in order to further understand the

role of NMDA receptor hypofunction in contributing to altered brain function-

ing in schizophrenia. However, this chapter deals with a different type of data

set involving direct correlations between brain regions.

In the work of Dawson et al. (2010) [27], brain network properties were

calculated on the binary undirected graphs from PCP-treated and Control an-

imals, separately. However, in this work, we are studying a pair of real-valued

weighted brain networks simultaneously. We aim to find nodes that are strongly

connected in one animal group but not the other. In other words, we want to

find some brain regions or some functional groups which are significantly clus-

tered in Control but not in PCP-treated animals, or vice versa. We also hope to

test how alterations in hub brain regions in PCP-treated animals relate to the

alterations we see in functional clustering.

In this work, we are anticipating that we can identify nodes (brain regions)

that form a good cluster in the brain network of Control animals but not in PCP-

treated animals, or vice versa. In Chapter 4, we derived algorithms to explore a

pair of weighted networks simultaneously: we can find a group of nodes strongly

connected in one graph that are not in the other. Applying these algorithms

to functional brain imaging data from the translational PCP model has the

potential to provide insight into the true nature of disrupted brain functioning
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in these animals. Furthermore, if we can also identify some specific functional

groups that are significantly over-represented within the given clusters, we can

gain further scientific insight into the specific functional subsystem disrupted in

the brains of PCP-treated animals.

Section 7.2 briefly introduces what is our data. Section 7.3 presents the re-

ordering results of the algorithm, showing the effect of subchronic PCP treat-

ment on functional brain networks and discussing the results based on the iden-

tified significant clusters and hub regions. Finally, we give a summary of the

work in this chapter in section 7.4. In addition, supplementary material is also

provided at the end of the chapter, indicating how the brain data were collected

and how the weighted brain data matrices were generated.

7.2 Material and Methods

In this work, we have two functional interaction data sets available: one dataset

is obtained from control animals, the other is derived from a translational model

relevant to schizophrenia, rats treated subchronically with phencyclidine (PCP).

The materials and methods used to generate the object data are introduced

in [26, 28, 29, 74]. Further information is provided at the end of this chapter. In

summary, we have a pair of symmetric, real-valued weighted matrices A (Con-

trol) and B (PCP) in R
64×64, representing two functional brain networks under

the different experimental conditions (Control and PCP) over the same set of

nodes (brain regions). The value of each entry aij or bij in these two correla-

tion matrices can be regarded as the functional connection strength between the

cooresponding nodes within each group. Here, the 64 brain regions can be associ-

ated with 10 different functional subsystems: Thalamus, Hippocampus, Frontal
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cortex, medial Prefrontal cortex, Cortex, Mesolimbic, Amygdala, Septum/DB,

Basal Ganglia and Multimodal [27, 29] based on established anatomical connec-

tivity or biological function. The 10 functional groups are shown in Table 7.1.

In section 7.1.1, we mentioned that brain networks are generally binarized.

For example, in the work of Dawson et al. (2010) [27], they take the approach of

converting the weighted correlation data to binary adjacency matrices by apply-

ing a range of thresholds. An element of the binary matrix can be understood to

be denoting whether the two corresponding nodes have a functional connection,

or not. The entry in the binary matrix is zero if the corresponding weight (cor-

relation) aij or bij is lower than the defined threshold and unity if the coefficient

was greater or equal to the defined threshold. The network properties are then

defined by computing popular global or regional (local) statistical measures of

these binary adjacency matrices [27]. In addition, hub brain regions are identi-

fied. In the network, a “hub” is a brain region with many connections, so it is

important in governing the activity in the network. A illustration of a hub region

group is shown in Figure 7.6. A brain region is considered to be an important

hub region in the network when it has a high centrality relative to the average in

the brain network (either the Control or PCP-treated brain network). Further

details of the hub brain regions can be seen in [29]. The hub status of brain

regions altered in PCP-treated animals was also investigated. 12 brain regions

were identified as hub regions in Control that were lost in PCP-treated animals.

On the other hand, 11 hub regions were gained in PCP-treated animals that

were not important in Control, indicating an abnormal brain network organiza-

tion in these animals. LC, dRT, vRT, VLthal, CLthal, MDthal, Re, RSC, CA2,

NaCc, iHab and CA3 are the 12 hub regions in the Control network. FRA, PrL,

LO, DLST, BST, AVthal, Rh, mHab, Piri, Sub and IP are the 11 hub regions
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in the PCP network. Recall that the full node name list of the 64 discrete brain

regions was shown in Table 7.1.

7.3 Results and Discussions

7.3.1 Reordering the Data
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Figure 7.1: Original Control (A) and PCP (B) brain networks.
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Figure 7.2: Reordering 1: Control (A) and PCP (B) brain networks reordered

with the first column of X−T .
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Figure 7.3: Reordering 2: Control (A) and PCP (B) brain networks reordered

with the second column of X−T .
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Figure 7.4: Reordering 3: Control (A) and PCP (B) brain networks reordered

with the penultimate column of X−T .

Figures 7.1 to 7.5 are heatmaps of the original and reordered brain data

matrices. These allow the visual identification of the clustered nodes that are

present in one experimental group but not the other. Figure 7.1 shows the

original brain data matrices ordered alphabetically. Figure 7.2 shows the data

reordered with the first column from X−T , which we call reordering 1. Figure 7.3

shows the data reordered with the second column from X−T , which we call
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Figure 7.5: Reordering 4: Control (A) and PCP (B) brain networks reordered

with the final column of X−T .

reordering 2. Recalling the theory described in Chapter 4 on a pair of weighted

matrices, we also reordered the networks in an attempt to reveal clusters in

PCP that are not present in Control (Figure 7.2). Figure 7.3 is another attempt

toward the same goal. Figure 7.2 gives visual evidence for two discrete node

clusters (at the top left and bottom right hand side of the heatmaps) in PCP

but not in Control. In Figure 7.3, there appear to be three discrete clusters (top

left hand side, center and bottom right hand side of the heatmaps) in PCP but

not in Control. On the other hand, Figures 7.2 and 7.3 show no obvious patterns

of clustering for nodes in Control animals but not in PCP-treated animals. Both

reordering 1 and 2 seem to reveal interesting differences in the form of clusters

of nodes that are in PCP-treated animals but not present in Control animals.

Perhaps ordering 2 is more informative than reordering 1. In Figure 7.4, we

have reordered the networks with the penultimate column from X−T , which we

call reordering 3. Recalling the algorithms in Chapter 4, this is an attempt to

reveal clusters in Control that are not present in PCP. Analogously, Figure 7.5 is

another attempt to reveal clusters in Control but not in PCP, which are reordered
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with the final column of X−T (reordering 4). Both reordering 3 and 4 seem to

show differences in clustering between the experimental groups. Figure 7.4 gives

visual evidence for one cluster of brain regions (at the bottom right hand side of

the heatmaps) for Control animals that are not present in PCP-treated animals,

and in Figure 7.5, there appear to be one cluster (at the bottom right hand

side of the heatmaps) for Control animals that are not present in PCP-treated

animals. We will quantify these visual observations by the cluster validation

method introduced in section 6.3 of Chapter 6 to identify significant clusters in

these reorderings (Table 7.1 in section 7.3.2).

7.3.2 Significant PCP-induced alternations in functional

brain networks

Table 7.1 shows the rank order of brain regions in the original ordering and

in reordering 1, reordering 2, reordering 3 and reordering 4, where color repre-

sents the distinct 10 functional groups that each brain regions belongs to. As

we described in section 7.3.1, reordering 1 and 2 establish node clusters present

in Control animals that are not in PCP-treated animals, whereas, reordering 3

and 4 establish node clusters present in PCP-treated animals that are not in

present in Control animals. A small p -value (< 0.05) identifies a significant

cluster in these reorderings. There are 3 significant clusters (1 discrete and 2

overlapping) identified in reordering 1, and 3 discrete significant clusters identi-

fied for PCP-treated animals in reordering 2. On the other hand, reordering 3

only reveals 1 significant cluster for Control animals, while reordering 4 reveals

3 significant clusters (1 discrete and 2 overlapping). The top cluster (nodes 1-

10) is difficult to see on the printed page, but it was validated as a significant
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cluster (p < 0.05). Brain regions are grouped and color coded on the basis of

their close anatomical connectivity or established functional role. On a visual

basis it appears that discrete clusters of nodes identified through our algorithm

may represent node clusters with known connectivity (e.g. cluster nodes 55-64

in reordering 2 appear to be mainly hippocampal). To test the significance of

this possible functional segregation, the hypergeometric probability of observing

at least the given number of brain regions in a defined functional cluster was

calculated. The hypergeometric probability testing has already been introduced

in the Supplementary Material at the end of Chapter 6. The significant over-

abundance of a given functional group in any GSVD identified significant cluster

was set at a hypergeometric probability of p < 0.005 and a Bonferroni type cor-

rection was applied to the probability value to account for the effect of multiple

comparison in investigating 10 pre-defined functional groups (p < 0.05/10).

The corresponding probabilities and results are given in Table 7.2. For

each significant cluster identified in the reordered matrices, the hypergeomet-

ric probability of observing functionally/anatomically-related nodes (as previ-

ously defined at the end of Chapter 6) within that cluster grouping was cal-

culated. Anatomically/functionally related groups found to be significantly

over-represented within a given functional cluster are highlighted in red. In

reordering 4, which identifies nodes significantly clustered in Control animals

that are not clustered in PCP-treated animals, the basal ganglia are shown to

be over-abundant in the nodes 1-10 cluster of reordering 4. Thalamic regions are

confirmed to be significantly over-abundant in both the nodes 33-64 and nodes

54-64 clusters of reordering 4. These results suggest that the basal ganglia and

thalamus brain regions are functionally clustered in control animals but these

functional clusters are lost following subchronic PCP-treatment. Interestingly,
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hub regions previously identified in Control animals [27, 29] also showed a signifi-

cant overabundance in the nodes 54-64 cluster in reordering 4. These hub regions

in control animals are known to lose their hub status in PCP-treated animals.

Furthermore, as the control functional brain network displays the property of

assortativity [27], where hub regions connect to one another within a network,

this suggests that our algorithm is capable of identifying alterations in clustering

previously identified through the application of other algorithms. Analogously,

in reordering 2, which identifies nodes significantly clustered in PCP-treated

animals that are not clustered in Control animals, the Frontal cortex regions

are shown to be significantly over-represented in the nodes 1-11 cluster, the

medial prefrontal cortex regions are shown to be significantly over-abundant in

the nodes 29-43 cluster, septum/DB regions are shown to be significantly over-

abundant in the nodes 26-41 cluster and hippocampus regions are confirmed to

be significantly over-abundant in the nodes 55-64 cluster. This suggests that

in PCP-treated animals these anatomically interconnected regions, the frontal

cortex, medial prefrontal cortex, septum/DB and hippocampus regions, form

discrete functional clusters that are not present under normal conditions, in

control animals. From Table 7.2, we can see that reordering 4 and reorder-

ing 2 are more informative than reordering 3 and reordering 1 in showing more

significantly over-abundant functional groups for one connectivity pattern that

are not in the other pattern. This is consistent with the visual evidence from

the reordering matrices shown in Figures 7.2 to 7.5. Finally, we mention that

multimodal areas are involved in many different processes and each region has

a very different role, hence we do not list the hypergeometric probabilities for

this functional group in Table 7.2.
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Table 7.1: All reordered brain region lists with identified significant clusters.
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Table 7.2: All hypergeometric probability data for all identified significant clusters

Reordering Cluster c(A, B) p -value Cluster size (n) Functional group

Total number of

RoI in grouping

(m)

Number of RoI

in cluster (k)

Hypergeometric

probability

(P (X) ≥ k)

1

nodes 1-19 7.448 0.002 19

Thalamus 11 6 0.056

Cortex 6 3 0.242

medial Prefrontal cortex 4 3 0.075

Frontal cortex 6 3 0.242

Mesolimbic 4 1 0.766

PCP Hubs 11 3 0.701

nodes 8-21 5.874 0.013 14

Thalamus 11 3 0.450

Cortex 6 1 0.788

medial Prefrontal cortex 4 2 0.206

Frontal cortex 6 3 0.113

Mesolimbic 4 1 0.638

PCP Hubs 11 4 0.187

nodes 53-64 7.503 0.016 12

Basal Ganglia 6 2 0.312

Septum/DB 4 1 0.574

Amygdala 3 2 0.088

Hippocampus 5 1 0.659

Mesolimbic 4 2 0.157

PCP Hubs 11 3 0.337

2 nodes 1-11 13.863 0.008 11
Frontal cortex 6 6 6.162 × 10−6

Cortex 6 2 0.273

Continued on Next Page
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Reordering Cluster c(A, B) p -value Cluster size (n) Functional group

Total number of

RoI in grouping

(m)

Number of RoI

in cluster (k)

Hypergeometric

probability

(P (X) ≥ k)

2

nodes 1-11 13.863 0.008 11
Thalamus 11 1 0.897

PCP Hubs 11 5 0.016

nodes 29-43 6.836 0.007 15

medial Prefrontal cortex 4 4 2.148 × 10−3

Thalamus 11 4 0.229

Septum/DB 4 3 0.037

Mesolimbic 4 1 0.667

Basal Ganglia 6 2 0.432

PCP Hubs 11 1 0.961

nodes 26-41 6.931 0.006 16

Septum/DB 4 4 2.864 × 10−3

Cortex 6 1 0.836

medial Prefrontal cortex 4 3 0.045

Thalamus 11 4 0.274

Basal Ganglia 6 1 0.836

Mesolimbic 4 1 0.694

PCP Hubs 11 1 0.970

nodes 55-64 6.202 0.039 10

Hippocampus 5 5 3.305 × 10−5

Basal Ganglia 6 3 0.044

Amygdala 3 2 0.061

PCP Hubs 11 1 0.871

3 nodes 55-63 5.202 0.044 9

Thalamus 11 4 0.040

Amygdala 3 1 0.370

Hippocampus 5 1 0.544

Continued on Next Page
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Reordering Cluster c(A, B) p -value Cluster size (n) Functional group

Total number of

RoI in grouping

(m)

Number of RoI

in cluster (k)

Hypergeometric

probability

(P (X) ≥ k)

3 nodes 55-63 5.202 0.044 9
medial Prefrontal cortex 4 1 0.463

Control Hubs 12 5 8.566 × 10−3

4

nodes 1-10 7.770 0.046 10

Frontal cortex 6 3 0.044

Basal Ganglia 6 4 4.192 × 10−3

Septum/DB 4 1 0.502

Control Hubs 12 0 1.000

nodes 33-64 3.600 0.033 32

Thalamus 11 11 1.735 × 10−4

Amygdala 3 3 0.119

Basal Ganglia 6 2 0.902

Hippocampus 5 3 0.500

Septum/DB 4 2 0.694

Frontal cortex 6 1 0.988

medial Prefrontal cortex 4 1 0.943

Cortex 6 2 0.902

Mesolimbic 4 1 0.943

Control Hubs 12 9 0.053

nodes 54-64 10.817 0.026 11

Thalamus 11 6 1.918 × 10−3

Hippocampus 5 1 0.624

Amygdala 3 1 0.438

Basal Ganglia 6 1 0.694

Control Hubs 12 6 3.533 × 10−3
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7.3.3 Discussion

Figure 7.6 illustrates how different functional subsystems may exchange infor-

mation through a center cluster (hub regions) in the brain. In Figure 7.6, yellow

ellipse A represents a group of brain regions assigned to a defined functional sub-

system. This functional group A consists of discrete brain regions, which are

represented by blue circles inside. The other yellow ellipse B denotes another

brain functional subsystem which is influenced by functional activity in A. The

green circles in B represent another set of nodes (brain regions). The compara-

bly smaller gray ellipse C is used to denote a center cluster which consists of the

hub regions in brain. The black lines inside the ellipses are present in the brain

network of PCP-treated animals and are not present in Controls. They represent

nodes (brain regions) that are strongly connected within functional group A or

B only in the PCP-treated brain network. The red lines, which are present in

Control but lost in PCP-treated animals, denote the connections between the

functional areas and the central cluster of hub brain regions. Therefore, here

the black lines and the red lines can be used to represent two different types

of functional interactions between the brain regions. Normally, different brain

regions in functional subsystems are strongly connected to the central cluster

(eg. Thalamus), which can transfer information between the different functional

subsystems. Suppose A is the Frontal cortex functional group which controls

behavioral flexibility, and B is the Hippocampus functional group which is in-

volved in the memory. In Control animals, the red links are present. Therefore,

information can be efficiently exchanged and integrated between these differ-

ent functional subsystems (groups) A and B since A and B are both strongly

connected to C. In this way, in Control animals, if an alteration in behavior
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(behavioral flexibility) is required, it can efficiently integrate with the previous

experiences an animal remembers (memory). On the contrary, in PCP-treated

animals, the red edges present in the Control network are lost. Therefore func-

tional subsystems A and B can not exchange information efficiently. In this

case, brain functions become abnormal and animals cannot modify their behav-

ior based on knowledge of past experiences [99]. On the other hand, the internal

black connections within A or B, which are relatively weak in Control animals,

now become strong in PCP-treated animals. And this results in the abnormal

functional clustering of these brain regions, as identified through GSVD analysis.

For example, in Figure 7.6, we may argue that the thalamic nodes, the center

area C, are functionally clustered in Control animals but lost in PCP-treated

animals. On the other hand, Frontal cortex and Hippocampus brain regions,

functional areas A and B, are functionally clustered in PCP with the black

edges but not in Control.

Figure 7.6: Information exchange between different functional groups through

the hub regions.
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7.4 Summary

In this chapter, we looked at the case of two functional brain networks over the

same set of nodes (brain regions), and applied algorithms developed in Chap-

ter 4 for processing of this pair of symmetric, real valued weighted brain net-

works. The target data, functional brain networks, are correlation matrices of

the discrete brain regions. We found some exclusive good clusters present in one

brain network that were not in the other. The clusters were found to consist

of brain regions forming part of specific functional groups that are significantly

over-abundant within the defined given clusters.

Through application to functional brain imaging data, we have shown that

our algorithms can provide added insight into the true nature of brain dysfunc-

tion in a translational animal model relevant to schizophrenia. Taking such

a biological systems approach to functional brain imaging data is currently of

great interest to the neuroscience community.

Supplementary Material

The brain data are collected from the same background strain (Hooded Lis-

ter, Harlan-Olac, UK) of male rats. The Control animals are healthy animals

that are injected with physiological saline. PCP-treated animals receive daily

injections of 2.58mg.kg−1 PCP.HCl that induces overt alternations in cerebral

metabolism (function). We observe alterations of the amount of metabolism in

each brain region over the 45 minute period for both Control and PCP-treated

animals following tracer injection. Semi-quantitative 14C-2-deoxyglucose (14C-

2-DG) Autoradiographic Imaging was applied to Control and PCP-treated rats
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to investigate metabolism in 64 anatomically distinct brain regions, defined with

reference to a stereotactic rat brain atlas [97]. The rate of metabolism, Local

cerebral glucose utilization (LCGU), in each region of interest (RoI) was de-

termined as the ratio of 14C present in that region relative to the average 14C

concentration in the whole brain of the same animal, and from hereon in will be

referred to as the 14C-2-DG uptake ratio. Whole brain average 14C levels were

determined from the average 14C concentration across all sections in which a RoI

was measured. The correlation between functional activity in the discrete brain

regions is generated from the 14C-2-DG uptake ratios for each region across all

animals within the same experimental group.



Chapter 8

The Rectangular Case

8.1 Introduction

Generally, networks can be described in terms of graphs [30, 91]. In mathematics

and computer science, a graph is usually represented by a matrix. In previous

chapters, we developed an intuitive understanding of why the GSVD is useful for

processing pairs of related data sets. Firstly, from an optimization viewpoint,

we derived algorithms that attempt to shuffle nodes by exploiting the variational

properties of the GSVD [21]. Second, in Chapter 4, we interpreted an algorithm

for computing the GSVD as an iterative method in order to justify the approach

further. However, the corresponding theory and experiments are all based on

square matrices.

Recalling the definition of the standard GSVD in (2.4) of Chapter 2, the

GSVD works on a pair of matrices A and B with the same column size, allowing

different sizes for their rows. Hence the main goal of this chapter is to extend

the application of the GSVD to a pair of nonsquare data matrices with the same

column size. The nonsquare case corresponds to a bipartite graph where edges

149
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connect one set of nodes to another, distinct, set of nodes, so that aij represents

the weight between the ith node in the first set and the jth node in the second

set.

The chapter is organized as follows: Section 8.2 considers how an algorithm

can be derived to reorder the rows and columns of a pair of nonsquare data sets.

Section 8.3 gives an alternative algorithm to solve the same problem. Section 8.4

presents numerical test results of the most promosing algorithm on a synthetic

data set. The chapter ends with a summary.

8.2 Algorithm Derivation

We recall that the GSVD expresses a pair of nonsquare matrices A ∈ R
M×N

with M ≥ N and B ∈ R
P×N as

A = UCX−1 and B = V SX−1, (8.1)

where C = diag(ci) with 0 ≤ c1 ≤ c2 ≤ · · · ≤ cN , S = diag(si) with s1 ≥ s2 ≥

· · · ≥ sq ≥ 0 and q = min(P, N) [48].

Let the nonsingular matrix X be defined by the column partitioning X =

[x[1], x[2], · · · , x[end]], so that x[i] represents the ith column of X. Analogously,

we use u[i] to represent the ith column for orthogonal matrix U and v[i] for the

other orthogonal matrix V , and e[i] denotes the ith column of the identity matrix

I.

Our aim is to motivate the use of x[end], the final column of X, to reorder

the columns of A and B, and use u[end], the final column of orthogonal matrix

U , to reorder the rows of A in order to find clusters in A that are not clusters

in B. In this case, we do not necessarily have to think about ordering B with



The Rectangular Case 151

the final column vector v[end] from the other orthogonal matrix V .

Our approach is that we first think about columns of A in an attempt to

justify the use of x[end] and then think about rows of A in order to justify the

use of u[end]. We will illustrate the approach in the case where A contains two

distinct clusters.

Suppose the rows and columns of A can be divided into two sets, R1, R2, and

C1, C2, respectively, such that if we order with respect to these sets we obtain

the matrix as shown in Figure 8.1, where black areas represent large entries.

C1 C2

R1

R2

Figure 8.1: Reordered matrix.

We also suppose that B does not have these clusters. We introduce an

indicator vector x with xi ∈ {−1, 1} for the columns. We want x to find the

appropriate column structure, with xi = 1 correspond to a column in C1 and

xi = −1 corresponding to a column in C2.

If x is a good indicator vector then

(Ax)i :=
N∑

j=1

aijxj

will have large positive entries for rows in one group (say R1) and large negative
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entries for rows in the other group. For B, the components

(Bx)i :=
N∑

j=1

bijxj (8.2)

will generally be small in modulus due to cancellation of terms involving large

entries bij . In other words, maximizing (8.2) will not put large entries in the

same cluster for B.

After relaxation to a real valued vector x ∈ R
N , this motivates the opti-

mization problem

max
x 6=0

‖Ax‖22
‖Bx‖22

. (8.3)

Using the GSVD (8.1), we can solve (8.3) by writing it as

max
x 6=0

‖UCX−1x‖22
‖V SX−1x‖22

. (8.4)

Let y = X−1x, so we have

max
y 6=0

‖Cy‖22
‖Sy‖22

, (8.5)

since the 2-norm is invariant under orthogonal transformation.

If we use a thin GSVD as introduced in Chapter 1, then the diagonal matrices

C and S are both square. Then, the problem (8.5) can be solved by treating it

as a very special case of the more general optimization problem (2.3) for a pair

of square matrices in Chapter 2. We have the trivial GSVD

C = ICI and S = ISI.

Considering the order of the diagonal entries ci and si, we see that y = e[end]

is the solution of problem (8.5). Then problem (8.4), or equally (8.3), is solved

by x = Xy = Xe[end] = x[end]. This justifies the final column of X for ordering

columns of A.
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Now, let z = Ax[end]. Then

zi :=

N∑

j=1

aijxj
[end].

Therefore, we expect zi ≥ 0 for indices i corresponding to rows in R1 and zi ≤ 0

for indices corresponding to rows in R2. Hence, z should be a good indicator for

rows in A. Now,

Ax[end] = UCX−1x[end]

= UCe[end]

= cendu
[end],

so Ax is a multiple of the final column of U . So the final column of U is a good

choice for reordering rows of A.

Analogously, we can motivate the use of x[1], the first column of X, to reorder

the columns of B and A, and v[1], the first column of orthogonal matrix V , to

reorder the rows of B in order to find good clusters in B that are not present in

A by applying similar arguments to the optimization problem

max
x 6=0

‖Bx‖22
‖Ax‖22

.

8.3 A Variant of the Algorithm

In this section, based on insights from the square case, we aim to develop a vari-

ant of the algorithm introduced in section 8.2 for reordering nonsquare matrices

A and B simultaneously. The idea is derived from the corresponding optimiza-

tion problem (2.6), maxx 6=0
‖B−1x‖2

2

‖A−1x‖2

2

, which is used to justify the use of columns

from X−T for finding the appropriate substructures. In Chapter 2, we used this

as a basis for picking out nodes forming good clusters in A that are not in B.
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Unfortunately, we can not apply it directly here because nonsquare matrices are

not invertible. A possible solution is to use the N ×N matrices AT A and BT B

so that we may compute the inverse product for these square matrices. Thus we

start here from an alternative optimization problem

max
x 6=0

‖A(BT B)−1x‖22
‖B(AT A)−1x‖22

. (8.6)

Referring to Chapter 2, the product AT A and BT B can be interpreted as a

single iteration from an algorithm that computes the dominant singular value

of A and B, respectively. It is known from spectral graph theory that the domi-

nant singular vectors give good directions in which to look for clusters [112, 117].

Inverting the weight matrix reverses their importance (the singular value σ be-

comes σ−1) and hence a spectral clustering approach applied to (AT A)−1 will typ-

ically find the opposite of good clusters—poorly connected nodes will be grouped

together [39]. So, intuitively, forming A(BT B)−1 in (8.6) should produce a data

matrix for which the SVD approach finds good clusters for A and poor clusters

for B. Analogously, the opposite holds for B(AT A)−1. Following the same rea-

soning behind the use of the optimization problem (2.6), maxx∈RN , x 6=0
‖B−1x‖2

2

‖A−1x‖2

2

,

in Chapter 2, we may then interpret the new optimization problem (8.6) in

a similar way. Making A(BT B)−1x large encourages poor column structures

for B, while making B(AT A)−1x small encourages good column structures for

A. In this case, we would base our algorithm on the GSVD of B(AT A)−1 and

A(BT B)−1. These can be computed from the GSVD of A and B since, from

(8.1), we have

A(BT B)−1 = UCS−2XT = UCS−2(X−T )−1

and

B(AT A)−1 = V SC−2XT = V SC−2(X−T )−1.
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Then reverting to the arguments in section 8.2, we can use columns from

X−T as the basis for reordering. Although problem (8.6) was formed by using

A(BT B)−1 and B(AT A)−1, in fact, we do not need to compute the GSVD on

these two products. We can use the columns from X−T by computing the GSVD

on matrices A and B. That is, the algorithm also applies in the case where AT A

or BT B are non-invertible.

Alternatively we could rewrite the initial problem (8.6) as

max
x 6=0

‖UCS−2XT x‖22
‖V SC−2XT x‖22

. (8.7)

This is equivalent to

max
y 6=0

‖CS−2y‖22
‖SC−2y‖22

(8.8)

by letting y = XT x. Re-applying the arguments in section 8.2, we could use the

columns from the inverse of the third factor I in the GSVD of CS−2 = I(CS−2)I

and SC−2 = I(SC−2)I as a basis for reordering A and B. Since I−1 = I, problem

(8.8) is solved by y = e[end]. So

x = X−T y = X−T e[end] = x⋆ (8.9)

is the solution of problems (8.7) and (8.6), where x⋆ is the final column of X−T .

Similarly, we could use the optimization problem

max
x 6=0

‖B(AT A)−1x‖22
‖A(BT B)−1x‖22

to justify that the first column of X−T is a good choice for finding the appropriate

column structure for B but not for A.

To summarize, in terms of the GSVD (8.1), we will refer to the two reordering

approaches as
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Algorithm 3: reorder the columns of nonsquare matrix A via the final column

of X and reorder the rows of A via the final column of U , reorder the

columns of nonsquare matrix B via the first column of X and reorder the

rows of B via the first column of V .

Algorithm 4: reorder the columns of nonsquare matrix A via the final column

of X−T and reorder the rows of A via the final column of U , reorder the

columns of nonsquare matrix B via the first column of X−T and reorder

the rows of B via the first column of V .

8.4 Synthetic Test

In this section we present numerical results. All the results we have suggest

that Algorithm 4 is more effective than Algorithm 3. This is consistent with

our previous tests for the square case. Hence here we only present results for

the X−T reordering. We give a simple, controlled synthetic example where we

know the “correct” answer. We generate two nonsquare matrices A and B,

as shown in the left pictures in Figure 8.2 and Figure 8.3. There are 40 rows

in A but 60 rows in B. Both matrices have the same column size, 20. In

both networks, there is a block which consists of the elements aij and bij for

1 ≤ i ≤ 5 and 1 ≤ j ≤ 5, of relatively large entries which is clearly visible

as red or yellow colour in the picture. In network A, there is an exclusive

substructure consisting of the entries aij for 6 ≤ i ≤ 12 and 6 ≤ j ≤ 10 as

shown in the same visible way. An exclusive cluster in B consists of the entries

bij for 16 ≤ i ≤ 20 and 14 ≤ j ≤ 20. In practice, the rows and columns would be

ordered arbitrarily, and these substructures would not be immediately apparent.
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The GSVD approach is invariant under any reordering of the data. This can be

understood by a similar argument to the one given for square case in section 2.4

of Chapter 2. Suppose we are given an arbitrary permutation matrix Pa ∈ R
M×M

for permuting the rows of A, an arbitrary permutation matrix Pb ∈ R
P×P to

shuffle the rows in B and another permutation matrix P ∈ R
N×N to permute the

columns of A and B. If we shuffle the original data from A and B to PaAP−1 and

PbBP−1, then the factorizations A = UCX−1 and B = V SX−1 are equivalent

to PaAP = (PaU)C(P T X)−1 and PbBP = (PbV )S(P TX)−1. So, if we relabel

the original data matrices and then compute the GSVD on the shuffled data,

the algorithms still work, with columns of (P T X) and (P T X)−T playing the role

that was played by those of X and X−T in order to order the columns of the

shuffled A and B, and appropriately permuted columns from (PaU) and (PbV )

are used to reorder the rows of the shuffled data. Hence it does not matter what

initial row and column ordering is supplied in our synthetic data.

We emphasize that any end column refers to an end column from a factor

produced by computing a thin size GSVD of A and B. The algorithm still works

when we compute a standard GSVD of A and B, but we would need be careful

about which column is the appropriate x⋆ and u[end].

In Figure 8.2, the right picture shows the matrix A with rows and columns

reordered according to the ordering of components in the final column of U and

final column of X−T . Similarly, the right picture in Figure 8.3 shows the matrix

B with rows and columns reordered according to the ordering of components in

the first column of V and first column of X−T . We see that it is able to recover

the blocks of large entries exclusive to A and B.
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Figure 8.2: Original nonsquare matrix A and the reordering.
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Figure 8.3: Original nonsquare matrix B and the reordering.
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8.5 Summary

This chapter focuses on the situation where a pair of nonsquare matrices describe

two different types of connection in the form of two bipartite graphs with one

node set common to both. We argued from first principles that the Generalized

Singular Value Decomposition (8.1) provides a simple and powerful computa-

tional tool to find patterns for one graph that are not present for the other. Our

work shows that the common factor X−T is useful for reordering the columns

of A and B while columns of U and V contribute to picking out the appropri-

ate row structures for A and B separately. We are currently seeking real world

nonsquare data sets where the discovery of this type of substructure would be

of interest.



Chapter 9

Conclusions

In this dissertation we have explored two different approaches towards an intu-

itive understanding of why the GSVD is useful for processing pairs of related

data sets under the general title of “Complex Networks and the Generalized

Singular Value Decomposition”. We tested the algorithms with synthetic data

and also applied them to real world data. In order to validate the results, we

designed a cluster validation method. To examine the usefulness of these al-

gorithms within life science, our biological applications focused on three areas:

protein interaction networks, metabolic networks and brain networks. Finally,

we also extended the theory and synthetic tests to the case of nonsquare inter-

action data sets.

In this chapter, we will summarize our work, providing an overview for each

topic, accompanied by suggestions for future work.

160
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9.1 Optimization Viewpoint

Based on the optimization view, we developed two different algorithms in order

to interpret the principles of the GSVD working on a pair of square matrices A

and B in R
N×N .

We first formed an optimization problem maxx∈RN , x 6=0
‖Ax‖2

2

‖Bx‖2

2

and showed that

we can regard the first few columns of X as candidates for finding good clusters

in B that are not in A and, analogously, use the final few columns of X as

candidates for picking out good clusters in A that are not present in B.

Second, we developed a variant of the algorithm. In this case, we used

maxx∈RN , x 6=0
‖B−1x‖2

2

‖A−1x‖2

2

. We showed that this leads to use of columns from X−T .

Although this algorithm is derived from the GSVD of A−1 and B−1, in practice

the computation of the inverse products of A and B is not necessary.

We tested both of these heuristic algorithms with synthetic data and observed

that X−T gave the best results. Hence we focused on the use of this algorithm

to test real world data sets from social science and neuroscience.

The following areas may turn out to be highly relevant future directions for

this topic:

(i) Exploring Common Patterns In this dissertation, we focused on dis-

similarity between two related networks in terms of clustering. In other

words, our algorithms were designed to find clusters exclusive to one graph.

An interesting alternative is to look for common clusters present in both

networks. For real world biological data, the existence of this common

pattern for the two graphs would indicate a biological process which is

relevant to both types of interactions. A possible starting point for solving

this problem based on the optimization view is to consider the optimiza-
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tion problem maxx∈RN , x 6=0
‖Ax‖2

2

‖B−1x‖2

2

. Alternatively, we could re-consider the

optimization problems (2.3) or (2.6) to use the middle columns instead of

the first or final columns from X or X−T .

(ii) Data Normalization Matrix decompositions are numerical computa-

tions, so the magnitudes of the values in the datasets must be compa-

rable, otherwise the large magnitudes will have a greater influence on the

result than the the smaller ones. In statistics, a common way to adjust data

values is to use the standard score [113], that is the z-score or z-value. This

makes the values roughly similar in magnitude, but the standard score nor-

malization implicitly assumes that the raw data are normally distributed.

Recently, the Sinkhorn-Knopp (SK) algorithm was introduced to normal-

ize a large set of datasets from a matrix computation perspective [76, 77].

The SK algorithm can be used to balance the matrix, and is perhaps the

simplest method for finding a diagonal scaling of a given square nonnega-

tive matrix that balances the matrix to be doubly stochastic. In addition,

a related normalization method is formed and used in the spectral cluster-

ing method [59, 60, 61, 62, 73], especially for the SVD. This normalization

method also uses diagonal matrices derived from the rows or the columns

of the original matrix to scale the data sets. In this dissertation, we did not

use a normalization method in our tests since the numerical results were

visually and statistically significant. However, a normalization technique

would be vital in cases where the data is poorly calibrated. So normaliza-

tion seems to be a good direction for future work.

(iii) Comparing the Two Heuristic Algorithms Although two algorithms

are developed in this work, all computational tests suggest that the perfor-
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mance of Algorithm 2 is better than Algorithm 1. Mathematical arguments

to explain this phenomenon would therefore be a valuable addition in this

area.

(iv) Optimal Vectors In all the experiments, especially when tested on some

real data, it is difficult for us to predict which column of the common

factor X−T will give us the best reordering of A and B and also to decide

how to define a cluster from the reorderings produced by the columns.

In order to develop a fully automated algorithm it would be necessary to

combine the cluster validation procedures developed here with some sort

of combinatorial searching.

9.2 Power Method Viewpoint

In Chapter 4, we interpreted how the GSVD works via an iterative method. We

showed that the reordering algorithm can be regarded as the limit process arising

from a process that reshuffles the nodes according to their relative strengths of

connectivity in the two networks.

9.3 Cluster Validation

In Chapter 3, we designed a method to check if our test results are statistically

significant. The null hypothesis H0 of our test is that the cluster quality that

we discovered could have arisen from the class of random networks produced in

a randomization step. If the final p -value is less than 0.05, we reject H0 so that

it is very unlikely that this strength of clustering in the real data would arise if

we take a random network.
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We designed two different ways to define the cluster quality measure. We

also used three different approaches to randomize the networks. We found that

all approaches gave consistent results.

Future efforts within this topic might include attempting to make the valida-

tion method work for nonsquare matrices. In Chapter 8, we have not validated

the clusters found in the nonsquare case. The main challenge is how to define

the cluster quality for two nonsquare matrices with same column size but which

have different row sizes. The current cluster quality defined in Chapter 3 can

only work in the case of two matrices which are square and binary, so the data

arises from the same group of nodes. In the nonsquare case, how can we compare

an examined area (block) in one matrix with the other nonsquare matrix with

different row size? In addition, we would also need to consider how to randomize

the data in a reasonable way.

9.4 The Life Science Application

In Chapter 2, we applied our heuristic algorithms to some real world data in-

cluding social networks and neural networks. Then, in Chapters 5, 6 and 7, we

extended the application to real biological complex networks. These applications

were protein interaction networks, metabolic networks and brain networks.

In Chapter 5, two types of interaction were available for the same large

group of proteins: Protein-Protein Interaction (PPI) and Genetic Interaction

(GI). Before running the GSVD, we applied some techniques to preprocess the

data to remove the protein name inconsistency. For a fast computation, we also

trimmed the data size by a common threshold for both matrices. Then we ran

our algorithm on the data and identified some candidate node groups which are
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strongly connected under one type of interaction but are weakly connected in

the other type. We then verified them by computing the p -values. We then

recorded the protein name lists for the statistically consistent clusters. This

project is still ongoing and our coworkers are now processing these name lists to

verify their biological meaning.

Another important biological application is metabolic data tested in Chap-

ter 6. In this chapter, we tested a pair of metabolic networks from Control and

PCP-treated animals, separately. In the data, each node is a given molecule,

and the weighted edges represent the metabolic connections between the cor-

responding two molecules. We first reordered the data based on an extension

of our algorithm to the case of weighted edges. Then we compute the p -values

to validate the observed clusters. To study the significance of the components

within the given identified clusters, we introduced a hypergeometric probability

test. We concluded that the algorithm is useful for exploring metabolic pathway

disruption in the PCP model of schizophrenia.

In Chapter 7 we compared two types of functional interaction data over

the same set of brain regions. They came from Control and PCP-treated ani-

mals, separately. Each node (brain region) was pre-assigned to a brain functional

group. We were able to identify a significant cluster in Control animals that was

destroyed in PCP-treated animals, and vice versa.

A promising and important future direction in life science is to develop and

apply the techniques for the case of microarray data sets. Microarray data sets

can be viewed as large nonsquare matrices A ∈ R
M×N which record the behavior

of a set of M genes across a set of N samples. “Samples” may correspond to

tissues from different but related tumours, plus some normal tissues, or may be

snapshots at different points in time for a single tissue. Correlations between
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samples, or between genes, then lead to square matrices. Some spectral clustering

methods, such as the SVD, have been used for microarray data sets [50, 59,

60, 61, 73]. Previous notable work which has applied the GSVD to related

gene expression data sets [5] also indicates that we might apply the GSVD to

microarray data sets.

9.5 Nonsquare Case

In Chapter 8, we developed a theory for using a column of X or X−T to reorder

the columns of A and B while using the columns from U to shuffle the rows in

A and columns from V to shuffle the rows in B in the case where A and B are

nonsquare with the same column size. We proposed two different optimization

problems to justify the columns of X and from X−T .

We also expect that the power method could be used to justify the approach.

The main difficulty in using the approach of Chapter 4 is that we cannot use the

inverse of a nonsquare matrix. A possible solution is to re-explore the problem

by using the pseudo inverse [13] of the nonsquare matrices. If this direction is

useful, we might also use the pseudo inverse to form a more intuitive optimization

problem, generalizing maxx 6=0
‖B−1x‖2

2

‖A−1x‖2

2

, to the nonsquare case.

A major opportunity for future work is to apply this novel algorithm to

real data sets. Raw (uncorrelated) microarray data would be a very promising

category.
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