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Abstract

Using the lubrication approximation to the Navier-Stokes equations we investi-
gate the evolution and stability of a thin film of incompressible Newtonian fluid
on a planar substrate subjected to a jet of air blowing normally to the substrate.
For the simple model of the air jet we adopt, the initially axisymmetric problems
we study are identical to those of a drop spreading on a turntable rotating at
constant angular velocity (the simplest model for spin coating). We consider
both drops without a dry patch (referred to as “non-annular”’) and drops with
a dry patch at their centre (referred to as “annular”). First, both symmetric
two-dimensional and axisymmetric three-dimensional drops are considered in
the quasi-static limit of small capillary number. The evolution of both non-
annular and annular drops and the stability of equilibrium solutions to small
perturbations with zero wavenumber are determined. Using a specially devel-
oped finite-difference code we then investigate the linear stability of both an
initially two-dimensional thin ridge of fluid and an initially axisymmetric thin
drop of fluid to perturbations with non-zero wavenumber for the general case of
non-quasi-static motion (non-zero capillary number). For the ridge we examine
the cases when the jet acts at the centre of the ridge and when the jet acts off-
centre. For the drop we examine both non-annular and annular drops. For each
problem we examine both the special case of quasi-static motion analytically

and the general case of non-zero capillary number numerically.
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Chapter 1

Introduction

1.1 Background

Thin fluid films arise in many physical settings. For example, in geology they can
appear as underwater gravity currents or as lava flows, while in biophysics they
can appear as membranes, linings of mammalian lungs or as tear films in the
eye. In engineering, thin-film coating arises in the manufacture of a vast number
of different products, including paper of various surface textures, printed matter
such as books, newspapers and magazines, magnetic storage media such as audio
tapes, video tapes and computer discs, fibres and wires, photoresist coatings
for the manufacture of microelectronics such as printed circuits and solar cells,
medical products such as transdermic systems which release active substances
into the skin from a thin patch, sand paper, adhesive tapes and many others. The
importance of thin fluid films in these and many other physical situations has
motivated considerable theoretical and experimental work on the spreading of a
thin fluid film on a solid substrate (see, for example, the recent review articles
by Oron, Davis & Bankoft [45] and Myers [44]). Much of this work involves
examining the spreading of a fluid subject to an external force. Examples of such
forces include gravitational, electrostatic, magnetic and centrifugal forces as well
as a non-uniform pressure loading caused by a fluid overlying the thin film. In
this thesis we shall consider two problems of this type, namely a thin drop of

fluid on a uniformly rotating substrate (the simplest model for spin coating)
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Figure 1.1: Schematic diagram of a typical spin-coating system.

or under the influence of a jet of air directed normally towards a stationary
substrate.

Spin coating is a widely used industrial process in which a fluid film is spread
by centrifugal force onto a rotating substrate. Its history dates back to the 1950s
when it was used to deposit phosphor onto the curved glass surfaces of colour
television tubes. Today, spin coating is used in the microelectronics industry
as a means of depositing polymer resist layers for photolithographic processing
of integrated circuits (photolithography is a process used in the manufacture
of semiconductor devices and printed circuits in which a particular pattern is
transferred from a photograph onto a substrate). Another important modern
application of spin coating is the deposition of transparent or reflective inorganic
colloidal surface coatings on laser optical components, such as highly reflecting
mirrors. A typical spin-coating system is shown in Fig. 1.1. The fluid spreads
over the wafer which rotates with angular velocity w. The catch cup traps
droplets that are flung from the wafer, preventing their unwanted release into the

environment. An exhaust assists this, and prevents droplets from re-circulating
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Figure 1.2: Evolution of a drop during spin coating as calculated by Emslie et
al. [12], for t =0, 1, 2 and 3.

and hitting the wafer which would spoil the coating. At high rotation speeds
(typically 1000 to 10,000 rpm) such devices spin low-viscosity fluids to a thickness
of a few microns down to a few nanometres.

One of the earliest theoretical analyses of spin coating was performed by Em-
slie, Bonner & Peck [12] who considered a thin axisymmetric drop of Newtonian
fluid on a planar substrate rotating with constant angular velocity. They showed
analytically that an initially non-uniform drop becomes increasingly uniform
during spinning, and obtained an estimate for the time taken for the thickness
of the drop to reduce to a prescribed value. Their solution can be written in the
parametric form

R\ VA
r = ro(ho) <1+ ;"> , /z:/m<1+ ;") ., (1.1)

where r is the radius, h is the height, ¢ is time and rqy = ro(hg) is the initial

profile of the drop. Figure 1.2 shows the evolution of the parabolic initial profile
ho(rg) = 2(1 — 1) for t = 0, 1, 2 and 3, calculated using Eq. (1.1). Many

subsequent authors have extended this pioncering work. Acrivos, Shah & Pe-
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Figure 1.3: Typical leading order composite solution in the limit of weak surface

tension for the profile of a drop during spin coating as described by Moriarty et
al. [43].

tersen [2] examined the spin coating of a non-Newtonian power-law fluid and
found that, in contrast to the Newtonian case, even an initially uniform drop
will develop non-uniformities as it spreads. Meyerhofer {40] included evapora-
tion effects and found good agreement with experiment if the evaporation rate
was assumed to vary as the square root of the angular velocity, and Tu [54],
Yanagisawa [63] and Wilson, Hunt & Dufly [61] analysed the effect of different
slip models at the fluid/solid interface. Moriarty, Schwartz & Tuck [43] obtained
both analytical and numerical solutions for spin coating in the asymptotic limit
of weak surface tension using the method of matched asymptotic expansions. In
the “outer " region far away from the contact line, the problem is identical to
that studied by Emslie et al. {12]. In this case, surface-tension effects are only
significant in the “inner” region near the contact line in which the free surface
profile has a distinctive “capillary ridge”. A typical leading order composite so-

lution is shown in Fig. 1.3. Lawrence [31] examined the spin coating of polymer
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films including solvent evaporation and gave a prediction for the final dry-film
thickness, Lawrence & Zhou [32] studied the effect of various non-Newtonian
viscosity models on the final drop thickness, while Jenekhe & Schuldt [24] and
Burgess & Wilson [7] investigated the spin coating of Bingham materials. Var-
ious other authors have analysed a variety of additional physical effects on the
spin coating of a fluid film. Higgins {17] included weak fluid inertia and derived
an asymptotic solution for small Reynolds number describing the thinning of a
fluid during spin coating which assumed that the interface remained flat during
spinning. Bornside, Macosko & Scriven [4] included the effects of variations in
concentration, viscosity and diffusivity across the fluid film and concluded that
film thinning initially slows down due to a decrease in film thickness and finally
stops due to an increase in viscosity of the coating liquid as solvents evaporate.
Reisfeld, Bankoff & Davis [46] investigated the linear stability of the free surface
in the presence of evaporation and absorption effects. When there is evapora-
tion present, the free surface is stable to perturbations with small wavenumber
and transiently stable for larger wavenumbers (transiently stable means that, as
time increases, perturbations grow to some finite amplitude but will ultimately
decay to zero). and when there is absorption present, the free surface is stable
to perturbations with small wavenumbers, transiently stable for intermediate
wavenumbers and exponentially unstable for large wavenumbers. Momoniat &
Mason [41] investigated the effect of the hitherto neglected Coriolis force on the
spin coating of a thin fluid film while neglecting inertia.

Experimental studies of spin coating (see, for example, Melo, Joanny &
Fauve {39], Fraysse & Homsy [15] and Spaid & Homsy [50]) show that a drop
of Newtonian fluid does indeed become increasingly uniform during spinning,
except near the contact line where the capillary ridge develops. Typically, the
contact line of the drop initially remains approximately circular as the drop
spreads, but at a critical radius the contact line becomes unstable and develops
into non-axisymmetric “fingers” distributed roughly equally around the circum-
ference of the drop. This fingering instability arises due to the local variations in

the fluid thickness, whereby thicker regions of fluid advance more rapidly over the
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Figure 1.4: Typical plot taken from Spaid & Homsy [50] showing a sequence
of pictures of the experimentally-measured contact line of an initially approxi-
mately circular drop developing into fingers as it spreads out during spin coating.

substrate. Figure 1.4 is a typical plot taken from Spaid & Homsy [50] showing
the experimentally-measured position of the contact line of an initially approx-
imately circular drop developing into fingers as it spreads. Wilson et al [61]
were able to obtain good agreement between their numerical calculations for the
evolution of the drop radius prior to the onset of fingering and the correspond-
ing experimental results of Fraysse & Homsy [15] and Spaid & Homsy [50]. The
linear stability of an initially two-dimensional capillary ridge at an advancing
contact line was first studied analytically by Troian, Herbolzheimer, Safran &
Joanny [53] who showed that it is always unstable to perturbations in the trans-
verse direction with sufficiently long wavelength. Fraysse & Homsy [15] found
that their experimentally-measured azimuthal wavenumber and growth rate of
the fingering were in good agreement with the theoretical predictions of Troian
et al. [53] provided that the critical radius for the onset of the instability was
taken from the experiment itself. An extensive review of the literature on spin

coating is given by Larson & Rehg [30].
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Figure 1.5: Schematic of the jet-stripping process.

The spreading of a thin film due to a jet of air has received less attention thus
far. Much of the work that has been done on problems of this kind is motivated
by the so-called “jet-stripping” or “air-knife” industrial coating process in which
the thickness of a fluid film that has been applied to a moving substrate is
controlled by blowing a jet of air onto the film. This process is used in many
coating applications such as hot-dip galvanisations of metal strips and wires as
well as the deposition of photographic emulsions. Figure 1.5 shows a typical
schematic of this process. An upward-moving substrate emerges from a bath
and withdraws an amount of coating fluid. A jet produced by an appropriate
nozzle (typically a rectangular or annular slit) impinges on the fluid film. The
jet (usually air or nitrogen) induces a “runback” flow of the fluid that returns
some of the fluid to the coating bath under the action of gravity.

The pioneering steady two-dimensional analysis by Thornton & Graff [52]
gave an expression for the final thin-film thickness in terms of speed of the sub-
strate, jet strength, nozzle slot width and distance between the jet nozzle and

the fluid, and good agreement was found between the predictions of their an-
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alytical model and experimental data. Tuck [55] analysed possible steady-flow
solutions, and by considering the characteristic curves of the corresponding un-
steady flows, showed that steady flow is stable to long-wavelength perturbations.
Ellen & Tu [11] included a non-zero shear stress at the free surface in their model
and showed that their analytical prediction for the final coating thickness gave
improved agreement with experiment. Tuck & Vanden-Broeck [56] showed that
the inclusion of surface tension inhibits the thinning of the fluid layer and gave
numerical results to quantify the magnitude of this effect. Buchlin, Manna, Ar-
nalsteen & Riethmuller [6] compared theoretical with experimental results and
concluded that surface-tension effects become less significant when the pressure
gradient caused by the jet of air increases. They also showed experimentally
that for large enough substrate velocities a spray of tiny droplets dislodge from
the fluid surface (“splashing”) that can ruin the final film thickness, thus putting
a practical upper limit on the substrate velocity.

Several other authors have also investigated the effect of a jet of air on a fluid
film. Moriarty et al. [43] considered the unsteady spreading of a two-dimensional
drop of fluid under the action of a jet of air blowing either vertically downwards
onto the substrate or parallel to it. In the first case, the jet was modelled as a
parabolic pressure distribution in the air, and the shear stress at the free surface
of the fluid caused by the air flow was neglected, while in the second case the jet
was modelled as a constant shear stress distribution at the free surface of the fluid
while the variations in the air pressure were neglected. In both cases, unsteady
solutions were obtained both numerically and analytically in the asymptotic
limit of weak surface tension (similar to the spin-coating analysis of the same
authors described earlier). King, Tuck & Vanden-Broeck [28] studied steady two-
dimensional periodic waves on a fluid film on an inclined plane caused by a jet
of air flowing upwards over it. King et al.’s [28] model used thin acrofoil theory
to model the flow of air past the thin film and allowed the external pressure
gradient to depend on the shape of the free surface of the film, but assumed
that the shear stress at the free surface was constant. King & Tuck [27] studied

the corresponding problem for a ridge of fluid of finite width on an inclined plane
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and found that steady solutions are possible only if the angle of inclination of the
plane to the horizontal is sufficiently small and that below this critical value two
steady solutions exist for each inclination angle. Recently Kriegsmann, Miksis
& Vanden-Broeck [29] investigated the effect of a steadily-moving exponential
pressure distribution on a fluid film on an inclined plane and found that there is
a finite range of values of the capillary number where no steady solution exists
and where unsteady solutions develop shock-like free-surface profiles.

A related class of problems relevant to the present work concerns the stability
and evolution of holes in thin fluid layers. The pioneering work of Taylor &
Michael [51] considered the stability of axisymmetric holes in fluid layers of
infinite extent lying on a solid horizontal substrate. They showed that a single
equilibrium hole exists if the layer is sufficiently thin and that this equilibrium
hole is unconditionally unstable. They conjectured that holes with radius smaller
than the equilibrium value would close while those with larger radius would
open. To test their hypothesis they conducted a series of experiments in which
holes were made in a horizontal layer of mercury standing on a glass disc with
a series of cylindrical probes of different radii. All holes cither opened or closed
and the division between the two kinds of hchaviour was in good agreement
with the theoretically-calculated critical radius. Moriarty & Schwartz [42] and
Wilson & Terrill [62] considered the dynamics of axisymmetric laterally-bounded
holes in thin fluid layers and showed that for a sufficiently small volume of fluid
there are two equilibrium holes, the hole with smaller radius being unstable, and
that with larger radius being stable. Figure 1.6 plots typical stable and unstable
equilibrium axisymmetric holes with the same volume of fluid, laterally hounded
at r = 1. Analysis of the stability to non-axisymmetric perturbations and non-
linear evolution of these holes has recently been undertaken by Lopez, Miksis &
Bankoff [35] who showed that the most unstable wavenumber depends on the
radius of the hole and the position of the boundary wall.

The general issue of the stability of thin fluid filis has received considerable
attention in recent years. The pioneering analysis of the stability of an advancing

capillary ridge by Troian et al. [53] (revisited in Chapter 4 Sec. 4.3.4) has subse-
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Figure 1.6: Typical stable and unstable equilibrium axisymmetric holes with
the same volume of fluid, laterally bounded ar r = 1, as studied by Moriarty &
Schwartz [42], Wilson & Terrill [62] and Lopez el al. [35].

quently been re-examined and generalised by several authors, including Spaid &
Homsy [49] who investigated the stability of Newtonian and viscoelastic moving
contact lines, by Bertozzi & Brenner [3] who studied the effect of changing the
angle of inclination of the plane down which the fluid was draining, by Lépez,
Bankoff & Miksis [33] who investigated the stability of non-isothermal spreading
on an inclined plane, by Lopez, Miksis & Bankoff [34] who included inertial ef-
fects and by Kataoka & Troian [25, 26]) who included Marangoni (surface-tension-
gradient) effects to study the stability of a thermally-driven climbing film. The
linear stability and non-linear evolution of an initially two-dimensional ridge of
finite width on an inclined plane was analysed by Hocking [20] and Hocking &
Miksis [23]. In particular, Hocking & Miksis [23] found that the quasi-static
analysis of Hocking [20] (which predicts that the ridge is most unstable to long-
wavelength perturbations in the transverse direction) is appropriate only for
very small values of the slip parameter. Relaxing the quasi-static assumption,

they concluded that the ridge is always unstable to sufficiently long-wavelength
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perturbations in the transverse direction and calculated the most unstable wave-
length (the work of Hocking & Miksis [23] is revisited in Chapter 4 Sec. 4.3.3).

In this thesis we shall focus on the interesting behaviour found in both spin-
coating and air-jet-blowing problems due to the presence of both surface-tension
and moving-contact-line effects. The general issue of the motion of contact lines
has been the subject of much debate in recent years (see, for example, the work
by Hocking [21]). The key issue is the determination of the relationship between
the experimentally-measured macroscopic contact angle 6 (inferred from global
properties or measured some distance from the contact line) and the speed of the
contact line U. One approach takes the view that it is not necessary to model
the details of the flow in the vicinity of the contact line, but that one may instead
adopt an empirically-determined “Tanner Law” relating U and 6. Greenspan [16]
pioneered this approach by proposing a linear relationship, and this was subse-
quently generalised to a power-law dependence by Ehrhard & Davis [10], who
found that a particular cubic power law gave the best fit to their experimental
data. This approach has the great practical advantage that the difficult problem
of the flow in the vicinity of the contact line is circumvented, and as a result it
has been widely used in recent years to study several problems involving the dy-
namics of thin fluid films. For example, it was used by Greenspan [16] to study
the spreading of a drop, by Ehrhard & Davis [10] to study the spreading of a
non-isothermal drop, by Ehrhard {9] to study the spreading of a pendent drop,
by Braun, Murray, Boettinger & McFadden [5] to study the reactive spreading
of a drop, by Wilson & Terrill {62] and Lopez et al. [35] to study the opening and
closing of a hole in a fluid film, by Lopez et al. [33] to study the non-isothermal
draining of a fluid film down an inclined plane, by Lopez et al. {34] to study the
effect of fluid inertia on the draining of a fluid film down an inclined plane and
by Wilson & Duffy [60] to study the quasi-static stability of a rivulet draining
down a non-uniform substrate. An alternative approach takes the view that,
while the former approach may yield physically-reasonable results for relatively
little effort, it is conceptually superior to determine the relationship between U

and # analytically rather than impose it (rather like an additional “constitutive
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law”). In order to perform this kind of calculation some additional physical
effccts must be included, but there is currently no agreement on what effects are
appropriate. Hocking [18, 19] has determined the relationship between U and
6 under the assumptions of a fixed microscopic contact angle and a simple slip
model at the substrate, while more recently Hocking [22] included intermolecular
forces. On the other hand, Shikhmurzaev [47, 48] modelled the thermodynamic
state of the interfacial regions near the contact line, allowing for relaxation in
propertics of a fluid element as it traverses the contact-line zone. He derived
the relationship between 6 and U predicted by the model and also showed that
the model resolves the stress singularity at a moving contact line. In particular,
Shikhmurzaev [48] obtained numecrically-calculated examples of non-thin drops
spreading on a substrate due to gravity and to rotation of the substrate. For
simplicity we shall adopt the first approach in the present work, but shall em-
ploy a rather general Tanner Law in Chapters 2 and 3 relating U and 6 which
incorporates as special cases all the specific forms used in Chapters 5 and 6 and

by carlier authors.

1.2 Outline of Thesis

In Chapters 2 and 3 we investigate the quasi-static spreading of a finite-sized thin
drop of incompressible, Newtonian fluid on a planar substrate in the presence of
a jet of air in both symmetric planar two-dimensional and axisymmetric three-
dimensional geometries. Since we shall consider only the leading-order solution
in the quasi-static limit in these Chapters, the stress singularity at the moving
contact line does not appear explicitly (although, as Hocking {21] has shown,
it would do so if we continued the analysis to higher orders). Three specific
problems are studied in detail: a jet of air acting normally to the substrate
when gravity cffects are negligible, a jet of air directed vertically downwards
onto a sessile drop on a horizontal substrate and a jet of air directed vertically
upwards onto a pendent drop on a horizontal substrate. In Chapter 2 we consider

drops without a dry patch (hereafter referred to as “non-annular” drops) and
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in Chapter 3 we consider drops with a dry patch at their centre (hereafter
referred to as “annular” drops). Since, for the simple model of the jet we shall
adopt, the axisymmetric air-jet-blowing problem is identical to the axisymmetric
spin-coating problem of a drop of fluid on a horizontal substrate rotating with
uniform angular velocity, the results in the axisymmetric case will also apply to
the spin-coating problem with an appropriate redefinition of the parameters. For
each problem we determine the physically-realisable equilibrium solutions for the
profile of the drop and investigate their stability to uniform perturbations in the
two-dimensional case and axisymmetric perturbations in the three-dimensional
case. An account of the work in Chapters 2 and 3 has recently been published
in Phys. Fluids (McKinley, Wilson & Dufly [38]).

The next step is to investigate the linear stability to general perturbations for
non-zero capillary number. With this in mind, Chapter 4 describes the writing
and testing of a numerical finite-difference code that is capable of solving coupled
linear differential eigenvalue problems of the kind studied by Troian et al. [53],
who investigated the linear stability of a capillary ridge on an inclined plane,
by Hocking & Miksis [23], who studied the linear stability of a ridge of fluid
of finite width on an inclined plane and by Lépez et al. [35], who analysed the
linear stability of a hole in a laterally-bounded thin film.

In Chapter 5 we investigate the linear stability to both uniform (zero wavenum-
ber) and non-uniform (non-zero wavenumber) perturbations of an initially two-
dimensional thin ridge of Newtonian fluid of finite width on a horizontal planar
substrate acting under the influence of a jet of air normal to the substrate in the
general case of non-zero capillary number. Two problems are considered: the
special case when the jet acts at the centre of the ridge (which in two dimensions
corresponds to the non-annular problem studied in Chapter 2) and the more gen-
eral case when the jet acts off-centre (which in two dimensions corresponds to
the annular problem studied in Chapter 3). For both problems we confirm and
extend the previous analytical results in the special case of quasi-static motion
(corresponding to zero capillary number) and investigate numerically the general

case of non-zero capillary number. The work in Chapter 5 has been submitted
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for publication.

Finally, in Chapter 6 we investigate the linear stability to both axisymmetric
(zero wavenumber) and non-axisymmetric (non-zero wavenumber) perturbations
of an initially axisymmetric thin drop of Newtonian fluid either on a uniformly
rotating substrate or under the influence of a jet of air directed normally towards
a stationary substrate in the general case of non-zero capillary number. As
before, the results in this Chapter also apply to the spin-coating problem with
an appropriate redefinition of the parameters. Two problems are considered:
one in which the drop has no dry patch (which in an axisymmetric geometry
corresponds to the non-annular problem studied in Chapter 2) and one in which
the drop has a dry patch at its centre (which in an axisymmetric geometry
corresponds to the annular problem studied in Chapter 3). For both problems
we confirm and extend the previous analytical results in the special case of quasi-
static motion and investigate numerically the general case of non-zero capillary
number. The work in Chapter 6 has also been submitted for publication.

In Chapter 7 we present our conclusions and describe directions of further

work.

1.3 Thin-film Equations and Boundary Condi-
tions

In this section we derive the equations and boundary conditions which govern the
hehaviour of a thin film of Newtonian fluid that will used throughout this thesis.
Suppose that we have a incompressible Newtonian fluid of constant density p and
constant viscosity p whose motion is governed by the Navier-Stokes equations

(see, for example, Acheson [1]), given by

pu,+ (u-Viyu) = -Vp+g+ uVu, (1.2)
V.ou=90, (1.3)

where u is the fluid velocity, p is the pressure. ¢ is time and g is the acceleration

due to gravity. Our aim is to obtain the simplified form of Eqgs. (1.2) and (1.3)
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appropriate when the fluid film is thin and slender. If we let H denote a typical
vertical length scale and L a typical horizontal length scale, then this means
that

H
§ == ,
T <1 (1.4)

where 9 is the aspect ratio.

1.3.1 Cartesian Coordinates

Using Cartesian coordinates (z,y,2) with z directed vertically upwards, the

Navier-Stokes equations take the form

plug + Uty + vuy + wu,) = —pg + pUzs + Uyy + Usyy), (1.5)
p(vy + uvg + vuy + w,) = —py + PV + vy + 0,2, (1.6)
p(we + vw, + vwy, + ww,) = —p, — pg + (Wae + Wyy + W), (1.7)
Uy + vy +w, =0, (1.8)

where the fluid velocity has been written u = (u, v, w) and g = (0,0, —g) denotes
the acceleration due to gravity. We introduce the scalings v = Ud', v = Uv',
t=Lt"/U, w=S8Sw, =L, y=Ly, == Hz, p= Sy and y = S3¢’ where
U is the horizontal velocity scale; the scalings S), Sy and S3 will be determined
subsequently. Substituting these rescaled variables into Egs. (1.5) - (1.8) and
dropping the primes at once for simplicity, the mass conservation condition (1.8)
yiclds
U Sy

l [ &xr [ ' 4 l [ i, 3

and hence if we choose S; = UH/L, then Eq. (1.8) becomes
Uy + vy + w, = 0. (1.9)

The scaled version of Eq. (1.5) is given by
S, L 1
R (uy + uuy + vuy +wu,) = ——zU—p,,. + ('u,[,:,,. + uy, + §u::> . (1.10)
/l, y o ¢
where R, = pUL/p is the Reynolds number. The viscous term dominates the
inertia term when

R.O* <1, (1.11)
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i.e. when the reduced Reynolds number is small. In order to keep the pressure
term in Eq. (1.10) at leading order, we choose Sy = pUL/H?. Hence to leading
order in 6, Eq. (1.10) yields

Upz = Py (1.12)

The scaled version of Eq. (1.6) is given by
1 1
Re(v + uv, + vvy +wv,) = _Sfpy + (vm + Uy + 6—2022> , (1.13)
and to leading order in 6, Eq. (1.13) yields
Ve = Py (1.14)

The scaled version of Eq. (1.7) is given by

1
g+ (wu + Wyy + giw“> . (1.15)

1 pS3L3
5P T UH

Re(wy + vwy + vwy + ww,) = —

In order to keep the gravity term in Eq. (1.15) at leading order, we choose
Sy = pUL/pH?®. Hence to leading order in 6, Eq. (1.15) yiclds

O0=p.+g (1.16)

Written in Cartesian coordinates the appropriate boundary conditions for

Egs. (1.5) - (1.8) are given by

u=v=0 on =z=0, (1.17)

w = hy +uh, +0vh, on z=0N, (1.18)
n-T-n=-P-2rH on z=0/, (1.19)
n-T-t;=0 on z=1/h (1.20)
n-T-to=0 on z=h, (1.21)

where P = P(z) is the air pressure, 7 is the coefficient of surface tension,
2 = h{xz,y,t) is the free surface of the fluid film, T is the stress tensor given by
=P+ 2, pluy + o) p(u, +w,)
T=1 ploe+u,) —p+2ue, ple,+w,) |, (1.22)
plwe +uz) plwy, +0,) —p+ 2.
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n is the normal unit vector to the free surface given by
_(=hsg,—hy, 1)

- . N

(1+h2+h2)2

, (1.23)

t, and t, are tangential unit vectors to the free surface (such that t; - to, = 0)
given by
(1,0, hy)

t, = - 1.24
LT hz a2 (1:24)

—hghy 1 hy,
t - h2 417" hi+1

2= o\ L
(L+ A2+ hZ)>

, (1.25)

and 2H = V - n where H is the mean curvature of the free surface. Equation
(1.17) is the no-slip condition at the solid substrate, Eq. (1.18) is the free-surface
kinematic condition, Eq. (1.19) balances normal stress, air pressure and surface
tension forces and Egs. (1.20) and (1.21) require that the tangential stress at
the free surface is zero. We now derive the thin-film versions of Eqgs. (1.17)

(1.21). We use the same scalings as before together with P = pULP'/H?
and 7 = S,7', where S; will be determined subsequently. Substituting into
Egs. (1.17) - (1.21) and again dropping the primes at once for simplicity, the
scaled version of Eq. (1.17) is simply

u=v=0 on 2z=0 (1.26)
The scaled version of Eq. (1.18) is given by
w = h +uh, +vh, on z=h (1.27)

The scaled version of Eq. (1.19) is given by

R2(—p + 26%ug) + 282 hy (uy + v;) — 2hg(u, + 8%wy) — 20, (v, + 52wy
S4TH

1 1 272 22,4
~ 5P + 2w, = _ﬁp + m—(hm + hyy ) (1 4+ 6°h, + 6%h,)2.
(1.28)

In order to keep the curvature term in Eq. (1.28) at leading order, we choose

+h2(—p + 26%,)

Sy = pUL?/H*. Hence to leading order in 4, Eq. (1.28) vields

p=P—7Vh on 2=, (1.29)
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where

0‘2 02
o2 " oy
The scaled version of Eq. (1.20) is given by

V: =

1 -
20k (W, = tz) = 0hy (uy +v2) + s U, + 0wy — ShE (6w, +u,) — Shohy (8w, +v,) = 0.

J
(1.30)
To leading order in 8, Eq. (1.30) yields
u, =0 on z=h (1.31)
The scaled version of Eq. (1.21) is given by
2 y . 1 .
53h2h, <3—2p — %u, - 'uy> + 8 hyh2(uy + v,) — 26%h,h, (Euz + awf)
, oy 1 .
—8hg (6%h2 + 1) (v + uy) + (6202 + 1) (g'uz + é'wy> (1.32)
oo [« 1 :
SO <r)wy + SUZ) + 6h, (2w, — v,) = 0.
To leading order in ¢, Eq. (1.32) yields
v,=0 on z=/h (1.33)

In dimensional form, the leading-order equations and boundary conditions

are given by

0 =p, + py, (1.34)
MMz = Py, (1.35)
P22 = Dy, (1.36)

ty + v, +w, =0, (1.37)

subject to

u=u=0 on z=010

pu; =0, po, =0 on 2=,

(1.38)
(1.39)
p="P -7V on z=h, (1.40)
(1.41)

w =y +uh, +vh, on 2=,
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1.3.2 Cylindrical Polar Coordinates
Using cylindrical polar coordinates (r, ¢, z) with z directed vertically upwards,
the Navier-Stokes equations take the form

v v? U 2
plue+ v, + —up + W, — — | = —p, + 4 <V2u i —vw) , (1.42)
r r re 2

),+/,+E' 4w uo 1 9 2 v
p vt uvr + vy + W + 7—) == Py + 1 <V v+ Fle -T—2> , (1.43)
v
P (wt + uw, + ;ww + wwz> = —p, — pg + uViw, (1.44)
1 1
;(ru)r + Uy +w, =0, (1.45)
where
10 d 1 0?
Vi=>clr=— |+ 555
rOr \ Or r2 Op?
and, as before, the fluid velocity has been written u = (u,v,w) and g =

(0,0, —g). The corresponding boundary conditions are given by

wu=v=0 on z=40, (1.46)
w = hy + uh, + EhyJ on z=h, (1.47)
,
n-T-n=-P-2rH on z=h, (1.48)
n-T-t;=0 on z=h, (1.49)
n-Ttz=0 on =z=h, (1.50)
where P = P(r) is the air pressurc and the stress tensor T is given by
¢ (9 [ !
—p + 2pu, S <§)~> + %u@ plu, + w,)
_ 0 (v H 20 1
T = e <7—) + U, —pt 7—_(1),, +u) p <;w¢ + v:) , (1.51)
1
p(u, + w,) f (;ww + 'uz> —p + 2pw,

~and n. t; and t, arc given by

l
—hy, ==,
( ! " Lo 1>

n = . (1.52)

2\ 3
(l + h?+ h—*)
s I'z
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by = L lf) (1.53)

. h? 3]
(1 + h2 + 7‘5)

( —h.hy, ] h )
h2 ) ? 2
£y = r(h2+1)" "r(h2+1) | (1.54)

N
(1+h?+h—“">2
T r2

As before, Eq. (1.46) is the no-slip condition at the solid substrate, Eq. (1.47)

is the free-surface kinematic condition, Eq. (1.48) balances normal stress, air
pressure and surface tension forces and Eqgs. (1.49) and (1.50) require that the
tangential stress at the free surface is zero. The analysis for this case follows ex-
actly as for the Cartesian case. In dimensional form, the leading-order equations

and boundary conditions are given by

0= p. + py, (1.55)
Ut = D, (1.56)
U, = jrl-_pw, (1.57)

1 1
;(ru),. + Uy +w, =0, (1.58)

subject to

u=v=0 on z=0, (1.59)
pu, =0, pu, =0 on z=h, (1.60)
p=P—-7V'h on z=Ah, (1.61)
w = hy +uh, + %hw on z=h. (1.62)



Chapter 2

Quasi-static Analysis of a
Non-annular Drop

2.1 Introduction

In this Chapter we investigate the quasi-static spreading of a finite-sized thin
drop of incompressible Newtonian fluid on a planar substrate in the presence of
a jet of air in both symmetric planar two-dimensional and axisymmetric three-
dimensional geometries. Three specific problems are studied in detail: a jet of
air acting normally to the substrate when gravity effects are negligible, a jet of
air directed vertically downwards onto a sessile drop on a horizontal substrate
and a jet of air directed vertically upwards onto a pendent drop on a horizon-
tal substrate. In this Chapter we restrict our attention to drops without a dry
patch (“non-annular” drops) and examine drops with a dry patch at their centre
(“annular” drops) in Chapter 3. For each problem we determine the physically-
realisable equilibrium solutions for the profile of the drop and investigate their
stability to uniform perturbations in the two-dimensional case and axisymmet-
ric perturbations in the three-dimensional case. Note that the restricted class
of perturbations considered here does not include the (non-uniform and non-
axisymmetric) fingering instabilities described in Chapter 1. Lincar stability
analysis for non-uniform and non-axisymmetric perturbations is discussed in

Chapters 5 and 6.

21
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z
d;r.ection o {h,(z,t) (p)
of jet “ 7 L h(r,t) (a)
g /
0
g x (p)
—R 0 R

Figure 2.1: Geometry of the non-annular problem.

2.2 Problem Formulation

Consider a constant volume of incompressible Newtonian fluid with constant vis-
cosity p, density p and surface tension 7 spreading on a solid horizontal planar
substrate in the presence of a jet of air. We analyse both the symmetric planar
two-dimensional case, denoted by (p), and the axisymmetric three-dimensional
case, denoted by (a), for which we employ Cartesian coordinates (z,z) and
cylindrical polar coordinates (r,z) respectively, with the z-axis vertically up-
wards or downwards as appropriate. The thickness of the fluid film is denoted
by z = h(x,t) (p) or z = h(r,t) (a), where t denotes time, and the velocity of the
fuid is denoted by u = u(x, 2, t) (p) or u = u(r, 2, t) (a). Following Moriarty et
al. [43] we model the jet of air as a parabolic pressure distribution in the air so
that P = pg — ka?/2 (p) or P = py — kr?/2 (a), where P denotes the pressure,
py is the maximum value of the air pressure at the centre of the drop and & is a
positive constant; the shear stress at the free surface of the fluid caused by the
air flow 1s assumed to be negligible. The geometry of the problem in the case
of a sessile drop is shown in Fig. 2.1; the only difference in the pendent case is
that the direction of gravity is reversed.

We assume that the speed of the contact line, at position = R(t) (p) or
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r = R(t) (a), is related to the contact angle § = 6(¢) by the gencral Tanner Law

neer(£), o

where & iIs an empirically-determined positive constant with dimensions of ve-
locity, F(6/6,) is an empirically-determined function satisfying F'(1) = 0, and
0, > 0 is the equilibrium contact angle. Typically F'(6/6) is a monotonically-
increasing function and so its first non-zero derivative at § = 6, will be positive
and of odd order.

From the results given in Chapter 1 the conventional lubrication approxima-

tion to the governing Navier-Stokes equations yields

0=p. +pg, (2.2)

puz; = Pr, ([))
{,Uuzz =p;, (a) (2.3)

{uz +w, =0, (p)

%(T'u)r +w, =0, (a) (2.4)

where ¢ denotes acceleration due to gravity, subject to the boundary conditions

u=0 on z=0, (2.5)
pu, =0 on z=h, (2.6)
ka?

p=p= 5 = The (»)
k- on z=h, (2.7)

pP=7po— 9 7 =(rh:), (a)

w=hy +uh, (p) _ A

{ w=h, +uh, (a) on z=h, (2.8)

where the Huid velocity has been written u=(u, w) in the appropriate coordi-
nates. Bquation (2.5) is the no-slip condition at the substrate, Eq. (2.6) repre-

sents zero tangential stress at the free surface and Eq. (2.7) is the normal stress
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condition which includes both the effects of surface tension and the non-uniform
external pressure loading caused by the jet of air. Equation (2.8) is the kine-
matic free-surface condition which can be used with Eq. (2.4) to derive the flux

condition

he+ 2(rQ), =0, () (2.9)

r

{/wc)xzo, ()

where 0 denotes the flux per unit length (p) or circumference (), defined by
h
Q= /0 udz. (2.10)

Solving Egs. (2.2) - (2.7) for u allows @ to be evaluated from Eq. (2.10) and
substituting @ into Eq. (2.9) gives the governing equation for h.

We non-dimensionalise the problem using a characteristic horizontal length
scale L (to be defined subsequently) and « as the characteristic horizontal veloc-
ity scale. The corresponding non-dimensional variables are defined by z = La/,
r=0Lr, R=LR, h=6)LK, t=Lt'/c and 8 = 6,¢'. Dropping the primes
at once for simplicity we obtain the non-dimensional version of the governing
equation, namely

3

4

h .
Ch, + [? ((h,,,:,, - G*h), + JL)] =), (p)
, 1[rh? (/1 SN (2.11)
Chy + " {—{ { (;(’/'h,.),. - G2/1,> + .]'I'}} =0, (a)

! y

together with the non-dimensional version of Eq. (2.1), namely
Ry = F(0). (2.12)

The constant J = kL*/76y is a non-dimensional measure of the jet strength,
(" = w703 is the capillary number and G? = pgL?/7 is the Bond number. The

appropriate boundary conditions for Eq. (2.11) are

MR, t) =0, (2.13)

(2.14)
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together with the regularity conditions

ha(0,8) =0, (
{h,,((),t):O, (Z; (2.15)

Q(0,t) =0, (2.16)

which must be satisfied together with appropriate initial conditions for A and

R. The volume of the drop is given by

R
2V = 2/ hdz, ()
0

‘R (2.17)
27V = 27r/ hrdr. (a)
0

If we identify the dimensional jet strength k with pw? then Eq. (2.11)(a) is
exactly the same as the corresponding equation obtained in the special case
G = 0 by Moriarty et al. [43] (their Eq. 30) for a thin axisymmetric fluid
filn spreading under the action of the centrifugal force on a substrate rotating
uniformly with angular speed w. Hence all our results for the axisymmetric air-
jet-blowing problem also apply to the axisymmetric spin-coating problem. We
note, however, that as Emslie et al. [12] pointed out, in this problem the Coriolis
force can be properly neglected compared to the centrifugal force (as it was by
Emslic et al. [12] and Moriarty et al. [43]) only if the fluid motion is sufficiently

slow.

2.3 Quasi-static Motion

In the limit of small capillary number, C' — 0, the contact line moves slowly
relative to the bulk of the fluid and so the dynamics of the motion are controlled
by those of the contact line. At leading order in C' <« 1 we drop the unsteady
term in Eq. (2.11) and so the Hux is constant; then by Eq. (2.16) it is zero
evervwhere, Henee we obtain a third-order ordinary differential equation for the
thickness of the drop:

(how = G*0)y + Ja = 0, (1)

<h"r1' + h*1 - G21L>
r

+Jr=0, (a) (2.18)

7
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to be integrated subject to Eqs. (2.13) - (2.15). The solution for h is easily

obtained and can be written in the form
h=0f(-,R)+ Jg(-, R), (2.19)

where the symbol “-” denotes z (p) or r (a) and the functions f(-, R) and g(-, R)

are given by

coshGR — cosh Gz

f@ 8 =—Fgmer > W
Iy(GR) — I1(Gr) (2.20)
R e
GR - Gz in 2 _ p2
ot ) = R e )
g(r,R) = 2G31,(GR) , (a)

where Iy(-) and I;(-) are modified Bessel functions of the first kind. The volume

of this quasi-static drop is given by
V =6S(R)+ JT(R), (2.22)

where the functions S = S(R) and T = T'(R) are given by

GRcoshGR - sinhGR )
G?sinh GR W

SR =\ GRI,(GR) - 2RI,(GR) (2.23)
9C21, (GR) o o)
3GR?coshGR - 3Rsinh GR — G*R®sinh GR
TR = 3Gisinh GR - ) (2.24)
4GR*IH(GR) — 8R*I,(GR) — G*R*I,(GR) '
8G'T,(GR) - @

Note that the functions f(-, R) and S(R) arc precisely the familiar expres-
sions for h and V in the absence of blowing (J = 0).

When ¢ # 0 we can, without loss of generality, choose the horizontal length-
scale L to be the capillary length (7/p9)'/? (corresponding to setting |G| = 1).

Alternatively, whatever the value of g, we can (again without loss of generality)
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choose either L = (78y/k)"/? (corresponding to setting .J = 1), or L = (V/8)'/?
(p), L= (V/6,)'/3 (a) (corresponding to setting V = 1). Of course all of these
choices are equally valid; however in order to treat clearly both the problem of
a drop with fixed volume under a jet of varying strength and the problem of a
drop of variable volume under a jet of fixed strength we need to retain both the
parameters V" and J explicitly in what follows. We therefore choose L to be the
capillary length, and so the sessile (g > 0) and pendent (g < 0) cases correspond
to G = 1 and G = i respectively. The special case of zero gravity corresponds
to the limit G — 0, and in this case L remains arbitrary.

Rearranging Eq. (2.22) we obtain an expression for the contact angle 6 for
constant V =V and J = Jy:
_ W - JT(R)

S(R)

Substituting this expression for ¢ into Eq. (2.12) we obtain a non-linear first-

0 (2.25)

order differential equation for the speed of the contact line, namely

(Vo= JT(R) o .
R =F <——————S(R) > (2.26)

to be solved subject to an appropriate initial condition on R(t).

2.4 Equilibrium Solutions

In equilibrivin @ = 1 and R = Ry, say. Usiug Eq. (2.22) we can either write the

volume V' = V(Rp) as a function of Ry for tixed J = Jy in the form
VI(IR) = S(Ro) + LT (1), (2.27)

or write the jet strength J = J(Ry) as a function of Ry for fixed V = Vj in the
form
o — S(R
J(Ry) = Vo= S(fy)
T (1)
The possible equilibrium positions of the contact line R = Ry are the solutions

(2.28)

of V' =1y for J = Jy (where Vg > 0 and Jy > 0 are preseribed constants) and

so IRy satisfies

Vo = S(Ry) + JoT'(Ry). (2.29)
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2.5 Stability Analysis

To determine the stability of an equilibrium drop of radius R = Ry to small
uniform (p) or axisymmetric (a) perturbations we write R(t) = Ry + R*(t) and
expand Eq. (2.26) for small R' to yield
(R'). = M (2.30)
m!
where M = d"F(0)/d6™|y= > 0 (m = 1,3,5,...) is the first non-zero derivative

of F(8) evaluated at # = 1 and A is a constant given by

S'(Ry) + JoT"(Ry)
A= — ) 2.31
S(Ry) (231
Equation (2.30) is easily solved to yield
ReAMt ifm=1,
R'=4{ _ m—DMAR)™\ =1 2.
(1o mm DMOR it m=3,57,..., (2:32)
Rmn!

where R = R'(0) is the initial perturbation to the radius of the drop. Equation
(2.32) shows that an equilibrium drop is unstable to small perturbations when
A\ > 0 and stable when A < 0. Small perturbations grow or decay exponentially
when m = 1 and algebraically when m = 3,5,7,.... Examining Eq. (2.31) shows

that for marginal stability we require

V'(Ry)
Sy =" (2.33)

where V(Ry) is given by Eq. (2.27), or alternatively, we can write Eq. (2.33) in
the equivalent torm

=0, (2.34)
where J(Ry) is given by Eq. (2.28).

Hereafter, we drop the zero subscript on R for clarity.

2.6 Results

2.6.1 Explanation of Figures

In what follows we present results for both the problem of a drop with fixed

volume under a jet of varying strength (that is, variable J and fixed V) and
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the problem of a drop of variable volume under a jet of fixed strength (that is
variable V and fixed J) for both sessile and pendent drops and in the speciai
case of zero gravity. Since the results for the planar case are qualitatively similar
to the axisymmetric case we present the plots for the latter case only, although
relevant results for the planar case are given where appropriate for completeness.

Figure 2.2 shows plots of J against R for three values of V4 in the zero-gravity
case, and corresponding typical drop profiles are shown in Fig. 2.3. Figure 2.4
shows plots of V against R for three values of Jy in the zero-gravity case; the
drop profiles shown in Fig. 2.3 are again typical. Figure 2.5 shows an examp;le of
the contact angle 6 plotted against radius R in the zero-gravity case. Figure 2.6
shows corresponding examples of the evolution of the radius I? as a function of
time ¢ for a particular choice of F'(6), while Figs. 2.7 and 2.8 show corresponding
examples of the evolution of the profile of the drop. Figures 2.9 and 2.10 show
plots of J against R and V against R respectively in the case of a sessile drop
and the corresponding results in the pendent case are given in Figs. 2.11 an(;
2.12. Results for the pendent case corresponding to Figs. 2.5-2.8 in the zero-
gravity case are given in Figs. 2.13-2.16. Finally, Fig. 2.17 shows an example of
the contact angle 6 plotted against radius R in the pendent case for a special
value of J.

Since we are concerned only with V' > 0, J > 0 and R > 0, all the plots of V
against R and J against R are restricted to the first quadrant. On these figures
the possible equilibrium solutions are classified as either physically-realisable or
not physically-realisable (the latter implying that h < 0 at some part of the
drop) and either stable (A < 0) or unstable (A > 0). This classification is

indicated as follows:
e a solid thick line indicates stable and physical drop profiles,
e a solid thin line indicates stable but uuphysical drop profiles,
e a dashed thick line indicates physical but unstable drop profiles,

e a dashed thin line indicates drop profiles that are both unstable and un-
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o6 V, =1 \ ((24\/;))%, 2
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Figure 2.2: Plot of jet strength J against radius R for an axisymmetric drop in
the case of zero gravity for Vy = 1,2, 3. The line styles are defined in Sec. 2.6.1
Typical drop profiles are given in Fig. 2.3. |

physical.

2.6.2 Zero-gravity Case (G =0)

In the special case of no air jet, J = 0, the function V' is monotonically increasing
in R, and for all values of V' > 0 there is a single stable and physical equilibrium
solution.

Figure 2.2 shows J plotted against R for Vo = 1,2 and 3. Each curve has
one zero at B = (3Vp)'? (p) or R = (8V4)'/? (a), and a maximum J = J,
at R = Ry, where Jy, = 6/(5V0)%% and R, = (5V)'/? (p) or Ji, = 3/(4V0)
and Ry, = (16V5)'® (a). For all values of V4 we find that J — 0 like 15/R3
(p) or 24/ (a) as B — oo. The left-hand part of cach curve corresponds
to stable and physical drop profiles like those numbered 1 and 2 in Fig. 2.3.
At I} = R, the solutions remain physical and look like profile 3 in Fig. 2.3
but become unstable. For R > R, the equilibrium solutions remain unstable

and, as I? increases, eventually become unphysical via h = 0 at the origin like
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/ z (p)
r (a)
Figure 2.3: Typical drop profiles for various values of radius R for a drop in zero

gravity. Drop profiles in the sessile drop case are qualitatively similar to those
shown here.

profile 4 in Fig. 2.3, at R = (15Vp)/%, J = 12/(15V4)*/% (p) or R = (24V})'/3,
J = 2/(3Vo) (a). In the planar case the drop profile changes from having one
turning point to three (that is, changes from one like profile 1 to one like profile
2 in Fig. 2.3) when R increases through R = Ry, while in the axisymmetric
case this change occurs inside the interval of stable and physical drop profiles
at R = (12Vp)"® < Ru, J = 2/(3Vy). The width of the interval of R values
corresponding to stable and physical profiles increases as Vj is increased, and for
any value of J in the range 0 < J < Jy, there exists a unique stable and physical
equilibrium solution; however, Jm decreases with increasing V.

Figure 2.4 shows V plotted against R for J, = 1,2 and 3, which can be
interpreted in a similar way to Fig. 2.2. Each curve has two zeros, at R = 0
and R = (15/J)*"® (p) or R = (24/Jp)"/3 (a), and a maximum V = V,, at
R = Ry, where Vi, = (6/J0)*/*/5 and Ry, = (6/Jp)'3 (p) or Vi, = 3/(4J,) and
Ry = (12/J0)"/* (a). For all values of Jo, we find that V' — 0 like R%/3 (p)

or R?/8 (a) as i — 0. Again the left-hand part of each curve corresponds to
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Figure 2.4: Plot of volume V against radius R for an axisymmetric drop in the
case of zero gravity for Jy = 1,2,3. The line styles are defined in Sec. 2.6.1.
Typical drop profiles are given in Fig. 2.3.

stable and physical drop profiles. At R = R,, the solutions remain physical but
hecome unstable, while for R > R,, the equilibrium solutions remain unstable
and, as R increases, eventually become unphysical via h = 0 at the origin
at B = (120, V = (12/00)22/15 (p) or R = (16/J0), V = 2/(3J;)
(a). 1n the planar case the drop profile changes from having one turning point
to three when R increases through R = R, while in the axisymmetric case
this change occurs inside the interval of stable and physical drop profiles at
R = (8/J))"/* < R, V = 2/(3Jp). In this case the width of the interval of R
values corresponding to stable and physical profiles decreases as J; is increased,
and for any value of V' in the range 0 < V < V|, there exists a unique stable
and physical equilibrium solution; however, V,, decreases for increasing .J;.
Figure 2.5 plots contact angle 8, given by Eq. (2.25), against radius R in
the case Vo = 0.4 and Jy = 1. The thick line corresponds to physical solutions
and the thin line corresponds to unphysical solutions. The points of intersection

with the horizontal line 8 = 1 correspond to equilibrium solutions at R ~ 1.5608
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Figure 2.5: f.’lot of contact angle € against radius R for an axisymmetric d

in the case of zero gravity, with Vy = 0.4 and Jy = 1. The thick line corres roig
to physical solutions; the thin line corresponds to unphysiéal qoiut' rL?POr;l;lb
points of intersection with the horizontal line § = 1 corresp())nd‘ to JIOI?S" i )
“olutions. > equilibrium
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0.5 .

Figure 2.6: Examples of the evolution of drop radius R(t) for an axisymmetric
drop in the case of zero gravity when Vj = 0.4 and Jy = 1 obtained by solving
Eq. (2.26) numerically in the case F(0) = 6° — 1. The equilibrium values R ~
1.5608 (stable) and R ~ 2.7233 (unstable) are indicated by horizontal dashed
lines, and the shaded area denotes a region of unphysical solutions.

(stable) and R =~ 2.7233 (unstable). Figure 2.6 plots examples of the evolution of
the radius R as a function of time ¢ obtained by numerically solving Eq. (2.26) in
the particular case F'(f) = 6% — 1. Detailed analysis in the vicinity of the contact
line (see, for example, Hocking [21], Oron et al. [45] and Duffy & Wilson (8])
motivates this specific choice of Tanner Law. The shaded area denotes a region
of unphysical solutions; our computations exclude this region. Evidently for all
the initial conditions shown in Fig. 2.6 the drop evolves to the stable equilibrium
solution with R =~ 1.5608. Figures 2.7 and 2.8 show the evolution of the drop
profile in the cases 1(0) = 0.5 and R(0) = 2.3 respectively; in both figures
the stable equilibrium solution with R ~ 1.5608 is shown with a dashed curve.

(Note that Figs. 2.7 and 2.8 use different vertical scales, for clarity.)
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Figure 2.7: Evolution of a quasi-static drop profile for an axisymmetric drop

in the case of zero gravity when Vy = 0.4, Jy = 1, with the initial condition

g(()) = é)g The dashed curve corresponds to the stable equilibrium solution
~ 1.5608.
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f‘igure 2.8: E‘volution of a quasi-static drop profile for an axisymmetric dro
m(tl)le case of zero gravity when Vo = 0.4, Jo = 1, with the initial conditiog
1R(0) = 2.3. The dashed curve - B

o L5608 corresponds to the stable equilibrium solution
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Figure 2.9: Plot of jet strength J against radius R for an axisymmetric sessile
drop for Vp = 1,2,3. The line styles are defined in Sec. 2.6.1. Drop profiles in
this case are qualitatively similar to those shown in Fig. 2.3.

2.6.3 Sessile Case (G =1)

In the special case J = 0 the function V' is monotonically increasing in R and
for all values of V' > 0 there is a single stable and physical equilibrium solution,
just as in the Zero-gravity case.

Figures 2.9 and 2.10 show J plotted against R for Vy = 1,2 and 3 and V
plotted against R for Jo = 1,2and 3. The qualitative behaviour of the solutions
in this case is the same as that of the zero-gravity solutions and so, for the sake

of brevity, the details are not repeated here.

2.6.4 Pendent Case (G = 1)

In the special case J = 0 the function V' is monotonically increasing in 2 between
cach of its infinitely many vertical asymptotes, and for every value of V' > 0 there
are infinitely many stable equilibrium profiles. However, only the solution on

the first branch is physically realisable and so again there is only a single stable
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R
Figure 2.10: Plot of volume V against radius R for an axisymmetric sessile drop

for Jo = 1,2,3. The line styles are defined in Sec. 2.6.1. Drop profiles in this
case are qualitatively similar to those shown in Fig. 2.3.

and physical equilibrium solution for all values of V' > 0. Unlike the previous
two cases the introduction of non-zero J changes this situation qualitatively.
Figure 2.11 shows J plotted against R for Vy = 20, V) = V. =~ 32.4642 and

V, = 40. The branches in Fig. 2.11 can be classified as one of three types:
e J1 - a branch with a maximum/minimum “kink”,
e J2 - a branch with a maximum turning point,
e J3 - a monotonically decreasing function.

The only order in which these branches can appear on cach plot is J1 then J2
followed by J3 as R increases. Each branch lies between the vertical asymptotes

of J. which oceur at values of R satisfying

3R
tan R = ———
an IR (p)

J(R) " 4R (2.35)
o) - @
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Figure 2.11: Plot of jet strength J against radius R for an axisymmetric pendent
drop when (a) Vo =20 < Vi, (b) Vj =V, = 32.4642 and (c) Vo = 40 > V.. The
line styles are defined in Sec. 2.6.1.
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which are independent of Vi, and where Jy(RR) and J,(R) are Bessel functions of
the first kind. The number of J1 branches depends on the value of Vi, whereas
there is only ever one J2 branch and an infinite number of J3 branches extending
to the right. The special value V' = V. corresponds to the case where one of
the vertical asymptotes of J disappears, leaving a continuous curve connecting
what were two adjacent branches for V # V.. Equating the numerator and

denominator of Eq. (2.28) to zero we find that V, satisfies

L (2.36)

The values of R at which there is marginal stability are the solutions of Eq. (2.34)
and, as the plots in Fig. 2.11 show, stable and physical solutions can occur on
other branches as well as the first. Note that some of the regions of stability
are relatively small. For example, in Fig. 2.11(a) there is a small stable but
unphysical region between R & 11.6198 and R ~ 11.9047. As the drop profiles
in Fig. 2.11 show, unlike in the zero-gravity and sessile cases, the solutions can
hecome unphysical via b = 0 at locations other than the origin.

Figure 2.11{(a) with Vj = 20 shows one J2 branch and the first two of the
J3 branches. In Fig. 2.11(b) V, is increased to V; the vertical asymptote at
R ~ 6.3802 vanishes and a J2 branch and a J3 branch connect to form a critical
J2 branch. In Fig. 2.11(c) Vp is increased to 40 and the figure shows a J1, a
J2 and the tirst J3 branch. Note that the number of J1 branches increases as
15, incereases. with the maximuwm/minimum kink occurring at smaller values of
J as I increases. The drop profiles usually (but not always) have an increasing
number of maxima and minima as I increases. For example, in Fig. 2.11(a) the
drop profile on the J2 branch has one turning point and the drop profile on the
J3 branch immediately to the right has five, whereas in Fig. 2.11(c¢) the drop
profile on the J1 branch for R =~ 6.3 has five turning points (two very close to
¢ = £R) while the drop profile on the J2 branch immediately to the right has

only three. For any given value of J there are finitely many (at least one and
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possibly more) stable and physical profiles, and there is a maximum value of
J = J,, above which no physical and stable solutions exist.

Figure 2.12 shows V plotted against R for Jy = 0.12, Jy = J. =~ 0.1425 and
Jy = 0.16, which can be described in a similar way to Fig. 2.11. The branches

in Fig. 2.12 can be classified as one of three types:
e V1 - a monotonically increasing function,
e V2 - a branch with a maximum turning point,
e V3 - a branch with a minimum/maximum “kink”.

The only order in which these branches can appear on each plot is V1 then V2
followed by V3 as R increases. Each branch lies between the vertical asymptotes
of V, which occur at values of R satisfying

simR=0, (p)
{Jl(R) _ 6, (Z) (2.37)

which are independent of Jy. The number of V1 branches depends on the value
of Jy, whereas there is only ever one V2 branch and an infinite number of V3
branches extending to the right. The special value J = J. corresponds to the
case where one of the vertical asymptotes of V' disappears leaving a continuous
enrve connecting what were two adjacent branches for J # J.. Equating the

numerator and denominator of Eq. (2.27) to zero we find that J. satisfies

sin (%) =0, (p)

J, (}) ~0. (a) (238)

The values of R at which there is marginal stability are the solutions of Eq. (2.33)
and, unlike in the case J = 0, stable and physical solutions can occur on branches
other than just the first. Note that again some of the regions are relatively small.
For example, in Fig. 2.12(a) there is a small unstable but physical region between
R ~ 4.9684 and IR = 5.1356. Once again the solutions can become unphysical

via h = 0 at locations other than the origin.



(a) oot
1204

1001

a0t

2. QUASI-STATIC ANALYSIS OF A NON-ANNULAR DROP

-

'.
/
/
Y
/
/
J
:
J
:
H
!
H
(Y : é
(b) ; \'\/
Jon ‘
\
\
H
. . |
1004 ‘l
‘ 3
)
Y eot | .
l"
-
e
[TXe R of - |
-
40
1
'
A
Q :
—v" |
’ H
J
a°n - 4 | ]0
. 140
(c)

10

3}

The line styles are defined in Sec. 2.6.1.

drop when (a) Jo = 0.12 < Jo, (b) Jy = Jo = 0.1425 and (¢) Jy = 0.16 > J..

5 IR
Figure 2.12: Plot of volume V' against radius R for an axisymmetric pendent
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Figure 2.13: Plot of contact angle 6 against radius R for an axisymmetric pen-
dent drop, with V5 = 20 and .Jo = 0.16. The thick lines correspond to physical
solutions; the thin lines correspond to unphysical solutions. The points of inter-
section with the horizontal line 8 = 1 correspond to equilibrium solutions.

Figure 2.12(a) with Jy = 0.12 shows two V1 branches and a V2 branch with
V'3 branches extending infinitely to the right thereafter. In Fig. 2.12(b) J, is
increased to Jo; the vertical asymptote B = R, ~ 7.0156 vanishes, and a V1
branch and a V2 branch connect to form a critical V2 branch. In Fig. 2.12(c)
J, is increased to 0.16 and the figure shows a V1, a V2 and the first V3 branch.
\Note that in this case the number of V1 branches decreases as J increases while
the minimum/maximum kink on the V3 branches occurs at ever larger values
of V7 as I increases. As previously, the drop profiles usually (but not alwavs)
have an increasing number of maxima and minima as @ increases. In this case
for any given value of V there are finitely many (at least one and possibly more)
stable and physical profiles, but there is no upper limit on the value of V' for
physical and stable solutions to exist.

Figure 2.13 plots contact angle 6 against radius R in the case V5 = 20

and Jy = 0.16. The thick lines correspond to physical solutions and the thin
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0 0.2 0.4 0.6 0.8 1

Figure 2.14: Examples of the evolution of drop radius R(t) for an axisymmetric
pendent drop when Vp = 20 and Jo = 0.16, obtained by solving Eq. (2.26)
numerically in the case F(f) = 0* — 1. The equilibrium values R ~ 3.6524
(stable), R = 5.5740 (stable), R ~ 6.9149 (unstable) and R &~ 10.0041 (unstable)
are indicated by horizontal dashed lines, and the shaded areas denote regions of
unphysical solutions.

lines correspond to unphysical solutions. The points of intersection with the
horizontal line 6 = 1 correspond to equilibrium solutions at R =~ 3.6524 (stable),
R ~ 5.5740 (stable) R = 6.9149 (unstable) and R ~ 10.0041 (unstable). Figure
92.14 plots examples of the evolution of the radius R as a function of time ¢
obtained by solving Eq. (2.26) numerically in the particular case F(0) = 6° — 1.
The shaded areas denote regions of unphysical solutions; our computations again
exclude these regions. Figures 2.15 and 2.16 show the evolution of the drop
profile in the cases £(0) = 1 and R(0) = 6.8 respectively: in both figures the
appropriate stable equilibrium solution is shown with a dashed curve.

Figure 2.17 plots contact angle 6 against radius R for V; = 20 in the special
case Jo = Jo ~ 0.1425 and shows that, despite what the corresponding plot of
V against R shown in Fig. 2.12(b) might suggest, the dynamics in this case are

qualitatively similar to those when Jy = 0.12 and J, = 0.16. Note, however,
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t =0.004

Figure 2.15: Evolution of a quasi-static drop profile for an axisymmetric pendent
drop when Vj = 20, Jo = 0.16, with the initial condition R(0) = 1. The dashed
curve corresponds to the stable equilibrium solution R = 3.6524.

Figure 2.16: Evolution of a quasi-static drop profile for an axisymimetric pendent
drop when ¥y = 20, Jy = 0.16, with the initial condition R(0) = 6.8. The dashed
curve corresponds to the stable equilibrium solution R~ 5.5740.
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|

0% é

Figure 2.17: Plot of contact angle f against radius R for an axisymmetric pen-
dent drop, with Vp = 20 and Jy = J. =~ 0.1425. The thick lines correspond
to physical solutions; the thin lines correspond to unphysical solutions. The
points of intersection with the horizontal line 8§ = 1 correspond to equilibrium
solutions. The open circle (o) indicates that there is no solution with the correct
volume at this special value of R = R, = 7.0156.
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that when Jy = J. there 1s, in general, no equilibrium solution with the correct
volume with R = R. ~ 7.0156, the value of R corresponding to the vertical
asymptote of '(R) that disappears when Jo = J.. Corresponding behaviour is
observed when Vy = V..

In all parts of Figs. 2.11 and 2.12 (but not the corresponding figures in the
sero-gravity and sessile cases) there are evidently changes in stability at points
other than the local extrema. Inspection of Egs. (2.33) and (2.34) shows that
these “unusual” changes of stability occur at points R = R* where S(R*) = 0,

and inspection of the definition of S(R) in Eq. (2.23) shows that this is indeed

possible only in the pendent case. Since |#] — oo as these points are approached
the lubrication approximation and possibly also (depending on the specific form
of F(6)) the quasi-static approximation fail in the immediate vicinity of these
points.

In the special case Jy = J. (Fig. 2.12(b)) stability also changes at the point
R = R, (the value of R corresponding to the vertical asymptote of V(R) that

disappears). Corresponding behaviour is again observed when Vj = V..



Chapter 3

Quasi-static Analysis of an
Annular Drop

3.1 Introduction

As we have already seen, in many cases the solutions discussed thus far can fail
to be physically-realisable via h(0) = 0. (Indeed, this is the only way that the
solutions become unphysical when G* > 0.) It is therefore natural to examine
next the possibility of solutions that have a dry patch with no fluid near the
origin. In an axisymmetic geometry these solutions take the form of an annular
ring of fluid centered on r = 0, while in a planar geometry they take the form of
two disconnected drops which are symmetric about z = 0. In order to keep the
algebra manageable we shall concentrate solely in this Chapter on the special

case of zero gravity, that is, the case G = 0.

3.2 Problem Formulation

Clearly the major ditference between the annular solutions discussed in this
Chapter and the non-annular solutions discussed previously is that the former
have two contact lines and hence two contact angles. The outer contact line is
located at = Ry(t) (p) or v = Ry(t) (a) and the inner one at @ = Ry(¢) (p) or
v o= Iy (1) (a). The corresponding contact angles are denoted by 6 = 6(t) and

o = olt). Physically-realisable solutions satisfy 6 > 0, ¢ > 0 and R, > R, and

48
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Figure 3.1: Geometry of the annular problem.

in equilibrium 6 = 6 and ¢ = ¢o. The geometry of the problem is summarised
in Fig. 3.1.

Choosing the same scalings for the variables as before (see Chapter 2, Sec. 2.2)
means that we can sct 8y = 1 without loss of generality. Furthermore, since we
are considering only the case G = 0 we can, without loss of gencrality, set either
J = 1or V" =1; for case of comparison with the earlier results and for clarity
we shall retain both Voand J in what follows and then present results for both

J = 1 and V" = 1. Hereafter scaled variables are used unless stated otherwise.

3.3 Quasi-static Motion

For quasi-static motion with ¢ = 0 at leading order in C the equation for h is
piven again by bq. (2.18) with G = 0, namely
h:m::n +Jr = Ow (]))

h, ‘
(izwr i—) +Jr=0. (a) (3.1)

Since there are now two moving contact lines we need to replace Eq. (2.12) by
two Tanner Laws relating the speed of each contact line to its contact angle. For

these we use the forms

(), = —Fl((ﬁ% (3.2)
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(R2)y = Fa(0), (3.3)

where the empirically-determined functions Fy and F; satisfy F\(¢y) = F5(1) =
0. Analogously to the non-annular case in Chapter 2 we assume that F} and F3
are monotonically-increasing locally near ¢ = ¢¢ and 6 = 1 respectively, and so
their first non-zero derivatives at these points will be positive and of odd order.

The boundary conditions for Eq. (3.1) are

}L(Rl,t) = 01 (34)

h(R‘Lt) = 0, (35)
hm(R27t) = —9, (p)

{ntret =6, (o (3.6)

he(Ri,t) =, (p)
{hr(R:,t) =¢. (Z) (3.7)

Solving Eq. (3.1) subject to Egs. (3.4) - (3.6) yields
h zaf('leaRQ) +J‘Q(',R1,R2), (38)

where the symbol “” again denotes z (p) or r (a) and the functions f(-, Ry, R)

and g¢(-, Ry, Ry) are given by

(- _(Ry—x)(Ry = x)
f(J’v Rla RZ) - Rl _ R2 ’ (p)
L r R ) = [32(3:5 — IR, — Ry(R? — ) In Ry (3.9)
-1
— Ry(R2 - R?)In 7‘] [Rig CR242R2W(RJRY)] . (a)
o 1 .
gz, R, 2) = Q(R'z —2)*(Ry — z)(Ry + 2Ry + z), (p)
1 - Y
olr, 1, Ra) = 35| ~2RH(E = 1) n Ry + 2R3 — R3)?Ins
g + 2R3(R? — r¥)(2R3 — R? —r*)In R, (3.10)

~ (R = r)(BS - ) (7 - )|

—1
| v R?j—R'f+2R§1n(R./R2)} . (a)
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The volume of this annular drop is given by
R
2V =2 hdz, (p)
Ry

R» (3.11)
2V = 27r/R hrdr, (a)

and so
V = 0S(Ry, Ry) + JT(Ry, Ry), (3.12)
where the functions S = S(Ry, R2) and T = T(R,, R,) are given by
(e~ R )
6 b
4 4 2 212 (313)
Ry(R3 — Ry) In(Ry/Ry) + Ro(R3 — RY) (@)
A[RI — RZ + 2R3 In(R,/Ry)] e
( (2Ry +3Ry)(Ry — Ry)* )
360 ’ b
[4R2 (2R? + R3)(R: - R2)*In(R,/Ry)

+(R + SR)(RS - R’

S(Rl, RQ) -

T(Rla R?)

Il

(R}
x[384[R2 R%+2R§ln(R1/R2)]]—l. (a)
(3.14)

We can trivially re-write Eq. (3.12) as an explicit expression for § for constant
V' =V, and J = Jp in the form

Vo — JOT(Ry, Ry)

6= SELR) (3.15)

The remaining boundary condition Eq. (3.7) yields an explicit expression for ¢
for constant V' = Vg and J = Jy in the form
4 JO

0 — 5 (B + Ri)(R> = Ry, »)
|(R — R (R} = R{ + 4RERY In(R/ Ra)) Jo
6=+ 2 | (3.16)
_16R, (R — B2 + 2R?In(R.1/Ry)] 9]
L X [16R1[R% — Rf + 2R§ ln(Rl/Rg)]]—] . (a)

Evidently in equilibrium (8 = 1, ¢ = ¢,) annular solutions are impossible in the

planar case if ¢o 2 15 in particular, there is no non-trivial annular solution in
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the case in which the contact angles are equal, that is, when ¢y = 1. Indeed,
from Eq. (3.16)(p) it is clear that equilibrium annular solutions with equal inner
and outer contact angles are possible only when Jy = 0. The explanation for
this is that in the planar case the “annulus” comprises two disconnected drops,
symmetrically placed about z = 0, each of them subject to an off-centre jet; such
a drop cannot be in equilibrium when 6y = @¢ since the net external force on it is
non-zero (because the resultant force due to the jet has a non-zero z-component,
whercas the z-components of the surface-tension forces at the two contact lines
cancel each other out exactly when 6y = ¢y). As we shall see there is no similar
restriction on the value of ¢¢ for annular solutions in the axisymmetric case.

In the planar case Egs. (3.15) and (3.16) yield

_ 360V, + (3R2 + 2R1)(R2 - R1)4J0

6 60(R2 — Ry)? ’ (317)
360V — (2R + 3R:)(Ra — By
¢= 60(R, — R,)? ! (3.18)

while in the axisymmetric case they yield

Ty (11)1 , R’))J() + TQ(]R] s Rg)‘b

9 = ( : 4 .
R~ RIE — I8+ (R 4 1) (R /)] (3.19)
¢ _ T3(R1, RQ)J() + T4(R1,[{2)‘/0 (3 20)
" 96R,(R3— R?)[R% — R+ (R} + R}) In(R,/Ry)]’ '

where the functions 7y, 72, 73 and 74 are given by

(R, Ry) = (R — RY)’[BR3 ~ ARIRS — R} + (4R3 + 8RIR3) In(R1/Ry)),
72(Ry, Ry) = 384[Rj - R} 4+ 2R3 In(R,/Ry))],
(
(

=

\‘

(R, Ry) = (B3 — R3)?[R + 4RTRS — SR + (4R + 8RERY) In(R,/ Ry)),
(R ) = —384[R% — R? + 2R?In(R, / R,)).

(3.21)
Note that in the limit Ry, By — oo for fixed Ry — R, > 0 we recover the
previous results for the planar case, while in the limit R, — oo for fixed R, we
obtain the special case of a hole in an unbounded fluid film corresponding to
the thin-film limit of the zero-gravity version of the problem studied by Taylor

& Michael [51] and Wilson & Dufty [59].
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3.4 Stability Analysis

Proceeding as in Chapter 2 we can determine the stability of an equilibrium
drop for which 8 =1, ¢ = ¢o, R = R} and R, = R} to small perturbations in
R, and Ry by writing R, (t) = R} + R{(t) and Ry(t) = Rj+ R;(t) and expanding
Egs. (3.2) and (3.3) for small R; and R; to yield

M
(R{) = —R—'(alR} + ayRM)™,

N
S(BiRY + BaRA)",

where M = d™F\(¢)/d¢™|s=¢ > 0 (m = 1,3,5,...) is the first non-zero deriva-
tive of Fy(¢) evaluated at ¢ = ¢p, and N = d"F(0)/d6"|p-, > 0 (n = 1,3,5,...)
is the first non-zero derivative of F;(f) evaluated at § = 1, and the constants «a;,
ay, 01 and B are given by o; = ¢/0OR; and §; = 00/0R; evaluated at R, = RY
and Ry, = R) for ¢ = 1,2. As before, we shall immediately drop the clumsy

(3.22)
(Ry)e =

superscript notation and in the remainder of this section we shall denote RY and
RY simply by R, and Ry. Unfortunately, unlike in the previous Chapter, we have
been unable to obtain either the general solution of Eq. (3.22) or general criteria
for the growth or decay of the solutions of Eq. (3.22) as ¢t — co. However, we
can make progress in the special case m = n = 1 when the system given by

Eq. (3.22) is lincar and has eigenvalues

[N

NBy — Moy + [(May + NBy)? — AMNawf|
2 k)

and so stability of the cquilibriuin solution is determined by the sign of Re(\,).

At

(3.23)

Hercafter we shall take M = N for simplicity.

3.4.1 Planar Case

In the planar case we can use Egs. (3.17) and (3.18) to evaluate the «; and 3;

for i = 1,2 and hence obtain simple explicit expressions for Ay /M, namely

/\+ J() .
7 = B R (3.24)
A Jo 24V,

= o(Ry— Ri)* ~

M 20 (Ry — R))¥ (3.25)
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Note that A, is independent of Vj in this case. We can deduce immediately that
the eigenvalues A4 are purely real and, since Ay > 0 for all values of V4 and Jp,

that all planar annular solutions are unconditionally unstable.

3.4.2 Axisymmetric Case

In the axisymmetric case we can use Egs. (3.19), (3.20) and (3.21) to evaluate
the oy and G; for i = 1,2 and hence obtain the corresponding expressions for A+.
However, these expressions are now very lengthy and considerably more effort
is required to establish the sign of Re(A;) than in the planar case. To simplify
the subsequent algebra we write R; = n, Ry = cn and so the requirements that
R, >0, Ry >0 and R; > R; mean that n > 0 and ¢ > 1.

Firstly, we demonstrate that Ay are purely real. If we denote the discriminant
of \y/M by D; = (a1 + B2)? — 4f3; then by setting Jo = 1 without loss of

generality we can write
D, = . [VI(C)V()2 + n°va(e)Vo + 7)121/3(c)] , (3.26)

where v, v; and vs are known functions of ¢, not reproduced here for brevity.

Evidently D, can change sign only when V{ satisfies
n(e)VE + nPvy(c)Vo + n'?us(e) = 0. (3.27)

Thus the existence or non-existence of real solutions for V4 depends on the sign

of the discriminant D, of Eq. (3.27), which is given by

D, = n**(c" —4c?Inc — 1)? [(702 — (=) -1)3
—3(c2 4+ 1)(c* = 22¢7 + 1)(c* - 1)?Inc — 8c*(c? — 1)(5¢* — 4¢? + 5)(Inc)?
— 48¢*(c? + 1)(In c)3] [c“(c2 ~ 1)} Plnc—c*+1nc+1)° _1. (3.28)
Note that Dy ~ O(=(c—=1)"2) as ¢ =+ 17 and Dy ~ O(—(Inc)™) as ¢ = oo.
Evidently the sign of Dy depends only on ¢ and not on 7. Figure 3.2 shows a
plot of Dy as a function of ¢ > 1 and clearly demonstrates that D, < 0 for all

values of ¢. Hence there are no real roots of Eq. (3.27) and therefore D, is of
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Figure 3.2: Plot of D, defined in Eq. (3.28) as a function of c.

one sign. A simple evaluation of D, with values Vi > 0 and ¢ > 1 shows that it
is always positive and hence the eigenvalues A+ are always real.
Secondly, we demonstrate that Ay > 0. From Eq. (3.23) we can write

At

2 75(0)
— = > +
% = (e

ya(e)n* + vale)n + 3
n

”T(C) + , (3.29)

where the v;, ¢ = 1,...,5 are known functions of ¢, not reproduced here for
brevity. Typical values of Ay/M are plotted as functions of 5 for a range of
values of ¢ in Fig. 3.3. Of most importance are the minimum value of A, /M
(denoted by Apin) and the maximum value of A_/M (denoted by Amax) and
numerically calculated values of these quantities are shown in Fig. 3.4. Note
that Ayin ~ 27" and Amax ~ 272 as ¢ = oo while Ay, ~ O((c — 1)*?)
and Apax ~ O(=(¢c = 1)3) as ¢ — 17, As Fig. 3.4 shows, Anax < 0 when
| < ¢ < Cepig and Amax > 0 when ¢ > ¢4, where ¢ = c¢pip > 31.05 is the single

real root of the equation

(* —4¢+ 1) Inc—3¢* +3 = 0. (3.30)
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Figure 3.3: Plot of Ay /M and A_/M for ¢ = 10, 15, 25 and 35. The dots (e)
denote the points corresponding t0 Apin and Amax-
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Figure 3.4: Plot of Apin (upper curve) and Apmax (lower curve) as a function of
.
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More significantly, Fig. 3.4 also shows that Ay, > 0 for all ¢ > 1 and so
Ay > Amin > 0 for ¢ > 1; therefore all axisymmetric annular solutions are

unconditionally unstable, just as in the planar case.

3.5 Results

3.5.1 Explanation of Figures

In Figs. 3.5- 3.8 we present plots of jet strength J against outer radius R, for fixed
volume V5 = 1, and volume V' against outer radius R, for fixed jet strength Jy =
1. Note that all the annular solutions depicted in Figs. 3.5-3.8 are physically
realisable and unstable, and therefore represented by thick dashed lines. Each
of these plots contain annular solutions for various inner contact angles ¢y.
Since 8y = 1, values of ¢; other than ¢y = 1 require that either the system
exhibits contact-angle hysteresis (with 8, < 6y < 8,, where 6, and 6, are the
receding and advancing contact angles respectively) or, more artificially, that the
substrate be inhomogeneous with a change of physical properties somewhere in
R, <r < Ry (p)or Ry <71 < Ry (a). The case ¢y = 1, however, requires no
such conditions. In each plot, curve (A) corresponds to the physically-realisable
non-annular solutions as discussed in Chapter 2 Sec. 2.6.2. In the planar case
(Figs. 3.5 and 3.6) curve (B) corresponds to solutions with R, = 0, representing
two contiguous drops, one in —Ry < z < 0 and the other in 0 < z < Ry. In
the axisymmetric case, however, the only solution with B, = 0 occurs when
¢o = 0. and so there is no curve in Figs. 3.7 and 3.8 corresponding to curve (B)
in Figs. 3.5 and 3.6. Figure 3.9 shows examples of the evolution of the radii
Ry, and R, as functions of time in the axisymmetric case for particular choices
of Fi(¢) and Fy(0), while Figs. 3.10 and 3.11 show corresponding examples
of the evolution of the profile of the annular drop. Unlike for the non-annular
solutions described in Chapter 2 Sec. 2.6, the qualitative behaviour of the planar

and axisymmetric annular solutions are quite different, and so in what follows

we discuss these two cases separately.
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Figure 3.5: Plot of jet strength J against outer radius R, for a planar annular
drop for ¢y = 0.2, 0.7, 0.9 and 0.99 when Vp = 1 and G = 0. A solid, thick
line represents stable and physical equilibrium solutions; a dashed, thick line
represents unstable and physical solutions. Curve (A) corresponds to physically-
realisable non-annular solutions and curve (B) corresponds to solutions for two
physically-realisable contiguous drops.

3.5.2 Planar Case

Figure 3.5 shows a plot of J against R, when Vy = 1 for inner contact angles
#o = 0.2,0.7,0.9 and 0.99. In particular, Fig. 3.5 shows how each annular curve
branches away from curve (B) at a different point. Note that, as previously
indicated, there are no non-trivial annular solutions for ¢y > 1, and that as
by — 17 the corresponding J against R, curve approaches the J = 0 axis. For
all the annular curves J ~ (1 — ¢28)/2R; as Ry, — oo.

Figure 3.6 shows a plot of V' against R, when Jy = 1 for inner contact
angles 0 = 0.2, 0.7, 0.9 and 0.99, and again shows how cach annular curve
hranches away from curve (B) at a different point. As ¢y — 17 the corresponding
1 against [y curve approaches the V' = 0 axis. For all the annular curves

Vo~ (l - (/)(2))/21?2 as 11)2 — O0.
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Figure 3.6: Plot of volume V against outer radius R, for a planar annular
drop for ¢9 = 0.2, 0.7, 0.9 and 0.99 when Jy = 1 and G = 0. A solid, thick
line represents stable and physical equilibrium solutions; a dashed, thick line
represents unstable and physical solutions. Curve (A) corresponds to physically-

realisable non-annular solutions and curve (B) corresponds to solutions for two
physically-realisable contiguous drops.
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Figure 3.7: Plot of jet strength J against outer radius R, for an axisymmetric
annular drop for ¢o = 0.5, 0.8, 1, 1.1 and 1.3 when V; = 1 and G = 0. A
solid, thick line represents stable and physical equilibrium solutions; a dashed,
thick line represents unstable and physical solutions. Curve (A) corresponds to
physically-realisable non-annular solutions.

3.5.3 Axisymmetric Case

Figure 3.7 shows a plot of J against R; when 1, = 1 for inner contact angles
do = 0.5, 0.8, 1, 1.1 and 1.3, and shows how all the annular curves branch away
from the non-annular curve (A) at the single point Ry = 24'/3 and J = 2/3
where the non-annular solutions fail to be physical via h(0) = 0. Unlike in the
planar case, annular solutions are now possible for all values of ¢g > 0. Whatever
the value of ¢g we have J — (1 — ¢2)/2 as Ry, — o0, and so only those curves
for 0 < ¢ < 1 approach a non-negative limiting value of J as R, — o0o; curves
for ¢y > 1 cross the J = 0 axis at a finite value of Ry > 0.

Figure 3.8 shows a plot of V against R, when Jy = 1 for inner contact angles
do = 0.7.0.9, 1, 1.02, 1.1 and 1.3, and again shows how all the annular curves
branch away from the non-annular curve (A) at the single point Ry = 16'/® and

" = 2/3 where the non-annular solutions fail to be physical via £(0) = 0. Figure
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Figure 3.8: Plot of volume V' against outer radius R» for an axisymmetric annular
drop for ¢ = 0.7, 0.9, 1, 1.02, 1.1 and 1.3 when J; = 1 and G = 0. A
solid, thick line represents stable and physical equilibrium solutions; a dashed,

thick line represents unstable and physical solutions. Curve (A) corresponds to
physically-realisable non-annular solutions.



3. QUASI-STATIC ANALYSIS OF AN ANNULAR DRroP 62

3.8 also shows that the curves corresponding to 0 < ¢y < 1 and ¢ > 1 have
qualitatively different behaviour. When 0 < ¢o < 1 we have V' — (1—¢3)/2 as
R, — 20, and hence these curves approach a non-negative limiting value of V'
as R, — oc. On the other hand, when ¢y > 1 we have

(1-A%)2+(1-AYInA

Ve A 12 A)

R (3.31)

as R, — 0, where the unique value of A depends on the value of ¢y via the

equation
! 1— A2 +24%InA

A(l- A2+ 2In A)

Figure 3.9 plots examples of the evolution of the inner radius R, and the

outer radius Ry as functions of time ¢t obtained by numerically solving Eqgs. (3.2)
and (3.3) in the particular case F1(¢) = ¢* — 1 and F3(0) = ¢° — 1 (i.e. equal
equilibrium contact angles corresponding to M = N = 3) for J; = 1 and
Vo = 0.1696. The horizontal dashed lines correspond to the equilibrium values
R, ~ 1.1968, R, = 2. The thick lines correspond to the curves with initial
conditions R;(0) = 1, Ry(0) = 1.7, the thin lines correspond to R(0) = 1,
R,(0) = 2.2, the dashed lines correspond to Ry(0) = 1.3, R,(0) = 1.7 and
the dot-dashed lines correspond to R,(0) = 1.3, R,(0) = 2.2. These examples
illustrate what we found in all the cases that we investigated (with different
initial conditions), namely that an annular drop ‘closes’ if the initial outer radius
R,(0) is smaller than the equilibrium value and ‘opens’ if R,(0) is larger than the
equilibrium value, irrespective of the value of the initial inner radius R;(0). This
hehaviour was also found in cases with different values of the inner equilibrium
contact angle ¢y. Figures 3.10 and 3.11 show the evolution of the annular drop
profile in the cases Ry(0) = 1.3, Ry(0) = 1.7 and R,(0) = 1.3, Ry(0) = 2.2
respectively, and show how the annular drop with initial outer radius smaller
than the equilibrium value ‘closes’ and the annular drop with initial outer radius

[arger than the equilibrium value ‘opens’.
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t

Figure 3.9: Examples of the cvolution of drop radii Ri(#) and Ry(t) for an
axisymmetric annular drop in the case of zero gravity when J, = 1 and V; =
0.1696, obtained by solving Egs. (3.2) and (3.3) numerically in the case F}(¢) =
¢ — 1 and Fy(0) = #3 — 1. The unstable equilibrium values R, ~ 1.1968, R, = 2
arc indicated by horizontal dashed lines. The initial conditions are R,(0) = 1,
R,(0) = 1.7 (thick lines), Ri(0) = 1, Ry(0) = 2.2 (thin lines), R,(0) = 1.3,
R,(0) = 1.7 (dashed lines) and R(0) = 1.3, R,(0) = 2.2 (dot-dashed lines).
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t =~ 4.606
h

Figure 3.10: Evolution of a quasi-static drop profile for an axisymmetric annular
drop in the case of zero gravity when Jo = 1, Vo = 0.1696, with the initial
conditions Ri(0) = 1.3, R,(0) = 1.7.

h

Figure 3.11: Evolution of a quasi-static drop profile for an axisymmetric annular
drop in the case of zero gravity when Jo = 1, Vy = 0.1696, with the initial
conditions 11(0) = 1.3, R,(0) = 2.2.



Chapter 4

Numerical Solution of Linear
Differential Eigenvalue Problems

4.1 Introduction

So far in this thesis we have only considered stability in the quasi-static limit
corresponding to the special case of zero capillary number. Analysing stability
for non-zero capillary number typically gives rise to high-order differential equa-
tions which must, in general, be solved numerically. There have been numerous
studies of this kind. For example, Troian et al. [53] investigated the linear sta-
bility of a capillary ridge on an inclined plane, Hocking & Miksis [23] studied the
lincar stability of a ridge of fluid of finite width on an inclined plane and Lépez
et al. [35] analysed the linear stability of a hole in a laterally-bounded thin film.
In this Chapter, therefore, we describe a numerical finite-difference code capable
of solving an cigenvalue problem posed by n coupled linear ordinary differential
equations with appropriate boundary conditions. Specifically, we require the

solution of the system given by

"()l)z”)'”) =AM/7()/’MY'2»»}/H)) 1= 1,..-,7% (41)
where
n lv[
=S ) hi(a) i=1,...,n,
1=1xs=0
no Ty
szls }() 1=1,...,n,
g1 s=0
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where we have defined
d*y;
dzs’

12 () Tooare Y AT > ij . 1] ¢ S
where Y are the unknown variables and h%’ and g’ are the coeflicients of the

Y (z) =

J

jth unknown to the sth derivative in the ¢th equation of V' and W respectively.
If we define b, = max(max;=.a(lij), max;=1, a(mi;)) for i = 1,...,n then
we require b; boundary conditions for the tth equation. We associate ¢; lower
boundary conditions (evaluated at z = a) and u; upper boundary conditions
(evaluated at © = b) with the ith equation such that ¢; + u; = b;. The lower

boundary conditions are listed as
Z Z ai]k(a)Yj(s)(a) =0, k=1,...,4, 1=1,...,n, (4'2)

and the upper boundary conditions as

n :]k

ZZ,B Y(s ) 0’ k:l,...,Ui, i=17"‘7n1 (43)

j=1 s=0

where ol and d 11 are the coefficients of the jth unknown to the sth derivative in
the ith equation corresponding to the kth lower and upper boundary condition
respectively. Bach houndary condition corresponds to one row entry in a matrix,
however the order in which the boundary conditions appear in the matrix has

no influence on the solution itself.

4.2 Numerical Solution

A FORTRAN code was written to solve the eigenvalue problem specified by
Eq. (4.1) and the boundary conditions (4.2) and (4.3) numerically using a finite-
difference method and is capable of adopting arbitrary order approximations for
any order of derivative appearing in either the equations or boundary conditions
limited only by the number of grid points, N + 1. To obtain the finite-difference
weights we use the notably short and fast algorithm recently discovered by Forn-
berg [13]. For a given (not necessarily regular) set of grid points xg,...,zy, the

point at which approximations are desired = £ (not necessarily a grid point)
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and highest order of derivative of interest m, Fornberg’s algorithm calculates
weights df] such that the approximations

(')_k—f_

s , ‘k
or ot

i
:dejf(lJ)’ k:()""anl'ai:k,-..,jv,
j=0
are all optimal in the sense that they permit the maximum order of approxima-
tion possible for a stencil consisting of 1+1 points. For example, approximations
of the first derivative at a grid point z; in a regular grid are given by
[ =5 (2in1) + 0f (z) + 3£ (zi1) I/h + O(h?)
Pl = 4 [ F (o) = (@) + 05(2) + 3 (@) = 55 (@ir2))/h + O(RY)

which can easily be verified by Taylor series. In terms of the relabelled grid
nodes Yo = Ti, Y1 = Ti-i, Y2 = Tigl, Y3 = Ti-y, ... we have the weights dj, =
0, d, = —3 and di, = & for the second-order approximation and dj, = 0,
dy, =—2%,d}, = 2, djy =15 and djy = — 5 for the fourth-order approximation.
Table 4.1 is taken from Fornberg & Sloan [14] and gives the weights for some
centred difference approximations on a regular grid for various orders of accuracy
and various derivatives. Table 4.2 is also taken from Fornberg & Sloan [14] and
gives the weights for some one-sided difference approximations on a regular grid
for various orders of accuracy and various derivatives which will be used at the
boundaries in the present application (note that only the left-hand boundary is
represented in Table 4.2, however similar results for the right-hand boundary
follow immediately).

In the present application we will obtain approximations at the grid points
onlv. In addition we will only apply the algorithm to a subset of the domain,
¢he number of nodes depending on the required order of approximation to the
derivative 1. We have modified the algorithm slightly such that we introduce

weights ('j‘ . Where

d* f S .
oFl 2 Guf(@), (4.4)
I F Jj=sy

where the number of nodes in the stencil is given by s} — sg’ + 1. For a given

aceuracy 1 the number of nodes in a particular stencil depends on the derivative
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I LOCATION OF GRID NODES
k| I -4 -3 -2 -1 0 1 2 3 4
0o 1
| . 1 1
1] 2 —32 0 2
1 2 2 i
4 7] ~3 0 5 W
1 3 3 3 3 1
6 - % ~q 0 i "% 6
1 1 4 4 1 A 1
8 zzlso 105 5 5 U 5 5 105 T 280
21 2 1 -2 1
1 4 5 4 1
4 12 3 2 3 12
. 4 _3 3 _4 3 3 1
6 90 20 2 18 2 20 90
1 8 1 8 205 8 -1 8 1
8 | —ww 315 5 5 72 5 5 315 T 560
| . i _ l
30 2 ) 1 0 1 2
1 13 13 1
1 § -1 o -5 1 -3
G 73 _l¢e 6l 0 6 1 _3 7
L Dl T 20 10 120 30 30 120 10 240 1

Table 4.1: Weights for some centred difference schemes on a regular grid. The
approximations are evaluated at grid node 0. The parameter & denotes the
derivative and I denotes the order of accuracy of the approximation.
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LOCATION OF GRID NODES
k| I 0 1 2 3 4 9 6 7 8
0| o0 1
111 -1 1
. 3 1
2 _‘E 2 2
11 3 1
3 ~%6 3 2 3
25 _ 4 -1
4 - 12 4 3 3 4
£ | 17 - 10 -2 :
5 60 9 5 3 4 5
49 15 20 15 6 -1
6 | -3 6 2 3 4 5 6
7| % 7 _2z 3 _3 a7
140 2 3 7] 5 6 7
761 _ 56 _35 56 _u 8 L
8 280 8 14 3 2 5 3 7 8
211 1 -2 1
2 2 -5 4 -1
3| 88 _26 19 _la u
12 3 2 12
, 1B 1 _ 6L _5
4 a 5 6 13 12 6
< | 23 _s w7 _24 3 _20 137
0 45 5 1 9 2 5 180
6 | M9 _28 819 s 4 201 1019 _7
90 10 20 18 10 180 10
- | 531 _92 621 _4006 691 282 2143  _ 206 363
{ 5040 35 10 45 8 5 90 35 560
-
311 -1 3 -3 1
¢ _5 — _3
9 > 9 12 7 5
3| -1z n _59 49 _4 7
4 4 2 2 4 4
49 _ 461 307 15
41 -3 29 3 62 5 13 2
r | _967 638 3929 389 2545 268 _ 1849 29
J 120 15 40 3 24 5 120 15
6 | s 3ty _ 18353 2391 _ 1457 4891 __ 561 527 469
80 6 120 10 6 30 8 30 T 240

Table 4.2: Weights for some one-sided difference schemes on a regular grid. The
approximations are evaluated at grid node 0. The parameter k denotes the
derivative and I denotes the order of accuracy of the approximation.
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k to be approximated and whether the approximation is centred (as in Table 4.1)
or one-sided (as in Table 4.2). If we define NJ and N; as

N=T+k-1,
Nc={1+k—1, if k is odd,
s I+k-2, ifkiseven.

then N2 +1 corresponds to the number of nodes in a one-sided stencil and N{+1

corresponds to the number of nodes in a centred stencil for a given accuracy [/

and derivative k.

4.2.1 Differentiation Matrices

Before solving the eigenvalue problem itself, it is useful to generate the differenti-
ation matrices D® (square matrices of size N +1 with elements DE';)) associated
with the problem which approximate the derivatives of the unknown variables
le.

yj(k) ~ D®Y;,
where Y; = (Yo, Yj1,-. -, Y] ~)T, Y;, represents our approximation to Y;(z;) and
k is the value of the derivative. The first row of the matrix D) corresponds to

the approximation of the kth derivative at zo. The second row corresponds to

the approximation at z1, and so on. Therefore we have

Diwsny i+1) = Gu (4.5)
for j =0,...,N;and w =0,.. .,N¢/2 — 1. Equation (4.5) is used to calculate
the entries for the first N¢/2 rows of D®) and uses one-sided differences. The
entries for rows N +2— N¢/2,..., N +1 (again using one-sided differences) are
given by

Dgﬁ;)+1)(N+j+1—Ng) = C’(CN—N;’-l-j)w’ (4.6)
for j =0,...,N§ and w=N+1-N¢/2,...,N. The entries for the remaining

rows correspond to centred differences and are given by

(k) _ ik
D(w+1)(j+w+1—N:/2) = Ci+w—Ng/2) w> (4.7)

for j = 0,...,N{ and w = Ng/2,...,N — Ng/2. All other elements of the

matrices D) are set to zero.
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4.2.2 An Algebraic Eigenvalue Problem

We are now in a position to set up our eigenvalue problem. Using the differen-
tiation matrices described in the previous section we generate square matrices

A and B (of size n(N 4 1)) using the following algorithm:

p:=1ton

qg:=1ton

k := 0 to l,q (for matrix A) or my, (for matrix B)
i=1toN+1

ji=1to N+1

Alp-1)(N+1)+i] [(g=D(N+1)+7) °= Al(p-1)(N+1)+i) [(g=1)(N+1)+j] T DE’?hz"(xi_l)
Blp— )W+ ta= 0¥ +143] = Bio-nyv+n il (a- a4 + Diy 957 (@is)
We now enter the rows of the matrices A and B that correspond to the boundary
conditions. First, we initialise all elements in the rows of A and B that will

occupy these boundary conditions to zero. The algorithm that generates the

rows of matrix A for the lower boundary conditions is given by

p:=1ton
g:=1ton
r:=1tof
k=0 to Ypqr
ji=1toN+1

A1y (W4 0+ (a- DN+ +] 7= Alp-1(N+1)4] [0~ DV +1) 4] + DT of ¥ (a)

and the algorithm that generates the rows of matrix A for the upper boundary

conditions is given by

p:=1ton
g:=1lton
ri=u,—1t00
k :=0t0 dpgqr
ji=1ltoN+1

AppN+1)—rl [(g- DN +D+3) = Alp(V41) - (-1 +1)+5] + Dy ;804(0)
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The elements of the corresponding rows of matrix B are zero.

We have thus derived the algebraic eigenvalue problem given by
AY = \BY, (4.8)
for eigenvalues A and eigenvectors
Y = (Ylo,Yu,...,YlN,Yzo,...,Y&N,...,Yno,...,YnN)T. (4.9)

Figures 4.1 and 4.2 provide a summary of the structure of the matrices A and B
respectively. The eigenvalues (and eigenvectors if required) are then found by
the QZ algorithm described by Wilkinson [58], implemented using NAG routine
F02GJF. The computational cost of this method is O(N3 ) where N4 p is the
order of the matrices A and B. Doubling the number of grid points approxi-
mately octuples the runtime of the code since the majority of runtime is taken
up by the QZ algorithm rather than obtaining the matrices A and B. Note
that the differential equation coefficients h%/ and gi’ as well as the eigenvalue
X and eigenfunctions Yp,...,Y, are assumed to be complex in general and we
must decompose the matrices A and B into their real and imaginary parts to
implement NAG routine FO2GJF.

4.3 Test Problems

In order to test the code and gain some idea of the influence of the various
numerical parameters at the user’s disposal, such as number of grid nodes, accu-
racy of approximation to the derivatives and grid point distribution for example,
we first use the code to solve various problems with analytic or known numerical

solution, before tackling an entirely new problem.

4.3.1 Example 1: The Harmonic Equation

The first and simplest test problem is given by the harmonic equation

4’y -
- h (4.10)
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DESCRIPTION

1st lower b.c. corresponding to 1st eq.
2nd lower b.c. corresponding to 1st eq.

¢,th lower b.c. corresponding to 1lst eq.
V) approximated at T = z,,
V) approximated at = = 24,4,

V) approximated at z = xy_,,
1st upper b.c. corresponding to 1st eq.
2nd upper b.c. corresponding to 1lst eq.

u;th upper b.c. corresponding to 1st eq.

1st lower b.c. corresponding to ith eq.
2nd lower b.c. corresponding to ith eq.

¢;th lower b.c. corresponding to ith eq.
V; approximated at = = x,
V; approximated at = x4,

V; approximated at x = zn_,,
st upper b.c. corresponding to ith eq.
2nd upper b.c. corresponding to ith eq.

u;th upper b.c. corresponding to ith eq.

1st lower b.c. corresponding to nth eq.
2nd lower b.c. corresponding to nth eq.

¢,,th lower b.c. corresponding to nth eq.
V., approximated at = x,,
V. approximated at z =z,

V.. approximated at = zy_,,
1st upper b.c. corresponding to nth eq.
2nd upper b.c. corresponding to nth eq.

unth upper b.c. corresponding to nth eq.

(i = )N +1) + ¢,
E-DN+1)+6+1
(-DN+1)+6+2

UN +1) —
(N+1) —u; +1
L(N+1)—uz+2

‘(N +1)

(n,—l)(N+1)+én
n=D(N+1)+¢,+1
(n—1(N+1)+¢,+2

n(N+1)"‘un
n(N + 1) — Up +1
n(N+1)—Un+2

n(N.+ 1)

Figure 4.1: A summary of the structure of the matrix A.
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DESCRIPTION ROW
0 1
0 A
W, approximated at z = g, f+1
W, approximated at T = T, 1 ¢ +2
W, approximated at T = Ty_y, N+1—-u
0 N +2 - U1
0 N+1
0 -1V +1)+1
0 (= DN +1)+4

W; approximated at z = xy,
W; approximated at z = xy, 4

W, approximated at x = Ty_,,
0

0
W, approximated at T = x,,
W, approximated at © = z,, 4,

W, approximated at z = zn_,,,
0

(—1)(N+1)+6+1
E-1D(N+1)+4+2

’L(JV‘Fl)'”u1
i(N"i‘l)—’u,,"f-l

iV +1)
(n-l)(&+1)+1

(n-1(N+1)+¢,+1
(n=1)(N+1)+¢,+2

TL(N + 1) — Uy
n(N+1)~u,+1

(N +1)

Figure 4.2: A summary of the structure of the matrix B.
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—
|
[a]
—
oo

o = O

—_— O

Figure 4.3: The structure of the matrices A and B for the discretised version of
the harmonic equation.

subject to the boundary conditions

Y(0) = Y(1) = 0. (4.11)

This yields a second-order eigenvalue problem which is easily solved to give
eigenvalues A = nw corresponding to eigenfunctions Y, (z) = A,sin(nwrz) for
n = 1,2,.... For this problem we have only one equation to solve. If we adopt
a second-order approximation to the derivative (I = 2) then on a regular grid

(with node spacing h) we have

d?Y(z;)  Y(zioa) = 2Y(2:) + Y(zi1)

da? 2 ;

at the nodes z = z; for i = 1,..., N — 1. The boundary conditions are simply
given as
Y(zo) =Y (2n) =0.

We therefore yield the scheme

)/0 = (0
, 4.12
Yier — 2Yi + Vi, g 12
v = =A%, i=1,...,N -1, (4.13)
Yy = 0, (4.14)

where Y; is our approximation to Y'(z;) at z; and Nh = 1. Written out in the
matrix form described in Sec. 4.2.2 we have AY = vBY where A and B are

shown in Fig. 4.3 and v = —A*h?. Some results for this second-order scheme
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N Eigenvalues A/

5 |0.984, 1.871, 2.575, 3.027

6 [0.989, 1910, 2.701, 3.310, 3.690

7 10991, 1.933, 2.778, 3.484, 4.015, 4.345

10 1 0.996, 1.967, 2.890, 3.742, 4.502, 5.150, 5.672, 6.055, 6.288

15 | 0.998, 1.985, 2.951, 3.884, 4.775, 5.613, 6.390, 7.097, 7.726,
8.270, 8.724, 9.082, 9.341, 9.500

Table 4.3: Numerical results for the harmonic equation.

(I = 2) for various values of N are given in Table 4.3. In general, we find that
increasing N for a given order always leads to more accurate results. Since the
matrix B contains two purely zero rows, two of the N + 1 eigenvalues that NAG

routine FO2GJF returns will be spurious. These are omitted from the table.

4.3.2 Example 2: A Complex-valued Eigenvalue Problem

A less elementary complex-valued test problem is given by the fourth-order
differential equation

ot Tl T =M gE T (4.15)

where @, b and ¢ are constants, subject to the boundary conditions

u(0) = u"(0) =0,
" (4.16)

(1) =0,
where the prime denotes differentiation with respect to z. It is straightforward
to show that a solution set is given by u(x) = sin(nmz) for n = 1,2,..., with
cigenvalues given by

_ (nm)* —a(nm)?+b
= P2 (4.17)

In thecasen=1and a =2+1, b= 3+2i and ¢ = 1+ we find from Eq. (4.17)
that A\; = —9.079711517 — 0.136433041: to 9 decimal places. Table 4.4 gives
the numerical solution in this case for N = 14 and N = 40 for different orders

of accuracy I on a regular grid. Again we find that, in general, increasing the
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N=14 N =40

I Re()\l) Im(/\l) Re()\l) Irn(/\l)

2 11 -9.187772160 | -0.153325847 || -9.081383932 | -0.137267577
4 |l -9.068372056 | -0.135191553 || -9.079640290 | -0.136425543
8 | -9.079678362 | -0.136429365 || -9.079711524 | -0.136433064
10 || -9.079713133 | -0.136433217 || -9.079711615 | -0.136433127
12 N/A N/A -9.079711583 | -0.136433108
14 N/A N/A -9.079711489 | -0.136432305
24 N/A N/A -9.077741329 | -0.136453991

(4

Table 4.4: Numerical results for Example 2. The exact value for this example
is A, = —9.079711517 — 0.136433041: to 9 decimal places. For I > 12 when
N = 14 there are insufficient grid points to allow these orders of approximation.

number of grid points increases the accuracy of the solution for a given order of
approximation I. Note, however, that there appears to be an optimum value of
I for a given number of grid points (in this case I = 10 for N = 14 and [ = 8
for N = 40).

4.3.3 Example 3: Stability of a Ridge of Fluid

This test problem introduces non-constant coefficients in the governing equation
and was derived by Hocking & Miksis [23] who considered the linear stability of
a ridge of fluid of finite width on an inclined plane with constant but different
contact angles at the leading and trailing edges. Specifically, we require the

solution of the ordinary differential equation

h2(ho + A" + hohy(3ho + 2A)hY" — 2¢°h3(he + A)hY

‘ 4.18
—q2hohy(3ho + 2M) W) + h3(ho + A)g*h, = —wh, (4.18)
subject to the boundary conditions
(1 — k)i (=1) + (1 — 3k)hy(~1) =0,
(4.19)

(1 + k)h{(1) — (1 + 3k)hy(1) =0,

where A\, w, g and h; represent the slip coefficient, growth parameter, disturbance
wavenumber and disturbance ridge height respectively, and a prime denotes

differentiation with respect to z. The basic state is given by hg = 3(1 - 2?)(1 +
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c w c w c w
0.5 0.49299354 || 3 | 0.46632354 || 5.5 | 0.45134691
1 | 0.48929054 || 3.5 | 0.46173050 || 6 | 0.45011131
1.5 0.48394491 | 4 | 0.45805246 || 6.5 | 0.44919708
2 |0.47784518 || 4.5 | 0.45519104 || 7 | 0.44853050
2.510.47178626 || 5 | 0.45300162 )| 7.5 | 0.44805120

78

Table 4.5: Numerical results for Example 3 for k£ = 0.5, ¢ = 0.975, A = 10~2 and
the numerical parameter values N = 200 and I = 16. Hocking & Miksis [23]
obtained w = 0.451.

kx) where k is a non-dimensional measure of gravity. In the special case ¢ = 0

(but not otherwise) we must also impose the additional condition

1
/-_1 hldx = 01 (420)

to ensure that the volume of the ridge is conserved. The eigenvalue problem
is formed by fixing k, ¢ and A and solving the system for the eigenvalues w
and eigenfunctions hy. It is found to be beneficial to use an irregular grid z;
for i = 0,...,N, in order to cluster the grid points in the neighbourhood of
the contact lines, z = +1. This grid is obtained from the regular grid u; for
i =0,...,N, (where up = 0 and uy = 1) through the mapping

o tanh|(u; — 1/2)c]
' tanh(c/2) '

for i =0,...,N, (4.21)

first used by Vinokur [57]. The larger the value of the stretching parameter ¢
the more the grid points are clustered towards the contact lines.

Table 4.5 gives the results for the eigenvalue w with the largest real part
for varying values of the stretching parameter ¢ with k& = 0.5, ¢ = 0.975 and
A = 107% with the numerical parameter values N = 200 and I = 16. We find
that the results are in good agreement with those of Hocking & Miksis [23] (who
obtained w = 0.451) and that ¢ = 5.5 yields the most accurate comparison.
Using this optimum value of ¢, Table 4.6 examines the influence of varying N
and I on the most positive eigenvalue for A = 1072 and A = 107* with k = 0.5

and ¢ = 0.975. This table suggests that in most cases an approximate relation
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A=10"°
N | I w N\ T w N | T w
60 | 2 10.52238978 || 80 | 2 | 0.49574334 |} 200 | 14 | 0.45141806
60 | 4 | 0.43989426 || 80 | 4 | 0.44970131 || 200 | 16 | 0.45134691
60 | 6 |0.47433027 || 80 | 6 | 0.46157770 | 200 | 18 | 0.45130048
60 | 8 |0.44949832 || 80 | 8 | 0.45536027 || 200 | 20 | 0.45125405
L 60 | 10 | 0.47573979 || 80 | 10 | 0.45948762 || 200 | 22 | 0.45122018
A =101
NI w NI w N | I w
T60 | 2 |0.48945727 || 80 | 2 | 0.45686759 || 200 | 14 | 0.38015269
60 | 4 10.38570580 || 80 | 4 | 0.39318247 | 200 | 16 | 0.37974491
60 | 6 |0.44165088 || 80 | 6 | 0.41639644 || 200 | 18 | 0.37953581
60 | 8 |0.39188148 { 80 | 8 | 0.39981776 || 200 | 20 | 0.37927074
60 | 10 | 0.45454969 || 80 | 10 | 0.41315678 |i 200 | 22 | 0.37911126

Table 4.6: Numerical results for Example 3 for k = 0.5, ¢ = 0.975, ¢ = 5.5,
A=10"2%and A= 10~%. Hocking & Miksis [23] obtained w = 0.451 for A = 10~
and w = 0.377 for A = 1074,

for the optimum value of I is given by I =~ N/10 which will be used in the
remaining test problems and Chapters 5 and 6.

Figure 4.4 plots the most unstable eigenvalue w against wavenumber g for
k= 0.25, 0.5 and 0.75 when A = 1072 and A = 107" The neutral stability
curves were calculated by Hocking & Miksis [23] and are given by the relation

o _ (1+¢%) tanh(2q) — 29
" (9 + ¢?) tanh(2q) — 6q’

(4.22)

which is independent of A, as confirmed by Fig. 4.4. For reference, Fig. 4.5 plots
the eigenfunctions corresponding to the most positive (most unstable) eigenvalue

for various values of ¢ when £ =0.5 and A = 10-2.

4.3.4 Example 4: Stability of a Capillary Ridge

The motivation for the choice of this example is to use the code to solve a
problem where the basic-state solution must be obtained numerically. Such a
problem was studied by Troian et al. [53] who considered the linear stability of a

¢hin film of fluid flowing down an inclined plane. In a frame of reference moving
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with the capillary ridge the governing equation for the basic-state profile ho(z)

is given by
& +b+1 bb+1)

hg K

where a prime denotes differentiation with respect to z, and b is the thickness of

hy = -1+

(4.23)

the precursor layer at the leading edge of the fluid film. The boundary conditions

are given by
ho > b as z — o0,

0> hgy... =0 as z— —oo.

(4.24)
Linearising Eq. (4.23) about the asymptotic value hg — 1 as z — —o0 and

solving the resulting differential equation yields
ho = 1 + ae® cos(V3Bz) as = — —oo, (4.25)

where a is a constant of integration and § = (2—b—b%)'/3 /2. We solve Eq. (4.23)
as an initial value problem on a truncated domain [0 : 16] using NAG routine
DO02PDF, specifying ko, hy and hg at the left-hand edge using Eq. (4.25). We
choose @ to be a small parameter about which the solution is iterated until
convergence is achieved so that hg — b as £ — oco. Figure 4.6 plots basic-state
profiles for b = 0.05, 0.075 and 0.1.

We are now in a position to analyse the linear stability of these basic states.
The governing equation is given by

ohy + (R)RY" + (3h§hg)RY' — (2¢*R3) Y

3b(1 + b) 3b(1 + b)h,

1+0+0%) — .
+12(1 + ) ™ 2

- 3q2h§h{)] h| + [ + q4hg} hy = 0,

(4.26)
where g, o and h, represent the disturbance wavenumber, growth parameter and

disturbance ridge height respectively. The boundary conditions are given by
hi, hy =0 as z — %oo. (4.27)

Figure 4.7 plots the most unstable eigenvalue ¢ against wavenumber g for b =
0.05, 0.075 and 0.1, and Fig. 4.8 plots the eigenfunctions hi corresponding to
the most unstable eigenvalue for b = 0.1 when ¢ = 0.1, 0.3, 0.5 and 0.7. Similar



4. LINEAR DIFFERENTIAL EIGENVALUE PROBLEMS 82

1.6 T T T T T T T

1.4 +

1.2 |

ho

0.8 |
0.6 |-
0.4

0.2 |

0 N 1 1 1 1 L i
o 2 4 6 8 10 12 14 16
z

Figure 4.6: Basic-state profiles for b = 0.05, 0.075 and 0.1 for Example 4.

results have been given by Troian et al. [53], Kataoka & Troian [25] and Spaid

& Homsy [49] and show excellent agreement with the present example.

4.3.5 Example 5: Flow in a Wedge

Up until now, all the test problems have consisted of only one equation. Here
we use the code to solve three coupled linear differential equations that arise in
studying the stability of a fluid with non-uniform density in a wedge with angle
A. The geometry of the problem is shown in Fig. 4.9. This example has recently
arisen as a simple model for the dynamics of swimming micro-organisms. We

require the solution of the system

8407 820 S . A 820 ) Yot
(9774’ - 2a2-(—9—777" +a*U, ~ a®sinA R = oR, { 377217 - aZU,,} . (4.28)
ou . 0, . . .
ReEﬁU" - 37725 + a®Us — cos A R = —oR,U, (4.29)

_ OR\ - -~ O°R - -
P, (C sin A + 55) Up+ P.Ccos A Ug - B +o*R=-0P,R, (4.30)
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Figure 4.9: Geometry of the problem in Example 5.

which are valid in the boundary layer near § = A, where R and U are given by

R= Csin A

e " cos(yn), (4.31)
U = 2ytan A e~ sin(yn), (4.32)

and

P.Ccos’ A i
y=|—F1 » (4.33)

4
where U,, and U{ are the disturbance velocities in the n and £ directions respec-
tively, R is the perturbation to the density, R and U are the basic-state density
and velocity respectively, R, is the Reynolds number, P, is the Peclet number,
C is the vertical density gradient, o is the disturbance wavenumber and o is the
growth parameter. Figure 4.10 plots typical basic-state profiles of the density
R and the velocity U as functions of n for parameter values C = 1, P, = 1 and

A = m/4. The boundary conditions for this system are

= g = %% g a n=o,

on on

Y (4.34)
U,,, —1 U{, R—0 as 7 — 00.

on
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Figure 4.10: Typical basic-state profiles of the density R and the velocity U as
functions of n for parameter values C =1, P, =1 and A = 7/4 in Example 5.

Preliminary experimental results by Prof. John Kessler of Arizona State Univer-
sity suggest the parameter values R, = 1, P, = 2 X 10* and C = 7.41 x 1077 with
a wedge angle A = m/4. We solve this system on a truncated domain [0 : L] for
the eigenvalues o and the eigenfunctions U,,, UE and R.

Figure 4.11 plots the largest eigenvalue o against wavenumber o for various
values of C. Unlike the previous two examples, here o < 0 for all a which
corresponds to universally stable solutions. Partial verification of this can be
made analytially in the special case C' = 0.

Substituting C = 0 into Eq. (4.30) yields

0*R

o (@ +oP)R=0, (4.35)

subject to

OR

— =0 at n= 0,
o (4.36)
R—0 as n— oo.
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Fig_ll;re 4.11:‘ Plot of largest eigenvalue o against wavenumber o for C = 7.41 x
10-* where i = 3, 4, 5, 6 and 7 as indicated, for Example 5 with the -
values N =90, I =12 and ¢ = 5.5. numerical

The general solution of Eq. (4.35) is given by
R = Cysin [—(a2 + aPe)%n] + Cy cos [——(a2 + gPe)%n]

where C; and C, are constants. If we change the boundary condition at infinity

in Eq. (4.36) to R(L) = 0 we find that C) = 0 and for C; # 0 we require

o=— [dz + (%)2] Pl (4.37)

Table 4.7 compares numerical results with analytic results from Eq. (4.37) for
varying values of @, L and P, where agreement is excellent. Note that o —
—o?/P, < 0as L — ooie. the flow is stable for C = 0.

Figure 4.12 plots the eigenfunctions U,,, 0§ and R for the parameter values
C=0,A=7/4 Re=1, P.=2x10% a=0.5and L = 40.
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L P, Eq. (4.37) Code

20 20 -0.000308425 | -0.000308414
30 | 200 |-0.005013707 | -0.005013707
40 | 2000 | -0.002000771 | -0.002000771
0.5 | 50 | 20000 | -0.000012549 | -0.000012549
0.5 | 100 | 20000 | -0.000012512 | -0.000012512

NN = O R

Table 4.7: Comparison between numerical results and Eq. (4.37) for C = 0,
A = n/4 and R, = 1 in Example 5 with the numerical values N = 90, I = 12
and ¢ = 5.5.
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Figure 4.12: Plot of the eigenfunctions Uy, Us and R for the parameter values

C=0,A=7/4, Re=1 P.=2x10" a=0.5and L = 40 in Example 5.
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Chapter 5

Linear Stability of a Ridge of
Fluid

5.1 Introduction

In Chapters 2 and 3 the stability analysis was restricted to uniform perturbations
for the two-dimensional cases and axisymmetric perturbations for the three-
dimensional cases. In this Chapter we investigate the linear stability to pertur-
bations with variation in the transverse direction of an initially two-dimensional
thin ridge of Newtonian fluid of finite width on a horizontal planar substrate act-
ing under the influence of a jet of air normal to the substrate. Two problems are
considered: the special case when the jet acts at the centre of the ridge (which
in two dimensions corresponds to the planar non-annular problem studied in
Chapter 2) and the more general case when the jet acts off-centre (which in two
dimensions corresponds to the planar annular problem studied in Chapter 3).
For both problems we confirm and extend the corresponding analytical results
of Chapters 2 and 3 in the special case of quasi-static motion (corresponding
to zero capillary number) and investigate numerically the general case of non-
zero capillary number using the numerical code described in Chapter 4. The
linear stability of an initially axisymmetric thin drop to both axisymmetric and

non-axisymmetric perturbations is considered in Chapter 6.

88
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direction
of jet

x=R, (y,t) z=h(x,y,t)

x=R, (y,1)

Figure 5.1: Geometry of the problem.

5.2 Problem Formulation

Consider a ridge of incompressible Newtonian fluid of finite width with constant
viscosity p, density p and surface tension 7 on a solid horizontal planar substrate
in the presence of a jet of air. We employ Cartesian coordinates (z,y, z), chosen
so that the substrate is given by z = 0, the thickness of the fluid film is denoted
by z = h(z,y, t) and the velocity of the fluid is denoted by u = u(x,y, 2,t). The
positions of the contact lines are denoted by = = R;(y,t) at which the contact
angle is ¢ = ¢(t) and z = Ry(y,t) > Ry at which the contact angle is 6 = 6(t),
where t denotes time. We model the jet as before with a parabolic pressure
distribution in the air given by P = py — kz?/2, where P denotes the pressure,
po is the maximum value of the air pressure at £ = 0 and k is a positive constant.
The shear stress at the free surface caused by the jet is again neglected. The
geometry of the problem is shown in Fig. 5.1.

As in Chapters 2 and 3 we follow the approach pioneered by Greenspan [16]

and Ehrhard & Davis [10] and assume that the speeds of the contact lines are
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related to their contact angles by the Tanner Laws

(Ba)e = k(gp — &™), (5.1)
(Rp)e = w(6™ — 67°), (5.2)

where ¢, and 6y are the equilibrium contact angles and s is an empirically-
determined positive constant with dimensions of velocity. More general Tanner
Laws are used in Chapters 2 and 3.

From the results given in Chapter 1 the familiar lubrication approximation

to the governing Navier-Stokes and mass conservation equations yield

0 =p, + pg, (5.3)
ftzz = Pa, (5.4)
[Vzz = Py, (5.5)

Uz + vy +w, =0, (5.6)

where g denotes acceleration due to gravity, subject to the boundary conditions

u=Au, v=2Av, on z=0, (5.7)
pu, =0, wv,=0 on z=Ah, (5.8)
—po- o

p_po——z——r on Zzh, (59)
w = hy +uhy +vh, on z=Ah, (5.10)

where the fluid velocity has been written u=(u, v, w). Equation (5.7) is the slip
condition that mitigates the stress singularity at the contact line. In the simple
Navier slip model used here the slip coefficient X is a (small) positive constant
with the dimensions of length. Equation (5.8) represents zero tangential stress
at the free surface and Eq. (5.9) is the normal stress condition which includes
both the effects of surface tension and the non-uniform external pressure loading
caused by the jet of air. Equation (5.10) is the kinematic free-surface condition

which can be used with Eq. (5.6) to derive the flux condition

he + (Q1)z + (Q2)y =0, (5.11)
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where Q, and Q2 denote the fluxes in the z and y directions respectively defined
by h h
= /0 udz, Q. = /0 vdz. (5.12)

Solving Egs. (5.3) - (5.9) for u and v allows @, and Q) to be evaluated explicitly,
and substituting these expressions into Eq. (5.11) gives the governing equation
for h.

We non-dimensionalise the problem using a characteristic horizontal length
scale L (to be defined subsequently) and « as the characteristic horizontal veloc-
ity scale. The corresponding non-dimensional variables are defined by z = Lz,
y =Ly, h=00Lh', Ry = 0T LRY, R, = 00'LR), t = Lt' [k, ¢ = 04, o = 6oy,
and 6 = 6,8. Dropping the primes at once for simplicity we obtain the non-

dimensional version of the governing equation for h, namely

o (8 5] =0,

y

Chy + [h2 (E + A) ((V2h)y — G?hy + Jz)]
= (5.13)

together with the non-dimensional versions of Egs. (5.1) and (5.2), namely,
(Ra): = o5 — ¢, (5.14)
(Ro)e = 6™ — 1, (5.15)

where the constants J, C and G are as defined previously. The appropriate

boundary conditions for Eq. (5.13) are

h(Ry,y,t) =0, (5.16)
h(Ra,y,t) =0, (5.17)
(ha = (R1)yhy)(1 + (R12) ™3 |omr, = 4, (5.18)
(he = (R2)yhy) (1 + (R2)2) "% o=, = 9, (5.19)

which must be satisfied together with appropriate initial conditions for A, R; and
R,. Note that if we set h = h(x) and A = 0 in Eq. (5.13) we recover Eq. (2.11)(p)

from Chapter 2. Equations (5.16) and (5.17) require the free surface to have zero
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height at the contact lines while Egs. (5.18) and (5.19) ensure that the contact
angles take the correct values. The volume of fluid in a width 2d of the ridge is

Without loss of generality we can choose L = (76y/k)'/® (corresponding to
setting J = 1). For clarity we shall retain J explicitly in all of our analytical
calculations but set J = 1 in all of our numerical calculations.

In what follows we shall restrict our attention to the special case G = 0 when
gravity effects are negligible. In addition we follow Greenspan [16] and Hocking
& Miksis [23] and adopt a linear Tanner Law, obtained by setting m = 1 in
Egs. (5.14) and (5.15).

5.2.1 Basic State

In equilibrium h(z,y,t) = ho(z), Ri(y,t) = RY, Ry(y,t) = RY, § = 1 and
¢ = ¢p. Substituting these expressions into Eqs. (5.13), (5.16), (5.17) and (5.19)

with G = 0 yields the governing equation for the basic state, namely
hy +Jz =0, (5.21)

where the prime denotes differentiation with respect to z, subject to the bound-

ary conditions

ho(RY) = 0, (5.22)
ho(R3) = 0, (5.23)
ho(R) = —1. (5.24)

The solution for hg is given by

J
he = RQ — \z — RO 0 0 RO 1
o= (1 - o)~ B) {37l + (8 + R~ BRS + ) + ol
(5.25)
From Eq. (5.20) the volume of the ridge is given by
_ Lo poe_ o po
V=R - R})? — 365 F2 ~ - R)*(2R! + 3RY), (5.26)
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while from the remaining boundary condition Eq. (5.18) we obtain the relation-

ship between ¢o, R} and RY, namely

J .
¢ =1— (R + Ry)(Rp — Ry)* (5.27)

Note that Eq. (5.27) implies that solutions are possible only if 0 < ¢ < 1.

5.2.2 Linear Stability Problem

In order to analyse the linear stability of the ridge to small perturbations in the
transverse direction with wavenumber g we write A = ho(z)+h(z) exp(iqy+ot),
R, = R) + R} exp(igy + ot) and Ry = RS+ R} exp(iqy + ot), where hy(z) is the
perturbation to the basic-state profile, R{ and R; are the perturbations to the
positions of the contact lines and o is the unknown (complex) growth coefficient.
Substituting these expressions into Egs. (5.13) - (5.19) and retaining only first-
order terms in the perturbations yields the governing equation for h;:

h ! h ,
Cohy + [h% (—33 +A) G —q%)’} ~ ¢*h§ (—39 +A) (hi = ¢*m) =0, (5.28)

which is subject to the boundary conditions

1
R} = ——hi(RY}),
1= 5 1(Ry) (5.29)
R; = hi(RY), (5.30)
Ry (RY) + hg(RY) R} = —o Ry, (5.31)
hy(R3) + hG(RY) R} = —o R;. (5.32)

Eliminating R} and R} from Eqgs. (5.29) — (5.32) and using Eq. (5.25) yields

$oh' (RY) = filJ, Ry, Ry)ha (RY) = ohu(RY), (5.33)
Ry (RS) + fa(J, RS, RO)hy (RY) = —ohy(RY), (5.34)

where the functions fi(J, R}, R}) and fo(J, R}, R)) are given by

J 2
0 o0y — 0 0 0 0
h( R, Ry) = 15(Ry — By)(5R; + 3R,) ~ B-R (5.35)
J

0 0y — 0 _ no 0 0 2
ol R R = 15 (R = RO(RE +3R) — 5o

(5.36)
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As Hocking & Miksis [23] point out, in the special case ¢ = 0 (but not otherwise)
it is also necessary to impose the volume condition

e
RO hldm = 0) (537)

1

as an additional condition.

5.3 The Centred Jet (¢ = 1)

Substituting ¢o = 1 into Eq. (5.27) yields the solution R} = —RY. Hence the
special case of equal contact angles corresponds to the case when the jet acts at

the centre of the ridge.

5.3.1 Basic State

Setting Ro = —R? = Rj in Eq. (5.25) we obtain the basic state solution

1

2am @~ FO) [JRy(R} - 2%) - 12], (5.38)

}I,o =

and from Eq. (5.26) the volume of the ridge is given by
2 o
V = s R(15 - JRy). (5.39)
Figure 5.2 plots basic-state profiles for Ry = 0.6, 1, 1.4, 1.8 and 2.2. These
solutions are exactly the two-dimensional non-annular solutions described in
Chapter 2. Note that “physical” solutions (i.e. solutions for which hg > 0
over the entire interval —Ry < x < Rg) exist only when Ry lies in the range

0< Ry < (12/ )2
5.3.2 Linear Stability Problem

The governing equation for h; is given by Eq. (5.28) subject to the boundary

conditions
JR +3

h.ll(-‘[l),()) + < ) hl(“R()) = O'hl(—RO), (540)

1 (Ro) — ( R )hl(Ro) = —ohy(Ry). (5.41)
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Figure 5.2: Basic-state profiles of the ridge for the centred-jet problem for Ry =
0.6,1, 1.4, 1.8 and 2.2 0

As we have already seen, in the special case ¢ = 0 it is also necessary to impose

the volume condition
“Ro
/_R0 hidz = 0. (5.42)
5.3.3 Quasi-static Motion C' =0

We can make considerable analytical progress in the special case of quasi-static
motion, corresponding to C = 0. Note that all the analytical results presented
here have been confirmed by numerical calculations of the kind described in the

next section.
Two-dimensional Perturbations ¢ =0

Substituting C = 0 and ¢ = 0 into Eq. (5.28) and integrating once yields

hi(ho + 3N)RY = Q" (5.43)
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where @* is a constant. The general solution of Eq. (5.43) can be written in the

form
hy = Q" f(z,J, Ro) + az® + Bz + 1, (5.44)

where a, 8 and v are constants and the function f(z,J, Ry) is not given here
explicitly for brevity. Since f(z,J,Rg) ~ (Ry — z)In(Ry — z)/3)\ as = — Ry
solutions for h; that do not have a singularity at z = Ry are possible only if

Q* = 0. Thus the appropriate solution for A, is simply
hy = az® + Bz + 7, (5.45)

and imposing the volume condition (5.42) on Eq. (5.45) yields & = —3v/RZ. Ev-
idently the solutions for h; can be either symmetric or antisymmetric. For sym-
metric solutions (8 = 0) applying the boundary condition (5.41) to Eq. (5.45)

yields 0 = 040, where

JRS - 6
3R,

recovering the expression for the growth rate of symmetric modes obtained in

Os0 = ’ (546)

Chapter 2. For antisymmetric solutions (a« = v = 0) applying the boundary
condition (5.41) to Eq. (5.45) yields 0 = 049, where

J
Oa0 = 3 > 0. (5.47)

Figure 5.3 plots os and gag as functions of Ry. Note that since o4 > 04
and o4 > 0 the conditionally stable symmetric mode considered in Chapter 2
is always more stable than the unconditionally unstable antisymmetric mode

considered here for the first time.

Three-dimensional Perturbations ¢ > 0

In the general case ¢ > 0 a solution of Eq. (5.28) for h; with C = 0 that does

not have a singularity at z = R, is given by

hy = acosh(gzr) + O sinh(qz), (5.48)
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Oa0

Figure 5.3: Plot of the growth rates of symmetric (050) and antisymmetric (oq)
perturbations as functions of R, for the centred-jet problem in the case ¢ = 0

and C = 0.

where a and 3 are constants. Again, the solutions for h; can be either symmetric
or antisymmetric. The growth rate of symmetric modes (8 = 0) is given by
- JR} +3
s = _3R0
Note that g; — G50 as ¢ — 0, where 6,0 = (JR3 + 3)/3Ry # 0, i.e. because

these solutions do not satisfy the volume condition (5.42) we do not recover the

— qtanh(qRy). (5.49)

solution obtained previously in the case ¢ = 0 in the limit ¢ — 0. The growth
rate of antisymmetric modes (o = 0) is given by
- JR}+3
[ 3R0
Note that g, — G40 as ¢ = 0, where 6,9 = JR§/3 = 04, i.2. because these

solutions do satisfy the volume condition (5.42) we recover the solution obtained

— gcoth(gRo). (5.50)

previously in the case ¢ = 0 in the limit ¢ — 0. The neutral stability curves
for ¢ > 0 obtained by setting o, = 0 and o, = 0 in Egs. (5.49) and (5.50)

respectively are plotted in Fig. 5.4.
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Figure 5.4 Neutral stability curves for symmetric (o5 = 0) and antisymmetric
(0, = 0) perturbations in the (q,Ro) plane for the centred-jet problem in the case
g > 0 and C = 0. Here (A) denotes antisymmetric modes and (S) symmetric

modes.
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Figures 5.5(a) — (e) plot the growth rates o; and o, as functions of ¢ > 0
for Ry = 0.6, 1, 1.4, 1.8 and 2.2 respectively. Symmetric modes are denoted by
solid lines and antisymmetric modes by dashed lines. At ¢ = 0, a filled circle
denotes a solution, an empty circle no solution. Note that the lower filled circle
corresponds to oy, i.e. to the symmetric mode obtained in Chapter 2. Since
o, > 0, for ¢ > 0, both o and o, are monotonically-decreasing functions of ¢
for all ¢ > 0, G50 > 6a0 = Tao > Os0 and G50 > 0, we deduce that long-wavelength
symmetric modes with growth rate approaching 5o in the limit ¢ — 0 are always

the most unstable when C = 0.

5.3.4 The General Case C # 0

To obtain the neutral stability curves for C # 0 we set o = 0 in Eq. (5.28)
and the boundary conditions (5.40) and (5.41). This procedure yields the same
neutral stability curves as those calculated previously in the case C' = 0 as shown

in Fig. 5.4. When o # 0 we must proceed numerically.

Results

Figures 5.6(a) - (e) plot the largest eigenvalues as functions of ¢ > 0 for Ro=0.6,
1,1.4,1.8and 2.2 respectively in the case C' = 1. Symmetric modes are denoted
by solid lines and antisymmetric modes by dashed lines. At ¢ = 0, a filled circle
denotes a solution, an empty circle no solution. In all the numerical computa-
tions we found that only the two largest eigenvalues ever take positive values,
and that one of these eigenvalues always corresponds to symmetric modes and
the other always corresponds to antisymmetric modes. Typically both modes
are unstable in certain ranges of g, but the nature and location of the most
unstable mode (with o = ¢* at ¢ = ¢*) changes as Ry is varied. As Fig. 5.6(a)
shows, when Ry = 0.6 the most unstable mode is symmetric with o* ~ 0.0171
at ¢* ~ 1.41, but when Ry increased to 1 the most unstable mode is antisym-
metric with o* = 0.0231 at ¢* = 0 (Fig. 5.6(b)). As Ry is increased further
to 1.4 and 1.8 the most unstable mode is still antisymmetric with o* = 0.0357

when Ry = 1.4 and ¢* = 0.0375 when Ry = 1.8 at ¢* = 0 (Figs. 5.6(c) and
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Figure 5.5: (a) (e): Plot of the growth rates of symmetric (o,) and antisym-
metric (04) perturbations as functions of ¢ > 0 for the centred-jet problem for
Ry, = 0.6. 1, 1.4. 1.8 and 2.2 respectively in the case C = 0. Symmetric modes
are denoted by solid lines and antisymmetric modes by dashed lines. At ¢ =0, a
filled circle denotes a solution, an empty circle no solution. Note that the lower
solution at ¢ = 0 is outwith the range of the plot in (a).
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by da.\shed lines. At ¢ = 0, a filled circle denotes a solution, an i modes
solution. , empty circle no
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Figure 5.7: Plot of 0 as a function of Ry for the centred-jet problem for C = 1,
0.1, 0.01, 0.001 and C = 0. Symmetric modes are denoted by solid lines and
antisymmetric modes by dashed lines.

5.6(d)). However, as Fig. 5.6(e) shows, as Ry is increased still further to 2.2
the symmetric mode once again becomes the most unstable with ¢* ~ 0.0279 at
q* =~ 1.08. This “switching” between symmetric and antisymmetric modes as Ry
is increased is summarised in Figs. 5.7 and 5.8 which plot o* and ¢* as functions
of R, for a range of values of C. For completeness Fig. 5.7 also shows the curve
for o' = G in the case C = 0 which is achieved in the limit ¢ — 0. Note that
in both Figs. 5.7 and 5.8 there is a small region near Ro = 2.2 on the curves
for C = 1 and C = 0.1 that corresponds to symmetric modes, but that this
region is absent from the curves for C = 0.01 and C = 0.001. Figure 5.9 plots
the largest cigenvalues when ¢ = 0 as functions of Ry for a range of values of C
together with the solutions g0 = J R2/3 and g5 = (JR} — 6)/3R, appropriate
in the case C = 0. In particular, Fig. 5.9 shows how the numerically-calculated

values of o when g = 0 approach g4 and oy in the limit C — 0.
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Figure 5.8: Plot of ¢* as a function of Ry for the centred-jet problem for C =1
0.1, 0.01 and 0.001. Symmetric modes are denoted by solid lines and antisym-
metric modes by dashed lines.

5.4 The Off-Centred Jet 0 < ¢ < 1

The general case of unequal contact angles (0 < ¢ < 1) corresponds to the
case when the jet acts off centre. Since ¢ # 1, solutions of this kind are only
possible when the two contact angles in the basic state are different i.e. when

the nature of the substrate is different near the two contact lines.

5.4.1 Basic State

The basic-state solution is given by Eq. (5.25) and the volume of the ridge by
Eq. (5.26). Figure 5.10 plots basic-state profiles for R =2, 2.4, 2.8 and 3.2
in the case ¢ = 0.6. These solutions are exactly the two-dimensional annular
solutions described in Chapter 3. Note that for a given value of ¢ (0 < ¢ < 1),
solutions exist only for values of R} greater than a critical value corresponding

to the limiting case in which R} = 0.
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Figure 5.9: Plot of the largest eigenvalues when ¢ = 0 as functions of Ry for
the centred-jet problem for C =1, 0.1, 0.01 and 0.001. Symmetric modes are
denoted by solid lines and antisymmetric modes by dashed lines. The thin curves
denote the cigenvalues obtained numerically when C # 0 and the thick curves
denote the cigenvalues o = (JR — 6)/3Rg and 049 = JR%/3 appropriate in
the case C = 0.
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Figure 5.10: Basic-state profiles of the ridge for the off-centred-jet problem for
R3=12,24,28and 32in the case ¢¢ = 0.6.

5.4.2 Linear Stability Problem

The governing equation for hy is given by Eq. (5.28) subject to the boundary
conditions (5.33) and (5.34). Again in the special case ¢ = 0 it is also necessary to
impose the volume condition (5.37). Note that in this case all the eigenfunctions

are asymietric.

5.4.3 Quasi-static Motion C =0

As before. we can make considerable analytical progress in the special case of
quasi-static motion (€' = 0). Again all the analytical results presented here have

been confirmed by numerical calculations.

Two-dimensional Perturbations ¢ = 0

From Sec. 5.3.3 the solution for Ay when C' = 0 and ¢ = 0 is given by Eq. (5.45).
Applving boundary conditions (5.33) and (5.34) and the volume condition (5.37)

yields the expressions for the growth rates obtained in Chapter 3, namely o =
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Figure 5.11: Plot of the growth rates g, and og_ as functions of R for the
off-centred-jet problem for ¢ = 0.2, 0.4, 0.6 and 0.8 in the case ¢ = 0 and

C=0.

0o+ and o0 = 0o where

J
o0t = 5 (f2 = Ry)* >0, (5.51)
— J ho 0\ RO 4
a- = 5 - RY)(RY + 3RY) —- e (5.52)

Figure 5.11 plots ao, and gg_ as functions of RY for ¢ = 0.2, 0.4, 0.6 and 0.8.
Since og4 > 0 the ridge is always unstable when C' = 0 and ¢ = 0. Note that
unlike in the centred-jet case, the analysis in Chapter 3 includes both of the

possible modes in this case.

Three-dimensional Perturbations ¢ > 0

From Sec. 5.3.3 the solution for hy in this case is given by Eq. (5.48) subject
to the boundary conditions (5.33) and (5.34). Solving this system yields two
expressions for o, namely o4 and g,_, given by

_4¢(12 = ¢*JRY) sinh(g¢) — 129¢%(do + 1) cosh(g¢) + 3¢2X 3
Tot = 24(?sinh(q() - (5.53)
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Figure 5.12: Neutral stability curves in the (g,R3) plane corresponding to o,y =
0 for the off-centred-jet problem for ¢o = 0.2, 0.4, 0.6 and 0.8 in the case ¢ > 0

and C = 0.

where we have written RS = R} + ¢ and X is defined to be

X = 8¢(¢} + 6 + 1) — 2J°C3(C + 2R8)? + 2[4¢%(go — 1)+

JACHC + 2R cosh(20C) + JaC(C + 2R (G — 1) sinh(2g0). 0D
In particular, as ¢ = 0 we have o,x — 6o+ Where
Gos = 6(3 — ¢o) — 2JRICE £ 3V 3 | (5.55)
12(
where Y is defined to be
V= (1 + o) +4JCH(C + 2RY) (9o — 1) + J3CH(C + 2RY))%. (5.56)

Note that doy # Toy and 69~ # 0y, 1.e. because neither of these solutions

satisfy the volume condition (5.37) we do not recover the expressions obtained

previously in the case ¢ = 0 in the limit ¢ — 0. The neutral stability curves

for ¢ > 0 obtained by setting 0,4 = 0 in Eq. (5.53) are plotted in Fig. 5.12 for
o = 0.2, 0.4, 0.6 and 0.8.
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Figure 5.13: (a) (d): Plot of the growth rates o4+ and o, as functions of
> 0 for the offi-centred-jet problem for R = 2.5, 3, 3.5 and 4 for ¢ = 0.2, 0.4,
0. 6 and 0.8 respectively in the case C = 0. At ¢ = 0, a filled circle denotes a

solution, an cmpty circle no solution.
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Figures 5.13(a) - (d) plot the growth rates o4, and o, as functions of ¢ > 0
for R = 2.5, 3, 3.5 and 4 for ¢y = 0.2, 0.4, 0.6 and 0.8 respectively. Note
that the filled circles at ¢ = 0 correspond to oy, i.e. to the modes obtained in
Chapter 3. Since 044 > 04— for ¢ > 0, both 0,4 and o,_ are monotonically-
decreasing functions of ¢ for all ¢ > 0, 604 > g4 > 69— > 0p- and 6p4 > 0, we
deduce that long-wavelength symmetric modes with growth rate approaching

o+ in the limit ¢ — 0 are always the most unstable when C = 0.

5.4.4 The General Case C #0

To obtain the neutral stability curves when C' # 0 we set 0 = 0 in Eq. (5.28)
and the boundary conditions (5.33) and (5.34). This procedure yields the same
neutral stability curves as those calculated previously in the case C' = 0 as shown
in Fig. 5.12. Again, when o # 0 we must proceed numerically.

Figures 5.14(a) - (d) plot the largest eigenvalues as functions of ¢ > 0 for
R$=125,3,35 and 4 for ¢y = 0.2, 0.4, 0.6 and 0.8 respectively in the case C = 1.
As Fig. 5.14 shows, as Ry is increased the values of 0* > 0 and ¢* increase and
so the ridge is again unconditionally unstable. However, the switching between
modes seen in the centred-jet case does not occur in this case. This behaviour
is summarised in Figs. 5.15 and 5.16 which plot o* and ¢* as functions of R
for a range of values of C.  For completeness Fig. 5.15 also shows the curve for
o° = Ggs in the case C = 0 which is achieved in the limit ¢ — 0. Figure 5.17
plots the largest cigenvalues when g = 0 as functions of RJ for a range of values
of C together with the solutions og4 and oo- appropriate in the case C = 0.
In particular, Fig. 5.17 shows how the numerically-calculated values of o when

g = 0 approach gg, and g in the limit C' — 0.
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Figure 5.14: (a) (d): Plot of the largest eigenvalues as functions of ¢ >

the off-centred-jet problem for R} = 2.5, 3, 3.5 and 4 for ¢ = 0.2, 0 4q Z o

0.8 respectively in the case C = 1. At ¢ = 0, a filled circle(a) den(;tzes .a,sgl'gt?‘nd
ion,

an empty circle no solution.
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Figure 5.15: Plot of 0* as a function of RY for the off-centred-jet problem for
C =1, 0.1, 0.01, 0.001 and C' = 0 in the case ¢o = 0.6.

Figure 5.16: Plot of ¢* as a function of R) for the off-centred-jet problem for
C =1, 0.1, 001 and 0.001 in the case ¢y = 0.6.
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Figure 5.17: Plot of the largest eigenvalues when g = 0 as functions of Rj for
the off-centred-jet problem for C' =1, 0.1, 0.01 and 0.001 in the case ¢g = 0.6.
The thin curves denote the eigenvalues obtained numerically when C # 0 and
the thick curves denote the eigenvalues ooy appropriate in the case C = 0.



Chapter 6

Linear Stability of a Drop of
Fluid

6.1 Introduction

In this Chapter we investigate the linear stability to both axisymmetric and non-
axisymmetric perturbations of an initially axisymmetric thin drop of Newtonian
fluid either on a uniformly rotating substrate or under the influence of a jet of
air directed normally towards a stationary substrate. Following the pattern of
Chapter 5, two problems are considered: one in which the drop has no dry patch
(a non-annular drop) and one in which the drop has a dry patch at its centre
(an annular drop). For each problem we confirm and extend the corresponding
analytical results of Chapters 2 and 3 in the special case of quasi-static motion
(zero capillary number) and investigate numerically the general case of non-zero

capillary number using the numerical code developed in Chapter 4.

6.2 Non-annular Drops

6.2.1 Problem Formulation

Consider a non-annular drop of incompressible Newtonian fluid with constant
viscosity p, density p and surface tension 7 on a solid horizontal planar sub-
strate in the presence of a jet of air. We employ cylindrical polar coordinates

(r, ¥, 2), chosen so that the substrate is given by z = 0, the thickness of the

113
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direction
of jet

I z=h(r,q t)

Figure 6.1: Geometry of the non-annular problem.

drop is denoted by z = h(r,¢,t) and the velocity of the fluid is denoted by
u = u(r, ¢, 2, t), where t denotes time. The position of the contact line is de-
noted by r = R(ip,t) at which the contact angle is § = 8(t). We again model
the jet with a parabolic pressure distribution in the air given by P = py — kr2/2,
where P denotes the pressure, po is the maximum value of the air pressure at
r = 0 and k is a positive constant. The shear stress at the free surface caused by
the jet is again neglected. The geometry of the non-annular problem is shown
in Fig. 6.1.

We follow the approach pioneered by Greenspan [16] and Ehrhard & Davis [10]
and assume that the speed of the contact line is related to the contact angle by

the Tanner Law
R, = (6™ - 6'), (6.1)

where 6, is the equilibrium contact angle and k is an empirically-determined

positive constant with dimensions of velocity. More general Tanner Laws are

used in Chapters 2 and 3.
From the results given in Chapter 1 the familiar lubrication approximation
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to the governing Navier-Stokes and mass conservation equations yield

0 =p, + pg, (6.2)
HUzz = Pr, (6.3)
1
HUzz = ;Pq:, (64)
1 1
;(Tu)r + 7V +w, =0, (6.5)

where g denotes acceleration due to gravity, subject to the boundary conditions

u=Au,, v=>Mv, on z2=0, (6.6)

u, =0, /wz=0 on z=Ah, (6.7)
k

p= po—-;——TV2h on z=Ah, (6.8)

wzht-i'uhr-i-;h(,J on z=h, (6.9)

where the fluid velocity has been written u=(u, v, w). Equation (6.6) is the slip
condition that mitigates the stress singularity at the contact line. In the simple
Navier slip model used here the slip coefficient X is a (small) positive constant
with the dimensions of length. Equation (6.7) represents zero tangential stress
at the free surface and Eq. (6.8) is the normal stress condition which includes
both the effects of surface tension and the non-uniform external pressure loading
caused by the jet of air. Equation (6.9) is the kinematic free-surface condition

which can be used with Eq. (6.5) to derive the flux condition

bt Q) + (@] =0, (6.10)

where Q; and (), denote the fluxes in the r and ¢ directions respectively defined

0, :/0 udz, Q2=/0 vdz. (6.11)
Solving Eqgs. (6.2)  (6.8) for uand v allows Q) and @), to be evaluated explicitly,
and substituting these expressions into Eq. (6.10) gives the governing equation
for h.

We non-dimensionalise the problem using a characteristic radial length scale

L (to be defined subsequently) and k as the characteristic horizontal velocity
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scale. The corresponding non-dimensional variables are defined by r = L,
o=, h=06Lk, R= LR, t = Lt'/k, and 6 = 6,6'. Dropping the primes
at once for simplicity we obtain the non-dimensional version of the governing

equation for h, namely

L,pe E 2 2
Chy+ = |rh <3+A> ((V2h), — G?h, +J7~)}

1 h (6.12)
+ ;3 [h2 (g + /\> ((V2h)¢ - G2h¢)] = (),
]
together with the non-dimensional version of Eq. (6.1), namely,
Ry =0" -1, (6.13)

where the constants J, C and G are as defined previously. Note that if we
set b = h(r) and A = 0 in Eq. (6.12) we recover Eq. (2.11)(a) from Chapter
9. Without loss of generality we can choose L = (16y/k)'/* (corresponding to
setting J = 1). Asin Chapter 5 we shall retain J explicitly in all of our analytical
calculations but set J = 1 in all of our numerical calculations.

Note that if we identify the dimensional jet strength k with pw? then Eq. (6.12)
is identical to the equation describing the spin coating of a thin drop on a hor-
jzontal substrate rotating with constant angular speed w. Hence all the results
presented here apply to both spin-coating and air-jet-blowing problems.

The appropriate boundary conditions for Eq. (6.12) are

h(R, ;) =0, (6.14)
1, AN
(hf "Rl ( 7{) (6.15)
together with the regularity conditions
h.(0,,t) = 0, (6.16)
Q:1(0,¢,) =0, (6.17)

which must be satisfied together with appropriate initial conditions for h and

R. Equation (6.14) requires the free surface to have zero height at the contact
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line and Eq. (6.15) ensures that the contact angle takes the correct value. The

volume of the drop is given by
oV 27 Rh
T = /0 /0 rdrde. (6.18)

In what follows we shall restrict our attention to the special case G = 0 when
gravity effects are negligible. In addition, we follow Greenspan [16] and adopt
the linear Tanner Law obtained by setting m =1 in Eq. (6.13).

6.2.2 DBasic State

In equilibrium A(r, 0, t) = ho(r), R(p,t) = Ry and 6 = 6. Substituting these
solutions into Egs. (6.12) and (6.14) - (6.16) and using Eq. (6.17) with G = 0

yields the governing equation for the basic state, namely
mn 1 " ]'
ho + ’;"ho - T—2‘h0 + Jr = O, (619)

where the prime denotes differentiation with respect to r, subject to the bound-

ary conditions

ho(Rp) =0, (6.20)
ho(Ro) = -1, (6.21)
ho(0) = 0. (6.22)
The solution for hg is given by
1
hy = 35 (r* = RS) [ JRo(R§ — 1%) - 16]. (6.23)

From Eq. (6.18) the volume of the drop is given by
1

V=1%

Ry(24 - JRY). (6.24)

Figure 6.2 plots the basic-state profiles for Ry = 1, 1.5, 2 and 2.5. These solutions
are exactly the axisymmetric non-annular solutions described in Chapter 2. Note
that “physical” solutions (i.e. solutions for which kg > 0 over the entire interval

0 < r < Ry) exist only when Ry lies in the range 0 < Ry < (16/J)/3,
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Figure 6.2: Basic-state profiles of a non-annular drop for Ry = 1, 1.5, 2 and 2.5.

6.2.3 Linear Stability Problem

In order to analyse the linear stability of the drop to small perturbations with
azimuthal wavenumber ¢ > 0 we write h = ho(r) + h(r) exp(iqp + ot) and
R = Ry + Ry exp(igy + at), where h;(r) is the perturbation to the basic-state
profile, R; is the perturbation to the position of the contact line and o is the
unknown (complex) growth coefficient. Note that the wavenumber ¢ must be
an integer to ensure physically-sensible solutions. Substituting these expressions
into Egs. (6.12) - (6.17) and retaining only first-order terms in the perturbations
yields the governing equation for h;:

1{ o9 ho s U ¢\

e o [ (5 02) (6 + - )
T CORYA Y. (6.2

L (-3‘ + /\) (hl + ;h, - ;511,1) = (),

which is subject to the boundary conditions

R, = hi(Ro), (6.26)
Ry = h(—-Ry), (6.27)
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R (Ro) + hi(Ro)R, = —0oR;. (6.28)
hi(—Ry) — h{(—Ro)R, = oR,. (6.29)
Eliminating R, from Eqs. (6.26) — (6.29) and using Eq. (6.23) yields
Iy (— Ro) + (’]ﬁ; 4) hy(—=Ro) = ol (= Ro), (6.30)
0
Ry (Ro) — (Ji?}%: 4) hi(Rp) = —ahy(Ry). (6.31)

In the special case ¢ = 0 (but not otherwise) it is also necessary to impose the

volume condition
"Ry
/ hirdr =0, (6.32)
0

as an additional condition.

6.2.4 Quasi-static Motion C =0

We can make considerable analytical progress in the special case of quasi-static
motion, corresponding to C' = 0. Note that all the analytical results presented
here have been confirmed by numerical calculations of the kind described in the

next section.

Axisymmetric Perturbations ¢ =0

The general solution when C' =0 and ¢ = 0 can be written in the form
hy =Q*f(r,J,Ry) +ar* + 3 +~vlnr, (6.33)

where Q*, «, # and v are constants and the function f(r, J, Ry) is not given
here for brevity. Since f ~ In(Ro/7) In(Ro — 7)/3A as r — Ry, solutions for i,
that do not have a singularity at » = Iy are possible only if @* = 0. Thus the

appropriate solution for h; is simply
hy =ar*+ G+ vlnr. (6.34)

For solutions that are bounded at the origin we set ¥ = 0. Using boundary
condition (6.31) and volume condition (6.32) yields ¢ = gy, where

_JRY - 12
4Ry

Ty

(6.35)



6. LINEAR STABILITY OF A DrRoP OF FLuUID 120

recovering the conditionally stable growth rate obtained in Chapter 2.
Non-axisymmetric Perturbations ¢ > 1

A solution of Eq. (6.25) for h;y when C = 0 that does not have a singularity at

r= RQ is
B

hy =ar?+ —,
rd

(6.36)

where a and § are constants. For solutions that are bounded at the origin we
require 8 = 0 and using the boundary condition (6.31) yields o = o,, where

. = JR3 +4(1 - q)

“ 4Ry ’

for g =1,2,3,.... Note that, because these solutions do not satisfy the volume

(6.37)

condition (6.32), substituting ¢ = 0 into Eq. (6.37) does not recover the expres-
sion obtained previously for op. The neutral stability curves are obtained by
setting o, = 0 in Eq. (6.37) and are given by
1
Ry = (é&g_l]j)) " (6.38)
forg=1,2,3,...

General Perturbations ¢ > 0

Figure 6.3 plots the growth rate o, as a function of Ry for ¢ = 0, 1, 2, ...,
7. Since the largest eigenvalue is o; = JR3/4 > 0 the drop is unconditionally
unstable via the ¢ = 1 mode. Note that 04 = oy and so both ¢ = 0 and
g = 4 modes correspond to exactly the same curve in Fig. 6.3. Furthermore, the
neutral stability curve for ¢ = 5 is identical to the curve where the basic-state
solutions become unphysical, namely Ry = (16/J)Y/®. For ¢ > 5 Fig. 6.3 shows
that o, < 0 for all values of Ry corresponding to physical solutions, and hence

these modes are always stable.

6.2.5 The General Case C # 0

To obtain the neutral stability curves for C # 0 we sct ¢ = 0 in Eq. (6.25) and

the boundary conditions (6.30) and (6.31). This procedure yields exactly the
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Figure 6.3: Plot of the growth rates o, for ¢ = 0, 1, 2, 3,..., 7 as a function of
R, for a non-annular drop in the case C = 0.

same neutral stability curves as those calculated previously in the case C = 0
as given by Ry = (12/J)'/3 for the ¢ = 0 mode, and by Eq. (6.38) for the ¢ > 1

modes. When o # 0 we must proceed numerically.

Results

Figure 6.4 plots the largest eigenvalue as a function of R, forg=0,1, 2,3, ...,
6 in the case C = 1. The neutral stability points are given by Ry = (12/J)Y/3
for the ¢ = 0 mode, and by Eq. (6.38) for the ¢ > 1 modes. For Ry in the
range 0 < Ry < 2.12 the most unstable mode corresponds to ¢ = 1, while for
2.12 < Ry < 2.46 it corresponds to ¢ = 2 and for 2.46 < Ry < (16/J)/* ~ 2.52
to ¢ = 3. Note that the curves corresponding to the ¢ = 0 and ¢ = 4 modes are
distinct for C # 0 and coincide only in the special case C = 0.

Figures 6.5(a) - (d) plot the largest eigenvalue as a function of R, for ¢ = 0,
1,2, 3,..., 7for C =1, 0.1, 0.01 and 0.001 respectively. The thick curves
correspond to the solutions in the special case C = 0 given by o, for ¢ = 0,

1,2,3, ..., 7. The results in the case C = 1 (Fig. 6.5(a)) have already been
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Figure 6.4: Plot of the largest eigenvalue as a function of Ry for a non-annular
drop forq =0, 1, 2, 3,..., 6 in the case C' = 1.

described. For € = 0.1 (Fig. 6.5(b)) the most unstable mode corresponds to
g=11for 0 < Ry < 219 and to ¢ = 2 for 2.19 < Ry < 2.52. For C = 0.01
(Fig. 6.5(c)) the same qualitative behaviour occurs, however the value of Ry at
which the most unstable mode changes from the ¢ = 1 mode to the ¢ = 2 mode
is Ry ~ 2.38. For C = 0.001 (Fig. 6.5(d)) the most unstable mode corresponds
to g = 1 for all values of Ry corresponding to physical solutions. In particular,
Fig. 6.5 shows how the numerically-calculated values of ¢ approach o, in the

limit C — 0.
6.3 Annular Drops

6.3.1 Problem Formulation

Clearly, the major difference between the annular drops discussed in this section
and the non-annular drops discussed in the previous section is that the former
have two contact lines and hence two contact angles. The positions of the

“inner” and “outer” contact lines are denoted by = R (p.t) at which the
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Figure 6.5: (a) (d) Plot of the largest cigenvalue as a function of Ry for a
non-annular drop for ¢ =0, 1, 2, 3,..., 7 for C = 1, 0.1, 0.01 and 0.001. The
thick curves correspond to the solutions oy = (JR} — 12)/4R; for ¢ = 0 and
o,=(JR}+4(1 - q))/4Ry for¢=1,2,3, ..., 7.
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Figure 6.6: Geometry of the annular problem.

contact angle is ¢ = ¢(t) and 7 = Ry(p,t) > R; at which the contact angle is

§ = 0(t), respectively. The geometry of the annular problem is shown in Fig. 6.6.

Since there are now two moving contact lines, we need to replace Eq. (6.1)

by two Tanner Laws relating the speed of each contact line to its contact angle.

These are given by

(R1): = w(dg" — 8™), (6.39)
(Ry)e = k(6™ - 67"), (6.40)

where ¢y and 6y are the equilibrium values of the inner and outer contact angles
respectively.
The non-dimensional governing equation for h is again given by Eq. (6.12)

together with the non-dimensional versions of Egs. (6.39) and (6.40), namely

(Ry): = ot — 9™, (6.41)
(Rp)y = 6™ — 1. (6.42)
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The appropriate boundary conditions for Eq. (6.12) in this case are

h’(Rla Lp) t) = 07 (643)
h(R27 ¥, f) = 03 (644)
1 UDAN
h, — = (Ry),h 2 = ¢, 4
( R%( 1)“’ ‘p> <1 i R? r=R ¢ (6 5)
1 (Ry)Z ~2
(h, E(Rg)wizw> (1 v ) =0 (6.46)

which must be satisfied together with appropriate initial conditions for h, R,

and R,. The volume of the annular drop is given by
2r rRy
2V = / hr drdg. (6.47)
0 R,

In what follows we shall again restrict our attention to the special case G = 0
when gravity effects are negligible, and adopt the linear Tanner Laws obtained

by setting m = 1 in Eqgs. (6.41) and (6.42).

6.3.2 Basic State

In equilibrium h(r,¢,t) = ho(r), Ri(p,t) = RY, Ry(p,t) = Ry, 6 = 6y and
¢ = ¢p. Substituting these expressions into Egs. (6.12), (6.43), (6.44) and (6.46)
with G = 0 yields the governing equation for the basic state given by Eq. (6.19)

subject to the boundary conditions

ho(RY) = 0, (6.48)
ho(RY) = 0, (6.49)
ho(RY) = —1. (6.50)
The solution for kg is given by
ho = f(r, RY, By) + Jg(r, Ry, Ry), (6:51)

where the functions f(r, RY, RY) and g(r, RY, R)) are given by

f(r RO RY) = {Rg[(Rg)2 — 1 In R — RY(RY) — r*)In RS
,(6.52)
- RYURY? = (e [{ (B2 = ()2 + 208 (/R )
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1 e . ‘ e

T3 2B — 4 RS+ 2R — (R ng
+2(R9)[(RY)? — r?][2(R9)? — (R))? — r?] In RY — [(RY)* - 7] (6.53)

<((RY? - PR - (R (2 - ()2 + 20wy RY)

g(r, RY, RY) =

From Eq. (6.47) the volume of the drop is given by
V = S(RY, B + JT(RY, RY), (6.54)
where the functions S = S(RY, RY) and T = T(R?, RY) are given by

SRS, RY) = 1{ RIR)" = (R In(R/ ) + RA((RLY: ~ (RO}

4 .
- (6.55)
<{ (B2 - (RY? + 2R m(RY/RY}
T(RS, R = - {4(RY2(RSY? + (RYPII(RY? — (R Wn(RY/ RY)
HR? +5(RYP(RY? - (R} (6.56)
(sl — (Y2 + 2 m(RY Y]}

The remaining boundary condition (6.45) yiclds the relationship between ¢g, RY

and RY, namely
oo = {I(RY? — (ROA(RY)" — (RY)* + 4(REY (R n( R/ BLI
“16RY[(RY)? — (RY)2 + 2(RY)? 1:1(30/1?0)]} (6.57)
x{lGR‘l’[(R}j) (R9)? +2(R0)21n(R°/R0)]}*1.

Figure 6.7 plots the basic-state profiles for Ry = 2, 2.3, 2.6 and 2.9 in the
case ¢g = 1. These solutions are exactly the axisymmetric annular solutions
described in Chapter 3. For ¢y < 1 solutions exist only for values of R) greater
than a critical value, while for ¢y > 1 solutions exist only for values of RY less
than a critical value. This behaviour is shown in Fig. 6.8 which plots RY against

the corresponding value for [\’,3 in the cases ¢y = 0.7. 1 and 1.3.
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R =2

h

2.9

Figure 6.7: Basic-state profiles of an annular drop for RY = 2, 2.3, 2.6 and 2.9
in the case ¢ = 1.

R,

Figure 6.8: Plot of RY against I?) for annular solutions corresponding to ¢y = 0.7,
I and 1.3.



6. LINEAR STABILITY OF A DROP OF FLUID 128

6.3.3 Linear Stability Problem

In order to analyse the linear stability of the drop we perturb h as before and
write Ry = RY+ R} exp(igp+ot) and Ry = RY+ R} exp(iqe +ot), where R} and
R} are the perturbations to the positions of the contact lines. Substituting these
expressions into Egs. (6.12) and (6.41) - (6.46) yields the governing equation for
h, given by Eq. (6.25) which is subject to the boundary conditions

1
R} = ——hy(RY),

6.58
e (6.58)

R} = hy(RY), (6.59)
W (RY) + hg(RY Ry = —o Ry, (6.60)
hi(R9) + hg(R3) Ry = —o R}, (6.61)

Eliminating R} and Rj from Egs. (6.58) — (6.61) and using Eq. (6.51) yields
¢l (R)) — fi(J, RY, Rp)i(RY) = ohi(RY), (6.62)
By (R3) + f2(J, R, Rp)hu(Ry) = —olu (Ry), (6.63)
where the functions fi(J, RY, RY) and fo(J, R}, R)) are given by
Fu(, B RY) = {4(RY B3I RY(Y)? — (RY)?) + 8] In( R/ )
~[(RY? = (R8I (RY)* — 2J (RYX(RY)? + J(RY)' — 16”3} (6.64)
{A6(RY(RY? — (R — 2y (RSB}

Fald, RS, RS) = {A(RS(I(RY? + 4) n(RY/ ) + [(RY? — (R
1 (6.65)
<LTRY(Y? = (R + 8] {SBRICRY? = (8)? — 2(R2) (8 RS))}
Again in the special case ¢ = 0 it is also necessary to impose the additional
condition

/ hyr dr = 0. (6.66)
R

6.3.4 Quasi-static Motion C' =0

As before, we can make considerable analytical progress in the special case of

quasi-static motion (C = 0). Again all the analytical results presented here have
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been confirmed by numerical calculations.

Axisymmetric Perturbations ¢ = 0

From Sec. 6.2.4 the solution for h; when C = 0 and g = 0 is given by Eq. (6.34).
Applying boundary conditions (6.62) and (6.63) and the volume condition (6.66)
recovers the unconditionally unstable results obtained in Chapter 3, namely
o = o0gy > 0and 0 = 0y < g9+ The expressions for gy4 are not repeated
here. Figures 6.9(a) and (b) plot go4 and oy_ respectively as functions of RS for

¢o=0.7, 1 and 1.3.

Non-axisymmetric Perturbations ¢ > 1

From Sec. 6.2.4 the solution for h; when C' = 0 is given by Eq. (6.36) subject
to the boundary conditions (6.62) and (6.63). Solving this system yields two
expressions for o, namely 0 = g, > 0 and 0 = 0, < 044. The expressions for
o,+ are not given here for brevity. As before note that, because these solutions
do not satisfy the volume condition (6.66), substituting ¢ = 0 into 0,4+ does not

recover the expressions obtained previously for oyx+.

General Perturbations ¢ > 0

Figures 6.10(a) ~ (c) plot the growth rate o, as a function of R} for ¢ = 0,
1, 2, 3 and 4 in the cases ¢y = 0.7, 1 and 1.3 respectively. In Figs. 6.10(a)
and (b) (corresponding to ¢9 = 0.7 and 1 respectively) the free ends of the
curves at Ry = (16/J)'/% ~ 2.52 correspond to RY = 0. As we move along
cach curve away from these ends the value of R increases monotonically from
zero.  In Fig. 6.10(c) (corresponding to ¢y = 1.3) solutions lie in the range
0 < RY < (16/J)"/% ~ 2.52. As RY increases in this range, RY increases from
zero to a maximum (less than the corresponding value of R)) and then decreases
back to zero.

In Fig. 6.10(a) (¢po = 0.7) the most unstable mode corresponds to ¢ = 0
for 0 < RY < 019 and ¢ = 1 for RY > 0.19. In Fig. 6.10(b) (¢y = 1) the

same qualitative behaviour occurs with the most unstable mode corresponding
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Figure 6.9: (a) - (b) Plot of the growth rates g, and gg_ as functions of R; for
an annular drop for ¢ = 0.7, 1 and 1.3 in the case ¢ = 0 and ' = 0.
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Figure 6.10: (a) - (¢) Plot of the growth rates oy for ¢ = 0,1, 2,3 and 4 as a
function of RY for an annular drop in the cases ¢y = 0.7, 1 and 1.3 for C' = 0.
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ol

Figure 6.11: Plot of R? against RY for annular solutions corresponding to ¢y =
0.7, 1 and 1.3 showing the most unstable wavenumber for C' = 0. The dots

correspond to the values of RY and R) at which the most unstable mode jumps
between ¢ = 0 and ¢ = 1.

to g =0 for 0 < RY < 0.26 and ¢ = 1 for RY > 0.26. In Fig. 6.10(c) (¢ = 1.3),
however, the most unstable mode corresponds to ¢ = 1 for 0 < R} < 1.86 and
to ¢ = 0 for 1.86 < R} < 2.52. These results are summarised in Fig. 6.11, which
shows the wavenumber of the most unstable mode for ¢g = 0.7, 1 and 1.3. The

dots on Fig. 6.11 denote the values of RY and R) at which the most unstable

mode jumps between ¢ = 0 and ¢ = 1.

6.3.5 The General Case C' # 0

Figures 6.12(a) - (d) plot the largest eigenvalue as a function of R3 for ¢ = 0,
1, 2,..., 9 in the case ¢y = 0.7 for C =1, 0.1, 0.01 and 0.001 respectively. In
Fig. 6.12 the free ends of the curves at RY = (16/J)"/% =~ 2.52 correspond to
RY = 0 and as we move along each curve away from these ends the value of RY
increases monotonically from zero. For C' =1 (Fig. 6.12(a)) the most unstable

mode corresponds to ¢ = 0 for small values of R{. As R} increases the most
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Figure 6.12: (a) — (d) Plot of the largest eigenvalue as a function of Rj for an
annular drop for ¢ =0, 1, 2, ..., 9 in the case ¢g = 0.7 for C =1, 0.1, 0.01 and
0.001.
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unstable mode jumps from ¢ = 0 to ¢ = 2 then to ¢ = 3, ¢ = 4 and so on.
The same qualitative behaviour occurs for C = 0.1 and C = 0.01 (Figs. 6.12(b)
and (c) respectively). For C' = 0.001 (Fig. 6.12(d)) the most unstable mode
corresponds to ¢ = 0 for small values of R}. As RY increases the most unstable
mode jumps from ¢ =0 to ¢ =1 then to ¢ = 2, ¢ = 3 and so on.

Figures 6.13(a) - (d) plot the largest eigenvalue as a function of R} for ¢ = 0,
1, 2,...,9in the case ¢g = 1 for C = 1, 0.1, 0.01 and 0.001 respectively. As
in Fig. 6.12, the free ends of the curves at R) = (16/J)'/® ~ 2.52 correspond
to R? = 0 and as we move along each curve away from these ends the value
of RY increases monotonically from zero. For C = 1 (Fig. 6.13(a)) the most
unstable mode corresponds to ¢ = 0 for small values of R}. As R? increases
the most unstable mode jumps from ¢ = 0 to ¢ = 2 then to ¢ = 3, ¢ = 4 and
so on. The same qualitative behaviour occurs for ¢ = 0.1 (Fig. 6.13(b)). For
C = 0.01 and C = 0.001 (Figs. 6.13(c) and (d) respectively) the most unstable
mode corresponds to ¢ = 0 for small values of R?. As RY increases the most
unstable mode jumps from ¢ = 0 to ¢ = 1 then to ¢ = 2, ¢ = 3 and so on.

Figures 6.14(a) - (d) plot the largest eigenvalue as a function of R for ¢ = 0,
1, 2,..., 9 in the case ¢9 = 1.3 for C =1, 0.1, 0.01 and 0.001 respectively. In
this case solutions lie in the range 0 < R} < (16/J)3 &~ 2.52. As Rj increases
in this range, R? increases from zero to a maximum (less than the corresponding
value of R)) and then decreases back to zero. For C = 1 (Fig. 6.14(a)) the most
unstable mode corresponds to ¢ = 2 for small values of Rj. As Rj increases the
most unstable mode jumps from ¢ = 2 to ¢ = 0. For C = 0.1 (Fig. 6.14(b)) the
most unstable mode jumps from ¢ = 1 to ¢ = 2 followed by ¢ = 0 as RJ increases
from zero; however the point at which the most unstable mode corresponds to
q = 1 is outwith the range of the plot. For C' = 0.01 (Fig. 6.14(c)) the most
unstable mode jumps from ¢ = 1 to ¢ = 2, then to ¢ = 1 again followed by ¢ =0
as R increases from zero. For C = 0.001 (Fig. 6.14(d)) the most unstable mode
jumps from g = 1 for small values of RS to ¢ = 0 as RY increases from zero.

In particular, Figs. 6.12 ~ 6.14 show how the numerically calculated values

of o approach g,y in the limit C — 0.
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Figure 6.13: (a) - (d) Plot of the largest eigenvalue as a function of RY for an
annular drop for ¢ = 0, 1, 2, ..., 9in the case ¢y = 1 for C =1, 0.1, 0.01 and
0.001.
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Figure 6.14: (a) (d) Plot of the largest eigenvalue as a function of R for an
annular drop for ¢ =0, 1, 2, ..., 9 in the case ¢g = 1.3 for C' =1, 0.1, 0.01 and
0.001.
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These results are summarised in Figs. 6.15(a) - (d) which show the wavenum-
ber of the most unstable mode corresponding to ¢y = 0.7, 1 and 1.3 for C =1,
0.1, 0.01 and 0.001. The dots on Fig. 6.15 denote the values of R} and R} at

which the most unstable mode jumps between two different values of q.
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Figure 6.15: (a) - (d) Plot of R) against R for annular solutions corresponding
to ¢p = 0.7, 1 and 1.3 showing the most unstable wavenumber for C = 1, 0.1,
0.01 and 0.001. The dots correspond to the values of R} and Rj at which the

most unstable mode jumps between two different values of g.



Chapter 7

Conclusions and Further Work

7.1 Conclusions

Using the lubrication approximation to the Navier-Stokes equations we have in-
vestigated the evolution and stability of a thin film of incompressible Newtonian
fluid on a planar substrate subjected to a jet of air blowing normally to the sub-
strate. For the simple model of the air jet we adopted, the initially axisymmetric
problems we studied are identical to those of a drop spreading on a turntable
rotating at constant angular velocity (the simplest model for spin coating).

In Chapter 2 we investigated the quasi-static (C = 0) spreading of a finite-
sized thin drop of incompressible, Newtonian fluid on a planar substrate in the
presence of a jet of air in both symmetric two-dimensional and axisymmetric
three-dimensional geometries. Three specific problems were studied in detail: a
jet of air acting normally to the substrate when gravity effects are negligible, a jet
of air directed vertically downwards onto a sessile drop on a horizontal substrate
and a jet of air directed vertically upwards onto a pendent drop on a horizontal
substrate. For each problem we determined the possible physically-realisable
equilibrium solutions for the profile of the drop and investigated their stability
to small perturbations with zero wavenumber. The evolution of the drop in the
zero-gravity and pendent cases was also investigated. We found that for non-
aunular drops, the zero-gravity and sessile drop cases are qualitatively similar,

and in both cases there is at most one stable and physical equilibrium solution.

139
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Equilibrium solutions for drops with fixed volume V are possible only if the jet
strength J is sufficiently small and equilibrium solutions for drops with fixed J
are possible only if V is sufficiently small. Quasi-static evolutions were calculated
numerically in the zero-gravity case and showed that the drop evolves to the
stable equilibrium solution. In the case of a non-annular pendent drop there are
finitely many (at least one and possibly more) stable and physical equilibrium
solutions. Stable and physical equilibrium solutions for a drop with fixed V
are possible only if J is sufficiently small, but stable and physical equilibrium
solutions for a drop with fixed J are possible for all values of V. Quasi-static
evolutions were calculated numerically and showed that a pendent drop evolves
to a stable equilibrium solution that depends on the initial value of the drop
radius.

In Chapter 3 we repeated the quasi-static (C' = 0) analysis of Chapter 2
for annular drops with a dry patch at their centre. This analysis was restricted
to the special case of zero gravity for simplicity. Unlike non-annular drops, it
was found that planar and axisymmetric annular drops in zero gravity exhibit
qualitatively different characteristics. In the planar case, it was shown that
there are no equilibrium solutions when the inner contact angle is equal to or
greater than the outer one, while in the axisymmetric case equilibrium solutions
are possible for all values of the inner contact angle. As in the zero-gravity
non-annular case, equilibrium annular solutions for fixed V are possible only
for sufficiently small J, and for fixed J are possible only for sufficiently small
V. However, in all the cases investigated it was shown that in both planar
and axisymmetric geometries, all these annular solutions are unconditionally
unstable. Quasi-static evolutions of an annular drop were calculated numerically
and it was found in all the cases investigated that a drop with initial outer radius
smaller than that of the equilibrium value closes, while a drop with initial outer
radius larger than the equilibrium value opens, irrespective of the value of the
initial inner radius.

In both Chapters 2 and 3 the stability analysis was restricted to uniform per-

turbations for the two-dimensional problems and to axisymmetric perturbations
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for the three-dimensional problems in the case of zero capillary number, C = 0.
In order to analyse the stability to general perturbations for C' # 0, a numerical
finite-difference code was developed in Chapter 4 capable of solving the linear
differential eigenvalue problems arising from the linear stability analysis.

In Chapter 5 we investigated the linear stability to both uniform (¢ = 0) and
non-uniform (¢ # 0) perturbations of an initially two-dimensional thin ridge of
Newtonian fluid of finite width on a horizontal planar substrate acting under the
influence of a jet of air normal to the substrate. Two problems were considered:
one in which the jet acted at the centre of the ridge, and one in which the jet
acted off-centre. For each problem we examined both the special case of quasi-
static motion (C' = 0) analytically and the general case of C' # 0 numerically.
In all cases the ridge was found to be unconditionally unstable, but the nature
and location of the most unstable mode depend on the details of the specific
problem considered.

For the case of a centred jet we found that for two-dimensional quasi-static
motion the conditionally stable symmetric modes described in Chapter 2 are
always more stable than the unconditionally unstable antisymmetric modes.
For general quasi-static motion the ridge is always most unstable to a long-
wavelength symmetric mode. When C # 0 the nature and location of the most
unstable mode switch between long-wavelength and finite-wavelength symmetric
and antisymmetric modes as Ry is varied. The quasi-static results are recovered
in the limit C — 0.

A similar analysis was performed for the more general case of an off-centred
jet, for which all the modes are asymmetric. For two-dimensional quasi-static
motion we recovered the results of Chapter 3, while for general quasi-static
motion the ridge is always unstable to a long-wavelength mode. When C # 0
the ridge is always most unstable to a mode with finite wavelength, and the
switching between different types of modes and values of ¢ found in the centred-
jot case does not occur in this case. Again, the quasi-static results are recovered
in the limit C — 0.

In Chapter 6 we investigated the linear stability to both axisymmetric (¢ = 0)
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and non-axisymmetric (¢ # 0) perturbations of an initially axisymmetric thin
drop of Newtonian fluid either on a rotating substrate or under the influence of
a jet of air directed normally towards a stationary substrate. Both non-annular
and annular drops were considered. For each problem we examined both the
special case of quasi-static motion (C' = 0) analytically and the general case C' #
0 numerically. In all cases the drop was found to be unconditionally unstable,
but the growth rate and wavenumber of the most unstable mode depend on the
details of the specific problem considered.

For the case of a non-annular drop we found that for axisymmetric quasi-
static motion the conditionally unstable mode of Chapter 2 was recovered. For
general quasi-static motion the drop is always unstable via the ¢ = 1 mode.
When C # 0 the drop is always unstable and the growth rate and wavenumber
of the most unstable mode depend on the values of iy and C. In particular, the
most unstable wavenumber increases as Ry increases. The quasi-static results
are recovered in the limit C — 0.

A similar analysis was performed for the case of an annular drop. For ax-
isymmetric quasi-static motion the unconditionally unstable results of Chapter
3 were recovered. For general quasi-static motion the drop is always unstable
via either the ¢ = 0 mode or the ¢ = 1 mode depending on the values of R}, RS
and ¢9. When C # 0 the drop is always unstable and, like in the non-annular
case, the growth rate and wavenumber of the most unstable mode depend on
the values of RY, R, ¢y and C. For ¢y < 1 the most unstable wavenumber in-
creases as RY increases, while for ¢y > 1 the most unstable wavenumber always
corresponds to ¢ = O for large enough R). Again, the quasi-static results are

recovered in the limit C — 0.

7.2 Further Work

The work described in this thesis could be extended in a number of ways.
In Chapters 2 and 3, evolution of non-annular and annular drops is restricted

to axisymmetric geometries in the quasi-static limit of zero capillary number.
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C = 0. The evolution of initially axisymmetric (and non-axisymmetric) non-
annular and annular drops for general capillary number C' # 0 would be an
interesting extension. This work would also include the evolution of an initally
uniform (and non-uniform) ridge for both a jet acting at the centre of the ridge
and a jet acting off-centre for general capillary number. Calculating the evolu-
tion of these non-linear, differentio-algebraic systems is a demanding numerical
task of the kind undertaken by Lépez et al. [35] who considered the evolution of
axisymmetric holes in a laterally-bounded thin fluid layer for general capillary
number.

In Chapters 3, 5 and 6 the analysis is only for the special case of zero gravity,
G = 0. Repeating the analysis for G = 1 (sessile case) and G = i (pendent
case) would be worthwhile extensions to the present work and, in principle, not
hard to do. However, some preliminary numerical calculations and the results
of Chapter 2 indicate that sessile and zero-gravity situations are qualitatively
similar so perhaps the only new results would come from the pendent case.

The model for the jet of air that we adopted throughout was a simple
parabolic pressure distribution in the air, however it would be of interest to
examine the effect of using different models, including a Gaussian-type pressure
distribution as used by Buchlin et al. [6], Kriegsmann et al. [29] and Tuck &
Vanden-Broeck [56] and a piecewise-quadratic pressure distribution as used by
Tuck [55] and Tuck & Vanden-Broeck [56]. Alternatively, using the approach
of King et al. [28] and King & Tuck [27], the external pressure gradient could
be found as part of the solution. Using thin aerofoil theory, the pressure is
expressed in terms of the height of the free surface. This leads to a non-linear
integro-differential equation for the height of the free surface which must, in
general, be solved numerically.

Throughout this thesis we assumed for simplicity that the shear stress was
zero at the free surface. A more realistic model would include a non-zero shear
due to the jet of air. This is precisely how Ellen & Tu {11] extended the pioneer-
ing air-knife analysis of Thornton & Graff [52]. The analysis of Ellen & Tu {11]

assumed a constant (but non-zero) shear stress at the free surface and showed
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improved results when compared with experiment. Kataoka & Troian [25, 26]
also assumed a constant (but non-zero) shear stress at the free surface in study-
ing the stability of thermally-driven climbing films.

There are, as far as the author is aware, no experimental results for either spin
coating or air-jet blowing which are directly relevant with the present work. A
comparison between such experiments and the present theoretical results would
be of considerable interest.

Finally, the numerical finite-difference code described in Chapter 4 could be
used to investigate the stability of various other problems involving the dynamics
of thin fluid films as well as problems of the type discussed in the final example
of Chapter 4 (Sec. 4.3.5). Indeed, the code is capable of solving any general
coupled linear differential eigenvalue problem and could therefore be used in

other areas of applied mathematics in which such systems arise.
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