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Abstract 

Slug flow is one of the key flow regimes encountered in multiphase flow systems. Through 

reviewing the literature, the researcher identified a research gap in performing a theoretical 

treatment to the problem, specifically using the dimensionless treatment and the order of 

magnitude analysis of equations of motions. To the best of the researcher’s knowledge, an 

analysis of the literature identifies that there is a lack in the numerical studies on the drift of 

Taylor bubbles in inclined pipes with stagnant liquid.  

This thesis focuses on studying the flow of the Taylor bubble in the stagnant liquid, which is 

considered an essential characteristic part of the slug flow regime in pipes by performing 

theoretical treatment of the problem. To achieve this, the following two steps are carried out 

(i) Performing a complete dimensionless analysis to the rise of Taylor bubble through stagnant 

liquid in a vertical and inclined pipe, covering inclination range of 0 ≤ 𝛾 ≤ 90° with respect 

to the vertical position, (ii) Using the guideline of the order of magnitude analysis and the 

dimensionless group analysis, performing CFD study using the volume-of-fluid (VOF) 

methodology implemented in the commercial software ANSYS Fluent (Release 16.0) 

investigating the dynamics of single Taylor bubble drifting through stagnant Newtonian liquid 

in vertical and inclined pipe.  

The dimensionless analysis shows that different governing parameters appear according to the 

range of pipe inclination angle.  

The adopted CFD model shows good results for the dynamics of the Taylor bubble covering 

three main regions the bubble nose, the bubble body and the bubble wake regions.  

The simulation results show good agreement with the developed dimensionless treatment of 

the problem for all pipe inclination. No bubble propagates in a zero axial pressure gradient 

horizontal pipe, hence, a simplified model is suggested to solve the challenging problem of the 

three-dimensional Taylor bubble in the near horizontal and horizontal pipes. 
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𝜏𝑐ℎ Characteristic film drainage time  (-) 
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𝜎
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Froude number based on the bubble rise velocity in 

vertical pipes 
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𝑁𝑓 Inverse viscosity number 𝑁𝑓 =
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𝑅𝑒𝑉𝐿  
Reynolds number based on the mean velocity of the 
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CSF Continuum surface force 
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f Face 
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min Minimum 
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 Introduction 

Multiphase flows occur in a wide range of applications including natural processes, chemical 

processes, nuclear systems and petroleum industries. The petroleum industry is considered one 

of the most important applications of multiphase flow, as it could be encountered in different 

processes/stages, such as oil processing, oil and gas transport in pipelines and sloshing in 

offshore separator devices. 

This chapter gives a brief introduction on multiphase flow in pipes with the different flow 

pattern encountered according to the pipe’s orientation, covering the vertical, inclined and the 

horizontal gas-liquid flows. The importance of slug flow in pipes and its difficulties are 

discussed in detail. The end of this chapter highlights the main objectives of the present work, 

the applied research methodology and the thesis structure. 
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1.1 Multiphase Flow in Pipes 

The multiphase flow is defined as the simultaneous flow of more than one phase (gas, solid 

and liquid) (Bratland, 2010). The study of multiphase flow is increasing in extent, mostly 

because of the increasing importance of such flows in many natural and technological 

processes. The multiphase flow is involved in some industrial applications, including methods 

of transporting multiphase fluids through pipelines and wells, evaporators, boilers, condensers, 

air-conditioning and refrigeration plants, submerged combustion systems, sewerage treatment 

plants and cryogenic plants. Multiphase flow also plays a distinguished role in the geothermal 

and nuclear energy’s procedures to generate electrical power, coal’s transportation, grain, in 

addition to other solids such as slurries and petrochemicals’ development. 

In the oil and gas industry, multiphase flow occurs in almost all oil production stages as well 

as gas wells and pipes that transport produced fluids. Multiphase flow is much more 

complicated than the single-phase flow due to the significantly different densities and 

viscosities of the contained fluids. The process of predicting the behaviour of multiphase flow 

in oil and gas production system is complex. This complexity is due to two main aspects, first, 

as fluids flow through the piping system, complex heat transfer takes place; second, pressure 

and temperature variations result in mass transfer within hydrocarbon fluids.  

This chapter discusses the difficulties of multiphase flow. This is followed by the different flow 

patterns encountered in pipes. Additionally, the importance of slug flow is discussed in detail 

in section 1.4. The thesis focuses on investigating the Taylor bubble flow, which is given in 

section 1.5. Subsequently, the research’s aim, objectives and methods are given in detail in 

sections 1.6 and 1.7, respectively. Finally, the chapter ends with the thesis outline given in 

section 1.8. 

1.2 Difficulties of Multiphase Flow in Pipes 

The discoveries of offshore, initially in shallow water depths and now in ultra-deepwater and 

harsh arctic climates, made the production of oil and gas much more complicated. In these 

regions, the capital costs are very high, and thus, the production system must be designed with 
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greater accuracy. Nowadays, production systems are not only more complicated but also they 

involve different fluids from numerous wells, zones and fields. The main difficulties 

encountered in multiphase flow in pipelines and wells are due to higher pressures and lower 

temperatures. This could lead to the formation of deposits, such as paraffin deposition (wax) 

on pipe walls and the formation of hydrate plugs. The formation of deposits could be eliminated 

by injecting chemicals into the flow stream, and this shows good practical solutions for 

avoiding pipeline blockage. Multiphase flow in pipes at its preliminary facet include empirical 

correlations for predicting flow patterns, liquid holdup and pressure drop.  

The main difficulties of multiphase flow in pipes can be summarised in the following points: 

• Chemical, physical and thermodynamic properties of each phase need to be properly 

known. 

• Fluid may flow in multiple locations, and the fluid composition may change over time. 

• Pressures and temperatures variations in gathering networks and flowlines can lead to 

deposits as hydrates, waxes and scales. 

• Slugging problems: pressure transients, flooding at the receiving end and increasing 

deposits and corrosion. 

• Corrosion which is strongly affected by temperature, pressure and velocity. 

• Sand particles in the produced hydrocarbon can lead to erosion as it is transported from 

the well to the platform or onshore facilities through various subsea structures. 

• Erosion, in combination with corrosion, can enhance each other to produce more 

damage than what they would separately (Bratland, 2010). 

Deposits occur in the form hydrates, wax, asphaltenes and scales. Hydrates are ice-like 

structures which tend to form if the temperature falls below a specific value when gas 

molecules are in contact with water. Avoiding steady-state hydrate formation (hydrates 

forming under normal circumstances) can be done by injecting inhibitors, using thermo-

insulation or even heating. Depending on the fluid’s composition, paraffin in the oil can create 

challenges similar to hydrates. Asphaltenes are carried out as the same as hydrates or wax, 
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however, it is less frequently encountered due to chemical properties. Scale deposits are 

inorganic, come from produced water and tend to be harder. They can be prevented or removed 

by inhibitors, pigging and chemicals (Bratland, 2010). 

1.3 Two-Phase Flow Patterns in Pipes 

The most common class of multiphase flows is the two-phase flows, which includes gas-liquid 

flows, gas-solid flows, liquid-liquid flows and liquid-solid flows. The gas-liquid flows are 

probably the most critical form of multiphase flow and are found widely in a whole range of 

industrial applications. These include pipeline systems for the transport of oil-gas mixtures, 

evaporators, boilers, condensers, submerged combustion systems, sewerage treatment plants, 

air-conditioning and refrigeration plants and cryogenic plants.  

As for the two-phase gas-liquid flow in pipes, different flow patterns can occur known as “flow 

pattern/flow regime”. These patterns depend on the flow rates, the geometry of the system and 

inclination of the pipe. Multiphase flow is classified according to the distribution of different 

phases building up the flow field, known as “flow regime/pattern”. Multiphase flow can be 

encountered in various flow patterns, such as bubbly, slug, plug, annular and dispersed flow. 

Fluid flow investigation includes an important aspect, which is the identification of the 

encountered flow pattern. In this section of the research, the different flow patterns encountered 

in the pipes are discussed in detail. These patterns are classified into the vertical, horizontal 

and inclined gas-liquid flow in pipes. 

 Flow Patterns in Vertical Pipes 

In the vertical pipe, the gas and liquid phases can interrelate into different flow regimes, as 

indicated in Figure 1-1. These flow regimes can be described as follows (Weisman, 1983): 

1. Bubbly flow: the gas is dispersed in the form of numerous discrete bubbles in the 

continuous liquid phase. Generally, these bubbles might vary in size and shape, but 

typically they have a smaller diameter than the pipe itself. 
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2. Intermitted flow (Slug flow): the increase in the gas void fraction leads to bubble collision, 

and larger bubbles start to develop. These bubbles are known as Taylor bubbles. Bullet 

shape bubbles characterise this flow with a hemispherical nose and a blunt tail. The Taylor 

bubbles are separated by liquid slugs, which sometimes might include some small bubbles.   

3. Churn Flow: increasing the gas velocity leads to unstable flow structure to develop. This 

instability is due to gravity and shear forces acting in the opposite direction on the thin 

liquid film of the Taylor bubble. Churn flow is an intermediate regime between the slug 

flow and the annular flow.  

4. Annular Flow: further increase in the gas velocity causes the shear force on the liquid film 

to become dominant over gravity. The liquid starts to develop as a thin film on the wall, 

while the gas flows as a continuous phase filling up the centre of the pipe. 

5. Dispersed Flow: increasing the gas flow rates causes the liquid droplets to be entrained in 

the gas core as small droplets. This ends up with the gas phase being the continuous phase, 

and liquid droplets are the dispersed phase 

 Flow Patterns in Horizontal Pipes 

An example of the flow regimes encountered in horizontal pipes is given in Figure 1-2. With 

the gravity acting perpendicular to flow direction, the flow patterns in the horizontal pipe can 

be described as follows (Weisman, 1983): 

 

Figure 1-1. Sketches of flow regimes for two-phase flow in a vertical pipe (Weisman, 1983). 
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1. Bubbly flow: due to buoyancy, the gas bubbles are dispersed in the liquid phase with a 

high concentration at the upper half of the pipe. 

2. Stratified flow: the stratified flow can be either stratified smooth flow or stratified wavy 

flow. In the stratified smooth flow, complete dispersion of the two phases occurs where 

the gas moves towards the top of the pipe and the liquid moves at the bottom, separated 

by an un-distributed horizontal interface. While, for the stratified wavy flow, increasing 

the gas velocity in a stratified smooth flow causes waves to start to initiate at the interface 

and travel in the direction of flow. Although the amplitude of the waves is noticeable, 

which depend on the velocity of the two phases, but yet it doesn’t reach the top of the pipe. 

3. Intermitted Flow: further increase in the gas velocity causes the interfacial waves to grow 

and reach the top of the pipe. It is composed of plug and slug flows. The plug flow 

(Elongated bubble flow) consists of liquid plugs separated by elongated gas bubbles. In 

slug flow, increasing the gas velocity causes the diameter of the elongated bubbles to be 

almost the same as the diameter of the pipe. The body of the slug is liquid, but sometimes 

at high gas velocities, some gas diffuses into the liquid slug- Aerated slug. 

 

Figure 1-2. Sketches of flow regimes for the flow of air/water mixtures in a horizontal 5.1cm diameter pipe 

(Weisman, 1983). 
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4. Annular flow: at even larger gas flow rates, the liquid forms a continuous annular film 

around the perimeter of the pipe. The interface between the liquid annulus and the vapour 

gas is disturbed by small amplitude waves droplets may be dispersed in the gas core. 

5. Dispersed flow: the liquid is dispersed in the continuous gas phase. Gas is the continuous 

phase and droplets are the dispersed phase. 

 Flow Patterns in Inclined Pipes 

The inclination of the pipe greatly influences the gas-liquid flow pattern in pipes. In the case 

of upward inclined flow, the developed flow pattern is entirely similar to those observed in the 

vertical upward flow. Figure 1-3 illustrates an example of the flow pattern encountered in 

upwards inclined pipe (Hernandez Perez, 2008). Other regimes are encountered in the near 

horizontal cases, such as the stratified flow.  

The case of downward simultaneous gas-liquid flow, though rarely encountered, is important 

both chemical and petroleum industries, for instance, in the process of steam injection in 

thermal recovery (Hernandez Perez, 2008). Similarly, the flow pattern is greatly influenced by 

the angle of inclination. According to Barnea et al. (1982), the flow pattern can be stratified 

wavy in horizontal cases and changes to annular flow in near vertical cases. 

To simulate the multiphase flow in pipelines with any elevation, flow regime maps are used to 

determine the type of flow regime in addition to performing calculations for that exact regime. 

 

Figure 1-3. Sketches of flow regimes of co-current gas-liquid flow in inclined pipes (Hernandez Perez, 2008). 
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The flow regime map is a diagram that shows the transition boundaries between the flow 

patterns, and it is typically displayed on log-log axes using dimensionless parameters to 

represent liquid and gas velocities. Examples of flow regimes maps are those given by Baker 

(1954); Hewitt and Roberts (1969); Mandhane et al. (1974); Taitel and Dukler (1976); 

Weisman (1983); Bratland (2010). 

In brief, flow regime maps are valuable tools for obtaining a general idea over which flow 

regimes is expected for a specific set of input data. However, generally, each map is not enough 

to be valid for other data sets. 

1.4 Slug Flow 

For gas-liquid flow in pipes, one of the common and complex patterns encountered is known 

as “slug flow”. Slug flow is an intermitted flow between the stratified and annular flow. Flow 

intermittence is the main remarkable hydrodynamic characteristic causing the complex 

structure of slug flow. Figure 1-4 shows a schematic representation of the slug flow pattern 

encountered in vertical and horizontal pipes.  

 

Figure 1-4. Schematic representation of slug flow in (a) vertical pipe and (b) horizontal pipe (Mandal et al., 

2010). 
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The flow is characterised by an elongated bubble, known as Taylor bubble, that occupies 

almost the whole cross-section of the pipe, and annular falling liquid film that might entrain 

many small bubbles, known as a “liquid slug”. 

In offshore petroleum production systems, the fluids that leave the well are often transported 

to platforms using flexible pipes. The pipes are composed of a pipeline (or flowline), which 

conducts the fluids over the seabed topography and a riser, which elevates the fluids to the 

separator vessel located at the platform. Usually, the transported fluids are composed of gas, 

oil and water, but due to the severe conditions of pressure and temperature, the formation of 

emulsions, hydrates and wax is possible. These features make the modelling of the multiphase 

flow dynamics a complex task. 

Slugging is a terrain dominated phenomenon, characterised by the formation and cyclical 

production of long liquid slugs and fast gas blowdown. Severe slugging may appear for low 

gas and liquid flow rates when a section with a downward inclination angle (pipeline) is 

followed by another section with an upward inclination (riser). This configuration is common 

in offshore petroleum production systems.  

According to Xing et al. (2014), the liquid slugs generated in the oil and gas multiphase 

flowlines can be classified based on their initiation mechanism into four slugs: 

•  Terrain-induced slugs caused by a periodic accumulation of the liquid in elevation 

changes along flowline, particularly at low flow rates,  

• Hydrodynamic slugs that is formed due to wave instabilities at the gas-liquid interface, 

these instabilities are due to Kelvin-Helmholtz instability (horizontal  and near 

horizontal pipelines), 

•  Operation-induced slugs that are formed in the system during the operation transfer 

between steady-state and transient states such as start-up or pigging operation, 

•  Riser-based slugs which are known as severe slugging and is associated with the 

pipeline risers often found in offshore oil production facilities. 

Slugging problems in offshore oil and gas systems can be summarised as follow: 
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• Flooding of downstream processing facilities. 

• Production loss caused by the high average back pressure at the wellhead. 

• Separator shutdown due to instabilities in liquid control system resulting from the high 

instantaneous flow rates (Nemoto and Baliño, 2012). 

• Further induction of the reservoir flow oscillations and poor reservoir management. 

• Severe pipe corrosion and structural instability of pipeline. 

• Unsteady loading on a pipeline that carries fluids and on the receiving devices, such as 

separators caused due to the intermittency of slug flow. This results in design problems 

that can eventually lead to detriments in the efficiency and /or size of the processing 

plant (Ansari and Shokri, 2011). 

The prediction of the appropriate flow pattern regimes, the governing correlations, and the 

hydrodynamic characteristics of slug flow are essential for successful operation, simulation 

and optimisation of any industrial applications encountering slug flow.  

1.5 The Rise of Taylor Bubbles in Stagnant Liquids  

This thesis focuses on studying the flow of the Taylor bubble in the stagnant liquid, which is 

considered an essential characteristic part of the slug flow regime in pipes. Taylor bubble flow 

is essential in a various number of applications, including the boiling and condensing process 

in thermal power plants, the production and transportation of hydrocarbons in the oil and gas 

industry, capillary flows, microfluidic, the boiling and condensing process in thermal power 

plants and emergency cooling of nuclear reactors. 

Following the fundamental unit concept of vertical slug flow of Fernandes et al. (1983), Figure 

1-5 illustrates a schematic representation of the slug unit concept. The flow consists of an 

elongated bullet-shaped bubble that fills almost the entire pipeline cross section, Taylor bubble, 

a liquid film flowing downwards between the bubble interface and pipe wall in a liquid film 

region, known as a liquid slug. Referring to Figure 1-5, the flow can be divided into three 

regions, the Taylor bubble nose region, the falling liquid film region and the Taylor bubble 
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wake region (liquid slug zone). In the Taylor bubble nose region, the Taylor bubble moves up 

with a velocity (𝑈𝑇𝐵) due to buoyancy, pushing the liquid sideways where the liquid film zone 

starts to develop. In the falling liquid film region, the liquid moves downwards with velocity 

(𝑈𝐿𝐹) and decreases the liquid film thickness (𝛿𝐿𝐹). Once a balance between the gravitational 

and the friction forces is reached, a constant terminal liquid film velocity and thickness is 

developed. In the Taylor bubble wake region, the falling liquid film starts to plug into the liquid 

slug ending with highly mixing zone in the wake structure of the bubble.  

Regardless of a large number of researches done on Taylor bubble flow, based on the critical 

review given in chapter 2, there are still gaps in the published data. In the literature, to the best 

of the researcher’s knowledge, most of the work is done on Taylor bubble flow in vertical and 

horizontal pipes, which is the primary motivation for the research presented in this thesis. In 

this thesis, the Taylor bubble flow in various inclined pipes, including vertical and horizontal 

pipes, is examined.  

 

Figure 1-5. Schematic representation of the main hydrodynamic features of a single Taylor bubble rising 

through a stagnant liquid. 
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1.6 Research Aims and Objectives 

The main aim of this work is performing a better understanding of the rise of an individual 

Taylor bubble through a stagnant liquid in pipes (including vertical, inclined and horizontal 

pipes). In the literature, there are conflicts in the theoretical treatment of the problem in terms 

of the forces that control the dynamics of Taylor bubble flow in pipes, defined as dimensionless 

governing groups. Understanding the governing parameters and the hydrodynamic 

characteristics of Taylor bubble flow are considered an essential characteristics part for the 

successful operation, simulation and optimisation of any system encountering slug flow.  

The present study can be implemented to the oil/gas/offshore industrial applications to a certain 

extent as far as the moving fluid flow Reynolds number in these applications is practically 

small as is the case for dense liquids available in these systems. Accordingly, the stagnant 

liquid under investigation in the present work can to some extent predict the actual practical 

conditions. It is to be noted that Reynolds number can be calculated for dense liquids and their 

velocities available in industry to show the low values of Reynolds number.  

To achieve the thesis aims, the following objectives have been considered: 

I. Performing a complete dimensionless analysis of the problem to show the main 

dimensionless parameters that govern the problem and their relative merits or order of 

magnitudes. 

II. Based on the dimensionless analysis, Computational Fluid Dynamics (CFD) study is 

employed that supports this developed logical approach to the problem. The main 

hydrodynamic characteristics of Taylor bubbles are investigated through the employed 

CFD study in a wider range that is expensive and difficult to perform in the practical 

application. 

III. To support other important theoretical and experimental work available in the literature, 

correlations for Taylor bubble drift velocity and the wall shear stress are suggested 

based on the developed numerical results and the guidelines of the order of magnitude 

analysis. 

IV. In the literature, various contradicting discussions are describing the bubble behaviour 

in horizontal pipes. One of the main objectives of this work is understanding the flow 
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of Taylor bubbles in the neighborhood of horizontal pipes, where the drift velocity 

becomes significantly slow and almost approaching zero at the horizontal pipe case. 

1.7 Research Methodology 

To achieve the main aim of this work, which is performing a better understanding of the 

problem of Taylor bubble flow in pipes, the following methodology is followed: 

1. Performing theoretical treatment for the rise of an individual Taylor bubble through 

a stagnant liquid in pipes (including vertical, inclined and horizontal pipes) using 

both the Buckingham-Pi theorem and a dimensionless treatment followed by order 

of magnitude analysis to the governing equations of motion to show the sole 

dimensionless parameters and their relative merits or order of magnitudes. This is 

given in the first parts of chapters 4 to 6. 

2. To support this logical developed approach of the problem, CFD study is employed 

where the commercial CFD code ANSYS Fluent (Release 16.0) is used for CFD 

modelling. The CFD model is verified and validated. The verification process is 

mainly done to ensure that the results have an acceptable error level or preferably 

without any sensible errors. This is done by checking the spatial and temporal 

discretisation error and iterative convergence error.  Further details are given in 

chapter 3. In addition, the CFD model is validated against published benchmark 

studies and widely acknowledged empirical correlations as those by Campos and 

De Carvalho (1988); Shosho and Ryan (2001); Bugg and Saad (2002) and Nogueira 

et al. (2006a; 2006b), which are reported in chapter 2. 

3. Once the CFD model is verified and validated, three parametric studies are 

conducted in chapters 4 to 6. The first parametric study is for the rise of an 

individual Taylor bubble through a stagnant vertical liquid, reported in chapter 4. A 

dimensionless treatment is first performed, which is followed by the numerical 

investigation of the main hydrodynamic characteristics of Taylor bubble flow in a 

vertical pipe. The second study is for the drift of an individual Taylor bubble in the 

stagnant liquid in an inclined pipe. Various inclination angles are considered, 

including the horizontal pipe, which is reported in chapter 5 and 6. 
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1.8 Thesis Outline 

This thesis is divided into seven chapters, as follows: 

• Chapter 1- Introduction. This chapter provides an introduction to the thesis, outlining 

the aims and objectives of the study, the methodology and the structure of the thesis. 

• Chapter 2 - Literature Review.  This chapter provides an extensive survey of two-phase 

slug flow in pipes, in particular, the rise of Taylor bubbles in vertical and inclined pipes. 

Important hydrodynamic characteristics of Taylor bubble flow are discussed. Also, a 

review of the main conclusions and subsequent shortcomings is presented. 

• Chapter 3 – CFD Model Description and Validation. In the first section of this chapter, 

the CFD model used in this thesis is described, with full details about the governing 

equations, the multiphase model used and the solution method. A number of validation 

studies are given at the end of the chapter, where the adopted CFD model is validated 

against published data. 

• Chapter 4 – Theoretical and CFD Treatments of an Individual Taylor Bubble Rising in 

a Vertical Pipe (𝛾 = 0). This chapter starts with the dimensionless treatment of the 

problem using both the Buckingham-Pi theorem and a dimensionless treatment 

followed by order of magnitude analysis to the governing equations of motion. Based 

on this analysis, the numerical model discussed in chapter 3 is used to model the rise of 

an individual Taylor bubble through a stagnant vertical liquid. The main hydrodynamic 

features of Taylor bubble flow are investigated, including the Taylor bubble shape, the 

Taylor bubble rise velocity, the flow in the nose region, the flow in the liquid film 

region and finally the flow in the wake region.  

• Chapter 5 –Theoretical and CFD Treatments of an Individual Taylor Bubble Drifting 

in an Inclined Pipe (𝛾 ≤ 70°). As performed in chapter 4, this chapter starts with the 

dimensionless treatment of the drift of a Taylor bubble in an inclined pipe for 

inclination range of 0 ≤ γ ≤ 70°, with respect to the vertical position.  Based on this 

developed approach, a CFD study is carried out to investigate the hydrodynamic 
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characteristics of Taylor bubbles in inclined pipes covering inclination range of 0 ≤

γ ≤ 70°. 

• Chapter 6 – Theoretical and CFD Treatments of Taylor Bubble Drifting in Near 

Horizontal and Horizontal Pipes (𝛾 ≅ 90°). A particular treatment, in both the 

dimensionless treatment and the numerical investigation, is performed in this chapter 

to the near horizontal and horizontal Taylor bubble flow. Simplification in the 

numerical model based on the dimensionless analysis of the problem is suggested. 

• Chapter 7 – Conclusions and Recommendations. This chapter provides a summary of 

the key conclusions from this work. A list of the main contributions of the study is also 

provided. Recommendations for future work are also given at the end of the chapter. 

 





 

 

 Literature Review 

 

Two-phase slug flow has a wide range of applications, including natural processes, chemical 

processes, nuclear systems and petroleum industries. Despite the significant development of 

the experimental techniques, the need for a combination of experimental and numerical 

approaches is essential in understanding the complex nature of slug flow problem that 

eliminates the experimental limitation and the difficulties while providing robust analysis and 

accurate results. This chapter aims to summarise the tremendous amount of data published on 

the subject of Taylor bubble flow in pipes in order to understand the limitations of the 

techniques used and highlighting the main finding gaps. This review covers the rise of Taylor 

bubble trough Newtonian fluids, from 1943 to 2019, covering theoretical, experimental and 

numerical approaches. In addition, the key outcomes and concluding deficiencies are 

discussed throughout this chapter. Finally, the main contributions of the present work are 

highlighted at the end of this chapter.  
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2.1 Introduction 

This chapter aims at introducing the important research done on two-phase slug flow in both 

vertical and inclined pipes with Newtonian liquid, emphasising the most appropriate 

characteristics associated with two-phase slug flow. These are included into two main sections, 

a review on gas-liquid slug flow in vertical pipes and a review on gas-liquid slug flow in 

inclined pipes. In each section, a brief discussion on the dimensionless analysis of the problem, 

followed by the hydrodynamic characteristics of the flow are given.  

In gas-liquid slug flow in vertical pipes section, the review is categorised into four groups. 

Group 1 (Theoretical and experimental studies) mainly covers the theoretical approaches and 

some experimental approaches that studied the motion of a Taylor bubble in stagnant vertical 

liquid. Later, advances in the experimental approaches enabled research to be done with details 

on the hydrodynamic characteristics of the Taylor bubbles, including details about the 

surrounding liquid and wake structure (Advanced experimental studies). Despite the 

significance of these experimental work, the limitation of this kind of studies, due to the 

complexity of slug flow nature, is an important factor that should be considered. Numerical 

approaches started to develop as Computational fluid dynamics (CFD) has been proven to be 

a powerful and practical tool for both the analysis and the simulation of the hydrodynamic 

characteristics of slug flow in pipes (Numerical studies). The last group covers the research 

with a cooperative association between experimental and simulation studies (Cooperative 

associated experimental and numerical studies).  

For the gas-liquid slug flow in inclined pipes section, the review discusses the research done 

on gas-liquid slug flow in inclined pipes according to their appearance in the literature, 

including the rise of the Taylor bubble through both stagnant and flowing liquid. This is divided 

into two main research groups, where research group 1 (Theoretical and experimental studies) 

covers the main experimental and/or theoretical studies and research group 2 (Experimental 

and numerical studies) focuses on the experimental and/or numerical studies of investigating 

the gas-liquid slug flow in inclined pipes. 
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2.2 Gas-Liquid Slug Flow in Vertical Pipes 

The review on the research of slug flow in vertical pipes is categorised according to the 

sequence of research done. Prior to discussing the research groups, a brief discussion on the 

dimensionless analysis of the forces that govern the drift of a Taylor bubble through the 

stagnant liquid is introduced, followed by a description of the main hydrodynamic 

characteristics of the gas-liquid vertical slug flow.  

 Dimensionless Analysis of Gas-Liquid Vertical Slug Flow 

The hydrodynamic characteristics of gas-liquid slug flow are governed by viscous, inertial, 

gravitational and interfacial forces (Araújo et al., 2012). Generally, the dimensionless analysis 

of the problem results in the following form:  

where the LHS of relation (2-1) represents the ratio between the inertia and gravitational forces 

and known by Froude number (𝐹𝑟𝑈𝑇𝐵). Relation (2-1) can be modified by introducing the 

Reynolds number based on bubble velocity (𝑅𝑒𝑈𝑇𝐵) which is the ratio between the inertial 

forces and viscous forces. Eötvös number (𝐸𝑜) is the ratio between gravitational forces and 

surface tension forces and Morton number (𝑀) is known by property group as it only contains 

the properties of the fluid (Araújo et al., 2012). A complete dimensionless analysis of the 

equations of motion of gas-liquid vertical slug flow is given in chapter 4.  

 Main Hydrodynamic Characteristics of Gas-Liquid Vertical Slug 

Flow 

The main hydrodynamic characteristics of the flow can be described using the most 

straightforward approach that considers the drift of a single Taylor bubble through the stagnant 

vertical liquid, as illustrated in Figure 2-1. The main hydrodynamic features are summarised 

as follow: 

𝐹𝑟𝑈𝑇𝐵 =
𝑈𝑇𝐵

√𝑔𝐷
= 𝑓 [𝐸𝑜 =

𝑔𝜌𝐿𝐷
2

𝜎
 ,  𝑀 =

𝛥𝜌𝑔𝜇𝐿
4

𝜌𝐿
2𝜎3

 ,   𝛤𝜇 =
𝜇𝐿
𝜇𝐺
,  𝛤𝜌 = 

𝜌𝐿
𝜌𝐺
,  
𝐿𝑇𝐵
𝐷

 ] (2-1) 
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• Taylor bubble rise velocity (𝑈𝑇𝐵) 

• Taylor bubble nose region: two main features are commonly investigated; the radius of 

curvature at the nose (𝑅𝑁) and the interaction distance above the bubble (𝑍′) 

• Liquid film region: four main features are commonly investigated, developed liquid 

film thickness (𝛿𝐿𝐹), the velocity of the liquid film (𝑈𝐿𝐹), the wall shear stress (𝜏𝑊), 

the length needed for the fully developed annular liquid film (𝑍∗). 

• Wake region: two main features are commonly investigated, wake length (𝐿𝑊) and 

wake volume (𝓋𝑊). Besides, the corresponding coordinates of the recirculation core 

(𝑍𝑉, 𝑅𝑉) and the curvature radius of the bubble bottom (𝑅𝐵) 

• The perturbed distance below the bubble (𝐿𝑚𝑖𝑛). 

 

Figure 2-1. A schematic representation of the main hydrodynamic features of a single Taylor bubble rising 

through a stagnant vertical liquid. 
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 Theoretical and Experimental Studies 

In literature, since the 1940s, a significant amount of research has been done to understand the 

complex principles of the motion of large gas bubbles through liquids. Most of the studies in 

this group mainly contribute to the topic of the Taylor bubble motion. This section covers the 

research done on the drift of the Taylor bubble through the stagnant liquid. 

 Taylor Bubble Rise Velocity Through Stagnant Liquid  

Early attempts to investigate the topic of Taylor bubble motion start with Dumitrescu (1943) 

who examines the rise of single Taylor bubble in the stagnant liquid in the vertical tube by 

applying potential flow theory neglecting viscous, surface tension effects and bubble expansion 

during its rise. He applies conservation of vorticity to find a solution for the bubble drift 

velocity by attaching reference coordinate fixed to the bubble. He assumes the following:  

• Constant vorticity upstream the bubble.  

• Bubble nose is spherical and applies an approximate solution for potential flow around 

it. 

• The inviscid falling film with an asymptotic solution with a common tangent at the 

surface junction is matched to find the integration constant (Morgado et al., 2016). 

Doing so, he concludes that the Taylor bubble rise velocity could be given by: 

Equation (2-2) can be expressed as: 

Davies and Taylor (1950) perform a similar scenario with experimental measurements of 

bubble nose and its rise velocity using nitrobenzene and water as the working fluids. With the 

assumption that the pressure over bubble nose is an ideal hydrodynamic flow around a sphere 

and applying potential flow around the bubble, they conclude a lower value of 0.328 for 

constant 𝐶 compared with Dumitrescu (1943) value given in equation (2-3). 

𝑈𝑇𝐵 = 0.351√𝑔𝐷 (2-2) 

𝑈𝑇𝐵 = 𝐶√𝑔𝐷 (2-3) 
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Other experimental and analytical investigations agree with solution of Dumitrescu (1943) with 

some modification to the value of 𝐶 in equation (2-3) (Davies and Taylor, 1950; Laird and 

Chisholm, 1956; Nicklin et al., 1962; White and Beardmore, 1962; Brown, 1965; Zukoski, 

1966; Bendiksen, 1985; Campos and De Carvalho, 1988; Polonsky et al., 1999). Table 2-1 

summarises the values of constant 𝐶 in equation (2-3) based on analytical and/or experimental 

approaches done in the literature. 

Table 2-1. Values of constant 𝐶 in equation (2-3) based on analytical and/or experimental approaches in the 

literature (Kang et al., 2010; Morgado et al., 2016). 

 

 

 

 

White and Beardmore (1962) perform an extensive number of experiments covering a wide 

range of dimensionless groups  𝐹𝑟𝑈𝑇𝐵, 𝐸𝑜 and 𝑀. They develop general graphical representation 

of the Taylor bubble rise velocity correlation in terms of these three dimensionless groups. 

Through this representation, they clearly discuss different regions where the effects of some of 

the governing forces can be neglected. For instance, for 𝐸𝑜 < 4, the bubble occupies the total 

pipe cross section and principally does not move. On the other hand, Bretherton (1961) 

suggests this value to be 3.37 (Morgado et al., 2016). 

Brown (1965) investigates the effect of liquid viscosity on the Taylor bubble rise velocity 

through experimental and theoretical investigation. One of the remarkable conclusions drawn 

from his work is that the potential flow theory can only represent low viscous fluids, however, 

it is not valid for high viscous ones. Based on his investigation, a correlation for the Taylor 

bubble rise velocity is proposed and given by: 

Reference Values of constant 𝑪 

Davies and Taylor (1950) 0.328 

Laird and Chisholm (1956) 0.328 

White and Beardmore (1962) 0.345 

Brown (1965) 0.303 

Bendiksen (1985) 0.351 

Campos and De Carvalho (1988) 0.350 

Hasan and Kabir (1988) 0.350 

Polonsky et al. (1999) 0.351 

𝑈𝑇𝐵 = 0.35√𝑔𝐷√1 − 2(
√1 − 𝑁𝐷 − 1

𝑁𝐷
) 

(2-4) 

𝑁 = √14.5𝜌𝐿
2𝑔/𝜇𝐿

2 
3
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With the following criterion: 
𝜌𝐿𝑔𝐷

2

4𝜎
(1 − 2 (

√1−𝑁𝐷−1

𝑁𝐷
))

2

> 5 and 𝑁𝐷 > 60. 

In addition, other important factors are affecting the Taylor bubble rise velocity, such as surface 

tension, tube diameter, liquid density and viscosity. Zukoski (1966) performs experimental 

study covering the effect of most of these parameters, which are considered the most 

comprehensive work available in the literature. He concludes that for Reynolds number greater 

than 200, the viscous effects are considered negligible. For 𝑅𝑒𝑈𝑇𝐵  > 100, the bubble velocity 

is inversely proportional to the liquid viscosity. Additionally, the bubble velocity is 

independent of surface tension effects if 𝐸𝑜 > 40. Pipe inclination effect is as well explored, 

and a number of important conclusions are drawn.  

Wallis (1969) develops a correlation for bubble velocity considering all affecting parameters, 

given by: 

Moreover, Tung and Parlange (1976) explore the effect of surface tension on bubble velocity 

with negligible viscosity effects. They conclude that the bubble velocity diminishes as surface 

tension increases and they develop a correlation to estimate the bubble velocity, which is given 

by:  

Later, Fabre and Liné (1992) perform an extensive review on two-phase slug flow modelling 

through which deductions regarding the controlled regimes are discussed (White and 

Beardmore, 1962). For instance, the inviscid fluid assumption is probably an accurate 

𝐹𝑟𝑈𝑇𝐵 =
𝑈𝑇𝐵

√𝑔𝐷
= 0.345 (1 − 𝑒

−0.01𝑁𝑓
0.345 )(1 − 𝑒

3.37−𝐸𝑜
𝑚 ) 

where: 

𝑚 = {

25,                                         𝑁𝑓 < 18

69𝑁𝑓
−0.35,                18 < 𝑁𝑓 < 250

10                                      𝑁𝑓 > 250

 

(2-5) 

𝐹𝑟𝑈𝑇𝐵 =
𝑈𝑇𝐵

√𝑔𝐷
= √0.136 − 0.944

𝜎

𝜌𝐿𝑔𝐷
2
 (2-6) 
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approximation for some practical cases of slug flow (Morgado et al., 2016). There is a different 

limiting criterion for each regime, which can be summarised as follows: 

• Surface tension dominate regime: 𝑁𝑓 > 300 according to Wallis (1969) and Fabre and 

Liné (1992) and 𝑁𝑓 > 550 according to White and Beardmore (1962). 

• Viscosity dominate regime: 𝐸𝑜 > 100, according to Wallis (1969) and Fabre and Liné 

(1992) and 𝐸𝑜 > 70 according to White and Beardmore (1962). 

• Inertia dominate regime: 𝐸𝑜 > 100 and 𝑁𝑓 > 300 according to Wallis (1969) and 

Fabre and Liné (1992) and 𝐸𝑜 > 70 and 𝑁𝑓 > 550 according to White and Beardmore 

(1962). Where the flow is not affected by either surface tension nor viscous effects 

(Zheng et al., 2007a). 

 Detailed Hydrodynamics 

The research in this group is mainly focused on investigating the Taylor bubble motion through 

either analytical or/and experimental approach. However, they also contribute to the main 

hydrodynamic features of gas-liquid vertical slug flow, including Taylor bubble nose, liquid 

film and wake regions. For instance, Dumitrescu (1943) is one of the early attempts to 

experimentally and theoretically investigate Taylor bubble shape by applying potential flow 

theory. As pointed out by Morgado et al. (2016), Dumitrescu (1943)’s equation for describing 

the Taylor bubble shape in the nose and liquid film is given by: 

The axial distance pointing downwards is given by 𝑧 𝑅⁄  and the distance from centreline is 

given by 
𝑟

𝑅
. Equation (2-7) showed a strong correspondence with other experimental studies of 

Mao and Dukler (1990) and Nogueira et al. (2006a) even though it is only valid for inertia 

dominate regime.  

𝑧

𝑅
=

{
  
 

  
 
0.75(1 − √1 − 1.778 (

𝑟

𝑅
)
2

) , 𝑧 𝑅⁄ ≤ 0.5 

0.123

(1 − (
𝑟
𝑅)
2
)
2 , 𝑧 𝑅⁄ ≥ 0.5

 (2-7) 
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Other significant contributions regarding the Taylor bubble nose are given by Nicklin et al. 

(1962) and Brown (1965). Nicklin et al. (1962), though their experimental study, suggest that 

the liquid velocity field and viscosity ahead of the oblate spheroidal Taylor bubble nose are the 

main controlling parameters. While Brown (1965) suggests a universal correlation representing 

the radius of curvature at the nose (𝑅𝑁) that characterise the bubble shape in this region, given 

by: 

Some of the main significant contributions concerned with the liquid film region are those done 

by Goldsmith and Mason (1962) and Brown (1965). Both investigations derive an equation for 

the velocity profile in the liquid film for the case of the motion of bubbles in inviscid fluids. 

The model assumes that the fully developed laminar liquid distribution is established near the 

bubble end and with the aid of performing force balances (mainly gravity and shear stress 

forces), the model suggests that velocity profile liquid film can be expressed as: 

And the liquid film thickness is given by: 

Lastly, for the wake region, Goldsmith and Mason (1962) through their experimental work, 

describes the Taylor bubble wake shape as follows:  

• Flow is viscosity dominate regime: the Taylor bubble bottom has oblate spheroid shape. 

• Flow is not viscosity dominate regime: flattening or concaving shape of the Taylor 

bubble bottom.  

The critical criteria for the transformation boundary from oblate spheroid to a concave surface  

is 𝑁𝑓 > 300 according to Wallis (1969) and Fabre and Liné (1992) and 𝑁𝑓 > 550 according 

to (1962). Zheng et al. (2007a) conclude though simulation study that this transition occurs 

when 350 ≤ 𝑁𝑓 ≤ 680.  

𝑅𝑁 = 0.75𝑅𝑇𝐵 = 0.75(𝑅 − 𝛿) (2-8) 

𝑈𝐿𝐹(𝑟)  =
𝑔

𝜈
[
𝑅2 − 𝑟2

4
−
(𝑅 − 𝑟)2

2
𝑙𝑛
𝑅

𝑟
] (2-9) 

𝛿𝐿𝐹 = [
3𝜈

2𝑔(𝑅 − 𝛿𝐿𝐹)
𝑈𝑇𝐵(𝑅 − 𝛿𝐿𝐹) 

2]
1/3

 (2-10) 
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An interesting phenomenon regarding the wake region is observed by Goldsmith and Mason 

(1962), where small disturbance waves act at the beginning of the curvature of the bubble 

bottom in both viscous flow and inertia-controlled regimes. Additionally, one of their main 

vital observations is that the overall bubble deformation including bubble nose, liquid film and 

wake regions is independent of the liquid viscosity (𝜇𝐿) for a constant value of 𝐸𝑜 (Viana et 

al., 2003). 

 Advanced Experimental Studies 

Advance in the experimental techniques enabled research to qualitatively and quantitively 

investigate the hydrodynamic features of gas-liquid vertical slug flow, including details about 

the Taylor bubble nose, surrounding liquid and wake structure (Campos and De Carvalho, 

1988; Mao and Dukler, 1990; DeJesus et al., 1995; Polonsky et al., 1999; Bugg and Saad, 2002; 

Viana et al., 2003; Sousa et al., 2006; Nogueira et al., 2006a; 2006b; Mayor et al., 2008a; 

Hayashi et al., 2011; Kurimoto et al., 2013; De Azevedo et al., 2017). These experimental 

facilities also helped in validating previous theoretical models available in the literature.  

Campos and De Carvalho (1988) perform the first photographic study that investigates the 

wake structure of an individual Taylor bubbles rising through stagnant liquid using different 

pipe diameters and liquid viscosities. This work is considered the primary source of 

information about regime transition in the bubble wake region. Though this experimental work, 

they suggest that the wake region is mainly a function of the inverse viscosity number  (𝑁𝑓) 

and categorise the wake flow pattern into three main groups, as follows: 

• Type 1: Closed axisymmetric laminar wake for 𝑁𝑓 < 500. 

• Type 2: Closed asymmetric transitional wake for  500 < 𝑁𝑓 < 1500. 

• Type 3: Opened turbulent wake with the recirculatory flow for  𝑁𝑓 > 1500. 

Additionally, they propose the following correlations for the dimensionless wake 

length (𝐿𝑊/𝐷) and wake volume (𝓋𝑊/𝐷
3): 

𝐿𝑤
𝐷
= 0.30 + 1.22 × 10−3𝑁𝑓  𝑓𝑜𝑟 100 < 𝑁𝑓 < 500 (2-11) 
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Despite the fact the Campos and De Carvalho (1988) can be considered a primary information 

source about regime transition in the bubble wake region, it is worth noting that replacing 𝑁𝑓 

by 𝑅𝑒𝑈𝑇𝐵 is questionable in the case of judjing turbulance or the onset of hydrodynamic 

instability. Further details are given in chapter 4. 

Recent developments in visualisation methods lead to quantitative measurements of the flow 

fields in the wake region (Morgado et al., 2016). Wake flow oscillation is an exciting 

phenomenon examined experimentally by some authors (Polonsky et al., 1999; Van Hout et 

al., 2002; Liberzon et al., 2006; Shemer et al., 2007). For instance, Polonsky et al. (1999) use 

Particle Image Velocimetry (PIV) to investigate the wake flow oscillation phenomena for 

Taylor bubble rising through a stagnant liquid. They conclude that the wake oscillation depends 

on the liquid flow rate and bubble length. However, PIV technology fails to determine the exact 

shape of the bubble. To overcome this problem, Nogueira et al. (2003) use combined PIV and 

Pulsed Shadow Technique (PST) techniques to investigate the flow around Taylor bubble 

rising through liquids and co-current Newtonian flows. These technologies enable the 

determination of average flow fields, streamlines, the shape of the bubble end and wake 

dimensions in terms of length and volume (Morgado et al., 2016).  A similar study is done by 

Nogueira et al. (2006b) where the different wake flow patterns observed earlier by Campos and 

De Carvalho (1988) are reported, and wake dimensions are established via averaging flow 

fields. However, it should be pointed out that the wake flow oscillations phenomena has many 

governing factors and needs further qualitative investigation. 

The Particle Image Velocimetry technique (PIV) not only enables the investigation of the 

bubble wake region, however, it also allows many studies to obtain a deeper understanding of 

the hydrodynamic features regarding the bubble nose region and the liquid film region. For 

example, in the bubble nose region, it allows experimental identification of the interaction 

distance above the bubble (𝑍′) at which the impact of the drifting bubble is observed (Polonsky 

et al., 1999; Bugg and Saad, 2002; Van Hout et al., 2002; Nogueira et al., 2003; 2006a; Shemer 

et al., 2007). Additionally, PIV allows experimental measurements of the radius of curvature 

at the bubble nose (𝑅𝑁) where the increment in its values corresponds to an increase in both 

𝓋𝑊
𝐷3
= 7.5 × 10−4𝑁𝑓 𝑓𝑜𝑟 100 < 𝑁𝑓 < 500 
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Taylor bubble rise velocity (𝑈𝑇𝐵) and the inverse viscosity number (𝑁𝑓) (Bugg et al., 1998; 

Nogueira et al., 2006a). 

Advances in experimental techniques enable researchers to investigate the Taylor bubble rise 

velocity effectually. For example, Viana et al. (2003) perform experiments as well as gather all 

correlations for the Taylor bubble rise velocity in the literature and propose a universal 

correlation for the Taylor bubble rise velocity given by: 

They collect bi-power laws for two separate flow regions, large 𝑁𝑓, 𝑁𝑓 > 200 and small 𝑁𝑓, 

𝑁𝑓 < 10, and fit the transition region between those ranges by a logistic dose curve. Their 

correlation strongly corresponds with most of the experimental and/or theoretical correlations 

in the literature. 

Morgado et al. (2016) and Mayor et al.  (2007a; 2007b; 2008a; 2008b; 2008c) publish a group 

of methodical research on the hydrodynamics of gas-liquid vertical slug flow in pipes. Their 

research combines both experimental and numerical work. In this section, purely experimental 

work is discussed. Mayor et al. (2008a) examine the hydrodynamics of free bubbling gas–

liquid (air-water) vertical slug flow using a non-intrusive image analysis technique. The study 

covers fully turbulent regime in the main liquid and the near wake bubble region. They propose 

a correlation for the bubble to bubble interaction that relates the bubble velocity to the length 

of the liquid slug in advance of the bubble. The correlation is independent of pipe diameter, 

vertical pipe coordinate, superficial liquid and gas velocities and the velocity and length of the 

leading bubble. 

Using simultaneous particle image velocimetry (PIV) and shadowgraphy technologies, Sousa 

et al. (2006) examine the flow around single Taylor bubbles rising in stagnant non-Newtonian 

𝐹𝑟𝑈𝑇𝐵 =

0.34

(1 +
3805
𝐸𝑜30.6

)
0.58

(

 1+ ((
𝑅𝐺
31.08) (1 +

778.76
𝐸𝑜1.96

)
−0.49

)

−1.45(1+
7.22×1013

𝐸𝑜9.93
)
0.094

)

 

0.74(1+
7.22×1013

𝐸𝑜9.93
)
−0.094  

where 𝑅𝐺 = √𝐷
3𝑔(𝜌𝐿 − 𝜌𝐺)𝜌𝐿/𝜇 

(2-12) 
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solutions of polyacrylamide (PAA) polymer. The study includes the effect of gas expansion, 

which is rarely included in the previous research. One of the main findings is that the solution 

in the Taylor bubble nose region has Newtonian behaviour with almost uniform viscosity due 

to very low-velocity gradients with low shear rate noticed in such region. The gas expansion 

increases the Taylor bubble rise velocity, which is affected by bubble length. The bubble length 

affects both the bubble velocity and the velocity in the Taylor bubble nose region. Hence, they 

conclude that an increase in bubble velocity due to expansion can be found by subtracting the 

maximum liquid velocity at the pipe’s axis, to the experimental values of 𝑈𝑇𝐵 to obtain a 

constant bubble velocity, which corresponds to that of a bubble drifting in a closed pipe 

(Morgado et al., 2016). 

De Azevedo et al. (2017) make use of the advances in the experimental methods. They 

implement a pulse-echo ultrasonic technique to examine the falling liquid around single Taylor 

bubbles rising in a vertical pipe with stagnant liquids using a pulse-echo ultrasonic technique. 

Ultrasonic signals processing is used to obtain a velocity profile of the Taylor bubble and the 

development length and thickness of the falling liquid film. Based on the experimental result, 

the study proposes new correlations to estimate the dimensionless equilibrium film thickness 

(𝛿̀𝑒𝑞) and the dimensionless film development length (
𝑍′

𝐷
), given by: 

 Numerical Studies 

The experimental studies investigating the main complex hydrodynamic nature of slug flow 

postulate a number of remarkable conclusions that helped in further understanding of the 

problem (Polonsky et al., 1999; Van Hout et al., 2002; Clanet et al., 2004; Liberzon et al., 2006; 

Sousa et al., 2006; Direito et al., 2017). Despite the significant effort done in most of the 

experimental approaches, the need for computation analysis is essential in understanding the 

complex nature of slug flow problem that eliminates the experimental limitation and the 

difficulties while providing robust analysis and accurate results. According to the viewed 

𝛿̀𝑒𝑞 = −4.19 × 10
−2 𝑙𝑛 𝑁𝑓 + 4.25 × 10

−1 (2-13) 

𝑍′

𝐷
= −1.51 + 1.70 × 10−3 𝑙𝑛𝑁𝑓 − 2.45 × 10

−8𝑁𝑓
2 (2-14) 
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literature, Computational fluid dynamics (CFD) has been proven to be a powerful, practical 

tool for the analysis and simulation of the hydrodynamic characteristics of slug flow in pipes 

(Clarke and Issa, 1997; Bugg et al., 1998; Ndinisa et al., 2005; Taha and Cui, 2006; Lu and 

Prosperetti, 2008; Kang et al., 2010; Araújo et al., 2012; Ambrose, 2015; Lizarraga-García, 

2016; Gutiérrez et al., 2017). 

Ansari and Shokri (2011) classify the primary methods used to model slug flow in the literature 

as follows: 

• Steady-state models: the complex structure of slug flow is simplified to an ‘‘equivalent 

cell unit”.  The balance equations can be written in a frame of reference with the unit 

cell so that the flow appears steady with mass and momentum conserved across the 

boundary between the liquid slug and the long gas bubble region. 

• Slug tracking models (Lagrangian slug capturing scheme): the movement, growth and 

disappearance of slugs are monitored by tracking individual slugs.  

• Slug capturing using Two-Fluid models: the slug regime is modelled with the same set 

of governing equations (the one-dimensional, transient, two-fluid model) and closure 

laws. Available in several commercial codes, including PLAC (Black et al., 1990) 

(One-dimensional, steady-state or transient, model-based two-phase simulator for 

hydrocarbon pipeline flow), OLGA (Bendiksen et al., 1991), Ledaflow (slug capturing 

in Leda is a predictive tool designed for resolving hydrodynamic slugs, terrain slugging 

and interactions between travelling waves) and TACITE (One dimensional steady-state 

or transient simulation tool for two and three-phase flow in pipeline and pipeline 

networks). 

• Slug-Interface Capturing Models: VOF method and Level set method. The degree of 

freedom in the modelling for the interface capturing method is lower than that for the 

two-fluid model because the latter has two velocity fields in the computational domain. 

In the literature, different numerical techniques have been addressing the challenging problem 

of the Taylor bubble, by using the volume-of-fluid (VOF) method (Araújo et al. (2012; 2013a; 

2013b)),  Front tracking method (Kang et al., 2010), Lattice Boltzmann method (Kuzmin et al., 

2013), level set method (Gutiérrez et al., 2017) and other methods (Clarke and Issa, 1997; 

Ndinisa et al., 2005). 
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The main complex feature of gas-liquid slug flow is the deformable interface (Zheng and Che, 

2007b). The volume-of-fluid (VOF) method developed initially by Hirt and Nichols (1981) is 

frequently used to simulate complex multiphase flows, including slug flow and is dominant in 

tracking the interface between fluids.  

Early attempts to the numerical study of slug flow problem are made by Kawaji et al. (1997) 

that use the volume-of-fluid (VOF) method to numerically investigate the hydrodynamic 

characteristics of a Taylor bubble rising through the stagnant liquid in a vertical pipe and 

conclude that the bubble length does not affect the bubble terminal velocity. Based on an 

iterative scheme that solved the velocity and shape of the Taylor bubble in a vertical tube, a 

different methodology is developed by Clarke and Issa (1997). They introduce a model that 

assumes homogenous flow in the liquid slug region and thus account for the dispersed bubble 

in that region (Araújo et al., 2012).  Against their hypothesis, the model shows poor results that 

they suggest that future models should use the two-fluid model for proper simulation of the 

dispersed gas bubbles in the liquid slug region (Ndinisa et al., 2005). Later, Bugg et al. (1998) 

perform a detailed study on the motion of Taylor bubbles in vertical pipes and prove that the 

VOF method is capable of determining the main hydrodynamic features of slug flow including 

the bubble shape, bubble rising velocity, liquid film thickness and average velocity in the liquid 

film. The results are then compared with experimental data in the literature and show good 

agreement. Another different approach, based on developing a new algorithm for solving the 

gas-liquid interface equation, is developed by Issa and Ubbink (1999).  

Other significant numerical studies using the VOF method are worth to mention as those done 

by Ndinisa et al. (2005); Taha and Cui (2006) and Zheng et al. (2007a). Lately, Lu and 

Prosperetti (2008) numerically study Taylor bubble rising in the stagnant liquid by neglecting 

the flow in the gas using front tracking method that deals with two-phase liquids and evades 

the uncertain gas-liquid interface reconstruction in VOF method. They apply a procedure based 

on B-splines to build smooth functions best-fitting the field variables (velocities in the gas 

phase) over a strip straddling the gas-liquid interface along with its whole perimeter. This 

method shows powerful tracking of the exact position and curvature of the interface that helps 

in calculating the surface tension.  
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On the subject of the study and modelling of continuous slug flow applied to oil and geothermal 

wells, Mayor et al. (2007a; 2008b) use simulators to produce numerical data for velocity and 

slug length distributions along the well to predict the hydrodynamics of the developing state of 

continuous slug flow. This type of research needs a detailed study of the systems which are 

composed of “fundamental units” of slug flow.  However, the main input for these slug flow 

tracking simulators is some information that describes the interaction between consecutive 

bubbles as a function of these parathion distance. To obtain this crucial information, it is 

necessary to study in detail the systems composed of “fundamental units” of slug flow. The 

study includes different scenarios, fully laminar regime (Mayor et al., 2007a) and a mixed case 

of laminar flow in the main liquid and turbulent regime in the near-wake region (Mayor et al., 

2008c). The following conclusions are drawn:  

• Taking the mixed case as a reference, for fully developed flow the bubble velocity is 

higher when the regime is fully laminar and lower when the flow pattern in both regions 

is turbulent – Mayor et al. (2007b; 2008a) 

• Regarding the lengths of the bubble and the liquid slug, upper values occur for the fully 

turbulent regime and minor ones for fully laminar. 

• The values obtained for bubble length when the flow pattern is fully laminar by Mayor 

et al. (2007a; 2008c) are very close to those of the mixed scenario. 

Kang et al. (2010) use a front tracking methodology to simulate the dynamics of gas slugs 

rising through stagnant liquids, where the finite difference method is used to discretise the 

governing equations. The study concludes that the density and viscosity ratios have minimal 

effect on the dynamics of Taylor bubbles rising in stagnant liquids, while both the Eötvös 

number and Archimedes number have a significant impact. They develop correlations for the 

dimensionless liquid film thickness and the dimensionless wall shear stress as a function of 

only Archimedes number. They also conclude that wake length and volume depend mainly on 

the Archimedes number. Later, Araújo et al. (2012) perform a detailed study of the dynamics 

of the Taylor bubble rising in stagnant liquid and include a wide range of Eötvös and Morton 

number. They show that Kang et al. (2010) correlations are inadequate by proving that both 

dimensionless liquid film thickness and the dimensionless wall shear stress are a function of 

Eötvös and Morton numbers. They investigate the wake structure with full details about the 
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bubble bottom and the corresponding curvature radius (𝑅𝐵) that enable them to define the 

transition in wake shape and its concavity limit expressed in terms of both Eötvös and Morton 

numbers. They conclude that the wake structure is greatly influenced by both Eötvös, and 

Morton numbers, and not only Archimedes number as concluded by Kang et al. (2010). They 

have also been able to develop correlations for the wake length and volume that show good 

agreement with well-known experiment correlations of Campos and De Carvalho (1988). 

According to the literature, the work of Araújo et al. (2012) is considered one of the significant 

numerical studies of an individual Taylor bubble rising through the stagnant liquid. The study 

also accounts for the perturbed distances above and below the bubble, 𝑍′ and 𝐿𝑚𝑖𝑛, 

respectively, which are considered important parameters especially for the coalescence 

phenomena in slug flow.  It should be pointed out here, that sole governing parameters for the 

hydrodynamic characteristics of slug flow (wake and liquid film) are still questionable and 

there are many contradicting conclusions in their research. 

Additionally, Yan and Che (2011) investigate the hydrodynamic characteristics of a single 

Taylor bubble rising in stagnant liquid with further consideration of the small dispersed bubbles 

in the liquid slug region. Their study account for the effect of small dispersed gas bubbles in 

the liquid slug region on the flow hydrodynamics features and CO2 corrosion rate. It is 

concluded that the small dispersed gas bubbles result in higher fluctuations in the liquid slug 

region, which subsequently increase the mass transfer and wall shear stress. Moreover, Araújo 

et al. (2013a; 2013b) investigate the rising of two consecutive Taylor bubbles through vertical 

stagnant Newtonian liquids under laminar regime using the volume-of-fluid (VOF) method. 

The results account for bubble-bubble interaction and show the dependency of the wake on the 

separation distance between the bubbles. A good review on slug flow is presented by Morgado 

et al. (2016) that summarises all of the essential correlations used in defining the problem and 

show the missing data that need to be further investigated. 

Furthermore, the three-dimensional Taylor bubble problem is a challenging problem in terms 

of computational time, yet Gutiérrez et al. (2017) succeed in using a domain optimisation 

method (the moving mesh method), where smaller computational domains can be used to 

simulate the problem and hence save computational resources. The authors verify the method 

using broad numerical tests. The results are tested against experimental work of Bugg and Saad 



Chapter 2– Literature Review   

 

-34- 

(2002) for the vertical case, and Shosho and Ryan (2001) for the inclined case and good 

agreement is noticed. The full three-dimensional analysis of the problem enables the work to 

comprehensively address the problem with complete details about its dynamic features. The 

work investigates the effect of different parameters, such as the impact of the initial shape of 

the bubble, the initial volume of the bubble and the inclination of the pipe. 

Recently, two main topics in the field of Taylor bubble flow become of main concern, the flow 

of Taylor bubbles in shear-thinning liquids in a vertical pipe and the flow of Taylor bubbles 

through a sudden or gradual expansion in the pipe. For instance, Araújo et al. (2017) 

numerically investigate the impact of liquid shear-thinning and shear-thickening rheology on 

the hydrodynamics of the Taylor bubble. The dependence of the flow field, covering the nose, 

liquid film, and wake regions, on the liquid rheological nature is examined. A typical slug flow 

condition, which is characterised by large variations of the shear rate, is explored by applying 

typical Shear-Thickening Fluid (STF) characterised by a mixed rheological behaviour. The 

numerical results show good correspondence when tested against in-house experimental data. 

Another example is Ambrose et al. (2017) who numerically investigate the rise of Taylor 

bubbles through a change in pipe diameter using the VOF method implemented in the 

commercial software ANSYS Fluent. Their simulations are conducted using an air-water 

system and show good matching when tested against existing experimental work. The 

behaviour of Taylor bubbles when passing through expansion is examined using different 

angles of expansion. Their main conclusion is that the bubble might remain intact or split into 

daughter bubbles depending on the angle of expansion. This is analysed in term of bubble 

critical length which is defined as the maximum length that will pass through intact. The study 

reveals that this length is proportional to the cosecant of the angle of the expansion. Lastly, 

Amani et al. (2019) numerically investigate the rise of the Taylor bubble in Newtonian and 

shear-thinning liquids (CarboxyMethyl Cellulose or CMC) through a change in pipe diameter. 

They validate the numerical results against experimental data exploring the effect of shear-

thinning behaviour on the Taylor bubble splitting process across the sudden or gradual 

expansion. The effect of both CMC content of the aquatic solution and the strength of non-

Newtonian fluid rheology is mainly reflected in the flow field structure and the corresponding 

length scales of the bubble. They also account for the shear-thinning behaviour and its response 

to the pressure variations across the necking region.  
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 Cooperative Associated Experimental and Numerical Studies 

Lastly, in the literature, some essential studies combine interdependent association between 

experimental and simulation attempts that are worth mentioning. Starting with Tomiyama et 

al. (1996) who use the first experimental data on the effects of the dimensionless number, 

Eötvös and Morton numbers, on the shape of Taylor bubbles to evaluate the practicability of 

numerical solution using the volume-of-fluid (VOF) methodology of gas-liquid vertical slug 

flow. Good correspondence between both approaches regarding bubble shape and terminal 

bubble velocity is achieved. The simulation results show similar behaviour associated with 

wake oscillation phenomena where the bubble bottom revealed disturbances as those observed 

by of Goldsmith and Mason (1962); Polonsky et al. (1999); Van Hout et al. (2002); Liberzon 

et al. (2006) and  Shemer et al. (2007). 

Later, Bugg and Saad (2002) investigate the flow field around the air bubble rising through 

stagnant olive oil using (PIV) measurements. Flow field measurements include three main 

regions, the bubble nose, the falling film and the wake regions. The PIV measurements enable 

measurement of the interaction distance above the bubble (𝑍′) and the radius of curvature at 

the nose (𝑅𝑁) supporting the conclusions of  Polonsky et al. (1999); Van Hout et al. (2002); 

Shemer (2003) and Nogueira et al. (2003; 2006a) that an increase in 𝑅𝑁 is associated with an  

increase in the bubble velocity, and accordingly Froude number, along with the inverse 

viscosity number. A volume-of-fluid based finite difference technique is used as well to predict 

the flow fields and compared with the experimental data. 

Additionally, the work of Mayor et al. (2007a; 2008c) use Slug Flow Simulator (SFS) to 

examine the effect of the inlet slug length distribution on the development of continuous slug 

flow. They include different situations, fully turbulent regime (in the near wake of the leading 

bubble and the main liquid), fully laminar regime and a mixed situation of laminar flow in the 

main liquid and turbulent one in the wake. The input of SFS is an empirical bubble-to-bubble 

interaction correlation relating the bubble velocity and the length separating consecutive Taylor 

bubbles, taken from the experimental analysis. 

More recently, other works contribute to modify bubble rise velocity correlation as the work 

of Hayashi et al. (2011) and Kurimoto et al. (2013).  Hayashi et al. (2011)’s correlation is based 
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on their experimental data and dimensionless analysis based on the instantaneous local fields 

equations and the jump conditions (Ishii, 1975), to obtain the correlation functional form, and 

using the limiting cases of (𝐸𝑜 → ∞ , 𝑅𝑒𝑈𝑇𝐵 → ∞ ) and (𝐸𝑜 → ∞ , 𝑅𝑒𝑈𝑇𝐵 → 0) to define the 

correlations’ coefficients (Morgado et al., 2016). However, Kurimoto et al. (2013) modify 

Hayashi et al. (2011) correlations’ coefficients to show better matching with other important 

correlation in literature, Wallis (1969) and Viana et al. (2003), especially for low Morton 

number cases. Both studies use an Interface tracking method for the numerical approach. 

2.3 Gas-Liquid Slug Flow in Inclined Pipes 

In the literature, most of the research is done on gas-liquid slug flow in vertical and horizontal 

pipes. The research on the inclined pipes is mainly experimental and/or analytical approaches. 

There is a moderate amount of numerical work done on gas-liquid slug flow in inclined pipes 

because this type of simulation is considerably computationally expensive. This section 

discusses the research done on gas-liquid slug flow in inclined pipes according to their 

appearance in the literature, including the rise of the Taylor bubble through both stagnant and 

flowing liquid. The main experimental and/or theoretical studies are given in research group 1 

(theoretical and experimental studies), and the experimental and/or numerical studies 

investigating the gas-liquid slug flow in inclined pipes are given in research group 2 

(experimental and numerical studies). Similar to vertical slug flow, a brief discussion on the 

dimensionless analysis of the forces that govern the drift of the Taylor bubble through a 

stagnant liquid in inclined pipes is first introduced. Afterwards, a description of the main 

hydrodynamic characteristics of the gas-liquid slug flow in inclined pipes is discussed. 

 Dimensionless Analysis of Gas-Liquid Slug Flow in Inclined Pipes 

Similar to the vertical slug flow, the hydrodynamic characteristics of gas-liquid slug flow 

inclined by an angle (𝛾) are governed by viscous, inertial, gravitational and interfacial forces. 

In general, the Taylor bubble drift velocity (𝑣𝑑) can be expressed as follows: 

𝐹𝑟𝑣𝑑 =
𝑣𝑑
2

𝑔𝐷
= 𝑓 [𝐸𝑜 =

𝑔𝜌𝐿𝐷
2

𝜎
, 𝑅𝑒𝑣𝑑 =

𝜌𝐿𝑣𝑑𝐷

𝜇𝐿
 ,
𝐿𝑇𝐵
𝐷

 ] (2-15) 
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A complete dimensionless analysis of the equations of motion of the problem of gas-liquid slug 

flow in an inclined pipe, covering inclination range of 0 ≤ 𝛾 ≤ 90° with respect to the vertical 

pipe case, is given in detail in chapters 5 and 6.  

 Main Hydrodynamic Characteristics of Gas-Liquid Slug Flow in 

Inclined Pipes 

The main hydrodynamic characteristics of the flow can be described using the same approach 

of the vertical case, which is considering the drift of a single Taylor bubble through a stagnant 

liquid in an inclined pipe. Figure 2-2 illustrates the main hydrodynamic features of the inclined 

case, which are similar to the vertical case, where the flow field can be divided into three 

regions the front, the body and the tail.  

 

    

Figure 2-2. A schematic representation of the main hydrodynamic features of a single Taylor bubble 

rising through a stagnant liquid in an inclined pipe (Lizarraga-García, 2016). 
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The main hydrodynamic features are summarised as follow: 

• Taylor bubble drift velocity (𝑣𝑑) 

• Front region: the interaction distance above the bubble (𝑍′). 

• Bubble tip position with respect to the pipe axis (𝑦𝑡𝑖𝑝). 

• Body region: the liquid film has two regions top liquid and bottom liquid films. The 

liquid film region has an interface separating the Taylor bubble at the upper portion of 

the pipe and bottom liquid film at the lower portion. 

• Tail region: the perturbed distance below the bubble (𝐿𝑚𝑖𝑛). 

 Theoretical and Experimental Studies 

Generally, the drift velocity of long bubbles rising in pipes with stagnant liquid principally 

depends on the pipe diameter, liquid viscosity, liquid and gas densities, surface tension and 

inclination angle. Zukoski (1966) expresses the bubble drift velocity by the following 

relationship: 

where 𝑔̀ =
𝑔∆𝜌

𝜌𝐿
. 

Zukoski (1966) investigates the effect of pipe inclination on the dynamics of Taylor bubbles in 

inclined pipes including the effects of viscosity and surface tension with an inclination angle 

of 0˗90° with respect to the horizontal position. He concludes that the viscous effects are 

considered negligible when 𝑅𝑒𝑈𝑇𝐵 > 200.  The experimental results for the bubble motion 

follow the “peculiar trend” with the inclination angle, where the bubble velocity increases with 

inclination angle until it reaches a maximum value, then it starts to decrease once again. 

Bonnecaze et al. (1971) clarify the maximum in the drift velocity detected at 30-50° 

qualitatively in terms of the gravitational potential. They claim that the gravitational potential 

drives the liquid velocity along the curved surface at the bubble nose initially increases and 

then declines with the inclination angle variation from the vertical to the horizontal position. 

𝑣𝑑 = 𝐶∞[𝐸𝑜, 𝑁𝑓 , 𝛾 ]√𝑔𝐷̀ (2-16) 
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Vermeulen and Ryan (1971) propose a semi-empirical theory based on a simple model to 

calculate the pressure gradient along the slug, which showed good predictions against other 

correlations. Besides, they perform experiments using the air-water system to examine the flow 

pattern, pressure gradient, pressure fluctuation and slug frequency in horizontal and inclined 

pipes. Their main contributions can be summarised as follows: 

• Flow pattern:  A comparison between the developed flow pattern based on Baker 

(1954)’s chart is discussed. 

• Pressure gradient: An offset due to the static head is found between the curve for 

pressure gradient in the inclined and the horizontal cases. The pressure gradient is 

significantly affected by the gas flow rate and slug breakup starts at high frequencies.  

• Pressure fluctuations: The gas flow rate has a higher effect on the pressure fluctuations 

than the liquid rates. Both liquid and gas flow rates affect the flow transition in terms 

of pressure fluctuations. The pressure gradients differ in inclined cases only because of 

the static head, which is a function of the liquid holdup. 

• Slug frequency: Gas flow rates have a minor effect on the slug frequency. Nevertheless, 

the high increment in slug frequency is noticed at very low gas flow rates and an 

increase in liquid rates. The effect of pipe inclination is observed only on the location 

of the sudden rise in slug frequency. 

Maneri and Zuber (1974) perform an experimental study using finite air bubbles in water and 

methanol in inclined pipes with an inclination angle of 0˗85° with respect to the vertical 

position. They express the bubble drift velocity in terms of tank width, tank spacing, fluid 

properties, bubble volume and inclination angle. Their main contributions can be summarised 

as follows: 

• Tank width: As the angle of inclination rises the edge wall effect declines. Vertical 

tanks exhibiting a substantial wall effect for all bubble sizes have almost no wall effect 

for a small range of bubble sizes when being inclined.  

• Tank spacing:  The velocity of finite volume bubbles increases or remains the same 

with increasing the tank spacing, regardless of the bubble volume and the inclination. 
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• Fluid properties: For vertical tanks and inclined tanks of infinite extent, the bubble rise 

velocity in fluids of low viscosity is moderately independent of fluid properties. 

Though, in inclined tanks of finite width, the rise velocity increases with reducing 

surface tension. 

• Bubble volume: As the bubble volume increases, the rise velocity increases for all 

inclination angles. 

• Inclination angle: As the angle of inclination falls, increase the bubble velocity is 

noticed, although the composition of the buoyancy force along the tube axis drops that 

acts to subordinate the bubble velocity. 

• Defining three different bubble shape regimes depending on the duct inclination which 

is inertial dominant (extends from 0-10°), properties dependent (extends from 30-90°) 

and transition (the region between 10-30°).  

Spedding and Nguyen (1978) extend the work of Zukoski (1966) to include a broader range of 

dimensionless groups using finite/tube-draining air bubbles in the water with an inclination 

angle of 0˗90° with respect to the horizontal position. The main purpose is to develop data plots 

as those done by White and Beardmore (1962) for other inclination angles and bubble volumes 

showing the effect of viscosity, surface tension and inertial forces on the bubble drift velocity. 

They observe the same “peculiar trend” of Taylor bubble velocity with the inclination angle, 

as observed by Zukoski (1966). They analyse the governing forces that act in inclined pipes. 

Firstly, the buoyancy force enhances the bubble velocity to increase along with the inclination 

angle of the pipe and the resistive force initiating from the draining of the liquid down past the 

rising bubble, that act in the opposite direction. Secondly, the bubble velocity increases with 

tube diameter, reaching a maximum value at 𝐸𝑜 equals to 10,000. At this range of 𝐸𝑜, a 

secondary effect commences where the surface tension begins altering the shape of the bubble 

nose in such a way that the bubble speed reduces more rapidly but in a similar way to that 

observed in the vertical bubble rise case. Lastly, bubble volume is considerably important in 

the prediction of the actual magnitude of the bubble rise velocity, but it does not affect the 

determination of the tube angle at which the maximum bubble rise occurs. 

Bendiksen (1984) performs an essential experimental study using finite air bubbles in the water 

in pipes with an inclination angle of 30˗90° with respect to the horizontal position. The 
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experimental data support the hypothesis of Nicklin et al. (1962) for all inclination angle the 

bubble propagation rate is that of the liquid in front of the tip of its nose, in addition to a possible 

drift velocity due to buoyancy or level effects. Based on the experimental data, a correlation to 

estimate the bubble drift velocity is proposed, given by: 

From the main contributions of this work is that for pipes with one end opened and partly filled 

with liquid and gas, the value of  𝑣𝑑
ℎ is not zero, as concluded by Nicklin et al. (1962) and 

Dukler and Hubbard (1975). In addition, he expresses the coefficient 𝐶∞ in equation (2-16) for 

high 𝑁𝑓 values to be: 

Later, Weber et al. (1986) experimentally investigate the effect the liquid viscosity on the 

velocity of the extended bubble using air bubbles in water, methanol, sucrose and corn syrup 

solutions in pipes with an inclination angle of 0˗90° with respect to the horizontal position. 

They propose a correlation for bubble drift velocity, based on modifying Bendiksen (1984)’s 

correlation (equation (2-17)), to account for the case of ∆𝐹𝑟𝑣𝑑 < 0, given by: 

They suggest that for the case of a closed horizontal tube initially filled with liquid with one 

end opened, the liquid will drain out due to the hydrostatic pressure difference between the top 

and the bottom of the tube. Thus, an extended bubble will propagate along the tube in the 

opposite direction replacing the liquid (Hernandez-Perez et al., 2010; Lizarraga-Garcia et al., 

2016). For horizontal pipes, they suggest that the critical value of 𝐸𝑜 is at 8.5, which agree with 

𝑣𝑑 = 𝑣𝑑
ℎ 𝑐𝑜𝑠 𝛾 + 𝑣𝑑

𝑣 𝑠𝑖𝑛 𝛾 

(2-17) 𝑣𝑑
ℎ = 0.351√𝑔𝐷 

𝑣𝑑
𝑣 = 0.542√𝑔𝐷 

𝐶∞ = 0.344
1 − 0.96𝑒(−0.0165𝐸𝑜)

[1 − 0.52𝑒(−0.0165𝐸𝑜)]1.5
√(1 +

20

𝐸𝑜
(1 −

6.8

𝐸𝑜
)) (2-18) 

𝐹𝑟𝑣𝑑 = 𝐹𝑟𝑣𝑑
ℎ 𝑐𝑜𝑠 𝛾 + 𝐹𝑟𝑣𝑑

𝑣 𝑠𝑖𝑛 𝛾 + 𝑄 

(2-19) 
𝑄 = {1.37(∆𝐹𝑟𝑣𝑑)

2
3 𝑠𝑖𝑛 𝛾 (1 − 𝑠𝑖𝑛 𝛾)     𝑖𝑓∆𝐹𝑟𝑣𝑑 > 0 

0                                                           𝑖𝑓∆𝐹𝑟𝑣𝑑 ≤ 0
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the conclusion of Zukoski (1966) who concludes that draining occurs in a range of 𝐸𝑜 =8.3 

and 𝐸𝑜 =12.1. 

Hasan and Kabir (1988) propose a correlation for bubble drift velocity in an inclined pipe 

through an experimental study 30° < 𝛾 < 90°, assuming 𝑣𝑑
ℎ = 0, given by: 

with  𝐹𝑟𝑣𝑑
𝑣 being constant with large values of  𝑁𝑓 and 𝐸𝑜 values. 

Alves et al. (1993) perform an experimental and analytical study on the effect of surface tension 

on the velocity of Taylor bubbles in inclined pipes using finite air bubbles in stagnant kerosene 

with inclination angle 0˗90° with respect to the horizontal position. They extend Benjamin 

(1968)’s straightforward approach, based on inviscid flow theory, to apply to the inclined and 

the vertical cases and taking into consideration surface tension effects. Their experimental 

results reveal the expected “peculiar trend” of the Taylor bubble velocity with respect to the 

inclination angle with a maximum velocity at inclination angle about 40°.  

Abdul-Majeed (2000) develops a simple mechanistic model capable of predicting the flow 

behaviour for upward vertical and inclined two-phase slug flow with flowing liquid. Based on 

the relationships between the two-phase velocities, expressions for bubble rise velocity, liquid 

film velocity, liquid holdup around the Taylor bubble and liquid slug void fraction are derived. 

He develops a new expression for estimating the liquid slug void fraction as a function of 

superficial gas and liquid velocities, inclination angle and fluid properties, which shows the 

best performance when tested against commonly used slug models in the literature. 

Petalas and Aziz (2000) develop a unified mechanistic model for two-phase flow applicable to 

all-around pipe geometries and fluid properties. They propose correlation for drift bubble 

velocity in inclined pipes, based on modifying Wallis (1969)’s correlation for vertical slug 

flow, given by: 

𝑣𝑑 = 𝑣𝑑
𝑣  √𝑠𝑖𝑛 𝛾 (1 + 𝑐𝑜𝑠 𝛾)1.2 

(2-20) 
𝑣𝑑
𝑣 = 0.35√𝑔𝐷 
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Shosho and Ryan (2001) perform experiments on the motion of long bubbles in inclined pipes 

with an inclination of 5˗90° with respect to the horizontal position, for both Newtonian and 

non-Newtonian fluids. They observe the same “peculiar trend” of Taylor bubble velocity with 

the inclination angle, however, the maximum velocity occurs at larger angles of inclination 

when the fluid is non-Newtonian (30° and 45° for Newtonian fluids and non-Newtonian fluids 

with low 𝑀 while it occurred between 60° and 75° for non-Newtonian fluids with high 𝑀). 

They conclude that the tube diameter, viscosity, and surface tension have a dramatic effect on 

bubble drift velocity, their effects can be highlighted as follow: 

• Diameter effect: At a given angle of inclination, 𝐹𝑟𝑣𝑑  increases with increase pipe 

diameter.  

• Viscosity effect: As the viscosity increases (larger values of 𝑀), the bubble nose 

becomes blunter, which results in a lower rise velocity.  

• Surface tension effect: At a given angle of inclination, the increase in surface tension 

(higher values of 𝐸𝑜) results in a reduction in bubble velocity and correspondingly 

lower Froude number values. 

More recently, advances in the experimental techniques enabled detailed investigation of the 

hydrodynamic characteristics of two-phase slug flow in inclined pipes, for instance, the studies 

by Roitberg et al. (2008); Shuhua et al. (2009); Hua et al. (2009) and Zhang et al. (2009). 

Roitberg et al. (2008) use a wire-mesh sensor that facilitates quantitative measurements of the 

cross-sectional void fraction distribution, statistical analysis of characteristic parameters of 

downward slug flow with flowing liquid, such as bubble and liquid slug length distributions, 

and the ensemble-averaged shapes of the bubble nose, liquid film and bubble tail. Whereas, the 

𝑣𝑑
ℎ = (0.54 −

1.76

𝐸𝑜0.56
)√
𝑔𝐷(𝜌𝐿 − 𝜌𝐺)

𝜌𝐿
 

(2-21) 𝑣𝑑
𝑣 = 0.345(1 − 𝑒−𝐸𝑜−𝑒𝑥𝑝 (3.278−1.424 𝑙𝑛𝐸𝑜))√

𝑔𝐷(𝜌𝐿 − 𝜌𝐺)

𝜌𝐿
 

𝑣𝑑 = 𝑓𝑚(𝑣𝑑
ℎ 𝑐𝑜𝑠 𝛾 + 𝑣𝑑

𝑣 𝑠𝑖𝑛 𝛾) 

where  𝑓𝑚 = 𝑚𝑖𝑛 (0.316√
𝑣𝑑∞𝐷𝜌𝐿

2𝜇𝐿
, 1) (Zukoski, 1966) 
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other studies use high-speed motion analyser technique to investigate the effect of inclination 

on liquid slug and Taylor bubble velocity for the Taylor bubble rising through a stagnant liquid.  

Gokcal et al. (2009) perform experiments using water and viscous oil in inclined pipes with 

inclination angles of 5˗90° with respect to the horizontal position, to investigate the effect of 

high oil viscosity on bubble drift velocity for horizontal and inclined pipes. They combine the 

work of Benjamin (1968) and Joseph (2003). Through which, they extend the work of 

Benjamin (1968) for the horizontal drift velocity to include viscosity, and used the expression 

of Joseph (2003) for the vertical drift velocity. They conclude that the maximum drift velocity 

develops at 40° and the lowest is achieved in the vertical case.  

Jeyachandra et al. (2012) modify Gokcal et al. (2009)’s work by performing experiments using 

water and high viscous oil, to account for the effect of pipe diameter and proposing a new 

horizontal drift velocity closure relation that is based on both the viscosity and piped diameter 

is proposed, given by: 

Generally, the drift velocity increases with the increase in pipe diameter and decreases with the 

increase in viscosity. The maximum drift velocity occurs at 30-50°. Their main contributions 

is that correlation (2-19), and Joseph (2003)’s correlation for the vertical flow could be used in 

correspondence with the modified Bendiksen (1985)’s equation to afford accurate values for 

drift velocity in horizontal and upward inclined case. 

Similar experiments are conducted by Moreiras et al. (2014) using medium viscosity oil 

exploring the effect of viscosity, pipe diameter and pipe inclination angle on the bubble drift 

velocity. They unify dimensionless closure relationship for drift velocity using the similar 

correlation of Weber et al. (1986) (equation (2-19)), given by: 

𝐹𝑟𝑣𝑑 = 𝐹𝑟𝑣𝑑
ℎ 𝑐𝑜𝑠 𝛾 + 𝐹𝑟𝑣𝑑

𝑣 𝑠𝑖𝑛 𝛾, 

(2-22) 
𝐹𝑟𝑣𝑑

ℎ = 0.35𝑒𝑥𝑝(13.7𝑁𝑓
−0.46𝐸𝑜−0.1), 

𝐹𝑟𝑣𝑑
𝑣 =

−8

3
𝑁𝑓
−1√

2

9

𝜌𝐿
(𝜌𝐿 − 𝜌𝐺)

+
64

9
𝑁𝑓
−2 

𝐹𝑟𝑣𝑑 = 𝐹𝑟𝑣𝑑
ℎ 𝑐𝑜𝑠𝑎 𝛾 + 𝐹𝑟𝑣𝑑

𝑣 𝑠𝑖𝑛𝑏 𝛾 + 𝑄 (2-23) 
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where the parameters a, b, c and d are given by 1.2391, 1.2315, 2.1589 and 0.70412, 

respectively. 

Other recent experimental studies of slug flow in inclined pipes have been carried out by Losi 

and Poesio (2016) and Bhagwat and Ghajar (2016). The first study investigates the effect of 

viscosity on the drift velocity of an air bubble in a horizontal and inclined pipe with the main 

focus on the force analysis in the inclined case via applying the momentum equations and 

showing the significance of hydrostatic pressure gradients, buoyancy body force, wall viscous 

force and surface tension force. Their conclusion contradicts Benjamin (1968), the bubble drift 

velocity is not constant, whereas the front displaces along the pipe and, on the whole, the 

viscosity slows down the propagation rate of the bubble. The second study experimentally 

investigates the two-phase flow phenomenon in upward inclined pipes with particular focus on 

flow visualisation, void fraction, pressure drop and heat transfer measurements in non-boiling 

gas-liquid two-phase flow. Based on their heat transfer measurements, the circumferential 

variation of two-phase heat transfer coefficient and its relation to the flow symmetry is 

discussed. 

Lastly, Roitberg et al. (2016) experimentally investigate the effect of pipe inclination and gas 

and liquid flow rates on elongated bubble shape in continuous slug flow in pipes with 

inclination angle 2˗90° with respect to the horizontal position. Also, they develop a theoretical 

film drainage model to predict the extent of the upper liquid film domain. The results show that 

the length of the liquid film above the elongated bubble increases with the inclination angle 

along with the mixture velocity. They develop ensemble-averaged representative bubble 

shapes for several flow conditions and link them with those predicted theoretically by 

combining the model of Taitel and Barnea (1990) for the lower liquid film, added to it the 

extension of the developed model to the upper liquid film and generally both agree reasonably 

well. 

𝐹𝑟𝑣𝑑
𝑣 =

−8

3
𝑁𝑓
−1√

2

9

𝜌𝐿
(𝜌𝐿−𝜌𝐺)

+
64

9
𝑁𝑓
−2 − (

√2

3
− 0.35)√

𝜌𝐿
(𝜌𝐿−𝜌𝐺)

  

𝐹𝑟𝑣𝑑
ℎ = 0.54 −

𝑁𝑓
−1

1.886+0.01443𝑁𝑓
−1  

𝑄 = {
𝑐(∆𝐹𝑟𝑣𝑑)

𝑑
𝑠𝑖𝑛 𝛾 (1 − 𝑠𝑖𝑛 𝛾),     𝑖𝑓∆𝐹𝑟𝑣𝑑 > 0 

0,                                                    𝑖𝑓∆𝐹𝑟𝑣𝑑 ≤ 0
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In conclusion, it should be pointed out that most of the discussed studies (mainly experiment 

ones) observe the “peculiar trend” of Taylor bubble velocity with the inclination angle, which 

is defined the inclination angle increases from the vertical position (𝛾 = 0), 𝐹𝑟𝑣𝑑  increases 

reaching a maximum value and then decreases. However, there are different contributions 

regarding the inclination angle at which maximum Taylor bubble velocity is noticed.  Table 

2-2 summarises the experimental and/or analytical studies with their corresponding working 

fluids and their conclusion regarding the angle at which maximum 𝐹𝑟𝑣𝑑  is noticed.  

Table 2-2. Summary of the experimental studies of Taylor bubbles in inclined pipes with their corresponding 

inclination angles, working fluids and angle at which maximum 𝐹𝑟𝑣𝑑  is noticed. 

 Experimental and Numerical Studies 

This section covers the experimental and/or numerical studies of investigating the gas-liquid 

slug flow in inclined pipes. Earlier attempts by Couët and Strumolo (1987) to develop a 

numerical solution, with 2D analysis (based on Newton’s method), determining the bubble 

shape and the influence of surface tension and viscosity and inclination angle on 𝐹𝑟𝑣𝑑. The 

Reference 
Inclination angle (𝜸) in 
degrees 

Working fluids 
𝜸 at which maximum 
𝑭𝒓𝒗𝒅  occurs 

Zukoski (1966) 
0 to 90° from the horizontal 
position 

Air in water, carbon tetrachloride, 
mercury, glycerin and ethylene 
glycol solutions 

40° < γ < 60° 

Spedding and Nguyen 
(1978) 

0 to 90° from the horizontal 
position 

Finite/tube-draining air bubbles in 
the water 

35° 

Bendiksen (1985) 
-90 to 90° from the 
horizontal position 

Finite air bubbles in the water 40° < γ < 60° 

Hasan and Kabir (1988) 
30 to 90°  from the 
horizontal position 

Air bubbles in the water 40° < γ < 60° 

Weber et al. (1986) 
0 to 90° from the horizontal 
position 

Tube-draining/finite air bubbles in 
water, methanol, sucrose and corn 
syrup solutions 

40° < γ < 60° 

Alves et al. (1993) 
0 to 90° from the horizontal 
position 

Finite air bubbles in kerosene 40° 

Shosho and Ryan (2001) 
5 to 90° from the horizontal 
position 

Newtonian fluids: Water and corn 
syrup mixture. 
Non-Newtonian fluids: 
carboxymethylcellulose (CMC), 
hydroxyethylcellulose (HEC), 
polyacrylamide (PAA) and 
polyvinylpyrrolidone (PVP). 

30 < γ < 45° 

Gokcal et al. (2009) 
5 to 90° from the horizontal 
position 

Water and high viscous oil 40° 

Hua et al. (2009) 
0 to 50° with respect to 
normal 

Liquid nitrogen-cryogenic fluid 20° < γ < 30° 
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numerical results for bubble shape and rise velocity show good correspondence when tested 

against theoretical and experimental work in the literature. Their main contribution is that the 

dependence on the angle of inclination decreases as viscous effects increase. 

Generally, in the literature, there are no extensive CFD studies on Taylor bubbles in inclined 

pipes. The assumption of axisymmetry as in the vertical pipes can no longer be applied, and 

hence full 3D simulations are necessary for such simulations. Yet, there are no extensive 

studies on this problem in the literature. It is worth to mention that few numbers of CFD studies 

are available in the literature that investigates the motion of Taylor bubble with flowing liquid 

in inclined pipes (Hernandez Perez, 2008; Hernandez-Perez et al., 2010; Mazza et al., 2010; 

Pokusaev et al., 2016). For instance, the work of Hernandez Perez (2008) is experimentally 

and numerically investigation of the behaviour of two-phase flow in inclined pipes, using water 

and air, with a wide range of gas and liquid velocities. The simulation is done using the volume-

of-fluid (VOF) method implemented in the commercial software ANSYS Fluent. Mazza et al. 

(2010) develop a complete analysis of liquid film model for horizontal and near horizontal gas-

liquid (up to 30°off horizontal position) slug flows with flowing liquid, that employs one-

dimensional separated phase momentum equations. They develope a liquid film model that is 

tested against experiment performed for an air-water system for the horizontal pipe.  

Finally, Pokusaev et al. (2016) perform an experimental and numerical study of the gas 

projectile mass transfer when moving in an inclined pipe. They mainly focus on the dependence 

of the velocity of the gas projectile motion and effective dimensionless mass transfer 

coefficient on the pipe inclination angle. Their main contribution is that the rate of the bubble, 

expressed as a function of the inclination angle of the pipe, is non-monotonous and extreme.  

However, the CFD studies on the rise of Taylor bubbles through a stagnant liquid in inclined 

pipes are very limited. For instance, Taha and Cui (2006) perform 2D axisymmetric simulations 

of vertical pipes with stagnant fluid and reported only one case of 3D simulations of inclined 

cases. Through applying this, they present the capability of the volume-of-fluid (VOF) method 

in tackling the 3D complex slug flows in inclined pipes as well as providing a complete analysis 

of the problem. 
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Most of the studies mainly focus on investigating Taylor bubble drift velocity in inclined pipes, 

however, some of the studies deal with the liquid film region and its effect on the bubble 

motion. For instance, Behafarid et al. (2015) perform numerical simulations using PHASTA 

(Parallel Hierarchic Adaptive Stabilized Transient Analysis) computer code, combined with 

the level set method for interface tracking to investigate the dynamics of large deformable 

bubbles in pipes with stagnant liquid of different geometries and orientations (30°,45° and 60° 

from vertical position). They conclude that Taylor bubble velocity in inclined pipes mainly 

depends on the pipe wall wettability.  According to their conclusion, if the wall is thoroughly 

wetted, the liquid film is likely to be very thin, and this thickness has a negligible effect on 

bubble motion. This occurs when the pipe’s size is largely related to the bubble’s size, which 

that the effective drag force is controlled by bubble shape and size instead of the wall shear. 

Moreover, the thickness of the thin liquid film attained in inclined pipes has almost no impact 

on both bubble shape and motion. 

Recently, Lizarraga-García (2016) perform an experimental and numerical investigation of 

Taylor bubble rise velocity in the stagnant and flowing liquid in vertical and inclined pipes, 

with a wide range of dimensionless groups 𝑀, 𝐸𝑜 and 𝛾. Experiments, using air, ethanol and 

methanol in pipes with an inclination of 0˗90°from the horizontal position, are done as a part 

of the validation of the numerical method. Different hydrodynamics of the Taylor bubble 

problem are examined including most of the parameters given in Figure 2-2. Additionally, he 

examines most of the correlations in literature for estimating Taylor rise velocity in inclined 

pipes and concludes that they all need some improvement. Thus, based on the results, the author 

suggests a correlation to predict Taylor bubble rise velocity in inclined pipes. Moreover, 

another important part of this study is the analytical film drainage model that predicts the 

gravity-driven drainage of the lubricating film between the bubble and the pipe wall in inclined 

pipes. Generally, in inclined pipes, as the inclination increases the bubble approaches the pipe 

wall, and the liquid film becomes considerably thinner and non-axisymmetric. Due to axial 

gravity-driven drainage, the thickness of the film diminishes along the Taylor bubble. If the 

film breaks up, the surface tension force at the triple contact line reduces the velocity of the 

bubble meaningfully (Behafarid et al., 2015). Subsequently, Lizarraga-García (2016) proposes 

a criterion for film breakup, given by: 
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The characteristic film drainage time (𝜏𝑐ℎ) is based on fluid properties, pipe geometry and 

critical film thickness. If the criterion given in equation (2-24) is satisfied, then the thin film 

would not break up. 

Lastly, the computational domain in buoyant bubble problems needs to be large enough to 

capture the phenomena effectively. This to enable the bubble to reach a steady-state condition. 

Different approaches are used in literature, aiming to minimise computational resources. For 

instance, Gutiérrez et al. (2017) employ a domain optimisation method and used an Arbitrary 

Lagrangian-Eulerian formulation to numerically solve the three dimensional Taylor bubbles 

drifting in stagnant liquid. The method is based on a moving mesh that follows the rise of the 

Taylor bubble. Numerical stability and worthy performance are achieved when applying the 

method and testing the three-dimensional standard rising bubble against experimental data 

from the literature. They handle the main withdraw of the technique, which is the need of using 

open boundaries (namely, inflow and outflow), by applying a new outflow boundary condition. 

A full analysis of the problem is done, including examining the effect of initial Taylor bubble 

shape, the initial volume of the bubble, and the tube inclination on the dynamics of Taylor 

bubbles. Regarding the tube inclination, a quantitative analysis is carried out where the authors 

show the effect of inclination through: 

• TB terminal shape: Average diameter of the bubble is reduced as the inclination 

increases, leading to a growth in the bubble length. 

• Pressure fields: The range of variation of the pressure is similar to the different angles 

and the pressure isosurfaces have a trend of being perpendicular to the gravity vector. 

•  Plotting the streamlines in xy and yz planes: Two regions of opposite vorticity can be 

found in both sides of the bubble which becomes increasingly apparent when the 

inclination rises. 

In brief, it should be pointed out that most of the research on Taylor bubbles problems focus 

on the bubble motion and the effect of different parameters, such as surface tension, viscosity 

and pipe diameter on it. Table 2-3 summarises the main correlations proposed in the literature  

𝑡𝑏̅𝑢𝑏𝑏𝑙𝑒 = 𝑡𝑏𝑢𝑏𝑏𝑙𝑒/𝜏𝑐ℎ < 0.01 (2-24) 
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Table 2-3. Summary of the main correlations proposed in the literature for the rising velocity of a Taylor bubble 

in inclined pipes with stagnant liquid. 

Reference/Type of 
study 

Correlation,  assumptions and comments 

Bendiksen (1985) 
Experimental and 
theoretical  

𝑣𝑑 = 𝑣𝑑
ℎ 𝑐𝑜𝑠 𝛾 + 𝑣𝑑

𝑣 𝑠𝑖𝑛 𝛾, 𝑣𝑑
ℎ = 0.351√𝑔𝐷, 𝑣𝑑

𝑣 = 0.542√𝑔𝐷 

• 𝛾 ranges from −90° to 90°,  𝐹𝑟𝑣𝑑𝑚𝑎𝑥 at  40° < γ < 60° 

• 𝐸𝑜 ranges from 50−340, 𝑀 ≈ 2.63∙10-11 

Weber et al. (1986) 
Experimental 

𝐹𝑟𝑣𝑑 = 𝐹𝑟𝑣𝑑
ℎ 𝑐𝑜𝑠 𝛾 + 𝐹𝑟𝑣𝑑

𝑣 𝑠𝑖𝑛 𝛾 + 𝑄, 𝑄 = {1.37(∆𝐹𝑟𝑣𝑑)
2

3 𝑠𝑖𝑛 𝛾 (1 − 𝑠𝑖𝑛 𝛾),     𝑖𝑓∆𝐹𝑟𝑣𝑑 > 0 

0,                                                         𝑖𝑓∆𝐹𝑟𝑣𝑑 ≤ 0
 

• 𝛾 ranges from 0 to 90° from the horizontal position,  𝐹𝑟𝑣𝑑𝑚𝑎𝑥 at  30° < γ < 60° 

• 𝐸𝑜 ranges from 4.9−490, M= 2.2∙10-11 − 1.5∙104 

• Applicable for High-viscosity Newtonian liquids 

Hasan and Kabir (1988) 
Experimental and 
theoretical 

𝑣𝑑 = 𝑣𝑑
𝑣 √𝑠𝑖𝑛 𝛾 (1 + 𝑐𝑜𝑠 𝛾)1.2, 𝑣𝑑

𝑣 = 0.35√𝑔𝐷, 𝑣𝑑
ℎ = 0 

• 𝛾 ranges from 30 to 90° from the horizontal position. 

• Assume 𝑣𝑑
ℎ = 0, 

•  𝐸𝑜=2200, 𝑀 = 2.63∙10-11 

• Applicable for systems with large 𝑁𝑓 and 𝐸𝑜 values 

Petalas and Aziz (2000) 
Theoretical 

𝑣𝑑
ℎ = (0.54 −

1.76

𝐸𝑜0.56
)√

𝑔𝐷(𝜌𝐿−𝜌𝐺)

𝜌𝐿
, 𝑣𝑑

𝑣 = 0.345(1 − 𝑒−𝐸𝑜−𝑒𝑥𝑝 (3.278−1.424 𝑙𝑛𝐸𝑜))√
𝑔𝐷(𝜌𝐿−𝜌𝐺)

𝜌𝐿
, 

𝑣𝑑 = 𝑓𝑚(𝑣𝑑
ℎ 𝑐𝑜𝑠 𝛾 + 𝑣𝑑

𝑣 𝑠𝑖𝑛 𝛾), 𝑓𝑚 = 𝑚𝑖𝑛 (0.316√
𝑣𝑑∞𝐷𝜌𝐿

2𝜇𝐿
, 1) (Zukoski, 1966) 

• 𝛾 ranges from −90° to 90°,  𝐹𝑟𝑣𝑑𝑚𝑎𝑥 at  40° 

• Applicable for high Reynolds numbers 

Gokcal et al. (2009) 
Experimental 

ℎ 𝐷⁄ = 0.1038 𝑙𝑛 𝜇𝐿 + 0.9684,  𝑆 𝐷⁄ = √1 − (2ℎ 𝐷⁄ − 1)2, 𝛾1 =, {
𝜋 − 𝑠𝑖𝑛−1(𝑆 𝐷⁄ ) 𝑖𝑓 ℎ 𝐷⁄ < 0.5

𝑠𝑖𝑛−1(𝑆 𝐷⁄ )       𝑖𝑓 ℎ 𝐷⁄ ≥ 0.5
 

𝛾 = 𝑚𝑖𝑛(𝛾1, 1.444784), 𝜁 = (𝛾 − 0.5 𝑠𝑖𝑛 2𝛾) 𝜋⁄  ,  𝛥 = 2.2
1+𝜁

𝜁
((

𝐷

2
(1 − 𝑐𝑜𝑠 𝛾)) − (

(
𝐷

2
(1−(1−𝜁) 𝑐𝑜𝑠 𝛾))+

2

3𝜋
𝑠𝑖𝑛 𝛾

1−𝜁2
)), 

𝑣2 = √𝑔𝐷 ((1 − (1 − 𝜁) 𝑐𝑜𝑠 𝛾) −
2

3𝜋
𝑠𝑖𝑛3 𝛾) − 2𝛥𝑔(1 − 𝜁), 

𝑣𝑑
ℎ = 𝑣1 = (1 + 𝜁)𝑣2, 𝑣𝑑

𝑣 =
−8

3

𝜇𝐿

𝜌𝐿𝐷
+√

2

9
𝑔𝐷 +

64

9
(
𝜇𝐿

𝜌𝐿𝐷
)
2

 , 𝑣𝑑 = 𝑣𝑑
ℎ (𝑐𝑜𝑠 𝛾)1.5 + 𝑣𝑑

𝑣 (𝑠𝑖𝑛 𝛾)0.7 

• 𝛾 ranges from 5 to 90° measured from the horizontal position, 𝐹𝑟𝑣𝑑𝑚𝑎𝑥 at  40°. 

• 𝐸𝑜=776, 𝑀 = 4.52∙10-10 − 1.63∙103 

• Applicable for high viscosity oil. 

Jeyachandra et al. 
(2012) 
Experimental 

𝐹𝑟𝑣𝑑 = 𝐹𝑟𝑣𝑑
ℎ 𝑐𝑜𝑠 𝛾 + 𝐹𝑟𝑣𝑑

𝑣 𝑠𝑖𝑛 𝛾, 𝐹𝑟𝑣𝑑
ℎ = 0.53𝑒𝑥𝑝(−13.7𝑁𝑓

−0.46𝐸𝑜−0.1),𝐹𝑟𝑣𝑑
𝑣 =

−8

3
𝑁𝑓
−1 +

√
2

9

𝜌𝐿

(𝜌𝐿−𝜌𝐺)
+
64

9
𝑁𝑓
−2 

• 𝛾 ranges from 0 to 90° measured from the horizontal position 

• 𝐸𝑜=776−6985,  𝑀 = 0.254−49.1 

• 𝐹𝑟𝑣𝑑𝑚𝑎𝑥 at  30° < 𝛾 < 50° 

Moreiras et al. (2014) 
Experimental 

𝐹𝑟𝑣𝑑 = 𝐹𝑟𝑣𝑑
ℎ 𝑐𝑜𝑠𝑎 𝛾 + 𝐹𝑟𝑣𝑑

𝑣 𝑠𝑖𝑛𝑏 𝛾 + 𝑄, 𝐹𝑟𝑣𝑑
𝑣 =

−8

3
𝑁𝑓
−1 +√

2

9

𝜌𝐿

(𝜌𝐿−𝜌𝐺)
+
64

9
𝑁𝑓
−2 − (

√2

3
− 0.35)√

𝜌𝐿

(𝜌𝐿−𝜌𝐺)
, 

𝐹𝑟𝑣𝑑
ℎ = 0.54 −

𝑁𝑓
−1

1.886+0.01443𝑁𝑓
−1 ,  𝑄 = {

𝑐(∆𝐹𝑟𝑣𝑑)
𝑑
𝑠𝑖𝑛 𝛾 (1 − 𝑠𝑖𝑛 𝛾),     𝑖𝑓∆𝐹𝑟𝑣𝑑 ≥ 0 

0,                                                    𝑖𝑓∆𝐹𝑟𝑣𝑑 < 0
 

a = 1.2391, b = 1.2315, c = 2.1589, d = 0.70412 

• 𝛾 ranges from 0 to 90° measured from the horizontal position, 𝐹𝑟𝑣𝑑𝑚𝑎𝑥 at  30° < 𝛾 < 50° 

• 𝐸𝑜=804, 𝑀 = 1.25∙10-3 − 10.412 

Lizarraga-García (2016) 
Experimental and 
Numerical work 

 

𝐹𝑟𝑣𝑑
𝑣 =

0.34/(1+(14.793/𝐸𝑜)3.06)
0.58

(1+((
𝑁𝑓

31.08(1+(29.868/𝐸𝑜)1.96)
0.49))

𝑎

)

𝑏 , 𝑎 = −1.45(1 + (24.867/𝐸𝑜)
9.93)0.094,  𝑏 = −1.0295/𝑎 

𝐹𝑟𝑣𝑑 = 𝐹𝑟𝑣𝑑
𝑣 (1 − 𝑒𝑥𝑝(−𝐵((𝐸𝑜,𝑀))𝛾)) (1 + (𝐶(𝐸𝑜,𝑀)) 𝑠𝑖𝑛(2𝛾)),  𝐵(𝐸𝑜,𝑀) = 47.06𝐹𝑟𝑣𝑑

𝑣 + 4 

𝐶(𝐸𝑜,𝑀) = −0.9118𝐹𝑟𝑣𝑑
𝑣 + 0.67 +

(−0.0148(𝑙𝑜𝑔10𝑀)
2 + 0.125 𝑙𝑜𝑔10𝑀+ 0.9118𝐹𝑟𝑣𝑑

𝑣 + 1.118)

(1 + (𝐸𝑜 20⁄ )8)8
 

• 𝛾 ranges from 5 to 90°  measured from the horizontal position, 𝐹𝑟𝑣𝑑𝑚𝑎𝑥 at  45°. 

• The horizontal pipe case is not included. 

• 𝐸𝑜=10:700, 𝑀 = 1∙10-6 − 5∙103 
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for the rising velocity of a Taylor bubble in inclined pipes with stagnant liquid with their 

limitations. 

2.4 Concluding Remarks 

The primary purpose of this chapter is to introduce an extensive survey of two-phase slug flow 

in pipes, in particular, the rise of Taylor bubbles in vertical and inclined pipes. It can be 

concluded that there are conflicts in defining the problem in terms of the dimensionless 

governing groups. For instance, most studies reveal that the rise of Taylor bubbles could be 

defined in terms of a number of dimensionless parameters, namely the Froude, Eötvös and 

Morton numbers. There is no need to use a dimensionless number like Morton number (𝑀) 

which is defined as a property group that doesn’t represent any important governing forces. 

Other studies use the inverse viscosity number (𝑁𝑓) rather than Morton number (𝑀). However, 

𝑁𝑓 can be interpreted physically as the ratio between gravity force and the viscous force, which 

can hardly be indicative of the onset of turbulence, which is inertial in the first place and 

probabilistic in essence.   

Based on the review discussed, despite the significant numerical and theoretical data published 

on the rise of Taylor bubble through a stagnant vertical liquid, to the author’s knowledge, there 

is not yet a study investigating the problem using the order of magnitude analysis of equations 

of motion. Thus, the main scope of the thesis is performing a complete dimensionless analysis 

of the rise of Taylor bubbles in pipes using both the Buckingham-Pi theorem and the 

dimensionless treatment followed by order of magnitude analysis to the governing equations 

of motion. This theoretical treatment is important for the visualisation of the real parameters or 

groups that influence the equations of motion. Besides, it is important for developing a 

phenomena-logical approach to the physical problem that can bring up useful relations between 

the system parameters. In addition, the order of magnitude analysis along with the dimensional 

analysis provides a way to show the relative merits of the different terms available in the 

governing equations, which makes the understanding of the problem more pronounced and any 

simplifications to the governing equations, if available, more reliable. 
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Additionally, based on the review discussed, despite the recent development of the 

experimental techniques, there are still limitations and difficulties in performing experiments 

in such field. As shown in the literature, there are main difficulties in showing the developed 

Taylor bubble shape, while exploring the effect of the main forces on it. This includes the wake 

structure as well, where it can be concluded that there are difficulties in obtaining the wake 

parameters, mainly wake length and volume, especially in the concave of the bubble rear. 

Furthermore, the main limitation of the experimental studies of the present problem is the 

question of the reliability of the experiments available in the literature as far as the provision 

of zero pressure gradient along the pipe and the absence of positive direct non-intrusive 

measurements of two-phase flow characteristics other than the present questionable methods. 

An accurate and reliable CFD analysis is a must, particularly when the code is tailored 

specifically for the problem rather than a commercial one. Hence, the second scope of this work 

is employing a CFD study using the volume-of-fluid (VOF) methodology to support the 

developed logical approach of the problem obtained from the dimensionless treatment.  

Based on the previous numerical work given in the literature, the choice of the numerical model 

(VOF model) for the numerical studies presented in this thesis is influenced. The VOF model 

has proven to be an accurate and robust method for tracking the interface and modelling the 

hydrodynamic characteristics of slug flow in pipes. Details about the adopted numerical 

method are given in chapter 3. 

Based on the dimensionless analysis, the main hydrodynamic features of rising of an individual 

Taylor bubbles through stagnant Newtonian liquids are investigated by applying computational 

fluid dynamics (CFD) simulation using the volume-of-fluid (VOF) methodology implemented 

in the commercial software ANSYS Fluent. To support other important theoretical and 

experimental work available in the literature, different correlations for the Taylor bubble drift 

velocity and wall shear stress in vertical pipes, based on the developed numerical results and 

the guidelines of the order of magnitude analysis, are suggested.  

Based on the analysis of the background literature, it can be concluded that there is a lack of 

numerical work in simulating the drift of the Taylor bubble in an inclined pipe. Even though 

this type of simulations is considered computationally expensive in terms of the computational 

time and resources, the lack of simulation studies is the motivation for the work given in chapter 
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5, which is a summary of the computational results of the hydrodynamic features of Taylor 

bubbles in inclined pipes. 

Finally, in the literature, various contradicting discussions are describing the bubble behaviour 

in horizontal pipes. This conclusion motivates the computational analysis given in chapter 6. 

Through which a particular treatment, in both the dimensionless treatment and the numerical 

investigation, is performed to the near horizontal and horizontal pipe Taylor bubble flow.  

 

 

 



 

 

 CFD Model Description and Validation  

In this chapter, the employed CFD model in this thesis is described with full details about the 

governing equations, the multiphase model used and the solution method. The model is then 

validated against experimental data, theoretical correlations and empirical models for some 

of the main hydrodynamics features of slug flow, including Taylor bubble terminal velocity, 

Taylor bubble shape, liquid film thickness, wall shear stress and wake region length and 

volume. The validation study reveals that the numerical results are accurate enough to 

investigate the drift of Taylor bubbles in vertical and inclined pipes. 
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3.1 Introduction 

This chapter starts with addressing the numerical model used throughout the thesis. This 

includes a description of the governing equations, discretisation and method of solution, solver 

controls and mesh employed. This is followed by the verification part that discusses the 

different types of errors, including the error and uncertainty, spatial and temporal discretisation 

error, convergence, computer round off error and computer programming errors. 

In addition, discussion on the base model where the 2D axisymmetric model is discussed. The 

model geometry, initial and boundary conditions, initial Taylor bubble shapes, grid dependency 

study and verification of the base model are all addressed. 

Lastly, section 3.4 gives a brief discussion on the computational resources used in the thesis, 

including the number of cores, CPU hours and estimated run time of the simulations. Section 

3.5 deals with validation studies, where a number of experimental cases are simulated for the 

sake of model validation. This covers the base model, which is a 2D axisymmetric model and 

the inclined model, which is a 3D model. The validation study for vertical pipes is based on 

the experimental work of  Bugg and Saad (2002) and Nogueira et al. (2006a; 2006b) on a single 

Taylor bubble rising through a stagnant viscous liquid in a vertical pipe under laminar flow 

regime. This includes comparison on the developed Taylor bubble shape, flow field around the 

Taylor bubble and other critical hydrodynamic characteristics. Lastly, the current CFD model 

is used to validate the experiment cases of Shosho and Ryan (2001) for the drift of Taylor 

bubbles in inclined pipes.  

To sum up, the chapter ends with a conclusion section that reports the findings from the CFD 

model and cases tested. 

3.2 Numerical Model  

 Governing Equations  

Two-phase slug flow is complex in nature due to its intermitted flow pattern behaviour. Figure 

1-4 shows a schematic of two-phase gas-liquid vertical slug flow composed of an alternate 
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succession of two main bodies, a bullet shape elongated gas bubble known by Taylor bubble 

flowing over a thin liquid film and a liquid slug region. This known by the concept of the unit 

cell (Medina et al., 2015). 

The slug flow intermittence nature makes the accurate prediction of flow characteristics a 

complex and challenging task. As discussed in chapter 2, various numerical methods are 

available for numerical modelling of two-phase slug flow. Throughout the thesis, the developed 

CFD method used is a slug tracking method using the Volume-of-fluid method (VOF method) 

implemented in the commercial code ANSYS Fluent. The CFD method is based on the 

fundamental concept of slug unit cell where the flow is assumed to consist of a single unit cell 

to avoid time-consuming simulations. 

In the present model, the fluids share a well-defined interface, and hence, the volume-of-fluid 

(VOF) method for two-phase flow is selected. The VOF model is a surface-tracking technique 

applied to a fixed Eulerian mesh. This model is designed for two or more immiscible fluids to 

track the interface between them. This model solves a single set of momentum equation that is 

shared by the two fluids, and the volume fraction of each of the fluids in each computational 

cell is followed throughout the domain. Details of the governing equations and the treatment 

of the interface can be obtained from Fluent (2015). 

One set of continuity and momentum equations are solved for the two-phase system. Firstly, 

the continuity equation in a VOF model for 𝑁 number of phases can be expressed as follows; 

For the present two-phase flow, 𝑁=2 and the mass source, 𝑆𝑞, is set to zero. For incompressible 

flow, (3-1) would result in the following form: 

In addition, the momentum equation is solved throughout the computational domain, and all 

phases share the same resulting velocity field. The momentum equation for unsteady 

incompressible flow can be written as follows:  

𝜕𝜌

𝜕𝑡
+ 𝛻. (𝜌𝑉) = ∑𝑆𝑞

𝑁

𝑞=1

 (3-1) 

𝛻. 𝑉 = 0 (3-2) 
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The additional forces could be a gravitational term or surface tension. Thus, the LHS of 

equation (3-3) represents the unsteady term and convection terms. While, the RHS represents 

the pressure term, the diffusion term, the body force and other external forces that might act on 

the system. The surface tension at the gas-liquid interface is calculated using the continuum 

surface force (CSF) of Brackbill et al. (1992), which is given by: 

The unit normal of the interface (𝑛) is defined in terms of the volume fraction (𝛼𝐺) as follows: 

and 𝐾 is given by: 

The VOF formulation depends on the impossible interpenetration among two or more fluids 

(or phases). For each additional phase that is added to the model, a variable is introduced, which 

is the volume fraction of the phase in the computational cell. In each control volume, the 

volume fractions of all phases sum to unity. If the volume fraction of the 𝑞𝑡ℎ fluid in a cell is 

given by  𝛼𝑞, thus the following relationship is valid for each computational cell: 

The fields for all variables and properties are shared by the phases and represent volume-

averaged values, as long as the volume fraction of each of the phases is known at each location. 

Thus the variables and properties in any given cell are either purely representative of one of 

the phases, or representative of a mixture of the phases, depending upon the volume fraction 

values (Fluent, 2015). Hence, there are three possible conditions: 

𝜌 [
𝜕𝑉

𝜕𝑡
+ (𝑉. 𝛻)𝑉] = −𝛻𝑃 + 𝜇(𝛻. 𝛻)𝑉 + 𝐹 (3-3) 

𝐹𝑆 = 𝜎𝐾𝑛 (3-4) 

𝑛 = 𝛻𝛼𝐺  (3-5) 

𝐾 =  𝛻.
𝛻𝛼𝐺
|𝛻𝛼𝐺|

 (3-6) 

∑𝛼𝑞

𝑁

𝑞=1

= 1 (3-7) 
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1.  If 𝛼𝑞 = 0, the cell is empty of the 𝑞𝑡ℎ fluid. 

2. If 𝛼𝑞 = 1, the cell is occupied mainly by the 𝑞𝑡ℎ fluid. 

3. If 0 < 𝛼𝑞 < 1, the cell contains the interface between the 𝑞𝑡ℎ fluid and the other 

fluid. 

The continuity and the momentum equations are thus dependent on the volume fractions of all 

phases through the volume-fraction-averaged properties 𝜌 and 𝜇. Hence, depending on the 

local value of 𝛼𝑞 as discussed above, the volume-fraction-averaged density and viscosity are 

calculated as follows: 

Tracking the interface between the two phases is achieved by the treatment of the volume 

fraction of the 𝑞𝑡ℎ fluid ( 𝛼𝑞) through solving a separate continuity equation, given by Fluent 

(2015), as follows:  

According to Fluent (2015), the source term on the RHS of equation (3-10) is by default set to 

zero. The volume fraction, equation (3-10), will only be used to solve the volume fraction of 

the 𝑞𝑡ℎ fluid ( 𝛼𝑞) and not the primary phase (liquid phase). The gas phase is computed 

according to the constraint given in equation (3-7). 

Finally, for unsteady incompressible flow, equation (3-10) can be written as follows: 

𝜌 = ∑𝜌𝑞

𝑁

𝑞=1

𝛼𝑞 (3-8) 

𝜇 = ∑𝜇𝑞𝛼𝑞

𝑁

𝑞=1

 (3-9) 

1

𝜌𝑞
[
𝜕

𝜕𝑡
(𝛼𝑞𝜌𝑞) + 𝛻. (𝛼𝑞𝜌𝑞𝑉𝑞)] = 𝑆𝑞 + ∑ (𝑚̇𝑝𝑞

𝑛𝑠𝑡𝑒𝑝

𝑝=1

− 𝑚̇𝑞𝑝) (3-10) 

𝜕𝛼𝑞
𝜕𝑡
+ 𝛻. 𝛼𝑞𝑉𝑞 = 0 (3-11) 
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 Mesh 

An essential part of the numerical solution is the mesh or grid generation process to ensure a 

valid and therefore accurate numerical solution. Mesh or grid generation is the process of sub-

dividing the computational domain into a number of discrete control volumes (cells) for the 

finite volume process to solve the governing equations. In this thesis, the meshing is done using 

the mesh incorporated in ANSYS Fluent (Release 16.0) and then imported to solver section 

(Fluent) where calculations are performed.  

The gird density and distribution can significantly affect the numerical stability and accuracy 

of the solution. There are different cell types for mesh generation. For instance, quadrilateral 

or triangular elements can be used for the 2D domain. While, tetrahedral, hexahedral, 

pyramidal and prismatic cells can be used for the 3D domain.  

The mesh generation could be either encountered in structured or unstructured topology. The 

advantage of the structured mesh is the flexibility of data access and storage. However, the 

mesh needs to be preserved at the time, and hence, additional cells might be required. Thus, to 

have structure mesh, there is a restriction to use quadrilateral cells for a 2D domain and 

hexahedral cells for the 3D domain. The mesh generation, according to the different domains 

used, either 2D or 3D, is given in detail in sections 3.4.1 and 3.4.2, respectively. However, 

throughout the thesis, structure quadrilateral mesh is used for the 2D domain, and block-

structured grid with an O-Grid topology is used for the 3D domain. 

The quality of the mesh can be examined by a variety of criteria, such as element quality, cell 

skewness, cell aspect ratio, orthogonal quality, parallel deviation and maximum corner angle. 

For each mesh generated, two main criteria are examined, the cell skewness and the orthogonal 

quality to ensure good mesh quality. 

 Discretisation and Method of Solution 

After dividing the computational domain into a number of discrete cells, the governing 

equations are now to be numerically solved. To numerically solve the governing equations, 

discretisation of the equations is required to convert the continuous partial differential 

equations to discrete finite difference equations. Throughout the thesis, the Finite Volume 
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Method (FVM) with an algebraic segregated solver and co-located grid arrangement, as 

implemented in ANSYS Fluent, is used. 

 Spatial Discretisation  

The process of discretisation ends with discrete values of a scalar quantity (𝜑) which are stored 

at the cell-centroids, but face values (𝜑𝑓) are required and must be interpolated from the values 

at the cell centroid. There are various types of discretisation schemes that could be used to 

calculate these face values. For instance, the First-Order Upwind (FOU) scheme assumes that 

the values of a variable at the cell centroid are representative of an average value throughout 

the cell. The Second-Order Upwind (SOU) scheme uses a Taylor series expansion of the cell 

centred solution about the cell centroid to obtain the face values.  

Lastly, the Quadrilateral Upwind Interpolation for Convective Kinematics (QUICK) scheme is 

based on a weighted average of second order upwind and central interpolations of variables 

(Ambrose, 2015). The QUICK scheme is used for computing high-order value of the convected 

variables at the face (𝜑𝑓). Referring to Figure 3-1 for one-dimensional control volume, 

assuming flow direction from left to right, for face e, the face value (𝜑𝑒) can be given as 

follows: 

where 𝑆 is the control volume average (Leonard and Mokhtari, 1990). Setting 𝜃 ̀ = 1/8 in 

(3-12), gives the traditional QUICK scheme. For more accurate results, it is advised to be used 

with structured meshes associated with the flow (Fluent, 2015). 

Details about the Finite Volume Method (FVM) discretisation methods are given by Versteeg 

and Malalasekera (2007). In this study, different schemes are tested, and the following spatial 

discretisation schemes are employed throughout the work, Green-Gauss Node Based for the 

gradient, PRESTO for pressure, Geo-reconstruct for volume fraction and QUICK scheme for 

momentum. 

𝜑𝑒  = 𝜃̀ [
𝑆𝑑

𝑆𝑐 + 𝑆𝑑
𝜑𝑃 +

𝑆𝑐
𝑆𝑐 + 𝑆𝑑

𝜑𝐸] + (1 − 𝜃̀) [
𝑆𝑢 + 2𝑆𝑐
𝑆𝑢 + 𝑆𝑐

𝜑𝑃 +
𝑆𝑐

𝑆𝑢 + 𝑆𝑐
𝜑𝑊] (3-12) 
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Figure 3-1. Schematic representation of one-dimensional control volume used for QUICK scheme discrtisation 

method. 

 Temporal Discretisation  

For transient simulations, discretisation of the time domain into a number of discrete cells, 

known as a time step, is required. For transient formulations, there are a different number of 

discretisation methods, as discussed in ANSYS Fluent (Fluent, 2015). For instance, the 

backward differencing scheme with either first order or second order accuracy can be used. 

Implicit or explicit time integration schemes can be used to calculate the discretised time 

derivative. The implicit scheme is solved with each time step and is considered stable. 

However, the explicit scheme is partially stable. The temporal discretisation employed in this 

thesis is the implicit time integration method due to its stability. There is a restriction on the 

time step size, according to Courant-Freidrich-Lewy (CFL) condition, given by: 

For explicit CFD methods, the time step must be adjusted such that the Courant number is 

sufficiently small (Fluent, 2015). In the thesis, the implicit first-order temporal discretisation 

is used with an explicit VOF scheme (described in section 3.2.3.4). Thus, the value of the 

Courant number is fixed to 0.25 in all simulation cases. 

 Pressure-Velocity Coupling  

Based on the segregated solver in ANSYS Fluent shown in Figure 3-2, a coupling between the 

pressure and velocity terms is required to link both the continuity and momentum equations. 

In the literature, different algorithms, such as SIMPLE, SIMPLEC, PISO and NITA are 

reported in ANSYS Fluent that can perform this coupling. For instance, it is recommended to 

𝐶𝑟 =  
𝑢𝑐ℎ∆𝑡

∆𝑥
≤ 1 (3-13) 
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use SIMPLE or SIMPLEC algorithms when performing steady-state calculations. On the other 

hand, it is recommended to use PISO for transient calculations.  

The Pressure Implicit with Splitting Operators (PISO) scheme (Issa, 1986) uses the neighbour 

correction iteration where more accuracy is done when correcting the velocities to satisfy 

Navier Stokes equations. It might take longer computational time, however, fewer iterations 

are needed for solution convergence. With the proper choice of under-relaxation factors, PISO 

scheme can provide both accuracy and fast convergence, and hence it is selected for pressure-

velocity coupling throughout the thesis (Hernandez-Perez et al., 2010; Fluent, 2015). 

 VOF-Interface Reconstruction 

The VOF method solves a separate continuity equation for the volume fraction to track the 

interface between the two phases. This equation could be solved either using explicit or implicit 

time discretisation. The implicit scheme requires an iterative solution of VOF at each time step 

(𝑛𝑠𝑡𝑒𝑝), can be used for complex flows and can be run with large time steps. However, the 

explicit scheme does not require an iterative solution of the VOF equation during each time 

step, can be used for solving time-dependent calculations and provide a sharper interface and 

  

Figure 3-2. Segregated solution flowchart. 
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more accurate solution. Additionally, it applies finite-difference interpolation schemes to the 

volume fraction values from the previous time step, and it has the following general form: 

However, for unsteady incompressible flow, equation (3-14) can be written as follows: 

According to ANSYS Fluent theory guide (Fluent, 2015), there is a variety of volume fraction 

spatial discretization schemes when using the explicit VOF scheme, such as First order upwind 

(Eulerian Multiphase model only), CICSAM (VOF model and Eulerian Multiphase with Multi-

Fluid VOF enabled), Geo-Reconstruct (VOF model and Eulerian Multiphase with Multi-Fluid 

VOF enabled), Compressive, Modified HRIC and QUICK. The accuracy of the interface 

tracking and hence, the accuracy of the solution depends on the method used. According to the 

scheme comparison in terms of accuracy, the Geo-Reconstruct offers the sharpest interface 

tracking, and in terms of speed comparison, the implicit compressive scheme is the fastest. 

Figure 3-3 shows a comparison between the interface shapes when using the Geo-Reconstruct 

and the donor-acceptor schemes, and it can be concluded that the Geo-Reconstruct scheme 

predicts sharper and more accurate interface than the donor-acceptor scheme.  

The Geo-Reconstruct scheme is one of the most commonly used scheme that is based on the 

“piecewise linear interface calculation” (PLIC) method (Youngs, 1982). It assumes a linear 

𝛼𝑞
𝑛𝑠𝑡𝑒𝑝+1𝜌𝑞

𝑛𝑠𝑡𝑒𝑝+1 − 𝛼𝑞
𝑛𝑠𝑡𝑒𝑝𝜌𝑞

𝑛𝑠𝑡𝑒𝑝

∆𝑡
𝓋 +∑(𝜌𝑞𝑈𝑓

𝑛𝑠𝑡𝑒𝑝𝛼
𝑞,𝑓

𝑛𝑠𝑡𝑒𝑝

𝑓

) = 0 (3-14) 

𝛼𝑞
𝑛𝑠𝑡𝑒𝑝+1 − 𝛼𝑞

𝑛𝑠𝑡𝑒𝑝

∆𝑡
𝓋 +∑(𝑈

𝑓

𝑛𝑠𝑡𝑒𝑝𝛼
𝑞,𝑓

𝑛𝑠𝑡𝑒𝑝

𝑓

) = 0 (3-15) 

   

Figure 3-3. Comparison between different interface calculation schemes (a) actual interface shape, (b) interface 

predicted using the Geometric reconstruction (piecewise-linear) scheme and (c) interface predicted using the 

donor-acceptor scheme. 



Chapter 3– CFD Model Description and Validation 

 

-64- 

slope within each cell that is used for the calculation of the advection of fluid through the cell 

faces. The steps for interface capturing can be summarised as follow: 

1. Using the volume fraction and its derivatives in the cell for calculating the position of 

the linear interface relative to the centre of each partially-filled cell, 

2. using the computed linear interface illustration and information about the normal and 

tangential velocity distribution on the face for calculating the advecting amount of 

fluid through each face, 

3. calculating the volume fraction in the individual cell using the balance of fluxes 

calculated in step 2. 

 The geometric reconstruction scheme is recommended by ANSYS Fluent (Fluent, 2015) as 

the scheme which produces the sharpest interface. Thus, in this thesis, the multiphase model 

selected is the explicit VOF model, and the geometric reconstruction scheme is used for the 

calculation of fluxes at control volume faces.   

 Solver Controls 

All simulations performed in this study are transient, where the sole governing factor is the 

time step size. Different time step sizes are tested, and the time step size selected is 0.0001s. 

However, in some cases, according to the mesh size used, a smaller time step size is needed. 

So, to avoid this problem with the proper choice of the time step size, a variable time step is 

applied to the governing equations that are based on initial time step size of 0.0001s and a 

global Courant number fixed to 0.25. The maximum number of iterations is varied according 

to the case studied. In some cases, to ensure convergence, it is essential to control the change 

of the variables from one iteration to the other by controlling the under-relaxation factors 

(Hernandez Perez, 2008; Hernandez-Perez et al., 2010). In addition, plotting the residual error 

for the governing equations is done at the end of each time step to ensure convergence, which 

is discussed in detail in section 3.3.  To sum up, Table 3-1 gives the solver control and the 

discretisation schemes used for all simulations done in this thesis.  
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Table 3-1. Solver controls 

 

 

 

 

3.3 Verification  

Verification is an essential part of any numerical study to ensure that the results have an 

acceptable error level or preferably with negligible errors. This section discusses the 

verification part of evaluating and eliminating the error. This is then followed by a validation 

section that ensures that the numerical results agree with real experimental and theoretical data.  

In general, the error is defined as a detectable deficiency in any stage of modelling and 

simulation that is not as a result of a lack of knowledge (AIAA, 1998; Ambrose, 2015). The 

error can be spatial and temporal discretisation error, convergence criterion for governing 

equations residuals’ error, computer round off error and computer programming error.  

The computer round off error occurs when the computer rounds values. The precision is 10 

digits for floating point number. Regarding the computer programming error, this study uses a 

full version of a commercial CFD code ANSYS Fluent and hence, code verification is 

accompanied by ANSYS afore the full release of any software (ANSYS Fluent). 

The next section focuses on two main errors the spatial and temporal discretisation error and 

iterative convergence error.   

 Spatial and Temporal Discretisation Error 

During the process of grid generation, where the computational domain is subdivided into 

control volumes, the spatial discretisation errors may be formed. Generally, to account for this 

type of error, three different mesh sizes coarse, intermediate and fine are selected, and 

simulations using these mesh sizes are performed to determine the value of some of the key 

Unsteady calculation parameters 

Time Step (s)                 0.0001 

Max. Iterations Per Time Step 1000 

Discretization Scheme 

Pressure PRESTO 

Pressure-Velocity Coupling PISO 

Gradient Green-Gauss Node Based 

Volume fraction Geo-reconstruct 

Momentum QUICK scheme 

Unsteady formulation First-order implicit 
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variables of the problem. For instance, in the base model discussed in section 3.4, different 

mesh sizes are used to determine some of the main hydrodynamic characteristics of drift of 

Taylor bubbles through stagnant liquid in vertical pipes, including Taylor bubble velocity, 

liquid film thickness, wall shear stress, wake length and wake volume, with particular 

concentration on the Taylor bubble velocity (𝑈𝑇𝐵). Details on the spatial discretisation errors 

according to the case investigated (2D or 3D simulations) are given in section 3.4. 

As discussed in section 3.2.3, transient solution necessitates the definition of discrete time steps 

that describes the transition from one solution to the other. Thus, similar to the mesh 

distribution, the solution should be independent of the time step used. Different time steps are 

tested in 2D, and 3D simulations and the most appropriate settings are using a variable time 

step to the governing equations that are based on initial time step size of 0.0001s and a global 

Courant number fixed to 0.25. 

 Iterative Convergence Error  

The equations given in section 3.2 are computed iteratively. The conservation equation for a 

general variable (𝜑𝑃) at a cell 𝑃 can be written as follow: 

Where 𝑎𝑃 is the centre coefficient, 𝑎𝑛𝑏 are the influence coefficients for the neighboring 

cells, 𝑏 is the contribution of the constant part of the source term 𝑆𝑐 in 𝑆 = 𝑆𝑐 + 𝑆𝑃𝜑 and of 

the boundary condition. 

The residual error is a measure of the solution convergence.  The residual is defined as the 

difference between the computed numerical value of any variable and the values required to 

satisfy the conservation of that variable. The “unscaled residual” (𝑅𝜑) is the sum of the residual 

over the whole computational cells in the computational domain and it is given by: 

𝑎𝑃𝜑𝑃 =∑𝑎𝑛𝑏𝜑𝑛𝑏 + 𝑏

𝑛𝑏

 

(3-16) 
𝑎𝑃 =∑𝑎𝑛𝑏 − 𝑆𝑃

𝑛𝑏
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Averaging the “unscaled residual” throughout the computational domain gives the “globally 

scaled residual”. These residuals are useful indicators of solution convergence. The scaled 

residual is given by: 

For the momentum equations the denominator term is replaced by 𝑎𝑃𝑣𝑃, where 𝑣𝑃 is the 

magnitude of the velocity at cell 𝑃.  

For the continuity equation, the unscaled residual is given by: 

The scaled residual for the continuity equation is defined as: 

where 𝑅𝑐𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛   5 is the largest absolute value of the continuity residual in the first five 

iterations (Fluent, 2015). 

A further measure of convergence is to determine how much a residual has decreased during 

calculations. In ANSYS Fluent, it is possible to compute and store the residual sum for each of 

the conserved variables at the end of each solver iteration. A pre-determined value for each of 

the equations being solved are specified, and the scheme iterate up until these residual reaches 

those defined values. 

For all of the numerical solutions developed in this thesis, a reduction of three orders of 

magnitude within each timestep is used as a convergence criterion for the residuals. In some 

cases, an increase in residuals is noticed at the beginning of the run, which is likely to happen, 

𝑅𝜑 = ∑ −

𝑐𝑒𝑙𝑙𝑠 𝑃

|  ∑𝑎𝑛𝑏𝜑𝑛𝑏 + 𝑏 − 𝑎𝑃𝜑𝑃
𝑛𝑏

| (3-17) 

𝑅𝜑 =
∑ −𝑐𝑒𝑙𝑙𝑠 𝑃 | ∑ 𝑎𝑛𝑏𝜑𝑛𝑏 + 𝑏 − 𝑎𝑃𝜑𝑃𝑛𝑏 |

∑ |𝑎𝑃𝜑𝑃|
𝑐𝑒𝑙𝑙𝑠 𝑃

 
 (3-18) 

𝑅𝑐 = ∑ |𝑟𝑎𝑡𝑒 𝑜𝑓 𝑚𝑎𝑠𝑠 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑐𝑒𝑙𝑙 𝑃|

𝑐𝑒𝑙𝑙𝑠 𝑃

 (3-19) 

𝑅𝑐𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛    𝑁

𝑅𝑐𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛   5
 (3-20) 
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however, this is fixed by reducing the under-relaxation factors that subsequently causes the 

residuals to drop.  

Figure 3-4 gives an example of the residuals from the base model of a single Taylor bubble 

drifting through a stagnant liquid in a 0.032m vertical pipe at 1s from the start of the simulation. 

As indicated in Figure 3-4, the residuals of the continuity equation are 1×10−4, and the x and 

y momentum equations are 1×10−8.  

3.4 Computational Resources 

As discussed earlier, the Taylor bubble flow problems are considerably computationally 

expensive. To conduct such a large number of simulations a need for a high-performance 

computing is essential. Computer resources for this work include the EPSRC funded ARCHIE-

WeSt High-Performance Computer (www.archie-west.ac.uk). EPSRC grant no. 

EP/K000586/1. For this study, around one million core hours have been used.  

As the machine is used by multiple users, the run times depend on the availability of the 

assigned cores and the priority of the users on the machine server at the time of running the 

simulations. The number of cores ranges from 4 cores up to 48 cores depending on the 

simulation requirements.   

  

Figure 3-4. Example of plotting residuals for the base model at 1s from the start of the simulation. 
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3.5 Validation Studies 

In this section, validation of the current numerical code against published benchmark studies 

and widely acknowledged empirical correlations is discussed through two validation studies. 

The first validation study is for the drift of an individual Taylor bubble through a stagnant 

liquid in a vertical pipe. The second validation section covers the drift of an individual Taylor 

bubble in an inclined pipe with stagnant liquid.  

 Validation Study 1 

The numerical results are tested against the experimental work of  Campos and De Carvalho 

(1988); Bugg and Saad (2002) and Nogueira et al. (2006a; 2006b). The capability of the two-

dimensional axisymmetric model to efficiently predict the dynamics of the Taylor bubble 

drifting through a stagnant liquid in vertical pipes is deliberated. 

Before introducing validation study 1, a discussion on the base model is given in the next 

section. 

 The Base Model  

According to the literature, for the drift of Taylor bubble through a stagnant liquid in vertical 

pipes, the Taylor bubble is axisymmetric with a round cup and moves up along the centre of 

the pipe in a long ogival-shaped finger (Figure 1-5 in chapter 1). The bubble pushes the 

surrounding liquid that moves downstream as a thin falling film with a constant thickness 

(Zukoski, 1966; Mao and Dukler, 1990; Bugg and Saad, 2002; Bhagwat and Ghajar, 2016; 

Lizarraga-García, 2016). 

Thus, the base model used for simulating the hydrodynamic characteristics of the Taylor bubble 

in a vertical pipe with stagnant liquid assumes 2D axisymmetric flow. The next section 

discusses the base model details, including the model geometry and boundary conditions, the 

spatial domain and finally the validation studies. 
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 Model Geometry and Boundary Conditions  

The solution domain of the base model, given in Figure 3-5, is a vertical pipe with diameter, 𝐷 

and length 𝐿 with symmetry along the centreline. The length of the domain is 10 times the pipe 

diameter to avoid disturbance of the continuous phase (liquid phase) at the entrance and the 

exit regions and to ensure that a uniform velocity profile is restored. The initial bubble shape 

is a cylinder connected to a hemisphere with the same radius giving an overall bullet shape of 

the Taylor bubble. The length and radius of the Taylor bubble are given by 𝐿𝑇𝐵 and 𝑅𝑇𝐵, 

respectively. This initial shape is simulated until a steady bubble shape is reached.  Different 

bubble shapes are tested and the final steady shape of the bubble is similar, but this only affects 

the solution convergence. Further details about the initial Taylor bubble shape are given in 

chapter 4.

    

Figure 3-5. Schematic representation of the computational domain of the base model showing the initial and 

boundary conditions. 
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The simulation is performed by attaching a reference frame to the rising Taylor bubble. 

Enabling moving reference frame (MRF) in the simulation causes the rising Taylor bubble to 

be stationary, and the pipe wall moves downwards with a velocity equal to that of the bubble 

(Mao and Dukler, 1990). Discussion on the computational time problems and different 

reference frames techniques used for simulating Taylor bubbles is given in chapter 4. 

Referring to Figure 3-5, using MRF the inlet flow boundary condition is applied with liquid 

entering at an average uniform velocity equal to the velocity of the Taylor bubble. The 

symmetry boundary condition is applied at the pipe centreline. At the wall, the no-slip 

condition is applied with wall moving downwards with the following velocities. The gas phase 

usually has lower density and viscosity than the liquid phase; thus, full slip can be assumed at 

the gas-liquid interface. Further details on the boundary conditions are given in chapter 4. 

 Spatial Domain 

A uniform grid of quadrilateral control elements is used for the base model. The flow is within 

the laminar regime in all regions of the flow domain, and hence, no turbulence model is needed. 

Near-wall refinement is done for the proper capture of the liquid film region. Figure 3-6 shows 

an example of the uniform grid used in the base model.  

  

Figure 3-6. Example of the uniform quadrilateral grid (26×280) used in the base model. 
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 Verification of the Base Model 

Some verification studies are done on the base model, including spatial and temporal 

discretisation errors and convergence iterative errors. As discussed earlier in section 3.3, for 

the temporal discretisation, different time step sizes are tested, and the best setup is a variable 

time step to the governing equations, which is based on an initial time step size of 0.0001s and 

a global Courant number fixed to 0.25.  

As for the convergence iterative errors check, for most of the base model simulation cases, the 

results converge well. Figure 3-7 illustrates an example of the residuals from the base model 

of a single Taylor bubble drifting through a stagnant liquid in 19 mm inner diameter vertical 

pipe with air and aqueous glycerol solution as working fluids (Campos and De Carvalho, 1988). 

It can be well noticed that the solution converges well with a decrease of three orders of 

magnitude in the normalised residuals of the continuity equation, and seven orders of 

magnitude for the x and y components of the momentum equations. For the spatial 

discretisation errors check, a mesh dependence test is done to ensure grid independence results. 

Three different grid densities are used to simulate a selective experimental case of Campos and 

De Carvalho (1988) with air and aqueous glycerol solution as working fluids in 19 mm inner 

diameter vertical pipe. The relevant dimensionless numbers of the selected case are 𝐸𝑜=64, 

𝑅𝑒𝑈𝑇𝐵=60, 𝐹𝑟𝑈𝑇𝐵=0.3409.  

  

Figure 3-7. Example of plotting residuals for base model simulation of the experimental case of Campos and De 

Carvalho (1988) with air and aqueous glycerol solution as working fluids in 19mm inner diameter vertical pipe. 
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Table 3-2 shows the mesh characteristics, the relevant selected hydrodynamic characteristics 

to be examined and the corresponding deviations (𝐸𝑜=64, 𝑅𝑒𝑈𝑇𝐵=60 and 𝐹𝑟𝑈𝑇𝐵=0.3409). The 

reference mesh for the deviation calculation is the denser mesh (104×1120 elements). It can 

be assumed that the results are completely independent, particularly when using mesh 2 and 

mesh 3. Subsequently, based on the results shown in Table 3-2, the simulations done using the 

base model are conducted using either mesh 2 or mesh 3 depending on pipe geometry. 

Table 3-2. Mesh dependence test results (𝐸𝑜=64, 𝑅𝑒𝑈𝑇𝐵=60, 𝐹𝑟𝑈𝑇𝐵=0.3409). 

 Validation Cases 

Table 3-3 shows the test matrix for simulations of the drift of a Taylor bubble through a 

stagnant liquid in vertical pipes (𝛾 = 90°). Cases 1a, 4a-6a are based on the experimental work 

of Campos and De Carvalho (1988) with air and aqueous glycerol solution as working fluids 

in 19 mm inner diameter vertical pipe. Case 2b is based on the experimental work of Bugg and 

Saad (2002) with air and stagnant olive oil as working fluids in 19 mm in diameter. Finally, 3c 

is based on the experimental work of Nogueira et al. (2006a; 2006b) with water and aqueous 

glycerol solutions as working fluids in 32 mm diameter pipe.  

Table 3-3. Test matrix for simulations of the drift of a Taylor bubble through a stagnant liquid in vertical pipes 
(𝛾 = 90°). 

 

 

 

 

 

 

 

Mesh 
𝑼𝑻𝑩 
(m/s) 

|𝐄𝐫𝐫𝐨𝐫 | 
𝑼𝑻𝑩 
(%) 

𝜹𝑳𝑭 
 (m) 

|𝐄𝐫𝐫𝐨𝐫 | 
𝜹𝑳𝑭 (%)  

𝝉𝑾 
(Pa) 

|𝐄𝐫𝐫𝐨𝐫 | 
𝝉𝑾 (%) 

𝑳𝒘
𝑫

 

|𝐄𝐫𝐫𝐨𝐫 | 
𝑳𝒘
𝑫
(%) 

𝓿𝒘
𝑫𝟑

 
|𝐄𝐫𝐫𝐨𝐫 | 
𝓿𝒘
𝑫𝟑
(%) 

26×280 0.1431 5 0.001972 1.7 20.74 1.1 0.5080 8.4 0.781 5.4 

52×560 0.1373 1 0.001947 0.5 20.58 0.3 0.480 3 0.805 2.2 

104×1120 0.1359 -- 0.001938 -- 20.52 -- 0.4654 -- 0.823 -- 

Case 
Number 

D (m)  

 

 

1a 1.9× 10−2 25 66 0.2976 

2b 1.9× 10−2 27 98.6 0.3034 

3c 3.2× 10−2 37 185.95 0.3355 

4a 1.9× 10−2 60 64 0.3409 

5a 1.9× 10−2 72 63.36 0.3512 

6a 1.9× 10−2 114 62.4 0.3508 

a Campos and De Carvalho (1988). 
b Bugg and Saad (2002). 
c  Nogueira et al. (2006a; 2006b). 

𝑬𝒐 𝑭𝒓𝑼𝑻𝑩𝒆𝒙𝒑
 𝑹𝒆𝑼𝑻𝑩  
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This validation study is subdivided into four parts, including Taylor bubble velocity, Taylor 

bubble nose region, velocity fields, flow in the liquid film and flow in the bubble wake.  

 Taylor Bubble Rise Velocity 

Table 3-4 shows the numerical, experimental and theoretical values of Taylor bubble velocity 

for all test cases given in Table 3-3. The theoretical values are based on the correlation of Viana 

et al. (2003), which is given by: 

Table 3-4. Numerical, experimental and predicted values of 𝑈𝑇𝐵 for all test cases in Table 3-3 with their 

corresponding deviations with respect to numerical data. 

 

 

 

 

 

 

 

 

 

 

 

𝐹𝑟𝑈𝑇𝐵 =
0.34/ (1 +

3805
𝐸𝑜30.6

)
0.58

(

 1+ ((
𝑅𝐺
31.08

) (1 +
778.76
𝐸𝑜1.96

)
−0.49

)

−1.45(1+
7.22×1013

𝐸𝑜9.93
)
0.094

)

 

0.74(1+
7.22×1013

𝐸𝑜9.93
)
−0.094 

𝑤ℎ𝑒𝑟𝑒 𝑅𝐺 = √𝐷
3𝑔(𝜌𝐿 − 𝜌𝐺)𝜌𝐿/𝜇𝐿 

(3-21) 

Case Number Simulation Experimental  Theoretical 

1a    
UTB (m/s) 0.1247 0.1285a 0.1231d 
|Error | (%) -- 3 1.3 

2b    
UTB (m/s) 0.1238 0.131b 0.1263d 
|Error | (%) -- 5.8 2 

3c    
UTB (m/s) 0.1729 0.188c 0.1712d 
|Error | (%) -- 8.7 1 

4a    
UTB (m/s) 0.1365 0.1472a 0.1369d 
|𝐸𝑟𝑟𝑜𝑟 | (%) -- 7.8 0.3 

5a    
UTB (m/s) 0.1380 0.1516a 0.1385d 
|Error | (%) -- 9.9 0.4 

6a    
UTB (m/s) 0.1432 0.1514a 0.1419d 
|Error | (%) -- 5.7 0.9 

a Campos and De Carvalho (1988). 
b Bugg and Saad (2002). 
c  Nogueira et al. (2006a; 2006b) 
d Viana et al. (2003)  
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It can be noticed from Table 3-4 that the simulation results of Taylor bubble velocity are closer 

to the theoretical predictions of Viana et al. (2003) rather than the experimental ones. However, 

generally, all deviations are within the accepted range (below 10%).   

 Taylor Bubble Nose  

The bubble shape profile in the nose region is considered an important characteristic to validate. 

The bubble shape profile in the nose region for case 3c in Table 3-3 is given in Figure 3-8 with 

the corresponding experimental data of Nogueira et al. (2006a; 2006b). As indicated in Figure 

3-8, good matching is found between both data. It can also be concluded that the liquid film 

thickness is predicted well by the simulation, which is discussed in further detail in section 

3.4.1.5.4.  

 

Inspired by the work of Araújo et al. (2013a), a comparison between the experimental and 

simulations results for the shape of the Taylor bubble front ends is illustrated in Figure 3-9 for 

cases 1a and cases 4a to 6a given in Table 3-3. The simulation results are overlaid on the 

background taken from the photos of cited reference (Campos and De Carvalho, 1988). It can 

 

Figure 3-8. The experimental and numerical shape of the Taylor bubble in the nose region- z is the axial 

distance from bubble nose for case 3c of Nogueira et al. (2006a; 2006b) (𝐸𝑜=185.9, 𝑅𝑒𝑈𝑇𝐵=37, 

𝐹𝑟𝑈𝑇𝐵=0.3355).  
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be concluded from this comparison that the simulation predicts the front-end bubble shapes 

well except case 5a where the simulation predicts bubble nose end with a larger radius than the 

experimental one. However, it can be generally concluded that there is good matching between 

the simulation and experimental data regarding the Taylor bubble shape profile and bubble 

front ends. 

 Velocity Field 

The simulation and experimental dimensionless velocity profiles in three different regions, 

flow in Taylor bubble nose, flow in the liquid film and flow in the wake for Cases 3c and 2b 

are given in Figure 3-10 and Figure 3-11, respectively. The simulation and experimental data 

of the axial velocity profile (
𝑣𝑧

𝑈𝑇𝐵
) are potted for different axial iso-surfaces, where the 𝑧/𝐷 

coordinate refers to a point placed in the bubble nose region. 

For the flow in the bubble nose region, as seen in Figure 3-10(a) and Figure 3-11(b), the bubble 

is moving upwards with a velocity (𝑈𝑇𝐵) due to buoyancy, pushing the liquid sideways where 

the liquid film zone starts to develop. Thus, the drifting bubble has a strong influence on the 

surrounding liquid. Nonetheless, as indicated in Figure 3-11(a), the bubble does not have a 

forceful power on the fluid above it, since at a distance almost D/3, the axial velocity inclines 

toward zero. The fluid is strongly radial near the bubble nose, as the bubble is moving upwards 

and the surrounding fluid is pushed sideways. In the falling liquid film zone, the liquid moves 

downwards with velocity (𝑈𝐿𝐹) and decreasing liquid film thickness (𝛿𝐿𝐹).  

   

Figure 3-9. Comparison between the experimental (Campos and De Carvalho, 1988) and numerical shape of the 

Taylor bubble front ends for cases 1a and cases 4a to 6a given in Table 3-3. 
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Figure 3-10. Numerical, experimental and theoretical dimensionless axial velocity profile for case 3c of 

Nogueira et al. (2006a; 2006b) for Taylor bubble nose region, liquid film region and wake region using FRF 

(𝐸𝑜=185.9, 𝑅𝑒𝑈𝑇𝐵=37, 𝐹𝑟𝑈𝑇𝐵=0.3355). 
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Referring to Figure 3-10(b) and Figure 3-11(c), a strong radial velocity component is observed, 

especially close to the fluids’ interface in the liquid film region. The developing film speeds 

up and thins as it falls down until the wall shear stress is adept of tolerating the weight of the 

film. At this stage, the fully developed film is then formed, giving growth to basically axial and 

constant flow. The dimensionless velocity profile of the simulation results showed good 

matching when plotted against both the experimental results and the theoretical predictions of 

Brown (1965) as shown in Figure 3-10(b) and Figure 3-11(c).  

 

  

  

Figure 3-11. Numerical and experimental dimensionless axial velocity profile along the tube axis above the 

bubble for case 2b (Bugg and Saad, 2002) in a FRF (𝐸𝑜=100, 𝑅𝑒𝑈𝑇𝐵=27, 𝐹𝑟𝑈𝑇𝐵=0.303). 
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The theoretical velocity profile given by Brown (1965) is given by: 

In the Taylor bubble wake zone, the falling liquid film starts to plugs into the liquid slug ending 

with highly mixing zone in the wake structure of the bubble. As shown in Figure 3-10(c) and 

Figure 3-11(d), the axial velocity is intensely reduced. At this stage, the flow is transferred 

from the wall towards the pipe centre, and hence the flow turns to be strongly radial. Near the 

pipe axis, the surrounding fluid is moving upward with an equal velocity as the bubble’s one 

and hence the radial velocity component speedily declines to zero near the pipe axis. This 

agrees well with  Gutiérrez et al. (2017). 

 Flow in The Liquid Film 

For the flow in the fully developed liquid film, the dimensionless velocity profiles are already 

discussed in section 3.4.1.5.3 with the theoretical predictions of Brown (1965). In this section, 

the numerical results regarding the related shear stress along the liquid annulus and the liquid 

film thickness are discussed.  

Table 3-5 shows the numerical, experimental and predicted values of 𝛿LF and 𝜏W  for cases 1a, 

2b and 3c in Table 3-3 with their corresponding deviations. The theoretical liquid film thickness 

is tested against the theoretical prediction of Brown (1965), which is given by: 

Using the velocity profile in the fully developed liquid film (equation (3-23)) the shear stresses 

along the fully developed liquid film can be determined from the following relation: 

𝑈𝐿𝐹 =
𝑔

𝜈
[
𝑅2 − 𝑟2

4
−
(𝑅 − 𝑟)2

2
𝑙𝑛
𝑅

𝑟
] (3-22) 

𝛿𝐿𝐹 = [
3𝜈

2𝑔(𝑅 − 𝛿𝐿𝐹)
𝑈𝑇𝐵(𝑅 − 𝛿𝐿𝐹) 

2]
1/3

 (3-23) 

𝜏 = −𝜇𝐿
𝑑𝑣𝑧
𝑑𝑟

 (3-24) 

𝜏𝑊 = 𝜌𝐿𝑔 [
𝑅

2
−
(𝑅 − 𝛿𝐿𝐹)

2

2𝑅
] (3-25) 
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It can be concluded from Table 3-5 that the numerical wall shear stress and liquid film thickness 

are very close to both the experimental values and the theoretical predictions. The deviations 

between the simulation, experimental and theoretical data are lower than 5%. 

Table 3-5. Numerical, experimental and predicted values of 𝛿𝐿𝐹 and 𝜏𝑊  for cases 1a, 2b and 3c in Table 3-3 

with their corresponding deviations with respect to the numerical data. 

 

 

 

 

 

 

 

 

 

 Flow in the Bubble Wake  

Referring to Figure 3-12, when the liquid leaves the annular film region (region b), it smoothly 

expands after the bubble trailing edge and commonly prompting the development of 

recirculation in the wake (region c) attached to the bubble. Due to this mixing process, the 

velocity of the falling liquid film rapidly decays, which stops the continuous downward 

movement of the liquid film. The size and intensity of the wake depend on Eötvös and Reynolds 

number, which will be discussed in detail in chapter 4. The wake characteristics are generally 

essential in cases of the interaction between consecutive Taylor bubbles. 

In this section, the validity of the numerical result in terms of the wake hydrodynamics, mainly 

the dimensionless wake length (𝐿𝑊/𝐷) and dimensionless wake volume (𝓋𝑊/𝐷
3) are 

examined against experimental data of Campos and De Carvalho (1988). The validation is also 

Case Number Simulation Experimental  Theoretical 

1a    
𝛿LF (mm) 0.002362 -- 0.0024 d 
|Error | (%) -- -- 1.6 
𝜏W (Pa) 24.75 -- 25.33e 
|Error | (%) -- -- 2.3 

2b    
𝛿LF (mm) 0.002356 0.002337 b 0.002396 d 
|Error | (%) -- 0.8 1.7 
𝜏W (Pa) 18.48 -- 18.72e 
|Error | (%) -- -- 1.3 

3c    
𝛿LF (mm) 0.003732 0.00384 c 0.0038 d 
|Error | (%) -- 2.9 1.8 
𝜏W (Pa) 39.79 39.6 c 40.74 e 
|Error | (%) -- 0.5 2.4 

a  Campos and De Carvalho (1988). 
b  Bugg and Saad (2002). 
c  Nogueira et al. (2006a; 2006b) 
d  Brown (1965) 
e  Equation (3-25) 
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done against both the experimental correlations developed by Campos and De Carvalho (1988), 

which is given by: 

Referring to Table 3-6, it can be seen that the simulation results agree with both the 

experimental data and theoretical correlations. It should be pointed out that the method used in 

the experimental work for the wake structure depends on dye transportation inside the wake, 

whose accuracy can be restricted by diffusion. In the current numerical code, the whole wake 

structure is accounted for, including as well the streamlines in the concave structure of the 

bubble wake. However, the validation is generally quite acceptable.  

In addition, Figure 3-13 shows a comparison between the experimental (Campos and De 

Carvalho, 1988) and numerical shape of the Taylor bubble for cases 1a and cases 4a to 6a given 

𝐿𝑤
𝐷
= 0.30 + 1.22 × 10−3𝑁𝑓  𝑓𝑜𝑟 100 < 𝑁𝑓 < 500 

𝓋𝑊
𝐷3
= 7.5 × 10−4𝑁𝑓 𝑓𝑜𝑟 100 < 𝑁𝑓 < 500 

(3-26) 

  

Figure 3-12. Numerical results of the Streamlines (left) and velocity fields (right) of a rising Taylor bubble 

through a stagnant liquid for case 3c of Nogueira et al. (2006a; 2006b) using MRF (𝐸𝑜=185.9, 𝑅𝑒𝑈𝑇𝐵=37, 

𝐹𝑟𝑈𝑇𝐵=0.3355). 
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in Table 3-6. The flow field (not up to scale) is represented as streamlines that clearly shows 

the wake region. The numerical bubble wakes quantitatively match the experimental ones.   

Table 3-6. Numerical and experimental values of 𝐿𝑊/𝐷 and 𝓋𝑊/𝐷
3 for cases 4a to 6a in Table 3-3 and their 

respective deviations with respect to the numerical data. 

 

 

 

 

 

 

 

 

 

Case Number Simulation Experimental  
Campos and De 
Carvalho (1988) 
correlation 

4a    

𝐿𝑊/𝐷(-) 0.47824 0.5145a 0.5145b 
|Error | (%) -- 7.6 7.6 

𝓋𝑊/𝐷
3(-) 0.12157 0.1268a 0.1319b 

|Error | (%) -- 4.3 8.5 

5a    

𝐿𝑊/𝐷(-)    0.5462 0.549 a 0.5498 b 
|Error | (%) -- 0.5 0.7 

𝓋𝑊/𝐷
3(-) 0.1528 0.1662 a 0.1536b 

|Error | (%) -- 8.8 0.5 

6a    

𝐿𝑊/𝐷(-) 0.7688 0.764a 0.6961b 
|Error | (%) -- 0.5 9.4 

𝓋𝑊/𝐷
3(-) 0.2454 0.235a 0.2435b 

|Error | (%) -- 4.4 0.8 

a Campos and De Carvalho (1988). 

b Equation (3-26) 

 

Figure 3-13. Comparison between the experimental (Campos and De Carvalho, 1988) and numerical shape of the 

Taylor bubble wake for cases 1a and cases 4a to 6a given in Table 3-3. 
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In conclusion, the validation study covering the flow in a different region of Taylor bubble 

drifting through a stagnant liquid flow field, including experimental and theoretical predictions 

reveal the capability of the developed CFD model to simulate the problem of single Taylor 

bubble drifting through a stagnant liquid in a vertical pipe. The hydrodynamic characteristics 

of a Taylor bubble in vertical pipes are then thoroughly investigated in chapter 4. 

 Validation Study 2 

The experimental work of Shosho and Ryan (2001) are used to compare some of the vital 

hydrodynamics of Taylor bubbles in inclined pipes against the simulation data obtained from 

the developed CFD model. The capability of the 3D symmetry planes model to efficiently 

predict the dynamics of the Taylor bubble drifting in inclined pipes with stagnant liquid is 

considered.  

Prior to introducing this validation study, the modifications done to the base model to 

adequately capture the dynamics of Taylor bubbles in inclined pipes are discussed. 

 The 3D Inclined Model  

Based on validation study 1, it can be concluded that the CFD model is capable of simulating 

the rise of Taylor bubbles in pipes. However, this section gives a brief validation of the model 

against experimental data for the drift of Taylor bubbles in inclined pipes. For inclined pipes, 

the assumption of flow being axisymmetric can no longer be applied. The symmetry of the 

vertical pipe configuration is lost as the pipe is inclined. However, the flow can be simplified 

as a plane of symmetry that crosses the pipe’s diameter line with a normal orthogonal to the 

gravity acceleration (Mazza et al., 2010). 

Figure 3-14 shows a schematic for drifting of Taylor bubbles in inclined pipes with stagnant 

liquid. Due to buoyancy, the elongated gas bubble occupies the upper section of the pipe. The 

liquid film has two regions, top liquid and bottom liquid films. The liquid film region has an 

interface separating the Taylor bubble at the upper portion of the pipe and bottom liquid film 

at the lower portion. The flow field can be divided into three regions, the front, the body and 

the tail. The body region, which is much greater in size than the other two regions, can be 
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simply represented as gas-liquid stratified flow with a plane interface at the pipe’s cross section. 

The other two regions are more complex as they contain the stresses in control of developing 

the shape of the Taylor bubble nose and the complex wake structure at the bubble’s tail. 

Complex three-dimensional flows characterise regions 1 and 3, and they are smaller in length 

with a range of 1-3Dpipe (Mazza et al., 2010).  

Different models are compared and tested against experimental data. These include the 2D 

model, 3D full domain model and 3D with a symmetry plane model. The models are compared 

in terms of computational time and accuracy by testing against experimental data. The 2D 

model fail to predict the actual developed Taylor bubble shape since Taylor bubbles have 

curvature in the spacing direction. However, it is used just used to give predictions on the 

estimated developed Taylor bubble shape due to its acceptable computational time. In this 

section, the 3D model is covered with its boundary conditions, grid dependency study, 

verification and validation. 

 Model Geometry and Boundary Conditions 

Figure 3-15 shows the geometry for the inclined pipe geometry to be simulated. The 3D model 

is a vertical cylindrical domain, and the inclination of the pipe is configured by setting the angle  

(𝛾)  between the pipe’s axis and the gravity vector with respect to the vertical case. The length 

of the computational domain is kept 10D similar to the base model to ensure the solution is 

affected by neither the bottom nor the top of the pipe.  

  

Figure 3-14. A schematic of gas-liquid slug flow in an inclined pipe (Taitel et al., 2000). 
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The boundary conditions are similar to the base model. However, all simulations for the 

inclined cases are done using fixed reference frames (FRF), and further details are given in 

chapter 5. Referring to Figure 3-15, the boundary conditions are no-slip condition at the wall 

boundaries, a pressure outlet condition is applied at the pipe outlet and zero normal velocity 

and zero normal gradients for all variables at the symmetry plane. Additionally, all the velocity 

components are set at zero. 

 

 

 

Figure 3-15. (a) Schematic representation of the computational domain for a single Taylor bubble drifting 

through a stagnant liquid in an inclined pipe showing the initial and boundary conditions and (b) 3D block-

structured O-Grid hexahedral mesh used. 

(a) 

(b) 
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The initial conditions are as well similar to the base model. The initial bubble shape is chosen 

to be a cylinder connected to a hemisphere with the same radius giving an overall bullet shape 

of the Taylor bubble. The volume of the gas phase is specified using the patch option in Fluent.  

 Spatial Domain 

The 3D full domain model and 3D with a symmetry plane model are tested. The 3D full domain 

mesh is selected based on the work Hernandez-Perez et al. (2011) and Ambrose (2015) who 

use block-structured O-Grid hexahedral, as shown in Figure 3-15. This mesh has proven to 

predict the flow behaviour in liquid film regions accurately and is also suitable for the 

modelling of slug flow applications, and accordingly the drift of Taylor bubbles in pipes. 

Depending on the case study, the size of the mesh is selected and refined until the terminal 

velocity stabilises and converges. The number of cells generally ranges from 1 million up to 

10 million elements. Following the same mesh chosen, the 3D model with the symmetry plane 

is created and using the same procedure; the mesh is refined based on the nature of the terminal 

bubble drift velocity. 

The two models are tested against experimental data of Shosho and Ryan (2001) for a  selected 

case using 80% corn syrup-air mixture in an inclined pipe of the inside diameter of the pipe 

(𝐷) 0.0127m. The bubble’s initial shape is selected based on the work of Gutiérrez et al. 

(2017), which is composed of a cylinder with a diameter (𝐷𝑇𝐵) of 0.84D. The total length of 

the cylinder is 2𝐷𝑇𝐵 and it is ended by two hemispheres. The density, viscosity and surface 

tension of the surrounding liquid are 1320.02 kg/m3, 0.191Pa s and 0.051 N/m, respectively. 

These properties correspond to Eötvös number (𝐸𝑜) of 40.95 and a Morton number (𝑀) of 

0.0746. Figure 3-16 shows that both models predict almost the same developed Taylor bubble 

shape. Table 3-7 gives a comparison between the predicted terminal drift velocities (𝑣𝑑) using 

both models together with the computational time consumed. The two simulations have been 

assigned the same number of nodes, which are 4 nodes equivalent to 48 cores. 
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Figure 3-16. (a) The terminal developed Taylor bubble shape for drifting through stagnant liquid in 30° 
inclined pipe (Shosho and Ryan, 2001) in yz plane view using (1) 3D full domain model and (2) 3D with 

symmetry plane model and (b) Terminal bubble drift velocity time evolution using both models. 

Table 3-7. Numerical and experimental values of 𝑣𝑑 using 3D full domain and symmetry plane models for the 

experimental case of Shosho and Ryan (2001) with their corresponding deviations with respect to the 

experimental data. 

 

 

 

 

It is concluded from that both models almost predict the same terminal drift velocity. However, 

the computational time is reduced when using symmetry planes models. Accordingly, 

throughout the thesis, all simulations done for inclined pipes are done using 3D symmetry 

planes model.  In addition, Figure 3-16 shows the predicted terminal drift velocity using both 

models. It should be pointed out that the convergence noticed in 𝑣𝑑 curves is an indication for 

the proper choice of the mesh size.   

 Verification of the 3D Model 

Similar to the base model, a number of verification studies are done on the 3D model, including 

spatial and temporal discretisation errors and convergence iterative errors. In the 3D model, the 
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same temporal discretization for the base model is used, where a variable time step to the 

governing equations that is based on initial time step size of 0.0001s and a global Courant 

number fixed to 0.25. 

For the convergence iterative errors check, for most of the 3D model simulation cases, the 

results converge well. Figure 3-17 illustrates an example of the residuals from the 3D model 

with a symmetry plane of case 15° given in Table 3-7 (Shosho and Ryan, 2001). The solution 

converges well with a decrease of four orders of magnitude in the normalised residuals of the 

continuity equation and seven orders of magnitude for the x, y and z component of the 

momentum equations. 

As for the spatial discretisation errors check, the inclined case is different as the mesh size 

depends on the simulated case. The mesh size selection process is as follows; an initial mesh 

size is selected based on pipe geometry, and the terminal bubble drift velocity convergence is 

monitored. Once convergence and stability in the velocity are achieved, then the mesh size 

chosen is appropriate. Based on the simulated cases, the extreme case is likely to be the case 

when the pipe is inclined with an angle of 75° from the vertical. Subsequently, in each 

simulation, a mesh check is done on a 75° angle to test the mesh size on the Taylor bubble 

velocity convergence and as well as developed Taylor bubble shape. Examples of spatial 

discretisation errors check are given in the following section. 

  

Figure 3-17. Example of plotting residuals for the 3D model with symmetry planes for the experimental case 

of Shosho and Ryan (2001) with corn syrup-air mixture in a pipe inclined by 15° from the vertical position. 
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 Validation Cases 

In literature, most of the research focuses on exploring the bubble drift velocity, expressed in 

terms of Froude number, with the inclination angle. In chapter 2, a summary of the main 

correlations proposed in the literature for bubble drift velocity with their limitations is 

discussed. One of the reliable experimental work is proposed by Shosho and Ryan (2001) who 

studied the motion of long bubbles in inclined tubes for Newtonian and non-Newtonian fluids 

covering a wide range of dimensionless groups. In Table 3-8, two cases based on the work of 

Shosho and Ryan (2001) are also selected for the sake of comparison of the present simulation 

against the experimental data. The working fluids for these cases are air and sucrose solutions 

with different concentrations.  

Table 3-8. Test matrix for simulations of the drift of a Taylor bubble through a stagnant liquid in inclined pipes 

(Shosho and Ryan, 2001). 

 

 

 

Figure 3-18 shows the developed Taylor bubble shape and the terminal Froude number (𝐹𝑟𝑣𝑑) 

compared against the experimental results of Shosho and Ryan (2001) for case 1 given in Table 

3-8. For the Taylor bubble shape, the bubble loses it symmetry once the pipe is inclined with 

respect to the vertical position. In fact, the bubble hydraulic diameter (4 ×

𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎/𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟) is reduced with the inclination angle which leads to an 

elongation of the bubble length. While, the upper liquid film thickness (the upper distance 

between the bubble and the wall) is reduced with the increase in the inclination angle as the 

bubble nose is shifted from the centre of the pipe, at the vertical position, towards the wall. 

Additionally, referring to Table 3-9 and Figure 3-19, it should be pointed out that for inclination 

angle 𝛾 = 75°, a mesh check is done to ensure the convergence of the terminal drift velocity 

and stability in a terminal bubble shape. However, increasing the cells’ number requires large 

computational resources, and subsequently, the mesh selected for such case (≅7 million cells) 

is considered suitable to obtain a converged Taylor bubble velocity. Nevertheless, the 

instability in the developed Taylor bubble shape is caused by large values of reduced Galilei 

Case 
Number 

Working fluid D (m) 
Density 

(𝑲𝒈/𝒎𝟑) 
Viscosity 
(𝑷𝒂 𝒔) 

Surface tension 
(𝑵/𝒎) 

 

1  60% Corn syrup 1.27× 10−2 1195.75 3.60E-02 0.049 38.6 

2  80% Corn syrup 1.27× 10−2 1320.02 1.91E-01 0.051 163.8 

𝑬𝒐 
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number (𝐺𝑎𝑅 = 9311) which is inconvenient to have for these inclination ranges. Further 

details regarding the applicable values of the dimensionless groups that govern the problem are 

given provided in chapter 5. 

 

 

Figure 3-18. (a) Three dimensional Taylor bubble shape in the yz plane for all inclination angles and (b) terminal 

Froude number against the experimental result of Shosho and Ryan (2001) and other correlations given in Table 

2-3 for case 1 in Table 3-8. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 15 30 45 60 75 90

Fr
o

u
d

e
 n

u
m

b
e

r 
(-

)

Inclination angle (Degrees)

Bendiksen (1984)
Weber et al. (1986)
Hasan and Kabir (1988)
Petalas and Aziz (2000)
Shosho and Ryan (2001)
Gokcal et al. (2009)
Jeyachandra et al. (2012)
Moreiras et al. (2014)
Lizarraga-García (2016)-simulation
Lizarraga-García (2016)-correlation
Present simulation

(a) 

(b) 



Chapter 3– CFD Model Description and Validation 

 

-91- 

Table 3-9. Mesh dependence test results on the extreme case (𝛾 = 75°) for case 1 in Table 3-8 for 80% corn 

syrup-air mixture in 75° inclined pipe (Shosho and Ryan, 2001). 

 

 

 

For the Taylor bubble drift velocity, the bubble drift velocity follows the expected “peculiar 

trend” concerning the inclination angle. This “peculiar trend” is noticed by most of the 

researchers with different conclusions on the angle at which maximum Froude number (𝐹𝑟𝑣𝑑) 

occurs. However, the general conclusion is that the Froude number (𝐹𝑟𝑣𝑑) reaches its 

maximum value at an inclination angle 30° < γ < 60° as a result of the opposing effects of 

buoyancy and the drag coefficient. For inclination angles approaching the horizontal position, 

the bubble terminal velocity drops expressively to approach a zero value.  

Some of the main correlations in the literature are presented in Figure 3-18 to compare the 

present simulation results. Most of the correlations follow the expected “peculiar” trend with 

respect to the inclination angle. It should be pointed out that the differences noticed between 

these correlations are due to the limitations given by each correlation, as given in detail in Table 

2-3 in chapter 2. For instance, the correlations by Hasan and Kabir (1988); Gokcal et al. (2009); 

Jeyachandra et al. (2012); Moreiras et al. (2014) are applicable for high 𝐸𝑜 values. Petalas and 

Case Number of 
Elements 

UTB terminal-
Simulation (m/s) 

UTB terminal -Shosho and Ryan 
(2001) (m/s) 

|𝐄𝐫𝐫𝐨𝐫 | 
(%) 

75° 

2.8E+06 0.32351 0.30 7.5 

4.7E+06 0.32656 0.30 8.9 

6.9E+06 0.31640 0.30 6.2 

 

 

Figure 3-19. Mesh check on the extreme case (𝛾 = 75°) for case 1 in Table 3-8 showing (a) Taylor bubble shape 

in yz plane and (b) convergence of terminal bubble drift velocity. 
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Aziz (2000)’s correlation is applicable for high 𝑅𝑒𝑣𝑑 values. One of the reliable correlations is 

suggested by Lizarraga-García (2016) as it can predict the Froude number for a wide range of  

𝐸𝑜 with almost no limitations. It shows good matching with all simulation cases. 

Additionally, Figure 3-20 shows the terminal Froude number (𝐹𝑟𝑣𝑑) compared against the 

experimental results of Shosho and Ryan (2001) for case 2 given in Table 3-8. It can be 

concluded that the simulation results show a qualitative agreement with the experimental 

results of Shosho and Ryan (2001) and the correlation proposed by Lizarraga-García (2016) 

for the two cases provided in Table 3-8. 

The evidence presented in this section suggests that, based on the main correlations proposed 

in the literature, improvements in predicting Taylor bubble drift velocity are essential. 

Moreover, the numerical results show a reasonable agreement with the experimental data and 

the correlations of bubble drift velocity.  

3.6 Concluding Remarks 

In this chapter, the adopted numerical method (VOF method) is discussed in detail, covering 

the governing equations, the mesh incorporated, the discretisation and solution method and 

 

Figure 3-20. Terminal Froude number against the experimental result of Shosho and Ryan (2001) and other 

main correlations in the literature for case 2 in Table 3-8. 
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solver control. In addition, discussion on the verification process, to ensure that the results have 

an acceptable error level or preferably without any errors, is given in section 3.3.  

Moreover, two validation studies are given in section 3.4, where the current numerical code is 

validated against published benchmark studies and widely acknowledged empirical 

correlations. A discussion on the base model used to simulate the drift of Taylor bubbles 

through a stagnant vertical liquid is given within the validation study 1. Additionally, the 

modification done in the base model to accurately capture the dynamics of Taylor bubbles in 

inclined pipes is discussed in detail. 

In section 3.4.1, the hydrodynamic modelling feature of a Taylor bubble in vertical pipes is 

validated using five test cases with different working conditions. The Taylor bubble rise 

velocity (𝑈𝑇𝐵) is validated against experimental data and some of the main correlations given 

in the literature. Added to this, other main hydrodynamic feature, including the Taylor bubble 

shape, the velocity fields, flow in the liquid film region and flow in the wake region, are 

validated against experimental data and other important correlations. Generally, for the rise of 

a Taylor bubble in a vertical stagnant liquid, good agreement is achieved between present 

simulation results and published data, which validates the basic model. 

Furthermore, in section 3.4.2, the modifications done in the base model to properly capture the 

dynamics of Taylor bubbles in inclined pipes are discussed.  Details about the model geometry, 

initial and boundary conditions, spatial domain and verification of the 3D inclined model are 

pointed out. In validation study 2, given in section 3.4.2.5, two test cases are used to validate 

the present simulation data against published data further. Based on the literature review, given 

in chapter 2, the main hydrodynamic feature of Taylor bubble flow in inclined pipes is the drift 

velocity (𝑣𝑑). Based on this conclusion, validation study 2 mainly focuses on validating the 

Taylor bubble drift velocity (𝑣𝑑), and the present numerical results agree generally well with 

the experimental results. 

In conclusion, based on validation studies given in this chapter, the good agreement between 

both experimental and the present numerical data, illustrate that the adopted numerical method 

is capable of simulation of Taylor bubble rising through a stagnant liquid, in both vertical and 

inclined pipes, with good satisfaction degree of results.  



 

 

 Theoretical and CFD Treatments of an 

Individual Taylor Bubble Rising in a 

Vertical Pipe (𝜸 = 𝟎) 

In this chapter, the drift of a single Taylor bubble through a vertical stagnant Newtonian liquid 

is investigated by performing a complete dimensionless treatment followed by order of 

magnitude analysis of the terms of equations of motion. Based on this analysis, it is concluded 

that Froude, Eötvös and Reynolds numbers are the main physical parameters influencing the 

dimensionless slug flow equations. Using the guidelines of the order of magnitude analysis, 

computational fluid dynamics simulation is carried out to investigate the dynamics of Taylor 

bubbles in a vertical pipe using the volume-of-fluid (VOF) method. Good agreement with 

previous experimental data and models available in the literature is established confirming 

that the density ratio, viscosity ratio and the initial ratio of bubble size to pipe diameter 

(𝐿𝑇𝐵/𝐷)𝑖 have minimal effect on the main hydrodynamic features of slug flow. Based on the 

developed results, correlations for the terminal velocity of the Taylor bubble and the 

dimensionless wall shear stress are proposed showing the significance of these main 

dimensionless parameters and support other important theoretical and experimental work 

available in the literature. 
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4.1 Introduction 

Based on the review done in chapter 2, the scope of this chapter can be divided into two main 

folds:  

1. Performing complete dimensionless analysis of the problem using both the Buckingham-

Pi theorem and a dimensionless treatment followed by order of magnitude analysis to the 

governing equations of motion to show the sole dimensionless parameters, 𝑅𝑒𝑈𝑇𝐵, 𝐹𝑟𝑈𝑇𝐵 

and 𝐸𝑜 numbers, and their relative merits or order of magnitudes. Based on this analysis, 

the main hydrodynamic features of rising of an individual Taylor bubble through stagnant 

Newtonian liquids are investigated by applying computational fluid dynamics (CFD) 

simulation using the volume-of-fluid (VOF) methodology implemented in the 

commercial software ANSYS Fluent. These simulations are based on the base model 

discussed in chapter 3. 

2. Developing a correlation between 𝑅𝑒𝑈𝑇𝐵, 𝐹𝑟𝑈𝑇𝐵 and  𝐸𝑜 numbers based on the developed 

numerical results and on the guidelines of the order of magnitude analysis to predict 

Taylor bubble rise velocity (𝑈𝑇𝐵). This correlation enables the present study to support 

other important theoretical and experimental work available in the literature. 

This chapter is divided as follows; the dimensionless equations of motion and order of 

magnitude analysis are given in section 4.2. The CFD model is discussed in section 4.3. This 

is followed by the results and discussion, given in section 4.4, which is divided into four main 

parts, including the Taylor bubble rise velocity, the Taylor bubble shape, the liquid film region 

and the wake region. The chapter ends with a conclusion and discussions section that 

summarises all the important outcomes of this chapter.  

4.2 Dimensionless Analysis  

The hydrodynamic characteristics of gas-liquid slug flow are governed by viscous, inertial, 

gravitational and interfacial forces. The problem can be analysed using either Buckingham-Pi 

theorem or the dimensionless treatment of the governing equations. This section covers both 

methods. 
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 Buckingham-Pi Theorem 

In literature, the problem is mostly analysed into the dimensionless form using Buckingham-

Pi theorem. Details on the theorem analysis are given in Appendix A.  

Morgado et al. (2016) neglect the effect of the expansion of gas during its rise and show that 

the dimensionless analysis of the problem results in the following form: 

Relation (4-1) can be modified by introducing the Reynolds number based on bubble velocity 

(𝑅𝑒𝑈𝑇𝐵) which is the ratio between the inertial forces and viscous forces.  

It can be shown in this respect that Morton number (𝑀) does not represent any particular 

physical quantity as it can be written as:  

where the inverse viscosity number (𝑁𝑓) is defined as: 

In fact, the inverse viscosity number (𝑁𝑓) can be interpreted physically as the ratio between 

gravity force and the viscous force. This can hardly be indicative of the onset of turbulence, 

which is inertial in the first place and probabilistic in essence.  It should also be pointed out 

that large values of 𝑁𝑓 cannot only be ascribed to large values of 𝑅𝑒𝑈𝑇𝐵 but to small values of 

𝐹𝑟𝑈𝑇𝐵  as well. The similarity requirements posed by Froude and Reynolds numbers can 

typically not be satisfied simultaneously. 

It can be easily shown here that using the Buckingham-Pi theorem can lead to the same form 

of the dimensionless groups with Morton number replaced by Reynolds number that is given 

by: 

𝑈𝑇𝐵
2𝜌𝐿

𝑔𝐷𝛥𝜌
= 𝑓 [𝐸𝑜 =

𝑔𝜌𝐿𝐷
2

𝜎
 ,  𝑀 =

𝛥𝜌𝑔𝜇𝐿
4

𝜌𝐿
2𝜎3

 ,   𝛤𝜇 =
𝜇𝐿
𝜇𝐺
,  𝛤𝜌 = 

𝜌𝐿
𝜌𝐺
,  
𝐿𝑇𝐵
𝐷

 ] (4-1) 

𝑀 = (
𝐹𝑟𝑈𝑇𝐵
𝑅𝑒𝑈𝑇𝐵

)

4

𝐸𝑜3 =
𝐸𝑜3

𝑁𝑓
4  (4-2) 

𝑁𝑓 =
𝑅𝑒𝑈𝑇𝐵
𝐹𝑟𝑈𝑇𝐵

=
𝜌𝐿(𝑔𝐷

3)0.5

𝜇𝐿
 (4-3) 
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 Dimensionless Governing Equations 

Figure 4-1 shows the vertical pipe configuration and the coordinate system used. The main 

governing equations of the problem are the continuity and momentum equations. The Navier-

stokes equations in polar coordinates assuming axisymmetric flow are: 

  

Figure 4-1. The vertical pipe configuration and the coordinate system used. 

 

 

𝐹𝑟𝑈𝑇𝐵 =
𝑈𝑇𝐵

√𝑔𝐷
= 𝑓 [𝐸𝑜 =

𝑔𝜌𝐿𝐷
2

𝜎
 , 𝑅𝑒𝑈𝑇𝐵 =

𝜌𝐿𝑈𝑇𝐵𝐷

𝜇𝐿
 , 𝛤𝜇 =

𝜇𝐿
𝜇𝐺
, 𝛤𝜌 = 

𝜌𝐿
𝜌𝐺
,
𝐿𝑇𝐵
𝐷

 ] (4-4) 

𝜌𝐿 (
𝜕𝑣𝑟
𝜕 𝑡
+ 𝑣𝑟

𝜕𝑣𝑟
𝜕𝑟
+ 𝑣𝑧

𝜕𝑣𝑟
𝜕𝑧
) = 𝜌𝐿𝑔𝑟 −

𝜕𝑝

𝜕𝑟
+ 𝜇 [

𝜕2𝑣𝑟
𝜕 𝑟2

+
1

𝑟

𝜕𝑣𝑟
𝜕𝑟
+
𝜕2𝑣𝑟
𝜕𝑧2

−
𝑣𝑟
𝑟2
] (4-5) 

𝜌𝐿 (
𝜕𝑣𝑧
𝜕𝑡
+ 𝑣𝑟

𝜕𝑣𝑧
𝜕𝑟
+ 𝑣𝑧

𝜕𝑣𝑧
𝜕𝑧
) = 𝜌𝐿𝑔𝑧 −

𝜕𝑝

𝜕𝑧
+ 𝜇 [4

𝜕2𝑣𝑧
𝜕𝑟2

+
1

𝑟

𝜕𝑣𝑧
𝜕𝑟
+
𝜕2𝑣𝑧
𝜕𝑧2

] (4-6) 

0 = −
1

𝑟

𝜕𝑝

𝜕𝜃
                (𝑣𝜃 = 0) (4-7) 
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And the continuity equation is: 

Introducing the following dimensionless variables:  

Substituting the dimensionless variables given in (4-9) into the momentum and continuity 

equation, dividing by (
𝜌𝐿𝑈

2

𝐷
) and rearragning the terms would give the following dimensionless 

form: 

The following conditions are applied on the gas-liquid interface: 

𝜕𝑣𝑟
𝜕𝑟
+
𝑣𝑟
𝑟
+
𝜕𝑣𝑧
𝜕𝑧
= 0 

(4-8) 

𝑣𝑟
∗ =

𝑣𝑟
𝑈𝑇𝐵

, 𝑣𝑧
∗ =

𝑣𝑧
𝑈𝑇𝐵

, 𝑡∗ = 𝑡 (
𝑈𝑇𝐵
𝐿𝑇𝐵
) , 𝑟∗ =

𝑟

(𝐷 2⁄ )
, 𝑧∗ =

𝑧

𝐿𝑇𝐵
, 𝑝∗ =

𝑝
1
2
𝜌𝐿𝑈𝑇𝐵

2
 , 

(4-9) 

𝑔𝑟
∗ =

𝑔𝑟
𝑔
 , 𝑔𝑧

∗ =
𝑔𝑧
𝑔
, 𝜎𝑟

∗ =
𝜎𝑟
𝜎
, 𝜎𝑧
∗ =

𝜎𝑧
𝜎
, 𝜎𝜃
∗ =

𝜎𝜃
𝜎
, 𝐾∗ =

𝐾

(1 𝐷2⁄ )
 

(
𝐷

𝐿𝑇𝐵
)
𝜕𝑣𝑟

∗

𝜕 𝑡∗
+ 2 𝑣𝑟

∗
𝜕𝑣𝑟

∗

𝜕 𝑟∗
+ (

𝐷

𝐿𝑇𝐵
) 𝑣𝑧

∗
𝜕𝑣𝑟

∗

𝜕 𝑧∗

=
1

𝐹𝑟𝑈𝑇𝐵
2 𝑔𝑟

∗ −
𝜕𝑝∗

𝜕𝑟∗
+

1

𝑅𝑒𝑈𝑇𝐵
[4
𝜕2𝑣𝑟

∗

𝜕 𝑟∗2
+
4

𝑟∗
𝜕𝑣𝑟

∗

𝜕𝑟∗
+ (

𝐷

𝐿𝑇𝐵
)
2 𝜕2𝑣𝑟

∗

𝜕𝑧∗2
−
4𝑣𝑟

∗

𝑟∗2
] 

(4-10) 

(
𝐷

𝐿𝑇𝐵
)
𝜕𝑣𝑧

∗

𝜕𝑡∗
+ 2 𝑣𝑟

∗
𝜕𝑣𝑧

∗

𝜕𝑟∗
+ (

𝐷

𝐿𝑇𝐵
)𝑣𝑧

∗
𝜕𝑣𝑧

∗

𝜕𝑧∗
 

=
1

𝐹𝑟𝑈𝑇𝐵
2 𝑔𝑧

∗ − (
𝐷

𝐿𝑇𝐵
)
𝜕𝑝∗

𝜕𝑧∗
+

1

𝑅𝑒𝑈𝑇𝐵
[4
𝜕2𝑣𝑧

∗

𝜕𝑟∗2
+
4

𝑟∗
𝜕𝑣𝑧

∗

𝜕𝑟∗
+ (

𝐷

𝐿𝑇𝐵
)
2 𝜕2𝑣𝑧

∗

𝜕𝑧∗2
] 

(4-11) 

0 =
𝜕𝑝∗

𝜕𝜃∗
  (4-12) 

2 (
𝜕𝑣𝑟

∗

𝜕𝑟∗
+
𝑣𝑟
∗

𝑟∗
) + (

𝐷

𝐿𝑇𝐵
)
𝜕𝑣𝑧

∗

𝜕𝑧∗
= 0 (4-13) 

0 = [−
𝜕𝑝

𝜕𝑟
]
𝑆
+ [𝜇 [

𝜕2𝑣𝑟
𝜕𝑟2

+
1

𝑟

𝜕𝑣𝑟
𝜕𝑟
]]

𝑆

+ [𝐾𝜎𝑟]𝑆 (4-14) 

[𝜌𝐿 (
𝜕𝑣𝑧
𝜕𝑡
+ 𝑣𝑧

𝜕𝑣𝑧
𝜕𝑧
)]
𝑆
= 𝜌𝐿𝑔𝑧 + [−

𝜕𝑝

𝜕𝑧
]
𝑆
+ [𝜇 [

𝜕2𝑣𝑧
𝜕𝑟2

+
1

𝑟

𝜕𝑣𝑧
𝜕𝑟
+
𝜕2𝑣𝑧
𝜕𝑧2

]]

𝑆

+ [𝐾𝜎𝑧]𝑆 (4-15) 
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Using the dimensionless variables given (4-9), and rearranging the terms, equations (4-14) to 

(4-16) in a dimensionless form may be written as: 

Performing a similar analysis with respect to gas and liquid sides would show the additional 

dimensionless groups, which are the density ratio (𝛤𝜌) and the viscosity ratio (𝛤𝜇). 

To perform an order of magnitude analysis to the dimensionless governing equations, the 

following orders are introduced: 

Introducing the orders given in (4-20) to the continuity equation (4-13) would lead to the 

following: 

It can be concluded from equation (4-21) in order to keep the continuity equation intact 𝑣𝑟
∗ 

should be of the order 
𝐷

𝐿𝑇𝐵
, that is 𝑣𝑟

∗ = 𝑜 (
𝐷

𝐿𝑇𝐵
). 

0 = [−
1

𝑟

𝜕𝑝

𝜕𝜃
]
𝑆
+ [𝐾𝜎𝜃]𝑆 (4-16) 

[−
𝜕𝑝∗

𝜕𝑟∗
+

1

𝐹𝑟𝑈𝑇𝐵
2 𝐸𝑜

𝐾∗𝜎𝑟
∗]

𝑆

+
4

𝑅𝑒𝑈𝑇𝐵
[
𝜕2𝑣𝑟

∗

𝜕𝑟∗2
+
1

 𝑟∗
𝜕𝑣𝑟

∗

𝜕𝑟∗
]
𝑆

= 0 (4-17) 
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𝐷

𝐿𝑇𝐵
)
𝜕𝑣𝑧

∗

𝜕𝑡∗
+ (

𝐷

𝐿𝑇𝐵
) 𝑣𝑧

∗
𝜕𝑣𝑧

∗

𝜕𝑧∗
]
𝑆

= [−(
𝐷

𝐿𝑇𝐵
)
𝜕𝑝∗

𝜕𝑧∗
]
𝑆

 

(4-18) 

        +
1

𝑅𝑒𝑈𝑇𝐵
[4
𝜕2𝑣𝑧

∗

𝜕𝑟∗2
+
4

𝑟∗
𝜕𝑣𝑧

∗

𝜕𝑟∗
+ (

𝐷

𝐿𝑇𝐵
)
2 𝜕2𝑣𝑧

∗

𝜕𝑧∗2
]
𝑆

 +
1

𝐹𝑟𝑈𝑇𝐵
2 [𝑔𝑧

∗ +
1

𝐸𝑜
𝐾∗𝜎𝑧

∗]
𝑆

 

0 = [−
1

𝑟∗
𝜕𝑝∗

𝜕𝜃∗
]
𝑆
+

1

𝐹𝑟𝑈𝑇𝐵
2 𝐸𝑜

[𝐾∗𝜎𝜃
∗]𝑆 (4-19) 

𝑟∗ = 𝑜(1), 𝑧∗ = 𝑜(1), 𝑣𝑧
∗ = 𝑜(1),𝐾∗ = 𝑜(1), 𝜎𝑧

∗ = 𝑜(1), 𝑔𝑧
∗ = 𝑜 (

𝐷

𝐿𝑇𝐵
)  

(4-20) 

𝑔𝑟
∗ = 𝑜 (

𝐷

𝐿𝑇𝐵
)
2

𝑎𝑛𝑑  𝑡∗ = 𝑜(1) 

𝜕𝑣𝑟
∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑟∗⏟
𝑜(1)

+
𝑣𝑟
∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝑟∗⏟
𝑜(1)

+ (
𝐷

𝐿𝑇𝐵
)
𝜕𝑣𝑧

∗⏞
𝑜(1)

𝜕𝑧∗⏟
𝑜(1)

 = 0  (4-21) 
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Very small order 

Similarly, performing order of magnitude analysis to the momentum equation in the 𝑧∗ 

direction (equation (4-11)), will give the following: 

Hence, it can be concluded from equation (4-22) that 𝐹𝑟𝑣𝑑  should be of the order 𝑜(1) and 𝑅𝑒𝑣𝑑 

should be of the order 𝑜 (
𝐿𝑇𝐵

𝐷
).  

Applying the same analysis to the momentum equation in the 𝑟∗ direction (equation (4-10)) 

will give the following: 

It can be concluded from equation (4-23): 

Finally, applying the same analysis to the gas-liquid interface (equation (4-18)) gives the 

following: 

(
𝐷

𝐿𝑇𝐵
) 
𝜕𝑣𝑧

∗⏞
𝑜(1)

𝜕𝑡∗⏟
𝑜(1)

+ 2 𝑣𝑟
∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑣𝑧
∗⏞

𝑜(1)

𝜕𝑟∗⏟
𝑜(1)

+ (
𝐷

𝐿𝑇𝐵
) 𝑣𝑧

∗⏞
𝑜(1)
𝜕𝑣𝑧

∗⏞
𝑜(1)

𝜕𝑧∗⏟
𝑜(1)

  =
𝑔𝑧
∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝐹𝑟𝑈𝑇𝐵
2

⏟  
𝑜(1)

 

−(
𝐷

𝐿𝑇𝐵
)
𝜕𝑝∗

𝜕𝑧∗
+

1

𝑅𝑒𝑈𝑇𝐵⏟  

𝑜(
𝐿𝑇𝐵
𝐷
) [
 
 
 
 

4
𝜕2𝑣𝑧

∗⏞  
𝑜(1)

𝜕𝑟∗2⏟
𝑜(1)

+
4

𝑟∗⏟
𝑜(1)

𝜕𝑣𝑧
∗⏞

𝑜(1)

𝜕𝑟∗⏟
𝑜(1)

+ (
𝐷

𝐿𝑇𝐵
)
2 𝜕2𝑣𝑧

∗⏞  
𝑜(1)

𝜕𝑧∗2⏟
𝑜(1) ]

 
 
 
 

 

(4-22) 

(
𝐷

𝐿𝑇𝐵
) 
𝜕𝑣𝑟

∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑡∗⏟
𝑜(1)

+ 2 𝑣𝑟
∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑣𝑟
∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑟∗⏟
𝑜(1)

+ (
𝐷

𝐿𝑇𝐵
) 𝑣𝑧

∗⏞
𝑜(1)

𝜕𝑣𝑟
∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑧∗⏟
𝑜(1)

=
𝑔𝑟
∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)
2

𝐹𝑟𝑈𝑇𝐵
2

⏟  
𝑜(1)

−
𝜕𝑝∗

𝜕𝑟∗⏟
𝑜(1)

 

(4-23) 

+
1

𝑅𝑒𝑈𝑇𝐵⏟  

𝑜(
𝐿𝑇𝐵
𝐷
) [
 
 
 
 
 

4
𝜕2𝑣𝑟

∗⏞  

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑟∗2⏟
𝑜(1)

+
4

𝑟∗⏟
𝑜(1)

𝜕2𝑣𝑟
∗⏞  

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑟∗2⏟
𝑜(1)

+ (
𝐷

𝐿𝑇𝐵
)
2 𝜕2𝑣𝑟

∗⏞  

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑧∗2⏟
𝑜(1)

−
4 𝑣𝑟

∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝑟∗2⏟
𝑜(1)

]
 
 
 
 
 

 

𝜕𝑝∗

𝜕𝑟∗
= 𝑜 (

𝐷

𝐿𝑇𝐵
)
2

, 𝑝∗ = (
𝐷

𝐿𝑇𝐵
)
2

,
𝜕𝑝∗

𝜕𝑧∗
= 𝑜 (

𝐷

𝐿𝑇𝐵
)
2

𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑣𝑒𝑟𝑦 𝑠𝑚𝑎𝑙𝑙 (4-24) 

o(
𝐷

𝐿𝑇𝐵
)
3
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It follows that 𝐸𝑜 should be of order 𝑜 (
𝐿𝑇𝐵

𝐷
). 

Based on the literature review given in chapter 2, the main source of information about regime 

transition is Campos and De Carvalho (1988) where they put 𝑁𝑓 in place of 𝑅𝑒𝑈𝑇𝐵 to judge 

turbulence or the onset of hydrodynamic instability which is considered questionable.  

𝑁𝑓 effectively represents the ratio of the gravity force to the viscous force, which can hardly be 

indicative of the onset of turbulence, which is inertial in the first place and probabilistic in 

essence. 

However, 𝑁𝑓  can be treated differently as being a modified Reynolds number, rather than a 

new number; suitable to govern the bubble motion in stagnant fluid in the following way: 

It is worth noting that, if the characteristic velocity 𝑈𝑇𝐵 is placed by a new characteristic 

velocity (𝑉𝑠 = (𝑔𝐷)
1/2), the dimensionless variables will be modified as follows: 

Thus, for instance, the dimensionless momentum equation in the radial direction (equation 

(4-10)) will be as follows: 

[
 
 
 

(
𝐷

𝐿𝑇𝐵
)
𝜕𝑣𝑧

∗⏞
𝑜(1)

𝜕𝑡∗⏟
𝑜(1)

+ (
𝐷

𝐿𝑇𝐵
) 𝑣𝑧

∗⏞
𝑜(1)
𝜕𝑣𝑧

∗⏞
𝑜(1)

𝜕𝑧∗⏟
𝑜(1) ]

 
 
 

𝑆

 =

[
 
 
 
 
 

− (
𝐷

𝐿𝑇𝐵
)
𝜕𝑝∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)
2

𝜕𝑧∗⏟
𝑜(1)

]
 
 
 
 
 

𝑆

 

(4-25) 

+
1

𝑅𝑒𝑈𝑇𝐵⏟  

𝑜(
𝐿𝑇𝐵
𝐷
) [
 
 
 
 

4
𝜕2𝑣𝑧

∗⏞  
𝑜(1)

𝜕𝑟∗2⏟
𝑜(1)

+
4

𝑟∗⏟
𝑜(1)

𝜕𝑣𝑧
∗⏞

𝑜(1)

𝜕𝑟∗⏟
𝑜(1)

+ (
𝐷

𝐿𝑇𝐵
)
2 𝜕2𝑣𝑧

∗⏞  
𝑜(1)

𝜕𝑧∗2⏟
𝑜(1) ]

 
 
 
 

𝑆

+
1

𝐹𝑟𝑈𝑇𝐵
2

⏟  
𝑜(1) [

 
 
 
 

𝑔𝑧
∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

+
1

𝐸𝑜⏟

𝑜(
𝐿𝑇𝐵
𝐷
)

𝐾∗⏞
𝑜(1)

𝜎𝑧
∗⏞

𝑜(1)

]
 
 
 
 

𝑆

 

𝑁𝑓 =
𝑅𝑒𝑈𝑇𝐵
𝐹𝑟𝑈𝑇𝐵

=
𝐼𝑛𝑒𝑟𝑡𝑖𝑎 𝑓𝑜𝑟𝑐𝑒

𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒
×
𝑔𝑟𝑎𝑣𝑖𝑡𝑦 𝑓𝑜𝑟𝑐𝑒

𝐼𝑛𝑒𝑟𝑡𝑖𝑎 𝑓𝑜𝑟𝑐𝑒
=
𝑔𝑟𝑎𝑣𝑖𝑡𝑦 𝑓𝑜𝑟𝑐𝑒

𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒
 (4-26) 

𝑣𝑟̂ =
𝑣𝑟
𝑉𝑠
, 𝑣𝑧̂ =

𝑣𝑧
𝑉𝑠
, 𝑡̂ = 𝑡 (

𝑉𝑠
𝐿𝑇𝐵
) , 𝑝̂ =

𝑝
1
2
𝜌𝐿𝑉𝑠

2
 , (4-27) 
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Where  𝑅𝑒𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 is the modified Reynolds number, which is defined as follows: 

It is concluded that 𝐹𝑟𝑈𝑇𝐵  disappeared from the governing equations, which is equivalent of 

saying that it is of the order of magnitude unity or less, as follows: 

Hence, in this frame with the new definition of the characteristic velocity (𝑉𝑠), the inverse 

viscosity number (𝑁𝑓) can represent the ratio of inertia force to viscous force, and Froude 

number is no longer a similarity parameter. Additionally, it is wise to mention that the 

characteristic velocity (𝑉𝑠) is of order  (𝑔𝐷)1/2 which puts a limitation on  𝑅𝑒𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑. 

To sum up, based on the dimensionless analysis of the equations of motions followed by order 

of magnitude analysis in all directions and on the boundaries, the following conclusions are 

drawn:  

1. The radial velocity component (𝑣𝑟
∗) should be of the order (

𝐷

𝐿𝑇𝐵
) in order to keep the 

continuity equation intact without any approximation;  

2. The pressure gradient in the radial direction should be of the order (
𝐷

𝐿𝑇𝐵
)
2

;  

3. For all terms in the momentum equations and on the boundaries to remain of  the same order 

of magnitude, 𝐹𝑟𝑈𝑇𝐵 should be of the order (1), 𝑅𝑒𝑈𝑇𝐵 and 𝐸𝑜 both should be of the 

order (
𝐿𝑇𝐵

𝐷
).  

(
𝐷

𝐿𝑇𝐵
)
𝜕𝑣𝑟̂
𝜕𝑡̂
+ 2 𝑣𝑟̂

𝜕𝑣𝑟̂
𝜕𝑟∗

+ (
𝐷

𝐿𝑇𝐵
) 𝑣𝑧̂

𝜕𝑣𝑟̂
𝜕𝑧∗

= 𝑔𝑟
∗ −

𝜕𝑝̂

𝜕𝑟∗
+

1

𝑅𝑒𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑
[4
𝜕2𝑣𝑟̂

𝜕𝑟∗2
+
4

𝑟∗
𝜕𝑣𝑟̂
𝜕𝑟∗

+ (
𝐷

𝐿𝑇𝐵
)
2 𝜕2𝑣𝑟̂

𝜕𝑧∗2
−
4𝑣𝑟̂

𝑟∗2
] 

(4-28) 

   𝑅𝑒𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 =
𝑉𝑠𝐷

𝜈
=
(𝑔𝐷)1/2𝐷

𝜈
=
(𝑔𝐷3)1/2

𝜈
= 𝑁𝑓  (4-29) 

𝐹𝑟𝑈𝑇𝐵 =
𝑉𝑠

(𝑔𝐷)1/2
=
𝑜(𝑔𝐷)1/2

(𝑔𝐷)1/2
= 𝑜(1) (4-30) 
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4. The inverse viscosity number is, in fact, a modified Reynolds number provided that the 

characteristic velocity for stagnant fluid given by 𝑉𝑠 = (𝑔𝐷)
1/2.  

In conclusion, the dimensionless analysis shows that any analysis of the Taylor bubble problem 

should include three main dimensionless groups, 𝐹𝑟𝑈𝑇𝐵, 𝐸𝑜 and 𝑅𝑒𝑈𝑇𝐵or 𝑁𝑓. It is worth to 

mention that Reynolds number is an independent parameter, which governs the viscous flow 

in general, and it comes out of the dimensionless treatment and the order of magnitude analysis 

of Navier-Stokes equations of motion. In fact, there is no need to use a dimensionless number 

like Morton number and as far as the numerical simulation is concerned and whether the bubble 

velocity is an outcome of it, Reynolds number stays along with Froude number and Eötvös 

number (on the interface between the gas and liquid sides) the sole physical parameters 

influencing the dimensionless slug flow equations. It is worth stating here that the direct 

solution of the dimensionless governing equations requires the specifications of 𝐹𝑟𝑈𝑇𝐵, 𝑅𝑒𝑈𝑇𝐵 

and 𝐸𝑜 numbers a prior to carrying out the numerical computations.  

Thus, the problem is analysed in terms of six main dimensionless groups, namely the Eötvös 

number (𝐸𝑜), Froude number (𝐹𝑟𝑈𝑇𝐵), Reynolds number based on bubble velocity (𝑅𝑒𝑈𝑇𝐵), 

density ratio (𝛤𝜌),viscosity ratio (𝛤𝜇) and the initial ratio of bubble size to pipe diameter 

(𝐿𝑇𝐵/𝐷)𝑖. In this chapter, the effects of density ratio (𝛤𝜌), viscosity ratio (𝛤𝜇) and the initial 

ratio of bubble size to pipe diameter (𝐿𝑇𝐵/𝐷)𝑖 are done for the sake of supporting other 

previous experimental and numerical works in the literature. This is to allow dealing carefully 

with the main influencing parameters Eötvös number (𝐸𝑜) and Reynolds number (𝑅𝑒𝑈𝑇𝐵) 

rather than Eötvös number (𝐸𝑜) and Morton number (𝑀) as done by most of the other studies.  

4.3 CFD Model Development 

The base model is discussed in detail in chapter 3, however, some essential details about the 

boundary conditions and the reference frame used are given in this section. The flow domain 

is constructed and solved using the volume-of-fluid (VOF) methodology implemented in the 

computational fluid dynamics software package, ANSYS Fluent (Release 16.0). In all 

simulated cases, a uniform grid of quadrilateral control elements is applied. The simulation is 

performed for unsteady flow with constant fluid properties. The two phases are assumed as 
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incompressible, viscous, immiscible and not penetrating each other. The flow regime could be 

laminar, which means the transition or the turbulent is depending on the value of Reynolds 

number in different flow regions of the slug flow domain. 

Figure 4-2 shows that the flow regions in vertical slug flow that can be divided into three main 

regions according to the definition of Reynolds number, into flow in the main liquid region 

(liquid slug), 𝑅𝑒𝑈∞ or 𝑅𝑒𝑈𝑇𝐵, flow in the liquid film (annular film), 𝑅𝑒𝑈𝐿𝐹 and flow near bubble 

wake, 𝑅𝑒𝑉𝐿. The definition of Reynolds number according to each region is given by: 

For the case of Taylor bubble rising in stagnant liquid only two parameters, namely  𝑅𝑒𝑈∞, 

and 𝑅𝑒𝑈𝐿𝐹, are used to characterise flow type into laminar, transient, or turbulent flow regime. 

Various experimental work is done to investigate the characteristic Reynolds number for the 

onset of transition in the flow regime in each region discussed above. For instance, to ensure 

laminar flow regime in the main liquid region, 𝑅𝑒𝑈𝑇𝐵  should be less than 2100 as reported by 

Fulford (1964); Frechou (1986) and Mayor et al. (2007b). 

Also, the range of Reynolds numbers for the transitional region in the liquid film region is 

[250: 400] < 𝑅𝑒𝑈𝐿𝐹 < 800 as indicated by Fulford (1964). It should be pointed out that the 

transition criterion from laminar into turbulent flow is not clear enough and need to be further 

investigated. For instance, the wake pattern is identified into laminar or turbulent flow 

according to the value of inverse viscosity number (𝑁𝑓). Nevertheless, according to the 

problem definition, it should be mainly, in terms of Reynolds number. However according to 

data in the literature, to ensure laminar flow regime in the main liquid region for the present 

study, 𝑅𝑒𝑈𝑇𝐵 ought to be less than 200. Regarding the flow in the liquid film, 𝑅𝑒𝑈𝐿𝐹 never 

exceeded 30 which ensures that the developed liquid films are entirely under the laminar 

regime. 

𝑅𝑒𝑈𝑇𝐵 = 𝜌𝐿𝑈𝑇𝐵𝐷 𝜇𝐿⁄  (4-31) 

𝑅𝑒𝑈𝐿𝐹 = 𝜌𝐿𝑈𝐿𝐹 𝛿𝐿𝐹 𝜇𝐿⁄  (4-32) 

𝑅𝑒𝑉𝐿 = 𝜌𝐿𝑉𝐿𝐷 𝜇𝐿⁄  (4-33) 
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 Model Geometry  

The solution domain is a vertical pipe with a diameter (𝐷) and length (𝐿) with symmetry along 

the centreline of the pipe. In order to minimise computational time and effort, all the 

simulations are performed in axisymmetric flow situation, assuming symmetry about the 

centreline of the pipe. This assumption is adequate and based on the laminar state of flow. In 

all simulation cases, the length of the domain is 10 times larger than pipe diameter to avoid 

disturbance of the continuous phase (liquid phase) at the entrance and the exit regions, and to 

ensure that a uniform velocity profile is restored.  Figure 4-2 shows a schematic representation 

of the computational domain for the present problem. The initial bubble shape is a cylinder 

connected to a hemisphere with the same radius giving an overall bullet shape of the Taylor 

bubble. The length and radius of the Taylor bubble are given by 𝐿𝑇𝐵 and 𝑅𝑇𝐵, respectively. 

 

Figure 4-2. Schematic representation of the computational domain and the main hydrodynamic features of a 

single Taylor bubble rising through stagnant liquid, showing the initial and boundary conditions and the change 

from a fixed reference frame system (a) to a moving reference frame system (b). 
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The initial ratio of the Taylor bubble length to pipe diameter (𝐿𝑇𝐵/𝐷)𝑖 is an input parameter 

prior to simulation, and it is fixed to the value of 3 in most of the investigated cases. This initial 

shape is simulated until a steady bubble shape is reached.  Different bubble shapes are tested, 

and the final steady shape of the bubble is found to be similar, but this only affects the solution 

convergence, and this is discussed in detail in section 4.4.2.1.1. 

 Fixed and Moving Reference Frame Techniques 

The simulation is performed by attaching a reference frame to the rising Taylor bubble. 

Enabling moving reference frame (MRF) in the simulation, causes the rising Taylor bubble to 

be stationary and the pipe wall moves downwards with a velocity equal to that of the bubble 

(Mao and Dukler, 1990). The transformation of the boundary conditions using MRF is given 

in Figure 4-2.The initial guess of Taylor bubble velocity (𝑈𝑇𝐵) is estimated according to the 

general correlation of  Wallis (1969), which is given by:  

Once the Taylor bubble ceases moving up or down in the axial direction, and hence the pseudo-

steady solution is reached, the velocity is then adjusted and set to be the terminal velocity. The 

initial guess of the liquid film thickness (𝛿𝐿𝐹) is estimated using Brown (1965)’s equation, 

which is given by: 

Problems dealing with the rise of the Taylor bubble in stagnant liquid require the use of large 

computational domain to capture the phenomena effectively. A large domain in essential for 

Taylor bubble to reach their terminal velocity and hence reach its steady state. However, this 

leads to the problem of computational time. This domain captures areas which are not 

𝐹𝑟𝑈𝑇𝐵 =
𝑈𝑇𝐵

√𝑔𝐷
= 0.345 (1 − 𝑒

−0.01𝑁𝑓
0.345 )(1 − 𝑒

3.37−𝐸𝑜
𝑚 ) 

where 

𝑚 = {

25,                                         𝑁𝑓 < 18

69𝑁𝑓
−0.35,                18 < 𝑁𝑓 < 250

10                                      𝑁𝑓 > 250

 

(4-34) 

𝛿𝐿𝐹 = [
3𝜈

2𝑔(𝑅 − 𝛿𝐿𝐹)
𝑈𝑇𝐵(𝑅 − 𝛿𝐿𝐹) 

2]
1/3

 (4-35) 
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significant for this problem as the main region of interest is the Taylor bubble and its 

surroundings (Araújo et al., 2013b; Gutiérrez et al., 2017). 

In general, computational domains used in most studies can be categorised into two main 

groups, fixed reference frames (FRF) and moving reference frames (MRF). According to the 

literature review given in chapter 2, it is clear that computational time is the main concern of 

modelling two-phase slug flow and accordingly, most of the studies use moving reference 

frame technique, which is less complicated than FRF, to avoid time-consuming simulations. 

This section shows a comparison between the two techniques discussing the advantages of 

using moving reference frame rather than a fixed frame in a vertical pipe, and how the 

computational time is reduced when using MRF without affecting the accuracy of the solution.  

Figure 4-2 shows a schematic representation of the computational domain for the Taylor bubble 

in a vertical pipe and different reference frames, fixed and moving techniques. In the fixed 

reference frame technique, the bubble is left to drift under buoyancy and gravitational effects 

in a vertical pipe. The boundary conditions at the pipe outlet are pressure outlet, stationary no-

slip boundary conditions at the wall and symmetry at the pipe centreline. The bubble velocity 

is tracked, and the simulation continues running until a constant terminal Taylor bubble 

velocity, 𝑈𝑇𝐵  is reached.  Using this technique, the simulation time might be long and larger 

computational domain might be essential.  

However, referring to Figure 4-2, using MRF the inlet flow boundary condition is applied with 

liquid entering at an average uniform velocity equal to the velocity of the Taylor bubble. The 

symmetry boundary condition is applied at the pipe centreline. At the wall, the no-slip 

condition is applied with wall moving downwards with the following velocities,  𝑣𝑧𝑤𝑎𝑙𝑙 = 𝑈𝑇𝐵, 

  𝑣𝑟𝑤𝑎𝑙𝑙 = 0. The gas phase usually has lower density and viscosity than the liquid phase; thus, 

full slip can be assumed at the gas-liquid interface. The internal circulatory flow within Taylor 

bubbles has an almost negligible effect on the outer surrounding liquid leading to zero 

interfacial shear stress at the interface. Thus, the pressure variation within Taylor bubble is 

small and constant pressure is assumed at the interior of the Taylor bubble (Akagawa and 

Sakaguchi, 1966; Mao and Dukler, 1990; Zheng et al., 2007a; Morgado et al., 2016). Thus, the 

kinematic condition, 𝑉. 𝑛 = 0, assuming full slip at the gas-liquid interface is applied. The 

dynamic boundary condition can be divided into two separate boundary conditions, the 
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tangential stress balance assuming zero interfacial shear stress along the interface 

((𝜏. 𝑛̂). 𝑠̂ = 0) and the normal stress balance (𝜌𝑖𝐿 + 𝜎𝐾 = constant). According to Mao and 

Dukler (1990), the curvature of the interface (𝐾) is expressed in terms of radii of the curvature 

of the bubble surface, as follows: 

For 2D axisymmetric simulations in a vertical pipe, trial simulations are conducted to examine 

the effect of using both FRF and MRF techniques. Table 4-1 shows a comparison between the 

FRF and MRF applied to a selective experimental case of Nogueira et al. (2006a; 2006b) with 

water and aqueous glycerol solutions as working fluids in 32mm diameter vertical pipe. It 

should be pointed out that the computational domain in both cases has the same size (10Dpipe), 

which means that there is no need for a larger domain while enabling FRF technique. As 

indicated in Table 4-1, it can be concluded that both techniques give the same results, but FRF 

runs longer. Thus, for 2D simulations in a vertical pipe, MRF is selected. 

Table 4-1. Numerical values of 𝑈𝑇𝐵 using the 2D axisymmetric domain with different reference frames for the 

experimental case of Nogueira et al. (2006a; 2006b) with their corresponding deviations with respect to the 

experimental data. 

 

 

 

Figure 4-3 shows the predicted terminal Taylor bubble shape and the flow field around it 

(streamlines) using both techniques. Both reference frames gave the same terminal Taylor 

bubble shape. However, the flow field using the MRF shows better representation for the wake 

structure. Hence, for all simulations for vertical pipes, a 2D-axisymmetric coordinate system 

with MRF is selected. 

𝐾 = [
1

𝑟1
+
1

𝑟2
] (4-36) 

Domain-
Reference frame 

Run time in 
hours per 1s 
real time 

UTB 
terminal 
(m/s) 

UTB –
Experimental 
(m/s) 

|𝐄𝐫𝐫𝐨𝐫 | 
(%) 

2D-FRF 4.5 hours 0.1702 0.188 9.5 

2D-MRF 3 hours 0.1733 0.188 7.8 
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A comparison between the predicted terminal drift velocity (𝑈𝑇𝐵) for the experimental case of 

Nogueira et al. (2006a; 2006b) using the 3D model with different mesh sizes and the 2D 

axisymmetric model is given in Figure 4-4. Increasing the number of nodes controls the 

convergence of the terminal velocity, however, longer computation time is noticed. Increasing 

the number of nodes in the 3D model also helps in effectively predicting the gas-liquid 

interface. It should be mentioned that when comparing both the 2D axisymmetric model and 

the 3D model for this vertical case, better predictions for terminal velocity is noticed while 

using the 2D model with acceptable computational time. For that reason, all simulations done 

for the vertical cases are done using 2D axisymmetric model. 

 

 

 

 

 

 

Figure 4-3. Comparison between the predicted terminal Taylor bubble shape and the flow field around it 

(streamlines) using (a) MRF and (b) FRF for the experimental case of  Nogueira et al. (2006a; 2006b). 
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4.4 Results and Discussions 

In chapter 3, a mesh dependence study is discussed, followed by a validation study of a single 

Taylor bubble rising through a stagnant liquid in a vertical pipe. This section discusses the 

results that cover the main aims of this chapter which is investigating the main hydrodynamic 

features of the rise of single Taylor bubble through a stagnant Newtonian fluid in a vertical 

pipe, including the developed Taylor bubble shape, Taylor bubble rise velocity (𝑈𝑇𝐵), the 

liquid film thickness (𝛿𝐿𝐹),  maximum liquid film velocity (𝑈𝐿𝐹), wall shear stress (𝜏𝑊), wake 

length (𝐿𝑤) and wake volume (𝓋𝑊), with a particular focus on the governing dimensionless 

numbers Eötvös number and Reynolds number. The results are divided into two sections, 

  

  

Figure 4-4. Example of mesh modification for obtaining converged terminal bubble velocity in the 3D 

model with a comparison between the 3D model and the 2D-axisymmetric model for the experimental case 

of Nogueira et al. (2006a; 2006b) for a vertical pipe. 
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Taylor bubble rise velocity and detailed hydrodynamics covering the Taylor bubble shape, flow 

in the liquid film region and flow in the wake region. In addition, correlations for the terminal 

velocity of the Taylor bubble and for the dimensionless wall shear stress are proposed showing 

the significance of these main dimensionless parameters. 

Table 4-2 lists the simulation cases and their corresponding results. The ranges of 𝐸𝑜, 

𝑅𝑒𝑈𝑇𝐵, 𝐹𝑟𝑈𝑇𝐵, 𝛤𝜌, 𝛤𝜇, (𝐿𝑇𝐵/𝐷)𝑖 are 6–700, 2.6-165, 0.031-0.330, 60-200, 66.7-6674, and 2–10, 

respectively. The input parameters prior simulation are 𝐸𝑜, 𝛤𝜌, 𝛤𝜇, (𝐿𝑇𝐵/𝐷)𝑖, while the 

predicted values from the simulation are 𝑅𝑒𝑈𝑇𝐵, 𝐹𝑟𝑈𝑇𝐵, (𝐿𝑇𝐵/𝐷)𝑃𝑟 (𝛿𝐿𝐹/𝐷), 𝑈𝐿𝐹𝑚𝑎𝑥,  

(
𝜏𝑊

𝜌𝐿𝑔𝐷
)
𝑚𝑎𝑥

, 𝐿𝑊/𝐷 and 𝓋𝑊/𝐷
3.  The initial ratio of bubble size to pipe diameter is given by 

(𝐿𝑇𝐵/𝐷)𝑖 and the average predicted ratio of the bubble size to the pipe diameter is given by 

(𝐿𝑇𝐵/𝐷)𝑃𝑟.  Based on the dimensionless analysis given in section 4.2, the primary aim of 

studying the effect of density ratio (𝛤𝜌), viscosity ratio (𝛤𝜇) and the initial ratio of bubble size 

to the pipe diameter (𝐿𝑇𝐵/𝐷)𝑖 on the hydrodynamic characteristics of the rise of single Taylor 

bubble in stagnant liquid is to support previous numerical work and experimental work in the 

literature. Cases 1 to 3 in Table 4-2 clearly emphasises that the density ratio has almost no 

effect on the dynamics of Taylor bubbles. The density ratio has minimal effect on liquid film 

thickness, maximum the velocity of the liquid film, maximum wall shear stress, wake length 

and wake volume. The simulation results as well agree with the numerical result of Kang et al. 

(2010). For the viscosity ratio effect, three cases denoted by cases 3, 4 and 5 are simulated with 

viscosity ratios of 66.7, 667 and 6674, respectively. Referring to Table 4-2, it is also concluded 

that the viscosity ratio (𝛤𝜇) has minimal effect on the dynamics of Taylor bubbles including as 

well the liquid film thickness, the maximum velocity of the liquid film, maximum wall shear 

stress and wake length and volume.  

In conclusion, the simulated cases 1 to 6 have almost the same values of  𝑅𝑒𝑈𝑇𝐵 and 𝐸𝑜, which 

is 24.34 and 66, respectively. Thus, the simulation results further assist the conclusion made 

by Lu and Prosperetti (2008) and Kang et al. (2010) that both density ratio (𝛤𝜌) and viscosity 

ratio (𝛤𝜇) have a negligible effect on the dynamics of Taylor bubbles.  
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Table 4-2.  Simulation cases and their corresponding results 

 

Input Parameters Predicted Values 

Case 

No. 
𝑬𝒐  𝜞𝝆 =

𝝆𝑳
𝝆𝑮

  𝜞𝝁 =
𝝁𝑳
𝝁𝑮

 (
𝑳𝑻𝑩
𝑫
)
𝒊
 

 

𝑭𝒓𝑼𝑻𝑩 
 

𝑹𝒆𝑼𝑻𝑩 
(
𝑳𝑻𝑩
𝑫
)
𝑷𝒓

 

Flow in liquid film region Flow in wake region 

𝜹𝑳𝑭
𝑫

 𝑼𝑳𝑭𝒎𝒂𝒙 (
𝝉𝑾
𝝆𝑳𝒈𝑫

)
𝒎𝒂𝒙

 𝑳𝒘/𝑫 𝓿𝑾/𝑫
𝟑 

Effect of density ratio (Γρ)  

1 66 6E+01 6.67E+03 3 0.290 24.3 3.1 0.1250 0.1870 0.1074 0 0 

2 66 9.98E+02 6.67E+03 3 0.290 24.3 3.1 0.1243 0.1086 0.109 0 0 

3 66 2E+02 6.67E+03 3 0.287 24.1 3.1 0.1246 0.1873 0.1084 0 0 

Effect of density ratio ( 𝚪𝛍)  

4 66 9.98E+02 6.67E+01 3 0.288 24.2 3.12 0.1251 0.1848 0.1071 0 0 

5 66 9.98E+02 6.67E+02 3 0.289 24.3 3.1 0.1244 0.1863 0.1085 0 0 
6 66 9.98E+02 6.67E+03 3 0.290 24.3 3.1 0.1243 0.1086 0.109 0 0 

Effect of LTB/D  

7 66 9.98E+02 6.67E+03 2 0.2898 24.3 2.14 0.1246 0.1083 0.1083 0 0 

8 66 9.98E+02 6.67E+03 3 0.2898 24.3 3.1 0.1243 0.1086 0.109 0 0 

9 66 9.98E+02 6.67E+03 4 0.2898 24.3 4.1 0.1244 0.1087 0.1087 0 0 

10 66 9.98E+02 6.67E+03 10 0.2847 23.9 9.9 0.1232 0.1084 0.1084 0 0 

Effect of Reynolds number (ReUTB) 

11 66 9.98E+02 6.67E+03 3 0.246 12 3.04 0.138 0.1437 0.1188 0 0 

12 66 9.98E+02 6.67E+03 3 0.292 29 3.09 0.1183 0.1993 0.2350 0 0 

13 66 9.98E+02 6.67E+03 3 0.307 46 3.08 0.1063 0.1041 0.0948 0.3775 0.06779 

14 66 9.98E+02 6.67E+03 3 0.315 63 3.11 0.0982 0.2596 0.0882 0.5717 0.1305 

15 66 9.98E+02 6.67E+03 3 0.320 80 3.1 0.0922 0.2815 0.0831 0.6542 0.1786 

16 66 9.98E+02 6.67E+03 3 0.324 97 3.12 0.0875 0.2995 0.0791 0.7341 0.2212 

17 66 9.98E+02 6.67E+03 3 0.325 114 3.14 0.0822 0.3185 0.0788 0.8087 0.2571 

18 66 9.98E+02 6.67E+03 3 0.328 131 3.23 0.0799 0.3281 0.0728 0.8824 0.2870 

19 66 9.98E+02 6.67E+03 3 0.329 148 3.21 0.0779 0.3413 0.0708 0.9023 0.3048 

20 66 9.98E+02 6.67E+03 3 0.330 165 3.27 0.0746 0.3914 0.0689 0.9331 0.32780 

Effect of Eötvös number (Eo)  

21 6 9.98E+02 6.67E+03 3 0.031 2.6 3.06 0.0440 0.0540 0.1290 0 0 

22 10 9.98E+02 6.67E+03 3 0.118 9.9 3.14 0.0765 0.1179 0.1510 0 0 

23 20 9.98E+02 6.67E+03 3 0.216 18.2 3.1 0.1033 0.1631 0.1360 0 0 

24 40 9.98E+02 6.67E+03 3 0.272 22.9 3.06 0.1221 0.1797 0.1069 0 0 

25 66 9.98E+02 6.67E+03 3 0.290 24.3 3.1 0.1243 0.1864 0.1086 0 0 

26 70 9.98E+02 6.67E+03 3 0.290 24.4 3.1 0.1245 0.1873 0.1087 0 0 

27 80 9.98E+02 6.67E+03 3 0.292 24.5 3.1 0.1247 0.1884 0.1089 0 0 

28 100 9.98E+02 6.67E+03 3 0.295 24.8 3.12 0.1251 0.1907 0.1092 0.5511 0.00561 

29 120 9.98E+02 6.67E+03 3 0.296 24.9 3.12 0.1253 0.1916 0.1093 0.1796 0.01633 

30 140 9.98E+02 6.67E+03 3 0.297 25.0 3.14 0.1253 0.1921 0.1094 0.2323 0.01947 

31 150 9.98E+02 6.67E+03 3 0.298 25.0 3.14 0.1254 0.1924 0.1095 0.2227 0.02507 

32 160 9.98E+02 6.67E+03 3 0.298 25.1 3.14 0.1254 0.1931 0.1097 0.2290 0.02702 

33 170 9.98E+02 6.67E+03 3 0.298 25.1 3.14 0.1255 0.1930 0.1096 0.2552 0.0246 

34 180 9.98E+02 6.67E+03 3 0.298 25.1 3.14 0.1251 0.1940 0.1102 0.2556 0.0318 

35 200 9.98E+02 6.67E+03 3 0.299 25.1 3.16 0.1251 0.1941 0.1101 0.2730 0.03241 

36 250 9.98E+02 6.67E+03 3 0.301 25.3 2.98 0.1249 0.1951 0.1109 0.3734 0.10823 

37 300 9.98E+02 6.67E+03 3 0.301 25.3 3 0.1250 0.1955 0.1110 0.4246 0.08719 

38 350 9.98E+02 6.67E+03 3 0.299 25.1 2.9 0.1247 0.1944 0.1107 0.4875 0.17962 

39 400 9.98E+02 6.67E+03 3 0.299 25.2 2.89 0.1248 0.1926 0.1096 0.5867 0.13278 

40 500 9.98E+02 6.67E+03 3 0.301 25.3 3.04 0.1253 0.1918 0.1094 0.5921 0.11758 

41 600 9.98E+02 6.67E+03 3 0.297 24.9 2.86 0.1248 0.1953 0.1109 0.3346 0.07387 

42 700 9.98E+02 6.67E+03 3 0.297 24.9 2.88 0.1247 0.1945 0.1107 0.4989 0.09641 
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Lastly, to explore the effect of (𝐿𝑇𝐵/𝐷)𝑖, four cases are simulated denoted by cases 7 to 10 in 

Table 4-2 corresponding to (𝐿𝑇𝐵/𝐷)𝑖 of 2, 3, 4 and 10, respectively. It can also be concluded 

that (𝐿𝑇𝐵/𝐷)𝑖 as well has minimal effect on the dynamics of Taylor bubbles. Table 4-2 shows 

that these four cases have almost the same value of 𝐹𝑟𝑈𝑇𝐵 which agrees with the conclusion of 

previous studies that the bubble length has no effect on the bubble terminal speed as long as 

the bubble length is more than 1.5Dpipe (Davies and Taylor, 1950; Goldsmith and Mason, 1962; 

White and Beardmore, 1962; Zukoski, 1966; Maneri and Zuber, 1974; Campos and De 

Carvalho, 1988; Kawaji et al., 1997; Shosho and Ryan, 2001; Ndinisa et al., 2005; Lu and 

Prosperetti, 2008; Hua et al., 2009; Morgado et al., 2016). Based on that, the results focus on 

investigating the dynamics of Taylor bubbles in terms of the sole dimensionless parameters, 

which are Reynolds number and Eötvös number. The problem can now be treated in terms of 

three main dimensionless groups, given by: 

In additions, based on the simulation results and using guidelines from the order of magnitude 

analysis, correlations for the terminal velocity of the Taylor bubble, and the dimensionless wall 

shear stress are proposed showing the significance of these main governing parameters. These 

are discussed in detail in the following section. 

 Taylor Bubble Rise Velocity 

The Taylor bubble rise velocity (𝑈𝑇𝐵) is one of the main hydrodynamic features used for the 

hydrodynamic description of vertical slug flow systems. In this section, a detailed discussion 

on the Taylor bubble terminal velocity is introduced. Based on the discussion given in section 

4.2, it can be concluded that the terminal bubble velocity (𝑈𝑇𝐵) is mainly governed by 

viscosity, surface tension, buoyancy and inertia forces.  In literature, various studies, either 

theoretical and/or experimental, are done to account for the terminal bubble velocity. A good 

review of the main correlations for 𝐹𝑟𝑈𝑇𝐵, to account for bubble terminal velocity, starting from 

the theoretical investigation of Dumitrescu (1943) and ending with the study of Kurimoto et al. 

(2013), is given by Morgado et al. (2016).  

𝐹𝑟𝑈𝑇𝐵 =
𝑈𝑇𝐵

√𝑔𝐷
= 𝑓 [𝐸𝑜 =

𝑔𝜌𝐿𝐷
2

𝜎
 , 𝑅𝑒𝑈𝑇𝐵 =

𝜌𝐿𝑈𝑇𝐵𝐷

𝜇𝐿
  ] (4-37) 
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Referring to Table 4-2, the effect of Reynolds number (𝑅𝑒𝑈𝑇𝐵) on the Taylor bubble rise 

velocity is noticed throughout cases 11 to 20. The surrounding stagnant liquid has a high 

viscous effect that can sufficiently outbreaks the drift of the Taylor bubble which is noticed at 

lower values of 𝑅𝑒𝑈𝑇𝐵.  The increment in 𝑅𝑒𝑈𝑇𝐵 values is followed by an increase in the Taylor 

bubble velocity until the value of 𝑅𝑒𝑈𝑇𝐵 = 80. Further increase in 𝑅𝑒𝑈𝑇𝐵 above the value of 

80,  𝐹𝑟𝑈𝑇𝐵 is almost constant which is in agreement with the experimental conclusions of Wallis 

(1969).  In addition, for cases 21 to 42 in Table 4-2, it can be concluded that the increase in 𝐸𝑜 

causes an increase in the inertial forces which is seen subsequently followed by a rise in  𝐹𝑟𝑈𝑇𝐵 

values.  

Based on relation (4-37), a proposed correlation to estimate 𝐹𝑟𝑈𝑇𝐵 that depends mainly on 𝐸𝑜 

and 𝑅𝑒𝑈𝑇𝐵 is developed. Using the surface fitting tool (SF tool) in MATLAB@ (2015a), the 

proposed correlation is given by: 

Additionally, Figure 4-5 shows that the values obtained from the proposed correlation fit quite 

well with the behaviour of other well-known correlations from literature for different domains. 

Values predicted from Viana et al. (2003) correlations, and values from the recent correlation 

of  Kurimoto et al. (2013) are added to Figure 4-5 for comparison purposes. It can be seen that 

the proposed correlation agrees well with a wide range of correlations with a maximum 

deviation of ±10%. In general, there is a proper matching between the data, especially in surface 

tension dominant domain. However, in inertia dominant domains with high values of  𝐸𝑜, the 

proposed correlation predicts the correlation of Viana et al. (2003).  The only explanation is 

most probable to be a numerical problem for situations of high inertial forces as pointed out by 

Araújo et al. (2012).  In brief, the proposed correlation shows an accepted behaviour with other 

correlations with a maximum deviation of ±10%. 

𝐹𝑟𝑈𝑇𝐵 =
𝑈𝑇𝐵

√𝑔𝐷
 

= 0.0359 − 0.3596𝐸𝑜 − 0.7067𝑅𝑒𝑈𝑇𝐵 + 0.5801𝐸𝑜
2 − 1.014𝐸𝑜𝑅𝑒𝑈𝑇𝐵 + 0.3447𝐸𝑜

3

+ 1.594𝐸𝑜2𝑅𝑒𝑈𝑇𝐵 − 0.1931𝐸𝑜
4 + 0.9647𝐸𝑜3𝑅𝑒𝑈𝑇𝐵 − 0.001814𝐸𝑜

5

− 0.5481𝐸𝑜4𝑅𝑒𝑈𝑇𝐵  

(4-38) 
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 Detailed Hydrodynamics 

In this section, detailed hydrodynamics of Taylor bubble problem is investigated by dividing 

the flow field into three main sections, flow in the Taylor bubble nose region, flow in the liquid 

film region and flow in the wake region. 

 Taylor Bubble Shape 

In this section, the effect of the main dimensionless groups that govern the problem is 

discussed. This includes representing the final shape of the developed Taylor bubble, the flow 

field around it (streamlines) and the Taylor bubble shape profile for each of the dimensionless 

groups examined.  

 Effect of Taylor Bubble Initial Shape 

To check the impact of the initial Taylor bubble shape on the final predicted results, three 

different initial Taylor bubble shapes, given in Figure 4-6, are tested. These different initial 

bubble shapes are a standard cylinder, a cylinder with a hemisphere at the front end (bullet 

 

Figure 4-5. Numerical results of 𝑈𝑇𝐵 expressed in terms of 𝐹𝑟𝑈𝑇𝐵  for a several 𝐸𝑜 with corresponding values 

obtained from the proposed correlation given in equation (4-38) and different correlations from literature for 

comparison −𝑅𝑒𝑈𝑇𝐵 varies from 2.6 to 25.3. 
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shape) and a cylinder with two hemispheres. The simulations are done using FRF to examine 

the effect of the different shape of the Taylor bubble on the transient period and the total time 

required to reach the terminal results. It can be concluded that the initial Taylor bubble shape 

controls the time needed to reach the terminal state. Both of bullet shape and a cylinder with 

two hemispheres initial shapes show similar time evolution, however, the standard cylinder 

shows a different time evolution. This conclusion is in good agreement with Gutiérrez et al. 

(2017). 

 Effect of Reynolds Number 

In literature, most of the studies done on the dynamics of the Taylor bubble rising through 

stagnant liquid highlight the significant effect of inverse viscosity number or Archimedes 

number without considering the significant impact of Reynolds number. In this section ten 

cases namely case 11 to 20 in Table 4-2.  Simulation cases and their corresponding results are 

simulated to investigate the significant effect of 𝑅𝑒𝑈𝑇𝐵 on the dynamics of the Taylor bubble. 

Figure 4-7 demonstrates the effect of 𝑅𝑒𝑈𝑇𝐵 number on the final shape of the developed Taylor 

bubble and the flow field for cases 11, 13, 15 and 18 with 𝑅𝑒𝑈𝑇𝐵 values corresponding to 12, 

46, 80 and 131, respectively. It can be shown that 𝑅𝑒𝑈𝑇𝐵 has a prodigious effect on the final 

shape of the bubble, as indicated in Figure 4-7. Particularly, for low values of 𝑅𝑒𝑈𝑇𝐵, the 

  

 

  Figure 4-6. Sketch of (a) the different Taylor bubble initial shapes tested to solve drift of Taylor bubble 

through a stagnant liquid in 19mm vertical pipe (𝐸𝑜=63.3, 𝑅𝑒𝑈𝑇𝐵=65.7, 𝐹𝑟𝑈𝑇𝐵=0.32) and (b) their 

corresponding velocity evolution. 
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viscous forces of liquid phase surrounding the bubbles are high enough to encumber the rise of 

the Taylor bubble, and hence the terminal bubble velocity will be at its lowest values (lowest 

𝐹𝑟𝑈𝑇𝐵), as indicated in Table 4-2. It can be concluded from Table 4-2 that for 𝑅𝑒𝑈𝑇𝐵 values 

approximately above 80, 𝐹𝑟𝑈𝑇𝐵 is almost the same which is in agreement with the experimental 

conclusions of Wallis (1969).  It can also be concluded from Figure 4-7, that the high viscous 

forces enhance the elongation of the terminal developed Taylor bubble. The gradual increase 

in 𝑅𝑒𝑈𝑇𝐵 increases the concavity of the rear of Taylor bubble which is in good agreement with 

the experimental observation of Goldsmith and Mason (1962) that the rear of Taylor bubbles 

is characterised by being flat or concave when the flow is not viscosity dominated and oblate 

spheroid when it is viscosity dominated. The shape of the rear of the Taylor bubble and its 

critical transition criteria is discussed in detail in section 4.4.2.3. 

In addition, it is also concluded from Figure 4-7 that 𝑅𝑒𝑈𝑇𝐵 has a significant effect on wake 

development. For low values of 𝑅𝑒𝑈𝑇𝐵, the liquid from the liquid film region expands directly 

 

Figure 4-7. Effect of 𝑅𝑒𝑈𝑇𝐵  on the terminal shape of the Taylor bubble and streamlines representing the flow 

field (a) Case (11) 𝑅𝑒𝑈𝑇𝐵  =12, (b) Case (13) 𝑅𝑒𝑈𝑇𝐵  =46, (c) Case (15) 𝑅𝑒𝑈𝑇𝐵  =80 and (d) Case (18) 𝑅𝑒𝑈𝑇𝐵  

=131. 
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and smoothly over the Taylor bubble bottom, which is noticed by parallel streamlines in the 

wake region. Increasing the values of 𝑅𝑒𝑈𝑇𝐵, the Taylor bubble becomes wider in size 

squeezing the liquid film region that subsequently increases the velocity of the trailing liquid 

plugging into the Taylor bubble bottom. This leads to the development of circulatory rear of 

vortices as liquid plugs into the Taylor bubble bottom. The scale and intensity of the vortex 

increases with higher values of 𝑅𝑒𝑈𝑇𝐵. Furthermore, Figure 4-8 shows the effect of 𝑅𝑒𝑈𝑇𝐵 on 

the bubble shape profile where it is clearly seen that the increase in 𝑅𝑒𝑈𝑇𝐵 causes the bubble 

nose to becomes less slender, and reduces the thickness of the developed liquid film. 

 Effect of Eötvös Number 

Eötvös number (𝐸𝑜) represents the effect of buoyancy and surface tension forces, which are 

two of the significant forces acting on Taylor bubbles. In order to investigate the effect of 𝐸𝑜 

number on the dynamics of Taylors bubble rising through stagnant liquids, 21 cases, namely 

case 21 to case 42 in Table 4-2 are simulated. This covers a wide range of 𝐸𝑜 varying from 6-

700.  

Figure 4-9 shows the effect of 𝐸𝑜 on the final shape of the developed Taylor bubble and the 

flow field for cases 22, 25, 28 and 32 with 𝐸𝑜 values corresponding to 10, 66, 100 and 160, 

respectively.  At low values of 𝐸𝑜, the surface tension forces are high enough to maintain any 

 

Figure 4-8. Effect of 𝑅𝑒𝑈𝑇𝐵  on the bubble shape profile- z is the axial distance from the bubble nose. 
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distortion at the gas-liquid interface. The bubble is noticed to have a prolate spheroidal nose 

and oblate spheroid bottom. The increment in the surface tension increases the curvature of the 

bubble nose and subsequently increases the liquid film thickness. Hence, the velocity of fully 

developed falling liquid film decreases. 

 

Figure 4-9. Effect of 𝐸𝑜 on the terminal shape of the Taylor bubble and streamlines representing the flow field 

(a) Case (22) 𝐸𝑜 =10, (b) Case (25) 𝐸𝑜 =66, (c) Case (28) 𝐸𝑜 =100 and (d) Case (32) 𝐸𝑜 =160. 

Regarding the rear of the bubble, the increase in 𝐸𝑜 leads to an increase in inertial forces which 

is seen as values of 𝐹𝑟𝑈𝑇𝐵 increases. The increase in 𝐸𝑜 also significantly affects the rear of the 

bubble by gradually turning the bottom shape from convex or flat into a concave structure, as 

indicated in Figure 4-9. This causes wakes to be developed at the rear of the bubble, and hence 

wake length and volume increases with the increase in 𝐸𝑜 values, as indicated in Table 4-2. 

This has a similar trend as that shown in Figure 4-7 exploring the effect of 𝑅𝑒𝑈𝑇𝐵. At a certain 

critical value of 𝐸𝑜, the further increase in 𝐸𝑜 with its corresponding deficiency of surface 

tension results in deformation at the gas-liquid interface. The shape of the bubble’s rear turns 

from concave into wave and subsequently into breaking up. The breaking up concept is 
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characterised by very unstable phenomena that occurs at the rear of the bubble and is noticed 

by the small bubbles shedding off from Taylor bubble into the wake region. Higher values of 

𝐸𝑜, cause the gas-liquid interface to lose its structure and strong breaking up concept is noticed 

(Morgado et al., 2016). A phase diagram map is discussed later in section 4.4.2.3 that describes 

the interesting phenomena that occur at the rear of Taylor bubbles, which is strongly affected 

by surface tension and inertia forces. 

Furthermore, Figure 4-10 shows the effect of 𝐸𝑜 on the bubble shape profile for different 

selected cases from Table 4-2. The increase in 𝐸𝑜 increases the bluntness of the nose of the 

bubble, decreases the flatness of the bubble tail and increment the liquid film thickness. This 

conclusion refutes that of  Kang et al. (2010) that 𝐸𝑜 has no effect on the dynamics at bubble 

nose, and liquid film thickness, but agrees with the conclusion of  Taha and Cui (2006) and  

which entails that 𝐸𝑜 increases the degree of prolateness of the Taylor bubble nose. 

In conclusion, 𝐸𝑜 and 𝑅𝑒𝑈𝑇𝐵 significantly control the developed shape of Taylor the bubble. 

The results show that the surface tension forces are significant with low values of  𝐸𝑜, while 

the large contribution of 𝑅𝑒𝑈𝑇𝐵 on the dynamics of the Taylor bubble, is noticed with higher 

values of 𝑅𝑒𝑈𝑇𝐵. These conclusions agree well with the results of the order of magnitude 

analysis discussed earlier in this chapter. 

 

Figure 4-10. Effect of 𝐸𝑜 on the bubble shape profile – z is the axial distance from the bubble nose. 
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 Liquid Film Region 

The flow in the liquid film is investigated by three key features, the dimensionless developed 

liquid film thickness (𝛿𝐿𝐹/𝐷), the dimensionless velocity of the liquid film (𝑈𝐿𝐹/𝑈𝑇𝐵) and the 

dimensionless wall shear stress (
𝜏𝑊

𝜌𝐿𝑔𝐷
)
𝑚𝑎𝑥

. This section discusses the effect of the main 

dimensionless parameters, given in section 4.2, on these three key features characterising the 

flow in the liquid film region. 

 Liquid Film Velocity and Thickness 

Figure 4-11 represents the effect of 𝑅𝑒𝑈𝑇𝐵on the dimensionless normalised thicknesses and 

velocity of falling liquid film along the Taylor bubble length. At low values of 𝑅𝑒𝑈𝑇𝐵, the liquid 

film thickness (𝛿𝐿𝐹/𝐷) decreases with the increase in the dimensionless distance measure from 

the bubble nose (𝑧/𝐷) until it reaches a constant thickness at around 𝑧/𝐷=1. At that point, a 

balance between the gravitational and friction forces is reached, and hence a constant liquid 

film thickness and velocity is established. However, the dimensionless velocity of the liquid 

film (𝑈𝐿𝐹/𝑈𝑇𝐵) changes contrarily. The increase in 𝑅𝑒𝑈𝑇𝐵 diminishes the long slender shape 

 

Figure 4-11. The effect of 𝑅𝑒𝑈𝑇𝐵  on the dimensionless normalized thicknesses (𝛿𝐿𝐹/𝐷) and dimensionless 

velocity of falling liquid film (𝑈𝐿𝐹/𝑈𝑇𝐵) along the Taylor bubble length- z is the axial distance from bubble nose. 
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of the Taylor bubble and turns it into shorter and flatter bubbles which in turns 

reduces (𝛿𝐿𝐹/𝐷). In addition, the higher viscosity of the surrounding liquid at low values of 

𝑅𝑒𝑈𝑇𝐵 increment the shear stress in the liquid, thus, the momentum diffusion opposes the liquid 

flowing from the liquid film into the bubble wake region. Therefore, the increase in 𝑅𝑒𝑈𝑇𝐵 

increases the dimensionless velocity of the liquid film (𝑈𝐿𝐹/𝑈𝑇𝐵). This conclusion agrees well 

with  Zheng et al. (2007a) and  Kang et al. (2010). 

Finally, the effect of 𝐸𝑜 on the dimensionless normalized thicknesses and velocity of falling 

liquid film along the Taylor bubble length is given in Figure 4-12. As discussed earlier, the 

increase in 𝐸𝑜 affects the curvature of the bubble nose, thus increases (𝛿𝐿𝐹/𝐷), increases 

stabilization length (distance needed for the formation of fully developed falling liquid film) 

and finally increases 𝑈𝐿𝐹. However, the dimensionless velocity of the liquid film (𝑈𝐿𝐹/𝑈𝑇𝐵) 

decreases with the increment in 𝐸𝑜 due to the fact that the inertia forces are increased leading 

to increment in 𝑈𝑇𝐵 values. It is concluded from Figure 4-12 that (𝛿𝐿𝐹/𝐷) and (𝑈𝐿𝐹/𝑈𝑇𝐵) are 

affected with the increase in 𝐸𝑜 till 𝐸𝑜 ≤ 66, where a further increase in 𝐸𝑜 shows almost no 

effect on the flow in the liquid film.   

 

Figure 4-12. The effect of 𝐸𝑜 on the dimensionless normalized thicknesses (𝛿𝐿𝐹/𝐷) and dimensionless velocity of 

falling liquid film (𝑈𝐿𝐹/𝑈𝑇𝐵) along the Taylor bubble length- z is the axial distance from bubble nose.  

In conclusion, it should be pointed out that both of (𝛿𝐿𝐹/𝐷) and (𝑈𝐿𝐹/𝑈𝑇𝐵) are strongly 

dependent on 𝐸𝑜 and 𝑅𝑒𝑈𝑇𝐵. This conclusion contradicts those made by; Kang et al. (2010) -
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the liquid film thickness is only dependent on Archimedes number (𝐴𝑟 = 𝑁𝑓
2) and that of 

Araújo et al. (2012) - the liquid film thickness is a function of 𝑁𝑓 and 𝑀. 

 Wall Shear Stress Distribution  

If the two-phase slug flow problem is involved in heat or mass transfer, then the wall shear 

stress becomes a primary significant hydrodynamic parameter.  This process is often referred 

to as slug flow-induced corrosion as discussed by Zheng and Che (2006); Zheng et al. (2007a; 

2007b); and Araújo et al. (2012). The main problems that result from slug flow corrosion are 

pipeline damage, decrease pipe lifetime and may lead to the shutdown of the pipeline. 

Figure 4-13 shows the wall shear stress distribution along the Taylor bubble length for 

different 𝑅𝑒𝑈𝑇𝐵. For low values of 𝑅𝑒𝑈𝑇𝐵, the wall shear stress distribution starts with an 

increase in the wall shear stress near the bubble nose then it reaches a maximum positive value 

with the formation of a constant liquid film characteristics (thickness and velocity). The wall 

shear stress then starts to decrease until it reaches zero value in the bubble tail or wake region.  

The increase in 𝑅𝑒𝑈𝑇𝐵, results in less the viscous liquid surrounding the Taylor bubble, that 

subscribes to decrement in wall shear stress. This conclusion agrees well with that made by 

Taha and Cui (2006).  On the other hand, the dimensionless wall shear stress in the nose region 

is not affected by the increase in 𝑅𝑒𝑈𝑇𝐵, however, the plateau behaviour at the developed liquid 

film is shortened with the increase in 𝑅𝑒𝑈𝑇𝐵. This occurs as a result of the shape in Taylor 

bubble shape which is characterised by being a long slender that turns into shorter and flatter 

bubbles with the increase in 𝑅𝑒𝑈𝑇𝐵. Additionally, it should be pointed out that the effect of an 

increase in 𝑅𝑒𝑈𝑇𝐵 on the bubble wake region is seen as a jump in dimensionless wall shear 

values that increases with higher values of  𝑅𝑒𝑈𝑇𝐵; this further assists the conclusion made by 

Kang et al. (2010).  
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Further validation for the flow in liquid film region is given in Figure 4-14 where a comparison 

takes place between the numerical results for dimensionless wall shear stress and 𝛿𝐿𝐹/𝐷 and 

the theoretical values by Brown (1965). It is clear that the numerical results strongly correspond 

with the theoretical data. Brown (1965)’s equation for 𝛿𝐿𝐹 prediction is given by equation 

(4-35), while the prediction for 𝜏𝑊 is given by: 

Finally, the effect of 𝐸𝑜 on the distribution of the dimensionless wall shear stress along the 

Taylor bubble is given in Figure 4-15. Generally, for most values of 𝐸𝑜, the distribution is 

almost the same, which starts with an increase in wall shear stress near the bubble nose, then a 

constant value is reached at the developed liquid film, followed by a reduction in dimensionless 

wall shear stress near the bubble tail. As indicated in Figure 4-15, lower values of 𝐸𝑜 possess 

different distribution with a noticeable peak value in dimensionless shear stress right before 

the Taylor bubble rear. This is due to the sharp flat and convex shape of the bubble attained at 

lower values of 𝐸𝑜, which coincides with Araújo et al. (2012). 

  

Figure 4-13.  Effect of  𝑅𝑒𝑈𝑇𝐵 on the wall shear stress distribution (𝜏𝑊/𝜌𝐿𝑔 𝐷) along Taylor bubble length - z is 

the axial distance from bubble nose.  

𝜏𝑊 = 𝜌𝐿𝑔 [
𝑅

2
−
(𝑅 − 𝛿𝐿𝐹)

2

2𝑅
] (4-39) 
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Figure 4-14. Variation of the dimensionless normalised thickness (𝛿𝐿𝐹/𝐷) and dimensionless maximum wall 

shear stress (𝜏𝑊 𝜌𝐿𝑔 𝐷)⁄
𝑚𝑎𝑥
  distribution along Taylor bubble length with 𝑅𝑒𝑈𝑇𝐵  plotted with the theoretical 

prediction of  Brown (1965). 

In conclusion, the numerical results show that the dimensionless wall shear stress is dependent 

on both 𝐸𝑜 and 𝑅𝑒𝑈𝑇𝐵 which again contradicts the conclusion made by Kang et al. (2010) that 

the wall shear stress is only function of 𝐴𝑟, and supports Araújo et al. (2012) conclusion in a 
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different scenario.  Subsequently, a correlation based on the numerical results for all simulated 

cases in Table 4-2 for dimensionless maximum wall shear stress is suggested, given by: 

Figure 4-16 illustrates the present numerical results, and values obtained from proposed 

correlation given in equation (4-40) for the maximum dimensionless wall shear stress along 

the Taylor bubble length for different values of 𝐸𝑜 (cases 21 to 42 in Table 4-2). It is obvious 

that the correlation matches the simulation data to a considerable extent. For comparison issues, 

the theoretical prediction given by Brown (1965) (equation (4-39)). 

It can be seen from Figure 4-16 that the suggested correlation matches well with the theoretical 

predictions calculated by Brown (1965) with very small deviations. However, there is an 

(
𝜏𝑊
𝜌𝐿𝑔𝐷

)
𝑚𝑎𝑥

 

= 0.242 + 0.238𝐸𝑜 + 0.5544𝑅𝑒𝑈𝑇𝐵 − 0.1196𝐸𝑜
2 + 1.037𝐸𝑜𝑅𝑒𝑈𝑇𝐵 + 0.5294𝑅𝑒𝑈𝑇𝐵

2

− 2.818𝑒−05𝐸𝑜3 − 0.3202𝐸𝑜2𝑅𝑒𝑈𝑇𝐵 + 1.083𝐸𝑜𝑅𝑒𝑈𝑇𝐵
2

− 0.0008579𝑅𝑒𝑈𝑇𝐵
3  

(4-40) 

(
𝜏𝑊
𝜌𝐿𝑔𝐷

)
𝑚𝑎𝑥

= −0.02𝑙𝑜𝑔10𝐴𝑟 + 0.2 (4-41) 

  

Figure 4-16. Numerical results of  (
𝜏𝑊

𝜌𝐿𝑔𝐷
)
𝑚𝑎𝑥

 for a several 𝐸𝑜 with corresponding values obtained from 

proposed correlation given in equation (4-40), theoretical prediction given by Brown (1965) for cases 21 to 42 in 

Table 4-2. 

0

0.1

0.2

0 200 400 600 800

D
im

e
n

si
o

n
le

ss
 w

al
l s

h
e

ar
 s

tr
e

ss
 (

-)

Eo Number(-)

Brown (1965)

Present Simulation

Proposed Correlation

(𝝉
𝑾
𝝆
𝑳
𝒈
 𝑫
)

⁄
𝒎
𝒂
𝒙
  



Chapter 4–Theoretical and CFD Treatments of an Individual Taylor Bubble Rising in a Vertical Pipe  (𝛾 = 0) 

 

-127- 

exception for that proper matching for small values of 𝐸𝑜. Generally, these cases with low 

values of 𝐸𝑜 (especially around 6) possess low values of 𝑈𝑇𝐵 with almost non-moving bubbles. 

These cases are more sensitive to numerical errors as clarified by Zheng et al. (2007a) and 

Araújo et al. (2012). 

It should be pointed out that 𝑅𝑒𝑈𝑇𝐵 is not constant for these selected cases, and its values are 

indicated in Table 4-2. Similarly, as discussed before for the liquid film thickness, the 

dimensionless wall shear stress is a function of both 𝐸𝑜 and 𝑅𝑒𝑈𝑇𝐵, and not only a function of 

𝐴𝑟 as concluded by Kang et al. (2010). This conclusion completely agrees with Araújo et al. 

(2012) that dimensionless wall shear stress depends on 𝐸𝑜 and 𝑀, but with a different scenario, 

as discussed in section 4.2. 

In conclusion, the flow in the liquid film is considerably affected by 𝐸𝑜 and 𝑅𝑒𝑈𝑇𝐵. It should 

be pointed out that both 𝐸𝑜 and 𝑅𝑒𝑈𝑇𝐵 significantly control the wall shear stress distribution, 

which in turns control the corrosion process related to two-phase flow, which is known as slug 

flow-induced corrosion. In the next section, the contribution of these dimensionless groups on 

the flow in the wake region is discussed. 

 Wake Region 

The wake structure is one of the vital hydrodynamic characteristics of slug flow systems, 

especially in describing the interaction and coalescences between successive Taylor bubbles 

and in the modelling process (Araújo et al., 2012). Understanding the mechanism by which the 

wake region is developed is essential prior to introducing the simulation results for flow in the 

wake region. The annular falling film from the liquid film region plugs into the rear of the 

Taylor bubble and creates mixing and recirculation zone, which is known by bubble wake. The 

intensity and size of the recirculation vortices in the wake region depend on the properties of 

the surrounding liquid, especially its viscosity as indicated by the experimental work of 

Campos and De Carvalho (1988). As discussed earlier in this chapter, Campos and De Carvalho 

(1988) conclude three flow patterns for the wake depending on the inverse viscosity number, 

𝑁𝑓. In the present study, most of the cases bump into a closed axisymmetric laminar wake.  
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Stimulated by the work of Morgado et al. (2016), and based on the simulated cases given in 

Table 4-2, phase diagram of the presence and nature of wake and of the shape of the rear Taylor 

bubble, are presented in Figure 4-17 and Figure 4-18, respectively. The diagrams are given in 

terms of 𝐸𝑜 and 𝑅𝑒𝑈𝑇𝐵. Throughout the present study, only two kinds of wake are observed, 

either closed axisymmetric wake or no wake. For the shape of the rear of the Taylor bubble, 

when the surface tension is significantly reduced, the gas-liquid interface is easily deformed, 

and the shape of the Taylor bubble rear becomes unstable. Stable bubble shape is classified 

into concave, convex, or flat bubbles. However, the unstable bubble wakes are either wavy or 

breaking up bubbles. Figure 4-18 shows the type of bubble rear shape for all data simulated 

which strongly corresponds with Kang et al. (2010) and Morgado et al. (2016) which to 

conclude that the sudden elongation in the bubble tail, based on investigating the effect of 𝐸𝑜 

on the dynamics of Taylor bubbles, is around unity which corresponds to 𝐸𝑜 > 250 . Referring 

to cases 21 to 42 in Table 4-2, it is observed that the gas-liquid interface starts to become 

unstable approximately at 𝐸𝑜 > 200. Numerical solutions with either wavy or breaking up 

bubble wakes and cases with small bubble detachment require refined meshes be accurate. 

Figure 4-19 illustrates an example of this unstable nature of gas-liquid interface for case 36 in 

Table 4-2. 

  

Figure 4-17. Phase diagram of the presence and kind of wake of Taylor bubbles rising through vertical columns 

of stagnant liquid. 

0

20

40

60

80

100

120

140

160

180

1 10 100 1000

R
e

yn
o

ld
s 

N
u

m
b

e
r 

(-
)

Eotvos Number (-)

No wake

Closed axisymmetric wake



Chapter 4–Theoretical and CFD Treatments of an Individual Taylor Bubble Rising in a Vertical Pipe  (𝛾 = 0) 

 

-129- 

 

  

Figure 4-19. Development of wake flow pattern of Taylor bubble rising vertical columns of stagnant liquid for 

case (36) with a time interval of 0.5s (𝐸𝑜 = 250, 𝑅𝑒𝑈𝑇𝐵 = 25.26 and 𝐹𝑟𝑈𝑇𝐵 = 0.3). 

  

Figure 4-18. Phase diagram of the rear of Taylor bubble shape expressed in terms of  𝐸𝑜 and 𝑅𝑒𝑈𝑇𝐵   of a Taylor 

bubble rising through vertical columns of stagnant liquid. 
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The wake region is investigated by two main parameters, namely dimensionless wake length 

(𝐿𝑊/𝐷) and dimensionless wake volume (𝓋𝑊/𝐷
3). One of the main correlations used to 

predict these parameters is that of Campos and De Carvalho (1988), which is given by:  

Recently, Araújo et al. (2012) suggested an equation for the dimensionless wake 

length (𝐿𝑊/𝐷) and dimensionless wake volume  (𝓋𝑊/𝐷
3) function in  𝐸𝑜 and 𝑀, given by: 

Following the same procedure of Araújo et al. (2012) for measuring 𝐿𝑊/𝐷, and 𝓋𝑊/𝐷
3
, Table 

4-2 gives the simulation results for these two parameters for all cases under investigation. 

As discussed earlier, the effect of 𝑅𝑒𝑈𝑇𝐵 on the flow in the wake region is noticed by the change 

in the shape of the rear the Taylor bubble from flat into convex. In addition, the increase in 

𝑅𝑒𝑈𝑇𝐵 decreases the liquid film thickness, thus squeezing liquid in a narrower region. As a 

result, the intensity and size of the wake increases, which is noticed by the increment of 𝐿𝑊/𝐷 

and  𝓋𝑊/𝐷
3, as indicated in Figure 4-20. 

Furthermore, a similar scenario is noticed for the increase in 𝐸𝑜, for cases 21 to 42 in Table 

4-2, that results in an increase in 𝐿𝑊/𝐷 and  𝓋𝑊/𝐷
3 values. It should be pointed out that for 

cases 36 to 42 in Table 4-2, 𝐿𝑊/𝐷 and  𝓋𝑊/𝐷
3 are calculated as average values once the 

solution is converged, and most of the hydrodynamics characteristics investigated are 

developed. This is because the developed bubble shape is unstable, which is either wavy or 

breaking up. A good matching between simulation results for 𝐿𝑊/𝐷 and  𝓋𝑊/𝐷
3 and the 

experimental correlation given by Campos and De Carvalho (1988) is shown in Figure 4-20. 

𝐿𝑊
𝐷
= 0.30 + 1.22 × 10−3𝑁𝑓  𝑓𝑜𝑟 100 < 𝑁𝑓 < 500 

𝓋𝑊
𝐷3
= 7.5 × 10−4𝑁𝑓 𝑓𝑜𝑟 100 < 𝑁𝑓 < 500 

(4-42) 

𝐿𝑊
𝐷
=
1

4
× [0.555 − 7.793 × 103𝑙𝑛 (𝑀)] × 𝑙𝑛 (

𝐸𝑜3

𝑀
)− 2.133 + 8.046 × 10−2𝑙𝑛 (𝑀) 

(4-43) 
𝓋𝑊
𝐷3
= 1.365 × 10−1 (

𝐿𝑊
𝐷
)
2

+ 2.176 × 10−1 (
𝐿𝑊
𝐷
) − 2.91910−2 
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In conclusion, the flow in the wake region is significantly affected by both 𝐸𝑜, and 𝑅𝑒𝑈𝑇𝐵, 

which can be clarified by the change in corresponding dimensionless wake length and volume. 

Additionally, the results reveal that both 𝐿𝑊/𝐷 and  𝓋𝑊/𝐷
3 are mainly dependent on 𝐸𝑜 and 

𝑅𝑒𝑈𝑇𝐵, which again agrees with the predictions of Kang et al. (2010), and  contradicts Araújo 

et al. (2012) conclusion with a different point of view based on the significance of Reynolds 

number (𝑅𝑒𝑈𝑇𝐵) rather than Morton number (𝑀). 

4.5 Concluding Remarks 

In this chapter, a complete dimensionless analysis of single Taylor bubble rising through a 

vertical stagnant Newtonian liquid problem is performed followed by order of magnitude 

analysis of the equations of motion. The main conclusion is that Froude number (𝐹𝑟𝑈𝑇𝐵), is a 

function of Eötvös number (𝐸𝑜), Reynolds number (𝑅𝑒𝑈𝑇𝐵), density ratio (𝛤𝜌), viscosity ratio 

(𝛤𝜇) and 𝐿𝑇𝐵/𝐷. The effect of density ratio (𝛤𝜌), viscosity ratio (𝛤𝜇) and the bubble size to the 

pipe diameter (𝐿𝑇𝐵/𝐷)𝑖 are examined for the sake of supporting other previous experimental 

and numerical works in the literature.  

  

Figure 4-20. Numerical results of dimensionless wake length (𝐿𝑊/𝐷) and dimensionless wake volume (𝓋𝑊/𝐷
3)  

 for cases 13 to 19 in Table 4-2. 
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Based on the dimensionless analysis, the hydrodynamic characteristics of single Taylor bubble 

rising through a vertical stagnant Newtonian liquid is investigated using the volume-of-fluid 

(VOF) methodology implemented in the computational fluid dynamics software package, 

ANSYS Fluent (Release 16.0), with a particular focus on the sole dimensionless parameters, 

Froude number (𝐹𝑟𝑈𝑇𝐵), Reynolds number (𝑅𝑒𝑈𝑇𝐵) and Eötvös number (𝐸𝑜). The results 

cover the following, Taylor bubble rise velocity and detailed hydrodynamics including Taylor 

bubble shape, the liquid film region and the wake region. The numerical results predict the 

problem effectively as they are validated by testing some of the selective numerical cases 

against both theoretical and experimental data in the literature.    

Based on the numerical results and using guidelines from the order of magnitude analysis, 

correlation to estimate Taylor bubble rise velocity (𝑈𝑇𝐵) as a function in only 𝐸𝑜 and 𝑅𝑒𝑈𝑇𝐵 is 

proposed and shows good prediction when compared with other well-known correlations in 

literature, especially with Viana et al. (2003) correlation.  

Detailed Hydrodynamics: 

𝐸𝑜 shows a significant effect on all hydrodynamic features of Taylor bubbles. The increment 

in surface tension increases the curvature of the bubble nose, increases the liquid film thickness, 

decreases the dimensionless velocity of fully developed falling liquid film, and finally increases 

wake intensity and size. For the flow in the liquid film, the numerical results are compared with 

the theoretical predictions given by Brown (1965) and establishing a strong correspondence.  

𝑅𝑒𝑈𝑇𝐵 shows contribution similar to 𝐸𝑜 number. The developed Taylor bubble shape changes 

from the long slender shape into shorter and flatter bubbles with the increase in 𝑅𝑒𝑈𝑇𝐵, this 

results in a reduction in the liquid film thickness.  

Additionally, the wall shear stress is examined under the effect of both 𝐸𝑜 and 𝑅𝑒𝑈𝑇𝐵. The 

increase in 𝑅𝑒𝑈𝑇𝐵 results in less viscous effect in the liquid surrounding the Taylor bubble that 

subscribes to decrement in wall shear stress. The wall shear stress increases with 𝐸𝑜, however, 

it should be pointed out that lower values of 𝐸𝑜 possess different distribution for the wall shear 

stress with noticeable peak value right before the Taylor bubble rear due to the sharp flat and 

convex shape of the bubble attained at lower values of 𝐸𝑜. Based on the numerical results for 
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wall shear stress, a proposed correlation for maximum wall shear stress is developed and 

predicts results favourably matching with the theoretical predictions of  Brown (1965).  

Furthermore, for the wake region, a phase diagram showing the presence and nature of wake, 

and the shape of the rear Taylor bubble is illustrated. Unstable bubbles are developed at 𝐸𝑜 

above 200, which are characterised by the presence of small bubbles shedding off from the 

main Taylor bubble into the wake region.  

Last but not least, the proper dimensionless treatment of the problem developed in this chapter 

enabled to investigate the main hydrodynamics of Taylor bubble correctly in terms of the 

governing forces. For instance, the numerical result show that the key features of the flow in 

the liquid film, which are the dimensionless liquid film thickness and velocity are significantly 

controlled by both dependent on 𝐸𝑜 and 𝑅𝑒𝑈𝑇𝐵. This conclusion contradicts those made by; 

Kang et al. (2010) -the liquid film thickness is only dependent on Archimedes number (𝐴𝑟 =

𝑁𝑓
2) and that of Araújo et al. (2012) - the liquid film thickness is a function of 𝑁𝑓 and 𝑀. 

Finally, it can be concluded that the developed numerical results agree well with the order of 

magnitude analysis. For instance, the order of magnitude analysis has shown that, in order for 

Reynolds number for the major viscous terms to remain intact, it should be of the order (
𝐿𝑇𝐵

𝐷
), 

which means relatively large values. The numerical result agrees well with that showing the 

significance of the larger values of Reynolds number on the dynamics of Taylor bubble 

including bubble shape, terminal velocity, flow in the liquid film and flow in the wake region.  



 

 

 Theoretical and CFD Treatments of an 

Individual Taylor Bubble Drifting in an 

Inclined Pipe (𝜸 ≤ 𝟕𝟎°) 

The objective of this chapter is to investigate the motion of a single Taylor bubble through a 

stagnant Newtonian liquid in an inclined pipe by performing a complete dimensionless 

treatment followed by order of magnitude analysis of the terms of the equations of motion. The 

main contribution of this analysis is that Froude, Eötvös and Reynolds numbers are the main 

physical parameters prompting the dimensionless governing equations for inclination angle up 

to 𝛾 = 70°. The bubble drift velocity diminishes with inclination angles near the horizontal 

orientation, and hence a special treatment for these inclination angles is given in chapter 6. 

To support the developed logical approach of the problem, the present study employs a CFD 

study to investigate the hydrodynamics of single Taylor bubble drifting through a stagnant 

liquid in an inclined pipe through using the volume-of-fluid (VOF) methodology implemented 

in the computational fluid dynamics software package, ANSYS Fluent (Release 16.0). The 

simulation results show good correspondence with the developed dimensionless treatment of 

the problem. The main hydrodynamics characteristics, covering the bubble nose front, body 

and tail regions, are discussed in detail.  
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5.1 Introduction 

Based on the review done in chapter 2, it can be concluded that there is a lack in the numerical 

studies on the drift of Taylor bubbles in inclined pipes with stagnant liquid. In addition, there 

is not yet a study investigating the problem using the order of magnitude analysis of equations 

of motions. Hence, the aim of this chapter can be divided into two main sections:  

1. Performing complete dimensionless analysis of the problem using both the 

Buckingham-Pi theorem and a dimensionless treatment followed by order of magnitude 

analysis to the governing equations of motion, showing the main dimensionless groups 

𝑅𝑒𝑣𝑑, 𝐹𝑟𝑣𝑑  and 𝐸𝑜 with their relative merits of magnitudes.  

2. Based on this analysis, the main hydrodynamic features of drifting of Taylor bubbles 

in inclined pipes with stagnant liquid are investigated by applying computational fluid 

dynamics (CFD) simulation using the volume-of-fluid (VOF) methodology 

implemented in the commercial software ANSYS Fluent. These simulations are based 

on the base model discussed in chapter 3. 

This chapter covers inclination range up to 𝛾 = 70° with respect to the vertical position. The 

criterion for using this inclination ranges is based on the literature review, where it is concluded 

that the Taylor bubble flow starts to experience numerical instabilities when the pipe’s 

inclination reaches approximately 70°. The theoretical treatment of the problem developed in 

the present study shows that in the neighbourhood of approximately 70°, the flow is mainly 

governed by the reduced Galilei number and Eötvös number rather than Reynolds and Froude 

numbers along with Eötvös number. This is the so called near horizontal case is a situation 

when the inertia and gravity forces are very much reduced.  This interns gives rise to the so-

called reduced Galilei number that represents the ratio between the decreasing gravity and 

viscous forces. Further details are given in chapter 6. 

This chapter is divided as follows; the dimensionless equations of motion and order of 

magnitude analysis are given in section 5.2. The CFD model is discussed in section 5.3. This 

is followed by the results and discussion, given in section 5.4, which is divided into three main 

parts, including Taylor bubble shape, Taylor bubble rise velocity, detailed hydrodynamics 

covering the bubble front region, bubble body region and bubble tail region. The chapter ends 
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with a conclusion and discussions section that summarises all the important outcomes of this 

chapter.  

5.2 Dimensionless Analysis 

Similar to the vertical pipe case, the problem of drifting of Taylor bubbles in inclined pipes 

with stagnant liquid can be analysed either using Buckingham-Pi theorem, which is the 

commonly used method in literature, or using the dimensionless analysis of governing 

equations. This section discusses both methods and ends up with a conclusion based on the 

order of magnitude analysis of the dimensionless governing equations. 

5.2.1. Buckingham-Pi theorem 

Appendix B shows all details of the Buckingham-Pi theorem applied to inclined pipe case with 

inclination angle up to 70° with respect to the vertical position. With the effect of inclination 

introduced through the gravitational acceleration (𝑔), the dimensionless analysis of the 

problem results in the following form: 

where the LHS of relation (5-1) represents the ratio between the inertia and gravitational forces, 

given by Froude number (𝐹𝑟𝑣𝑑). Eötvös number (𝐸𝑜) is the ratio between gravitational forces 

and surface tension forces, Reynolds number based on bubble drift velocity (𝑅𝑒𝑣𝑑) which is 

the ratio between the inertial forces and viscous forces and the bubble size to the pipe diameter 

(
𝐿𝑇𝐵

𝐷
).  

In most systems, the gas density is always negligible compared to the liquid density, for high-

density ratios (above 500). Besides, the literature tests made for smaller density ratios also 

show a negligible effect on the hydrodynamic characteristics of the Taylor bubble flow 

(Hayashi et al., 2011). Besides, in Taylor bubble flow, the viscosity of the gas is negligible. 

Subsequently, the flows inside and outside the bubble are generally independent, due to zero 

shear stress in the liquid-gas interface for all representative ratios. Moreover, in the literature, 

𝐹𝑟𝑣𝑑 =
𝑣𝑑
2

𝑔𝐷
= 𝑓 [𝐸𝑜 =

𝑔𝜌𝐿𝐷
2

𝜎
, 𝑅𝑒𝑣𝑑 =

𝜌𝐿𝑣𝑑𝐷

𝜇𝐿
 ,
𝐿𝑇𝐵
𝐷

 ] (5-1) 
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it is well known that the velocity of cylindrical bubbles is independent of the Taylor bubble 

length as long as the bubble is long enough (more than 1.5Dpipe) (Nicklin et al., 1962; White 

and Beardmore, 1962; Zukoski, 1966; Mao and Dukler, 1990; Polonsky et al., 1999). All of 

these effects are explored in chapter 4 to support other experimental, numerical and theoretical 

work concluding that density ratio (𝛤𝜌), viscosity ratio (𝛤𝜇), and bubble size to the pipe diameter 

(
𝐿𝑇𝐵

𝐷
) have a negligible effect of the dynamics of Taylor bubbles. Hence, the analysis given in 

Appendix B assumes that the effects of these dimensionless groups are negligible. Thus, the 

Buckingham-Pi theorem shows that the problem of drifting of Taylor bubbles in inclined pipes 

with stagnant liquid is mainly governed by three main dimensionless groups, Reynolds number 

(𝑅𝑒𝑣𝑑), Froude number based on bubble drift velocity (𝐹𝑟𝑣𝑑), and Eötvös number (𝐸𝑜) with 

the effect of inclination given through the gravitational acceleration term (𝑔). 

5.2.2. Dimensionless Governing Equations 

As indicated in section 3.4.2 in chapter 3, for inclined pipes, the assumption of flow being 

axisymmetric can no longer be applied. The axial symmetry of the vertical pipe configuration 

is lost as the pipe is inclined. The governing equations of the problem are the continuity and 

momentum equations expressed in Cartesian coordinates. Figure 5-1 shows the inclined pipe 

configuration and the coordinate system used.  

The Navier-stokes equations in cartesian coordinates are: 

And the continuity equation is: 

𝜌𝐿 (
𝜕𝑢

𝜕𝑡
+  𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
) = 𝜌𝐿𝑔𝑥 −

𝜕𝑝

𝜕𝑥
+ 𝜇𝐿 [

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑧2
] (5-2) 

𝜌𝐿 (
𝜕𝑣

𝜕𝑡
+  𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
) = 𝜌𝐿𝑔𝑦 −

𝜕𝑝

𝜕𝑦
+ 𝜇𝐿 [

𝜕2𝑣

𝜕𝑥2
+
𝜕2𝑣

𝜕𝑦2
+
𝜕2𝑣

𝜕𝑧2
] (5-3) 

𝜌𝐿 (
𝜕𝑤

𝜕𝑡
+  𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+𝑤

𝜕𝑤

𝜕𝑧
) = 𝜌𝐿𝑔𝑧 −

𝜕𝑝

𝜕𝑧
+ 𝜇𝐿 [

𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
+
𝜕2𝑤

𝜕𝑧2
] (5-4) 

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
= 0 (5-5) 



Chapter 5– Theoretical and CFD Treatments of an Individual Taylor Bubble Drifting in an Inclined Pipe (𝛾 ≤ 70°) 

 

-138- 

  

Figure 5-1. The inclined pipe configuration and the coordinate system used. 

Introducing the following dimensionless variables, with characteristic drift velocity (𝑣𝑑): 

The independent variables are: 

Substituting the dimensionless variables given in (5-6) and (5-7) into the momentum equation 

given in (5-2) would lead to: 

𝑢∗ =
𝑢

𝑣𝑑
, 𝑣∗ =

𝑣

𝑣𝑑
, 𝑤∗ =

𝑤

𝑣𝑑
, 𝑝∗ =

𝑝
1
2
𝜌𝐿𝑣𝑑

2
 (5-6) 

𝑥∗ =
𝑥

(𝐷 2⁄ )
, 𝑦∗ =

𝑦

(𝐷 2⁄ )
, 𝑧∗ =

𝑧

𝐿𝑇𝐵
, 𝑡∗ = 𝑡 (

𝑣𝑑
𝐿𝑇𝐵
) , 𝑔𝑥

∗ =
𝑔𝑥
𝑔
 , 𝑔𝑦

∗ =
𝑔𝑦

𝑔
, 𝑔𝑧

∗ =
𝑔𝑧
𝑔
,  

(5-7) 

𝜎𝑥
∗ =

𝜎𝑥
𝜎
, 𝜎𝑦
∗ =

𝜎𝑦

𝜎
, 𝜎𝑧
∗ =

𝜎𝑧
𝜎
,  𝐾∗ =

𝐾

(1 𝐷2⁄ )
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Dividing equation (5-8) by (
𝜌𝐿𝐿𝑇𝐵

𝑣𝑑
2 ) and multiplying by (

𝐷

𝐿𝑇𝐵
) would give the following: 

Applying the same steps to equation (5-3) would result in the following: 

Similarly, equation (5-4) would result in the following: 

Additionally, the dimensionless form of the continuity equation can be written as: 

On the gas-liquid interface, 𝑢 = 𝑣 = 0. Hence, the following conditions are applied: 

𝜌𝐿 ((
𝑣𝑑
2

𝐿𝑇𝐵
)
𝜕𝑢∗

𝜕𝑡∗
+ (

2𝑣𝑑
2

𝐷
)𝑢∗

𝜕𝑢∗

𝜕𝑥∗
+ (
2𝑣𝑑

2

𝐷
)𝑣∗

𝜕𝑢∗

𝜕𝑦∗
+ (
𝑣𝑑
2

𝐿𝑇𝐵
)𝑤∗

𝜕𝑢∗

𝜕𝑧∗
)

= 𝜌𝐿𝑔𝑔𝑥
∗ − (

𝜌𝐿𝑣𝑑
2

𝐷
)
𝜕𝑝∗

𝜕𝑥∗
+ 𝜇𝐿𝑣𝑑 (

2

𝐷
)
2

[
𝜕2𝑢∗

𝜕𝑥∗2
+
𝜕2𝑢∗

𝜕𝑦∗2
+ (

𝐷

2𝐿𝑇𝐵
)
2 𝜕2𝑢∗

𝜕𝑧∗2
] 

(5-8) 

(
𝐷

𝐿𝑇𝐵
) 
𝜕𝑢∗

𝜕𝑡∗
+ 2𝑢∗

𝜕𝑢∗

𝜕𝑥∗
+ 2𝑣∗

𝜕𝑢∗

𝜕𝑦∗
+ (

𝐷

𝐿𝑇𝐵
)𝑤∗

𝜕𝑢∗

𝜕𝑧∗

=
𝑔𝑥
∗

𝐹𝑟𝑣𝑑
2 −

𝜕𝑝∗

𝜕𝑥∗
+

1

𝑅𝑒𝑣𝑑
[4
𝜕2𝑢∗

𝜕𝑥∗2
+ 4

𝜕2𝑢∗

𝜕𝑦∗2
+ (

𝐷

𝐿𝑇𝐵
)
2 𝜕2𝑢∗

𝜕𝑧∗2
] 

(5-9) 

(
𝐷

𝐿𝑇𝐵
) 
𝜕𝑣∗

𝜕𝑡∗
+ 2𝑢∗

𝜕𝑣∗

𝜕𝑥∗
+ 2𝑣∗

𝜕𝑣∗

𝜕𝑦∗
+ (

𝐷

𝐿𝑇𝐵
)𝑤∗

𝜕𝑣∗

𝜕𝑧∗

=
𝑔𝑦
∗

𝐹𝑟𝑣𝑑
2 −

𝜕𝑝∗

𝜕𝑦∗
+

1

𝑅𝑒𝑣𝑑
[4
𝜕2𝑣∗

𝜕𝑥∗2
+ 4

𝜕2𝑣∗

𝜕𝑦∗2
+ (

𝐷

𝐿𝑇𝐵
)
2 𝜕2𝑣∗

𝜕𝑧∗2
] 

(5-10) 

(
𝐷

𝐿𝑇𝐵
) 
𝜕𝑤∗

𝜕𝑡∗
+ 2𝑢∗

𝜕𝑤∗

𝜕𝑥∗
+ 2𝑣∗

𝜕𝑤∗

𝜕𝑦∗
+ (

𝐷

𝐿𝑇𝐵
)𝑤∗

𝜕𝑤∗

𝜕𝑧∗

=
𝑔𝑧
∗

𝐹𝑟𝑣𝑑
2 −

𝜕𝑝∗

𝜕𝑧∗
+
1

𝑅𝑒𝑣𝑑
[4
𝜕2𝑤∗

𝜕𝑥∗2
+ 4

𝜕2𝑤∗

𝜕𝑦∗2
+ (

𝐷

𝐿𝑇𝐵
)
2 𝜕2𝑤∗

𝜕𝑧∗2
] 

(5-11) 

𝜕𝑢∗

𝜕𝑥∗
+
𝜕𝑣∗

𝜕𝑦∗
+ (

𝐷

2𝐿𝑇𝐵
)
𝜕𝑤∗

𝜕𝑧∗
= 0 (5-12) 

0 = 𝜌𝐿𝑔𝑥 −
𝜕𝑝

𝜕𝑥
+ 𝜇𝐿 [

𝜕2𝑢

𝜕 𝑥2
+
𝜕2𝑢

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑧2
] + 𝐾𝜎𝑥 (5-13) 
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Using the dimensionless variables given in (5-6) and (5-7), equations (5-13) to (5-15) in 

dimensionless form may be written as: 

To perform an order of magnitude analysis to the dimensionless governing equations, the 

following orders are introduced: 

Introducing the orders given in (5-19) to the continuity equation (equation (5-12)) would lead 

to the following: 

Thus, in order to keep the continuity equation intact, 𝑢∗ and 𝑣∗ should be of the order 𝑜 (
𝐷

𝐿𝑇𝐵
). 

0 = 𝜌𝐿𝑔𝑦 −
𝜕𝑝

𝜕𝑦
+ 𝜇𝐿 [

𝜕2𝑣

𝜕𝑥2
+
𝜕2𝑣

𝜕𝑦2
+
𝜕2𝑣

𝜕𝑧2
] + 𝐾𝜎𝑦 (5-14) 

𝜌𝐿 (
𝜕𝑤

𝜕𝑡
+ 𝑤

𝜕𝑤

𝜕𝑧
) = 𝜌𝐿𝑔𝑧 −

𝜕𝑝

𝜕𝑧
+ 𝜇𝐿 [

𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
+
𝜕2𝑤

𝜕𝑧2
] + 𝐾𝜎𝑧 (5-15) 

0 =
1

𝐹𝑟𝑣𝑑
2 𝑔𝑥

∗ −
𝜕𝑝∗

𝜕𝑥∗
+
1

𝑅𝑒𝑣𝑑
[4
𝜕2𝑢∗

𝜕𝑥∗2
+ 4

𝜕2𝑢∗

𝜕𝑦∗2
+ (

𝐷

𝐿𝑇𝐵
)
2 𝜕2𝑢∗

𝜕𝑧∗2
] +

1

𝐹𝑟𝑣𝑑
2 𝐸𝑜

𝜎𝑥
∗𝐾∗ (5-16) 

0 =
1

𝐹𝑟𝑣𝑑
2 𝑔𝑦

∗ −
𝜕𝑝∗

𝜕𝑦∗
+

1

𝑅𝑒𝑣𝑑
[4
𝜕2𝑣∗

𝜕𝑥∗2
+ 4

𝜕2𝑣∗

𝜕𝑦∗2
+ (

𝐷

𝐿𝑇𝐵
)
2 𝜕2𝑣∗

𝜕𝑧∗2
] +

1

𝐹𝑟𝑣𝑑
2 𝐸𝑜

𝜎𝑦
∗𝐾∗ (5-17) 

(
𝐷

𝐿𝑇𝐵
) (
𝜕𝑤∗

𝜕𝑡∗
+𝑤∗

𝜕𝑤∗

𝜕𝑧∗
)

=
1

𝐹𝑟𝑣𝑑
2 𝑔𝑧

∗ − (
𝐷

𝐿𝑇𝐵
)
𝜕𝑝∗

𝜕𝑧∗
+

1

𝑅𝑒𝑣𝑑
[4
𝜕2𝑤∗

𝜕𝑥∗2
+ 4

𝜕2𝑤∗

𝜕𝑦∗2
+ (

𝐷

𝐿𝑇𝐵
)
2 𝜕2𝑤∗

𝜕𝑧∗2
]

+
1

𝐹𝑟𝑣𝑑
2 𝐸𝑜

𝜎𝑧
∗𝐾∗ 

(5-18) 

𝑥∗ = 𝑜(1), 𝑦∗ = 𝑜(1), 𝑧∗ = 𝑜(1), 𝑤∗ = 𝑜(1), 𝑡∗ = 𝑜(1), 𝑔𝑥
∗ = 𝑜 (

𝐷

𝐿𝑇𝐵
) 

(5-19) 
𝑔𝑦
∗ = 𝑜 (

𝐷

𝐿𝑇𝐵
), 𝑔𝑧

∗ = 𝑜(1), 𝐾∗ = 𝑜(1), 𝜎𝑥
∗ = 𝑜(1), 𝜎𝑦

∗ = 𝑜(1), 𝜎𝑧
∗ = 𝑜(1) 

𝜕𝑢∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑥∗⏟
𝑜(1)

+
𝜕𝑣∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑦∗⏟
𝑜(1)

+ (
𝐷

2𝐿𝑇𝐵
)
𝜕𝑤∗⏞

𝑜(1)

𝜕𝑧∗⏟
𝑜(1)

= 0 (5-20) 
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Similarly, performing order of magnitude analysis to equation (5-9) would lead to the 

following: 

Hence, in order to keep the inertia terms and the viscous terms in equation (5-21) of the same 

order of magnitude, 𝐹𝑟𝑣𝑑  should be of the order 𝑜(1) and 𝑅𝑒𝑣𝑑 should be of the order 𝑜 (
𝐿𝑇𝐵

𝐷
).  

Applying the same analysis to the momentum equation in the 𝑦∗ direction (equation (5-10)) 

and 𝑧∗ direction (equation (5-11)) will give the following: 

 

(
𝐷

𝐿𝑇𝐵
) 
𝜕𝑢∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑡∗⏟
𝑜(1)

+ 2 𝑢∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑢∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑥∗⏟
𝑜(1)

+ 2 𝑣∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑢∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑦∗⏟
𝑜(1)

+ (
𝐷

𝐿𝑇𝐵
) 𝑤∗⏞
𝑜(1)

𝜕𝑢∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑧∗⏟
𝑜(1)

 

(5-21) 

=
𝑔𝑥
∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝐹𝑟𝑣𝑑
2

⏟
𝑜(1)

−
𝜕𝑝∗

𝜕𝑥∗
+

1

𝑅𝑒𝑣𝑑⏟

𝑜(
𝐿𝑇𝐵
𝐷
) [
 
 
 
 
 

4
𝜕2𝑢∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑥∗2⏟
𝑜(1)

+ 4
𝜕2𝑢∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑦∗2⏟
𝑜(1)

+ (
𝐷

𝐿𝑇𝐵
)
2 𝜕2𝑢∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑧∗2⏟
𝑜(1)

]
 
 
 
 
 

 

(
𝐷

𝐿𝑇𝐵
) 
𝜕𝑣∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑡∗⏟
𝑜(1)

+ 2 𝑢∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑣∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑥∗⏟
𝑜(1)

+ 2 𝑣∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑣∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑦∗⏟
𝑜(1)

+ (
𝐷

𝐿𝑇𝐵
) 𝑤∗⏞
𝑜(1)

𝜕𝑣∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑧∗⏟
𝑜(1)

 

(5-22) 

=
𝑔𝑦
∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝐹𝑟𝑣𝑑
2

⏟
𝑜(1)

−
𝜕𝑝∗

𝜕𝑦∗
+

1

𝑅𝑒𝑣𝑑⏟

𝑜(
𝐿𝑇𝐵
𝐷
) [
 
 
 
 
 

4
𝜕2𝑣∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑥∗2⏟
𝑜(1)

+ 4
𝜕2𝑣∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑦∗2⏟
𝑜(1)

+ (
𝐷

𝐿𝑇𝐵
)
2 𝜕2𝑣∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑧∗2⏟
𝑜(1)

]
 
 
 
 
 

 

(
𝐷

𝐿𝑇𝐵
) 
𝜕𝑤∗⏞
𝑜(1)

𝜕𝑡∗⏟
𝑜(1)

+ 2 𝑢∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑤∗⏞
𝑜(1)

𝜕𝑥∗⏟
𝑜(1)

+ 2 𝑣∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑤∗⏞
𝑜(1)

𝜕𝑦∗⏟
𝑜(1)

+ (
𝐷

𝐿𝑇𝐵
) 𝑤∗⏞
𝑜(1)
𝜕𝑤∗⏞
𝑜(1)

𝜕𝑧∗⏟
𝑜(1)

 

(5-23) 

  =
𝑔𝑧
∗⏞

𝑜(1)

𝐹𝑟𝑣𝑑
2

⏟
𝑜(1)

−
𝜕𝑝∗

𝜕𝑧∗
+

1

𝑅𝑒𝑣𝑑⏟

𝑜(
𝐿𝑇𝐵
𝐷
) [
 
 
 
 

4
𝜕2𝑤∗⏞  
𝑜(1)

𝜕𝑥∗2⏟
𝑜(1)

+ 4
𝜕2𝑤∗⏞  
𝑜(1)

𝜕𝑦∗2⏟
𝑜(1)

+ (
𝐷

𝐿𝑇𝐵
)
2 𝜕2𝑤∗⏞  
𝑜(1)

𝜕𝑧∗2⏟
𝑜(1) ]

 
 
 
 

 

o(
𝐷

𝐿𝑇𝐵
)
3

 

o(
𝐷

𝐿𝑇𝐵
)
3

 

o(
𝐷

𝐿𝑇𝐵
)
2
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Applying the same analysis to the boundaries (equations (5-16) to (5-18)) would give the 

following:  

 

Hence, it is concluded from the order of magnitude analysis applied to the gas-liquid interface 

that Eötvös number (𝐸𝑜) should be of order 𝑜 (
𝐿𝑇𝐵

𝐷
) and 𝐹𝑟𝑣𝑑  should be of order 𝑜(1) to keep 

the surface tension force of the same order of magnitude of the inertia force.  

To sum up, based on the dimensionless analysis of the equations of motions followed by order 

of magnitude analysis in all directions and on the boundaries, the following conclusions are 

drawn:  

1. The velocity components in 𝑥 and 𝑦 directions should be of the order (
𝐷

𝐿𝑇𝐵
) to keep the 

continuity equation intact without any approximation; 

2. For all terms in the momentum equations and on the boundaries to remain of  the same 

order of magnitude, 𝐹𝑟𝑣𝑑  should be of the order 𝑜(1) and 𝑅𝑒𝑣𝑑 and 𝐸𝑜 both should be 

of the order (
𝐿𝑇𝐵

𝐷
).  

0 =
𝑔𝑥
∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝐹𝑟𝑣𝑑
2

⏟
𝑜(1)

−
𝜕𝑝∗

𝜕𝑥∗
+

1

𝑅𝑒𝑣𝑑⏟

𝑜(
𝐿𝑇𝐵
𝐷
) [
 
 
 
 
 

4
𝜕2𝑢∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑥∗2⏟
𝑜(1)

+ 4
𝜕2𝑢∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑦∗2⏟
𝑜(1)

+ (
𝐷

𝐿𝑇𝐵
)
2 𝜕2𝑢∗⏞

𝑜(
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]
 
 
 
 
 

+
1

𝐹𝑟𝑣𝑑
2

⏟
𝑜(1)

𝐸𝑜⏟

𝑜(
𝐿𝑇𝐵
𝐷
)

𝜎𝑥
∗⏟

𝑜(1)

𝐾∗⏟
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 (5-24) 
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𝑔𝑦
∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝐹𝑟𝑣𝑑
2

⏟
𝑜(1)

−
𝜕𝑝∗

𝜕𝑦∗
+

1

𝑅𝑒𝑣𝑑⏟

𝑜(
𝐿𝑇𝐵
𝐷
) [
 
 
 
 
 

4
𝜕2𝑣∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑥∗2⏟
𝑜(1)

+ 4
𝜕2𝑣∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑦∗2⏟
𝑜(1)

+ (
𝐷

𝐿𝑇𝐵
)
2 𝜕2𝑣∗⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑧∗2⏟
𝑜(1)

]
 
 
 
 
 

1

𝐹𝑟𝑣𝑑
2

⏟
𝑜(1)

𝐸𝑜⏟

𝑜(
𝐿𝑇𝐵
𝐷
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∗
⏟
𝑜(1)

𝐾∗⏟
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 (5-25) 
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(5-26) 
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In conclusion, the dimensionless analysis based on both methods discussed, Buckingham-Pi 

theorem and the dimensionless analysis of governing equations, show that the problem of 

drifting of Taylor bubbles in inclined pipes with stagnant liquid is mainly governed by three 

dimensionless groups (𝐹𝑟𝑣𝑑 , 𝐸𝑜 and 𝑅𝑒𝑣𝑑) with the effect of inclination given through the 

gravitational acceleration components (𝑔𝑥, 𝑔𝑦 and 𝑔𝑧). Additionally, the inclined pipe case 

analysis shows a similar analysis to the vertical case with almost the same order of magnitude 

analysis.  In addition, it is worth to mention that there is still no need to using a dimensionless 

number like Morton number in the analysis of the inclined pipe case, as done on the vertical 

one in chapter 4, which does not seem to have a direct physical meaning.  

Thus, based on this analysis, the main hydrodynamic features of drifting of Taylor bubbles in 

inclined pipes with stagnant liquid are investigated in terms of three main dimensionless 

groups, namely Eötvös number (𝐸𝑜), Froude number (𝐹𝑟𝑣𝑑) and Reynolds number based on 

bubble drift velocity (𝑅𝑒𝑣𝑑). In this chapter, based on the simulation cases given in chapter 4, 

selected cases are chosen to explore the effect of these main influencing parameters. The pipe 

inclination covers the range of 0 < γ ≤ 70°, however, for the near horizontal inclination range 

(70° < γ ≤ 90°) a separate analysis is given in chapter 6. 

5.3 CFD Model Development 

In section 3.4.2 in chapter 3, the 3D model are discussed in detail, however, in this section, 

essential detail about the boundary conditions and the reference frame are discussed. Once the 

pipe is inclined with respect to the vertical position, the assumption of flow being axisymmetric 

can no longer be applied. According to Mazza et al. (2010), the flow can be simplified as a 

plane of symmetry that crosses the pipe’s diameter line with a normal orthogonal to the gravity 

acceleration. 

Similar to the vertical case, the simulation are performed for unsteady flow with constant fluid 

properties. The two phases are assumed as incompressible, viscous, immiscible, and not 

penetrating each other. The simulation cases for inclined cases is based on the cases performed 

in chapter 4 to ensure laminar flow regime, and avoid getting into transition or turbulent flow 

regimes.  
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 Model Geometry  

Referring to Figure 3-15 in chapter 3, the solution domain is a cylindrical domain with a 

diameter (𝐷) and length (𝐿) and the inclination of the pipe is configured by setting the angle 

(𝛾) between the pipe’s axis and the gravity vector with respect to the vertical case. The length 

of the computational domain is kept 10D similar to the base model to ensure the solution is 

affected by neither the bottom nor the top of the pipe. However, all simulations for the inclined 

pipe cases are done using fixed reference frames (FRF) system, and further detail are given in 

the following section. Details about the computational domain for the inclined pipe 

configuration and the initial bubble shape are discussed in chapter 3. 

 Fixed Reference Frame Technique 

In chapter 4, different types of reference frame system the fixed reference frames (FRF) and 

the moving reference frames (MRF), are discussed.  In the vertical pipe case, the moving 

reference frame (MRF) is selected based on the reasonable computational time compared 

against the fixed reference frame. In MRF, the Taylor bubble is stationary, and the pipe wall 

moves downwards with a velocity equal to that of the bubble. The simulation is considerably 

based on a trial and error procedure, where the wall velocity is initially assigned with an initial 

value, based on correlations in literature, it is regularly updated until the bubble ceases moving 

up or down in the axial direction, and hence the pseudo-steady solution is reached. At that 

stage, the wall velocity is adjusted and set to be the terminal velocity. The situation is quite 

different in the inclined pipe case. The model is 3D and larger computational time is essential 

to establish both stable developed bubble shape and a converged terminal bubble drift velocity. 

Enabling MRF in inclined pipe simulation would rather increase the computational time 

significantly. Hence, all simulation cases for the inclined pipe are performed using FRF.  

 Initial and Boundary Conditions  

The boundary conditions are discussed in detail in chapter 3. However, for the initial 

conditions, the initial ratio of the Taylor bubble length to pipe diameter (𝐿𝑇𝐵/𝐷)𝑖 is an input 

parameter prior to simulation. In contrast to the base model,  (𝐿𝑇𝐵/𝐷)𝑖 is fixed to 2 in inclined 
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pipe simulations. In FRF, larger domains may be essential for Taylor bubble to reach their 

terminal velocity and hence reach its steady state. Thus, to avoid this, a smaller initial Taylor 

bubble length is selected. As discussed earlier in this chapter, the velocity of cylindrical bubbles 

is independent of the Taylor bubble length as long as the bubble is long enough (more than 

1.5Dpipe). Thus, using rather a shorter initial Taylor bubble length would have no effect on the 

terminal bubble drift velocity.  

Moreover, it should be pointed out that different Taylor bubble shapes, sizes and locations are 

tested, and they give the same solution. The only difference is in the convergence process. 

However, the selected Taylor bubble initial shape and location shows a well-converged 

solution. 

A test is done to investigate the effect of the distance from the pipe bottom, given by ℎ𝐵. One 

of the validation cases introduced in chapter 3 is taken as a reference here with three different 

values of ℎ𝐵, which are 1,1.5D and 2Dpipe. Table 5-1 shows that the three different distance ℎ𝐵 

almost give similar values of Froude number (𝐹𝑟𝑣𝑑). Based on that, the distance ℎ𝐵 is fixed to 

1.5Dpipe in all simulations performed in this chapter. 

Lastly, in all simulations, the initial shape is simulated while tracking the bubble velocity until 

a steady terminal developed bubble shape with a converged terminal constant bubble drift 

velocity (𝑣𝑑) is reached.    

Table 5-1. Study of the influence of the distance ℎ𝐵  for the experimental case of Shosho and Ryan (2001), with 

air and 60% Corn syrup solution and inclination angle 60°, on terminal Froude number (𝐹𝑟𝑣𝑑). 

 

 

 

5.4 Results and Discussions 

In this section, the results that cover the main goals of this chapter are discussed, which is 

investigating the main hydrodynamic features of the drift of a single Taylor bubble in an 

Angle 𝒉𝑩 𝑭𝒓𝒗𝒅  
|𝐄𝐫𝐫𝐨𝐫 | 
(%) 

60° 

1D 0.35775 -- 

1.5D 0.35758 0.046 

2D 0.35753 0.015 
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inclined pipe with stagnant liquid. The results are explored with a specific focus on the effect 

of the governing dimensionless groups, Froude, Eötvös and Reynolds numbers.  The results 

are divided into three sections Taylor bubble shape and flow field characteristics, Taylor bubble 

drift velocity, and detailed hydrodynamics covering the three main regions of the Taylor 

bubbles in inclined pipes (bubble front region, bubble body region and bubble tail region).  

Table 5-2 lists the simulation cases and their corresponding results. The selected cases are 

based on those simulated in chapter 4. For instance, to explore the effect of Reynolds number 

(𝑅𝑒𝑣𝑑) three cases are selected covering low, intermediate and high values of Reynolds 

numbers based on vertical simulated cases (cases 1 to 3 in Table 5-2). For Eötvös number (𝐸𝑜), 

three cases are selected with values of 20, 66 and 150 (cases 4 to 6 in Table 5-2). In Table 5-2, 

the input parameters prior simulation are 𝐸𝑜, (𝐿𝑇𝐵/𝐷)𝑖, while the predicted values from the 

simulation is 𝑅𝑒𝑣𝑑. Other significant predicted parameters are explored in detail in section 

5.4.3. For all cases in Table 5-2, the pipe is inclined from the vertical position covering a range 

of 0 ≤ γ ≤ 70°. This gives a total number of 36 cases. The vertical pipe cases are simulated 

using FRF for the sake of making a comprehensive comparison between the vertical and 

inclined pipe. 

Table 5-2. Simulation cases and their corresponding results. 

 

 

 

 

 

 

Based on the dimensionless analysis of the problem given in section 5.2, the results focus on 

investigating the dynamics of Taylor bubble in inclined pipes in terms of the sole dimensionless 

parameters Reynolds number and Eötvös number. Hence, the problem can now be treated in 

terms of three main dimensionless groups, given by: 

Input Parameters Predicted Values 

Case 
No. 

 
𝑬𝒐 

(
𝑳𝑻𝑩
𝑫
)
𝒊
 𝑹𝒆𝒗𝒅  

Effect of Reynolds number (Revd) 

1 66 2 15 

2 66 2 95 

3 66 2 200 

Effect of Eötvös number (Eo) 

4 20 2 25 

5 40 2 25 

6 66 2 25 
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 Taylor Bubble Shape and Flow Field Characteristics 

In this section, the effect of the main physical parameters influencing the motion of Taylor 

bubbles is discussed on the dynamics of Taylor bubbles, including the Taylor bubble shape and 

flow field characteristics. This includes representing the three-dimensional Taylor bubble 

shape, the pressure field, the streamlines and vorticity field for each of the dimensionless 

groups examined for the cases given in Table 5-2. The pipe inclination covers the following 

angles 0°,15°,30°, 45°, 60° and 70°, Eötvös number has values of 20, 40 and 66 and Reynolds 

number has average values of 15, 25, 95 and 200.  

 Effect of Inclination Angle 

To explore the effect of inclination angle on the terminal Taylor bubble shape as well as 

exploring further details about the streamlines and vorticity field, a selected case of the 

following parameters 𝐸𝑜 = 66 and  𝑅𝑒𝑣𝑑 ≅ 15 (case 1 in Table 5-2), is presented. It can be 

noted from Figure 5-2 that the developed Taylor bubble length increases with the inclination 

angle. For each inclination angle, the developed bubble length is divided into three sections 

(section A-A to section C-C). For each section, the streamlines and vorticity field (Y- 

component) in the xy plane are presented in Figure 5-2. The vorticity slightly increases with 

the inclination angle. Through considering the highest section (section A-A), the flow shows 

similar configurations for all inclination angles. Nonetheless, the instability of the bubble rear 

is shown by the disturbed flow as demonstrates in section C-C, where secondary vortices 

appear at the perimeter of the pipe in almost all inclination angles.  

Moreover, Figure 5-3 shows the pressure field for all inclination angle. For all cases, the 

pressure isosurfaces are being almost perpendicular to the gravity vector, with nearly the same 

variation in pressure values. 

 

𝐹𝑟𝑣𝑑 =
𝑣𝑑
2

𝑔𝐷
= 𝑓 [𝐸𝑜 =

𝑔𝜌𝐿𝐷
2

𝜎
, 𝑅𝑒𝑣𝑑 =

𝜌𝐿𝑈𝑇𝐵𝐷

𝜇𝐿
  ] (5-27) 
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Figure 5-2. Streamlines and vorticity field (s-1) in the xy plane at the three different sections, namely A-A, B-B 

and C-C for case 1 in Table 5-2, corresponding to inclination angles of 15° to 70° (𝐸𝑜 = 66 and  𝑅𝑒𝑣𝑑1
≅ 15). 

 

Figure 5-3. Pressure fields  for case 1 in Table 5-2, for the inclination angle range of  0° to 70° (𝐸𝑜 = 66 and 

𝑅𝑒𝑣𝑑1
≅ 15). 
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 Effect of Reynolds Number 

In order to explore the consequences of Reynolds number on the Taylor bubble shape, three 

selected cases with fixed Eötvös number of 66 but with different Reynolds number 

corresponding to approximate values of 15, 95 and 200 are simulated (cases 1 to 3 in Table 

5-2). Figure 5-4 illustrates an example of the effect of 𝑅𝑒𝑣𝑑 on the final shape of the developed 

Taylor bubble and the flow field around it for cases 1 and 2 in Table 5-2. At low values of 

Reynolds number, the high viscous forces increase the elongation of the terminal developed 

Taylor bubble with the most extended Taylor bubble being at the vertical case, as indicated in 

Figure 5-4. Generally, for the vertical case, a pair of elongated counter-rotating vortices are 

noticed in the bubble wake. As the pipe inclination increases, this configuration is lost. A vortex 

close to the wall starts to appear with the inclination angle, which opens up with the increase 

in inclination angle. Another vortex at the far side of the wall originates at a higher inclination. 

The increase in Reynolds number affects the average velocity of the flow for all angles, and 

the vortex development as well. It also changes the bubble rear shape by increasing its 

concavity, as shown in Figure 5-5. As for the developed bubble wake, it can be noticed that the 

Reynolds number has a significant effect on the intensity and scale of the wake. Additionally, 

  

Figure 5-4. Streamlines in the yz plane  for cases 1 and 2 in Table 5-2, with inclination angle range of  0° ≤ 𝛾 ≤
70°, (a) 𝑅𝑒𝑣𝑑1

≅ 15,and  (b) 𝑅𝑒𝑣𝑑2
≅ 95, with 𝐸𝑜 = 66. 

(b) (a) 
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it is also worth noting that at higher values of Reynolds number (𝑅𝑒𝑣𝑑= 200), little disturbances 

are noticed at the gas-liquid interface at higher inclination angles (70°). The main reason for 

that is the higher values of reduced Galilei number (𝐺𝑎𝑅). This will be discussed in detail in 

chapter 6. 

Additionally, it can be concluded from Figure 5-5, the increase in 𝑅𝑒𝑣𝑑 from 95 to 200 has 

almost no vital effect on all inclination angles, except for the vertical case. This can be noticed 

by the convex bottom noticed at the vertical pipe case in Figure 5-5. 

 
 

 

Figure 5-5. Bubble shape profile for cases 1 to 3 in Table 5-2, with inclination angle range of  0° ≤ 𝛾 ≤ 70°, 
(a) 𝑅𝑒𝑣𝑑1

≅ 15, (b) 𝑅𝑒𝑣𝑑2
≅ 95 and (c) 𝑅𝑒𝑣𝑑3

≅ 200, with 𝐸𝑜 = 66. 
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 Effect of Eötvös number 

The effect of buoyancy and surface tension forces on the motion of Taylor bubbles in inclined 

pipes can be examined through considering the influence of Eötvös number. Three cases are 

simulated with 𝐸𝑜 values of 20, 40 and 66, and Reynolds number with an average value of 25, 

cases 4 to 6 in Table 5-2. 

Figure 5-6 shows an example for the effect of 𝐸𝑜 number on the final shape of the developed 

Taylor bubble, the flow field, and the terminal Froude number, for cases 4 and 6 in Table 5-2. 

Similar to the vertical pipe case, the surface tension is high at low values of 𝐸𝑜, that avoid any 

possible distortion at the interface. In Figure 5-6 (a), the bubble starts with prolate spheroidal 

nose and oblate spheroid bottom at the vertical position. This shape is considerably maintained 

with most of the inclination angles with an increase in the bubble’s length as a result of the 

pipe’s inclination. 

The bubble shape profiles for cases 4 to 6 in Table 5-2 are given in Figure 5-7. It can be noticed 

that the increase in 𝐸𝑜 number alters the shape of the bubble tail from convex into a concave 

structure, which reflects into wider wakes. It should be pointed out that for 𝐸𝑜 ≥ 100, highly 

disturbed bubble geometry is noticed for various inclination angles with an un-converged 

bubble velocity, especially for an inclination range of 15° ≤ 𝛾 ≤ 45°. Thus, the results suggest 

  

Figure 5-6. Streamlines in the yz plane for cases 4 and 6 in Table 5-2, with inclination angle range of  0° ≤ 𝛾 ≤
70, (a) 𝐸𝑜1 = 20 and (b) 𝐸𝑜3 = 66, with 𝑅𝑒𝑣𝑑 ≅ 25. 

(b) (a) 
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that for 𝐸𝑜 ≥ 100, the effect of surface tension results in deformation at the gas-liquid 

interface, and hence, it loses its structure, and a strong breaking up concept is noticed. Also, 

for 𝐸𝑜 ≤ 10, no Taylor bubble exists especially for large inclination angles. 

In conclusion, it can be deduced that both 𝐸𝑜 and 𝑅𝑒𝑣𝑑 significantly control the dynamics of 

the motion of bubbles in inclined pipes. Based on the simulation cases, the results suggest that 

a higher 𝐸𝑜 range is essential to maintain stable Taylor bubble formation in the inclined pipe 

when compared with the vertical cases. Adding to that, the instability in the gas-liquid interface 

  

 

Figure 5-7. Bubble shape profile for cases 4 to 6 in Table 5-2, with inclination angle range 0° ≤ 𝛾 ≤ 70°, (a) 

𝐸𝑜1 = 20, (b) 𝐸𝑜2 = 40 and (c) 𝐸𝑜3 = 66, with 𝑅𝑒𝑣𝑑 ≅ 25. 
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is also noticed for 𝐸𝑜 ≥ 100. The drift velocity follows the “peculiar trend” with the inclination 

angle for 𝑅𝑒𝑣𝑑values investigated. However, the maximum Froude values occur at higher 

angles with the increment in  𝐸𝑜 values. 

 Taylor Bubble Drift Velocity 

The Taylor bubble drift velocity (𝑣𝑑) is considered one of the main hydrodynamic features of 

Taylor bubbles flow in inclined pipes. In the literature, various studies, either theoretical and/or 

experimental, are done to estimate the terminal bubble drift velocity. In chapter 2, a summary 

for the main correlation estimating the bubble drift velocity is discussed (Table 2-3 in chapter 

2).  In this section, the effect of inclination angle, Reynolds number and Eötvös number on 

Taylor bubble drift velocity are discussed. In addition, a comparison between the present 

simulation results and other main correlations in the literature is explored. 

To explore the effect of the inclination angle on the bubble drift velocity, Figure 5-8 shows the 

effect of pipe inclination on the time evolution of the Froude number (𝐹𝑟𝑣𝑑) showing the 

transient period and the time needed to achieve the final steady state as defined by Gutiérrez et 

al. (2017) for case 1 in Table 5-2. It can be concluded that 15° case is nearly first to accomplish 

the stationary state, at approximately 0.2s. In addition, inclination angles 15° to 45° show 

similar behaviour of 𝐹𝑟𝑣𝑑  evolution. However, for larger inclination angles, a different 

evolution is noticed especially with an inclination angle of 70°, where longer simulation time 

is essential for establishing a constant terminal 𝐹𝑟𝑣𝑑 , and subsequently a final steady state. 

In chapter 3, the present simulation is tested against experimental data and main correlations 

in the literature. Based on this validation study, it is concluded that one of the reliable 

correlations is given by Lizarraga-García (2016) as it can predict the Froude number for a wide 

range of  𝐸𝑜. Hence, for the sake of comparison, Figure 5-9 shows the terminal Froude number 

for cases 1 in Table 5-2 compared against the correlation of Lizarraga-García (2016). It can be 

concluded that there is a good matching between the present simulation results and those 

predicted by Lizarraga-García (2016). 
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The effect of Reynolds number on the terminal Froude number is given in Figure 5-10. For low 

Reynolds number values, the viscous forces of liquid phase surrounding the bubbles are high 

enough to weaken the drift of the Taylor bubble, and the resistance for the bubble to penetrate 

the stagnant liquid is high and is capable of reducing its drift velocity. Generally, for a fixed 

 

Figure 5-8. Sketch of the evolution of the Froude number over time for case 1 in Table 5-2, with inclination 

angles of 15° to 70° (𝐸𝑜 = 66 and  𝑅𝑒𝑣𝑑1
≅ 15). 

 

Figure 5-9. Comparision between the present simulation results for the Terminal Froude number for cases 1 in 

Table 5-2, with inclination angle range of  0° ≤ 𝛾 ≤ 70° and the correlation given by Lizarraga-García (2016). 
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Reynolds number, the bubble velocity increases with the inclination angle reaching its 

maximum value at 45°. Obviously, a further increase in the inclination angle reduces the 

terminal bubble velocity. This behaviour is clearly examined by Maneri and Zuber (1974) and 

Spedding and Nguyen (1978), as the angle of inclination increases, the buoyancy forces 

increase, which subsequently increases the bubble velocity. A resistive force opposes this force 

from the draining of the liquid past the rising bubble. The results agree with the conclusions of 

Maneri and Zuber (1974) where the maximum Froude value occurs at an angle (45° based on 

current cases) at which the transition from a blunt-nosed bubble-double falling film system to 

a streamlined bubble with almost one falling film system occurs. Hence, it can be concluded 

that at lower Reynolds number, the blunter bubble nose is observed to result in a reduction in 

the bubble drift velocity. 

In addition, the effect of the Eötvös number on the terminal Froude number is given in Figure 

5-11. For 𝐸𝑜 = 20, the terminal velocity increases with the inclination angle with maximum 

values of 45°. Whereas, the increase in 𝐸𝑜 values result in an increase in the gravitational 

potential that enables the bubble to drift through the stagnant liquid. Both the drift velocity and 

the gravitational potential reach a maximum value of 45° for 𝐸𝑜1 = 20 and 60° for 𝐸𝑜2 = 40 

and 𝐸𝑜3 = 66. Due to the increase in 𝐸𝑜 values, there is a tendency of change in maximum 

𝐸𝑜 number values with a larger inclination angle. This conclusion agrees with the findings of 

 

Figure 5-10. Terminal Froude number for cases 1 to 3 in Table 5-2, with inclination angle range 0° ≤ 𝛾 ≤ 70° 
and 𝐸𝑜 = 66.  
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Maneri and Zuber (1974); Weber et al. (1986); Shosho and Ryan (2001) and Jeyachandra et al. 

(2012). 

 Detailed Hydrodynamics 

In this section, detailed hydrodynamics of Taylor bubble problem is investigated by dividing 

the flow field into three main sections flow in the Taylor bubble nose region, flow in the liquid 

film region and flow in the wake region. For each region, the main hydrodynamics 

characteristics are investigated with emphasis on the role of the main dimensionless groups 

(𝑅𝑒𝑣𝑑 and 𝐸𝑜). The notation of the main characteristics discussed in this section are related to 

Araújo et al. (2012), who investigated the main hydrodynamics of Taylor bubbles in the vertical 

pipe over a wide range of dimensionless groups (𝐸𝑜, 𝑀 and 𝑁𝑓). The results are given in a 

dimensionless form, similar to the vertical case given in chapter 4, mostly by dividing by the 

pipe diameter. Figure 5-12 shows the main hydrodynamic features of Taylor bubbles in a 

stagnant liquid in both vertical and inclined pipe. The inclined pipe features are given the 

subscript I. 

 

Figure 5-11. Terminal Froude number for cases 4 to 6 in Table 5-2, with inclination angle range 0° ≤ 𝛾 ≤ 70° 
and 𝑅𝑒𝑣𝑑 ≅ 25.  
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 Bubble Front Region 

The bubble front region is mainly investigated by two main features, the minimum interaction 

distance above the bubble (𝑍′𝐼) and the bubble tip position with respect to the pipe axis (𝑦𝑡𝑖𝑝). 

In this section, the effect of the main dimensionless parameters, given in section 5.2, on these 

two key features characterising the bubble front region is discussed. 

Firstly, the minimum interaction distance above the bubble (𝑍′𝐼) is defined as the length 

needed to stabilise the flow field above the Taylor bubble, and it is sometimes known as the 

perturbed distance upstream. This distance is essential in the case of coalescence phenomena 

in transient slug flow (Lizarraga-García, 2016). According to Araújo et al. (2012), the criteria 

used to estimate this distance is based on determining the region ahead of the bubble where the 

vertical liquid velocity is equal to 1% of the value of Taylor bubble drift velocity (𝑈𝑇𝐵). 

Applying the same criterian, as done by Lizarraga-García (2016), to the inclined pipe case, this 

distance is defined as the distance above the bubble where the maximum liquid velocity 

  

Figure 5-12. A schematic representation of the main hydrodynamic features of a single Taylor bubble rising 

through a stagnant liquid (a) in a vertical pipe and (b) in an inclined pipe. 

(a) (b) 
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component (𝑤𝑚𝑎𝑥) is equal to 1% of the value of Taylor bubble drift velocity 

(𝑣𝑑), (
𝑤𝑚𝑎𝑥

𝑣𝑑
= 0.01). Figure 5-13 shows the effect of both 𝐸𝑜 and 𝑅𝑒𝑣𝑑 on the dimensionless 

interaction distance above the bubble (
𝑍′𝐼

𝐷
). As the pipe is inclined from the vertical position, 

an increase in the dimensionless interaction distance above the bubble (
𝑍′𝐼

𝐷
) is noticed up to 

20°, as indicated in  Figure 5-13 (b). The dimensionless interaction distance is not significantly 

affected by a further increase in the inclination angle. This is due to the sudden change in 

bubble shape (especially bubble nose) as indicated in Figure 5-6 and Figure 5-7. Based on 𝐸𝑜 

values investigated, the increase in 𝐸𝑜 shows negligible effect on (
𝑍′𝐼

𝐷
). However, referring to 

Figure 5-13 (a), the increase in 𝑅𝑒𝑣𝑑, which means lower viscous forces, enhances larger 

distances to diffuse inertia at the bubble nose. Consequently, this is reflected in larger values 

of  (
𝑍′𝐼

𝐷
). Additionally, any further increase in 𝑅𝑒𝑣𝑑 shows almost no effect on (

𝑍′𝐼

𝐷
). It is also 

expected the same to happen with the bubble wake region (
𝐿𝑚𝑖𝑛𝐼
𝐷
) but with different profile 

with the inclination angle. 

Secondly, the bubble tip position with respect to the pipe axis (𝑦𝑡𝑖𝑝) is given in a dimensionless 

form as (
𝑦𝑡𝑖𝑝

𝐷
), as indicated in Figure 5-14. It can be generally noticed that an increase in 𝑅𝑒𝑣𝑑 

accompanied by the increase in the bubble drift velocity, causing the bubble to move more 

  

Figure 5-13. The effect of 𝐸𝑜 and 𝑅𝑒𝑣𝑑 on the dimensionless interaction distance above the bubble (𝑍′
𝐼
/𝐷) and 

(𝑍′/𝐷). 
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noticeably to the pipe wall as the pipe inclines. However, referring to Figure 5-14 (b), it can be 

seen that the bubble tip motion with respect to the pipe wall is almost linear. This is in good 

agreement with the conclusions by Lizarraga-García (2016). 

  

Figure 5-14. The effect of 𝐸𝑜 and 𝑅𝑒𝑣𝑑 on the dimensionless tip position with respect to the pipe axis (𝑦𝑡𝑖𝑝/𝐷). 

 Bubble Body Region 

The main characteristic to be investigated in the bubble body region is the dimensionless liquid 

film thickness (
𝛿𝐿𝐹𝐼

𝐷
) and the dimensionless wall shear stress (

𝜏𝑊

𝜌𝐿𝑔𝐷
)  
𝑚𝑎𝑥

. Figure 5-15 shows 

the effect of both 𝐸𝑜 and 𝑅𝑒𝑣𝑑 on the dimensionless liquid film thickness (
𝛿𝐿𝐹𝐼

𝐷
) . 

Figure 5-15 indicates that the dimensionless liquid film thickness (
𝛿𝐿𝐹𝐼

𝐷
) increases with the 

inclination angle as the bubble moves towards the pipe wall. In Figure 5-15 (a), 𝑅𝑒𝑣𝑑 has a 

negligible effect on (
𝛿𝐿𝐹𝐼

𝐷
) especially for larger angles. The effect of 𝐸𝑜 on (

𝛿𝐿𝐹𝐼

𝐷
) is given in 

Figure 5-15 (b), where 𝐸𝑜 shows almost no effect on (
𝛿𝐿𝐹𝐼

𝐷
) for inclination angle up to 15 −

20°. On the contarary, for larger angles, the increase in 𝐸𝑜 values increases (
𝛿𝐿𝐹𝐼

𝐷
) due to the 

change in the bubble nose shape caused by 𝐸𝑜. 
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In addition, Figure 5-16 shows the effect of both 𝐸𝑜 and 𝑅𝑒𝑣𝑑 on the dimensionless wall shear 

stress (
𝜏𝑊

𝜌𝐿𝑔𝐷
)  
𝑚𝑎𝑥

. A similar behaviour for the dimensionless wall shear stress with the 

inclination angles is noticed for all values of  𝐸𝑜 and 𝑅𝑒𝑣𝑑. A slight reduction in the 

dimensionless wall shear stress is noticed when the pipe is inclined up to 15° from the vertical 

position. However, a further increase in inclination angle shows an increase in the wall shear 

stress. Similar to the vertical pipe case, reduction in the wall shear stress is noticed with the 

increase in  𝑅𝑒𝑣𝑑  due to the lower viscosity of the surrounding liquid. 

 

  

Figure 5-16. The effect of 𝐸𝑜 and 𝑅𝑒𝑣𝑑 on the dimensionless wall shear stress (
𝜏𝑊

𝜌𝐿𝑔𝐷
)  
𝑚𝑎𝑥

 

0

0.1

0.2

0.3

0.4

0 10 20 30 40 50 60 70 80

D
im

en
si

o
n

le
ss

 w
al

l s
h

ea
r 

st
re

ss

Inclination angle (Degrees)

Revd1=15
Revd2=95
Revd3=200

τ W ρ
L
g
D

m
a
x

0

0.1

0.2

0.3

0.4

0 10 20 30 40 50 60 70 80

D
im

en
si

o
n

le
ss

 w
al

l s
h

ea
r 

st
re

ss

Inclination angle (Degrees)

Eo1=20

Eo2=40

Eo3=66

τ W ρ
L
g
D

m
a
x

  

Figure 5-15. The effect of 𝐸𝑜 and 𝑅𝑒𝑣𝑑 on the dimensionless liquid film thickness (𝛿𝐿𝐹𝐼/𝐷)and (𝛿𝐿𝐹/𝐷). 
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 Bubble Tail Region 

In this region, the main characteristics to be investigated is the perturbed distance below the 

bubble which is given in a dimensionless form as (
𝐿𝑚𝑖𝑛𝐼
𝐷
). The same criteria used to determine 

the minimum interaction distance above the bubble (𝑍′𝐼) is used here to determine the 

perturbed distance below the bubble (𝐿𝑚𝑖𝑛𝐼). Hence, the perturbed distance below the bubble 

is the distance below the bubble at which the maximum liquid velocity component  (𝑤𝑚𝑎𝑥) is 

equal to 1% of the value of Taylor bubble drift velocity (𝑣𝑑), (
𝑤𝑚𝑎𝑥

𝑣𝑑
= 0.01). Figure 5-17 

shows the effect of both 𝐸𝑜 and 𝑅𝑒𝑣𝑑 on the dimensionless perturbed distance below the bubble 

(
𝐿𝑚𝑖𝑛𝐼
𝐷
). Comparing Figure 5-13 and Figure 5-17, it can be generally concluded that higher 

values for (
𝐿𝑚𝑖𝑛𝐼
𝐷
) is noticed and it is greatly influenced by both 𝐸𝑜 and 𝑅𝑒𝑣𝑑. For the effect of 

𝑅𝑒𝑣𝑑, Figure 5-17 (a) shows similar behaviour for (
𝐿𝑚𝑖𝑛𝐼
𝐷
) with the inclination angle for all 

𝑅𝑒𝑣𝑑. When the pipe is inclined up to 30° from the vertical position, there is an increase in 

(
𝐿𝑚𝑖𝑛𝐼
𝐷
), while further increase in inclination angles reduces (

𝐿𝑚𝑖𝑛𝐼
𝐷
). This reduction in (

𝐿𝑚𝑖𝑛𝐼
𝐷
) 

is due to the development of secondary vortices as explained in section 5.4.1. In Figure 5-17 

(b), 𝐸𝑜 shows a similar effect on (
𝐿𝑚𝑖𝑛𝐼
𝐷
) with the inclination angle, however, a significant 

reduction in (
𝐿𝑚𝑖𝑛𝐼
𝐷
) is noticed for higher inclination angles. 

  

Figure 5-17. The effect of 𝐸𝑜 and 𝑅𝑒𝑣𝑑 on the dimensionless perturbed distance below the bubble (𝐿𝑚𝑖𝑛𝐼/𝐷) 

and (𝐿𝑚𝑖𝑛/𝐷).  
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It can be concluded that 𝑅𝑒𝑣𝑑 has a vital effect on both the interaction distances above and 

below the bubble (
𝑍′𝐼

𝐷
 &
𝐿𝑚𝑖𝑛𝐼
𝐷
). 

5.5 Concluding Remarks 

Through this chapter, a complete dimensionless analysis of single Taylor bubble drifting 

through a stagnant Newtonian liquid in an inclined pipe, followed by order of magnitude 

analysis of the equations of motion is carried out. The main conclusion is that for inclination 

range of 0 ≤ 𝛾 ≤ 70°; the problem is mainly governed by Froude, Eötvös and Reynolds 

numbers. However, for different inclination angles, the near horizontal cases (70° < 𝛾 < 90°), 

a special treatment is essential for these cases, which will be given in detail in the following 

chapter.   

Using the guideline of the order of magnitude analysis and the dimensionless group analysis, 

a CFD study investigating the hydrodynamics of a single Taylor bubble drifting through a 

stagnant Newtonian liquid in an inclined pipe is performed. Particularly, the current study is 

focused on the main similarity parameters, that is Froude number (𝐹𝑟𝑣𝑑), Reynolds 

number (𝑅𝑒𝑣𝑑) and Eötvös number (𝐸𝑜). The main hydrodynamic characteristics discussed 

include the developed Taylor bubble shape, the Taylor bubble drift velocity and detailed 

hydrodynamic characteristics covering the bubble front region, bubble body region and the 

bubble tail region. 

The main findings of this chapter can be summarised as follows: 

• The bubble motion follows the “peculiar trend” with the inclination angle, where the 

bubble velocity increases with inclination angle until it reaches a maximum value, then 

it starts to decrease once again. The bubble shape is significantly affected by the 

inclination of the pipe where elongation in Taylor bubble length with a reduction in size 

is established with the pipe inclination.  

• 𝐸𝑜 has a significant effect on the Taylor bubble shape and velocity. The rise in surface 

tension alters the shape of the bubble tail from a convex into a concave structure which 
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is reflected into wider wakes. The increase in 𝐸𝑜 values raises the gravitational potential 

that enables the bubble to drift through the stagnant liquid. There is also a tendency of 

change in maximum Froude number values with a larger inclination angle due to the 

increase in 𝐸𝑜 values. 

• 𝑅𝑒𝑣𝑑 shows a similar role to 𝐸𝑜 where the increase in 𝑅𝑒𝑣𝑑 alters the bubble shape from 

the long slender bubble into shorter and flatter ones. At low 𝑅𝑒𝑣𝑑, blunter bubble nose 

is observed and thus leads to a reduction in the bubble motion. 

• Furthermore, the bubble tip position is affected by 𝑅𝑒𝑣𝑑 where the increase in 𝑅𝑒𝑣𝑑 

increases the bubble motion to the pipe wall, as the pipe is inclined from the vertical 

position. However, for all values of  𝐸𝑜 investigated, a linear relationship is noticed for 

the bubble motion with respect to the pipe wall. 

• Moreover, the wall shear stress is examined under the effect of both 𝐸𝑜 and 𝑅𝑒𝑈𝑇𝐵. It 

is noticed that the increase in 𝑅𝑒𝑈𝑇𝐵 results in less viscous effect in the liquid 

surrounding the Taylor bubble that leads to a reduction in the wall shear stress. The 

wall shear stress is not affected by 𝐸𝑜 for all the values investigated. Additionally, the 

wall shear stress increases as the pipe is inclined from the vertical position.  

• Finally, the present simulation results show a reasonable agreement when tested against 

the previous experimental data and the main correlations available in the literature. 

Nevertheless, it can be noticed that further improvements are still necessary for 

predicting the Taylor bubble drift velocity. 



 

 

 Theoretical and CFD Treatments of an 

Individual Taylor Bubble Drifting in 

Near Horizontal and Horizontal Pipes 

(𝛄 ≅ 𝟗𝟎°)  

The bubble motion in inclined pipes follows the “peculiar trend” with the inclination angle, 

where the bubble velocity increases with inclination angle until it reaches a maximum value, 

then it starts to decrease once again. The bubble drift velocity diminishes in inclination angles 

near the horizontal orientation, and hence, this chapter aims at introducing a special treatment 

for these inclination angles. In this chapter, a complete dimensionless treatment followed by 

order of magnitude analysis of the terms of equations of motion for the near horizontal and the 

horizontal pipes is performed. Based on the fact that the bubble drift velocity diminishes in 

inclination angles near the horizontal orientation, the reduced Galilei number is suggested to 

govern the bubble dynamics. Additionally, this chapter employs a CFD study to investigate the 

hydrodynamics of a single Taylor bubble drifting through a stagnant liquid in a near horizontal 

pipe (70° < 𝛾 < 90°), using the volume-of-fluid (VOF) methodology implemented in the 

computational fluid dynamics software package, ANSYS Fluent (Release 16.0). Finally, based 

on the fact that bubble cannot propagate in a zero axial pressure gradient horizontal pipe, a 

simplified model is suggested to solve the challenging problem of the three-dimensional Taylor 

bubble in near horizontal and horizontal pipes, and thus saving computational resources.  



Chapter 6– Theoretical and CFD Treatments of an Individual Taylor Bubble Drifting in Near Horizontal and Horizontal Pipes (𝛾 ≅ 90°) 

 

-165- 

6.1 Introduction 

Similar to the previous two chapters, the scope of this chapter can be divided into two main 

folds:  

1. Performing a complete dimensionless analysis of the problem for inclination range 

70° < 𝛾 ≤ 90° using both the Buckingham-Pi theorem and a dimensionless treatment 

followed by order of magnitude analysis to the governing equations of motion, showing 

the main physical parameters influencing the flow, the so-called reduced Galilei 

number and Eötvös number. While taking into consideration that the Reynolds and 

Froude numbers are vanishingly small and are no longer acting as influencing 

parameters. For the horizontal pipe case (𝛾 = 90°), the pressure field distribution 

around the stagnant deformed bubble is mainly governed by the Eötvös number, where 

the reduced Galilei number ceases to be effectively similar to the Reynolds and Froude 

numbers. 

2. Based on this analysis, the main hydrodynamic features of drifting of Taylor bubbles 

in inclined pipes with stagnant liquid are investigated by applying computational fluid 

dynamics (CFD) simulation using the volume-of-fluid (VOF) methodology 

implemented in the commercial software ANSYS Fluent. The simulations performed 

in this chapter are based on the cases given in chapter 4. 

This chapter is divided as follows, the dimensionless equations of motion and order of 

magnitude analysis are given in section 6.2. Section 6.3 discusses the CFD model. Moreover, 

the results and discussion are given in section 6.4, which is divided into two main parts, the 

near horizontal pipe (70° < γ < 90°) and the horizontal pipe (γ = 90°). In each section, the 

main dynamics of Taylor bubbles are discussed, including the developed Taylor bubble shape, 

the bubble length, the bubble drift velocity and the pressure distribution around the bubble. 

Finally, the chapter ends with a concluding remarks section that summarises all the important 

outcomes of this chapter.  
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6.2 Dimensionless Analysis 

This section discusses the two methods used for analysing the problem of drifting of Taylor 

bubbles in near horizontal and horizontal pipes with stagnant liquid, which are the 

Buckingham-Pi theorem and the dimensionless analysis of governing equations. This section 

ends up with a conclusion based on the order of magnitude analysis of the dimensionless 

governing equations. 

 Buckingham-Pi theorem 

Appendix C shows all details of the Buckingham-Pi theorem applied to near horizontal and 

horizontal pipe case with the inclination angle (70° < 𝛾 ≤ 90°) with respect to the vertical 

position. The problem for the near horizontal pipe case (70° < 𝛾 < 90°) can be expressed as 

follows: 

Based on the theorem given in Appendix C, it can be concluded that the sole governing 

parameters for the near horizontal case are the reduced Galilei number (𝐺𝑎𝑅), Eötvös number 

(𝐸𝑜) and 
𝐿𝑇𝐵

𝐷
.  

However, the problem for the horizontal pipe case (𝛾 = 90°) can be expressed as follows: 

Based on the theorem given in Appendix C, it can be shown that the main similarity parameters 

that govern the pressure field distribution around the stagnant deformed bubble are Eötvös 

number (𝐸𝑜) and 
𝐿𝑇𝐵

𝐷
. 

 Dimensionless Governing Equations 

Applying a similar coordinate system as the inclined pipe case given in chapter 5, for the near 

horizontal pipe case (70° < 𝛾 < 90°) a characteristic velocity (𝑣𝑠) is chosen according to a 

𝜎 = 𝑓 [𝜌𝐿 , 𝜇𝐿 , 𝑔, 𝐿𝑇𝐵, 𝐷] (6-1) 

𝜎 = 𝑓 [𝜌𝐿 , 𝑔, 𝐿𝑇𝐵, 𝐷] (6-2) 
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way that would treat the flow in such cases, where low values of Reynolds number (𝑅𝑒𝑣𝑠) 

exists. 

Referring to the inclined pipe configuration and the coordinates system given in Figure 5-1, 

the Navier-stokes equations in cartesian coordinates are given as follow: 

And the continuity equation is: 

Introducing the following dimensionless variables:  

Substituting the dimensionless variables given in (6-7) into the momentum equation given in 

(6-3) would lead to: 

Dividing equation (6-8) by (
𝜌𝐿𝜈𝐿

2

𝐿𝑇𝐵
3 ) and (

2𝐿𝑇𝐵

𝐷
)
2

 and rearranging the terms would give the 

following: 

𝜌𝐿 (
𝜕𝑢

𝜕𝑡
+  𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
) = 𝜌𝐿𝑔𝑥 −

𝜕𝑝

𝜕𝑥
+ 𝜇𝐿 [

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑧2
] (6-3) 

𝜌𝐿 (
𝜕𝑣

𝜕𝑡
+  𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
) = 𝜌𝐿𝑔𝑦 −

𝜕𝑝

𝜕𝑦
+ 𝜇𝐿 [

𝜕2𝑣

𝜕𝑥2
+
𝜕2𝑣

𝜕𝑦2
+
𝜕2𝑣

𝜕𝑧2
] (6-4) 

𝜌𝐿 (
𝜕𝑤

𝜕𝑡
+  𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+𝑤

𝜕𝑤

𝜕𝑧
) = 𝜌𝐿𝑔𝑧 −

𝜕𝑝

𝜕𝑧
+ 𝜇𝐿 [

𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
+
𝜕2𝑤

𝜕𝑧2
] (6-5) 

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
= 0 (6-6) 

𝑢̂ =
𝑢

𝑣𝑠
, 𝑣 =

𝑣

𝑣𝑠
, 𝑤̂ =

𝑤

𝑣𝑠
, 𝑝̂ =

𝑝

𝜌𝐿𝑣𝑠
2
, 𝑥∗ =

𝑥

(𝐷 2⁄ )
, 𝑦∗ =

𝑦

(𝐷 2⁄ )
, 𝑧∗ =

𝑧

𝐿𝑇𝐵
,  

(6-7) 𝑡̂ = 𝑡 (
𝑣𝑠
𝐿𝑇𝐵
) , 𝑔𝑥

∗ =
𝑔𝑥
𝑔
 , 𝑔𝑦

∗ =
𝑔𝑦

𝑔
, 𝑔𝑧

∗ =
𝑔𝑧
𝑔
, 𝜎𝑥

∗ =
𝜎𝑥
𝜎
, 𝜎𝑦
∗ =

𝜎𝑦

𝜎
, 𝜎𝑧
∗ =

𝜎𝑧
𝜎
,  

 𝐾∗ =
𝐾

(1 𝐷2⁄ )
 with 𝑣𝑠 =

𝜇𝐿

𝐿𝑇𝐵𝜌𝐿
 

𝜌𝐿
𝜈𝐿
2

𝐿𝑇𝐵
3 [ 
𝜕𝑢̂

𝜕𝑡̂
+ (
2𝐿𝑇𝐵
𝐷
) 𝑢̂
𝜕𝑢̂

𝜕𝑥∗
+ (
2𝐿𝑇𝐵
𝐷
)𝑣
𝜕𝑢̂

𝜕𝑦∗
+ 𝑤̂

𝜕𝑢̂

𝜕𝑧∗
] 

          = 𝜌𝐿𝑔𝑔𝑥
∗ − 𝜌𝐿

𝜈𝐿
2

𝐿𝑇𝐵
3 (
2𝐿𝑇𝐵
𝐷
)
𝜕𝑝̂

𝜕𝑥∗
+ (
𝜇𝐿𝜈𝐿

2

𝐿𝑇𝐵
3 )(

2𝐿𝑇𝐵
𝐷
)
2

[
𝜕2𝑢̂

𝜕𝑥∗2
+
𝜕2𝑢̂

𝜕𝑦∗2
+ (

𝐷

𝐿𝑇𝐵
)
2 𝜕2𝑢̂

𝜕𝑧∗2
] 

(6-8) 
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Performing the same steps to equations (6-4) to (6-6), the dimensionless form of continuity and 

Navier Stokes equations could be summarised as follow: 

 It can be inferred that the influential parameters are the so-called reduced Galilei number 

𝐺𝑎𝑅 = 𝑓 [(
𝑔𝐿𝑇𝐵

3

𝜈L2
) , (

𝐷

2𝐿𝑇𝐵
)
2

] and the pipe diameter to bubble length ratio. 

Based on the fact that the gravity and viscous effects predominate the inertia effects, the 

following orders can be introduced: 

(
𝐷

2𝐿𝑇𝐵
)
2

 
𝜕𝑢̂

𝜕𝑡̂
+ (

𝐷

2𝐿𝑇𝐵
) 𝑢̂
𝜕𝑢̂

𝜕𝑥∗
+ (

𝐷

2𝐿𝑇𝐵
) 𝑣
𝜕𝑢̂

𝜕𝑦∗
+ (

𝐷

2𝐿𝑇𝐵
)
2

𝑤̂
𝜕𝑢̂

𝜕𝑧∗
 

          = [(
𝑔𝐿𝑇𝐵

3

𝜈𝐿
2 )(

𝐷

2𝐿𝑇𝐵
)

2

] 𝑔𝑥
∗ − (

𝐷

2𝐿𝑇𝐵
)
𝜕𝑝̂

𝜕𝑥∗
+ [
𝜕2𝑢̂

𝜕𝑥∗2
+
𝜕2𝑢̂

𝜕𝑦∗2
+ (

𝐷

𝐿𝑇𝐵
)
2 𝜕2𝑢̂

𝜕𝑧∗2
] 

(6-9) 

𝜕𝑢̂

𝜕𝑥∗
+
𝜕𝑣

𝜕𝑦∗
+ (

𝐷

2𝐿𝑇𝐵
)
𝜕𝑤̂

𝜕𝑧∗
= 0 (6-10) 

(
𝐷

2𝐿𝑇𝐵
)
2

 
𝜕𝑢̂

𝜕𝑡̂
+ (

𝐷

2𝐿𝑇𝐵
) 𝑢̂
𝜕𝑢̂

𝜕𝑥∗
+ (

𝐷

2𝐿𝑇𝐵
) 𝑣
𝜕𝑢̂

𝜕𝑦∗
+ (

𝐷

2𝐿𝑇𝐵
)
2

𝑤̂
𝜕𝑢̂

𝜕𝑧∗
 

          = [(
𝑔𝐿𝑇𝐵

3

𝜈𝐿
2 )(

𝐷

2𝐿𝑇𝐵
)

2

] 𝑔𝑥
∗ − (

𝐷

2𝐿𝑇𝐵
)
𝜕𝑝̂

𝜕𝑥∗
+ [
𝜕2𝑢̂

𝜕𝑥∗2
+
𝜕2𝑢̂

𝜕𝑦∗2
+ (

𝐷

𝐿𝑇𝐵
)
2 𝜕2𝑢̂

𝜕𝑧∗2
] 

(6-11) 

(
𝐷

2𝐿𝑇𝐵
)
2

 
𝜕𝑣

𝜕𝑡̂
+ (

𝐷

2𝐿𝑇𝐵
) 𝑢̂
𝜕𝑣

𝜕𝑥∗
+ (

𝐷

2𝐿𝑇𝐵
)𝑣
𝜕𝑣

𝜕𝑦∗
+ (

𝐷

2𝐿𝑇𝐵
)
2

𝑤̂
𝜕𝑣

𝜕𝑧∗
 

           = [(
𝑔𝐿𝑇𝐵

3

𝜈𝐿
2 )(

𝐷

2𝐿𝑇𝐵
)

2

] 𝑔𝑦
∗ − (

𝐷

2𝐿𝑇𝐵
)
𝜕𝑝̂

𝜕𝑦∗
+ [
𝜕2𝑣̂

𝜕𝑥∗2
+
𝜕2𝑣

𝜕𝑦∗2
+ (

𝐷

𝐿𝑇𝐵
)
2 𝜕2𝑣

𝜕𝑧∗2
] 

(6-12) 

(
𝐷

2𝐿𝑇𝐵
)
2

 
𝜕𝑤̂

𝜕𝑡̂
+ (

𝐷

2𝐿𝑇𝐵
) 𝑢̂
𝜕𝑤̂

𝜕𝑥∗
+ (

𝐷

2𝐿𝑇𝐵
)𝑣
𝜕𝑤̂

𝜕𝑦∗
+ (

𝐷

2𝐿𝑇𝐵
)
2

𝑤̂
𝜕𝑤̂

𝜕𝑧∗
 

           = [(
𝑔𝐿𝑇𝐵

3

𝜈𝐿
2 )(

𝐷

2𝐿𝑇𝐵
)

2

] 𝑔𝑧
∗ − (

𝐷

2𝐿𝑇𝐵
)
𝜕𝑝̂

𝜕𝑧∗
+ [
𝜕2𝑤̂

𝜕𝑥∗2
+
𝜕2𝑤̂

𝜕𝑦∗2
+ (

𝐷

𝐿𝑇𝐵
)
2 𝜕2𝑤̂

𝜕𝑧∗2
] 

(6-13) 

𝑥∗ = 𝑜(1), 𝑦∗ = 𝑜(1), 𝑧∗ = 𝑜(1), 𝑤̂ = 𝑜(1), 𝑡̂ = 𝑜(1), 𝑔𝑥
∗ = 𝑜 (

𝐷

𝐿𝑇𝐵
) 

(6-14) 
𝑔𝑦
∗ = 𝑜(1), 𝑔𝑧

∗ = 𝑜 (
𝐷

𝐿𝑇𝐵
), 𝐾∗ = 𝑜(1), 𝜎𝑥

∗ = 𝑜(1), 𝜎𝑦
∗ = 𝑜(1), 𝜎𝑧

∗ = 𝑜(1) 
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Introducing the orders given in (6-14) to the dimensionless form of continuity equation (6-10) 

would give the following: 

Thus, to keep the continuity equation intact, 𝑢̂ and 𝑣 should be of the order 𝑜 (
𝐷

𝐿𝑇𝐵
). 

Similarly, introducing the same orders to the dimensionless form of momentum equations in 

the x-direction (equation (6-11)) would give the following: 

Similarly, the momentum equations in y-direction results into the following orders: 

Additionally, the momentum equations in z-direction results into the following orders: 

𝜕𝑢̂⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑥∗⏟
𝑜(1)

+
𝜕𝑣⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑦∗⏟
𝑜(1)

+ (
𝐷

2𝐿𝑇𝐵
)
𝜕𝑤̂⏞
𝑜(1)

𝜕𝑧∗⏟
𝑜(1)

= 0 (6-15) 

(
𝐷

2𝐿𝑇𝐵
)
2 𝜕𝑢̂⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑡̂⏟
𝑜(1)

+ (
𝐷

2𝐿𝑇𝐵
) 𝑢̂⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑢̂⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑥∗⏟
𝑜(1)

+ (
𝐷

2𝐿𝑇𝐵
) 𝑣⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑢̂⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑥∗⏟
𝑜(1)

+ (
𝐷

2𝐿𝑇𝐵
)
2

𝑤̂⏞
𝑜(1)

𝜕𝑢̂⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑧∗⏟
𝑜(1)

 

(6-16) 

= 𝐺𝑎𝑅⏟

𝑜(
𝐷
𝐿𝑇𝐵

)

𝑔𝑥
∗⏟

𝑜(
𝐷
𝐿𝑇𝐵

)

− (
𝐷

2𝐿𝑇𝐵
)
𝜕𝑝̂⏞
𝑜(1)

𝜕𝑥∗⏟
𝑜(1)

+

[
 
 
 
 
 

𝜕2𝑢̂⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑥∗2⏟
𝑜(1)

+
𝜕2𝑢̂⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑦∗2⏟
𝑜(1)

+ (
𝐷

𝐿𝑇𝐵
)
2 𝜕2𝑢̂⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑧∗2⏟
𝑜(1)

]
 
 
 
 
 

 

(
𝐷

2𝐿𝑇𝐵
)
2

 
𝜕𝑣⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑡̂⏟
𝑜(1)

+ (
𝐷

2𝐿𝑇𝐵
) 𝑢̂⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑣⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑥∗⏟
𝑜(1)

+ (
𝐷

2𝐿𝑇𝐵
) 𝑣⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑣⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑦∗⏟
𝑜(1)

 

(6-17) 

+(
𝐷

2𝐿𝑇𝐵
)
2

𝑤̂⏞
𝑜(1)

𝜕𝑣⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑧∗⏟
𝑜(1)

= 𝐺𝑎𝑅⏟

𝑜(
𝐷
𝐿𝑇𝐵

)

𝑔𝑦
∗

⏟
𝑜(1)

− (
𝐷

2𝐿𝑇𝐵
)
𝜕𝑝̂

𝜕𝑦∗
+

[
 
 
 
 
 

𝜕2𝑣⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑥∗2⏟
𝑜(1)

+
𝜕2𝑣̂⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑦∗2⏟
𝑜(1)

+ (
𝐷

𝐿𝑇𝐵
)
2 𝜕2𝑣⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑧∗2⏟
𝑜(1)

]
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It can be concluded from equations (6-16) to (6-18) that the inertia terms are of the order 

𝑜 (
𝐷

𝐿𝑇𝐵
)
2

, while, the viscous terms are of the order 𝑜 (
𝐷

𝐿𝑇𝐵
) in equations (6-16) and (6-17) and 

of the order 𝑜(1) in equation (6-18). Accordingly, the momentum equations in all directions 

can be expressed in the following form: 

Although, the local inertia terms have a small order of magnitude o (
𝐷

2𝐿𝑇𝐵
)
2

, they are kept only 

to account for the time-dependent nature of the equations (unsteadiness). 

Hence, it can be concluded that the flow is governed solely by the reduced Galilei number 

(𝐺𝑎𝑅) with the order of magnitude 𝑜 (
𝐷

𝐿𝑇𝐵
). 

On the gas-liquid interface, the following conditions are applied: 

(
𝐷

2𝐿𝑇𝐵
)
2

 
𝜕𝑤̂⏞
𝑜(1)

𝜕𝑡̂⏟
𝑜(1)

+ (
𝐷

2𝐿𝑇𝐵
) 𝑢̂⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑤̂⏞
𝑜(1)

𝜕𝑥∗⏟
𝑜(1)

+ (
𝐷

2𝐿𝑇𝐵
) 𝑣⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑤̂⏞
𝑜(1)

𝜕𝑦∗⏟
𝑜(1)

+ (
𝐷

2𝐿𝑇𝐵
)
2

𝑤̂⏞
𝑜(1)

𝜕𝑤̂⏞
𝑜(1)

𝜕𝑧∗⏟
𝑜(1)

 

(6-18) 

=

[
 
 
 
𝐺𝑎𝑅⏟

𝑜(
𝐷
𝐿𝑇𝐵

)

𝑔𝑧
∗⏟

𝑜(
𝐷
𝐿𝑇𝐵

)]
 
 
 

𝑣𝑒𝑟𝑦 𝑠𝑚𝑎𝑙𝑙 𝑜𝑟𝑑𝑒𝑟

− (
𝐷

2𝐿𝑇𝐵
)
𝜕𝑝̂

𝜕𝑧∗
+

[
 
 
 
 

  
𝜕2𝑤̂⏞
𝑜(1)

𝜕𝑥∗2⏟
𝑜(1)

+
𝜕2𝑤̂⏞
𝑜(1)

𝜕𝑦∗2⏟
𝑜(1)

+ (
𝐷

𝐿𝑇𝐵
)
2 𝜕2𝑤̂⏞
𝑜(1)

𝜕𝑧∗2⏟
𝑜(1) ]

 
 
 
 

 

(
𝐷

2𝐿𝑇𝐵
)
2

 
𝜕𝑢̂

𝜕𝑡̂
 = −(

𝐷

2𝐿𝑇𝐵
)
𝜕𝑝̂

𝜕𝑥∗
+ [
𝜕2𝑢̂

𝜕𝑥∗2
+
𝜕2𝑢̂

𝜕𝑦∗2
] (6-19) 

(
𝐷

2𝐿𝑇𝐵
)
2

 
𝜕𝑣

𝜕𝑡̂
= 𝐺𝑎𝑅𝑔𝑦

∗ − (
𝐷

2𝐿𝑇𝐵
)
𝜕𝑝̂

𝜕𝑦∗
+ [
𝜕2𝑣

𝜕𝑥∗2
+
𝜕2𝑣̂

𝜕𝑦∗2
] (6-20) 

(
𝐷

2𝐿𝑇𝐵
)
2

 
𝜕𝑤̂

𝜕𝑡̂
= −(

𝐷

2𝐿𝑇𝐵
)
𝜕𝑝̂

𝜕𝑧∗
+ [
𝜕2𝑤̂

𝜕𝑥∗2
+
𝜕2𝑤̂

𝜕𝑦∗2
] (6-21) 

0 = 𝐺𝑎𝑅𝑔𝑥
∗ − [(

𝐷

2𝐿𝑇𝐵
)
𝜕𝑝̂

𝜕𝑥∗
]
𝑆

+ [
𝜕2𝑢̂

𝜕𝑥∗2
+
𝜕2𝑢̂

𝜕𝑦∗2
]
𝑆

+ [
𝐺𝑎𝑅
𝐸𝑜
𝜎𝑥
∗𝐾∗]

𝑆
 (6-22) 

0 = 𝐺𝑎𝑅𝑔𝑦
∗ − [(

𝐷

2𝐿𝑇𝐵
)
𝜕𝑝̂

𝜕𝑦∗
]
𝑆

+ [
𝜕2𝑣

𝜕𝑥∗2
+
𝜕2𝑣

𝜕𝑦∗2
]
𝑆

+ [
𝐺𝑎𝑅
𝐸𝑜
𝜎𝑦
∗𝐾∗]

𝑆
 (6-23) 
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Applying the same analysis to the boundaries (equations (6-22) to (6-24)) would give the 

following: 

Hence, for the boundaries, if the surface tension is assumed to have the same order as the 

gravity term, this implies that Eötvös number (𝐸𝑜) should be of order 𝑜 (
𝐿𝑇𝐵

𝐷
). 

To sum up, based on the dimensionless analysis of the equations of motions followed by order 

of magnitude analysis in all directions and on the boundaries the following conclusions are 

drawn for the near horizontal pipe case (70° < 𝛾 ≤ 90°): 

1. In order to keep the continuity equation intact, 𝑢̂ and 𝑣 should be of the order 𝑜 (
𝐷

𝐿𝑇𝐵
); 

2. The flow is governed solely by the reduced Galilei number (𝐺𝑎𝑅) with the order of 

magnitude 𝑜 (
𝐷

𝐿𝑇𝐵
); 

(
𝐷

2𝐿𝑇𝐵
)
2

 
𝜕𝑤̂

𝜕𝑡̂
+ (

𝐷

2𝐿𝑇𝐵
)
2

𝑤̂
𝜕𝑤̂

𝜕𝑧∗
 

           = 𝐺𝑎𝑅 [𝑔𝑧
∗ +

1

𝐸𝑜
𝜎𝑧
∗𝐾∗]

𝑆
− [(

𝐷

2𝐿𝑇𝐵
)
𝜕𝑝̂

𝜕𝑧∗
]
𝑆

+ [
𝜕2𝑤̂

𝜕𝑥∗2
+
𝜕2𝑤̂

𝜕𝑦∗2
]
𝑆

 

(6-24) 

0 = 𝐺𝑎𝑅⏟

𝑜(
𝐷
𝐿𝑇𝐵

)

𝑔𝑥
∗⏟

𝑜(
𝐷
𝐿𝑇𝐵

)

− [(
𝐷

2𝐿𝑇𝐵
)
𝜕𝑝̂

𝜕𝑥∗
]
𝑆

+

[
 
 
 
 
 

𝜕2𝑢̂⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑥∗2⏟
𝑜(1)

+
𝜕2𝑢̂⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑦∗2⏟
𝑜(1)

]
 
 
 
 
 

𝑆

+

[
 
 
 
 
 

𝐺𝑎𝑅⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝐸𝑜⏟

𝑜(
𝐿𝑇𝐵
𝐷
)

𝜎𝑥
∗⏟

𝑜(1)

𝐾∗⏟
𝑜(1)

]
 
 
 
 
 

𝑆𝑆

 (6-25) 

0 = 𝐺𝑎𝑅⏟

𝑜(
𝐷
𝐿𝑇𝐵

)

𝑔𝑦
∗

⏟
𝑜(1)

− [(
𝐷

2𝐿𝑇𝐵
)
𝜕𝑝̂

𝜕𝑦∗
]
𝑆

+

[
 
 
 
 
 

𝜕2𝑣⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑥∗2⏟
𝑜(1)

+
𝜕2𝑣⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝜕𝑦∗2⏟
𝑜(1)

]
 
 
 
 
 

𝑆

+

[
 
 
 
 
 

𝐺𝑎𝑅⏞

𝑜(
𝐷
𝐿𝑇𝐵

)

𝐸𝑜⏟

𝑜(
𝐿𝑇𝐵
𝐷
)

𝜎𝑦
∗
⏟
𝑜(1)

𝐾∗⏟
𝑜(1)

]
 
 
 
 
 

𝑆

 (6-26) 

(
𝐷

2𝐿𝑇𝐵
)
2

 
𝜕𝑤̂⏞
𝑜(1)

𝜕𝑡̂⏟
𝑜(1)

+ (
𝐷

2𝐿𝑇𝐵
)
2

𝑤̂⏞
𝑜(1)

𝜕𝑤̂⏞
𝑜(1)

𝜕𝑧∗⏟
𝑜(1)

 

(6-27) 

    = 𝐺𝑎𝑅⏟

𝑜(
𝐷
𝐿𝑇𝐵

)
[
 
 
 
 

𝑔𝑧
∗⏟

𝑜(
𝐷
𝐿𝑇𝐵

)

+
1

𝐸𝑜⏟

𝑜(
𝐿𝑇𝐵
𝐷
)

𝜎𝑧
∗⏟

𝑜(1)

𝐾∗⏟
𝑜(1)

]
 
 
 
 

𝑆

− [(
𝐷

2𝐿𝑇𝐵
)
𝜕𝑝̂

𝜕𝑧∗
]
𝑆

+

[
 
 
 
 
𝜕2𝑤̂⏞
𝑜(1)

𝜕𝑥∗2⏟
𝑜(1)

+
𝜕2𝑤̂⏞
𝑜(1)

𝜕𝑦∗2⏟
𝑜(1) ]

 
 
 
 

𝑆
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3. If the surface tension applied to the boundaries, is assumed to have the same order as 

the gravity term, Eötvös number (𝐸𝑜) should be of the order 𝑜 (
𝐿𝑇𝐵

𝐷
). 

When the pipe is approximately horizontal, that is for 𝛾 ≈ 90°, with the conditions that the 

absence of the axial pressure gradient (
𝜕𝑝

𝜕𝑧∗
), and the bubble is approximately stagnant axially 

(𝑤̂ ≈ 0), the governing equations reduce to the following form: 

The limiting case when the bubble is stagnant in an entirely horizontal pipe (𝛾 = 90°) gives 

the following equations for the boundaries: 

The following dimensionless variables can be used to perform dimensionless analysis for the 

governing equations in the horizontal pipe case: 

The final form of the dimensionless governing equations for the horizontal pipe case is given 

by: 

(
𝐷

2𝐿𝑇𝐵
)
2

 
𝜕𝑢̂

𝜕𝑡̂
= −(

𝐷

2𝐿𝑇𝐵
)
𝜕𝑝̂

𝜕𝑥∗
+ (

𝜕2𝑢̂

𝜕𝑥∗2
+
𝜕2𝑢̂

𝜕𝑦∗2
) (6-28) 

(
𝐷

2𝐿𝑇𝐵
)
2

 
𝜕𝑣

𝜕𝑡̂
= 𝐺𝑎𝑅𝑔𝑦

∗ − (
𝐷

2𝐿𝑇𝐵
)
𝜕𝑝̂

𝜕𝑦∗
+ (

𝜕2𝑣

𝜕𝑥∗2
+
𝜕2𝑣

𝜕𝑦∗2
) (6-29) 

𝜕𝑢̂

𝜕𝑥∗
+
𝜕𝑣

𝜕𝑦∗
= 0 (6-30) 

0 = 𝜌𝐿𝑔𝑥 −
𝜕𝑝

𝜕𝑥
+ 𝐾𝜎𝑥 (6-31) 

0 = 𝜌𝐿𝑔𝑦 −
𝜕𝑝

𝜕𝑦
+ 𝐾𝜎𝑦 (6-32) 

𝑥∗ =
𝑥

(𝐷 2⁄ )
, 𝑦∗ =

𝑦

(𝐷 2⁄ )
, 𝑝̅ =

𝑝

𝜌𝐿𝑔
𝐷
2

, 𝑔𝑥
∗ =

𝑔𝑥
𝑔
 , 𝑔𝑦

∗ =
𝑔𝑦

𝑔
, 𝜎𝑥

∗ =
𝜎𝑥
𝜎
, 

(6-33) 

 𝜎𝑦
∗ =

𝜎𝑦

𝜎
, 𝐾∗ =

𝐾

(1 𝐷2⁄ )
   

0 = 𝑔𝑥
∗ −

𝜕𝑝̅

𝜕𝑥∗
+
 𝐾∗𝜎𝑥

∗

𝐸𝑜
 (6-34) 
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To put it briefly, it is obvious that equations (6-34) and (6-35) govern the static pressure 

distribution around the stagnant deformed bubble. The primary governing parameter that 

regulates the pressure filed is Eötvös number, where Galilei number also ceases to be effective 

and Reynolds and Froude numbers are no longer influencing parameters. Additionally, for 

Taylor bubble to exist in a horizontal pipe, large values of Eötvös number are needed. Hence, 

for large Eötvös number values, equations (6-34) and (6-35) would lead to the following: 

It can be concluded from (6-37) that linear pressure distribution is responsible for developing 

the stagnant deformed bubble in a horizontal pipe with large Eötvös number.  

In summary, the dimensionless analysis based on both methods discussed, Buckingham-Pi 

theorem and the dimensionless analysis of governing equations, show the following: 

• For the near horizontal cases (70° < 𝛾 < 90°), where the drift velocity is vanishingly 

small, the main physical parameters influencing the flow are the so-called reduced 

Galilei number (𝐺𝑎𝑅) and Eötvös number, with the following magnitudes that  𝐺𝑎𝑅 

should be of order 𝑜 (
𝐷

𝐿𝑇𝐵
) and 𝐸𝑜 should be of the order (

𝐿𝑇𝐵

𝐷
), noticing that the 

Reynolds and Froude numbers are vanishingly small and are no more considered as 

influencing parameters. 

• For the horizontal pipe case, that is for 𝛾 = 90°, the sole governing parameter that 

governs the pressure field distribution around the stagnant deformed bubble is Eötvös 

number (𝐸𝑜). On the other hand, the reduced Galilei number (𝐺𝑎𝑅) is no longer 

considered as an effective governing parameter, whereas Reynolds and Froude numbers 

are no longer considered as influencing parameters.  

0 = 𝑔𝑦
∗ −

𝜕𝑝̅

𝜕𝑦∗
+
 𝐾∗𝜎𝑦

∗

𝐸𝑜
 (6-35) 

𝜕𝑝̅

𝜕𝑥∗
= 0 𝑎𝑛𝑑 

𝜕𝑝̅

𝜕𝑦∗
= 𝑔𝑦

∗ 

(6-36) 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 
𝑑𝑝

𝑑𝑦
= 𝑔𝑦

∗ = 𝑔 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑝 = 𝑔𝑦 + 𝑐 (6-37) 
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Regarding the independence of the cylindrical bubbles’ velocity of the Taylor bubble length 

provided that the bubble is long enough (more than 1.5Dpipe), the effect of the ratio of bubble 

size to the pipe diameter (𝐿𝑇𝐵/𝐷)𝑖 is considerably negligible throughout this study. 

Accordingly, to support the developed logical approach to the problem, the main dynamic 

features of an individual Taylor bubble drifting through stagnant Newtonian liquids in an 

inclined pipe (70° < 𝛾 ≤ 90°) are investigated by applying computational fluid dynamics 

(CFD) simulation.  

6.3   CFD Model Development 

The 3D model, given in chapter 5, is used to simulate the drift of an individual Taylor bubble 

in a near horizontal pipe (70° < 𝛾 < 90°) with stagnant liquid. However, there are some 

modifications done to the model to be applicable to predict the bubble dynamics in these 

inclination angles. This section discusses these modifications adapted to the 3D inclined model 

given in chapter 5. Additionally, in the horizontal pipe case, the developed bubble eventually 

has an infinite length. The problem can be simplified using a 2D-steady solution, where the 

only governing parameter is 𝐸𝑜, which governs the static pressure distribution around the 

stagnant deformed bubble. This simplified 2D model is used as well to predict the bubble 

dynamics in a near horizontal pipe (up to 5° with respect to the horizontal position). Hence, 

this section gives also details about the simplified 2D model. 

 The 3D Inclined Model -Modifications 

In a near horizontal pipe, the developed bubble length increases significantly until it reaches 

an eventually infinite length in a horizontal pipe.  Hence, to ensure the solution is not affected 

by either the boundaries of the pipe (pipe top and bottom) nor by the length of the developed 

Taylor bubble, a larger domain is used in these inclination ranges. Different lengths of the 

computational domain are tested, and it is concluded that a length of 14Dpipe is appropriate to 

simulate most of the cases investigated. The second modification is done to the distance from 

the pipe bottom, given by ℎ𝐵, as shown in Figure 6-1. In chapter 5, it is fixed to 1.5Dpipe in all 

simulations. However, for the near horizontal pipe simulation cases, it is sometimes modified 
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to 3Dpipe for inclination angles (𝛾 = 87°) with respect to the vertical position. However, for 

larger inclination angles (89° ≤ 𝛾 ≤  90), the initial bubble is placed at the centre of the pipe.  

 
 

Figure 6-1. Schematic representation of the computational domain with the initial and boundary conditions 

for (a) 3D inclined model and (b) simplified 2D model. 

 Simplified 2D Model  

Based on the discussion given in section 6.2.2, it can be seen that for the near horizontal pipe, 

the governing equations are 2D. Subsequently, a simplified 2D model is suggested to predict 

the developed Taylor bubble shape in these inclination ranges (up to 5° with respect to the 

horizontal position).  

Figure 6-1 shows a schematic representation of the computational domain with the initial and 

boundary conditions for the 3D inclined model, with the modifications discussed above and 

the simplified 2D model. Details about the computational domain for the inclined pipe 

configuration and the initial bubble shape are discussed in chapter 3. 

The 2D model is considered as xy section in the 3D model. Hence, the 2D solution domain is 

a circle with a diameter (𝐷) and initial Taylor bubble with a diameter (𝐷𝑇𝐵). The effect of 

inclination is given by setting the angle between the pipe’s axis and the gravity vector. 

Subsequently, it can be given through the gravitational vector components. 

(a) (b) 
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The initial and boundary conditions for the 3D inclined model are discussed in detail in chapter 

3 and chapter 5. Referring to Figure 6-1, the boundary conditions are; at the wall no-slip 

condition is applied with  𝑢𝑤𝑎𝑙𝑙 =  𝑣𝑤𝑎𝑙𝑙 =  𝑤𝑤𝑎𝑙𝑙 = 0, and zero normal velocity and zero 

normal gradients for all variables at the symmetry plane. Additionally, all the velocity 

components are set at zero. Moreover, it is worth to mention that different Taylor bubble 

shapes, sizes and locations are tested, and they almost give the same solution for the 2D model. 

The only difference is in the convergence process. However, the selected Taylor bubble initial 

shape and location shows a well-converged solution.  

Lastly, the initial 2D shape is simulated while tracking the developed Taylor bubble shape and 

the maximum squeeze liquid velocity in the liquid film until a steady terminal developed 

bubble shape is reached and a squeeze liquid velocity 𝑢𝑠𝑞𝑢𝑒𝑒𝑧𝑒 reaches a value of 0.01m/s. 

6.4 Results and Discussions 

In this section, the main findings of this chapter are discussed.  The results are divided into two 

main sections; section 6.4.1 covers the near horizontal section for the pipe inclination range of 

70° < 𝛾 < 90°, with the reduced Galilei number and Eötvös number acting as the main 

influencing parameters and section 6.4.2 examines the horizontal pipe section for 𝛾 = 90° with 

Eötvös number being the only influencing parameter. In each section, the dynamics of the 

Taylor bubbles include the final shape of the developed Taylor bubble, the flow field around it 

(streamlines) and the Taylor bubble terminal drift velocity.  

 Near Horizontal Pipe (𝟕𝟎° < 𝛄 < 𝟗𝟎°) 

As explained earlier, the dynamics of the Taylor bubble in this inclination range is governed 

mainly by the reduced Galilei number (𝐺𝑎𝑅) and Eötvös number (𝐸𝑜). To support the results 

of this dimensionless analysis, selected cases with inclination angles of 75° and 85°, Eötvös 

number values of 66 and 100, and Galilei number of 15, 50, and 200 are simulated. Table 6-1 

shows the simulation cases with their corresponding results. These cases are based on the cases 

given in chapter 4. The average predicted ratio of the bubble size to the pipe diameter is given 

by (𝐿𝑇𝐵/𝐷)𝑃𝑟. It should be pointed out that significant elongation in Taylor bubble length has 
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been noticed for this inclination range with an infinite Taylor bubble length established in a 

horizontal pipe. Thus, a longer domain is essential for these cases with pipe length fixed to 

14Dpipe.  

Table 6-1. Simulation cases used to explore the effect of both reduced Galilei number (𝐺𝑎𝑅) and Eötvös 

number (𝐸𝑜) on the dynamics of the Taylor bubble for the inclination angle range of 70° < 𝛾 < 90°, with their 

corresponding results.  

 Effect of Reduced Galileo Number 

The Taylor bubble drift velocity significantly decreases for the pipe inclination range of 70° <

𝛾 < 90°, until the bubble stops moving in the horizontal orientation. Based on that, the reduced 

Galilei number (𝐺𝑎𝑅), which represents the ratio between the gravitational and the viscous 

forces based on characteristic velocity (𝑣𝑠) that treats low Reynolds values, is suggested to 

govern the bubble dynamics. To explore the effect of 𝐺𝑎𝑅 on the dynamics of Taylor bubbles, 

Table 6-1 shows the simulation cases with their corresponding results.  

Figure 6-2 shows the terminal bubble shape and the streamlines in the yz plane for cases 1 and 

3 in Table 6-1 for 𝐺𝑎𝑅 values of 15 and 200. Long, streamlined bubbles are noticed to develop 

for this inclination range for all 𝐺𝑎𝑅 values. The bubble occupies the upper part of the pipe 

with a thinly formed upper liquid film. With regards to cases 1 to 3 in Table 6-1, it can be noted 

that the increase in 𝐺𝑎𝑅 values increases the bubble motion, but generally, all cases has low 

𝐹𝑟𝑣𝑑values.  

Input Parameters Predicted Values 

Case 

No. 
𝜸 𝑬𝒐 𝑮𝒂𝑹 𝑭𝒓𝒗𝒅 (

𝑳𝑻𝑩
𝑫
)
𝑷𝒓

 
Bubble Front region Bubble body region Bubble Tail region 

(
𝒁′𝑰
𝑫
) (

𝒚𝒕𝒊𝒑

𝑫
) (

𝜹𝑳𝑭𝑰
𝑫
) (

𝝉𝑾
𝝆𝑳𝒈𝑫

)
𝒎𝒂𝒙

 (
𝑳𝒎𝒊𝒏𝑰
𝑫
) 

  Reduced Galilei number (𝑮𝒂𝑹) 

1 
75 

66 15 
0.0491 3.876 0.7449 0.2924 0.5007 0.4276 0.4331 

85 0.0262 5.033 0.7194 0.3367 0.5978 0.4405 0.5027 

2 
75 

66 50 
0.0875 3.830 0.7545 0.2937 0.4838 0.4235 0.4364 

85 0.0470 5.008 0.7202 0.3382 0.5985 0.4380 0.5051 

3 
75 

66 200 
0.1602 3.658 0.7613 0.2953 0.4818 0.4151 0.4560 

85 0.0916 4.972 0.7243 0.3390 0.5910 0.4273 0.5122 

Effect of Eötvös number (Eo)  

4 
75 

66 200 
0.1602 3.658 0.7613 0.2953 0.4818 0.4151 0.4560 

85 0.0916 4.972 0.7243 0.3390 0.5910 0.4273 0.5122 

5 
75 

100 200 
0.1696 3.878 0.7626 0.2920 0.4950 0.4138 0.3364 

85 0.1041 5.506 0.7194 0.3345 0.5964 0.4265 0.4009 
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The effect of 𝐺𝑎𝑅 on the main hydrodynamic characteristics of Taylor bubbles in inclined pipes 

is similar to the role of 𝑅𝑒𝑣𝑑 in the inclined pipe cases, discussed in chapter 5. The increase in 

𝐺𝑎𝑅 reduces the length of developed Taylor bubble. The reduction in viscous forces enhances 

larger distances to balance the gravity force in both the bubble nose and tail region 

(
𝑍′𝐼

𝐷
 &
𝐿𝑚𝑖𝑛𝐼
𝐷
). Wider bubble are noticed with higher values of 𝐺𝑎𝑅, which is reflected in lower 

(
𝛿𝐿𝐹𝐼

𝐷
). The dimensionless wall shear stress decreases as 𝐺𝑎𝑅 increases.  

 Effect of Eötvös number 

The effect of Eötvös number on the dynamics of Taylor bubbles in near horizontal cases is 

investigated for cases 4 and 5 in Table 6-1, with a fixed 𝐺𝑎𝑅 value of 200 and Eötvös number 

values of 66 and 100. Streamlined bubbles are also noticed to develop for all 𝐸𝑜 values. Figure 

6-3 shows the effect of 𝐸𝑜 on the bubble shape profile for cases 4 and 5 in Table 6-1. It can be 

noticed that the increase in 𝐸𝑜 values reduces the sizes of the developed bubble as well as 

enhances its elongation. This is reflected into higher values of (
𝛿𝐿𝐹𝐼

𝐷
) with the increase in 

 
 

Figure 6-2. Streamlines in yz plane for the inclination angle range of 75° ≤ 𝛾 < 90° (a) 𝐺𝑎𝑅 = 15, (b) 𝐺𝑎𝑅 =
200,  with 𝐸𝑜 = 66. 

(a) (b) 
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𝐸𝑜 values. Additionally, the increase in 𝐸𝑜 reduces the interaction distances in both the bubble 

nose and tail region (
𝑍′𝐼

𝐷
 &
𝐿𝑚𝑖𝑛𝐼
𝐷
). 

It can be concluded that the bubble motion in this inclination range is considerably low in 

comparison to other inclination angles. The effect of the reduced Galilei number is mainly 

reflected in the bubble’s motion, however, the bubble’s length does not significantly change 

with 𝐺𝑎𝑅. 𝐸𝑜 effect is still vital similar to the other inclination angles. The effect of 𝐸𝑜 can be 

seen in the developed bubble length and size, bubble shape, as well as 𝐹𝑟𝑣𝑑  values. 

Additionally, it is worth mentioning that according to the simulated cases, larger values of 𝐸𝑜 

(𝐸𝑜 ≥ 40) are essential for the Taylor bubble to exist within this inclination range.  

The governing equations, given in section 6.2.2, show that when the pipe inclination 

approaches the horizontal position (𝛾 ≈ 90°), the problem can be approximated using the 2D-

transient analysis. To support this conclusion, for inclination angles of 85°, 87° and 89°, the 

3D transient model is tested against the 2D-transient model, as indicated in Figure 6-4 to Figure 

6-6. It is worth mentioning that 𝐸𝑜 is of order 𝑜 (
𝐿𝑇𝐵

𝐷
) for all these angles of inclination.  

 

Figure 6-3. Bubble shape profile for inclination angle range 75° ≤ 𝛾 < 90° (a) 𝐸𝑜 = 66, (b) 𝐸𝑜 = 100,  with 

𝐺𝑎𝑅 = 200. 
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Figure 6-4.   (a) Developed 3D Taylor bubble shape in the yz plane for inclination angle 85° (𝐸𝑜 = 66 and 𝐺𝑎𝑅 =
200) and (b) bubble shape profile using the 3D-Transient model and the 2D-Transient model. 

 

 

Figure 6-5.   (a) Developed 3D Taylor bubble shape in the yz plane for inclination angle 87° (𝐸𝑜 = 10 and 𝐺𝑎𝑅 =
200) and (b) bubble shape profile using the 3D-Transient model and the 2D-Transient model. 
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Figure 6-6.   (a) Developed 3D Taylor bubble shape in the yz plane for inclination angle 89° (𝐸𝑜 = 200 

and 𝐺𝑎𝑅 = 200) and (b) bubble shape profile using the 3D-Transient model, the 3D-steady model and the 

2D-steady model. 

However, as the inclination angle moves towards the horizontal position, the developed 

bubble’s length becomes significantly large. Hence, for instance, for an angle of 85° 𝐸𝑜 should 

be ≥ 40 to ensure a stable formation of the Taylor bubble, while larger angles, such as 89°, 𝐸𝑜 

should be ≥ 100. It can be generally deduced that the 2D-transient model can offer an 

approximate solution for Taylor bubble shapes for angles of 85° to 87°. However, for larger 

angles (𝛾 = 89°) the solution can be more simplified by using the 2D-steady model. 

 Horizontal Pipe (𝜸 = 𝟗𝟎°) 

As the pipe inclination approaches the horizontal orientation, the bubble velocity diminishes 

until it becomes zero at the horizontal position. In literature, various discussions are describing 

the bubble behaviour in horizontal pipes. For instance, based on the fact that gravity does not 

act in a horizontal direction, Wallis (1969) and Dukler and Hubbard (1975) state that there is 

no bubble motion in a horizontal system. Whereas, others suggest that the bubble propagates 

in the horizontal pipe due to the pressure difference between the top and the bottom of the 
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bubble nose(Weber, 1981; Bendiksen, 1984) which is not the case for the present zero pressure 

gradient analysis. 

In the literature, most of the experimental work measures the bubble velocity at different 

inclinations including the horizontal position either by measuring the liquid drainage velocity 

or by creating an axial pressure gradient, by opening the pipe’s top, that enhances the bubble 

motion (Spedding and Nguyen, 1978; Weber, 1981; Gokcal et al., 2010; Jeyachandra et al., 

2012). However, the main argument is that the Froude number’s estimation should not be based 

on either of these cases. Hence, the present work is based on the real case with zero axial 

pressure gradient analysis in a horizontal pipe.   

In the horizontal pipe case, the developed bubble eventually has an infinite length. The problem 

can be simplified using a 2D-steady solution, where the only governing parameter is 𝐸𝑜, which 

governs the static pressure distribution around the stagnant deformed bubble. A selected case 

with a high 𝐸𝑜 value of 300 is simulated using the 3D-transient model, 3D-steady model and 

the simplified 2D-steady model. As indicated in Figure 6-7, the 2D-steady model successfully 

predicts the developed Taylor bubble shape. 

Additionally, the dimensionless analysis given in section 6.2 shows that pressure distribution 

around the developed stagnant liquid is linear. Hence, to support this conclusion, Figure 6-8 

(a) shows the linear pressure distribution around the developed deformed stagnant Taylor 

bubble in a horizontal pipe using the 2D-steady model.  

Additionally, Figure 6-8 (b) shows the squeeze velocity in the liquid film as vectors around the 

deformed bubble. It can be seen that the simulation is stopped when this velocity is almost 

approaching zero value. 

Finally, using the 2D-steady model, the effect of 𝐸𝑜 on the predicted Taylor bubble can be 

investigated using 𝐸𝑜 values of 300, 500, 700 and 1000. It can be concluded from Figure 6-9, 

that 𝐸𝑜 affects the size of the developed Taylor bubble, where the increase in 𝐸𝑜 leads to a 

more flattened bubble. 
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Figure 6-7.   (a) Developed 3D Taylor bubble shape in the yz plane for horizontal pipe (𝛾 = 90°) with 𝐸𝑜 = 300 

and (b) bubble shape profile using thr 3D-steady model and the 2D-steady model. 
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Figure 6-8.  (a) The pressure distribution around the deformed stagnant Taylor bubble in a horizontal pipe 

horizontal pipe (𝛾 = 90°) with 𝐸𝑜 = 300 and (b) velocity vectors around the deformed Taylor bubble showing the 

squeeze velocity in the liquid film with an enlarged view. 

 

Enlarged view 

(b) 

(a) 
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Figure 6-9.  Effect of 𝐸𝑜 on the bubble shape profile for the horizontal pipe (𝛾 = 90°) using the 2D-steady model 

for 𝐸𝑜 = 300, 𝐸𝑜 = 500, 𝐸𝑜 = 70 and  𝐸𝑜 = 1000. 

6.5 Concluding Remarks 

The main purpose of this chapter is to perform a complete dimensionless analysis of single 

Taylor bubble drifting through a stagnant Newtonian liquid in a near horizontal and horizontal 

pipe, followed by order of magnitude analysis of the equations of motion. The main conclusion 

reached is that different governing parameters appear according to the range of pipe inclination 

angle. For the near horizontal cases (70° < 𝛾 < 90°) the main physical parameters influencing 

the flow are the so-called reduced Galilei number and Eötvös number, while taking into 

consideration that the Reynolds and Froude numbers are vanishingly small and are no longer 

acting as influencing parameters. As for the horizontal pipe case, the pressure field distribution 

around the stagnant deformed bubble is mainly governed by the Eötvös number, where the 

reduced Galilei number ceases to be effective similar to the Reynolds and Froude numbers. 

Using the guideline of the order of magnitude analysis and the dimensionless group analysis, 

a CFD study investigating the dynamics of single Taylor bubble drifting through a stagnant 

Newtonian liquid in an inclined pipe (70° < 𝛾 ≤ 90°) is performed. Specifically, this chapter 

focuses on the main similarity parameters, that is Eötvös number (𝐸𝑜) and the reduced Galilei 

number (𝐺𝑎𝑅). The results focus on discussing the developed Taylor bubble shape, the flow 

field and the Taylor bubble drift velocity. 
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The main findings of this chapter can be summarised as follows: 

• The bubble motion in near horizontal cases is considerably low with significant 

enhancement in the Taylor bubble length. Thus, a larger domain is essential for these 

angles. For the main aim of reducing the computational resources, a simplified 2D 

model, based on the dimensionless analysis developed in this chapter, is suggested to 

give an approximate solution to estimate the developed Taylor bubble shape.  

• Additionally, for the horizontal pipe case, the simplified 2D-steady model effectively 

predicts the developed deformed stagnant Taylor shape and the linear pressure 

distributing around it. 

• Finally, it can be deduced that the developed numerical results agree well with the order 

of magnitude analysis. For horizontal pipes, 𝐸𝑜 shows different order of magnitude 

based on a large length of developed Taylor bubble, where larger 𝐸𝑜 values are essential 

for a stable Taylor bubble to exist (𝐸𝑜 ≥ 200). By using the simplified 2D model, 𝐸𝑜 

is the only governing parameter that significantly affects the developed Taylor bubble 

shape and size.  

 



 

 

 Conclusions and Recommendations 

This chapter summarises the conclusions drawn from this study together with proposed 

recommendations for future work. It also outlines the contributions and the new insights 

obtained from this study. 
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7.1 Discussion 

The main aim of this thesis, as described in chapter 1, is performing a better understanding of 

slug flow in pipes. The slug flow is considered a complex, intermitted and challenging flow 

encountered in gas-liquid flow in pipes. The thesis focuses on studying the rise of an individual 

Taylor bubble through a stagnant liquid in pipes, which is considered an essential characteristic 

part of the slug flow regime in pipes. Understanding the governing parameters and the 

hydrodynamic characteristics of Taylor bubble flow are considered an essential characteristics 

part for the successful operation, simulation and optimisation of any system encountering slug 

flow.  

The work given in chapter 2 presents a critical review on gas-liquid slug flow in pipes, 

specifically to the rise of Taylor bubbles in pipes with stagnant liquid. Based on this review, 

many studies investigate the problem of the rise of Taylor bubbles through a stagnant liquid in 

pipes by a number of dimensionless groups. These groups are Froude, Eötvös and Morton 

numbers. In some cases, other dimensionless groups are used as Archimedes number. It can be 

concluded that there is a lack of performing an accurate theoretical treatment to the problem. 

To the best of this author’s knowledge, none of the studies investigates the problem using the 

order of magnitude analysis of equations of motions. This type of analysis is important for the 

visualisation of the real parameters or groups that influence the equations of motion. Besides, 

it is important for developing a phenomena-logical approach to the physical problem that can 

bring up useful relations between the system parameters. In addition, the order of magnitude 

analysis along with the dimensional analysis provides a way to show the relative merits of the 

different terms available in the governing equations, which makes the understanding of the 

problem more pronounced and any simplifications to the governing equations, if available, 

more reliable. 

To achieve the main aim of the thesis a number of objectives are given in chapter 1. These 

objectives are achieved throughout the thesis and they are summarised in the following 

paragraphs.  

Based on the literature review given in chapter 2, some studies conclude that the Taylor bubble 

flow starts to experience instabilities when the pipe’s inclination reaches approximately 70°. 
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This is the reason for selecting a criterion for the pipe inclination ranges given in chapter 4, 5 

and 6. The main objective, which is performing complete dimensionless analysis to the rise of 

Taylor bubble through a stagnant liquid in a vertical and inclined pipe, covering inclination 

range of 0 ≤ γ ≤ 90° with respect to the vertical position, is achieved at the beginning of 

chapters 4,5 and 6. Due to the nature of the problem, the N-S equations of motion has to be 

placed in different coordinate systems to suit the physical and geometrical nature of the 

problem under consideration and its boundary conditions. For this reason, three separate 

dimensionless analysis are given in chapters 4 to 6, covering the vertical and inclined pipe.   

The second objective, which is using the guideline of the order of magnitude analysis and the 

dimensionless group analysis to perform CFD study investigating the dynamics of single 

Taylor bubble drifting through a stagnant liquid in pipe, is achieved in the second part of 

chapters 4 to 6. The results cover the three main regions of the flow field, including bubble 

nose, bubble body and bubble tail regions.  

Chapter 3 covers the CFD model details, verification and validation. In chapter 3, two models 

are discussed in detail, covering the basic model for the vertical pipe case that assumes 2D 

axisymmetric flow, and the inclined model that is 3D with a symmetry plane model. It is known 

that two-phase CFD simulations require much longer run-times than single-phase flow. A 

discussion on the different reference frames, including the fixed and moving reference frames, 

and the compuattaional resources is given in chapter 3.  

The CFD model is validated against published benchmark studies for some of the main 

hydrodynamic characteristics of the vertical and inclined pipe cases. For the vertical pipe case, 

the main limitation of the reliability of the experimental data is noticed in the wake 

measurements, where they use dye for wake measurements that is unable to consider the wake 

in the concave rear of the bubble. This was overcome by the simulations that accounted for the 

wake clearly in the whole concave bubble rear.  On the other side, for the inclined pipe case, 

the main conclusion noticed is the differences in the experimental and theoretical prediction of 

Taylor bubble velocity, specifically in the near horizontal pipe cases. This is clealy discussed 

in chapter 6, where the last objective, which is understanding the flow of Taylor bubbles in the 

neighborhood of horizontal pipes, where the drift velocity becomes significantly slow and 

almost approaching zero at the horizontal pipe case, is achieved. Finally, based on the 
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discussion given in chapter 3, the CFD model shows good correspondence when tested against 

other important experimental and theoretical data in the literature.  

Based on the results developed in chapter 4, the third objective, which is suggesting 

correlations for Taylor bubble drift velocity and the wall shear stress to support other important 

theoretical and experimental work available in the literature, is achieved. An important issue is 

the reliability of the developed correlations that is tested by evaluating the goodness of the fit 

(checking the error using SSE, R-square and Root mean square) and checking the confidence 

and the prediction bonds.  

An important issue is the implementation of the study performed in the thesis to the 

oil/gas/offshore industrial applications. It can be seen that the present study can be extended to 

real oil and gas production system as far as the moving fluid flow Reynolds number in these 

applications is practically small as is the case for dense liquids available in these systems. 

Accordingly, the stagnant liquid under investigation in the present work can to some extent 

predict the actual practical conditions. It is to be noted that Reynolds number can be calculated 

for dense liquids and their velocities available in the industry to show the low values of 

Reynolds number.  

7.2 Conclusions 

The main outcomes of this thesis are summarised as follows: 

1. The rise of an individual Taylor bubble in a vertical pipe 

• The dimensionless analysis showed that the main dimensionless parameters that govern 

the problem are 𝑅𝑒𝑈𝑇𝐵, 𝐹𝑟𝑈𝑇𝐵 and 𝐸𝑜 numbers and it is useless to use a dimensionless 

number like Morton number that does not seem to have a direct physical meaning.  

• Based on this analysis, the main hydrodynamic features of rising of an individual Taylor 

bubble through stagnant vertical Newtonian liquid were investigated by applying 

computational fluid dynamics (CFD) simulation using the volume-of-fluid (VOF) 

methodology implemented in the commercial software ANSYS Fluent. The dynamics of 
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Taylor bubbles covered the Taylor bubble rise velocity, Taylor bubble shape, liquid film 

region and wake region.  

• Eo showed a significant effect on all hydrodynamic features of Taylor bubbles. Mainly, 

the increase in surface tension increases the curvature of the bubble nose. Accordingly, 

the liquid film thickness increases, which in turns decreases the dimensionless velocity 

of fully developed falling liquid film. This would finally lead to increase in the wake 

intensity and size. Strong correspondence was noticed when comparing the numerical 

results for the flow in the liquid film with the theoretical predictions given by Brown 

(1965). 

• 𝑅𝑒𝑈𝑇𝐵 showed a similar contribution to 𝐸𝑜 number. The effect of 𝑅𝑒𝑈𝑇𝐵 is mainly noticed 

in the developed Taylor bubble shape where the shape alters from the long slender shape 

into shorter and flatter bubbles with the increase in 𝑅𝑒𝑈𝑇𝐵. Subsequently, this results in a 

reduction in the liquid film thickness.  

• Additionally, the increase in 𝑅𝑒𝑈𝑇𝐵 consequences to a less viscous effect in the liquid 

surrounding the Taylor bubble that causes a decrement in wall shear stress. However, the 

wall shear stress increased with 𝐸𝑜. Though, it should be pointed out that lower values 

of 𝐸𝑜 possessed different distribution for the wall shear stress with noticeable peak value 

right before the Taylor bubble rear due to the sharp flat and convex shape of the bubble 

attained at lower values of 𝐸𝑜. According to the developed numerical results, a proposed 

correlation to predict the maximum wall shear stress was developed and predicted results 

favourably matching with the theoretical predictions of  Brown (1965).  

• Furthermore, a phase diagram showing the presence and nature of wake and of the shape 

of the rear Taylor bubble was developed. For 𝐸𝑜 > 200, unstable bubbles were 

developed which were characterized by the presence of small bubbles shedding off from 

main Taylor bubble into wake region.  

• Finally, based on the numerical results and using guidelines from the order of magnitude 

analysis, a correlation to estimate Taylor bubble rise velocity (𝑈𝑇𝐵) as a function of only 
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𝐸𝑜 and 𝑅𝑒𝑈𝑇𝐵 was proposed and showed good prediction when compared with other well-

known correlations in literature, especially with Viana et al. (2003)’s correlation.  

2. The rise of an individual Taylor bubble in an inclined pipe 

• The dimensionless analysis showed that different governing parameters appear according 

to the range of pipe inclination angle. For inclination range of 0 ≤ 𝛾 ≤ 70°; the problem 

is mainly governed by Froude, Eötvös and Reynolds numbers. As for near horizontal 

cases (70° < 𝛾 < 90°) the main physical parameters influencing the flow are the so-

called reduced Galilei number and Eötvös number while taking into consideration that 

the Reynolds and Froude numbers are vanishingly small and are no longer acting as 

influencing parameters. Finally, for the horizontal pipe case, the pressure field 

distribution around the stagnant deformed bubble is mainly governed by the Eötvös 

number, where the reduced Galilei number ceases to be effectively similar to the 

Reynolds and Froude numbers. 

• Using the guideline of the order of magnitude analysis and the dimensionless group 

analysis, a CFD study investigating the hydrodynamics of a single Taylor bubble drifting 

through a stagnant Newtonian liquid in an inclined pipe was performed. Particularly, the 

current study focused on the main similarity parameters, that is Froude number (𝐹𝑟𝑣𝑑), 

Reynolds number (𝑅𝑒𝑣𝑑), Eötvös number (𝐸𝑜) and the reduced Galilei number (𝐺𝑎𝑅). 

The main hydrodynamic characteristics included the developed Taylor bubble shape, the 

flow field and the Taylor bubble drift velocity. 

• The bubble motion followed the “peculiar trend” with the inclination angle, where the 

bubble velocity increases with inclination angle until it reaches a maximum value, then 

it starts to decrease once again. Bubble elongation was noticed with the increase in the 

inclination of the pipe. 

• The effect of 𝐸𝑜 was mainly reflected in both the bubble shape and velocity. The shape 

of the bubble tail was altered from a convex into a concave structure reflecting into wider 

wakes with the increase in 𝐸𝑜. The bubble drift velocity was increased due to the 

gravitational potential increment as a result of an increase in 𝐸𝑜 values. Additionally, 
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with larger 𝐸𝑜 values, there was a tendency of change in maximum Froude number values 

with a larger inclination angle. 

• 𝑅𝑒𝑣𝑑 showed a similar effect to 𝐸𝑜 where the increase in 𝑅𝑒𝑣𝑑 altered the bubble shape 

from the long slender bubble into shorter and flatter ones. Blunter bubble nose was 

observed at low 𝑅𝑒𝑣𝑑, which subsequently led to a reduction in the bubble motion. 

• As for 𝐺𝑎𝑅, it mainly affected the bubble motion with a negligible effect on the bubble 

shape. The increase of gravitational forces due to the increase in 𝐺𝑎𝑅, increased the 

bubble motion, but generally, all cases had low 𝐹𝑟𝑣𝑑values.  

• In a near horizontal pipe, the bubble motion was considerably low with significant 

enhancement in the Taylor bubble length. Thus, a larger domain was essential for this 

inclination range. Aiming to reduce the computational resources, a simplified 2D model, 

based on the dimensionless analysis, was suggested to give an approximate solution to 

estimate the developed Taylor bubble shape.  

• Moreover, it can be realised that the developed numerical results agreed well with the 

order of magnitude analysis. For horizontal pipes, 𝐸𝑜 showed different order of 

magnitude based on a large length of developed Taylor bubble, where larger 𝐸𝑜 values 

were essential for a stable Taylor bubble to exist (𝐸𝑜 ≥ 200). By using the simplified 

2D model, 𝐸𝑜 was the only governing parameter that significantly affected the developed 

Taylor bubble shape and size.  

• Furthermore, the simulation results showed a reasonable agreement when tested against 

the previous experimental data and the main correlations available in the literature. It can 

be noticed that further improvements are still necessary for predicting the Taylor bubble 

drift velocity. 

Finally, the study reported here is an attempt to provide a theoretical treatment of Taylor bubble 

flow problem and to support this treatment by performing a CFD study to investigate the flow 

features and characteristics consequently to provide a deeper understanding of its relevant 

parameters.  
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7.3 Contributions of the Study 

The novelty of this study is developing a better theoretical understanding of the problem of 

Taylor bubble flow in vertical and inclined pipes in terms of the governing forces and their 

orders of magnitudes. This is supported by a CFD study that investigates the effect of the main 

governing parameters on the dynamics of the Taylor bubbles. The theoretical and CFD 

treatments developed in this thesis are essential for the understanding of governing forces that 

affect the flow features of Taylor bubble flow in pipes, which is essential characteristics part 

for the successful operation, simulation and optimisation of any system encountering slug flow. 

 The contributions of the study at hand are outlined as follows: 

1. For Taylor bubble flow in a vertical pipe, the dimensionless analysis followed by order 

of magnitude analysis of Navier-Stokes equations of motion shows that the main 

parameters affecting the dynamics of Taylor bubble are Froude number, Reynolds 

number and Eötvös number. 

2. The flow field in Taylor bubble flow in a vertical pipe is numerically investigated 

within three flow regions in Taylor bubble nose, liquid film and wake region. 

3. Correlations for the Taylor bubble rise velocity in a vertical pipe, and the wall shear 

stress distribution is proposed, which showed a deviation of ±10% from the well-known 

correlations in the literature. 

4. For Taylor bubble flow in an inclined pipe, the dimensionless analysis of Navier-Stokes 

equations of motion shows that the main parameters affecting the dynamics of Taylor 

bubble are Froude, Eötvös and Reynolds numbers for the inclination angle range of 0 ≤

𝛾 ≤ 70°.  

5. For the near horizontal cases (70° < 𝛾 < 90°), where the drift velocity is vanishingly 

small, the main physical parameters influencing the flow are the reduced Galilei number 

and Eötvös number, while taking into consideration that the Reynolds and Froude 

numbers are vanishingly small and are no longer acting as influencing parameters. 

6. For the horizontal pipe case, that is for 𝛾 = 90°, the sole governing parameter that 

governs the pressure field distribution around the stagnant deformed bubble is Eötvös 
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number. The reduced Galilei number ceases to be effective, whereas Reynolds and 

Froude numbers are no longer influencing parameters.  

7. A simplified 2D model is suggested to solve the challenging problem of the three-

dimensional Taylor bubble in the near horizontal and horizontal pipes to get quick 

solution. 

7.4 Recommendations  

This research is proposed to give a better understanding of the problem of Taylor bubble motion 

in pipes. Though due to the limited computational resource available, this research still has 

some shortcomings, and the numerical analysis for Taylor bubble flow was carried out under 

only a limited range of operating conditions.  

The analysis created in this work is only a start; it is essential that further studies are conducted 

across more dimensionless physical parameters and different contexts to allow a more 

comprehensive understanding of the problem. Recommendations for further improvements to 

the CFD tool and the operating conditions are outlined below.  

The adopted CFD method used in this study is computationally demanding, and hence, 

improvement in the computational efficiency and reduction in the execution time are essential 

to be further considered.  

The thesis focused on treating the basic Taylor bubble flow problem, where the surrounding 

liquid is stagnant, to build a deeper physical understanding of the problem. Further 

recommendations include performing a similar analysis to more practical cases that include 

flowing liquid rather than a stagnant one. Hence, in such cases, turbulence needs to be 

considered. Detached eddy simulations (DES) and large eddy simulations (LES) would rather 

be considered than the unsteady RANS CFD simulations performed in this work. 

One of the limitations of the current work under consideration is the absence of any roughness 

(debris) and/or waviness in the pipe wall for the sensitivity of the analysis to be examined 

against geometrical defects. In addition, the liquid phase in the present analysis is considered 

to be pure that is free from any fine solid particles.  
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Concerning the hydrodynamic features of Taylor bubbles, some important questions are still 

open. Firstly, the maximum Eötvös number at which Taylor bubble exists in the inclined pipe 

still needs to be further investigated. Based on the developed results, Eötvös number varies 

according to the pipe inclination range and significantly increases in near horizontal pipes. 

Secondly, the flow characteristics for consecutive Taylor bubbles should also be assessed in 

inclined pipes for which there is a considerable lack of available data. Thirdly, it is worth noting 

that placing the inverse viscosity number (𝑁𝑓) instead of 𝑅𝑒𝑈𝑇𝐵 to judge turbulence or the 

onset of hydrodynamic instability in vertical pipes is debatable. Fundamentally, 𝑁𝑓  effectively 

is the ratio of the gravity force to the viscous force, which can hardly be indicative of the onset 

of turbulence. As discussed in chapter 4, it is also to be noted that large values of 𝑁𝑓 cannot 

only be attributed to large values of 𝑅𝑒𝑈𝑇𝐵 but to small values of 𝐹𝑟𝑈𝑇𝐵  too. The similarity 

requirements posed by Froude and Reynolds numbers can typically not be satisfied 

simultaneously. 

This study suggests the following critical points for future investigation regarding slug flow in 

pipes: 

1. The flow of Taylor bubbles in a bend connecting two vertical pipes, 

2. The transport of solids in Taylor bubble wakes. 

3. Although the research on the flow of Taylor bubbles through complex liquids in 

inclined pipes (Non-Newtonian fluids) has already started to take place in the literature, 

yet further analysis is still needed. 
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Appendices 

 Buckingham-Pi Theorem-Vertical Pipe Case 

The hydrodynamic characteristics of gas-liquid slug flow are governed by viscous, inertial, 

gravitational and interfacial forces. Using the Buckingham-Pi theorem, the Taylor bubble rise 

velocity can be expressed as follows: 

According to relation A–1, the number of relevant variables (𝑛) is 9, the number of repeating 

variables (𝑘) (scaling independent dimensions) is 3 (𝑀, 𝐿 and 𝑇) and the number of 

dimensionless groups (𝛱𝑠), 𝑛 − 𝑘 = 6. This result in the following set of dimensionless 

groups: 

where 𝑀 is the mass, 𝐿 is the length and 𝑇 is the time. The three repeating variables (𝑘), are 

given by 𝑎, 𝑏 and 𝑐. According to the MLT system, these parameters are chosen to make each 

of the above relations in a dimensionless form, and given by 𝐷, 𝜇𝐿 and 𝜌𝐿. The dimensions are 

defined as follows: 

𝑈𝑇𝐵 = 𝑓 [𝜌𝐿 , 𝜌𝐺 , 𝜇𝐿 , 𝜇𝐺 , 𝑔,  𝐿𝑇𝐵, 𝐷, 𝜎] A–1 

𝛱1 = 𝐿𝑇𝐵 𝐷 𝜇𝐿  𝜌𝐿 A–2 

𝛱2 = 𝜎 𝐷 𝜇𝐿  𝜌𝐿 A–3 

𝛱3 = 𝑔 𝐷 𝜇𝐿  𝜌𝐿 A–4 

𝛱4 = 𝑈𝑇𝐵  𝐷 𝜇𝐿  𝜌𝐿 A–5 

𝛱5 = 𝜌𝐺  𝐷 𝜇𝐿  𝜌𝐿 A–6 

𝛱6 = 𝜇𝐺  𝐷 𝜇𝐿  𝜌𝐿 A–7 

𝜌 = 𝑀𝐿−3 

A–8 𝜇 = 𝑀𝐿−1𝑇−1 
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Accordingly, the relations A–2 to A–7 are resolved as follows: 

According to relation A–6: 

According to relation A–5: 

According to relation A–4: 

𝑔 = 𝐿𝑇−2 

𝐿𝑇𝐵 = 𝐿 

𝐷 = 𝐿 

𝜎 = 𝑀𝑇−2 

𝑈𝑇𝐵 = 𝐿𝑇
−1 

𝛱6 = 𝑀
0𝐿0𝑇0 = (𝑀𝐿−1𝑇−1)(𝐿)𝑎6(𝑀𝐿−1𝑇−1)𝑏6(𝑀𝐿−3)𝑐6 

A–9 

𝑀0𝐿0𝑇0 = 𝐿−1+𝑎6−𝑏6−3𝑐6𝑀1+𝑏6+𝑐6𝑇−1−𝑏6 

𝑏6 = −1, 𝑐6 = 0 and 𝑎6 = 0 

𝛱6 = 𝜇𝐺𝜇𝐿
−1 =

𝜇𝐺
𝜇𝐿

 

𝛱5 = 𝑀
0𝐿0𝑇0 = (𝑀𝐿−3)(𝐿)𝑎5(𝑀𝐿−1𝑇−1)𝑏5(𝑀𝐿−3)𝑐5 

A–10 

𝑀0𝐿0𝑇0 = 𝐿−3+𝑎5−𝑏5−3𝑐5  𝑀1+𝑏5+𝑐5  𝑇−𝑏5 

𝑏5 = 0, 𝑐5 = −1 and 𝑎5 = 0 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒  𝛱5 = 𝜌𝐺𝜌𝐿
−1 =

𝜌𝐺
𝜌𝐿

 

𝛱4 = 𝑀
0𝐿0𝑇0 = (𝐿𝑇−1)(𝐿)𝑎4(𝑀𝐿−1𝑇−1)𝑏4(𝑀𝐿−3)𝑐4 

A–11 

𝑀0𝐿0𝑇0 = 𝐿1+𝑎4−𝑏4−3𝑐4  𝑀𝑏4+𝑐4𝑇−1−𝑏4 

𝑏4 = −1, 𝑐4 = 1 and 𝑎4 = 1 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒  𝛱4 =
𝜌𝐿𝑈𝑇𝐵𝐷

𝜇𝐿
 

𝛱3 = 𝑀
0𝐿0𝑇0 = (𝐿𝑇−2)(𝐿)𝑎3(𝑀𝐿−1𝑇−1)𝑏3(𝑀𝐿−3)𝑐3 

A–12 

𝑀0𝐿0𝑇0 = 𝐿1+𝑎3−𝑏3−3𝑐3  𝑀𝑏3+𝑐3𝑇−2−𝑏3 

𝑏3 = −2, 𝑐3 = 2 and 𝑎3 = 3 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝛱3 = 𝑔𝜇𝐿
−2𝜌𝐿

2𝐷3 =
𝑔𝜌𝐿

2𝐷3

𝜇𝐿
2
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According to relation A–3: 

And finally, according to relation A–2: 

The final step is setting out the dimensionless relationship and rearranging the terms, which is 

done through the following steps: 

And since  

𝛱2 = 𝑀
0𝐿0𝑇0 = (𝑀𝑇−2)(𝐿)𝑎2(𝑀𝐿−1𝑇−1)𝑏2(𝑀𝐿−3)𝑐2 

A–13 

𝑀0𝐿0𝑇0 = 𝐿𝑎2−𝑏2−3𝑐2  𝑀1+𝑏2+𝑐2𝑇−2−𝑏2 

𝑏2 = −2, 𝑐2 = 1 and 𝑎2 = 1 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝛱2 = 𝜎𝐷𝜇𝐿
−2𝜌𝐿 =

𝜎𝐷𝜌𝐿
𝜇𝐿
2

 

𝛱1 = 𝑀
0𝐿0𝑇0 = (𝐿)(𝐿)𝑎1(𝑀𝐿−1𝑇−1)𝑏1(𝑀𝐿−3)𝑐1 

A–14 

𝑀0𝐿0𝑇0 = 𝐿1+𝑎1−𝑏1−3𝑐1  𝑀𝑏1+𝑐1𝑇−𝑏1 

𝑏1 = 0, 𝑐1 = 0 and 𝑎1 = −1 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝛱1 =
𝐿𝑇𝐵
𝐷

 

𝛱3
𝛱2
= (
𝑔𝜌𝐿

2𝐷3

𝜇𝐿
2 ) (

𝜇𝐿
2

𝜎𝐷𝜌𝐿
) =

𝑔𝜌𝐿𝐷
2

𝜎
= 𝐸𝑜 A–15 

𝛱3

𝛱2
3 = (

𝑔𝜌𝐿
2𝐷3

𝜇𝐿
2 ) (

𝜇𝐿
2

𝜎𝐷𝜌𝐿
)

3

=
𝑔𝜇𝐿

4

𝜎3𝜌𝐿
= 𝑀 

A–16 

𝛱4
2

𝛱3
= (
𝜌𝐿𝑈𝑇𝐵𝐷

𝜇𝐿
)
2

 (
𝜇𝐿
2

𝑔𝜌𝐿
2𝐷3
) =

𝑈𝑇𝐵
2

𝑔𝐷
= √𝐹𝑟𝑈𝑇𝐵 = 𝐹𝑟𝑈𝑇𝐵 

A–17 

𝛱4 = 𝑅𝑒𝑈𝑇𝐵 =
𝜌𝐿𝑈𝑇𝐵𝐷

𝜇𝐿
, 𝐹𝑟𝑈𝑇𝐵

4 =
𝑅𝑒𝑈𝑇𝐵

4𝜇𝐿
4

𝜌𝐿
4𝐷4𝑔2𝐷2

,  𝑔2 =
𝑅𝑒𝑈𝑇𝐵

4𝜇𝐿
4

𝜌𝐿
4𝐷6𝐹𝑟𝑈𝑇𝐵

4 

A–18 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝐹𝑟𝑜𝑚 𝐴– 15  𝐸𝑜3 =
𝑔3𝜌𝐿

3𝐷6

𝜎3
= (
𝑔2𝜌𝐿

4𝐷6

𝜇𝐿
4 )(

𝑔𝜇𝐿
4

𝜌𝐿𝜎
3) = (

𝑔2𝜌𝐿
4𝐷6

𝜇𝐿
4 )𝑀 

𝐸𝑜3 = (
𝜌𝐿
4𝐷6

𝜇𝐿
4 )(

𝑅𝑒𝑈𝑇𝐵
4𝜇𝐿

4

𝜌𝐿
4𝐷6𝐹𝑟𝑈𝑇𝐵

4)𝑀 = (
𝑅𝑒𝑈𝑇𝐵
𝐹𝑟𝑈𝑇𝐵

)

4

𝑀 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 
𝑅𝑒𝑈𝑇𝐵
𝐹𝑟𝑈𝑇𝐵

 = (
𝐸𝑜3

𝑀
)

1/4
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However,  

Therefore, 

From equation A–20, it is correspondent to say that the Froude number can be given by: 

Using equation A–18, it can be shown in this respect that Morton number (𝑀) does not 

represent any particular physical quantity as it can be written as:  

Where the inverse viscosity number (𝑁𝑓) is defined as: 

Thus, equation A–20 can be represented as: 

𝑅𝑒𝑈𝑇𝐵
𝐹𝑟𝑈𝑇𝐵

=
𝜌𝐿𝑈𝑇𝐵𝐷

𝜇𝐿
×
𝑔1/2𝐷1/2

𝑈𝑇𝐵
=
𝜌𝐿𝑔

1/2𝐷3/2

𝜇𝐿
= (
𝜌𝐿
2𝑔𝐷3

𝜇𝐿
2 )

1/2

=
√𝑔𝐷3

𝜈𝐿
= 𝑁𝑓 

A–19 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑁𝑓 =
𝑅𝑒𝑈𝑇𝐵
𝐹𝑟𝑈𝑇𝐵

= (
𝐼𝑛𝑒𝑟𝑡𝑖𝑎 𝑓𝑜𝑟𝑐𝑒

𝑉𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒
)(
𝐺𝑎𝑟𝑣𝑖𝑡𝑦 𝑓𝑜𝑟𝑐𝑒

𝐼𝑛𝑒𝑟𝑡𝑖𝑎 𝑓𝑜𝑟𝑐𝑒
) =

𝐺𝑎𝑟𝑣𝑖𝑡𝑦 𝑓𝑜𝑟𝑐𝑒

𝑉𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒
 

𝛱4
2

𝛱3
= 𝑓 [

𝛱3
𝛱2

 ,
𝛱3

𝛱2
3  ,
1

𝛱5
,
1

𝛱6
,  𝛱1] 

A–20 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒  
𝑈𝑇𝐵

2

𝑔𝐷
= 𝑓 [𝐸𝑜 =

𝑔𝜌𝐿𝐷
2

𝜎
,𝑀 =

𝑔𝜇𝐿
4

𝜎3𝜌𝐿
 , 𝛤𝜌 = 

𝜌𝐿
𝜌𝐺
, 𝛤𝜇 =

𝜇𝐿
𝜇𝐺
,
𝐿𝑇𝐵
𝐷

 ] 

𝐹𝑟𝑈𝑇𝐵 =
𝑈𝑇𝐵

√𝑔𝐷
= 𝑓1 [𝐸𝑜 =

𝑔𝜌𝐿𝐷
2

𝜎
,𝑀 =

𝑔𝜇𝐿
4

𝜎3𝜌𝐿
 , 𝛤𝜌 = 

𝜌𝐿
𝜌𝐺
, 𝛤𝜇 =

𝜇𝐿
𝜇𝐺
,
𝐿𝑇𝐵
𝐷

 ] A–21 

𝑀 = (
𝐹𝑟𝑈𝑇𝐵
𝑅𝑒𝑈𝑇𝐵

)

4

𝐸𝑜3 =
𝐸𝑜3

𝑁𝑓4
 A–22 

𝑁𝑓 =
𝑅𝑒𝑈𝑇𝐵
𝐹𝑟𝑈𝑇𝐵

=
𝜌𝐿(𝑔𝐷

3)0.5

𝜇𝐿
 A–23 

𝐹𝑟𝑈𝑇𝐵 =
𝑈𝑇𝐵

√𝑔𝐷
= 𝑓 [𝐸𝑜 , (

𝐹𝑟𝑈𝑇𝐵
𝑅𝑒𝑈𝑇𝐵

)

4

 𝐸𝑜3,
𝜌𝐿
𝜌𝐺

 ,
𝜇𝐿
𝜇𝐺
,
𝐿𝑇𝐵
𝐷

 ] 

A–24 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒  𝐹𝑟𝑈𝑇𝐵 =
𝑈𝑇𝐵

√𝑔𝐷
= 𝑓2 [𝐸𝑜 , 𝑁𝑓 ,

𝜌𝐿
𝜌𝐺

 ,
𝜇𝐿
𝜇𝐺
,
𝐿𝑇𝐵
𝐷

 ] 
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It can be easily shown here that using the Buckingham-Pi theorem can lead to the same form 

of the dimensionless groups with Morton number replaced by Reynolds number that is given 

by: 

𝐹𝑟𝑈𝑇𝐵 =
𝑈𝑇𝐵

√𝑔𝐷
= 𝑓3 [𝐸𝑜 =

𝑔𝜌𝐿𝐷
2

𝜎
 , 𝑅𝑒𝑈𝑇𝐵 =

𝜌𝐿𝑈𝑇𝐵𝐷

𝜇𝐿
 , 𝛤𝜌 = 

𝜌𝐿
𝜌𝐺
, 𝛤𝜇 =

𝜇𝐿
𝜇𝐺
,
𝐿𝑇𝐵
𝐷

 ] A–25 
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 Buckingham-Pi Theorem-Inclined Pipe Case 

Using the Buckingham-Pi theorem, the Taylor bubble drift velocity (𝑣𝑑) can be expressed as 

follows: 

The effect of inclination is introduced in the gravitational acceleration (𝑔), that can have three 

components 𝑔𝑥, 𝑔𝑦 and 𝑔𝑧. According to relation B–1, the number of relevant variables (𝑛) is 

7, the number of repeating variables (𝑘) (scaling independent dimensions) is 3(𝑀, 𝐿 and 𝑇) 

and the number of dimensionless groups (𝛱𝑠), 𝑛 − 𝑘 = 4. This result in the following set of 

dimensionless groups: 

where 𝑀 is the mass, 𝐿 is the length and 𝑇 is the time. The three repeating variables (𝑘), are 

given by 𝑎, 𝑏 and 𝑐. According to the MLT system, these parameters are chosen to make each 

of the above relations in a dimensionless form and given by 𝜌𝐿, 𝜇𝐿 and 𝐷. The dimensions are 

defined as follows: 

Accordingly, the relations B–2 to B–5 are resolved as follows: 

𝑣𝑑 = 𝑓 [𝜌𝐿 , 𝜇𝐿 , 𝑔, 𝜎,  𝐿𝑇𝐵, 𝐷] B–1 

𝛱1 = 𝑔 𝜌𝐿
𝑎1 𝜇𝐿

𝑏1𝐷𝑐1   B–2 

𝛱2 = 𝑣𝑑  𝜌𝐿
𝑎2 𝜇𝐿

𝑏2𝐷𝑐2 B–3 

𝛱3 = 𝜎 𝜌𝐿
𝑎3 𝜇𝐿

𝑏3𝐷𝑐3 B–4 

𝛱4 = 𝐿𝑇𝐵 𝜌𝐿
𝑎4 𝜇𝐿

𝑏4𝐷𝑐4 B–5 

𝜌 = 𝑀𝐿−3 

B–6 

𝜇 = 𝑀𝐿−1𝑇−1 

𝑔 = 𝐿𝑇−2 

𝐿𝑇𝐵 = 𝐿 

𝐷 = 𝐿 

𝜎 = 𝑀𝑇−2 

𝑣𝑑 = 𝐿𝑇
−1 
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According to relation B–3: 

From relations B–7 and B–8, it can be shown that  

According to relation B–4: 

From relations B–7 and B–10, it can be shown that: 

Lastly, according to relation B–5: 

𝛱1 = 𝑀
0𝐿0𝑇0 = (𝐿𝑇−2)(𝑀𝐿−3)𝑎1(𝑀𝐿−1𝑇−1)𝑏1(𝐿)𝑐1 

B–7 

𝑀0𝐿0𝑇0 = 𝐿1−3𝑎1−𝑏1+𝑐1  𝑀𝑎1+𝑏1  𝑇−2−𝑏1 

𝑏1 = −2, 𝑎1 = 2 and 𝑐1 = 3 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝛱1 = 𝑔 𝜌𝐿
2 𝜇𝐿

−2𝐷3 =
𝑔 𝜌𝐿

2𝐷3

 𝜇𝐿
2

 

𝛱2 = 𝑀
0𝐿0𝑇0 = (𝐿𝑇−1)(𝑀𝐿−3)𝑎2(𝑀𝐿−1𝑇−1)𝑏2(𝐿)𝑐2 

B–8 

𝑀0𝐿0𝑇0 = 𝐿1−3𝑎2−𝑏2+𝑐2  𝑀𝑎2+𝑏2  𝑇−1−𝑏2 

𝑏2 = −1, 𝑎2 = 1 and 𝑐2 = 1 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝛱2 = 𝑣𝑑  𝜌𝐿
1 𝜇𝐿

−1𝐷1 =
𝜌𝐿𝑣𝑑𝐷

𝜇𝐿
= 𝑅𝑒𝑣𝑑 

𝛱2

𝛱1
1/2
=
𝜌𝐿𝑣𝑑𝐷

𝜇𝐿
× 

𝜇𝐿
𝜌𝐿(𝑔 𝐷

3)1/2
=

𝑣𝑑
(𝑔𝐷)1/2

= 𝐹𝑟𝑣𝑑 B–9 

𝛱3 = 𝑀
0𝐿0𝑇0 = (𝑀𝑇−2)(𝑀𝐿−3)𝑎3(𝑀𝐿−1𝑇−1)𝑏3(𝐿)𝑐3 

B–10 

𝑀0𝐿0𝑇0 = 𝐿−3𝑎3−𝑏3+𝑐3  𝑀1+𝑎3+𝑏3  𝑇−2−𝑏3 

𝑏3 = −2, 𝑎3 = 1 and 𝑐3 = 1 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝛱3 = 𝜎 𝜌𝐿
1 𝜇𝐿

−2𝐷1 =
𝜎 𝜌𝐿𝐷

𝜇𝐿
2

 

𝛱1
𝛱3
= (
𝑔 𝜌𝐿

2𝐷3

 𝜇𝐿
2 ) (

𝜇𝐿
2

𝜎 𝜌𝐿𝐷
) =

𝑔 𝜌𝐿𝐷
2

𝜎
= 𝐸𝑜 B–11 

𝛱4 = 𝑀
0𝐿0𝑇0 = (𝐿)(𝑀𝐿−3)𝑎4(𝑀𝐿−1𝑇−1)𝑏4(𝐿)𝑐4 

B–12 𝑀0𝐿0𝑇0 = 𝐿1−3𝑎4−𝑏4+𝑐4  𝑀𝑎4+𝑏4 𝑇−𝑏4 

𝑏4 = 0, 𝑎4 = 0 and 𝑐4 = −1 
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The final step is setting out the dimensionless relationship and rearranging the terms, which is 

done through the following steps: 

 

  

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝛱4 = 𝐿𝑇𝐵 𝜌𝐿
0 𝜇𝐿

0𝐷−1 =
𝐿𝑇𝐵
𝐷

 

𝛱2

𝛱1
1/2
= 𝑓 [

𝛱1
𝛱3

 ,  𝛱2, 𝛱4] 

B–13 

Hence, 𝐹𝑟𝑣𝑑 =
𝑣𝑑
2

𝑔𝐷
= 𝑓 [𝐸𝑜 =

𝑔𝜌𝐿𝐷
2

𝜎
, 𝑅𝑒𝑣𝑑 =

𝜌𝐿𝑣𝑑𝐷

𝜇𝐿
 ,
𝐿𝑇𝐵

𝐷
 ] 
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 Buckingham-Pi Theorem – Near horizontal and 

horizontal Pipe Case 

Using the Buckingham-Pi theorem, the problem of drifting of Taylor bubbles through a 

stagnant liquid in a near horizontal pipe with surface tension (𝜎) can be expressed as follows: 

The effect of inclination is introduced in the gravitational acceleration (𝑔), that can have three 

components 𝑔𝑥, 𝑔𝑦 and 𝑔𝑧. According to relation C–1, the number of relevant variables (𝑛) is 

6, the number of repeating variables (𝑘) (scaling independent dimensions) is 3 (𝑀, 𝐿 and 𝑇) 

and the number of dimensionless groups (𝛱𝑠), 𝑛 − 𝑘 = 3. This result in the following set of 

dimensionless groups: 

where 𝑀 is the mass, 𝐿 is the length and 𝑇 is the time. The three repeating variables (𝑘), are 

given by 𝑎, 𝑏 and 𝑐. According to the MLT system, these parameters are chosen to make each 

of the above relations in a dimensionless form and given by 𝜌𝐿, 𝜇𝐿 and 𝐷. The dimensions are 

defined as follows: 

Accordingly, the relations C–2 to C–4 are resolved as follows: 

𝜎 = 𝑓 [𝜌𝐿 , 𝜇𝐿 , 𝑔, 𝐿𝑇𝐵, 𝐷] C–1 

𝛱1 = 𝑔 𝜌𝐿
𝑎1 𝜇𝐿

𝑏1𝐷𝑐1   C–2 

𝛱2 = 𝜎 𝜌𝐿
𝑎2 𝜇𝐿

𝑏2𝐷𝑐2 C–3 

𝛱3 = 𝐿𝑇𝐵 𝜌𝐿
𝑎3 𝜇𝐿

𝑏3𝐷𝑐3 C–4 

𝜌 = 𝑀𝐿−3 

C–5 

𝜇 = 𝑀𝐿−1𝑇−1 

𝑔 = 𝐿𝑇−2 

𝐿𝑇𝐵 = 𝐿 

𝐷 = 𝐿 

𝜎 = 𝑀𝑇−2 

𝛱1 = 𝑀
0𝐿0𝑇0 = (𝐿𝑇−2)(𝑀𝐿−3)𝑎1(𝑀𝐿−1𝑇−1)𝑏1(𝐿)𝑐1 C–6 



Appendices 

 

-214- 

According to relation C–3: 

From relations C–6 and C–7, it can be shown that: 

According to relation C–4: 

From relations C–6 and C–9, it can be shown that: 

That is 𝐺𝑎𝑅 = 𝑓 [𝐸𝑜,
𝐿𝑇𝐵

𝐷
 ] 

It can be concluded that the sole governing parameters for the near horizontal case are the 

reduced Galilei number (𝐺𝑎𝑅), Eötvös number (𝐸𝑜) and 
𝐿𝑇𝐵

𝐷
. 

However, for the case when the pipe is horizontal, that is 𝛾 = 90°, the problem can be 

expressed as follows: 

𝑀0𝐿0𝑇0 = 𝐿1−3𝑎1−𝑏1+𝑐1  𝑀𝑎1+𝑏1  𝑇−2−𝑏1 

𝑏1 = −2, 𝑎1 = 2 and 𝑐1 = 3 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝛱1 = 𝑔 𝜌𝐿
2 𝜇𝐿

−2𝐷3 =
𝑔 𝜌𝐿

2𝐷3

 𝜇𝐿
2
= (
𝑔 𝐿𝑇𝐵

3

𝜈𝐿
2 )(

𝐷

𝐿𝑇𝐵
)
3

 

𝛱2 = 𝑀
0𝐿0𝑇0 = (𝐿𝑇−1)(𝑀𝐿−3)𝑎2(𝑀𝐿−1𝑇−1)𝑏2(𝐿)𝑐2 

C–7 

𝑀0𝐿0𝑇0 = 𝐿−3𝑎2−𝑏2+𝑐2  𝑀1+𝑎2+𝑏2  𝑇−2−𝑏2 

𝑏2 = −2, 𝑎2 = 1 and 𝑐2 = 1 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝛱2 = 𝜎 𝜌𝐿
1 𝜇𝐿

−2𝐷1 =
𝜌𝐿𝜎𝐷

𝜇𝐿
2

 

𝛱1
𝛱2
= (
𝑔 𝜌𝐿

2𝐷3

 𝜇𝐿
2 )(

𝜇𝐿
2

𝜌𝐿𝜎𝐷
) =

𝑔𝜌𝐿𝐷
2

𝜎
= 𝐸𝑜 C–8 

𝛱3 = 𝑀
0𝐿0𝑇0 = 𝐿(𝑀𝐿−3)𝑎3(𝑀𝐿−1𝑇−1)𝑏3(𝐿)𝑐3 

C–9 

𝑀0𝐿0𝑇0 = 𝐿1−3𝑎3−𝑏3+𝑐3  𝑀𝑎3+𝑏3  𝑇−𝑏3 

𝑏3 = 0, 𝑎3 = 0 and 𝑐3 = −1 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝛱3 = 𝐿𝑇𝐵𝐷
−1 =

𝐿𝑇𝐵
𝐷

 

𝛱1𝛱3 = (
𝑔 𝐿𝑇𝐵

3

𝜈𝐿
2 )(

𝐷

𝐿𝑇𝐵
)
3

(
𝐿𝑇𝐵
𝐷
) = (

𝑔 𝐿𝑇𝐵
3

𝜈𝐿
2 )(

𝐷

𝐿𝑇𝐵
)
2

= 𝐺𝑎𝑅 C–10 
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According to relation C–11, the number of relevant variables (𝑛) is 5, the number of repeating 

variables(𝑘) is 3 (𝑀, 𝐿 and 𝑇) and the number of dimensionless groups (Π𝑠), 𝑛 − 𝑘 = 2. This 

results in the following set of dimensionless groups: 

Using the dimensions defined in C–5, the relations C–12 and C–13 are resolved as follows: 

According to relation C–13: 

That is 𝐸𝑜 = 𝑓 [
𝐿𝑇𝐵

𝐷
 ] 

To sum up, referring to equations C–14 and C–14, it can be concluded that the sole governing 

parameters that governs the pressure field distribution around the stagnant deformed bubble 

are Eötvös number (𝐸𝑜) and  
𝐿𝑇𝐵

𝐷
.

𝜎 = 𝑓 [𝜌𝐿 , 𝑔, 𝐿𝑇𝐵, 𝐷] C–11 

𝛱1 = 𝜎 𝜌𝐿
𝑎1𝑔𝑏1𝐷𝑐1   C–12 

𝛱2 = 𝐿𝑇𝐵 𝜌𝐿
𝑎2𝑔𝑏2𝐷𝑐2 C–13 

𝛱1 = 𝑀
0𝐿0𝑇0 = (𝑀𝑇−2)(𝑀𝐿−3)𝑎1(𝐿𝑇−2)𝑏1(𝐿)𝑐1 

C–14 

𝑀0𝐿0𝑇0 = 𝐿𝑏1+𝑐1−3𝑎1  𝑀1+𝑎1  𝑇−2−2𝑏1 

𝑏1 = −1, 𝑎1 = −1 and 𝑐1 = −2 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒  𝛱1 = 𝜎𝜌𝐿
−1𝑔−1 𝐷−2 =

𝜎

𝜌𝐿𝑔 𝐷
2
=
1

𝐸𝑜
 

𝛱2 = 𝑀
0𝐿0𝑇0 = (𝐿)(𝑀𝐿−3)𝑎2(𝐿𝑇−2)𝑏2(𝐿)𝑐2 

C–15 

𝑀0𝐿0𝑇0 = 𝐿1+𝑐2+𝑏2  𝑀𝑎2  𝑇−2𝑏2 

𝑏2 = 0, 𝑎2 = 0 and 𝑐2 = −1 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒  𝛱2 = 𝐿𝑇𝐵𝐷
−1 =

𝐿𝑇𝐵
𝐷
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