
STUDIES IN THIN FILM FLOWS 

A THESIS SUBMITTED TO THE UNIVERSITY OF STRATHCLYDE 

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY 

IN THE FACULTY OF SCIENCE 

by 

lain Stewart McKinley 
Department of Mathematics 

University of Strathclyde 
Glasgow 

1999 



'The copyright of this thesis belongs to the author under the terms of the 

United Kingdom Copyright Acts as qualified by University of Strathclyde Reg­

ulation 3.49, Due acknowledgement must always be made of the use of any 

material contained in, or derived from, this thesis', 



Contents 

List of Figures 

List of Tables 

Acknowledgements 

Abstract 

1 Introduction 

1.1 Background 

1.2 Outline of Thesis 

1.3 Thin-film Equations and Boundary Conditions . 

1. 3.1 Cartesian Coordinates . . . . 

1.3.2 Cylindrical Polar Coordinates 

2 Quasi-static Analysis of a Non-annular Drop 

2.1 

2.2 

2.3 

2.4 

2.5 

2.6 

Introduction . 

Problem Formulation 

Quasi-static Motion . 

Equilibrium Solutions. 

Stability Analysis 

Results. 

2.6.1 

2.6.2 

2.6.3 

Explanation of Figures 

Zero-gravity Case (G = 0) 

Sessile Case (G = 1) . . . 

iv 

XIV 

XV 

xvi 

1 

1 

12 

14 

15 

19 

21 

21 

22 

25 

27 

28 

28 

28 

30 

37 



2.6.4 Pendent Case (G = i). . . . . . . . 

3 Quasi-static Analysis of an Annular Drop 

3.1 Introduction..... 

3.2 Problem Formulation 

3.3 Quasi-static Motion. 

3.4 Stability Analysis . 

3.4.1 Planar Case 

3.4.2 Axisymmetric Case 

3.5 Results .......... . 

3.5.1 

3.5.2 

3.5.3 

Explanation of Figures 

Planar Case . . . . 

Axisymmetric Case 

37 

48 

48 

48 

49 

53 

53 

54 

57 

57 

58 

60 

4 Numerical Solution of Linear Differential Eigenvalue Problems 65 

4.1 Introduction.... 

4.2 Numerical Solution 

4.2.1 Differentiation Matri<.:es 

4.2.2 An Algebraic Eigenvalue Problem 

4.3 Test Problems . . . . . . . . . . . . . . . 

4.3.1 

4.3.2 

4.3.3 

4.3.4 

4.3.5 

Example 1: The Harmonic Equation 

Example 2: A Complex-valued Eigenvalue Problem 

Example 3: Stability of a Ridge of Fluid . 

Example 4: Stability of a Capillary Ridge 

Example Cl: Flow in a Wedge 

5 Linear Stability of a Ridge of Fluid 

G.1 Introduction ..... 

G.2 Problem Forlllulation 

5.2.1 I3asic Stat(~ . 

G.2.2 Linear Stability Problem 

5.3 The Centred Jet (1)0 = 1). . . . 

11 

65 

66 

70 

71 

72 

72 

76 

77 

79 

82 

88 

88 

89 

92 

93 

94 



5.3.1 Basic State · ...... 94 

5.3.2 Linear Stability Problem 94 

5.3.3 Quasi-static Motion C = 0 95 

5.3.4 The General Case C =1= 0 99 

5.4 The Off-Centred Jet 0 :S cPo < 1 103 

5.4.1 Basic State · ...... 103 

5.4.2 Linear Stability Problem 105 

5.4.3 Quasi-static Motion C = 0 105 

5.4.4 The General Case C =1= 0 . 109 

6 Linear Stability of a Drop of Fluid 113 

6.1 Introduction . . . . 113 

6.2 Non-annular Drops 113 

6.2.1 Problem Formulation . 113 

6.2.2 Basic State · ..... 117 

6.2.3 Linear Stability Problem 118 

6.2.4 Quasi-static Motion C = 0 119 

6.2.5 The General Case C =1= 0 120 

6.3 Annular Drops ........ 122 

6.3.1 Problem Formulation . 122 

6.3.2 Basic State · ..... 125 

6.3.3 Linear Stability Problem 128 

6.3.4 Quasi-static Motion C = 0 128 

6.3.5 The General Case C =1= 0 132 

7 Conclusions and Further Work 139 

7.1 Conclusions 139 

7.2 Further Work 142 

Bibliography 145 

III 



List of Figures 

1.1 Schematic diagram of a typical spin-coating system. . . . . . .. 2 

1.2 Evolution of a drop during spin coating as calculated by Emslie 

et al. [12], for t = 0, 1,2 and 3. " . . . . . . . . . . . . . . .. 3 

1.3 Typical leading order composite solution in the limit of weak sur-

face tension for the profile of a drop during spin coating as de-

scribed by Moriarty et al. [43]. . . . . . . . . . . . . . . . . . .. 4 

1.4 Typical plot taken from Spaid & Homsy [GO] showing a sequence 

of pictures of the experimentally-measured contact line of an ini­

tially approximately circular drop developing into fingers as it 

spreads out during spin coating. . . . . . . . . . . . . . . . . .. 6 

1.5 Schematic of the jet-stripping process. 

1.6 Typical stable and unstable equilibrium axisymmetric holes with 

the same volume of fluid, laterally bounded ar r = 1, as studied 

by Moriarty & Schwartz [42], Wilson & Terrill [62] and Lopez et 

7 

al. [35]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10 

2.1 Geometry of the non-annular problem. 

2.2 Plot of jet strength .J against radius R for an axisymnll'tric drop 

in the case of zero gravity for Vu = 1,2,3. The line styles are 

22 

defined in Sec. 2.6.1. Typical drop profiles an> given in Fig. 2.3. 30 

2.3 Typical drop profiles for various values of radius R for et drop in 

zero gravity. Drop profiles in the sessile drop case are qualitatively 

similar to those shown here. . .................. , 31 

IV 



2.4 Plot of volume V against radius R for an axisymmetric drop in 

the case of zero gravity for Jo = 1,2,3. The line styles are defined 

in Sec. 2.6.1. Typical drop profiles are given in Fig. 2.3. . . . .. 32 

2.5 Plot of contact angle () against radius R for an axisymmetric drop 

in the case of zero gravity, with Vo = 0.4 and Jo = 1. The thick 

line corresponds to physical solutions; the thin line corresponds 

to unphysical solutions. The points of intersection with the hori-

zontalline () = 1 correspond to equilibrium solutions. . . . . .. 33 

2.6 Examples of the evolution of drop radius R(t) for an axisymmetric 

drop in the case of zero gravity when Vo = 0.4 and Jo = 1 obtained 

by solving Eq. (2.26) numerically in the case F(()) = ()3 - 1. The 

equilibrium values R ~ 1.5608 (stable) and R ~ 2.7233 (unstable) 

are indicated by horizontal dashed lines, and the shaded area 

denotes a region of unphysical solutions. ., . . . . . . . . 34 

2.7 Evolution of a quasi-static drop profile for an axisymmetric drop 

in the case of zero gravity when Va = 0.4, Ja = 1, with the initial 

condition R(O) = 0.5. The dashed curve corresponds to the stable 

equilibrium solution R ~ 1.5608. . . . . . . . . . . . . . . . . .. 35 

2.8 Evolution of a quasi-static drop profile for an axisymmetric drop 

in the case of zero gravity when Vo = 0.4, Ju = 1, with tlw initial 

condition R(O) = 2.3. The dashed curve corresponds to the stable 

equilibrium solution R ~ 1.5608. . . . . . . . . . . . . . . . . .. 36 

2.9 Plot of jet strength J against radius R for an axisymmetric sessile 

drop for Vu = 1,2,3. The line styles are defined in S(I(,. 2.6.1. 

Drop profil<:'s in this case are qualitatively similar Co those' shown 

in Fig. 2.3 ..... 

2.10 Plot of volume V against radius R for all axis~'IllIlletri(' sessih> 

drop for .10 = 1,2,3. The line styles are defined ill Scc. 1.6.1. 

Drop profiles in this case are qualitatively similar to those' shown 

:37 

in Fig. 2.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ., 38 

\' 



2.11 Plot of jet strength 1 against radius R for an axisymmetric pen­

dent drop when (a) Vo == 20 < Vc, (b) Vo = Vc ~ 32.4642 and (c) 

,/0 = 40 > Vc- The line styles are defined in Sec. 2.6.1. . . . . .. 39 

2.12 Plot of volume V against radius R for an axis,Ymmetric pendent 

drop when (a) 10 = 0.12 < le, (b) 10 = le: ~ 0.1425 and (c) 

10 = 0.16 > le. The line styles are defined in Sec. 2.6.1. . . . .. 42 

2.13 Plot of contact angle () against radius R for an axisymmetric pen­

dent drop, with Vo = 20 and 10 = 0.16. The thick lines correspond 

to physical solutions; the thin lines correspond to unphysical so­

lutions. The points of intersection with the horizontal line () = 1 

correspond to equilibrium solutions. . . . . . . . . . . . . . . .. 43 

2.14 Examples of the evolution of drop radius R( t) for an axisymmetric 

pendent drop when Vo = 20 and 10 = 0.16, obtained by solving 

Eq. (2.26) numerically in the case F(()) = ()3 -l. The equilibrium 

values R ~ 3.6524 (stable), R ~ 5.5740 (stable), R ~ 6.9149 

( unstable) and R ~ 10.0041 (unstable) are indicated by horizontal 

dashed lines, and the shaded areas denote regions of unphysical 

solutions. . ............. . 

2.15 Evolution of a quasi-static drop profile for an axisymrnetric pen­

dent drop when '-'0= 20, 10 = 0.16, with the initial condition 

R(O) = 1. The dashed curve corresponds to the stable equilib-

44 

rium solution R ~ 3.6524. ., . . . . . . . . . . . . . . . . . .. 45 

2.16 Evolution of a quasi-static drop profile for an axisymmetric pen­

dent drop when Vo = 20, .10 = 0.16, with the initial condition 

R(O) = 6.8. The dashed curve corresponds to the stable equilib-

rium solution R ~ 5.5740. . . . . . . . . . . . . . . . . . . . .. 45 

VI 



2.17 Plot of contact angle () against radius R for an axisymmetric pen­

dent drop, with Vo = 20 and 10 = le ~ 0.1425. The thick lines 

correspond to physical solutions; the thin lines correspond to un­

physical solutions. The points of intersection with the horizontal 

line () = 1 correspond to equilibrium solutions. The open circle 

(0) indicates that there is no solution with the correct volume at 

this special value of R = Rc ~ 7.0156. . . . . . . . . . . . . . .. 46 

3.1 Geometry of the annular problem. . . . . . . . . . 49 

3.2 Plot of D2 defined in Eq. (3.28) as a function of c. 55 

3.3 Plot of >"+/111 and >.._/M for c = 10,15,25 and 35. The dots (e) 

denote the points corresponding to >"min and >"max. . . . . . .. 56 

3.4 Plot of Amin (upper curve) and Amax (lower curve) as a function 

of c. ................................. 56 

3.5 Plot of jet strength 1 against outer radius R2 for a planar annular 

drop for 4>0 = 0.2, 0.7, 0.9 and 0.99 when Vo = 1 and G = 

O. A solid, thick line represents stable and physical equilibrium 

solutions; a dashed, thick line represents unstable and physical 

solutions. Curve (A) corresponds to physically-realisable non­

annular solutions and curve (B) corresponds to solutions for two 

physically-realisable contiguous drops.. . . . . . . . . . . . . .. 58 

3.6 Plot of volume V against outer radius R2 for a planar annular 

drop for c/Jo = 0.2, 0.7, 0.9 and 0.99 when 10 = 1 and G = 

O. A solid, thick line represents stable and physical equilibrium 

solutions; a dashed, thick line represents unstable and physical 

solutions. Curve (A) corresponds to physically-realisablp non­

annular solutions and curve (B) corresponds to solutions for two 

physically-realisable contiguous drops ............... , :)9 

vu 



3.7 Plot of jet strength 1 against outer radius R2 for an axisymmetric 

annular drop for cPo = 0.5, 0.8, 1, 1.1 and 1.3 when Vo = 1 and G = 

O. A solid, thick line represents stable and physical equilibrium 

solutions; a dashed, thick line represents unstable and physical 

solutions. Curve (A) corresponds to physically-realisable non-

annular solutions. . . . . . . . . . . . . . . . . . . . . . . . . .. 60 

3.8 Plot of volume V against outer radius R2 for an axisymmetric 

annular drop for cPo = 0.7, 0.9, 1, 1.02, 1.1 and 1.3 when 10 = 1 

and G = O. A solid, thick line represents stable and physical 

equilibrium solutions; a dashed, thick line represents unstable and 

physical solutions. Curve (A) corresponds to physically-realisable 

non-annular solutions. ....................... 61 

3.9 Examples of the evolution of drop radii RI (t) and R2 (t) for an ax­

isymmetric annular drop in the case of zero gravity when 10 = 1 

and Vo = 0.1696, obtained by solving Eqs. (3.2) and (3.3) numer­

ically in the case FI (cP) = cP3 - 1 and F2 (0) = 03 
- 1. The unstable 

equilibrium values RI ~ 1.1968, R2 = 2 are indicated by horizon­

tal dashed lines. The initial conditions are RI (0) = 1, R2 (0) = 1.7 

(thick lines), RI (0) = 1, R2(0) = 2.2 (thin lines), RI (0) = 1.3, 

R2 (0) = 1.7 (dashed lines) and R1(O) = 1.3, R2 (0) = 2.2 (dot-

dashed lines). . . . . . . . . . . . . . . . . . . . . . . . . . . .. 63 

3.10 Evolution of a quasi-static drop profile for an axisymmetric an-

nular drop in the case of zero gravity when .10 = 1, ,/l) = 0.1696, 

with the initial conditions RI (0) = 1.3, R2 (0) = 1.7. . . . . . .. 64 

3.11 Evolution of a quasi-static drop profile for an axisymmetric an-

nular drop in the case of zero gravity when .10 = 1, 'Cl = 0.1696, 

with the initial conditions RI (0) = 1.3, R2 (O) = 2.2. . . . . . .. 64 

4.1 A summary of the structure of the matrix A .. 

4.2 A summary of the structure of the matrix B .. 

Vlll 

73 

74 



4.3 The structure of the matrices A and B for the discretised version 

of the harmonic equation. 

4.4 Plot of the most unstable eigenvalue w against wavenumber q for 

k = 0.25, 0.5 and 0.75 when A = 10-2 (--) and A = 10-4 ( - -

75 

- ) in Example 3. . . . . . . . . . . . . . . . . . . . . . . . . .. 80 

4.5 Eigenfunctions corresponding to the most unstable mode for var-

ious values of q when k = 0.5 and A = 10-2 with the numerical 

values N = 200, I = 22 and c = 5.5. . . . . . . . . . . . . . . . 80 

4.6 Basic-state profiles for b = 0.05, 0.075 and 0.1 for Example 4. . 82 

4.7 Plot of the most unstable eigenvalue a against wavenumber q for 

b = 0.05, 0.075 and 0.1 in Example 4. . . . . . . . . . . . . . .. 83 

4.8 Plot of the eigenfunctions corresponding to the most unstable 

mode for b = 0.1 when q = 0.1,0.3,0.5 and 0.7 in Example 4. 83 

4.9 Geometry of the problem in Example 5. ............ 84 

4.10 Typical basic-state profiles of the density R and the velocity U as 

functions of T] for parameter values C = 1, Pe = 1 and A = 7r / 4 

in Example 5. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 85 

4.11 Plot of largest eigenvalue 0 against wavenumber 0:' for C = 7.41 X 

lO- i where i = 3, 4, 5, 6 and 7 as indicated, for Example 5 with 

the numerical values N = 90, I = 12 and c = 5.5. ., . . . . .. 86 

4.12 Plot of the eigenfunctions UTI' U~ and it for the parameter values 

C = 0, A = 7r /4, Re = 1, Pe = 2 x 104, 0:' = 0.5 and L = 40 in 

Example 5. 87 

5.1 Geometry of the problem. 89 

G.2 Basic-state profiles of the ridge for the centred-jet problem for 

Ro = 0.6, 1, 1.4, 1.8 and 2.2. . . . . . . . . . . . . . . . . . . .. 95 

5.3 Plot of the growth rates of symmetric (0 8 0) and antisymmctric 

(oaO) pcrturbations as functions of Ro for the centred-jet problem 

in the case q = 0 and C = o. . . . . . . . . . . . . . . . . . . .. 97 

IX 



5.4 Neutral stability curves for symmetric (O"s = 0) and antisymmet­

ric (O"a = 0) perturbations in the (q,Ro) plane for the centred-jet 

problem in the case q > 0 and C = O. Here (A) denotes antisym-

metric modes and (S) symmetric modes. . . . . . . . . . . . .. 98 

5.5 (a) ~ (e): Plot of the growth rates of symmetric (0"8) and antisym­

metric (O"a) perturbations as functions of q 2': 0 for the centred-jet 

problem for Ro = 0.6, 1, 1.4, 1.8 and 2.2 respectively in the case 

C = O. Symmetric modes are denoted by solid lines and antisym­

metric modes by dashed lines. At q = 0, a filled circle denotes a 

solution, an empty circle no solution. Note that the lower solution 

at q = 0 is outwith the range of the plot in (a). ......... 100 

5.6 (a) ~ (e): Plot of the largest eigenvalues as functions of q 2': 

o for the centred-jet problem for Ro = 0.6, 1, 1.4, 1.8 and 2.2 

respectively in the case C = 1. Symmetric modes are denoted by 

solid lines and antisymmetric modes by dashed lines. At q = 0, a 

filled circle denotes a solution, an empty circle no solution. . .. 101 

5.7 Plot of 0"* as a function of Ro for the centred-jet problem for 

C = 1,0.1,0.01,0.001 and C = O. Symmetric modes are denoted 

by solid lines and antisymmetric modes by dashed lines. . . . 102 

5.8 Plot of q* as a function of Ro for the centred-jet problem for 

C = 1, 0.1, 0.01 and 0.001. Symmetric modes are denoted by 

solid lines and antisymmetric modes by dashed lines. ...... 103 

5.9 Plot of the largest eigenvalues when q = 0 as functions of Ro for 

the centred-jet problem for C = 1, 0.1, 0.01 and 0.001. Symmet­

ric modes are denoted by solid lines and <tlltis~Trtlllldric modes 

by dashed lines. The thin curves denote tlw (~ifSellvaltws obtained 

numerically when C =1= 0 and the thick curves (knote the eigen­

values 0"80 = (J RJ - 6) /3Ro and 0"00 = J R~/3 appropriate in the 

case C = o. . ........................... , 104 

5.10 Basic-state profiles of t.he ridge for t.he off-u~ntred-j('t problem for 

R~ = 2, 2.4, 2.8 and 3.2 in the case cPo = O.G ........... , 105 

x 



5.11 Plot of the growth rates ao+ and ao- as functions of R~ for the 

off-centred-jet problem for cPo = 0.2, 0.4, 0.6 and O.S in the case 

q = 0 and C = o. . . . . . . . . . . . . . . . . . . . . . . . . .. 106 

5.12 Neutral stability curves in the (q,R~) plane corresponding to aq+ = 

o for the off-centred-jet problem for cPo = 0.2, 0.4, 0.6 and O.S in 

the case q > 0 and C = o. ... . . . . . . . . . . . . . . . . .. 107 

5.13 (a) - (d): Plot of the growth rates aq+ and aq_ as functions of 

q 2 0 for the off-centred-jet problem for Rg = 2.5, 3, 3.5 and 4 

for cPo = 0.2, 0.4, 0.6 and O.S respectively in the case C = O. At 

q = 0, a filled circle denotes a solution, an empty circle no solution.10S 

5.14 (a) - (d): Plot of the largest eigenvalues as functions of q 2 0 for 

the off-centred-jet problem for Rg = 2.5, 3, 3.5 and 4 for cPo = 0.2, 

0.4, 0.6 and O.S respectively in the case C = 1. At q = 0, a filled 

circle denotes a solution, an empty circle no solution. . . . . .. 110 

5.15 Plot of a* as a function of ~ for the off-centred-jet problem for 

C = 1, 0.1, 0.01, 0.001 and C = 0 in the case cPu = 0.6. . . . .. 111 

5.16 Plot of q* as a function of Rg for the off-centred-jet problem for 

C = 1, 0.1, 0.01 and 0.001 in the case cPo = 0.6. ......... 111 

5.17 Plot of the largest eigenvalues when q = 0 as functions of Rg 
for the off-centred-jet problem for C = 1, 0.1, 0.01 and 0.001 

in the case cPo = 0.6. The thin curves denote the cigenvalues 

obtained numerically when C ¥ 0 and the thick curves denote 

the eigenvalucs ao± appropriate in the case C = O. 

G.l GeOllletry uf the lloll-annular problem. . . . . . . 

6.2 Basic-state profiles of a non-anllular drop for Ro = 1, 1.5, 2 and 

112 

ILl 

2.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. lIS 

6.3 Plot of the growth rates a'l for q = 0, 1, 2, 3, ... , 7 as a fuuctioll 

of Ro for a nOll-annular drop in the case C = o. . . . . . . . .. 121 

6.4 Plot of the largest eigenvalue as a function of Ro for a nOIl-annular 

drop for (j = 0, 1, 2, 3, ... , 6 in the case C = 1. . . . . . . . . .. 122 

Xl 



6 .. 5 (a)- (d) Plot of the largest eigenvalue as a function of Ro for 

a non-annular drop for q = 0, 1, 2, 3, ... , 7 for C = 1, 0.1, 

0.01 and 0.001. The thick curves correspond to the solutions 

0'0 = (J R~ - 12)/4Ro for q = 0 and O'q = (J R~ + 4(1 - q))/4Ro 

for q = 1, 2, 3, ... , 7. . . . . . . . . 123 

6.6 Geometry of the annular problem. . 124 

6.7 Basic-state profiles of an annular drop for Rg = 2, 2.3, 2.6 and 

2.9 in the case rPo = 1. . . . . . . . . . . . . . . . . . . . . . .. 127 

6.8 Plot of R~ against Rg for annular solutions corresponding to rPo = 

0.7, 1 and 1.3 ............................ , 127 

6.9 (a) - (b) Plot of the growth rates 0'0+ and 0'0- as functions of Rg 
for an annular drop for rPo = 0.7, 1 and 1.3 in the case q = 0 and 

C = o. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 130 

6.10 (a) - (c) Plot of the growth rates (Jq+ for q = 0, 1, 2, 3 and 4 as 

a function of Rg for an annular drop in the cases rPo = 0.7, 1 and 

1.3 for C = o. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 131 

6.11 Plot of R~ against R~ for annular solutions corresponding to rPo = 

0.7, 1 and 1.3 showing the most unstable wavenumber for C = o. 
The dots correspond to the values of R~ and Rg at which the most 

unstable mode jumps between q = 0 and q = 1. ......... 132 

6.12 (a) - (d) Plot of the largest eigenvalue as a function of Rg for an 

annular drop for q = 0, 1, 2, ... , 9 in the case rPo = 0.7 for C = 1, 

0.1, 0.01 and 0.001. . . . . . . . . . . . . . . . . . . . . . . . .. 133 

6.13 (a) (d) Plot of the largest eigenvalue as a function of R~ for an 

annular drop for q = 0, 1, 2, ... , 9 in the case CPo = 1 for C = 1, 

0.1, 0.01 and 0.001. . . . . . . . . . . . . . . . . . . . . . . . .. 135 

6.14 (a) - (d) Plot of the largest eigenvalue as a function of Rg for an 

annular drop for q = 0, 1, 2, ... , 9 in the case CPo = 1.3 for C = 1. 

0.1,0.01 and 0.001. . . . . . . . . . . . . . . . . . . . . . . . .. 136 

Xll 



6.15 (a) - (d) Plot of R? against Rg for annular solutions corresponding 

to cPo = 0.7, 1 and 1.3 showing the most unstable wavenumber for 

C = 1, ().1, (). 01 and 0.001. The dots correspond to the values of 

R? and Rg at which the most unstable mode jumps between two 

different values of q. 

Xlll 

138 



List of Tables 

4.1 Weights for some centred difference schemes on a regular grid. 

The approximations are evaluated at grid node O. The parameter 

k denotes the derivative and I denotes the order of accuracy of 

the approximation. . . . . . . . . . . . . . . . . . . . . . . . .. 68 

4.2 Weights for some one-sided difference schemes on a regular grid. 

The approximations are evaluated at grid node O. The parameter 

k denotes the derivative and I denotes the order of accuracy of 

the approximation. . . . . . . . . . . . . . . . . . . . . . . . .. 69 

4.3 Numerical results for the harmonic equation. . . . . . . . . . .. 76 

4.4 Numerical results for Example 2. The exact value for this example 

is Al = -9.079711517 - 0.136433041i to 9 decimal places. For 

I 2: 12 when N = 14 there are insufficient grid points to allow 

these orders of approximation. . . . . . 

4.5 Numerical results for Example 3 for k = 0.5, q = 0.975, A = 

10-2 and the numerical parameter values N = 200 and I = 16. 

77 

Hocking & Miksis [23] obtained w = 0.451. . . . . . . . . . . .. 78 

4.6 Numerical results for Example 3 for k = 0.5. q = 0.975, c = 5.5, 

A = 10-2 and A = 10-4
. Hocking & Miksis [23] obtained w = 

0.451 for A = 10-2 and w = 0.377 for A = ] 0-4.. . . . . . . . .. 79 

4.7 Comparison between numerical results and Eq. (4.37) for C = 0, 

A = 7r / 4 and Re = 1 in Example 5 with the numerical values 

N = 90, I = 12 and c = 5.5. . . . . . . . . . . . . . . . . . . .. 87 

XIV 



Acknow ledgements 

Over the past four years there have been many people who have helped to make 

this thesis a reali ty. 

In particular, I would like to thank my supervisor, Dr Stephen Wilson, whose 

boundless energy and enthusiasm helped to keep my motivation and my spirits 

high. I would also like to thank Dr Brian Duffy for his insightful comments 

on much of this work, and Prof. David Sloan for acting as my supervisor while 

Steve was on sabbatical leave during my third year. 

Thanks to the University of Strathclyde for giving me the chance to be a 

Teaching Assistant and for letting me loose with lectures and tutorials that I 

thoroughly enjoyed. 

Thanks also to all the Postgrads for a million laughs and memories, to my 

parents for their endless support and understanding, and to Claire for going 

through it all with me. 

xv 



Abstract 

Using the lubrication approximation to the Navier-Stokes equations we investi­

gate the evolution and stability of a thin film of incompressible Newtonian fluid 

on a planar substrate subjected to a jet of air blowing normally to the substrate. 

For the simple model of the air jet we adopt, the initially axisymmetric problems 

we study are identical to those of a drop spreadiug Oll a turntahle rotating at 

constant angular velocity (the simplest model for spin coating). We consider 

both drops without a dry patch (referred to as "non-annular") and drops with 

a dry patch at their centre (referred to as "annular"). First, both symmetric 

two-dimensional and axisymmetric three-dimensional drops are considered in 

the quasi-static limit of small capillary number. The evolution of both non­

annular and annular drops and the stability of equilibrium solutions to small 

perturbations with zero wavenumber are determined. lsing 11 specially devel­

oped finite-difference code we then investigate the linear stability of both an 

initially two-dimensional thin ridge of fluid and an initially axisymmetric thin 

drop of fluid to perturbations with non-zero wavenumber for the general case of 

non-Quasi-static motion (non-zero capillary number). For the ridge we examine 

the cases when the jet acts at the centre of the ridge and when the jet acts ofl'­

centre. For the drop we examine both non-annular and anllular drops. For each 

problem we examine both the special case of quasi-static motioll anal.ytically 

and the general case of non-zero capillary number numerically. 

XVi 



Chapter 1 

Introduction 

1.1 Background 

Thin fluid films arise in many physical settings. For example, in geology they can 

appear as underwater gravity currents or as lava flows, while in biophysics they 

can appear as membranes, linings of mammalian lungs or as tear films in the 

eye. In engineering, thin-film coating arises in the manufacture of a vast number 

of different products, including paper of various surface textures, printed matter 

such as books, newspapers and magazines, magnetic storage media such as audio 

tapes, video tapes and computer discs, fibres and wires, photoresist coatings 

for the manufacture of microelectronics such as printed circuits and solar cells, 

medical products such as transdermic systems which release active substances 

into the skin from a thin patch, sand paper, adhesive tapes and many others. The 

importance of thin fluid films in these and many other physical situations has 

motivated considerable theoretical and experimental work 011 the spreading of a 

thin fluid film on a solid substrate (see, for example, the recent review articles 

by Oron, Davis & Bankoff [45] and Myers [44]). Much of this work involves 

examining the spreading of a fluid subject to an external force. Examples of such 

forces include gravitational, electrostatic, magnetic and centrifugal forces as well 

as a non-uniform pressure loading caused by a fluid overlying the thin film. In 

this thesis we shall consider two problems of this type, namely a thin drop of 

fluid on a uniformly rotating substrate (the simplest Illodel for spin coating) 

1 
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catch cup 

j 
g 

exhaust exhaust 

t 
chuck 

Figure 1.1: Schematic diagram of a typical spin-coating system. 

or under the influence of a jet of air directed normally towards a stationary 

substrate. 

Spin coating is a widely used industri al process in which a fluid film is spread 

by centrifugal force onto a rotating substrate. Its history dates back to the 1950s 

when it was used to deposit phosphor onto the curved glass surfaces of colour 

television tubes. Today, spin coating is used in the microelectronics industry 

as a means of depositing polymer resist layers for photolithographic processing 

of integrated circui ts (photolithography is a process used in the manufacture 

of semiconductor devices and printed circuits in which a particular pattern is 

transferred from a photograph onto a substrate) . Another important modern 

application of spin coating is the deposition of transparent or reflective inorganic 

colloidal surface coatings on laser optical components , such as highly reflecting 

mirrors. A typical spin-coating system is shown in Fig. 1.1. The fluid spreads 

over the wafer which rotates with angular velocity w. The catch cup traps 

droplets that are flung from the wafer, preventing their unwanted release into the 

environment. An exhaust assists t his, and prevents droplets from re- irculating 
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1.5 

Figure 1.2: Evolution of a drop during spin coating as calculated by Emslie et 
al. [12], for t = 0, 1, 2 and 3. 

and hitting the wafer which would spoil the coating. At high rotation speeds 

(typically 1000 to 10,000 rpm) such devices spin low-viscosity ftuids to a thickness 

of Cl few microns down to a few nanometres. 

One of the earliest theoretical analyses of spin coating was performed by Em­

slie, Banner & Peck [12] who considered a thin axisymmetric drop of Newtonian 

fluid on a planar substrate rotating with constant angular velocity. They showed 

analytically that an initially non-uniform drop becomes increasingly uniform 

during spinning, and obtained an estimate for the time taken for the thickness 

of the drop to reduce to Cl prpscribed value. Their solution cau be writt('n in the 

parametric form 

(1.1 ) 

where l' is the radius, h is the height, t is time and "0 = ro(ho) is the initial 

profile of the drop. Figure 1.2 shows the evolution of the parabolic initial profile 

ho(ro) = 2(1 - 1'5) for t = 0, 1, 2 and 3, calculated using Eq. (1.1). ~lany 

subsequent authors have extended this pioneering work. Acrivos, Shah & Pl'-
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Figure 1.3: Typical leading order composite solution in the limit of weak surface 
tension for the profile of a drop during spin coating as described by Moriarty et 
al. [43]. 

tersen [2] examined the spin coating of a non-Newtoniall power-law fluid and 

found that, in contrast to the Newtonian case, even an initially uniform drop 

will develop non-uniformities as it spreads. Meyerhofer [40] included evapora­

tion effects and found good agreement with experiment if the evaporation rate 

was assumed to vary as the square root of the angular velocity, and Tu [54], 

Yallagisawa [63] and Wilson, Hunt & Duffy [61] analysed the eH'ect of diH'erent 

slip models at the fluid/solid interfaL:e. Moriarty, Schwartz & Tuck [43] obt.ained 

both analytical and numeriL:al solutions for spin coating in the asymptotic limit 

of weak surface tension using the method of matched asympt.ot.ic expansions. In 

t.he "outcr " region far away from the contact line, the }.>l'Oolem is ident.iL:al t.o 

t.hat. st.udied by Emslie et al. [12]. In this case, surfacc'-tcnsion effect.s are only 

significant in the "inncr" region near the L:ontact line in whiL:h the frel' surface 

profile has a distinctive "L:apillary ridge". A typical leading order LOIll}.>osite so­

lution is shown in Fig. 1.3. Lawrence [31] examined t.h(' spin coating of polymer 
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films including solvent evaporation and gave a prediction for the final dry-film 

thickness, Lawrence & Zhou [32] studied the effect of various non-Newtonian 

viscosity models on the final drop thickness, while .1enekhe & Schuldt [24] and 

Burgess & Wilson [7] investigated the spin coating of Bingham materials. Var­

ious other authors have analysed a variety of additional physical effects on the 

spin coating of a fluid film. Higgins [17] included weak fluid inertia and derived 

an asymptotic solution for small Reynolds number describing the thinning of a 

fluid during spin coating which assumed that the interface remained flat during 

spinning. Bornside, Macosko & Scriven [4] included the effects of variations in 

concentration, viscosity and diffusivity across the fluid film and concluded that 

film thinning initially slows down due to a decrease in film thickness and finally 

stops due to an increase in viscosity of the coating liquid as solvents evaporate. 

Reisfeld, Bankoff & Davis [46] investigated the linear stability of the free surface 

in the presence of evaporation and absorption effects. When there is evapora­

tion present, the free surface is stable to perturbations with small wavenumber 

and transiently stable for larger wavenumbers (transiently stable means that, as 

time increases, perturbations grow to some finite amplitude but will ultimately 

decay to zero). and when there is absorption present, the free surface is stable 

to perturbations with small wavenumbers, transiently stable for intermediate 

wavenumbers and exponentially unstable for large wavenumbers. Momoniat & 

Mason [41] investigated the effect of the hitherto neglected Coriolis force on the 

spin coating of a thin fluid film while neglecting inertia. 

Experimental studies of spin coating (see, for example, Mdo. Joanny & 

Fauve [39], Fraysse & Homsy [15] and Spaid & Horns)' [50]) show that a drop 

of Newtonian fluid does indeed become increasingly uniform during spinning, 

except near the contact line where the capillary ridge dewlops. Typically. the 

contact line of the drop initially remains approximately circular as the drop 

spreads, but at a critical radius the contact line becomes unstable and develops 

into non-axisymmetric "fingers" distributed roughly equally around the circum­

ference of the drop. This fingering instability arises due to the local variations in 

the fluid thickness, wherpby thickpr regions of fluid aciV<lIl(,(, lilOI'!' rapidly over the 
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Figure 1.4: Typical plot taken from Spaid & Homsy [50] showing a sequence 
of pictures of the experimentally-measured contact line of an initially approxi­
mately circular drop developing into fingers as it spreads out during spin coating. 

substrate. Figure 1.4 is a typical plot taken from Spaid & Hornsy [50] showing 

the experimentally-measured position of the contact line of an initially approx­

imately circular drop developing into fingers as it spreads. Wilsoll et al. [61] 

were able to obtain good agreement between their numerical calculations for the 

evolution of the drop radius prior to the onset of fingering and the correspond­

ing experimental results of Fraysse & Homsy [15] and Spaid & Homsy [50]. The 

linear stability of an initially two-dimensional capillary ridge at an advancing 

contact line was first studied analytically by Troian, HeriJolzheinwr, Safran & 

Joanny [53] who showed that it is always unstable to pcrturbations in the trans­

verse direction with sufficiently long wavelength. Fraysse & Hornsy [15] found 

that their experimentally-measured azimuthal wavenurnber and growth rate of 

the fingering were in good agreement with the theoretical predictions of Troian 

et aJ [53] provided that the critical radius for the onset of the instability was 

taken from the experiment itself. An extensive review of the iiteratu[(' on spin 

coating is given by Larson & Rehg [30]. 
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Figure 1.5: Schematic of the jet-stripping process. 

7 

The spreading of a thin film due to a jet of air has received less attention thus 

far. Much of the work that has been done on problems of this kind is motivated 

by the so-called "jet-stripping" or "air-knife" industrial coating process in which 

the thickness of a fluid film that has been applied to a moving substrate is 

controlled by blowing a jet of air onto the film. This process is used in many 

coating applications such as hot-dip galvanisations of metal strips and wires as 

well as the deposition of photographic emulsions. Figure 1.5 shows a typical 

schematic of this process. An upward-moving substrate emerges from a bath 

and withdraws an amount of coating fluid . A jet produced by an appropriate 

nozzle (typically a rectangul ar or annular sli t) impinges Oil the fluid film. The 

jet (usually air or nitrogen) induces a "runback" fi ow of the fillid that returns 

some of the fluid to the coating bath under the action of gravity. 

The pioneering steady two-dimensional analysis by Thornton & Graff [52] 

gave an expression for the final thin-film thickness in terms of speed of t he sub­

strat , jet strength , nOL;zle slo t width and distance between the jet nozzle and 

the fluid , and good agreement was found between the predictions of their an-
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alytical model and experimental data. Tuck [55] analysed possible steady-flow 

solutions, and by considering the characteristic curves of the corresponding un­

steady flows, showed that steady flow is stable to long-wavelength perturbations. 

Ellen & Tu [11] included a non-zero shear stress at the free sllI'face in their model 

and showed that their analytical prediction for the final coating thickness gave 

improved agreement with experiment. Tuck & Vanden-Broeck [56] showed that 

the inclusion of surface tension inhibits the thinning of the fluid layer and gave 

numerical results to quantify the magnitude of this effect. Buchlin, Manna, Ar­

nalsteen & Riethmuller [6] compared theoretical with experimental results and 

concluded that surface-tension effects become less significant when the pressure 

gradient caused by the jet of air increases. They also showed experimentally 

that for large enough substrate velocities a spray of tiny droplets dislodge from 

the fluid surface ("splashing") that can ruin the final film thickness, thus putting 

a practical upper limit on the substrate velocity. 

Several other authors have also investigated the effect of a jet of air on a fluid 

film. Moriarty et al. [43] considered the unsteady spreading of a two-dimensional 

drop of fluid under the ac:tion of a jet of air blowing either vertically downwards 

onto the substrate or parallel to it. In the first case, the jet was modelled as a 

parabolic pressure distribution in the air, and the shear stress at the free surface 

of the fluid caused by the air flow was neglected, while in the second case the jet 

was modelled as a constant shear stress distribution at the free surface of the fluid 

while the variations in the air pressure were neglected. In both cases, unsteady 

solutions were obtained both numerically and analytically in the asymptotic 

limit of weak surface tension (similar to the spin-coating analysis of the same 

authors described earlier). King, Tuck & Vanden-Broeck [28] studied steady two­

dinwllsional periodic waves on a fluid film on an inclined plane caused by a jet 

of air flowing upwards over it. King et al. 's [28] model used thin aerofoil theory 

to model the flow of air past the thin film and allowed the external pressure 

gradient to depend ou the shape of tlH' fn'(' surfaC(~ of tlH' film, but assumed 

that the shear stress at the free surface was COIlstant. King & Tuck [27] studied 

the corresponding problem for a ridge of fluid of finite width on an inclined plane 
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and found that steady solutions are possible only if the angle of inclination of the 

plane to the horizontal is sufficiently small and that below this critical value two 

steady solutions exist for each inclination angle. Recently Kriegsmann, Miksis 

& Vanden-Broeck [29] investigated the effect of a steadily-moving exponential 

pressure distribution on a fluid film on an inclined plane and found that there is 

a finite range of values of the capillary number where no steady solution exists 

and where unsteady solutions develop shock-like free-surface profiles. 

A related class of problems relevant to the present work concerns the stability 

and evolution of holes in thin fluid layers. The pioneering work of Taylor & 

Michael [51] considered the stability ofaxisymmetric holes in fluid layers of 

infinite extent lying on a solid horizontal substrate. They showed that a single 

equilibrium hole exists if the layer is sufficiently thin and that this equilibrium 

hole is unconditionally unstable. They conjectured that holes with radius smaller 

than the equilibrium value would close while those with larger radius would 

open. To test their hypothesis they conducted a series of experiments in which 

holes were made in a horizontal layer of mercury standing on a glass disc with 

a series of cylindrical probes of different radii. All holes either opened or closed 

and the division between the two kinds of hehaviour was ill good agreement 

with the theoretically-calculated critical radius. Moriarty & Schwartz [42] and 

Wilson & Terrill [62J considered the dynamics ofaxisymmetric laterally-bounded 

holes in thin fluid layers and showed that for a sufficiently small volume of fluid 

there are two equilibrium holes, the hole with smaller radius being unstable, and 

that with larger radius being stable. Figure 1.6 plots typical stable and unstable 

equilibrium axisyrnmetric holes with the same volume of fluid, laterally bounded 

at r = 1. Analysis of the stability to non-axisymrnetric perturbations and IlOIl­

linear evolution of these holes has recently been undertaken by L6pez, Miksis & 

Bankoff [35] who showed that the most unstable wavenumber depends on the 

radius of the hole and the position of the boundary wall. 

The general issue of the stability of thin fluid films has received considerable 

attention in recent years. The pioneering analysis of the stability of an advancing 

capillary ridge by Troian et al. [53] (revisited in Chapter 4 See. 4.3.4) has subse-
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Figure 1.6: Typical stable and unstable equilibrium axisymmetric holes with 
the same volume of fluid, laterally bounded ar r = 1, as studied by Moriarty & 
Schwartz [42], Wilson & Terrill [62] and L6pez et al. [35]. 

quently been re-examined and generalised by s(~veral authors, including Spaid & 

Hornsy [49] who investigated the stability of Newtonian and viscoelastic moving 

contact lines, by Bertoz;zi & Brenner [3J who studied the effect of changing the 

angle of inclination of the plane down which the fluid was draining, by Lopez, 

Bankofi' & Miksis [33] who investigated the stability of non-isothermal spreading 

on an inclined plane, by U)pez, Mibis & Bankoff [34J who included inertial ef­

fects and by Kataoka & Troian [25, 26] who included Marangoni (surface-tension­

gradient) effects to study the stability of a thennally-driV<'1l climbing film. The 

linear stability and nOIl-linear evolution of an initially tvvo-dilllcllsional ridge of 

finite width on an inclined plane was analysed by Hocking [20] and Hocking & 

Miksis [23]. In particular, Hocking & Miksis [23] found that the quasi-static 

analysis of Hocking [20] (which predicts that the ridge is most unstable to long­

wavelength perturbatioIls in the transverse directioll) is appropriate only for 

v<~ry small values of the slip parameter. Relaxing the quasi-static assumption, 

they concluded that the ridge is always unstable to sufficiently long-wavelength 
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perturbations in the transverse direction and calculated the most unstable wave­

length (the work of Hocking & Miksis [23] is revisited in Chapter 4 Sec. 4.3.3). 

In this thesis we shall focus on the interesting behaviour found in both spin­

coating and air-jet-blowing problems due to the presence of both surface-tension 

and moving-contact-line effects. The general issue of the motion of contact lines 

has been the subject of much debate in recent years (see, for example, the work 

by Hocking [21]). The key issue is the determination of the relationship between 

the experimentally-measured macroscopic contact angle (J (inferred from global 

properties or measured some distance from the contact line) and the speed of the 

contact line U. One approach takes the view that it is not necessary to model 

the details of the flow in the vicinity of the contact line, but that one may instead 

adopt an empirically-determined "Tanner Law" relating U and (J. Greenspan [16] 

pioneered this approach by proposing a linear relationship, and this was subse­

quently generalised to a power-law dependence by Ehrhard & Davis [10], who 

found that a particular cubic power law gave the best fit to their experimental 

data. This approach has the great practical advantage that the difficult problem 

of the flow in the vicinity of the contact line is circumvented, and as a result it 

has been widely used in recent years to study several problems involving the dy­

namics of thin fluid films. For example, it was used by Greenspan [16] to study 

the spreading of a drop, by Ehrhard & Davis [10] to study the spreading of a 

non-isothermal drop, by Ehrhard [9] to study the spreading of a pendent drop, 

by Braun, Murray, Boettinger & McFadden [5] to study the reactive spreading 

of a drop, by Wilson & Terrill [62] and L6pez et al. [35] to study the opening and 

closing of a hole in a fluid film, by L6pez et al. [33] to study the non-isothermal 

draining of a fluid film down an inclined plane, by Lopez et al. [34] to study the 

effect of fluid inertia on the draining of a fluid film down an inclined plane and 

by Wilson & Duffy [60] to study the quasi-static stability of a rivulet draining 

down a non-uniform substrate. An alternative approach takes the view that, 

while the former approach may yield physically-reasonable results for relatively 

little effort, it is conceptually superior to determine the relationship betwccn U 

and (J analytically rather than impose it (rather like an additional "constitutive 
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law"). In order to perform this kind of calculation some additional physical 

effects must be included, but there is currently no agreement 011 what effects are 

appropriate. Hocking [18, 19] has determined the relationship between U and 

H under the assumptions of a fixed microscopic contact angle and a simple slip 

model at the substrate, while more recently Hocking [22] included intermolecular 

forces. On the other hand, Shikhmurzaev [47, 48] modelled the thermodynamic 

state of the interfacial regions near the contact line, allowing for relaxation in 

properties of a fluid element as it traverses the contact-line zone. He derived 

the relationship between Hand U predicted by the model and also showed that 

the model resolves the stress singularity at a moving contact line. In particular, 

Shikhmurzaev [48] obtained numerically-calculated examples of non-thin drops 

spreading on a substrate due to gravity and to rotation of the substrate. For 

simplicity we shall adopt the first approach in the present work, but shall em­

ploy a rather general Tanner Law in Chapters 2 and 3 relating U and () which 

incorporates as special cases all the specific forms used in Chapters 5 and 6 and 

by (~arlier authors. 

1.2 Outline of Thesis 

In Chapters 2 and 3 we investigate the quasi-static spreading of a finite-sized thin 

drop of incompressible, Newtonian fluid on a planar substrate in the presence of 

a jet of air in both symmetric planar two-dimensional alld axisymmetric three­

dimellsional geornetries. Since we shall consider only tlw leading-order solution 

in the quasi-static limit ill these Chapters, the stress singularity at the moving 

contact line does not appear explicitly (although, as Hocking [21] has shown, 

it would do so if we continued the analysis to higher orders). Three specific 

problems are studied in detail: a jet of air acting normally to the substrate 

when gravity effects are negligible, a jet of air directed vertically downwards 

onto Cl sessile drop on a horizontal substrate and Cl jet of air directed vertically 

upwards onto a pendent drop on Cl horizontal sllbstratc~. In Chapter 2 we consider 

drops without a dry patch (hereafter refcrn'd to as "llOIl-<lIlllUlar" drops) aud 
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ill Chapter 3 we consider drops with a dry patch at their centre (hereafter 

referred to as "annular" drops). Since, for the simple model of the jet we shall 

adopt, the axisymmetric air-jet-blowing problem is identical to the axisymmetric 

spin-coating problem of a drop of fluid on a horizontal substrate rotating with 

uniform angular velocity, the results in the axisymmetric case will also apply to 

the spin-coating problem with an appropriate redefinition of the parameters. For 

each problem we determine the physically-realisable equilibrium solutions for the 

profile of the drop and investigate their stability to uniform perturbations in the 

two-dimensional case and axisymmetric perturbations in the three-dimensional 

case. An account of the work in Chapters 2 and 3 has recently been published 

in Phys. Fluids (McKinley, Wilson & Duffy [38]). 

The next step is to investigate the linear stability to general perturbations for 

non-zero capillary number. With this in mind, Chapter 4 describes the writing 

and testing of a numerical finite-difference code that is capable of solving coupled 

linear differential eigenvalue problems of the kind studied by Troian et al. [53], 

who investigated the linear stability of a capillary ridge OIl an inclined plane, 

by Hocking & Miksis [23], who studied the linear stability of a ridge of fluid 

of finite width on an inclined plane and by Lopez et al. [35], who analysed the 

linear stability of a hole in a laterally-bounded thin film. 

In Chapter 5 we investigate the linear stability to both uniform (zero wavenum­

ber) and non-uniform (non-zero wavenumber) perturbations of an initially two­

dimensional thin ridge of Newtonian fluid of finite width 011 a horizontal planar 

substrate acting under the influence of a jet of air normal to tlw substrate in the 

general case of nOll-zero capillary number. Two problems an' considered: the 

special case when the jet acts at the rent re of the ridge (which ill two dimensions 

corresponds to the non-annular problem studied in Chapter 2) and the more gen­

eral case when the jet acts off-centre (which in two dimensions rorresponds to 

the annular problem studied in Chapter 3). For both problems wc ronfirm and 

extend the previous analytical results in the special case of quasi-statir motion 

(corresponding to zero capillary number) and investigate numerically the general 

case of non-zero capillary number. The work in Chapter 5 has beell submitted 
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for publication. 

Finally, in Chapter 6 we investigate the linear stability to both axisymmetric 

(zero wavenumber) and non-axisymmetric (noll-zPw wavenumber) perturbations 

of an initially axisymmetric thin drop of Newtonian fluid either on a uniformly 

rotating substrate or under the influence of ajet of air directed normally towards 

a stationary substrate in the general case of non-zero capillary number. As 

before, the results in this Chapter also apply to the spin-coating problem with 

an appropriate redefinition of the parameters. Two probl(~ms are considered: 

one in which the drop has no dry patch (which in an axisyrnrnctric geometry 

corresponds to the non-annular problem studied in Chapter 2) and one in which 

the drop has a dry patch at its centre (which in an axisymmetric geometry 

corresponds to the annular problem studied in Chapter 3). For both problems 

we confirm and extend the previous analytical results in the special case of quasi­

static motion and investigate numerically the general case of non-zero capillary 

number. The work in Chapter 6 has also been submitted for publication. 

In Chapter 7 we present our conclusions and describe directions of further 

work. 

1.3 Thin-film Equations and Boundary Condi­
tions 

In this section we derive the equations and boundary conditions which govern the 

behaviour of a thin film of Newtonian fluid that will used throughout this thesis. 

Suppose that we have a iucompressible Newtonian fluid of constant density p and 

constant viscosity 11, whose motioll is governed b~' tlw l\avier-Stokes equations 

(see, for example, Acheson [1]), given by 

P(UI + (u· V)u) = -Vp + g + jlV2
U, 

V· U =0, 

( 1.2) 

( 1.3) 

where u is the fluid velocity, p is tlw pn~ssur('. t is tillH' alld g is t h(' acceleration 

due to gravity. Our aim is to obtain the simplified form of Eqs. (1.2) and (1.3) 
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appropriate when the Huid film is thin and slen(h~r. If w(~ let H denote a typical 

vertical length scale and L a typical horiwlltal length scale, then this means 

that 
H 

cS = L ~ 1, ( 1.4) 

where cS is the aspect ratio. 

1.3.1 Cartesian Coordinates 

Using Cartesian coordinates (x,:t/, z) with z directed vertically upwards, the 

Navier-Stokes equations take the form 

p(Ut + 'U'Ux + v'uy + 'W'uz) = -Px + p,(uxx + 'lLyy + 'U zz ), (1.5) 

p(Vt + UVx + VVy + 'WV z ) = -Py + p,(vxx + Vyy + V zz )' (1.6) 

p(Wt + UW;r + VWy + 'WWz ) = -pz - pg + JL(Wxx + 'Wyy + 'W zz )' (1.7) 

lL:c + Vy + /I'z = 0, (1.8) 

where the Huid velocity has b(~l~n written u = (u., 'U, w) aJl(I g = (0,0, -g) denotes 

the acceleration due to gravity. Vie illtroduct' tlw scalillgsl1 = Uu', v = U v', 

t = Lt'jU, 'l1J = S!'w', .r = L1:', y = Ly', z = H;;,', p = 8 21/ amI y = S39' where 

U is the horizontal velocity scale; the scalings SI, S2 and S3 will be determined 

subsequently. Substituting these rescaled variables into Eqs. (1.5)- (1.8) and 

dropping the primes at once for simplicity, the mass conservation condition (1.8) 

yi(~lds 

U U SI 
LU.:c + LV!! + HWz = 0, 

and hence if we choose SI = U H / L, then Eq. (1.8) IWUlllWS 

(1.9 ) 

The scaled version of Eq. (1.5) is given by 

S2L ( 1) R,,(II/. + U'U x + 'U'u 1} + W'llz) = ---1)'1' + 1J.1"I' + n,/,} + -/I,. , /,,[/"", . (F -- ' (1.10) 

wh('l'l' R" = pU L/II is the R<,ynolds number. The viscous terlll dominates tiw 

inertia term when 

(1.11) 
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i.e. when the reduced Reynolds number is small. In order to keep the pressure 

term in Eq. (1.10) at leading order, we choose S2 = ILV Lj H2. Hence to leading 

order in 6, Eq. (1.10) yields 

U zz = px· (1.12) 

The scaled version of Eq. (1.6) is given by 

(1.13) 

and to leading order in 6, Eq. (1.13) yields 

(1.14) 

The scaled version of Eq. (1.7) is given by 

1 pS3L3 ( 1) 
Re(Wt + UWx + VWy + wWz ) = - 61PZ - p,V H 9 + Wxx + Wyy + (52 W zz . (1.15) 

In order to keep the gravity term in Eq. (1.15) at leading order, we choose 

s;! = p,V L j pH3. Hence to leading order in 6, Eq. (1.15) yields 

0= pz + g. (1.16) 

Written in Cartesian coordinates the appropriate boundary conditions for 

Eqs. (1.5) -- (1.8) are given by 

'U = 'U = 0 on z = 0, 

'W = hi + uh;c + vhy on z = h, 

n . T . n = - P - 2T H on z = 11" 

n . T . tl = 0 OIl Z = IL, 

n . T . t2 = 0 on z = h, 

( 1.17) 

(1.18) 

(1.19) 

( LW) 

(1.21) 

where P = P(x) is the air pressure, T is the coefficient of surface tension, 

,2' = 1I(:r,:t}, t) is the free surface of the fluid film, T is the stress tensor given by 

( 

-Jl + 2/l'Il 1 

T= II(U 1 +1l1j) 

It (Ill 1 + 11 J 

p(lly + VI) 

-]1 + 2/11',/ 

11-('111,/ + v:) 

/1(11 2 +111 1 ) ) 

IL( I'z + IIJ,J ' 
-p+21 IU 'z 

(l. 22) 
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n is the normal unit vector to the free surface given by 

(-11,,,;, -hy, 1) 
n = -'-----~~.:.,.. 

(1 + hi + hi)~ , 
( 1.23) 

t, and t2 are tangential unit vectors to the free surface (such that tl . t2 = 0) 

given by 

(1.24) 

(1.25) 

and 2H = V' . n where H is the mean curvature of the free surface. Equation 

(1.17) is the no-slip condition at the solid substrate, Eq. (1.18) is the free-surface 

kinematic condition, Eq. (1.19) balances normal stress, air pressure and surface 

tension forces and Eqs. (1.20) and (1.21) require that the tangential stress at 

the free surface is zero. We now derive the thin-film versions of Eqs. (1.17) 

(1.21). We use the same scalings as before together with P = j..LULP'jH2 

and T = 51 T', where 54 will be determined subsequently. Substituting into 

Eqs. (1.17) -- (1.21) and again dropping the primes at once for simplicity, the 

s('aled version of Eq. (1.17) is simply 

'U = V = 0 on z = O. (1.26) 

The scaled version of Eq. (1.18) is given by 

'W = hI + 'Uh" + vhy on z = h. (1.27) 

The scaled version of Eq. (1.1 g) is given by 

"2 ( 2 K2, ) 2 K2 h I (' ,) I (, K"2, " "2,) he -]1 + U Ux + U 'er ly Uy + Vx - 2 ~x U z + () W:r ) - 2hy( t'z + r5 Wy 

"2 (' • K2) 1 _ 1 54 T H ( "2 '2 '2 '2 1 +hy -p+2u Vy - 0'2p+2WZ--cS2P+ pUL hxr+hyy)(l+o h,,:+o hy)2. 

(1.28 ) 

In order to keep the curvature term in Eq. (1.28) at kading order, w(' choose 

51 = pD L:l / H3. Hence to leading order in cS, Eq. (1. 28) yields 

(1.29 ) 
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where 
2 (j2 fj2 

\7 =-+-O£2 oy2' 

The scaled version of Eq. (1.20) is given by 

28hx (w z - 'Ux) - 6hy( U y +V3;) + ~Uz + 8wx - 8h;(62wx +Uz ) - 8hx hy( 82wy +Vz ) = O. 

(1.30) 

To leading order in 6, Eq. (1.30) yields 

Uz = 0 OIl Z = h. (1.31) 

The scaled version of Eq. (1.21) is given by 

83h;hy (;2 P - 2ux - vy) + f/'hxh~Cuy + Vx) - 262hchy (l'uz + 8wx) 

61 (i"2h2 )(, , ( 2 2 ) (1, 8') - 1x U x + 1 Vx + u,y) + 8 hx + 1 '6 v z + Wy (1.32) 

-62h~ (6'W y + lVz ) + 6h y (2w z - v y ) = U. 

To leading order in 6, Eq. (1.32) yields 

liz=O 011 ::;=h. (1. 33) 

In dimensional form, the leading-order equations and boundary conditions 

are given by 

0= fJz + pg, 

'11., + Vy + 'W z = 0, 

subject to 

'lJ. = '/J = 0 on ;z = 0, 

11:U z = 0, IW z = 0 OIl ::: = 11, 

jJ = P - T\7
LII 011 :3 = 11, 

w = 11., + uh:r + '1111.11 011 ;? = /i, 

(1.34) 

( 1.35) 

( 1.36) 

( 1.37) 

( 1.38) 

(1.39) 

( 1.·10) 

(1,41) 
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1.3.2 Cylindrical Polar Coordinates 

Using cylindrical polar coordinates (r, tp, z) with z directed vertically upwards, 

the N avier-Stokes equations take the form 

(1.44) 

(1.45 ) 

where 210(0) Ifj2 
\7 = ~ or r Or + r2 Otp2 ' 

and, as before, the fluid velocity has been written u = (11, V, w) and g 

(0,0, -g). The corresponding boundary conditiolls are given by 

u=v=o on z = 0, (1.46) 

v 
z = 11" (1.47) w = h t + uh1· + -hp on 

l' 

n ' T ' n = - P - 2T H on z = h, (1.48) 

n' T, tl = 0 on z = 11" (1.49) 

n' T, t2 = 0 on z = 11" ( 1.50) 

where P = P(r) is tiH' air pressure and the stress tensor T is p;ivc!1 by 

-p + 2/111" 
Ji,',..i (~) + ~u ur T T' r.p 

p(ILZ + Ill,.) 

2/1 
-p + -:;-(v<p + u) (1.51) T= D (V) /1 IU'- - + -'U or l' 'f' <p 

I" (~'W<p + 'Uz ) 

,ilnd n. t 1 and t:L are p;i V('II by 

( 1.52) 
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(1.53) 

(1.54) 

As before, Eq. (1.46) is the no-slip condition at the solid substrate, Eq. (1.47) 

is the free-surface kinematic condition, Eq. (1.48) balances normal stress, air 

pressure and surface tension forces and Eqs. (1.49) and (1.50) require that the 

tangential stress at the free surface is zero. The analysis for this case follows ex­

actly as for the Cartesian case. In dimensional form, the leading-order equations 

and boundary conditions are given by 

0= pz + pg, 

/LU zz = PT) 
1 

ILV zz = -P<p, 
T 

1 1 
-(TU)]' + -v<p + 'W Z = 0, 
r r 

subject to 

U = v = 0 on z = 0, 

Il'U z = 0, li:U z = 0 OIl Z = h, 

jJ = P - T\l'2 h OIl Z = 11" 

v 
'W = h t + uhr + -h<p on z = h. 

T 

(1.55) 

(1.56) 

(1.57) 

(1.58) 

(1.59) 

( 1.60) 

(1.61) 

(1.62) 



Chapter 2 

Quasi-static Analysis of a 
Non-annular Drop 

2.1 Introduction 

In this Chapter we investigate the quasi-static spreading of a finite-sized thin 

drop of incompressible Newtonian fluid on a planar substrate in the presence of 

a jet of air in both symmetric planar two-dimensional and axisymmetric three­

dimensional geometries. Three specific problems are studied in detail: a jet of 

air acting normally to the substrate when gravity effects are negligible, a jet of 

air directed vertically downwards onto a sessile drop on a horizontal substrate 

and a jet of air directed vertically upwards onto a pendent drop on a horizon­

tal substrate. In this Chapter we restrict our attention to drops without a dry 

patch ("non-annular" drops) and examine drops with a dry patch at their centre 

('·annular" drops) in Chapter 3. For each problem we determine the physically­

realisable equilibrium solutions for the profile of the drop and investigate their 

stability to uniform perturbations in the two-dimensional case and axisymmet­

rie perturbations in the three-dimensional case. Note that the restricted class 

of perturbations considered here does not include the (non-uniform and non­

axisyrnrnetric) fingering instabilities described in Chapter l. Linear stability 

analysis for non-uniform and non-axisymmetric perturbations is discussed in 

Chapters 5 and 6. 

21 
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Figure 2.1: Geometry of the non-annular problem. 

2.2 Problem Formulation 

Consider a constant volume of incompressible Newtonian fluid with constant vis­

cosity tl, density p and surface tension T spreading on a solid horizontal planar 

suostrate in the presence of a jet of air. We analyse both the symmetric planar 

two-dimensional ease, denoted by (p), and the axisymmetric three-dimensional 

case, denoted by (a), for which we employ Cartesian coordinates (x, z) and 

cylindrical polar coordinates (r, z) respectively, with the z-axis vertically up­

wards or downwards as appropriate. The thickness of the fluid film is denoted 

by z = h(.r, t) (p) or z = h{r, t) (a), where t denotes time, and the velocity of the 

fluid is denoted by u = u(x, z, t) (p) or u = u(r, z, t) (0). Following Moriarty et 

al. [43] we Illodel the jet of air as a parabolic pressure distribution ill the air so 

that P = Po - b;'2/2 (p) or P = Po - kr2/2 (CL), where P denotes the pressure, 

Po is the maximum value of the air pressure at tlw centI'(' of the drop and k is a 

positive constant; the shear stress at the free surface of the fluid ('aused by the 

ail' flow is aSSllTlH'd t.o 1)(' negligible', The iSeorrwtry of the probl(,1ll in the case 

of et sessile drop is shown ill Fig. :2.1; the ()nl~' diff(~renc(' ill the pendent ca8(, is 

that the direction of gravity is I'('wrsed. 

\Ve assume that the spe(~d of tlH' contact line. at positioll .1: R(t) (p) or 
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r = R( t) (a), is related to the contact angle (} = (}( t) by tlw general Tanner Law 

(2.1 ) 

\"h('1'(' h; is an <'Illpirically-determined positive constant with dimensions of ve­

l()cit~'. F(O/Oo) is an empirically-determined function satisfying F(l) = 0, and 

00 > 0 is tht, ('quili briurn contact angle. Typically F( (} / (0 ) is a monotonically­

iJl('l'easing function and so its first non-zero derivative at e = Bo will be positive 

and of odd order. 

From the results given in Chapter 1 the conventional lubrication approxima­

tion to the governing Navier-Stokes equations yields 

0= pz + pg, 

{ 
p,'uzz = Px, 
j1,'U zz = Pr, 

(p) 
(a) 

(p) 
(a) 

(2.2) 

(2.3) 

(2.4) 

wh('r(' q denotes acceleration due to gravity, subject to the boundary conditions 

/1, = () on z = 0, 

IJ,'/J,z = 0 on z = h, 

on z = h, 

(p) 
(0) on z = 11" 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

\\'11('1'(' I hI' fluid V<'locity ha.s lwtm written u=('U, w) ill the appropriate coordi­

lIall'S. Equation (2.5) is tht' no-slip condition at the substratc. Eq. (2.6) rcprc­

st'llt.s Z('l'O t.Clngt'lltiai stwss at the free surface and Eq. (2.7) is the normal stress 
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condition which includes both the effects of surface tension and the non-uniform 

external pressure loading caused by the jet of air. Equation (2.8) is the kine­

matic free-surface condition which can be used with Eq. (2.4) to derive the flux 

condi tion 

{ 

ht + Qx = 0, 

ht + ~(TQ)r = 0, 

(p) 

( a) 
(2.9) 

W IH'W Cd denotes the ft ux per unit length (p) or circumference ((L), defined by 

Q = 111 'udz. (2.10) 

Solving Eqs. (2.2) - (2.7) for 'U allows Q to be evaluated from Eq. (2.10) and 

substituting Q into Eq. (2.9) gives the governing equation for h. 

We non-dimensionalise the problem using a characteristic horizontal length 

scale L (to be defined subsequently) and K as the characteristic horizontal veloc­

ity scale. The corresponding non-dimensional variables are defined by x = Lx', 

r = Lr', R = LR', h = fJoLh', t = Lt' / K and 0 = 000'. Dropping the primes 

at once for simplicity we obtain the non-dimensional version of the governing 

equation, namely 

1 
(."hl + [h~3 ((h r .r - C

2
h)x + JX) II = 0, 

1 [rhJ {(l ')}l Chi + - -.- -(rh,.),. - C2h +.h 
'r.3 'r /' 

/' 

(p) 
(2.11) 

= 0, (a) 

together with the non-dimensional version of Eq, (2.1). llamely 

Rt = F(O). (2.12) 

Tll(' const.ant. .J = kL3/rOo is a non-dimensional measure of the jet st.rengt.h, 

C = ":tL/rOil is the capillary number and C2 = pg £"2 /r is the Bond numbpl'. The 

appropriate boundary condit.ions for Eq. (2.11) are 

h(R, t) = O. 

(p) 
(0.) 

(2.13) 

(2.14) 
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together with the regularity conditions 

{ 
hx(O, t) = 0, 
11,1'(0, t) = 0, 

Q(O, t) = 0, 

(p) 
(a) 

25 

(2.15) 

(2.16) 

which must be satisfied together with appropriate initial conditions for hand 

R. The volume of the drop is given by 

{ 

2V = 2 fuR hdx, 

27f V = 27f foR hr dr. 

(p) 
(2.17) 

(a) 

If we identify the dimensional jet strength k with pw2 then Eq. (2.11)(0,) is 

exactly the same as the corresponding equation obtained in the special case 

G = 0 by Moriarty et al. [43] (their Eq. 30) for a thin axisymmetric fluid 

film spreading under the action of the centrifugal force on a substrate rotating 

uniformly with angular speed w. Hence all our results for the axisymmetric air­

j(,t-blowing problem also apply to the axisymrnetric spin-coating problem. We 

note, how('ver, that as Ernslie et al. [12] pointed out, in this problem the Coriolis 

for('(' can he properly neglected compared to the centrifugal force (as it was by 

Ellls\i(' et al. [12] and Moriarty et al. [43]) only if the fluid motion is sufficiently 

slow. 

2.3 Quasi-static Motion 

III t.he lilllit of slllall capillary number, C -----1 0, the contact line moves slowly 

r('lat in' to the bulk of the Huid and so the dynamics of the motion are controlled 

by t hosl' of till' contact line. At leading order in C « 1 we drop the uIlsteady 

t('l"llI ill Eq. (2.11) ami su the Hux is cunstant; then by Eq. (2.16) it is zero 

('\·l'r~·\\'lll'n'. H(,Il(,(' W(' obtain et third-order ordinary diffcI'{'lItial equation for the 

t hi('klll'sS of t.hl' drop: 

{ 

(11,,.1' - (;'211).,. + J:l' = 0, (j)) 

(
hl'1' + '2 - G2h) +.1,. = 0, (a) .,. 

r 

(2.18) 
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to be integrated subject to Eqs. (2.13) .~ (2.1G). The solution for h is easily 

obtained and can be written in the form 

h = Of(', R) + ./g(-, R), (2.19) 

where the symbol "." denotes x (p) or r (a) and the functions f(', R) and g(., R) 

are given by 

1 
j .(. R) = cosh GR - cosh Gx () 

x, GsinhGR' P 
(2.20) 

f( R) = Io(GR) - Io(Gr) ( ) 
r, GIt(GR) ' a 

1 
) -2R(cosh GR - cosh Gx) + G sinh GR(x2 - R2) (p) 

g(x, R - 2G3 sinh GR ' 
(2.21) 

, ) _ 2R(Io(GR) - Io(Gr)) + GI1(GR)(r2 - R2) (a) 
g(r,R - 2G3I

I
(GR) , 

where 10(') and 11 (.) are modified Bessel functions of the first kind. The volume 

of this quasi-static drop is given by 

v = OS(R) + JT(R), (2.22) 

wh('!'c tlH' functions S = S(R) and T = T(R) are given by 

1 
GRcoshGR - sinhGR 

G2 sinh G R ' (p) 
S(R) = GR2Io(GR) _ 2RI

1
(GR) (2.23) 

-~...:...-~-~~-.-:.., (a) 
2G2I1 (GR) 

\()t(' that tht' functions f(-, R) and S(R) are precisd~' the familiar expres­

sions for hand \' in th(' absenc(' of blowing (./ = 0). 

WII<'I1 .lJ #- 0 we can, without loss of generality, choose the horizontal length­

scalp L to be tilt' capillary length (T / pg) 1/2 (l'OlTcspollding to setting IGI = 1). 

A1U'1'Ilativply, whatever the value of g, we can (again without loss of gpncrality) 
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choose either L = (TOo/k)l/:3 (corresponding to setting J = 1), or L = (Y/OO)I/2 

(p), L = (v/eo) 1/3 (a) (corresponding to setting V = 1). Of course all of these 

choices are equally valid; however in order to treat clearly both the problem of 

Cl drop with fixed volume under a jet of varying strength and the problem of a 

drop of variable volume under a jet of fixed strength we need to retain both the 

panUlH~ters V and J explicitly in what follows. We therefore choose L to be the 

capillary length, and so the sessile (09 > 0) and pendent (09 < 0) cases correspond 

to G = 1 and G = i respectively. The special case of zero gravity corresponds 

to the limit G -+ 0, and in this case L remains arbitrary. 

Rearranging Eq. (2.22) we obtain an expression for the contact angle 0 for 

constant V = Vo and .I = .10: 

() = Yo - .loT(R) 
S(R) . (2.25) 

Substituting this expression for (j into Eq. (2.12) we obtain a non-linear first­

order diH'erential equation for the speed of the contact line, namely 

{ = F (Yo - JoT(R)) 
I t S(R)' (2.26) 

to bp solved subject to an appropriate initial condition on R(t). 

2.4 Equilibrium Solutions 

III ('qllilibrium f) = 1 and R = Ro, say. USill!!, Eq. (2.22) we can either write the 

\'OIUIlH' F = ~. (Ro) as a fUllction of Ro for fixed J = Jo in the form 

V(Ro) = S(Ro) + JoT(Ro), (2.27) 

or write the jet strength J = J(Ro) as a function of Ro for fixed \' = \'0 in th(, 

fOl'Ill 

J(Ro) = Vo - S(Ro) . 
T(Ro) 

(2.28) 

Th(' possibh- pquilibrillIll positions of the cOlltact line R = Ro ;UP th(' solutions 

of \. = ,;) for J = .10 (where \/0 > () and .10 > () are prescribed constant.s) and 

so Ho sa t isfies 

(2.29) 
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2.5 Stability Analysis 

To determine the stability of an equilibrium drop of radius R = Ra to small 

uniform (p) or axisymmetric (a) perturbations we write R(t) = Ra + Rl(t) and 

pxpand Eq. (2.26) for small Rl to yield 

(RI)t = lvf(ARI )m , 
In! 

(2.30) 

where M = dlltF((})/dOmlo=1 > 0 (rn = 1,3,5, ... ) is the first nOIl-zero derivative 

of F(O) evaluated at 0 = 1 and A is a constant given by 

A = _ 5'(Ro) + JaT'(Ro) 
S(Ro) . 

Equation (2.30) is easily solved to yield 

{

Re>"Mt 

RI = R (1 _ (rn - l)M(AR)mt )-;;;S 
Rm! 

if rn = 1, 

if rn = 3,5,7, ... , 

(2.31) 

(2.32) 

where R = Rl (0) is the initial perturbation to the radius of the drop. Equation 

(2.32) shows that an equilibrium drop is unstable to small perturoations when 

A > 0 and stable when A < O. Small perturbations grow or decay exponentially 

when m = 1 and algebraically when rn = 3,5,7, .... Examining Eq. (2.31) shows 

that for marginal stability we H>quire 

\/'(Ru) 
'(R ) = 0, So 

(2.33) 

when' \:(Ro) is given by Eq. (2.27), or alternatively, we call write Eq. (2.33) in 

the l'quivaient form 
.l'(Ro)T(Ro) 

S(Ro) = 0, (2.34) 

when' J(Ro) is given by Eq. (2.28). 

HPrrafter, we drop the zero subscript on R for clarity. 

2.6 Results 

2.6.1 Explanation of Figures 

In what follows we present results for both the problem of a drop with fixed 

\'OlllllH' under a jet of varying strength (that is, variable J and fixed V) and 
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the problem of a drop of variable volume under a jet of fixed strength (that is, 

variable V and fixed J) for both sessile and pendent drops and in the special 

case of zero gravity. Since the results for the planar case are qualitatively similar 

to the axisymmetric case we present the plots for the latter case only, although 

relevant results for the planar case are given where appropriate for completeness. 

Figure 2.2 shows plots of J against R for three values of \I() in the zero-gravity 

case, and corresponding typical drop profiles are shown in Fig. 2.3. Figure 2.4 

shows plots of V against R for three values of Jo in the ;;;ero-gravity case; the 

drop profiles shown in Fig. 2.3 are again typical. Figure 2.5 shows an example of 

the contact angle () plotted against radius R in the zero-gravity case. Figure 2.6 

shows corresponding examples of the evolution of the radius R as a function of 

time t for a particular choice of F(O), while Figs. 2.7 and 2.8 show corresponding 

examples of the evolution of the profile of the drop. Figures 2.9 and 2.10 show 

plots of J against R and V against R respectively in the case of a sessile drop, 

and the corresponding results in the pendent case are given in Figs. 2.11 and 

2.12. Results for the pendent case corresponding to Figs. 2.5~2.8 in the zero­

gravity case are given in Figs. 2.13~2.16. Finally, Fig. 2.17 shows an example of 

the contact angle () plotted against radius R in the pendent case for a special 

value of .J. 

Since we are concerned only with V > 0, J > 0 and R > 0, all the plots of V 

against Rand J against R are restricted to the first quadrant. On these figures 

the possible equilibrium solutions are classified as either physically-realisable or 

not physically-realisable (the latter implying that h < 0 at some part of the 

drop) and either stable (,,\ < 0) or unstable (,,\ > 0). This classification is 

indicated as follows: 

• a solid thick line indicates stable and physical drop profiles, 

• a solid thin line indicates stable but ullphysical drop profiles, 

• a dashed thick line indicates physical but unstable drop profiles, 

• a dashed thin line indicates drop profiles that are both unstable and un-
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Figure 2.2: Plot of jl~t strength J against radius R for an axisymmetric drop in 
the case of zero gravity for Vo = 1,2,3. The lille styles are defilled ill Sec. 2.6.l. 
Typical drop profiles are given in Fig. 2.3. 

physical. 

2.6.2 Zero-gravity Case (0 = 0) 

In the special ('ase of no air jet, J = 0, the function F is Blollotollically increasing 

in R, and for all values of V > 0 there is a single stable alld physical equilibrium 

solu tiOll. 

Figure 2.2 shows J plotted against R for Vo = 1,2 and 3. Each curve has 

one zero at R = (3Vo) 1/:2 (p) or R = (8Vo) 1/3 (a), and a maximum J = Jrn 

at R = Rrn , where Jrn = 6/(5Vo)3/:2 and Rrn = (5\10)1/:2 (p) or JlI1 = 3/(4\10) 

and 17111 = (lG\'0)1/3 (a). For all values of Vo we find that J ---+ 0 like 15/ R3 

(JJ) or 24/ HI (a) as II ---+ 00. The left-hand part of each cmV(' corresponds 

to stable alld physical drop profiles like those numbered 1 and :2 in Fig. 2.3. 

At R = Rm the solutiolls [('Blain physical and look like profile :3 ill Fig. 2.3 

bllt become uIlstable. For R > Rill the equilibrium solutions remain unstable 

and, as R increases, eventually become unphysical via h = 0 at the origin like 
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h 

1 

L-L--L_--L---------=>.o::---r------;,4------L----L-....L-l X (p) 

r (a) 

Figure 2.3: Typical drop profiles for various values of radius R for a drop in zero 
gravity. Drop profiles in the sessile drop case are qualitatively similar to those 

shown here. 

profile 4 in Fig. 2.3, at R = (15Vo)1/2, J = 12/(15Vo)3/2 (p) or R = (24Vo)1/3, 

J = 2/(3\;0) (a). In the planar case the drop profile changes from having one 

turning point to three (that is, changes from one like profile 1 to one like profile 

2 in Fig. 2.3) when R increases through R = Rrn , while in the axisymmetric 

case this change occurs inside the interval of stable and physical drop profiles 

at R = (12Vo)I/3 < Rill, J = 2/(3Vo). The width of the interval of R values 

corresponding to stable and physical profiles increases as Vo is increased, and for 

any value of J in the range 0 :::; J ::; Jrn there exists a unique stable and physical 

equilibrium solution; however, Jm decreases with increasing Vo. 

Figun~ '2.4 shows V plotted against R for Jo = 1,2 and 3, which can be 

interpreted in a similar way to Fig. 2.2. Each curve has two zeros, at R = 0 

and R = (15/JO)1/3 (p) or R = (24/JO)1/3 (a), and a maximum V = Y;n at 

R = Rill, where v: ll = (6/Jo)'2/:~/5 and Rm = (6/JO)I/3 (p) or \1;11 = 3/(4Jo) and 

Rill = (12/ JO)I/3 (a). For all values of Jo, we find that V -+ 0 like R2/3 (p) 

or R:I /8 (a) as R -+ O. Again the left-hand part of each curve corresponds to 
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Figure 2.4: Plot of volume V against radius R for an axisymmetric drop in the 
case of zero gravity for .10 = 1,2,3. The line styles are defined in Sec. 2.6.1. 
Typical drop profiles are given in Fig. 2.3. 

stable and physical drop profiles. At R = Rm the solutions remain physical but 

become unstable, while for R > Rm the equilibrium solutions remain unstable 

awl, as R increases, eventually become unphysical via h = 0 at the origin 

at R = (12/.10)1/3,11 = (12/10)2/3/15 (p) or R = (16/.10 )1/3, V = 2/(310 ) 

((1,). In the planar case the drop profile changes from having one turning point 

to thn'l~ when R increases through R = Rm , while in the axisymmetric case 

this change occurs inside the interval of stable and physical drop profiles at 

17. = (8/.IO)I/:I < Rm , V = 2/(3.10), In this case the width of the interval of R 

valucs corresponding to stable and physical profiles decreases as .Io is increased, 

alld for allY vallle of \/ in the range 0 < V ~ Vrn there cxists a unique stable 

awl physical equilibrium solution; however, Vrn decreases for increasing .10' 

Fi)!;Ill'(' 2.5 plots contact angle (), given by Eq. (2.25), against radius R in 

tlw case \ 0 = 0.4 and .Io = 1. The thick linc corresponds to physical solutions 

and the thin line corresponds to unphysical solutions. The points of intersection 

with tlw horizontal line () = 1 correspond to equilibrium solutions at R ~ 1.5608 
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Figure 2.5: Plot of contact angle e against radius R for an axisymmctric drop 
in the case of zero gravity, with Vu = 0.4 and .10 = 1. The thick line wrresponds 
to physical solutions; the thin line corresponds to unphysical solutions. The 
points of intersection with the horizontal line () = 1 correspond to equilibrium 
solutions. 
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Figure 2.6: Examples of the evolution of drop radius R(t) for an axisymmetric 
drop in the case of zero gravity when VD = 0.4 and Jo = 1 obtained by solving 
Eq. (2.26) numerically in the case F(e) = e3 - 1. The equilibrium values R ~ 
1.5608 (stable) and R ;:::; 2.7233 (unstable) are indicated by horizontal dashed 
lines, and the shaded area denotes a region of unphysical solutions. 

(stable) and R;:::; 2.7233 (unstable). Figure 2.6 plots examples of the evolution of 

the radius R as a function of time t obtained by numerically so lving Eq. (2.26) in 

the particular case F(B) = e3 -1. Detailed analysis in the vicinity of the contact 

line (see, for example, Hocking [21], Oron et al. [45] alld Duffy & Wilson [8]) 

motivates this specific choice of Tanner Law. The shaded area denotes a region 

of unphysical solutions; our computations exclude this region. Evidently for all 

the initial conditions shown in Fig. 2.6 the drop evolves to the stable equilibrium 

solu tion with R ;:::; 1.5608. Figures 2.7 and 2.8 show the evolution of the drop 

profile in the cases R(O) = 0.5 and R(O) = 2.3 respectively; in both figures 

the stable equilibrium solution with R ;:::; 1.5608 is shown vvith a dashed curve. 

(Note that Figs. 2.7 and 2.8 use different vertical scales. ['or c\a.rity.) 
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Figure 2.7: Evolution of a quasi-static drop profile for an axisymmetric drop 
in the case of zero gravity when Vo = 0.4, .10 = 1, with the initial condition 
R(O) = 0.5. The dashed curve corresponds to the stable equilibrium solution 
R ~ 1.5608. 
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Figure 2.8: Evolution of a quasi-static drop profile for an axisymmetric drop 
ill the case of 2ero gravity when Vo = 0.4, Jo = 1, with the initial condition 
H(O) = 2.3. The dashed curve corresponds to the stable equilibrium solution 
R ~ 1.5G08. 
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Figure 2.9: Plot of jet strength J against radius R for an axisymmetric sessile 
drop for Va = 1,2,3. The line styles are defined in Sec. 2.6.1. Drop profiles in 
this case are qualitatively similar to those shown in Fig. 2.3. 

2.6.3 Sessile Case (G = 1) 

In the sp('cial case J = 0 the function V is rnonotonically increasing in Rand 

for all values of V > 0 there is a single stable and physical equilibrium solution, 

just as ill the zero-gravity ease. 

Figures 2.9 and 2.10 show J plotted against R for Va = 1,2 and 3 and V 

plotted against R for la = 1,2 and 3. The qualitative behaviour of the solutions 

in this case is the same as that of the zero-gravity solutions and so, for the sake 

of bn~vity, the details are not repeated here. 

2.6.4 Pendent Case (G = i) 

In thl' sp(\cial case .J = 0 the function V is mOllotollically increasing in R between 

each of its infinitely many vertical asymptotes, and for every value of V > 0 there 

arc infinitely lllany stable equilibrium profiles. However, only the solution on 

the first branch is physically realisable and so again there is only a single stable 
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Figure 2.10: Plot of volume V against radius R for an axisymmetric sessile drop 
for .10 = 1,2,3. The line styles are defined in Sec. 2.6.1. Drop profiles in this 
case are qualitatively similar to those shown in Fig. 2.3. 

and physical equilibrium solution for all values of V > O. Unlike the previous 

two cases the introduction of non-zero .I changes this situation qualitatively. 

FiguH' :2.11 shows .I plotted against R for Vo = 20, \";) = l~: ~ 32.4642 and 

\ () = -lOo Thl' branches in Fig. 2.11 can be classified as one of thn'c types: 

• .11 - et branch with a maximum/minimum "kink". 

• .12 - a branch with a maximum turning point, 

• .J3 - et \IloIlotonically decreasing function. 

The only 0['(\(>1' in which these branches can appear 011 each plot is .1 1 tlwn .12 

foJlo\\'('d b)' .13 as R increases. Each branch lies bctwepn t.he vertical asymptotes 

of .J. which occur at values of R satisfying 

{

tan R = 3R (p) 
3 - R2' 

J1 (R) 4R 
-- - (a) 
Jo ( R) - 8 - R2 ' 

(2.35 ) 
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Fip;ure 2.11: Plot of jet strength J against radius R for an axisymmetric pendent 
drop when (a) \It) = 20 < V;~, (b) ,;() = Vc;::::; 32.4642 and (e) '10 = 40 > \I:~. The 
lilW styles are defined ill Sec. 2.G.1. 
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which are independent of \;0, and where Jo(R) and J1 (R) are Bessel functions of 

the first kind. The number of .J1 branches depends on the value of VD, whereas 

thNC is only ever one J2 branch and an infinite number of .13 branches extending 

to the right. The special value V = Vc corresponds to the case where one of 

the vertical asymptotes of .1 disappears, leaving a continuous curve connecting 

what were two adjacent branches for V i=- Vc· Equating the numerator and 

denominator of Eq. (2.28) to zero we find that ~.~ satisfies 

1 

,l (3VJ'i 
tan (3l/C ) 2 = 1 _ \;'~ , 

1 1 

.11 (2V~3) 2l~:3 
J 2 • 

.10(2Vc3) 2 - Vc} 

(p) 

(2.36) 

(a) 

The values of R at which there is marginal stability arc the solutions of Eq. (2.34) 

and, as the plots in Fig. 2.11 show, stable and physical solutions can occur on 

other branches as well as the first. Note that some of the regions of stability 

are relatively small. For example, in Fig. 2.11(a) there is a small stable but 

tin ph~'si('al region l)('twcen R ~ 11.6198 and R ~ 11.9047. As the drop profiles 

in Fig. 2.11 shovv, unlike in the zero-gravity and sessile cases, tlw solutions can 

iH'COllH' IlIlphysical via h = 0 at locations other than the origin. 

Figlll'(' 2.11 (a) with \;~) = 20 shows one .12 branch alld the first t.wo of the 

.1:3 brandH's. In Fig. 2.11(b) Vo is increased to V~~; the vertical asymptote at 

R ~ 6.3802 vanishes and a .12 branch and a J3 branch connect to form a critical 

.12 branch. In Fig. 2.11((') vD is inneased to 40 and the figun~ shows a .11, a 

.12 and t1l<' hrs! .U branch. Note that th(' number of .J 1 brandws incJ'('ases as 

,;) ill('l'l'<lSl's. wit.h till' maximum/minimum kink ()(,l'ulTing at smaller values of 

.J as H in('J'l~aSl'S. The drop profiles \lsuall:-' (but not always) have an increasing 

11Ullll)('r of maxima and lllinima as R iWTeasl's. For eX<llllplp, in Fig, 2.11(a) th(' 

drop pl'Ofiil' Oil the .12 branch has one turning point <llld the drop profile on the 

.1 J brallch immediately to the right has five, whereas in Fig. 2.11 (c) thl' drop 

profile 011 the .J 1 branch for R ;:::::; 6.3 has five turning points (two very dose to 

,. = ± U) while thl' drop profile on the .12 branch imlllcdiaLl'ly to the right has 

only t III'('l'. For all~' giV(~n v<tilw oi' .J there are fillitl'iy lIlany (at ll'rtst Oil(' amI 
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possibly more) stable and physical profiles, and there is et maximum value of 

.I = .lm aboV(' which no physical and stable solutions exist. 

Figure 2.12 shows \I plotted against R for Jo = 0.12, .lo = Je ~ 0.1425 and 

.lo = 0.16, which can be described in a similar way to Fig. 2.11. The branches 

ill Fig. 2.12 can be classified as one of three types: 

• VI - a monotonically increasing function, 

• V2 - a branch with a maximum turning point, 

• V3 - a branch with a minimum/maximum "kink". 

The only order in which these branches can appear on each plot is VI then V2 

followed by V3 as R illcreases. Each branch lies bet.ween tlw vertical asymptotes 

of V, which occur at values of R satisfying 

{
sin R = 0, 
J1(R) = 0, 

(p) 
(a) (2.37) 

which are independent of Jo. The number of VI branches depends on the value 

of .10 , whereas there is only ever one V2 branch and an infinite number of V3 

branches ('xtending to the right. The special value .I = .le corresponds to the 

case wlH're one of the vertical asymptotes of V disappears leaving Cl continuous 

cmV(' connecting what were two adjacent branches for J f:- .le. Equating the 

numerator and denominator of Eq. (2.27) to zero we find that Je satisfies 

(p) 

(a) 
(2.38) 

Tll<' vailH's 0(' R at which then' is marginal stability an' tlw solutiolls 0(' Eq. (2.33) 

<lnd, llnlikp in tht' case .J = 0, stable aud physical solutions cau occur on branches 

otiwr thalljust tht' first. Note that again some of the regions are relatively small. 

For example, in Fig. 2.12(a) there is a small unstable but physical region between 

R ~ 4.9684 and R ~ 5.1356. Once again the solutions can lwculIle unphysical 

via h = 0 at locations other than the origin. 
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Figllt'(' 2.12: Plot of volume F against radius R for all axisyrnrnetric pendent 
drop WhPll (a) .10 = 0.12 < .le, (b) .10 = Je ~ 0.1425 <111d (c) .10 = 0.16 > Jr. 
The line styles are ddined in Sl~C. 2.6.1. 
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Figure 2.13: Plot of contact angle () against radius R for an axisymmetric pen­
dent drop, with Vo = 20 and .la = 0.16. The thick lines correspond to physical 
solutions; the thin lines correspond to unphysical solutions. The points of inter­
section with the horizontal line () = 1 correspond to equilibrium solutions. 

Figure 2.12(a) with .la = 0.12 shows two VI branches ami Cl V2 oranch with 

\"3 branches extending infinitely to the right thereafter. In Fig. 2.12(b) .la is 

illncased to .1(,; the vertical asymptote R = Rc ;::;;; 7.0156 vanishes, and a VI 

branch and a V2 branch connect to form a critical V2 branch. In Fig. 2.12(c) 

.J() is in('!'('(lS('d to 0.16 and the figure shows a VI, a V2 and 1,11(' first V3 branch. 

:'\ot(' t.hat ill this rase tht' llumber of VI bmn('hl's decreases as .J() increases while 

tll!' IllinilllulIl/IllClximulll kink on the V3 branches uccurs at ever larger values 

of \. as R in('n~ases. As prpviously, the drop profiles \ls\lally (hut not alwa~'s) 

ha\'(' an ilHTcasing number of maxima and minima as R increases. In this case 

for any given value of V there are finitely many (at least OIl!' ami possibly more) 

stabk and physical profiles, but there is nO upper limit on the valu(' of V for 

ph.\'sical and stabl!' solutions to exist. 

Figure 2.13 plots contact angho () against radills H in the' ('as(~ \'() = 20 

and .fo = n.l(j. The thick lines concspond to physical solutions and the thin 
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Figure 2.14: Examples of the evolution of drop radius R(t) for an axisymmetric 
pendent drop when Vo = 20 and 10 = 0.16, obtained by solving Eq. (2.26) 
numerically in the case F(e) = ()3 ~ 1. The equilibrium values R ~ 3.6524 
(stable), R ~ 5.5740 (stable), R ~ 6.9149 (unstable) and R ~ 10.0041 (unstable) 
arc indicated by hori zontal dashed lines, and the shaded areas denote regions of 
unphysical solu tions. 

lines correspond to unphysical solu tions. T he points of intersection with the 

horizonta l line e = 1 correspond to equilibrium solutions at R ~ 3.6524 (stable) , 

R ~ 5.5740 (stable) R ~ 6.9149 (unstable) and R ~ 10.0041 (unstable) . Figure 

2.14 plots examples of the evolut ion of the radius R as a function of t ime t 

obtailled by solving Eq. (2.26) numerically in the particular case F(()) = ()3 ~ 1. 

T he shrtded areas denote regions of unphysical solu tions; our computat ions again 

excl ude these regions, Figures 2.15 and 2.16 show the evolution of the drop 

profi le in Lhe cases R(O) = 1 and R(O) = 6.8 respectively; ill both fi gures the 

appropriate stable equilibrium solu t ion is shown with a dashed curve. 

Figur 2.17 ploLs contact angle () against radius R for Vo = 20 in the specia l 

case 10 = l e ~ 0.1425 and shows that, despite what the corresponding plot of 

" against R hown in Fig. 2.12(b) might suggest, t he dynamics in this case are 

qua.litaLiv ly similar to t hose when 10 = 0.12 and 10 = 0.16. ote, however , 
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Figure 2.15: Evolution of a quasi-static drop profile for an axisymmetric pendent 
drop when 1/0 = 20, Jo = 0.16, with the initial condition R(O) = 1. The dashed 
CUI've ('orresponds to the stable equilibrium solution R ~ 3.6524. 
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Figure :2.16: Evolut.ioll of a quasi-static drop profile for an axis.vmmet.ric IH'ucient. 
dro]> \\'\t('1l \;) = 20 . .lu = O.lG, with tht' initial condition R(O) = (j.8. Th(' dashed 
('u\,\'(' ('OIT(ISIH)JHis to (hl' stahl(' (IC/uilibrium solutioll R ~ 5.;)7·10. 
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Figure 2.17: Plot of contact angle () against radius R for an axisymmetric pen­
dent drop, with Vo = 20 and 10 = le ~ 0.1425. The thick lines correspond 
to ph~rsical solutions; the thin lines correspond to un physical solutions. The 
points of intcl's("ctioll with the horizontal line () = 1 correspond to equilibrium 
solHt ions. The opell circle (0) indicates that there is 110 solution with the correct 
\'0111111(' at this special value of R = Rc ~ 7.0156. 
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that when Jo = Je there is, in general, no equilibrium solution with the correct 

VOilITll(, with R = He ~ 7.0156, the value of R corresponding to the vertical 

asymptot(' of F(R) that disappears when Jo = Je . Corresponding behaviour is 

observed when \/0 = Vc· 
In all parts of Figs. 2.11 and 2.12 (but not the corresponding figures in the 

zero-gravity and sessile cases) there are evidently changes in stability at points 

other than the local extrema. Inspection of Eqs. (2.33) and (2.34) shows that 

these "unusual" changes of stability occur at points R = R* where S(R*) = 0, 

and inspection of the definition of S(R) in Eq. (2.23) shows that this is indeed 

possible only in the pendent case. Since 181 -+ ex) as these points are approached 

the lubrication approximation and possibly also (depending on the specific form 

of F((})) the quasi-static approximation fail in the immediate vicinity of these 

points. 

In the special case Jo = le (Fig. 2.12(b)) stability also changes at the point 

R = Rc (the value of R corresponding to the vertical asymptote of V (R) that 

disappears). Corresponding behaviour is again observed when 'i() = Vc. 



Chapter 3 

Quasi-static Analysis of an 
Annular Drop 

3 .1 Introduction 

As we have already seen, in many cases the solutions discussed thus far can fail 

to he ph~rsicallY-l'l~alisable via 11,(0) = O. (Indeed, this is the only way that the 

solutiolls \H'(,OJlH' Ilnphysical when G2 ~ 0.) It is therefore natural to examine 

Il('xt t II<' possibility of solutions that have a dry patch with no fluid near the 

origin. In an axisYlIlllletic geometry these solutions take the form of an annular 

ring of flllid ('('nU'n~d 011 '{' = 0, while in a planar geometry they take the form of 

two dis('l)JIIl('cted drops which are symmetric about x = O. In order to keep the 

algebra managpable we shall concentrate solely in this Chapter on the special 

('as(' of zero gravity, that is, the case G = O. 

3.2 Problem Formulation 

Ckarl~' tht' major difference between the annular solutions discussed ill this 

Chaptt'r and (ht' nOll-annular solutions discussed previously is that the former 

ha\'(' two ('olltact lilH's and hcn('e two contact angles. Thp out<'I' conta('t line is 

lo('ated at .r = H2(t) (p) or '/' = R'2(t) (a) and the inner 0I1e at :r = RI (t) (p) or 

,. = n 1 (t) ((/). Thl' l'olT('sponding contact angles an' denoted by (1 = (} (t) and 

r;'! = c.'>(f). Ph~·si('all.v-l'<'alisabl<' solutions satisfy (-) ~ 0, cjJ ~ 0 and H'2 > HI, and 

48 
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Figure 3.1: Geometry of the annular problem. 

in equilibrium e = eo and cp = CPo. The geometry of the problem is summarised 

in Fig. 3.l. 

Choosing the same Bcalings for the variables as before (see Chapter 2, Sec. 2.2) 

means that. we can set 80 = 1 without loss of generality. Furthermore, since we 

arc considering only the case G = 0 we can, without loss of generality, set either 

J = 1 ur \. = 1; for ease of comparison with the earlier results and for clarity 

\V(' shall retain both \' and J ill what follows and then jH'('sellt results for both 

J = land \. = 1. Hereafter scaled variables are used ullless stated otherwise. 

3.3 Quasi-static Motion 

I"or quasi-static lllotion with Q = 0 at leadiug order in C the equation for h is 

gi\'('n again by Eq. (2.18) with G = 0, llamely 

{ 

'(L:I:J::r + ~;:)= 0, (p) 

hrr + - + J T = o. (a) 
'/' 

l' 

(3.1 ) 

Sinc(' th(,n' are now two moving contact lines we need to replace Eq. (2.12) by 

two Talll1('1' Laws relating the speed of each contact line to its contact angle. For 

t hl's(' W(' liSt' the forms 

(3.2) 
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(3.3) 

where the empirically-determined functions FI and F'2 satisfy FI (CPu) = F2 (1) = 

O. Analogously to the non-annular case in Chapter 2 we assume that FI and F2 

arc monotonically-increasing locally near cP = CPo and () = 1 respectively, and so 

their first non-zero derivatives at these points will be positive and of odd order. 

The boundary conditions for Eq. (3.1) are 

h(RI' t) = 0, (3.4) 

(3.5) 

(3.6) 

{ 
hx(RI' t) = cP, (p) 
hT ( RI ,t) = cp. ( a ) 

(3.7) 

Solving Eq. (3.1) subject to Eqs. (3.4) ~. (3.6) yields 

(3.8) 

where the symbol "." again denotes x (p) or r (a) and the functions f(', RI, R2 ) 

and y(-, RI, R2 ) are given by 

(3.9) 

(3.10) 
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The volume of this annular drop is given by 

(3.11) 

and so 

(3.12) 

where the functions S = S(R1, R2) and T = T(R1, R2) are given by 

! 
(R2 - Rl)2 

6 ' 
S(RI , R2) = R2(R~ - R1) In(Rd R2) + R2(R~ - Ri)2 

4[R~ - R~ + 2R~ In(RI/ R2 )] , (a) 

(p) 
(3.13) 

(2Rl + 3R2)(R2 - Rd 4 

360 
(p) 

- [4R~(2R~ + R~)(R~ - Ri)21n(Rd R2) 

T(R1, R2 ) = ] 
+(Ri + 5R~)(~ - Ri)3 

x [384[R~ - Ri + 2R~ In(Rd R2 )]] -I. (a) 

(3.14) 

We can trivially re-write Eq. (3.12) as an explicit expression for () for constant 

V = \/0 and .l = 10 in the form 

() = Vo - .loT(RlJ R2 ) 

S(R1, R2) 
(3.15) 

The remaining boundary condition Eq. (3.7) yields an explicit expression for 4> 

for constant V = Vo and .1 = .10 ill the form 

4>= 

.10 ) ( :.1 () - 12 (R2 + RI R2 - Rd , 

[(R~ - Ri) [R~ - R1 + 4RiR~ln(Rl/R:.1)].l0 

-16R2 [R~ - Ri + 2Ri In(RI/ R2 )] e] 

x [16R1 [R~ - Ri + 2R~ In(Rd R2 )]] -I. 

(]J) 

(3.16) 

(a) 

Evi(i<'ntiy in equilibrium (0 = 1,4> = 4>0) annular solutions are impossible in the 

planar cas{~ if 4>0 2: 1; in particular, there is llO nOll-trivial annular solution in 
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the case in which the contact angles are equal, that is, when cPo = 1. Indeed, 

from Eq. (3.16)(p) it is clear that equilibrium annular solutions with equal inner 

and outer contact angles are possible only when 10 = O. The explanation for 

this is that in the planar case the "annulus" comprises two disconnected drops, 

symmetrically placed about x = 0, each of them subject to an off-centre jet; such 

a drop cannot be in equilibrium when 00 = cPo since the net external force on it is 

non-zero (because the resultant force due to the jet has a non-zero x-component, 

whereas the x-components of the surface-tension forces at the two contact lines 

cancel each other out exactly when 00 = cPo). As we shall see there is no similar 

restriction on the value of cPo for annular solutions in the axisymmetric case. 

In the planar case Eqs. (3.15) and (3.16) yield 

() _ 360Vo + (3R2 + 2R1)(R2 - Rd410 
- 60(R2 - Rd 2 ' 

(3.17) 

360Vo - (2R2 + 3R1)(R2 - Rl)410 cP = -----'----...:......;.,..--..:...:....---=. 
60(R2 - Rl )2 , (3.18) 

while in t hp axisyrnmetric case they yield 

o = 96R2 (R§ - Ri)[R§ - Ri + (RI + R~) In(RI / R2)]' 
(3.19) 

13(R1, R2 )Jo + 14 (Rl' R2 ) \/0 
(3.20) 

where the functions 11, 12, 1 3 and 14 are given by 

(3.21 ) 

Not(' that in the limit RI, R2 -+ 00 for fixed R2 - RI > 0 we recover the 

previolls results for the planar case, while in the limit R'2 -+ 00 for fixed RI we 

obtain the special case of a hole in an unbounded fluid film corresponding to 

th<' thill-film limit of the zero-gravity versioll of the problem studied by Taylor 

& ~di('h(H'1 [51] ami Wiboll & Duffy [59]. 
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3.4 Stability Analysis 

Proceeding as in Chapter 2 we can determine the stability of an equilibrium 

drop for which 0 = 1, c/J = c/Jo, RI = R? and R2 = Rg to small perturbations in 

RI and R2 by writing R1(t) = R?+RHt) and R2(t) = Rg+R~(t) and expanding 

Eqs. (3.2) and (3.3) for small Rt and R~ to yield 

{ 

(Rt}t = - ~ (QIR~ + Q2R~)m, 
m. 

(R~)t = ~ (,61R~ + {J2R~t, n. 

(3.22) 

where !vl = dmF 1(c/J)/dc/Jmlct>=<t>o > 0 (m = 1,3,5, ... ) is the first non-zero deriva­

tive of F1(c/J) evaluated at c/J = c/Jo, and N = dn F2 (O)/dOn lo=1 > 0 (n = 1,3, G, ... ) 

is the first non-zero derivative of F2 (0) evaluated at 0 = 1, and the constants Ql, 

Q2, ,61 and /32 are given by Qi = 8c/J/8Ri and /3i = 80/8Ri evaluated at RI = R? 

and R2 = Rg for i = 1,2. As before, we shall immediately drop the clumsy 

superscript notation and in the remainder of this section we shall denote R? and 

Rg simply by Ri and R2 . Unfortunately, unlike in the previous Chapter, we have 

been unable to obtain either the general solution of Eq. (3.22) or general criteria 

for the growth or decay of the solutions of Eq. (3.22) as t -1- 00. However, we 

call mak{' progress in the special case m = n = 1 when the system given by 

Eq. (3.22) is linear and has eigenvalues 

(3.23) 

alld so stability of the equilibrium solution is determined by the sign of Re{,'.+). 

Hprcafter w(' shall take M = N for simplicity. 

3.4.1 Planar Case 

In the planar case we can use Eqs. (3.17) and (3.18) to evaluate the Qi and Pi 
for i = 1,2 and hence obtain simple explicit expressions for A±/ M, namely 

A+~) 2 
M 12(R2 - Rd , (3.24) 

A_ Jo (R R )2 24,/0 
A1 20 2 - I - (R2 - RI P' (3.25 ) 
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Note that A+ is independent of Vo in this case. We can deduce immediately that 

the eigenvalues A± are purely real and, since A+ > 0 for all values of Vo and Jo, 

that all planar annular solutions are unconditionally ullstable. 

3.4.2 Axisymmetric Case 

In the axisymmetric case we can use Eqs. (3.19), (3.20) and (3.21) to evaluate 

the (l:i and Pi for i = 1,2 and hence obtain the corresponding expressions for A±. 

Howpver, these expressions are now very lengthy and considerably more effort 

is required to establish the sign of Re(A+) than in the planar case. To simplify 

the subsequent algebra we write RI = TJ, R2 = CTJ and so the requirements that 

RI > 0, R2 > 0 and R2 > RI mean that TJ > 0 and c > l. 

Firstly, we demonstrate that A± are purely real. If we denote the discriminant 

of A±! M by DI = (al + /32)2 - 4a2/31 then by setting Jo = 1 without loss of 

generality we can write 

(3.26) 

where VI, V2 and V3 are known functions of c, not reproduced here for brevity. 

Evidentlv DJ can change sign only when Vo satisfies 

(3.27) 

Thus the existence or non-existence of real solutions for Vo depends on the sign 

of tIt<' discriminant D"2 of Eq. (3.27), which is given by 

D2 = "I"2(C
4 

- 4c2 1nc -1)2[(7c2 -1)(c2 -7)(c2 -1):1 

_ 3(c2 + l)(cA - 22c2 + 1)(c2 
- 1)21nc - 8c2 (c2 

- 1)(5c1 - 4c2 + 5)(lnc)2 

_ 48(,'1 (c2 + 1 )(In c) 3] [c4 (c2 - 1) 2 (c2 In C - c2 + In c + 1) 5] -I (3.28) 

Note that D2 rv O( -(c - 1)-2) as c -+ 1+ and D2 rv O( -(In ct1
) as c -+ 00. 

Evidently the sign of D2 depends only on C and not on 'r/. Figure 3.2 shows a 

plot of D2 as a fUllction of c > 1 and clearly demonstrates that D2 < 0 for all 

valucs of c. Hence there are no real roots of Eq. (3.27) and therefore DJ is of 
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Figure 3.2: Plot of D2 defined in Eq. (3.28) as a function of c. 

OIle SigIl. A silllple evaluation of DJ with values ,~) > 0 and c > 1 shows that it 

is always positive and hence the eigenvalues .A± are always real. 

Secondly. wc demonstrate that .A+ > O. From Eq. (3.23) wc can write 

(3.29) 

where the ri, i = 1, ... ,5 are known functions of c, not reproduced here for 

brevity. Typical values of A±/ M are plotted as functions of T/ for a range of 

valu('s of (. in Fig. 3.3. Of most importance are the minimum value of A+/ /Ill 

(dcnotl'd by AlIlin) and the maximum value of A_ / M (denoted by Amax) and 

Jlulllcrically calculated values of these quantities are shown in Fig. 3.4. Note 

that \uin rv 2- 1
/

3 and Amax rv 2- 1
/
3 as c -t 00 while Amill rv O((c - 1)5/3) 

and Amax rv O( - (c - 1 r'/3 ) as c -t 1+. As Fig. 3.4 shows, Amax < 0 when 

1 < (' < ('crit. and Amax > 0 when C > Cerit, where C = Cerit. ~ 31.05 is the single 

real root of tlH' (~quatioIl 

(('2 _ 4e + 1) In C - 3('2 + 3 = O. (3.30) 
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c = 35 

-1 

-2 

Figure 3.3: Plot of A+/M and A_/M for c = 10, 15,25 and 35. The dots (e) 
denote the points corresponding to Amin and Amax· 

0.5 

1 0 1 0 2 0 

c 

Figure 3.4: Plot of Alliin (upper curve) and Arnax (lower cl\l'vc) as Cl function of 

c. 
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More significantly, Fig. 3.4 also shows that Arnill > 0 for all c > 1 and so 

A+ 2 Amin > 0 for c > 1; therefore all axisymmetric annular solutions are 

unconditionally unstable, just as in the planar case. 

3.5 Results 

3.5.1 Explanation of Figures 

In Figs. 3.5·3.8 we present plots of jet strength J against outer radius R2 for fixed 

volume Vo = 1, and volume V against outer radius R2 for fixed jet strength Jo = 

1. Note that all the annular solutions depicted in Figs. 3.5-3.8 are physically 

realisable and unstable, and therefore represented by thick dashed lines. Each 

of these plots contain annular solutions for various inner contact angles 4>0. 

Since eo = 1, values of 4>0 other than 4>0 = 1 require that either the system 

exhibits contact-angle hysteresis (with er ::; eo ~ ea, where er and ea are the 

receding and advancing contact angles respectively) or, more artificially, that the 

substrate b(l inhomogeneous with a change of physical properties somewhere in 

RI < .1: < R'2 (p) or RI < r < R2 (a). The case 4>0 = 1, however, requires no 

such conditions. In each plot, curve (A) corresponds to the physically-realisable 

non-annular solutions as discussed in Chapter 2 Sec. 2.6.2. In the planar case 

(Figs. 3.5 and 3.6) curve (B) corresponds to solutions with RI = 0, representing 

two ('ontiguolls drops, one in - R2 ~ :c ~ 0 and the other in 0 ~ .'C ~ R2 . In 

t.he axis~'IlIIlletric case, however, the only solution with RI = 0 occurs when 

1>0 == O. and so t.here is no curve in Figs. 3.7 and 3.8 corresponding to curve (B) 

in Figs. 3.5 aud 3.6. Figure 3.9 shows examples of the evolution of the radii 

HI and R'2 as functions of time in the axisymmetric case for particular choices 

of FI (4)) and 1s,(e) , while Figs. 3.10 and 3.11 show corresponding examples 

of the cvolution of the profile of the annular drop. Unlike for the non-annular 

solutiollS d('scribed in Chapter 2 Sec. 2.6, the qualitative behaviour of the planar 

and axis,Yllllll('t.l'ic annular solutions are quit<:, different, and so in what follows 

we discuss these two cases separately. 
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Figure 3.5: Plot of jet strength J against outer radius R2 for a planar annular 
drop for cPu == U.2, 0.7, 0.9 and 0.99 when Vo == 1 and G == O. A solid, thick 
line [('pI'l'scnts stable and physical equilibrium solutions; a dashed, thick line 
represents unstable and physical solutions. Curve (A) corresponds to physically­
realisable non-annular solutions and curve (8) corresponds to solutions for two 
physically-realisable wntiguous drops. 

3.5.2 Planar Case 

Figure 3.5 shows a plot of J against R2 when Vo == 1 for inner contact angles 

cPo = 0.2, 0.7, 0.9 and 0.99. In particular, Fig. 3.5 shows how each annular curve 

hranch('s away from curvc (8) at a different point. Notc that, as previously 

indicat(~d, th('l"(' are no non-trivial annular solutions for qyo ~ 1, and that as 

J)o ---t 1 - the ('oIT('sponding J against R2 curve approaches the .J = 0 axis. For 

all th(' anllular curves .J '" (1 - QY6)/2R2 as R2 -t 00. 

Figul"!' 3.G shows a plot of V against R2 when Jo = 1 for inner contact 

Hng\cS (Po == 0.2, 0.7, 0.9 and 0.99, and again shows how each annular curve 

brallcil('s away 1'1'0111 curve (13) at a different point. As cPo -t 1- the corresponding 

\' against Hl ('I\l"'':(, approaches the 11 == 0 axis. For all the annular curves 

\' I"V (1 - 1>G)/'2R"L as H"L -t 00. 
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Figure 3.6: Plot of volume V against outer radius R2 for a planar annular 
drop for cPu = 0.:2, 0.7, O.g and 0.99 when Jo = 1 and G = O. A solid, thick 
lill(' r('preS(~Ilts stable and physical equilibrium solutions; a dashed, thick line 
represents unstable and physical solutions. Curve (A) corresponds to physically­
realisable lIoll-<Lnnular solutions and curve (8) corresponds to solutions for two 
ph)'sically-realisable contiguolls drops. 
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Figure 3.7: Plot of jet strength J against outer radius R2 for an axisymmetric 
annular drop for cPu = 0.5, 0.8, 1, 1.1 and 1.3 when Vo = 1 and G = O. A 
solid, thick line represents stable and physical equilibrium solutions; a dashed, 
thick line represents unstable and physical solutions. Curve (A) corresponds to 
physically-realisable non-annular solutions. 

3.5.3 Axisymmetric Case 

Figure 3.7 shows a plot of J against R2 when Vo = 1 for inner contact angles 

q)o = 0.3, 0.8, 1, 1.1 and 1.3, and shows how all the annular curves branch away 

from the nOll-anllular curve (A) at the single point R2 = 24 1
/

3 and J = 2/3 

whpI'(' t IH' lIoll-annular solutions fail to be physical via h(O) = O. Unlike in the 

plallar case, anllular solutions are now possible for all values of CPu ~ O. Whatever 

the' \'al u(' of CPu we have J -t (1 - cP6) /2 as R2 -t 00, and so only those curves 

for () :::; 4)0 :::; 1 approach a non-negative limiting value of J as R2 -t 00; curves 

for cPu > 1 cross the J = 0 axis at a finite value of R2 > O. 

Fip;m(' 3.8 shows a plot of V against R2 when 10 = 1 for inner contact angles 

(PO = 0.7. 0.9. 1. 1.02, 1.1 and 1.3, and again shows how all the annular curves 

imUlch away from the nOIl-annular curve (A) at the single point R2 = 16 1/ 3 and 

" = '2/:3 whNe t.he non-annular solutions fail to be physical via h(O) = O. Figurr 
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Figure 3.8: Plot of volume V against outer radius R2 for an axisymmetric annular 
drop for cPu = 0.7, 0.9, 1, 1.02, 1.1 and 1.3 when 10 = 1 and G = O. A 
solid, thick line represents stable and physical equilibrium solutions; a dashed, 
thick line represents unstable and physical solutions. Curve (A) corresponds to 
physically-realisable nOll-annular solutions. 
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3.8 also shows that the curves corresponding to 0 :s; cPo :s; 1 and cPo > 1 have 

qualit.atiwly different behaviour. When 0 :s; cPo :s; 1 we have V -+ (1 - cP6)/2 as 

H2 -+ Xl. aIld hence these curves approach a non-negative limiting value of V 

as R'2 -+ 00. OIl the other hand, when cPo > 1 we have 

V I'V (1 - A2)2 + (1 - A4) InA R3 
4 (1 - A 2 + 2 In A) 2 

(3.31) 

as R'2 -+ 0, where the unique value of A depends on the value of cPo via the 

equation 
1- A2 + 2A2lnA 
A(l- A2 + 21nA) + cPo = O. (3.32) 

Figure 3.9 plots examples of the evolution of the inner radius RI and the 

outer radius R2 as functions of time t obtained by numerically solving Eqs. (3.2) 

and (3.3) in the particular case Fl (cP) = cP3 
- 1 and F2 (0) = 03 

- 1 (i.e. equal 

equilibrium contact angles corresponding to M = N = 3) for Jo = 1 and 

Vo = 0.1696. The horizontal dashed lines correspond to the equilibrium values 

R I ~ 1.1968, R'2 = 2. The thick lines correspond to the curves with initial 

('oIllli tiolls RI ((l) = 1, RA 0) = 1. 7, the thin lines correspond to RI (0) = 1, 

R2 (O) = 2.2. th(' dashed lines correspond to RI(O) = 1.3, R'2(O) = 1.7 and 

the clot-dashed lilll'S correspond to RI (0) = 1.3, R2 (O) = 2.2. These examples 

illustrat.e what. we found in all the cases that we investigated (with different 

initial conditions), namely that an annular drop 'closes' if the initial outer radius 

R2 (O) is smaller than the equilibrium value and 'opens' if R2 (0) is larger than the 

equilibrium value, irrespective of the value of the initial inner radius RI (0). This 

behaviour was also found in cases with different values of the inner equilibrium 

contact. allg!l' q)o. Figures 3.10 and 3.11 show the evolution of the annular drop 

profi\t' ill th(\ cases RI (0) = 1.3, R2 (O) = 1.7 and RI (0) = 1.3, R'2(O) = 2.2 

r<,sp(\ctivd.v. ami show how the annular drop with initial out.er radius smaller 

than the (\quilibriuIll value 'closes' and the annular drop with initial outer radius 

larg(\l' t.han the equilibrium value 'opens'. 
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Figure 3.9: Examples of the evolution of drop radii R1(t) and R2 (t) for an 
uxisymmetric annular drop in the case of zero gravity when Jo = 1 and Vo = 
0.1696, obtained by solving Eqs. (3.2) and (3.3) numerically in the case F1 (4)) = 
cjJ:1 _ 1 and F2 (()) = (j3 -l. The unstable equilibrium values RI ~ 1.1968, R2 = 2 
are illdicat('d by horizontal dashed lines. The initial conditions are RI (0) = 1, 
R2 (O) = 1.7 (thick lines), RI (0) = 1, R2(0) = 2.2 (thin lines), RI (0) = 1.3, 
R2 (O) = l.7 (dashed lines) and RI (0) = 1.3, R2 (0) = 2.2 (dot-dashed lines). 
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Figure 3.10: Evolution of a quasi-static drop profile for an axisymmetric annular 
drop in the case of zero gravity when 10 = 1, Vo = 0.1696, with the initial 
conditioIls RI (0) = 1.3, R2 (0) = 1.7. 
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Figllfl' ;~.11: En)\lltioIl of it quasi-static drop profile for an axisymmetric annular 
drop in Ih(' cast' of /':('\"o gravity when 10 = 1, Vo = 0.1696, with the initial 
('olldil ions HI «I) = 1.:\, RAO) = 2.2. 



Chapter 4 

Numerical Solution of Linear 
Differential Eigenvalue Problems 

4.1 Introduction 

So far in this thesis we have only considered stability in the quasi-static limit 

corresponding to the special case of zero capillary number. Analysing stability 

for IlOIl-Z('W capillary !lumber typically gives rise to high-order differential equa­

tions whirh Illust, ill general, be solved numerically. There have been numerous 

studies of this kind. For example, Troian et al. [53] investigated the linear sta­

bility of a capillary ridge on an inclined plane, Hocking & Miksis [23] studied the 

linea.r stability of a ridge of fluid of finite width on an inclined plane and Lopez 

et al. [35] analysed the linear stability of a hole in a laterally-bounded thin film. 

In this Chapt('l', therefore, we describe a numerical finite-difference code capable 

of soh'ill)!; an dgellvalue problem posed by n coupled linear ordinary differential 

<,quatiolls wit h appropriate boundary conditions. Specifically, we require the 

solu tioll of Ill(' s~·st.(,1ll given by 

11 I, .I 

\; = L L h~j(:I:)Y}s)(x), i = 1, ... , n, 
.i=i 8=() 

11. ""'t J 

Il', == L L .lI.~j(:c)}}s)(:r), i = 1, ... , n, 
rc, I 8",,0 

65 
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where we have defined 

Y eS) (, ) = dSyj 
J X dxs ' 

where } ~ an' thl' unknown variables and h~j and g!j are the coefficients of the 

jth unkllown to th(' 8th derivative in the ith equation of V and W respectively. 

If we (iPfinc bl = max(maXj=I ..... n(lij), maxj=I ..... n(rnij)) for i = 1,.,., n then 

we require bi boundary conditions for the ith equation. We associate Ri lower 

boundary conditions (evaluated at x = a) and Ui upper boundary conditions 

(t'valuat('d at 1; = b) with the ith equation such that Ri + Ui = bi . The lower 

bOUlIdary conditions are listed as 

/1 1,) k 

L L n:t(a)}j(s)(a) = 0, k = 1, ... , Ri, i = 1, ... , n, (4.2) 
j=1 S=O 

and the upper boundary conditions as 

71 ,si j k 

L L f3!Hb)}j(S) (b) = 0, k = 1, ... , Ui, i = 1, ... , n, (4.3) 
j=1 s=O 

wh('l'(' n: ~ and [j~t are tlw coefficients of the jth unknown to the 8th derivative in 

the it h eqllation corresponding to the kth lower and upper boundary condition 

r('sp('('tin'ly. Each boundary condition corresponds to one row entry in a matrix, 

ho\\,('\'('l' I h(' onlt-r ill which the boundary conditions appear in the matrix has 

no inf\u('Ill'(' 011 the solution itself, 

4.2 Numerical Solution 

A FOHTRAN' rode was written to solve the eigenvalue problem specified by 

Eq. (.1.1) Cllld Ill(' boundary conditions (4.2) and (4.3) numerically using a fillite­

dilf('rpll<'p llIPt hod and is capable of adopting arbitrary order approximations for 

a 11.\' ordPr of (krivative appearing in either the equations or boundary conditions 

lilllit('d 0111.\' by Ih(' lIumber of grid points, N + 1. To obtain the finite-difference 

w(lights W(' ust' the notably short and fast algorithm recently discovered by Forn­

bl'rg [1:3]. For Cl. gin'll (not Ilecessarily regular) set of grid points Xo,··· ,XN, the 

point at whi('h approxinmt.iolls are desired :1: = ~ (not necessarily a grid point) 
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and highest order of derivative of interest m, Fornberg's algorithm calculates 

weights d~J such that the approximations 

k = 0, ... , rn, 'i = k, . .. ,iV, 

are all optimal in the sense that they permit the maximum order of approxima­

tion possible for a stencil consisting of i + 1 points. For example, approximations 

of the first derivative at a grid point Xi in a regular grid are given by 

{ 

[ .-~!(xi-d + O!(Xi) + ~!(Xi+l) ]/h + O(h'2) 

f'(.r,) = [,~f(:r,_,) - U(x,-,) + 01(Xi) + ~f(Xi+tl - i21(X,dl/h + O(h4) 

which can easily be verified by Taylor series. In terms of the relabelled grid 

nodes:t!o = :Cj, Yl = Xi-I, Y2 = Xi+l, Y3 = Xi-'2, ... we have the weights d~o = 

0, d~ I = - ~ and d~'2 = ~ for the second-order approximation and dl o = 0, 

:2 1 :2 d1 1 d d1 1 f' h Ch' . d11 = - 3' d42 = 3' 43 = 12 an 44 = - 12 or t e lourt -order approximatIOn. 

Table 4.1 is taken from Fornberg & Sloan [14] and gives the weights for some 

cClltred differellce approximations on a regular grid for various orders of accuracy 

and variolls dl'rivatives. Table 4.2 is also taken from Fornberg & Sloan [14] and 

gives tlH' w(lights for SOlll(' one-sided difference approximations on a regular grid 

for variolls ord('rs of accuracy and various derivatives which will be used at the 

boundaries in tht' present application (note that only the left-hand boundary is 

representt'd in Table 4.2, however similar results for the right-hand boundary 

follow iIllIll(l<iiately). 

In th(' pn's('nt application we will obtain approximations at the grid points 

olll.v. In addition we will only apply the algorithm to a subset of the domain, 

the Illllllh('r of Bodes dl'IH'IH.ling all the required order of approximation to the 

derivatin' I. \Ye haw modified the algorithm slightly such that we introduce 

weights ("~ III \\'h('n~ 
s~J 

L cjw!(Xj), ( 4.4) 
j=sO' 

wlH'n' thp 1l1l1ll1H'r of Ilodps in the stencil is given by 8:~ - .'la' + 1. For a given 

;UTuracy 1 t.hl' nllllllwr of 110d('s in et particular stencil depends on the derivative 
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LOCATION OF GRID NODES 

k I -4 -3 -2 -1 0 1 2 3 4 

0 00 1 

1 2 
1 0 1 

-2 2 

4 
1 -~ 0 2 1 

12 :3 :3 -12 

6 
1 1- -;! 0 ;! 3 J.. 

- 60 20 4 1\ - 20 60 

8 1 -1 1 _.1 0 4 _1 4 1 

280 - \05 :5 5 5 5 105 -280 

2 2 1 -2 1 

4 
1 4 5 4 -..!... -12 "3 -2 3 12 

G 
1 3 3 _1\9 3 3 1 

90 -20 "2 18 "2 -20 90 

8 1 H 1 8 205 8 1 8 1 
- :)(ill :115 5 5 -72 5 5 315 56ll 

3 2 
_1 1 0 -1 1 

2 2 

4 1 -1 13 0 1:1 1 1 
8 g -g 8 

G 7 :I 169 61 0 61 169 3 -.L 
- 2·10 10 -120 30 -30 120 10 240 

Table 4.1: Weights for some centred difference schemes on a regular grid. The 
approximations are evaluated at grid node O. The parameter k denotes the 
th-rivatiw and J denot('s the order of accuracy of the approximation. 
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LOCATION OF GRID NODES 
k I 0 1 2 3 4 5 6 7 8 
0 00 1 

1 1 -1 1 

2 3 2 1 
-2 -2 

3 _11 3 -!! 1 
6 2 3 

4 25 4 -3 4 _1 -12 3 4 

5 137 5 -5 10 5 1 
-60 3 -4 :5 

6 49 6 15 20 15 6 1 
-20 -2 3 -4 5 -6 

7 363 7 21 35 35 21 7 1 
-140 -2 3 -4 "5 -6 "7 

8 761 8 -14 56 _35 56 14 8 1 
-280 3 2 5 -3" "7 -8 

2 1 1 -2 1 

2 2 -5 4 -1 

3 35 26 19 14 11 
12 -"3 2 -3 12 

4 15 77 107 -13 61 5 
4 6 6 12 -6 

;) 20:1 87 117 _ 254 33 27 137 
T5 -"5 T 9 2 -"5 180 

G 4119 _ 223 879 949 41 201 1019 7 
90 10 20 -18 -10 180 -10 

.., 29531 962 621 4006 691 282 2143 206 363 
I 5040 - 35 10 -4"5 """8 -5 90 -15 560 

3 1 -1 3 -3 1 

2 5 9 -12 7 -!! -2 2 

3 17 Il 59 49 41 7 -4 4 -2 2 -4 4 

4 
_ .1!) 29 461 62 _307 13 _15 

M -S- 8 8 

5 '1(i7 li38 3929 389 _ 2545 268 _ 1849 29 
-1:.10 15 -To 3 24 5 120 15 

G MOl :\·19 18353 2391 1457 4891 _ 561 527 469 -To If" -120 W --6- 30 8 30 -240 

Table 4.2: Weights for some one-sided difference schemes on a regular grid. The 
a.pproximations are evaluated at grid node O. The parameter k denotes the 
derivative and I denotes the order of accuracy of the approximation. 
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k to be approximated and whether the approximation is centred (as in Table 4.1) 

or one-sided (as in Table 4.2). If we define N~ and N; as 

N~ = 1+ k -1, 

NC = { I + k - 1, if k is odd, 
S I + k - 2, if k is even. 

then N° + 1 corresponds to the number of nodes in a one-sided stencil and NC + 1 s S 

corresponds to the number of nodes in a centred stencil for a given accuracy I 

and derivative k. 

4.2.1 Differentiation Matrices 

Before solving the eigenvalue problem itself, it is useful to generate the differenti­

ation matrices D(k) (square matrices of size N + 1 with elements D;~)) associated 

with the problem which approximate the derivatives of the unknown variables 

i.e. 
Y .(k) '" D(k)y. 

J - J' 

where Yj = (J'jo, Y~il"'" Y)Nf,}jl represents our approximation to }j(xt) and 

k is the value of the derivative. The first row of the matrix D(k) corresponds to 

the approximation of the kth derivative at Xo· The second row corresponds to 

the approximation at Xl, and so on. Therefore we have 

D(k) _ k 
(w+l) (j+l) - Cjw' (4.5) 

for j = 0, ... , N~ and w = 0, ... , N;/2 - 1. Equation (4.5) is used to calculate 

the entries for the first N; /2 rows of D(k) and uses one-sided differences. The 

entries for rows N + 2 - N; /2, ... , N + 1 (again using one-sided differences) are 

given by 
D(k) k 

(w+l) (N+HI-Nf) = c(N-Nf+j)w' (4.6) 

for j = 0, ... , N~ and w = N + 1 - N;/2, . .. , N. The entries for the remaining 

rows correspond to centred differences and are given by 

D(k) k 
(w+l) (j+w+l-Ni/2) = C(j+w-N~/2) w' (4.7) 

for j = 0, ... , N; and w = N; /2, ... , N - N; /2. All other elements of the 

matrices D(k) are set to zero. 
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4.2.2 An Algebraic Eigenvalue Problem 

We are now in a position to set up our eigenvalue problem. Using the differen­

tiation matrices described in the previous section we generate square matrices 

A and B (of size n(N + 1)) using the following algorithm: 

p:= 1 to n 
q := 1 to n 

k := 0 to lpq (for matrix A) or mpq (for matrix B) 

i:= 1 to N + 1 

j := 1 to N + 1 

A . '- A . + D(k)hpq ( ) [(p-I)(N+I)+i] [(q-I)(N+I)+J]'- [(p-l)(N+l)+t][(q-I)(N+l)+j] ij k Xi-l 

B[(p-I)(N+l)+i] [(q-l)(N+I)+jJ := B[(p-l)(N+l)+iJ [(q-l)(N +I)+jJ + D;~)g~q (xi-d 

We now enter the rows of the matrices A and B that correspond to the boundary 

conditions. First, we initialise all elements in the rows of A and B that will 

occupy these boundary conditions to zero. The algorithm that generates the 

rows of matrix A for the lower boundary conditions is given by 

p := 1 to n 

q := 1 to n 

r := 1 to l'.p 

k := 0 to 'Ypq!" 

j := 1 to N + 1 

A .- A + D(k) pq( ) 
[(p-I)(N+l)+r] [(q-l)(N+l)+j]·- [(p-l)(N+l)+r] [(q-l)(N+l)+j] Ij a kr a 

and the algorithm that generates the rows of matrix A for the upper boundary 

conditions is given by 

p := 1 to n 

q := 1 to n 

l' := /Lp - 1 to 0 

k := 0 to Opqr 

j := 1 to N + 1 

A[p(N+l)-r][(q-l)(N+I)+jJ := A[p(N+l)-r][(q-l)(N+I)+jJ + D~~+I)j{3~;(b) 
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The elements of the corresponding rows of matrix B are zero. 

We have thus derived the algebraic eigenvalue problem given by 

AY=)..BY, (4.8) 

for eigenvalues ).. and eigenvectors 

Figures 4.1 and 4.2 provide a summary of the structure of the matrices A and B 

respectively. The eigenvalues (and eigenvectors if required) are then found by 

the QZ algorithm described by Wilkinson [58], implemented using NAG routine 

F02GJF. The computational cost of this method is O(N~B) where NAB is the 

order of the matrices A and B. Doubling the number of grid points approxi­

mately octuples the runtime of the code since the majority of runtime is taken 

up by the QZ algorithm rather than obtaining the matrices A and B. Note 

that the differential equation coefficients h~j and g!j as well as the eigenvalue 

).. and eigenfunctions Y1, ... ,Yn are assumed to be complex in general and we 

must decompose the matrices A and B into their real and imaginary parts to 

implement NAG routine F02GJF. 

4.3 Test Problems 

In order to test the code and gain some idea of the influence of the various 

numerical parameters at the user's disposal, such as number of grid nodes, accu­

racy of approximation to the derivatives and grid point distribution for example, 

wc first use the code to solve various problems with analytic or known numerical 

solution, before tackling an entirely new problem. 

4.3.1 Example 1: The Harmonic Equation 

The first and simplest test problem is given by the harmonic equation 

d2 y 
dx2 = _)..2y, (4.10) 
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DESCRIPTION ROW 
1st lower h.c. corresponding to 1st eq. 1 
2nd lower h.c. corresponding to 1st eq. 2 

t'Ith lower h.c. corresponding to 1st eq. t'I 
VI approximated at x = XlI t'l + 1 

VI approximated at x = XlI + I Cl + 2 

VI approximated at x = X N -UI N + 1- U1 

1st upper h.c. corresponding to 1st eq. N + 2 - Ul 

2nd upper h.c. corresponding to 1st eq. N + 3 - Ul 

Ul th upper h.c. corresponding to 1st eq. N + 1 

1st lower h.c. corresponding to ith eq. (i - 1)(N + 1) + 1 
2nd lower h.c. corresponding to ith eq. (i-1)(N+1)+2 

t'ith lower h.c. corresponding to ith eq. (i - 1) (N + 1) + t'i 
Vi approximated at x = Xli (i - 1) (N + 1) + t'i + 1 

Vi approximated at x = Xli+l (i - 1) (N + 1) + t'i + 2 

';i approximated at x = X N -u, i(N + 1) - 'ui 
1st upper b.c. corresponding to ith eq. £ (N + 1) - 1),i + 1 
2nd upper h,c. corresponding to ith eq. £(N + 1) - Ui + 2 

'ujth upper h.c. corresponding to ith eq. 'i(N + 1) 

1st lower h.c. corresponding to nth eq. (n-1)(N+1)+1 
2nd lower b.c. corresponding to nth eq. (71. - l)(N + 1) + 2 

t'nth lower h.c. corresponding to nth eq. (n - 1)( N + 1) + en 
V~I approximated at x = Xln (n - l)(N + 1) + t'n * 1 

\1;1 approximated at x = Xln +l (71. - 1)( N + 1) + en + 2 

\1,1 approximated at x = x N -Un n(N + 1) - 'Un 
1st upper h.c. corresponding to nth eq. 71.( N + 1) - Un + 1 
2nd upper h.c. corresponding to nth eq. 71.( N + 1) - Un + 2 

unth upper h.c. corresponding to nth eq. n(N + 1) 

Figurl' 4.1: A summary of the structure of the matrix A. 
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DESCRIPTION ROW 
0 1 

0 El 
W1 approximated at x = Xli El + 1 

W1 approximated at X = Xli +1 El + 2 

W1 approximated at X = X N -ILl N + 1 - UI 

0 N + 2 - UI 

0 N+1 

0 (i - l)(N + 1) + 1 

0 (i - 1) (N + 1) + fi 
W i approximated at X = Xli (i - 1) (N + 1) + fi + 1 

Wi approximated at X = Xli+l (i - 1)( N + 1) + fi + 2 

{IVi approximated at X = X N -Ui 'l(N + 1) - 'Ui 

0 i (N + 1) - 'Ui + 1 

0 i(N + 1) 

0 (n - l)(N + 1) + 1 

0 (n - 1) (N + 1) + En 
l;fln approximated at x = Xln (n - 1) (N + 1) + En + 1 

I'VII approximated at x = xedl (n - 1)(N + 1) + fn + 2 

H"1/ approximated at x = x N -Un n(N + 1) - 'Un 

0 n(N + 1) - Un + 1 

0 n(N + 1) 

Figure 4.2: A summary of the structure of the matrix B. 
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1 0 0 0 

1 -2 1 0 1 0 

1 -2 1 0 1 0 
A= , B= 

1 -2 1 0 1 0 
0 1 0 0 

Figure 4.3: The structure of the matrices A and B for the discretised version of 
the harmonic equation. 

subject to the boundary conditions 

Y(O) = Y(1) = O. (4.11) 

This yields a second-order eigenvalue problem which is easily solved to give 

eigenvalues ), = mr corresponding to eigenfunctions Yn(x) = An sin(mrx) for 

n = 1,2, .. ,. For this problem we have only one equation to solve. If we adopt 

a second-order approximation to the derivative (I = 2) then on a regular grid 

(with node spacing h) we have 

d2Y(xi) Y(xi-d - 2Y(Xi) + Y(Xi+l) 
dx2 h2 

at the nodes x = Xi for i = 1, ... ,N - 1. The boundary conditions are simply 

given as 

Wc therefore yield the scheme 

Yo 0, ( 4.12) 
}i+l - 2Y; + }~-l _),2}", 'i = 1, ... , N - 1, (4.13) 

h2 t, 

YN 0, ( 4.14) 

where ~ is our approximation to Y(Xi) at Xi and Nh = 1. Written out in the 

matrix form described in Sec. 4.2.2 we have AY = vBY where A and Bare 

shown in Fig. 4.3 and v = _),2h2
. Some results for this second-order scheme 
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N Eigenvalues A/7r 
5 0.984, 1.871, 2.575, 3.027 

6 0.989, 1.910, 2.701, 3.310, 3.690 

7 0.991, 1.933, 2.778, 3.484, 4.015, 4.345 

10 0.996, 1.967, 2.890, 3.742, 4.502, 5.150, 5.672, 6.055, 6.288 

15 0.998, 1.985, 2.951, 3.884, 4.775, 5.613, 6.390, 7.097, 7.726, 
8.270, 8.724, 9.082, 9.341, 9.500 

Table 4.3: Numerical results for the harmonic equation. 

(I = 2) for various values of N are given in Table 4.3. In general, we find that 

increasing N for a given order always leads to more accurate results. Since the 

matrix B contains two purely zero rows, two of the N + 1 eigenvalues that NAG 

routine F02GJF returns will be spurious. These are omitted from the table. 

4.3.2 Example 2: A Complex-valued Eigenvalue Problem 

A less elementary complex-valued test problem is given by the fourth-order 

differential equation 

where a, band c are constants, subject to the boundary conditions 

u(O) = u"(O) = 0, 

u(l) = u"(l) = 0, 

(4.15 ) 

(4.16) 

where the prime denotes differentiation with respect to x. It is straightforward 

to show that a solution set is given by u(;r) = sin(n7rx) for n = 1,2, ... , with 

eigenvalues given by 

An = (n7r)4 - a(n7r)2 + b 
c - (n7r)2 ' 

n = 1,2, .... ( 4.17) 

In the case n = 1 and a = 2 + i, b = 3 + 2i and c = 1 + i we find from Eq. (4.17) 

that Al = -9.079711517 - 0.13643304li to 9 decimal places. Table 4.4 gives 

the numerical solution in this case for N = 14 and N = 40 for different orders 

of accuracy I on a regular grid. Again we find that, in general, increasing the 
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N = 14 N=40 
I Re(Ad Im( AI) Re(Ad Im(Ad 

2 -9.187772160 -0.153325847 -9.081383932 -0.137267577 

4 -9.068372056 -0.135191553 -9.079640290 -0.136425543 

8 -9.079678362 -0.136429365 -9.079711524 -0.136433064 

10 -9.079713133 -0.136433217 -9.079711615 -0.136433127 

12 N/A N/A -9.079711583 -0.136433108 

14 N/A N/A -9.079711489 -0.136432305 

24 N/A N/A -9.077741329 -0.136453991 

Table 4.4: Numerical results for Example 2. The exact value for this example 
is >1} = -9.079711517 - 0.13643304li to 9 decimal places. For I ;::: 12 when 
N = 14 there are insufficient grid points to allow these orders of approximation. 

number of grid points increases the accuracy of the solution for a given order of 

approximation I. Note, however, that there appears to be an optimum value of 

I for a given number of grid points (in this case I = 10 for N = 14 and I = 8 

for N = 40). 

4.3.3 Example 3: Stability of a Ridge of Fluid 

This test problem int.roduces non-constant coefficients in the governing equation 

and was derived by Hocking & Miksis [23] who considered the linear stability of 

a ridge of fluid of finite width on an inclined plane with constant but different 

contact angles at the leading and trailing edges. Specifically, we require the 

solution of the ordinary differential equation 

h6(ho + A)h'{" + hoh~(3ho + 2A)h'{' - 2q2h6(ho + A)h'{ 

-q2hoh~(3hu + 2A)h~ + h6(hu + A)q4hl = -Whl' 

subject. to t.he boundary conditions 

(1- k)h~(-l) + (1- 3k)h1(-1) = 0, 

(1 + k)h'l(l) - (1 + 3k)h1(1) = 0, 

(4.18) 

( 4.19) 

where A, w, q and hl represent the slip coefficient, growth parameter, disturbance 

wavenumber and disturbance ridge height respectively, and a prime denotes 

differentiation with respect to :c. The basic state is given by ho = ~(1 - x2 )(1 + 
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c w c w c w 
0.5 0.49299354 3 0.46632354 5.5 0.45134691 
1 0.48929054 3.5 0.46173050 6 0.45011131 

1.5 0.48394491 4 0.45805246 6.5 0.44919708 
2 0.47784518 4.5 0.45519104 7 0.44853050 

2.5 0.47178626 5 0.45300162 7.5 0.44805120 

Table 4.5: Numerical results for Example 3 for k = 0.5, q = 0.975, A = 10-2 and 
the numerical parameter values N = 200 and I = 16. Hocking & Miksis [23] 
obtained w = 0.451. 

kx) where k is a non-dimensional measure of gravity. In the special case q = 0 

(but not otherwise) we must also impose the additional condition 

[11 hldx = 0, (4.20) 

to ensure that the volume of the ridge is conserved. The eigenvalue problem 

is formed by fixing k, q and A and solving the system for the eigenvalues w 

and eigenfunctions hi· It is found to be beneficial to use an irregular grid Xi 

for i = 0, ... , N, in order to cluster the grid points in the neighbourhood of 

the contact lines, x = ±1. This grid is obtained from the regular grid Ui for 

i = 0, ... , N, (where Uo = 0 and UN = 1) through the mapping 

tanh[(Ui - 1/2}c] 
Xi = tanh(c/2} 

for i = 0, ... , N, (4.21 ) 

first used by Vinokur [57]. The larger the value of the stretching parameter c 

the mort' the' grid points are clustered towards the contact lines. 

Tab 1<' 4.5 gives the results for the eigenvalue w with the largest real part 

for varying values of the stretching parameter c with k = 0.5, q = 0.975 and 

A = 10-2 with the numerical parameter values N = 200 and I = 16. We find 

that the results are in good agreement with those of Hocking & Miksis [23] (who 

obtained w = 0.451) and that c = 5.5 yields the most accurate comparison. 

Using this optimum value of c, Table 4.6 examines the influence of varying N 

and I on the most positive eigenvalue for A = 10-2 and A = 10-4 with k = 0.5 

and q = 0.975. This table suggests that in most cases an approximate relation 
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>. = 10 ·2 

N I w N I w N I w 

60 2 0.52238978 80 2 0.49574334 200 14 0.45141806 

60 4 0.43989426 80 4 0.44970131 200 16 0.45134691 

60 6 0.47433027 80 6 0.46157770 200 18 0.45130048 

60 8 0.44949832 80 8 0.45536027 200 20 0.45125405 

60 10 0.47573979 80 10 0.45948762 200 22 0.45122018 
>. = 10 ·4 

N I w N I w N I w 

60 2 0.48945727 80 2 0.45686759 200 14 0.38015269 

60 4 0.38570580 80 4 0.39318247 200 16 0.37974491 

60 6 0.44165088 80 6 0.41639644 200 18 0.37953581 

60 8 0.39188148 80 8 0.39981776 200 20 0.37927074 

60 10 0.45454969 80 10 0.41315678 200 22 0.37911126 

Table 4.6: Numerical results for Example 3 for k = 0.5, q = 0.975, c = 5.5, 
>. = 10-2 and>' = 10-4 . Hocking & Miksis [23] obtained w = 0.451 for>. = 10-2 

and w = 0.377 for>. = 10-4
. 

for the optimum value of I is given by I ~ N /10 which will be used in the 

remaining test problems and Chapters 5 and 6. 

Figure 4.4 plots the most unstable eigenvalue w against wavenumber q for 

k = 0.25, 0.5 and 0.75 when>. = 10-2 and>' = 10-.1. The neutral stability 

curves were calculated by Hocking & Miksis [23] and are given by the relation 

k2 = (1 + q2) tanh(2q) - 2q 
(9 + q2) tanh(2q) - 6q' 

( 4.22) 

which is independent of >., as confirmed by Fig. 4.4. For reference, Fig. 4.5 plots 

the cigenfullctions corresponding to the most positive (most unstable) eigenvalue 

for variolls values of q when k = 0.5 and>. = 10-2
. 

4.3.4 Example 4: Stability of a Capillary Ridge 

The motivation for the choice of this example is to use the code to solve a 

problem where the basic-state solution must be obtained numerically. Such a 

problem was studied by Troian et al. [53] who considered the linear stability of a 

thin film of fluid flowing down an inclined plane. In a frame of reference moving 
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Figure 4.4: Plot of the most unstable eigenvalue w against wavenumber q for 
k = 0.25, 0.5 and 0.75 when ,\ = 10-2 

(--) and ,\ = 10-4 
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Figure 4.G: Eigenfunctions corresponding to the most unstable mode for various 
values of q when k = 0.5 and ,\ = 10-2 with the numerical values N = 200, 
I = 22 and c = 5.5. 
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with the capillary ridge the governing equation for the basic-state profile ho(x) 

is given by 

hlll=-l b2+b+1 
o + h5 

b(b + 1) 
(4.23) 

where a prime denotes differentiation with respect to x, and b is the thickness of 

the precursor layer at the leading edge of the fluid film. The boundary conditions 

are given by 
ho -t b as x -t 00, 

h~, h~, ... -t 0 as x -t -00. 
(4.24) 

Linearising Eq. (4.23) about the asymptotic value ho -t 1 as x -t -00 and 

solving the resulting differential equation yields 

ho -t 1 + ae{3x cos(V3,Bx) as x -t -00, (4.25) 

where a is a constant of integration and ,B = (2 - b- b2
) 1/3 /2. We solve Eq. (4.23) 

as an initial value problem on a truncated domain [0 : 16] using NAG routine 

D02PDF, specifying ho, h~ and h~ at the left-hand edge using Eq. (4.25). We 

choose a to be a small parameter about which the solution is iterated until 

convergence is achieved so that ho -t b as x -t 00. Figure 4.6 plots basic-state 

profiles for b = 0.05, 0.075 and 0.1. 

We are now in a position to analyse the linear stability of these basic states. 

The governing equation is given by 

ah! + (h~)h~" + (3h5h~)h~' - (2q2h~)h'{ 

+ [2(1 + b + b') - 3b(~+b) - 3q2hih~] h'l + [3b(1 ~ b)h~ + q4h:] hi = 0, 

( 4.26) 

where q, a and hi represent the disturbance wavenumber, growth parameter and 

disturbance ridge height respectively. The boundary conditions are given by 

(4.27) 

Figure 4.7 plots the most unstable eigenvalue a against wavenumber q for b = 

0.05, 0.075 and 0.1, and Fig. 4.8 plots the eigenfunctions h! corresponding to 

the most unstable eigenvalue for b = 0.1 when q = 0.1,0.3,0.5 and 0.7. Similar 
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Figure 4.6: Basic-state profiles for b = 0.05, 0.075 and 0.1 for Example 4. 

results have been given by Troian et al. [53], Kataoka & Troian [25] and Spaid 

& Homsy [49] and show excellent agreement with the present example. 

4.3.5 Example 5: Flow in a Wedge 

Up until now, all the test problems have consisted of only one equation. Here 

we use the code to solve three coupled linear differential equations that arise in 

studying the stability of a fluid with non-uniform density in a wedge with angle 

A. The geometry of the problem is shown in Fig. 4.9. This example has recently 

arisen as a simple model for the dynamics of swimming micro-organisms. We 

require the solution of the system 

(4.28) 

(4.29) 

(4.30) 
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Figure 4.7: Plot of the most unstable eigenvalue a against wavenumber q for 
b = 0.05, 0.075 and 0.1 in Example 4. 
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Figll[l' 4.8: Plot of the eigenfunctions corresponding to the most unstable mode 
for b = 0.1 when q = 0.1, 0.3, 0.5 and 0.7 in Example 4. 
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e =0 

Figure 4.9: Geometry of the problem in Example 5. 

which are valid in the boundary layer near () = A, where Rand U are given by 

GsinA 
R = e-l'71 cos(r1]), (4.31) , 

U = 2, tan A e-l'l1sin(r1']), (4.32) 

and 1 

= (PeG cos
2 
A) 4" 

, 4 ' (4.33) 

where V,/ and V~ are the disturbance velocities in the 1'] and ~ directions respec­

tively, R is the perturbation to the density, Rand U are the basic-state density 

and velocity respectively, Re is the Reynolds number, Pe is the Peclet number, 

C is the vertical density gradient, Q is the disturbance wavenumber and (7 is the 

growth parameter. Figure 4.10 plots typical basic-state profiles of the density 

R and the velocity U as functions of 1'] for parameter values G = 1, Pe = 1 and 

A = 7r /4. The boundary conditions for this system are 

, 8V71 ' 8R 
U'I = 81] = U~ = 81] = 0 at 1'] = 0, 

~ ?V71 R~ ---'" 0 
UT/, 8 ,U~, -r as 1'] -+ 00. 

rl 

( 4.34) 
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1.2 

0.4 

0.2 

10 'T/ 

Figure 4.10: Typical basic-state profiles of the density R and the velocity U as 
functions of'T/ for parameter values C = 1, Pe = 1 and A = 7r /4 in Example 5. 

Preliminary experimental results by Prof. John Kessler of Arizona State Univer­

sity suggest the parameter values Re = 1, Pe = 2 X 104 and C = 7.41 X 10-7 with 

a wedge angle A = 7r / 4. We solve this system on a truncated domain [0 : L] for 

the eigenvalues a and the eigenfunctions (;.,." (;{ and R. 
Figure 4.11 plots the largest eigenvalue a against wavenumber Q for various 

values of C. Unlike the previous two examples, here a < 0 for all Q which 

corresponds to universally stable solutions. Partial verification of this can be 

made analytially in the special case C = O. 

Substituting C = 0 into Eq. (4.30) yields 

subject to 

2 A a R 2 A 

a'T/2 - (a + aPe)R = 0, 

ail = 0 at 7} = 0, 
a'T/ 
il -t 0 as TJ -t 00. 

( 4.35) 

(4.36) 



4. LINEAR DIFFERENTIAL EIGENVALUE PROBLEMS 86 
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Figure 4.11: Plot of largest eigenvalue a against wavenumber a for C = 7.41 X 

lO-i where i = 3, 4, 5, 6 and 7 as indicated, for Example 5 with the numerical 
values N = 90, I = 12 and c = 5.5. 

The general solution of Eq. (4.35) is given by 

where Cl and C2 are constants. If we change the boundary condition at infinity 

in Eq. (4.36) to R(L) = 0 we find that Cl = 0 and for C2 =1= 0 we require 

( 4.37) 

Table 4.7 compares numerical results with analytic results from Eq. (4.37) for 

varying values of a, L and Pe where agreement is excellent. Note that a -7 

_02 / Pp < 0 a..., L -7 00 i.e. the flow is stable for C = O. 

Figure 4.12 plots the eigenfunctions Ul1 , U~ and R for the parameter values 

C = 0, A = 7f/4, Re = 1, Pe = 2 X 104
, Cl! = O.G and L = 40. 
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a L Pe Eq. (4.37) Code 
0 20 20 -0.000308425 -0.000308414 
1 30 200 -0.005013707 -0.005013707 
2 40 2000 -0.002000771 -0.002000771 

0.5 50 20000 -0.000012549 -0.000012549 
0.5 100 20000 -0.000012512 -0.000012512 

Table 4.7: Comparison between numerical results and Eq. (4.37) for C = 0, 
A == 7r / 4 and Re = 1 in Example 5 with the numerical values N = 90, I = 12 

and c = 5.5. 

0.14 ~ __ r----r----'----'----"---"r-----'------' 

0.12 ...--___ ~Uf. 

0.1 

0.08 
U17 
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0.04 H-----~ 

0.02 

oL---~--~--~--~--~--~---~-~~ o 5 10 20 25 30 35 40 

Figure 4.12: Plot of the eigenfunctions UT/, U~ and R for the parameter values 
C = 0, A = 7r/4, Re = 1, Pe = 2 X 101, ex = 0.5 and L = 40 in Example 5. 



Chapter 5 

Linear Stability of a Ridge of 
Fluid 

5.1 Introduction 

In Chapters 2 and 3 the stability analysis was restricted to uniform perturbations 

for the two-dimensional cases and axisymmetric perturbations for the three­

dimensional cases. In this Chapter we investigate the linear stability to pertur­

bat ions with variation in the transverse direction of an initially two-dimensional 

thin ridge of Newtonian fluid of finite width on a horizontal planar substrate act­

ing under the influence of a jet of air normal to the substrate. Two problems are 

considered: the special case when the jet acts at the centre of the ridge (which 

in two dimensions corresponds to the planar non-annular problem studied in 

Chapter 2) and the more general case when the jet acts off-centre (which in two 

dimensions corresponds to the planar annular problem studied in Chapter 3). 

For both problems we confirm and extend the corresponding analytical results 

of Chapters 2 and 3 in the special case of quasi-static motion (corresponding 

to zero capillary number) and investigate numerically the general case of non­

zero capillary number using the numerical code described in Chapter 4. The 

linear stability of an initially axisymmetric thin drop to both axisymmetric and 

non-axisymmetric perturbations is considered in Chapter 6. 

88 
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direction 
of jet 

z 

x=R2 (y,t) 

Figure 5.1: Geometry of the problem. 

5.2 Problem Formulation 

89 

Consider a ridge of incompressible Newtonian fluid of finite width with constant 

viscosity jL, density p and surface tension T on a solid horizontal planar substrate 

in the presence of a jet of air. We employ Cartesian coordinates (x, y, z), chosen 

so that the substrate is given by z = 0, the thickness of the fluid film is denoted 

by z = h(x, y, t) and the velocity of the fluid is denoted by u = u(x, y, z, t). The 

positions of the contact lines are denoted by x = Rl (y, t) at which the contact 

angle is cP = cP(t) and :x: = R2(y, t) > RI at which the contact angle is () = ()(t), 
where t denotes time. We model the jet as before with a parabolic pressure 

distribution in the air given by P = Po - kx2/2, where P denotes the pressure, 

po is the maximum value of the air pressure at x = ° and k is a positive constant. 

The shear stress at the free surface caused by the jet is again neglected. The 

geometry of the problem is shown in Fig. 5.1. 

As in Chapters 2 and 3 we follow the approach pioneered by Greenspan [16] 

and Ehrhard & Davis [10] and assume that the speeds of the contact lines are 
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related to their contact angles by the Tanner Laws 

(Rdt = K;(4)~ - 4>m), 

(R2 )t = K;(om - Olf), 

90 

(5.1) 

(5.2) 

where 4>0 and 00 are the equilibrium contact angles and K; is an empirically­

determined positive constant with dimensions of velocity. More general Tanner 

Laws are used in Chapters 2 and 3. 

From the results given in Chapter 1 the familiar lubrication approximation 

to the governing N avier-Stokes and mass conservation equations yield 

0= pz + pg, (5.3) 

J-LUzz = Px, (5.4) 

J-Lvzz = PY' (5.5) 

Ux + Vy + W z = 0, (5.6) 

where g denotes acceleration due to gravity, subject to the boundary conditions 

U = AUz , v = AVz on Z = 0, (5.7) 

J-LU z = 0, J-LVz = 0 on Z = h, (5.8) 
kx2 

P = Po - - - rV2 h on Z = h, (5.9) 
2 

w = ht + uhx + vhy on Z = h, (5.10) 

where the ftuid velocity has been written u=(u, v, w). Equation (5.7) is the slip 

condition that mitigates the stress singularity at the contact line. In the simple 

Navier slip model used here the slip coefficient A is a (small) positive constant 

with the dimensions of length. Equation (5.8) represents zero tangential stress 

at the free surface and Eq. (5.9) is the normal stress condition which includes 

both the effects of surface tension and the non-uniform external pressure loading 

caused by the jet of air. Equation (5.10) is the kinematic free-surface condition 

which can be used with Eq. (5.6) to derive the ftux condition 

(5.11) 
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where Ql and Q2 denote the fluxes in the x and y directions respectively defined 

by 

Ql = fah udz, Q2 = fah vdz. (5.12) 

Solving Eqs. (5.3) - (5.9) for u and v allows Ql and Q2 to be evaluated explicitly, 

and substituting these expressions into Eq. (5.11) gives the governing equation 

for h. 

We non-dimensionalise the problem using a characteristic horizontal length 

scale L (to be defined subsequently) and /\, as the characteristic horizontal veloc­

ity scale. The corresponding non-dimensional variables are defined by x = Lx', 

y = Ly', h = BoLh', RI = B~ LR;, R2 = B~ LR~, t = Lt' / /\', cP = BocP', cPo = BocP~ 
and B = BoB'. Dropping the primes at once for simplicity we obtain the non­

dimensional version of the governing equation for h, namely 

Ch, + [h' G + A) «V'h), - G"-hx + Jx) 1 x 

+ [h' (~ + A) «V'h), -G'h,l = 0, 
(5.13) 

together with the non-dimensional versions of Eqs. (5.1) and (5.2), namely, 

(R 1) t = cPo - cPm
, 

(R2)t = Bm - 1, 

(5.14) 

(5.15) 

where the com;tants J, C and G are as defined previously. The appropriate 

boundary conditions for Eq. (5.13) are 

h(R1,y,t) = 0, 

h(R2 , y, t) = 0, 

(h x - (RI)yhy)(l + (Rd~)-t Ix=RJ = cP, 

(hx - (R2)yhy)(1 + (R2)~)-t Ix=R2 = -(), 

(5.16) 

( 5.17) 

(5.18) 

(5.19) 

which must be satisfied together with appropriate initial conditions for h, RI and 

R
2

. Note that if we set h = h(x) and A = 0 in Eq. (:).13) wC' recover Eq. (2.11)(p) 

froIIl Chapter 2. Equations (5.16) and (5.17) require the free surface to have zero 
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height at the contact lines while Eqs. (5.18) and (5.19) ensure that the contact 

angles take the correct values. The volume of fluid in a width 2d of the ridge is 

given by 

j d lR2 2dV = hdxdy. 
-d Ri 

(5.20) 

Without loss of generality we can choose L = (7{)o/k)I/3 (corresponding to 

setting J = 1). For clarity we shall retain J explicitly in all of our analytical 

calculations but set J = 1 in all of our numerical calculations. 

In what follows we shall restrict our attention to the special case G = ° when 

gravity effects arc negligible. In addition we follow Greenspan [16] and Hocking 

& Miksis [23] and adopt a linear Tanner Law, obtained by setting m = 1 in 

Eqs. (5.14) and (5.15). 

5.2.1 Basic State 

In equilibrium h(x, y, t) = ho(x), RI(y, t) = R~, R2(y, t) = Rg, () = 1 and 

cP = cPo· Substituting these expressions into Eqs. (5.13), (5.16), (5.17) and (5.19) 

with G = 0 yields the governing equation for the basic state, namely 

h~' + Jx = 0, (5.21) 

where the prime denotes differentiation with respect to x, subject to the bound­

ary conditions 

The solution for ho is given by 

ho(R~) = 0, 

ho{R~) = 0, 

h~(R~) = -1. 

(5.22) 

(5.23) 

(5.24) 

ho = (R~ - x)(x - Rn {~ [x2 + {R~ + R~)x - ~{2R~ + Rn] + ° 1 o}, 
R2 - RI 

(5.25) 

From Eq. (5.20) the volume of the ridge is given by 

V = !(R~ - RO)2 - ~(RO - RO)4{2RO + 3RO) 6 2 1 360 2 1 1 2 , (5.26) 



5. LINEAR STABILITY OF A RIDGE OF FLUID 93 

while from the remaining boundary condition Eq. (5.18) we obtain the relation­

ship between 4Jo, R? and Rg, namely 

(5.27) 

Note that Eq. (5.27) implies that solutions are possible only if 0 ::; 4Jo ::; 1. 

5.2.2 Linear Stability Problem 

In order to analyse the linear stability of the ridge to small perturbations in the 

transverse direction with wavenumber q we write h = ho{x)+hl (x) exp(iqy+at), 

RI = R? + R~ exp(iqy + at) and R2 = Rg + Ri exp(iqy + at), where hi (x) is the 

perturbation to the basic-state profile, R~ and Ri are the perturbations to the 

positions of the contact lines and a is the unknown (complex) growth coefficient. 

Substituting these expressions into Eqs. (5.13) - (5.19) and retaining only first­

order terms in the perturbations yields the governing equation for hi: 

Cah\ + [h~ (~ +).) {h~ - q2hd'j' - q2h~ (~ +).) {h'! - q
2
h\} = 0, {5.28} 

which is subject to the boundary conditions 

I 1 (0) RI = - <Po hI RI , 

Ri = hl(Rg), 

h'I(R?) + h3(R?)R~ = -aRt, 

h~(Rg) + h3{Rg)m = -aRi· 

(5.29) 

(5.30) 

(5.31) 

(5.32) 

Eliminating Ri and R~ from Eqs. (5.29) - (5.32) and using Eq. (5.25) yields 

4JOh'l (R~) - it (J, R~, Rg)hl (R~) = ah1 (R~), 

h'l (Rg) + h(J, R~, Rg)hl (Ri) = -ahl (Rg), 

where the functions h(J, R?, Rg) and h(J,R?,Rg) are given by 

11 (J, R?, Rg) = 1
J
2 (Rg - R~)(5R~ + 3Rg) - 0 2 0' 

R2 - RI 

h(J,R?,Rg) = 1J2(R~-R~)(R~+3Rg)- 0
2 

o. 
R2 - RI 

(5.33) 

(5.34) 

(5.35) 

(5.36) 
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As Hocking & Miksis [23] point out, in the special case q = 0 (but not otherwise) 

it is also necessary to impose the volume condition 

(5.37) 

as an additional condition. 

5.3 The Centred Jet (cjJo = 1) 

Substituting <Po = 1 into Eq. (5.27) yields the solution R~ = -Rg. Hence the 

special case of equal contact angles corresponds to the case when the jet acts at 

the centre of the ridge. 

5.3.1 Basic State 

Setting Ro = -R? = Rg in Eq. (5.25) we obtain the basic state solution 

ho = 24~o (:r2 - R~) [JRo(R~ - x2
) - 12] , 

and from Eq. (5.26) the volume of the ridge is given by 

V = :5 R~ (15 - J R~). 

(5.38) 

(5.39) 

Figure 5.2 plots basic-state profiles for Ro = 0.6, 1, 1.4, 1.8 and 2.2. These 

solutions are exactly the two-dimensional non-annular solutions described in 

Chapter 2. Note that "physical" solutions (i.e. solutions for which ho 2: 0 

over the entire interval - Ro ::; :E ::; Ro) exist only when Ro lies in the range 

0::; Ra :s (12/./)1/:1. 

5.3.2 Linear Stability Problem 

The governing equation for h1 is given by Eq. (5.28) subject to the boundary 

comli tions 

(5.40) 

(5.41) 
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h 

Ro = 1.4 
0.5 

Ro = 0.6 Ro = 1 x 

Figure 5.2: Basic-state profiles of the ridge for the centred-jet problem for Ro = 
0.6, 1, 1.4, 1.8 and 2.2. 

As we have already seen, in the special case q = 0 it is also necessary to impose 

the volume condition 

j
'RO 

h1dx = O. 
-Ho 

5.3.3 Quasi-static Motion C = 0 

(5.42) 

We can make considerable analytical progress in the special case of quasi-static 

motion, corresponding to C = O. Note that all the analytical results presented 

here have heen confirmed by numerical calculations of the kind described in the 

next section. 

Two-dimensional Perturbations q = 0 

Substituting C = 0 and q = 0 into Eq. (5.28) and integrating once yields 

h~(ho + 3>")h't = Q*, (5.43) 
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where Q* is a constant. The general solution of Eq. (5.43) can be written in the 

form 

hl = Q* f(x, J, Ra) + ax2 + {Jx + ,,(, (5.44) 

where a, {J and "( are constants and the function f(x, J, Ro) is not given here 

explicitly for brevity. Since f(x, J, Ra) "" (Ra - x) In(Ra - x)/3)" as x -7 RO 
solutions for hl that do not have a singularity at x = Ra are possible only if 

Q* = O. Thus the appropriate solution for hI is simply 

(5.45) 

and imposing the volume condition (5.42) on Eq. (5.45) yields a = -3"(/ Rfi. Ev­

idently the solutions for hI can be either symmetric or antisymmetric. For sym­

metric solutions (/3 = 0) applying the boundary condition (5.41) to Eq. (5.45) 

yields a = (1s0, where 
JR~ - 6 

asO = 3Ra ' (5.46) 

recovering the expression for the growth rate of symmetric modes obtained in 

Chapter 2. For antisymmetric solutions (a = "( = 0) applying the boundary 

condition (5.41) to Eq. (5.45) yields a = aaO, where 

JR5 
(1aO = -3- > O. (5.47) 

Figure 5.3 plots asO and aaO as functions of Ra· Note that since aaO > asO 

and aaO > 0 the conditionally stable symmetric mode considered in Chapter 2 

is always more stable than the unconditionally unstable antisymmetric mode 

considered here for the first time. 

Three-dimensional Perturbations q > 0 

In the general case q > 0 a solution of Eq. (5.28) for hl with C = 0 that does 

not have a singularity at x = Ra is given by 

hi = acosh(qx) + /3sinh(qx), (5.48) 
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Ro 
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-2 

Figure 5.3: Plot of the growth rates of symmetric (O"so) and antisymmetric (aaO) 
perturbations as functions of Ro for the centred-jet problem in the case q = 0 

and C = O. 

where a and r3 arc constants. Again, the solutions for hI can be either symmetric 

or antisymmctrie. The growth rate of symmetric modes ((3 = 0) is given by 

JR& + 3 . 
O"s = 3Ro - q tanh(qRo). (5.49) 

Note that a.9 -t a.~o as q -t 0, where aso = (J m + 3)/3Ro =f 0"50, i.e. because 

these solutions do not satisfy the volume condition (5.42) we do not recover the 

solution obtaincd previously in the case q = 0 in the limit q -t O. The growth 

rate of CllltisYJIlmetric modes (0: = 0) is given by 

JR~ +3 
O"a = 3Ro - qcoth(qRo). (5.50) 

Note that an -t anD as q -t 0, where aao = Jm/3 = O"aO, i.e. because these 

solutions do satisfy the volume condition (5.42) we recover the solution obtained 

prcviousl~' ill the case q = 0 in the limit q -t O. The neutral stability curves 

for q > 0 obtained by setting O"s = 0 and O"a = 0 in Eqs. (5.49) and (5.50) 

respectively arC' plotted in Fig. 5.4. 
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Figure 5.4: Neutral stability curves for symmetric (as = 0) and antisymmetric 
(all = 0) perturbatioIls in the (q,Ro) plane for the centred-jet problem in the case 
q > 0 and C = U. Here (A) denotes antisymmetric modes and (S) symmetric 

modes. 
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Figures 5.5(a) -- (e) plot the growth rates as and an as functions of q ~ 0 

for Ro = 0.6, 1, 1.4, 1.8 and 2.2 respectively. Symmetric modes are denoted by 

solid lines and antisymmetric modes by dashed lines. At q = 0, a filled circle 

denotes a solution, an empty circle no solution. Note that the lower filled circle 

corresponds to aso, i.e. to the symmetric mode obtained in Chapter 2. Since 

as > aa for q > 0, both as and aa are monotonically-decreasing functions of q 

for all q > 0, a.~o > aaO = aaO > aso and aso > 0, we deduce that long-wavelength 

symmetric modes with growth rate approaching aso in the limit q -+ 0 are always 

the most unstable when C = o. 

5.3.4 The General Case C f= 0 

To obtain the neutral stability curves for C "# 0 we set a = 0 in Eq. (5.28) 

and the boundary conditions (5.40) and (5.41). This procedure yields the same 

neutral stability curves as those calculated previously in the case C = 0 as shown 

in Fig. 5.4. When a t 0 we must proceed numerically. 

Results 

Figures 5.6(a) .- (e) plot the largest eigenvalues as functions of q ~ 0 for Ro=0.6, 

1, 1.4, 1.8 and 2.2 respectively in the case C = 1. Symmetric modes are denoted 

by solid lines and antisymmetric modes by dashed lines. At q = 0, a filled circle 

denotes a solution, an empty circle no solution. In all the numerical computa­

tions w(' found that only the two largest eigenvalues ever take positive values, 

and that onc of these eigenvalues always corresponds to symmetric modes and 

the other always corresponds to antisymmetric modes. Typically both modes 

are unstable in eertain ranges of q, but the nature and location of the most 

unstable mode (with a = a* at q = q*) changes as Ro is varied. As Fig. 5.6(a) 

shows, when R-o = 0.6 the most unstable mode is symmetric with a* ~ 0.0171 

at q* :::: 1.41, but when Ra increased to 1 the most unstable mode is antisym­

metric with a* ~ 0.0231 at q* = 0 (Fig. 5.6(b)). As Ro is increased further 

to 1.4 and 1.8 the most unstable mode is still antisymmetric with a* ~ 0.0357 

when Ro = 1.4 and a* ::::::: 0.0375 when Ra = 1.8 at q* = 0 (Figs. 5.6(c) and 
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Figure' 5.5: (a) (e): Plot of the growth rates of symmetric ((J.~) and antisym­
metric (a

u
) pert.urbations as functions of q ~ 0 for the centred-jet problem for 

Ho = 0.6, 1, 1.4. 1.8 and 2.2 respectively in the case C = O. Symmetric modes 
are denoted by solid lines and antisymmetric modes by dashed lines. At q = 0, a 
filled drcl(l dt'Ilot('S a solution, an empty circle no solution. Note that the lower 
solution at Cl = () is outwith the range of the plot in (a). 
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Figure 5.G: (a) (e): Plot of the largest eigenvalues as functions of q ~ 0 for 
tlH~ cpntrpd-jet problem for Ro = 0.6, 1, 1.4, 1.8 and 2.2 respectively in the case 
C = 1. Symmetric modes are denoted by solid lines and antisymmetric modes 
by dashed lines. At q = 0, a filled circle denotes a solution, an empty circle no 

solution. 
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Figure 5.7: Plot of a* as a function of Ro for the centred-jet problem for C = 1, 
0.1, 0.01, 0.001 and C = O. Symmetric modes are denoted by solid lines and 
antisymmetric modes by dashed lines. 

5.6(d)). However, as Fig. 5.6{e) shows, as Ro is increased still further to 2.2 

the symmetric mode once again becomes the most unstable with a* ~ 0.0279 at 

q* ~ 1.08. This "switching" between symmetric and antisymmetric modes as Ro 

is increased is summarised in Figs. 5.7 and 5.8 which plot a* and q* as functions 

of Ro for a range of values of C. For completeness Fig. 5.7 also shows the curve 

for a' = a$o ill the case C = 0 which is achieved in the limit q --t O. Note that 

in both Figs. 5.7 and 5.8 there is a small region near Ro = 2.2 on the curves 

for C = 1 and C = 0.1 that corresponds to symmetric modes, but that this 

region is absent from the curves for C = 0.01 and C = 0.001. Figure 5.9 plots 

the largest eigenvalues when q = 0 as functions of Ro for a range of values of C 

together with the solutions aaO = JR~/3 and aso = (JR~ - 6)/3Ro appropriate 

in the case C = O. In particular, Fig. 5.9 shows how the numerically-calculated 

values of a when Cl = 0 approach aaO and O'sO in the limit C --t O. 
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Figure 5.8: Plot of q* as a function of Ro for the centred-jet problem for C = 1, 
0.1, 0.01 and 0.001. Symmetric modes are denoted by solid lines and antisym­
metric modes by dashed lines. 

5.4 The Off-Centred Jet 0 < <Po < 1 

The general case of unequal contact angles (0 ~ 4>0 < 1) corresponds to the 

case when the jet acts off centre. Since 4>0 =1= 1, solutions of this kind are only 

possible when the two contact angles in the basic state are different i.e. when 

the natm£' of th(l substrate is different near the two contact lines. 

5.4.1 Basic State 

The ba..,ic-state solution is given by Eq. (5.25) and the volume of the ridge by 

Eq. (5.26). Figure 5.10 plots basic-state profiles for .Rg = 2, 2.4, 2.8 and 3.2 

in the cast' 4>0 = 0.6. These solutions are exactly the two-dimensional annular 

solutions described in Chapter 3. Note that for a given value of cPo (0 ~ cPo < 1), 

solutions exist only for values of R~ greater than a critical value corresponding 

to the limiting case in which R~ = O. 
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Figure 5.9: Plot of the largest eigenvalues when q = 0 as functions of Ra for 
the ('('utrp<i-jet problem for C = 1, 0.1, 0.01 and 0.001. Symmetric modes are 
denoted by solid lines and antisymmetric modes by dashed lines. The thin curves 
dcnot(' th(' eigenvalues obtained numerically when C i= 0 and the thick curves 
denote the ('igenvalues aso = (J Rg - 6)/3Ra and aaO = J R5!3 appropriate in 
the cas(' (' = o. 
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Figure 5.10: Basic-state profiles of the ridge for the off-cent red-jet problem for 
R!1 = 2, 2.4, 2.8 and 3.2 in the case <Po = 0.6. 

5.4.2 Linear Stability Problem 

The governing equation for hI is given by Eq. (5.28) subject to the boundary 

conditions (5.33) and (5.34). Again in the special case q = 0 it is also necessary to 

impose the volume condition (5.37). Note that in this case all the eigenfunctions 

are a .. <;YHlIll('tric. 

5.4.3 Quasi-static Motion C = 0 

As 1)('[01"('. W(' can make considerable analytical progress in the special case of 

quasi-static lIIotion (C = 0). Again all the analytical results presented here have 

been eonfirmrd by numerical calculations. 

Two-dimensional Perturbations q = 0 

From Sl'(". ~).3.:~ Ih(' solution for hi when C = 0 and q = 0 is given by Eq. (5.45). 

Applyill).?; boundary' conditions (5.33) and (5.34) and the volume condition (5.37) 

yi('lds till' l'xpm-isiollS fOl" t.1l(' growth rates obtained in Chapter 3, namely a = 
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Figure 5.11: Plot of the growth rates 0"0+ and 0"0- as functions of ~ for the 
off-centred-jet problem for </>0 = 0.2, 0.4, 0.6 and 0.8 in the case q = 0 and 

C=O. 

0'0+ and (J = (Jo- where 

{5.51} 

(5.52) 

Figure 5.11 plots ao+ and ao- as functions of Rg for C/>O = 0.2, 0.4, 0.6 and 0.8. 

Since 0"0+ > 0 the ridge is always unstable when C = 0 and q = O. Note that, 

unlike iu the ccutred-jet case, the analysis in Chapter 3 includes both of the 

possible lIlodes in this case. 

Three-dimensional Perturbations q > 0 

From S('C. 5.3.3 t.he solution for hI in this case is given by Eq. (5.48) subject 

to th(' boundary ronditions (5.33) and (5.34). Solving this system yields two 

expressions for a, namely O"q+ and O"q_, given by 

4(( 12 - ('2 J R?) sinh(q() - 12q(2(</>0 + 1) cosh{q() ± 3(2 X~ 
(]q± = 24(2 sinh{q() (5.53) 
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Figure 5.12: Neutral stability curves in the (q,Rg) plane corresponding to aq+ = 
o for the off-centred-jet problem for 4>0 = 0.2, 0.4, 0.6 and 0.8 in the case q > 0 

and C = o. 

where we have written R!J = R? + ( and X is defined to be 

x = 8q2(4)6 + 64>0 + 1) - 2J2(2( + 2R~}2 + 2[4q2(4)0 - 1)2+ 

,]'1-(2(( + 2R?rl] cosh(2q() + Jq«(( + 2R~)(4)0 - 1) sinh(2q(). 

In particular. as q -t 0 we have aq± -t o-o± where 

6(3 - 4>0} - 2J R?(2 ± 3Yt 
ao± = 12( 

where }' is ddined to be 

(5.54) 

(5.55) 

(5.56) 

NotC' that ao-! 1= 17'0 -+ a.nd 0-0 - =f. ao-, i.e. because neither of these solutions 

sat.isfv tilt' \'olulIll' ('ondition (5.37) we do not recover the expressions obtained 

previollsl~' in tlw cas(' q = 0 in the limit q -t O. The neutral stability curves 

for q > 0 oi>taillPd by setting aq+ = 0 in Eq. {5.53} are plotted in Fig. 5.12 for 

4>0 = 0.2. 0.4, O.G and 0.8. 
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Figure 5.13: (a) (cl): Plot of the growth rates O"q+ and O"q_ as functions of 
q 2: 0 for the off-(,pntred-jet problem for m = 2.5, 3, 3.5 and 4 for ~o = 0.2, 0.4, 
0.6 and 0.8 n'spl'l'tivdy in the case C = O. At q = 0, a filled circle denotes a 
solution. an ('II\\>t)' circle no ~olution. 
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Figures 5.13(a) . (d) plot the growth rates aq+ and aq_ as functions of q ~ 0 

for R~ = 2.5, 3, 3.5 and 4 for cPo = 0.2, 0.4, 0.6 and 0.8 respectively. Note 

that the filled circles at q = 0 correspond to ao±, i.e. to the modes obtained in 

Chapter 3. Since aq+ > aq_ for q > 0, both aq+ and aq_ are monotonically­

decreasing functions of q for all q > 0, 0-0+ > ao+ > 0-0 - > ao- and 0-0+ > 0, we 

deduce that long-wavelength symmetric modes with growth rate approaching 

0'0+ in the limit q ~ 0 are always the most unstable when C = o. 

5.4.4 The General Case C =f. 0 

To obtain the neutral stability curves when C =f. 0 we set a = 0 in Eq. (5.28) 

and the boundary conditions (5.33) and (5.34). This procedure yields the same 

neutral stability curves as those calculated previously in the case C = 0 as shown 

in Fig. 5.12. Again, when a =f. 0 we must proceed numerically. 

Figures 5.14(a)- (d) plot the largest eigenvalues as functions of q ~ 0 for 

R8 = 2.5,3,3.5 and 4 for cPo = 0.2,0.4,0.6 and 0.8 respectively in the case C = 1. 

As Fig. 5.14 shows, as Ho is increased the values of a* > 0 and q* increase and 

so the ridge is again unconditionally unstable. However, the switching between 

modes seen in the centred-jet case does not occur in this case. This behaviour 

is summarised in Figs. 5.15 and 5.16 which plot a* and q* as functions of Rg 
for a rangc' of values of C_ For completeness Fig. 5.15 also shows the curve for 

a* = 0-0+ in thl' n~e C = 0 which is achieved in the limit q ~ O. Figure 5.17 

plots the largest eigenvalues when q = 0 as functions of Rg for a range of values 

of C together with the solutions ao+ and ao- appropriate in the case C = o. 
In particular, Fig. 5.17 shows how the numerically-calculated values of a when 

q = 0 approach 110+ and ao- in the limit C ~ O. 
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Figure 5.14: (a) (d): Plot of the largest eigenvalues as functions of q ~ 0 for 
the off-(,(,lItT('d-j('l problem for R~ = 2.5, 3, 3.5 and 4 for cPo = 0.2, 0.4, 0.6 and 
0.8 ("(ISp(·(·tiwly ill 1,11<' C<l .. 'i(' C = 1. At q = 0, a filled circle denotes a solution, 
all ('!Ill"." ('ird(' IIU sollltioll. 
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Figure 5.15: Plot of (J* as a function of R~ for the off-centred-jet problem for 
C = 1, 0.1, 0.01, 0.001 and C = 0 in the case <1>0 = 0.6. 
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Figure 5.16: Plot of q* as a function of Rg for the off-centred-jet problem for 
C = 1, 0.1. 0.01 and 0.001 in the case cPo = 0.6. 
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Chapter 6 

Linear Stability of a Drop of 
Fluid 

6.1 Introduction 

In this Chapter we investigate the linear stability to both axisymmetric and non­

axisymmetric perturbations of an initially axisymmetric thin drop of Newtonian 

fluid either on a uniformly rotating substrate or under the influence of a jet of 

air directed normally towards a stationary substrate. Following the pattern of 

Chapter 5, two problems are considered: one in which the drop has no dry patch 

(a non-annular drop) and one in which the drop has a dry patch at its centre 

(an annular drop). For each problem we confirm and extend the corresponding 

analytical results of Chapters 2 and 3 in the special case of quasi-static motion 

(zero capillary number) and investigate numerically the general case of non-zero 

capillary number using the numerical code developed in Chapter 4. 

6.2 Non-annular Drops 

6.2.1 Problem Formulation 

Consider a non-annular drop of incompressible Newtonian fluid with constant 

viscosity JL, density p and surface tension T on a solid horizontal planar sub­

strate in the presence of a jet of air. We employ cylindrical polar coordinates 

(r, cp, z), chosen so that the substrate is given by z = 0, the thickness of the 

113 



6. LINEAR STABILITY OF A DROP OF FLUID 

I 
I 

I 
I 
I 

I 
I 

I 
I 

I 

e~ /~~, 

r 

direction 

of jet 

z 

/ z=h(r,<p, t) 

Figure 6.1: Geometry of the non-annular problem. 
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drop is denoted by z = h(r, cp, t) and the velocity of the fluid is denoted by 

u = u(r, cp, z, t), where t denotes time. The position of the contact line is de­

noted by r = R(cp, t) at which the contact angle is B = B(t). We again model 

the jet with a parabolic pressure distribution in the air given by P = Po - kr2/2, 

where P denotes the pressure, Po is the maximum value of the air pressure at 

r = 0 and k is a positive constant. The shear stress at the free surface caused by 

the jet is again neglected. The geometry of the non-annular problem is shown 

in Fig. 6.1. 

We follow the approach pioneered by Greenspan [16] and Ehrhard & Davis [10] 

and assume that the speed of the contact line is related to the contact angle by 

the Tanner Law 

(6.1) 

where flo is the <"quilibriuIIl contact angle and K is an empirically-determined 

positive constant with dimensions of velocity. More general Tanner Laws are 

used in Chapters 2 and 3. 

From the results given in Chapter 1 the familiar lubrication approximation 
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to the governing N avier-Stokes and mass conservation equations yield 

0= pz + pg, 

I1/Uzz = Pr, 
1 

J-Lv zz = -Pr.p, 
r 

1 1 
-(ru)r + -vr.p + 'Wz = 0, 
r r 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

where g denotes acceleration due to gravity, subject to the boundary conditions 

U = AUZ1 V = AVz on Z = 0, (6.6) 

J1.U z = 0, J-LVz = ° on z = h, (6.7) 
kr2 

P=PO---7V2h on z = h, (6.8) 
2 

v 
z= h, 'W = ht + uhr + - hr.p on (6.9) 

r 

where the fluid velocity has been written u=(u,v,w). Equation (6.6) is the slip 

condition that mitigates the stress singularity at the contact line. In the simple 

Navier slip model used here the slip coefficient A is a (small) positive constant 

with the dimensions of length. Equation (6.7) represents zero tangential stress 

at the free surface and Eq. (6.8) is the normal stress condition which includes 

both the effects of surface tension and the non-uniform external pressure loading 

caused by the jet of air. Equation (6.9) is the kinematic free-surface condition 

which can be used with Eq. (6.5) to derive the flux condition 

ht + ~ [(rQ1)r + (Q2)'P] = 0, (6.10) 

where QI and Ch denote the fluxes in the rand <p directions respectively defined 

by 
(21 = fohudz , (22 = fohvdz. (6.11) 

Solving Eqs. (6.2) (6.8) for U and v allows Q! and Q2 to be evaluated explicitly, 

and substituting these expressions into Eq. (6.10) gives the governing equation 

for h. 
We non-dimcnsionalise the problem using a characteristic radial length scale 

L (to be defined su bspqucntly) and ~ as the characteristic horizontal velocity 
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scale. The corresponding non-dimensional variables are defined by r = Lr', 

cp = cp', h = OoLh', R = 0'0 LR', t = Lt' I K, and 0 = 000'. Dropping the primes 

at once for simplicity we obtain the non-dimensional version of the governing 

equation for h, namely 

Ch, + ~ [rh' (~ + A) ((V"h), - G'h, + Jr) 1 
+ :' [h' G+A) ((V'2h).-G'h.)L =0, ' 

together with the non-dimensional version of Eq. (6.1), namely, 

Rt = om - 1, 

(6.12) 

(6.13) 

where the constants J, C and G are as defined previously. Note that if we 

set h = h(r) and A = ° in Eq. (6.12) we recover Eq. (2.11)(a) from Chapter 

2. Without loss of generality we can choose L = (rOol k) 1/3 (corresponding to 

setting J = 1). As in Chapter 5 we shall retain J explicitly in all of our analytical 

calculations but set J = 1 in all of our numerical calculations. 

Note that if we identify the dimensional jet strength k with pw2 then Eq. (6.12) 

is identical to the equation describing the spin coating of a thin drop on a hor­

izontal substrate rotating with constant angular speed w. Hence all the results 

presented here apply to both spin-coating and air-jet-blowing problems. 

The appropriate boundary conditions for Eq. (6.12) are 

h(R, <p, t) = 0, 

1 R2 -t 
(It, - R2 R.,h.) (1 + R~) I'=R = -0, 

together with the regularity conditions 

hr(O, <p, t) = 0, 

Q1 (0, <p, t) = 0, 

(6.14) 

(6.15) 

(6.16) 

(6.17) 

which must be satisfied together with appropriate initial conditions for hand 

R. Equation (6.14) requires the free surface to have zero height at the contact 
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line and Eq. (6.15) ensures that the contact angle takes the correct value. The 

volume of the drop is given by 

r27T rR 

271" V = lo lo hr drdcp. (6.18) 

In what follows we shall restrict our attention to the special case G = 0 when 

gravity effects are negligible. In addition, we follow Greenspan [16] and adopt 

the linear Tanner Law obtained by setting m = 1 in Eq. (6.13). 

6.2.2 Basic State 

In equilibrium h(r,cp,t) = ho(r), R{cp,t) = Ra and (J = (Jo. Substituting these 

solutions into Eqs. (6.12) and (6.14) - (6.16) and using Eq. (6.17) with G = 0 

yields the governing equation for the basic state, namely 

11/ I" Ih ho + -ho - 2" 0 + Jr = 0, 
r r {6.19} 

where the prime denotes differentiation with respect to r, subject to the bound­

ary conditions 

The solution for ho is given by 

ho(Ra) = 0, 

h~(Ro) = -1, 

h~(O) = o. 

From Eg. ((UB) tilt' volume of the drop is given by 

v = _1_ R3 (24 - J R3) 
192 0 0 . 

(6.20) 

(6.21) 

(6.22) 

(6.23) 

(6.24) 

Figure 6.2 plots t.he basic-state profiles for Ra = 1, 1.5, 2 and 2.5. These solutions 

are exactly the axisymmetric non-annular solutions described in Chapter 2. Note 

that "physical" solutions (i.e. solutions for which ho ~ 0 over the entire interval 

o ~ r ~ Ro) pxist only when Ro lies in the range 0 ~ Ra ~ (16/ J)I/3. 
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h 

Figure 6.2: Basic-state profiles of a non-annular drop for Ra = 1, 1.5, 2 and 2.5. 

6.2.3 Linear Stability Problem 

In order to analyse the linear stability of the drop to small p(·rturbat.ions wit.h 

allimuthal wavenumber q 2: 0 we write h = ho(r) + h) er) ('xp(il/'P + at) and 

R = Ro + Ri exp(iq<p + at), where hi(r) is the perturbatioll to t.hp basic-st.atp 

profile, RI is the perturbation to the position of the contact lille and a is 1.\((' 

unknown (complex) growth coefficient. Note that the waveIlumber q must 1)(' 

an integer to ensure physically-sensible solutions. Substituting these expressions 

into Eqs. (6.12) - (6.17) and retaining only first-order terms ill t.he perturbations 

yields the governing equation for hi: 

which is subject to the boundary conditions 

RI = hi (17.0), 

RI = hi (-Ro), 

(6.2f») 

(6.2(}) 

(6.27) 



6. LINEAR STABILITY OF A DROP OF FLUID 119 

(6.28) 

(6.29) 

(6.30) 

(6.31) 

In the special case q = 0 (but not otherwise) it is also necessary to impose the 

volume condition 

(6.32) 

as an additional condition. 

6.2.4 Quasi-static Motion C = 0 

We can make considerable analytical progress in the special case of quasi-static 

motion, corresponding to C = O. Note that all the analytical results presented 

here have been confirmed by numerical calculations of the kind described in the 

next section. 

Axisymmetric Perturbations q = 0 

The general solution when C = 0 and q = 0 can be written in the form 

hl = Q*f(r, J, Ro) + or2 + (3 + "Ilnr, (6.33) 

where Q*, C¥, (J and 'Y are constants and the function f(1', J, Ro) is not given 

here for brevity. Since f "" In(Ro/r) In(Ro - r)/3)" as r -t Ra. solutions for hI 

that do not have a singularity at r = Ro are possible only if Q* = O. Thus the 

appropriate solution for hl is simply 

hl = or2 + {J + "I In r. (6.34) 

For solutions that are bounded at the origin we set 'Y = O. Using boundary 

condition (6.31) and volume condition (6.32) yields (J = (Jo, where 

.J R~ - 12 
(Jo = (6.35) 

4Ro 
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recovering the conditionally stable growth rate obtained in Chapter 2. 

Non-axisymmetric Perturbations q ~ 1 

A solution of Eq. (6.25) for hi when C = 0 that does not have a singularity at 

'r = Ro is 

(6.36) 

where a and (J are constants. For solutions that are bounded at the origin we 

require (3 = 0 and using the boundary condition (6.31) yields a = aq , where 

JR~ + 4(1 - q) 
aq = 

4Ro 
(6.37) 

for q = 1,2,3, .... Note that, because these solutions do not satisfy the volume 

condition (6.32), substituting q = 0 into Eq. (6.37) does not recover the expres­

sion obtained previously for aD. The neutral stability curves are obtained by 

setting aq = 0 in Eq. (6.37) and are given by 

_ (4(q - 1)) k 
Ro - J ' (6.38) 

forq=1,2,3, .... 

General Perturbations q ~ 0 

Figure 6.3 plots the growth rate aq as a function of Ro for q = 0, 1, 2, ... , 

7. Since the largest eigenvalue is a1 = J R~/ 4 > 0 the drop is unconditionally 

unstable via the q = 1 mode. Note that a4 = ao and so both q = 0 and 

q = 4 modes correspond to exactly the same curve in Fig. 6.3. Furthermore, the 

neutral stability curve for q = 5 is identical to the curve where the basic-state 

solutions become unphysical, namely Ro = (16/ J)I/a. For lJ ~ 5 Fig. 6.3 shows 

that (f,/ < 0 for all values of Ro corresponding to physical solutions, and hence 

these modes are always stable. 

6.2.5 The General Case C =f. 0 

To obtain the neutral stability curves for C =I 0 wc set (f = 0 in Eq. (6.25) and 

t.11(' boundary conditions (6.30) and (6.31). This procedure yields exactly the 
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Figure 6.3: Plot of the growth rates O"q for q = 0, 1, 2, 3, ... , 7 as a function of 
~ for a non-annular drop in the case C = o. 

same neutral stability curves as those calculated previously in the case C = 0 

as given by ~ = {12/J)1/3 for the q = 0 mode, and by Eq. (6.38) for the q ~ 1 

modes. When 0" =f- 0 we must proceed numerically. 

Results 

Figure 6.4 plots the largest eigenvalue as a function of Ro for q = 0, 1, 2, 3, ... , 

6 in the case C = 1. The neutral stability points are given by Ho = (12/ J) 1/3 

for the q = 0 mode, and by Eq. (6.38) for the q ~ 1 modes. For Ho in the 

range 0 < Ho < 2.12 the most unstable mode corresponds to q = 1, whil(' for 

2.12 < R{) < 2.46 it corresponds to q = 2 and for 2.46 < Ro ~ (16/ J) 1/3 :::::: 2.52 

t.o (j = 3. Note that the curves corresponding to the q = 0 and q = 4 modes are 

distinct. for C -=I 0 and coincide only in the special case C = o. 
Figures 6.5(a) .. (d) plot the largest eigenvalue as a function of ~ for q = 0, 

1, 2, 3, ... , 7 for C = 1, 0.1, 0.01 and 0.001 respectively. The thick curves 

correspond to the solutions in the special case C = 0 given by O"q for q = 0, 

t, 2, 3, ... , 7. The results in the case C = 1 (Fig. 6.5{a)) have already been 
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Figure 6.4: Plot of the largest eigenvalue as a function of Ro for a non-annular 
drop for q = 0, 1, 2, 3, ... , 6 in the case C = 1. 

desc1'ilwd. For C = 0.1 (Fig. 6.5(b)) the most unstable mode corresponds to 

q = 1 for 0 < Ro < 2.19 and to q = 2 for 2.19 < Ro < 2.52. For C = 0.01 

(Fig_ 6.5( c)) the same qualitative behaviour occurs, however the value of Ro at 

which the most unstable mode changes from the q = 1 mode to the q = 2 mode 

is Ro ~ 2.38. For C = 0.001 (Fig. 6.5(d)) the most unstable mode corresponds 

to q = 1 for all values of Ro corresponding to physical solutions. In particular, 

Fig. 6.5 shows how the numerically-calculated values of a approach Oq in the 

limit C ---+ O. 

6.3 Annular Drops 

6.3.1 Problem Formulation 

Clearly, the major difference between the annular drops discussed in this section 

alld tll(' Iloll-annular drops discussed ill the previous sectioll is that the former 

haY\' two contact lim's and hcnce two contact angles. The posit.ions of the 

"inller" alld "011(.<:'1'" ('olltact.lill(,s are delluted by'f' = Hl(y.t) at. which tlH' 
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Figure 6.0: (a) (d) Plot of the largest eigenvalue as et fUllctioll of Ro for Cl 

non-annular drop for q = 0, 1, 2, 3, ... , 7 for C = 1, 0.1, 0.01 and 0.001. The 
thick curves correspond to the solutioBs ao = (J R~~ - 12)/4Ro for (f = 0 amI 
aq = (.JR~ + 4(1 - q))/4Ro for q = 1, 2, 3, ... ,7. 
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Figure 6.6: Geometry of the annular problem. 
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contact angle is </> = </>(t) and r = R2(r.p, t) > RI at which the contact angle is 

o = O( t), respectively. The geometry of the annular problem is shown in Fig. 6.6. 

Since there are now two moving contact lines, we need to replace Eq. (6.1) 

by two Tanner Laws relating the speed of each contact line to its contact angle. 

These are given by 

(RI)t = K(</>rf - </>m), 

(R2)t = K(om _ o~n), 

(6.39) 

(6.40) 

when' </>0 and 00 are the equilibrium values of the inner and outer contact angles 

The uon-dimensional governing equation for h is again given by Eq. (6.12) 

t.ogether with the non-dimensional versions of Eqs. (6.39) and (6.40), namely 

(G.41 ) 

(6.42) 
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The appropriate boundary conditions for Eq. (6.12) ill this case are 
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(6.43) 

(6.44) 

(6.45) 

(6.46) 

which must be satisfied together with appropriate initial conditions for h, RI 

and R2 . The volume of the annular drop is given by 

(6.47) 

In what follows we shall again restrict our attention to the special case G = 0 

when gravity effects are negligible, and adopt the linear Tanner Laws obtained 

by setting m = 1 in Eqs. (6.41) and (6.42). 

6.3.2 Basic State 

In equilibrium h(r,t.p,t) = ho(r), RI(t.p,t) = R~, RAt.p,t) = R~, () = ()o and 

<P = <Po· Substituting these expressions into Eqs. (6.12)' (6.43), (6.44) and (6.46) 

with G = 0 yields the governing equation for the basic state given by Eq. (6.19) 

subject to the boundary conditions 

Tilt, solution for ho is given by 

ho(Rn = 0, 

ho(R~) = 0, 

h~(R~) = -1. 

wh('I'(' tlH' fun('tions f (T, R?, R~) and 9(1', R?, R~) are given by 

(6.48) 

(6.49) 

(G. 50) 

(G.51 ) 

f(r. R~, R~) = {Rg[(R,~)2 - 1.2] In R~ - Rg[(Rnl 
- 1'2] In Rg 

_.(6.52) 
- R~[(Rg)2 - (U~)2]11l '/'} { (R~)2 - (R?)2 + 2(Rg)2111(R\1 / R~)} , 
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o 0 1 { (0)2[( 0)2 2]2 0 0 2[ 0:2 0)2]2 g(r, R1 , R2) = 32 -2 R2 R2 - r In RI + 2(R2) (R2) - (RI In r 

+2(Rg)2[(R~)2 - T2][2(R~)2 - (R~)2 - r:2]ln R~ - [(R~):2 _,.2] (6.53) 

X [(Rg)2 - r2][(Rg)2 - (R~)2]} {(Rg)2 _ (Rn 2 + 2(Rg):2ln(RV Rg) } -I. 

From Eq. (6.47) the volume of the drop is given by 

v = S(R~, Rg) + JT(R~, Rg), 

where the functions S = S(R?, R~) and T = T(R~, Rg) are given hy 

S(R?, Rg) = ~ { R~[(R~)4 - (R~)4]ln(RV Rg) + Rg[(R~)2 - (R~)2f } 

x {(Rg)2 _ (R?)2 + 2(Rg)2In(R?/ Rg)} -1, 

T(R?, Rg) = - { 4(Rg)2[2(R?)2 + (Rg)2][(Rg)2 - (R?)2]2In(R?/ Rg) 

+[(R?)2 + 5(Rg)2][(Rg)2 - (R?)2]3} 

X { 384[(Rg)2 - (RV)2 + 2(Rg)2111(RV Rg)] }-I. 

(6.54) 

(6.55) 

(6.56) 

The remaining boundary condition (6.45) yields the relationship between </>0, R~ 

and Rg, namely 

</>0 = {[(Rg)2 - (R?)2][(Rg)4 - (R?)4 + 4(Ry)2(Rg)2In(R? / Rg)]J 

-16Rg[(Rg)2 - (R?)2 + 2(R?):2ln(RV / Rg)]} (6.57) 

x { 16RY[(Rg)2 - (R~)2 + 2(Rg)2In(RY / Rg)]} -I. 

Figure 6.7 plots the basic-state profiles for R~ = 2, 2.3, 2.6 and 2.9 in tlj(l 

ca.se </>0 = 1. These solutions are exactly the axisymmetric annular solutions 

d('scribed in Chapter 3. For </>0 ::; 1 solutions exist only for values of R~ greater 

than a crit.ical value, while for </>0 > 1 solutions exist only for valups of R~ less 

than a critical vahH'. This behaviour is shown in Fig. 6.8 which plots RY against 

t.ht' corresp()Ildill~ vahw for R~ ill t1w cases </)0 = 0.7. 1 amI 1.3. 
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Figure 6.7: Basic-state profiles of an annular drop for Rg = 2, 2.3, 2.6 and 2.9 
in the case CPo = 1. 
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Figure 6.8: Plot of R~ against R~ for annular solutions corresponding to cp() = 0.7, 
1 and 1.3. 
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6.3.3 Linear Stability Problem 

In order to analyse the linear stability of the drop we perturb h as before and 

write RI = R~+Rt exp(iqcp+at) and R2 = R~+R~ cxp(iqcp+at), where Rt and 

R~ are the perturbations to the positions of the contact lines. Substituting these 

expressions into Eqs. (6.12) and (6.41) - (6.46) yields the governing equation for 

hi given by Eq. (6.25) which is subject to the boundary conditions 

1 _ 1 (0) R] - - c/Jo hI R] , 

R~ = hI (Rg), 

h'] (R~) + h~(R~)Rt = -a Ri, 

h' (RO) + h"(RO)RI - -a RI 
1 2 ° 2 2 - 2' 

(6.58) 

(6.59) 

(6.60) 

(6.61) 

Eliminating R~ and R~ from Eqs. (6.58) - (6.61) and using Eq. (6.51) yields 

c/Joh~ (R~) - 11 (J, R~, Rg)h l (Rn = ah l (R?), 

h~ (R~) + 12(J, R~, R~)hl (R~) = -ah1 (R~), 

where the functions 11(J,R?,R~) and fz(J,R?,R~) are given by 

(6.62) 

(6.63) 

f](J,R~,R~) = {4(R?)2Rg[3JRg((R~)2 - (1~g)2) +8]ln(Ry/Rg) 

_[(R~)2 - (Rg)2][5J(Rn4 - 2J(Rn2(Rg)2 + J(Rg)4 - 16RgJ} (6.64) 

x { 16(R?)2[(R?)2 _ (Rg)2 _ 2(Rg)2In(RU R~)J} -J, 

h(J, R~, Rg) = {4(Rg)2[J(R~)3 + 4J In(R? / Rg) + [(Rnl 
- (Rg)2] 

_] (6.65) 
x[.JR~((RY)'2 - (R~r!) +8l}{8Rg[(R(t)'2 - (R~r! - 2(R~)'2I11(RUR~)J} . 

Again in the sppcial case q = 0 it is also necessary to impose the additional 

condition 

(6.66) 

6.3.4 Quasi-static Motion C = 0 

As before, we can make considerable analytical progress in the special casp of 

quasi-static motion (C = 0). Again all the analytical results ]>l'ps(mted IH'rp haw 
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been confirmed by numerical calculations. 

Axisymmetric Perturbations q = 0 

From Sec. 6.2.4 the solution for hi when C = 0 and q = 0 is given by Eq. (6.34). 

Applying boundary conditions (6.62) and (6.63) and the volume condition (6.66) 

recovers the unconditionally unstable results obtained in Chapter 3, namely 

a = 0'0+ > 0 and 0' = 0'0- < 0'0+ The expressions for O'o± are not repeated 

here. Figures 6.9(a) and (b) plot 0'0+ and 0'0- respectively as functions of R~ for 

CPo = 0.7, 1 and l.3. 

Non-axisymmetric Perturbations q ~ 1 

From Sec. 6.2.4 the solution for hi when C = 0 is given by Eq. (6.36) subject 

to the boundary conditions (6.62) and (6.63). Solving this system yields two 

expressions for a, namely a = o'q+ > 0 and 0' = O'q_ < O'q+' The expressions for 

O'q± are not given here for brevity. As before note that, because these solutions 

do not satisfY the volume condition (6.66), substituting q = 0 into o'q± does not 

I'('cowr the expressions obtained previously for O'o±. 

General Perturbations q ~ 0 

Figures 6.10(a) . (c) plot the growth rate O'q+ as a function of Rg for q = 0, 

1, 2, 3 and 4 in the cases CPo = 0.7, 1 and l.3 respectively. In Figs. 6.10( a) 

and (b) (corresponding to CPo = 0.7 and 1 respectively) the free ends of the 

('urves at R~ = (16/ 1)1/:\ ~ 2.52 correspond to R~ = O. As \V<' lIlove along 

(~a.ch curve away from these ends the value of R~ increases rnollotonicaliy from 

Z(,1'O. In Fig. 6.1O(c) (corresponding to CPo = l.3) solutions lie in the range 

o < R~ :::; (16/1)1/3 ~ 2.52. As R~ increases in this range, R? increa .. <;es from 

zero to a maximum (less than the corresponding value of R~) and then dpcrp<l.<;ps 

hack to Z(,I'O. 

In Fig. 6.1O(a) (CPo = 0.7) the most unstable mode corresponds to I} = 0 

for 0 < RY < 0.19 and q = 1 for n? > 0.19. In Fig. 6.1O(b) (q>o = 1) till' 

same qualitative behaviour occurs with the most unstablr mode corresponding 
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Figure 6.9: (a) - (b) Plot of the growth rates <10+ and <10- as functions of R~ for 
an annular drop for <Po = 0.7, 1 and 1.3 in the case 1J = () awl C = o. 
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Figure 6.10: (a) . (e) Plot of the growth rates O"C/+ for q = 0, 1, 2, 3 alld 4 as a 
functioIl of R~ for an annular drop in the cases <Po = 0.7, 1 amI L~ for C = o. 
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Figure 6.11: Plot of R? against Rg for annular solutions corresponding to <Po = 
0.7, 1 and 1.3 showing the most unstable wavenumber for C = O. The dots 
correspond to the values of R? and Rg at which the most unstable mode jumps 
between q = 0 and q = 1. 

to q = 0 for 0 < R? < 0.26 and q = 1 for R? > 0.26. In Fig. 6.1O(c) (</>0 = 1.3), 

however, the most unstable mode corresponds to q = 1 for 0 < Rg < 1.86 and 

to q = 0 for 1.86 < Rg < 2.52. These results are summarised in Fig. 6.11, which 

shows the wavenurnber of the most unstable mode for </>0 = 0.7, 1 and 1.3. The 

dots on Fig. 6.11 denote the values of R? and R~ at which the most unstable 

mode jumps between q = 0 and q = 1. 

6.3.5 The General Case C =1= 0 

Figures G.12(a) - (d) plot the largest eigenvalue as a function of Rg for q = 0, 

1, 2, ... , 9 ill the case </>0 = 0.7 for C = 1, 0.1, 0.01 and 0.001 respectively. III 

Fig. 6.12 the frpc ends of the curves at R~ = (16/.1) l/~~ ::::: 2.52 correspond to 

n\' = () and as w(' move alollg each curve awa.v from thes(\ (\IHls tlw yahl(\ of RY 
increases 1l10Ilotonically from zero. For C = 1 (Fig. 6.12(a)) tlw lllOst unstable 

mode corresponds to lJ = 0 for sIllall values of Itt. As flY in('\"eases tht, most 
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Figure 6.12: (a) -- (d) Plot of the largest eigenvalue as a function of Rg for an 
annular drop for q = 0, 1,2, ... , 9 in the case <Po = 0.7 for C = 1,0.1,0.01 and 
0.001. 
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unstable mode jumps from q = 0 to q = 2 then to q = 3, q = 4 and so on. 

The same qualitative behaviour occurs for C = 0.1 and C = n.Ol (Figs. 6.12(b) 

and (c) respectively). For C = 0.001 (Fig. 6.12(d)) the most unstable mode 

corresponds to q = 0 for small values of R? As R? increases the most unstable 

mode jumps from q = 0 to q = 1 then to q = 2, q = 3 and so OIL 

Figures 6.13(a) - (d) plot the largest eigenvalue as a function of R~ for q = 0, 

1, 2, ... , 9 in the case <Po = 1 for C = 1, 0.1, 0.01 and 0.001 respectively. As 

in Fig. 6.12, the free ends of the curves at Rg = (16/J)1/3::::::: 2.52 correspond 

to R? = 0 and as we move along each curve away from these ends the value 

of R? increases monotonically from zero. For C = 1 (Fig. 6.13(a)) the most 

unstable mode corresponds to q = 0 for small values of R? As R? increases 

the most unstable mode jumps from q = 0 to q = 2 then to q = 3, q = 4 and 

so on. The same qualitative behaviour occurs for C = 0.1 (Fig. 6.13(b)). For 

C = 0.01 and C = 0.001 (Figs. 6.13(c) and (d) respectively) the most unstable 

mode corresponds to q = 0 for small values of R? As R? increases the most 

unstable mode jumps from q = 0 to q = 1 then to q = 2, q = 3 and so on. 

Figures 6.14(a) - (d) plot the largest eigenvalue as a function of Rg for q = 0, 

1, 2, ... , 9 in the case <Po = 1.3 for C = 1, 0.1, 0.01 and 0.001 respectively. In 

this case solutions lie in the range 0 < Rg :::; (16/ J)1/3 ::::::: 2.52. As Rg increases 

in this range, R? increases from zero to a maximum (less than the corresponding 

value of Rg) and then decreases back to zero. For C = 1 (Fig. 6.14(a)) the most 

unstable mode corresponds to q = 2 for small values of Rg. As Rg increases the 

most unstable mode jumps from q = 2 to q = O. For C = 0.1 (Fig. 6.14{b)) the 

most unstable mode jumps from q = 1 to q = 2 followed by q = () as R~ increases 

from zero; however the point at which the most unstable mode corresponds to 

q = 1 is outwith the range of the plot. For C = 0.01 (Fig. 6.14(c)) the most 

unstable mode jumps from q = 1 to q = 2, t.hen to q = 1 again followed by q = 0 

a.s R~ increases from zero. For C = 0.001 (Fig. 6.14(cl)) diP most unstable mode 

jumps from q = 1 for small values of Rg to q = 0 as Rg increases from zero. 

In particular, Figs. 6.12 - 6.14 show how the numerically caJculated values 

of a approach aq+ in the limit C ---t O. 
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These results are summarised in Figs. 6.15(a) (cl) which show the wavenum­

ber of the most unstable mode corresponding to cPo = 0.7, 1 and 1.3 for C = 1, 

0.1, 0.01 and 0.001. The dots on Fig. 6.15 denote the values of R~ and R~ at 

which the most unstable mode jumps between two different values of q. 
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to 4>0 = 0.7, 1 and 1.3 showing the most unstable wavenumber for C = 1, 0.1, 
0.01 and 0.001. The dots correspond to the values of R~ and Rg at which the 
most unstable mode jumps between two different values of q. 



Chapter 7 

Conclusions and Further Work 

7.1 Conclusions 

Using the lubrication approximation to the Navier-Stokes equations we have in­

vestigated the evolution and stability of a thin film of incompressible Newtonian 

fluid on a planar substrate subjected to a jet of air blowing normally to the sub­

strate. For the simple model of the air jet we adopted, the initially axisymmetric 

problems we studied are identical to those of a drop spreading on a turntable 

rotating at constant angular velocity (the simplest model for spin coating). 

In Chapter 2 we investigated the quasi-static (C = 0) spreading of a finite­

sized thin drop of incompressible, Newtonian fluid on a planar substrate in the 

presence of a jet of air in both symmetric two-dimensional and axisymmetric 

three-dimensional geornetries. Three specific problems were studied in detail: a 

jet of air acting normally to the substrate when gravity effects are negligible, a jet 

of air directed vertically downwards onto a sessile drop on it horizont.al substrat(' 

and a jet of air directed vertically upwards onto a pendent drop on a horizontal 

substrate. For each problem we determined the possible physically-realisablp 

equilibrium solutions for the profile of the drop and investigated their stability 

t.o small pert.urbations with zero wavenumbeI'. The evolution of tlH' drop in the 

zew-gravi t)' and pendent cases was also illv('stigated. Wt' found that for 1I011-

anBular drops, t.he zero-gravity and sessih~ drop cas('s aw qualitatiwly similar. 

a.nd in both cases there is at most one stable and physical equilibrium solution. 

139 
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Equilibrium solutions for drops with fixed volume V are possible only if the jet 

strength J is sufficiently small and equilibrium solutions for drops with fixed J 

are possible only if V is sufficiently small. Quasi-static evolutions were calculated 

numerically in the zero-gravity case and showed that the drop evolves to the 

stable equilibrium solution. In the case of a non-annular pendent drop there are 

finitely many (at least one and possibly more) stable and physical equilibrium 

solutions. Stable and physical equilibrium solutions for a drop with fixed V 

are possible only if J is sufficiently small, but stable and physical equilibrium 

solutions for a drop with fixed J are possible for all values of V. Quasi-static 

evolutions were calculated numerically and showed that a pendent drop evolves 

to a stable equilibrium solution that depends on the initial value of the drop 

radius. 

In Chapter 3 we repeated the quasi-static (C = 0) analysis of Chapter 2 

for annular drops with a dry patch at their centre. This analysis was restricted 

to the special case of zero gravity for simplicity. Unlike non-annular drops, it 

was found that planar and axisymmetric annular drops in zero gravity exhibit 

qualitatively different characteristics. In the planar case, it was shown that 

there are no equilibrium solutions when the inner contact angle is equal to or 

greater than the outer one, while in the axisymmetric case equilibrium solutions 

are possible for all values of the inner contact angle. As in the zero-gravity 

non-annular case, equilibrium annular solutions for fixed V are possible only 

for sufficiently small J, and for fixed J are possible only for sufficiently small 

\'. However, in all the cases investigated it was shown that in both planar 

and axisymmetric geometries, all these annular solutions are unconditionally 

unstable. Quasi-static evolutions of an annular drop were calculated numerically 

and it was found in all the cases investigated that a drop with initial outer radius 

sma.ller than that of the equilibrium value closes, while a drop with initial outer 

radius larger than the equilibrium value opens, irrespectiw of the value of th(' 

initia.l inner radius. 

In both Chapters 2 and 3 the stability analysis wa.s restrict(~d to uniform 1)(')"­

turbations for the two-dimensional problems and to axisymmrtric perturbationl:> 
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for the three-dimensional problems in the case of zero capillary number, C = O. 

In order to analyse the stability to general perturbations for C i- 0, a numerical 

finite-difference code was developed in Chapter 4 capable of solving the linear 

differential eigenvalue problems arising from the linear stability analysis. 

In Chapter 5 we investigated the linear stability to both uniform (q = 0) and 

non-uniform (q i- 0) perturbations of an initially two-dimensional thin ridge of 

Newtonian fluid of finite width on a horizontal planar substrate acting under the 

influence of a jet of air normal to the substrate. Two problems w('re considered: 

one in which the jet acted at the centre of the ridge, and one in which the jet 

acted off-centre. For each problem we examined both the special case of quasi­

static motion (C = 0) analytically and the general case of C i- 0 numerically. 

In all cases the ridge was found to be unconditionally unstable, but the nature 

and location of the most unstable mode depend on the details of the specific 

problem considered. 

For the case of a centred jet we found that for two-dimensional quasi-static 

motion the conditionally stable symmetric modes described in Chapter 2 are 

always more stable than the unconditionally unstable antisymmetric modes. 

For general quasi-static motion the ridge is always most unstable to a long­

wavelength symmetric mode. When C i- 0 the nature and loeation of the most 

unstable mode switch between long-wavelength and finite-wavelength symmetric 

and antisymmetric modes as Ro is varied. The quasi-static results are recovered 

in the limit C -+ O. 

A similar analysis was performed for the more general case of an off-centred 

jet, for which all the modes are asymmetric. For two-dimensional quasi-static 

motion we recovered the results of Chapter 3, while for general quasi-static 

lllotion the ridge is always unstable to a long-wavelength mod('. When C i- 0 

the ridgp is always most unstable to a mode with finite wavelength, and the 

switching betwecll different types of modes and values of q found in the c('ntrpd­

jt't case does not occur in this case. Again, the quasi-static results are recovered 

in the limit C --t O. 

In Chapter 6 we investigated the linear stability to both axisymrnetric (lJ = 0) 
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and non-axisymmetric (q =I=- 0) perturbatioIls of an initially axisymmetric thin 

drop of Newtonian fluid either on a rotating substrate or under the influence of 

a jet of air directed normally towards a stationary substrate. Both non-annular 

and annular drops were considered. For each problem we examined both the 

special case of quasi-static motion (C = 0) analytically and the general case C =I=­

o numerically. In all cases the drop was found to be unconditionally unstable, 

but the growth rate and wavenumber of the most unstable mode depend on the 

details of the specific problem considered. 

For the case of a non-annular drop we found that for axisymmetric quasi­

static motion the conditionally unstable mode of Chapter 2 was recovered. For 

general quasi-static motion the drop is always unstable via the q = 1 mode. 

When C =I=- 0 the drop is always unstable and the growth rate and wavenumber 

of the most unstable mode depend on the values of Ro and C. In particular, the 

most unstable wavenumber increases as Ro increases. The quasi-static results 

are recovered in the limit C -+ O. 

A similar analysis was performed for the case of an annular drop. For ax­

isymmetric quasi-static motion the unconditionally unstable results of Chapter 

3 were recovered. For general quasi-static motion the drop is always unstable 

via either the q = 0 mode or the q = 1 mode depending all the values of R?, R~ 
and <Po. When C =I=- 0 the drop is always unstable and, like in the non-annular 

case, the growth rate and wavenumber of the rnost unstable mode depend on 

the values of R?, Rg, <Po and C. For CPu :s 1 the most unstable wavenumber in­

creases as R? increases, while for <Po > 1 the most unstable wavenumber always 

corresponds to q = 0 for large enough Rg. Again, the quasi-static results are 

recovered in the limit C -+ O. 

7.2 Further Work 

TlH' work described ill this thesis could lw cxtclllkd ill a Ullllllwl' of ways. 

III Chapt.ers :2 ctlld 3, ('volutioll of 1l00HUll1ular aud allUlIlar drops is rl'stricu'd 

to axisymmetric geollll'trics ill the quasi-static limit of ZPI'O capillary Humber. 
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c = O. The evolution of initially axisymmetric (and non-axisymmetric) non­

annular and annular drops for general capillary number C#-O would be an 

interesting extension. This work would also include the evolution of an initally 

uniform (and non-uniform) ridge for both a jet acting at the centre of the ridge 

and a jet acting off-centre for general capillary number. Calculating the evolu­

tion of these non-linear, differentio-algebraic systems is a demanding numerical 

task of the kind undertaken by Lopez et al. [35] who considered the evolution of 

axisymmetric holes in a laterally-bounded thin fluid layer for general capillary 

number. 

In Chapters 3, 5 and 6 the analysis is only for the special case of zero gravity, 

G = O. Repeating the analysis for G = 1 (sessile case) and G = i (pendent 

case) would be worthwhile extensions to the present work and, in principle, not 

hard to do. However, some preliminary numerical calculations and the results 

of Chapter 2 indicate that sessile and zero-gravity situations are qualitatively 

similar so perhaps the only new results would come from the pendent case. 

The model for the jet of air that we adopted throughout was a simple 

parabolic pressure distribution in the air, however it would be of interest to 

examine the effect of using different models, including a Gaussian-type pressure 

distribution as used by Buchlin et al. [6], Kriegsmann et al. [29] and Tuck & 

Vanden-Broeck [56] and a piecewise-quadrati<.: pressure distribution as used by 

Tuck [55] and Tuck & Vanden-Broeck [56]. Alternatively, using the approach 

of King et al. [28] and King & Tuck [27], the external pressure gradient could 

be found as part of the solution. Using thin aerofoil theory, the pressure is 

expressed in terms of the height of the free surface. This leads to a non-linear 

integro-differential equation for the height of the free surface which must, in 

general, be solved numerically. 

Throughout this thesis we assumed for simplicity that the shear stH'SS was 

zero at the free surface. A more realistic model would include a nOIl-zero shear 

due to the jet of air. This is precisely how Ellell & Tu [11] extended the pioneer­

ing air-knife analysis of Thornton & Graff [52]. The analysis of Ellen & Tu [11] 

a.'.;sumed a constant (but non-zero) shear stress at the frep surface and showed 
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improved results when compared with experiment. Kataoka & Troian [25, 26] 

also assumed a constant (but non-zero) shear stress at the free surface in study­

ing the stability of thermally-driven climbing films. 

There are, as far as the author is aware, no experimental results for either spin 

coating or air-jet blowing which are directly relevant with the present work. A 

comparison between such experiments and the present theoretical results would 

be of considerable interest. 

Finally, the numerical finite-difference code described in Chapter 4 could be 

used to investigate the stability of various other problems involving the dynamics 

of thin fluid films as well as problems of the type discussed in the final example 

of Chapter 4 (Sec. 4.3.5). Indeed, the code is capable of solving any general 

coupled linear differential eigenvalue problem and could therefore be used in 

other areas of applied mathematics in which such systems arise. 
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