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Abstract

Solvation Free Energy (SFE) is a fundamental quantity in chemical physics. It describes sol-

vation behavior of substances in liquid media and has many important applications in solution

chemistry, biophysics, pharmaceutics, medicine, and environmental sciences. In many appli-

cations (for example, screening of drug-candidate databases in a drug-discovery process) it is

important to have a fast and accurate method for solvation free energy calculation. In this

thesis two new methods for fast and accurate SFE calculations are proposed. The methods

combine the theoretical basis of the integral equation theory of liquids with advanced compu-

tational techniques. The theoretical part of the methods is based on the Reference Interaction

Site Model (RISM) and the three-dimensional RISM (3DRISM) molecular theories and semi-

empirical models for SFE calculations. The computational part of the methods is based on

the multi-grid scheme which drastically increases the computational performance. Additional

investigations of speed and accuracy of calculations are performed to determine the optimal

parameters of the methods which allow one to calculate the SFE with a required accuracy and

minimal computational expenses. The methods are benchmarked on extended sets of small

organic and drug-like compounds. It is shown that both (RISM and 3DRISM-based) methods

can be successfully used for SFE calculations. It is shown that the parameters of the meth-

ods are transferable between different classes of compounds. The average computation time

per typical drug-like compound of about 20 atoms is 17 seconds on a single CPU core for the

RISM-based method and about 3.5 minutes for more accurate 3DRISM-based method.
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Chapter 1

Introduction

Eo quod in multa sapientia multa sit indignatio

et qui addit scientiam addat et laborem

Ecclesiastes 1:18

Accurate calculation of hydration free energies of organic molecules is a long-standing challenge

in chemical physics and computational physical chemistry and is important in many aspects

of research in the pharmaceutical and agrochemical industries. For example, many of the

pharmacokinetic properties of potential drug molecules are defined by their in vivo solvation

and acid-base behavior which can be estimated from their hydration free energies. [1–7]

Commonly used methods for hydration free energy calculation may be categorized as ei-

ther explicit or implicit. In the first approach each solvent molecule is treated explicitly and

molecular simulation methods are used to sample the conformational phase space [1,2,8–13]. In

the second approach solvent is described as a continuum medium and the implicit effect of the

solvent on a solute is determined by solving either the Poisson-Boltzmann (PB) or Generalized-

Born (GB) equation [14–18]. While explicit solvent methods are scientifically more rigorous,

the implicit models are often preferred because they are computationally less expensive. Still,

explicit models can be successfully used in scientific investigations. However, in many cases

they are too computationally expensive to be used in practical industrial applications. One

of the applications where the speed of calculations is critical is the drug-discovery industry

where one needs to filter large databases of drug-like candidates which can contain thousands

and millions of compounds. For such kind of applications only implicit methods can be used.

However, not all of the implicit methods are accurate enough. In some cases the errors of Solva-

tion Free Energy (SFE) predictions can be of 2.5-3.5 kcal/mol which equates to a ∼ 2 log unit

error in the related pharmacokinetic property (estimated from ∆Gsolv = −RT lnK). There-

fore, these methods are not accurate enough for many chemical applications [19–21]. Integral

Equation Theory of Liquids (IETL) is an alternative framework for calculation of hydration

1



2 CHAPTER 1. INTRODUCTION

free energies [22–24]. In terms of computational expenses IETL offers a compromise between

computationally expensive fully-atomistic simulations [25–27] and rather approximate contin-

uum electrostatic models [14, 17, 28]. Unlike PB or GB methods IETL retains information

about the solvent structure (in terms of density correlation functions). However, unlike explicit

methods IETL-based methods estimate SFE without long Molecular Dynamics (MD) or Monte

Carlo (MC) simulations. At present there are several approaches based on the integral equa-

tions. The six-dimensional Molecular Ornstein–Zernike (MOZ) theory is used to calculate the

three-dimensional (3D) hydration structure in molecular liquids [29,30]. The site–site Ornstein–

Zernike (SSOZ) integral equation is used to calculate the properties of complex solute-solvent

systems in the Reference Interaction Site Model (RISM) formalism developed by Chandler,

Anderson and others [31–33]. The theory has been applied successfully to calculation of the

structural and thermodynamical properties of various chemical and biological systems [34–49].

To solve the OZ equation one should complete it by a closure relation which makes the

system OZ equation plus closure solvable. However, the closure relation incorporates a so-called

bridge function which is practically incomputable due to the infinite number of terms in the

exact representation of this function [50,51]. Therefore, in practice one uses approximate closure

relations [24, 52]. Nowadays only few efforts were done to solve the six-dimensional molecular

OZ equation numerically. This can be explained by a high computational complexity of the

problem. Using the modern computers straightforward calculations on the six-dimensional grid

with a moderate resolution are already feasible [53]. However, such computations are still

extremely computationally demanding. Other class of methods uses low-rank decomposition of

the correlation functions. In that case translational and rotational components of the functions

are separated and some basis functions are used for representation of the rotational degrees of

freedom. Typically, for the rotational degrees of freedom the basis set of rotational invariants is

used [54,55]. In some cases some advanced techniques, like hierarchical matrix decomposition,

can be used to reduce the computational complexity of the method [56]. For an additional

discussion of the computational complexity of operations in different low-rank formats one may

refer to Appendix A of this thesis.

Despite the recent progress in the six-dimensional MOZ theory currently it was tested only

for small and simple molecules. This is explained by a high computational cost of numerical

solution of the six-dimensional problem with reasonable accuracy. In practical applications one

usually uses simplified models, and the Reference Interaction Sites Model (RISM) is one of the

most popular among them [31–33]. The main assumption of the RISM is that the molecular

correlation functions can be represented as a sum of spherically symmetric functions. The

operations with the spherically symmetric functions can be reduced to the operations with

only their radial parts and that makes the RISM integral equations quasi one-dimensional.
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The six-dimensional MOZ equation is replaced by a set of one-dimensional non-linear integral

equations. From a computational point of view it is relatively inexpensive to solve the RISM

equations numerically for small molecular solutes (< 102 atoms). Typically solutions of the

RISM equations give a qualitatively correct description of the solvent structure around the

solute. RISM-based methods have many important applications. The RISM equations can be

self-consistently used to introduce an implicit solvent model in quantum mechanical calculations

(RISM-SCF method) [57–61]. RISM theory gives end-point expressions for solvation free energy

calculation [52, 62]. We note though that the original formulae for SFE calculations [52, 62]

provide only qualitative predictions of trends in the differences of SFEs for different compounds

[63]. Recently there were proposed several semi-empirical methods for parameterization of the

RISM SFE expressions, such as Structural Descriptor Correction(SDC) method [64,65], Atom

Type Correction (ATC) method [66, 67], and others [41, 63]. The best of these methods are

able to predict SFEs of different polyfragment organic molecules with the accuracy of around

1 kcal/mol [64, 65]. However, RISM-based semi-empirical methods need to use a considerable

number of empirical parameters to achieve a good accuracy of SFE calculations.

Another approximation of the Ornstein-Zernike equation is the three-dimensional RISM

(3DRISM) [68, 69] where a solute molecule is represented as a three dimensional object. This

model provides better spatial description of solute-solvent correlations than the RISM. The

3DRISM-based methods are currently widely used in biochemical applications for description

of solvation properties of biomolecules [46,70–72]. As it has been recently shown, the 3DRISM-

based Universal Correction (UC) method accurately predicts thermodynamic parameters of

hydrated organic molecules including drug-like molecules using only two empirical parameters

[73, 74]. However, for small molecules, a numerical solution of the multidimensional 3DRISM

equations requires significantly more computational time than a solution of the RISM equations

[74]. High computational expenses of the 3DRISM calculations are a real bottleneck of this

method that inhibit wider applications of this technique.

Coming back to the history of the IETL the first algorithm used for solving OZ-like integral

equations was presumably the Picard iteration method [22]. This method is easy to imple-

ment. However, it has a comparably low convergence rate. One may use faster convergent

schemes, such as the Newton-Raphson (NR) iteration [75], the NR-GMRES algorithm [76], the

method of direct inversion in iterative subspace (DIIS) [77], the combination of the modified

NR and the DIIS iteration [78] or the vector extrapolation technique [79] . For the 3DRISM

equations it was recently proposed to use the Modified DIIS (MDIIS) method [77]. Recently

an efficient 3DRISM equations solver which uses the MDIIS algorithm was implemented in the

Amber molecular modeling software [71]. However, for the grids with a large number of points

and/or molecular systems with a large number of interacting sites these methods are compu-
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tationally expensive. An alternative way to increase efficiency is to use a multi-scale approach.

The commonly used approach is the combined two-level NR-Picard scheme, so-called Gillan

method [80]. Similar two-level NR-Picard schemes are used also in the Lab́ık-Malijevský-Voňka

method [81, 82] or in the wavelet-based methods [56, 83–85]. Although two-level methods give

an essential improvement with respect to the Picard iteration, two level approaches have limi-

tations because the resolutions on the fine-grid and on the coarse-grid cannot differ too much

from each other. Multi-level methods can be used to overcome these limitations. Recently

an effective multilevel NR-GMRES algorithm has been applied to the one-dimensional prob-

lem [86]. This algorithm does not have such restrictions as the two-level methods; NR-GMRES

algorithm is a fast convergent method and it needs much less iteration steps to converge than

the Picard iteration method. However, faster convergence in terms of number of iteration steps

does not necessarily mean better performance in terms of computer time. The Newton-Raphson

method requires computation and inversion of the Jacobian matrix of size N × N , where N

is a number of discretization points on the coarse grid (typically N ≈ 101 − 102 ). Although

the implementation described in Ref. [86] does not require inversion of a Jacobian matrix it

nevertheless requires operations with matrices of size N × N which makes each iteration step

computationally expensive. For the RISM, where the number of coarse-grid points N is not

very large these additional computational expenses for each iteration step can be compensated

with much smaller number of iteration steps. However, it is not so for the three dimensional

problem where the number of grid points grows cubically with respect to the one-dimensional

problem (the matrix size could be as large as 106 × 106.

Despite the fact that many methods use sophisticated algorithms to enhance computational

performance often these methods do not fully exploit the advantages of the multi-scale approach.

The multi-grid method is a multi-scale technique in a sense that the iteration makes use of dif-

ferent grids (different discretization levels). The multi-grid approach uses an advanced iteration

scheme which makes it more efficient than the simple multi-scale iteration methods [87]. The

multi-grid scheme is not restricted to a specific type of iterations and can be applied to any

kind of iteration process. Multi-grid methods are actively used in different applications in

computational chemistry [88–92]. In our work we use the multi-grid approach for speeding-up

the calculations. We propose new methods for solving the RISM and the 3DRISM problems

based on the multi-grid scheme. We are focused on the practical application of the methods to

the solvation free energy calculations. We perform additional investigations to determine some

guidelines for choosing algorithms’ parameters which are optimal for the solvation free energy

calculations. We test the numerical performance of the proposed RISM multi-grid method

and compare this method to the one-grid Picard iteration and to the nested Picard iteration

methods. In our work we investigate the performance of two modifications of the 3DRISM
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multi-grid algorithm where the multi-grid is combined with (i) the Picard iteration method

(MG-Picard); and (ii) with the MDIIS method (MG-MDIIS) respectively. By benchmarking

of these methods on a set of model compounds we determine the optimal grid parameters for

solvation (hydration) free energy calculations. We test the numerical performance of the pro-

posed 3DRISM methods and compare these methods to the standard Picard iteration method

and to the MDIIS method. To test the effectiveness of the proposed methods we benchmark

the speed and accuracy of the methods on the extended sets of organic compounds. To test

the effectiveness of the RISM multi-grid method we use the set of 63 bioactive drug-like com-

pounds from Ref. [93]. In our work we perform the RISM calculations for 63 compounds from

Ref. [93], discuss efficiency of different RISM-SFE expressions and perform a parameterization

which allows one to improve computational results. The set of 99 organic compounds from the

paper [74] was chosen for testing of the 3DRISM multi-gird methods. The 3DRISM calculations

for these molecules were performed with the MG-MDIIS algorithm. The SFEs of 99 molecules

from the set were calculated with the Universal Correction (UC) method and compared to the

experimental results.

1.1 Goals

The main goal of this thesis is development of fast and accurate methods for Solvation Free

Energy (SFE) calculations and make them reliable for molecular biophysics and medicine.

This goal requires the solution of several computational and theoretical problems. On the one

hand, in many cases it is critical to have fast methods for SFE calculation. On the other

hand, the method should provide a reasonable accuracy of the SFE calculations to be useful

for practical applications. To achieve a high accuracy of the calculations the RISM and the

3DRISM molecular theories in combination with the semi-empirical SFE calculation methods

are used in this work. The multi-grid technique is used to speed-up the RISM and the 3DRISM

calculations. The tasks of the current work are:

1. Development of fast multi-grid methods for solving of the RISM and the 3DRISM nu-

merical problems.

2. Investigation of the accuracy of different semi-empirical SFE calculation methods for

chemical compounds from different chemical classes, including polyfragment drug-like

molecules.

3. Investigation of the computational errors and computational performance of the methods

as well as determination of the optimal parameters for fast and accurate calculations.
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1.2 Structure of the thesis

The thesis consists of 7 chapters and one appendix.

The first chapter is introduction.

In Chapter 2 some basic concepts of the statistical mechanics and thermodynamics are

described.

Chapter 3 contains description of the theoretical background of the integral equation theory

of liquids, Reference Interaction Site Model(RISM) and three-dimensional RISM (3DRISM).

In Chapter 4 the ways to calculate the solvation free energy in the RISM and the 3DRISM

approximations are discussed.

In Chapters 5 and 6 the RISM and the 3DRISM multi-grid methods for calculation of the

solvation free energy are described. Descriptions of the both methods have the same structure

which includes three parts: (i) description of the numerical method; (ii) determination of the

optimal parameters of the method; (iii) benchmarking of the speed and accuracy of the method

on a set of organic compounds.

In Chapter 7 the perspectives of the theory are discussed and some preliminary results of

the ongoing research are described.

In Appendix A the low-rank format for efficient operations with multi-dimensional functions

is described.



Chapter 2

Statistical Mechanical background

In this chapter the basic concepts in statistical mechanics, such as ensemble average, partition

function, free energy etc are described. The chapter is mostly based on Refs. [94] and [95].

2.1 Systems under investigation

One of the main tasks of the statistical mechanics is description of common laws of the many

particle systems. Let there be N particles in the system, and each of the particles have m

degrees of freedom. Then the total number of degrees of freedom of the system is s = m · N
According to the Hamilton’s equation the system which has s degrees of freedom can be de-

scribed by the s generalized coordinates (q1(t), . . . , qs(t)) and s generalized momenta compo-

nents (p1(t), . . . , ps(t)). For such a system the Hamiltonian equations hold [96]:

q̇i =
∂H
∂pi

ṗi = −∂H
∂qi

i = 1 . . . s (2.1)

where ṗi = ∂pi/∂t, q̇i = ∂qi/∂t, H = H(p1, . . . , ps, q1, . . . , qs) is the Hamiltonian of the system.

If the Hamiltonian H is known the equations (2.1) can be solved numerically for any initial

conditions pi(t0) = p0i , qi(t0) = q0i , i = 1 . . . s which allows to predict the state of the system

at any moment t. Using this information it is possible to calculate the quantities of interest:

temperature, pressure, density, residence time etc. This approach is the base for Molecular Dy-

namics (MD) simulations. Despite of simplicity and universality of this method MD simulations

require comparably large computational resources. Today the typical size of simulated systems

is only about 1000-10000 molecules and typical simulation time is of 100 ns. The limit which

can be achieved with the modern computational resources lies at 109-1011 molecules simulated

for several milliseconds [97–99].

7
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2.2 Phase space. Ensemble. Micro-canonical ensemble

In contrast to the simulation methods statistical physics gives the possibility to find the physical-

chemical quantities of interest without considering the movement of a single particle. Typically

in reality the movement of the particles in the systems is quasi-random. This means, that the

probability to find the particle in some point does not depend on the initial conditions and

during the large period of time the system will reach any of the possible states. These assump-

tions allow us to assume that all the initial states are equivalently probable. The movement

of N particles with generalized coordinates q1, . . . , qs and generalized momenta p1, . . . , ps can

be equivalently described by the movement of the point with coordinates (p1, . . . , ps, q1, . . . , qs)

in 2s-dimensional space. However, the system cannot reach all the points in 2s dimensional

space due to some restrictions. Such restrictions can be for example constant volume of the

system, constant pressure, temperature etc. The set of imaginary copies of the system which

represent all possible states of the system under certain restrictions is called ensemble. One of

the simplest examples of restrictions which can exist is the energy conservation law. The

ensemble which contains the fixed number of particles where the energy conservation law

holds is called the microcanonical ensemble. Each state of the system corresponds to some

point in a 2s dimensional phase space of the system. We introduce the distribution function

f(p1, . . . , ps, q1, . . . , qs, t) such, that f(p1, . . . , ps, q1, . . . , qs, t)dp1 . . . dpsdq1 . . . dqsdt is the prob-

ability to find the system during the infinitesimal time interval [t; t + dt] in the infinitesimal

parallelepiped of size dp1×· · ·×dpsdq1×· · ·×dqs in the vicinity of the point (p1, . . . , ps, q1, . . . , qs).

We note that because the distribution function represents a probability it satisfies the following

normalization condition:
∫

f(p1, . . . , ps, q1, . . . , qs, t)dp1 . . . dpsdq1 . . . dqs = 1 (2.2)

where integral is taken over all the possible states at moment t. Note that although we con-

sider the system of classical particles, due to the uncertainty principle there is a so small

elements of phase space that we are not able to distinguish different points in it. For each

degree of freedom it holds that dpidqi ≥ 2π~ [95]. Thus for s degrees of freedom the elemen-

tary volume in the phase space is ≥ (2π~)s. Also, the uncertainty principle implies that for

any finite system there is only finite number of distinguishable states. For each element of

volume ∆p1 × · · · ×∆ps ×∆q1 × · · · ×∆qs the maximum number of distinguishable states is

∆p1 . . .∆ps∆q1 . . .∆qs)/(2π~)
s.

In most of the cases in the physical chemistry the goal of the investigation of the system is to

determine some average physical quantity which describe the system (e.g. temperature, mean

energy, density etc). Depending on approach that we use the algorithm for the calculation of

these averages is different. Let X(p1, . . . , ps, q1, . . . , qs, t) be some physical value which depends
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on the phase coordinates of the system. If we perform the MD simulations the trajectory of

the system in the phase space is known. That means we know dependencies qi(t), pi(t), i =

1, . . . , s. In that case we are able to calculate time average X̄ of the value X by the following

formula [50]:

X̄ = lim
T→∞

1

T

T∫

0

X(p1(t), . . . , ps(t), q1(t), . . . , qs(t), t)dt (2.3)

In case of the thermodynamic description of the system we do not have the information

about the trajectories of the particles. Instead of this we consider the density distribution

function f(p1, . . . , ps, q1, . . . , qs, t) which define the probability to find the system in the state

(p1, . . . , ps, q1, . . . , qs) at the moment t. Then instead of the time average we use the ensemble

average. To do this we find the expected value < X > of the physical value X:

< X(t) >=

∫

X(p1, . . . , ps, q1, . . . , qs, t)f(p1, . . . , ps, q1, . . . , qs, t)dp1 . . . dpsdq1 . . . dqs (2.4)

where the integration is performed over all distinguishable states in the phase space. If both:

the physical value X and the distribution function f are independent of time, the integration

over time can be omitted and the ensemble average (2.4) can be rewritten as following:

< X >=

∫

X(p1, . . . , ps, q1, . . . , qs)f(p1, . . . , ps, q1, . . . , qs)dp1 . . . dpsdq1 . . . dqs (2.5)

According to the basic assumptions of the statistical physics the ensemble average (2.5) is

equivalent to the time average (2.3)

2.3 Continuity equation

Let’s consider the motion of different points in the phase space. Although formally there is

infinite number of points in the phase space it was discussed above that due to the uncertainty

principle we should consider only finite number of them. Let V =
∫
dp1 . . . dpsdq1 . . . dqs be

the volume of the phase space. Then the maximum number of distinguishable points is M =

V/(2π~)s. So, let us consider M points in the phase space which at the initial moment t0

are distributed according to the distribution function f , which means that in the phase volume

element of size ∆V = ∆p1×· · ·×∆ps×∆q1×· · ·×∆qs near the phase point (p1, . . . , ps, q1, . . . , qs)

there are (approximately) M · f(p1, . . . , ps, q1, . . . , qs, t0)∆V points. Equation (2.1) uniquely

defines trajectories of these points. The points cannot disappear, the new points cannot appear

in time, so the total number of points is all the time constant. For the sake of uniformity we

introduce the new coordinates (x1, . . . , x2s) in the following way:

xi = qi xi+s = pi i = 1, . . . , s (2.6)
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Then the density distribution function f can be written as a function of (x1, . . . , x2s):

f(x1, . . . , x2s, t) ≡ f(p1, . . . , ps, q1, . . . , qs, t) (2.7)

According to the Hamiltonian’s equations (2.1) the time derivatives (velocities) of the coordi-

nates (x1, . . . , x2s) are known at each point of the phase space at each moment of time:

ẋi(x1, . . . , x2s, t) ≡ ṗi = −∂H(x1, . . . , x2s)

∂xi+s

ẋi+s(x1, . . . , x2s, t) ≡ q̇i =
∂H(x1, . . . , x2s)

∂xi

(2.8)

where ẋj ≡ ∂xj/∂t , j = 1 . . . 2s.

Let us consider a small parallelepiped in the 2s-dimensional space with the center at

(x0
1, . . . , x

0
2s) and the volume of ∆x1 × · · · × ∆x2s with the edges parallel to the coordinate

axes. Because the total number of points in the system is constant, the number of points inside

the parallelepiped changes only due to the particles’ flow through the faces of the parallelepiped.

The parallelepiped in 2s dimensional space has 4s faces (two faces in each direction). Each face

of the parallelepiped is a 2s− 1 dimensional set of points which is obtained by fixing one of the

coordinates. Let us define by F+
i and F−

i two faces in the direction xi, namely:

F−
i = {(x1, . . . , xi−1, x

0
i −

∆xi

2
, xi+1, . . . , x2s) : x

0
j −

∆xj

2
≤ xj ≤ x0

j +
∆xj

2
wherej 6= i}

F+
i = {(x1, . . . , xi−1, x

0
i +

∆xi

2
, xi+1, . . . , x2s) : x

0
j −

∆xj

2
≤ xj ≤ x0

j +
∆xj

2
wherej 6= i}

(2.9)

Let us consider motion of the system at moment t during so small period of time ∆t that

all the velocities of phase points ẋi and the distribution function f(x1, . . . , x2s, t) do not change

much. We define by n(F±
i , t) the number of particles which flows through the face F±

i during

the time interval [t, t + ∆t]. The density of the phase points near the face is defined by the

distribution function f , the velocity of the particles in the direction xi is ẋi. Thus the number

of particles which flows through the face F±
i can be calculated by integrating over the face the

product of density multiplied by velocity:

n(F±
i , t) =

∆t
∫

F±
i

f(x1, . . . , x
0
i ± ∆xi

2
, . . . x2s, t) · ẋi(x1, . . . , x

0
i ± ∆xi

2
, . . . x2s, t)dx1 . . . dxi−1dxi+1 . . . dx2s

(2.10)

If the parallelepiped is small enough the integral in (2.10) can be approximated by the

product:

n(F±
i , t) ≈

f(x0
1, . . . , x

0
i ± ∆xi

2
, . . . x0

2s, t)ẋi(x
0
1, . . . , x

0
i ± ∆xi

2
, . . . x0

2s, t)∆x1 . . .∆xi−1∆xi+1 . . .∆x2s∆t
(2.11)
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To make notations shorter we use the following definition:

wi(x1, . . . , x2s, t) ≡ f(x1, . . . , x2s, t)ẋi(x1, . . . , x2s, t) (2.12)

Also, let us define ∆x2s ≡ ∆x1 . . .∆x2s. Then ∆x1 . . .∆xi−1∆xi+1 . . .∆x2s ≡ ∆x2s/∆xi In this

notations the expression (2.11) is written as following:

n(F±
i , t) ≈ wi(x

0
1, . . . , x

0
i ±

∆xi

2
, . . . x0

2s)
∆x2s

∆xi

∆t (2.13)

To find the number of particles ∆ni(t) which flows in the direction xi and left in the paral-

lelepiped we need to subtract from the number of particles which comes through the face F−
i

the number of particles which flows out through the face F+
i . Thus we have:

∆ni(t) =
n(F−

i , t)− n(F+
i , t) ≈

≈
(
wi(x

0
1, . . . , x

0
i − ∆xi

2
, . . . x0

2s)− wi(x
0
1, . . . , x

0
i +

∆xi

2
, . . . x0

2s)
)
∆t∆x2s

∆xi

(2.14)

The total change of the number of particles ∆n during the time ∆t in all directions is the sum

of changes in each of directions. We can write this in the following way:

∆n =

∆t
2s∑

i=1

∆xN

∆xi

(
wi(x

0
1, . . . , x

0
i −∆xi/2, . . . , x2s, t− wi(x

0
1, . . . , x

0
i +∆xi/2, . . . , x2s, t)

) (2.15)

On the other hand, the change of the number of particles is the change of mean density mul-

tiplied by the volume of the parallelepiped. If the parallelepiped is small enough we can

approximate the mean density with the density in the center of the parallelepiped. Thus we

have:

∆n = ∆f ·∆V =
(
f(x0

1, . . . , x
0
2s, t+∆t)− f(x0

1, . . . , x
0
2s, t)

)
∆x1 . . .∆x2s (2.16)

We divide (2.15) and (2.16) by ∆t∆x1 . . .∆x2s and equate them. We obtain the following

relation:

f(x0
1, . . . , x

0
2s, t+∆t)− f(x0

1, . . . , x
0
2s, t)

∆t
=

2s∑

i=1

wi(x
0
1, . . . , x

0
i −∆xi/2, . . . , x

0
2s)− wi(x

0
1, . . . , x

0
i +∆xi/2, . . . , x

0
2s)

∆xi

(2.17)

Taking the limit ∆xi → 0,∆t → 0 we have the definitions of the derivatives in both sides:

∂f

∂t
= −

2s∑

i=1

∂wi

∂xi

(2.18)
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Because w ≡ f · ẋi, we may write the following relation:

∂f

∂t
+

2s∑

i=0

∂(f · ẋi)

∂xi

= 0 (2.19)

This equation is called the continuity equation.

2.4 Liouville equation

Using the formulae (2.6) we can write the continuity equation (2.19) in the phase coordinates

pi, qi. In that case, the continuity equation (2.19) is written as

∂f

∂t
+

s∑

i=1

(
∂(f · q̇i)

∂qi
+

∂(f · ṗi)
∂pi

)

= 0 (2.20)

Opening the brackets in derivatives, we have

∂f

∂t
+

s∑

i=1

(
∂f

∂qi
q̇i +

∂f

∂pi
ṗi

)

+
s∑

i=1

f ·
(
∂q̇i
∂qi

+
∂ṗi
∂pi

)

= 0 (2.21)

From the Hamiltonian equations (2.1) we have:

∂ṗi
∂pi

= − ∂2H
∂qi∂pi

∂q̇i
∂qi

=
∂2H
∂pi∂qi

This means, that second sum in (2.21) is canceled, and equation reads as:

∂f

∂t
+

s∑

i=1

(
∂f

∂qi
q̇i +

∂f

∂pi
ṗi

)

= 0 (2.22)

One can also notice that the left hand side of equation (2.22) is the full derivative of the phase

density f . Thus, the equation can be rewritten in a more compact way:

df

dt
= 0 (2.23)

There is an important corollary of the Liouville equation (2.23). Let us consider a closed

system in the equilibrium state. This means that the distribution function f of this system

does not explicitly depend on time:

f(p1, . . . , ps, q1, . . . , qs, t) ≡ f(p1, . . . , ps, q1, . . . , qs) (2.24)
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By integrating the Liouville equation (2.23) we have:

t1∫

t0

df

dt
dt = f(p1(t1), . . . , ps(t1), q1(t1), . . . , qs(t1))− f(p1(t0), . . . , ps(t0), q1(t0), . . . , qs(t0)) = 0

(2.25)

Under considerations of the statistical mechanics the probability to find the system in certain

state does not depend on the initial configuration. Thus relation (2.25) means that distribution

function is a constant of motion of the system:

f(p1, . . . , ps, q1, . . . , qs) = f0 = const (2.26)

This in turn means that all the accessible microstates of the system are equiprobable. Although

the above conclusions were obtained for the microcanonical ensemble where the energy conser-

vation and Hamiltonian equations (2.1) hold the same in principle could be true for some other

systems as well. Let in the system itself the energy conservation law does not hold. As it was

mentioned above due to the uncertainty principle the finite system can have only finite number

of distinguishable states and thus only the finite number of different energies. Let ǫ1, ǫ2, ..., ǫm

be all the possible energies of the system. Let Ai be the set of all possible states with the energy

ǫi. We will call these sets energy levels of the system. One of the basic assumptions of the

statistical physics is that the probability to find the particle in certain state does not depend

on the initial state and on the particular trajectories of the particles. Thus, we can assume

that the system stays at each energy level for relatively long time. In that time the energy

of the system is constant and thus there exists such Hamiltonian H that satisfies Hamiltonian

equations (2.1), and thus all the accessible states with the same energy are equiprobable and

the probability to find the system in a certain state depends only on the energy of this state.

2.5 Gibbs distribution

Let us consider a closed system which is composed of a body in environment. Let the body has

certain finite volume and contain a fixed number of particles (the body does not exchange the

particles with the environment) and is in dynamical energetic equilibrium with the environment.

Let (p11, . . . , p
1
s1
, q11, . . . , q

1
s1
) be the phase coordinates of the body and (p21, . . . , p

2
s2
, q21, . . . , q

2
s2
)

be the phase coordinates of the environment. Possible states of the body form the canonical

ensemble. For the sake of clarity below we use the following notations:

p[1] = (p11, . . . , p
1
s1
) q[1] = (q11, . . . , q

1
s1
)

p[2] = (p21, . . . , p
2
s2
) q[2] = (q21, . . . , q

2
s2
)

dp[1] = dp11 . . . dp
1
s1

dq[1] = dq11 . . . dq
1
s1

dp[2] = dp21 . . . dp
2
s2

dq[1] = dq21 . . . dq
2
s2

(2.27)
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Let H(p[1], q[1], p[2], q[2]) be the Hamiltonian of the system and the probability to find the

system in some state is described by the distribution function f12(p
[1], p[2], q[1], q[2]). Let us

assume that the distribution function of the body f1(p
[1], q[1]) is independent from distribution

function of the environment f2(p
[2], q[2]). In that case the following relation holds:

f12(p
[1], p[2], q[1], q[2]) = f1(p

[1], q[1]) · f2(p[2], q[2]) (2.28)

This assumption is reasonable for big systems. Although the total energy of the system “the

body + environment” is constant the energy of its components could vary. We introduce the

function E(p[1], q[1]) which describes the average energy of the system when the body is in the

state (p[1], q[1]). The function E(p[1], q[1]) can be calculated by averaging of the Hamiltonian of

the system over the phase coordinates of the environment:

E(p[1], q[1]) =

∫

H(p[1], p[2], q[1], q[2])f2(p
[2], q[2])dp[2]dq[2] (2.29)

Multiplying (2.29) by f1(p
[1], q[1]) and integrating over phase coordinates of the body we

have the following:

∫

E(p[1], q[1])f1(p
[1], q[1])dp[1]dq[1]=

∫

H(p[1], p[2], q[1], q[2])f1(p
[1], q[1])f2(p

[2], q[2])dp[2]dq[2]dp[1]dq[1]

(2.30)

Let Etot = H(p[1], p[2], q[1], q[2]) = const be the total energy of the system. Assuming that

f12 = f1 · f2 we have the following:

∫

E(p[1], q[1])f1(p
[1], q[1])dp[1]dq[1] = Etot (2.31)

As it was discussed above due to the uncertainty principle there is only a finite number of

different indistinguishable points in the phase space of a finite system. The phase space of the

body has s1 degrees of freedom thus the minimal element of the phase space is (2π~)s1 . Then

the integral in (2.31) can be rewritten in a form of a sum over different states:

∑

k

E(p
[1]
k , q

[1]
k )f(p

[1]
k , q

[1]
k )(2π~)s1 = Etot (2.32)

where k runs over all distinguishable points in the phase space of the body.

Because there is only a finite number of the distinguishable states of the body there is also

only a finite number of the mean energies of the body. Let ǫ1 < ǫ2 < · · · < ǫm be all the possible

values of the average energy of the body. Let gi be the number of states with the mean energy

ǫi:

gi = |{(p[1], q[1]) : E(p[1], q[1]) = ǫi}| (2.33)
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where the symbol |·| denotes the cardinality of a set (number of elements in a set for finite sets).

If we assume that all the states of the system with certain energy ǫi are equiprobable (which

is reasonable to assume, considering the corollary of the Liouville equation) we can define the

function fE(ǫi) which is equal to the distribution function f1 in the points where the mean

energy of the system is ǫi:

fE(ǫi) = f1(p
[1], q[1]) ⇐⇒ E(p[1], q[1]) = ǫi (2.34)

Then we can re-group the summands in the sum (2.32) and rewrite it in the following way:

m∑

i=1

gif
E(ǫi)ǫi · (2π~)s1 = Etot (2.35)

Let us consider the system at some moments t1, t2, . . . , tN such that the distribution functions

at these moments are independent of each other. Let ni be the number of moments when the

mean energy of the system is ǫi:

ni = |{tk : E(p[1](tk), q
[1](tk)) = ǫi}| (2.36)

Obviously the sum of ni is N :
m∑

i=1

ni = N (2.37)

If the number of moments N is large enough, then ni is proportional to the probability P (ǫi)

to find the body in the state with the mean energy ǫi:

P (ǫi) ≈
ni

N
(2.38)

The distribution function fE for the states with certain energy ǫi can be found using the

following formula:

fE(ǫi) · (2π~)s1 =
P (ǫi)

gi
(2.39)

where gi is defined by (2.33) and (2π~)s1 is an elementary element of the phase space of the body

which corresponds to one state. Putting (2.39) to the (2.35) we have the following relation:

m∑

i=1

P (ǫi)ǫi = Etot (2.40)

Using (2.38) we have the following constraint for ni:

m∑

i=1

niǫi = N · Etot (2.41)
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Let us consider that n1, . . . , nm are given. Let us now count the number W of ways to choose

different states of the system at the moments t1, . . . , tN such that there will be n1 states with

the energy ǫ1, n2 states with the energy ǫ2 etc. To do it let us count the number of ways to

choose ni states at each energy level. As it was defined above, there are gi states in the system

which give the energy ǫi. We need to choose ni of them. Because the system can in principle in

two moments come to the same state, there are in total gni

i variants to do such choice. However,

if we are interested only in the number of the states but not distinguish the order, we need to

divide the total number of ways by the number of possible permutations of ni objects, which

is ni!. Thus the total number Wi of ways to choose ni states from gi possibilities not regarding

the order of chosen states is gni

i /ni!:

Wi =
gni

i

ni!
(2.42)

The total number of the ways W to choose the states of the system is the product of the

numbers of the ways to choose the states at each energy level ǫi. Thus we get the following

formula:

W (n1, . . . , nm) =
m∏

i=1

gni

i

ni!
(2.43)

The more time passed the more states the system can reach. Thus the number of avail-

able states grows with time. The value W also grows with time until reaches its maximum

value because it is connected to the total number of available states. That means that at the

equilibrium state which formally corresponds to the infinite time function W (n1, . . . , nm) has

maximum under constraints (2.37) and (2.41) [100]. Because W > 0, we can find the maximum

of the function lnW instead of finding the maximum of the function W , because these two

functions have extrema in the same points. From (2.43) we have:

lnW =
m∑

i=1

(ni ln gi − lnni!) (2.44)

To calculate lnni! we can use the Stirling’s approximation [101]. Because typically ni ≫ 1 we

can use the simplest integral approximation of the lnni!, namely:

lnni! =

ni∑

k=1

ln k ≈
ni∫

1

ln xdx (2.45)

The integral can be taken by parts. Using that d ln x = dx/x we have:

lnni! ≈ ni lnni −
ni∫

1

x/xdx = ni lnni − ni (2.46)
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And thus (2.44) can be approximated by the following relation:

lnW (n1, . . . , nm) ≈
m∑

i=1

(ni ln gi − ni lnni + ni) (2.47)

To find the maximum of the function under certain constraints we can use the method

of Lagrange multipliers [102]. The Lagrange function will contain the logarithm lnW and

constraints (2.37), (2.41) multiplied by the Lagrange multipliers α and β respectively:

L(n1, . . . , nm, α, β) = lnW (n1, . . . , nm)− α

(
m∑

i=1

ni −N

)

− β

(
m∑

i=1

niǫi −N · Etot

)

(2.48)

The necessary maximum condition is that all the partial derivatives ∂L/∂ni be zero. Thus, we

have:
∂L

∂ni

=
∂ lnW

∂ni

− α− βǫi = 0 (2.49)

Using approximation (2.47) we get the following relation:

ln gi − lnni − 1 + 1− α− βǫi = 0 (2.50)

Now we can find the number of states ni:

ni = gie
−α−βǫi (2.51)

Using the definitions of (2.38), (2.39) we can find the distribution function fE(ǫi):

fE(ǫi) =
P (ǫi)

gi(2π~)s1
=

ni

Ngi(2π~)s1
= Ae−βǫi (2.52)

where A ≡ e−α/(N(2π~)s1). It is necessary to note, that constants A and β are the properties of

the whole system and do not depend on the current state of the system. Also, in the constraint

(2.41) Etot is the total energy of the system ”body + environment”. However, we always can

choose the zero level for the energy in such a way, that mean energy of the environment is

zero. Because the interactions between the body and environment are weak and we assume

that the distribution functions of the body and environment are independent from each other,

we may neglect the contribution to the total energy from the interactions between the particles

of body and environment. In that case the relation (2.52) signifies that the probability to find

the body in the state (p[1], q[1]) is exponentially proportional to the mean energy of this state.

The probability distribution of kind (2.52) is called Gibbs distribution.
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2.6 Entropy

From the above considerations we see that the number of accessible states of the system plays

an important role in statistical mechanics. Let us consider the microcanonical ensemble with

the constant energy. Let QS be the number of states in the system. QS is a multiplicative value.

Indeed, let we have a complex system which is composed of two independent subsystems. Let

QS
1 and QS

2 be the numbers of accessible states in each of subsystems respectively. Then for

each of QS
1 states of the first system one can choose any of QS

2 states of the second systems.

The total number of states in the system is the product of numbers of states in its subsystems:

QS = QS
1 ·QS

2 (2.53)

However, in practice it is more convenient to have some additive quantity which is directly

connected to QS. Such a quantity is lnQS. Thus, for the microcanonical ensemble we define

the entropy of the system in the following way:

S = kB lnQS (2.54)

where QS is the number of accessible states in the microcanonical ensemble, kB ≈ 1.3806503 ·
10−23J/K is the Boltzmann constant which is introduced due to the historical reasons and is a

coefficient in proportionality between energy and temperature. In the microcanonical ensemble

the Liouville equation (2.23) holds and all the states are equiprobable.

Let f(p1, . . . , ps, q1, . . . , qs) ≡ fE(E0) be the distribution function of the system, where E0

is the energy of the system. Let us write the normalization condition for the function f :

∫

f(p1, . . . , ps, q1, . . . , qs)dp1 . . . dpsdq1 . . . dqs = 1 (2.55)

Using the discreteness of the phase space and considering that the distribution function is

constant we have the following:

QS

∑

j=1

(2π~)sfE(E0) = QS(2π~)sfE(E0) = 1 (2.56)

And so we have the relation for the number of states in the system:

QS =
1

(2π~)sfE(E0)
(2.57)

Putting this to (2.54) we have the following relation for the entropy:

S = −kB ln
(
(2π~)sfE(E0)

)
(2.58)
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For the systems with non-constant total energy the entropy is defined by statistical averaging

the entropies of different energy levels. Thus in the canonical ensemble we have the following

definition for the entropy

S = −kB

m∑

i=1

P (ǫi) ln
(
(2π~)sfE(ǫi)

)
(2.59)

where ǫ1 < · · · < ǫm are the energy levels of the body, P (ǫi) is the probability to find the body

at the energy level ǫi, f
E(ǫi) = P (ǫi)/gi where gi is the number of states on the energy level

ǫi. Considering that in canonical ensemble the distribution function fE(ǫi) follows the Gibbs

distribution (2.52) we have the following expression:

S = −kB

m∑

i=1

P (ǫi) (ln ((2π~)
sA)− βǫi) (2.60)

Using the relation (2.41) and the normalizing rule
∑

i P (ǫi) = 1 we get the following:

S = −kB
(
ln ((2π~)sA)− βĒ

)
(2.61)

where Ē is the mean energy of the body. Applying the Gibbs distribution (2.52) to the expres-

sion in brackets we obtain the final relation for the entropy of canonical ensemble:

S = −kB ln(2π~)sfE(Ē) (2.62)

Note, that in the definition (2.62) entropy is still an additive quantity. Indeed, let we have two

independent subsystems with s1 and s2 degrees of freedom respectively. Let Ē1, Ē2, f
E
1 , f

E
2 be

the average energies and distribution functions of these systems respectively. The entropies of

these systems S1 and S2 are calculated using the equation (2.62):

S1 = −kB ln(2π~)s1fE
1 (Ē1) S2 = −kB ln(2π~)s2fE

2 (Ē2) (2.63)

The system which combine these two subsystems will have s1+s2 degrees of freedom, an average

energy Ē1 + Ē2 and distribution function fE
12. Then the entropy S12 of the whole system is

S12 = −kB ln(2π~)s1+s2fE
12(Ē1 + Ē2) (2.64)

The fact that the subsystems are independent means thatfE
12(Ē1 + Ē2) = fE

1 (Ē1) · fE
2 (Ē2).

Putting this to (2.64) we have

S12 = −kB ln(2π~)s1fE
1 (Ē1)(2π~)

s2fE
2 (Ē2) = S1 + S2 (2.65)
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2.7 Temperature

Let us consider a closed system. The more time passed the more states can reach the system.

Thus the number of states available to the system does not decay. The entropy of the closed

system (2.54) is proportional to the number of available states, so the entropy does not decrease

with time, and reaches its maximum at the equilibrium state. Let the closed system is composed

of K independent canonical subsystems. Let S1, . . . , SK and Ē1, . . . , ĒK be the entropies and

the average energies of the subsystems respectively. The total energy of the system E0 is the

sum of the average energies of the subsystems:

E0 =
K∑

i=1

Ēi (2.66)

The total entropy of the system S0 is the sum of the entropies of the subsystems:

S0 =
K∑

i=1

Si (2.67)

Let us consider the total entropy of the system S0 as a function of energies of the subsystems:

S0 = S0(Ē1, . . . , ĒK) =
K∑

i=1

Si(Ēi) (2.68)

At the equilibrium state the entropy of the system S0(Ē1, . . . , ĒK) has a local maximum pro-

vided that the constraint (2.66) holds. We use the Lagrange’s multipliers method and write

the Lagrange function for the entropy S0 [95]:

L(Ēi, . . . , ĒK , γ) =
K∑

i=1

Si(Ēi)− γ

(
K∑

i=1

Ēi − E0

)

(2.69)

The necessary condition of extremum is equality of all the partial derivatives ∂L/∂Ēi to zero.

This leads us to the following equations:

∂L

∂Ēi

=
∂Si

∂Ēi

− γ = 0 i = 1, . . . , K (2.70)

Because the entropy Si(Ēi) depends only on one energy Ēi the partial derivatives ∂Si/∂Ēi can

be replaced with the full derivatives dSi/dĒi. From (2.70) it follows that for any 1 ≤ i, j ≤ K

it holds the following:
dSi

dĒi

=
dSj

dĒj

= γ = const (2.71)

Let us introduce the value T = 1/γ which we call the temperature of the system. Note, that

for the system in the equilibrium state the temperature of all its subsystems is constant. So,
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in the canonical ensemble in the equilibrium three values remain constant: number of particles

N , volume V and temperature T . That’s why the canonical ensembles are often referenced as

NVT ensembles. Now we can determine the unknown coefficients A, β in the Gibbs distribution

(2.52). Using the entropy representation (2.61) for the entropies Si we have the following:

Si = −kB(ln ((2π~)
siAi)− βiĒi) (2.72)

where Ai, βi are unknown Lagrange multipliers. Putting (2.72) to (2.71) we have:

dSi

dĒi

= kBβi = γ =
1

T
= const (2.73)

So, for any 1 < i, j < K it holds βi = 1/(kBT ) = βj ≡ β.

Now we can also calculate the coefficient A in the Gibbs distribution (2.52). To do this we

can use the normalization condition for the density distribution. Putting the Gibbs distribution

(2.52) to the normalization condition (2.2) we have the following relation:

A

∫

e−βĒ(p1,...,ps,q1,...,qs)dp1 . . . dpsdq1 . . . dqs = 1 (2.74)

where β = (kBT )
−1. Let us introduce the partition function of the system, which is defined in

the following way:

ZN = (2π~)−s

∫

e−βĒ(p1,...,ps,q1,...,qs)dp1 . . . dpsdq1 . . . dqs (2.75)

Thus the Gibbs distribution (2.52) for the canonical ensemble read as follows:

f(p1, . . . , ps, q1, . . . , qs) =
1

(2π~)sZN

e−βĒ(p1,...,ps,q1,...,qs) (2.76)

2.8 Free Energy

Let us try to determine the physical meaning of the partition function ZN and coefficient A

in the Gibbs distribution (2.52). Let us write the definition of entropy of the system (2.62)

considering the Gibbs distribution (2.52). We obtain the following:

S = −kB ln

(
1

ZN

e−βĒ

)

= kB lnZN +
kB
kBT

Ē (2.77)

Multiplying both parts by the temperature T and rearranging the summand we come to the

following relation:

− kBT lnZN = Ē − TS (2.78)
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The quantity −kBT lnZN is called Helmholtz free energy of the system. We will denote it by

the symbol F :

F = −kBT lnZN = Ē − TS (2.79)

Let’s determine a thermodynamical sense of the Helmholtz free energy. In the thermody-

namics the energy which the body receives via the thermal interaction is called heat and is

denoted by Q. The first principle of thermodynamics which follows from the energy conserva-

tion law states that the sum of the change of internal energy and the work performed by the

body is equal to the heat transferred to the body:

dQ = dĒ + dW (2.80)

where W is the work performed by the body. Typically we assume that the work of the body is

a mechanical work performed due to changing of the volume of the body. As it is known from

mechanics, the work is a scalar product of the force by the displacement, and the force in turn

is a product of the pressure by the surface area. In the equilibrium state the average pressure

P̄ is constant at each point and the pressure itself varies very little around the average value.

Let the surface area of the reservoir which contain the body is A. Let after performing of the

work dW each infinitesimal part of surface area dAi moved by the distance dri in the direction

perpendicular to the surface element dAi. The force which acts on the surface element dAi is

P̄ dAi and the work to move this element is dWi = P̄ dAidri. The value dAidri is an elementary

change of volume dVi. Thus dWi = P̄ dVi. The total work dW can be found as the sum of

elementary works:

dW =
∑

P̄ dVi = P̄ dV (2.81)

In the canonical ensemble the volume is fixed thus dV = 0 and mechanical work is not per-

formed: dW = 0. Then from (2.80) we have dQ = dĒ. Considering (2.73) we can conclude

that the whole heat in canonical ensemble is transfered to the entropy:

dQ = dĒ = TdS (2.82)

Let us consider two phase process. At the first phase the body receives some heat dQ but

the volume of body is constant. In that case the energy change dĒ1 increases the entropy of

the body dQ = dĒ1 = TdS. At the second phase the body does not receive heat, but increase

its volume by dV . According to (2.80) we have 0 = dE2+PdV where dE2 is the energy change

at second phase. The total energy change of the process dE is the sum of total energies of the

pases:

dE = dE1 + dE2 = TdS − PdV = TdS − dW (2.83)
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Rearranging the summands and using the definition (2.79) we can conclude that the work

performed by the body is equal to the decrease of the Helmholtz free energy dF :

dW = −(dE − TdS) = −dF (2.84)

So Helmholtz free energy shows an ability of the body to perform a work in the isothermal

process. It is necessary to notice that Helmholtz free energy should not be used for processes

where the volume is not constant. Relation (2.84) only shows that amount of the energy

received during the heat transfer in canonical ensemble in principle can be released in some

other process. To describe a processes where the volume of the system changes we can use the

Gibbs free energy which includes the term PV which reflects the mechanical work potential.

The definition of the Gibbs free energy G is written in the following way:

G = F + PV = H − TS = Ē + PV − TS (2.85)

where H is enthalpy of the system.

The change of the free energy shows whether the process is probable or not. If free energy

decreases then the energy is released during the process, so this process is spontaneous. So,

free energy can be used to determine the most probable state of the system.

2.9 Grand Canonical Ensemble

Before we considered only the systems which have a fixed number of particles. However, in

the physical chemistry it is often necessary to describe the processes where the concentrations

of substances may change. Such processes are for example diffusion and chemical reactions.

Let us consider the system which contains m substances with changeable concentrations. Let

Ni, i = 1 . . . ,m be the quantity of the particles of ith type introduced to the system. The average

energy of the system Ē depends on the number of the introduced particles: Ē = Ē(N1, . . . , Nm).

Let µi, i = 1 . . . m be the energy change after introducing of one particle of ith type to the system.

Formally we can write the following relation:

µi =
∂E(N1, . . . , Nm)

∂Ni

(2.86)

where Ē is the average energy of the system and partial derivative means the energy change after

the minimal possible change of the number of particles. The value µi is called the chemical po-

tential of the particles of ith type in the given system. Strictly speaking chemical potential of the

particle depends on the concentrations of the substances in the system, i.e µi = µi(N1, . . . , Nm).

However if the numbers of introduced particles N1, . . . , Nm are small with respect to the total
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number of particles in the system the concentrations will not essentially change and thus the

chemical potentials µ1, . . . , µm can be assumed to be constant.

Let us consider the system at a fixed temperature T in a fixed volume V with fixed chemical

potentials of particles µ1, . . . , µm. Considering that for the fixed number of particles dĒ = TdS

the full differential of the energy can be written in the following way:

dĒ = TdS +
m∑

i=1

µidNi (2.87)

By rearranging the summands and dividing by T we obtain the following relation for dS:

dS =
dĒ

T
−

m∑

i=1

µi

T
dNi (2.88)

IfNi, i = 1, . . . ,m are small, we can assume that the entropy is linear with respect toN1, . . . , Nm.

From (2.77) it follows that the entropy is also linear with respect to the energy. So, considering

the coefficients in (2.88) we can write the following relation for the entropy:

S(N1, . . . , Nm) =
1

T

(

−Ω + Ē −
m∑

i=1

Niµi

)

(2.89)

where Ω is some constant called Grand potential. From (2.89) immediately follows the definition

of the grand potential:

Ω = Ē − TS −
m∑

i=1

µiNi (2.90)

Let us find the probability density fG(E,N1, . . . , Nm) to find the system is in some state

(p1, . . . , ps, q1, . . . , qs) given that the average energy of this state is E and the numbers of

introduced particles of types 1 . . . m are N1, . . . , Nm. The definition of fG given above can be

written rigorously in the following way:

fG(E0, N1, . . . , Nm) = f(p1, . . . , ps, q1, . . . , qs) ⇐⇒
⇐⇒ s = s0 +

∑m
i=1 Nisi, E(p1, . . . , ps, q1, . . . , qs) = E0

(2.91)

where s0 is the number of degrees of freedom in the system without any introduced particles,

si is the number of degrees of freedom of the particle of ith type, E(p1, . . . , ps, q1, . . . , qs) is the

average energy of the system in certain state defined by (2.29). Using the relation (2.62) we

can find the entropy for any given number of introduced particles N1, . . . , Nm:

S(N1, . . . , Nm) = −kB ln(2π~)s0+
∑

NisifG(E,N1, . . . , Nm) (2.92)

Putting this to (2.89) we have the following:

− kB ln(2π~)s0+
∑

NisifG(E,N1, . . . , Nm) =
1

T

(

−Ω + E −
m∑

i=1

µiNi

)

(2.93)
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From this relation we can find fG:

fG(E,N1, . . . , Nm) =
1

(2π~)s0+
∑

Nisi
eβΩe−βE+

∑

βµiNi (2.94)

The grand partition function Ω can be found from the normalization rule for fG. The total

probability to find the system in some state with some number of particles N1, . . . , Nm is unity.

Thus, considering (2.94) we can write the following normalization:

eβΩ ·
∑

N1,...,Nm

λN1
1 . . . λNm

m

(2π~)s0+
∑

Nisi

∫

e−βE(p1,...,ps,q1,...,qs)dp1 . . . dpsdq1 . . . dqs = 1 (2.95)

where sum is taken over all possible values of N1, . . . , Nm, λi ≡ eµi is activity of the ith type of

particles. The grand potential can be written in the following form:

Ω = kBT ln
1

Ξ
= −kBT ln Ξ (2.96)

where Ξ =
∑

N1,...Nm
λN1
1 . . . λNm

m ZN1,...,Nm
is the Grand partition function, ZN1,...,Nm

is the canon-

ical partition function for particular values N1, . . . , Nm.

2.10 Solubility and Solvation Free energy

The solubility in water and other fluids in the human body is one of the important properties

of drugs and drug-like compounds used in medicine because it shows the drug ability to be

delivered to the place there it works. Free energy is the energetic characteristic of the chem-

ical system which allows one to describe and predict many chemical processes including the

dissolution process. The dissolution process by itself can be divided into two phases: 1) De-

stroying the crystal structure, transition from the crystal to the “free” state. 2) Solvatation

of the molecule. The energy of the transition from the crystal to the “free” state can be with

a reasonable accuracy estimated with quantum-mechanical methods [7]. The second phase

(solvation of the molecule) is energetically described by the solvation free energy (SFE). SFE

is the free energy change during the transfer of the compound from the free (gas) phase to a

solution. Although SFE can be measured experimentally, these experiments are quite compli-

cated from the technical point of view especially for compounds with low solubility and low

volatility [64]. Computation of the SFE is also a challenging task, because solvation process

involves many-body interactions of the solvent molecules. Typically calculation of the SFE

with the molecular dynamics or Monte Carlo simulations may take several days or even weeks,

and will not necessarily be accurate enough. In our work we use much faster method which is

based on the classical density functional theory and integral equation theory of liquids.
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Chapter 3

Integral Equation Theory of Liquids.

RISM and 3DRISM

In this chapter the basics of the classical density functional theory and the reference interaction

site model (RISM) are described. The chapter contains definitions of the distribution and

correlation functions, free-energy functional methods, derivation of Ornstein-Zernike, RISM

and 3DRISM equations and closure relations. Theoretical questions which are necessary for

numerical solution of RISM equations are discussed. The chapter is mostly based on Refs.

[50], [95] and [24]. It is necessary to note, that many derivations in the textbooks are given for

systems of spherical particles. In this chapter we develop the derivations for the six-dimensional

case and multi-particle systems.

3.1 System under investigation

In the previous chapter we did not make any assumptions about the particles in the systems.

We only assume that there are many particles in the system, and that the motion of the par-

ticles is quasi-chaotic. We defined the macroscopic parameters of the system, such as entropy,

temperature and free energy and relate them to each other. This allows us to predict the state of

the system and the energy changes in the thermodynamic processes. Integral equation theory of

liquids (IETL) allows one to predict some specific microscopic and macroscopic thermodynamic

parameters of fluids, i.e. the local solvent structure around the solute, free energy of solvation

etc. The simplest model of fluid is the system composed of the spherical particles which interact

via the pairwise additive potential. This model allows one to describe noble gases, electrolyte

solutions and other systems where the shape of the particles does not affect much the properties

of the fluid. However, properties of many physical systems of interest essentially depend on the

shape of the molecules and partial charges of the atoms of the molecules. For those systems

the model of spherical particles is unable to give reliable results. That’s why we will use the

27
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model which accounts the shape of the molecules. The molecules in our model are described as

rigid objects. This means that the distances of the atoms in the molecule are fixed. Position of

the rigid molecule can be described by three coordinates of the center of mass r = (x, y, z) and

three Euler angles θ = (θx, θy, θz). Interactions between the molecules can be described by the

potential U12(r2− r1,θ1−θ2) where (r1,θ1) and (r2,θ2) are the positions and rotations of the

first and second molecules correspondingly. This model gives much better description of the

fluid than the spherical particles model. However, it also does not consider many effects related

to the motion of the molecules, e.g. conformational changes of the molecules, vibrations of the

atoms etc. The model gives relatively good description of the fluids composed of small or rigid

molecules, e.g. water, carbon hydroxide, benzene etc. This model is not ideal by any means;

however it can give insights to many important systems in physical chemistry. The reason why

we use this model is that more detailed models with non-rigid molecules often appear to be too

complicated to be simulated from the computational point of view.

3.2 Configuration integral

In many cases the general formula (2.79) is not suitable for practical free energy calculations

due to unknown partition function (2.75). However there are some systems for which the

partition function can be calculated easily. One of such systems is the ideal gas. For non-

ideal gas systems one can separate the ideal and non-ideal contributions to the free energy

which also can simplify the calculations. Let us now consider the general case of the system

of N interacting rigid particles. Total energy of the system can be represented as a sum of

kinetic energy term K and potential energy term U , where kinetic energy depends only on

the generalized momenta of the system and the potential energy depends only on generalized

coordinates of the system. Let us consider the canonical ensemble which contains N molecules.

We assume that the molecules are rigid. The potential energy U depends on positions r1, . . . , rN

and orientations θ1, . . . ,θN : U = U(r1, . . . , rN,θ1, . . . ,θN ). It is known that the motion of

the rigid body can be described as the movement of its center of mass and rotation of the body

around the perpendicular axes which come through the center of mass of the body [96]. Let

pk = (pkx, p
k
y, p

k
z) be the linear momentum of the kth particle, lk = (lkx, l

k
y , l

k
z ) be the angular

momentum of the kth particle around the perpendicular axes which come through the center of

mass of the body. As it is known from the course of mechanics, the kinetic energy of the body

is a sum of translational and rotational kinetic energy. Let v0(t) be the velocity of the center

of mass of the molecule. At each moment of time t we can introduce the coordinate system

which is located in the center of mass of the molecule and moving with the speed v0(t). Let

us choose at the moment t the coordinate axes of the system in some known ”local” directions
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(e.g. which go through some certain atoms of the molecule). However, let the orientation of the

axes be fixed with respect to the initial system. Let there are M different types of molecules

in the system. Let ak ∈ {1, . . . ,M} be the type of the kth molecule. Let mak be the mass of

the molecule of type ak. Thus, in a new coordinate system the center of mass of the molecule

is immovable; however, the molecule by itself is rotating. The kinetic energy with respect to

this system differs from the kinetic energy with respect to initial system by makv0(t)
2/2. Let

Jx
ak
, Jy

ak
, Jz

ak
be the moments of inertia of the molecule of type ak about the chosen axes. Then

the rotational kinetic energy can be found with the following relation 1:

Krot =
(lkx)

2

2Jx
ak

+
(lky)

2

2Jy
ak

+
(lkz )

2

2Jz
ak

(3.1)

The total kinetic energy of the molecule is a sum of the rotational kinetic energy and the

translational kinetic energy of the center of mass of the molecule. It can be written in the

following way:

Kk =
(pkx)

2 + (pky)
2 + (pkz)

2

2mak

+
(lkx)

2

2Jx
ak

+
(lky)

2

2Jy
ak

+
(lkz )

2

2Jz
ak

(3.2)

For the sake of uniformity, let us use the following definitions:

p6k−5 ≡ pkx p6k−2 ≡ lkx
p6k−4 ≡ pky p6k−1 ≡ lky
p6k−3 ≡ pkz p6k ≡ lkz

(3.3)

B6k−5 ≡ B6k−4 ≡ B6k−3 ≡ mak

B6k−2 ≡ Jx
ak

B6k−1 ≡ Jy
ak

B6k ≡ Jz
ak

(3.4)

where k = 1 . . . N

Using the above definitions the kinetic energy of the system can be written in the following

way:

K(p1, . . . , p6N ) =
6N∑

i=1

p2i
2Bi

(3.5)

The total energy of the system is a sum of kinetic and potential energy components. This can

be written in the following way:

E(p1, . . . , p6N , r1, . . . , rN,θ1, . . . ,θN ) =
6N∑

i=1

p2i
2Bi

+ U(r1, . . . , rN,θ1, . . . ,θN ) (3.6)

where U(r1, . . . , rN,θ1, . . . ,θN ) is a potential energy of the system. Here and below saying “the

total energy of the system” we mean the total average energy of the system, where averaging

is done over the degrees of freedom of the environment as it was done in the section 2.5.

1In principle, the same formula can be derived using the diagonalization of the moment of inertia tensor
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Let us find the partition function of the system ZN1...NM
where N1 . . . NM are the numbers

of particles of different kind in the system. In the general definition of partition function (2.75)

the integration is performed over all distinguishable states of the system. We suppose that the

particles of each kind are indistinguishable. Then there are Nk! ways to select Nk particles of

kind k. The total number of ways to select particles of all kinds is N1! · · · · ·NM !. We need to

normalize the integral in the definition of the partition function considering this number. Then

the partition function ZN1...NM
is defined in the following way:

ZN1...NM
=
1

(2π~)6NN1! . . . NM !

∫

e
−β

∑6N
i=1

p2i
2Bi

−βU(r1,...,rN,θ1,...,θN )
dp1 . . . dp6Ndr1 . . . drNdθ1 . . . dθN

(3.7)

One can notice that the integration over the momenta components can be done separately:

∫

e
−β

∑6N
i=1

p2i
2Bi dp1 . . . dp6N =

6N∏

i=1

∞∫

−∞

e
−β

p2i
2Bi dpi (3.8)

To calculate contribution of each component we can use a known formula for Gaussian integral

[103]:
∞∫

−∞

e−x2

dx =
√
π (3.9)

To prove this relation we define I =
∫∞
−∞ e−x2

dx. Then I2 =
∫
e−x2

dx
∫
e−y2dy =

∫ ∫
e−(x2+y2)dxdy.

Switching to the polar coordinates we have x = r cosφ, y = r sinφ, dxdy = rdrdφ, I2 =
∫∞
0

∫ 2π

0
e−r2rdrdφ = −π

∫∞
0

e−r2(−2r)dr. Considering that −2rdr = d(−r2) we have I2 =

−π(e∞ − e0) = π, thus I =
√
π. Using this equality we can write the following:

6N∏

i=1

∞∫

−∞

e
−β

p2i
2Bi dpi =

6N∏

i=1

√

2BikBT

∫

e
−
(

pi√
2BikBT

)2

dpi√
2BikBT

=
6N∏

i=1

√

2πBikBT (3.10)

Considering the definitions of Bi (3.4) we can return to the original masses and momenta of

inertia of the particles:

6N∏

i=1

√

2πBikBT =
N∏

i=1

(2πkBT )
6/2(mai)

3/2(Jx
ai
Jy
ai
Jz
ai
)1/2 (3.11)

Putting this to the definition of the partition function (3.7) and considering that (2π~)6N =
∏

a(2π~)
6Na we have the following:

ZN1...NM
=

M∏

a=1

(
(2π~kBT )

3(m3
aJ

x
aJ

y
aJ

z
a )

1/2

(2π~)6

)Na
1

Na!

∫

e−βU(r1,...,rN,θ1,...,θN )dr1 . . . drNdθ1 . . . dθN

(3.12)
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We define the configuration integral QN1...NM
in the following way:

QN1...NM
=

∫

e−βU(r1,...,rN,θ1,...,θN )dr1 . . . drNdθ1 . . . dθN (3.13)

Then the partition function can be written in the following form:

ZN1...NM
=

M∏

a=1

DNa
a

Na!
QN1...NM

(3.14)

where Da

√

m3
aJ

x
aJ

y
aJz

a (kBT )
3(2π)−3

~
−6.

We will use the functions ZN1...NM
and QN1...NM

in our work. However, we find it also

necessary to write the exact expression for the functions ZN and QN for the liquid of N

identical spherical particles. In that case there are no integration over the angular degrees of

freedom in (3.7), and the partition function ZN is written in the following way:

ZN =
1

Λ3NN !
QN (3.15)

where QN =
∫
exp(−βU(r1, . . . , rN))dr1 . . . drN, Λ =

√

2π~2/(mkBT ) is the thermal de Broglie

wavelength, m is a mass of the particle.

3.3 Density distribution functions

Putting the expression for the average energy of the system (3.6) to the Gibbs distribution

(2.52) we obtain the following:

f(p1, . . . , p6N , r1, . . . , rN,θ1, . . . ,θN ) =
6N∏

i=1




e
−β

p2i
2Bi

~
√
2πBikBT



 · N1! . . . NM !

QN1...NM

e−βU(r1,...,rN,θ1,...,θN )

(3.16)

≡ fp(p1, . . . , p6N) · fq(r1, . . . , rN,θ1, . . . ,θN )

where kinetic and potential components fp, fq of the distribution function f are defined in the

following way:

fp(p1, . . . , p6N ) =
6N∏

i=1

1

~
√
2πBikBT

e
−β

p2i
2Bi (3.17)

fq(r1, . . . , rN,θ1, . . . ,θN ) =
N1! . . . NM !

QN1...NM

e−βU(r1,...,rN,θ1,...,θN ) (3.18)

We can see that kinetic component fp is a product of the probability distributions of momenta

components. In such a way we can find the probability that the momenta degree of freedom

has a certain value pi:

f i
p(pi) =

1

2π~
√
BikBT

e
−β

p2i
2Bi (3.19)
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For the distribution fq in a general case such a representation is not possible, because the

potential energy U connects the coordinates of all particles. Speaking about the potential

component, we also rarely need to know positions of all particles. It is more useful to know

the mean number of particles at some selected positions, where number of such positions is

much smaller than number of particles. For the one-component system we define the n-particle

density distribution function ρ(n)(r1, . . . , rn,θ1, . . . ,θn)) in the following way:

ρ(n)(r1, . . . , rn,θ1, . . . ,θn) =
N !

(N − n)!

∫
e−βU(r1,...,rN,θ1,...,θN )

QN

drn+1 . . . drNdθn+1 . . . dθN

(3.20)

The similar definition can be given for the multi-component systems as well. However, in a

general case this definition is too cumbersome to be written. For the practical applications the

most interesting are one-particle and two-particle density distribution functions. We define the

one-particle distribution function ρa of particles of type a in the following way:

ρa(r1,θ1) = Na

∫
e−βU(r1,...,rN,θ1,...,θN )

QN1...NM

dr2 . . . drNdθ2 . . . dθN (3.21)

where it is assumed that the particle with the coordinates (r1,θ1) has type a. Two-particle

distribution function ρab for the particles of types a, b is defined in the following way:

ρab(r1, r2,θ1,θ2) = Na(Nb − δab)

∫
e−βU(r1,...,rN,θ1,...,θN )

QN1...NM

dr3 . . . drNdθ3 . . . dθN (3.22)

where δab is a Kronecker’s delta and it is assumed that the particles with the coordinates

(r1,θ1), (r2,θ2) have types a and b correspondingly.

Also, we define the dimensionless pair density correlation function gab in the following way:

gab(r1, r2,θ1,θ2) =
ρab(r1, r2,θ1,θ2)

ρa(r1,θ1)ρb(r2,θ2)
(3.23)

We note that considering the properties of the Dirac delta-function the definitions of the

density distribution functions (3.21), (3.22) can be written in the following form [50]:

ρa(r1,θ1) =

∫ Na∑

i=1

δ(rai − r1)δ(θ
a
i − θ1)

e−βU(r1,...,rN,θ1,...,θN )

QN1...NM

dr1 . . . drNdθ1 . . . dθN (3.24)

=

〈
Na∑

i=1

δ(rai − r1)δ(θ
a
i − θ1)

〉

ρab(r1, r2,θ1,θ2) =

〈
Na∑

i=1

Nb∑

j=1

(1− δabδij)δ(r
a
i − r1)δ(θ

a
i − θ1)δ(r

b
j − r2)δ(θ

b
j − θ2)

〉

(3.25)
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3.4 Free Energy functional

We considered systems with the uniform density. However, if some external field acts on

the particles of the system the density can change. Also, we can consider not necessarily the

equilibrium state of the system. In such cases it can be necessary to consider dependency of the

free energy of the system on the external factors such as external field or density distribution.

Let the system contains N1, . . . , NM particles of types 1, . . . ,M correspondingly. We denote as

(rai ,θ
a
i ) the coordinates of the i

th particle of type a. Then the external field VN can be expressed

as follows:

VN(r
[N ],θ[N ]) =

M∑

a=1

Na∑

i=1

φa(rai ,θ
a
i ) (3.26)

where N =
∑

aNa, r
[N ] ≡ (r11, . . . , r

1
N1
, . . . , rM1 , . . . , rMNM

),

θ[N ] ≡ (θ1
1, . . . ,θ

1
N1
, . . . ,θM

1 , . . . ,θM
NM

), φa(r,θ) is an external field which acts on the particle of

type a at position (r,θ).

Using the definition of the Gibbs distribution (2.76) together with the relation (3.16) we

can write the following:

fp(p1, . . . , p6N )fq(r
[N ],θ[N ]) =

1

(2π~)6NZN1...NM

e
−β

∑ p2i
2Bi

−βU(r[N ],θ[N ])−βV (r[N ],θ[N ])
(3.27)

Integrating both parts over the momenta components p1, . . . , p6N we get the following:

fq(r
[N ],θ[N ]) =

M∏

a=1

DNa
a

Na!

1

ZN1...NM

e−βU(r[N ],θ[N ])−βV (r[N ],θ[N ]) (3.28)

Form this relation we can express ZN1...NM
as a function of fq in a certain point

(r1, . . . , rN,θ1, . . . ,θN ):

ZN1...NM
(r[N ],θ[N ]) =

M∏

a=1

DNa
a

Na!

e−βU(r[N ],θ[N ])−βV (r[N ],θ[N ])

fq(r[N ],θ[N ])
(3.29)

Similarly to the general definition of the free energy of the system (2.79) we can define the free

energy as a function of the density in certain point:

F(r[N ],θ[N ]) = −kBT lnZN1...NM
=

kBT ln
M∏

a=1

Na!

DNa
a

+ kBT ln fq(r1, . . . , rN,θ1, . . . ,θN ) + U(r[N ],θ[N ]) + V (r[N ],θ[N ])
(3.30)

We introduce the Free energy functional as the ensemble average of the expression (3.30) over

all distinguishable points of the phase space, namely:

F [fq] =
〈
F(r[N ],θ[N ])

〉
=

kBT
M∑

a=1

ln
Na!

DNa
a

+

∫

fq(r
[N ],θ[N ])

(
kBT ln fq(r

[N ],θ[N ])+U(r[N ],θ[N ])+V (r[N ],θ[N ])
)
dr[N ]dθ[N ]

(3.31)
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3.5 Minimization property of the free energy functional

One of the important properties of the free energy functional is that for the equilibrium density

f 0
q = A/ZN1...NM

exp(−βU − βV ) where A =
∏

aD
Na
a /Na! it has the minimum2.

For the f 0
q it holds the following:

kBT ln f 0
q (r

[N ],θ[N ]) = kBT lnA/ZN1...NM
− U − V (3.32)

Putting this to the definition of the free energy (3.31) we have the following:

F [f0q ] =

∫

f 0
q (r

[N ],θ[N ]) (kBT lnA/ZN1...NM
− U − V + U + V ) dr[N ]dθ[N ] = kBT lnA/ZN1...NM

(3.33)

Using this formula we can find the difference ∆F = F [fq]−F [f0q ]. We obtain the following:

∆F =

∫

fq

(

kBT ln fq + kBT ln
A

ZN1...NM

− kBT ln f 0
q

)

dr[N ]dθ[N ] − kBT ln
A

ZN1...NM

(3.34)

where U + V was changed to kT lnA/Z − kT ln f 0
q as a result of (3.32). Considering, that due

to normalization
∫
fq =

∫
f 0
q = 1, we have the following

∆F = kBT

∫ (

fq ln
fq
f 0
q

+ fq − f 0
q

)

dr[N ]dθ[N ] = kBT

∫

f 0
q

(
fq
f 0
q

ln
fq
f 0
q

+
fq
f 0
q

− 1

)

dr[N ]dθ[N ]

(3.35)

The integrand is always non-negative. To prove it we denote fq/f
0
q ≡ 1/B. We have fq

f0
q
ln fq

f0
q
+

fq
f0
q
−1 = 1/B ln 1/B+1/B−1 = 1/B(− lnB+1−B). It is known, that for any B > 0 it holds

that lnB ≤ B − 1, thus considering that fq, f
0
q ≥ 0 we conclude that the integrand is always

non-negative and ∆F ≥ 0.

3.6 Free energy functional of the ideal gas in an external

field

One of the basic assumptions of the density functional theory is that the free energy functional

can be expressed as a functional of one-particle densities ρ1(r1,θ1), . . . , ρM(rM ,θM ) of the

particles of types 1, . . . ,M correspondingly. In the ideal gas the particles do not interact to

each other, so the probability to find the system in a certain configuration is a product of

probabilities to find a particle at certain position. Considering the normalization of ρa(r,θ) we

can write the following:

fq(r
N ,θN ) =

M∏

a=1

Na∏

i=1

ρa(rai ,θ
a
i )

Na

(3.36)

2In this section we omit the arguments (r[N ],θ[N ]) of fq, f
0
q for the sake of simplicity.
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Putting this to the definition of the free energy functional (3.31) and considering that for ideal

gas in external field U = 0 we have the following:

F [ρ1, . . . ,ρM ] = S1 + S2 + S3 (3.37)

where summands S1, S2, S3 are defined in the following way:

S1 =
M∑

a=1

kBT ln
Na!

DNa
a

(3.38)

S2 = kBT

∫ M∏

b=1

Nb∏

j=1

ρb(rbj,θ
b
j)

Nb

ln
M∏

a=1

Na∏

i=1

ρa(rai ,θ
a
i )

Na

dr[N ]dθ[N ] (3.39)

S3 =

∫ M∏

b=1

Nb∏

j=1

ρb(rbj ,θ
b
j)

Nb

M∑

a=1

Na∑

i=1

φa(rai ,θ
a
i )dr

[N ]dθ[N ] (3.40)

Using the Stirling’s approximation (2.46) we rewrite the first summand in the following way:

S1 ≈ kBT
M∑

a=1

(Na lnNa −Na −Na lnDa) = kBT
M∑

a=1

Na(ln
Na

Da

− 1) (3.41)

Considering the normalization
∫
ρa = Na the first summand can be re-written in the following

way:

S1 ≈ kBT
M∑

a=1

∫

ρa(r,θ)

(

ln
Na

Da

− 1

)

drdθ (3.42)

Considering that the logarithm of the product is the sum of logarithms we can re-write the

second summand in the following way:

S2 =
M∑

a=1

Na∑

i=1

kBT

∫

drai dθ
a
i

ρa(rai ,θ
a
i )

Na

ln
ρa(rai ,θ

a
i )

Na

∫
∏

j 6=i

ρa(raj ,θ
a
j )

Na

∏

b 6=a

Nb∏

k=1

ρb(rbk,θ
b
k)

Nb

dr[N ]/drai dθ
[N ]/dθa

i

(3.43)

where dr[N ]/drai dθ
[N ]/dθa

i means integration over all coordinates except (rai ,θ
a
i ). From the

normalization
∫
ρa/Na = 1 we conclude that the integration over dr[N ]/drai dθ

[N ]/dθa
i gives unity.

Also, considering that all particles of the same type are indistinguishable, we can substitute the

sum over i by the multiplication by Na. Thus we have the following expression for the second

summand:

S2 =
M∑

a=1

∫

ρa(r,θ) ln
ρa(r,θ)

Na

drdθ (3.44)
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Similarly, the third summand (3.40) can be expressed in the following way:

S3 =
M∑

a=1

M∑

i=1

∫

drai dθ
a
i

ρa(rai ,θ
a
i )

Na

φa(rai ,θ
a
i )

∫
∏

j 6=i

ρa(raj ,θ
a
j )

Na

∏

b 6=a

Nb∏

k=1

ρb(rbk,θ
b
k)

Nb

dr[N ]/drai dθ
[N ]/dθa

i

(3.45)

Considering the normalization of the ρa and changing sum over Na identical particles to mul-

tiplication we have the following expression:

S3 =
Na∑

a=1

∫

ρa(r,θ)φa(r,θ)drdθ (3.46)

Combining the expressions for S1, S2, S3 we have:

F [ρ1, . . . ,ρM ] =
M∑

a=1

kBT

∫

ρa(r,θ)

(

ln
Na

Da

− 1 + ln
ρa(r,θ)

Na

)

drdθ +
Na∑

a=1

∫

ρa(r,θ)φa(r,θ)drdθ
(3.47)

Considering that the sum of logarithms is a logarithm of product we can cancel Na and

write the final expression for the free energy functional of ideal gas:

F id[ρ1, . . . ,ρM ] =
M∑

a=1

kBT

∫

ρa(r,θ)

(

ln
ρa(r,θ)

Da

− 1

)

drdθ +
M∑

a=1

∫

ρa(r,θ)φa(r,θ)drdθ

(3.48)

In a general case of non-ideal gas the free energy can be expressed as a sum of ideal and

exchange parts:

F [ρ1, . . . ,ρM ] = F id[ρ1, . . . ,ρM ] + F ex[ρ1, . . . ,ρM ] (3.49)

3.7 Functional derivatives

Let us consider a linear functional F [ρ] which maps the function ρ : R3 → R to the real space.

Let us consider the case then the functional F can be represented in the following way:

F [ρ] =

∫

R3

A[ρ](r)ρ(r)dr (3.50)

where A[ρ] : R3 → R is defined for each ρ. In that case the functional is called differentiable

and the expression A[ρ] is called functional derivative of the functional F . The functional

derivative of the functional F with respect to the function ρ in the point r is denoted in the

following way:

A[ρ](r) ≡ δF
δρ(r)

(3.51)
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For non-linear functionals the functional derivative can be introduced by linearization of the

functionals in some neighborhood. Let now F be a non-linear functional and there exists such

neighborhood of a function ρ0 that for any function ρ from this neighborhood the following

relation holds:

F [ρ] = F [ρ0] +

∫

R3

A[ρ0](r) (ρ(r)− ρ0(r)) dr+ o(||ρ− ρ0||) (3.52)

where || · || is some norm of the functions defined on R
3. In that case the functional F is called

differentiable in the point ρ0 and A[ρ0] is called the functional derivative. We should note that

more strict and general definition of the functional derivatives can be given using the concepts

of Fréchet and Gâteaux derivatives. More information can be found in Ref. [104].

Many properties of functional derivatives can be determined using the properties of the

partial derivatives. Let us consider the case when the functional F is defined only for the

piecewise constant functions. Let additionally these piecewise constant functions have final

support V ⊂ R
3. Let the set V is divided to the non-intersecting subsets V1, . . . , VN . We define

the functional F for all functions ρ(r) which have constant values on the sets Vi. We choose

the points r1, . . . , rN in such a way that ri ∈ Vi, i = 1, . . . , N . In that case expression (3.52)

can be written in the following way:

F [ρ] = F [ρ0] +
N∑

i=1

δF
δρ0(ri)

µ(Vi)
(
ρi − ρ0i

)
+ o(||ρ− ρ0||) (3.53)

where µ(Vi) is the volume of the set Vi, ρi = ρ(ri), ρ
0
i = ρ0(ri). Using the properties of the

partial derivatives we come to the following relation:

δF
δρ0(ri)

µ(Vi) =
∂F
∂ρ0i

(3.54)

Using this relation when N → ∞ it is possible to obtain the properties of the functional

derivatives.

For example, let us consider one of the simplest functional F [ρ] ≡ ρ(r0) where r0 is some

given point. Our aim is to find the functional derivative δF/δρ(r) ≡ δρ(r0)/δρ(r). Let us

consider a case of the piecewise constant functions. Let r0 ∈ V1, r ∈ Vi. From (3.54) we have

the following:
δρ(r0)

δρ(r)
µ(Vi) =

∂ρ0i
∂ρi

= δ1i (3.55)

where δ1i is the Kronecker delta. Now we consider the case N → ∞, µ(Vi) → 0. We have the

following relation:
δρ(r0)

δρ(r)
= lim

µ(Vi)→0

δ1i
µ(Vi)

= δ(r− r0) (3.56)
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where δ(r− r0) is the Dirac delta function.

Other properties of the functional derivatives can be obtained using the similar procedure.

The most of the properties of the partial derivatives are also valid for the functional derivatives

if one changes symbols ∂ to δ and summation to the integration over R3.

3.8 Direct correlation functions

In the density functional theory responses of the free energy functionals to the local change

of the density play an important role. To characterize this response one needs to know the

functional derivatives of the free energy functional with respect to the density. Let us find the

functional derivative of the free energy functional (3.49) with respect to the density of particles

of type a in the point (r1,θ1). Using the properties of functional derivatives we write the

following:

δF
δρa(r1,θ1)

=
M∑

b=1

∫ (

kBT
δρb(r,θ)

δρa(r1,θ1)
+

δρb(r,θ)

δρa(r1,θ1)
φa(r,θ)

)

drdθ +
δF ex

δρa(r1,θ1)
(3.57)

From the properties of the functional derivatives it we conclude that the following relation

holds:
δρb(r,θ)

δρa(r1,θ1)
= δabδ(r1 − r,θ1 − θ) (3.58)

where δ(r1−r,θ1−θ) = δ(r1−r)δ(θ1−θ) Using this relation we come to the following relation:

δF
δρa(r1,θ1)

= kBT ln
ρa(r1,θ1)

Da

+ φa(r1,θ1) +
δF ex

δρa(r1,θ1)
(3.59)

We define the direct correlation function ca(r1,θ) in the following way:

ca(r1,θ) ≡ −β
δF ex

δρa(r1,θ1)
(3.60)

As it was proven in the section 3.5 the free energy functional reaches its minimum at the

equilibrium density under constrains of the density normalization which can be written as
∫
ρa = Na, a = 1, . . . ,M . To find this minimum we use the Lagrange multipliers method for

functionals [104]. The Lagrange functional of the system can be written in the following way:

L[ρ1, . . . ,ρM , µ1, . . . , µM ] = F [ρ1, . . . ,ρM ]−
M∑

a=1

µa

(∫

ρa(r,θ)drdθ −Na

)

(3.61)

The necessary condition of the minimum is δL/δρa(r1,θ1) = 0. So we have the following:

δL

δρa(r1,θ1)
=

δF
δρa(r1,θ1)

− µa = 0 (3.62)
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Using (3.59) and (3.60) we obtain the following expression for the direct correlation function:

ca(r1,θ1) = −βµa + βφa(r1,θ1) + ln
ρa(r1,θ1)

Da

(3.63)

Expressing ρa from the above relation we have the following:

ρa(r1,θ1) = Dae
βµae−βφa(r1,θ1)+ca(r1,θ1) = ρ0e

−βφa(r1,θ1)+ca(r1,θ1) (3.64)

where ρ0 ≡ Dae
βµa is the uniform bulk density when there are no external force acting on the

system.

We can also introduce multi-particle direct correlation functions which are proportional

to the higher derivatives of the free energy functional. The most interesting in practice is

two-particle direct correlation function cab(r1, r2,θ1,θ2) which is defined in the following way:

cab(r1, r2,θ1,θ2) ≡
δca(r1,θ1)

δρb(r2,θ2)
= −β

δ2F
δρa(r1,θ1)δρb(r2,θ2)

(3.65)

Taking the functional derivative over ρb(r2,θ2) from the expression (3.63) and using the prop-

erties of the functional derivatives we express the two particle function at the equilibrium state

in the following way:

cab(r1, r2,θ1,θ2) = β
δφa(r1,θ1)

δρb(r2,θ2)
+

δabδ(r1 − r2,θ1 − θ2)

ρa(r1,θ1)
(3.66)

From this expression we can find the derivative δφa(r1,θ1)/δρ
b(r2,θ2):

δφa(r1,θ1)

δρb(r2,θ2)
= kBT

(

cab(r1, r2,θ1,θ2)−
δabδ(r1 − r2,θ1 − θ2)

ρa(r1,θ1)

)

(3.67)

3.9 Ornstein-Zernike equation

In this section I adapt the derivation of OZ equation from Ref. [105] to the case of multi-

component solutions. The free energy functional can be regarded as a functional of the external

field (3.26). In that case we can find a functional derivative of F with respect to φa. Using the

definition of the Helmholtz free energy (2.79) we can write the following:

δF
δφa(r,θ)

= −kBT
δ lnZN1...NM

δφa(r,θ)
=

−kBT

ZN1...NM

δZN1...NM

δφa(r,θ)
(3.68)

Using the relation (3.14) between the partition function ZN1...NM
and the configuration integral

QN1...NM
we come to the following relation:

δF
δφa(r,θ)

=
−kBT

QN1...NM

δQN1...NM

δφa(r,θ)
(3.69)
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Using the definition of the configuration integral (3.13) and properties of functional derivatives

we have the following:

δF
δφa(r1,θ1)

=
−kBT

QN1...NM

∫

e−βU(r[N ],θ[N ])−β
∑M

b=1

∑Nb
i=1 φ

b(rbi ,θ
b
i )(−β)

M∑

b=1

Nb∑

i=1

δφb(rbi ,θ
b
i )

δφa(r1,θ1)
dr[N ]dθ[N ]

(3.70)

Using that δφb(rbi ,θ
b
i )/δφ

a(r1,θ1) = δabδ(r
b
i − r1,θ

b
i − θ1) we have the following relation:

δF
δφa(r1,θ1)

=

∫
e−βU(r[N ],θ[N ])−β

∑M
b=1

∑Nb
i=1 φ

b(rbi ,θ
b
i )

QN1...NM

Na∑

i=1

δ(rai − r1,θ
a
i − θ1)dr

[N ]dθ[N ] (3.71)

Using the representation (3.24) of ρa as an ensemble average of the δ-function we have:

δF
δφa(r1,θ1)

=

〈
Na∑

i=1

δ(rai − r1,θ
a
i − θ1)

〉

= ρa(r1,θ1) (3.72)

Now, let us find how does ρa changes with the change of the external field in a selected point.

From (3.69), (3.72) we have the following:

δρa(r1,θ1)

δφb(r2,θ2)
=

kBT

Q2
N1...NM

δQN1...NM

δφa(r1,θ1)

δQN1...NM

δφb(r2,θ2)
+

−kBT

QN1...NM

δ2QN1...NM

δφa(r1,θ1)δφb(r2,θ2)
(3.73)

Using the relation (3.72) and (3.69) we can immediately write the expression for the first

summand:
kBT

Q2
N1...NM

δQN1...NM

δφa(r1,θ1)

δQN1...NM

δφb(r2,θ2)
= βρa(r1,θ1)ρ

b(r2,θ2) (3.74)

To find the expression for the second summand we can use (3.68), (3.71) to find the derivative

of δQ/δφa(r1,θ1). We have the following:

−kBT

QN1...NM

δ2QN1...NM

δφa(r1,θ1)δφb(r2,θ2)
=

δ

δφb(r2,θ2)

∫
exp(−βU(r[N ],θ[N ] − βV (r[N ],θ[N ]))

QN1...NM

Na∑

i=1

δ(rai − r1,θ
a
i − θ1)dr

[N ]dθ[N ]
(3.75)

Using the properties of the functional derivatives we obtain the following expression:

−kBT

QN1...NM

δ2QN1...NM

δφa(r1,θ1)δφb(r2,θ2)
=

−β

∫
exp(−βU(r[N ],θ[N ] − βV (r[N ],θ[N ]))

QN1...NM

Na∑

i=1

Nb∑

j=1

δ(rai−r1,θa
i−θ1)δ(r

b
j−r2,θb

j−θ2)dr
[N ]dθ[N ]

= −β

〈
Na∑

i=1

Nb∑

j=1

δ(rai − r1,θ
a
i − θ1)δ(r

b
j − r2,θ

b
j − θ2)

〉

(3.76)
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We can consider two cases: 1) a ≡ b, i = j and 2) a 6= b or i 6= j. We can formally write

the following:

〈
Na∑

i=1

Nb∑

j=1

δ(rai − r1,θ
a
i − θ1)δ(r

b
j − r2,θ

b
j − θ2)

〉

= δab

〈
Na∑

i=1

δ(rai − r1,θ
a
i − θ1)δ(r

b
i − r2,θ

b
i − θ2)

〉

+

〈
Na∑

i=1

Nb∑

j=1

(1− δabδij)δ(r
a
i − r1,θ

a
i − θ1)δ(r

b
j − r2,θ

b
j − θ2)

〉

(3.77)

Comparing this to (3.24), (3.25) we conclude that the first summand is equal to

δ(r1− r2,θ1−θ2)ρ
a(r1,θ1), the second summand is equal to ρab(r1, r2,θ1,θ2). So we have the

following:

−kBT

QN1...NM

δ2QN1...NM

δφa(r1,θ1)δφb(r2,θ2)
= −β

(
δ(r1 − r2,θ1 − θ2)ρ

a(r1,θ1) + ρab(r1, r2,θ1,θ2)
)

(3.78)

This together with the relations (3.73), (3.74) gives the following expression for the functional

derivative δρa(r1,θ1)/δφ
b(r2,θ2):

δρa(r1,θ1)

δφb(r2,θ2)
= β

(
ρa(r1,θ1)ρ

b(r2,θ2)− δabδ(r1 − r2,θ1 − θ2)ρ
a(r1,θ1)− ρab(r1, r2,θ1,θ2)

)

(3.79)

We consider now the case with no external field: φa(r,θ) → 0. In that case the density will

tend to the equilibrium density ρa(r,θ) → const and using the definition of the pair density

correlation function (3.23) we can write ρab(r1, r2,θ1,θ2) = ρa0ρ
b
0g

ab(r1, r2,θ1,θ2) We introduce

the total correlation function hab(r1, r2,θ1,θ2) in the following way:

hab(r1, r2,θ1,θ2) = gab(r1, r2,θ1,θ2)− 1 (3.80)

Then the equation (3.79) can be written in a simpler form:

δρa(r1,θ1)

δφb(r2,θ2)

∣
∣
∣
∣
VN=0

= −βρa
(
ρbhab(r1, r2,θ1,θ2) + δabδ(r1 − r2,θ1 − θ2)

)
(3.81)

Now, let us look at the derivative δρa(r1,θ1)/δρ
b(r2,θ2). Using the properties of the functional

derivatives we can write δρa(r1,θ1)/δρ
b(r2,θ2) = δabδ(r1 − r2,θ1 − θ2). Alternatively, we can

write the same relation using the chain rule for functional derivatives:

δρa(r1,θ1)

δρb(r2,θ2)

∣
∣
∣
∣
VN=0

=
M∑

c=1

∫
δρa(r1,θ1)

δφc(r3,θ3)

∣
∣
∣
∣
VN=0

· δφ
c(r3,θ3)

δρb(r2,θ2)

∣
∣
∣
∣
VN=0

dr3dθ3 (3.82)
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Putting here expressions (3.67) (3.81) for the derivatives δφ/δρ and δρ/δφ we have the following:

δabδ(r1 − r2,θ1 − θ2) =
M∑

c=1

∫

(−β)ρa (ρchac(r1, r3,θ1,θ3) + δacδ(r1 − r3,θ1 − θ3))×

×kBT

(

ccb(r3, r2,θ3,θ2)−
δcbδ(r3 − r2,θ3 − θ2)

ρc

)

dr3dθ3

(3.83)

Opening the brackets we come to the following relation:

δabδ(r1 − r2,θ1 − θ2) =

−
M∑

c=1

ρaρc
∫

hac(r1, r3,θ1,θ3)c
cb(r3, r2,θ3,θ2)dr3dθ3 − ρacab(r1, r2,θ1,θ2)

+ρahab(r1, r2,θ1,θ2) + δabδ(r1 − r2,θ1 − θ2)

(3.84)

Canceling δabδ(r1 − r2,θ1 − θ2) and dividing both parts by ρa we come to the set of Ornstein-

Zernike (OZ) equations:

hab(r1, r2,θ1,θ2) = cab(r1, r2,θ1,θ2) +
M∑

c=1

ρc
∫

hac(r1, r3,θ1,θ3)c
cb(r3, r2,θ3,θ2)dr3dθ3

a, b = 1, . . . ,M
(3.85)

We note, that because the functions hab, cab, are symmetric with respect to their arguments,

we can rewrite the OZ-equations in the following way:

hba(r2, r1,θ2,θ1) = cba(r2, r1,θ2,θ1) +
M∑

c=1

ρc
∫

hca(r3, r1,θ3,θ1)c
bc(r2, r3,θ2,θ3)dr3dθ3

(3.86)

Changing the labels a ↔ b, r1 ↔ r2, θ1 ↔ θ2 we come to the familiar form of the OZ equations:

hab(r1, r2,θ1,θ2) = cab(r1, r2,θ1,θ2) +
M∑

c=1

ρc
∫

cac(r1, r3,θ1,θ3)h
cb(r3, r2,θ3,θ2)dr3dθ3

(3.87)

We also note, that in the uniform fluids the functions cab, hab depend only on relative shifts

between the particles but not on positions of particles themselves. Thus, the OZ equation for

uniform fluids can be written in the following form:

hab(r2−r1,θ2−θ1) = cab(r2−r1,θ2−θ1)+
M∑

c=1

ρc
∫

cac(r3−r1,θ3−θ1)h
cb(r2−r3,θ2−θ3)dr3dθ3

(3.88)
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3.10 Closure relation

Although the Ornstein-Zernike equations (3.87) are fundamental equations of the integral equa-

tion theory of liquids they are not enough to calculate the correlation functions. Equations

(3.87) give only M2 relations for 2M2 unknown correlation functions hab, cab. To make the

system of equations solvable we need to find yet M2 independent relations between the func-

tions hab, cab. Such relations can be found using the density functional theory. Let us consider

the system with the origin connected to one of the particles. Let this particle has type a. We

denote as (r0,θ0) ≡ (0,0) the coordinates of this particle. Let the particles in the system

interact via the pairwise-additive potential (4.4). In the coordinate system associated with one

of the particles we can consider that other particles move in the external field generated by

this particle. We denote this external field as V (r[N ],θ[N ]). It can be expressed in the following

form:

V (r[N ],θ[N ]) =
M∑

b=1

Nb∑

i=1

uab(rbi ,θ
b
j) (3.89)

We note, that this expression becomes the same as the expression (3.26) if we substitute φb(r,θ)

with uab(r,θ). In the coordinate system associated with one of the particles the one-particle

distribution functions ρb(r,θ) can be written in the following way:

ρb(r,θ) = ρb0g
ab(r1 − r0,θ1 − θ0) (3.90)

Using the relation (3.64) we have the following:

gab(r,θ) = e−βuab(r,θ)+cb(r,θ) (3.91)

Let us consider the process of smooth transition from the system without inter-particle inter-

action to the given system 3. Let the one-particle density during this transition changes by the

following low:

ρb(r,θ;λ) = ρb0 + λ∆ρb(r,θ) (3.92)

where ∆ρb(r,θ) = ρb(r,θ)−ρb0. The function ρb(r,θ; 0) corresponds to the initial uniform state

and the function ρb(r,θ; 1) to the final state. Also, using the relation (3.90) and the definition

of the total correlation function (3.80) we can write the following:

∆ρb(r1,θ1) = ρb0h
ab(r0, r1,θ0,θ1) (3.93)

We denote as cb(r,θ;λ) the direct correlation function which corresponds to the density ρb(r,θ;λ).

According to the rules of differentiation and to the properties of the functional derivatives the

3Using the term smooth transition we suppose, that all the λ-dependent correlation and distribution functions
are continuous with respect to λ. This in particular means that we can integrate the correlation functions over
λ.
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differential dcb(r,θ;λ) = c(r,θ;λ+ dλ)− c(r,θ;λ) can be written in the following way:

dcb(r1,θ1;λ) =
M∑

c=1

∫
δcb(r1,θ1;λ)

δρc(r3,θ3;λ)
dρc(r3,θ3;λ)dr3dθ3 (3.94)

where dρc(r3,θ3;λ) = ρc(r3,θ3;λ + dλ) − ρc(r3,θ3;λ). Using the relations (3.92), (3.65) and

integrating over λ we have the following:

cb(r1,θ1) =
M∑

c=1

1∫

0

dλ

∫

cbc(r1, r3,θ1,θ3;λ)∆ρc(r3,θ3)dr3dθ3 (3.95)

Here we use that cb(r,θ; 0) ≡ 0, because the initial state corresponds to the ideal-gas. The

relation (3.95) means that to calculate cb(r1,θ1) for the final system one need to know functions

cab for any λ. This in turn seriously complicates solution of the OZ equations. To simplify the

closure relation different approximations are used. One of the widely used approximations is

the Hyper-Netted chain (HNC) approximation. In the Hyper-netted chain approximation it is

assumed that the functions cbc do not depend on λ and can be substituted by the pair direct

correlation function of the final system. In that case the integration over dλ can be omitted.

Using (3.93) we come to the following expression:

cb(r1,θ1) =
M∑

c=1

ρc0

∫

cbc(r1, r3,θ1,θ3)h
ca(r3, r0,θ3,θ0)dr3dθ3 (3.96)

Putting this expression to (3.91) and using the Ornstein-Zernike equation (3.87) we come to

the HNC closure relation:

gab(r01,θ01) = e−βu(r01,θ01)+hab(r01,θ01)−cab(r01,θ01) (3.97)

where we define r01 ≡ r1 − r0 ≡ r1, θ01 ≡ θ1 − θ0 ≡ θ1 to stress that the distances in the

expression are relative to the selected particle. We note, that substituting (3.95) by (3.96) we

neglect the dependency of the direct correlation function on λ. In a general case the closure

relation is written in the following form:

gab(r01,θ01) = e−βu(r01,θ01)+hab(r01,θ01)−cab(r01,θ01)+Bab(r01,θ01) (3.98)

where Bab(r01,θ01) is a Bridge function defined in the following way:

Bab(r01,θ01) =
M∑

c=1

ρc0

∫

dλ

∫

hac(r03,θ03)c
bc(r13,θ13;λ)dr3dθ3 − hab(r01,θ01) + cab(r01,θ01)

(3.99)
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3.11 Reference interaction site model

In a general case, solution of the six dimensional OZ equations (3.87) is a challenging problem

from the computational point of view. Nowadays there are no algorithm implementations which

solve the OZ equations in a general case for arbitrary molecules. Only few works exist which

describe solution of the 6D OZ equations for simple small molecules, like water or ionic solutions.

In practice simplification of the OZ equations are usually used. Probably the most popular of

such simplifications is the Reference Interaction Site Model (RISM). The RISM was initially

proposed by Chandler and Anderson [31] and was intensively investigated by the community

until the more extended, 3DRISM model come to change it. The basic consideration of RISM

theory is the assumption that the molecules in the system can be considered as the sets of

sites (typically - atoms of the molecule). The main assumption of the RISM theory is that the

molecular direct correlation function cab(r1, r2,θ1,θ2) can be expressed as the sum of spherically

symmetric site-site correlation functions cabα′β′ . Let us denote by r1, r2, . . . the centers of the

molecules in the system, by r̂1, r̂2, . . . the coordinates of the sites of the molecules, by da
α(θ)

shift of the site α of the molecule of type a with respect to the center of the molecule. This

shift depends on the orientation of the molecule θ. If ri is the absolute coordinate of the center

of the ith molecule of type a, r̂i is the coordinate of the site α of this molecule, then we can

write r̂i = ri + daα(θi), where θi is the orientation of the molecule. We denote by hab
αβ(r̂1, r̂2)

cabα′β′(r̂1, r̂2) the total and direct site-site correlation functions between the site α of molecule of

type a and site β of molecule of type b. According to the assumptions of the RISM theory we

can write the following relation for the direct correlation function cab(r1, r2,θ1,θ2):

cab(r1, r2,θ1,θ2) =
∑

α′β′

cabα′β′(r̂′1, r̂
′
2) (3.100)

where the following relations hold:

r̂′1 = r1 + da
α′(θ1) r̂′2 = r2 + db

β′(θ2) (3.101)

The relation (3.100) can be re-written in the integral form where restrictions (3.101) are in-

corporated by introducing δ-functions into the integral representation. We have the following

representation: 4

cab(r1, r2,θ1,θ2) =
∑

α′β′

∫

δ(r1 + da
α′(θ1)− r̂′1)δ(r2 + db

β′(θ2)− r̂′2)c
ab
α′β′(r̂′1, r̂

′
2)dr̂

′
1dr̂

′
2 (3.102)

Total site-site correlation functions hab
αβ(r̂1, r̂2) are defined by averaging of the molecular

total correlation function hab over the rotational degrees of freedom. Considering the restrictions

4Here and below to make the equations shorter we will sometimes omit multiple integral signs (
∫
). The

number of integrations can be determined from the number of differentials under the integral.
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(3.101) the definition can be written in the following way:

hab
αβ(r̂1, r̂2) =

1

Ω2

∫

h(r1, r2,θ1,θ2)δ(r1+da
α(θ1)−r̂1)δ(r2+db

β(θ2)−r̂2)dr1dr2dθ1dθ2 (3.103)

where Ω =
∫
dθ = 4π2. Here we should note, that in principle we distinguish the density of

the molecules ρa and the density of the molecule sites ρ̂a. The difference is due to the different

normalization for these quantities. According to the definition (3.21) we have the following

normalization for the molecular density:
∫

ρadrdθ = ρaV Ω = Na (3.104)

where V is the volume of the system. Thus we have ρa = Na/(V Ω). However, for sites, which

do not have angular degrees of freedom the normalization
∫
ρ̂adr = Na is usually used. This

means that ρ̂a = Na/V = ρaΩ. Using these definitions we come to the following representation

of the OZ equation (3.87):

hab(r1, r2,θ1,θ2) = cab(r1, r2,θ1,θ2) +
M∑

c=1

ρ̂c

Ω

∫

cac(r1, r3,θ1,θ3) · hcb(r3, r2,θ3,θ2)dr3dθ3

(3.105)

To make the expressions shorter, we will transform separately each summand in the OZ

equation. Let us multiply both parts of the OZ equation (3.105) by Ω−2δ(r1+da
α(θ1)−r̂1)δ(r2+

db
β(θ2)− r̂2) and integrate over r1, r2, θ1, θ2. The OZ equation will have the following form:

X = Y + Z (3.106)

where X, Y , Z are defined with the following relations:

X =
1

Ω2

∫

hab(r1, r2,θ1,θ2)δ(r1 + da
α(θ1)− r̂1)δ(r2 + db

β(θ2)− r̂2)dr1dr2dθ1dθ2 (3.107)

Y =
1

Ω2

∫

cab(r1, r2,θ1,θ2)δ(r1 + da
α(θ1)− r̂1)δ(r2 + db

β(θ2)− r̂2)dr1dr2dθ1dθ2 (3.108)

Z =
M∑

c=1

ρ̂c

Ω3

∫

cac(r1, r3,θ1,θ3)h
cb(r3, r2,θ3,θ2)×

×δ(r1 + da
α(θ1)−r̂1)δ(r2 + db

β(θ2)−r̂2)dr3dθ3dr1dr2dθ1dθ2

(3.109)

The relation (3.107) coincides with the definition (3.103), thus X is defined with the follow-

ing relation:

X ≡ hab
αβ(r̂1, r̂2) (3.110)

Using the RISM assumption (3.102) in the relation (3.108) we have the following:

Y =
∑

α′β′

∫

δ(r1 + da
α′(θ1)− r̂′1)δ(r2 + db

β′(θ2)− r̂′2) · cabα′β′(r̂′1, r̂
′
2)×

×δ(r1 + da
α(θ1)− r̂1)δ(r2 + db

β(θ2)− r̂2)dr1dr2dθ1dθ2dr̂
′
1dr̂

′
2

(3.111)
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Let us define the intramolecular correlation function ωαα′(r̂1, r̂
′
1) in the following way:

ωαα′(r̂1, r̂
′
1) =

1

Ω

∫

δ(r1 + da
α′(θ1)− r̂′1)δ(r1 + da

α(θ1)− r̂1)dr1dθ1 (3.112)

Integration of the first δ-function over the r1 gives r1 = r̂′1−da
α′(θ1). Putting this to the second

δ-function we have the following:

ωαα′(r̂1, r̂
′
1) =

1

Ω

∫

δ(da
αα′(θ1)− (r̂′1 − r̂1))dθ1 (3.113)

where da
αα′(θ1) = da

α′(θ1) − da
α(θ1). We can notice, that for any r̂1, r̂

′
1 such that |̂r′1 - r̂1| =

|da
αα′(θ1))| ≡ daαα′ there exists such θ1, that da

αα′(θ1) = r̂′1 − r̂1. Thus, in this case after

integration in (3.113) we have unity. And vice versa, if |̂r′1 - r̂1| 6= daαα′ then integration

(3.113) will give zero. Summarizing, we conclude that ω is proportional to δ(|̂r1 − r̂′1| − daα′α):

ωαα′(r̂1, r̂
′
1) = Aδ(|̂r1 − r̂′1| − daα′α). This means that the function ω is spherically symmetric.

We will use the same definition ωa
αα′ for the radial part of omega, namely: ωa

αα′(r̂1, r̂
′
1) ≡

ωa
αα′(|̂r′1 − r̂1|). To determine the constant A we can use a normalization condition for ω.

Integration of (3.113) over r̂1 will give unity (this follows from the definition of δ-function and

constant Ω) . From the normalization rule we have the following:
∫

ωa
αα(|̂r′1 − r̂1|)dr̂1 = A

∫

δ(|̂r1 − r̂′1| − daαα′)dr̂1 = 1 (3.114)

By introducing the spherical coordinates with the origin in r̂′1 we have A4π(daαα′)2 = 1. Thus

we have ωa
αα′(r̂1, r̂

′
1) = δ(|̂r1 − r̂′1| − daαα′)/(4π(daαα′)2). We should note, that this formula is

correct only for the case daαα′ > 0 which is typically equivalent to α 6= α′. In case α = α′ we

have da
αα(θ1) = 0, and from (3.113) we immediately have ωa

αα′(r̂1, r̂
′
1) = δ(r̂1 − r̂′1). Then the

full definition of ω is written in the following way:

ωa
αα′(r̂1, r̂

′
1) =







δ(|̂r1 − r̂′1| − daαα′)

4πdaαα′

, α 6= α′

δ(|̂r1 − r̂′1|) , α = α′
(3.115)

Using the definition (3.112) we can rewrite (3.111) in a following way:

Y =
∑

α′β′

∫

ωa
αα′(r̂1, r̂

′
1)c

ab
α′β′(r̂′1, r̂

′
2)ω

b
β′β(r̂

′
2, r̂2)dr̂

′
1dr̂

′
2 (3.116)

Let us consider the relation (3.109). By using (3.102) we rewrite it in the following way:

Z =
∑

c

ρ̂c

Ω3

∑

α′γ′

∫

cacα′γ′(r̂′1, r̂
′
3)δ(r1 + da

α′(θ1)− r̂′1)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

δ(r3 + dc
γ′(θ3)− r̂′3)×

×hcb(r3, r2,θ3,θ2)δ(r1 + da
α(θ1)− r̂1)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

δ(r2 + db
β(θ2)− r̂2)dr1

✿✿✿

dr2dr3dθ1
✿✿✿

dθ2dθ3dr̂
′
1dr̂

′
3

(3.117)
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We can notice, that the wavy underlined members correspond to the ω function (3.112) while

solid underlined members correspond to the definition of the site-site function hcb
γ′β (3.103).

Considering these observations the expression (3.117) can be rewritten in a more compact way:

Z =
∑

c

ρ̂c
∑

α′γ′

∫

ωa
αα′(r̂1, r̂

′
1)c

ac
α′γ′(r̂′1, r̂

′
3)h

cb
γ′β(r̂

′
3, r̂2)dr̂

′
1dr̂

′
3 (3.118)

Putting (3.110), (3.116), (3.118) to (3.106) and assuming the spherical symmetry of the site-site

correlation function we obtain the RISM equations, namely:

hab
αβ(|̂r2 − r̂1|) =

∑

α′β′

∫

ωa
αα′(|̂r′1 − r̂1|)cabα′β′(|̂r′2 − r̂′1|)ωb

β′β(|̂r2 − r̂′2|)dr̂′1dr̂′2

+
∑

c

ρ̂c
∑

α′γ′

∫

ωa
αα′(|̂r′1 − r̂1|)cacα′γ′(|̂r′3 − r̂′1|)hcb

γ′β(|̂r2 − r̂′3|)dr̂′1dr̂′3
(3.119)

3.12 Closure relation for the RISM equations

Similarly to the OZ equations (3.87), RISM equations need to be comprised with the closure

relation. In the RISM theory it is assumed that sites interact to each other independently.

Thus, the closure relation can be written for each pair of sites independently. By analogy to

(3.98) we can write the set of site-site closure relations:

hab
sα(r) + 1 = e−βuab

sα(r)+hab
sα(r)−cabsα(r)+Bab

sα(r) (3.120)

where uab
sα(r) is the site-site interaction potential, Bab

sα(r) is the site-site bridge function. By

analogy to the six-dimensional HNC approximation (3.97) we can write the site-site HNC

closure in the following way [52]:

hab
sα(r) + 1 = e−βuab

sα(r)+hab
sα(r)−cabsα(r) (3.121)

We note, that this is quite rude approximation. There are two sources of errors: 1) As in

the six-dimensional case neglecting the bridge functional leads to some errors 2) The assump-

tion that sites interact independently introduces even more RISM-specific errors. Typically,

by using HNC approximation one cannot get good quantitative agreements of the calculated

physical quantities to the experimentally measured quantities or quantities calculated using

molecular simulations. Moreover: overestimation of the first peaks of the total correlation func-

tions often lead to divergence of the numerical algorithms which solve RISM equations [24].

There are several different bridge approximations. To mention few: Percus-Yevick bridge [106],

Martynov-Sarkisov approximation [107], Modified Verlet bridge [108] and others [109]. The

search for new bridge functionals is currently actively performed [110, 111](P4)5. For some

5References given in the parentheses refer to the papers from the list of author’s publications which can be
found in Appendix B.
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specific conditions, for example for Ornstein-Zernike equations for mixtures of Lennard-Jones

spheres, the mentioned above bridges can give satisfactorily results. However, the functional

which is good for a wide range of different systems is still not known. In the current work it

is not our goal to find a universal bridge. However, it is necessary to use the closure which at

least warrant the convergence of the algorithm (as was mentioned above, HNC closure is not

good in this respect). To improve convergence of the algorithm one can linearize the exponent

in the closure relation (3.120) when the argument of the exponent is positive. This method

was proposed by Kovalenko and Hirata [24], so this approximation is also usually referenced

as KH (Kovalenko-Hirata) approximation. The closure in KH approximation can be written in

the following way:

cabsα(r) =

{

eΞ
ab
sα(r) − γsα(r)− 1, Ξab

sα(r) < 0
−βuab

sα(r), Ξab
sα(r) > 0

(3.122)

where γab
sα(r) = hab

sα(r)− cabsα(r), Ξ
ab
sα(r) = −βuab

sα(r) + γab
sα(r). We use the KH approximation in

most calculations in our work.

3.13 RISM equations in the Fourier space

Using the properties of the Kronecker δ symbol we can formally write the following relation:

cabα′β′(|̂r′2 − r̂′1|)ωb
β′β(|̂r2 − r̂′2|) =

M∑

c=1

δbcc
ac
α′β′(|̂r′2 − r̂′1|)ωb

β′β(|̂r2 − r̂′2|) (3.123)

In that case we can rewrite the RISM equations in a more compact way, namely:

hab
αβ(|̂r2 − r̂2|) =

∑

α′β′

∫

ωa
αα′(|̂r′1 − r̂1|)cabα′β′(|̂r′2 − r̂′1|)χcb

β′β(|̂r2 − r̂′2|)dr̂′1dr̂′2 (3.124)

where χcb
β′β(|̂r2 − r̂′2|) = δcbω

b
β′β(|̂r2 − r̂′2|) + ρ̂chcb

γ′β(|̂r2 − r̂′2|)
Fourier transformation of the function f(r) can be written in the following way:

f̂(k) = T [f ] =

∫

R3

f(r)ei<k,r>dr (3.125)

where < k, r >= kxx+ kyy + kzz is a scalar product, i =
√
−1. The Fourier representations of

the functions allow us to use the convolution theorem. Let us multiply both parts of (3.124) by

ei<k,r2−r1> and integrate over r2−r1. Using that e
i<k,r2−r1> = ei<k,r2−r2

′>ei<k,r2′−r1
′>ei<k,r1′−r1>

we have the following relation:

ĥab
αβ(k) =
∑

α′β′

∫

ωa
αα′(|̂r′1−̂r1|)ei〈k,r1

′−r1〉cabα′β′(|̂r′2−̂r′1|)ei〈k,r1
′−r1〉χcb

β′β(|̂r2−̂r′2|)ei〈k,r1
′−r1〉dr̂′1dr̂

′
2d(r2−r1)

(3.126)
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Let us fix the coordinates of the point r1 and re-write the integral in a new coordinates, which

are (r2−r2
′), (r1

′−r1), (r2
′−r1

′). It can be shown that Jacobian of this transformation is unity.

Then in the right hand side of (3.126) we have the product of the Fourier transformations of

the functions ω,c, χ. Thus we come to the representation of the RISM equations in the Fourier

space:

ĥab
αβ(k) =

∑

α′β′

ω̂a
αα′(k)ĉabα′β′(k)χ̂cb

β′β(k) (3.127)

3.14 Reducing the RISM equations to the system of one-

dimensional equations

Formally, Fourier transformations in (3.127) are three-dimensional. However, there is no need

to numerically calculate the three dimensional Fourier transformation of the spherically sym-

metric functions. The Fourier transform of a spherically symmetric function f(|r|) is spherically
symmetric itself. It is easy to prove. Let |k1| = |k2|. Then there is a rotation which transforms

the vector k1 into the vector k2. Let A be the matrix of this rotation, i.e. k2 = Ak1. The

Fourier transform of the radially symmetric function f(|r|) is written in the following way:

f̂(k1) =

∫

eik1
T rf(|r|)dr (3.128)

Let us rewrite this relation in new coordinates x = Ar. Due to the properties of rotation

matrices the Jacobian of such transformation is det(A) = 1, thus dx = dr. Also, it is known

that for matrices which represent rotation it holds A−1 = AT , thus r = ATx. Also, the rotation

does not change sizes of vectors, so |r| = |Ar| = |x|. Using all this knowledge we rewrite (3.128)
in the following way:

f̂(k1) =

∫

eik1
TATxf(|x|)dx (3.129)

Using that k1
TAT = (Ak1)

T = k2
T we have the definition of the Fourier transform in the

point k2 in the right hand side of the equation. Thus f̂(k1) = f̂(k2) and f̂(k) is spherically

symmetric. This allows us to rewrite (3.127) for radial part k = |k|:

ĥab
αβ(k) =

∑

α′β′

ω̂a
αα′(k)ĉabα′β′(k)χ̂cb

β′β(k) (3.130)

3.15 Bessel-Fourier transformation

The fact that the 3D Fourier transform of spherically symmetric function is spherically symmet-

ric does not give by itself the algorithm how to calculate this Fourier transform in a simple way.

Let us obtain this formula. Because the Fourier transformed function is spherically symmetric
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we only need to know its values along one of the axes. Let us calculate the values f̂(0, 0, kz).

The Fourier transform of the function f(x, y, z) is written in the following way:

f̂(k) = f̂(kx, ky, kz) =

∞∫

−∞

∞∫

−∞

∞∫

−∞

f(r)eikxx+ikyy+ikzzdxdydz (3.131)

where i =
√
−1. The values on the kz axis are:

f̂(0, 0, kz) =

∞∫

−∞

∞∫

−∞

∞∫

−∞

f(r)eikzzdxdydz (3.132)

For the sake of simplicity we denote k ≡ kz, f̂(0, 0, kz) ≡ f̂(k). Transferring to the spherical

coordinates we have the following:

f̂(k) =

∞∫

0

π∫

0

π∫

−π

f(r)eikr cos θr2 sin θdrdθdφ (3.133)

where x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ, dxdydz = r2 sin θdrdθdφ. Integration over

φ gives 2π. Introducing the variable ξ = cosθ, dξ = − sin θdθ, ξ ∈ [cos 0; cos π] = [1;−1], we

have the following:

f̂(k) = −2π

∞∫

0

−1∫

1

f(r)eikrξr2dξdr (3.134)

After the integration over ξ we have the following:

f̂(k) = 2π

∞∫

0

f(r)

(
eikr − e−ikr

ikr

)

r2dr (3.135)

Using the Euler’s formula sinα = eiα−e−iα

2i
we obtain the following transformation:

f̂(k) =
4π

k

∞∫

0

f(r)r sin krdr (3.136)

This transformation is called the Bessel-Fourier transformation.

3.16 Inverse Bessel-Fourier transformation

Expression (3.136) can be re-written in a form of the sine transform of the function rf(r),

namely:

kf̂(k) = 4π

∞∫

0

(rf(r)) sin krdr (3.137)
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Because the sine transform is inverse to itself the inverse Bessel-Fourier transform can be

written in the following way:

r′f(r′) = A

∞∫

0

(

kf̂(k)
)

sin kr′dk (3.138)

where A is a normalization constant. It is necessary to note that one need to be cautious in

calculations. It is known that the integral over sin kr has only conditional convergence at the

interval [0;∞). This means that the value of the integral depends on the discretization of the

function. In practice one typically uses the discretization on the equispaced grid. Let us assume

that the function f(r) has the support [0;R] and is defined at the points with the discretization

step ∆r = R
N
. Assuming that the function have some finite integral we can write it using the

Dirac δ-function:

f(r) =
N∑

n=1

f(rn)δ(r − rn)∆r =
R

N

N∑

n=1

f(rn)δ(r − rn) (3.139)

Putting (3.139) to the transformation (3.137) we obtain the discrete Bessel-Fourier transform,

namely:

kf̂(k) = 4π

∞∫

0

r
N∑

n=1

f(rn)δ(r − rn)∆r sin krdr (3.140)

Using the properties of the δ-function we have the following:

kf̂(k) = 4π
R

N

N∑

n=1

nR

N
f(

nR

N
) sin k

nR

N
(3.141)

Let r′ = m∆r = mR
N
, m ∈ N. Let us change the infinite integration limit in the expression

(3.138) to the finite number πN
R
. As we show below such a value is necessary for orthogonality

of the eigenfunctions {sin k nR
N
}. Equation (3.138) is transformed to the following expression:

mR

N
f(

mR

N
) = A

πN
R∫

0

kf̂(k) sin k
mR

N
dk (3.142)

Putting (3.141) to (3.142) we have the following:

mR

N
f(

mR

N
) = 4π

R

N
A

N∑

n=1

nR

N
f(

nR

N
)

πN
R∫

0

sin k
nR

N
sin k

mR

N
dk (3.143)
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The set of the functions {sin knR
N

, n ∈ N, k ∈ R} is orthogonal in a sense of the L2 scalar

product on the interval k ∈ [0; πN
R
]. If m 6= n we have the following:

πN
R∫

0

sin k
nR

N
sin k

mR

N
dk =

1

2

πN
R∫

0

(

cos k
(m− n)R

N
− cos k

(m+ n)R

N

)

dk =

1

2

N

m− n
sin

π(m− n)NR

RN
− 1

2

N

m+ n
sin

π(m+ n)NR

RN
= 0

(3.144)

When m = n we have the following:

πN
R∫

0

sin2 nR

N
dk =

1

2

πN
R∫

0

(

1− cos
2knR

N

)

dk =
πN

2R
(3.145)

Combining (3.144) and (3.145) we can write the following relation:

πN
R∫

0

sin k
nR

N
sin k

mR

N
dk =

πN

2R
δmn (3.146)

where δmn is the Kronecker delta.

Putting (3.146) into (3.143) and using that
∑

n
nR
N
f(nR

N
)δmn = mR

N
f(mR

N
) we have the fol-

lowing:
mR

N
f(

mR

N
) = 4πA

R

N

mR

N
f(

mR

N
)
πN

2R
(3.147)

Because this equality is true for any function f(r) we conclude that the following relation holds:

1 = 4πA
R

N

πN

2R
(3.148)

From this relation we can express the coefficient A:

A =
1

2π2
(3.149)

Taking a limit N → ∞ and dividing both parts of the expression (3.142) by r′ = mR
N

we

obtain the following expression for the inverse Bessel-Fourier transform:

f(r′) =
1

2πr′

∞∫

0

kf̂(k) sin kr′dk (3.150)
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We need to note, that one should be cautious using expressions (3.136),(3.150) because on

the infinite gird the results may depend on a grid. To avoid problems it is better to use discrete

formulae (3.141),(3.142).

Often for the calculation of the integral over k in the equation (3.142) the zero-order inte-

gration approximation is used. In that case to cover the interval (0; πN
R
) one need to choose the

grid step in the Fourier space ∆k considering the relation N∆k = πN
R
, where N is the number

of discretization points in both: real and Fourier spaces. This gives the following relation for

the ∆k

∆k =
π

R
(3.151)

where R is a top boundary of the support of the function f(r). The step of the equispaced

N -point grid in the real space is ∆r = R
N
. Thus from the expression (3.151) we find the relation

between the steps in the real and Fourier spaces:

∆r∆k =
π

N
(3.152)

We define km = m∆k, rn = n∆r. Using (3.152) we obtain the following:

rnkm =
πmn

N
(3.153)

In these definitions the forward and inverse Bessel-Fourier transforms are defined with the

formulae (3.154), (3.155) correspondingly.

f̂(km) =
4π

km

N∑

n=1

f(rn)rn sin(
πmn

N
)∆r (3.154)

f(rm) =
1

π2rn

N∑

m=1

f̂(km)km sin(
πmn

N
)∆k (3.155)

There are effective FFT-based algorithms which are able to calculate the expressions (3.154),

(3.155) in time proportional to NlogN .

3.17 RISM equations in a matrix representation

Let the molecule of type a has Ka sites. We can define the following matrices of the correlation

functions:

Hab(k) = [ĥab
sα(k)]Ka×Kb

=






ĥab
11(k) . . . ĥab

1Kb
(k)

...
. . .

...

ĥab
Ka1

(k) . . . ĥab
KaKb

(k)




 (3.156)

Cab = [ĉabsα(k)]Ka×Kb
=






ĉab11(k) . . . ĉab1Kb
(k)

...
. . .

...
ĉabKa1

(k) . . . ĉabKaKb
(k)




 (3.157)
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Wa = [ω̂a
sα(k)]Ka×Ka

=






ω̂a
11(k) . . . ω̂a

1Ka
(k)

...
. . .

...
ω̂a
Ka1

(k) . . . ω̂a
KaKa

(k)




 (3.158)

Then using the definition of the matrix multiplication we can rewrite the RISM equations

(3.130) in the following way:

Hab(k) =
∑

c

Wa(k)Cac(k)Xcb(k) (3.159)

where Xcb(k) = δcbWb(k) + ρ̂cHcb(k)

We define the matrices H, C, W in the following way: 6

H(k) =






H11(k) . . . H1M(k)
...

. . .
...

HM1(k) . . . HMM(k)




 (3.160)

C(k) =






C11(k) . . . C1M(k)
...

. . .
...

CM1(k) . . . CMM(k)




 (3.161)

W(k) =








W1(k) 0 . . . 0
0 W2(k) . . . 0
...

...
. . .

...
0 0 . . . WM(k)








(3.162)

Then expression (3.159) can be written in the following matrix-multiplication form:

H(k) = W(k)C(k)X(k) (3.163)

where X(k) = W(k) +RH(k), and the matrix R is defined in the following way:

R =








R1 0 . . . 0
0 R2 . . . 0
...

...
. . .

...
0 0 . . . RM








(3.164)

6I need to note, that there are at least two possible interpretations of the definitions of the matrices H, C,
W, which appear due to different understanding of the definitions. In the first interpretation, the matrices
H, C, W are the “supermatrices” of size M × M , and the elements of these supermatrices are the matrices
Hij , Cij , Wij . In the second interpretation the matrices staying in the elements of these matrices (but not the
matrices themselves) are put one near another. So, in that interpretation the elements of the “supermatrix”
are still functions (not matrices), and the size of the “supermatrix” is the sum of the sizes of the matrices
which form the “supermatrix”. I need to note, that during the writing of my thesis I had in mind the second
interpretation. However, all the derivations below are correct for both of the interpretations. So the reader can
choose the interpretation which seems more natural.
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where Ra is a Ka by Ka diagonal matrix with ρ̂a on the diagonal. Putting the definition of

X(k) to the expression (3.163) we obtain the following relation:

H(k) = W(k)C(k) (W(k) +RH(k)) (3.165)

We note that this relation can be interpreted as a recurrent expression where the matrix

function H(k) in the left hand side is expressed by itself. Putting the right hand side of the

expression instead of the functionH(k) in the right hand side we come to the following equation:

H = WC((W +RWC (W +RH)) (3.166)

After opening the brackets we obtain another recurrent expression for H:

H = WCW +WCRWCW +WCRWCRH (3.167)

Repeating the procedure of putting the right hand side of (3.165) instead of the H in the right

hand side of a current recurrent relation we come to the following expression for H(k)

H(k) = W(k)C(k)
(
I+RW(k)C(k) + (RW(k)C(k))2 + . . .

)
W(k) (3.168)

where I is the eye matrix.

Assuming that the series converges we can use the formula for the infinite geometric pro-

gression of matrices and come to the following expression for the RISM equations:

H(k) = W(k)C(k) (I−RW(k)C(k))−1
W(k) (3.169)

3.18 3DRISM equations

As it was mentioned above, for the solvation free energy calculations one need to know the cor-

relation functions between the solute and solvent molecules where solute is at infinite dilution.

To calculate these functions we consider the model system where the single solute molecule is

fixed at the origin and surrounded by moving solvent molecules. We will refer to the solute

molecule using the superscript index 0. Considering that the solute is infinitely diluted, we can

write the OZ equations (3.87) for the solute-solvent correlation functions in the following way:

h0a(r0, r2,θ0,θ2) = c0a(r0, r2,θ0,θ2) +
M∑

c=1

ρ̂c

Ω

∫

c0c(r0, r3,θ0,θ3)h
ca(r3, r2,θ3,θ2)dr3dθ3

(3.170)

where (r0,θ0) are the coordinates of the solute molecule.

It was discussed that due to a high computational complexity the six-dimensional OZ equa-

tions are not suitable for practical SFE calculations. On the other hand it is also known
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that the RISM approximation introduces many additional errors and is unable to treat cor-

rectly the molecules’ geometry. The compromise between these methods is so-called 3DRISM -

approximation, where the solvent molecules are treated in the RISM approximation, while the

solute is a three-dimensional object [69]. To obtain the 3DRISM equations we introduce the

solute-site total and direct correlation functions, which are averaged over the solvent rotational

degrees of freedom molecular correlation functions. By the analogy to the site-site correlation

functions (3.103) the total solute-site correlation function ha
α(r̂) of site the α of a molecule of

type a is defined in the following way:

ha
α(rα) =

1

Ω

∫

h0a(r0, r2,θ0,θ2)δ(r2 + da
α(θ2)− r̂)dr2dθ2 (3.171)

where da
α(θ) is a displacement of the site α of the molecule of type a with respect to the center

of the molecule if the orientation of the molecule is defined by the Euler angles θ. The main

assumption of the 3DRISM theory is that the molecular direct correlation functions c0a can be

represented as a sum of solute-site direct correlation functions caα′ , namely:

c(r0, r2,θ0,θ2) =
∑

α′

∫

caα′(r̂′)δ(r2 + da
α(θ2)− r̂′)dr̂′ (3.172)

Multiplying (3.170) by Ω−1δ(r2 + da
α(θ2) − r̂), integrating over the r2, θ2 and using (3.171),

(3.172) we come to the following relation:

ha
α(r̂) = X + Y (3.173)

where X, Y are defined with the following relations:

X =
∑

α′

1

Ω

∫

caα′(r̂)δ(r2 + da
α′(θ2)− r̂)δ(r2 + da

α(θ2)− r̂)dr̂′dr2dθ2 (3.174)

Y =
∑

c

ρ̂c

Ω2

∑

γ′

cc(r̂′)δ(r3 + dc
γ′(θ3)− r̂′)hca(r3, r2,θ3,θ2)δ(r2 + da

α(θ2)− r̂)dr̂′dr2dθ2dr3dθ3

(3.175)

Using the definition of the intramolecular correlation function (3.112) we can express X in the

following way:

X =
∑

α′

ωa
αα′(|̂r′ − r̂|)caα′(r̂′)dr̂′ (3.176)

Using the definition of the site-site total correlation function (3.103) we express Y in the

following way:

Y =
∑

c

ρ̂c
∑

γ′

∫

cc(r̂′)hca
γ′α(|̂r′ − r̂|)dr̂′ (3.177)
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Putting expressions for X and Y into (3.173) we obtain the 3DRISM equations:

ha
α(r̂) =

∑

c

∑

γ′

∫

cc(r̂′)χca
γ′α(|̂r′ − r̂|)dr̂′ (3.178)

where χca
γ′α(r) = δacω

a
γ′α(r) + ρ̂chca

γ′α(r).



Chapter 4

Solvation Free Energy Calculation in

RISM and 3DRISM

In this chapter the ways to calculate the solvation free energy in the RISM and 3DRISM

approximations are discussed. The main reference for this chapter is Ref. [24]. The description

of the semi-empirical solvation free energy expressions can be found in Refs. [66](P6), [64],

[112], [65], [74]

4.1 Thermodynamic integration method for calculation

of the free energy change

Although we have the formal definition of the Helmholtz free energy (2.79), it is difficult to use

it in practice. The partition function (3.7) is formally defined as the 12N -fold integral, where

N is the number of particles in the system, which is a very big number. However, we rarely

need to find the total free energy of the system. For most of applications one need to know

only relative free energy change in one or another process. To find such changes one can use

the thermodynamic integration method [113]. In this method it is assumed that the potential

energy of the system depends on some parameter λ. When λ = 0 the potential is the same

as the potential in the initial state, when λ = 1 the potential coincides with the potential of

the final state of the system. We would like to find a convenient expression for the free energy

change. To do it we find a derivative of the free energy (2.79) over λ. Using the definitions of

the configuration integral (3.13) and partition function (3.14) we obtain the following relation:

∂F
∂λ

=
−kBT

QN1...NM

∂QN1...NM

∂λ
= −kBT

∫

(−β)
∂U(r[N ],θ[N ];λ)

∂λ

e−βU(r[N ],θ[N ];λ)

QN1...NM

dr[N ]dθ[N ] (4.1)

Using the definition of the ensemble average we can write the following:

∂F
∂λ

=

〈
∂U

∂λ

〉

(4.2)

59
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Then the change of the free energy can be found using the following formula:

∆F = F(λ = 1)−F(λ = 0) =

∫ 1

0

〈
∂U

∂λ

〉

dλ (4.3)

This method to calculate the free energy change is called the thermodynamical integration

method. We note, that strictly speaking we proved the thermodynamical integration method

here only for the NV T ensemble. However, thermodynamical integration can be successfully

applied for other ensembles as well, which can be proven in a similar manner.

We should also note, that (4.3) can be simplified for the systems with pairwise additive

potential. Let the particles in the system interact via the pair-additive potential U(r[N ],θ[N ]),

which is defined in a following way:

U(r[N ],θ[N ]) =
1

2

M∑

b=1

M∑

c=1

Nb∑

i=1

Nc∑

j=1

(1− δbcδij)u
bc(rcj − rbi ,θ

c
j − θc

i ) (4.4)

where ubc(r,θ) is the interaction potential between the particles of type b and c.

Let the potential energy linearly depends on λ. So, the functions ubc(r[N ],θ[N ];λ) are defined

in a following way:

ubc(r,θ;λ) = ubc
0 (r,θ) + λ∆u(r,θ) (4.5)

where ubc
0 , is the particle interaction potential in the initial system, ∆ubc = ubc

1 −ubc
0 , u

bc
1 (r,θ) is

particle interaction potential in the final system. In such considerations we have ∂U/∂λ = ∆U ,

where ∆U is defined in a following way:

∆U(r[N ],θ[N ]) =
1

2

M∑

b=1

M∑

c=1

Nb∑

i=1

Nc∑

j=1

(1− δbcδij)∆ubc(rcj − rbi ,θ
c
j − θc

i ) (4.6)

Putting this representation to the thermodynamical integration formula (4.3) we have the

following expression:

〈∂U/∂λ〉 =
1

2

M∑

b=1

M∑

c=1

Nb∑

i=1

Nc∑

j=1

(1−δbcδij)
∫

drbidθ
b
idr

c
jdθ

c
j∆ubc(rcj−rbi ,θc

j−θc
i )

(∫

e−βU(r[N ],θ[N ])dr[N−2]dθ[N−2]

)

(4.7)

where dr[N−2] ≡ dr[N ]/(drbidr
c
j), dθ

[N−2] ≡ dθ[N ]/(dθb
idθ

c
j). Using the definition of the pair

correlation function (3.22) and changing the sum over identical particles to the product we

come to the following expression for the thermodynamic integration process:

∆F =
1

2

M∑

b=1

M∑

c=1

∫

ρbc(r2 − r1,θ2 − θ1)∆ubc(r2 − r1,θ2 − θ1)dr1dr2dθ1dθ2 (4.8)
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4.2 Thermodynamic integration in the RISM approxi-

mation

Our particular task in the current work is calculation of the solvation free energy of a molecule.

It was discussed above that solvation free energy corresponds to a process of transfer the solute

molecule from a gaseous phase to solution. In the RISM approximation it is assumed that

the solvation free energy of a molecule is a sum of solvation free energies of its sites. We use

the general formula for the thermodynamic integration (4.3). We assume that the interaction

potential depends on a parameter λ, the bulk state corresponds to λ = 0 and the solvated state

corresponds to λ = 1. For the sake of simplicity we discuss the case of one-component solvent.

The final results can be straightforwardly generalized to a case of multi-component solution.

We define separate interaction potentials Usα(r1, . . . , rN , λ) for each site s of a solute molecule

and all sites of type α of solvent molecules. For the sake of simplicity let the solute site s has

coordinates r1 and sites α of the solvent molecules have coordinates r2, . . . , rN correspondingly,

where N is the number of molecules in the system. The solvent molecules are identical, thus

the potential Usα is a pairwise-additive function:

Usα(r1, . . . , rN , λ) =
N∑

j=2

usα(|rj − r1|, λ) (4.9)

where usα(r, λ) is a spherically symmetric interaction potential between the solute site s and

the solvent site α. We consider the case of linear dependency of the potential on λ, namely:

usα(r, λ) ≡ λusα(r) (4.10)

Putting (4.9) to the relation for the free energy calculation (4.3), considering (4.10) and defi-

nition of the ensemble average we have the following:

∆FRISM =
N∑

j=2

∑

sα

∫ 1

0

dλ

∫

usα(|rj − r1|)
∫

dr1 . . . drN
e−βUsα(λ)

QN

dr1drj (4.11)

Here the free energy of the molecule is written as a sum of site-site free energies. Because the

solvent sites of the same kind are identical we obtain the sum of (N − 1) identical values. The

site-site density correlation function gsα, by analogy to the six-dimensional density correlation

function (3.23), is defined with the following relation:

ρ2gsα(r1, r2, λ) = N(N − 1)

∫
e−βUsα(λ)

QN

dr3 . . . drN (4.12)

Using this relation we write the expression for the solvation free energy calculation in a RISM

approximation:

∆FRISM =
ρ2

N

∑

sα

∫ 1

0

dλ

∫

usα(|r2 − r1|)gsα(r1, r2, λ)dr1dr2 (4.13)
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So we see that for calculation of the solvation free energy we need to know the site-site

correlation functions between the solute and solvent sites. We denote the functions related to

the solute molecule with the index u and the functions related to the solvent molecules with

the index v. Considering that the concentration of the solute is zero we can write the RISM

equations for the solvent-solvent correlation functions in a following form:

hvv
αβ(k) =

∑

α′β′

ωv
αα′(k)cvvα′β′(k)ωv

β′β(k) + ρ̂vk
∑

α′γ′

ωv
αα′(k)cvvα′γ′(k)hvv

γ′β(k) (4.14)

We see that these equations are the same as the RISM equations (3.127) for the bulk solvent.

Typically the number of solvents of interest is not very large. The most interesting are aqueous

solutions. Thus one can solve the equations for the bulk solvents of interest separately, and than

use the results in calculations for different solute molecules. So in our calculations we consider

that the site-site functions are known. To calculate the solute-solvent site-site functions we

write the RISM equations (3.127) with the zero solute density ρ̂u. We obtain the following

equations:

huv
sα(k) =

∑

s′γ′

ωu
ss′(k)c

uv
s′γ′(k)

(
ωγ′α + ρhvv

γ′α(k)
)

(4.15)

where ρ is a solvent density.

4.3 RISM-HNC Solvation Free Energy expression

In a general case solvation free energy calculations with the formula (4.13) require solution of

the RISM equations for the series of systems with different values of parameter λ. However, in

the case of HNC closure approximation (3.121) the integral over λ can be calculated analytically

[52]. To prove this we can show that the integrand usα(|r2− r1|)gsα(r1, r2, λ) in equation (4.13)

can be represented as a full derivative over λ. By taking the derivative over λ of the HNC

closure (3.120) for usα(r;λ) = λusα(r) we obtain the following relation:

∂hsα(r, λ)

∂λ
= e−βusα(r;λ)+hsα(r,λ)−csα(r,λ) ·

(

−βusα(r) +
∂hsα(r, λ)

∂λ
− ∂csα(r, λ)

∂λ

)

(4.16)

Putting the left hand side of the HNC closure to the right hand side of (4.16) and using that

gsα(r, λ) = hsα(r, λ) + 1 we come to the following expression:

∂hsα(r, λ)

∂λ
= −βgsα(r, λ)usα(r) + (hsα(r, λ) + 1)

∂

∂λ
(hsα(r, λ)− csα(r, λ)) (4.17)

After opening the brackets in the right hand side of this expression we obtain the following:

∂hsα(r, λ)

∂λ
= −βgsα(r, λ)usα(r) + hsα(r, λ)

∂hsα(r, λ)

∂λ
+

∂hsα(r, λ)

∂λ
− h

∂csα(r, λ)

∂λ
− ∂csα(r, λ)

∂λ
(4.18)



4.3. RISM-HNC SOLVATION FREE ENERGY EXPRESSION 63

Canceling ∂h
∂λ

and using the relation h∂h
∂λ

= ∂
∂λ
(h

2

2
) we have the following:

gsα(r, λ)usα(r) =
1

β

(
∂

∂λ

(
h2
sα(r, λ)

2
− csα(r, λ)

)

− hsα(r, λ)
∂csα(r, λ)

∂λ

)

(4.19)

Putting it to the expression (4.13) and using that β = 1
kBT

we have the following:

∆FHNC =
ρ2

N

∑

sα

∫ (
h2
sα(r)

2
− csα(r)

)

dr1dr2−
∑

sα

∫

dr1dr2

∫ 1

0

dλhsα(r, λ)
∂csα(r, λ)

∂λ
(4.20)

where hsα(r, λ = 1) ≡ hsα(r), csα(r, λ = 1) ≡ csα(r) and hsα(r, λ = 0) = csα(r, λ = 0) = 0.

The first summand in (4.20) is already expressed without the integration over λ. To avoid

the integration over λ in the second summand we use the integration by parts method and

obtain the following relation:

∑

sα

∫

dr1dr2

∫ 1

0

dλhsα(r, λ)
∂csα(r, λ)

∂λ
=

∑

sα

(∫

dr1dr2hsα(r)csα(r)−
∫

dr1dr2

∫ 1

0

dλcsα(r, λ)
∂hsα(r, λ)

∂λ

) (4.21)

Let us show that the following equality holds:

∑

sα

∫

dr1dr2hsα(r, λ)
∂csα(r, λ)

∂λ
=
∑

sα

∫

dr1dr2csα(r, λ)
∂hsα(r, λ)

∂λ
(4.22)

To do this we use the RISM equations (4.15) in a real-space representation, namely:

hsα(|r2 − r1|, λ) =
∑

s′α′

∫

ωss′(|r1 − r′|)cs′α′(|r′ − r′′|, λ)χα′α(|r′′ − r2|)dr′dr′′ (4.23)

Using the equation (4.23) we find the left and right hand sides of (4.22) . The left hand side

can be expressed in a following way:

∑

sα

∫

dr1dr2hsα(r, λ)
∂csα(r, λ)

∂λ
=

∑

sα

∑

s′α′

∫

dr1dr2dr
′dr′′ωss′(|r1 − r′|)cs′α′(|r′ − r′′|, λ)χα′α(|r′′ − r2|)

∂csα(|r1 − r2|, λ)
∂λ

(4.24)

The right hand side has a following representation:

∑

sα

∫

dr1dr2csα(r, λ)
∂hsα(r, λ)

∂λ
=

∑

sα

∑

s′α′

∫

dr1dr2dr
′dr′′csα(|r1 − r2|, λ)ωss′(|r1 − r′|)∂cs′α′(|r′ − r′′|, λ)

∂λ
χα′α(|r′′ − r2|) (4.25)
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We can see that after renaming variables (r1 ↔ r′ ,r2 ↔ r′′ ) the right hand side of expression

(4.24) coincides with the right hand side of (4.25) In such a way the relation (4.22) is proved.

Putting it to expression (4.21) we have the following:

∑

sα

∫

dr1dr2

∫ 1

0

dλhsα(r, λ)
∂csα(r, λ)

∂λ
=

1

2

∑

sα

∫

dr1dr2hsα(r)csα(r) (4.26)

Putting (4.26) to (4.20) we obtain the following Solvation Free Energy expression for the HNC

approximation:

∆FHNC =
ρ2

N
kBT

∑

sα

∫

dr1dr2

(
h2
sα(r)

2
− csα(r)−

1

2
hsα(r)csα(r)

)

(4.27)

The functions hsα(r), csα(r) depend only on the relative displacement of molecule sites. Intro-

ducing the variable r = r2 − r1 we can avoid the double integration. The integral over r1 gives

the volume V . So, we obtain the following expression:

∆FHNC = ρkBT
∑

sα

∫ (
h2
sα(r)

2
− csα(r)−

1

2
hsα(r)csα(r)

)

dr (4.28)

Using the spherical symmetry of the functions hsα(r), csα(r) the integral can be calculated as

an integral of the radial part (in spherical coordinates). So the final formula for calculation the

SFE in the HNC approximation is a following:

∆FHNC = 4πρkBT
∑

sα

∞∫

0

(
h2
sα(r)

2
− csα(r)−

1

2
hsα(r)csα(r)

)

r2dr (4.29)

Doing the similar transformations for the KH closure (3.122) one can obtain the following

solvation free energy expression:

∆FKH = 4πρkBT
∑

sα

∞∫

0

(
h2
sα(r)

2
θ(−hsα(r))− csα(r)−

1

2
hsα(r)csα(r)

)

r2dr (4.30)

where θ(r) is a Heaviside step function.

4.4 Other Solvation Free Energy Expressions

Despite the fact that formulae (4.29) and (4.30) were obtained from the rigorous mathematical

transformations, they are quite inaccurate in practical applications [62]. As it was mentioned

above the main assumptions of the RISM theory are:

1. The assumption, that the molecular direct correlation function c(r,θ) can be represented

as a sum of site-site functions (3.100).
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2. The assumption, that the molecular closure relation (3.98) can be substituted by the set

of site-site closure relations (3.120)

3. The assumption, that the solvation free energy of a molecule is a sum of solvation free

energies of its sites.

The first assumption simply states, that the six-dimensional correlation functions can be re-

constructed from the site-site projections. It is true at large distances (where c is proportional to

the potential). Of course, substitution of a six-dimensional function with the sum of spherically

symmetric projections introduces some errors. However, in my opinion, such a substitution is

not a too rough approximation. Indeed, the linear combination of all possible spherically sym-

metric functions centered at the centers of atoms of the molecule describes a rather wide class

of functions. In particular, the more atoms in the molecule there are, the more six-dimensional

functions are included in such linear combination. However, it should also be noted that to

my knowledge, detailed studies of the accuracy of representation of six-dimensional correlation

functions as a sum of spherically symmetric projections were not performed before. Therefore it

is difficult to quantify the errors connected with such representation. However, we can describe

the effects of the second and third assumptions. These assumptions actually are equivalent to

the assumption that the sites of the solvent molecules do no interact to each other, which is

not true. Although RISM equations (3.119) are obtained by averaging of the six-dimensional

OZ equation, the RISM closure relation (3.120) cannot be obtained by averaging of the six-

dimensional closure relation, and thus contradicts it. The same situation occurs with the RISM

SFE expressions. In this section we consider the RISM-HNC solvation free energy expression

in more details.

In the previous section the HNC expression for RISM approximation was derived. Similarly

the HNC solvation free energy expression for the six-dimensional OZ equation can be derived.

The six-dimensional analog of the expression (4.27) is written in a following way:

∆FHNC =
ρ2

NΩ2

∫ (
1

2
(h(r1,r2,θ1,θ2))

2−c(r1,r2,θ1,θ2)−
1

2
h(r1,r2,θ1,θ2)c(r1,r2,θ1,θ2)

)

dr1dr2dθ1dθ2

(4.31)

where Ω =
∫
dθ. For the sake of simplicity this expression can be written in a more compact

form:

∆FHNC =
ρ2

N

(
1

2
X − Y − 1

2
Z

)

(4.32)

where X = Ω−2
∫
(h(r1, r2,θ1,θ2))

2 dr1dr2dθ1dθ2, Y = Ω−2
∫
c(r1, r2,θ1,θ2)dr1dr2dθ1dθ2,

Z = Ω−2
∫
h(r1, r2,θ1,θ2)c(r1, r2,θ1,θ2)dr1dr2dθ1dθ2. We will use only the first RISM ap-

proximation (3.102) to obtain the proper SFE expression. Putting (3.102) to the second sum-
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mand in (4.32) we get the following relation:

Y=
∑

sα

∫ (
1

Ω

∫

δ(r1+du
s (θ1)−̂r1)dr1dθ1

)(
1

Ω

∫

δ(r2+dv
α(θ2)−̂r2)dr2dθ2

)

csα(r̂1, r̂2)dr̂1dr̂2 (4.33)

Considering that
∫
δ(r+dv

α(θ)− r̂)dr = 1,
∫
dθ = Ω, we get the following expression for Y :

Y =
∑

sα

∫

csα(r̂1, r̂2)dr̂1dr̂2 (4.34)

Putting (3.102) to the third summand in (4.32) we get the following expression:

Z =
∑

sα

∫ (
1

Ω2

∫

δ(r1+du
s (θ1)−̂r1)δ(r2+dv

α(θ2)−̂r2)h(r1,r2,θ1,θ2)dr1dr2dθ1dθ2

)

csα(r̂1 ,̂r2)dr̂1dr̂2

(4.35)

Using the definition of the site-site total correlation function (3.103) we get the following ex-

pression:

Z =
∑

sα

∫

hsα(r̂1, r̂2)csα(r̂1, r̂2)dr̂1dr̂2 (4.36)

We note, that the expressions for the summands (4.34), (4.36) are the same as the expressions

for the second and third summand in the RISM-HNC solvation free energy expression (4.27).

Thus, this part of the RISM-HNC expression is consistent with the six-dimensional expression.

However, it is not so for the first summand. Indeed, the first summand does not contain c-

function, thus it could not be straightforwardly reduced to the site-site form. And it is not

equal the sum of the site-site summands:

X =

∫

(h(r1, r2,θ1,θ2))
2 dr1dr2dθ1dθ2 6=

∑

sα

∫

h2
sα(r)dr̂1dr̂2 (4.37)

This is one of the main sources of errors of the RISM-HNC and RISM-KH expression (4.29),

(4.30). For example, it was shown, that RISM-HNC solvation free energy grows linearly with

the number of sites in the molecule, even if the sites are artificially introduced and have the

same coordinates [114]. Such a behavior is unphysical.

There were several other SFE formulae proposed which try to correct the errors of the

RISM-HNC solvation free energy approximations. In Ref. [115] the sources of the errors were

analyzed and it was pointed out that the HNC model typically overestimates the hydrogen bond

contribution to the solvation free energy. In that work it was proposed to introduce additional

correction to the SFE expression which contains the additional repulsing potential. This model

is typically called HNC with the repulsive bridge correction (HNCB). The solvation free energy

in the HNCB model is calculated using the following formula:

∆FHNCB = ∆FHNC + 4πρkBT
∑

sα

(hsα(r) + 1)(e−bRsα(r) − 1)r2dr (4.38)
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where bRsα(r) is defined with the following relation:

e−bRsα(|r|) =
∏

β 6=α

∫

V

ωαβ(|r′ − r|) exp
(

−βǫsβ

(
σsβ

|r|

)12
)

dr′ (4.39)

where σsβ, ǫsβ are pair Lennard-Jones parameters of the solute-solvent site-site potential.

Another approximation is Gaussian Fluctuations, (GF) formula which was initially proposed

in Ref. [116].

∆FGF = 4πρkBT
∑

sα

∞∫

0

(

−csα(r)−
1

2
hsα(r)csα(r)

)

r2dr (4.40)

We see, that this formula simply neglects the first summand (h2/2) of the RISM-HNC expres-

sion, and in such a way avoids the linear dependency of the solvation free energy on the number

of sites in the molecule. However, neglecting of the “problematic” summand can also introduce

additional errors.

More elegant way was proposed in Ref. [62] by Ten-no et al. In this work the first summand

in the six-dimensional HNC expression is approximated using the Partial Wave (PW) method.

In the partial wave method the expression for the solvation free energy calculation has the

following form:

∆FPW = ∆FGF + 2πρkBT
∑

sα

∫ ∞

0

h̃sα(r)hsα(r)r
2dr (4.41)

where the Fourier transform of the functions h̃sα(r) is defined in a following way:

ˆ̃hsα(k) =
∑

s′α′

ˆ̃ωu
ss′(k)hsα(k)̂̃ω

v
α′α(k) (4.42)

where ˆ̃ωu
ss′(k), ˆ̃ω

v
α′α(k) are the elements of matrices which are inverse to the matrices of in-

tramolecular functions Ŵu and Ŵv (3.158). It was shown that the PW expression is more

suitable for the SFE calculations than KH and GF expressions [64].

4.5 Semi-Empirical methods for RISM Solvation Free

Energy calculation

As it was discussed above, advanced RISM solvation free energy expressions can correct some

systematic errors of the RISM calculations. Nevertheless, accuracy of these methods still often

appears to be too low for the practical applications. That’s why semi-empirical approaches

are used for the accurate SFE calculations with RISM and 3DRISM. One of the ways to

develop the semi-empirical SFE calculation method is to parameterize the difference between

the experimentally measured SFE ∆Gexp and the value ∆GRISM calculated with one of the
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RISM SFE expressions 1. To parameterize this difference one can use some known parameters

of the molecule (descriptors). The most straightforward is the linear parameterization model

where the error is assumed to be linearly proportional to the descriptors. Let D1, . . . , DM be

the descriptors. Then the linear parameterization model can be written as follows:

ε = ∆Gexp −∆GRISM =
M∑

i=1

aiDi (4.43)

where a1, . . . , aM are the free coefficients. The free coefficients a1, . . . , aM can be calculated

using the least squares method. To calculate them the training set of compounds should be

chosen. In principle, the choice of the training set can greatly affect the effectiveness of the

fitted formula. Thus, if the training set contains too few molecules or molecules included in this

set are not representative enough, the resulting coefficients can be fitted incorrect and the final

expression will not have sufficient predictive power. On the other hand, the more molecules

are included in the training set, the fewer compounds are left for the test set. Moreover, in

this case, the test set will most likely contain compounds with a structure very similar to the

structure of some of the compounds in the training set. As a result, it is very difficult to judge

the real accuracy of the final formula. Thus, the correct choice of the training and test sets is

not an easy task. In many cases, it is necessary to perform a cross-validation of the obtained

formula. One can, for example, do the parameterization not once, but many times with different

randomly selected training and test sets and then compare the results, determining the mean

value and spread of the regression coefficients [66](P6). In this work we will not go into details

of the cross-validation methods, as it is beyond the scope of this study and is discussed in the

papers on the parametrization of RISM SFE expressions [64, 74,117].

It is assumed that for the training set of compounds experimentally measured SFEs and

the values of all descriptors D1, . . . , DM are known. Let ∆Gk
RISM , ∆Gk

exp be the calculated and

the experimentally measured SFEs of the kth molecule in the training set. Let Dk
1 , . . . , D

k
M be

the descriptors of the kth molecule in the training set. Using the linear model (4.43) we can

write the following approximate relations for all the molecules in the training set:

εk = ∆Gk
exp −∆Gk

RISM ≈
M∑

i=1

aiD
k
i (4.44)

Following the least squares method the coefficients a1, . . . , aM should be chosen in the way that

1 In this section and in the next chapters we use the Gibbs free energy ∆G instead of Helmholtz free energy
∆F . In the most practical applications for aqueous solutions the change of the volume of the system ∆V
is negligible, so the formulae for Helmholtz free energy calculation can be used as well for the calculation of
the Gibbs free energy change. The reason why we use the Gibbs free energy is that the experimental data is
available for the Gibbs free energy change ∆G.
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minimizes the following expression:

N∑

k=1

(

εk −
M∑

i=1

aiD
k
i

)2

→ min (4.45)

where N is the number of the molecules in the training set. Using the matrix representation

we can rewrite this expression in the following way:

(ε−Da)T (ε−Da) → min (4.46)

where ε = (ε1, . . . , εN)
T , D = [Dk

i ]N×M , a = (a1, . . . , aM)T . The necessary condition of the

minimum is equality of the partial derivatives over the all parameters a1, . . . , aM to zero. We

obtain the following relations:







N∑

k=1

(εk −
M∑

i=1

aiD
k
i ) ·Dk

j = 0

j = 1 . . .M

(4.47)

This relation in a matrix form can be written in a following way:

(ε−Da)T D = 0 (4.48)

From this relation the free coefficients a can be expressed in a following form:

aT = εTD
(
DTD

)−1
(4.49)

After calculating of the free coefficients the formula for the semi-empirical SFE calculations is

determined. It reads as follows:

∆Gcorr = ∆GRISM +
M∑

i=1

aiDi (4.50)

To check accuracy of this expression one needs to perform SFE calculations on the test set of

compounds and compare results to the experimental ones. The test and the training sets of

compounds should not overlap. To check how well is the semi-empirical expression the following

quantities can be calculated on the test set of compounds:

• Correlation coefficient between the experimental and calculated values.

• Mean deviation MD(∆Gcorr,∆Gexp) :

MD(∆Gcorr,∆Gexp) =

N1∑

k=1

(
∆Gk

corr −∆Gk
exp

)
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• Root Mean Squared Deviation (RMSD):

RMSD(∆Gcorr,∆Gexp) =

√
√
√
√ 1

N1

N1∑

k=1

(
∆Gk

corr −∆Gk
exp

)2

• Standard Deviation (SD):

SD(∆Gcorr,∆Gexp) =
√

RMSD(∆Gcorr,∆Gexp)2 −MD(∆Gcorr,∆Gexp)2

where N1 is the number of compounds in the training set.

4.6 Semi-empirical models based on the partial molar

volume correction

Predictability of a semi-empirical model strongly depends on the choice of descriptors. The

descriptors used in the model should meet the following requirements:

• The values of the descriptors should be known or simply computable for any molecule to

which the model is applicable.

• The values of the descriptors should correlate with the errors of the RISM SFE expression

used in calculations (otherwise these descriptors are not useful).

One of the perspective descriptors for the RISM SFE calculations is the Partial Molar Volume

(PMV) of the molecule. It was shown that the error of the RISM expressions correlate with

PMV [41]. Also, PMV can be simply calculated from the site-site correlation functions in both:

RISM and 3DRISM theories [24]. In Ref. [41] it was proposed to parameterize RISM SFE

expressions with PMV and the number of OH-groups in the molecule. It was shown that using

this parameterization method it is possible to predict SFE of the limited number of small organic

molecules with the accuracy of about 1 kcal/mol. This approach was developed afterwards in

the Structural Descriptor Correction (SDC) method, which includes PMV descriptor and the

structural descriptors, e.g. number of double bonds in the molecule, number of branches,

number of specific groups etc. [64]. This method was tested on a large set of more than 100

organic compounds. It was shown that the method is able to predict SFE with the accuracy

of 1-1.2 kcal/mol. Later on the SDC method was used for the calculation of the SFE of the

pollutants [65]. It was shown that for this set of molecules the error of the SDC model is of

about 0.9 kcal/mol. In such a way the transferability of the method was proven.

Despite of the amazing results, there are some compounds for which the SDC method is

hardly applicable. To use the SDC method one needs to calculate the values of all descriptors.
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However, it can be non-trivial task for some complicated molecules, because often there are

more than one way to divide these molecules into the functional groups. For such molecules

the simplified atomic-type correction (ATC) can be applied. In the ATC model the descriptors

are PMV and the numbers of atoms of each type in the molecule [66](P6). Typically, atomic

type correction model gives worse results in comparison to the SDC model. However, it can be

applied to any kind of molecule of arbitrary complexity, while SDC is limited to the molecules

which could be simply divided into the molecular groups.

The PMV-based parameterization model was also proposed for 3DRISM. It was shown, that

using only two descriptors it is possible to predict SFE with the accuracy of 1 kcal/mol [112].

This model is called Universal Correction (UC) model. UC model was tested for different sets

of organic and drug-like compounds and demonstrated quite good accuracy of predictions [74].

In our work we use the ATC model for the RISM and the UC model for the 3DRISM SFE

calculations.
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Chapter 5

RISM Multi-Grid algorithm for

Solvation Free Energy calculations

In this chapter the multi-grid algorithm for solving RISM equations is described. The appli-

cability of the algorithm to the solvation free energy calculation is checked by benchmarking

on the set of drug-like compounds. This chapter is based on my recent papers, Refs. [118](P2)

and [67](P3).

5.1 RISM equations representation suitable for numeri-

cal solution

5.1.1 Indirect correlation functions

The RISM equations in form (3.127) are not suitable for numerical solution. The main causes

are: 1) the site-site correlation functions decay slowly, and thus cannot be effectively discretized,

2) the closure relation in the form (3.120) cannot be used to express c-functions due to huge

numerical errors. We discuss below these problems in details and also give a more suitable

representation of the RISM equations which can be used for the iterative solution. For the

sake of simplicity we discuss below the case of one component solvent. The equations can be

straightforwardly generalized to a case of for multi-component solvents as well. The following

functions are involved in the RISM equation for the infinitely diluted solution: (i) total and

direct site-site correlation functions {hsα(r)} and {csα(r)} describing correlations between the

site s of the solute molecule and sites α of the solvent molecules, (ii) intramolecular correla-

tion functions {wss′(r)} describing the structure of the solute molecule, and (iii) bulk solvent

susceptibility functions {χαα′(r)} describing the structure of the pure solvent. We assume that

the solute molecule has M sites and the solvent molecule has K sites. The RISM equations

73
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can be written in a matrix form as follows:

Ĥ = Ŵ · Ĉ · X̂, (5.1)

where the matrices Ĥ, Ĉ, Ŵ, X̂ are defined as follows: Ĥ = [ĥsα(k)]M×K , Ĉ = [ĉsα(k)]M×K ,

Ŵ = [ŵss′(k)]M×M , X̂ = [χ̂αα′(k)]K×K . Here the hat symbol (ˆ) denotes the Fourier trans-

formed function. The transformation of a spherically symmetric function f(r) is defined by

the Bessel-Fourier transform (3.136). Intramolecular correlation functions in the Fourier space

ŵss′(k) are found via the relation

ŵss′(k) = δss′ + (1− δss′)
sin krss′

krss′
, (5.2)

where δss′ is the Kronecker delta and rss′ is the distance between the sites s and s′ of the solute

molecule. Susceptibility functions of bulk solvent functions are defined as follows:

χ̂αα′(k) = ŵsolv
αα′ (k) + ρĥsolv

αα′ (k), (5.3)

where ρ is the density of the solvent and {wsolv
αα′ (k)} and {hsolv

αα′ (k)} are intramolecular and total

correlation functions of the bulk solvent. In the current work we use previously calculated

water susceptibility functions [83], therefore we do not discuss these calculations here, and just

assume them to be known functions in (5.1). Equation (5.1) is completed by the following

closure relation:

hsα(r) + 1 = exp (−βusα(r) + hsα(r)− csα(r) + Bsα(r)) , (5.4)

where β = 1/kBT , kB is a Boltzmann constant, T is a temperature, usα(r) is the site-site

potential and Bsα(r) is a bridge function.

It was discussed above that generally the exact expression for the Bridge function is not

known. We use the Kovalenko-Hirata closure relation in our calculations [119]:

hsα(r) + 1 =

{
eΞsα(r), Ξsα(r) < 0,
Ξsα(r) Ξsα(r) > 0,

(5.5)

where Ξsα(r) = −βusα(r)+hsα(r)− csα(r) appears in the argument of the exponential function

in (5.4).

A typical iteration scheme of solving RISM equations includes two substeps on each iteration

step:

1. From the RISM equations (5.1) obtain hsα

2. From the closure relation (5.4) obtain csα functions.
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If we express csα functions from the closure relation (5.4) we come to the following relation:

csα(r) = ln(hsα(r) + 1) + βusα(r) + hsα(r) + Bsα(r) (5.6)

The functions hsα(r) are connected to the site-site radial distribution functions gsα(r) in a

following way:

hsα(r) = gsα(r)− 1 (5.7)

Obviously two molecules cannot be simultaneously in the same place. The site-site correlation

functions are proportional to the probability to find the sites at the separation r there is some

radius r0 where with a good accuracy the following relations holds:

guvsα(r) = huv
sα(r) + 1 = 0, r < r0 (5.8)

Substituting (5.8) into (5.6) for the distances r < r0, we have to calculate the logarithm of zero.

Of cause, this is not exact zero, only almost a zero, because the probability to find one particle

inside the core of other one is non-zero. Nevertheless calculating logarithms of such small

numbers is numerically problematic and can cause overflow or at least huge numerical errors.

To avoid these problems we define the indirect correlation functions γsα(r) = hsα(r) − csα(r).

Putting the expression for the indirect functions to the RISM equations we obtain the following

result: 





γ̂sα(k) =
∑

s′α′

ω̂ss′(k)ĉs′α′(k)χ̂solv
α′α (k)− ĉsα(k)

csα(r) = e−βusα(r)+γsα(r)+Bsα(r) − γsα(r)− 1
s = 1 . . .M, α = 1 . . . K

(5.9)

Using equations in this form we avoid calculations of the logarithm of the small values and

their associated numerical problems.

5.1.2 Long-range approximation of direct correlation functions

Let us consider a smooth transition process from the ideal gas state to the state with interacting

particles. The summands which correspond to the ideal gas state are the same in the initial

and in the final state, the change of free energy is only due to the exchange part: ∆F = F ex.

Assuming that the potential is pairwise-additive we can use expression (4.8). We obtain the

following expression for the F ex:

F ex =
1

2

M∑

c=1

M∑

d=1

∫

ρcd(r′′ − r′,θ′′ − θ′)ucd(r′′ − r′,θ′′ − θ′)dr′dr′′dθ′dθ′′ (5.10)

In a very rude approximation we may consider that the distributions of different particles are

independent. In that case we have ρcd(r2 − r1,θ2 − θ1) = ρc(r1,θ1)ρ
d(r2,θ2). Putting this to
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the expression for F ex we have the following:

F ex =
1

2

M∑

c=1

M∑

d=1

∫

ρc(r′,θ′)ρd(r′′,θ′′)ucd(r′′ − r′,θ′′ − θ′)dr′dr′′dθ′dθ′′ (5.11)

Taking the functional derivative of this expression we have the following:

δF ex

δρa(r1,θ1)
=

1

2

(
M∑

c=1

∫

ρc(r′,θ′)uca(r1 − r′,θ1 − θ′)dr′dθ′ +
M∑

d=1

∫

ρd(r′′,θ′′)uad(r′′)− r1,θ
′′ − θ1)dr

′′dθ′′

)

(5.12)

Because uab(r,θ) = uba(−r,−θ) both summands are identical, so we have the following:

δF ex

δρa(r1,θ1)
=

M∑

c=1

∫

ρc(r′,θ′)uca(r1 − r′,θ1 − θ′)dr′dθ′ (5.13)

Taking the second derivative of this expression we have the following:

δ2F ex

δρa(r1,θ1)δρb(r2,θ2)
= uab(r2 − r1,θ2 − θ1) (5.14)

Using the definition of the pair direct correlation function (3.102) we have the following ap-

proximation:

cab(r1, r2,θ1,θ2) ≈ −βuab(r2 − r1,θ2 − θ1) (5.15)

We note that this approximation is only valid for the case then the density distributions of

particles are independent from each other. This in turn is only valid at large distances. So,

expression (5.15) can be used as a long-range approximation of direct correlation functions.

5.1.3 RISM equations for short-range functions

Typically the direct correlation functions decay slowly with a distance which can cause problems

with discretization of these functions. However, as it was discussed in the section 5.1.2 we know

asymptotic behavior of direct correlation functions, namely:

csα(r) = −βusα(r) (5.16)

For charged particles the biggest contribution to the potential at the large distances is the

Coulomb interaction potential:1

usα(r) ≈
qsqα
r

r > r0 (5.17)

1 We use atomic units in our work to avoid scaling coefficients in the Coulomb interaction.
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We introduce the short-range and long-range site-site potentials uS
sα(r), u

L
sα(r) in the following

way:

uL
sα(r) =

qsqα
r

erf(τr) uS
sα(r) = usα(r)− uL

sα(r) (5.18)

where
qsqα
r

is a Coulomb potential, erf(r) = (2/
√
π)
∫ r

0
e−x2

dx is a Gauss error function, the

parameter τ determines the smoothness of the transition between the short-range and long-

range functions. The long-range direct correlation functions cLsα(r) are defined in a following

way:

cLsα(r) = −βuL
sα(r) (5.19)

Short-range direct and indirect correlation functions cSsα(r) and γS
sα(r) are defined as a difference

between the full and long range functions, namely:

cSsα(r) = csα(r)− cLsα(r) = csα(r) + βuL
sα(r)

γS
sα(r) = hsα(r)− cSsα(r) = γsα(r)− βuL

sα(r)
(5.20)

Short-range functions are convenient for the numerical treatment of the task. They decay

rapidly with a distance and can be effectively approximated by functions with a small support.

Putting the short-range functions to the closure relation we obtain the following closure for the

short-range functions:

cSsα(r) = e−βuS
sα(r)−γS

sα(r)+Bsα(r) − γS
sα(r)− 1 (5.21)

Following Ref. [120] we write the analytical representation of the Bessel-Fourier transform for

long-rang potential usα:

ûL
sα(k) =

4πqsqα
k2

e
−k2

4t2 (5.22)

We note that this function in the Fourier space is proportional to 1
k2

and thus decays rapidly.

This enables us to use small-support grids in the Fourier space. Putting (5.20) to equation

(5.9) we obtain the following relations for the short-range functions:

γ̂S
sα(k) =

∑

s′ν

ω̂ss′(k) ·
(
ĉSs′ν(k) + ûL

sα(k)
)
· (ω̂solv

αν (k) + ρĥsolv
αν (k))− ĉSsα(k) (5.23)

5.1.4 RISM equations in a recurrent form

Equations (5.23), (5.21) can be represented in a matrix form. Let the numbers of the sites in

the solute and solvent molecules be M and K respectively. We define the matrix of the short-

range indirect correlation functions Γ = [γS
sα(r)]M×K and a matrix of the Fourier-transformed

long range potentials ÛL = [ûL
sα(k)]M×K in a following way:

Γ =






γS
11(r) . . . γS

1K(r)
...

. . .
...

γS
M1(r) . . . γS

MK(r)




 (5.24)
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ÛL =






uL
11(k) . . . uL

1K(k)
...

. . .
...

uL
M1(k) . . . uL

MK(k)




 (5.25)

We define the closure operator C[Γ] which is the matrix analog of the closure (5.21) in a

following way:

C[Γ] =
[

e−βusα(r)+γS
sα(r)+Bsα(r) − γS

sα(r)− 1
]

M×K
(5.26)

We introduce the matrices of the solute and solvent intermolecular correlation functions

Ŵu = [ω̂u
ss′(k)]M×M , Ŵv = [ω̂v

αα′(k)]K×K correspondingly, and also the matrix of the sol-

vent total correlation functions Ĥsolv = [ĥvv
ss′(k)]K×K . We introduce the matrix of the solvent

susceptibility functions in a following way:

X̂ = Ŵv + ρĤsolv (5.27)

where X̂ = [χ̂αβ]K×K , χ̂αβ(k) = ω̂v
αβ(k) + ρĥvv

αβ(k)

We use the operators T and T −1, which perform element-by-element direct and inverse

Bessel-Fourier transform correspondingly:

T
[
(γsα(r)]M×K

]
= [T γsα(r)]M×K

T −1
[
(γ̂sα(k)]M×K

]
= [T −1γ̂sα(k)]M×K

(5.28)

where symbols T , T −1 in the right hand side of these equations stay for direct and inverse Bessel-

Fourier transforms correspondingly. Using these definitions we rewrite the RISM equations

(5.23) in a recurrent form:

Γ = F [Γ] (5.29)

where the operator F [Γ] is defined in a following way:

F [Γ] = T −1
(

Ŵ · (T (C[Γ])− βÛL) · X̂
)

−F (C[Γ]) (5.30)

This equation is comprised by the closure relation in the real space:

CS = C[Γ] =
[

e−βuS
sα(r)+γsα(r)+Bsα(r) − γsα(r)− 1

]

M×K
. (5.31)

5.2 Discretization of the problem

In both, real and Fourier space, we discretized the problem on a uniform grid. The grid sizes

in the real and Fourier spaces are connected by ∆k = π
∆R

. We denote the real space grid

with N points and step size ∆R as {N,∆R}. Each grid is also characterized by the cutoff

distance, which is the upper limit of the support. For the grid {N,∆R}, the cutoff distance is

Rcutoff = N∆R. The corresponding grid in the Fourier space is denoted by {N,∆k}.
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Functions are represented by vectors which contain the values of the functions on the grid

points. We denote these grid functions by bold letters and indicate their grid in the super-

script:

γ{N,∆R}
sα =

(
γS
sα(∆R), . . . , γS

sα(N∆R)
)
, (5.32)

cS{N,∆R}
sα =

(
cSsα(∆R), . . . , cSsα(N∆R)

)
, (5.33)

uS{N,∆R}
sα =

(
uS
sα(∆R), . . . , uS

sα(N∆R)
)
. (5.34)

The grid functions in the Fourier space are indicated by the hat symbol (ˆ):

γ̂{N,∆k}
sα =

(
γ̂S
sα(∆k), . . . , γ̂S

sα(N∆k)
)
, (5.35)

ĉS{N,∆k}
sα =

(
ĉSsα(∆k), . . . , ĉSsα(N∆k)

)
, (5.36)

ŵ
{N,∆k}
ss′ = (ŵss′(∆k), . . . , ŵss′(N∆k)) , (5.37)

χ̂
{N,∆k}
αβ = (χ̂αβ(∆k), . . . , χ̂αβ(N∆k)) , (5.38)

ûL{N,∆k}
sα =

(
ûL
sα(∆k), . . . , ûL

sα(N∆k)
)
. (5.39)

Similarly, matrix-valued grid functions carry a subscript denoting the grid. Matrices with-

out a hat sign symbolize real-space functions: Γ{N,∆R} = [γ
{N,∆R}
sα (k)]M×K . We use the hat sym-

bol (ˆ) to denote the matrices of functions in the Fourier space: Γ̂{N,∆k} = [γ̂
{N,∆k}
sα (k)]M×K ,

ĈS
{N,∆k} = [ĉ

S{N,∆k}
sα ]M×K , Ŵ{N,∆k} =

[

ŵ
{N,∆k}
ss′

]

M×M
, ÛL

{N,∆k} = [û
L{N,∆k}
sα ]M×K ,

and X̂{N,∆k} = [χ̂
{N,∆k}
αβ ]K×K .

To map the grid functions from the real to the Fourier space and back, we use the discrete

forward and inverse Bessel-Fourier transformations T{N,∆R}[·], T −1
{N,∆k}[·] respectively:

f̂{N,∆k} = T{N,∆R}[f
{N,∆R}], (5.40)

f{N,∆R} = T −1
{N,∆k} [̂f

{N,∆k}]. (5.41)

Vectors f{N,∆R}, f̂{N,∆k} are defined as

f{N,∆R} = (f(r1), . . . , f(rN)) , rn = n∆R, (5.42)

f̂{N,∆k} =
(

f̂(k1), . . . , f̂(kN)
)

, km = m∆k, (5.43)

and components of these vectors are connected via the relations

f̂(km) =
4π

km

N∑

n=1

f(rn)rn sin(
πmn

N
)∆R, (5.44)

f(rn) =
1

2π2rn

N∑

m=1

f̂(km)km sin(
πmn

N
)∆k. (5.45)
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Discrete analogues of equation (5.30) and the closure relation (5.31) are formulated as

Γ̂{N,∆R} =

Ŵ{N,∆R} ·
(

ĈS
{N,∆R} − βÛL

{N,∆R}

)

· X̂{N,∆R} − ĈS
{N,∆R},

(5.46)

CS
{N,∆R} = C[Γ{N,∆R}] =[

e−βuS
sα+γsα+Bsα − γsα − 1

]

M×K
,

(5.47)

where the mathematical operations between vectors are understood to be entry-wise.

5.3 Picard iteration

Combining (5.46) and(5.47) , we can define the iterative operator K{N,∆R}[·]:

K{N,∆R}[Γ{N,∆R}] ≡ T −1
{N,∆k}

[

Ŵ{N,∆k}

(

T{N,∆R}
[
C[Γ{N,∆R}]

]
− βÛL

{N,∆k}

)

X̂{N,∆k}

−T{N,∆R}
[
C[Γ{N,∆R}]

]]

,

(5.48)

We consider the generalized task

Γ{N,∆R} = K{N,∆R}[Γ{N,∆R}] + f{N,∆R} (5.49)

for a given right-hand side vector f{N,∆R}. Problem (5.46) - (5.47) corresponds to the case

f{N,∆R} = 0. The necessity of introducing the generalized problem will be described bellow

during the description of the multi-grid method. The n-th iterate of an iterative scheme is

denoted by Γ
(n)
{N,∆R}. The damped Picard iteration with the damping parameter λ is defined as

Γ
(n+1)
{N,∆R} = (1− λ)Γ

(n)
{N,∆R} + λΓ′

{N,∆R}, (5.50)

where Γ′

{N,∆R} abbreviates

Γ′

{N,∆R} = K{N,∆R}[Γ
(n)
{N,∆R}] + f{N,∆R}. (5.51)

We use a short notation for this operator:

Υ{N,∆R}[Γ
(n)
{N,∆R}, f{N,∆R}]≡(1− λ)Γ

(n)
{N,∆R}+ λΓ′

{N,∆R}. (5.52)

One iteration step of the algorithm consists of the partial steps

Γ
(n)
{N,∆R}

closure−−−−→
(5.47)

CS
{N,∆R}

BFT−−−→
(5.40)

ĈS
{N,∆k}

RISM−−−−→
(5.46)

Γ̂{N,∆k}
IBFT−−−→
(5.41)

Γ′

{N,∆R}
damping−−−−−→
(5.50)

Γ
(n+1)
{N,∆R}.

(5.53)
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As a measure of accuracy we use the L2 norm between two successive iterates averaged over

all site-site functions:
∥
∥
∥Γ

(n+1)
{N,∆R} − Γ

(n)
{N,∆R}

∥
∥
∥ =

1

MK

∑

sα

√
√
√
√

N∑

m=1

(
γ(n+1)
sα (m∆R)− γ(n)

sα (m∆R)
)2

∆R.
(5.54)

We stop the iteration when the iterates differ by less than a given threshold ε :

∥
∥
∥Γ

(n+1)
{N,∆R} − Γ

(n)
{N,∆R}

∥
∥
∥ ≤ ε. (5.55)

By n(N,∆R, ε) we denote the minimal number n such that (5.55) holds. So, using the

operator power notation, the iterative process to obtain the solution Γε
{N,∆R} with accuracy ε

can be written as

Γε
{N,∆R} =

(
Υ{N,∆R}

)n(N,∆R,ε)
[Γ

(0)
{N,∆R}, f{N,∆R}]. (5.56)

5.4 Moving between the grids

In the multi-scale methods which we discuss below, several grids are used. Below we define

operators, which map grid functions from one grid to another: the restriction operator r[·], the
interpolation operator p[·] and the extension operator e[·]

The restriction operator r[·] maps the matrix of grid functions to the coarser grid with

doubled grid size and, therefore, half the number of grid points. For example, the restriction

maps from the grid {2N,∆R} to the grid {N, 2∆R}:

r[Γ{2N,∆R}] = Γ{N,2∆R}. (5.57)

In the current work we use the trivial injection as a restriction operator. Let Γ{2N,∆R} =

[γ
{2N,∆R}
sα ]M×K , where

γ{2N,∆R}
sα = (γsα(∆R), γsα(2∆R) . . . , γsα(2N∆R)) (5.58)

and Γ{N,2∆R} = [γ
{N,2∆R}
sα ]M×K = r[Γ{2N,∆R}]. Then the vectors γ

{N,2∆R}
sα are defined by

γ{N,2∆R}
sα = (γS

sα(2∆R), γS
sα(4∆R), . . . , γS

sα(2N∆R)). (5.59)

We should mention that the restriction operator r[·] is linear:

r[aΓ′
{2N,∆R} + bΓ′′

{2N,∆R}] =

a · r[Γ′
{2N,∆R}] + b · r[Γ′′

{2N,∆R}].
(5.60)
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x

f(
x
)

original function

restricted function

prolongation of the restricted function

Figure 5.1: Illustration of the restriction and the prolongation operators. The values of the
functions on different grids are shown with markers. The lines which connect these markers
are used for better visibility only. Three functions are demonstrated: initial function f(x) (star
markers, thick dashed line), restricted function r[f(x)] (square markers, thin dashed line) and
prolongation of the restricted function p[r[f(x)]] (round markers, solid line ).

The interpolation operator p[·] maps the matrix of grid functions to the grid with half the

grid size and, thereby, the double number of grid points. For example, the interpolation maps

from the grid {N, 2∆R} to the grid {2N,∆R}:

p[Γ{N,2∆R}] = Γ̃{2N,∆R} = [γ̃{2N,∆R}
sα ]. (5.61)

In the current work we use cubic spline interpolation as interpolation operator. Let Γ{N,2∆R} =

[γ
{N,2∆R}
sα ]M×K , where vectors {γ{N,2∆R}

sα } are defined by (5.59) . Then γ̃
{2N,∆R}
sα in (5.61) are

defined by

γ̃
{2N,∆R}
sα = (γ̃S

sα(∆R), γS
sα(2∆R), γ̃S

sα(3∆R), . . .
. . . , γ̃S

sα((2N − 1)∆R), γS
sα(2N∆R)),

(5.62)

where the values γ̃S
sα((2k − 1)∆R) are obtained from the values γS

sα(2k∆R) using the cubic

spline interpolation.

We note that r[·] is the left-inverse of p[·], i.e., r[p[Γ{N,2∆R}]] = Γ{N,2∆R}, but not the

right-inverse:

Γ̃{2N,∆R} = p[r[Γ{2N,∆R}]] 6= Γ{2N,∆R}. (5.63)
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This fact is demonstrated in Figure 5.1. However, sufficiently smooth functions satisfy

Γ̃{2N,∆R} = p[r[Γ{2N,∆R}]] = Γ{2N,∆R} +O(∆R). (5.64)

The extension operator e[·] does not change the grid size, but doubles the number of points.

For example, the extension maps from the grid {N,∆R} to the grid {2N,∆R}:

e[Γ{N,∆R}] = Γ{2N,∆R} = [γ{2N,∆R}
sα ]M×K (5.65)

Indirect correlation functions decay fast to zero as the distance increases. Thus, it is natural to

extend them by zeros yielding the zero extension operator which we use in the current work.

Let Γ{N,∆R} = [γ
{N,∆R}
sα ]M×K with vectors {γ{N,∆R}

sα } defined by (5.32). Then the functions

{γ{2N,∆R}
sα } in (5.65) are defined by

γ{2N,∆R}
sα = (γsα(∆R), . . . , γsα(N∆R), 0, . . . , 0

︸ ︷︷ ︸

N

). (5.66)

5.5 Nested Picard iteration

Having at hand different grids, the idea of the nested Picard iteration [87] is straightforward:

use as an initial guess the (approximate) solution from the coarse grid with a smaller number

of grid points. Here we exploit that computations in the coarse grid are cheaper. Below we

describe the scheme of the nested Picard iteration. Consider two grids: the “coarse” grid

{N, 2∆R} and the “fine” grid {2N,∆R}. We start from the coarse-grid solution Γ
(0)
{N,2∆R}. We

perform an iteration process of type (5.56) to obtain a solution with accuracy ε on the coarse

grid, interpolate it to the fine grid and use it as the initial approximation for the fine-grid

iteration.

The scheme for performing the two-grid nested Picard iteration is written as follows:

Γ
(0)
{N,2∆R}

Υ{N,2∆R}−−−−−→ Γε
{N,2∆R}

p−→
→ Γ

(0)
{2N,∆R}

Υ{2N,∆R}−−−−−→ Γε
{2N,∆R}.

(5.67)

The nested Picard iteration scheme for more than two grids {N, 2L∆R}, {2N, 2L−1∆R}, . . . ,
{2LN,∆R} with the same cutoff distance Rcutoff = 2LN∆R is

Γ
(0)

{N,2L∆R}
Υ

{N,2L∆R}−−−−−−→ Γε
{2N,2L−1∆R}

p−→ Γ
(0)

{2N,2L−1∆R}
Υ

{2N,2L−1∆R}−−−−−−−−→ . . .

. . .
p−→ Γ

(0)

{2LN,∆R}
Υ

{2LN,∆R}−−−−−−→ Γε
{2LN,∆R}.

(5.68)
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To obtain the solution on a grid with larger cutoff distance, we may continue the process in a

similar way using the extension operator e[·]:

Γ
(0)

{2L+1N,∆R} = e[Γε
{2LN,∆R}],

Γε
{2L+1N,∆R}=

(
Υ{2L+1N,∆R}

)n(2L+1N,∆R,ε)
[Γ

(0)

{2L+1N,∆R}].
(5.69)

The same process can be defined for multiple grids {2LN,∆R}, {2L+1N,∆R}, ..., {2L+PN,∆R}:

Γε
{2LN,∆R}

e−→ Γ
(0)

{2L+1N,∆R}
Υ

{2L+1N,∆R}−−−−−−−−→ Γε
{2L+1N,∆R}

e−→

. . .
e−→ Γ

(0)

{2L+PN,∆R}
Υ

{2L+PN,∆R}−−−−−−−−→ Γε
{2L+PN,∆R}.

(5.70)

5.6 Two- and multi-grid iterations

Although the nested Picard iteration scheme is able to essentially enhance the performance of

numerical iteration, there is a drawback which limits its efficiency. Consider two grids {N, 2∆R}
and {2N,∆R}, to which we refer below as coarse and fine grid, respectively. Denote the exact

solutions Γ∗
coarse, Γ

∗
fine on the respective coarse and fine grids by

Γ∗
coarse = Kcoarse[Γ

∗
coarse] + r[ffine],

Γ∗
fine = Kfine[Γ

∗
fine] + ffine.

(5.71)

We note, that the restricted fine grid solution is not the coarse grid solution:

Γ∗
coarse 6= r[Γ∗

fine] (5.72)

Due to this fact, the coarse-grid iteration is not able to give a very good approximation of

the fine-grid solution, which limits the performance of the nested iterative schemes. The multi-

grid scheme is able to overcome this limitation. For the complete description of the different

multi-grid schemes we refer to the book [87]. Below we briefly describe the multi-grid-based

algorithm for solving the RISM equation which is used in the current work.

The following grid difference operator G[·] applies to fine-grid functions and indicates the

difference of Kfine and Kcoarse:

G[Γfine] = r[Kfine[Γfine]]−Kcoarse[r[Γfine]]. (5.73)

Let us consider the task

Γcoarse = Kcoarse[Γcoarse] + r[ffine] +G[Γ∗
fine]. (5.74)

Substituting here the restricted exact fine grid solution Γcoarse = r[Γ∗
fine] and using the definition

(5.73) , we have:

r[Γ∗
fine] = r[Kfine[Γ

∗
fine]] + r[ffine]. (5.75)
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This equality holds due to the linearity of the restriction operator (5.60) and second equality in

(5.71). One can see, that the task (5.74) is of the form of (5.49) where fcoarse = r[ffine]+G[Γ∗
fine].

This shows the role of the vector fcoarse : it accumulates the grid differences between the finer

and coarser grids during the multi-grid iteration.

The task (5.74) can be used to find the solution r[Γ∗
fine]. We do not know the exact difference

G[Γ∗
fine]. However, even if the approximate solution is far from the exact solution, the value

G[Γ
(0)
fine] can be accurate enough:

∥
∥
∥G[Γ

(0)
fine]−G[Γ∗

fine]
∥
∥
∥≪

∥
∥
∥Γ

(0)
fine − Γ∗

fine

∥
∥
∥ . (5.76)

In the two-grid scheme one performs a small number ν1 of fine-grid iteration steps before

solving the coarse grid task and uses the coarse-grid solution to eliminate the low-frequency

errors of fine-grid iterate. However, for some operators the interpolation of the coarse-grid solu-

tion may be not smooth enough. That is why one may need to perform some additional number

ν2 of so-called smoothing fine-grid iteration steps. Let Γ
(n)
fine be the fine-grid approximation on

the n-th step of two-grid iteration. The two-grid iteration process can be written in a following

way:

Γ
(n+1)
fine = T [Γ

(n)
fine, ffine] (5.77)

where the two-grid operator T [·, ·] is defined by the following algorithm:
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Algorithm 5.1 RISM Two-grid Operator

Input: Γ
(n)
fine, ffine

Output: Γ
(n+1)
fine

1. Perform ν1 fine-grid iteration steps:

Γ′
fine = (Υfine)

ν1 [Γ
(n)
fine, ffine].

2. Define a coarse-grid analogue of Γ′
fine:

Γ(0)
coarse = r[Γ′

fine].

3. Calculate the grid correction G[Γ′
fine]:

G[Γ′
fine] = r[Kfine[Γ

′
fine]]−Kcoarse[Γ

(0)
coarse]

4. Determine the solution Γ∗
coarse the coarse grid problem

Γcoarse = Kcoarse[Γcoarse] +G[Γ′
fine] + r[ffine]. (5.78)

5. Add the coarse-grid correction:

Γ′′
fine = Γ′

fine + p[Γ∗
coarse − Γ(0)

coarse].

6. Perform ν2 smoothing fine-grid iteration steps:

Γ
(n+1)
fine = (Υfine)

ν2 [Γ′′
fine, ffine].

In the two-grid algorithm it is not specified how the coarse-grid equation of step 4 is solved. If

the algorithm described above is used recursively for solving the coarse-grid problem, we obtain

the multi-grid iterative scheme [87]. Assume that we have the grids {N, 2L∆R}, {2N, 2L−1∆R},
. . . , {2LN,∆R}. We will use the subscript grid to refer to any of these grids. On each grid we

define the multi-grid iteration with iterative operator Mlevel
grid [Γ

(n)
grid, fgrid]:

Γ
(n+1)
grid = Mlevel

grid [Γ
(n)
grid, fgrid], (5.79)

where Γ
(n)
grid is the n-th multi-grid iterate, fgrid is given, and the superscript level indicates the

number of recursions which are done while calculating the operator. The multi-grid iteration

converges to the solution

Γgrid = Kgrid[Γgrid] + fgrid. (5.80)

The multi-grid operator at level zero is a single-grid solver of (5.80) on the coarsest grid.
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In our work we use n steps of the damped Picard iteration:

M0
{N,2L∆R}[Γ

(0)

{N,2L∆R}, f{N,2L∆R}] =
(
Υ{N,2L∆R}

)n
[Γ

(0)

{N,2L∆R}, f{N,2L∆R}]
(5.81)

The proper choice of the number n of iteration steps on the coarsest grid is discussed in Section

5.8 . For the sake of brevity, below we use the subscript “fine” to refer to the grid {2ℓN, 2L−ℓ∆R}
and the subscript “coarse” to refer to the grid {2ℓ−1N, 2L−ℓ+1∆R}. The multi-grid operator

Mℓ
fine[Γ

(n)
fine, ffine] of level ℓ > 0 is defined by the following algorithm:

Algorithm 5.2 RISM Multi-Grid Operator

Input: Γ
(n)
fine, ffine, ℓ

Output: Γ
(n+1)
fine

1. Perform ν1 steps of the fine-grid Picard iteration:

Γ′
fine = (Υfine)

ν1 [Γ
(n)
fine, ffine].

2. Define a coarse-grid analogue of Γ′
fine and use it as the initial guess of the iteration

in Step 4:
Γ(0)

coarse = r[Γ′
fine].

3. Calculate grid correction G[Γ′
fine]:

G[Γ′
fine] = r[Kfine[Γ

′
fine]]−Kcoarse[Γ

(0)
coarse].

4. Perform, recursively, µ steps of the coarse-grid multi-grid iteration of level (ℓ−1):

Γ(µ)
coarse =

(
Mℓ−1

coarse

)µ
[Γ(0)

coarse, r[ffine] +G[Γ′
fine]].

5. Add the coarse-grid correction:

Γ′′
fine = Γ′

fine + p[Γ(µ)
coarse − Γ(0)

coarse].

6. Perform ν2 steps of the fine-grid Picard iteration:

Γ
(n+1)
fine = (Υfine)

ν2 [Γ′′
fine, ffine].

If in Step 4 the number of the multi-grid iteration steps is µ = 1, the multi-grid iteration is

called a V-cycle. If µ = 2, the iteration is called W-cycle [87]. In the current work we use µ = 1.

In our case the iterative operator K[·] is smooth enough, thus for the multi-grid iteration we

use ν1 = 1 and ν2 = 0 on the steps 1, 6 of the algorithm, which is standard for the multi-grid

of the second kind [87].
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Now we assume that grids with different cutoff distances are given: {2LN,∆R}, {2L+1N,∆R},
. . . , {2L+PN,∆R}. We can use a scheme similar to (5.70) for the multi-grid iteration: having

solved the task on the grid {2LN,∆R} by the multi-grid iteration up to accuracy ε, extend the

solution to the grid {2L+1N,∆R} and use it as initial guess for a next multi-grid iteration and

so on. We denote by Γ
(0)
grid the initial approximation on the grid grid and by Γε

grid the solution

with the L2-norm accuracy ε, obtained via the iterative process (5.79) . The multi-grid iteration

with the grid extension can be written schematically as follows:

Γ
(0)

{2LN,∆R}

ML

{2LN,∆R}−−−−−−−→ Γε
{2LN,∆R}

e−→

Γ
(0)

{2L+1N,∆R}

ML

{2L+1N,∆R}−−−−−−−−→ . . .

. . .
e−→ Γ

(0)

{2L+PN,∆R}

ML

{2L+PN,∆R}−−−−−−−−→ Γε
{2L+PN,∆R}.

(5.82)

5.7 Nested multi-grid

The nested iteration technique suggests one to use an approximate coarse-grid solution as initial

guess for the fine-grid iteration. In the multi-grid iteration the fine-grid initial guess can be

found via the multi-grid iteration on the coarser grid. Typically, it is enough to perform a single

multi-grid iteration on the coarser grid to obtain a good initial guess for the fine-grid iteration.

Assume grids {N, 2L∆R}, {2N, 2L−1∆R}, . . . , {2LN,∆R} and an initial guess Γ
(0)

{N,2L∆R} on

the coarsest grid are given. We find an initial guess Γ
(0)

{2LN,∆R} on the fine grid {2LN,∆R} by

the following algorithm:

Algorithm 5.3 Nested multi-grid

Input: Γ
(0)

{N,2L∆R}

Output: Γ
(0)

{2LN,∆R}

for ℓ=0. . .L-1:

1. Perform one multi-grid iteration on the coarse grid:

Γ
(1)

{2ℓN,2L−ℓ∆R} = Mℓ
{2ℓN,2L−ℓ∆R}(Γ

(0)

{2ℓN,2L−ℓ∆R})

2. Interpolate the result to the finer grid:

Γ
(0)

{2ℓ+1N,2L−ℓ−1∆R} = p[Γ
(1)

{2ℓN,2L−ℓ∆R}]
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The same can be written schematically:

Γ
(0)

{N,2L∆R}

M0
{N,2L∆R}−−−−−−−→ Γ

(1)

{N,2L∆R}
p−→

Γ
(0)

{2N,2L−1∆R}

M1
{2N,2L−1∆R}−−−−−−−−−→ . . .

. . .
ML−1

{N,2L∆R}−−−−−−−→ Γ
(1)

{2L−1N,2∆R}
p−→

Γ
(0)

{2LN,∆R}

(5.83)

Having the initial guess Γ
(0)

{2LN,∆R} one can use the multi-grid iteration process (5.79) to

obtain the approximate solution on the grid {2LN,∆R} with a given accuracy ε. After that,

using scheme (5.82) , one may extend the solution to the grid {2L+PN,∆R}. In the current

paper we call the process (5.83) - (5.79)- (5.82) the nested multi-grid iteration, and compare

its performance to the multi-grid iteration (5.79) - (5.82), to the nested Picard iteration (5.68)-

(5.70) , and to the one-level Picard iteration (5.53).

5.8 Determining the optimal number of coarse-grid it-

eration steps

In the multi-grid algorithm on the coarsest grid we solve the task of type (5.78) with correction

G[Γ′
fine]. Because G[Γ′

fine] is only an approximation of the G[Γ∗
fine] there is no need to solve this

task with accuracy better than the accuracy εG[Γ′
fine]

of calculation of G[Γ′
fine], which is defined

as follows:

εG[Γ′
fine]

= ‖G[Γ′
fine]−G[Γ∗

fine]‖ . (5.84)

The value of εG[Γ′
fine]

can be estimated using the expression

εG[Γ′
fine]

≈
∥
∥
∥G[Γ′

fine]−G[Γ
(n+1)
fine ]

∥
∥
∥ (5.85)

Let us assume that the error ε(n) of the solution decays exponentially with the number n

of the coarse-grid iteration steps:

ε(n) =
∥
∥Γ(n)

coarse − Γ∗
coarse

∥
∥ = ε(0) · δn (5.86)

If we assume that the error decay rate δ is constant, then the value of δ can be found from the

previous expression using two first iteration steps:

δ =
ε(1)

ε(0)
(5.87)

We may estimate ε(1) and ε(0) by the expressions

ε(1) ≈
∥
∥
∥Γ

(1)
coarse − Γ

(n)
coarse

∥
∥
∥ ,

ε(0) ≈
∥
∥
∥Γ

(0)
coarse − Γ

(n)
coarse

∥
∥
∥ .

(5.88)
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For the optimal number nopt of iteration steps we obtain

ε(nopt) = ε(0) · δnopt = εG[Γ′
fine]

(5.89)

Let the actual number of the iteration steps be n.

Dividing (5.86) by (5.89) we get

ε(n)

εG[Γ′]

=
ε(0)δn

εG[Γ′]

= δn−nopt (5.90)

and find the optimal number of iteration steps as

nopt = logδ
εG[Γ′]

ε(0)
(5.91)

where δ, εG[Γ′], ε(0) are estimated through (5.87), (5.85), (5.88), respectively. So after each

multi-grid iteration step we may estimate the optimal number of iteration steps on the coarsest

grid and use this number in the next multi-grid iteration step. To avoid fast change of n from

one multi-grid iteration step to another, we start from some number n(0) of coarse-grid iteration

steps and use a damped iteration process for the number n(k) of the coarsest-grid iteration steps

on the k-th multi-grid iteration step:

n(k+1) = αn(k) + (1− α)nopt (5.92)

where 0 < α < 1 is the damping parameter.

5.9 Choice of optimal grid parameters for Hydration

Free Energy calculations

In the sections above we explained how to solve the RISM equations (5.46) - (5.47) numeri-

cally. During the numerical solution we perform iteration steps on several grids with different

grid sizes and cutoff distances. In principle, we are free to choose the parameters of the iter-

ations. However, we plan to apply the RISM for calculations of the Hydration Free Energy

(HFE). Thus, we would like to choose parameters which yield HFE values with given numerical

accuracy at minimal computational cost. HFE can be calculated using the Kirkwood’s ther-

modynamic integration formula [113]. In the RISM approximation, the HFE of a molecule is

found as the sum of the partial HFEs of the sites. In the scope of the HNC approximation,

the thermodynamic integration can be performed analytically and HFE (∆G) may be found

explicitly from the solutions of the RISM equation [52]:

∆GHNC = 2πρkT
∑

sα

∞∫

0

[−2csα(r) + γsα(r) (csα(r) + γsα(r))] r
2dr (5.93)
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where ρ is the bulk number density, k is the Boltzmann constant and T is the temperature.

Usually, HFE is measured in kilo-calories per mole (kcal/mol). The accuracy of experimental

HFE measurements for bioactive compounds is & 0.1 kcal/mol [93]. To make some theoretical

and statistical investigations, we typically need to obtain a computational accuracy of about 100

times higher than the experimental one. That means that we should choose the grid parameters

which allow us to calculate the expression (5.93) with accuracy of at least 0.001 kcal/mol. We

use a uniform grid which can be described by the grid size ∆R and cutoff distance Rcutoff . First,

we try to determine an appropriate grid size ∆R. We perform series of RISM calculations with

same cutoff distance and different grid sizes, and for each grid size we calculate the free energy

of solvation using (5.93) . We assume that the solution on the finest grid yields an almost exact

value of ∆GHNC . Let us denote by ∆G∆R
HNC the HFE-value calculated on the grid with step

∆R, and by ∆Gbest
HNC the value of the HFE calculated on the finest grid. We can estimate the

error of the HFE calculations as difference of ∆G∆R
HNC and the best value ∆Gbest

HNC :

Error(∆G∆R
HNC) =

∣
∣∆G∆R

HNC −∆Gbest
HNC

∣
∣ (5.94)

In our calculations, we measure distances in atomic units (Bohr, 1 Bohr ≈ 0.52918 Å)

as they are the most natural for the atomic scale. As the base grid size we choose ∆R0 =

0.1 Bohr, and then make the solvation free energy calculations for the different grid sizes

∆R = ∆R0

2k
, k = −3 . . . 6 (grid sizes from 0.8 Bohr to 1

640
Bohr). The value of 1

640
Bohr is taken

to be an approximation ∆Gbest
HNC of the exact HFE-value. The cutoff distance is 204.8 Bohr.

Calculations on all grids are performed up to L2-norm accuracy ε = 10−10, which is near the

limit caused by the numerical errors of the calculations. The parameters of the best grid are

chosen to represent the solution of the original non-discretized RISM equation with a high

accuracy. The cutoff distance of 204.8 Bohr (≈ 106Å ) is more than 30 times larger than

the size of the solvent (water) molecule. Typically, the most of fluctuations of the correlation

functions are in the first-second solvation shells (3-7Åfor water), and the fluctuations after the

10th solvation shell (30Å) are negligible. Using the cutoff distance 3 times larger (>100 Å) we

can be sure that this cutoff distance does not affect much the results of the calculations. The

grid size of 1
640

Bohr is taken to be just very small grid step, but still feasible to compute.

To find the optimal cutoff distance Rcutoff, we perform calculations with the fixed ∆R but

different Rcutoff . We estimate the error of HFE calculations by taking the integral in (5.93)

over the interval (Rcutoff,∞), because this is the part of the axis which we omit while using the

function with finite support:

Error(∆GHNC) = 2πρkT
∑

sα

∞∫

Rcutoff

[−2csα(r) + γsα(r) (csα(r) + γsα(r))] r
2dr (5.95)
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To evaluate the infinite integral (5.95) , we can calculate functions γsα(r) and csα(r) on

the grid with a very large cutoff distance R∞
cutoff and calculate the integral over the interval

(Rcutoff,R
∞
cutoff). As large cutoff distance we use R∞

cutoff = 409.6 Bohr. The cutoff value of

409.6 Bohr is chosen to be twice larger than the largest cutoff of the calculations (204.8 Bohr).

This allows us to estimate the errors of different cutoff distances (including the large distances,

like 204.8 Bohr) with a high accuracy.

The most of computational time in the multi-grid iteration is spent on the coarsest grid.

The coarsest-grid solution should give a good approximation to the low-frequent part of the

exact solution. That means that using the coarsest-grid solution, we as well should be able

to roughly approximate chemical properties of the system, in particular the free energy of

hydration. HFE-values for a wide class of compounds lie in the range from -5 kcal/mol to +5

kcal/mol. That means that to obtain some qualitative information about the value of HFE

we need to have an accuracy in the calculations of at least 1-2 kcal/mol. In the current work

grid size and cutoff distance of the coarsest grid are chosen to give the numerical error in HFE

calculations ≤1 kcal/mol.

It is known that the solution of the RISM equations behave differently for neutral and

charged systems. That is why for determining the optimal grid parameters we have chosen five

different systems: single uncharged atom (Argon), simple charged ion pair (Sodium chloride),

uncharged molecule (methane), polar molecule with high partial charges of atoms (methanol)

and water.

We can find how much faster are nested Picard iteration, multi-grid and nested multi-grid

than the one-grid Picard iteration. To do the comparison we use the speed-up factors:

SNMG(ε) =
tone−grid(ε)

tNMG(ε)
(5.96)

SMG(ε) =
tone−grid(ε)

tMG(ε)
(5.97)

SNest(ε) =
tone−grid(ε)

tNP(ε)
(5.98)

where tNMG(ε), tMG(ε), tNP(ε), tone−grid(ε) are the computer times to solve the RISM equa-

tions by the nested multi-grid method, multi-grid method, nested Picard iteration method

and one-level Picard iteration method up to the L2-norm accuracy ε respectively. The val-

ues tNP(ε)/tMG(ε) and tNP(ε)/tNMG(ε) show how many times faster the multi-grid and nested

multi-grid methods are than the nested Picard iteration respectively.
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Figure 5.2: Dependencies of the error in hydration free energy calculations on the grid step ∆R
(logarithmic scale). Calculations are done for the cutoff distance Rcutoff=204.8 Bohr. Groups
of points which satisfy the minimal requirements for the desired coarse-grid and fine-grid accu-
racies are marked with the dashed ovals.



94 CHAPTER 5. RISM MULTI-GRID ALGORITHM

12.8 25.6 51.2 102.4 204.8
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

R
cutoff

 (Bohr)

E
rr

or
 o

f ∆
 G

H
N

C
 (

kc
al

/m
ol

)

 

 

Desired coarse
grid accuracy

Desired fine−grid
accuracy

NaCl
Ar
methane
methanol
water

Figure 5.3: Dependencies of the error in hydration free energy calculations on the cutoff distance
Rcutoff (logarithmic scale). Groups of points which satisfy the minimal requirements for the
desired core-grid and fine-grid accuracies are marked with the dashed ovals.

5.10 Optimal grid parameters

To determine the appropriate grid parameters, the RISM Hydration Free Energy calculations

were performed for grids with different fine-grid sizes and different cutoff distances. In Figure

5.2 one can see how the error of HFE calculations depends on the grid size. For all investi-

gated systems starting from the grid size ∆R = 0.05 Bohr, the error is smaller than the desired

threshold 0.001 kcal/mol. We take the grid with ∆R = 0.05 Bohr as the fine-grid for the numer-

ical solution of the RISM equations. To determine the optimal cutoff distance, we performed

the RISM calculations for the systems with very large cutoff distance R∞
cutoff = 409.6 Bohr

and calculated the numerical error of HFE calculations with (5.95) for argon, sodium chloride,

methane, methanol and water. We use grids with 2p (p = 8 . . . 13) points which gives cutoff

distances from 12.8 Bohr to 409.6 Bohr. The results of the calculations are presented in Figure

5.3. We can see that to achieve the desired accuracy of HFE calculations one should use a

cutoff distance 204.8 Bohr, which corresponds to 4096 grid points with the grid size 0.05 Bohr.

Also, from Figures 5.2 and 5.3 one can see that a grid with ∆Rcoarse=0.8 Bohr, Rcoarse
cutoff=25.6

Bohr is enough to give a numerical error in the HFE calculations less than 1 kcal/mol. Thus,

this grid size and cutoff distance are used in the current work as parameters of the coarsest-grid

in the multi-grid algorithm.
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5.11 The RISM-MOL solver

In the current work the calculations of the RISM solute-solvent correlation functions were per-

formed with the RISM-MOL program package for fast solution of the RISM integral equations

developed by Maxim V. Fedorov and Volodymyr P. Sergiievskyi in the Computational Physical

Chemistry and Biophysics group of the Max-Planck-Institute for Mathematics in the Sciences.

The multi-grid method has been implemented in the RISM-MOL program for 1D RISM

calculations [121]. Using this program, the HFE calculations for the largest molecule in the set

(42 atoms) took about 30 seconds on one PC. The average time of the Hydration Free Energy

calculations was 17 sec.

As the input data the RISM-MOL program takes the coordinates, parameters of the Lennard-

Jones potential and partial charges qs of the atoms of the solute molecule. The parameters of

the solvent molecules, as well as pre-calculated bulk-solvent correlation functions hbulk
sα (r) are

embedded to the program. Using the atomic parameters, the site-site interaction potentials

between the solute sites s and solvent sites α are calculated:

usα(r) = uLJ
sα (r) + uC

sα(r) (5.99)

where uC
sα(r) is the Coulomb potential

uC
sα(r) =

qsqα
r

(5.100)

and uLJ
sα (r) is a Lennard-Jones potential

uLJ
sα (r) = 4ǫsα

((σsα

r

)12

−
(σsα

r

)6
)

(5.101)

The pair Lennard-Jones parameters σsα, ǫsα are calculated via the combining rules. By default

the Lorentz-Berthelot rules are used:

σsα =
σs + σα

2
ǫsα =

√
ǫsǫα (5.102)

Other combining rules can be defined by the user.

In the RISM-MOL program, it is possible to vary the number of grids, the number of grid

points, the number of iterations and, hence, the accuracy of the calculation. In the current

study the six-grid iterations were used. The final solution was obtained on the grid with 4096

grid points and 0.05 Bohr step size with L2 -norm accuracy ε = 10−4.

The fast implementation of the algorithm for the numerical solution of the RISM equations

together with the presented possibilities for accurate hydration free energy calculations makes

the RISM-MOL solver a robust tool for investigating the thermodynamics of solution. The

program can be obtained for academic users free of charge from Maxim V. Fedorov by request.
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Table 5.1: Comparison between the multi-grid and the nested Picard iteration. Number of
iteration steps and percent of total computational time, spent on each grid.

Grid Number of iteration steps % of time spent on level

Grid Points
∆R
(Bohr)

Rcutoff

(Bohr)
multi-grid Nested Picard multi-grid Nested Picard

4096 0.05 204.8 2 8 0.9% 0.5%
2048 0.05 102.4 4 394 0.9% 8.0%
1024 0.05 51.2 18 3624 2.0% 33.0%

512 0.05 40.6 52 3868 2.9% 18.8%

406 0.1 40.6 52 4406 1.5% 11.1%
128 0.2 40.6 57 6399 1.1% 11.7%
64 0.4 40.6 4843 7895 27.2% 8.3%
32 0.8 40.6 11336 10422 63.6% 8.7%

5.12 Comparison of performance of the one-grid Picard

iteration, nested Picard iteration, multi-grid and

nested multi-grid

We compare the numerical performance of the one-grid iteration (5.53) , the nested Picard iter-

ation (5.68) -(5.70) , the multi-grid iteration (5.79) - (5.82) and the nested multi-grid iteration

(5.83) - (5.79) (5.82) .

In the experiments, the coarsest grid has 32 grid points, grid size ∆R = 0.8 Bohr and cutoff

distance Rcutoff = 25.6 Bohr. The finest grid has 4096 grid points, grid size ∆R = 0.05 Bohr

and cutoff distance Rcutoff = 204.8 Bohr. The one-level iteration was performed on the finest

grid only.

To compare the efficiency of the methods, the RISM equations were solved numerically for

the same molecule (methane), with the same accuracy, using the one-level Picard iteration,

nested Picard iteration and the proposed multi-grid-based algorithms.

The dependencies of the speed-up factors (5.97), (5.98) on the accuracy of the calculations

are presented in Figure 5.4.

As one can see, the speed-up decreases when accuracy increases. This can be explained by

the fact that for higher accuracies high frequencies of the solution are essential, so we need to

perform more time-consuming Picard iteration steps on the fine grids. Nevertheless, even an

accuracy of ε = 10−10 multi-grid methods are about 30 times faster than one-level iteration.

One can see, that for low accuracies multi-grid and nested multi-grid have almost the same

performance, while for the high accuracies nested multi-grid is slightly faster. The speedup

of the nested Picard iteration is lower and decreases faster. For ε = 10−10, the nested Picard
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iteration is only 4.5 times faster than the one-level iteration. Figure 5.5 presents the dependency

of the multi-grid speedup tNP(ε)/tMG(ε) and nested multi-grid speedup tNP(ε)/tNMG(ε) with

regard to the nested Picard iteration.

We see that for the low accuracy regime, the nested Picard iteration is less than 1.5 times

slower than the multi-grid iteration, but when the accuracy increases, the efficiency of the nested

Picard iteration becomes worse than the efficiency of the multi-grid methods. Indeed, for an

accuracy of ε = 10−10 the nested multi-grid iteration is almost 7 times faster than the nested

iteration method. This happens because in the nested Picard iteration there is no correction for

the difference between accurate solutions on different grids. While the accuracy of the solution

is less than the difference between the accurate solutions on different grids, the multi-grid and

nested Picard iteration have similar efficiency. But for the high accuracy regime, using the

nested Picard iteration process it is not possible to produce a correct result on the coarse grid,

thus the number of expensive fine-grid iteration steps increases and efficiency goes down. If we

look at the Table 5.1 , we see that for an accuracy of ε = 10−10 multi-grid performs most of

elementary iteration steps and spends most of the time on the coarse grids, while nested Picard

iteration method performs a large number of iteration steps on the fine grids.

5.13 Calculation of Hydration Free Energy of drug-like

compounds

One of the main applications of the RISM multi-grid method described above is calculation

of the solvation free energy of drug-like compounds. Below we demonstrate an example of

solvation free energy calculations for drug-like molecules based on the RISM Multi-grid algo-

rithm. We note that the proposed parameterization scheme described below is given mostly

to demonstrate basic concepts of RISM calculations and parameterization of the RISM results.

More information about the parameterization of solvation free energies calculated with RISM

and 3DRISM one can find in Refs. [64–66].

For our investigation we choose the SAMPL1 molecule set published in Ref. [93]. The set

consists of 63 drug-like bioactive compounds. Table 5.2 contains the following information: 1)

the list of the compounds, 2) experimentally-measured solvation free energies 3) code names of

the compounds (Cup08001-Cup08063).
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Table 5.2: Experimentally measured solvation free ener-
gies for the 63 compounds from the SAMPL1 molecule
set

Code name Chemical name Chemical formula ∆Fhydr(kcal/mol)
cup08001 nitroglycol C2H4N2O6 -5.73±0.10
cup08002 1,2-dinitroxypropane C3H6N2O6 -4.95±0.10
cup08003 butyl nitrate C4H9NO3 -2.09±0.10
cup08004 2-butyl nitrate C4H9NO3 -1.82±0.10
cup08005 isobutyl nitrate C4H9NO3 -1.88±0.10
cup08006 ethyleneglycol mononitrate C2H5NO4 -8.18±0.10
cup08007 alachlor C14H20NO2Cl -8.21±0.29
cup08008 aldicarb C7H14N2O2S -9.84±0.10
cup08009 ametryn C9H17N5S -7.65±0.45
cup08010 azinphosmethyl C10H12N3O3PS2 -10.03±1.37
cup08011 enefin C13H16N3O4F3 -3.51±1.93
cup08012 ensulfuron C16H18N4O7S -17.17±1.93
cup08013 bromacil C9H13N2O2Br -9.73±1.93
cup08014 captan C9H8NO2SCl3 -9.01±1.93
cup08015 carbaryl C12H11NO2 -9.45±0.10
cup08016 carbofuran C12H15NO3 -9.61±0.30
cup08017 carbophenothion C11H16O2PS3Cl -6.50±0.83
cup08018 hlordane C10H6Cl8 -3.44±0.10
cup08019 chlorfenvinphos C12H14O4PCl3 -7.07±1.37
cup08020 chlorimuronethyl C15H15N4O6SCl -14.01±1.93
cup08021 chloropicrin CNO2Cl3 -1.45±0.10
cup08022 chlorpyrifos C9H11NO3PSCl3 -5.04±0.21
cup08023 dialifor C14H17NO4PS2Cl -5.74±1.93
cup08024 diazinon C12H21N2O3PS -6.48±0.13
cup08025 dicamba C8H6O3Cl2 -9.86±1.93
cup08026 dichlobenil C7H3NCl2 -4.71±1.93
cup08027 dinitramine C11H13N4O4F3 -5.66±1.93
cup08028 dinoseb C10H12N2O5 -6.23±1.93
cup08029 endosulfan alpha C9H6O3SCl6 -4.23±0.26
cup08030 endrin C12H8OCl6 -4.82±0.10
cup08031 ethion C9H22O4P2S4 -6.10±1.37
cup08032 fenuron C9H12N2O -9.13±1.93
cup08033 heptachlor C10H5Cl7 -2.55±0.10
cup08034 isophorone C9H14O -5.18±1.37
cup08035 lindane C6H6Cl6 -5.44±0.10
cup08036 malathion C10H19O6PS2 -8.15±0.21
cup08037 methomyl C5H10N2O2S -10.65±1.93
cup08038 methyparathion C8H10NO5PS -7.19±0.10
cup08039 metsulfuronmethyl C14H15N5O6S -15.54±1.93

Continued on the the next page



100 CHAPTER 5. RISM MULTI-GRID ALGORITHM

Code name Chemical name Chemical formula ∆Fhydr(kcal/mol)
cup08040 nitralin C13H19N3O6S -7.98±1.93
cup08041 nitroxyacetone C3H5NO4 -5.99±0.10
cup08042 oxamyl C7H13N3O3S -10.18±1.93
cup08043 parathion C10H14NO5PS -6.74±0.10
cup08044 pebulate C10H21NOS -3.63±1.93
cup08045 phorate C7H17O2PS3 -4.37±0.10
cup08046 profluralin C14H16N3O4F3 -2.45±1.37
cup08047 prometryn C10H19N5S -8.43±0.10
cup08048 propanil C9H9NOCl2 -7.78±1.93
cup08049 pyrazon C10H8N3OCl -16.43±1.93
cup08050 simazine C7H12N5Cl -10.22±0.10
cup08051 sulfometuron-methyl C15H16N4O5S -20.25±1.93
cup08052 terbacil C9H13N2O2Cl -11.14±1.93
cup08053 terbutryn C10H19N5S -6.68±0.42
cup08054 thifensulfuron C12H13N5O6S2 -16.23±1.93
cup08055 trichlorfon C4H8O4PCl3 -12.74±1.93
cup08056 trifluralin C13H16N3O4F3 -3.25±0.10
cup08057 vernolate C10H21NOS -4.13±1.36
cup08058 4-amino-4’-nitroazobenzene C12H10N4O2 -11.24±0.44
cup08059 1-amino-4-anilino-anthraquinone C20H14N2O2 -7.44±1.93
cup08060 1,4,5,8-tetramino-anthraquinone C14H12N4O2 -8.94±1.37
cup08061 1-amino-anthraquinone C14H9NO2 -7.97±1.37
cup08062 4-dimethylamino-azobenzene C14H15N3 -6.66±0.22
cup08063 pirimor (pirimicarb) C11H18N4O2 -9.41±1.93

We assigned the OPLS2005 force-field parameters [122] to the molecules listed in Table 5.2.

For all of the 63 molecules the solvation free energies was calculated using the RISM algorithm

with the KH closure (3.122). The calculated solvation free energies were compared to the

experimental results. The standard deviation, root mean square deviation and correlation

coefficient were calculated. The parameterization of the calculated results was performed. The

parameterization formula included the partial molar volume(PMV) corrections and corrections

for different types of atoms in the molecules. The set of compounds was divided into the

training and test sets. Using the training set by the least squares method the parameterization

coefficients were found. Using the parameterization formula the solvation free energies for the

test set of compounds were predicted. We compared the predicted values to experiment and

estimated the quality of the model.

The OPLS2005 force-field parameters were assigned with theffld srv utility of the MCPRO+

of the Schrödinger Maestro LLC program package [123].
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It is known that using the standard charges of the OPLS2005 force-field it is impossible to

accurately estimate the solvation free energy [124]. That’s why in our calculations we also used

the charges obtained form the quantum-mechanical calculations and compared the results for

both types of charges. We performed the B3LYP calculations with the 6-31G(d,p) basis using

the Gaussian 03 program [125]. The detailed discussion of the quantum mechanical methods

used for these calculations is beyond of scope of the current work. More detailed description of

B3LYP method can be found in Ref. [126]. The partial charges of the molecules were calculated

using the CHELPG (CHarges form Electrostatic Potential, Grid method), which assumes that

the partial charges were assigned in such a way that the electrical potential in some chosen

points is equal in classical and quantum mechanical approximations [127]. In the standard

procedure for calculating CHELPG charges there are no parameters for the Bromine atom.

In our quantum calculations we changed the Bromine atom in the molecule Cup08013 to the

Chlorine atom. For the numerical solution of the RISM equations (5.1) one need to know

solute intermolecular functions ωss′(k), solvent susceptibility functions χαα′(k) and pairwise

site-site potentials usα(r). The intermolecular functions can be simply calculated from the 3D

structure of the solute molecule. In the Fourier space the expressions for these functions can

be represented in a following way:

ωss′(k) =
sin krss′

krss′
(5.103)

where rss′ is the distance between the atoms s and s′ of the solute molecule. We perform RISM

and SFE calculations for the temperature T = 300K. We use the susceptibility functions from

Ref. [83] where these functions were calculated by using the wavelet-based algorithm for solving

RISM equations [56, 84, 85]. The site-site potential used in this work is a superposition of the

Coulomb potential uC
sα(r) and Lennard-Jones potential uLJ

sα (r), namely:

usα(r) = uC
sα(r) + uLJ

sα (r) (5.104)

The Coulomb potential is defined in a following way:

uC
sα(r) =

qsqα
r

(5.105)

where qs, qα are partial charges of the atoms s and α. We use atomic units to avoid using of

the scaling coefficient in Coulomb potential. The unite charge is the positron charge (e) and

distance between the atoms r is given in Bohr units. A pair Lennard-Jones potential is defined

with the following relation:

uLJ
sα (r) = 4ǫsα

((σsα

r

)12

−
(σsα

r

)6
)

(5.106)
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Pairwise parameters σsα, ǫsα are calculated from the atomic OPLS2005 parameters σs, σα, ǫs,

ǫα using the Lorentz-Berthelot mixing rules:

σsα =
σs + σα

2
ǫsα =

√
ǫsǫα (5.107)

We note, that the standard OPLS2005 mixing rules differ from the Lorentz-Berthelot rules.

In OPLS2005 force-field it is assumed that σsα =
√
σsσα. The reason why we are using the

Lorentz-Berthelot rules in our work is that for standard OPLS2005 rules the RISM equation

solver diverges for some molecules. In our work we use the modified SPC/E water model

(MSPC/E) [128]. The MSPC/E water model in contrast to the standard SPCE model [129]

has non-zero LJ potential for the Hydrogen atom. In our work we use the following Hydrogen

LJ parameters: σH = 0.8Å, ǫH = 0.046 kcal/mol. The RISM and SFE calculations were

performed for the aqueous solutions at the temperature T = 300K and water density ρ = 33.7

particles/nm3. The calculations were performed with the RISM-MOL multi-grid solver [121]. In

our work the eight-level multi-grid method was used. The correlation functions were obtained

on the equispaced grid with the grid size 0.265Å and 4096 discretization points. The KH-closure

was used for calculations. The calculations were performed for all the molecules listed in Table

5.2. Two calculations for each molecule were performed: for OPLS2005 and CHELPG partial

charges correspondingly. Average computation time was 15 sec/molecule. After solving the

RISM equations the solvation free energy was calculated using four different expression: KH,

HNCB, GF, and PW.

The results of the RISM SFE calculations were compared to the experimentally measured

values. We calculated the mean error, standard deviation (SD) and root mean squared devi-

ation(RMSD). The mean value and the standard deviation were calculated with the following

expressions:

M(∆G−∆Gexp) =
1

N

∑

i∈S

(
∆G(i) −∆G(i)

exp

)
(5.108)

SD(∆G−∆Gexp) =√

1

N

∑

i∈S

(
∆G(i) −∆G(i)

exp −M(∆G−∆Gexp)
)2 (5.109)

The RMSD can be calculated with the following formula:

RMSD(∆G, ∆Gexp)
2 =

M(∆G−∆Gexp)
2 + SD(∆G−∆Gexp)

2 (5.110)

In Ref. [41] it is shown that the partial molar volume (PMV) correction can essentially

increase the accuracy of the RISM SFE calculations for simple non-polar compounds. This

suggests that the parameterization of the SFE for the compounds from the SAMPL1 set can

also be useful.
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In the RISM approximation the partial molar volume can be calculated as a limiting case

for the infinite dilution using the general formula for the partial molar volume [130]. This gives

the following expression for the PMV of the solute molecule:

Vex =
1

ρ
+

4π

Nsolute

∑

s

∞∫

0

(
hsolv
oo (r)− hso(r)

)
r2dr. (5.111)

where hsolv
oo is a total oxygen-oxygen correlation function of pure water taken from Ref. [42]

where it was calculated using the dielectrically consistent RISM, hso(r) is a total correlation

function between the solute site s and water oxygen. For the parameterization it is convenient

to use dimensionless value. So we use the dimensionless value ρVex where ρ is a water density.

In Ref. [41] the systematic overestimation of the hydrogen-bond contribution to the SFE in

the RISM calculations for the molecules with highly charged groups is discussed. The authors

introduce the hydrogen-bond correction which accounts the number of hydroxyl groups in the

molecule. In our work we use the similar method. However, because the compounds in the

SAMPL1 set are much more complicated than ones in Ref. [41] we do not see the simple way

to divide these compounds into functional groups. Thus we simply introduce corrections for

each type of atoms in the molecule. The molecules in Table 5.2 contain Hydrogen, Carbon,

Oxygen, Nitrogen, Sulfur, Phosphorus, Chlorine, Fluorine and Bromine. To reduce the number

of parameterization coefficients we do not distinguish Fluorine, Chlorine and Bromine and

introduce one Halogen correction (F, Cl, and Br). We use the following parameterization

formula:

∆Gcorr(b) = ∆GRISM + bV ρVex +
∑

j

bjnj (5.112)

where summation is done over all atom types j ∈ {H, C, N , O, Hal, P , S} ( Hal means halo-

gen), nj is a number of atoms of type j in the molecule, b = { bV , bH , bC , bN , bO, bHal, bP , bS}
are the parameterization coefficients. To calculate the parameterization coefficients the set of

compounds from Table 5.2 was divided into the training and test sets. The training set of com-

pounds is composed from all the compounds those codes end up with an odd digit (Cup08001,

Cup08003, . . . , Cup08063), the training set of compounds includes all the compounds those

numbers end up with a even digit (Cup08002, Cup08004, . . . , Cup08062). Coefficients b = { bV ,

bH , bC , bN , bO, bHal, bP , bS} were calculated with the least squares method on the training set

of compounds. In such a way the exact expression for prediction the solvation free energies was

determined. Using this formula the SFE of the compounds from the test set were calculated.

The results of the calculations were compared to the experimental values.

The results of the free energy calculations for different SFE expressions and OPLS2005 and

CHELPG charges are presented in Table 5.3. Sorting the results in ascending RMSD order
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Table 5.3: Results of the RISM solvation free energy calculations without the parameterization.
In the table the data for the differences between the experimental and calculated data are
presented: RMSD, mean deviation (M), standard deviation (SD) and correlation coefficient.
Data is given in kcal/mol.

Expression Charges RMSD M SD Correlation Coefficient

PW OPLS2005 11.366 9.978 5.442 0.637
GF OPLS2005 11.932 -6.778 9.820 0.603

HNCB OPLS2005 14.084 -5.753 12.855 0.803
KH OPLS2005 75.665 72.660 21.112 0.119
PW CHELPG 12.758 -12.153 3.883 0.690
GF CHELPG 8.421 4.139 7.333 0.651
KH CHELPG 78.844 -75.362 23.173 0.065

HNCB CHELPG 11.985 2.870 11.636 0.794

we can see that the accuracy of the KH expression calculations is the lowest, HNCB is the

next one, the error of PW and GF are approximately equal. We note that in case of PW

expression the most contribution to RMSD gives the systematic mean error shift while in GF

formula the most contribution is due to dispersion. All the expressions do not show a very big

correlation with experiment. However for all expression except KH the correlation coefficient

is greater than 0.5. The largest correlation with experiment is for the HNCB expression.

This can be explained by the fact that the additional repulsive potential introduced in (4.39)

can be regarded as some kind of partial molar volume correction. And this in turn means

that despite the fact that HNCB results correlate with the experimental measurements they

could not be essentially improved by the partial molar volume parameterization (this is shown

below). Comparing results for CHELPG and OPLS2005 charges we see that CHELPG charges

provide better results. Although the mean value of the error (M) and RMSD weakly depend

on the partial charges. But in case of the CHELPG charges standard deviation of the error

is essentially smaller, which suggests that the data calculated with CHELPG charges can be

effectively parameterized.

The results of the calculations were parameterized using the expression (5.112) for KH,

HNCB, GF, PW solvation free energy expressions. In Table 5.4 the values of RMSD, mean

error and standard deviation of error on the test set of compounds are presented. To prove

additionally the necessity of RISM calculations we also performed “pure chemoinformatic”

parameterization without calculating solvation free energies. To do this in formula (5.112) we

set ∆G to zero and perform the parameterization. We see that the best of OPLS2005 results

is calculated with PW formula. The RMSD for this method is 3.1 kcal/mol, while the pure

chemoinformatic parameterization for the same compounds gives an error 2.8 kcal/mol. So
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Table 5.4: Results of parameterization for KH, HNCB, GF, PW expressions. In the table
the following data for differences between the calculated and experimental values are given:
RMSD, standard deviation (SD), mean error (M), correlation coefficient. Units in all cases
are kcal/mol. The line with the expression “none” correspond to the pure chemoinformatic
parameterization (neglecting ∆GRISM).

Expression Charges RMSD M SD Correlation coefficient

PW OPLS2005 3.075 -0.173 3.070 0.803
GF OPLS2005 3.690 -0.378 3.671 0.791
KH OPLS2005 5.541 -1.132 5.424 0.775

HNCB OPLS2005 6.902 -1.706 6.688 0.767
none OPLS2005 2.837 0.350 2.815 0.651
PW CHELPG 1.913 0.382 1.875 0.927
GF CHELPG 2.542 0.375 2.514 0.912
KH CHELPG 5.024 -0.318 5.013 0.825

HNCB CHELPG 6.197 -0.680 6.159 0.819
none CHELPG 2.845 0.342 2.824 0.638

OPLS2005 charges should not be used for SFE prediction.

In contrast to unsatisfactory results for OPLS2005 charges, the parameterization for CHELPG

charges allows to predict the SFE with RMSD=1.9 kcal/mol for the PW expression, which is

almost 1.5 times better than the best “pure chemoinformatic” result. Result for GF formula

(RMSD=2.5 kcal/mol) still can slightly improve the pure chemoinformatic result. KH and

HNCB expression show unsatisfactorily results (RMSD > 5 kcal/mol). We note that although

HNCB method without parameterization shows better results than KH, after the parameteri-

zation KH becomes more effective. Coefficients b = { bV , bH , bC , bN , bO, bHal, bP , bS} for the

CHELPG/PW method are given in Table 5.5. Analyzing the coefficients we see that the largest

contribution to the correction is from the Partial Molar Volume term while other corrections

are in average 4-5 times smaller.

5.14 Conclusions

We described a new multi-grid-based algorithm for solving RISM equations. We adopted a

general non-linear multi-grid scheme for solving the RISM equations. We also proposed an

extension of the algorithm for the grids with different cutoff distances. Additionally we investi-

gated the efficiency of the coarse-grid solver and proposed an adaptive algorithm for calculating

the optimal number of iteration steps on the coarsest grid. We performed numerical investi-

gations to optimize the algorithm parameters to give the required numerical accuracy of the
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Table 5.5: Values of the parameterization coefficients for CHELPG/PW method. Units -
kcal/mol

Coefficient Value

bV -7.773
bH 0.797
bC 1.578
bN 1.466
bO 1.863
bHal 2.851
bP 3.152
bS 4.982

Hydration Free Energy calculations by RISM. The investigated parameters were: fine-grid cut-

off distance, fine-grid discretization step, coarsest grid cutoff distance and coarsest grid size.

By numerical tests on polar and non-polar simple and multi-atom molecules it was shown that

RISM calculations with a fine grid {4096, 0.05 Bohr} are able to a numerical accuracy of the

Hydration Free Energy value of 0.001 kcal/mol, which is satisfactory for most of the chemical

applications. It was shown that the multi-grid calculations with coarsest grid {32, 0.8 Bohr}
are optimal.

The proposed multi-grid methods were compared to the one-grid Picard iteration scheme,

which is the reference algorithm, and to the nested Picard iteration algorithm, which is the

most straightforward implementation of the multi-scale scheme. It was shown that for high

accuracies the proposed methods are about 30 times faster than the single-grid Picard itera-

tion, and almost 7 times faster than the nested Picard iteration. The solvation free energy

calculations for the SAMPL1 set of drug-like compounds from the paper [93] were performed

with the RISM multi-grid algorithm. The force-field for the calculation included LJ parameters

from the OPLS2005 force-field. Two types of the partial charges (OPLS2005 and CHELPG)

were used. Solvation free energy calculations were performed using the KH, HNCB, GF, PW

expressions. The calculated results for all expressions except KH have a recognizable correla-

ton with the experimental data. However, the results without corrections cannot be considered

as satisfactorily (RMSD > 5 kcal/mol). The parameterization of the calculation results was

performed. The parameterization formula included corrections for partial molar volume and

number of atoms of each type in the mole The parameterization results showed that calcula-

tions with OPLS2005 charges do not give satisfactorily results (RMSD for the best method is

3.1 kcal/mol). In contrast, parameterization for the CHELPG charges showed that the RMSD

for the best method (CHELPG/PW) is 1.9 kcal/mol which is almost 1.5 fold better than the

verification “pure chemoinformatic” parameterization. Thus we conclude that although RISM
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solvation free energy calculations do not immediately give the perfect results, after proper pa-

rameterization one can get the expression which is able to predict solvation free energies with

reasonable accuracy ( 1.9 kcal/mol). We also note that results depend on the correct choice of

partial charges calculation and also on RISM SFE expression.
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Chapter 6

3DRISM Multi-grid Algorithm for Fast

Solvation Free Energy Calculations

In this chapter the multi-grid algorithm for solving 3DRISM equations is described and tested

on a set of organic compounds. The chapter is based on my paper Ref. [131](P1).

6.1 Iterative solution of the 3DRISM equations

In our work we use the Kovalenko-Hirata formulation of the 3D RISM theory [119, 132] in

order to describe infinitely diluted solutions of small organic solute molecules. Solvent (wa-

ter) molecules are described by the RISM approximation, while a solute molecule is a three-

dimensional object. Structure of the solvent is described by the total and direct correlation

functions hα(r), cα(r) where α indicates a solvent site. The 3DRISM equations are written in

the following way:

hα(r) =

Nsolvent∑

ξ=1

∫

R3

cξ(r
′)χξα(r− r′)dr′ (6.1)

where Nsolvent is the number of solvent sites, χξα(r) is the solvent susceptibility function for

sites ξ and α. Solvent susceptibility functions χξα(r) are defined as following:

χξα(r) = ωξα(r) + ρhsolv
ξα (r), (6.2)

where r = |r|, ωξα(r) = δξα+(1− δξα)δ(r− rξα)/(4πr
2
ξα), rξα is the distance between the sites ξ

and α of a solvent molecule, hsolv
ξα (r) is the total site-site correlation function of the solvent sites

ξ and α, δξα is the Kronecker delta and δ(r) is the Dirac delta function. We used the functions

hsolv
ξα (r) calculated in [42].

(6.1) is completed by closure relations:

hα(r) = e−βUα((r))+hα(r)−cα(r)+Bα(r) − 1, (6.3)

109
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where β = 1/kBT , kB is the Boltzmann constant, T is the temperature, Uα(r) is the interaction

potential corresponding to a solute site α, Bα(r) is the bridge functional.

To use iterative solvers we rewrite (6.1) in the following form [133]:

γα(r) =

Nsolvent∑

ξ=1

∫

R3

C[γξ(r′ − r)] · χξα(r
′)dr′ + θα(r)− C[γα(r)] (6.4)

where γα(r) = hα(r)− cSα(r), c
S
α(r) = cα(r) + βUL

α (r), Uα(r) = US
α (r) + UL

α (r), U
S
α (r) is a short

range potential, UL
α (r) is a long range potential, θα(r) = −β

∑

ξ

∫

R3 U
L
ξ (r− r′)χξα(r

′)dr′, C[·] is
a closure (bridge) functional.

We use interaction potentials which are superpositions of the site-site interaction potentials:

US
α (r) =

Nsolute∑

s=1

uS
sα(|r− rs|); (6.5)

UL
α (r) =

Nsolvent∑

s=1

uL
sα(|r− rs|); (6.6)

where rs is the position of a solute site s with respect to the center of a molecule, Nsolute is the

number of solute sites. In our work the site-site potentials contain Lennard-Jones and Coulomb

part. Pair Lennard-Jones parameters are obtained from the atomic LJ parameters by using the

Lorentz-Berthelot mixing rules:

σsα =
1

2
(σs + σα) ǫsα =

√
ǫsǫα (6.7)

To avoid divergence of the algorithm due to the long range behavior of the interaction potentials

we separate the short range and the long range of the potentials that we then treat separately by

using the Ng procedure [120]. We use the atomic units for distance and energy Bohr and Hartree.

This allows us to avoid scaling coefficients in the representation of the Coulomb potential. Thus

expressions for the short-range and long-range potentials are written as following:

uS
sα(r) = uLJ(short)

sα (r) + uC
sα(r)(1− erf(τr)) (6.8)

uL
sα(r) = uLJ(long)

sα (r) + uC
sα(r)erf(τr) (6.9)

where uC
sα(r) is the Coulomb component of the site-site potential, erf(r) =

∫ r

−∞ e−t2dt, τ=0.5

Bohr−1, u
LJ(short)
sα (r), u

LJ(long)
sα (r) are short-range and long-range components of the Lennard-

Jones potential respectively. The latter are defined by the following relations:

uLJ(short)
sα (r) =

{
uLJ
sα (r)− uLJ

sα (Rcut) when r < Rcut

0 otherwise
(6.10)
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uLJ(long)
sα (r) = uLJ

sα (r)− uLJ(short)
sα (r) (6.11)

where uLJ
sα (r) is a Lennard-Jones component of a site-site potential, Rcut=8Å .

In the article we use the Kovalenko-Hirata (KH) closure, which is defined as following [134]:

C[γα(r)] =
{

e−βUS
α (r)+γα(r) − γα(r)− 1 when − βUS

α (r) + γα(r) > 0
−βUS

α (r) otherwise
(6.12)

In the numerical representation of (6.4) the functions γα(r), χξα(r), θα(r) are defined by

their values in the grid points of an uniform Cartesian grid. A grid is defined by two param-

eters: spacing and buffer. Spacing is the smallest distance between the grid points and buffer

is the minimal distance from the solute atoms to the boundaries of the grid (see Figure 6.1

for explanations). At first glance, such parameterization may seem to be inconvenient from

a theoretical point of view because the same buffer and spacing parameters may give differ-

ent grids for different solutes. However, our work is mostly oriented towards future practical

applications of the method and in practical applications we are interested in the accuracy of

calculations for different cutoff distances of the correlation functions; and these cutoff distances

for a Cartesian grid are defined by the buffer parameter. Using the same buffer parameter

we can adjust the size and the shape of the grid preserving a constant cutoff of the solvent

correlation functions for different solutes. That provides us a straightforward way to control

the accuracy of calculations.

We denote the forward and the inverse Fourier transforms on the grid G as TG [·], T −1
G [·]

correspondingly. Then a discrete analogue of (6.4) reads as:

ΓG = T −1
G

[

X̂ · TG
[
C
[
ΓG]]

]

+ΘG − C
[
ΓG] (6.13)

where ΓG =
(
γG
1 , . . . ,γ

G
Nsolvent

)T
, ΘG =

(
θG
1 , . . . ,θ

G
Nsolvent

)T
, X̂G = [χ̂G

ξα]Nsolvent×Nsolvent
, χ̂G

ξα =

FG[χξα], upper index G means that functions are given by their values in the grid points of the

grid G.
Equation (6.13) can be written in a more compact way:

ΓG = F [ΓG] (6.14)

where F [ΓG] = T −1
G

[

X̂ · TG
[
C
[
ΓG]]

]

+ΘG − C
[
ΓG].

The Picard iteration method is defined by the following recurrent formula:

ΓG
n+1 = (1− λ)ΓG

n + λF [ΓG
n] (6.15)

where ΓG
n is the n-th step approximation, λ is the coupling parameter.
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Figure 6.1: Spacing is the minimal distance between the grid points, buffer is the minimal
distance from the solute atoms to the boundaries of the grid

6.2 DIIS and MDIIS iteration

Direct inverse in the iterative subspace (DIIS) method is an iteration method initially in-

troduced to improve convergence of Schrödinger equation solvers [135]. Later modified DIIS

(MDIIS) method was applied to the 3DRISM equations [77]. In the DIIS method on the n-

th iteration step one finds an approximate solution ΓG
∗ which is a linear combination of the

approximations on the k previous iteration steps:

ΓG
∗ =

k∑

i=1

CiΓ
G
n−k+i (6.16)

Below we describe the DIIS and MDIIS algorithms which solve the 3DRISM equations in

the form (6.14). We also plan to use the MDIIS algorithm in our multi-grid scheme. This

requires one to consider a generalized task in the following form:

ΓG = F [ΓG] +DG (6.17)

where DG =
(
dG
1 , . . . ,d

G
Nsolvent

)T
is an arbitrary vector of corrections. The vector of corrections

will be calculated during the multi-grid algorithm when we move from one grid to another

one. This procedure is described in the next section. In the current section we describe one-

grid solvers where vector DG is given. Below we describe the DIIS and MDIIS algorithms for
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a general case of an arbitrary vector D having in mind that the 3DRISM equations (6.14)

correspond to the case DG ≡ 0.

In the DIIS method the coefficients Ci in (6.16) are chosen to minimize the norm of the

residue ∆G
∗ = ΓG

∗ − F [ΓG
∗ ]−DG. If one assumes linearity of the operator F (which for smooth

operators is locally true) then the task reduces to the following system of linear equations [135]:








a11 . . . a1k −1
...

. . .
... −1

ak1 . . . akk −1
1 . . . 1 0















C1
...
Ck

λ








=








0
...
0
1








(6.18)

where aij =
∫

R3 ∆i(r)∆j(r)dr, ∆i(r) = ΓG
n−k+i − F [ΓG

n−k+i] − DG. In the DIIS method ΓG
∗ is

used as a solution approximation on the (n+1)-st iteration step. However, such a procedure

can lead to a linearly dependent system of equations. The MDIIS iteration method avoids this

problem by adding a weighted residue to the (n+1)-st step approximation [77]:

Γ′G = ΓG
∗ + η

(
F [ΓG

∗ ] +DG − ΓG
∗
)

(6.19)

where η is a weight for the residue. In combination with the standard damping technique the

solution approximation on the (n+1)-st step ΓG
n+1 in the MDIIS method can be found by using

the following formula:

ΓG
n+1 = (1− λ)ΓG

n + λΓG
∗ + λη

(
F [ΓG

∗ ] +DG − ΓG
∗
)

(6.20)

In our work we use λ = 0.5, η = 0.3. These values are sub-optimal and allow one to en-

sure stability of the algorithm and in the same time retain reasonable performance. Detailed

description of the dependence of the computation time on λ and η parameters is given below.

To make notations shorter we introduce the MDIIS operator Ξ[·, ·]:

Ξ[ΓG
n,D

G ] = (1− λ)ΓG
n + λΓG

∗ + λη
(
F [ΓG

∗ ] +DG − ΓG
∗
)

(6.21)

6.3 Multi-grid

We use the multi-grid technique in order to decrease the computation time spent on solving the

3DRISM equations. General description of the multi-grid theory can be found in the book [87].

Here we give only short description of the multi-grid method applied to the 3DRISM equations.

More information on the theoretical background of the method can be found in the previous

chapter.

In the multi-grid method the numerical task is discretized on several grids with the same

buffer but different spacing. Grids with smaller numbers of points and larger spacing are
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called coarse grids, grids with larger number of the points and smaller spacing are called fine

grids. In our work we consider grids where number of points differ by the factor of 2n, where

n = 0, 1, 2, ....

We introduce operators p[·], r[·], which convert a coarse grid to a finer one and vice versa.

We introduce an operator R[·] which map a fine-grid function to a coarse grid.

R[ΓG ] = Γr[G] (6.22)

Also we introduce an operator P [·] which interpolates a coarse-grid function to a fine grid:

P [Γr[G]] = ΓG
1 (6.23)

We use the linear interpolation operator.

To make notations simpler we introduce an operator Λ[·; ·]:

Λ[ΓG ;D
G ] = (1− λ)ΓG + λ

(
FG[Γ

G] +DG) . (6.24)

A multi-grid iterative algorithm which solves the task (6.17) can be written in the following

form:

ΓG
n+1 = Ml

G
[
ΓG

n;D
G] , (6.25)

where ΓG
n is the n-th step approximation, Ml

G[·; ·] is a multi-grid operator which performs one

multi-grid iteration step of the depth l on the grid G. To calculate the multi-grid operator

of the depth l = 0 one performs m0 one-grid iteration steps on the grid G. The multi-grid

technique can be applied to both: the Picard and the MDIIS iteration methods. We define a

generalized operator Φ[·; ·] in the following way:

Φ[ΓG
n;D

G ] =

{
Λ[ΓG

n;D
G ] for MG-Picard method

Ξ[ΓG
n;D

G ] for MG-MDIIS method
(6.26)

Then the multi-grid operator of the depth l = 0 is defined as:

M0
G
[
ΓG;DG] = Φm0

[
ΓG;DG] (6.27)

For l > 0, given the n-th step approximation ΓG
n and the correction vectorDG, the multi-grid

operator Ml
G[·; ·] is calculated by the following algorithm:
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Algorithm 6.1 3DRISM Multi-Grid Operator

Input: ΓG
n, D

G , l
Output: ΓG

n+1 = Ml
G [Γ

G
n;D

G ]

1. Perform ν1 Picard iteration steps on the fine grid (in our work ν1 = 5):

Γ′G = Λν1
[
ΓG

n;D
G]

2. Move to the coarse grid r[G]:
Γ

r[G]
(0) = R[Γ′G];

3. Calculate the coarse-grid correction:

Er[G] = R
[
F [Γ′G ]

]
− F [Γ

r[G]
(0) ]

4. Perform recursively µ multi-grid iteration steps of depth l− 1 on the coarse-grid
(in our work µ=1):

Γ
r[G]
(µ) =

(

Ml−1
r[G]

)µ [

Γ
r[G]
(0) ;R[DG ] + Er[G]

]

5. Correct the fine-grid solution using the coarse-grid results:

Γ′′G = Γ′G + P
[

Γ
r[G]
(µ) − Γ

r[G]
(0)

]

6. Perform ν2 Picard iteration steps on the fine grid (in our work ν2 = 0):

ΓG
n+1 = Λν2

[
Γ′′G;DG]

The number of the iteration steps m0 in the multi-grid operator of the depth l = 0 depends

on the number of the multi-grid iteration step n: m0 = m0(n). We define m0(n) in such a way

that after m0(n) iteration steps, a residue decays by the factor Kn:

Kn||Φm0(n)[ΓG
n;D

G ]− Φm0(n)+1[ΓG
n;D

G ]|| < ||ΓG
n − Φ[ΓG

n;D
G ]|| (6.28)

We call the value Kn the decay factor.

Constant decay factor may lead to a non-smooth decay of residue from one multi-grid

iteration step to another which in turn leads to increasing of the number of the idle coarse-grid

iteration steps (see Figure 6.2, solid line). To achieve a smoother decay of the error, in our

work we change Kn by the following recursive formula:

Kn+1 =

{
max( 1

α
Kn, Kmin) if ||ΓG

n,m0
− Φ[ΓG

n,m0
;DG ]|| < ||ΓG

n+1 − Φ[ΓG
n+1;D

G ]||
min(βKn, Kmax) otherwise

(6.29)
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Figure 6.2: Coarse-grid residue decays with the number of the iteration steps in the multi-grid
method. Two cases are shown: constant decay factor Kn = 10 (solid line), and variable decay
factor Kn (dashed line). System: argon aqueous solution, spacing 0.1Å , buffer 6.4Å Peaks on
the saw-shaped line (Kn=const) correspond to the boundaries of multi-grid iteration steps. The
coarse-grid correction is re-calculated when iteration returns from the coarse grid to the fine
grid. Saw-shaped line means that iteration steps on a coarse grid are performed even after the
desired accuracy of the coarse-grid correction calculation has been achieved. Thus, a significant
number of coarse-grid iteration steps are actually idle because they do not improve the final
result. Introducing a variable decay factor allows one to adjust the accuracy of the coarse-grid
calculations and to avoid the idle iteration steps.
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where ΓG
n,m0

= (ΦG)
m0(n)[ΓG

n;D
G ], α = 2, β = 1.2. For the MG-Picard method we use K0 = 10,

Kmin = 5, Kmax = 100, for the MG-MDIIS method we use K0 = 100, Kmin = 10, Kmax = 100.

This allows us to smooth the decay of error and to reduce the total number of the iteration

steps (see Figure 6.2, dashed line).

Usually iterative algorithms stop when the norm of the residue is less than some threshold.

However, this method has its own disadvantages. The first one is that a small residue between

two iteration steps does not necessarily imply a small distance from the current approximation

to the exact solution. The second one is that a threshold is typically given in dimensionless

values which have no physical meaning and thus one has no guidelines to choose an appropriate

threshold. In the current work we use another criteria to stop iteration steps. Multi-grid

iteration stops on the n-th iteration step if the following condition is satisfied:

||Γn − Γn+m|| < εtres (6.30)

where m is such that

||ΓG
n+m − ΓG

n+m+1|| < 0.01||ΓG
n − ΓG

n+1|| (6.31)

We use such a condition because usually ΓG
n+m is a good approximation of the exact solution.

We use a norm based on the Solvation Free Energy calculations:

||ΓG
1 − ΓG

2 || = |∆GKH(Γ1)−∆GKH(Γ2)| (6.32)

The solvation free energy is calculated in the 3DRISM-KH approximation [24]:

∆GKH(Γ
G) = ρkBT

Nsolvent∑

α

∫

R3

θ(−hα(r))hα(r)−
1

2
cα(r)hα(r)− cα(r)dr (6.33)

where θ(·) is the Heaviside step function. Because of such definition our threshold has well-

defined physical meaning and is measured in energy units. In our work we use εtres=0.001

kcal/mol.

To make the calculations faster, in addition to the multi-grid technique we use several grids

with the same spacing but different buffers. We introduce a grid-enlargement operator e[·] which
enlarges the buffer of a grid. We introduce an operator E[·] which extrapolates a solution ΓG

to a grid e[G].
E[ΓG] = Γe[G] (6.34)

Because the functions γα(r) tend to zero when |r| → ∞, operator E[·] extrapolates functions
by adding zeros at those parts of the grid e[G] which do not belong to the grid G. The scheme

of the iteration can be written in the following way:

ΓG
0

solve 3DRISM eqs.−−−−−−−−−−→ ΓG
∗

E[·]−−→ Γ
e[G]
0

solve 3DRISM eqs.−−−−−−−−−−→ Γe[G]
∗

E[·]−−→ . . . (6.35)
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We start from a zero approximation ΓG
0 on the grid G with a small buffer and using the scheme

(6.35) after several steps we obtain a solution on a grid with a large buffer.

We performed 3DRISM calculations for infinitely diluted aqueous solutions of argon, methane,

methanol and dimethyl ether (DME). For the partial charges and Lennard-Jones (LJ) param-

eters of the solute molecules we used the OPLS-AA force-field parameters [136]. We used the

MSPC-E water model [42] to describe the solvent. In the 3DRISM calculations we used to-

tal site-site correlation functions of water which were initially calculated by the dielectrically

consistent RISM technique [42]. Pairwise σ Lennard-Jones parameters were calculated as an

arithmetic mean of atomic parameters, pairwise ǫ Lennard-Jones parameters were calculated

as a geometric mean of atomic parameters:

σ12 =
σ1 + σ2

2
; ǫ12 =

√
ǫ1 · ǫ2 (6.36)

6.4 Implementation details

The algorithm for solving 3DRISM equations described above was implemented as a computer

program. As a programming language was used C++. On the one hand, this language is an

object-oriented high-level language that allows one to describe the algorithms in an abstract

way. On the other hand, C++ allows one to use low-level methods such as direct memory access,

specialized external libraries (like LAPACK), which allow one to create an effective program

code. One of important features of the algorithm’s implementation is the block structure of the

source code and high independence of individual components. For example, multi-grid methods

and MDIIS iterations are implemented at a high level of abstraction, so one can use them for a

wide class of problems on grids of any kind and of arbitrary dimensionality. For calculation of

the direct and inverse fast Fourier transforms the FFTW3 library was used [137]. The source

code of the algorithm is open and can be downloaded free of charge [138].

6.5 Finding the optimal grid parameters

We performed 3DRISM calculations for infinitely diluted aqueous solutions of four solutes:

argon, methane, methanol and DME. To determine the optimal grid parameters we performed

solvation free energy (SFE) calculations on grids with different spacing parameters and different

buffers. In Figure 6.3 the dependence of calculation errors on the spacing parameter is shown.

For the calculations we used several different grids with the fixed buffer of 8Å and different

spacing which vary from 0.1Å to 2Å . Errors were calculated as absolute values of the differences

between SFEs calculated on a current grid and SFEs calculated on the very fine grid a the

spacing of 0.05Å and the buffer of 8Å . The results show that the grid with a spacing of
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0.2Å provides an error that is less than 0.1 kcal/mol for all solutes, which is acceptable for

most chemical applications.
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Figure 6.3: Dependency of the calculation errors on the grid spacing at constant buffer (8Å )

In Figure 6.4 we show the dependency of calculation errors on the grid buffer. The calcu-

lations were performed on grids with fixed spacing of 0.2Å and different buffers varying from

8Å to 20Å. Errors were calculated as differences between the SFEs calculated on the current

grid and the SFEs calculated on the very fine grid with a spacing of 0.2Å and a buffer of

30Å. Figure 6.4 shows that the grid with the buffer of 15Å is sufficient for an SFE accuracy of

6 0.1kcal/mol.

6.6 Dependencies of the computational time on η and λ

In Figures 6.5-6.6 the dependencies of the computational time on λ for MG-Picard and MG-

MDIIS methods are shown. We can see that generally for the both methods the computational

time decrease with increasing of λ. However, for λ > 0.9 the MG-MDIIS method diverges

for some of the systems. Also, for λ < 0.3 the method is non-stable (this is because when

λ is small the vectors in the DIIS matrix become nearly-linear dependent, which makes the

method less stable). In the both methods – MG-Picard and MG-MDIIS - we use the sub-

optimal value λ=0.5. This allows us to ensure the convergence and to have a reasonable
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Figure 6.4: Dependency of calculation errors on the grid buffer with constant spacing of the
grid (0.2Å ).

computational performance. In Figure 6.7 the dependency of the computational time of the

MG-MDIIS iteration on η is shown. We see that the computational time weakly depends on

this parameter. This can be explained by the specificity of the MDIIS algorithm, where the

next solution approximation is the linear combination of several previous approximations. Thus

only the linear independence of the solutions matters, but not the value of the scaling coefficient

η. In our work we use the value η=0.3, as it was used in the original paper Ref. [77].

6.7 Computational benchmarks of different 3DRISM solvers

To check the numerical performance of the proposed multi-grid algorithm we performed 3DRISM

calculations for infinitely diluted aqueous solutions of argon, methane, methanol and DME us-

ing the Picard iteration, the MDIIS, the MG-Picard and the MG-MDIIS methods. For the

Picard and the MDIIS methods the grid with spacing of 0.2Å and buffer of 15Å was used. For

the multi-grid methods (MG-Picard, MG-DIIS) we used the scheme of Eq. (6.35) with two

enlargements: we start from the grid with the buffer of 7.65Å , then move to the grid with

the buffer of 10.71Å and finish iteration on the grid with the buffer of 15Å . Solutions on the

grids with smaller buffers were used as initial guesses for the grids with larger buffers. For each
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Figure 6.5: Dependency of the computational time on λ for the MG-Picard method
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Figure 6.6: Dependency of the computational time on λ for the MG-MDIIS method

buffer we used the multi-grid algorithm with 3 different grids (depth l = 2).

Computational expenses in solving 3DRISM equations for each of the investigated four
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Figure 6.7: Dependency of the computational time on η for the MG-MDIIS method

Compound Picard iteration MDIIS MG-Picard MG-DIIS

argon 1148 sec 167 sec 46 sec 50 sec
methane 1484 sec 154 sec 149 sec 82 sec
methanol 1857 sec 416 sec 165 sec 83 sec

dimethyl ether 4462 sec 509 sec 241 sec 133 sec

Table 6.1: Computation expenses of 3DRISM calculations with the Picard iteration, MDIIS,
MG-Picard and MG-MDIIS methods.

methods are presented in Table 6.1. These results show that the Picard iteration is the least

efficient method, while the most efficient is the MG-MDIIS method. We note that the multi-grid

methods in all investigated cases are more efficient than one-grid methods.

Figure 6.8 compares computational performance of the MDIIS, the MG-Picard and the

MG-MDIIS with the Picard iteration method. The figure shows that for all four compounds

multi-grid methods give more a factor of 10 speedup while for three of these four compounds

the MG-MDIIS method is more than 20 times faster than the Picard iteration method. Average

speedup factors with respect to the plain Picard method for the MDIIS, the MG-Picard and

the MG-MDIIS methods are correspondingly 7.4, 16.2 and 24.2. The most effective is the

MG-MDIIS method that is in average about 3.5 faster than the MDIIS method. Difference

between the multi-grid methods is not very large: the MG-MDIIS method is in average only

1.5 times faster than the MG-Picard method. The results show that the multi-grid scheme

can be effectively used in combination with different types of coarse-grid iteration methods for
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Figure 6.8: Speed up of the calculations by using the MDIIS, the MG-Picard and the MG-
MDIIS methods as compared to the Picard iteration method.

solving the 3DRISM equations for aqueous solutions of small non-charged molecules.

6.8 Computational benchmarks on a large set of organic

molecules

The main goal of this part of our study was to investigate the overall efficiency of the new

method in a view of large-scale practical applications, for example physical-chemical profiling

of large sets of organic compounds. We performed an additional benchmark and tested the

efficiency of the new algorithm on a set of organic molecules as well as the accuracy of the SFE

prediction. We estimate average computational expenses for the 3DRISM calculations and also

check whether numerical accuracy of the calculations is sufficient for accurate estimation of

SFEs.

We have chosen a set of 99 organic molecules. This set of molecules is a part of the

set used in [74]. The list of the molecules in the set is given in the Table 6.2 and Table

6.3.The experimental free energy values were taken from the Ref. [74]. This set includes alkanes,

ketones, alkyl-benzenes, alcohols, alkyl-phenols, ethers and other (polyfunctional) molecules.

The number of atoms in molecules of the set varies from 5 to 31. An average number of atoms

in the molecule is 16. The Antechamber tool [139] from the Amber Tools 1.4 Package [140] was

used for molecular structure optimization and assigning Force-Field parameters. Structures of
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the molecules were optimized by using the AM1 method [141]. Atomic partial charges were

calculated by using the bond charge correction (BCC) method [142, 143]. LJ parameters from

the General Amber Force Field (GAFF) [144] were assigned to the solutes. The benchmark

calculations for simple molecules reported above show that the most effective is a combination of

the multi-grid and MDIIS (MG-MDIIS) methods. Therefore, we use the MG-MDIIS algorithm

in our benchmarking of the overall efficiency of the method.
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Figure 6.9: Dependency of the computational time spent on MG-MDIIS calculations on the
molecule number of atoms for 99 organic molecules from the chosen molecule set.

Figure 6.9 shows dependency of the computational time spent on MG-MDIIS 3D-RISM

calculations as a function of the number of atoms in a molecule. The plot shows that the

computational time can vary for different molecules even if the molecules have the same number

of atoms. However, this somehow counterintuitive result has a straightforward explanation.

Indeed, convergence of the algorithm depends not only on the number of atoms but also on

the chemical composition of a molecule and its structure, particularly on the distribution of

atomic partial charges and the molecule surface accessible area. This is illustrated by the

results shown in Figure 6.3 and Figure 6.4 that show different error dependencies for polar and

non-polar molecules. Also, even if two different molecules have the same number of atoms,

they may still have rather different shapes. This can result in different grid sizes for them.

More compact molecules need smaller grids than the less compact molecules, even if they have



6.8. BENCHMARKS ON A LARGE SET OF MOLECULES 125

the same buffer and the same number of atoms. Therefore, combination of these two factors

causes this significant spread of computational time for molecules of the same number of atoms.

However, the computational time for any molecule in the set is still less than 6 minutes. Average

computational time is some 3.5 minutes (3 min 27 sec).

We used the 3D RISM correlation functions calculated by MG-MDIIS method as an input

for SFE calculations for all molecules from the above mentioned set of 99 organic compounds.

We used 25 molecules as a training set and the rest of the set (74 molecules) as a test set (see

Table 6.2 and Table 6.3 for the full list of compounds in the training and test sets).

Table 6.2: Compounds in the training set. The values of
the solvation free energies are given in kcal/mol.

Compound ∆GGF ρV ∆Gcalc ∆Gexp ∆Gexp −∆Gcalc

1 1-dichloroethane 7.439 4.113 -0.452 -0.846 -0.395
1 1 2-trichloroethane 6.075 4.661 -3.037 -1.991 1.046
1 2-dichloropropane 8.267 4.941 -1.472 -1.269 0.203

1 2 3 5-tetrachlorobenzene 10.951 6.796 -2.925 -1.623 1.302
1 3-dichlorobenzene 10.720 5.671 -0.647 -0.982 -0.336
1 4-dichlorobenzene 10.672 5.672 -0.697 -1.009 -0.312

2-ethyltoluene 12.532 7.063 -1.940 -1.037 0.902
2-methylpentan-2-ol 8.645 6.506 -4.583 -3.927 0.656
2-methylstyrene 12.453 6.770 -1.364 -1.240 0.124

2 3-dimethylbuta-1 3-diene 12.618 5.587 1.439 0.394 -1.045
2 4-dimethylphenol 6.742 6.477 -6.421 -6.013 0.407
3-methylhexane 18.250 7.246 3.371 2.713 -0.658
4-chlorophenol 4.416 5.304 -6.132 -7.036 -0.904

4-methylpentan-2-one 9.505 6.228 -3.104 -3.054 0.049
cis-1 2-dichloroethene 6.263 3.742 -0.801 -1.174 -0.372

heptan-2-one 11.839 7.198 -2.934 -3.040 -0.106
hexan-3-ol 8.773 6.591 -4.646 -4.063 0.583
methane 5.426 2.050 2.138 1.991 -0.147
n-nonane 22.854 9.117 3.801 3.136 -0.665
o-xylene 10.611 6.295 -2.147 -0.901 1.246
octanal 14.751 8.161 -2.170 -2.292 -0.122

pentachloroethane 11.806 5.852 0.037 -1.391 -1.428
propan-1-ol 2.044 4.000 -5.595 -4.854 0.741

tert-butylbenzene 15.590 7.844 -0.623 -0.437 0.186
trans-hept-2-ene 16.954 6.996 2.632 1.678 -0.954
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Table 6.3: Compounds in the test set. The values of the
solvation free energies are given in kcal/mol.

Compound ∆GGF ρV ∆Gcalc ∆Gexp ∆Gexp −∆Gcalc

1 1-dichloroethene 8.287 3.786 1.125 0.246 -0.878
1 1 1-trichloroethane 9.588 4.745 0.287 -0.191 -0.478

1 1 1 2-tetrachloroethane 10.361 5.297 -0.171 -1.281 -1.110
1 1 2 2-tetrachloroethane 9.666 5.216 -0.686 -2.469 -1.783

1 2-dichlorobenzene 10.182 5.630 -1.092 -1.365 -0.273
1 2-dichloroethane 7.107 4.097 -0.749 -1.785 -1.037

1 2 3-trichlorobenzene 10.557 6.224 -2.042 -1.240 0.801
1 2 3-trimethylbenzene 11.479 7.049 -2.961 -1.214 1.747

1 2 3 4-tetrachlorobenzene 10.514 6.825 -3.425 -1.336 2.089
1 2 4-trichlorobenzene 11.147 6.328 -1.685 -1.119 0.567
1 2 4-trimethylbenzene 11.741 7.133 -2.886 -0.858 2.028

1 2 4 5-tetrachlorobenzene 11.094 6.818 -2.830 -1.336 1.494
1 3-dichloropropane 7.767 4.961 -2.014 -1.895 0.119

1 3 5-trichlorobenzene 11.637 6.316 -1.168 -0.777 0.391
1 3 5-trimethylbenzene 12.261 7.227 -2.575 -0.901 1.674

2-butoxyethanol 7.764 6.977 -6.515 -6.260 0.255
2-chlorophenol 2.923 5.256 -7.518 -4.555 2.963
2-ethoxyethanol 3.065 5.211 -7.275 -6.697 0.578
2-methylbut-2-ene 12.450 5.190 2.157 1.310 -0.848

2-methylbuta-1 3-diene 10.555 4.806 1.118 0.681 -0.437
2-methylbutan-2-ol 6.349 5.639 -4.946 -4.431 0.515
2-methylpentan-3-ol 8.800 6.482 -4.375 -3.886 0.488
2-methylpentane 16.142 6.405 3.139 2.510 -0.629

2-methylpropan-1-ol 4.129 4.826 -5.353 -4.500 0.853
2-phenylethanol 5.607 6.496 -7.600 -6.793 0.807
2-propoxyethanol 5.621 6.099 -6.700 -6.410 0.290

2 2-dimethylpentane 17.996 7.114 3.410 2.878 -0.532
2 3-dimethylpentane 17.926 7.113 3.344 2.524 -0.820
2 3-dimethylphenol 6.698 6.427 -6.355 -6.164 0.191

2 3 4-trimethylpentane 19.810 7.855 3.572 2.565 -1.008
2 5-dimethylphenol 6.431 6.478 -6.734 -5.918 0.816
2 6-dimethylphenol 6.860 6.400 -6.132 -5.265 0.866

3-hydroxybenzaldehyde 1.655 5.527 -9.390 -9.505 -0.115
3-methylpentane 15.983 6.357 3.086 2.510 -0.577
3-phenylpropanol 5.872 7.389 -9.327 -6.929 2.398
3 4-dimethylphenol 5.490 6.381 -7.459 -6.506 0.953

4-ethyltoluene 13.157 7.229 -1.683 -0.954 0.729
4-hydroxybenzaldehyde 0.718 5.515 -10.300 -8.836 1.464
4-methoxyacetophenone 9.543 7.321 -5.505 -4.405 1.100

benzyl alcohol 3.087 5.576 -8.068 -6.628 1.440
Continued on next page
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Compound ∆GGF ρV ∆Gcalc ∆Gexp ∆Gexp −∆Gcalc

buta-1 3-diene 8.528 3.998 0.892 0.614 -0.278
chlorobenzene 9.777 5.139 -0.401 -1.119 -0.717
decan-2-one 18.358 9.834 -2.295 -2.345 -0.050

dichloromethane 5.009 3.223 -0.897 -1.310 -0.413
ethane 7.529 2.960 2.209 1.828 -0.381
heptanal 12.527 7.276 -2.419 -2.672 -0.253

hexa-1 5-diene 13.075 5.761 1.508 1.009 -0.499
hexan-1-ol 8.618 6.631 -4.890 -4.405 0.485
hexanal 10.297 6.391 -2.675 -2.808 -0.134

isobutylbenzene 16.383 8.037 -0.261 0.163 0.423
m-xylene 10.703 6.329 -2.130 -0.832 1.298
methanol -2.399 2.229 -6.087 -5.100 0.986
n-butane 11.710 4.680 2.555 2.072 -0.483
n-heptane 18.470 7.363 3.330 2.672 -0.658
nonan-1-ol 15.346 9.301 -4.118 -3.886 0.232
nonan-2-one 16.218 8.956 -2.476 -2.495 -0.020
nonanal 16.968 9.044 -1.921 -2.072 -0.151
oct-1-ene 19.109 7.882 2.812 1.924 -0.888
octan-1-ol 13.084 8.418 -4.410 -4.092 0.318
octan-2-one 14.014 8.079 -2.722 -2.878 -0.155
p-xylene 10.661 6.321 -2.154 -0.805 1.349
pent-1-ene 12.477 5.232 2.091 1.678 -0.413

penta-1 4-diene 11.058 4.893 1.428 0.927 -0.500
pentan-1-ol 6.490 5.775 -5.107 -4.570 0.538
pentan-2-ol 6.184 5.705 -5.257 -4.391 0.867
pentan-3-ol 5.965 5.694 -5.453 -4.350 1.103
propan-2-ol 1.713 3.984 -5.891 -4.747 1.145
propene 8.024 3.475 1.556 1.322 -0.235

sec-butylbenzene 16.153 7.993 -0.393 -0.449 -0.056
tetrachloroethene 10.552 4.921 0.858 0.096 -0.762
tetrachloromethane 9.188 4.439 0.570 0.081 -0.489

trans-1 2-dichloroethene 7.498 3.763 0.388 -0.777 -1.165
trichloroethene 8.741 4.347 0.329 -0.437 -0.767
trichloromethane 7.225 3.831 -0.038 -1.078 -1.040

For accurate SFE calculations we used the Universal Correction (UC) method that was

introduced in recent papers [73,74]. We tested two modifications of the UC method. The first

one (UC-KH method) is based on the Kovalenko-Hirata (KH) Free Energy functional (6.33).

The second one (UC-GF method) is based on the Free Energy calculations using the Gaussian
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Fluctuations (GF) formula [116]:

∆GGF = ρkBT

Nsite∑

α=1

∫

R3

(−1

2
hα(r)cα(r)− cα(r))dr (6.37)

where kB is the Boltzmann constant, T is the temperature, ρ is the number density of a bulk

solvent. In the UC-GF method (∆GGF
UC) and in the UC-KH method (∆GKH

UC ) SFE is calculated

by using the following relations:

∆GGF
UC = ∆GGF + aGFρV + bGF (6.38)

∆GKH
UC = ∆GKH + aKHρV + bKH (6.39)

where V is the partial molar volume of the molecule, aGF , bGF , aKH , bKH are calculated by

using the linear regression method to fit experimental data. Partial molar volume of a molecule

was calculated by the following formula [37, 145]:

V =




1

ρ
+ 4π

∞∫

0

(goo(r)− 1)r2dr





(

1− ρ

Nsite∑

α=1

∫

R3

cα(r)dr

)

(6.40)

where goo(r) is the oxygen-oxygen RDF of bulk water from Ref. [42] where it was calculated

using the dielectrically consistent RISM.

Using the training set of compounds, the following values of coefficients were obtained by

the linear regression fitting procedure [64, 74] : aGF=-2.23 kcal/mol bGF=1.28 kcal/mol for

the UC-GF method and aKH = -3.51 kcal/mol, bKH = 0.81 kcal/mol for the UC-KH. Figure

6.10(a) and Figure 6.10(b) shows the correlation between the experimental values ∆Gexp and the

calculated values ∆GGF
UC and ∆GKH

UC . The correlation coefficient is 0.97 for the both methods.

Root mean square deviation (RMSD) on a test set is 0.96 kcal/mol for the UC-GF method and

0.84 kcal/mol for the UC-KH method. Accuracy of predictions is comparable with accuracies of

experimental methods [65,93] and corresponds to accuracies of current state-of-the-art methods

for SFE calculations by molecular dynamics [11, 124, 146, 147] and other advanced molecular

theories (e.g. the energy representation method by Matubayasi and Nakahara) [9, 12, 63, 148,

149]. Thus we show that the numerical accuracy of the algorithm is enough for SFE calculations

and parameterization of calculation results.

6.9 Conclusions

We proposed a new multi-grid based method which solves the 3DRISM equations. To determine

the optimal grid parameters we performed 3DRISM calculations for infinitely diluted aqueous

solutions of argon, methane, methanol, and dimethyl ether. We showed that on the grid
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(a) Universal Correction based on the GF expression: ∆GGF
UC = ∆GGF +

aGF ρV + bGF , where aGF = −2.23 kcal/mol, bGF = 1.28 kcal/mol

(b) Universal Correction based on the KH expression: ∆GKH
UC = ∆GKH +

aKHρV + bKH , where aKH = −3.51 kcal/mol, bKH = 0.81 kcal/mol

Figure 6.10: Correlation of experimentally measured SFEs with the SFEs values calculated by
the Universal Correction method for the investigated set of organic molecules.
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with a spacing of 0.2Å and buffer of 15Å , the maximal error is less than 0.1 kcal/mol. We

tested two modifications of the multi-grid algorithm: MG-Picard and MG-MDIIS methods. We

compared the numerical efficiency of the multi-grid algorithms with the numerical efficiency of

the standard Picard iteration method and the MDIIS method. We showed that the MG-MDIIS

algorithm is more than 24 times faster than the Picard iteration method and more than 3.5

times faster than the MDIIS method.

In turn, efficiencies of the MG-DIIS and MG-Picard methods do not differ very much. The

MG-DIIS method is about 1.5 times faster than the MG-Picard method. We suggest that the

most effective MG-MDIIS method can be used in the future as a fast tool for calculations of

Solvation Free Energy for organic molecules. To support this statement we performed 3DRISM

calculations for aqueous solutions of 99 organic compounds. For all compounds in the set the

computational time does not exceed 6 minutes per one molecule while the average computational

time is only 3.5 minutes per one molecule on a standard personal computer. We calculated

solvation free energies by using GF and KH expressions with the universal partial molar volume

corrections (UC-GF and UC-KH methods). We showed that calculated and experimental values

of solvation free energy are strongly correlated to each other (correlation coefficient is 0.97).

RMSD error for the test set of compounds is less than 1 kcal/mol for both UC-GF and UC-KH

methods. The performed tests show that the proposed algorithm can be used for fast and

accurate predictions of aqueous solvation free energies of neutral molecules.



Chapter 7

Conclusions and further work

7.1 Conclusions

The goal of the current work was the development of fast and accurate methods for solvation free

energy calculations that are reliable for practical applications. The RISM and the 3DRISM

molecular models in combination with the semi-empirical methods for solvation free energy

calculations were used to achieve high accuracy of the calculations. The multi-grid technology

was used to accelerate the calculations. The following results were achieved in the current

research project:

• Multi-grid based numerical methods for solving the RISM and the 3DRISM problems

were developed and implemented in a form of computer programs [121,138].

• The methods were optimized for fast solvation free energy calculations. To determine the

optimal grid parameters the test calculations for simple molecules on various different

grids were performed. Optimal parameters which allow one to calculate the SFE with a

required accuracy in the minimal computation time were determined.

• Computational performance of the proposed methods was compared to the performance

of standard approaches:

– The RISM multi-grid algorithm was compared to the one-grid Picard iteration

scheme, which is the reference algorithm, and to the nested Picard iteration algo-

rithm, which is the most straightforward implementation of the multi-scale scheme.

It was shown that at the same accuracy level the proposed method is about 30 times

faster than the single-grid Picard iteration, and almost 7 times faster than the nested

Picard iteration.

– For the 3DRISM multi-grid algorithm there were proposed two modifications: multi-

grid Picard (MG-Picard) and multi-grid MDIIS (MG-MDIIS) schemes. It was shown

131
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that the MG-MDIIS algorithm is more than 24 times faster than the plain-Picard

iteration method and more than 3.5 times faster than the plain MDIIS method.

• Correlation functions calculated with the RISM and 3DRISM methods were used for sol-

vation free energy calculations. Semi-empirical Solvation Free Energy calculation methods

were used to increase the accuracy of the SFE calculations. The methods were bench-

marked on extended sets of organic compounds from different chemical groups, including

polyfunctional drug-like molecules.

– To test the effectiveness of the developed RISM-based method for calculation of SFE

of bioactive drug-like molecules a set of 63 compounds from Ref. [93] was used. It

was shown that using the atom type correction method with the CHELPG charges

and PW expression it is possible to get an accuracy of 1.9 kcal/mol which is almost

1.5 fold better than the verification “pure chemoinformatic” parameterization. The

average computation time on this set of compounds was about 15 sec/molecule.

– For testing of the 3DRISM-based method a set of 99 organic compounds from

Ref. [74] was chosen. For these compounds the correlation functions with the

3DRISM MG-MDIIS algorithm were calculated. The Universal Correction (UC)

model was used for the SFE calculations. For all compounds in the set the compu-

tational time of 3DRISM calculations did not exceed 6 minutes per molecule while

the average computational time was only 3.5 minutes per molecule on a standard

personal computer. The solvation free energies were calculated by using GF and KH

expressions with the universal partial molar volume corrections (UC-GF and UC-KH

methods). It was shown that calculated and experimental values of solvation free

energy are strongly correlated to each other (correlation coefficient is 0.97). RMSD

error for the test set of compounds was less than 1 kcal/mol for both UC-GF and

UC-KH methods.

The performed tests show that the proposed methods are suitable for fast and accurate

calculations of solvation free energies of organic compounds form different chemical classes in

aqueous solutions. Therefore, we conclude that all the goals of the thesis were successfully

achieved.
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7.2 Future work

7.2.1 Approaches for solving 6D OZ equation using low-rank repre-

sentations of multidimensional functions

As it was shown, the methods based on RISM and 3DRISM theories can be successfully used for

prediction of SFE of bioactive compounds. However, in some cases RISM and 3DRISM are not

able to give adequate description of the system. It is known that in RISM approximation the

structure of the solvent molecule is not represented correctly. In general RISM and 3DRISM can

give a good description for systems where the solvent molecule is relatively small (e.g. water,

supercritical CO2) while for the systems where the solvent molecule is a more complicated

compound (e.g. octanol, toluene, ionic liquids) RISM is not able to give a accurate description

of the solvent structure which also should have effect on the accuracy of SFE calculations.

The most straightforward method to overcome the disadvantages of RISM theory is to use

six-dimensional OZ equations instead, which are suitable for description of solvents of arbitrary

complexity. It is a challenging task to develop an algorithm which solves six dimensional integral

equations. Despite this fact there are some examples of successful solving the six-dimensional

OZ equations for a few different systems [54, 55, 150]. Unfortunately till now no universal

algorithm which is applicable to any system was proposed and tested. Thus there is still a

place for investigations.

The most of the methods for solving OZ equations use explicitly or implicitly some kind

of tensor product representation for the correlation functions. This mean that to approximate

the function f(r,θ) the following representation is used:

f(r,θ) =
n∑

j=1

fj(r)φj(θ) (7.1)

To represent the angular dependencies of the six-dimensional functions different basis functions

can be used including wavelets, rotational invariants and others. We propose to use a harmonic

basis set for representing the angular dependencies. There are at least two reasons for this.

Firstly, at the large distances dipole-dipole interaction is proportional to r−3 cos θ there θ is

the angle between the dipole axes. It is known, that the interaction of two molecules can

be represented as a sum of multipole interactions, and dipole-dipole interaction is the leading

term in this representation. Thus at large distances the interaction of the molecules can be

effectively described by the harmonic series with a one-two members. Secondly, a harmonic

basis is convenient from the computational point of view. Many operations in harmonic basis

can be reduced to the Fourier transformation which in turn can be calculated with the FFT

algorithm. So we propose to use the following representation for all of the six-dimensional



134 CHAPTER 7. CONCLUSIONS AND FURTHER WORK

functions which occur in OZ equation:

f(r,θ) =
∑

k1,k2,k3

fk1k2k3(r)e
ik1θ1+ik2θ2+ik3θ3 (7.2)

where θ = (θ1, θ2, θ3), k1 = 0 . . . N1(r), k2 = 0 . . . N2(r), k3 = 0 . . . N3(r), N1(r), N2(r), N3(r)

are the numbers of the discretization points of angular components at the spatial point r.

We propose to use a equispaced grid for the spatial components and non-equispaced grid for

the angular components. Without the proper numerical experiments it is difficult to predict

which values of Ni(r) one need to use to achieve the reasonable accuracy of the calculations.

However it is reasonable to assume that at the distances of 5 − 10Å Ni(r) ≈ 1 − 2, while

near the solute molecule these values can rise up to Ni ≈ 10 − 30. In that case the general

number of discretization points will not exceed much the number of discretization points for

the 3DRISM algorithm. The detailed description of the proposed format is out of the scope

of the current section. More detailed description and discussion of the format can be found in

the Appendix A. Here we only note that the most of operations in the format (7.2) require not

more than O(N logN) operations, where N =
∑

r(N1(r) +N2(r) +N3(r)) is the total number

of discretization points. Considering that at the large distances Ni(r) ≈ 1− 2, the number N

should not exceed much the number of the discretization points in 3DRISM equations. Thus

the computational expenses for solution of the 6D equations in the proposed format should be

comparable to the computational expenses for 3DRISM method. So we think that 6D equation

should not be regarded any more as some unfeasible task and we hope that the six dimensional

methods can become a routine tool in chemical investigations in the next 3-5 years.

7.2.2 Proper closure for the OZ equations

We note that the development of the effective OZ equations solver is not enough to obtain

the correct computational results. As mentioned in the previous chapters it is impossible to

solve the OZ equation without the closure relation. And the existing closure relations, such as

HNC or KH, are not able to give correct results. In this section we propose the way to obtain

more accurate closure relation. We recall the procedure for obtaining the HNC closure from

the chapter 3 section 3.10. Let’s consider a smooth transition from the gas phase to solution.

We consider the coordinate system connected to one of the molecules of type a and obtain the

following expression for the gab functions:

gab(r0, r1,θ0,θ1) = exp
(
−βuab(r1,θ1) + cb(r1,θ1)

)
(7.3)

where (r0,θ0) ≡ (0,0). Assuming the linear change of the density from initial to the final

state ρb(r1,θ1;λ) = ρb(r1,θ1;λ = 0) + λ∆ρb(r1,θ1) and using the definition of the pair direct
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correlation function (3.102) we obtain the following expression:

cb(r1,θ1) = cb(r1,θ1;λ = 0) +
∑

c

1∫

0

dλ

∫

ccb(r1, r2,θ1,θ2;λ)∆ρc(r2,θ2)dr2dθ2 (7.4)

In the HNC model we assume that the state λ = 0 corresponds to the gaseous state and that

cab function does not change with lambda i.e. cab(r1, r2,θ1,θ2;λ) ≡ cab(r1, r2,θ1,θ2). As a

result we can avoid integration over λ and come to the HNC expression (3.97). In fact this

means that we make the transition from the gaseous phase to solution “in one jump”, which is

indeed rather a crude approximation. However we can perform a smoother transition from the

gas to the solution. Let us smoothly (linearly) change the particle interaction potential from

zero to the final one:

uab(r1,θ1; ξ) = ξ · u(r1,θ1) (7.5)

where ξ = 0 corresponds to the gaseous phase, ξ = 1 corresponds to the solvated phase. We

consider the states of the system at the points (ξ1, . . . , ξn) where ξk = k/n. We define with the

index k the correlation functions which correspond to the value ξk, e.g. c
ab
k , hab

k , etc. Using the

equation (7.4) where λ = 0 corresponds to ξ = ξk, λ = 1 corresponds to ξ = ξk+1 we obtain the

following relation:

cbk+1(r1,θ1) = cbk(r1,θ1) +
∑

c

1∫

0

dλ

∫

ccb(r1, r2,θ1,θ2;λ)∆ρc(r2,θ2)dr2dθ2 (7.6)

where ∆ρ = ρk+1−ρk. We will use the approximation ccb(r1, r2,θ1,θ2;λ) ≡ ccbk+1(r1, r2,θ1,θ2).

We note that this approximation is much better than the HNC approximation because in

our case the step from ξk to ξk+1 is relatively small. Using that ∆ρc(r2,θ2) = ρck+1 − ρck =

ρc0(h
ac
k+1 − hac

k ) we obtain the following expression:

cbk+1(r1,θ1) = cbk(r1,θ1)+
∑

c

ρc0

∫

ccbk+1(r1, r2,θ1,θ2)h
ac
k+1(r0, r2,θ0,θ2)dr2dθ2−

∑

c

ρc0

∫

ccbk+1(r1, r2,θ1,θ2)h
ac
k (r0, r2,θ0,θ2)dr2dθ2

(7.7)

Substituting this expression into (7.3) and using the OZ equations for the function of the

(k + 1)st step we obtain the following closure for the OZ equations:

hab
k+1(r0, r1,θ0,θ1) + 1 =

exp(−βuab(r1,θ1; ξk+1) + cbk(r1,θ1) + hab
k+1(r0, r1,θ0,θ1)− cabk+1(r0, r1,θ0,θ1))×

× exp(−
∑

c

ρc0

∫

ccbk+1(r1, r2,θ1,θ2)h
ac
k (r0, r2,θ0θ2)dr2dθ2)

(7.8)
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Moving step by step from ξ0 = 0 to ξn = 1 at the (k+ 1)st step the functions from the kth step

are known. So the only unknown functions in the proposed closure relation are hab
k+1, c

ab
k+1. This

means that using this closure relation together with the OZ equations it is possible to calculate

the correlation functions on the (k+ 1)st step, and moving to ξn = 1 obtain the solution of the

OZ equations for the fully-solvated state. We should note that this method requires much more

computational expenses that the HNC method, because in our case one needs to solve the OZ

equations n times. However, such a calculations should be much more accurate and there is a

hope that the result or OZ calculations can be as accurate as the MD simulations are.

7.2.3 Finding of the most probable binding positions of solvent

molecules

Figure 7.1: Water binding sites for the deprotonated benzoic acid in water

One of the promising applications of the IETL is finding the most probable binding site

of solvent molecules. Such algorithms for simple cases was proposed in the literature [47, 151]

However development in this area is still required. Probably the most straightforward way to

obtain the probable binding positions is to solve OZ equation and analyze 6D correlation func-

tions. However as it was discussed this approach requires a lot of theoretical and computational

efforts. Below we describe less computationally demanding approach based on the 3DRISM

calculations. We denote as da
α(θ) the displacement of the site α with respect to the center of

the molecule of type a provided that it has orientation θ. Having the site distribution functions
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Figure 7.2: Water binding sites for the α-cyclodextrin in water

it is possible to estimate how probable is it to find the molecule in a certain position (r,θ). We

denote the site distribution functions as gaα(r). We define the function Ga(r,θ) in a following

way:

Ga(r,θ) =

(
Ka∏

α

gaα(r+ da
α(θ))

)1/Ka

(7.9)

where Ka is the number of sites in the molecule a. The functions gaα are proportional to the

probability to find the site α in a certain position. The function Ga(r,θ) is proportional to the

probability to find the molecule a in a certain position (r,θ). We define the functions Ga
max,

Θa
max in a following way:

Ga
max(r) = max

θ
Ga(r,θ) (7.10)

Θa
max(r) = argmaxθG

a(r,θ) (7.11)

The function Θa
max(r) defines the most probable orientation of the molecule at the point r and

the function Ga
max(r) is proportional to the maximal probability to find the molecule in the

point r . If we choose a certain threshold Gtres we can visualize the molecules in the positions

r1, . . . , rn such that Ga
max(ri) > Gtres. The orientation of the visualized molecule is defined by

the function Θa(ri). To achieve a better visual effect it is reasonable to visualize only one of the

overlapping molecules in neighboring position, namely the molecule which have the maximum

value ofGmax(r) among all of the overlapping molecules. This method for visualizing the binding

sites was implemented as a plug-in for the Visual Molecular Dynamics program [152]. This plug-

in is an open-source program and is available for the online download [153]. To illustrate the

possibilities of the algorithm we performed the water binding site search for the benzoic acid in
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a deprotonated state (C6H5COO−). The results of the calculations are presented in Figure 7.1.

We see that the hydrogen atoms of water are oriented towards the negatively charged oxygen

atoms of COO− group which matches both: the common sense and the intuition. In Figure 7.2

is presented the result of the water binding site calculations for α-cyclodextrin.

It is necessary to remember that RISM and 3DRISM models give a reasonably accurate

description of small-molecule solvents. Due to this fact it is reasonable to assume that the

described above method for finding binding sites also works well only for small molecular sol-

vents. Of course for the solvents with larger molecules it is possible to use the 6D OZ equations

which immediately give the Ga(r,θ) functions. However, there is an alternative method. We

can divide a big solvent molecule into several fragments, for each of the fragments solve the

3DRISM equations and calculate the Ga(r,θ) functions. Let Da(θ) be the displacement of the

fragment a with respect to the center of the solvent molecule in orientation θ. We define the

function G(r,θ) in a following way:

G(r,θ) =

(
M∏

a=1

Ga
α(r+Da(θ))

)1/M

(7.12)

where M is the number of fragments in the solvent molecule. The function G(r,θ) is propor-

tional to the probability to find a solvent molecule in the position (r,θ). Similarly as it was

done for Ga(r,θ) function we can find and visualize the most probable positions of big solvent

molecules. Of course this method is less accurate than the methods based on the OZ equations.

However it is much simpler from the computational point of view and we think it can be useful

for practical applications.

7.3 Concluding remarks

Summarizing the current work and the future plans we can say that currently IETL is a promis-

ing method which in principle in many cases can substitute computationally expansive MD and

MC simulations. In our work and in the works of other researchers it was shown that the inte-

gral equation theory can be of use for the accurate solvation free energy calculation [64–66,73],

predicting the self-assembling behavior [43] and many other applications [133, 154, 155]. On

the other hand, despite its potential the theory is yet not widely used in practical applications.

This can be explained by the lack of developed theoretical and computational methods. We

mentioned three ways for future development of the theory and computational methods, which

are: 1) development of the universal six-dimensional OZ equation solver; 2) search for new clo-

sures and bridge functionals; 3) development of new solvent binding methods. However, there

are plenty other topics for investigation, which include for example the theory for confined and
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non-uniform liquids, non-equilibrium density functional theory, theory for flexible molecules

etc. We hope that rapid development of the integral equation theory of liquids will result in a

future in powerful methods which could be of use in variety of applications in computational

chemistry.
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Appendix A

Low rank representation of

multidimensional functions

In this appendix the low-rank format for representation of multidimensional functions is de-

scribed. The low-rank format is quite general and is not necessarily be used for the repre-

sentation of the six-dimensional correlation functions which appear in the integral equation

theory of liquids. However, in this section we discuss the complexity of those operations with

the multidimensional functions in the low-rank format which are particularly relevant to the

numerical solution of the system of six-dimensional MOZ equations.

Low rank format

The idea of the low-rank format is to use different angle-grid resolutions at different distances to

the solute molecule. There are different ways to do that but the common idea may be illustrated

on the simple example and then generalized to more complicated systems. Let us consider a

simplified case when the correlation functions depend only on two variables: distance between

the molecules r and angle between the molecules θ. Such system for example describes the

interaction of the ball solute with the diatomic solvent. The function f(r, θ) can be represented

in a low-rank format. At the large distances all the functions in the OZ and closure equations

are smooth and tend to zero. This means, that at large distances one needs smaller number

of the basis functions to represent the initial function f(r, θ). This can be rewritten in such a

way: for each point r there is a rank M(r), which decays at large distances:

f(r, θ) =

M(r)
∑

m=1

fm(r)φm(θ) (A.1)

where φm(θ) are some basis functions, M(r) ∈ N and M(r) → 0 when r → ∞.

141
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Operation in the low rank format

Operations which we need to perform with the functions are:

• Converting to the low-rank format

• Reconstructing the function from the low-rank format

• Multiplication of the functions

• Calculation of the convolutions

Converting a function to the low rank format

To represent a function in the format (A.1) one needs to calculate the function only in certain

number of points. Let at the distance r the rank is M(r). We calculate the values of the

function f at the points (r, θn) where n = 1 . . .M(r). Using representation (A.1) we have:

f(r, θ1) =

M(r)
∑

m=1

fm(r)φm(θ1)

. . .

f(r, θM(r)) =

M(r)
∑

m=1

fm(r)φm(θM(r))

(A.2)

This is the system of linear equations with respect to the unknown coefficients f r
1 . . . f

r
M(r).

The matrix of the system Φ is the following:

Φ =






φ1(θ1) . . . φM(r)(θ1)
...

. . .
...

φ1(θM(r)) . . . φM(r)(θM(r))




 (A.3)

We use the following definitions:

b = (f(r, θ1), . . . , f(r, θM(r))
T , (A.4)

f = (f1(r), . . . , fM(r)(r))
T (A.5)

Then the system (A.2) can be rewritten in the matrix notation:

Φf = b (A.6)

The coefficients f1, . . . , fM(r) can be found as

f = Φ−1b (A.7)
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Because the matrix Φ consists of the values of the basis functions in the certain points

θ1, . . . , θM(r) the inverse matrix Φ−1 can be pre-computed before the calculations start, and

thus the calculation of the coefficients f at the point r will need M(r)2 operations. If the

distance r is discretized on the grid with N grid points, the total cost of the decomposition the

function f(r, θ) to the format (A.1) is
∑N

n=1 M(rn)
2 operations and only

∑N
n=1 M(r) function

calculations.

Reconstruction of the function from the low-rank format

To reconstruct the function from the low-rank format we should be able having the represen-

tation (A.1) to calculate the value of the function at any given point (r, θ). To do this, one

can simply use the formula (A.1). The computational cost of the calculation the value of the

function at the point (r, θ) is M(r) operations.

Multiplication in the low-rank format

Let we have two functions in the format (A.1):

f(r, θ) =

M1(r)∑

m1=1

fm1(r)φm1(θ)

g(r, θ) =

M2(r)∑

m2=1

gm2(r)φm2(θ)

(A.8)

We may formally multiply the representations:

f(r, θ)g(r, θ) =

M1(r)∑

m1=1

M2(r)∑

m2=1

fm1(r)gm2(r)φm1(θ)φm2(θ) (A.9)

Now we need to convert the product to the format (A.1). To do this we can find the

representation of the products φm1(θ)φm2(θ) in the following form:

φm1(θ)φm2(θ) =

M3∑

m3=1

am1m2m3φm3(θ) (A.10)

If such representation is known then the product (A.9) can be written as follows:

f(r, θ)g(r, θ) =

M3∑

m3=1





M1(r)∑

m1=1

M2(r)∑

m2=1

am1m2m3fm1(r)gm2(r)



 · φm3(θ) (A.11)

which gives the representation in the format (A.1):

f(r, θ)g(r, θ) =

M3∑

m3=1

Pm3(r)φm3(θ) (A.12)
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where Pm3(r) =
∑M1(r)

m1=1

∑M2(r)
m2=1 am1m2m3fm1(r)gm2(r)

This method needs M3 ·M1(r) ·M2(r) operations to calculate the coefficients at the certain

distance r, and thus
∑N

n=1 M3 ·M1(rn) ·M2(rn) operation in total to perform the multiplication.

However, there is a simpler method. We assume, that the rank of the product at the point

r is fixed, and denote it M3(r). In that case we can just calculate for each r the values of the

product at the points (r, θ1), . . . , (r, θM3(r)) and reconstruct the coefficients using the formula

(A.7).

The computational cost of calculating of the product coefficients at the distance r includes:

• calculating the values of the functions f(r, θ) and g(r, θ) and their product at the points

(r, θ1), . . . , (r, θM3(r)). This takes M3(r)(M1(r) +M2(r) + 1) operations

• reconstructing the coefficients of the product from the values at the points (r, θ1), . . . , (r, θM3(r)).

This takes M3(r)
2 operations.

So, in total, if there are N discretization points of the grid in distance direction the computa-

tional cost is
∑N

n=1 M3(r)(M1(r) +M2(r) +M3(r) + 1) operations.

Calculating a convolution

Let we have two functions in the format (A.1):

f(r, θ) =
∑M1(r)

m1=1 fm1(r)φm1(θ)

g(r, θ) =
∑M2(r)

m2=1 gm2(r)φm2(θ)
(A.13)

We may formally calculate the convolution of these functions:

∫ ∫

f(r′ − r, θ′ − θ)g(r′, θ′)dr′dθ′ =

M1(r)∑

m1=1

M2(r)∑

m2=1

∫

fm1(r
′ − r)gm2(r

′)dr′
∫

φm1(θ
′ − θ)φm2(θ

′)dθ′

(A.14)

Now we need to convert the convolution to the format (A.1). To do this we can find the

representation of the convolutions
∫
φm1(θ

′ − θ)φm2(θ
′)dθ′ in the following form:

∫

φm1(θ
′ − θ)φm2(θ

′)dθ′ =

M3∑

m3=1

bm1m2m3φm3(θ) (A.15)

If such a representation is known, the convolution (A.14) can be written as follows:

∫

f(r′ − r, θ′ − θ)g(r′, θ′)dr′dθ′ =

M3∑

m3=1





M1(r)∑

m1=1

M2(r)∑

m2=1

bm1m2m3

∫

fm1(r
′ − r)gm2(r

′)dr′



 · φm3(θ)

(A.16)
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which gives the representation in the format (A.1):

f(r, θ)g(r, θ) =

M3∑

m3=1

Cm3(r)φm3(θ) (A.17)

where Cm3(r) =
∑M1(r)

m1=1

∑M2(r)
m2=1 bm1m2m3

∫
fm1(r

′ − r)gm2(r
′)dr′

This method needs to calculate convolutions of each pair of functions fm1(r) and gm2(r).

Each convolution takes const · N log(N) operations. Because the convolution is a non-local

operation, the procedure will need const ·max(M1(r))max(M2(r))N log(N) operations.

Fourier low-rank representation

In the previous sections we did not make any assumptions about the basis set φ1(θ), . . . , φM(r)(θ).

However, by using the special basis sets one can essentially reduce the computational expanses.

One of the convenient basis sets for our calculations is the Fourier basis φm(θ) = e−imθ. How-

ever, for this format it is more natural to let m be negative: m ∈ Z So, finally the Fourier

analogue of the format (A.1) is the following:

f(r, θ) =

M(r)/2
∑

−M(r)/2

fm(r)e
−imθ (A.18)

The format is convenient by two reasons:

• Firstly, at large distances the angular component of the functions in the Ornstein-Zernike

equation can be approximated by the sin/cos functions with the high accuracy.

• Secondly, the Fourier basis essentially simplifies the calculations and allows us in many

cases to use the efficient FFT algorithm.

Below we will see how the Fourier basis can simplify the basic operations.
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Converting a function to the Fourier low rank format

For each distance r we may write the analogue of the equations (A.2). In our case it is convenient

to choose the equidistant values of θk: θk = 2πk/M(r). So, we have:

f(r, θ1) =

M(r)/2
∑

m=−M(r)/2

fm(r)e
−2πim/M(r)

. . .

f(r, θk) =

M(r)/2
∑

m=−M(r)/2

fm(r)e
−2πimk/M(r)

. . .

f(r, θM(r)) =

M(r)/2
∑

m=−M(r)/2

fm(r)e
−2πim

(A.19)

We see that the expressions in the right hand sides of the equations form the Fourier series.

The coefficients f1(r), . . . , fM(r)(r) can be found using the Discrete Fourier Transform and

FFT algorithm. This will take const · M(r) logM(r) operations. In general, if we have N

discretization points in the distance direction, converting to the low rank format will take

const ·∑N
n=1 M(rn) logM(rn)

Reconstruction values of the function from the Fourier format

If we need to reconstruct the value of the function in the single point (r, θ) we can use the

formula (A.18), and this will need M(r) operations. However, if we need to calculate the

values of the function at the certain distance r and at the range of angles θ1, . . . , θM(r) where

θk = 2πk/M(r) we may use the FFT algorithm, which will take M(r) logM(r) operations.

So in general to reconstruct all the values of the function in the grid points we will need

const ·∑N
n=1 M(rn) logM(rn) operations.

Multiplication of the functions in the Fourier format

The analogue of the expression (A.9) in the Fourier format is:

f(r, θ) · g(r, θ) =
M1(r)/2∑

m1=−M1(r)/2

M2(r)/2∑

m2=−M2(r)/2

fm1(r)gm1(r)e
−im1θe−im2θ (A.20)

Using that e−im1θe−im2θ = e−i(m1+m2)θ we may introduce the variable m3 = m1 +m2. In such

a definition the product is rewritten as:

f(r, θ) · g(r, θ) =
M3(r)/2∑

m3=−M3(r)/2





M1(r)/2∑

m1=−M1(r)/2

fm1(r)gm3−m1(r)



 e−im3θ (A.21)
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where M3(r) = M1(r) +M2(r). The expression (A.21) gives the representation in the format

(A.18)

f(r, θ) · g(r, θ) = Pm3(r)e
−im3θ (A.22)

where Pm3(r) =
∑M1(r)/2

m1=−M1(r)/2
fm1(r)gm3−m1(r) is the discrete convolution of the coefficients

fm1 and gm2 . This convolution can be calculated using the FFT algorithm, which will take

const ·M3(r) logM3(r) operations. In general, the calculation of the product will take const ·
∑N

n=1 M3(rn) logM3(rn) operations.

Calculation of the convolution in the Fourier format

The analogue of the formula (A.14) in the Fourier format is written as follows:

∞∫

−∞

π∫

−π

f(r′ − r, θ′ − θ)g(r′, θ′)dr′dθ′ =

M1(r)/2∑

m1=−M1(r)/2

M2(r)/2∑

m2=−M2(r)/2

∞∫

−∞

fm1(r
′ − r)gm2(r

′)dr′
π∫

−π

e−im1(θ′−θ)e−im2θ′dθ′

(A.23)

Let us find the convolution of the basis functions:
π∫

−π

e−im1(θ′−θ)e−im2θ′dθ′ = eim1θ

π∫

−π

e−i(m1+m2)θ′dθ′ (A.24)

Because the integral is taken over the full period of the function e−i(m1+m2)θ′ , the integral is

non zero only when m1 + m2 = 0. This can be compactly written using the Kronecker delta

function:
π∫

−π

e−im1(θ′−θ)e−im2θ′dθ′ = 2πeim1θδm1,−m2 (A.25)

Putting this expression to the (A.23) and using the properties of the delta function we have:

∞∫

−∞

π∫

−π

f(r′ − r, θ′ − θ)g(r′, θ′)dr′dθ′ =

M3(r)/2∑

m2=−M3(r)/2



2π

∞∫

−∞

f−m2(r
′ − r)gm2(r

′)dr′



 e−im2θ

(A.26)

where M3(r) = min(M1(r),M2(r)) This expression gives a representation in the format (A.18):

∞∫

−∞

π∫

−π

f(r′ − r, θ′ − θ)g(r′, θ′)dr′dθ′ =

M3(r)/2∑

m3=−M3(r)/2

Cm3(r)e
−im3θ (A.27)

where Cm3(r) = 2π
∞∫

−∞
f−m2(r

′ − r)gm2(r
′)dr′. Because the convolution in distance direction is

a non-local operation, we need to pre-compute the coefficients Cm3(r) and then use them at
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any distance r. However, we need to calculate the convolutions only of the selected pairs of

the functions fm1(r) and gm2(r), namely of such of them that m1 = −m2. This will give only

M3 = min(maxr M1(r),maxr M2(r)) convolution calculations. Moreover, because the ranks

M1(r) and M2(r) decay at the large distances, that means that the support of the functions

fm1(r) and gm2(r) will decay with the growth of the coefficients m1 and m2. And the functions

with the smaller support need smaller number of discretization points. We denote N(f(r)) the

number of points which is needed to discretize the function f(r). Then the total computational

cost to calculate the convolution is const ·
∑M3/2

m3=−M3/2
Nm3 logNm3 , where Nm3 = N(f−m3(r))+

N(gm3(r))
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