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Abstract 
 

UK electricity demand is expected to increase by about 50-100% over the next 30 

years, driven primarily by the UK’s net zero policy. The addition of renewables, EV’s 

and other low carbon technologies introduces more uncertainty into the system driving 

the need for flexibility services. These flexibility services can be provided by traditional 

generators, but EV’s, storage, and demand side response are expected to provide a 

larger share of this. It is evident that domestic customers can provide flexibility 

services to the system, but modelling their responses, behaviours will be difficult. They 

are social and emotive actors who exhibit non-stationary behaviours that are difficult 

to represent and are often ignored or oversimplified. There is therefore a need for an 

extensible tool to simulate customer interactions with aggregators and system 

operators. This thesis presents an Agent Based Modelling (ABM) framework that 

incorporates these behaviours. Customers are represented using behavioural rules 

using a modified “Agent_Zero” framework. Aggregators are represented as 

commercial entities selecting appropriate business models for the markets they operate 

in. Aggregators compete against other aggregators and compete for customers in this 

simulation. 

Aggregators also face new risks in this evolving market that will require valuation 

and risk control. A real option model of the risk associated with aggregator operation 

is developed and incorporated into a case study using 55,000 customers, representative 

of a UK city the size of Dundee or York. 

These aspects provide complex behavioural interactions that provides a rich set of 

outputs. Analysis of the results show that aggregator business models evolve through 
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time and that business model choice is a complex one. Price impacts of 

emotions/networked social influences are significant (~30-50%). Simulation output can 

be used as an input into future market designs and provides benefits to different 

stakeholders including regulators, generators, customers and future aggregators. 
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Chapter 1   

 
Introduction 

 

This thesis examines the interaction of commercial power aggregator companies 

with customers in a distribution network setting. Learning algorithms and other 

heuristics are used to mimic behaviours of the following key actors (generators, 

aggregators and customers) in the power network domain1. In this chapter the 

motivation for research into commercial power aggregation is explained, the problem 

and the key research questions under consideration are defined and the principle 

research contributions are stated. 

1.1 Research Motivation 

A need for flexibility on the distribution networks is caused by the addition of 

Distributed Generators (DGs), and that causes a need for customers to provide 

flexibility and manage their demand. Traditionally, customers used the electricity 

when they needed it, but they are now managing their demand due to external forces 

associated with economics and the environment. The addition of large numbers of 

electric vehicles (EV’s) into the distribution system will make predicting demand more 

difficult. EV’s are stochastic and mobile, whereas demand profiles were historically 

                                         
1 Note other key actors like DSO’s (Distribution system Operator), DNO’s (Distribution Network 

Operator), TSO (Transmission System Operator) and ESO/ISO (Electricity Supply 

Operator/Independent System Operator) are modelled but have not be given any learning behaviours 

in this work. 
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fixed in location and reasonably easy to predict.  

In the context of these Distributed Energy Resources (DERs)2, certain regions 

(UK, US, Europe and Australia)3 are making progress towards allowing consumers to 

interact more fully with the grid so to provide much needed flexibility because of the 

addition of stochastic resources like renewables and EV’s. This, however, will present 

challenges to existing power system agents/actors like system operators such as TSO’s 

/DSO’s, as the potential number and complexity of the interactions with millions of 

smaller participants could overwhelm them. In addition, in order to ensure 

competition, markets for provision of these services need to be established and 

managed. Thus, there is a need for specialist third parties to manage these 

interactions, which are typically referred to as aggregators, and whose role is to help 

relatively smaller participants engage with the market. These smaller participants will 

be providing much needed flexibility to help operate such low carbon power systems. 

As aggregators are also businesses looking to provide services, they need to find 

appropriate business models that will satisfy their stakeholders. Future distribution 

flexibility systems will therefore require the participation of new actors like domestic 

customers and aggregators. The behaviour of these actors will impact on Distribution 

Operator’s operations, their longer term planning and will impact on Regulator’s 

market designs. Unfortunately, current tools do not adequately represent human or 

                                         
2 Small units connected to the distribution grid with possible two-way flow of electrical power. 

Common examples of DERs are Distributed Generators (solar, wind), battery storage, electric vehicles 

(EV) and active demand response (load that can change its consumption to provide flexibility to the 

system). 
3 Note the Thesis will focus on UK flexibility markets but the work presented will be applicable to 

other regions around the world. 
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aggregator behaviour in their models. This is an important for a number of 

stakeholders including regulators, customers, aggregators and the DSO’s. In 

particular, the Distribution Operator will need to better understand the behaviour of 

customers and aggregators providing flexibility to their system in the short term, but 

will also need to account for these behaviours for their long term planning. A tool 

implementing human behaviour is therefore essential if appropriate designs are to be 

formulated, in a market with millions of participant’s e.g. Domestic customers. The 

aim of this thesis is to develop a model/framework that will help planners and analysts 

better understand how these different business models/market designs will fare under 

different conditions, and how they affect consumers and the power system at large. 

Due to its ability to model behavior and interactions, Agent Based Modelling (ABM) 

provides an appropriate methodology to investigate various questions about these 

actor interactions.  

A significant body of work has explored aggregation from an algorithmic and 

optimization point of view [3-6], but there is a lack of work looking at aggregation of 

customers in general, as well as the detailed interplay between multiple aggregators 

and consumers with social interaction4. In addition, there is little work in investigating 

economic modelling, decision-making processes and their impact on the aggregators 

themselves, as opposed to those focused on optimizing participation of particular 

technologies. 

Current aggregation business models [7-9] in the sector are relatively 

                                         
4 Much of the work has focussed on optimization in EV aggregation. 
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straightforward, typically using a margin based fee model5, however. it is reasonable 

to expect that business models will inevitably evolve over time. To evaluate that 

change, it will be important to consider the following key issues: 

- How will business models evolve and what business models are likely to 

prosper and under what conditions? Note the thesis will focus on a market 

that assumes consumers are bidding flexibility services in real time, one 

hour ahead. It is assumed that consumers will install the appropriate 

hardware so that flexibility can be provided via automation. Aggregators 

would provide the appropriate signals and measure flexibility deliveries. 

Note the thesis assumes costs for these automation devices and represents 

them in abstract terms in the simulation. Alternative models currently 

being instigated by the Distribution Network Operators (DNO’s) involve 

paying a fixed (“availability charge) and variable utilization charge 

(£/MWh). They provide signals and instructions to the flexibility 

providers, via an automated process using dedicated communication lines 

and the use of Application Programming Interfaces (API’s). This 

particular business model is not addressed in the thesis. 

- How will customers react to aggregator offers? What percentage of 

customers will take up these offers? 

- Is aggregation good for consumers? What is the scale of these benefits? 

- How will aggregation affect electricity market prices?  

                                         
5 Customer gets paid £x/MWh – aggregator takes 30% of this value as a fee. 
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- How will system operators interact with aggregators and what will be the 

impact on system operation? 

This thesis addresses the first four issues mentioned above, while investigation of 

the last issue can be found in [6-9]. 

1.2 Problem Statement 

The provision of Demand Side Response (DSR) and flexibility in a future low 

carbon distribution system will be necessary if the power industry is to reduce costs. 

Market based DSR and flexibility mechanisms delivered via aggregators are estimated 

to provide a benefit of £2.4 – 9.7 Billion per year (2023 real terms) by 2050 [10-13]6. 

Individuals and companies participating in a future electricity balancing or flexibility 

market must utilize tailored business models and understand how markets react if 

they are to be profitable. Furthermore, actions of such actors will affect others and 

may have adverse effects on the power grid itself and there will be a need for co-

ordination between aggregators and network operators to avoid these problems. 

Although it is early in the process, full deployment of a flexibility system involving 

many new stakeholders will require new tools to be developed to understand these 

various effects. Currently there is no holistic modelling approach or tool that captures 

the behaviours of these new actors in an existing power setting. 

In addition, “Energy is consumed in social environments and in the presence of 

social peers. But social interactions do not just happen alongside energy behaviour — 

                                         
6 Flexibility services will reduce the need for infrastructure reinforcement. Note costs have been 

escalated form 2015 to 2023 real terms. 
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the two are intrinsically linked.” [14]. Social science researchers have started to develop 

conceptual frameworks to capture these social dynamics [15-17], but no computational 

model incorporating emotions and social interaction in the aggregator domain exists 

at present. Creating a framework which can include power networks, customers and 

their social relations with themselves and aggregator companies (and others), would 

be an important first step in providing a more holistic model of low carbon power 

networks. Without this aspect, policies would fail to take account of the impact of 

social interactions and customer psychology on system operation. 

Traditional modelling of markets using Computable Generalized Equilibrium 

(CGE) models like Times Markel [18] are simplified, and miss modelling of some 

aspects of system operation. They also do not sufficiently capture the evolving 

behaviour of participants like aggregators and customers. A review of energy modelling 

approaches shows that there is major focus on techno economic systems (e.g. Times 

Markel) rather social systems [1]. Agent Based Modelling (ABM) makes up less than 

1.5% of all the models used in the domain (Table 1 from [1]). Agent Based Modelling 

provides an approach that will capture these types of behaviours, but no frameworks 

or methodologies currently exist that provides a simulation of customers interacting 

on social networks with aggregators that are modelled as commercial enterprises. This 

is discussed more fully in Chapter 3 where literature is reviewed and the case is made 

for the development of a more complex model.  

The aim of this thesis is to present a novel framework of aggregator, generator, 

ISO and customer interactions using an ABM methodology and use it to explore the 

following key research questions. 
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1.3 Key Research Questions 

The following are the key research questions addressed in the thesis: 

 

 How can we model aggregators to make them more representative of what a 

commercial aggregator company would do? What components do we need to 

model and how should we model them, e.g. how to include risk management and 

business model representations? 

 How can we best represent future consumers that provide flexibility? How will 

these customers interact with aggregators? 

 How do we capture the softer aspects of consumer responses such as interactions 

on social media or other psychological impacts such as emotions? 

 How can we combine all these aspects to model a market with around 50,000 

domestic customers – the size of a small city such as Dundee or York in the 

UK7? 

 How will these actors interact under different market and network conditions? 

What will be the impact on market clearing prices and how will they evolve? 

Can patterns be extracted from these simulations that would be helpful to 

various stakeholders? 

1.4 Overview of Modelling Approach  

The aggregators in this thesis compete with other suppliers, such as competing 

aggregators, generators or large industrial consumers, in the markets for wholesale 

                                         
7 Assuming three people within each household. That is population size ~ 150,000.  
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power balancing and auxiliary services. Figure 1-1 shows the main concept of the 

model developed in thesis.  

 
Figure 1-1: Actor interactions in proposed ABM framework 

 

Note that in practice block would be included within block , but is shown 

separately as this will be the subject of future work. Commercial power aggregators8 

interact with their domestic and industrial customers  by managing flexibility bids9 

sent from these various entities. These bids, along with those from generators, are 

submitted to the market operator (e.g. ISO/DSO/TSO) who clears the proposed 

flexibility market using economic dispatch10. In future work, an AC OPF 

                                         
8 See numbering on Figure 1-1. 

9 Note large industrial customers might bid directly to the TSO/ISO and commercial entities connected 

at the Distribution level could bid directly to the DSO. 
10 It is not currently clear who will operate this market, e.g. will it be an ISO, a DSO or a combination 

of TSO/DSO organizations. 
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representation of a distribution network will provide these prices at various nodes and 

impact on the ability of some bids from customers to be dispatched. Cleared prices 

 are published for use by various participants and are also used to adjust bids. 

Customers can chose between a number of aggregators who compete with each other 

for flexibility and acquiring customers. Domestic customers currently may gossip over 

a social network11 by sharing contract price information and details on the 

performance of their current aggregators. The dotted line between  and  (future 

work) represents the ability of aggregators to influence social media using their own 

social media accounts or via bulk advertising channels. 

In the proposed framework, consumers and aggregators are represented as learning 

agents using a trading heuristic12 based on Dave Cliff’s Zip trading agent [19-21] to 

determine the best course of action to achieve their goals13. For example, aggregators 

can take bids from consumers and manage these bids when participating in the 

wholesale/balancing market. On the other hand, aggregators need to entice customers 

to participate in their services, while also having to take into consideration customers’ 

welfare. Aggregators can offer different contract terms to entice additional customers. 

Moreover, social customer interactions may play an important role in customer 

behavior. Customers can interact with other customers and, in this model, a novel 

approach based on the Epstein’s Agent_Zero framework [10] is utilized. 

                                         
11 Note specific contract conditions may inhibit the sharing of this data.  

12 Alternative representations could make use of reinforcement learning or other learning paradigms. 

13 Generators bid at marginal costs in the majority of the simulations used in this work. Note a 

sensitivity case uses the ZIP trading learning paradigm to update generator bids. 
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1.5 Research Contributions 

The research presented in this thesis pertains to the academic fields of electrical 

power engineering, business, economics, risk management and Agent Based Modelling 

(ABM). The principle contributions made by this thesis are: 

 

1. The first application of an extensible Python based ABM framework that includes 

the interactions between: (i) customers using an “agent_zero” based framework 

tied to a social gossiping network; (ii) competing aggregators with business models 

(including risk management) in the context of a future wholesale 

flexibility/balancing power market. The framework is based on the Java based 

EMLab [2, 3, 22], agent simulation software engine. In order to simulate short-

term (hourly) interactions between participants, new agents have been created, 

and code written. PyEMLab14, as far as we know, is the first structured power 

focused ABM simulator built solely in Python and provides a framework for future 

adaption for power domain modelling. Importantly it opens up ABM to Python 

modelers in the power domain with a clear structure and a scripting 

language/methodology in Python. “PyEMLab–Aggregator”15 is the aggregator 

specific version of the more generic PyEMLab simulation framework used in this 

thesis. 

2. Development of a real option approach using an exotic three-asset Monte-Carlo 

based option to represent risk in a power aggregation market. The aggregator 

                                         
14 PyEMLab is the Python port of EMLab developed by the thesis author. 

15 Shortened to PyEMLab-Agg. 



 

11 
 

agent incorporates a risk model to replicate the corporate risk management 

process.  

3. Development of aggregator business models, not currently addressed in the 

literature. This includes a detailed cost model of aggregator operating and capital 

expenses and a static view of aggregator economics.  

4. Extension of the Agent_Zero framework to model emotions, economics and social 

impacts. When social networks are combined with the Agent Zero framework, 

social interactions that influence the aggregator choice can be seen  

5. Use of an ABM framework to investigate the interactions of these agents under a 

number of different parameters – and the identification of key drivers.  

6. Development of a visualization model using linear approximations that could prove 

useful to stakeholders like regulators. The model will allow stakeholders to 

experiment with key parameters to help understand their impact on key 

performance measures. 

7. Innovative use of Fuzzy Cognitive mapping (FCM) in an Agent Based Modelling 

setting, to aid in the validation and understanding of the dynamics of complex 

systems such as those modelled in this thesis. 

 

The publications that have resulted from this thesis are: 

 

 Howorth, G & Kockar, I 2018, Do we need a new architecture for simulating 

power systems? A position paper. in Proceedings of 8th International 

Conference on Simulation and Modeling Methodologies, Technologies and 
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Applications. vol. 1, Portugal, pp. 190-197, Simultech 2018, Porto, 

Portugal, 29/07/18. https://doi.org/10.5220/0006917801900197 

 

 Howorth, G & Kockar, I 2019, 'Simulating a commercial power aggregator at 

scale: design and lessons learned' Simultech 2019 9th International conference 

on simulation and Modelling, Prague, Czech Republic, 29/07/19 - 31/07/19, . 

 

 Vigano, G, Rossi, M, Sels, P, Leclercq, G, Gueuning, T, Pavesi, M, Vardanyan, 

Y, Ebrahimy, R, Jimeno, J, Ruiz, N, Howorth, G, Camargo, J, Hermans, C, 

Spiessens, F & Svendsen, H 2019, SmartNet simulation platform. [Glasgow]. 

 

 Rossi, M, Viganò, G, Migliavacca, G, Svendsen, H, Leclercq, G, Sels, P, 

Pavasi, M, Gueuning, T, Jimeno, J, Ruiz, N, Camargo, J, Hermans, C, 

Spiessens, F, Vardanyan, Y, Ebrahimi, R & Howorth, G 2019, 'Testing TSO-

DSO interaction schemes for the participation of distribution energy 

resources in the balancing market: the SmartNet simulator' Paper presented 

at The 25th International Conference and Exhibition on Electricity 

Distribution, Madrid, Spain, 3/06/19 - 6/06/19, . 

 

Applications of this Work and Resulting Publications 

The aggregator model framework developed during this thesis has been adapted 

for use on a demonstrator project based in Scotland for controlling assets using a 

virtual power plant solution. Rather than simulating assets, the adapted version 

of the software uses real time schedulers to read asset data, forecast output and 

https://doi.org/10.5220/0006917801900197
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control assets in real time. Papers associated with this work are listed below. 

Application - Published Papers 

 Howorth, G, Kockar, I, Tuohy, P & Bingham, J 2022, ‘An enhanced virtual 

power plant for flexibility services into a local area (including EV's),’ in 

CIRED Porto Workshop 2022: E-mobility and power distribution systems, 

2022, vol. 2022, pp. 970-974. 

 

 Howorth, G, Kockar, I, Tuohy, P, Flett, G & Bingham, J 2023, ‘Enhanced 

Virtual Power Plant Design and Implementation Lessons’, The 27th 

International Conference and Exhibition on Electricity Distribution, Rome, 

Italy, 12/06/23 - 15/06/23. 

 Howorth, G, Kockar, I, Tuohy, P, Flett, G & Bingham, J 2023, ‘Business 

Models for Virtual Power Plants and their Impact on Economic Operation’ 

The 27th International Conference and Exhibition on Electricity 

Distribution, Rome, Italy, 12/06/23 - 15/06/23. 

 Howorth, G, Kockar, I, Tuohy, P, Flett, G & Bingham, J, ‘The Impact of 

Forecasting Accuracy on the Economic Performance of Flexibility 

Provision’, The 27th International Conference and Exhibition on Electricity 

Distribution, Rome, Italy, 12/06/23 - 15/06/23. 

 

This thesis also resulted in a participation in an ETP PECRE visit to TU Delft 

over a period of 2-3 months to work on developing ABM frameworks for simulating 

power networks using the EMLab framework [23].  
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Work on the coding and development of the Curtailable Generation Curtailable 

Load (CGCL) aggregator by the author in the SmartNet project [9] was also completed 

during the thesis and forms the basis of the aggregator bucketing system described in 

section 7.2.1.  

Moreover, the thesis relies on the experience and work associated with the author’s 

prior industrial experience and development of techno-economic analyses on a variety 

of subjects including power generation, new technology assessments, corporate 

investment modelling and accounting.16   

1.6 Limitations/Exclusions 

The focus of this thesis is on future flexibility markets17 in a low carbon distribution 

electricity network. The interactions between the market aggregators and customers 

and the power network is considered in the context of Agent Based Modelling 

framework that implements a simple model of agent psychology using the Agent_Zero 

framework although other frameworks and computational solutions could be used. The 

model has been developed in Python and uses the EMLab18 architecture as its agent 

base. Economic dispatch has been used to clear the proposed flexibility market, 

                                         
16 See https://scholar.google.co.uk/citations?user=NjAG_QsAAAAJ&hl=en for examples.  

17 The thesis assumes that the “flexibility” market is used to clear bids from aggregators and other 

entities like generators. Consumers are assumed to bid in their flexibility to aggregator companies who 

package such bids into small bid bundles. Balancing mechanisms are usually associated with 

transmission balancing, whereas flexibility is associated with “balancing” services at the distribution 

level. 
18 EMLab (TU Delft) is an electricity based ABM written in Java but the author ported this model 

to Python (PyEMLab) during an exchange visit with Delft University in 2019. 

https://scholar.google.co.uk/citations?user=NjAG_QsAAAAJ&hl=en
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primarily so that an understandable proof of concept can be developed before moving 

on to including more realistic networks using an AC OPF methodology.  

Modelling of Electric Vehicles (EV’s) and customer flexibility has been simplified 

in that temporal shifting of power and locational issues associated with delivery have 

been ignored. However, a more sophisticated representation of customer and 

aggregator bidding has been presented.19 Python has been used as a basis for this 

development particularly for its development speed, as opposed to its run time speed.20 

An important line for future work would be to extend the model to accommodate 

future elements such as a more detailed EV model, better congestion modelling and 

the inclusion of longer-term investments and other new technologies and innovations.  

Time constraints have necessitated that this work focus on a few scenarios, but 

additional assumptions and other network structures could be investigated in the 

future. Other simplifications have been made including: 

 A limited number of business models have been simulated (six). 

 Synthetic customer data has been used - uniform types of different customers 

that may not reflect the true demographics of the region of interest. Use of 

commercial consumer databases such as Experian’s Mosaik segmentation 

database [25-27], could provide a more accurate view. Additionally, judicious 

use of surveys to help synthesise such data could be used, but this is beyond 

the scope of this work. 

                                         
19 Based on the SmartNet model representations. 

20 Java in theory provides a significant run time advantage whereas Python is much easy to develop in 

reducing development times by a factor of 5 [24]. However, with use of Python Numpy (C based), the 

speed advantage is much reduced. 
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 A social network based on a Facebook and Twitter structure has been used. 

Customers have been randomly assigned to the network so an affluent customer 

could be placed near to many less affluent customers. This may be an 

unrealistic assumption. 

 Apart from conventional generation providing competing flexibility no other 

commercial entities other than aggregators are simulated. Companies providing 

alternative business models like Peer to Peer Trading (P2P) have been ignored 

but the framework can be extended to include them. 

 Aggregators could spend to influence consumer-buying decisions using 

advertising. Aggregators could also participate in social media and provide 

“fake news”. Although these aspects could be added later, these have been 

ignored for now. 

 In these simulations, only domestic customers and aggregators can currently 

change their bids in any sophisticated manner. Industrial customers and 

generators bid at marginal costs provided to them in the initialization of the 

simulation. 

 Entry and exit of customers and aggregator companies into the simulated 

market have been ignored in this first phase of the simulations. 

 The impact of TSO/DSO interaction and coordination schemes on the market 

are not simulated in this work.21 

 

                                         
21 This was one of the purposes of the SmartNet project. 
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1.7 Thesis’s Implications  

This work provides important implications to aggregators, customers (industrial 

and residential), systems operators (DNO’s and TSO’s), regulators and Government. 

Finally, there is an impact on all of us, as taxpayers22. The framework presented can 

be extended into other ABM frameworks such as EMLab[2, 3, 22], which focusses on 

longer term investment decisions, or linked to other open source Python based 

software such as PowerGAMA [28, 29], PyPower [30], Ding0 [31] to simulate power 

flows and transmission or distribution upgrades. 

1.8 Thesis Outline 

This thesis is organized into nine chapters as summarized in Figure 1-2. Chapter 

2 provides background information on the UK balancing market in the context of this 

thesis, and introduces aggregation as a concept (including aggregators). Note 

balancing markets currently operate at the transmission level but is used as a 

surrogate for the operation of a future flexibility market at the distribution level. 

Chapter 3, provides a review of the current state of the art with regard to ABM 

power modelling, particularly in the context of modelling aggregators in a low carbon 

power network. It discusses a need for power ABM simulators as only few currently 

exist [32] with none adequately taking into account of how customer psychology or 

emotions influences their decisions. 

In Chapter 4, business model frameworks23 and definitions are introduced and 

                                         
22 Reductions in investment could save trillions of £ in future grid investments, some of which will be 

subsidised by Taxpayers. 
23 Including an Industry Analysis of similar businesses – Appendix A3. 



 

18 
 

publications on power based aggregation models are reviewed, but, as the chapter 

illustrates, literature focuses on current business models and provides little detailed 

data on the economics and costs of such models. The chapter concludes on these gaps 

by developing a business model framework for future aggregators, and provides a cost 

model for an aggregator business. This multi-dimensional business model has been 

developed from business model frameworks introduced in the chapter. Six business 

models based on two dimensions of that model (Revenue generation model (3) vs Risk 

Management stances (2)) are developed and used in analysis later in the thesis. 

Chapter 5 describes risk management as a process and uses real options to value 

the portfolio of an aggregator and its risks. Real options valuations of energy retailers 

and power contracts in literature are reviewed, and the chapter illustrates that current 

literature does not address the valuation of aggregator contracts, although such real 

option techniques are useful in understanding and valuing risk in an aggregator 

context. The chapter describes a put option framework to value and mitigate risk and 

presents theoretical results under a number of assumptions.  

Chapter 6 introduces the frameworks to be used for modelling customers and 

includes social network modelling. A review of different models used in the Social 

Sciences to represent emotions and psychological influences are discussed. The 

Agent_Zero model is selected as a tractable and realistic but “simplistic” model to 

represent emotional and cognitive elements. There is currently no literature in the 

ABM power domain that uses such an approach. It provides human like responses 

without the complex modelling exhibited in the other models discussed. Future 

versions of the model framework may use these other methods. Chapter 7 details the 
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ABM framework and highlights design choices and assumptions. Chapter 8 presents 

an ABM case study based on a UK city the size of Dundee or York with 50,000 

domestic customers and 4500 small to medium sized industrial customers. The output 

is analyzed, and trends and simulation-related drivers are noted. Validation and 

verification of the model output is also discussed in this section. 

The primary conclusions drawn from the results in this thesis are summarized and 

discussed in Chapter 9. The PyEMLab-Aggregator24 software provides a rich 

environment in which to explore various assumptions and different parameter values. 

Various long and short-term dynamic patterns are seen and it appears that 4-5 

aggregators will be required in a region to provide the maximum benefits to consumers. 

Shortcomings of the approach are noted and the broader implications are addressed. 

Some ideas for further work are also outlined in this chapter as well as throughout the 

text, including concepts related to extending this framework.  

 

                                         
24 Known as PyEMLab-Agg. 
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Figure 1-2: Thesis structure overview 
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Chapter 2  

 
Imbalances, Flexibility and 

Aggregation in Low-Carbon Power 

Systems 

 

2.1  Introduction 

Markets for flexibility services are currently evolving. Current markets are focused 

on transmission balancing volumes but distribution level markets are becoming more 

prevalent, but there is a lack of data for these markets. The balancing market provides 

useful data and lessons for the development of the future flexibility markets at the 

distribution level, so has been used as a surrogate for a future distribution market in 

the simulations used in this thesis. Note that flexibility is a term usually associated 

with distribution level markets, whereas balancing is associated with transmission level 

assets.  

Imbalance volumes resulting from forecast errors and system outages drives the 

need for flexibility25 and is an important input into any simulation looking at flexibility 

markets. An understanding of how this demand for flexibility varies through time and 

with different drivers is important in the context of this thesis. This chapter starts 

with a brief introduction to the UK national electricity supply in the context of future 

volumes under different scenarios. It is given along with background information on 

                                         
25 Volumes for balancing services arises from the difference between real time generation/consumption 

and forecasts provided the prior day. 
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the current electricity Balancing Mechanism in the UK and the drivers of imbalance 

volumes in a future market. A review and analysis of historical UK hourly demand 

and balancing data is also provided and used in compiling a data set for simulation in 

later chapters. Secondly, an introduction to the concept of aggregation is made, along 

with an outline model of how one might model such aggregators in a computer 

simulation in a flexibility market using such aggregators. The structure of chapter is 

shown graphically in Figure 2-1. 

 

 
Figure 2-1: Overview of Chapter 2 
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2.2 Current Status of Flexibility Markets.  

The UK is considered a leading innovator in energy flexibility markets [33] and as 

such this thesis focuses on these markets. It should be noted that the flexibility product 

analysed here is a general category of power stability products, some of which are 

mentioned in section 2.3. As one of the first regions to evolve its energy mix with a 

higher penetration of renewable energy, the UK has had to develop through an 

evolutionary process, various markets both long and short term to meet the needs of 

DNO’s, National Grid ESO (TSO) and its customers. The EU has followed a similar 

process but has lagged behind in its wider implementation of flexibility markets 

because of its slow implementation of EU legislation. Reviews of the current state of 

the art in flexibility platforms and flexibility markets in general can be found in [34-

40]. Section 2.3 provides an overview of the various routes to market for flexibility 

providers in the UK and discusses the evolution of the UK markets and current state 

of play. 

Both the UK and Europe are moving towards providing flexibility markets and 

there has been many initiatives and pilot studies performed on market flexibility 

systems e.g. GOPACS, NODES, PicloFlex, CoordiNet etc. [35]. The market setup is 

similar amongst EU countries, but each of them its own peculiarities. Note that most 

of the platforms providing flexibility are owned and operated by the TSO/DNO’s or 

retailers like Centrica. Few are independent (e.g. Piclo [UK] and NODES [Norway]) 

[36]. The UK market currently purchases balancing services and flexibility on a pay 

as bid basis whereas Europe uses the pay as clear method. 

Although the USA markets have provided flexibility products for the day-ahead 
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and Intraday markets there are currently few examples (eg Piclo NewYork State [41]) 

of local flexibility markets at the distribution level, as studied in this thesis. 

Piclo for example opened what is considered to be one of the first independent 

B2B platforms/Exchanges (Auctions) for flexibility services initially for longer term 

flexibility but this is slowly migrating to a real time flexibility platform. For example, 

National Grid ESO’s Local constraints market (LCM)26 launched on Piclo recently in 

the UK with day-ahead and intraday bidding at numerous power grid nodes (0.4 – 66 

kV) [42] . Piclo is also rolling out its platform to other regions of the world [43], 

including Lithuania [44], Portugal [45], Ireland [46] and the USA [41]. It also completed 

its first Capacity market trade in March 2023 [47]. 

2.3 Routes to Market for Flexibility Services (UK) 

The UK provides many routes to market for the sale and import of electricity and 

some specifically for flexibility or imbalance services. Flexibility providers do not have 

to sell specifically to flexibility markets they could for example, contract out all their 

output to a Power Purchase Agreement (PPA). The sale of services to the TSO 

(balancing services), DSO (flexibility services) or both are shown in Figure 2-2 below. 

It shows how the market has evolved over the last five years, from one that was 

essentially a long term market purchasing reserve27 or short term operating reserve, to 

one that allows users to purchase these services on a day ahead basis. Note the 

TSO’s/DNO’s still purchase on a long term basis but are starting to purchase shorter 

                                         
26 Opened May/June 2023. 

27 The reserve is mainly made up of synchronised generators.  



 

25 
 

term supplies on a pay as bid basis. Note interested readers should refer to National 

Grids ESO’s website (see for example [48, 49])28.  

 

Figure 2-2: The evolution of balancing and flexibility markets 

 

The currently envisaged markets for distribution flexibility and transmission 

services are summarised Table 2-1. The Piclo electronic marketplace for flexibility 

began in 2019 [50]. Elexon was established on 1 August 2000 to manage the Balancing 

and Settlement Code (BSC) ahead of the New Electricity Trading Arrangements 

(NETA) that went live on 27 March 2001 in England and Wales. Scotland followed 

in 2005. In the Elexon Balancing market place, “the auction gate opens 60 to 90 

minutes before real time. During this window, market participants submit “bids” or 

                                         
28 Users can navigate to other services from this webpage. 



 

26 
 

“offers” into the BM”. Real time bidding half hourly has therefore been around for a 

long time. There is one price for the whole of the UK and bids are made at the 

transmission level or Grid Supply Points (GSP). It should be noted that these 

flexibility markets are currently evolving. It is expected that future markets for 

flexibility would become more localized and potentially more volatile. One interesting 

development in the UK is the Piclo auction market for DNO flexibility. Auctions are 

carried out half yearly/yearly for flexibility at certain locations on the grid. Contracts 

can be provided for a number of months for a few hours per day or over a number of 

years e.g. five. Although data is becoming available for specific locations, data is still 

sparse29.  

 

Market Type Comment Reference 

Fixed Price PPA Fixed Prices 

Typically agreed contract 

price for sales and imports. 

Fixed price over year    

Octopus GO 

Off Peak On 

Peak Pricing 

Example of energy retailer 

offering on off peak price.  [51] 

Octopus Agile 

Dynamic Tariff 

e.g. based on Day 

ahead wholesale 

prices 

 Example of energy retailer 

offering dynamic prices 

linked to day ahead market  [52] 

BMRS (Balancing 

Mechanism -

Elexon) 

Imbalance 

market price -UK 

wide. 

Transmission 

system Focussed 

- TSO 

UK wide market. Minimum 

bid 1 MW. Transmission 

level service  [53, 54] 

                                         
29 Especially demand data at the hourly or half hourly granularity level. 
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Market Type Comment Reference 

Piclo/DNO 

Flexibility 

Auctions for 

flexibility at the 

distribution level 

(400v – 33kV) 

DNO/DSO Calls for agreed 

standby services at price set 

during one of Piclo's 

competitions. DNO specifies 

amount of flexibility 

required. Could be as low as 

40 kW. Can supply long -

term flexibility for a few 

hours per day for months or 

years. Recent developments 

include day and intraday 

bidding for NationalGrid’s 

ESO LCM market [42, 55] 

Firm Frequency 

Response FFR 

Short-term 

dispatch for 

reduction of 

power to stabilise 

overall system 

frequency. UK 

ISO provides 

dispatch signals 

to providers 

Provision to wider UK grid. 

Transmission level service [56] 

 

Table 2-1: Summary of routes to market in UK 

Aggregators would be able to mix and match flexibility services to these various 
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markets30, but this is not considered in this work as it focuses on distribution flexibility 

markets31. In practice, some of these markets would not be available to aggregators, 

as there are size and quality of connection limits placed on assets. For example, 

aggregated volumes must be at least one MW for the Balancing Mechanism (BMRS) 

market. The markets are still evolving. However, the Balancing Mechanism market 

does provide one of the few sources of real data on the price and volume movements 

of a potential flexibility market with bidding in real time and has therefore been used 

as a surrogate market for distribution flexibility markets in this work. In a recent 

development32 Piclo has rolled out the Local Constraints Market (LCM) in Scotland, 

moving Piclo towards providing more real time bidding services. Although beyond the 

scope of this work Peer to Peer Trading platforms (P2P) present another route to 

market for providers of flexibility either through centralised (Piclo [58]) or 

decentralised platforms (Electron [59]). 

2.4 Imbalance Volumes, Balancing Markets and their representation  

2.4.1 Imbalance Volumes Overview 

Currently volumes for balancing services (imbalance volumes [60]) arises from the 

difference between real time generation/consumption and forecasts provided in the 

prior day. Short-term changes in weather and outages of the power system (generation 

and demand related) result in these forecast errors. Flexibility is required to adjust 

                                         
30 Known as Value Stacking [57]. Not all services can be value stacked. 

31 Note because of a lack of data the transmission level Elexon’s Balancing market (BMRS) is used as a 

surrogate market. 
32 May/June 2023. Piclo manage on behalf of NationalGrid ESO. 
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the volumes promised day ahead, so that the right amount of electricity is delivered 

to customers in real time. 

Prices associated with flexibility/balancing services is in theory driven by the 

marginal cost of providing such flexibility and can be represented as a marginal cost 

(MC) stack.  

The drivers of the historical market are summarized in Figure 2-3 (see [60] for a 

description of market operation). 

 

Figure 2-3: Current drivers of the UK balancing market 

  

The left hand side of the figure is associated with drivers of price via generators 

marginal costs and balancing volumes (supply side). Marginal costs are driven by 

assumptions on capacity factor (CF) Heat rate (HR), fuel prices and so on. Generator 
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balancing volumes by the capacity of the plant, and its ability to respond. In the 

current market some battery services and interruptible contracts can be used.  

Forecast errors (generation and consumer demand) drive imbalance volumes and 

can be thought of as demand for balancing services (right hand side of the figure). In 

a theoretical market, assuming no constraints, price is determined at the point where 

supply meets demand. Imbalance volumes are expected to grow over time (see 

datasheet FL.03 [61] ) by approximately 240 - 370% by 2050. 

This historical market is characterized by a small number of players, often larger 

corporations controlling larger generating sets. Note although marginal costs and net 

imbalance volumes would be expected to set price, that in the last few years 

participant behaviours from trading have increased imbalance volumes and prices (see 

Net Imbalance Volume [NIV] chasing description in [60]). Behaviours of the balancing 

market players is thus an important determinant of the pricing in this market. 

Historically balancing services have been associated with transmission, as little 

generation or demand response at the distribution level had been seen. In the future, 

the addition of flexibility services from domestic consumers and the addition of new 

actors like aggregators, the use of residential batteries and behind the meter generation 

will change this market (see Figure 2-4). In addition, flexibility will be required at the 

distribution level to deal with these actors actions. This distribution flexibility is 

known as flexibility as opposed to balancing, but the two are obviously interlinked. 

This thesis will focus on flexibility services at the distribution level. Participant 

behaviour would be expected to become ever more important in this new market 

structure. 
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Figure 2-4: Future drivers of the UK balancing market 

 

The use of imbalance volumes or flexibility services forms the heart of the work in 

this thesis and its associated simulation results, in that it drives the need for flexibility 

from domestic customers and others. The purpose of the following sections is to 

understand the characteristics of these potential volumes and associated prices in a 

UK context, so that it can be used in the case study/simulation presented in later 

chapters e.g. are the volumes random?; what do they look like?; and how should one 

represent it?  

Unfortunately, the historical data on imbalance volumes and prices is that 

associated with transmission, and this thesis is focusing on distribution flexibility 
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services where there is little if any data33. Ascertaining the impact of flexibility 

behaviour on balancing demand is an important but difficult question. There is 

currently no data on which to formulate models or views (note data with and without 

flexibility would allow us to formulate a model of how DSR has affected balancing 

demand patterns). Traditionally demand elasticity [62] has been used to model the 

impact of price on demand. Imbalance/flexibility volumes are likely to be a function 

of overall or total demand, the level of renewable penetration and the amount of 

flexibility supplied by new actors such as domestic consumers. The interactions 

between overall demand, price and imbalance volumes is likely to be more complex 

than that obtained from using elasticity of demand factors. In addition, elasticity 

factors are typically calculated over longer time-periods (e.g. a year), whereas 

flexibility is a real time concept. For now, there is no better an approach than using 

these elasticity factors, so this has been used in this thesis, to mimic price imbalance 

volume effects.  

There is a wide body of literature on the elasticity of electricity demand with 

price and a number of papers review both short and long-term elasticities of 

electricity. In particular Labandeira et al. (2017) [63] surveyed 428 papers 

published between 1990 and 2016 and showed that the majority of the surveyed 

publications used various approaches, including different regions, and varied time 

frames, which led to significant differences in the estimations. The average short-

run and long-run price elasticities of electricity demand were found to be -0.13 

                                         
33 Note some data is now becoming available on flexibility volumes associated with distribution 

networks Feb 2023. 
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and -0.37, respectively. Table 1 in this reference provides the ranges found in the 

various studies which range from [-0.9, -.07] for the short term and [-4.56, 0] -

Long term. This research also found decreasing elasticities over time. Lijesen 

(2007) [64] provides a review of 23 papers for a number of regions and customer 

types. Table 1 in the reference provides a summary of these values for both long 

and short term. Long term elasticity values range from [-0.82 , -0.09] and short 

term from[-1.113,-0.04]. Table 2 in the same reference provides elasticity values 

associated with time of use pricing for five of the studies. Off peak elasticity 

pricing effects range from [-2.3,-0.003], where peak prices elasticity is [-1.25,-

0.002]. Note Lijesen’s own figures are even lower than those shown in his review. 

More recent studies for the EU (Csereklyei (2017)) [65] show that Electricity 

demand is highly price and income inelastic in the short run. The long-run price 

elasticity of industrial electricity use is between [−1.01, −0.75]; The long-run price 

elasticity of residential electricity use is between [−0.56,-0.53]. Elasticity over a 

year has been found to be around –0.3 in various studies [66] but this is case 

dependent e.g. country, on/off peak pricing, network structure. That is a 1% 

increase in price would decrease demand by 0.3%. Conventionally shorter terms 

effects are assumed to be zero but in Burke and Abayasekara's (2018) [67] US 

based study , a value between –minus 0.07 and minus 0.09 have been found 

(monthly basis). Note table 1 in Andruszkiewicz, Lorenc, Weychan’s work (2019) 

[68] also provides a range of values for both short and long term and for different 

countries (Short term [-0.835,-.0014]; Long term [-1.652,-0.11]). Finally, Eliasson 

(2022) [69] examines hourly, daily, and weekly short run elasticity of household 

https://www.sciencedirect.com/science/article/pii/S0301421519306664#bib18
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electricity demand in Sweden. Short run elasticities were found to be low Hourly 

- [-0.1,-0.0019]; Daily - [-0.09, -0.49]; Weekly – [-0.102,-0.19]. 

 The modelling herein takes both effects and uses values of -0.3 and -0.08 

respectively for long and short terms (monthly) elasticity, but it should be recognized 

that there are large differences in these values in the various studies. Future work 

should consider differences in these values.  

In the next few sections, an analysis of historical balancing data for the whole of 

the UK is given. Public domain data does not provide granularity down to specific 

region. 

2.5 UK Electricity Market Background: Future Scenarios of Total Demand 

The UK’s system operator, National Grid, forecasts that total demand for UK 

power will increase by 75% -120% by 2050, dependent upon scenario (Figure 2-5). 

[70]34. It would be expected that the higher the demand the higher the requirement 

for balancing services. 

                                         
34 Note that later FES scenarios use different names for the scenarios, the results from the analysis are 

broadly similar. 
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Figure 2-5: National Grid Future Energy Scenarios (FES) 2019 [70] 

 

National Grid’s “Two Degrees and Community Renewables” scenarios (2019)35 

meet the UK’s 2050 carbon reduction target but features different levels of 

decentralisation in its assumptions. The “Steady Progression” and “Consumer 

Evolution” scenarios do not meet the 2050 target and all scenarios include a mix of 

technologies, but assume different levels of adoption. In all scenarios, demand for 

electricity grows. A greater decentralised focus will put more strain on localized 

systems i.e. at the distribution level (low to medium voltage). 

Overall energy demand (gas and electricity) falls in the scenarios, but economic 

growth and the uptake in charging (35 million EV’s in 2050) dwarfs any potential 

savings from efficiency gains in the other sectors. Interestingly, in a separate study 

                                         
35 National Grid publish these scenarios, annually.  
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[71], it is shown that younger generation lifestyle choice are eroding these gains in 

efficiency. It is unlikely that this effect is included in the future electricity scenarios. 

National Grid recognize that “a smart flexible system will need new business 

models and services to match system needs with vehicle charging requirements and 

consumer preferences” [70] and that “the market will need to adapt to the changing 

plant mix. Key industry processes are likely to need reviewing, bringing with them 

opportunities for new services. Balancing36, security of supply, affordability and 

efficiency in a decarbonized world presents new challenges”[72]. However, it is not 

clear what the new services will be, and what impact they will have on the system 

and how to best review them. This thesis provides a framework and methodology for 

helping with this review and provides additional insights. 

In more recent years DNO’s in the UK have published their versions of the Future 

Energy Supply, DFES (see Scottish Power’s version of DFES [73, 74]). They provide 

slightly more granularity with yearly values at the Primary substation levels 

(33/11kV) and the Grid Supply Points (275-132kV). The output is broadly similar to 

the National Grid’s work and feeds into the FES work. Flexibility requirements are 

only shown at the yearly level from 2021 – 2050. Although good for yearly planning 

purposes, hourly data views required for simulating flexibility in this work are still 

absent. It does provide a view on the peak flexibility required (MW) at various 

distribution nodes and could be a useful source of data for future work. 

                                         
36 Note balancing in this context applies to transmission assets, but the comment equally applies to 

distribution flexibility. 
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2.6 Analysis of Balancing Prices and Imbalance Volumes 

Using National Grid [75] and Elexon data [76] an analysis of balancing volumes 

vis a vis demand and wind penetration is shown in Figure 2-6 for the UK.  

Balancing volumes vary through the year but are of the order of +- 15-20% of the 

expected day ahead volumes.  

Figure 2-6 presents various graphs from an analysis of various balancing demand 

data sets over the period 2013-201537. Although Figure 2-6 (a) appears to show slow 

downward trends of balancing prices with wind penetration levels, the historical 

relationship between price and wind penetration is still unclear. The influence of 

learning on balancing prices and increased competition is likely to have had an effect 

in these markets. In addition, wind penetration was at relatively low levels, during 

this period. 
 

 
Figure 2-6: Analysis of historical UK balancing market data 

                                         
37 Later years, especially post Ukraine war start, show higher average values and greater volatility. 
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There appears no such trend in volatility of prices with wind penetration, although 

it is likely that other factors are at play here. In addition, aggregator/DSR levels 

would be low, so care should be taken in extrapolating any conclusions from this 

analysis. Figure 2-6(d) suggests that higher volatility is associated with higher prices, 

although this has large degree of scatter. Volatility time series trends (Figure 2-7), 

appear random with burst of activity, however it should be noted that this excludes 

any substantial effects from DSR or “flexibility at the distribution level in general. 

 
Figure 2-7: Daily balancing volume volatility 2015 

 

Very different balancing volume patterns are found by year ( see Figure 2-8). It is 

clear that it will be difficult to forecast these balancing patterns accurately as the 

patterns seen in Figure 2-8 will be dependent on outages, weather, renewable energy 

mix, and so on. So some sort of probabilistic forecasting model would be required to 

represent these patterns. 
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Figure 2-8: Daily balancing volume volatility for January  

 

2.6.1 The Impact of Drivers on Future Imbalance Volumes and its Volatility 

Simulation with real or simulated OPF network models under a variety of 

conditions would provide a useful methodology to answer the question of how will 

future imbalance or flexibility volumes will change. Unfortunately, this would involve 

a large amount of work and is outside the scope of this thesis and is left for future 

work. 

The Future Energy Scenarios (FES) in 2022 [61] and the datasheet (FL.03) that 

accompanies it in particular, provides a view on how the need for flexibility will 

increase over the next 30 years. It shows that flexibility is forecast to increase by 61-

153% by 2035 depending on scenario and by 244-370% in 2050. EV’s and DSR are 

expected to provide 20-35% of that flexibility. Prior to this recent publication, there 

were few sources of how this flexibility would grow and its makeup. For the interested 

reader, Appendix O: O provides a bottom up analysis using forecast errors associated 

with weather, solar, wind etc. performed by the thesis author, to calculate how 
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flexibility volumes would be expected to grow under different assumptions about 

renewables and EV penetration. It is shown that Balancing volumes expressed as a 

percentage of total demand could be as variable as 15-32% (peak), dependent on 

renewable energy mix and EV penetration levels. This analysis is based on UK wide 

data so specific area or other operational issues could increase these values. 

Assuming a normal distribution,38 this equates to a standard deviation (SD) of 

around 7% to 10%. This about twice as high as the volatility derived in the time series 

analysis presented in section 2.6 above. 

This analysis therefore suggests that balancing volumes could be some 50% -100% 

higher in 2030, depending upon wind penetration and assuming a 30% EV penetration 

in 2030. Note a sensitivity factor that reflects this range has been used in the 

simulations presented in Chapter 8. 

 

2.6.2 UK Domestic Flexibility Supply 

Although demand is an important determinant of prices, flexibility supply from 

consumers, small businesses and generators will also form an important part of any 

system providing flexibility services. Flexibility from generators and Industrial 

customers can be assumed to be a few percent of the total supply39. The question is 

how much flexibility supply will domestic customers provide? 

Drysdale Wu and Jenkins study [77] reviews and estimates domestic flexibility 

                                         
38 That ranges from +- 3 Standard Deviations. 

39 Based on historical supply from such actors. 
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potential for the years 2012 and 2030. Various figures in the reference show flexibility 

potential in summer and winter and by time of day for a variety of flexibility types 

including heating, cold and wet appliances, consumer electronics, lighting and cooking 

appliances. The study shows that about 28% of domestic demand could be used for 

flexibility services. Obviously not all of this would be used. For example Söder et al. 

[78] section 2.1.2 shows that after optimization, only about 75% of total flexibility 

capacity in Sweden is forecast to actually be used. In addition, particular households 

may not want to participate in a flexibility market. It is known from Ofgem figures, 

that current household demand without EV;s is around 11kwh/day, but EV 

penetration is currently very low.  

Söder et al. [78] reviewed demand side flexibility capacity in Northern Europe and 

summarize capacities as a percentage of peak demand in their table 10 and the various 

tables contained within the paper. This is summarized in a different format in Table 

2 below. Domestic market flexibility includes water and space heating, and other 

domestic flexibility sources. 

Country Domestic Market Flexibility 

% of Peak Demand 

All Markets 

% of Peak Demand 

Sweden 7.4 - 20.4 25.3 – 29.7 

Denmark 5.4 – 9.6 (Table 3) 11.5 – 29.7 

Norway 4.2 – 11.4 8.5 - 24.9 

Finland 7.6 - 9.6 29.1 - 31.1 

Estonia 3.6 – 14.7 15.0 - 26.1 

Latvia 0 5.1 - 6.1 

Lithuania 0 3.5 – 4.6 

All countries in 

study 

5.6 – 13.1 15.3 – 29.5 

Table 2-2: Northern Europe flexibility capacity summary: Source - Söder et al. [78] 
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The various studies show that flexibility capacity will be market dependent but 

lie in the range 15-30%. The UK study in [77] suggests that total flexibility potential 

(without EV’s) is around 28% for domestic customers. EV’s will provide additional 

potential. This thesis will initially assume that only 14% i.e. 50% of the potential will 

be available for flexibility bidding and aggregation. Sensitivities to this quantity will 

be investigated. In addition, flexibility potentials will vary through the year (figures 

19 -20 in [77]). These profiles have been normalized and an EV charging discharge 

profile has been added to the curves. Curves have also been extended to cover 8760 

hours in one year. Customer input data for the simulations in Chapter 8 includes for 

many different types of flexibility, including EV potential, so a simple test40 in the 

code allows the simulation model to select between two different normalized curves.  

 

2.7 Aggregation: Overview and Modelling Construct 

The objective of the EU Horizon 2020 SmartNet project [6] was to compare 

different coordination approaches between actors such as Transmission operators 

(TSO), Distribution System Operators (DSO) and customers. To facilitate interaction 

between, potentially, millions of Distributed Energy Resources (DERs)41 and manage 

the TSO-DSO interaction, it is also necessary to develop and analyse aggregation 

                                         
40 Does the consumer have an EV. 

41 Small units connected to the distribution grid with possible two-way flow of electrical power. 

Common examples of DERs are Distributed Generators (solar, wind) battery storage, electric vehicles 

(EV) and active demand response (load that can change its consumption to provide flexibility to the 

system). 
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models. According to the English Oxford Dictionary aggregation is defined as “the 

formation of a number of things into a cluster”. In a similar way, an aggregator is 

defined as “a company that negotiates with producers of a utility service such as 

electricity on behalf of groups of consumers”. In this way the SmartNet aggregators 

take millions of volume-cost bids from homes, businesses and other DER’s, packages 

those bids into larger bid units and submits those bids to a TSO, DSO or some hybrid 

organization that manages flexibility markets on behalf of TSO and DSO. The system 

uses bids from a number of aggregators that represent thousands of DERs to clear the 

market at thousands of nodes. The simulator developed in the SmartNet is based on 

a Dist-flow AC Optimal Power Flow methodology to minimise system costs, i.e. 

minimize cost of activation of flexibility bids, while ensuring that network constraints 

are respected. The solution provided by the simulator yields electricity nodal prices 

and dispatch volumes for participating DERs over thousands of nodes. 

The aggregator agents that are used in this thesis are based on the work of the 

author on the SmartNet project and particularly the implementation of one of the 

aggregation models, the Curtailable Generator / Curtailable Load (CGCL) aggregator 

[79]. This section outlines the design of such a software aggregator agent, and provides 

useful background on the functional design and operation of an aggregator that is used 

later in this thesis. 

An agent based object orientated design was used to construct the aggregator 

using a novel finance based buckets or tranche system to aggregate bids across 

thousands customers. A “bucket” is a term typically used in business or finance to 

categorize assets, but so far has not been applied in modelling aggregators in the power 
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industry. This approach represents an alternative methodology to the standard designs 

using optimisation techniques and has been integrated into the aggregator agents. 

2.7.1 Functions of an Aggregator 

Aggregators are assumed commercial entities, which are profit maximising and 

will have to provide a number of functions/roles within a real market setting. These 

will include but are not be limited to: 

1. Analysis of customers. 

2. Analysis of the market. 

3. Weather forecasting. 

4. Demand and clearing price forecasting. 

5. Risk management.  

6. Data management, Accounting and Billing.  

7. Congestion modelling. 

8. Aggregation of bids (Clustering) with the view to maximize profits. 

9. Bidding to Market and Interactions with TSO/DSO. 

10. Disaggregation – based on the bids submitted to the market during the 

aggregation process and results from the market clearing entity, apportion 

accepted flexibility to individual devices.  

11. Notification of any adjustments to individual devices from the disaggregation 

process.  

  

This thesis is going to focus on the modelling on all elements above except  

point 7. Congestion management will require an understanding of grid conditions in 
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the areas of interest and would need either real time data from the DSO/DNO or a 

power grid representation for example in PyPower or Pandapower. To simplify the 

grid modelling and to focus on the agent modelling side of the simulation, economic 

dispatch is used to clear the market, so no detailed representation of the distribution 

grid is provided. Analysis of market and customer data is also performed simplistically 

in the final simulation.  

2.7.2 Storyboarding: How the Key Players/ Agents Interact  

A method used in the film industry for presenting a vison or the outline of a film 

is through storyboarding. Storyboarding is also used by some larger companies to help 

create visons or to outline future scenarios. They can be used as a common 

communication technique between disciplines and help design all of the parts of value 

chain and provide a useful mechanism to allow people that were not present during 

research to experience a portion of it. For example, in 2012 AirBnB hired an artist 

from Pixar to illustrate and storyboard their vision [80]. Although vision can be 

produced visually – there is no reason why it cannot be presented as a script. In the 

following section, an outline of the interactions and functioning of a market with 

customers, aggregators and a market clearing entity is provided. This provides the 

basis for the design of the simulation presented in the following sections. 

2.7.3 The Storyboard for Aggregation Business Simulation 

Aggregators provide different contract types and services to their prospective 

customers. They can chose the terms at which they are willing to offer these services 

e.g. the margins they will charge for the service. Competition between aggregators, 

will adjust these terms and the services offered. Some customers will prefer one type 
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of contract and others another. Customers will talk/gossip to each other about the 

performance of the aggregators. They may influence the choice of aggregators in the 

future. In this simulation, Customers will bid flexibility into the market via these 

aggregators. They will learn from their experiences about these interactions, rather 

than just bid their full cost or marginal cost of providing flexibility (a common 

assumption in literature). Social interactions may also play a part in setting these 

price levels, as the customers may sometimes share price and contract information via 

social media. Aggregators will package these bids, so that system operators 

(TSO/DSO/ISO’s) can manage the clearing process in a more timely way. The 

packaging of the bids provides a mechanism for aggregators to risk manage42 and to 

provide additional profits. Algorithms for packaging such flexibility bids will be an 

important area for future research and provides a mechanism for an aggregator to bid 

competitively and manage risk at the same time. In SmartNet, bid packaging was 

considered in the CGCL aggregator agents [9, 82], but was simplified to provide a 

proof of the concept43 and could be a valid bucket clustering strategy.  

Aggregators would then bid volumes and the weighted average price44 associated 

with these bins/buckets into the wholesale market. They may also adjust the bids up 

or down before doing so. The market would be cleared by the ISO/DSO/TSO and 

aggregators would be informed whether the bids cleared. Disaggregation by the 

                                         
42 Judicious use of the packaging could reduce risk through portfolio diversification ( Brearly and Myers 

[81] ). 
43 Bids were spread equally over 10 bins/buckets. 

44 An alternative strategy would be to bid the upper price of the bucket range. 



 

47 
 

aggregators would apportion accepted volumes at the clearing price45 to the individual 

customers. Revenues based the contracts signed with an aggregator will determine the 

revenues that should accrue to a customer. Good performance in the market will keep 

customers happy. Depending on contract type, customers will renew their contracts 

periodically. This thesis assumes contracts change yearly, at the end of a calendar 

month. Customers may stay with the existing aggregator, change the contract type or 

move to a different aggregator or leave the aggregation flexibility market system 

altogether. Aggregators will exit and enter the market as profits wax and wane46. New 

entrant aggregators with new business models might believe that they have a new 

business model that can outperform existing incumbents. At the end of every year, 

aggregators will review their performance and consider changing their business models.  

Customers in the simulation have emotions (anger and happiness). Aggregator 

performance will firstly impact these emotions, but social interactions via social media 

networks will also have an effect. Stimuli from other connected agents will add to the 

existing emotional view about a particular aggregator. In this model, customers use a 

combination of social influence, logic (economics of the offers) and emotions to form 

views about aggregators and their contract offers. This is a departure from most 

models that take a more rational approach. 

At the end of every year, aggregators will select different business models, the 

basis on which contracts are offered to new or expiring customers. Aggregators choose 

business models using an economically rational decision framework using historical 

                                         
45 Note the thesis assumes that a price as cleared mechanism will be used in the ISO wholesale market. 

46 In the current simulations neither aggregators nor customers leave the market. 
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price data and volume data as an input. To make this work tractable, only six business 

models are considered (see section 4.2.6 for a fuller description). One element of this 

business model will be the extent and methods an aggregator uses to manage risk.  

This is a synopsis of the scenario that will be modelled in an agent based setting. 

Customers and aggregators will be the key agents in this simulation 

2.8 Chapter Summary (Key Points) 

 

 Data is currently sparse for distribution flexibility markets in the UK. 

Use of the current real time Balancing Market is made as a surrogate. 

 Analysis of Balancing Market data in 2010’s indicates that imbalance 

volumes are typically centered around zero with a standard deviation of 

5% of the day ahead demand. 100% penetration of EV’s and Wind could 

increase this volatility significantly. It estimated that by 2035 this 

flexibility demand could rise to twice the values seen currently. 

 Aggregators will form an important part of a future flexibility market. 

This chapter sets out the roles and interactions of a potential aggregator 

operating in a flexibility market. . 

 Aggregator and Customer interactions have been outlined using a 

storyboarding approach. 
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Chapter 3  

 
Agent Based Models for an 

Aggregation Business: Assessment and 

Requirements 

 
The Agent Based Modelling (ABM) paradigm provides researchers with a powerful 

simulation modeling technique that has seen a number of applications in the recent 

years including Covid19 modelling, organizational dynamics, transportation and traffic 

flow, cellular interactions and evacuation (emergency services) dynamics. 

ABM is ideal to model systems where the dynamics of the system are too complex 

to describe globally, but easy to understand locally. ABM is a bottom-up simulation 

technique where we analyze the global behaviour of the system by simulating the 

interactions of its individual agents where we describe their individual or local 

behaviour. Agents can have fixed rules or can adapt according to signals from their 

environment 

The Agents in this thesis’ context are generators, domestic and industrial 

customers and the system or market operators. A number of ABM frameworks already 

exist for simulating a variety of domain specific instances including for electricity 

markets. Section 3.1 provides a review of Agent Based Modelling (ABM) in general, 

and Section 3.2, the power domain in particular, and shows that there are only a few 

frameworks that specifically focus on the power systems domain and aggregation in 

particular. Only one, the SmartNet simulator [6] (which is not strictly an ABM model) 

focusses on aggregators. In addition, none of the ABM systems reviewed takes account, 
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or models, risk, business models or the wider concept of risk management in a 

corporate context. Section 3.3 sets out the requirements for ideal distribution network 

flexibility ABM simulator in the context of this thesis. Finally, section 3.4, uses the 

needs of an ideal simulator to compare existing systems and to select an appropriate 

environment for uses in this thesis. The structure of Chapter 3 is summarized in Figure 

3-1. 

 

 
 

Figure 3-1: Overview of Chapter 3  

3.1 Agent Based Models (ABM) and Multi Agent Systems (MAS): An 

Overview 

The idea of Agent Based Modelling was first introduced in the 1940’s but lacked 
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the computational firepower to make it a reality. Von Neumann, created simple agents 

(Cellular Automata CA)[83, 84] and Conway constructed the well known Game of 

Life [85], a game based on simple agent rules again using CA. Agent based models as 

they are today, were not introduced till the early seventies. Schelling's “segregation47 

model” [86] introduced the basic concept of agent-based models as autonomous agents 

interacting in a shared environment. In 1996 Epstein and Axtell introduced their 

artificial society simulation SugarScape using ABM in the book “Growing artificial 

societies: social science from the bottom up” [87]. Epstein later introduced the term 

“generative science” in the book “Agent-Based Computational Models and Generative 

Social Science” [88], the first in a series of three books. The concept behind these books 

and associated models48 is that one can mimic real outcomes using many agents all 

interacting with simple rule sets. The agents generate the outcomes that mimic real 

life. The last of these books introduces a framework called Agent_Zero [89] that again 

uses “simple rules” to generate social interactions to create “realistic social interactions 

in a number of settings. An adapted version of this framework will be used in Section 

6.4 to simulate social interactions between customers and aggregator and this will be 

the first time such type of framework/model has been used in the power systems 

domain.  

In the Social Science domain, and particularly in modelling complex dynamics in 

organizational settings, Carey has developed a number of ideas on social interactions 

                                         
47 A segregation model demonstrates how individual predispositions regarding neighbours can lead to 

segregation. Schelling’s model was a non-computational ABM model. 
48 Sugarscape is an example of a generative model. 

https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life
https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life
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notably within organizations [90-95]. She was involved in the development of the 

CONSTRUCT framework/software to model knowledge transfer and interactions 

within organizational settings. CONSTRUCT models individuals groups and 

organizations as complex systems and uses dynamic networks, agent-based, 

information and belief/knowledge diffusion simulation to capture dynamic behaviors 

in groups, organizations and populations with different cultural and technological 

configurations. This may prove to be a useful framework for modelling organizations 

like regulators. 

During the late 1990’s and 2000’s, a number of ABM simulation packages, mainly 

in the Social Science discipline were developed including NetLogo [1], Repast [96-99], 

MASON [100], JamesII [101], AnyLogic [102] and, more recently, MESA[103]. Many 

of these systems are written in Java or C/C++, but only a few in Python (e.g. MESA 

and SPADE[104]49). 

Python has now overtaken Java as the language of choice in Universities. It is a 

powerful language especially for data science and machine learning. Although it is 

slower to run than Java, it allows faster code development and is more easily 

understood and read. Use of C based routines such as Numpy[105, 106] or Xarray[107, 

108] can make programs written in Python extremely fast. As a result, developers can 

spend more time on their algorithms and heuristics related to their chosen subject 

area. Many researchers are also moving away from using Java, preferring Netlogo[1] 

and MESA[103]. These are generic ABM frameworks with their roots in social science. 

                                         
49 SPADE is actually a MAS system. 
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For the interested reader introductory texts on ABM and its use in modelling 

various domains can be found in [109-111]. Leigh Tesfatsion’s website [112] also 

provides useful links to various ABM resources. 

3.1.1 Overview of ABM/MAS Literature 

There has been a number of surveys on ABM and MAS systems [113-116] as well 

as many dedicated webpages and tutorials outlining what they can do in terms of 

Agent Communication Languages, openness, programming language choice and so on. 

Typically, ABM frameworks focus on a particular area of research i.e. they are 

specialized to analyse particular features or behaviour, or have other limitations. Only 

a few specifically focus on power system/market applications. There are now over 70 

ABM/MAS systems in existence with a typical lifespan of 4-5 years50. Only a few of 

these systems /designs (e.g. Jade [117], Repast [98]) ) have lifespans in excess of 10 

years.  

Frameworks have typically been developed as standalone systems to answer 

specific questions. Each system has a specific design goal in mind, but for a more 

general framework. it would be useful to certain combine functions from the various 

frameworks. Few researchers have joined these systems together or simply reused 

components from them where appropriate. However, Cardoso [118] in his paper on 

SAJas (The Simple API for JADE-based Simulations) proposes the use of an API to 

join Repast to Jade, with a justification that “multi-agent based system simulations 

(MABS) focus on applying MAS to model complex social systems typically involving 

                                         
50 Lifespan in this instance refers to how long the systems have been actively supported. Many are PhD 

project based and become unsupported once the PhD is finished. 
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a large agent population. Several MAS frameworks exist, but they are often not 

appropriate for MABS. Essentially the MAS systems provide superior interaction 

protocol’s between agents over that typically seen in pure ABM systems,, that may 

be useful in some, especially more detailed settings, e.g. models of EV vehicles 

communication systems might be better modeled in a MAS setting rather than a pure 

ABM one. Where this is not the case, an Agent Based Model with a simple 

communication protocol may be more efficient in modelling the task at hand. In a 

similar vein, Gormer, et al. [119] propose the JRep framework for simulating an agent 

based airport scenario, linking Repast (ABM) to Jade (MAS). As they note, “existing 

agent frameworks focus on either the macro or the micro perspective”, but don’t 

combine the two. Combinations of an ABM and MAS architectures may be useful as 

it will allow us to better understand power system organization/operation. 

3.2 ABM/MAS in Power Systems Modelling 

Although there are over 70 ABM/MAS models that have been developed since the 

2000’s, research has shown that there are only around four such electricity/power-

focused systems available for power based ABM analysis [32]. TU Delft developed its 

EMLab model [2-5, 22] originally using Java Spring [120] and the Neo4J database 

[121, 122] with an aim to aid in European power market policy design. Java Spring 

allowed modifications to the model via a XML scripting language, but users found it 

difficult to use and it had a speed impact on the model. The latest version of Java 

EMLab does not use Spring or the Neo4J database and makes extensive use of Java 

streams [123] as a form of scripting language. In a separate exercise from this thesis 
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the author has “ported” EMLab into Python so that it can be easily connected to 

other Python components such as PyPower. It is known as PyEMLab. 

Currently, ABMs typically have the following general characteristics: 

 

1. Many agents or actors that represent companies, individuals, power plants, banks, 

regulators, with differentiated roles and different rules or behavioural aspects. 

2. Agents that can learn about their environment and interact with other agents. 

This can be in passive form with rules that do not change or in an active form 

using adaptive techniques like reinforcement learning or some other heuristic [124, 

125].  

3. Some form of agent interaction and communication protocol which defines how 

agents interact with each other and the environment (see below). Specifically the 

protocol would define what information is to be exchanged, how often, and 

between whom e.g. only certain agent’s may interact at certain times. In the 

context of this thesis Consumers interact with Aggregators to change contracts 

monthly. 

4. An environment or environments51 in which the agents reside. The environments’ 

in this context could consist of a power grid, a power market and a social network. 

Environments are typically include initial conditions, and background processes, 

such as market clearing mechanism and power flow calculations.  

In ABM, simulated individuals and companies make decisions according to 

programmed rules, albeit these rules can be adaptable and change. Multi agent 

                                         
51 There can be more than one environment and in this thesis, agents exist with a social networks 

sharing information, as well as interacting with an electricity power market. 
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systems (MAS) are similar to Agent Based Models but are usually focused on 

engineering problems. Sophisticated communication protocols between agents not 

usually seen in ABM are used in MAS so that agents can communicate between each 

other. MAS are typically considered to operate at the micro level whereas the ABM 

models are looking at, and modelling, more macro issues. However, for certain types 

of analysis, it is beneficial to combine both approaches.  

Agent Based (ABM) and Multi Agent System (MAS) modelling could provide us 

with an important arsenal in discovering complex patterns that are likely to emerge 

from the interactions of a number of players. Essentially, any model of the power 

system has to represent its physical and commercial aspects, including the grid, the 

market, the generators, the demand, DERs etc. The model also needs to include an 

ability to represent and study adapting participant behaviours in companies and 

customers. Therefore, it is now recognized that a more holistic approach is needed, 

one that ultimately requires a more sophisticated simulator.  

The next section reviews the advantages and disadvantages of various existing 

ABM/MAS simulators in the context of an aggregation/power simulation wish list.  

Power Models in ABM/MAS  

As mentioned above, although there are over 70 ABM/MAS systems in existence, 

few have been developed to address power systems, with categorization and analysis 

of MAS applications in power provided in [126]. This review summarizes work that 

has focused on lower level distributed simulation, and also provides a useful breakdown 

of papers that deal with specific power issues, e.g. markets, generators etc. For 

example, AMES (Repast) [127-129], ECMAS (Repast) [130, 131], EMLab (Agent 
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Spring) [2-5, 22], MASCEM [132-134] are specific ABM modelling environments that 

have power system implementations, while “lower level modelling” of multi agent 

systems using Presage252 is presented in [135, 136]. Furthermore, Anylogic [102], which 

is not specifically designed for power systems, is a proprietary system that could be 

used and has an architecture design whose logic allows analysts to model not only 

agents, but also discrete events and also use system dynamics. The agent behaviours 

can be modelled using JavaScript, but this is too limiting for purposes of this thesis 

as it requires a fully-fledged Object Orientated Programming (OOP) language to 

model complex interactions. More sophisticated agents using Java and Neural Nets, 

which are linked into AnyLogic using a Java Archive file (JAR), have been developed 

in [137]. This method requires a greater degree of programmer intervention to link in 

the various components, and is less flexible than the conceptual design in this thesis. 

Furthermore, EMLab, a power system focused ABM, has based its system on the 

Neo4J graph database [121], rather than a Relational Database Management System 

(RDMS). Neo4J is an open source/commercial system used by many to analyse 

Twitter feeds and relationships. It is a very efficient and can be used to store 

knowledge maps, power networks and, most importantly, the relationships between 

agents in different layers and between agents on the same layer. It can, in the right 

circumstances, be faster than a normal database (RDMS) [138]. It can also be used to 

quickly analyse networks and identify problem nodes for example. Due to its features 

which also fit nicely with the typical representations of power grids (i.e. they are node 

                                         
52 It was designed as a MAS simulator. 
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based) it may be a useful base for a power system simulator framework. 

EMLab currently has code segments (Java) for a CO2 and commodity (natural 

gas, coal uranium) markets, contract representations, representations of power plants 

and different technologies within the context of an owning companies that are able to 

make investments according to market conditions and cashflow constraints within the 

companies. In addition to generating units and customers, a power link 

(interconnector) between two countries (Germany and the Netherlands) is also 

modelled. The power grid that is modelled is heavily simplified. 

3.3 An ideal ABM/MAS Power Aggregation Simulation System 

In the context of this research, an ideal ABM/MAS power simulator used to 

simulate the players, power flows and prices in a real time imbalance market providing 

flexibility would provide the following functionality: 

 A design which allows an understanding of how the different behaviours of the 

various power system agents (generators aggregators, consumers and policy 

makers etc.) will affect the system technically and commercially. For example, 

(i) how will power flows across the system change? (ii) how will prices change 

at various nodes in the system? (iii) will they be too high? (iv) how will 

generator bidding strategies and demand response impact on aggregation 

strategies, system operation and prices? (v) Will resulting power flows cause 

congestion in the system and require new investment? 

 Test out new policy rules. 
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 Try out different agent behaviour techniques e.g. policy agent rules, different 

agent learning paradigms. 

 Allow us to incorporate social networks and customer emotions into the model.

  

The framework will also need to have the following features: 

 Has both a market and network physical (i.e. power flow) layers that are 

incorporated into market clearing and bidding representations. 

 Is extensible and has the ability to switch in and out different simulation 

layers, roles and change agent behaviours as needed. 

 Easy to use.  

 Could be solved in distributed manner so to allow analysis of large scale 

networks. 

 Have models of agents representing various actors such as generators, loads, 

electric vehicles, aggregators, storage, atomic and temperature controlled 

loads, system operators, regulators, and companies. 

 To reuse existing software components wherever possible. 

In the context of this research, the use of agents and appropriate algorithms to 

represent customers (Domestic and Industrial), generators, aggregators and a system 

operator for market clearing and management. This model must be capable of being 

easily extended.  

3.3.1 Ideal Architecture 

These requirements drive us to a conceptual design that would include the 

following elements shown in Figure 3-2. A system that makes use of principles used in 
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“pure” ABM and MAS systems where appropriate and allows the easy addition of 

different power domain agent types53. This would include the changing of agent 

roles/behaviours and an appropriate environment (including power flow simulation, 

e.g. economic dispatch, OPF) and agents, that are representative of a flexibility 

market for distribution system flexibility. In addition, there are number of frameworks 

and examples for modelling emotions, cognitive processes social interactions and 

representing the psychology of agents [89, 139-153]. A review of these computational 

social psychology frameworks and emotion modelling is more fully given in Chapter 6 

“Human like Customers: Model Frameworks; Emotions and Social Interactions”. 

 A framework that would be able to simulate both synchronous and asynchronous 

agent behaviours to capture investment behaviours and contract mechanisms such as 

those in P2P54 transactions. 

 

Figure 3-2: Proposed high-level architecture 

                                         
53 See numbering in Figure 3-2. 

54 Peer to Peer. 
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The problem domain under consideration can be represented as a multi layer 

problem that could be characterized and analysed in coding frameworks such pynet 

[154] or py3plex [155]. The multi scale nature of the problem domain resulting in short 

and long term effects, could result in poor computational performance55. Equation free 

modelling [156-161] is a technique that allows researchers to join the micro (short time 

scales) to the macro level without performing all of the simulation at the micro level 

improving computational run times. It is analogous to using the ideal gas law 

equations, which represent the behaviour of gases at the macro level, whilst switching 

to the micro level of simulating individual molecule collisions as and when necessary 

i.e. when the macro level representation breaks down. Some form of graph network 

structure to represent social media56 would be essential in this design, so that customer 

“gossiping” can be represented. The nature of this modelling requires simulation of 

100,000’s of agents, so a framework that it is scalable and distributed would be a 

desirable feature in the longer term. Complex systems such as that to be modelled 

in this thesis would be expected to exhibit emergent behaviour. Detecting such 

emergent behavioural would be an important part of an ideal system so that further 

analysis of emergent drivers could be performed. Finally databases for storage and 

the use of GUI57 toolkits like Java Swing [162] or QT [163, 164] to provide user 

interfaces and visualization will be essential for the long term use of any potential 

framework. 

                                         
55 Long run times. 

56 This is somewhat linked to the concept of multi-layer modelling. Power networks themselves are 

represented as graphs. 
57 Graphical User Interface. 
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The main elements of the proposed architecture shown in Figure 3-2 are discussed 

further in the sections below 

Aggregator Functionality: Example - SmartNet – Power System –② 

A core element of the ideal design of ABM simulator for this thesis is the 

aggregation of bids from customers to provide flexibility to the market. The roles that 

the aggregators should take on are set out in section 2.7. The Python based software 

developed as part of the SmartNet project [6] is used to look at the impact of different 

coordination designs on power flows, prices and models millions of devices and 

thousands of distribution/transmission nodes. It is a generic framework58 that models 

an ancillary power market for balancing the system. Although not an agent or MAS 

based system, it has some interesting features that an ideal ABM system simulator 

should possess, including that it simulates a large number of assets (current simulation 

involves 1,000’s of nodes and millions of devices), has an optimal power flow simulation 

(OPF), a bidding structure and methodology, and has a database structure/design 

suitable for Power. Reuse of such a structure or parts of it, seems eminently sensible, 

as many hours of development have already gone into this simulator. The SmartNet 

model uses aggregator agents placed at HV/MV nodes representing transmission and 

distribution networks in Italy, Denmark and Spain. One aggregator is used to 

aggregate flexibility from EV’s, another from curtailable Load and Generation 

(CGCL) and so on. There are six different types of aggregators represented [8, 9, 165]. 

Note in practice actual aggregators may aggregate many different load types not just 

                                         
58 The SmartNet Software is a generic model, but currently has models and data for Denmark, Italy 

and Spain. 
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one, so it is somewhat unrealistic. A dist-flow OPF is used to clear the market and 

provides both nodal and zonal prices. Customers bid at marginal cost59 to the 

aggregators. Aggregators “aggregate” these bids per the algorithms set out in [165] 

and then bid into a clearing market. No strategic bidding or adjustment of the bids 

occurs. Essentially the aggregator passes on a form of the marginal costs bid by the 

flexibility providers. Aggregators do not compete with each other. Each of the different 

types of aggregators uses a different algorithm to aggregate. Although SmartNet is 

not really an ABM model, the CGCL aggregator has been designed in an agent style 

and has been reused and adapted in the development of an agent framework . 

 

Asynchronicity  

A review of ABM surveys and systems shows that ABM (macro level) models are 

typically synchronous, whereas micro level systems such as Jade (MAS) are typically 

asynchronous. Asynchronicity in this instance is defined the exchanges of messages 

between agents intermittently rather than at set frequencies in real-time. Delays 

between receiving and sending messages can occur and the order in which the messages 

are sent and received matters to the outcome of the simulation. In this context, 

Youssefmir and Huberman Youssefmir and Huberman [166] considers multiple agents 

who take decisions on resource use and act on the system simultaneously in an 

asynchronous manner to improve their utility. Strategic switching of agents in an 

uncertain asynchronous environment results sudden fluctuations around an 

equilibrium (See Figure 3-3) and yields significantly different patterns from that seen 

                                         
59 These do not change throughout the simulation and are provided through a database of assumptions. 
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in synchronous updating. Note in the case of the asynchronous simulation (rhs of 

figure) that the system is usually stable (moving around 0.7 level) and is punctuated 

with periods of instability (e.g. at t=3000-5000 and t=6000 in top right figure).  

 

Figure 3-3: Asynchronicity impacts on system dynamics; Adapted from figure 1 and figure 5 in 

[139]  

Youssefmir and Huberman's “model attempts to capture the essential features of 

distributed systems consisting of intentional agents that adaptively react to the 

dynamics that unfold around them” in a manner somewhat similar to the problem 

focus of this thesis as it includes learning and adaptive agent behaviour.  

 Cornforth, et al. [167] discusses MAS agent update strategies using a cellular 

automata (CA) framework as a case study. They examine updating strategies 

associated with some real life systems where the agents behave with different 

asynchronous update schemes and compare this with synchronous updating. The 

paper provides results on the dynamics of the CA system, under the different update 

schemes, and shows that the outputs can be significantly different.  

In a future smart grid system, peer to peer (P2P) bargaining/interactions will have 
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an important impact both on local conditions and further afield in the wider power 

system. By their nature these transactions are asynchronous, but other parts of the 

system will have synchronous interactions e.g. like market clearing. Designing and 

testing the interactions between these types of system e.g. P2P and the system 

operator, will allow us to understand how the system might perform in the future. A 

simulator with the ability to try out different synchronous/asynchronous protocols 

does not currently exist in the power domain and would be a useful addition to the 

power engineer’s toolkit.  

In finance, Jacobs, Levy, and Markowitz [168] developed the “JLM stock market 

simulator” to look at the effect of asynchronous investments on price patterns. 

Although written nearly 15 years ago, few authors and simulator designers have taken 

this approach, which, as they argue, is more realistic. Most of the power system 

simulators that have been reviewed assume synchronous investments. Of course, it is 

easier to model and understand synchronous transactions but it is recognized that in 

the real world, power investors do not act synchronously. Synchronous ABM 

simulators can be made to simulate asynchronicity by randomizing the order in which 

agents act. EMLab [2, 3, 5, 22] uses such a randomized approach to model power 

investments in the market. For example, agents are allowed to invest in the evolving 

market for power plant provision, but there is a limit to the requirement of such 

investment each year. By randomizing the order in which the agents invest, different 

agents will invest in power plant provision in different years. The Presage2 MAS 

simulator [136, 169-171] also uses this mechanism to simulate asynchronicity.  

Modelling asynchronous behaviour especially in contract renewal mechanisms, 
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investment behaviour and P2P interaction could therefore be extremely important. 

Our problem domain has elements of all the examples cited above. It is, therefore, 

proposed that any future power simulation environment provide a mechanism to 

switch between modes of synchronization. However, debugging and validating 

asynchronous models is extremely difficult. In the case of the proof of concept used in 

this thesis, we only consider a synchronous model.  

Multi-Scale Simulations (Equation Free Modelling)  

From a Complex Adaptive system (CAS) perspective, emergence occurs when 

events in one scale (micro) are propagated to another scale (macro) and vice versa. 

Capturing those effects [172], is key to identifying and understanding emergent 

behaviour in systems. In the context of the power domain, it is important that system 

modelers investigate, these phenomena, so that they can design appropriate mitigation 

strategies. A multi-scale architecture60 would allow the modelling of these propagation 

effects. It also fits well with the idea that ABM (macro) and MAS (micro) 

architectures need to be combined. 

However, developing models that can simulate a combination of events that occur 

at both the hour (for generators, EV’s) and the years’ timescale (for investments in 

infrastructure), are typically computationally inefficient. These models require some 

kind of glue or bridge to join these timescales.  

There have been many papers on multi-scale simulations, in recent years, and this 

provides a potential solution for this specific problem area. However, as discussed 

                                         
60 The model in this thesis operates at multi-scales with decisions occurring hourly, daily, weekly 

monthly and yearly. Currently the model simulates at one time scale ie hourly but different processes 

are occurring at these other time scales. 
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above, systems with agents that message other agents such as in social interactions or 

involve financial transactions are typically “stable” for large periods and are 

punctuated with bursts of activity. Note the physical power systems themselves may 

not exhibit this behaviour. Equation free modelling [156-161] provides a promising 

viewpoint/solution for this particular aspect, and warrants further investigation, 

particularly in the methodology to trigger the micro level simulation. In this regard, 

there have been far less papers focused on this specific aspect, especially in recent 

years. This approach has not been implemented in the power domain and requires 

further development before it can be used. This thesis does not make use of this 

modelling paradigm. 

Multi-Level Architecture  

Although there has been growing interest in developing models on multi levels and 

multi time scales, there still only a few concrete examples [173, 174]. The layered 

approach is discussed in many papers, but typically as a conceptual model, rather 

than used as a programming paradigm. This layer or multi-level model also fits well 

with the conceptual model presented by SGAM [175] for Smart Grid interactions in 

power. 

It seems eminently sensible that any new conceptual design adopts a multilayer 

structure so that it can capture different views of the system represented as layers in 

a model (Figure 3-4 ), such as a physical layer (devices power nodes, flows, congestion), 

market layer (prices) etc. It also proposed that any new conceptual design allow users 

to easily add, define or remove layers, to allow experimentation with different designs. 

This would be easier using a graph database structure as the links in the database 
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would define the layers and their interconnections. 

 

Figure 3-4: Multi-layer concept. 

Considering this, one of the necessary features of a new proposed architecture is 

that it can easily allow changes of the relationships and flows. 

It is taken as given that any model in the power domain would also need to 

represent power flows and be able to “clear” the market on a large scale. This would 

necessitate that any framework have a methodology and a database structure/design 

suitable for power distribution networks and particularly for designs associated with 

the evolving smart grid area and its new participants. Links to existing power system 

simulators e.g. PyPower, MATPOWER [176, 177] should be considered. 

Creating Layers and Agent Behaviours  

In developing a biology based simulator system Stanner Soffler and Olson [178] 

developed a component based Python system called ViPER61, where users can 

                                         
61 Later renamed as Vision 
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combine, recombine and create new biological components visually. Behind the scenes, 

this system creates Python code which links the various Python classes and modules 

together. The representation of code and module linkages in defined using a diagram. 

The Javascript based NoFLo [179] is another framework which could be used as a base 

for developing an Flow Based Programming (FBP) or visual based coding of agent 

behaviours. As a library for making complex workflows or asynchronous processes 

more manageable, examples of its use are in an Internet of Things project drone and 

robot programming and web design. Representing agents and agent behaviours 

visually would be extremely useful in the longer term and is left for future 

development, as this would be a time consuming exercise. 

The linking of code segments and agent roles can be achieved in other ways. 

EMLab’s, [2, 3, 22] scripting language also allows linking of components, with the data 

passed between components using an in-memory repository. This framework is based 

on a functional approach using Java Streams and lambda functions, which is 

essentially a functional pipe approach. Here, data is stored and picked up later by the 

various components. This is the approach that this thesis has taken. 

Distributive Computing using Actors: Scalable Lightweight Agents  

An actor is a computational entity that can concurrently transmit a number of 

messages to other actors, create new actors, and act on the contents of the message it 

receives. The lightweight nature of actors provides it with a good method to scale and 

distribute agents and would allow the development of an asynchronous ABM/MAS 

system using this architecture. Microsoft’s Orleans project (2015) [180], uses an Actor 
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based environment for agent interaction, modelled on the AKKA [181] system62. It can 

be scaled as well as distributed, and is also fast. “It reduces the complexity of 

distributed system by abstracting away concurrency issues together with state 

management … and reduces the complexity of coding applications by providing a 

simpler model to maintain object oriented codebase “ [182] and would require much 

less coding than in a system like AKKA. Furthermore, EA Games released a Java 

version called Orbit (2015) [183] based on this architecture, and its has been found to 

be very fast. It would be a very useful component linked with other systems to produce 

an asynchronous based ABM framework. In addition, the original developers of Jade 

proceeded to develop the actor based ActoDES framework (2016) [184], but it is not 

clear what the current status of the framework is. 

More recently the Python based Ray framework [185, 186] uses the Actors 

approach. Although it is recognized that scaling and distribution is a long-term aim 

of a potential framework this thesis will focus on agent design and simulation results.  

3.4 The Suitability of Existing Systems 

Comparison of the various existing ABM systems against an idea power simulator 

has been performed using a traffic light system, and is shown in Figure 3-5: Traffic 

light assessment of an ideal ABM/MAS power simulator. Experimentation with the 

various systems discussed above has also been performed 63 and forms the basis of the 

scores presented Figure 3-5 through colour bands. 

                                         
62 It is VBNet based eg C++, Visual Basic. 

63 Experimentation with the various systems was carried out to see how they work and whether they 

were fit for purpose. 
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Figure 3-5: Traffic light assessment of an ideal ABM/MAS power simulator. 

Each row represents a potential need or requirement for an ideal simulator. The 

table includes some additional requirements that are not specifically mentioned in the 

discussion in section 3.3.1.that were considered important for the development of the 

Jade

Orbit/

Orleans

Pressage

2

Repast 

(AMES) EMLab

Smart 

Net

Different  agent 

behaviours - easy to model 

FIPA Protocol

Multiple networks

Mobile agents

Asynchronous

GIS 

Visualisation/UI

DSR Modelling - potential 

and ease to model

EV Modelling - easy to  

model or already have

Storage Battery etc. Easy to 

model or already have

Social capital/Psychology - 

ability to model

Multi-Layer

Multi-Scale

Scale /Distributed

Holonic/Norms modelling

Self Org Capability

Clone agents

Rule based Engine

Agents that are required 

for thesis e.g. Aggregators 

Generators ISO etc.

Power OPF  - Ability to add

Graph Database

Scripting

Maintained

Final Score >>>
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framework presented in Chapter 7. For example, the ability to model self-organization 

or to have rule based engines. The columns represent the currently available systems 

that are compared. Scores from 1 – 10 have been given to each cell, with 10 

representing that the system fully meets that need. This is the equivalent of dark 

green in the figure. Zero represents that the system does not currently have that 

functionality. Colours are provided automatically by conditional formatting in Excel 

2016 using a graduated green - yellow – red colour scale. The last row uses a weighted 

average score to compare the various frameworks. The weights in this example are 

skewed to those elements that will meet research objectives in the short term. That 

is, where agent coding, scripting mechanisms are already in use and the frameworks 

are easy to use64. This “simple” scoring mechanism suggests the use of existing power 

ABM simulators such as EMLab, and or SmartNet. 

It is clear from the proceeding sections that there are many useful ideas and 

components in the existing systems that can be reused, and so would not advocate 

the complete redesign of a simulation system, but the reuse of large parts of existing 

simulators (e.g. EMLab, AMES, SmartNet). 

By further focusing on specific agents that need to be modelled in this thesis an 

additional, more detailed “agent” comparison is made in the section below.  

3.4.1 Agent Comparisons 

Various types of agents are modeled in the current power domain ABM’s. Many 

                                         
64 None of these frameworks are particularly easy to use and will require significant investment by 

researchers to become operationally proficient. 
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of them include the core agents and environments that are required by this thesis e.g. 

load serving entities, generators, traders and market operators that clear the markets. 

For example, in addition to the core agents, EMLab [2-5, 22] models CO2 and 

commodity markets that providing an impact on the energy costs of the generators. 

On the other hand, the SmartNet simulator [6-9, 165] also models aggregators, which 

is of a particular interest, since this thesis focuses on the Aggregators and their 

customers.  

As a starting point for the work presented in this thesis, a review of the AMES, 

EMLab, SmartNet and Presage2 systems has been carried using literature [[2-9, 22, 

127-129, 165] and by experimentation with the various systems65. The results of this 

review are summarized in Table 3-1 below, in the context of their use in simulating 

aggregation in the power domain. 

 

 

ABM >> 

 

Function 

AMES 

(Repast) 

EMLab SmartNet * Presage 2 Comments 

Programming 

Language 

Java with API 

to Python 

PyPower [187] 

Java Python Java Presage 2 

was designed as a MAS 

simulator 

Aggregators - 

Models 

X X √ X  

 

 

 

 

 

 

     

                                         
65 Note systems like MASCEM and others are not currently adequately supported and have been 

excluded from this review. 
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ABM >> 

 

Function 

AMES 

(Repast) 

EMLab SmartNet * Presage 2 Comments 

Optimal Power 

Flow (OPF) 

Simple 

representations 

with link to 

PyPower [187] 

Small Networks 

X 

Uses 

Economic 

dispatch and 

clearing across 

multiple 

markets with 

inter-

connector 

capacity 

constraints 

√ 
 

Large 
Networks 
modelled 

with 1,000’s 
of nodes 

Links to 

MATPOWER 

in some 

models. 

 

Generally 

small networks 

modelled 

SmartNet uses 

PyPower[187], 

PowerGama[28, 29] and 

its own SOCP 

simulation to perform 

OPF calculations 

Aggregator risk X X X – Has 

single input 

value in data 

structure 

but not 

currently 

used 

X  

Aggregator Business 

Modelling 

X X X X  

Aggregator 

Corporate modelling 

and Detailed Profit 

& Loss (P&L) 

Simple model 

for profits – 

used to exit 

industry 

Model for 

profits, and 

cashflow, used 

to constrain 

investments in 

new plants 

and 

technology. 

NPV and 

Cashflows 

X X  

DSO/TSO 

interactions 

X X √ X  

Social Network 

Interactions 

Repast can be 

used to 

perform social 

network 

analysis and 

simulate social 

science ph. 

Diffusion of 

light bulb 

technology 

using small 

world network 

methodology 

[188] 

X ? 

Has ability to 

model network 

structures and 

interactions. 
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ABM >> 

 

Function 

AMES 

(Repast) 

EMLab SmartNet * Presage 2 Comments 

Generators √ EMLab 

models power 

plants as part 

of generator 

companies and 

provides 

cashflows at 

the corporate 

level which is 

used to effect 

investments 

 √ All model Generators to 

some degree 

Customer 

Psychology and 

emotions 

X X X X Computational 

psychology solutions 

exist in the social science 

domain. See Chapter 6 

of this thesis later for a 

fuller discussion 

Industrial customers X X X X Detailed industrial 

modelling is not 

currently carried out by 

any these models 

DSR ? X SmartNet 

assumes that 

customers 

bid at 

marginal 

cost. Fixed 

during 

simulation 

X  

Domestic Customer 

Variable bidding 

(Flexibility) 

With learning 

X X X X EMLab does provide 

bidding at the plant 

generation level but not 

at the customer level. 

Forecasting is made 

internally of future 

prices 

Database 

(Connections and 

management of) 

CSV for 

input/output 

CSV for 

input/output 

PostgreSQL 

SQLite3 

Using 

Django 

ORM 

PostgreSQL 

Mongo 

CSV for input 
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ABM >> 

 

Function 

AMES 

(Repast) 

EMLab SmartNet * Presage 2 Comments 

Other Functions  Scripting 

language to 

add roles to 

agents 

Has used 

Neo4J Graph 

DB. Original 

EMLab used 

Java spring 

Aspect 

Orientated 

programming 

paradigm 

which allows 

layers and 

code segments 

to be weaved 

in and out of 

the code using 

scripts 

   

Table 3-1: Comparison of existing systems; their capabilities to model aggregators and dynamic customers 

*SmartNet is not really an ABM simulation platform but the Curtailed Generation 

Curtailed Load (CGCL) aggregator within the simulator has used agent based 

principles in its simulation of the aggregator. 

Note GridLAB-D™ [189-191] “was developed by the U.S. Department of Energy 

(DOE) at Pacific Northwest National Laboratory (PNNL) under funding for Office of 

Electricity in collaboration with industry and academia and is a first-of-its-kind time-

series power distribution system simulation and analysis tool that provides valuable 

information to users who design and operate distribution systems, and to utilities that 

wish to take advantage of the latest energy technologies. It incorporates advanced 

modelling techniques with high-performance algorithms to deliver the latest in end-

use load modelling technology”. It is a detailed model with physical and abstract 
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representations of various grid components and has an abstract ABM component. The 

current version is a commercially robust platform developed for DSO’s in the USA, 

but could be used in a UK context. It lacks in its ability to model human interactions 

in this system. Investigation into the linking of the AMES ABM platform to GridLab-

D has also been performed [192] and HELICS has been used as Co-simulation 

environment to run GridLab-D [193]. It is currently written in C++, but at the time 

of framework selection did not have a python interface66. It is understood that a 

Python interface may now exist, but that C++ programming experience is still 

required to work with the system. For this reason it has been removed from the system 

selection. 

All of the above models would be able to incorporate any future aggregator design 

with dynamic customer (domestic and industrial) interactions into their frameworks. 

However, Table 3-1 indicates that none of the systems adequately model:  

 Aggregator risk. 

 Corporate business models (Aggregator specifically), but companies in general. 

 Customer psychology in the power domain. Note much progress on the 

modelling of computational psychology (emotions and cognitive ability) front 

in the social sciences has been made (see Chapter 6) and an incorporation of 

some of these elements, would be a useful addition to ABM models in the 

power domain. 

                                         
66 See discussion https://sourceforge.net/p/gridlab-d/discussion/842561/thread/a39de4ac/ 
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 That although some models make use of social networks, many of these 

frameworks are in the early stages of development. “Gossiping” about prices 

or aggregator contracts and aggregator performance has not been modelled in 

these frameworks. 

 That EMLab and SmartNet provide many of the elements that this thesis 

requires for modelling aggregators in a distribution flexibility setting. 

3.5 Chapter Summary  

This chapter introduced current research on ABM especially for simulation of 

electricity markets. It presented an initial scope and ideas for an “ideal simulator”, 

including reuse of ABM frameworks, asynchronicity, visualization, multilevel and 

multi scale modelling graph networks for social media modelling. Although, it a longer 

term aim to design a framework with these various aspects this thesis will focus on 

reusing the EMLab and SmartNet software framework (in a synchronous mode). 

Output from simulations will be stored in external databases for later analysis using 

other tools like Excel and SPSS [194].  

Key Points  

 

 Few ABM systems model aggregators in the context of a future electricity 

flexibility market. Those that have (e.g. SmartNet), have assumed that 

customers bid at marginal cost, and have no learning.  
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 Risk is not modelled and no detailed representations of aggregator’s cashflows 

including the use of different business models is present. These models do not 

include customer’s emotions or represent social interactions in their 

formulations. 

 More importantly, the interactions between aggregators in a competitive 

environment and with their customers, has not been modelled. This will be the 

focus of this thesis. 
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Chapter 4  

 

Aggregator Business Models: Costs; 
Profits and Future Views 

 

This chapter provides a review on the current business models used within the 

aggregator business in the UK, Europe and the USA. Brief introductions to business 

modelling are given and literature on electricity market aggregation business models 

are reviewed. The majority of the current literature focusses on current business 

models, so this Chapter explores the use of other techniques and industry analogies, 

to develop future business model views for aggregators. Little detail is currently given 

on the exact mechanics of an aggregator business nor the cost structures of operating 

one. This chapter therefore develops some revenue forecasts as well as costs associated 

with an aggregator in the future. These have been used to construct an economic 

model, which has been used to explore the profitability of operating such a business. 

Literature and evidence from analogous industries indicates that future business 

models will become more service orientated and would use revenue streams from 

diverse parts of the energy chain. Incremental development of such business models is 

likely especially where incumbents are concerned but the threat of disruption from 

companies like Google; Amazon; IBM and so on is large. To facilitate simulation of 

business models effects in an ABM framework, six business models based on a two-

dimensional framework (risk stance vs revenue generation model) is developed. This 

model is also used in Chapter 5 to evaluate risk in an aggregator business. The 
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structure of Chapter 4 is summarized in Figure 4-1. 

 

 

Figure 4-1: Chapter 4 overview 

 

4.1 Overview of Business Models: Approaches and Industry Analogies 

Before revenues, costs and the risk associated with an aggregator business can be 

estimated, definitions of the aggregator’s mode of operation or business model has to 

be given. The business model provides a blueprint on the methods by which an 

aggregator will position itself to make money. In the next section a review of the 

approaches used to identify business models is given along with a review of analogous 
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industries to highlight potential profit margins and other issues. 

This is followed by a review of the literature on specific aggregator business models. 

Finally using structures discussed in this chapter a business model framework is 

developed for future aggregators. This model is used in simulations presented in later 

chapters. 

4.1.1 Overview of Business Models: Literature Review 

The Cambridge dictionary defines a business model as “a description of the 

different parts of a business or organization showing how they  

will work together successfully to make money”. Zott, Amit and Massa [195] review 

business model approaches and find that there is a multitude of approaches using 

methods such textual, verbal, and ad hoc graphical representations. There are a 

multitude of definitions of what a business model is and the term “business model is 

used with different meanings .. partly because of the absence of consensus on the 

definition of a business model and partly because of the different contexts in which 

the term is used” [196]. “A common formulation of the term is as a description of the 

way a firm does business at the strategic level” [197]( p. 14). 

4.1.2 Value Chain Approach 

Value chain analysis is still a sound model for identifying market opportunities 

and competitive differentiation. Originally developed by Porter [198] in 1985, it is still 

widely used in many corporate settings although Porter’s original framework has been 

modified or is used in conjunction with other methods. Osterwalder [199, 200], 

developed a comprehensive template on which to construct business models. The nine-

part “business model canvas” is essentially a way to lay out assumptions on key 

https://dictionary.cambridge.org/dictionary/english/description
https://dictionary.cambridge.org/dictionary/english/part
https://dictionary.cambridge.org/dictionary/english/business
https://dictionary.cambridge.org/dictionary/english/organization
https://dictionary.cambridge.org/dictionary/english/showing
https://dictionary.cambridge.org/dictionary/english/work
https://dictionary.cambridge.org/dictionary/english/successfully
https://dictionary.cambridge.org/dictionary/english/money
https://www.smartsheet.com/art-value-chain-analysis-defining-activities-identifying-areas-improvement
https://hbr.org/2013/05/a-better-way-to-think-about-yo/
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resources and key activities in the value chain of the business, but includes customer 

relationships, channels, customer segments, cost structures, business partners, revenue 

streams and the value proposition. Adner [201] takes quite a different approach from 

most business model researchers and develops the idea that business models should 

consider the role and interactions of the business model in the wider ecosystem. He 

uses such a framework to look at Apples Ipod model and the EV battery business 

“Betterplace” [202] in the context of a wider eco system.  

It is important to recognize that value will ebb and flow over time, it will move 

from one part of the value chain or pool to another. How fast it moves will depend 

upon competition between entities and the dynamics present in the market. Different 

business models will fare better than others at different times as the dynamics of the 

market change both in terms of customer mix, volumes and prices. 

4.1.3 Value Pool Approach 

The “Value Pool” approach attempts to identify where profits or value will be 

created in particular business segments in the future. Gadiesh and Gilbert [203] 

developed the concept of identifying profit pools in an Industry’s value chain in 1998, 

but van Beek et al. [204] coined the phrase “value pool” later to recognise that a profit 

pool analysis needs to be considered in the context of business models. Business models 

therefore capture some or all of the value in the profit pool. The business model 

essentially defines how these businesses will extract value from the pools identified. 

Slywotski’s Value Migration [205] approach is somewhat similar in that recognises 
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that value chains evolve and profits within the value chain shift through time67. 

Positioning to take advantage of these movements is key.  

4.1.4 Analogous Industries Approach: Industry Analysis: Margins and Deregulation; 

Business Model Evolution in Newly Formed Markets 

Analysis of the evolution of gas marketing in the US since pipeline deregulation in 

the mid 1980’s, shows how operating margins have fallen with time (see Appendix A.2 

and A.3). As a result, and in order to maintain profitability and market-share, US gas 

marketing companies68 consolidated and diversified their range of services that they 

offered. They now provide such services as; Supply aggregation and procurement, 

balancing, capacity reservation, storage facilities and risk management services. 

Current business models of the aggregators in the power domain are focused on a 

single dimension, but would be expected to evolve maybe along the lines of the gas 

industry.  

Studies of analogous industries (Appendix A.3) have shown that margins are 

eroded with the introduction of competition, especially after deregulation or the 

introduction of new regulations, and generally follow an exponential decline, 

eventually stabilising in the range of 2-5%. Initial margins may be in excess of 20%. 

However, in the early years after deregulation losses can occur. The time taken for 

margins to reach this low profit margin range is variable, depending on the industry, 

but it can be as short as 1-2 years. In the US gas market, it was 8 years before 

operating margins fell below 5% (on average), whereas in the UK the time period was 

                                         
67 Slywotski’s approach is not strictly a value pool approach. 

68 Known as gas retailers in the UK. 
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much shorter, of the order of 4-5 years. It is likely that margins in both the domestic 

and industrial flexibility markets will fall to similar levels, ie 2-5% as competition 

heightens. The evidence suggests that new aggregation services are likely to follow the 

same fate. Business models will evolve and new services will be offered somewhat 

similar to the experience in the US/UK gas and power retailing business of the 1990’s 

and 2000’s. 

In many industries there appears to be a link between the operating margin and 

market share with higher margins associated with larger market share [206]. This also 

appears to be the case in the energy retailing business. The same would be expected 

of a new aggregation business in the UK or elsewhere. 

There is no justification for marketers to earn large margins where they are taking 

little or no risk, e.g. buying off the spot market and selling on with a small profit 

margin of 0.5-2%69. For those taking more risk, e.g. by wholesaling and repackaging, 

it is estimated that on average the companies should be earning 7-14% profit margins 

based on the performance of companies like Centrica (British Gas) (see Appendix 

A.2)70. Power Aggregator companies are essentially businesses that are repackaging 

bids from customers and will need to have a good working knowledge of different 

services that could be offered, if they are to survive.  

Losses in Analogous Businesses 

The analogous industries analysis (see Appendix A.3 ) does not bode well for power 

aggregators. Analysis shows that companies are prepared to make losses for up to 5 

                                         
69 Large oil trading companies like Trafigura, Vitol have margins in the order of 0.5%.  

70 Note this is consistent with results from an analysis using a CAPM based framework – see section 

5.9.3. 
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or 6 years, or even longer. Teweles and Jones [207] also provide evidence that trading 

companies typically lose money 3 years out of 4. However, in all these examples the 

period of loss is generally related to the particular business cycle of that industry. One 

would expect therefore, that in the power aggregation business where many companies 

may effectively be underwritten by financially strong parents, e.g. the large power 

companies banks or the likes of Amazon, may continue to make losses for longer 

periods. However, smaller companies will find it harder to survive. Although the UK 

energy retail Industry made low profits as competition heated up, exits from the 

industry and other effects helped profit margins to rise [208].  

Analogous Industry Models 

Johnson [209], like many authors in this research area, provides a list of analogies 

based on experiences and patterns extracted from other industries including models 

that he gives quirky names e.g. Brokerage bundling; the affinity club; cell phone model; 

crowdsourcing; freemium: fractionalisation and so on [210]. Slywotzky and Morrison 

[211] analyse profitable companies and also look for patterns in those companies and 

the industries they operate in. They develop 22 profitability models that they 

characterise using three dimensions (strategic, operational and organizational) with 

many more sub dimensions below each category. 

4.1.5 Aggregator Costs: An Important Driver of Aggregator Profitability 

An important element of modelling a commercial aggregator will be to model its 

finances and its profit and loss account. Commercial aggregators will need to be 

profitable and cashflow balances will influence whether the company exits from the 

industry as well as potentially impact on bidding strategy. An important component 
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of any cashflow model is the cost model. 

There is a currently no known detailed cost analysis of commercial aggregators in 

the power industry, although some accounts are available for so called aggregator 

companies in the UK and the USA These provide some information but lack in detail 

and assumptions of key parameters including detailed descriptions of the business 

model in use. 

Using the author’s experience on aggregation costs in the US/UK gas and power 

Industry, SmartNet [212], and data and views extracted from conversations with 

Industry Professionals, a bottom up cost model of different operation models has been 

developed. Operating (OPX) and capital costs (CPX) have been estimated for a 

number of items and costs built up from individual components (for more details see 

excel spreadsheet at https://github.com/Ghoworth). A key function of the SmartNet 

project was to develop a cost benefit analysis for the project, including the cost of 

developing key parts of the software required for operating an aggregator. Using some 

of this work and using the author’s prior experience from the trading business and 

literature searches on the cost of accessing data, a spreadsheet was initially created 

for a business with 150,000 customers. This includes line items for various costs such 

as office space rental, business licenses, computers, software and staff. The cost 

spreadsheet was further modified to take account of different number of customers. 

For example, from experience it is known that one account executive could look after 

say 1000 customers. Users of the spreadsheet can change these assumptions. 

Maintenance costs of software packages are assumed to be 20% of the initial capital 

cost.The model has an accuracy of a class 4 estimate (+- 30%) [213].  

https://github.com/Ghoworth
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Note that within a particular business model, aggregators could use different risk 

strategies and revenue models. This may have a small impact on capital and operating 

costs but these are ignored in the analysis below. Figure 4-2 and Figure 4-3 summarizes 

the capital (CPX) and operating costs (OPX) of an aggregator providing flexibility in 

one area (e.g. a city and surrounding areas) and on one product aggregation service. 

It is based on a bottom up cost estimate, with a number of components shown in the 

figures.  

 
Figure 4-2: Capital cost of an aggregator – bottom up assessment 
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Figure 4-3: Operating cost of an aggregator – bottom up assessment 

Figure 4-4 shows how capital and operating costs are predicted change with the 

number of customers.  
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Figure 4-4: Cost of an aggregator; Variability with customer numbers  

Figure 4-5 shows the breakdown of costs for an aggregator with 10,000 domestic 

customers. Note that around 65% of the capital costs are associated with home 

automation devices. It is assumed that the aggregator would provide such equipment 

to automate flexibility provision. Accounting, bidding (market interaction) and 

control software (Virtual Power Plant software) makes up another 25%. In the case 
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of operating costs, categories are more evenly distributed but salaries and maintenance 

costs (software and hardware) make up the bulk of these costs.  

 
Figure 4-5: Aggregator cost breakdown 

4.2 Aggregator Business Models in the Power Domain 

The MIT utility of the future study [214], in the context of their work defined an 

aggregator as “a company that acts as an intermediary between electricity end-users 

and DER owners and the power system participants who wish to serve these end-users 
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or exploit the services provided by these DERs.” Retailers are therefore a special class 

of aggregators that (historically) served only the function of aggregating small 

electricity consumers—residences and small commercial entities—and procuring power 

on their behalf.” 

Current aggregation business models [215-217] in the sector are relatively 

straightforward typically using a margin based fee model71, however, it is reasonable 

to expect that business models will inevitably evolve over time. To evaluate that 

change, it is important to consider the following key research questions: 

- How will business models evolve and what business models are likely to prosper 

and under what conditions? 

- Do these models need regulator support and in what form? 

- How will customers react to aggregator offers and what will aggregation take 

up be? 

- Is aggregation good for consumers? 

- How to fairly allocate social welfare resulting from DER flexibility? 

The figures of [214] (in Appendix B of this reference ) provide a good breakdown 

of how companies are currently situated mainly in the US and European markets72. 

Figure 6.4 (reproduced in Figure 4-6) in the same report provides a useful view of how 

aggregators might progress from the current state to a risk managed “fundamental 

aggregator” state that includes economies of scale and scope but gives little detail on 

exactly what this will look beyond a general statement. 

                                         
71 For example, a percentage of revenue obtained from selling services 

72 22% of the respondents were situated in Europe/Israel;78% in the US 
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Scope in this instance includes “required services for or from a customer (e.g., 

energy, operating reserves, voltage control, etc.), rather than having multiple 

aggregators that each procure or deliver a single service. Economies of scope and 

product bundling are present not only for electricity services but also for adjacent 

sectors that supply heating, gas, energy efficiency solutions, telecommunications, or 

Internet services” 

 

Figure 4-6: Reproduced from [214]Value of Aggregators and regulatory contexts 

 

BestRes [218] reviews current aggregator business models in European markets 

including the UK and considers models such as Combined aggregator-supplier, a 

combined aggregator-DSO model and so on based on existing companies business 

models. There is a section on revenues and costs but little detail, is given. 

An analysis of Companies House submissions by various UK aggregator companies 

[219], using account notes, profit and loss accounts (P&L) and balance sheets provides 

us with some data on the performance and costs of their businesses over the last 2-5 

years. This data indicates that many aggregators based in the UK are using a margin-
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based model where aggregators are charging clients ~30% of the revenues that the 

customer’s assets generate – a simple margin model73. Many of them are currently not 

profitable. Costs associated with these companies are typically software and Human 

Resource (HR) based74. Companies in the UK appear to be paying around £1 million 

for software that is being used to manage the aggregation process. These numbers 

concur with the bottom up analysis of costs that have been derived above and the 

figures shown in [212].  

A review of energy service orientated business models was carried out by Hamwi 

and Lizzarralde [220] in their study on 30 business models as reported and reviewed 

in a variety of energy based journals. By clustering the models they identified that 

there were three general business model designs75 in the energy business. These were: 

 A customer owned – product centric model – Customer buys, uses assets and 

sells output  

 Third party service centered managed model - Third party may or may not 

own the assets, but generally manages them 

  An energy community based model (e.g. P2P76/ shared community assets) 

The study seems a bit limited in the context of this work but provides another 

classification of potential business models that may be useful. 

Keisling’s work on a new paradigms in rapidly evolving electricity markets like the 

                                         
73 Authors estimates from the accounts. 

74 From an analysis of their accounts and associated notes by the author. 

75 Note this a clustering exercise on business models presented in journals and does not include future 

business models or those that have not been reviewed in journals. By their very nature good business 

models are likely to be kept confidential. 
76 P2P is not the only community-based model that could be used here. This is used as an illustration. 
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UK and the US [221, 222] present views on the uses of digital platforms such as Uber, 

Air-BNB to provide P2P services as well as in electricity retailing. It recognizes that 

very different approaches to the current business models in the power sector may be 

more useful to customers. They are likely to be service and customer orientated and 

based on a digital platform. Note it is recognized that these P2P and digital platform 

providers could present important alternatives to the market. This thesis will focus 

on “pure aggregators” but future work would include these alternative business 

models.  

Work by van Beek’s [204] looks at opportunities associated with a low carbon 

economy and develops two business models. The first highlights the need to focus on 

companies that provides energy as-a-service, i.e. delivers energy services to customers 

instead of a commodity. The second, a business model that provides access to local 

low carbon energy by collaborating with communities and individuals. 

Analysis of aggregator models in [223] suggests that “commercially successful 

aggregation models generate a diverse income from multiple revenue streams. 

Furthermore, the results indicate that aggregators can make complex aggregation 

business model more appealing to potential customers by combining several market 

roles”. Companies operating in analogous markets have learnt similar lessons and 

successful participants typically have a multi-dimensional business model combining 

several roles (Appendix A). 

P2P Business Models (GO-P2P Framework) 

Peer-to-peer (P2P), and transactive energy markets offer new business models for 

local energy trading and could be both part of and a competitor to aggregator business 
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models. Over the past five years, there has been significant growth in the amount of 

academic literature examining these local energy markets. There are few pilot projects 

(e.g. [50, 59] ) in existence but this is growing. Reference [224] provides a literature 

review of 139 peer-reviewed journal articles and examines market designs in these 

systems and was carried out as part of the work of the Global Observatory on Peer-

to-Peer, Community Self-Consumption and Transactive Energy Models (GO-P2P) 

programme.  

GO-P2P [225-227] is an international platform that aims to give governments, 

business, and non-profit organizations the data they need to assess the advantages 

and disadvantages of smart local energy systems like P2P in their individual nations. 

The idea is that “lessons learned from these pilots will form the basis of an 

international comparative analysis, aiming to provide an assessment of the key factors 

enabling or inhibiting the rollout of P2P models across the world.  

Some of the key emerging insights from this work include77: 

 There are numerous ways to develop local energy trading systems and they 

provide a wide range of social, environmental and energy system benefits. 

 Policy makers and regulators should set clear outcome priorities to guide 

market design. 

  Local energy trading systems can reduce grid constraints. 

                                         
77 See [225] for additional insights. 
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 “Local energy trading is likely to work better under multiple supplier 

models (i.e. where one consumer can have both a local and a national 

supplier)”.  

 The energy regulatory system has to recognize small participants, such 

residential customers, as market actors in order to be widely adopted.  

 These systems will require high levels of automation. Note automation is 

abstracted in the work of this thesis and is assumed to be present. 

Although this thesis will focus on the provision of flexibility by aggregators via for 

example a virtual power plant digital platform, it is important to recognise that other 

models e.g. P2P, will need to be considered. Indeed future work should look at how 

P2P and other models will work together in any future marketplace. 

4.2.1 Value Pool Approach in the Power Domain 

The value pool approach has been used by Wegnera et al. [228] to look at value 

pools in the UK energy power market in a number of future scenarios. Pool 2 (energy 

service provision) and pool 5 (flexibility optimisation) speaks directly to the aggregator 

concept discussed in this thesis, and were identified as key value centres in this work. 

New revenues associated with these pools is estimated at £2.5-£14.8 Billion78 (2023 

real terms) in 2050 in this paper. 

Hall and Roelich [229] again use the value pool approach to identify potential 

business models for a future UK electricity supply business. Nine “high level” 

representative local supply business models are identified and their value propositions, 

                                         
78 Escalated from 2015 to 2023 terms. 
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value capture methods, and barriers to market entry are analysed. These competing 

models include local aggregation, Peer-to-Peer (P2P), a not for profits model and the 

current energy retailing model. Demand side response participation is seen as an 

important opportunity in this regard. They recognized that customers do not 

necessary focus on economic but on environmental and social aspects as well. Table 2 

in the paper scores the models against the opportunities identified in the paper using 

a simple “+++” to “---“ scoring system . A simple count of the plus symbols reveals 

that the multiple utility service provider (MUSCo – multiple utilities within same 

contract) and the local aggregator model are the best according to this scoring 

mechanism. However, certain customers are likely to have a natural affinity to certain 

business models. The paper focuses on the high level aspects of the various models so 

no detailed views are given about aggregators business models and or costs.  

4.2.2 Business Model Economic Impacts 

Company and financial objectives will have a great bearing on the way that an 

individual investor, the aggregator in this instance, will view the world. Minimum 

hurdle rates (i.e. meeting IRR79, NPV/I80 and or other measures) will be a key 

determinate of aggregator investment behaviour. Risk will play its part too, as volumes 

and prices will be uncertain, but in initial modelling, this could ignored.  

Company financial objectives and economics would be affected by views on 

potential revenues as well as the cost of running such a business under different 

                                         
79 IRR – Internal Rate of Return. 

80 NPV – Net Present Value; I- Investment. NPV/I is net present value per unit of investment. 
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assumptions. De Clercq et al. [223] reviews six current business models/market roles 

used in Europe (2018), and presents some high level economics based on the analysis 

of case studies on the markets roles. This includes a model using solar PV assets as 

well as managing distributed generation in apartment buildings. Financial 

performance of different trading strategies are given (£/MWh basis) for different 

portfolios of assets. But no detailed analysis of costs was carried out for these 

aggregator models. Future business models are not considered in this paper and there 

is a lack of data or analysis on the cost structures of future aggregator business models.  

In the context of the aggregation business, customers will want different service 

offerings that fit their particular needs, but ultimately would like to reduce their 

energy bills by supplementing income from providing and managing flexibility. This 

fits well with the ideas that Hall and Roelich outlined in [229]. Some customers will 

want to be actively involved. Others will be happy to delegate this function ultimately 

to the aggregator, while some may not want to participate in the aggregation market 

at all. 

Aggregators will want to make money from these interactions, manage risks 

associated with such a business and to do this as cheaply as possible.  

4.2.3 Extension of the Business Modelling Approach to this Domain 

Although there are a multitude of different business model approaches they each 

provide a different set of lenses in which to view a particular Industry. Using a 

combination of these approaches, a multidimensional model (Figure 4-7) based on 

exhibit A1.2 in [211] has been derived to consider the types of business model that an 

aggregator business model could follow in the future. 
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Figure 4-7: Multi-Dimensional business model framework: Power aggregation 

The model dimensions include: 

 Geography (aggregators may operate across geography – e.g. Amazon and 

Google would).  

 Energy vectors (selling across power, gas and heat sectors – but this thesis 

will only focus on the power energy vector). 

 Whether the “control” of flexibility by the aggregator would be fully 

automated or by some informal mechanism with penalties for non-delivery. 

 Branding and marketing.  

 Portfolio or “bucket” optimization algorithms. 

 Different revenue generation models (which would include contract types, 

parameters such as price levels, contract lengths and so on).  

 Customer portfolio selection (types, sizes types of flexibility [eg EV only or a 
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mix]). 

 Risk management stance – e.g. fully hedged to minimize downside risks or 

with no risk management at all.  

4.2.4 Evolution of Business Models 

All of the papers cited so far, assume business models are stationary and do not 

consider the evolution of such models.  

Arthur Andersen [230] in analyzing emerging gas and electricity business models 

in what was then the newly emerging competitive gas and electricity markets in 

Europe, developed a “predictable patterns framework” for discussing potential future 

developments and approaches. Their framework assumes that market structures 

(stages) evolve at different speeds along this framework from left to right and use it 

to compare the evolution of European markets. An adaption of said framework for the 

aggregator context is shown in Figure 4-8. 

 

Figure 4-8: Stages of competition: Evolution of business models: Adapted from 

Arthur Andersen [230] by author  
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It is widely accepted that development along the horizontal access of this diagram 

(sequentially left to right) is likely to be incremental for many companies. However, 

disrupters like Google, Amazon and others will disrupt these markets and potentially 

leapfrog market stages. 

4.2.5 The Disrupters 

“People used to laugh at the idea of their businesses falling victim to a online 

business run by people who had no idea about books” [231] . In the same way, that 

company in the reference (Amazon) disrupted the book store industry, they are now 

slowly making strides into the power business and specifically the power demand side 

response business and eventually the aggregation business. In fact Amazon along with 

Google, Microsoft and maybe some others have the potential to reshape the power 

industry by introducing digitally based business models at scale. 

“The energy sector has not yet been conquered by a platform giant like Amazon, 

Spotify or Facebook…But there are reasons why this will happen soon. The only 

question is, who is going to be there first?” [232] 

Two important elements of this digital strategy is a brand name and a cost-

effective platform with an ability to treat the electricity user as a customer. This 

would include a digital platform that links the purchasing, trading and management 

of decentralised generation assets together with the low-cost management of customer 

demand. Essentially Amazon and Google or even a full blown large trading company 

has the where with all and the technology potentially to form a business with a digital 

platform to manage aggregate and trade in the energy sector. They also have the 

financial might also to buy out existing or newly formed companies in this segment. 
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Forbes in a similar article [233] cites a number of examples where acquisitions of 

home automation technology seem to be the first step to forming new electricity energy 

businesses i.e. Amazon Echo to expand into the electricity business and the customer 

flexibility business in particular. Alphabet (parent of Google) acquired the Nest home 

automation device in 2018. [234]  

Amazon also invested in a $61 million fund for Ecobee, a Nest competitor (Smart 

thermostat), in March 2018 [235]. Seven months later, it struck a partnership with 

Arcadia Power, a home-efficiency bundler with a liking for smart devices. Amazon has 

also been aggressively building out its Echo platform for connected devices. 

BP has recently purchased an EV charging business [236] and Total has invested 

in Battery Storage [237]81. Shell and BP have made moves in the US to get into the 

Electricity retailing business [238]. These companies have great financials, already 

participate in trading markets with the appropriate software and expertise and could 

easily enter the aggregation business in the longer term. Tesla has recently announced 

that it will enter the UK energy retailing business too [239]. 

4.2.6 Six Business Models on Two Dimensions – Illustrative Case Study 

To make this problem more tractable, this thesis is going to focus on two business 

model dimensions, namely the revenue generation model and risk management stance. 

Six business models based on the two dimensions have been created and used in a case 

study discussed later in the Chapter 8. Figure 4-9 summarizes the case studies using 

scheme numbers and Figure 4-10 presents the case study schemes in terms of risk and 

                                         
81 Purchases made in 2019/2020. 

https://www.businessinsider.com/amazon-partners-with-arcadia-power-cut-energy-costs-2018-10
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customer contract/payment method.  

 

Figure 4-9: Revenue Vs Risk Stance; Scheme Numbers 

 

Figure 4-10: Revenue Vs Risk stance; Relative positions of business models 

 

Details on the mechanics of these business model schemes is given in Table 4-1. 

The first three schemes represent the three revenue business models without risk 
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management. Schemes 4-6 include risk management to fully hedge away downside risk 

(See Chapter 5). Other hybrid or other contractual models could be developed, but 

the aim here is to use these business models to see how they affect prices in a simulated 

market and to consider under what circumstances one business model might be better 

than another. 

Scheme 

Number 

Aggregator 

Business 

Revenue Model 

Comment/Description 

1 Pays Customer a 

% of cleared price 

No risk management (Unhedged); 

Customer provides bid prices. The 

aggregator collates the bids into smaller 

bid bins e.g. 1,000’s of bids into 10 price 

ranges and supplies these to the market 

operator, so that they can clear the 

market. The aggregator agrees to pay the 

customer a % of the final cleared price 

assuming aggregator bids were accepted.  

2 Pays Customer 

bid price 

No risk management (Unhedged); 

Customer provides bids; aggregator 

packages bids and submits the packaged 

bid to market as above. The aggregator 

may add a premium to the bids; assumed 

zero here. The aggregator receives the 

Clearing price and customers receive their 

bid prices. The difference between the bid 

prices and the cleared price – represents 

the aggregator’s profit.  
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Table 4-1: Revenue business models 

4.2.7 Description of Revenue Generation Model 

In developing business models, Samavi, Yu and Topaloglou [196] use a graphical 

modelling approach which identifies tasks, actors and goals. Burger and Luke [240] 

use a similar visual depiction method to look and review business models associated 

with distributed energy resources, highlighting payments, service provisions and other 

monetary flows between actors.  

Figure 4-11 - Figure 4-13 uses as its inspiration the work in [196, 240] to create a 

business model diagram of the actors, service and monetary flows between them. It 

Scheme 

Number 

Aggregator 

Business 

Revenue Model 

Comment/Description 

4 Pays Customer 

bid and 

purchases 

insurance (put 

option) to reduce 

risk to near zero 

Hedged Scheme 1.  

5 Pays Customer a 

% of cleared price 

and purchases 

insurance (put 

option) to reduce 

risk to near zero 

Hedged Scheme 2 

6 Pays Customer 

fixed price and 

purchases 

insurance (put 

option) to reduce 

risk to near zero 

Hedged Scheme 3 
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focusses on three revenue generation models. Risk will be dealt with, in the next 

chapter.  

  

 

Figure 4-11: Business and revenue generation model: Pay customer as they bid 
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Figure 4-12: Business and revenue generation model: Pay customer % of clearing price 

 

 

Figure 4-13: Business and revenue generation model: Pay customer a fixed price 
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Each business model82 uses a slightly different payment mechanism and defines 

how the aggregator will generate a profit. Customers bid volumes and prices and they 

could provide multiple bids e.g. 1 kWh at £20/MWh and 5 kWh at £120/MWh and 

so on but let us assume just one bid per customer83. Customers could also bid both 

upward and downward flexibility (as per SmartNet see [79, 165]). An analysis of UK 

balancing volumes indicates that over the period (September 2016 – October 2019) 

61% of the flexibility demands have been for upward flexibility84.  

Equations (4-1) – (4-3) below detail profits to the aggregator for each revenue 

model. This profit is for one time-period – for a bid in the next hour and for 1 bin or 

bucket only. Bids would only be cleared by the aggregator when the clearing price is 

greater than the average bid price. In the case of scheme 2 (pay customer as % of 

clearing price), the aggregator would only submit such bids if the expected revenue 

from clearing price (Pclear* aggregator margin) is greater than the costs it would be 

expected to incur. 

 

Pay customer Bid *max[0,( )] mwh opx cpxV C Cclear bidP P      (4-1) 

 

Pay % Cleared *max[0,( *margin )] mwh opx cpxV C Cclear agg bidP P      (4-2) 

 

                                         
82 No risk management is assumed in these diagrams. 

83 Not all customers will want to submit bids in this way and may delegate bidding to an aggregator or 

some other third party or software application. 
84 Data and analysis as discussed in Chapter 2. 
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Pay fixed *max[0,( )] mwh opx cpxV C Cclear fixedP P      (4-3) 

Where:  

 - Profit (£) 

clearP  - Clearing Price in next hour (£/MWh) 

bidP - Weighted Average Price bid in bucket85 – assumes that bid is based on the 

weighted average but could use a different approach (£/MWh) 

mwh
V  - Cleared Volume associated with bid in MWh. This would be the same as 

the bid volume if 100% of the bid is accepted 

marginagg - % of clearing price that aggregator keeps. Customers would be paid 

(1-marginagg) * Pclear 

cpx
C - Cost associated with Capital costs (CPX) for one time-period 

opx
C - Cost associated with operating costs (CPX) for one time-period 

 

Hedged positions (schemes 4-6) would include an additional cost associated with 

the cost of the hedge. As will be shown in section 5.7, this cost can be represented 

using a put option.  

4.3 Economics of the Aggregator  

By using the cost model (Section 4.1.5) and the three revenue models discussed 

above, an analysis of the economic value (Net Present Value – NPV) and profit 

margins is shown below from an aggregator’s point of view. Based on the weighted 

                                         
85 Assumes that bid is based on the weighted average but could use a different approach.  
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average cost of capital (WACOC) and hurdle rates for energy projects that have been 

investigated in [241-243] and indicate ranges of 7.5 – 14%86. A discount rate of 10% 

has been used here in such assessments of the NPV in the figures below.  

UK imbalance prices87 [76, 244] over the years 2010 to 2020 have been used to 

construct an average balancing price profile throughout one year and used to 

calculated hourly revenues. Yearly cashflows88 have been generated and NPV’s, 

internal rates of return (IRRs) etc. calculated. The model that was constructed for 

this purpose allows changes in parameters such as number of customers etc. A 

breakeven analysis using the number of customers is shown in Figure 4-14 - Figure 

4-15 for an aggregator with and without industrial/commercial customers89. Domestic 

customers are assumed to have an average yearly load of 4,000 kWh/year (without 

EV’s) and Industrial customers 35,000 kWh/year. Graphs show different curves 

assuming that only a percentage of this load is flexible90. Figure 4-15 shows that if the 

aggregator has around 1500 - 1600 SME customers then no domestic customers are 

required for the aggregator to breakeven. The addition of EV’s to the base case 

(assuming 100% EV penetration) would reduce the number of domestic customers 

(without EV’s) required to breakeven by about 50%. EV’s are assumed to use 40 kWh 

per week and negates the need for the higher number of customers. 

                                         
86 There is one example with a rate of 22.7% but is associated with very risky projects. 

87 Elexon data. 

88 Cashflows for each of the next 20 years are assumed to be identical.  

89 This is a simple breakeven analysis looking at revenues = costs.  

90 Note that in Chapter 2, it was suggested that only a maximum of 28% of the domestic load would be 

available for flexibility.  



 

112 
 

 

Figure 4-14: Breakeven analysis of aggregator business; No industrial customers 

 

Figure 4-15: Economics of aggregator business; The effect of industrial customers 

The city of Dundee in Scotland currently has around 4500 SME business in the area 
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of interest under study in later chapters. If six aggregators equally acquired the same 

number of Industrial customers, (i.e. 750 each) they will need around 10,000 domestic 

customers to breakeven (with EV case)91. 

4.3.1 Unit Breakeven Prices 

Market clearing prices will need to cover the costs of running the aggregator 

business. Figure 4-16 shows the clearing or breakeven price that would be required 

just to cover annualized capital and operating costs92 both on marginal and full cost 

basis. Note that capital costs have been depreciated on a straight-line basis over 10 

years and used to estimate full costs. 

 

Figure 4-16: Aggregator Unit Costs £/MWh 

 

Average UK balancing prices prior to 2020 were around £200/MWh, so balancing 

prices could cover operating and capital costs93, assuming aggregators could attract 

circa 10,000 domestic customers alone. This would allow bids up to £100/MWh to 

                                         
91 Assumes customer bid price of £100/MWh. This would also be balancing volume dependent. 

92 Annualised Capital costs are calculated assuming a discount rate of 10%. 

93 OPX and CPX costs equates to around £100-120/MWh for 10,000 domestic customers. 



 

114 
 

occur from customers (on average).94 

4.3.2 Aggregator Economics: NPV’s and IRR’s 

The economics of an investment in an aggregator business can be evaluated using 

discounted cashflows using standard measures like Net Present Value(NPV) and 

Internal Rate of Return (IRR) (see Brearly and Myers ch 2-6 in [81]). NPV, discounts 

future cashflows at a discount rate dependent upon the weighted average cost of 

capital (WACOC) of the business. This can be calculated using the CAPM model 

discussed in section 5.9.395 with methods highlighted in [81, 245]. Yearly cashflows and 

NPV’s can be estimated by using the following equations. These assume the Pay 

customer bid business model (equation (4-1), but can be extended for the other 

revenue model cases. Note equations associated with Domestic Customers and EV 

volumes have been excluded for brevity but essentially follow the format of equation 

(4-4), except that volumes and percentages would be for that for the appropriate 

variable.  

 

(% * *

% )*

i

ind

VolumeIndustrial loadflexibleInd AverageIndHourlyLoad

availforflexInd N


 (4-4) 

 

_i i i iVolume VolumeDomestic VolumeIndustrial Volume EV    (4-5) 

Re ( )*      i i i iv Pclear Pbid Volume for all Pclear Pbid    (4-6) 

 

 

                                         
94 This ignores any costs for risk management or to cover profit margin requirements. 

95 Capital Asset Pricing Model (CAPM) answers the question how is risk related to returns. 
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where: 

VolumeDomestici – Domestic Flexibility MWh for the ith hour 

VolumeIndustriali – Industrial Flexibility MWh for the ith hour 

Volume_EVi – EV Flexibility MWh for the ith hour 

AverageIndHourlyLoad – Total Hourly load MWh -Industrial 

%loadflexibleInd - % of Hourly load that is flexible - Industrial 

%availforflexInd - % of flexible load avail for use in market - Industrial  

Revsi - Revenue for the ith hour 

Pcleari – UK balancing price in ith hour 

Pbid - Average price bid - assumed £70/MWh for base case 

RevYr – Revenues over year 

CFj – Cashflow in jth year 

OPX – yearly OPX – assuming constant real OPX 

CPX - initial investment in year 0 - – assuming constant real CPX 

Tax_rate – corporate tax rate – assumed to be 20% 

r – discount rate 

Ndom – number of domestic customers 

NInd – number of Industrial customers (SME’s) 

NumberofCars – average number of EV’s per household 

PenetrationEV – Penetration of EV cars in market 0-100% 

 

Summary statistics for the pay as bid revenue model for three cases (using the 

equations above) are given in Table 4-2.  
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Description NPV £ millions 

(Real 2020) @ 

10% 

IRR 

(Real 

2020) % 

NPV/I Payback 

Years96 

Base Case: 10,000 Domestic 

customers, No Industrial customers, 

No EV’s 

-£2.01 N/A -1.76 No 

payback 

10,000 Domestic customers, No 

Industrial customers, 100% 

penetration of EV’s 

£8.4 47% 7.32 2.14  

10,000 Domestic customers, 750 SME 

Industrial customers, No EV 

4.3 26% 3.81 3.76 

Table 4-2: Aggregator economics summary (NPV;IRR; NPV/I and payback years) 

An NPV and IRR sensitivity analysis against the base case is shown in Figure 

4-17 and Figure 4-18. NPVs for key parameters are shown with percentage changes in 

the base case parameter assumptions. Parameters are varied ceteris paribus. 

 

 

Figure 4-17: NPV Sensitivity chart for an Aggregator Business; No EV 

 

                                         
96 Simple Payback – when cumulative revenues cover cumulative costs 
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Figure 4-18 Real IRR% Sensitivity chart for an Aggregator Business; No EV 

A comparison of various scenarios against the base case described above, is also 

shown in Figure 4-19. Each scenario changes one or two aspects of the base case 

assumptions, whilst keeping others constant.  

 

 

Figure 4-19: NPV sensitivities 

Payback periods97 for the base case never pay back and for the scenario where 

                                         
97 Simple Payback - Cumulative cashflows = CPX. No discounting. 
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prices in the base case are raised by 50% - 7.1 years. With 100% penetration of EV’s, 

payback periods drop to 1.8 years. A no EV case with 1500 industrial customers in 

addition to the 10,000 domestic customers drops to 1.35 years.  

 

Key Points: Economic Analysis 

 Need around 10,000 domestic customers (without industrial customers) to 

breakeven (with the assumptions adopted here). 

 EV’s would be key to improving aggregator economics. 

 Acquisition of Industrial customers is also key to the profitability of the 

Aggregator business – but competition for these customers could be fierce. 

 This analysis does not account for risk. 

4.4 Chapter Summary 

Although literature has reviewed the current business models in power 

aggregation, little work has been performed on more sophisticated models likely to be 

used by commercial aggregators in the future including modelling of risk. Neither is 

there any detailed cost or economic literature. This has necessitated the need to 

formulate future business models, views on the costs, and revenue generation models, 

so that the economics and profitability of an aggregator could be investigated and is 

a contribution to the state of the art. This forms the basis of the ABM modelling of 

commercial aggregators discussed later in the thesis. In addition, the revenue models 

that have been developed in this section will be used to evaluate the risk associated 

with aggregators in Chapter 5.   
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Chapter 5  

 
Risk Management in Power 

Aggregation 

 

5.1 Introduction 

This chapter provides background information on risk management, in the context 

of a commercial aggregator in the power domain. Risk management consists of 

valuation and risk control. Risk valuation methods are overviewed, but this thesis 

focuses on the use of put options as a method to quantify risk in a power aggregator 

interacting with domestic customers. In the context of this, option theory and the use 

real options in power aggregation is reviewed. There has been extensive use of real 

options in the valuation of contracts in the power domain, but there are no papers 

that currently analyze aggregation using this framework. This is not surprising as 

aggregation is a relatively new concept in the domain. The paper uses a three asset 

put option framework to value risk and later uses this as a basis to manage such risk. 

Put options can be viewed as insurance premiums, which can be purchased in a 

theoretical market to manage downside risk and are later used in Chapter 7 and 8 to 

value and represent risk within an aggregator agent in a simulation. The risk 

associated with the business models introduced in section 4.2.6 are valued. Finally, 

financial portfolio management concepts are introduced and are used to help select 

amongst these various business models. This Chapter makes extensive use of the 

concepts used in financial options, while omitting introductory material that can be 
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found in literature, e.g. a good introductory text is [81] (chapters on options and risk 

management). The structure of the chapter is summarized in Figure 5-1 below. 

 

 

Figure 5-1: Chapter 5 overview 

 

5.2 Risk Management 

It is well known in the business world that higher profits are associated with higher 

risks (see Capital Asset Pricing model (CAPM) discussion later section 5.9.3). 

Adequately quantifying and mitigating those risks is therefore an important part of 

running a corporate enterprise and risk management is an important process used to 

manage these risks. The process involves identifying and analyzing the amount of risk 

involved in an investment, such as that being made by a commercial power aggregator, 
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and either accepting that risk or mitigating it. Hedging is a typical approach used in 

mitigation. Risk limits98 may also be applied to limit the risk involved in a portfolio 

position. Some common measures of risk include standard deviation, value at risk 

(VaR) and conditional value at risk (CVaR). 

Pilipovic ch9 [246] defines risk management as “ the process of achieving the 

desired balance of risk and return through a particular trading strategy. The risk 

return framework incorporates the full business process of selecting, communicating, 

valuing and achieving this balance within the firms portfolio of assets … Valuation 

focusses on the price of the individual contracts; risk management focuses on the 

change in price, both on an individual contract basis and on a portfolio wide basis” 

There are therefore two parts to risk management – to value the risk and then to 

manage it. 

5.3 Risk Valuation Overview 

Risk can be valued using statistical techniques or financial theory like options. 

There a number of methods to value risk including: 

 Risk adjusted Prices99 (including put option approaches) 

 VaR (Value at Risk) 

 CVaR (Conditional Value at Risk) 

                                         
98 “A Risk Limit is a general and widely used risk and portfolio management technique. It denotes one 

or more numerical thresholds defined in relation with specific risk exposures such as Credit Risk, 

Market Risk or Liquidity Risk exposures. [https://www.openriskmanual.org/wiki/Risk_Limit]. Only 

Market Risk is considered in this thesis.  
99 The risk adjusted price is the method used in the simulations in this thesis. Others given for 

completeness. 

https://www.openriskmanual.org/wiki/Risk_Limit


 

122 
 

These are summarized in Figure 5-2. 

 

Figure 5-2: Risk management valuation approach 

 

5.3.1 Value at Risk (VaR) 

Jorian [247] defines VaR, as the maximum expected potential loss on the portfolio 

over the given time horizon for a given confidence interval under normal market 

conditions. In other words, there are three key elements to describe the Value at Risk 

(VaR): (i) the time period; (ii) the potential loss from the portfolio and (iii) a 

confidence interval e.g. 95%. 

RiskMetrics [248] define Value at Risk (VaR) as a statistical measure used to 

assess the level of risk associated with a portfolio or company. VaR measures the 

maximum potential loss with a degree of confidence for a specified period. For 

example, suppose a portfolio of investments has a one-year 95% VaR of £10 million. 

https://www.investopedia.com/terms/v/var.asp
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Therefore, the portfolio has a 5% percent chance of losing more than £10 million over 

a one-year period. 

VaR can be calculated using three methods: 

 Delta Normal approximation 

 Historical simulation  

 and Monte-Carlo 

The Delta Normal VaR method is the simplest and is extensively used in Industry, 

in systems like RiskMetrics and by market exchanges on millions of assets. It assumes 

that distributions are normally distributed for all risk factors, e.g. price, and that 

assets are linear in those risk factors. Options are linearized using option deltas. The 

key concept in the Delta Normal method is Value at risk or VaR and is calculated 

using the portfolio delta. 

VaR is simply calculated using the following formula for d days: 

 

VVaR = 1.96 σ Δ V d0.5 (5-1) 

where: 

VVaR - Value at Risk 

σ - Volatility or Standard Deviation for 1 day eg 1% 100 

d - Number of days 

Δ – Option/Futures portfolio Delta 

                                         
100 The σ for different time periods is related by the square root of the time - see Hull. [249]. 
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V – Value of instrument e.g. future or option 

Note 1.96 is the Z score associated with a confidence limit of 95%. 

When assets are independent and equally weighted, portfolio VaR can be 

calculated by summing the squares of the individual VaRs and taking the square root. 

Correlation amongst assets would need a calculation talking account of the covariance 

between pairs of assets. The Delta Normal method is therefore the simplest technique 

to implement as the portfolio return is a linear combination of normal variables of the 

individual assets.  

Historical simulation is also relatively simple to implement and uses historical price 

patterns to simulate future outcomes [246] (p 192-193). The procedure for calculating 

VaR using historical simulation is outlined in [250]. In summary it uses historical 

returns /profits. Returns are sorted in order to produce a probabilistic view of actual 

returns and profits. Of course, historical price patterns may not reflect the future.  

Monte-Carlo simulation of VaR allows for simulation that includes any 

interactions between assets. It also includes all possible future price paths in its 

calculation and is the most accurate method [246] (p 191-192) for assessing VaR. It 

can incorporate non-normal distributions, sophisticated correlations between assets 

and can apply different pricing models. The downside is that this can be 

computationally inefficient.  

5.3.2 Conditional Value-at-Risk (CVaR) 

Conditional Value-at-Risk (CVaR) was introduced by Rockafellar and Uryasev in 

[251], and is a risk measure used to assess the tail risk of an investment. It is also 

known as expected shortfall or exposure risk. Used as an extension to the VaR, CvaR 

https://www.investopedia.com/terms/t/tailrisk.asp
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integrates the distribution above the VaR value to obtain what is essentially a 

weighted average loss101. This measure is more sensitive to events that happen in the 

tail end of a distribution. 

For the interested reader, Uryasev reviews the uses of and pros and cons of each 

of CVAR and VaR [252]. CVaR has become a popular risk management method due 

to its relation to VaR, and it is an informative risk measure and deals with the issues 

of large losses associated with fat or long tail distributions.  

Errors in the use of VaR becomes more significant when commodities have heavy 

or long-tailed price distributions, and exhibit a high potential for large losses [253]. 

These long tail distributions could be exhibited in the clearing prices modelled with 

aggregators. This would occur when system failure events cause prices to rise.  

5.3.3 Risk Adjusted Prices: Put options  

“The most common way of adjusting for risk is to compute a value that is risk 

adjusted.” [245]. This is what Banks do when they assess credit or lending risk. They 

increase interest rates to less credit worthy customers. Damodaran [245] considers four 

ways in which this risk adjustment can be made. The first two approaches are based 

upon discounted cash flow valuation, where the discount rate is adjusted for risk. The 

fourth approach, adjusts for risk by observing market premium for similar assets. The 

third approach, the one this thesis uses, is a post-valuation adjustment; a discount for 

potential downside risk. A put option can be used to value this downside risk. The 

owner of a put option has the right to sell its goods, in this case flexibility volumes 

                                         
101 Effectively losses multiplied by probability in the tail of the distribution. 

https://www.investopedia.com/terms/d/distribution.asp
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(MWh), at a price P and will always receive at a minimum, a value known as the 

strike price K. A Contract for Difference (CFD) payment [254] is actually a put option. 

For example, a wind farm owner will always receive the strike price e.g. £150/MWh 

even if the market price is £50/MWh. If market prices are higher the provider of 

flexibility would receive the higher price. 

The seller of the flexibility option would seek a payment for this option right – 

known as an option premium102. The finance discipline has developed pricing formulas 

that estimate the value of this premium, depending on the prices (P and K), the 

volatility in prices and the time to expiry of the option. 

Engineering and business consulting companies that provide proposal bids use the 

risk adjusted approach in an unsophisticated way. Contingencies set at 10-15% would 

typically be added to cost estimate to cover for risk. 

Brearly and Myers (Ch11) [81] introduce the idea of using a put option to insure 

against the downside risky company cashflows. The example in [81] considers a 

company with uncertain cashflows, but the owners want to make sure that they always 

earn a certain level of cashflow – set by a threshold level. If one were available, it 

would be possible to buy a put option to insure against the cashflow downside. When 

cashflows are below the threshold, the put option would payout the difference between 

the threshold and the actual outturn cashflow. If cashflows are above the threshold, 

the put option is worthless, as nothing would be paid out. The company wishes to do 

this monthly so the company buys a strip of options, one for each month, with the 

                                         
102 Note Governments may not ask for a premium as in the case of a CFD. 
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options expiring in month one, month two and so on. Option theory can be used (see 

Brearly and Myers CH11 and Ch 20 [81] ) to value this option and would be equivalent 

to what a company would have to pay for this insurance. It therefore represents 

downside risk in “one number” taking account of uncertainties in key variables. 

Damoradoran [245] also introduces the idea of using a put option to value risk and to 

adjust NPV’s. In a similar way Ang, Chen and Sundaresan [255] use a put option to 

characterise the downside risk in pension fund portfolio selection. Pension funds have 

liabilities to their current and future pensioners that must be met so a put option 

approach that includes these liabilities is an approach that values the portfolio by 

considering the downside risk. The liabilities or threshold are the exercise price in this 

put option.  

5.4 Risk Control/Mitigation Overview 

The various measures discussed above are important inputs in any risk control 

strategy to be used. Market/exchange based options and futures can be bought to 

reduce or manage risk to an appropriate level. The European markets currently have 

10 power future contracts and only 3 power based options available. The USA has 165 

and 16 respectively.103 This somewhat limits what risk managers can do to curtail risk. 

Other options from similar markets could be used, but would result in other types of 

risk104. Development of future options and futures markets, especially in Europe, 

maybe essential if aggregators are to fully manage the risk inherent in a power 

                                         
103 Obtained by inspecting the ICE and CME websites for power contracts (futures and options). 

104 For example basis risk. Basis risk refers to the risk that an exchange contract will not perfectly 

cover the underlying position. 
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aggregation market. Risk control can be categorized into Dynamic and Static hedging 

and is summarized in Figure 5-3 below. 

 

Figure 5-3: Risk control approaches (hedging) 

 

The static hedging approach uses a portfolio of standard exchange traded options 

and futures, and this portfolio is maintained either until the expiration of the portfolio 

of options or until some other event. Rebalancing of the portfolio does not occur 

between these times. In the dynamic hedging, portfolios are continuously re-hedged. 

At the extreme, balancing could be performed continuously. Of course, once 

transaction costs are accounted for, this could become very costly. A side calculation 

by the thesis’ author on the cost of continuous hedging vs a discrete time approach 

e.g. re-hedge/rebalance every Y days rather than every hour – shows that in the case 

of aggregator using Delta hedging, that costs and hedging error ([256] Ch 20) would 

be minimized using a discrete hedging approach approximately every 10 days. Of 

course, this depends upon market conditions and other assumptions.  
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Zhang [257] shows that static hedging is better for options with high gamma105 and 

discrete hedging is better for options with small gamma. Static versus Dynamic 

Hedging of Exotic Options was also evaluated by Tompkins for many different types 

including correlated exotic options [258] 106 and found that “ Neither dynamic nor 

static hedging approaches were found to be universally superior. For many exotic 

options, the dynamic hedging approach performed as well as, or better than,” the 

static approach. 

5.4.1 Delta and Delta Vega Hedging 

The option Greeks can be used to calculate the sensitivity of the options to 

price and volatility movements, and therefore can be used to hedge, assuming 

price movements are relatively small (see [249, 256, 259, 260] for discussion of 

hedging with Greeks). Option Greeks are used to provide an estimate of how 

option value will react to a given change in some of the variable pricing inputs. 

That is, the underlying asset price (e.g. clearing price), volatility, time to expiry 

and so on. It is therefore a form of sensitivity analysis. The most commonly used 

Greeks107 are Delta (change to price), Gamma (change in Delta), and Vega 

(change in volatility). The Greeks used in this work are shown in algebraic form 

in equations (5-2) - (5-4) below. 

 

                                         
105 2nd derivative on price – change in delta with price. 

106 It will be shown later, that the aggregator portfolios consist of correlated exotic options. 

107 Sometimes Theta (change in time to expiry) and Rho (change in risk free interest rate) might be 

used. 
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(5-4) 

where: 

∆ - Delta  

𝛾 – Gamma 

ν - Vega  

V – Option Value,  

P – Underlying Price , 

 𝜎 - Volatility 

Delta one of the Greeks is defined as the change in value of the option or portfolio 

for a small movement in the underlying asset e.g. price. Options have a delta ranging 

from [-1,1]. Futures have a delta of one i.e. a price movement of £1 would result in a 

future’s value movement of one. For interested readers [261] provides a good overview 

of how one would optimize a portfolio to manage Delta Gamma and Vega risk. 

 

5.4.2  CVaR/VaR Hedging 

Portfolio management of VaR/CVaR is achieved via optimization [251, 262]. 

Typically, Monte-Carlo simulation is used when the portfolio contains nonlinear 

instruments such as options. The resulting Monte-Carlo distribution of outcomes is 
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used to calculate CVaR and VaR. Unfortunately, this is very computationally 

inefficient and therefore a normal option delta approximation is often used to calculate 

VaR. In spite of its drawbacks, the delta-normal approach is widely used among risk 

managers. For example, the JP Morgan RiskMetrics [248] system is based on the delta-

normal model and deals with millions of stocks and assets. The exchange clearing 

houses e.g. ICE [263], Nymex [264] use a form of normal delta hedging to assess 

clearing risk and use this to set margin levels in the exchange. 

It appears from the literature review on optimal hedging in power that many of 

the recent papers have focused on CVaR as a methodology, but in practice, many 

industrial players use other methods. Eon, a large German based power company 

operating in the UK, uses Delta Hedging to manage its portfolio [265]. In a recent 

paper Klemola [266] uses a dynamic and static delta hedging strategy in assessing the 

performance of options in the Nordic electricity market.  

Risk management is often conducted in isolation from option modelling, as there 

has been, until recently, no relation between the two areas. However, the relationship 

between CVaR and option prices with a closed form solution is detailed in [267]. 

Barone and Adesi also detail the relationship between CvaR, VaR and a put option 

(see equation 13 and 14 in [268]), so it is possible under certain assumptions to estimate 

CVaR directly from put option values. This is important in the context of the 

modelling that is presented later in this chapter as an aggregator could effectively 

consist of non-linear options or their equivalents (see later section 5.7 and 5.8) 

Although it is a long-term aim to model different types of hedging processes within 

a company agent, e.g. using CVaR and VaR methodologies and delta hedging, this 
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thesis will focus on the theoretical use of purchasing a real option based on the 

aggregators downside risk and as described below in section 5.8. By purchasing such 

an option, risk can be hedged, so that risk is reduced to near zero. The option value 

also represents a value of risk in one number. 

5.5 Real Options  

Hull [249], Quail [269], and Wilmott [256, 259, 270] provide a good general 

introduction to options, futures and other derivative concepts, many of which will be 

used in the following sections. Clewlow and Strickland [271] set out methods for 

building models of such derivatives. Mun [272], Copeland and Antikarov [273] provides 

a good introduction into the use of real option valuation and the assumptions 

associated with their use. 

The term “real options” was coined by Stewart Myers in 1977 [274], referring to 

“the application of option pricing theory to the valuation of non-financial or “real” 

investments with learning and flexibility, such as multi-stage R&D, modular 

manufacturing plant expansion and the like”.  

“Real options are not financial options; real options represent certain types of 

management decisions. The options models used to value real options are borrowed 

from financial options pricing techniques, but the underlying assumptions of these 

financial models do not strictly apply to real options…The underlying assets for real 

options do not normally trade on financial exchanges where market prices are 

observable. The assets underlying real options are illiquid and hard to trade. If they 

are being traded, they are usually being bought and sold in inefficient markets, such 
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as in one-on-one negotiated transactions between companies or individuals, not on 

regulated market exchanges” (Appendix 7.1 in [275]). The assets are usually tangible 

but can be intangible. 

The concept of real options is thus based on the concept of financial options; thus, 

fundamental knowledge of financial options is crucial to understanding real options. 

Options are widely used in the trading and the financial industries, but the concepts 

behind the mathematics of the many types of options108 can be applied to real assets, 

by swapping the concept of commodity or stock price with a variable linked to the 

asset e.g. cashflow or market clearing prices109. Essentially, they use the mathematical 

framework of options to value real life assets like operational flexibility in a power 

plant.  

Table 2 in [276] sets out the differences between financial options and real options. 

As will be seen some aspects of our valuation are more like financial options and others 

like real options. 

Although real options have been primarily used to look at decisions associated 

with investments e.g. option to delay investments, expansions, divestments and so on, 

Ofgem [277] sets out an approach for using real options on gas network interruptible 

contracts. The document also lists other examples of real option use in the energy 

industry. 

                                         
108 Including Standard or vanilla options, spark spread options, product options binary barrier options, 

Asian options (path dependent options) and so on. 
109 Later it will be shown that the option of interest in this thesis uses clearing prices (a commodity), 

average bid prices and flexibility volumes MWh. 

http://www.economywatch.com/options-and-futures/financial-options.html
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5.6 Representing Power Problems as Options: Real Options and Contracts 

as Options  

Stochastic modelling and use of the more standard types of options in the power 

industry e.g. the use of spread options in energy contracts and hedging is set out in 

chapter 9 [278]. Pilipovic [246] also provides a good introduction to the use of 

derivatives (options) in the energy industry and uses a good number of power industry 

examples. Deng and Oren [279] review a number of different types of electricity 

financial instruments and the general methodology for utilizing and pricing such 

instruments. They also highlight the roles of these electricity derivatives in mitigating 

market risks for generators, load serving entities, and power marketers. 

Ceseña, Mutale, and Rivas-Dávalos [280] review the use of real options in their 

paper on electrical generation projects especially renewable generation. 

Gahungu and Smeers [281] look at capacity expansion on generation assets and 

technologies and Csapi [282] reviews the use of real options in the electrical power 

sector using a binomial tree valuation on different generation technologies. In a 

recent paper Moriarty and J. Palczewski [283] consider operating reserve contracts 

for battery storage devices using an options framework.  

Gardner and Zhuang [284] used a real option approach to value a CCGT power 

plant to account for the flexibility in its operation including ramp up, minimum and 

maximum generation levels. Most importantly, their approach not only takes account 

of market prices but the current operating state of the plant. In this instance, it is a 

path dependent option that uses a numerical approach to solve the option for 

operational flexibility.  
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Liu, M. Zhang, and Z. Zhao [285] in a recent paper reviewed work on real options 

in the renewable sector and provides references to other papers mainly dealing with 

investments, their optimal timing, capacity decisions and wind tariffs. 

Safarov and Atkinson use a real option approach coupled with copulas (see [286] 

for an introduction to copulas) and regime switching to optimize and value a natural 

gas-fired power plant [287].  

The majority of the power based real option literature focusses on investment and 

operational decisions, but some literature focus on contract structures. This literature 

is now reviewed.  

5.6.1 Contract Valuations Using Real options 

In the work by de Moraes, Marreco and Carpio [288] real options are used to value 

the payment that should be received by generators providing flexibility to the 

Brazilian power market. Similarly, the Italian and Irish power grids are currently 

considering the use of reliability options. (see [289, 290] for a description of the concept 

of the reliability option). Capacity providers give up peak prices in exchange for an 

upfront fee (option premium). Reliability options form a contract between capacity 

providers and customers, with the sellers of reliability options benefiting from an 

upfront payment while the buyers benefit from security of supply and reduced 

exposure to price spikes. Each time the reference price rises above the contract strike 

price, the seller pays the buyer for the difference. Essentially these are call options 

(real options).  

Swing options or flexibility of delivery options have been valued using an option 

frameworks by a number of frameworks [291-295]. A swing contract entitles the owner 
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of the contract to exercise up to N times and is typically used by investors who want 

to buy a predetermined quantity of energy at a predetermined price while retaining a 

certain degree of flexibility in the amount purchased and the price paid. Jaillet, Ronn 

and Tompaidis [291] uses a multi-level/dimensional tree or forest approach to value 

what are a set of complex interactions and decisions over time. The trinomial tree 

approach [296], first developed by Hull has also been used in the gas industry to value 

gas storage [297]. A Monte-Carlo approach has also be used to value swing contracts 

[298] as well as for storage valuation [299]. 

Although the real option and contract option approaches above provide useful 

insights into the use of option theory in the power domain, none of the examples is 

directly relevant to the research questions posed. The representation of Interruptible 

contracts is somewhat similar to the problem in this thesis, but our domain problem 

of aggregation is not applicable to these formulations. There are however, some useful 

lessons that can be drawn for the analysis of interruptible contracts using an option 

approach.110. 

For example, Kamat and Oren [300] use exotic options (a forward contract with 

exotic calls at two different strike prices) to mimic an interruptible contract. As they 

state, the approach allows them to both hedge and value the supply curtailment risk. 

It assumes that the contract can only be interrupted once and does not consider its 

effect on spot prices. 

Baldick, S. Kolos, and S. Tompaidis [301] extends the work of Kamat and Oren 

                                         
110 Much of this work was carried out between 1999 – 2005, but is still relevant. 
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and includes multiple interruptions, and interactions with spot price. Finally, Zhang, 

Wang, and Wang [302] again extend the work in [300], but use a multiple binary 

barrier option in a Monte-Carlo framework to value the contract. 

5.6.2 Experience of Real Options in the Engineering Profession: Monte-Carlo 

Simulations to the Rescue 

Real options have not been widely used in engineering practice [303, 304]. This is 

due to the fact that the real option analysis, especially when using closed from 

analytical solutions e.g. Black Scholes based formulae, requires an understanding of 

financial theory and advanced mathematical techniques. There are also other 

techniques such as decision trees, that can convey the same information albeit they 

ignore parameter volatility in the calculation. Monte-Carlo real option methods (see 

Glasserman [305], Judd [306], Dunn and Shultis [307], and Brearly and Myers [81], for 

texts on the subject) provide engineers with a much more tractable way of developing 

such an analysis – it can be argued that it is easier to understand especially by 

corporate senior management, albeit these models can be complex. 

5.6.3 Using Real Options for Portfolio Management  

Note it is standard practice in financial portfolios to have combinations of futures 

options and other derivatives. Option theory can be used to value risk, and utilized 

to hedge asset portfolios. In addition it can be used to select an optimal portfolio based 

on a basket of KPI’s111 and other constraints [308]. Representing real assets as options 

fits directly into the framework for risk management of such assets. 

                                         
111 Key Performance Indicators. 
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5.7 Option Pay-off  

The key in developing a real options approach to aggregation is to recognize that 

the payoff functions112 of aggregators resemble those seen in option theory. Payoff 

graphs are the graphical representation of an option’s payoff. The x-axis represents 

the call or put option’s spot price (Px), whereas the y-axis represents the profit/loss 

that one reaps from the option. The y-axis (Vy) is evaluated using the value of the 

option. Values are calculated for many Px and plotted accordingly. In the case of 

simple or vanilla put option this value would be: 

Vy= max(0, K-Px) (5-5) 

where: 

Vy – Pay-out of option. 

K – Strike price or threshold of option e.g. the level of the guarantee or insurance level 

expressed in £/MWh. 

Px – Price of the underlying – e.g. the clearing price in this instance. 

 

In the case of options that are more complicated ,the pay-out function equation 

would be modified accordingly (see Haug [309]). Equations (4-1) – (4-3) in Chapter 4 

provides a representation of payoffs in this work and Figure 5-4 shows them 

graphically. 

 It has been recognized that the payoff associated with the various business models 

that have been investigated are akin to vanilla call options and a up and out digital 

option (see Figure 5-4 and Wilmot [256], Ravindran [310] ). However, the situation is 

                                         
112 A payoff function is mathematical function describing the award given to a single player at the 

outcome of a game. In options terms it is the payoff that one receives as the price of the underlying 

commodity changes e.g. power price and is usually depicted graphically as pay out vs commodity price.  

https://corporatefinanceinstitute.com/resources/capital-markets/spot-price/
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more complicated than that, because the aggregator options are exotic options with 

multiple underlying asset movements that are correlated (see below for explanation). 

They therefore cannot be modeled accurately using closed form113 solutions for either 

a vanilla option, or the standard approach for up and out digital options. 

 

 

Figure 5-4: Payout diagrams for aggregator revenue business models presented in Chapter 4 

5.7.1 Exotic Options 

The option framework developed for the aggregator below shows that it belongs 

to the class of correlation options known as an exotic option [257]. That is, price 

movements associated with multiple assets or commodity prices are correlated. For 

example, spread options used to represent power options [279] use the price of gas vs 

                                         
113 That is, an analytical approach. 
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the price of electricity. These two prices movements are typically correlated in some 

way114. 

Many papers investigating energy retailers115 for example, explore the use of 

interruptible contracts, which by their very nature rely on a single underlying asset 

i.e. commodity price movements on only one asset [300-302]. The aggregator problem 

presented herein is a three-asset problem with moving parts in the customer bid 

prices116, clearing prices and the volumes (MWh) involved in the option. The option 

could be characterized as a mixture of a spread option and a product option [257]. 

Valuing such options is analytically complex117. So numerical methods such as Monte-

Carlo are typically used. This also has the benefit that it more understandable to the 

engineering community as well as to senior management [280]. The Monte-Carlo 

method allows analysts to create sophisticated solutions for exotic options but requires 

longer compute times. Option Greeks118 ( see refs [249, 256] for a fuller discussion of 

the definitions of option Greeks) can be calculated from the simulations using methods 

like those laid out in [309]. Normal VaR can be calculated directly from option deltas 

and the VaR can be used in hedging.  

Option deltas and in some cases delta and gamma can also be used in dynamic 

                                         
114 At certain times this may not be the case but gas powered generation in many markets represents 

the marginal plant cost. 
115 Also known as load serving entities LSE in some of the papers. See papers referenced above. 

116 Customers are bidding flexibility – volumes and price 

117 With the appropriate approximations, it may be possible to develop an analytical solution but this 

is beyond the scope of this thesis. 
118 Greeks represent sensitivities in the value of an option with unit changes in price, volatility time 

and discount rates. The two key Greek measures that will be discussed in this thesis are delta (change 

in value of option with price movements and gamma (the change in delta with price movements) 
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and static hedging strategies for a portfolio of options 

As discussed, dynamic and static hedging of portfolios with vanilla option 

contracts is the norm in finance. Such techniques can be extended to exotic options, 

but there are challenges [257] (ch 35). A review of portfolio selection methods is given 

in [311]. 

5.8 Aggregator Risk: Three Asset Exotic Option 

Aggregators face risk because clearing prices, (CP’s) will be uncertain and volumes 

bid by customers may change119. In formulating bids it is assumed in this thesis, that 

aggregators apportion bids to one of a number bid buckets. Using the buckets average 

bid prices as a base, aggregators adjust the bid prices to create final bucket bids 

(volumes and price) 120. A change in volume because of an issue at a household would 

effectively change the make-up of a bid bucket. The aggregator may need to source a 

more expensive customer to make up any non-delivered volumes. This risk can be 

represented as a change to the average price bid by the various customers and the 

volumes inside the bid bucket. Of course non-performance by customers could be 

managed with appropriate contractual arrangements i.e. penalties. Ignoring penalties, 

the aggregator faces risk in three interacting and correlated variables, namely clearing 

price, volumes and bid price. That is, it is an exotic option based on three variables. 

 

 

                                         
119 Customer volumes may not be available.  

120 Bids are aggregated into bid buckets as described in section 2.7. 
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5.9 Using Options to Value Risk in Aggregator Operations 

Although it would ideal if these aggregator options could be represented using 

analytical solutions, this can only be achieved by assuming the driving parameters are 

independent and normally distributed121. Unfortunately, this is an unrealistic 

assumption, as clearing prices will be related to bid prices and they will be correlated 

with each other in some way. Other contract types could be more complicated. This 

has driven the author to develop an approach based on a Monte-Carlo numerical 

valuation of three interacting assets developed originally developed by Haug [309] (p 

352 section 8.1.4) and adapted by the author (see Appendix D for pseudo code). In 

this context, clearing price, customer flexibility volumes (MWh) and bid prices 

(£/MWh) are the equivalent of the three asset prices in Haug’s original model. 

Note Green and Wicksell [312] develop a closed loop analytical solution for a three 

asset spread option. This is not quite, what is required to value an aggregator portfolio, 

but a similar approach may prove worthwhile in the future. 

5.9.1 Additional Benefits of a Numerical approach to Valuing an Aggregators 

Portfolio 

The Monte-Carlo numerical approach provides additional benefits. These include: 

 

 Rather than simulating paths of prices using geometrical Brownian motion, 

mean reversion or some other distribution as typically performed in closed 

form solutions, it is possible to select from the probability distribution of 

                                         
121 We can derive one equivalent standard deviation sigma from the combination of more than two 

others and then utilize analytical solutions using product or spread options. 
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final prices directly. Historical probability distributions would be available 

to aggregators operating in the market (or by simulation). Use of a copula 

distribution [286] may provide more accuracy and granularity to the 

probability distribution122. Such an approach was used by Hawas and 

Cifuentes [303] in simulating a real option on large construction projects. 

An approach similar to that outlined in [303] could be used in the ABM 

simulation model, but a simpler approach based on simulated data is 

used.123 

 CVaR and VaR can be directly estimated from the simulations used in 

calculating the option using the three-asset simulation discussed above, 

using an approach outlined in [313].  

 

Utilizing an option based approach, using the three uncertain inputs (CP, average 

bid price and volumes), it is possible to construct risk valuation curves under different 

assumptions and compare the various contractual approaches discussed in Chapter 4. 

As with any put option when CP’s are much higher than bid prices, the option would 

be deep out of the money so the option would be worthless124. In the case where CP’s 

                                         
122 The copula allows the use of multidimensionality in probability. Probability associated with clearing 

price would be dependent upon demand and or other variables and so a copula recognizes the inherent 

correlation between price and expected demand. The copula essentially has different probability 

distributions for different levels of demand or ranges of demand. For example,. we expect demand to be 

within X-Y. What is the probability distribution of the clearing price for this demand range?  
123 Uses demand to select an average of historical clearing prices – a simple copula. 

124 For the pay as bid contract. 
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are much lower than bid prices the option is “deep in the money” (CP<<bid price), 

and the put option value would simply be (average bid price – clearing price)* 

volume125. 

The value of the put option represents the risk premium required to meet some 

threshold In this case the threshold is some minimum profit level expressed as an 

equivalent £/MWh. Risk premiums associated with this analysis of are therefore a 

function of the following parameters: 

 

 Volatility in clearing price.  

 Volatility in effective outturn bid price due to change in volumes by 

customers to accommodate changes in actual volumes sent. 

 Volatility of volume of bids accepted – will be different for different buckets 

– driven by customer choice. 

 Expected clearing price E[CP]126. 

 Expected bid Price E[Pbid]. 

 E[Profit margin] – profit threshold set by the company. 

 Margin - % of the clearing price retained as a profit.  

 Operating cost expressed as a unit cost £/MWh -OPX – note depends on 

number of customers and their average flexibility load delivered. 

 Annualized Capital Cost expressed as a unit cost £/MWh – CPX. 

 

                                         
125 Assuming volume is fixed. Volume is not fixed so this is a slight oversimplification. 

126 Note E[] is used to note an expected variable or parameter. 
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In the section below simplifying assumptions are made on the option to be valued, 

so that comparisons can be made about the relative risks in the various revenue models 

presented in Chapter 4. This section assumes that the aggregator collates all bids into 

one bin. In practice each bin or bucket as discussed in [82] (and also section 2.7 and 

Appendix N) would be treated as a separate options and summed to obtain the overall 

risk. Delta and Delta/Vega hedging in this instance could be used to hedge the 

combined effect of the bins.127  

5.9.2 Downside Risk: Comparison of Business Model Risk Premiums 

As discussed put options can be used to value the insurance premium that one 

would need to pay in order maintain a minimum profit margin. Essentially the value 

of risk of the bucket in this instance. In an option, this threshold is modelled using a 

strike price typically represented with the symbol X or K. Using assumptions and 

values set out in chapter 4 as a guide, the value of aggregator put options, for the 

three revenue cases, are shown under different assumptions. Exotic put options have 

been assessed for a variety of parameter inputs and the results are summarized in 

Figure 5-5 and Figure 5-6128. The margin in the pay % of clear price case is assumed 

to be 35% to the aggregator. CPvol – is the clearing price volatility, Bidvol is the bid 

price volatility. Volatilities are hourly volatilities. A profit margin threshold is set at 

a fixed value £10/MWh129 and is used as the strike price (min profit threshold) for the 

                                         
127 The bins are in effect a set of options, just as the power plant in [284] option. This allows techniques 

used by the financial industry to hedge such a portfolio of options. 
128 Note CPX, OPX is ignored in the option analysis. 

129 10% of the bid price.  
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options. 

 

Figure 5-5: Aggregator put option value - Risk - (£/MWh) for three business model cases 

 

Figure 5-6: Contract business model comparison using put options with different volatility assumptions 
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Figure 5-7 shows how option values increases as the minimum profit margin 

requirement, as a percentage of expected clearing price, increases from 10 to 30%130. 

 

Figure 5-7: Aggregator put option comparison: 10% vs 30% profit margin requirements  

Note that the shape of the pay % of clear price option is linear and has a positive 

slope albeit values are small in comparison to other models. This is due to the fact, 

that profit in this instance is related only to the clearing price. The higher the clearing 

price the more risk the aggregator takes. Aggregator margins affect the option value 

and when aggregator margins are low it faces more risk131 that it will not meet its 

profit margin threshold. Higher volatilities result in higher risk premium as with any 

option and the pay as bid option has less spread than the other contract types. With 

                                         
130 With a fixed price of £100/MWh this equates to a minimum threshold of £10 – £30/MWh. 

131 10% in the case shown. Higher margins result in the aggregator having less risk as they generate 

more profits. When the margin is set to < 1% option values rise to values approaching £20/MWh. 
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higher volatilities in clearing prices the fixed contract has more risk to the aggregator 

(assuming average bid price = fixed price). This is because the model assumes no risk 

associated with fixed price. Movements in CP are not cancelled out by movements in 

fixed price as they would be with the bid price case. 

5.9.3 Estimating the Exercise Price for the Aggregator Option: Using ROE and 

Profit Margins  

The value assumed for the exercise price of an option is a key element of the 

valuation. In the case of an aggregator, profit margin, seems an appropriate measure 

for this element. Return on Equity (ROE) is a similar measure to profit margin and 

can be derived by using the capital asset pricing model [314]. 

The Capital Asset Pricing Model (CAPM) model was the first coherent framework 

for answering the question how is risk related to corporate returns. It was developed 

by Sharpe in 1964 [315] states that the  

 

Return on Equity (ROE) = β*(Rm-Rf) +Rf (5-6) 

 

Where: 

 Rf – risk free rate or treasury rate  

Rm - the average market return rate  

β – Beta for company or stock/share 

 

Beta (β) represents the company’s riskiness when compared to the “average” 

company in the market ( [81] Ch 9). A company’s risk management stance would be 

reflected in the beta (β) seen in the market place assuming the company were traded. 

A β of 1 represents the market average so a Beta greater than one represents a more 
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risky company. β is also related to the volatility of earnings. Power utilities with little 

or no risk typically have a β of around 0.5.132 More risky companies might have a beta 

that is nearer 1.5 or 2. 

The UK FTSE100 is a good surrogate for the average market return Rm in the 

UK. “Over the last 119 years UK equities have made annualized returns of +4.9% 

over and above inflation. Therefore, if inflation is assumed to be 2.5% on an ongoing 

basis, long-term returns would be ~7.4%. Over the past 10 years, the compound return 

was 8.8% per annum” [318]. 

Market Returns over the last 5 years have been low (4.4%) due to uncertainty in 

the market such as Brexit. The previous years yielded an average return of 13.4%. In 

the analysis that follows a rate of 13.4% has been assumed. 

The UK treasury rate (or the equivalent of Rf) in 2019 was reported at 0.56% 

(Bloomberg 5 year gilt 11 Nov 2019 [319]) and has been used in the analysis. 

Using standard accounting definitions of net income, profit margin and ROE, 

Profit margin can be expressed in terms of expected revenues, costs and equity. ROE 

is related to Profit margins by the DuPont equation/model [320]133 and can be 

estimated using CAPM as discussed above. Equations (5-7) – (5-10) set out the detail 

of these definitions. These equations will be used to estimate the profit margin 

threshold required by the aggregator and are coded inside the aggregator agent 

discussed in chapter 7. 

 

                                         
132 Values for Beta for different types of customers can be found at [316, 317]  

133 See also equation (5-10) below. 
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where: 

Depr  - Deprecation. Assumed straight line depreciation over 10 years – so Depr = CPX/10  

ROE  - Return on Equity 

OPX  - Annual Operating costs 

_tax rate  - Corporate tax rate % 

Revenues  - Clearing price * Volumes summed over year 

COS  - Cost of Sales – Payments paid to customers for bidding  

 

 

Equity can be extracted from corporate accounts (balance sheets) and would vary 

through time as profits are transferred to the shareholders account in the balance 

sheet. In the analysis that follows, it is assumed that equity will remain constant and 

that all profits are paid out as dividends. At the inception of the company, monies 

will be required to put aside for hardware software and payroll costs. With no debt, 

equity would therefore be related to the capital costs of running an aggregator business 

and a proportion of payroll costs. For the ease of understanding the analysis below 

assumes equity = 1.1 * Capital costs to cover for working capital. 

Table 5-1 below shows the yearly profit margin associated with different levels of 

β for a 10,000 domestic customer aggregator business as discussed in in section 4.3. 

The table calculates profits for the company under different assumptions and provides 
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an annual profit, ROE and the required minimum price required in the market to 

provide a return commensurate with the β in the market, according to CAPM. 

Corporate tax rates are assumed at 20%, clearing price margins have been set to 50% 

for illustration in this table, average bid price from customer is equal to £70/MWh 

and its assumed that only 14% of the average domestic assumption in the UK is used 

as flexibility134. Capital costs and operating costs are as detailed in section 4.3 are 

used135.  

 

 
Table 5-1 Relationship between ROE, CAPM Beta, profit margin and the minimum prices required by a 

power aggregator (CP – clearing Price, COS – cost of sales) 

 

Figure 5-8 shows how the breakeven prices or the minimum clearing price to meet 

the profit margin requirements, changes with different assumptions; Beta, the numbers 

of customers and bid price. This graph is for the business model that pays the customer 

                                         
134 Only 50% of the volumes in reference [77] are assumed to be flexible in this instance.  

135 Capital costs have been annualised. 

Pay as Bid

Beta ROE Revs/yr COS OPX/yr DEPR

Profit 

before 

tax

Profit 

after 

tax/Net 

Income

Required 

Profit 

Margin =  

ROE 

*Equity/

Revs

Actual 

Profit 

margin

CP required 

to meet min 

profit margin Bid BE - Max Bid

0.5 7.44% 1680 392 526 114.1165 647.8835 518.3068 5.2% 30.9% 203.64             166.4

1 14.32% 1680 392 526 114.1165 647.8835 518.3068 9.9% 30.9% 221.51             148.5

1.3 18.45% 1680 392 526 114.1165 647.8835 518.3068 12.8% 30.9% 232.24             137.8

1.5 21.20% 1680 392 526 114.1165 647.8835 518.3068 14.7% 30.9% 239.39             130.6

2 28.08% 1680 392 526 114.1165 647.8835 518.3068 19.5% 30.9% 257.26             112.7

Pay % of Cleared Price                   Margin % = 50%

Beta ROE Revs/yr COS OPX DEPR

Profit 

before 

tax

Profit 

after 

tax/Net 

Income

Required 

Profit 

Margin =  

ROE 

*Equity/

Revs

Actual 

Profit 

margin

CP required 

to meet min 

profit margin Min Margin BE

0.5 7.44% 1680 840 526 114.1165 199.8835 160 5.2% 9.5% 267.27             44.5%

1 14.32% 1680 840 526 114.1165 199.8835 159.9068 9.9% 9.5% 303.03             50.5%

1.3 18.45% 1680 840 526 114.1165 199.8835 159.9068 12.8% 9.5% 324.48             54.1%

1.5 21.20% 1680 840 526 114.1165 199.8835 159.9068 14.7% 9.5% 338.78             56.5%

2 28.08% 1680 840 526 114.1165 199.8835 159.9068 19.5% 9.5% 374.53             62.4%
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its bid price. 

 
Figure 5-8: Minimum clearing price required by aggregator to meet profit margin requirements for 

different CAPM Betas 

The minimum clearing prices represent the thresholds that an aggregator company 

would require to meet ROE targets and hence profit margin targets and are used as 

the exercise price in the option models used in the simulations in chapter 8. 

5.10 Portfolio Management and the Selection of Aggregator Business Models 

It is clear from the preceding analysis that different revenue business models result 

in different risk reward profiles. The choice between risk, and not risk managing, is a 

personal one and depends on the individual preferences (risk tolerance) of these 

companies. This will impact the choice of business model. Standard financial portfolio 

management provides a framework on which this choice can be assessed. In addition, 

the use of utility theory and risk aversion coefficients allow for a comparison of 

business model choices and is used in the ABM framework discussed in Chapters 7 

and 8. This utility value is used by aggregator agents to select the business models. 

In the sub-sections that follow an introduction to the portfolio management concepts 

used in this model are provided. Finally a model is specified that uses the value of the 

put option to calculate a utility value. 
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5.10.1 Portfolio Approach: Risk Reward 

In 1959 Harry Markowitz developed his mean variance risk framework [321] for 

portfolio selection. In this work, Markowitz developed the concept of the efficient 

frontier to develop the idea that investors could combine different assets in different 

ways to produce a risk reward curve that represented the greatest value or reward for 

the some set risk level; or for a set reward what is the portfolio that provides lowest 

risk. 

Typically, reward is represented as returns136 and risk as standard deviation in 

expected returns expressed as a percentage, but can be shown as absolute values 

(Figure 5-9). The efficient frontier is the set of optimal portfolios that offer the highest 

expected return for a defined level of risk or the lowest risk for a given level of expected 

return. 

 

Figure 5-9: Efficient frontier example 

Portfolios that lie below the efficient frontier are sub-optimal because they do not 

have enough return for the level of risk. Portfolios that cluster to the right of the 

                                         
136 Profits margins have been used in this work instead of returns.  
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efficient frontier have a higher level of risk for the set rate of return. Which a particular 

investor prefers is a matter of choice dependent upon the investors risk preference or 

tolerance. Economics usually deals with this dilemma using utility theory. Utility is a 

method that allows one to compare different risk reward values as one value (see [322] 

for a fuller discussion). It was first developed by Daniel Bernoulli in 1738 to represent 

risk aversion in consumers [323]. Utility represents the reward on a “risk adjusted 

basis” depending on exactly how the individual sees the value of risk. Typically, the 

concept is used in economics and uses indifference curves or Utility wealth curves [324, 

325]. 

5.10.2 Levey and Markowitz Extension: Combining Portfolio management with Risk 

Aversion 

Building on Markowitz’s original work in 1959 on portfolio selection, Levy and 

Markowitz [326] extended the framework to look at portfolio choice using utility 

theory. By combing the work with Arrows Risk aversion coefficient [327](Lecture 2 - 

The Theory of Risk Aversion p 28)] the authors develop the relationship shown in 

equation (5-11).  

 

U = E(r) - 0.5 λ 2σ  (5-11) 

where:  

U – Expected utility  

E(r) - Expected return 
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λ – Arrows Risk Aversion Coefficient137 
2σ  – Variance of returns  

 

The part of the equation to the right of the "minus" sign indicates the risk of the 

portfolio itself, taking into account the investor's risk aversion. The formula as a whole 

therefore gives us the difference between the total expected return of a portfolio and 

the risk involved. In fact, by subtracting risk from the expected return E(r), one gets 

the return on a risk-free investment 

With λ=1 the investor is considered risk neutral and the utility U represents what 

is known as the certainty equivalent value (Expected Return – Value of Risk) . With 

λ <1, U represents the utility as seen by a risk loving investor. At λ=0 the investor 

doesn’t care about risk and would select project based solely on the profit regardless 

of risk. This would mean that non-hedged strategies would always be selected.138 

Various authors have over the years have criticized the Levy Markowitz approach; 

even Markowitz recognized that variance ( 2σ ) did not necessarily reflect the views of 

actual portfolio managers. He expanded the work to include semi variance measure 

which is the variance based on downside variations [321]. 

 

5.10.3 Fishburn’s Generalized Mean Risk Model 

Fishburn [328] developed a utility model for risk aversion that included downside 

                                         
137 Note the Risk Coefficient applies to Arrow’s CARA model, which assumes constant absolute risk 

and does not recognise that the accumulation of wealth may in fact change investors risk preference. 

This model has only one factor whereas other more sophisticated models use multiple factors and make 

them more complex to use. For the purposes of this work, the CARA model is used. 
138 The hedged position is the unhedged position – cost of hedging. 
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risk. It is a generalized model that uses two parameters to define utility. By extending 

Markowitz’s and Levy’s work, Fishburn developed a generalized model he called the 

“mean-risk dominance model”; the so called a-t model. The model considered downside 

risk as opposed to variance (which is a two sided concept) in which risk is measured 

by a probability-weighted function of deviation. It used two variables “t“ ( a threshold 

value – a target value) and “α”, a risk aversion coefficient. A special case of the α - t 

model is the mean-target semi-variance model developed by Harry Markowitz when  

α = 2. 

As discussed by Fishburn, given a threshold “t, α is supposed to reflect the decision 

maker's feelings about the relative consequences (personal, corporate, etc.) of falling 

short of t by various amounts. If his main concern is failure to meet the target without 

particular regard to the amount, then a small value of α is appropriate. On the other 

hand, if small deviations below target are relatively harmless when compared to large 

deviations, then a larger value of a is indicated” [328]. In essence, this fits well with 

the idea that aggregators will be looking to achieve a minimum profit level. 

It is important to note that these various models have limitations and have been 

criticized in some way or another, e.g. the Fishburn model ignores correlations between 

assets. However as Fishburn suggested his generalized model can be used to represent 

a variety of different risk aversion stances by changing the alpha α and the t constants.  

The key here is different aggregators or investors in general will use different 

decision-making models in the selection of their aggregation portfolios. The utility 

approach allows us to convert risk and reward values into a single figure so that they 

can be compared. Different models will result in significantly different utility values 
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and will therefore affect choices. 

5.10.4 Ang, Chen and Sundaresan, "Liability-Driven Investment Model with 

Downside Risk” 

Ang, Chen and Sundaresan [255], in the context of evaluating pension liabilities 

and their downside risk, derive a model that incorporates a put option in its 

formulation. The utility of the portfolio return is shown in equation (5-12). 

 

U=E(r) – 0.5 λ 2σ  - CVput 

where:  

U – expected Utility 

E(r)  – Expected return 

λ – Arrows Risk Aversion Coefficient  
2σ  – Variance of returns 

C - Coefficient set to 0-2 

Vput– Value of put option 

(5-12) 

 

Unfortunately Ang, B. Chen, and S. Sundaresan do not provide any views about 

what value the factor C should take, but show its affects from values ranging 0 - 2. In 

the context of the aggregator problem discussed herein, values greater than 1 do not 

provide interesting results, so a value of 0.5 has been used in the simulations presented 

in Chapter 8. 

Other researchers have developed alternative approaches. Ang [329] (Ch 4) 

provides a useful discussion of different risk stances and models that one could use to 

represent downside risk. This is still an active area of research but mainly focuses on 
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finding an approach that would select superior portfolios. This of course would also 

be a future research avenue for aggregators searching for a superior selection 

algorithm. 

As the business models in this thesis result in different risk/reward profiles the 

Ang, Chen and Sundaresan model using a C=0.5 has been used to compare models in 

the simulations presented in Chapter 8. The single value obtained from equation (5-12) 

thus allows the aggregator agents to choose between the various business models with 

different risk reward profiles.  

5.11 Chapter Summary 

Payout functions (equations (4-1) – (4-3)) developed in Chapter 4 and shown 

graphically in Figure 5-4 can be represented as a financial call option. In addition, 

downside risk can be represented by put options, the value of which would represent 

the insurance premium that would be required to be paid to cover such risk. This 

allows analysts to simply model a full hedge of the aggregator’s risky position, but 

assumes that the option can be purchased in the market. 

Valuation using an options approach allows for practical risk control measures 

using Delta or Delta/Gamma approaches to be used. This is somewhat easier to 

understand and implement than the alternative approach of CvaR or VaR. Such 

option techniques are leveraged in Chapter 6 and 7 to model an aggregator agent’s 

risk and the effect of simple hedging strategies on market dynamics. Note that the 

development of a three asset put option to represent downside risk associated with an 

aggregator is an original contribution to research. 
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Key Points 

 That expected payoffs of the three revenue models can be represented as 

options.  

 Monte-Carlo techniques or numerical trees can be used to calculate the value 

of these options, and used as financial instruments to hedge risky financial 

positions. 

 That the three revenue models investigated have different risk premium 

structures although fixed and pay as bid revenue models can be very similar 

under certain conditions. 

 That hedging can be valued using a put options approach. 

 That the methods set out in this chapter can be used to value other power 

business models (BM). 

 Additionally, BM’s will exhibit different risk and reward profiles. The use of 

portfolio concepts using "Utility" can be employed to select an appropriate BM.  
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Chapter 6  

 
Human like Customers: Model 

Frameworks, Emotions and Social 

Interactions 

 
This Chapter introduces the modelling of customer interactions in the context of 

this thesis and reviews modelling and theoretical literature on representing human 

behaviour and especially emotions in silica. This is a vast research area, firmly rooted 

in the Social Sciences, but computational modelling of these effects is a relatively 

young science that still faces many challenges. Development of an approach that can 

represent human behaviours in a power setting is an important contribution to the 

art, as current tools do not adequately represent human or aggregator behaviour in 

their models. This is an important for a number of stakeholders including regulators, 

customers, aggregators and the DSO’s.  

In addition, modelling social interactions is important as “Energy is consumed in 

social environments and in the presence of social peers. But social interactions do not 

just happen alongside energy behaviour - the two are intrinsically linked.”[14]. Social 

science researchers have started to develop conceptual frameworks to capture these 

social dynamics [15-17, 330], but no computational model incorporating emotions and 

social interaction in the power aggregator domain exists at present. Creating a 

framework which can include power system networks, customers and their social 

relations with themselves and aggregator companies (and others) would be an 

important first step in providing a more holistic model of a low carbon distribution 
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network. Without this aspect, policies would fail to take account of the impact of 

social interactions and customer psychology on system operation. As far as it is known, 

very little research has been performed on assessing this behaviour in the context of 

electricity market modelling, and none of it has addressed how customer behaviours 

would affect aggregator dynamics. 

The Chapter is split into four main sections as follows. Section 6.1 introduces the 

abstract concepts of cognition, psychology and emotions, and reviews literature on 

computational social psychology and the representations of emotions in particular, in 

agent based models. Many of these abstract concepts focus on answering detailed 

psychological and emotional questions, where-as the remit of this work is to develop 

a model that represents human behaviour including emotions in an efficient abstract 

computational model. They are included for completeness and may prove useful in 

future work. Section 6.2 reviews how computational systems have represented bidding 

behaviour in models. This is important because customers, generators and the 

aggregators themselves are essentially bidding into a market. They will adjust these 

bids to take account of market conditions as well as competition effects. Section 6.3, 

introduces Social Network and Social Network Analysis (SNA), in the context of this 

work. This is important, as a social media will play an important part in the setting 

of prices and transmission of information about new services and offerings. Middlemiss 

et al., for example in a recent study, has shown that social media interaction plays an 

important part in low-income consumers taking up energy services [15]. In this regard, 

a multilayer “gossiping” network representation is introduced and is linked to the 

abstract representation of human behaviour developed later in the chapter. Social 
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media networks based on Facebook/Twitter and a Watts-Strogatz small world 

network [331] have been used as a basis on which to simulate such interactions. 

Finally section 6.4, details the extensions made by this author to Epstein’s 

Agent_Zero framework [89] to accommodate economic assessments, customer 

emotions and social interactions. The framework keeps track of multiple emotions 

(anger and happiness) about the performance of six aggregators. This social, cognitive 

and economic framework has been selected to represent human behaviour in the model 

presented in Chapter 7/8. Currently only domestic customers have been provided with 

this behaviour. Future work could extend this to include other actors, although it is 

usually considered that corporate actors act more rationally. The structure of Chapter 

6 is summarized in Figure 6-1. In particular, the Chapter provides the following 

important contributions to research: 

1. The introduction of multi-layer social networks to propagate messages 

about the state of the market. 

2. Extension of Agent_Zero framework to represent human behaviours 

(Emotive, Social and Cognitive) in a low carbon distribution network 

setting.  
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Figure 6-1: Overview of Chapter 6 

 

6.1 Social Science: Modelling Customer Behaviours and Emotions 

This thesis will focus on a case study involving customers that interact with 

aggregator companies in a low carbon power market. Customers will have feelings 

about these companies; some will be formed by their own opinions; some with closely 

connected friends and neighbours, and some from others further afield. However, how 

should these feelings/emotions best be represented and how will these emotions 
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influence behaviour? Are there computational frameworks that can be used to 

represent them in this case study? What is the best way to do this?  

The following sections introduce the theory behind psychology, social psychology 

and emotions. However this is not a thesis on sociology, social sciences or psychology, 

so the aim of this work is to find a suitable framework to represent one aspect of a 

very large field of research. In particular, the aim of this work is to: 

 

 Represent interactions between customers using a social network to share 

views; 

 Represent emotions in said customers using a simple and understandable but 

effective framework; 

 Represent social impacts on said emotions and represent those emotions in 

association with logical constructs such as economic appraisals on assessing 

aggregation performance.  

 

 Much of the research from the social science and social psychology communities 

focuses on one aspect or one narrow specific question. Similarly, ABM’s utilizing social 

constructs again focus on narrow representations. So many of them would not be 

appropriate for this work. Some like the CONSTRUCT [139, 140], Clarion [146-148], 

ACT/ACTR [151, 332, 333] or SOAR [142, 144, 145] models139 provide too much detail 

potentially for this problem but may prove to be useful frameworks in future work 

e.g. CONSTRUCT for modelling organizational structures. Contact with the 

                                         
139 Note these are not all ABM models.  
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developers of CONSTRUCT by email indicates that it might be possible to use an 

XML file to exchange data between CONSTRUCT and the simulator proposed here, 

written in Python. Note however, CONSTRUCT was written to represent knowledge 

transfer and formation dynamics within organizations. At this point, it provides 

another level of complexity that is that is not currently required. However, in terms 

of modelling an “independent regulator” agent, for example, it might prove extremely 

useful. 

The social sciences covers a wide range of theoretical approaches and can be diverse 

in its approach to representing various aspects of human behaviour. The various 

theories can provide a researcher with a diversity of insights but at the same time can 

be frustrating for a modeler/researcher looking to use these many theories as a 

scientific basis for their own models. Most researchers are drawn to the middle ground 

[334] (p65). 

The key to selecting and using an appropriate theory or modelling framework is 

the idea that to help answer a particular modelling question researchers need to focus 

either on the intrapersonal (the mind and body of an individual), interpersonal 

(social), or the organizational (e.g. cultural, knowledge sharing) dynamics of the 

question at hand [335] (preface). Reference [336] proposes a conceptual framework for 

representing agent models in a military setting using three dimensions that represent 

the social entity or granularity (individual, cell, family, Tribe/Clan, Ethnicity, 

Nation/State, International); the scope (tactical, operational and strategic) ) and the 

time frame (hours, days etc.). There are many different models all dealing with these 

various categorizations and with different questions in mind. None, as far as it is 
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known, specifically focus or answer the questions that are posed in this thesis. They 

do provide potentially some useful building blocks with which to formulate a modelling 

framework focused on customer behaviours in a flexibility/aggregator market setting. 

Some of these frameworks e.g. for modelling organizations may be useful for future 

work. 

Because there are so many different competing theories, it can make it confusing 

for the researcher to choose an appropriate theory or methodology. However, the 

following sections will try to summarize the key points that are appropriate to this 

thesis rather than provide a complete literature review of the social science discipline 

and its theories on human mind and behaviour. Readers are referred to texts such as 

[337-341], for a fuller treatment. In particular, few textbooks deal solely with 

computational social/psychological/organizational modelling approaches; references 

[335, 342-344] are recommended for the interested reader. Some of these texts are 

really just a selection of papers dealing with the diverse aspects of this research area. 

Most, if not all of these papers, are focused on social science issues. 

In the context of human behaviour in power, models have focused on rational 

behaviour typically using marginal costs as the basis of their analysis e.g. like in the 

SmartNet project. Therefore, this section leans heavily on the ideas and experience of 

computational social scientists like Carey, Epstein, Read, Nowak and Vallacher. 
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6.1.1 Which model to Use? A Decision Framework 

Carley and Newell’s 1994 paper on the ideal model for a social agent140, sets out a 

matrix of potential designs for social agents along two dimensions; knowledge (ranging 

from non-social agents through to modelling cultural history and Cultural exchanges 

and learning); and processing capabilities (rational, bounded rationality cognitive and 

emotional cognitive) [345]. It is a useful framework in that it shows the breadth of 

choices that a modeler has to represent social interactions and more generally human 

behaviour (see Figure 6-2). 

 

Figure 6-2: Model social agent;2D selection matrix; Adapted from figure 3 in [345] 

 

Figure 3 in the same paper fleshes out examples of human characteristics in various 

cells of the 2D matrix e.g. group formation, scheduling, learning from others, sharing 

information, norm and ritual maintenance and so on. 

This thesis requires an agent that can have emotions and interacts with other 

agents, sharing these emotions. Decisions on bidding and selection of options will be 

                                         
140 Note this is a conceptual framework. 
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rationally based (economics). Thus, in terms of the framework in Figure 6-2, (see 

Blue/Green stars), an emotionally cognitive/rational agent operating in a Multi-agent 

environment is required  

6.1.2 Cognition, Psychology, Emotions and Social Theory 

6.1.2.1 Psychology/Social Psychology  

Psychology is the scientific study of the mind and behaviour, and includes many 

sub-fields of study, such as human development, social behaviour, and cognitive 

(thought) processes. 

“Social psychology is the scientific study of how people's thoughts, feelings, beliefs, 

intentions and goals are constructed within a social context by the actual or imagined 

interactions with others ..It therefore looks at human behavior as influenced by other 

people and the social context in which this occurs.” [346, 347].  

Social psychology consists of three parts: affect (feelings), cognition (thought and 

mental process), and behaviours (interactions) [341]. It considers that human 

behaviour is both a response and a stimulus to the behaviour of others. That behaviour 

can be from visual cues, such as appearance, or from behavioural components – how 

one acts. This thesis focuses on behaviours observed on digital platforms such as social 

media. 

6.1.2.2 Cognition/Social Cognition 

Cognition is defined in the Oxford English dictionary as the “The mental action 

or process of acquiring knowledge and understanding through thought, experience, 

and the senses.” 

“Social cognition is a sub-topic of social psychology that focuses on how people 

process, store, and apply information about other people and social situations. It 
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focuses on the role that cognitive processes play in our social interactions.” [348]. In a 

computational sense, it would involve the modelling of thought process carried out in 

assessing a social interaction. 

6.1.2.3 Rational Choice Theory 

Rational choice theory is defined in the Encyclopedia Britannica as the “school of 

thought based on the assumption that individuals choose a course of action that is 

most in line with their personal preferences. Rational choice theory is used to model 

human decision making, especially in the context of microeconomics, where it helps 

economists better understand the behaviour of a society in terms of individual actions 

as explained through rationality, in which choices are consistent because they are 

made according to personal preference.” 

Rational choice is therefore a valid method by which one could model human 

behaviour. Using marginal costs and economic decision-making is a common method 

used in the analysis of power systems to model both bidding and investment 

behaviours. Coleman [337] uses this idea of greed, self-satisficing and self-interested 

agents, as the basis of his “Foundations of Social Theory”. In this work, Coleman 

posits the idea that macro to micro to macro effects (the so-called “Coleman Boat” 

concept) are crucial to model, and in order to do so, frameworks are required that 

connect these different levels. He also provides the basis for modelling social constructs 

in Agent Based Models141 with concepts like trust, agency, social capital, social 

exchange, norms and authority. Finally, Coleman developed a mathematical model, 

                                         
141 Coleman doesn’t specifically discuss the use of ABM models but the concepts fit well with this 

particular modelling paradigm. 

https://www.britannica.com/topic/decision-making
https://www.merriam-webster.com/dictionary/context
https://www.britannica.com/topic/microeconomics
https://www.britannica.com/topic/reason
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which he calls a linear system of actions that could be used in such an ABM. 

Timmerman [349] uses the linear system of action framework to create an ABM/Multi 

agent model which looks at policy decisions in an environmental setting. However, 

Coleman’s work was heavily criticized as being too rational by the social science 

community [350]. 

6.1.2.4 Ecological Rationality 

Overall, rational choice theory (RCT) focuses on internal logical consistency 

whereas ecological rationality targets external performance in the environment. RCT 

consists of making decisions in keeping with rules, irrespective of context. Ecological 

rationality, in contrast, claims that the rationality of a decision depends on the 

circumstances in which it takes place, to achieve one's goals in a particular context. 

Social settings matter. Dekker and Remic [351] define two types of ecological 

rationality. “The first type of ecological rationality (ER1) as used by Gerd 

Gigerenzer,” (Psychologist – Fast and Frugal Heuristics) “refers to the use of cognitive 

strategies, heuristics in particular, in real-world decisions. The second type of 

ecological rationality (ER2) as used in the work of Vernon Smith,” (Experimental 

Economist) “refers to the rationality of cognitive systems consisting of multiple 

individuals, institutions, and social norms.” For a comparison/discussion142 of the two 

views see reference [352, 353]. Both views can be used to inform economic modelling 

of human behaviours.  

 

 

                                         
142 Especially see table 7.1 in [352] 
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6.1.2.5 Belief Desire and Intentions (BDI) 

BDI is a well-known mental state and rational model developed originally in 

Bratman's theory of human practical reasoning [354]. Beliefs represent the current 

state of environment, desires represent the ideal states and intentions the plans and 

desires that the agent is trying to action. Software models that use BDI as a basis 

effectively choose from a set of plans. The software agents spend time considering 

plans (choosing what to do) and executing those plans (doing it). Plans also have to 

be created. For a good description of BDI software agents and its link to theory see 

[355, 356]. 

The BDI rational mental state model is still widely used in many agents especially 

in robotics and Multi agent systems. It is considered a cognitive modelling technique– 

as it involves a sensing and then thought before action. It is also rational framework, 

but it is known that although humans are directed by rational decision-making, human 

behaviour is also emotional [357]. An emotional framework for extending BDI was 

proposed in 2007 [358] and 2014 [359], but doesn’t appear to have been extensively 

used. The concept that BDI/cognition should be joined to an emotional model is an 

attractive one that will be discussed later.  

6.1.3 Emotions  

There are many theories of emotions with some appearing to be at odds with each 

other. For a historical review and overview of some of these theories see [360, 361]. 

These theories and models are the result of analysis of human and animal 

behaviour and measurements of neurological activity. Lange and James (1922) [362] 

were the first to propose that emotions were linked to neurophysiological drivers. 

https://en.wikipedia.org/wiki/Belief-Desire-Intention_model
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According to their theory, emotions are as a direct result of physiological stimuli not 

perceived events. Since that and over many decades various theories have been 

proposed that argue that emotions have a behavioural, cognitive and motivational 

link. Arnold [363] introduced the concept of appraisal in emotions, and Frijda [364], 

Smith and Lazarus [365], and Scherer [366], and Ortony Clore and Collins (OCC) [367] 

extended the concept to include cognitive appraisal of a situation. Cognitive appraisal 

is one of the more popular theories of emotion, that is used in modelling emotions. 

Of course, emotions are not just as a direct result of appraisal and some primary 

emotions are considered to be driven by neurophysiological stimuli. Unfortunately, 

there is not yet a unifying theory that fully explains human emotion. 

“In psychology, emotion is often defined as a complex state of feeling that results 

in physical and psychological changes that influence thought and behavior. 

Emotionality is associated with a range of psychological phenomena, including 

temperament, personality, mood, and motivation.” [361]. 

Emotion theories can be categorized into three categories; psychological (responses 

in the body), neurological (brain activity) and cognitive – where thoughts and other 

mental processes are assumed to drive the emotional process. 

According to appraisal theories of emotion (Cognitive), thinking must proceed 

emotion [368] 143, and involves a sequence of events that includes a stimulus, followed 

                                         
143 Lazarus theory of emotion. 
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by thought, which then leads to the simultaneous experience of a physiological 

response and the emotion.  

6.1.3.1 Mixed Emotions 

Human beings are complex organisms and can have mixed emotions e.g. be happy 

and angry at the same time144. It should be recognized that some theories of affect 

(Emotional response) postulate that feelings at opposite ends of the spectrum are 

mutually exclusive. This means that happiness and anger cannot be experienced 

simultaneously [369]. The Evaluative Space Model (ESM) [370], however, postulates 

that organisms can have mixed emotions with stimuli affecting different substrates in 

the neural pathways. Effectively you can have mixed emotions. The ESM model is a 

dimensional affect model. Models that treat mixed emotions as a separate discrete 

emotion have also been proposed145 using a bipolar scale of -1 to 1 (see [371]). Berrios, 

Totterdell and Kellett’s, meta-analysis on number of studies on mixed emotions 

“revealed a moderate to high effect size for the elicitation of mixed emotions ..There 

was no significant difference between studies that conceptualized mixed emotions 

using a dimensional or a discrete structure of affect“ [369]. 

It is clear that emotions can be described either by a dimensional model or with a 

bipolar scale. More recent work [372], suggests that these two competing models may 

be related with, essentially, a primary and secondary effect. That is, under certain 

conditions the discrete model dominates and so on. Although it is not the purpose of 

                                         
144 Although some social scientists would debate this. 

145 Note basic emotions like anger fear happiness are discrete emotions, but a blended emotion could 

have its own discrete state. 
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this thesis to justify this, it is important to note that these alternative modelling 

paradigms could be used to represent emotions. Note, that a mixed emotion model 

with a [-1,+1] score has been chosen to represent consumer opinions of aggregators in 

this thesis. 

6.1.4 Appraisal theory 

Appraisal theory is the theory that emotions are “elicited by evaluations 

(appraisals) of events and situations. For example, sadness felt when a romantic 

relationship ends may be elicited by the appraisals that something desired has been 

lost, with certainty, and cannot be recovered” [373]. 

The Appraisal theory (of emotions) was developed to answer the following types of 

questions: 

 How can we account for the differentiated nature of emotional response? 

 How can we explain individual and temporal differences in emotional response 

to the same event?  

 How can we account for the range of situations that evoke the same emotion? 

 What starts the process of emotional response? 

 What accounts for irrational aspects of emotions? And so on.  

 

Many of the other models fail to address these questions but appraisal theory 

effectively differentiates Emotions by appraisals. 

6.1.5 Theory of Planned Behaviour (TPB) 

The Theory of Planned Behaviour (TPB) framework [374, 375] has been used in 

modelling consumer behaviour in the retail markets for some time. TPB allows for 
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comparison between behavioral intention (e.g. supporting an environmental issue or 

buying a product or service) in terms of attitudes, subjective norm, and perceived 

behavioral control. It is essentially a three-dimensional model although sub-categories 

are provided in each primary dimension. 

Reference [376] uses TPB to explain household electrical energy use intentions and 

behaviour in Australia. References [377, 378] use TPB frameworks to explain energy 

consumption behaviours in Malaysia and China. Huijts et al [379] used a TPB 

framework to explain that the intention to act in favor of, or against, a local hydrogen 

refueling facility is more strongly based on moral considerations or on self-interest. 

6.1.6 TPB and Emotions 

The theory of planned behaviour is useful as a framework at predicting customer 

behaviours but typically ignores emotions. As discussed, the three dimensions of 

attitudes, subjective norms and perceived behavioural control (PBC) are inputs to the 

typical TPB model.  

However in a recent paper, Londono, Davies and Elms [380], consider the effect of 

negative emotions on consumer buying behaviour in a retail setting by extending the 

TPB framework, with an additional input related to these negative emotions. It is a 

simple addition to the connectionist TPB framework. This may prove to be a useful 

in future work. Note the TPB technique requires the collection, analysis of consumer 

data and behaviour patterns. Model linkages (strengths between inputs) in these 

models are typically assumed to be fixed. 
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6.1.7 Cognition and Emotions 

Many of the computational models and theories treat cognition separately from 

emotions. However, emotions affect cognition and cognition affects emotions. 

Pessoa in [381] lays out his thoughts on how these functions in neurophysiological 

sense are combined in hubs present in the brain. Reference [382] provides a survey on, 

and short descriptions, of various computational frameworks, that have both a 

cognitive and emotional element albeit most are based on the cognitive structures (see 

Table 2 in this reference). Although not currently in a computational form, Lerner 

has developed a theoretical framework that predicts the effects of specific emotions on 

judgment and choice outcomes. The framework has been used to predict emotional 

effects on perceptions of risk, and for making economic decisions ( See Figure 2 in 

[383] for the conceptual model developed by Lerner et al. ) and may useful in the 

context of this work. As far as it is known none of the models discussed in [382] address 

risk which is an important element of the model in this thesis. 

6.1.8 Modelling Social Norms 

Social norms govern most of our life. Although individuals might be conscious of 

some norms, like queuing, most behaviour is relatively automatic. Social norms are 

informal understandings that govern the behaviour of members of a society and 

provide us with an idea of how to behave in a particular social group or culture [384, 

385]. Although this thesis is not going to consider social norms at this point, its impact 

on behaviours may be useful in future work concentrating on group behaviours e.g. it 

is expected that customers/organizations will bid and provide flexibility in a certain 



 

177 
 

way, subject to social norms.146 

Examples of simulation that use norms in modelling behavioural interactions in a 

social setting are given in [386-391]. In these examples, agents learn from others agents 

and perceive norms. Reference [391] uses a norm based BDI agent based model 

construction, while [386] is potentially interesting as it models payment norms in an 

environmental conservation setting. In this, model agents change their actions to 

increase their utility and/or conform to social norms, which in turn may change social 

norms. Macbeth [171] began to investigate the use of norms in a MAS environment 

using reputation and trust as a way to help agents self-organize. Morales et al [392-

394] built a norms learning engine that warrants further investigation as it “evaluates 

norms in terms of their effectiveness and necessity” in achieving coordination. Logic 

allows the model to add, generate /create, specialize, generalize rules and deactivate 

them. The model is continuously synthesizing norms represented as sets of rules and 

essentially explores and measures their effects offline, before rules are activated to be 

used in a traffic management system. The modelling of social norms in this framework 

should be considered in future work. 

6.1.9 Symbolic and Non-Symbolic Representations (Connectionist Models) 

The AI and computational science/research community is separated into two 

camps; those that use symbolic representations and those that use non-symbolic ones 

[395, 396].  

Symbolic approaches like that used by Clarion, SOAR and ACT rely on acquiring 

                                         
146 Many customers/organizations may not follow these norms, so there may need to be a mechanism to 

penalise them.  
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knowledge; representing that knowledge as symbols and in lists. These systems 

typically use rules and rule based engines to process that knowledge to illicit actions 

and decisions. By supplying the model with information that they believe it should 

know, researchers define the limits of learning. 

Non-symbolic researchers use approaches that try to mimic the human brain e.g. 

connectionist models (chapter 11 in [397]) using, for example, neural nets, deep 

learning and genetic algorithms [398]. They are typically considered a black box 

approach and can learn patterns potentially outside of the symbolic set up. There is 

no searching through lists or using rules, so connectionist models are usually 

computationally fast. 

Symbolic approaches work well when the problem is well defined e.g. like a chess 

game and where systems are process oriented. Connectionist models are well suited to 

large-scale ABM environments as they are more computationally efficient than the 

equivalent symbolic approaches. 

6.1.10 Hybrid Approaches 

Hybrid approaches that combine both concepts could be also used [399, 400]. In 

this regard, a connectionist approach could also be used with the Agent_Zero 

framework discussed in section 6.4 as it could improve the representation of emotions 

within this framework, by adding additional emotional response drivers. Note this 

would be for future work. 

 

6.1.11 Cognitive Vs Generative Models 

Overlap between cognitive and generative social science is small despite a shared 
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interest in human behaviour. Cognitive science focuses on formal accounts of human 

thought, action, and behaviour and sometimes includes neurophysiological modelling. 

Generative science [87, 88, 401] approaches the question of understanding social 

structure and dynamics using simple computational agents in a social context [402]. 

The Agent_Zero framework that will be discussed more fully later in the section 

6.1.15, and 6.4 is a generative model while SOAR is an example of a cognitive model. 

In a hybrid model Orr et al. [402] sets out their reciprocal constraints paradigm 

(RCP) theory which uses three components to model a social system. These 

components include an integrated cognitive system; a neurophysiological and social 

system with constraints. The conceptual model was developed to link cognitive and 

social simulations at different scales e.g. cognitive vs social actions. 

6.1.12 Modelling Paradigms: Computational Social Science/Psychology 

Zacharias et al [403] reviewed a multitude of individual, organizational, and 

societal modelling approaches in the military modelling domain and presented them 

using a similarity network approach. Osoba and Davis updated the diagram with some 

additional links, as shown in Figure 6-3, which is reproduced from Fig 19.1 [404] and 

adapted from Fig II.1 [403]. 

 . 
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Figure 6-3: Similarity network of modelling methods: reproduced from Fig 19.1 [404] and adapted from 

Fig II.1 [403] 

It is clear that many different methods could be used to model human behaviour, 

including in an electrical power domain setting. Many of these techniques have already 

been employed on their own [89], but many more could logically be used in conjunction 

with other techniques. For example, many ABM (or MAS) systems use optimization 

in their internal structure. In this work (discussed later), an ABM model with a 

simplified form of cognition, emotion, a social structure, and optimization, has been 

used147. This is important as future distribution flexibility systems will require the 

participation of new actors like domestic customers and aggregators. The behaviour 

of these actors will impact on DSO operation and their longer term planning and will 

impact on Regulator’s market designs. Current tools do not adequately represent 

                                         
147 The Agent_Zero model uses a “simplified” cognitive logical and social model that is 

computationally light and therefore fast. 
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human behaviour in their models. This is also important for a number of stakeholders 

including regulators, customers, aggregators and the DSO’s. The prior sections lay out 

the various approaches used in modelling detailed cognitive behaviours but are too 

complex and computationally inefficient for modelling the questions raised in this 

thesis148.  

In addition, other approaches are seen in the social science literature including the 

following examples: Systems dynamics (SD); fuzzy cognitive mapping, coupled 

oscillators, and connectionist models using emotion concepts.  

The introduction of the effects of personality on emotions is developed by Read et 

al., in [405, 406]. In this approach, he uses the big five personality trait framework 

OCEAN149 [407]. It is a detailed intrapersonal model of emotions, but because of its 

connectionist nature (i.e. neural net based approach), it might provide a useful 

addition to more sophisticated model of emotion in the future. Vallacher and Nowak’s 

work focusses on interpersonal dynamics and on dynamic processes in social 

psychology [408], and in particular uses coupled oscillators to model interactions 

between individuals [335, 342-344]. Navarro-Barrientos et al., [409] used an 

interesting SD approach to model the TPB framework and although not specifically 

focused on emotions, it could prove a useful modelling framework in which to include 

them. 

                                         
148 The scale of the problem used in the thesis (1000’s of customers) would also result in large 

computation run times. 
149 OCEAN – Openness, Conscientiousness, Extroversion, Agreeableness, and Neuroticism. 
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References [410, 411] present the use of Fuzzy Cognitive Maps (FCM) for 

modelling social processes in general and emotions in particular. Readers are referred 

to [335, 342-344] for more examples. 

6.1.13 Computational Models of Emotions: Surveys and Examples 

Bougais et al [412] provides a useful overview of modelling approaches used to 

capture emotions and includes ABM modelling approaches. Kowalczuk and Czubenko 

reviews 12 emotion modelling approaches mainly used in the robotic and chatbot field 

[413]. Lin, Spraragen and Zyda [382] review the research history of emotional 

computational models and focus on 3 “landmark” models, namely EMA, WASABI 

and Soar-Emote (PEACTIDM). Table 3 in this reference provides a useful list of 

modelling environments, comments and categorisations. 

In particular, the reader’s attention is drawn to the following key observations and 

tables from the three reviews listed above : 

 Emotions can be represented as simple values (e.g. 0-1, 0-10), as vectors or in 

three dimensional space. For example, Adam et al [414] used two values; an 

intensity value and a duration value. 

 Others use pairs of values like for joy/distress [415]150. Some use symbolic 

representation with rule sets [416]. 

 

Table 2 in [412] provides a summary with references of the different models used 

and their approaches. Note that, none of these examples is from the electrical power 

                                         
150 This the approach that this thesis is utilising. 
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domain. Some use fuzzy methods others cognitive appraisal and some BDI with 

emotional modules.  

Table 3 in [417] provides a good overview of models used to represent emotions, 

including the fuzzy logic based FLAME [418], EMA [38] (an emotional modelling 

extension to SOAR), Kismet [82], Mamid [419], Alma [39], Cathexis [37], PEACTIDM 

[52] and WASABI [420, 421]. 

Models are characterised along a number of dimensions including: perceptual 

processes; memory systems, behaviour systems, motor processes and emotion models. 

Figure 1 in [422] provides a useful categorisation (reproduced in Figure 6-4) of various 

computational emotional models by theory. 

 

 

Figure 6-4: Categories of emotional models by theory: Reproduced from figure 1 in [422] 
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It is clear from Figure 6-4 that many different theoretical basis are used in the 

various models and reflects the large and disparate views on the theory of emotions. 

6.1.14 ABM Using Emotions in Energy/Power 

There are only a few examples of ABM models using emotions in the energy sector 

or in power in particular. Many more can be found in the study of evacuation and 

crowd dynamics (e.g. [423]), and social sciences in general. Specific examples of the 

use of emotions in ABM Energy/Power can be found in [424-426].  

Prosumer behaviour in emerging electricity markets has been modelled in a 

Netlogo Environment [424] using a social network. The work in [424] discusses 

emotions but represents them as a simple attitude equation. The attitude is towards 

the adoption of a contract. This work also focusses on the impact of environmental 

policy on prosumer uptake. The number of agents modeled is low (200-280) and no 

adaptive bidding is included.  

Alyousef et al. [425], reviews the adoption of Solar PV and battery systems in 

Germany using an ABM framework and a simple assessment of the “affective” 

impressions (i.e., emotional sentiment) of the consumers on buying decisions. De Wildt 

and Chappin [426] used an ABM model to look at capability conflicts between 

households in a neigbourhood using a number of scenarios. The model included six 

agent capabilities including emotions and trust. Note that the authors stated that the 

simulation goal was not to “predict human or household behaviour and interaction”. 

Finally, Kran et al [427] developed a framework they called the Agent-Based Model 

of Critical Transitions, to explore the effects of heterogeneity, the effects of leaders, 

as well as network structure on the transition of energy markets. The work presented 
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in the paper showed the importance of local communities and leaders in the energy 

transition process. The focus of the model was on developing behaviours associated 

with transitions using customer “utility” equations. The model makes use of the social 

aspects that Scheffer et al. [428] developed in their segregation model. The work 

highlighted that peer pressure, the absence of leaders, the complexity of the problem 

and homogeneity of the population are important in critical energy transitions. These 

are very different aspects from those considered in this thesis, but may be a useful 

addition in future work. The model is written in Netlogo and uses utility functions 

and equations to represent agents internal states and “call to action”. The simulation 

uses 250 agents. 

None of these models specifically model aggregators, and the particular research 

question posed here in this thesis, is not considered in these works. None of them link 

economic logic to social interactions and emotions in any sophisticated way. 

6.1.15 Agent_Zero: A Generative Framework of Emotions, Social Influence and 

Cognition 

“Cognitively plausible agents have emotions, they have bounded deliberative 

capacity, they have social connection, and all of these can interact to shape 

behavior. Accordingly, Agent_Zero is equipped with interacting emotional, 

deliberative, and social modules based in neuroscience” [429]. 

The book Agent_Zero [89] and follow up presentations and papers [429, 430] 
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details the design and use of Agent_Zero in a Netlogo environment151. Framework case 

studies includes fight vs flight; the slaughter of innocents; a jury process; economic 

price cycle modelling and spirals of mutual escalation. It uses a generative approach152 

to provide social agents with simple cognitive abilities and emotional behaviors. A key 

element of this approach is its use of the Rescorla-Wagner (RW) model. The RW 

model has proved to be one of the most remarkable and influential models in 

psychology (Lieberman, 1990, p. 116[431] ). This model [432] encodes some simple 

observations about learning and describes learning under Pavlovian conditioning [433] 

and a good explanation of the model is given in [434].  

The RW model explains how organisms learn when events disrupt their 

expectations; and that the change of expectation depends on the difference between 

expected and observed levels, so that learning (or forgetting) will be rapid to begin 

with, slowing until it reaches a threshold or maximum value. It is often used in 

experimental psychological fields and it is used as the base model in the Agent_Zero 

framework to model the effect of stimuli on emotions. The RW model provides a 

simple interpretation of the complex behaviours involved in learning. However, it is 

not without criticism. 

As Epstein points out, RW is not the only model that could have been used in the 

Agent_Zero framework, but provides a good starting point. For example Van Hamme 

and Wasserman [435] extended the RW model by adding new factors representing 

                                         
151 Supplemental material including the Netlogo models can be download from 

https://press.princeton.edu/books/hardcover/9780691158884/agentzero . 
152 It uses “simple” agent rules to elicit complex behaviours within an environment.  

http://www.scholarpedia.org/article/Pavlovian_conditioning
https://press.princeton.edu/books/hardcover/9780691158884/agentzero
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some of the failures associated with the RW model. 

The base Agent_Zero model presented in [89] attempts to integrate social (S)153, 

emotional (V) and rational components (P) of decision-making. It treats them as 

separate modules, which could be added, multiplied or joined in some other way, 

although the base AZ model simply adds them. 

 

The agent’s total disposition (D) to act is given by the equations (6-1) – (6-3) 

 

( ) ( ) ( ) ( )total
i iD t V t P t S t    (6-1) 

( ) ( )[ ( ) ( )]i ij j j

j i

S t w t V t P t



   (6-2) 

( ) (0 )i
i i i

dV
V V V

dt

       (6-3) 

Where: 

( )totalD t  - Disposition Score at time t 

( )iV t  - Emotive (or Affective) score of ith agent at time t 

( )iP t  - Logical score for the ithagent at time t 

( )iS t - Social score of the ith agent – based on other agents connected to this agent at time t 

ijw - Weight between ith and jth agent – normally 1 

  - set to zero in this simulation, but changes shape of RW function 

  - represents Vmax 

  - Represented as one factor in this simulation, but  represents the salience of the conditioned 

response (the Bell in Pavlov’s experiments) and  the salience of the unconditioned stimulus (eg Food) 

 

Epstein generalizes the RW model to permit S-curve learning and other variants. 

The first term of right hand side (RHS) equation (6-3) represents the generalised RW 

equation. The second term of the RHS represents an extinction component that 

                                         
153 Labels used by Epstein to represent such components. 
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eventually resets the V score to zero in the absence of any further stimuli. 

Agents act when the disposition score D is above some trigger threshold. Scores 

range from [0,1]. The P or logical value in Epstein’s agents are calculated by the 

relative frequencies of agents in the locality (defined by a visibility radius e.g. number 

of squares). In this thesis, formulation P is calculated using investment criteria e.g. 

revenues vs expectations. 

The original Agent_Zero formulation uses a square grid as its environment. 

Extension of the grid to a more realistic environment would be an obvious next step. 

The formulation in this thesis effectively puts agents /customers at nodes in a social 

network. Epstein’s model was also based on three agents; this model will be based on 

around 50,000 agents, so simple addition of V,P and S as presented in [89] could 

present unrealistic results. 

Epstein and Chelen [429] in reviewing future directions and challenges with the 

model bring up the following important issues and potential ideas for future 

developments. 

Issues with behaviour at scale; incorporating behaviours at scale; consideration of 

intra and inter-modular interactions (e.g. like cognitive interactions with emotions); 

using realistic geographies for agents, and consideration of homophily154. Epstein and 

Chelen also suggested the use of the temporal dimension model (e.g. Reinforcement 

Learning) as a replacement for the RW equation.  

 

                                         

154 The tendency for people to have ties with people who are similar to themselves. 
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6.1.16 Summary of Modelling Environments for Human Behaviour in Social 

Settings 

The software frameworks associated with base systems (note that not all the 

extensions associated with models like SOAR etc., are considered), are summarized in 

Table 6-1. Note because of ease of use, fast development times and libraries available 

to the author, Python has been chosen as the development language. The last column 

in the table provides comments/links to the Python versions of the software 

frameworks. 

 

Approach/ 

System 

Description/ 

Overview 

Programming 

Language 

Python Version 

Clarion Clarion is a cognitive 

architecture based on R Sun’s 

“Anatomy of the Mind” [436]. 

Connectionist architecture 

used in cognitive social 

psychology using implicit and 

explicit representations of 

memory.155 

C++  PyClarion. Not a full 

version. 

https://github.com/cmekik

/pyClarion/blob/master/re

adme.md 

SOAR First used in 1983.Cognitive 

architecture providing building 

blocks for representing 

knowledge to realize the full 

range of cognitive capabilities 

found in humans, such as 

decision-making, problem 

solving, planning, and natural 

language understanding of 

different aspects of human 

behaviour.  

 

C/C++ 

Visual SOAR 

to aid in easier 

development 

[437] 

A minimum working 

example exists for using 

the SOAR cognitive 

architecture with Python. 

Creates an agent that 

interacts with the 

environment using SOAR's 

input-output links. 

https://github.com/KRaiz

er/Soar-Python-Minimum-

Working-Example 

                                         
155 Implicit – type of memory that stores past experiences to aid and adjust performance. Explicit – 

knowledge that has been codified and stored. 

https://github.com/cmekik/pyClarion/blob/master/readme.md
https://github.com/cmekik/pyClarion/blob/master/readme.md
https://github.com/cmekik/pyClarion/blob/master/readme.md
https://en.wikipedia.org/wiki/Cognitive_architecture
https://en.wikipedia.org/wiki/Cognitive_architecture
https://en.wikipedia.org/wiki/Human_behavior
https://en.wikipedia.org/wiki/Human_behavior
https://github.com/KRaizer/Soar-Python-Minimum-Working-Example
https://github.com/KRaizer/Soar-Python-Minimum-Working-Example
https://github.com/KRaizer/Soar-Python-Minimum-Working-Example
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Approach/ 

System 

Description/ 

Overview 

Programming 

Language 

Python Version 

Agent_Zero Generative Framework 

developed to model Human 

Behaviour. Developed in 2014. 

Netlogo None. A Python [438] and 

Java [439] API exists to 

link to/from Netlogo. 

Netlogo simulation output 

can also be sent to R using 

this API [440], for further 

analysis. Equations 

representing an Agent Zero 

model can be easily coded 

in Python.  

CONSTRUCT For Organization modelling – 

Knowledge based on Norms. 

Could be very useful in 

modelling organizations in 

future work 

C++, XML Can create and extract 

XML data that can be 

passed to a Python model.  

ACT-R ACT-R (Adaptive Control of 

Thought – Rational) is a 

cognitive architecture based on 

the ACT theory for simulating 

and understanding human 

cognition. ACT-R is used to 

understand how people 

organize knowledge and 

produce intelligent behaviour. 

There was a connectionist 

(NN) version of ACT –R 

developed in 1993 [441] 

Interpreter 

written in 

Common Lisp 

Python ACT –R 

https://sites.google.com/si

te/pythonactr/ 

https://github.com/jakdot

/pyactr 

There is also a lightweight 

version of ACT R called 

ACT UP156 [442] and an 

associated Python version 

PyACTUp. 

https://pypi.org/project/p

yactup/ 

Table 6-1: Summary of the main cognitive and emotional modelling platforms 

 

6.1.17 Selecting an Appropriate Emotion/Social Framework? 

There are many theories of emotion and social behaviour and just as many 

techniques with which to model them. In an ideal world, one would develop an agent 

that can act and think like a real human being and include cultural, emotional, 

                                         
156 Design to help make ACT R more scalable and uses less components. 

https://sites.google.com/site/pythonactr/
https://sites.google.com/site/pythonactr/
https://github.com/jakdot/pyactr
https://github.com/jakdot/pyactr
https://pypi.org/project/pyactup/
https://pypi.org/project/pyactup/


 

191 
 

cognitive functions, but these agents are likely to be computationally inefficient, 

especially when they are scaled, and at times would provide more functionality than 

required. Typically, detailed computational cognitive systems involve experiments 

with two to 10 agents at most, to reduce run times. ABM models tend to use simpler 

formulations so that simpler faster agents can be constructed with all the 

characteristics required to answer a particular research question. In the following 

sections the various cognitive and generative modelling frameworks that could be used 

within the thesis’ ABM framework, are assessed using a needs analysis of the said 

systems against a set of goals for this thesis, resulting in the selection of an appropriate 

modelling framework. 

 

Suitability of Existing Systems; Needs Analysis 

Selection of an appropriate framework for this thesis, has been performed using a 

needs analysis like that presented in section 3.4.  

 
Figure 6-5: Modelling system fit to domain problem 

 

Figure 6-5 compares the frameworks presented in Table 6-1 using selection criteria 

that place a heavy emphasis on, the ease of use, ability to model and whether it can 

Approach/System
Emotions 

Modelling
Ease of Use Python Version

Ease of 

Understanding

Potential to 

code to 

Python

Combination of 

Social Economic 

and Emotive 

Responses

Few Parmaters required 

for cailbartion.  

Clarion

SOAR

Agent Zero

CONSTRUCT

ACTR with EMA

NN Emotions 

Approach based on 

TPB
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be easily ported to Python157. Colours represent scores of 1-10 where dark green 

represent higher scores. Only the main cognitive models have been presented in this 

table rather than specific extensions dealing with emotional aspects (e.g. EMA with 

SOAR). As can be seen, the original Agent_Zero framework provides an easy to use, 

easy to describe and understandable framework, that was designed for ABM 

simulations albeit for small ones. It also has a simple cognitive/decision-making ability 

built in as well as a social dimension that can be easily used with a social network 

structure. Section 6.4 below describes the adaption of said Agent_Zero framework to 

fit with the needs of the simulations used in this thesis and described later in Chapter 

7/8. 

 

6.2 Representing Bidding in ABM agents 

Agents in this simulation will be bidding flexibility into a power market, so there 

is a requirement for computational representation of this function and behaviour. 

There are a number of papers [20, 443-447] on implementations of software trading 

agents in “Silico”. 

Early work on the use of neural nets in financial modelling in artificial stock 

markets environments including trader formulations can be found in [448-451]. One of 

the first formulations of trader dynamics in a stock market trader environment is 

described in Bell Trotti Margarita and Turner in [448]. It uses neural nets to represent 

an agent that can hold cash or buy or sell shares.  

                                         
157 Python has been chosen as the language for development in this instance. 
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The Trading Agent Competition (TAC) was created in 2000 to provide an 

organized competition where agent design could be tested “free of the complexities 

and risks of operating in open, real-world environments” [452]. Over the years, the 

competition has been extended to other domains, including power, in the form of the 

Power TAC competition from 2009 [453-455]. 

An analysis of the competitions and reviews of winning models are typically 

published in literature after the event [452, 456-461]. Many different types of Agent 

have been used to trade in this competition and include constraint optimization, 

machine learning, uncertainty models, empirical game theory, and a blackboard 

architecture with an evaluator (see table 3 in [452]). The successful agents do not 

blindly follow price patterns but use a variety of information sources to outperform 

other agents. 

Duffy sets out different agent learning types that provide bidding behaviours in 

an economic setting [462]. The paper provides a good review and comparison of these 

various types of trader agent and includes:  

 Evolutionary algorithms 

 Belief based learning 

 Reinforcement learning agents 

 ZIP adaptive type agents  

 

Evolutionary algorithms typically use replicated dynamics, genetic algorithms, 

classifier systems and genetic programming and are based on biological principles of 

developments and natural selection. The genetic algorithm (GA) approach [463, 464], 
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and (p120 -136 in[465]) is one of the few learning paradigms that allows for new 

strategies to be developed. 

The belief based learning technique is the only type that uses beliefs about agents 

intentions and strategies to select its bids. Reinforcement Learning (RL) essentially 

uses or learns from historical patterns. RL has memory unlike the ZIP based systems. 

RL performs well in stationary environments but can take a relatively long time to 

converge. 

6.2.1 Reinforcement Learning and Learning Automata 

Learning automata (LA) [466-468], studied since 1960s, are simple, low-memory 

machines for improving the probability of reward in unknown environments. They 

belong to the class of machine learning algorithms known as Reinforcement Learning 

(RL) e.g. Q, R and SARSA learning [124]. The use of Reinforcement Learning (RL) 

in artificial intelligence has been discussed since the 1960’s. It is used in software 

agents to help them take actions in an environment based on a reward function. 

Agents use a trial and error approach and adjust their actions using feedback from 

the environment. Descriptions of RL engines/algorithms and the approach in general, 

can be found in [124, 397, 469]. 

Research on LA led to the developments of modern reinforcement learning 

techniques. In particular, later research in RL’s introduced the idea of Temporal 

Difference (TD)158 as a learning method for RL’s. TD learning is in part based on the 

psychology of animal learning and secondary reinforcers [470, 471]. In TD-learning, 

                                         
158 This is just one of three approaches in RL (others are dynamic programming and monte-carlo). 
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instead of just updating the value e.g. Q-value of the last step, it also updates the 

previous steps. Therefore it has a time dimension. 

TD can use a discounting factor λ to make changes to predictions made 

further in the past smaller relative to changes nearer in time. 

LA’s are characterized as policy iterators159. Note Q/R learning RL engines 

are value iterators (see Fig 6 in [472] for a comparison). Note a good review of 

the use of different types of RL/LA engines within wireless networks is given 

in this paper. 

6.2.2 Strategic Bidding with RL’s in ABM  

Since 2008 the Java based AMES power ABM [128, 129] has allowed researchers 

the ability to adjust generator bids using a Variant Roth Erev (VRE) reinforcement 

learning algorithm. Lincoln et al. [473], used both a Q learning and Roth Erev RL to 

simulate strategic bidding within a generator agent bidding against four other 

generator agents within a Python environment. The environment also included a more 

detail representation of the power grid using an AC OPF (PyPower). Interestingly, 

the more “simpler” Q learning approach provides the agents with better convergence 

and performance in this work.  

Later work also using AMES with its VRE, uses many more generators and a 

IEEE 30 Bus System to simulate the system[474]. 

The RL or LA approach takes many ticks for it to converge and it is well known 

                                         
159 Policy is a mapping of an action to every possible state in the system. An optimal policy is that 

policy which maximizes the long term reward. 
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that in environments were the dynamics are not stationary, learning can be 

problematic. That is not to say that researchers should not use these techniques as a 

learning paradigm, because some corporate actors might use such technology to 

formulate their bids, but to recognize that this simulation is likely to be non-

stationary160. Separate work by Arthur and Dutt [475, 476] indicates that simpler 

algorithms such as those based on learning automata might better reproduce actual 

human behaviour, than more sophisticated RL algorithms. 

6.2.3 ZIP Trader 

Dave cliff in 1996 developed the Zero intelligence Plus software (ZIP) trading 

agent161 [19-21, 477-479] to emulate trading agents in silica. The first heuristic uses 

fewer parameters than the various adaptations of this model e.g. Zip 60 [19, 20]. 

However, it has been found to be a good representation of agents in trading markets. 

The latest version of Cliff’s agent that uses Deep learning can apparently out-perform 

real human traders. 

Other trading agents have been developed over the years including Sniper [480]; 

Zero Intelligence Constrained [481] and the Adaptive Aggressive agent [482]. In 

addition reinforcement learning engines [124, 483, 484] and Learning Automata [466-

468, 485] could also be used.  

ZIP traders have rarely been used in assessing bidding behaviours in the power 

domain, but one recent paper was found [486] that uses a ZIP trader to represent 

                                         
160 Results in Chapter 7 show this. 

161 Dave Cliff developed a trading algorithm known as Zero Intelligence Plus (Zip) in the 1996 for use 

in agent-based simulations of trading markets. 
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household bidding in a DSR framework. The simulation in Chapter 7/8 uses Cliff’s 

original Zip trader algorithm as it is easier to implement and easier to understand. 

Rather than just use clearing prices as the input to the ZIP trader algorithm, this 

simulation uses a combination of clearing price, and a target price (whichever is 

higher)162. The target price is dependent upon customer revenue or aggregator profit 

expectations. It is considered an appropriate algorithm especially for modelling 

domestic customers in this thesis. Although it could be argued that a RL engine may 

be a more appropriate algorithm for corporate actors, this thesis utilizes the Zip trader 

algorithm for aggregators bid adjustments. Although RL has been used to model 

strategic bidding behaviours for generators it was thought that Aggregators and 

certainly Domestic consumers would behave more like traders or bidders acting in a 

stock market environment. The ZIP trader algorithm was designed with this in mind.  

6.2.4 Other Methodologies for Bidding  

6.2.4.1 Naturalistic Decision Making (NDM) – Fast Decision Making 

For some years, Klein [487] has been working on a notion he calls "Naturalistic 

Decision Making," (NDM) and he has created models that depict how people make 

decisions in difficult situations, especially in situations under great time constraints 

e.g. an airline pilot with engine failure or a grand master chess champion. This is 

useful analogy for those modelling systems, which have to respond very quickly to 

changing conditions. Note that fast and frugal heuristics [488, 489] is a similar and 

potentially competing approach. Essentially, Klein suggested a model, which was 

                                         
162 Clearing price alone did not produce an appropriate agent behaviour for bidding, so the model was 

modified. 
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based on pattern recognition where humans look for cues/patterns that suggest a 

behavioural response. Although the model has a pattern recognition element, Klein’s 

recognition-primed decision (RPD) model representation of the NDM framework 

includes more than just a pattern recognition approach. This model could be 

applicable to many of our agents in our potential system, and could be a fruitful 

avenue for further research. Computational frameworks for RPD do exist but all are 

currently Java/C++ based [490, 491]. A simpler version just using pattern recognition 

based on the CLIPS rule based engine framework [492] may be a useful starting point. 

CLIPS was originally developed by NASA in C but there is a Python binding (Clipspy) 

that could be used to store rules based on clearing price patterns  

No power based agent model (MAS or ABM) are currently using a NDM based 

action/learning model. Interestingly, Stacey [493] has developed a conceptual model 

that reflects the idea that decision making models change as uncertainty and 

complexity increases, and that eventually under the right conditions the decision 

making becomes chaotic. That is, humans/organizations use different decision-making 

models in times of different organizational stress. This implies that a model with 

numerous decision-making modes could be required, or at the very least, a model that 

can switch between these different modes. 

6.2.4.2 PID Controller Approach to Human Behaviour: Setting Targets or Setpoints 

Finally, Carrella uses a PID (Proportional Integrated and Derivative) controller 

to model the economic behaviour of human agents [494]. He calls this approach Zero-

Knowledge Traders. Unsurprisingly, he shows that changing the relative speed of 

adjustment of production targets to prices generates completely different 
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disequilibrium dynamics. An interesting idea, as essentially the agents use set-points 

to change their behaviour. As will be shown, a similar idea is used in the simulation 

discussed later, but using ZIP traders. The set-points are either customer expectations 

or aggregator profits in this instance. However, although the set point setting for 

aggregators proved to be much more involved than just setting targets at minimum 

profit levels. One of the key difficulties with this approach, however, is how to suitably 

fine tune the PID controller’s parameters.  

6.2.4.3 Deep Reinforcement Learning/Recurrent Neural Networks 

Arlt [495] in her thesis on the economics of flexible loads proposed an economically 

motivated bidding function for HVAC systems that uses Deep Reinforcement Learning 

as a solution approach to determine effective demand response price163.  

Finally the authors in [496] developed an aggregate responsive load (ARL) agent 

which utilizes two Recurrent Neural Networks (RNNs) with Long Short-Term Memory 

units (LSTMs) to enable domestic users elements to collectively participate in the 

system.  

An ARL agent in this architecture has the ability to submit bids that represent 

different houses and provide responses to the market-clearing price with a price 

dependent load. In this way, a single ARL agent behaves the same way as the 

transactive elements in hundreds or thousands of houses. The agent has been tested 

using a PyPower grid representation using GridLab-D [497]. The agent effectively 

learns bidding behaviour using Neural Nets. Both of these approaches represents an 

alternative approach to bidding and have been used to represent bidding behaviour in  

                                         
163 Note Dave cliffs latest version of ZIP trader uses deep reinforcement learning. 
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PNNL’s Transactive Energy Co-Simulation Platform (TESP) [496, 497].  

6.2.4.4 Summary of Bidding Approaches 

Although any or a combination of the techniques discussed above could be used 

to adjust bids, for ease of use, computational complexity and understanding Cliffs ZIP 

Trader algorithm has been used to adjust both Aggregator and Customers bids in the 

work discussed in chapter 7/8. Future work may consider RL or LA algorithms. 

6.3 Graph Theory, Networks and Social Network Modelling 

Power networks, as well as social networks, can be represented as a connected 

graph. Mathematical techniques can be applied to analyse such representations to 

derive statistics of particular graphs like shortest path length, clustering density and 

so on. Key nodes and cliques can be found, and propagation analysis can be performed. 

Furthermore, network analysis is essentially applied graph theory. For a good 

introduction to network analysis the reader is referred to texts [498, 499], while a brief 

history of network modelling is provided in Chapter 1-2 of [500]. 

In addition, it is recommended that the following texts should be read for an 

introduction to small worlds [188] and for a discussion on weak links, fractals, scale 

free networks and pink noise [501]. 

Finally, networks can be represented in matrix form as an adjacency matrix. It is 

a square matrix used to represent a finite graph. The elements of the matrix indicate 

whether pairs of vertices are adjacent or not in the graph. Power networks, small 

world networks/social networks have sparse adjacency matrices, and thus sparse 

matrix multiplication can be used to efficiently represent the adjacency matrices, as 

https://en.wikipedia.org/wiki/Square_matrix
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Neighbourhood_(graph_theory)
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well simulate propagation in a social network. Considering that, the software 

implementation of this thesis is in Python, the open source library for sparse matrix 

creation and manipulation Scipy.Sparse, has been used. 

6.3.1 Network Computer Modelling Libraries 

There are many open source computer packages available, both to generate 

networks and to provide network analysis algorithms, to calculate statistics or 

highlight propagation dynamics. In Python, NetworkX [502, 503] is the most pervasive 

of libraries used of all. For example, SmartNet/PyPower uses NetworkX to represent 

power network topology and flows. 

SNAP [504, 505], is large-scale, low-memory usage system that provides an easy 

to use commands for the analysis and manipulation of large networks. It was also 

designed to analyse large social networks. Table 6-2 summarizes the main open-source 

network packages available to analysts for coding.  

 

 

 

Name of 

Modelling 

Library 

Overview Advantages Disadvantages 

Network X Python package for the 

creation, manipulation, and 

study of the structure, 

dynamics, and functions of 

complex networks. 

Used extensively in power 

models in Python e.g. 

SmartNet, PyPower. 

Easy to convert network format 

to adjacency networks – 

command available. 

Converting NetworkX to 

adjacency matrices is easy.  

Considered more flexible than 

SNAP - [506]. 

Slower than SNAP 

[506]. 
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Name of 

Modelling 

Library 

Overview Advantages Disadvantages 

igraph A collection of network 

tools with emphasis on 

efficiency. 

Easy to use. C library with 

Python interface.  

Faster than NetworkX. 

10-20% slower than 

SNAP. 

NetworKit A growing open-source 

toolkit for large-scale 

network analysis.  

C++ with Python interface. 

Fastest of all. However, speed 

reduces as problem size 

becomes very large. Can be 1.5 

- 4 times faster than SNAP. 

Not easy to use – 

less well supported.  

SNAP Stanford Network Analysis 

Project. C++ network 

program that scales to 

massive networks with 

hundreds of millions of 

nodes, and billions of 

edges. It efficiently 

manipulates large graphs 

and can analyse them. 

Large-scale. Fastest system. 

Well supported with many 

data libraries available for 

social settings. Very fast 

loading of saved networks. 

Written in C++ but with 

Python interface. Also has 

Excel based Network 

modelling environment -

NodeXL. “SNAP runs 1 to 2 

orders of magnitude faster 

than network X. SNAP also 

uses 50 times less 

memory”[506]. NodeXL uses 

SNAP algorithms to perform 

calculations. NodeXL is very 

easy to use especially for 

“small” (5,000 node) networks. 

One click plotting available in 

this package. 

Less user friendly 

than NetworkX. 

Table 6-2: Summary of open-source network packages 

 

Experimentation with the various packages (with SNAP and NetworkX in 

particular) on a large network of ~50,000 Nodes shows that SNAP provides the fastest 

response. Because the network that is modelled in this thesis consists of 50,000+ 

customers represented as a social network, SNAP was chosen as the modelling 
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environment for social networks. Test Networks for social patterns based on 

interactions in Facebook and Twitter are also readily available in the SNAP 

framework and available for download.  

6.3.2 Analysis of Test Social Networks (Facebook and Twitter) 

Using samples of Facebook and Twitter networks, analysis of these networks using 

NodeXL164 [507-509] indicates that the two systems have quite distinct shapes, as 

illustrated in Figure 6-6, and as a result, network propagation dynamics would be 

different. In the context of this thesis, these network cases provide scenarios for testing 

social network interactions to understand the extent of their impact on power system 

operation. 

 

Figure 6-6: Social network structure comparisons: Accessed from NodeXL/SNAP datasets 20/12/18 

 

Analysis of the node degree frequency of links (known as Degree K) in the networks 

                                         
164 Note NodeXL software is based on SNAP. 
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shows that this difference comes about by slight differences in the frequency of 

connecting nodes as shown in Figure 6-7.  

 

Figure 6-7: Frequency analysis of node degrees for two network types 

 

From the above, comparison/analysis of these social network cases show that small 

differences in node connection probability can have significant effect on the structure 

of social interactions.  

Node connection probability distributions like those in Figure 6-7 can be used to 

synthetically generate network structures. Barabisi [510] proposed attachment 

probability distributions to create synthetic interaction networks for later analysis. 

Chappin and Afman used such a generator approach to generate small world 

networks to test out the diffusion of LED light bulb technologies in an ABM 

simulations of consumers [511]. Many network modelling libraries also exist that can 

easily allow synthetic networks to be created. NetworkX [502, 503] models around 

1300 of the graphs listed in Reads’ Atlas of graphs [512, 513]. Brinkmann et al also 

provide a useful database for searching for different types of networks [514]. Use of 

such generic graph generators provides a mechanism to test out the effects of many 

different social network configurations on the dynamics of a simulation. This thesis 
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will focus on the two social networks above and a theoretical small world network, 

but future work would make use of additional network structures to widen the scope 

of the study. Simulations with and without social networks are given to compare the 

effects of including social network effects in power simulations. 

 

6.4 Adapting Agent_Zero to Represent Power Customers interacting with 

Aggregators 

Section 6.1.15 introduced the concept of Agent_Zero and equations (6-1) - (6-3) 

set out the formulae for calculating the agents “disposition to act” and “emotive 

scores”. The original Agent_Zero framework was designed to operate on a 2D grid 

with a maximum of three agents and will need to be adapted to operate in a more 

complex environment as detailed in this thesis. The modifications to the agent zero 

framework are therefore described in the sections below. 

6.4.1 Logic (P Score) 

Unfortunately, the Agent Zero (AZ) framework in its current form does not 

provide us with a reasonable way to consider the economics of a contract offer in a 

power aggregator simulation165.  

The logical component P in the original AZ model uses a simple count of nearby 

neighbours to calculate a score for its logic component. In our case, a value based on 

the economic assessment of the aggregators performance would be more appropriate 

– e.g. revenues, NPV or some other economic measure. Therefore, a method must be 

                                         
165 Aggregators offer new contract terms that customers will need to evaluate. 
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developed to normalize an economic score into an Agent_Zero framework. Agent 

_Zero currently uses scores ranging from zero to one. Profit or NPV assessment, 

usually used in economics would provide an assessment that would be far greater than 

one e.g. £10.7 million profit per year and may even be negative. Some transformation 

function e.g. like a sigmoid function will be required to convert profits into a [-1,+1] 

score. The general logistic equation has been chosen as the transformation function to 

convert customer revenues to a normalized value of [-1,+1]. The generalized logistic 

equation can be used to represent a multitude of functions but the sigmoid or S curve 

function has been used. Many natural processes, such as crop yields, learning curves, 

and economic growth exhibit an S curve shape. It is likely that utility associated with 

revenues from flexibility provision would also follow an S curve type relationship. Of 

course, with the appropriate data, curves could be calibrated, but this data is not 

currently available. 

6.4.2 V- Emotive Score 

The V166 or emotive score “accumulator”167 approach does provide us with a 

reasonable way to represent an emotional score e.g. “I do not like this aggregator”. 

However, the original Agent_Zero framework only used one accumulator to represent 

emotions, whereas this thesis proposes the use of N accumulators representing the 

                                         
166 Agent_Zero uses V for emotions, P for Logic and S for social interactions (see 6.1.15). It might be 

more appropriate to use E L and S instead, but the thesis sticks with the original Agent_Zero 

formulation. 
167 Accumulator – The emotive score builds up over time, with some degradation or leakage and can be 

compared to filling up a tank or an “accumulator”. 

https://en.wikipedia.org/wiki/Learning_curve
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emotive scores associated with the N aggregators that the customer is considering. 

This fits more closely with the computational biology approaches using 

accumulator model dynamics168 [515-518] to represent decision choices; here multiple 

accumulators are used (accumulator model dynamics) to keep track of scores on 

perceptions associated with various stimuli. Accumulators can have leaky components 

be non-linear and have inhibitory functions where one accumulator can lockout 

another.169 

6.4.3 Message Fatigue 

In the case of social interactions, it is recognized that bombardment of a message 

repeatedly could result in message fatigue170. This is acceptable for the three agent 

model presented in [89], but could present a problem in a 50,000 agent simulation. 

The Weber model [519-521] provides a useful solution to this problem.  

In the Webber model, the result of a stimulus is considered to be a function of log 

(S1/S2)171 - so it gets progressively harder to move the “dial on an issue”, the higher 

the score. For example, I have heard the rumour 100 times already; hearing it two or 

three times more would not change my opinion too much but hearing it, 100 times 

more might.  

Although the addition of a Weber function to the current model might be useful, 

                                         
168 Note the accumulators are represented as integrated linear or non-linear functions. 

169 Note in this work only the leaky component is modelled. Accumulators do not lock out other 

accumulators. 
170 Where overexposure to the same message can result in avoidance, annoyance and desensitization. 

171 Where S1 is the current stimulus and S2 is the cumulative stimulus so far. 
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it was found this was less of an issue in the current simulation than thought. Note 

that the simulation results show that the propagation of messages typically only 

amount to five messages per week per customer on average172. This is because there 

are few connections between most of the customers. Thus, overloading of agents with 

messages does not occur. In addition, the RW model to some degree reduces the effect 

of each stimuli as it looks at the difference between the current and the max emotive 

score173 i.e. (1-Vi).  

6.4.4 The Dynamics of Agent_Zero 

Although AZ can be considered a “simple” model, it provides interesting social 

dynamics in its simulations. As various case studies in [89] show, agents can hold very 

firm logical views about an issue but social pressures can drive a collective behaviour 

which goes against these staunch logical views. In the context of this thesis, 

behaviours, such as this, might be expected: 

Customer 1 prefers on an economic basis to pick aggregator company 1. The 

customer agent is connected to 20 other agents who are all strongly against Aggregator 

1. They have bad experiences with the aggregator. Over time, it might be expected 

that Customer 1 would change its mind and select a different, less economically 

attractive, aggregator174 if social pressures are strong enough. Chapter 8 will show that 

this is exactly what happens with the Agent_Zero formulation. 

 

                                         
172 From inspection of the simulation results. 

173 Max emotive score set to one in this model. 

174 Note this does occur in the simulation. 
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6.4.5 Multiple and Mixed Emotive Scores. 

The original AZ framework uses one RW emotive accumulator to keep track of an 

emotion score V, takes P values (logic) from data surrounding the agent in a 2D grid 

and takes dispositional scores, D, from nearby agents to form an average score S [89]. 

However agents in this simulation will need to keep emotive scores of many 

aggregators (e.g. six), as well as keep account of angry stimuli and happy stimuli from 

many connected customers via a social network. The agent, therefore, needs “multiple 

Agent_Zero’s” inside of it, each accounting D,V, S and P scores for each aggregator. 

This is the structure that has been used in this thesis and is shown in Figure 6-8.  

 

 

Figure 6-8: Customer Agent_Zero framework; Multiple accumulators for 

aggregator assessments 

 

Therefore Customer agents compare D values to assess aggregators overall 
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performance and take action to change aggregator contracts based on this comparison 

shown in Figure 6-9. Most conventional models would perform this comparison on a 

rational or economic basis, but in reality, domestic customers are likely to perform 

this using a number of inputs including from their friends, their feelings and logic. Of 

course, some customers would be entirely logical while some would rely solely on their 

friends or family’s opinions. The AZ framework allows the incorporation of all these 

elements in a relatively simple and understandable way, by changing the relative 

weightings of the V(emotional), S(social) and P(rational/economic) scores in the agent 

calculation. 

 

 

 

 

Figure 6-9: Customer Agent_Zero decision framework; Choosing an aggregator 

contract 
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6.4.6 Evolution of Agent_Zero Scores: A Hypothetical Example 

Using a simple random input stimulus sequence across a number of weekly ticks, 

a number of cases have been simulated using the equations in section 6.1.15 and are 

shown for four hypothetical cases below175. The simulations are for one simple 

agent_zero module as set out in section 6.1.15. P and S score have been provided as 

inputs and varied to show the impact on the Agent_zero calculations. 

Figure 6-10 shows how the emotive score (V) from the RW model176 increases and 

declines with and without stimuli. Values for V and the stimuli inputs range from 

[0,1]. Note that the strength of the stimulus and frequency has an impact on the rise 

of V as shown in Figure 6-10. 

 

 

                                         
175 An Excel based simulator was used to generate random inputs and provided the resulting 

hypothetical outputs. It was also used to help verify output from the Agent Zero modules in the main 

model discussed in chapter 7. 
176 With extinction decay. 
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Figure 6-10: Example of emotive score (V) evolution 

 

Without stimuli, the RW with decay model will eventually decline to zero, 

dependent upon the values of alpha and beta in Equation (6-3) (2nd part RHS). The 

simulation framework developed in Chapter 7 allows the user to alter the sensitivity 

of the messages on the RW model e.g. five messages might be required to be the 

equivalent of a 1 value stimuli. 

 

The P and S scores are at discrete points e.g. at tick 7 and 15 in the hypothetical 

curves shown in Figure 6-11. The P and the S scores in this hypothetical model are 

supplied as inputs, as only one hypothetical agent is being simulated.  
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Figure 6-11: Example of Agent_Zero scores (D,V,S,P) evolution 

 

Figure 6.11 shows how the D score could vary depending on input stimuli and the 

view of the economics (normalized P score) and the impact from connected agents i.e. 

the S score. The S score in the actual model discussed in chapter 7 is derived from a 

calculation using the social network represented as a sparse matrix. This makes the 

computation very fast. In the actual model, S is simply the average of all D scores of 

all connected agents and a different S is calculated for each aggregator. The D score 

in Figure 6.11 above is just a simple average of V, P, and S shown in the figure. 

6.4.7 Averaging V, S, and P, or Rule Based: Which One to Use ? 

The current incarnation of AZ in this simulation uses a simple weighted average 

of the S, P and the V scores. The base case uses the same weights for the three scores, 

set at 1/3, and therefore produces an average value. Sensitivities around this have 

been performed. The question is; is a simple weighted average model of V, S and P, 
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an appropriate representation of the human behaviour? For example, would it be 

appropriate to average say a V score of -0.3 with an S score of 0.4 and a P of -0.1. 

The average score would be zero. Would it be more appropriate to recognize that the 

S and V score (feelings and social score nearly cancel each other out) and therefore P 

should have a greater impact on the score. Alternatively, should some other rule be 

used? For example, if P greater than 0.7 D=P and so on. A fuzzy rule based system 

might also be more appropriate but this will not be investigated here. Future work 

might incorporate survey results from real customers to help shape the formulation of 

the weights and or potential rules.  

6.4.8 Discussion  

There are many theoretical constructs that could be used to model behaviours or 

emotions in particular. To discuss behaviours it is important to understand in what 

context the problem domain fits. Human behaviour is closely tied to rationality, social 

influence and finally social structure. The key question for researchers is which of these 

aspects is more important or is it better to consider combinations of various modelling 

constructs? 

In an ideal more realistic simulation of behaviours, one might consider interactions 

between cognitive functions, emotions, and personality. Co-evolution of those aspects 

might also be important. This might provide a more accurate representation but at 

the expense of computational complexity. 

In terms of the AZ framework, model parameters like alpha, beta, the decay factor, 

the weights for V, S and P, and the scoring function (i.e. the general logistic equation 

parameters) will need to be set. Data driven/machine-learning approaches would be 
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helpful in this regard, but machine-learning algorithms can only capture relationships 

that they have seen before. Currently, no data exists on the operation of a low carbon 

flexibility market with domestic customer participation at scale. 

Cultural and other factors such as affluence, technological affinity would all impact 

on cognitive ability and emotional response. The current simulation does not take 

account of this.  

In the meantime, the use of a parameter sweep/sensitivity approach to gauge the 

impact of the AZ framework on simulations seems like a reasonable one. 

 

6.5 Chapter Summary 

Future distribution flexibility systems will require the participation of new actors 

like domestic customers and aggregators. The behaviour of these actors will impact 

on DSO operation and their longer term planning and will impact on Regulator’s 

market designs. Current tools do not adequately represent human behaviour in their 

models. A tool implementing human behaviour is therefore essential if appropriate 

designs are to be formulated. Therefore, this is an important chapter as its sets out a 

contribution to the state of the art in modelling flexibility markets by using an 

extension of the Agent_Zero approach using multiple accumulators to model social 

logical and emotive behaviour.  

This chapter considered many computational systems for representing human 

behaviour and has opted to use the Agent_Zero (AZ) methodology as an easy to use 

and understandable framework that provides researchers a way to represent customers 
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in an aggregator flexibility market. This framework uses social, logical 

(rational/cognitive) and emotive (affective) elements to represent human behaviour 

whereas many other methodologies focus on one or two of these elements177. The 

framework has been extended to include multiple emotive modules (angry/happy and 

for multiple aggregators) and includes the economics of customers contracts with 

normalized scores using a generalized logistic equation. Social networks have been 

introduced as a methodology to propagate messages between customers and allows 

the AZ framework to be expanded from a 2D grid environment. The network that will 

be used in this network is synthetic, as customers have been randomly distributed on 

a large network. With the appropriate data, a more realistic distribution of agents 

may have been effected. 

The next chapter sets out the design of agent based modelling system in Python 

that uses the work discussed in Chapters 3 - 6. This ABM framework forms the basis 

of the simulation results presented in Chapter 8.  

  

                                         
177 Admittedly, sometimes-in more detail. 
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Chapter 7  

 

A Power Based ABM Simulation 
Framework with Human and 

Corporate Behaviours 
 

The research on the UK Balancing Market (Ch 2), business models, costs and 

associated aggregator economics (Ch 4), risk management (Ch 5), and the Agent Zero 

framework (Ch 6) to represent emotions and social interactions, is brought together 

in this chapter to construct a new and innovative ABM modelling environment. The 

tool that is presented in this Chapter provides six distinct contributions to the state 

of the art: 

1. It is first application of an extensible Python based ABM framework that 

includes the interactions between customers, competing aggregators (six) and 

independent system operators in a power domain setting. 

2. Includes corporate aggregator’s business models in the context of a future 

wholesale flexibility/balancing power market. Aggregators can change 

Business Models throughout the simulation. 

3. It includes corporate actors using risk management techniques and utilizes an 

exotic three-asset Monte-Carlo based real option approach to represent risk in 

a power aggregation market.  

4. It allows aggregators to adjust and bid for new customers on a monthly basis. 

5. It incorporates a large social gossiping network that is used to affect emotions 
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and provide a social network dimension to customer’s emotions. 

6. The tool uses a novel extension of the Agent_Zero framework to model 

emotions, economics and social impacts. When social networks are combined, 

the Agent Zero framework provides social interactions that influence 

aggregator choice. Behaviours are seen that are not evident in other system 

designs. It thus provides a novel tool for implementing human behaviour in a 

market with millions of participants e.g. Domestic customers. This is an 

important principal contribution to the state of the art in modelling flexibility 

markets. 

 

This modelling framework known as PyEMLab-Agg, is based on the EMLab model 

(Ch 3), built in Java. EMLab focuses on simulating the design of policies for 

transmission assets and simulates the introduction of new generation technologies and 

their impacts. It models commodity and CO2 markets and includes the German and 

Dutch transmission grid as a two-node network. EMLab has been ported to Python 

(PyEMLab) by the thesis author and additional new agents discussed below have been 

introduced to the framework. 

The Python object-orientated PyEMLab-Agg model has been developed to 

simulate a low-carbon distribution network where customers provide flexibility via a 

bidding market, managed using aggregators and an ISO. The effect of corporate 

behaviour (aggregator companies with risk management) and more human like 

customers (emotional and bidding behaviours using a modified Agent_Zero 

framework) have been included to provide a more holistic view of how this market 
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might operate in the future and have been used to generate a number of scenarios. 

In this model, individual households (Domestic Customers), small and medium 

sized entities (Industrial Customers), aggregator companies, generators and the 

Independent System Operator (ISO) are represented as new agents (see table 7.1 

below).  
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Table 7-1: Agent types and roles 

  

 

Agent Type Domestic Customer Industrial Customer Generators Aggregator ISO

Description

50000 Domestic 

customers (see Note 

1) with an average 

domestic load of 

4000kWh/yr + EV 's 

and Solar panels etc. 

as appropriate

4500 Industrial 

customers /SME's 

(See Note 2).  

Average load 

35,000kWh/yr

57 Generators 

with bidding 

characteristics of 

conventional 

generators e.g. 

CCGT, Hydro, 

diesel etc.

6 aggregators 

initially with 

~ 8333 

Domestic 

customers 

and 750 

Industrial 

customers

One ISO 

accepting 

bids from 

generators 

and 

aggregators.  

Economic 

Dispatch

Roles Submit bid to Agg Submit bid to Agg

Submit bids to 

ISO

Aggregate 

bids Clearing

Update Accounts 

(Revenues)

Update Accounts 

(Revenues)

Update Accounts 

(Revenues)

Submit bids 

to ISO

Update bid (Zip 

Trader)

Update bid 

(optional ) Disaggregate

Update Agent Zero

Update 

Accounts 

(Revenues)

Review Agg Contract 

Offers at end of 

contract

Update bid 

(Zip Trader)

Select New contract 

using AZ D scores

Adjust 

contract 

terms 

monthly for 

new contract 

offers

Propagate social 

media messages

Review 

performance 

yearly - 

Select New 

Business 

Model

Forecast and 

Analyse CP

Enter market 

Exit market

Risk manage 

(options 

calculations 

hedge)

Update 

aggregator 

costs based 

on BM and 

customer 

numbers

Set targets 

for Zip Trader
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Note 1: Using the analysis shown in section 4.3 it is clear that around 6,000 – 10,000 domestic customers 

are required for an aggregator to breakeven, depending upon assumptions. A competitive market will 

require 5-6 aggregator entities to meet competition requirements. Assuming 8000 customers per 

aggregator would therefore suggest that for a simulation to represent a competitive market of at least 

40,000 - 48,000 customers would be required. In this instance, 50,000 domestic customers were selected. 

 

Note 2: Dundee, a city which has around 50,000 Domestic households, is associated with around 4500 

SME’s (Scottish Government statistics). 

 

Emergent phenomena are expected to be seen in this model, as it is a complex 

simulation that includes adaptive behaviour with emotions, competition amongst a 

set of aggregators for customers and bidding behaviour. Agents adapt to changing 

prices and offers made to them by aggregator agents. “Gossiping” over social media 

in the form of a network is represented and is used to transport messages to/from 

connected domestic customer agents providing additional dynamics to the simulation. 

Section 2.7.3 has already set out the interactions of this model in the form of a 

story-board, so this section will focus mainly of the design and key components of the 

ABM model that has been developed as part of this thesis.  

Section 7.1 will discuss then PyEMLab/PyEMLab–Agg framework in more detail. 

Section 7.2 will detail the design of the Aggregator agents and specifically their 

interactions with all the other key agents in this simulation, while sections 7.3 - 7.6 

provide design details on other key agents i.e. the ISO, domestic and industrial 

customers, and generators.  

Section 7.7 will present the approaches used to validate and verify the simulation 

framework. Finally, section 7.8 will discuss possible extensions to the model in future 

work. The structure of this chapter is summarised in Figure 7.1.  
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Figure 7-1: Overview of Chapter 7 

 

7.1 PyEMLab: A Python based ABM Power Simulator  

As discussed in section 3.2, there are only around four electricity/power-focussed 

systems available for power based ABM analysis and all are Java based [32]. EMLab178 

has been chosen as the framework in which to conduct the simulations for this thesis. 

Python as discussed previously, is easier to develop in, and is the language of choice 

now in the wider research community and provides the researcher with many 

simulation components not available in the Java environment e.g. PyPower, SmartNet 

and many other open source libraries. PyEMLab is a direct Python port of the EMLab 

                                         
178 EMLab is also Java based. 
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framework and PyEMLab–Agg expands the PyEMLab framework to include 

aggregators, social interactions (“gossiping”), human behavioural characteristics 

(Agent_Zero). EMLab focuses on policy decisions with generation technologies and 

its impact on prices and carbon emissions whilst, PyEMLab-Agg concentrates on 

flexibility market interactions within distributions systems. 

 

Conversion of EMLab to PyEMLab 

Using an open source “Java to Python” library [522] the Java based EMLab model 

was converted to its first form of the Python model named PyEMLab. EMLab makes 

extensive use of the Java streams concept [523]179, so PyEMLab utilises the Python 

equivalent “lazy-streams” [524]. As far as it is known, this is the first and only, fully 

Python based ABM power simulator currently in existence180. It will enable many more 

researchers (Python based) to experiment and extend power based modelling in an 

ABM environment, including with this work. 

The first “port” of the code – proved to be slow for bigger simulations with a 

simulation of 20 years of 600 power plants taking some 20 mins. Code bottlenecks 

were identified181 and further experimentation with the use of a Numpy and Xarrays 

(which is vectorization based) indicated that runs times of this same simulation could 

be reduced to around 15 secs. The current version of PyEMLab does not use lazy-

                                         
179 Java Streams processes lists (or streams of data) and is ideal for processing collections or lists of 

agents.  
180 There are Java based simulators that provide users with Python Wrappers so they can run the Java 

model from Python. 
181 Streams processing caused many of these delays. 
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streams but utilises a much faster Numpy based system instead.  

Extension of PyEMLab:  

The original EMLab model assumed fixed demand using a 20-point load duration 

curve to represent demand over the year of two power nodes, Germany and the 

Netherlands. Extension of the model to include a networked power-grid, would allow 

modelling of nodal prices as well as to investigate congestion in the transmission 

network. 

PowerGama, a European wide LP based power grid modelling tool in Python, 

would be an ideal extension to the EMLab environment [28]. It can be used to model 

congestion and associated investment upgrades to transmission networks. 

Experimentation with the PowerGama model has shown it can be linked to PyEMLab 

to interchange data i.e. nodal prices in PowerGama affect behaviour in the PyEMLab 

model and vice versa. Thus, as new generating units are added or old units are 

dismantled in PyEMLab, the underlying network representation within PowerGama 

is modified to reflect that change. In addition, the Python aggregator and distribution 

models in SmartNet could be added, since DSR or, more importantly, aggregation and 

flexibility markets are not represented in the EMLab model as demand is fixed by 

scenario input data. 

7.1.1 “PyEMLab-Agg”: A Model of Aggregators and Customer Interactions 

The structure of EMLab/PyEMLab allows for the easy introduction of additional 

agents and provides an ideal and structured environment in which to model the agents 

and their interactions outlined in Chapters 3-6. 

The agent types that have been added to the system and form the principal agents 
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in this simulation are shown in Table 7-1 above, along with their key roles.182 The 

agent based model presented herein is also described in accordance with the ODD 

(Overview, Design concepts, and Details) protocol [525-528] in Appendix J, while this 

chapter focusses on specific design mechanics of the system and its key agents. Note 

that the Generator agents in PyEMLab/PyEMLab-Agg refer to both large traditional 

and smaller distributed generators. In addition, PyEMLab-Agg includes Domestic 

Customer agents with solar PV, small wind turbines and EV’s in their portfolio. The 

market clearing mechanism used in EMLab has been re-written so that it can 

accommodate an array vectorization approach183 [529] and in future work an AC OPF 

simulation of network flows will be added.  

Figure 7-2 summarises the key components and their interactions in the 

PyEMLab/PyEMLab-Agg framework184.  

 

                                         
182 Domestic Customer, Industrial Customer, Generator, Aggregator and ISO agents. Roles define what 

an agent can do during the simulation. 
183 Vectorization is the process of converting an algorithm from operating on a single value at a time to 

operating on a set of values (vector) at one time. 
184 PyEMLab-Agg is the modified version of PyEMLab that is used in this simulation. Note it uses 

different agent types and roles from those uses in the base PyEMLab/EMLab model, e.g. additional 

Generator agents, Domestic and Industrial customers, a modified ISO and Aggregators.  
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Figure 7-2: Key modules and structure in PyEMLab-Agg 

Agents in ABM’s normally have an “act” or “execute” method that is used by a 

scheduler to “kick off” actions inside the agent. The agents in Table 7-1 inherit that 

act code from the AbstractAgent in the gen.engine package in PyEMLab. PyEMLab 

performs “acting” in a slightly different way. Roles (agent behaviours or “things to 

do”) can be attached to agents, via a scripting language defined in the EMLabRole 

module. The EMLabRole is a special form of role in that it defines what the simulation 

should do. This allows the user of this framework to attach different learning 

paradigms, e.g. ZIP trader vs a Reinforcement learning engine using one line of 

scripting code. In addition, different roles could also be assigned in the agent factories 

during agent setup, e.g. 30% of the customer agents could update their bids using RL, 

whereas the rest could bid randomly. Python scenario files are used to define 
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simulation settings and set up agents using data stored in multiple CSV files and 

agent factories185 (ch6 in [530]). Role files are stored in the package “gen.role” and 

there can be multiple versions of a role. In addition, agents can contain multiple roles.  

Simulation runs are initiated by running a “startup” module stored in the engine 

package, which defines the scenario file to be used amongst other things. This file 

name is loaded dynamically, provides parameter settings, loads, and builds a 

simulation environment using parameters stored in the file. Agent and data “factories” 

are set in the scenario file and are used to create agents of different types, read in 

from a CSV input file. The scenario file uses an easy to use Python script that can be 

used to create any number of different scenarios. The “startup“ file also defines which 

reporters186 to use; reporters are used for reporting output data either during the 

simulation or at the end187. It also defines the mainrole class (typically called 

EMLabRole in this simulation). The mainrole is a script that defines the functions 

that are to be carried out in the simulation. That is, the process that the agents must 

follow. Finally, “startup” creates schedule-worker threads, which are used to run the 

main part of the model. Note currently the model is run with just one thread. The 

schedule-workers attach a scheduler to them that keeps track of the hours, days, 

week’s months and years and sets appropriate flags e.g. the week_flag. These flags 

are used by agents to “kick off” appropriate actions like social media propagation etc. 

during the simulation. 

                                         
185 Also sometimes known as Agent Builders, or creators.  

186 Reporters are Python script files that define what data is output where and when. 

187 The original EMLab model wrote data at the end of the simulation to a CSV file. This has been 

extended to include other file types and allows data writing throughout the simulation. 
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The scheduler launches an "EndReporter" class at the end of the run, saving the 

necessary data after the simulation is complete. The script in the “mainrole” file is 

executed once each tick (simulated hour) and specifies when and what the agents do. 

Because the “mainrole” is defined by name, researchers are free to store and use 

numerous versions of the this file e.g. mainrole1, mainrole2 etc. CSV and other data 

files are stored in the resources directory and are used to populate customer188, 

aggregator data189 and provide imbalance volume profiles to the model. 

The utility package contains code segments that are used within the “mainrole” 

code, and sub-roles inside agents. Typical routines stored in here, include, risk 

management routines; option pricing; Agent_Zero algorithms, Hurst coefficient 

calculations and so on. 

During the run, agent data is stored in a repository which stores in-memory 

matrices of simulation output like: clearing prices; flexibility volumes; contract offers; 

profit and loss accounts for both customers and aggregators; Agent_Zero values for 

each customers (V,S,P D)190; the number and type of customers by aggregator; key 

agent statistics and so on.  

The original EMLab framework (and its Python port PyEMLab) was designed to 

simulate investment and technology behaviour in a European power market and its 

agents and associated roles are not appropriate for this current work. New agents/roles 

have therefore been constructed and this version of the model is known as “PyEMLab-

                                         
188 For example, max customer flexibility volumes, starting contract types and so on.  

189 For example, Risk stance, opening contract types and business model used. 

190 V – affective, S – social, P – logical score and D – disposition values. 
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Agg”. Figure 7-3 provides a block diagram model of the PyEMLab-Agg framework, 

whereas Figure 7-4 provides a slightly more detailed breakdown of the interactions 

between the various modules. 

 

 

 

Figure 7-3: High-level block diagram of PyEMLab-Agg 

Note the learning element in Figure 7-3 is based on a ZIP learning based element, 

but could be replaced by an alterantive RL algorithm. The ZIP learning algorithm 

uses its previous bids to update its new bid. 
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Figure 7-4: High-level interaction diagram of PyEMLab-Agg 

The key novel elements of the model shown in Figure 7-4 are highlighted and 

discussed briefly below: 

 It includes an Agent_Zero module that models emotions, social scores from 

interactions. The Agent_Zero module also reviews the performance of the 

contract from an economic point of view. It uses a multi accumulator 

approach to keep ”scores” on all aggregators in the market and can “lock 

out” aggregators with really bad scores. 

 Aggregators assess market conditions and use this data to perform an 

internal analysis so that they can optimize their Contract offers to 

customers looking for a renewal of their contract. This also includes 

changing the contract type offered.  

 Customers review the aggregator and contract performance at the End of 
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Contract. Customers analyse their performance economically, but also use 

“scores” from their social and economic view of the aggregators. 

 A Risk management module that uses a Monte-Carlo options approach to 

calculate risk for the bidding buckets. The risk for each individual bucket 

and contract type is calculated and is then rolled up into a portfolio view 

of the risk for the aggregator. This is used to determine the price of the 

hedge, as well as a decision on whether to take the hedge.  

 A sparse matrix Social interactions model linked to each customer. A 

propagation module keeps track of messages passed to/from customers on 

the network.  

 Aggregators can choose between multiple business models and have a 

module that is used to assess the future performance of those Business 

Models in the future. Historical performance data is used to forecast future 

values. 

 Aggregator Bucketing – particularly in the context of using the Astropy 

algorithm, which appears to provide superior performance to more 

simplistic measures. 

 

7.1.2 Model Simulation Speed  

Many ABM frameworks make use of list processing techniques to update agent 

internal values. Code loops around agents; processes them and updates internal values. 
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For 50,000 plus agents this can be slow191. Array vectorization of calculations using 

matrices can significantly speed up these calculations and although more difficult to 

understand, results in significant speed improvements. The C based Numpy192 or 

Xarray libraries in Python, provides an ideal framework for processing large numbers 

of agents in an array format and can be used to filter193 those agents very quickly. The 

format also allows for the use of sparse matrix algebra. Use of a Cprofiler [531, 532] 

helped in reducing run times by an additional order of 50-80%. Run times for a 1-year 

simulation with 55,000 agents were initially of the order of 2 hours but this was 

reduced to 20 mins using vectorization. 

 

7.1.3 Reporting; Using Hdf5 

The original EMLab/PyEMLab used reporters to generate CSV files by 

“dumping” data at each time tick. The PyEMLab framework has been extended to 

store matrix or array output at the end of the run in the scalable and fast binary Hdf5 

format [533, 534] using the Python based h5py [535] routines. 

A list of tuples is used to define outputs, and the amount of data included can be 

altered. e.g. 

[(“name of output string”, array_of_values_stored_in_array), (“clear prices”, 

reps.clearpricematix ), ((“contract offers ”, reps.aggcontractoffers) ….] 

A hdfviewer such as HDF® VIEW [536] can be used to inspect, and or copy the 

                                         
191 Parallelisation would help in this regard. 

192 Numpy is used in this work. 

193 That is used to filter or select a set of agents on a particular node or select certain generating assets. 
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output, for use in other packages such as Excel, MATLAB or R and used for further 

analysis. 

7.1.4 P&L Account and Balance Sheets 

For further information on accounting and cashflows, the reader is directed to 

introductory accounting texts [537-540]. Separate Profit and Loss accounts, and 

cashflow statements for each of the aggregators is stored in memory during the 

simulation. Total sales revenues (volumes cleared multiplied by the clearing price), 

the cost of sales (in this instance the amount paid to the customers as part of the 

contract), the operating costs and the depreciation, corporate tax and so on are 

calculated as per standard accounting practice. 

7.1.5 Herfindahl-Hirschman Index (HHI): Market Power 

The Herfindahl - Hirschman Index (HHI) is a common measure of market 

concentration/power. It is calculated by squaring the market share of each firm 

competing in a market and then summing the resulting numbers. It can range from 

close to zero to 10,000. 

2 2 2
1 2 3 .....HHI S S S   

 
(7-1) 

 

where 1S is the market share (% expressed as a whole number) of company1 and 

so on. 

The U.S. Department of Justice considers a market with an HHI of >2,500 to be 

a highly concentrated marketplace [541]. The Competition Markets Authority (CMA) 

in the UK typically regards markets with a “HHI below 1,000 as unconcentrated, 

markets with HHI between 1,000 and 2,000 as concentrated, and markets with HHI 
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above 2,000 as highly concentrated”. In 2017 the UK gas/electricity market had an 

HHI of 1599/1247 respectively [542](p20 and 87). 

Six aggregators with equal shares would have an HHI of 1667. The simulation 

framework collects market shares and can easily calculate HHI using equation (7-1) 

through time as shown in the simulation output in Chapter 8. 

7.1.6 Emergence  

Emergence is an important concept in complex systems and at its simplest is the 

phenomenon where global behaviour arises from the interactions between lower level 

components. Wolf and Holveot [543] provide a working definition for emergence; “a 

system exhibits emergence when there are coherent emergents at the macro-level that 

dynamically arise from the interactions between the parts at the micro-level. Such 

emergents are novel w.r.t. the individual parts of the system.” 

Complex human/social based models are expected to have emergence, especially 

when agent learning is involved [544, 545] and detecting such emergence and 

understanding conditions under which it can occur is an important part of the 

motivation for building this ABM framework.  

In general, automatic detection of emergence has proved to be difficult. However, 

a number of algorithms have been developed and some of these are available as open 

source libraries. EMBER [546] is one such library written in Java and has been used 

with a small ABM model written in Netlogo. Future work may incorporate these 

libraries. 

Fractals Pink noise and Hurst Coefficient 

Pink noise/Fractals are present everywhere in nature from earthquakes, the 
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growth of trees, rainfall, and brain patterns [547, 548]. Fractals are seen to produce 

the same pattern at different scales, and they are, therefore, also known as scale free. 

Scale free signals exhibit a power law relationship where spectral power takes on the 

form:  

P cF   
(7-2) 

 

where P  is Spectral Power; c - a constant ; F - frequency and α is the scaling 

exponent.  

In pink noise, the contribution of low frequencies is higher than white noise. Pink 

noise is scale free with a scaling exponent 0.5< α <1.5 (note that α=1 is a special case 

of pink noise).  

The Hurst coefficient H (which will be discussed later) is related to the scaling 

exponent by the formula: 

Real world networks have a scaling exponent α which ranges from 0 - 2. A time 

series with an α =0 is random (H=0.5). 

Bak [549] suggests that pink noise arises when a macro-level event is generated by 

a single micro-level event which, because of coupling, cascades its effect across many 

inter-related entities.  

What is important here is the idea that fractal behaviour (pink noise) is a clear 

indicator of non-linearity and self-organization. However, it should be noted that 

although Pink noise can be a defining characteristic of emergence, it is a necessary 

and but not sufficient condition for proving emergence has occurred. Pink noise has a 

1

2
H

 
  

(7-3) 
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Hurst coefficient ranging from [0.75,1.25] with a special case at H= 1 [550] and α=1.  

Thus the question is can we use this exponent, or other parameters like Lyapunov 

coefficients, in an ABM simulation to detect emergence? The answer of course is yes. 

In the context of this work, interactions at the micro level (customers, aggregators 

and market clearing) could result in emergent behaviour. Detection of such events 

could be made using Hurst coefficients. 

Hurst Coefficient and its Meaning  

The Hurst exponent (H) or coefficient is measure of long-term memory of a time 

series and was developed by Harold Edwin Hurst in his studies on hydrology in the 

1950’s [551, 552]. The Hurst coefficient can be calculated by following a number of 

steps as highlighted in [551], but the interest here is in the interpretation of its value 

through time. 

“The Hurst coefficient (H), is 0.5 for both white and Brown noise.…. The Hurst 

coefficient of self-similar processes deviates from 0.5. For pink noise, H = 1”194 [550].  

H = 0.5  Brownian motion, (Random)  

0.5 < H < 1.0  Persistent trending behaviour  

0 < H < 0.5   Mean reverting or stable behaviour 

Uses of Pink Noise in Simulations  

Zhukov, Kanishchev and Lyamin [553] uses a methodology that detects changes 

in noise colour (pink, white and red) and shows that it can be used as an indicator of 

changes in historical processes. “In some cases, this indicator can enable one to 

                                         
194 Self-similar process -> Fractal.  

https://en.wikipedia.org/wiki/Long-range_dependency
https://en.wikipedia.org/wiki/Time_series
https://en.wikipedia.org/wiki/Time_series
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establish the time, speed, and direction of state changes” and can be used to highlight 

or identify potential cases of emergence. Similarly, Dooley and Van de Ven [554] 

analyse complex organisational dynamics and categorise them by using different noise 

patterns. They use such noise patterns to help them hypothesize about a particular 

story, or causal process.  

The Hurst component has also been used to predict turning points in financial 

markets or to identify market bubbles or financial crises [555, 556]. The maximal 

Lyapunov exponent has also been used to predict emergence in nonlinear systems in 

a variety of fields [557, 558], while [559] shows the correlation between Hurst indices 

and Lyapunov exponents.  

Saxena and Saxena [560] propose the use of a Hurst exponent pattern approach 

with node connectivity to provide a better view of the “nodes influence potential” and 

claim that it provides a better algorithm for prediction of adoption rates in viral 

marketing. Although developed from a marketing perspective the concept of using a 

Hurst component to “quantify“ and identify key influencer nodes might be useful in 

future analysis of the message propagation in the social networks modelled in this 

thesis. 

As Python provides an open source library for calculating a Hurst index (hurst 

0.0.5 [552]), a collection of Hurst exponents through time has been made during the 

simulations in Chapter 8, as a first step to help in detecting emergent phenomena and 

as a method to identify “turning” points in simulation dynamics. It may also be useful 

in providing a narrative like that discussed in [554], where the authors identify how 

noise pattern characteristics (pink, brown, white etc.) change through time, and 
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propose to hypothesize about the underlying dynamic processes. 

7.1.7 Temporal Interactions of Principal Actors 

The interactions between aggregators, customers and the market clearing entity is 

represented through time in Figure 7-5. As discussed in section 2.7, customers and 

aggregators perform various actions at different times during the simulation, e.g. daily 

weekly monthly and yearly. The scheduler in the agent framework keeps an account 

of these times and sets and resets flags at the appropriate moments during the 

simulation. These flags are used by the agents to control specific actions at the 

appropriate times, e.g. domestic customers send out messages weekly to other domestic 

customers. 

 

 

Figure 7-5: Overview of the actor interactions in ABM framework 

 

In this simulation, customers bid upward and downward flexibility, hourly. Each 

customer sends out either an upward or downward flexibility bid. In addition, each 
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customer provides one bid per hour.195 Note in theory, Aggregators may allow 

customers to bid multiple segments, e.g. customer will supply downward flexibility of 

3 kwh at £60/MWh and then a further 3kwh at £324/MWh and so on. The original 

SmartNet design also allowed customers to bid both upward and downward flexibility 

at different prices. Customer bid prices are based on customer’s marginal costs, prior 

clearing prices and expectations about revenues for the year. Aggregators take these 

bids, and aggregate them as detailed in section 2.7. Aggregators adjust bids using a 

learning paradigm based on Cliff’s ZIP Trader (Section 6.2.3), an analysis of prior 

simulation data and prior clearing prices. Generators bid at marginal costs but a 

sensitivity using a ZIP trading module is provided in Chapter 8. The ISO agent clears 

the market using economic dispatch and sends back cleared bids data to the 

aggregators and generators. Note that it is assumed here, that each aggregator sends 

out 10-bucket bids to the ISO every hour196. In future versions, where nodal pricing 

will be considered, aggregators would send out bids for each node. This would increase 

the number of bids that the ISO would need to clear. The current simulation considers 

only active power, whereas SmartNet considered both active and reactive power. 

The following sections now detail the key mechanics associated with specific agents 

in this simulation framework. 

 

                                         
195 This is probably a reasonable assumption. In a more sophisticated bidding structure both upward 

and downward bids might be made. 
196 This can be changed. 
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7.2 Aggregator Design 

The aggregator design is based on the work set out in SmartNet for the Curtailed 

Generation Curtailed Load (CGCL) aggregator [8, 9, 82]197 and has been extended in 

this thesis to include an options based risk management module (Chapter 5), business 

models and accounting modules (Chapter 4), and includes a version of Dave Cliffs ZIP 

Trader (section 6.2.3) for aggregator price bidding. A block diagram of the main 

aggregator modules and functions is given in Figure 7-6. 

 

 

Figure 7-6: Aggregator functions; Overall approach 

 

7.2.1 Agent Aggregation: Outline of an Agent Design and Bucketing 

The aggregator/disaggregator agent simulates the aggregation/disaggregation of 

                                         
197 Note the thesis author is the designer/researcher behind this agent. 
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bids from thousands of customers. For each hour, bids from customers (volume – kWh 

and bid price £/MWh) are combined into price “buckets”198 to produce up to ten price 

volume bids per time step (either up or down). In effect, each aggregator is an agent 

(a software object), who stores the data from all the customers who have contracts 

with the aggregator. 

In SmartNet, buckets are clustered by cost, but the concept can be extended to a 

more general clustering algorithm using multiple variables. In fact developing an 

appropriate clustering algorithm may give aggregators an edge in operating in this 

market. This thesis uses some simple algorithms discussed below and a more 

sophisticated algorithm based on Scargle’s Bayesian Blocks [561]. However, these 

could be extended. 

The aggregator sends out up and downward flexible bids e.g. for the next hour199 

to the ISO. In SmartNet, the aggregator sends out bids for the next 12 hours on a 

rolling basis, but in this simulation, only the next hour bids are provided. Note 

SmartNet looked at a number of bidding market designs including the use of a rolling 

horizon; bidding 12 hours ahead. The 12-hourly bids is useful for the DSO as it can 

plan further ahead. As the grid is not currently modelled in detail here in this work, 

there is no need to provide rolling look ahead forecasts. An hour was chosen as a 

reasonably small enough bid interval200, although the various regulators are looking at 

                                         
198 See Appendix N for detail. 

199 In SmartNet, Aggregators can bid over multiple times frames – but this model assumes only hour 

ahead bids are provided. 
200 Smaller bid intervals would increase computational time proportionately. The model is able to easily 

switch from 1 hour bidding to 5 minute bidding. 
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5 minute bidding. Also, keep in mind that the aggregator might gain more experience 

if they bidding more frequently. 

For each hour, the aggregator sends out bid buckets, which represents the 

aggregation of all of its customers bids. Each bucket represents a price range, e.g. 10-

30, 30-70 £/MWh and an associated volume (see Figure 7-7). These price buckets will 

vary in range each hour and by aggregator, dependent upon customer bids. 

 

Figure 7-7: Aggregator bid structure overview; Hypothetical example 

Each aggregator agent performs its own calculations and updates databases as 

necessary. Segment or buckets are identified using an index of [0,(N-1)] for upward 

flexibility and [-N,-1] for downward flexibility. 

The key for the aggregator is to apportion thousands of bids to a set of limited 

buckets, e.g. 10, so that it maximizes its profits in the face of uncertain volumes and 

uncertain prices. Aggregators would, therefore, set the price ranges on these buckets 

to maximize their expected profit. Figure 7-8 shows a hypothetical example of the 

process with five buckets, represented as two arrays. Note in the representation shown 

below p refers to price not power. 

Assuming continuous buckets, the bucket range of the ith bucket could be 
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represented as pi – pi+1, where p denotes price. p0 would be equal to the minimum bid 

accepted by the aggregator and p6 would be set to the maximum bid. As pi is adjusted, 

customer volumes are assigned to these buckets based on their bids.  

 

Figure 7-8: Bid buckets example; Adapting price ranges 

The optimization problem is somewhat similar to a knapsack formulation [562] – 

but one in which the knapsack sizes can change – they are being optimized. This, 

when coupled with risk valuation, makes it a complex problem to solve. Genetic 

algorithms/evolutionary solvers could be used to solve this problem but this will be 

time consuming. In practice, the aggregator has to keep accounts of the types of 

contracts in the buckets so that it can calculate risk associated with each bucket, so 

the matrix structure inside the aggregator agent is more complex. 

In reality, the aggregator will need to understand the power flow and voltage 

constraints on the system if it is to successfully optimize its portfolio of assets into 

buckets. This would mean that it will need access to a physical model and constraints 

of the network. Note that one possibility is that the DSO may provide this information 
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in future years, in real time. Note because this work does not model the network in 

detail, there is currently no need for a “physical network model, but will be the subject 

of future work. 

  

7.2.2 Bayesian Blocks Buckets: AstroPy Heuristic  

In the hypothetical example shown below, the aggregator wants to select four bid 

buckets so that it maximizes its profits or revenues by doing so. The expected revenues 

in this case would be given by equation (7-4). 

1

0

Re *Pr *

n

i i i

i

Expected venue VolumeMwh ice CDF





  
(7-4) 

Where: 

- n : Number of bid buckets 

- Pr iice : Bid price of the ith bucket. In the algorithm used in the simulation Pr iice is the weighted 

average price of all bids in the bucket. 

- iVolumeMwh : Volume in ith bucket 

- iCDF : Cumulative distribution function of the clearing price and represents the probability that 

the bid price will clear. Data collected by simulation would be used to create a CDF function 

like that shown in Figure 7-9(c). 
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Figure 7-9: Bayesian block methodology 

The Bayesian Block algorithm, tries to fit the resulting expected revenue profiles 

into a set of histograms like that shown in Figure 7-9(a) - (b). The number of blocks 

is dependent upon a factor set in the algorithm i.e. the gamma factor. This may 

produce many more, or less, buckets than required. Reference [561] does provide a 

relationship between expected number of blocks and gamma factors but it is found 

that this is not accurate for this simulation. It does provide a useful first guess and, 

with some trial and error, the expected revenue profile can be fitted to the appropriate 

number of buckets.201 As will be shown in section 8.5.2 this AstroPy heuristic, as it 

will be called202, provides the aggregator with superior results over simpler 

representations. Of course, a genetic algorithm or a bi-level optimization formulation 

might provide a more accurate algorithm, but the actual formulation of the 

                                         
201 The simulation estimates the number of buckets using the gamma factor initially and interpolates 

over a set of 10 points to determine the number of and best bucket sizes. 
202 The open source library AstroPy has Scargle’s Bayesian Block algorithm embodied within it. 
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optimization problem is actually somewhat more complicated than that shown above, 

e.g. each bid would potentially be associated with different contract terms and risks. 

Computationally, this would increase run times significantly. For now, this 

optimization/portfolio problem is left for future work. This enables a faster simulation 

than trying to optimize the solution, which is non-linear in nature. 

7.2.3 Aggregator Bucket Risk 

Chapter 5 presented the calculation required to calculate risk for one bucket inside 

of the aggregator agent, but aggregator agents have in this instance have 10 buckets203, 

so risk/option value is calculated separately for each bucket. The sum of each option 

value, associated with each bucket provides an overall risk value. 

In addition, each bucket would have a different mix of contract types and 

parameter values. The algorithm for calculating the options for each bucket, therefore, 

has to account for this portfolio mix and is shown schematically in Figure 7-10. 

 

                                         
203 Note this is an input parameter. 
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Figure 7-10: Aggregator risk calculation example 

 

7.2.4 Aggregator Target prices: Adjusting bids to Account for Operating Costs 

Aggregators need to provide bids that cover their operating costs and risks. In this 

framework, Aggregators currently use the ZIP trader algorithm (section 6.2.3) to 

adjust their bids. The original ZIP trader model used stock prices as the adjustment 

target or setpoint. In this model, target price can either be the greater of the last 

clearing price or a target price that looks to cover the remaining operating costs left 

in the year. Target prices can be set hourly, daily, weekly, monthly, quarterly or 

yearly, although the simulation results shown later in Chapter 8, use daily updates. 

For example, at time zero, aggregator 2 estimates that it needs an average clearing 

price of £75.34 to reach its targets. After a review of its performance at the end of 

month 4, it estimates that it would require a target price of £261.76 for the rest of 
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the year to meet target. The price is higher in this hypothetical example as the 

performance of the aggregator in months 1-4 has been poor. This would be the target 

price used in the ZIP trader algorithm assuming it was higher than the average of the 

previous clearing prices. Although this was used as the initial design for the aggregator 

price setting mechanism, it was found that as the prices were increased to meet targets, 

profits did not increase commensurately and profits over the year fell well short of 

aggregator requirements. Further analysis of the aggregator actions found that at the 

current costs, aggregators need around 6,000 + customers to break even. The average 

clearing price (CP) needs to be in excess of 100-120£/MWh (section 4.3.1) to cover 

expected profits. Simulation results in Chapter 8 with base case numbers indicate that 

aggregators cannot make profits, as they cannot bid low enough to displace bids made 

by conventional generation (for most of the time). Increasing aggregator-biding prices 

does not help in this regard, as it results in less aggregator flexibility volumes being 

accepted and lower profits. 

If imbalance volumes increase through time and conventional generation is not 

increased, aggregators are seen to make acceptable profits. To alleviate the issues seen 

in the profitability of the aggregators, a slightly different bidding algorithm was 

incorporated that looked to maximise profits and was found to improve aggregator 

performance. 

7.2.5 Agent Disaggregation: After Market Clearing 

After clearing, aggregators would inform customers of the acceptance of their bid 

and provide payment as defined by the contract terms agreed with the aggregator. 

The aggregator would keep some portion of the revenues provided to them by the 
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clearing operator (ISO), according to the terms of the customer contract. This means 

that the aggregator has to keep account of every customer in arrays.  

7.2.6 Aggregator Offers to Customers 

Offers are submitted to the market by each aggregator at the end of the month. 

Aggregators use simulation data to estimate the optimal choice of contract terms that 

they believe will maximise their profits. Appendix M provides details of the algorithms 

used in calculating the optimal offer. 

As the months progress, the aggregator will have many different types of contracts 

to deal with, each potentially with different pricing terms. It, therefore, needs to keep 

account of these so that the appropriate revenues can be collected and paid to its 

various customers. In some cases, the aggregator will need to risk manage its profit 

and its portfolio of contracts. In this case, an option-based calculation (as detailed in 

Chapter 5) is carried out, to determine the value of the risk taken and, therefore, the 

cost of a potential hedge204. If the hedge is exercised, revenues are adjusted accordingly 

to take account of said hedges, i.e. revenues would be boosted to meet the minimum 

profit levels. As each bucket has its own option in this model, account has to be taken 

of multiple option positions. Note this option value also varies by contract type and 

contract terms so the aggregator needs to keep account of this.  

7.2.7 Aggregator Business Model Selection 

Aggregators, at year end, will assess their performance using the current business 

model. A review of business models would normally be influenced by a number of 

                                         
204 Hedge cost is assumed equal to the theoretical value of the risk. 
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factors (see Figure 7-11) but in this simulation only the economics will be used to 

assess the relative performance of business models. It is assumed that adequate 

resources are available and that senior management support changes in business 

model. 

 

 

Figure 7-11: Business model selection 

 

Historical data on clearing prices and the use of historical customer data (clearing 

prices, bids and volumes) are used to estimate the economic performance (NPV) of a 

new business model205. Competitive effects will be ignored, but assessment of 

competition could be included later. Additional descriptions for this process with 

equations is provided in Appendix I. 

 

                                         
205 Assumes same real revenue and cost base going forward for 20 years. NPV @ 10%. 
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7.2.8 Assumptions on Aggregator Costs in the Simulation 

The models accounts for aggregator costs using the analysis presented in Chapter 

4. A linear equation of costs with customer numbers is used to alter these costs 

throughout the simulation206. In practice, there would be additional staff/redundancy 

costs (unless the staff are on zero contracts) and additional monies may be available 

from the disposal of redundant equipment. These have not been accounted for in this 

simulation. There is not likely to be a great difference in costs in operating the different 

revenue models, so these are assumed to remain the same. There will be an additional 

cost if risk management is introduced both in terms of capital and operating costs. 

These are accounted for in the simulation if business models are switched. 

 

7.3 ISO Agent: Economic Dispatch 

The Independent system Operator (ISO) agent, which could represent a DSO/ 

TSO or some combination, uses a simple economic dispatch model. In future work a 

market clearing model based on OPF207 will be used. In an economic dispatch (ED) 

model, prices in the balancing/flexibility market would be set by intersection of the 

marginal curves for upward and downward flexibility and balancing demand208. The 

approach is summarized in Figure 7-12, where a hypothetical supply curve for 

downward flexibility is shown on the top left (showing marginal prices vs negative 

                                         
206 That is, it is dependent on the aggregator customer numbers, and will change throughout the 

simulation. 
207 See comments below for the potential impact on the results. 

208 Account is made for distribution and transmission losses using data from Ofgem. 
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balancing demand) and upward flexibility on the top right. These curves may have 

different shapes as well as different overall volumes. An example of a potential net 

imbalance volume path is shown in the bottom of Figure 7-12 through time. 

 

 
Figure 7-12:Upward downward flexibility and balancing demand: Price setting 

Depending upon the sign of the net balancing demand, it will intersect either the 

downward or upward flexibility supply curve in the place shown by the vertical arrows. 

Prices associated with the supply curve at this point are shown with the dashed 

horizontal arrows.  

7.3.1 OPF vs Economic Dispatch 

The ED methodology was used to calculate one “zonal” price for the case study, 

but as stated previously it is the intention to extend this work to include a full OPF 

simulation. Ganga [563] provides an analysis of the Australian power market and 
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shows that a nodal approach (OPF) would result in prices in the same areas that are 

some 25-100% higher than that calculated from a zonal approach (see table 5.1 and 

5.2 in the reference). This will depend upon the network involved in the area (i.e. 

congestion in such areas) and the supply curve of the generation involved. Note some 

nodes will exhibit higher prices and some lower. Egerer, Weibezahn & Hermann [564] 

analyse the impact of a two price zonal market (2 Nodes) on the German power market 

over one and show that the price difference for two zones over one zone are 1.4- 10.2% 

higher (table 3 in reference). They also analyse power and monetary flows under one, 

two and four zones in the German market. Although the paper does not provide 

detailed numbers, it appears that, the 4 zone case results in price differences of 26-

59% . 

Choice of a market clearing mechanism and particularly the location of zones or 

the location of congestion will significantly affect power and monetary flows. Modelling 

of aggregators on multiple nodes will be required in this scenario and increases the 

complexity and run times of the model. The SmartNet implementation uses an OPF 

model of the network and provides a methodology for incorporating aggregators into 

a network formulation of a distribution grid. Aggregators in this model bid flexibility 

at different nodes. In a recent proposal National Grid ESO has suggested the use of a 

800+ nodal model for the UK flexibility market [565]. 

 

7.4 Domestic Customer Agent Design 

Data is provided to customer agents using an agent factory at the beginning of 
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each simulation. Data is read from a CSV file defined by name in the scenario file and 

includes data on: 

 Marginal bid costs for upward and downward flexibility. Note these are costed 

differently. Costs are based on work from references [566, 567]. 

 Upward and downward flexibility max volume values. Note flexibility 

availability is likely to follow a seasonal pattern (Fig 20 in [77]) so the 

simulation shapes, maximum flexibility availability vary throughout the year. 

 Starting contract terms data; type and parameter settings e.g. fixed price, 

margin% is provided as an input. 

 

Agents have been randomly assigned a starting contract value and randomly 

assigned to a 50,000 node social network209. The same social network assignment is 

used in all the case studies presented unless otherwise stated. 

 

7.4.1 Domestic Customers Actions/Roles 

In summary, customers perform the following various functions in this model 

represented in block form in Figure 7-13:  

 Bid hourly flexibility volumes with a price (£/MWh). 

 Adjust those bids every hour210 using a learning algorithm (ZIP). 

 Keeps accounts of its revenues and compares this to its expectations (a CSV 

input). 

                                         
209 One agent, one node. 

210 This can be changed to daily, weekly and so on. 
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 Updates its emotions based on aggregator performance in relation to 

expectations; potentially sends out a message weekly based on its emotions as 

discussed in section 6.4.  

 Accepts messages from connected agents and further updates its emotions211. 

 Updates the Agent_Zero dispositional score every month and uses the average 

of dispositional scores from connected agents (Social Influence S Agent_Zero). 

 Every year, at the end of a specific month defined by the input data, customers 

review their contracts. Customers review the various aggregator offers by 

comparing them on a social, economic and emotive basis (as per Agent_Zero 

section 6.4). A new aggregator (if applicable) is selected for the coming 

contract year; currently the simulation is fixed at 12 months but future work 

would allow variable contract lengths.  

 

                                         
211 Messages accepted with a probability of 0.3 (Prx) in base case. This threshold can be changed. 
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Figure 7-13: Customer functions: Overall approach 

 

More detailed actions associated with domestic customer agents are shown in 

Figure 7-14 - Figure 7-16. 
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Figure 7-14: Customer functions – Weekly 

 

 

 

Figure 7-15: Customer functions – Monthly 
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Figure 7-16: Customer functions – End of contract year/end of month; Selecting a new contract 

 

7.4.2 Network Gossiping: Trust and Propagation  

The premise of the modelling of customer interactions on social networks is that 

customers will “gossip” and swap views about the companies with which they are 

engaged. They may share price bids or contract information, or spread rumours or 

views/feelings about companies. The aggregator companies could also spread 

information but this will be ignored here for now. Such interactions can be represented 

as multi-layer social interaction networks, with different customers interacting on 

different issues with different customers (Figure 7-17). 
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Figure 7-17: Gossiping in social networks; Multiple levels. 

 

Although not shown, there is a third interaction layer that could be added to this 

set, namely, the power grid that each agent is attached to. Note the current model 

doesn’t include a power grid layer. In effect, the model could have three interacting 

layers and potentially more212. Networks are stored as adjacency matrices in a sparse 

format so that matrix algebra can be used. 

7.4.3 Message Propagation by Domestic customers 

Propagation of messages by domestic customers is based on the combined score of 

emotions (angry and happy; happy angryV V V  ). The hypothesis is that the more angry 

or more happy that you are with a product, the more likely you will be to spread the 

word, either good or bad about that product on social media. Using an analysis based 

                                         
212 E.g. transportation layer for EV cars using off home charging. This would be linked to the power 

grid. Note only two interacting layers are included. 
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on the “Amazon stars system”213 [568], for good and badly rated products, the 

probability of getting a good rating vs a bad rating has been calculated from statistics 

of reviewer numbers214. Note the probability of propagation of the message depends 

upon how bad or how good the aggregator is viewed215. The probabilities that have 

been used in this simulation are shown in Figure 7-18 below using a normalised score 

of [0,1] (happy) or [-1,0] (angry). 

 

 

Figure 7-18: Probability of propagation based on Amazon stars 

Normalised propagation scores are estimated from a general logistic equation216 

using the ratio of forecast yearly revenues over expected yearly revenues (equations 

(7-5) – (7-7)) adjusted for the weeks already elapsed, i.e. the value is scaled to 

                                         
213 Note EBay uses a similar system – with good and bad reviews adding to points that contribute to a 

score of [1,5]. Note that in this work we use a range of [-1,1] 
214 This makes the assumption the probability of passing on a “good” social media message is related to 

the proportion of 5 or 4 star reviews. Similarly for bad reviews with 1 or 2 stars. 
215 That is, does it have 1 or a 5 star rating. 

216 The concept here is that customers will be looking for an expected revenue. Amounts over this 

expected revenue will contribute to the normalised score. Based on internal discussion once the raw 

score is 1.5 times the expected revenue, the normalised score from the logistic equation would saturate 

at 1.  
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represent revenues over 1 year. 

 

 

Re
Re *52

CurrentTotalofYearly venues
Forecast venues

NumberofWeeksElapsed
  

(7-5) 
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Re

Forecast venues
RawScore

ExpectedYearly vemue
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( 0.5)NormalisedScore GenenarlLogistic RawScore   (7-7) 

 

These form the basis of a stimulus to the emotion agent zero accumulator discussed 

in section 6.4. See Appendix P for more details on the General Logistic equation and 

its use in the model. In addition, the latest prices are shared over a social network and 

is used as an input to the ZIP trader algorithm. Future work could calibrate these 

curves using customer survey data. 

 

7.5 Industrial Customers 

Industrial customers have been designed on the same framework as the domestic 

customers except that they do not message, propagate or interact on a social network. 

Industrial customers are assumed to bid marginal costs without adjustment. Marginal 

costs are based on work presented in [567]. However, code infrastructure exists to 

allow the easy addition of ZIP trader logic. As with domestic customers, industrial 

customers may bid to aggregators in the same manner. Bids from both domestic and 

industrial customers are processed as “one type” in the aggregator. 

Industrial customers are assumed to use one contract type (pay a percentage of 
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the cleared price to the customer) over the duration of the simulation and do not 

change contracts, although this assumption can be relaxed. 

7.6 Generators 

Large conventional generators bid directly to the ISO and do so by bidding 

marginal costs provided in the input data. Note distributed generation or more 

generally, DER’s, are represented in some of the domestic customers. The input data 

contains a variety of different types of generation and associated marginal costs. A 

ZIP Trader module is temporarily added to one case to explore the effects of generators 

bidding on clearing price output (Case 12 in 5-year simulation).  

 

7.7 Validation and Verification 

Sargent defines verification as ““ensuring that the computer program of the 

computerized model and its implementation are correct [569]. That is, does the 

computer code work right. Model validation is defined by Schlesinger as the 

“substantiation that a computerized model within its domain of applicability possesses 

a satisfactory range of accuracy consistent with the intended application of the model” 

[570]. That is, does it do what it was designed to do and represents a realistic future 

low carbon distribution network flexibility market. 

In terms of verification, unit testing of individual models has been carried out in 

accordance with standard software principles. Code was tested, as it was coded. For 

example the output of an excel test model of risk management options (described in 

Chapter 5) was used to test the output of the equivalent Python code. The base 
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structure is based on a model that has also been heavily verified. 

7.7.1 Validation of Socio-behavioural Models 

Validation of socio-behavioural models is known to be difficult [571-573]. This is 

especially so, as this is a simulation of a future market that does not currently exist.217 

This makes it difficult to statistically test the output using hypothesis testing or 

distribution analysis, as is typically the case in engineering or science simulations. 

Human behaviour further complicates the matter as humans adapt, causing non-

linearity and non-stationary output. Emergent behaviour is also likely to be seen in 

these types of simulation. 

Carey et al., have proposed the use of validation in parts and incremental 

validation218 for social-behavioural models in [572]. That is, to validate inputs 

processes, and input to output separately, but without data this is difficult to perform. 

Therefore no silver validation bullet exists for the ABM domain, but Nikolic, van 

Dam, and Kasmire [574] provides useful advice on developing and validating ABM 

models for use in a socio-techno setting. Section 3.10 of this reference highlights and 

provides examples of the uses of the various methods (See below). Note that the 

approaches underlined are those that are thought to be applicable for this task in this 

thesis: 

 Historic replay; 

 Face validation through expert consultation; 

 Literature validation and 

                                         
217 Which results in a lack of real data on which to validate. 

218 Model validated in steps with each step adding more complexity. 
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 Model replication (also known as triangulation) 

Sargent [569] provides a list of similar methods but provides additional approaches 

that are summarised below:  

 Animation: The model's operational behaviour is displayed graphically as the 

model moves through time.  

 Comparison to other models: Simulation model outputs are compared to known 

results of analytic models.  

 Degenerate tests: The degeneracy of the model's behaviour is tested by 

appropriate selection of values of the input and internal parameters.  

 Event validity: The ‘events’ or occurrences of the simulation model are 

compared to those of the real system to determine whether they are similar.  

 Extreme condition test: The model structure and outputs should be plausible 

for any extreme and unlikely combination of levels of factors in the system.  

 Parameter variability–sensitivity analysis: consists of changing the values of 

the input and internal parameters of a model to determine the effect upon 

simulation output. 

 Predictive validation: The model is used to predict (forecast) the system's 

behaviour, and then comparisons are made between the system's behaviour 

and the model's forecast to determine whether they are the same.  

 Structured walkthrough: The entity under review is formally presented usually 

by the developer to a peer group to determine the entity's correctness.  

 Trace: “The behaviour of a specific type of entity is traced (followed) through 

the model to determine whether the model's logic is correct”  
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Those that are underlined are considered applicable methods for this work. 

7.7.2 Additional Validation Methods and Comments 

Causal Mapping 

Validation can be achieved in part through causal mapping (p 29 in [575]). Causal 

mapping can be achieved by using Fuzzy cognitive Networks (FCM), System 

Dynamics (SD) and Bayesian Belief Networks (BBN), although FCM is considered a 

good method in the light of its ability to deal with uncertainty in a computationally 

efficient manner (p589-589 in [576]). It is also considered an applicable method of 

validation for this work.  

Parameter Sweeps/Sensitivity Analysis/Exploratory Model Analysis 

Broeke, van Voorn and Ligtenberg [577] consider a number of sensitivity 

methodologies for ABM analysis as the sensitivity analysis helps analysts to 

understand ABM dynamics, and provides a platform on which the researcher/analyst 

can debate the validity of the output. Exploratory Model Analysis (EMA) is a 

systematic method aimed at exploring deep uncertainty in models so allows 

exploration of the parameter space. It has been used with system dynamics models, 

and in a few instances with ABM models [426, 578-580]. Although this work did not 

use a full blown EMA methodology, parameter values were varied together over what 

was considered realistic assumptions. Hundreds of simulations were used to explore 

the parameter space and were used in later analysis to help understand key drivers 

and the extent of model output (see Chapter 8). 

7.7.3 Validation Approaches used in this Work 

First, the validity of the individual agent’s behaviours has been validated 
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separately using subject experts219 and triangulation with other models. Second, work 

from SmartNet (literature validation and triangulation) provided some clues as to how 

the model might operate, although the current model has extended the SmartNet 

model somewhat. Third, “toy models were constructed in Excel, providing an aid to 

help in understanding of the ABM system dynamics. Fourth, a linearized model and 

its associated visualisation constructed from a parameter sweep (analysed with SPSS 

(see section 8.2) provided a useful tool to help in understanding and validating the 

output of such a model.  

Finally, a simple FCM model of the simulation of the model was constructed to 

help in understanding some of the more unusual results e.g. risk effects at odds with 

the model developed in Chapter 5 or target price interactions on bidding (see section 

8.8). In some instances, this resulted in a re-specification/coding of the model.  

Together, these various validation methods provide a degree of comfort that the 

model is both sufficiently robust in its representation of a future low carbon network 

with flexibility, and allows us to extend the methodology with a degree of confidence. 

Albeit, it is recognized that further work on validation will be required once markets 

are established and data is made available.220 Finally, it is important to recognize that 

“the value of multi-agent models lie in their ability to explore and inform us about 

how a system might operate under different conditions”[573], to present plausible 

future paths and not necessarily to provide accurate predictions or single answers.  

 

                                         
219 Discussions with colleagues and Industry and energy association contacts. 

220 Note this may be some years away. 
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7.8 Discussion: Further Improvements of the Model 

Electric Vehicle (EV) flexibility is not adequately represented in the approach 

discussed above. There are currently no EV ABM models based in Python that 

currently take account of pricing. A Python prototype that simulates EV drivers in 

the Netherlands using data and modelling methodology from work outlined in [581] 

has been constructed221. Although we have not yet linked that model to PyEMLab or 

to the aggregator simulations, it would be a relatively simple task to do so. Daina et 

al [582] have developed a methodology that incorporates charging price as one of its 

variables and uses stated response surveys to create a linear based algorithm/heuristic 

that is used to choose from a variety of discrete options e.g. charge, no charge or stay 

at home. In the longer run it is intend to incorporate Daina et al’s, methodology and 

the model in [581] into PyEMLab/PyEMLAb-Agg. 

Note that none of the ABM EV models that have been investigated incorporates 

Vehicle to Grid (V2G) interactions i.e. selling battery storage back to the grid. Storage 

decisions via a storage aggregator has been modelled in the SmartNet project [6] and 

could also be incorporated later. 

 

7.9 Chapter Summary 

A Python based object-orientated ABM simulator has been built based on the 

Java EMLab model. This framework has been extended to model adaptive customer 

and aggregator agents providing flexibility bids in a future low carbon distribution 

                                         
221 Drivers do not account for pricing signals in this model. 
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network. Customers have been provided with human like behaviour using the 

Agent_Zero framework. Aggregators have been modelled as corporate entities and 

include the risk management valuation methodology discussed in Chapter 5. 

The PyEMLab framework has been further adapted to provide a vectorised agent 

model that runs 10-20 times faster than the original list processing/streams based 

model. It also believed that this is the first use of Dave Cliffs ZIP Trader and the 

Agent_Zero framework in an aggregator power domain setting. The framework 

provides an original contribution to the art as it is: 

1. The first application of an extensible Python based ABM framework that 

includes the interactions between emotive domestic customers, competing 

aggregators and independent system operators in a power domain setting. 

2. Includes corporate aggregator’s business models. 

3. Introduces corporate risk management techniques.  

4. Incorporates contract adjustments for customers. 

5. Uses a large social gossiping network that is used to affect emotions. 

6. A tool that uses a novel extension of the Agent_Zero framework to model 

emotions, economics and social impacts.  

The next Chapter uses the PyEMLab-Agg framework and the agents discussed 

above to simulate customer and aggregator interactions in a more realistic setting. 

Simulation results for many different assumptions are provided. 
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Chapter 8  

 
The Effect of Aggregation on Market 

Evolution: ABM Simulation Case Study 

Results 
 

Aggregation and aggregators will form an important element of a future low carbon 

network, as they will be crucial for the proper functioning and future development of 

such networks in many countries. Aggregators as corporate entities will be required 

to turn a profit, provide a high quality service to their customers while competing 

with other aggregators and other flexibility suppliers. The interplay between 

customers, aggregators and other market participants would determine whether 

aggregators and customers are sufficiently compensated. Aggregators that lack 

sufficient revenues will go out of business whilst aggregators that fail to secure enough 

competitive bids will fail to meet customers’ expectations, potentially resulting in the 

withdrawal of flexibility from the market. Unprofitability or the withdrawal of such 

flexibility will affect the ability of the market to provide future savings and the 

investment required in infrastructure [10-13].222 

To understand these interactions an illustrative case study consisting of 50,000 

domestic customers, 4,500 SME’S (industrial customers), and six aggregators are 

modelled. Initially each aggregator has around 8,000 domestic customers, and 750 

industrial customers, a customer mix that should initially provide a reasonable profit 

                                         
222 Flexibility services will reduce the need for infrastructure reinforcement. 
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to each aggregator (analysis in section 4.3)223. 

Key Questions 

In the context of aggregator competition and evolution, clearing prices, customer 

revenues and aggregator profitability, there are number of key questions that this 

framework can answer (see Table 8-1 column 1). Note this is not an exhaustive list.  

 

Question Type of 

Question 

Results 

Section  

Overview/Comment 

1. What are the key 

drivers in this simulation? 

G 8.2.2 Multiple runs have been used to 

analyse key drivers in the simulation 

and have been used to build a 

"simplified" linear model of various 

outputs.  

2. What is the effect of 

imbalance volumes and 

flexibility on clearing 

prices and customer and 

aggregator revenues? 

G 8.2.2 Imbalance volumes and the amount 

of flexibility services available, are 

obviously a key driver of the 

simulation and prices in particular. 

    

                                         
223 Six aggregators were chosen as this is considered an appropriate number for a well-functioning 

competitive market (see Appendix A.1). As shown in section 4.3, 6,000 to 10,000 customers would be 

required for an aggregator to break-even. So with six aggregators, around 36,000 - 60,000 customers 

would be required to simulate a well-functioning market focused on flexibility provision. Note that 

imbalance volumes are used as a surrogate for future flexibility volumes. 
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Question Type of 

Question 

Results 

Section  

Overview/Comment 

3. How does elasticity of 

demand affect the 

simulation 

G 8.3.1 Demand for flexibility services is 

fixed in the majority of the 

simulations. This set of simulations 

looks at the effect of incorporating a 

flexibility price element (price 

changes flexibility requirements) into 

the simulation. Overall, it looks to 

have a small impact of the 

simulations, but is seen to be greater 

at higher prices as would be 

expected. 

4. What is the impact of 

bidding behaviours and 

contract types on price 

evolution? 

G 8.3.2 Shows short-term price evolution for 

simulations using different starting 

contract conditions. A case using 

marginal price bidding is shown 

against customers and aggregators 

using the ZIP trading bidding 

module. Significant price differences 

can be seen between having a diverse 

set of contracts at the start of the 

simulation and having just one type. 

Bidding behaviour raises clearing 

prices. 

5. What is the effect on 

the long terms dynamics 

of the market under 

different scenarios? 

G 8.3.3 Uses Hurst Exponent to show how 

different scenarios changes the 

simulation dynamics. Uses many 

cases. 

6. How does the type of 

social network affect price 

evolution? 

S 8.4.1 Simulation results shown using a 

variety of social network structures 

(Section 6.3) 

7. How does propagation 

in social networks affect 

the simulation?  

S 8.4.2 Simulations with and without 

different types of social networks 

attached. 
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Question Type of 

Question 

Results 

Section  

Overview/Comment 

8. What is the effect of 

aggregator numbers on 

price evolution? 

A 8.5.1 Simulations using 1 -6 aggregators to 

show the effect on the simulations. 

Fewer aggregators results in higher 

average clearing prices. 

9. How does the bucket 

approach affect 

aggregator profits?  

A 8.5.2 Various bucketing approaches for 

Customer bids are used to estimate 

aggregator daily profits. Significant 

differences occur. 

10. What are the effects 

of the underlying 

aggregator costs on price 

evolution? 

A 8.5.3 The base case simulation uses 

Aggregator capital and operating 

costs as derived in section 4.3. 

Sensitivities are shown for different 

operating costs. 

11. What effect does 

aggregator risk 

management have on 

price and customer 

evolutions? 

A 8.5.4 

(Figure 

8-17) 

Figure 8-17 shows a simulation with 

all aggregators with risk management 

and without it. For most of the time, 

there are small differences but risk 

management can at times reduce 

clearing prices by over £300/MWh 

(for ~100 hours per year). 

12. Aggregator Preference: 

Do customer agents 

change aggregators often? 

A 8.5.5 Uses a selection of Key Agents to 

monitor the selection of aggregators 

by them over a 5 year timeframe 

13. What does aggregator 

market share look like 

(Customer Numbers)? 

How does this impact on 

HHI under different 

scenarios? 

A 8.5.6 & 

8.5.7 

Simulation of aggregator shares using 

different scenarios. In certain cases 

some aggregators reach near zero 

market shares and others become 

dominant in the market. This would 

not be a good market outcome. 

Section 8.4.5 extends the analysis on 

market share but focusses on 

contract type and includes a no 

propagation case  
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Question Type of 

Question 

Results 

Section  

Overview/Comment 

14. How often do 

Aggregators change 

Business Models? 

A 8.5.8 Five-year simulation of six 

aggregators, showing how business 

models change each year under 

different scenarios. One aggregator 

never changes its business model and 

others change 3-4 times over the five-

year period. 

15. How do Aggregators 

view risk over time? 

A 8.5.9 Calculates min max and average 

aggregator risk premiums over time 

under different scenarios. The "No 

Propagation" case increases risk 

substantially. 

16. How does the 

Agent_Zero framework 

(AZ section 6.4) perform 

in the simulation? How 

does the selection of 

weights in the AZ 

modules (emotion, logic 

and social influence) affect 

the output? 

AZ 8.6.1 Simulation using different weights in 

the AZ model. Difference in clearing 

price can occur using different weight 

assumptions. 

17. Longer Term Impact 

on the evolution of Agent 

Zero Values e.g. emotions, 

social network scores etc? 

AZ 8.6.2 Uses a selection of Key agents to 

monitor Agent Zero values using a 

variety of scenarios. 

Note: Question Type G-General, S–Social Network, A-Aggregator, & AZ-Agent_Zero 

Table 8-1: Key Questions answered in the Chapter 8 Simulations 

By combining the various elements of the previous chapters, many simulations of 

the PyEMLab-Agg framework have been performed, with the aim of answering these 

various questions. The results associated with the questions are presented in the 

various sections as highlighted in the third column of Table 8-1. Questions have been 
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grouped by question type (Column 2: G-General, S–Social Network, A-Aggregator, & 

AZ-Agent_Zero) 

Initially, section 8.1 provides an overview on the simulation by presenting a 

business as usual case, discussing the stochastic nature of the simulation and 

introduces the idea of key agent tracing. Secondly, an analysis of the significance of 

the parameters used in the simulation is given using output from a statistical analysis 

package (section 8.2) and is used to answer the first two questions. Next, results are 

presented for the questions in Table 8-1 (section 8.3- 8.6). Section 8.7 presents the 

benefits of aggregation to the various stakeholders and considers the impact of 

aggregator competition on the market. Section 8.8 provides an example of where fuzzy 

cognitive mapping has been useful in understanding some of the simulation output 

and finally results are briefly summarized and discussed in section 8.9. Examples of 

data input used in the simulation are provided in Appendix F. The Chapter structure 

is summarized in Figure 8-1. 
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Figure 8-1: Overview of Chapter 8 

8.1 Overview of Simulation 

8.1.1 Business as Usual (BAU): Conventional Generation Providing Flexibility 

To assess the impact of aggregation in this work, simulation runs are compared to 

a base case that reflects the market without aggregation, referred to as the business 

as usual case (BAU). Figure 8-2 shows the balancing clearing price (CP) evolution 

over one year for a generation only and the equivalent six-aggregator case providing 

flexibility in competition with said generation flexibility224. Note paths are dependent 

                                         
224 Generators are assumed to provide 5% of their maximum capacity as flexibility. In addition the case 

study profiles have been sized to meet total demand. 
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upon assumptions associated with imbalance volumes and generation flexibility levels. 

Sensitivity factors for example Gen flexibility factor (e.g. Gen=1) and an imbalance 

volume factor (e.g. Bal =1) are used to multiply the data provided in the base case225.  

 

 

Figure 8-2: Business as Usual Case: Only generation provides flexibility 

 

Figure 8-3: Comparison between BAU and a six-aggregator case 

                                         
225 Note imbalance volume factor is shortened to “Bal” and Generation to “Gen” in the figures. 
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Figure 8-2 b and Figure 8-3 show that the addition of aggregation could result in 

a reduction in market prices by at least £100/MWh on average. Note with different 

assumptions on generation and flexibility provision, values change. Less generation 

would result in a higher BAU CP value, whereas the equivalent six aggregator case 

would also be higher as aggregator supplied volumes would increase (see Figure 8-3)226. 

It is clear that aggregation will be an important element of a well functioning flexibility 

market. 

8.1.2 Monte-Carlo and Random Elements of the Simulations; Random Seeding 

PyEMLab-Agg has been designed to run multiple scenarios (e.g. Monte Carlo 

simulations) using Python’s multi-threading routines227. Speed improvement are seen, 

and results can be stored automatically as the runs progress using this facility. Because 

the ZIP Trader and propagation modules have a random element to them, that is they 

use random numbers in their calculations, each run with the same parameters will 

produce a different output. This means that to fully assess the output of the 

simulations, multiple runs should be performed (as in Monte-Carlo) and averages or 

expected values (with percentiles) should be extracted. Because of the long run times 

(approximately 2-3 hours in a five-year simulation228), it would take an inordinate 

amount of time to perform the simulation shown herein using a Monte-Carlo approach.  

                                         
226 Note: It is important that the same generation flexibility assumption is used in the aggregators case 

in any comparison. 
227 Because of Python Global interpreter Lock (GIL), Python is not fully multi-threaded as per Java. 

Note that potentially blocking operations, such as I/O, image processing, and NumPy calculations, 

occur outside the GIL. 
228 Using Alienware 15 R3 7700HQ 2.8Ghz 4 cores 8 logical 32GB DDR4. 

https://wiki.python.org/moin/NumPy
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A common method to help debug such random simulations is to fix the internal 

random number generator by providing it with a seed. In this case, the random number 

generator always produces the same set of random numbers in sequence. As this 

chapter is seeking to show the various effects of different assumptions, the random 

seed method has been utilized to aid in comparison without the need to run thousands 

of simulations.  

In the immediately following paragraphs one case is shown (3,000 hours) without 

random number seeding and is analyzed using 100 runs229. Note, parameters are held 

constant but randomness in the ZIP Trader and social media propagations results in 

different output for the same parameter settings. It uses the base case assumptions 

detailed in Appendix K. Figure 8-4 (a) - (b) shows output from 100 stochastic 

simulations with varying degrees of granularity. 

 

                                         
229 Assuming a normal distribution, an appropriate error level and statistical confidence level, it is 

possible to estimate the number of simulations required to meet such error conditions [583]. With a 

95% confidence limit and an error of £5/MWh, 120 runs would be required. With an error of £1/MWh, 

3011 runs would be required. This means that a £15/Mwh change in results could be £10-20/Mwh, as 

100 runs would equate to around ~£5/Mwh error. 
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Figure 8-4: The effect of randomness on simulation output; Expected, P90 and P10 evolutions 

 

Using the average CP over the 3,000 hours, the 10th, 50th and 90th percentiles 

(P10, P50 and P90) have been extracted and are shown at different ticks in Figure 

8-4 (c) - (d). 

Figure 8-4 (e) - (f) shows the absolute difference between the P90 and P50 values 

(the magnitude of the random effect) through time and against the P50 value. It is 

clear from the graphs that for the majority of the time, differences of between £0 -
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15/MWh230 are seen, although in some circumstances much larger values (~£50/MWh) 

materialise. This is essentially the effect of the randomness in the simulation. Note 

that there is no correlation between the random element and the average price231. 

Henceforth results shown in the thesis focus on one randomised sequence of numbers232. 

Also note, that to aid in the visualisation of the simulation paths, a 24-hour moving 

average is shown in most of the figures (unless otherwise stated). Differences in 

simulation output of less ~£5-15/MWh cannot be assumed to be significant in the 

following sections as randomness associated with propagation and bidding behaviour 

could negate these effects.  

8.1.3 Tracing the Responses of Key Agents during the Simulation 

Statistics for the agents have been collated during the simulation on a weekly and 

monthly basis. The PyEMLab –Agg framework allows users to easily collect and store 

matrix style arrays in an hdf5 databases that can be later analysed in MATLAB, R 

or Excel. Averages and distributions for contract values have also been collected. 

However, it was found that this did not provide enough granularity to aid in the 

understanding of model dynamics. Thus, a different approach focusing on key agents 

was used. 

Analysis of the agent social networks outside of the simulation (using a utility 

written in Python using Network X and SNAP) allowed for the identification of these 

“key agents”, e.g. the identification of which agents are connected to only a few others 

                                         
230 From the average value. 

231 The P50 can be considered the average simulation path. 

232 That is the random numbers have been seeded. 
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and which are connected to many? The choice of these key agents is summarised 

below. For example, agent 25923 is initially paired to Aggregator 4 and has four 

connections to other customers. It has an initial marginal cost of £310/MWh 

(flexibility up) and £419/MWh down. 

 

Table 8-2: Summary of nine key agents in the simulations 

The simulation environment allows for data on many key agents to be collected, 

but it was felt that nine key agents was an appropriate number at this stage. Note 

that post analysis of the social network structure using routines/methods presented in 

[584-586], may highlight alternative key agents in information cascades. This further 

analysis of key agents is left for future work. 

8.1.4 Short Term and Long Term Simulations 

To answer the various question both short term (< 1year) and longer term 

simulations have been utilized. Short term simulations of 3,000-8,760 ticks (hours) 

were performed under a number of different parameter settings. In all cases, 

parameters were varied incrementally so that comparison between cases could be made 

to provide an insight as to the effect of various key assumptions like social media 

propagation mechanics, social media network structure and assumptions on Agent 

Zero weights. Some of those effects are presented in the various subsections and figures 

Key Agent

Agent 

Number Aggregator

Number of 

Connections MC up

MC 

down

Volume 

up Kw

Volume 

Down Kw

flex 

potential

Numbner of 

Connections Volumes

1 25923 4 4 310 419 0.01 0.01 0.01 Low Low

2 25403 1 2 2857 455 0.25 0.01 0.25 Low Medium

3 1682 3 2 150 150 0.09 1.77 1.77 Low High

4 18989 1 97 1283 426 0.11 0.01 0.11 Medium Medium

5 38145 0 42 463 667 0.03 0.01 0.03 Medium Low

6 27183 4 104 423 309 2.61 2.35 2.61 Medium High

7 2414 3 1153 370 404 0.08 0.01 0.08 High Low

8 3887 3 502 29 18 1.15 4.66 4.66 High High

9 64 2 2404 344 147 0.13 2.2 2.20 High High
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below.  

During longer timeframe simulations, aggregators can choose to change their 

business models and change contract offer terms and customers can change contracts 

many times. The current model will allow aggregators to exit the market and new 

ones to enter, but this functionality has been disabled in the simulations presented 

herein. Interested readers are referred to Appendix R for details on these cases. The 

appendix also includes summary results from the longer term runs. 

 

8.2 Drivers of the Simulation Dynamics: The Significant Parameters 

Overall, the dynamics of the simulation in this work depends on a number of 

variables including the level of flexibility from competing conventional generation, the 

imbalance volume requirements (flexibility volumes required), the amount of 

flexibility supplied by domestic and industrial customers, the number of aggregators 

and so on. There are many variables that can be adjusted; the question is which ones 

are more important than the others? A standard approach used in the social sciences 

and econometrics is to statistically analyse the drivers for statistical significance using 

techniques like multilinear regression. The standardized beta provides a measure of 

how important one variable is compared to another, and the significance measure 

provides the researcher with a clue as to whether the variable is important or not. 

Additionally a linear model derived from complex simulations can be extremely helpful 

in understanding such a model as well as aiding in validation. This technique been 

used little in ABM, but as will be shown – provides useful insights into this complex 
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simulation. Note other approaches such as Sobol analysis could have been used. 

8.2.1 Batch Runs: Parameter Sweep  

PyEMLab-Agg was modified to take parameter values from a CSV file and run 

multiple cases under different parameters. Parameters were changed randomly 

between the ranges shown in Table 8-3 and forms the input for a statistical analysis. 

 

Table 8-3: Parameters used in batch runs for simulating short term dynamics 

Parmeter Base Factor Min range Max Range

Balancing demand Factor 1 0.2 2

Generator  Demand Factor 0.4 0 1

Domestic customer flex factor 1 0.5 2

Domestic  trader agent zero learning 

factor 0.5 0.1 1

Aggregator agent trader learning 

factor 0.5 0.1 1

Message Receive probability 0.3 0.2 1

Domestic bid prices  % higher 1 1 2

Agg OPX/CPX Factor 0.4 0.4 1

Risk hedge on =1 variable [0,1] 0 1

Starting margin% 50% 30% 90%

Start fixed price offer £/Mwh 50 20 125

Start contract type variable [0,1,2] 0 2

Freq of Congestion 1 1 2

Expecations £/Yr 10 0 150

Number of Aggregators 6 1 6

# of Domestic customers 50,000 30,000       50,000           

# of Industrial customers 4500 1,000          4,500              

# of Aggregator  Buckets 6 1 10

Dom agent zero learning fac 0.1 0.1 1

AZ wt V 0.333 0 1

AZ wt P 0.333 0 1

AZ wt S 0.333 0 1

Stimulus to AZ input ratio 1:1 1:1 5:1

Aggregrator Update Frequency - Target 

Price Daily Daily 3 monthly

# - number CPX/OPX - Operating Capital costs

AZ - Agent Zero

Wt - Weight
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In this case, around 300 runs233, over 3,000 ticks/hours were collated and later 

analysed using SPSS 25 [194, 587-589]. The key element of this analysis was to 

highlight the significant drivers in the simulation for key output variables including 

clearing price (CP), Hurst exponents (an indicator of simulation dynamics), aggregator 

profits, customer revenues, and Agent_Zero average scores (V, P, S,D). Such analysis 

could also be used to create simpler models of the process currently being simulated, 

but care should be taken with this simplification as the equations derived depends on 

the input data used in the simulation. 

To facilitate an initial analysis, a multilinear regression has been performed. The 

system is clearly non-linear so a linear approximation may be inappropriate in some 

cases. However, a multilinear regression analysis is easier to interpret than a more 

complicated nonlinear one. Note that in some instances the adjusted R2 for linear 

representations is low (of the order of 0.3-0.4), indicating that the model is not a good 

fit in these cases. Note the Sobol method could have been used to identify important 

variables (See [590, 591] for its use) and is useful in highlighting potential non-linear 

relationships. In addition, a brief review of the non-linear nature of the simulations 

was investigated using a multi-layer Neural Net (NN). An approximation function was 

used to train and test the simulation data output using a 21-parameter input layer, 1 

hidden layer and an output layer with a single output (e.g. clearing price, HHI etc.), 

as an initial set up. The network was trained using a using a feedforward static back 

                                         
233 Using the method set out in [583], with a 95% confidence limit, 300 runs would result in an error of 

~ £3.2/MWh.  
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propagation approach and a sigmoid transfer function was used in each neuron. The 

software package NeuroSolutions 5 for Excel [592, 593] was used to create this network 

and its sensitivity testing around the mean feature [594, 595] to highlight relationships 

between input variables and their output variable. The cross validation error of the 

trained network was 0.0279. Significant driver variables were found to be similar to 

the linear analysis, although the NN highlighted the use of more input variables for 

the HHI output, in particular. Some variables were found to be non-linear exhibiting 

X2, X3, natural log or exponential non-linear functions rather than linear functions. It 

is likely that a non-linear model would provide better results, although a detailed 

analysis was left for a future date. 

8.2.2 Key Drivers of Clearing Price (CP) and other Variables 

Figure 8-5 -Figure 8-7 summarizes the multilinear analysis from SPSS, for 300 

short term simulations for different output variables. Figure 8-5 and Figure 8-6 uses 

standardized betas to allow comparison between variables to identify the relative 

importance. Only those variables that were significant are shown. 

 
Figure 8-5: Standardized betas for simulation parameters 

Averages for all customers Agent_Zero values (D,V,S,P) were calculated, as were 

the max values for D and V. The difference in average scores between V and S for 

Standardized Betas

Adjusted R2

Bal demand 

Fac

Gen 

Demand

Number of 

Aggregators

Dom 

customer 

flex

# of ind 

customers

Number of 

buckets 

Agg

agg agent 

trader 

learning 

fac

start fp
Risk 

Hedge On
agent wt P Agent wt S Rx Prob

Expectation 

£/yr

Dom 

agent zero 

learning 

fac

Start 

Margin

CP 0.723 0.61 -0.46 -0.34 -0.23 -0.09

Hurst 0.438 0.56 0.28 -0.18 -0.17 -0.16

Vol% 0.346 0.52 -0.25 -0.16

HHI 0.718 -0.85

Agg Profits 0.481 0.31 -0.15 0.13 0.56

Cust Revs 0.228 -0.35 0.37

Agg 4 P-S 0.307 0.24 -0.22 0.13 0.17 0.40 -0.14

Agg1  V-S 0.528 0.48 -0.24 -0.42 0.33

Avg V 0.71 0.53 -0.25 -0.17 -0.11 0.21 -0.45 -0.39 0.14 -0.10

Avg D 0.695 0.58 -0.28 -0.16 -0.09 0.21 -0.37 -0.39 -0.09

Max D 0.688 0.59 -0.26 0.24 -0.15 0.17 -0.32 -0.36 -0.09

Max V 0.688 0.56 -0.21 0.23 -0.18 -0.12 0.21 -0.36 -0.39 0.10
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aggregator 1; and P and S for aggregator 4 are also provided.234  

 

Figure 8-6: Importance ratios for simulation parameters 

In terms of average clearing prices (CP), only five parameters are seen as 

important in explaining the average CP in the short term235. As expected Agent_Zero 

(AZ) values (V,P,S,D) depend upon other variables such as customer expectations, 

receive probabilities and AZ learning factors. 

Figure 8-7 presents generated linear equation coefficients, and constants. 

 

Figure 8-7: Linear regression equations (Coefficients) for simulation parameter 

Visualisation of these complex relationships provides a useful mechanism to both 

validate and understand relationships and are considered useful tools for engaging 

                                         
234 These aggregators show the greatest difference. 

235 In the longer-term, other factors appear to come into play when message propagation takes effect. 

Importance

Bal 

demand 

Fac

Gen 

Demand

Number of 

Aggregators

Dom 

customer 

flex

# of ind 

customers

Number of 

buckets 

Agg

agg agent 

trader 

learning 

fac

start fp
Risk 

Hedge On
agent wt P agent wt S Rx Prob Expectation

Dom 

agent zero 

learning 

fac

Start Margin

CP 35% 27% 20% 13% 5%

Hurst 42% 21% 13% 12% 12%

Vol% 56% 27% 18%

HHI 100%

Agg Profits 27% 13% 12% 48%

Cust Revs 49% 51%

Agg 4 P-S 18% 17% 10% 13% 30% 11%

Agg1  V-S 33% 17% 28% 22%

Avg V 22% 10% 7% 5% 9% 19% 17% 6% 4%

Avg D 26% 13% 7% 4% 10% 17% 18% 4%

Max D 27% 12% 11% 7% 8% 15% 17% 4%

Max V 24% 9% 10% 8% 5% 9% 15% 17% 4%

Coefficients

Constant

Bal 

demand 

Fac

Gen 

Demand

Number of 

Aggregators

Dom 

customer 

flex

# of ind 

customers

Number of 

buckets 

Agg

agg agent 

trader 

learning 

fac

start fp
Risk 

Hedge On
agent wt P agent wt S Rx Prob Expectation

Dom 

agent zero 

learning 

fac

Start 

Margin

CP 972.73 493.45 -662.14 -100.01 -226.74 -0.03

Hurst 0.40 0.14 -0.08 -0.05 0.01 -0.08

Vol% 77.88 46.38 -40.36 -0.26

HHI 7131.00 -1035.32

Agg Profits -158.26 146.26 -131.43 12.95 297.46

Cust Revs 107.96 -20.22 119.69

Agg4 P-S -0.10 0.04 -0.06 0.02 0.07 0.14 -0.0003

Agg1 V-S 0.01 0.13 -0.08 -0.10

Average V -0.40 0.20 -0.16 -0.08 -0.01 0.0014 -0.39 -0.0018 0.11 -0.11

Average D -0.43 0.21 -0.18 -0.07 -0.01 0.0013 -0.31 -0.0018 -0.09

Max D 0.26 -0.21 0.04 -0.08    0.0014    -0.33 -0.0020  -0.12

Max V -0.53 0.26 -0.17 0.04 -0.10 -0.01 0.0017 -0.38 -0.0022 0.10
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with stakeholders [596, 597]. Linearization is one method to simplify such 

relationships. Fuzzy Cognitive Maps (see section 8.8), or causal mapping in general is 

another useful tool and, of course, the two can be combined.236 

As part of this work, a linear based visualisation tool has been created (Figure 

8-8)237. 

 

Figure 8-8: Flash based software based on linear regressions of simulations 

 

The tool allows users to adjust assumptions using the sliders on the rhs of the 

application and to see the effect on key performance indicators. 

 

8.3 General Simulation Questions  

The first two questions in Table 8-1, have been answered in section 8.2.2 and the 

                                         
236 The linear relationships can be used to parameterize FCM models. 

237 See https://github.com/Ghoworth/Aggregator-Simulator-flash- 
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rest that associated with general issues (questions 3-5) are now answered in this section 

using simulation results from the PyEMLab framework. Note these are initial views 

of the questions238. 

8.3.1 The Effect of Demand Elasticity on Clearing Price 

Demand for flexibility services were initially fixed in the simulations, but one 

might expect that flexibility might change according to price levels. Flexibility levels 

are typically related to overall demand and demand would be expected to be price 

elastic to some degree. The current model allows both monthly and yearly elasticity 

adjustments to demand and therefore flexibility volumes. An elasticity value of -0.07 

has been used for monthly and -0.3 for yearly values (as per discussion in section 

2.4.1). Figure 8-9 shows the effect of including elasticity on the evolution of clearing 

prices.  

 

Figure 8-9: Effect of short-term demand elasticity on clearing prices 

With the elasticity effect switched on, overall demand and hence flexibility 

requirements are adjusted according to the change in monthly clearing price values. 

                                         
238 Additional simulation work maybe required to fully answer some of these questions. This is for 

future work. 
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The simulations in the short term show that when prices are low, the effects of 

elasticity are small and when clearing prices are more than £400/MWh, short term 

elasticity effects can result in differences of £100-350/MWh, which is significant. 

However, the average price differences between the two curves is £22/MWh (~9% of 

average prices) with a slight difference in price volatilities, which may be undiscernible 

from other random effects due to bidding and message propagation. 

In the case of short term outages like the Texas blackouts in 2021, elasticity effects 

would be expected to be substantial, but only in the short term i.e. a few months. 

During the period of these outages in Texas, wholesale electric prices were set to 

$9,000/megawatt-hour (the "system cap" set by ERCOT), compared to a more typical 

$25/MWh [598]. Because prices remained high for a week or so, the elasticity model 

used in the simulation would suggest that demand would reduce by >500% in the 

following month which of course would be ridiculous. Where outages are for less than 

a day then the current model performs much better with an expected 3% reduction in 

demand the following month.  

In the case of longer term price impacts like the Ukraine war – where prices have 

remained high for over a year (more than doubling) in the UK – it would appear that 

the elasticity model would suggest a 30% reduction. UK Electricity demand grew in 

the period 2021 -2021 but the demand base had been reduced because of COVID19. 

It is difficult without isolating the various effects to determine whether the elasticity 

model reflects reality. It is clear, however, that further work is required to properly 

address these elasticity effects. 
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8.3.2 Impact of Bidding Behaviours and Contract Type on Price Evolution  

Figure 8-10 shows short-term price evolution for simulations using different 

starting contract conditions. In the base simulations, customers are started with a 

random selection of contracts types (labelled as “all contracts” in the figures). For 

illustration, the figures below show comparisons with a starting position based on 

contract type 2 (fixed prices). Note there is no generation flexibility competing with 

the aggregators in some cases. 

 

Figure 8-10: Impact of contract and bidding behaviours on long-term price evolution 

Significant price differences can be seen between having a diverse set of contracts 

at the start of the simulation and having just one (Figure 8-10 (c)). It is also clear 

that if aggregators and customers bid to their marginal costs (Figure 8-10 (b)), then 

clearing prices would be at their lowest. In addition, the marginal cost model shown 

takes no account of the operating and capital cost of the aggregator. The model just 
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passes on the marginal cost (MC) of the bucket to the clearing market. As shown in 

prior sections this could equate to a value of around £200/MWh. The MC modelling 

also results in clearing prices that are less volatile. This result suggests that in an ideal 

(perfectly competitive) world, both customers and aggregators should bid to their 

marginal costs. However, in practice real market participants behave differently, more 

strategically and customers that see prices at £500/MWh are not going to bid in at 

their marginal cost of supply at £30/MWh for very long. In addition, domestic 

customers are not likely to fully understand the true marginal costs of the flexibility 

that they are providing and emotions will play a part.  

8.3.3 How do the Long Term Dynamics change?: Hurst Exponent Evolution 

Plots of the Hurst coefficients239 for the same simulations over a timeframe of five 

years are presented in Figure 8-11. It is clear that different dynamics are exemplified 

in the Hurst coefficients, as for example in cases 13, 5, 10, and 6. Note the long term 

cases are described in Appendix R. 

 

 

                                         
239 See section 7.1.5 for a description of the use of Hurst coefficients/exponents. 
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Figure 8-11: Hurst coefficient for different simulation across 5 years 

Generally, other cases remain in the 0.6 - 0.8 range meaning that they have strong 

trends either up or down over the period. Cases 13 and 11 gravitate towards a Hurst 

coefficient ≈ 0.1-0.2 after the first year, but return to the 0.6-0.8 range after a year or 

so. The step changes in dynamics at week 161 and 209 for case 10 and 6 respectively 

would be interesting to investigate further but this is currently beyond the scope of 

this thesis. 

Case 14 in the last year (week 208+) hovers in the geometric Brownian motion 

region (Hurst ≈ 0.5), whereas case 10 and 6 gravitate to a mean reverting stable region 

(near zero). 

It is clear that the dynamics of the simulation are changing in some of the cases, 

and can only be seen when comparing across years and highlights the issue of looking 

only at one particular year. 



 

293 
 

8.4 Social Network Simulation Questions 

This section provides results for simulations associated Social Network interaction 

questions 6 - 7 in Table 8-1. 

8.4.1 Network Structure: Social Interactions 

The effect on simulation clearing price for the different types of network structures 

(discussed in section 6.3) are shown in Figure 8-12. 

 

Figure 8-12: Short-term network effects on clearing prices 

Figure 8-12 (c) – (d) provides a more clearer view of the differences associated 

with different network structures, by concentrating on the price differences using the 

Twitter network as a base case. For much of the time small differences are seen in 

short term clearing price evolution (less than £10/MWh), but large differences can 

occur as spikes (£60-140/MWh). Note large differences would only be expected to 

occur when message propagation amongst a number of agents occurs, and the specific 



 

294 
 

social network structure, e.g. Twitter or Facebook, will be important in determining 

the value and frequency of these spikes.  

8.4.2 Propagation (On or Off): The Effect of Customer Messaging 

Short-term propagation effects (one year) on clearing prices are shown, using a 

simulation without a social media network and a randomly generated small world 

network with p=0.01240 (Figure 8-13). Note that in Figure 8-13 (b) the Y-axis has been 

truncated at £400/MWh. 

 

Figure 8-13: Effect of propagation on clearing prices; Short-term 

Propagation reduces prices by around £30/MWh over the year but differences can 

be as large as £100/MWh. Larger differences can be seen when the model is evolved 

over 5 years. 

 

8.5 Aggregator Simulation Questions 

This section provides results for simulations associated with Aggregator 

interaction questions 8 - 15 in Table 8 1. 

 

                                         
240 Note p is the probability that a link will be formed between two nodes.  
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8.5.1 Competition: The Effect of Aggregator Numbers  

The short-term effect of aggregator numbers on clearing prices is shown in Figure 

8-14. The base case assumes six aggregators competing with each other, both in 

providing bids and in attracting customers to their business. The graphs also show 

some effects from changes in aggregator operating costs241. All cases in this figure has 

generation flexibility set to zero, so that the effect of aggregator numbers can be more 

clearly seen.  

 

Figure 8-14: Effect of aggregator numbers on clearing prices 

                                         
241 Labelled as OPX in the figures. 
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Note that in the case where there is no competition from generators providing 

flexibility242, one aggregator results in very high clearing prices (4-5 times higher). This 

is obviously not a desirable case. The simulation is designed to optimise aggregator 

profits, so if aggregators remain unchecked, they will raise prices excessively as they 

have a monopoly. This changes when there is more than one aggregator. As will be 

shown later 4-6 aggregators (section 8.7) will be required to provide adequate benefits 

to customers in a potential flexibility market.  

8.5.2 Bucketing Approach by Aggregator 

The bucketing algorithm for the submission of bids will form an important element 

of the profit model of an aggregator. Optimisation of such profits will take place in 

the face of uncertain prices, volumes and risk. Section 7.2.1 and Appendix N presented 

the bucketing algorithms used in this thesis. Aggregators in this simulation use four 

algorithms to simulate the effects of different bucketing strategies e.g. equal ranges, 

equal number of bids in each bucket, equal volumes and the AstroPy heuristic (section 

7.2.2). A genetic algorithm approach was considered, but computational run times 

would have been increased. Figure 8-15 shows aggregator profits over 80 days, for the 

various strategies. One of the cases shown, shows a sensitivity based on using five 

buckets rather that the ten used in the majority of the cases.  

                                         
242 Gen factor=0. 
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Figure 8-15: Aggregator bucketing algorithm affects profits 

Note that in Figure 8-15 (a) and (c) the Y-axis has been truncated at £4,000 and 

£20,000 respectively to highlight the differences in smaller value cases. Note that in 

all cases other than the “1 AGG” 243, six aggregators have been used in the simulation. 

For the 6-aggregator cases, it is clear that the AstroPy bucketing algorithm provides 

the best aggregator profitability with clearing prices commensurately high.  

8.5.3 The Effect of Costs on Clearing Prices 

Aggregator operating and capital costs are a key assumption within the model, as 

aggregators will need to cover such costs in order to make a profit. Aggregators adjust 

bids in the face of competition from generators and other aggregators. Figure 8-16 

shows the effect of costs on the clearing price output under different cost assumptions. 

Sensitivity cost factors are used to multiply base cost assumptions presented in 

                                         
243 1 AGG = One Aggregator. 
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section 4.3 (e.g. 1, 1.5 and 0.5 times the base cost). 

 

Figure 8-16: Effect of aggregator costs on clearing prices 

Cost impacts on prices are not linear, and a 50% increase/decrease in operating 

costs is not reflected either in the up or down price movements. Section 4.3.1 indicated 

that breakeven costs for the aggregator with 6,000 domestic customers was of the 

order of £100/MWh but this assumed that volumes are much higher than those seen 

in the simulation. We would, therefore, expect simulation prices to go up and down 

on average by at least £50/MWh, but they did not. However, as long as prices cover 

the operating and capital costs, prices do not need to rise as much as this, and 

competition amongst aggregators will help to dampen any unnecessary increases.  

8.5.4 Aggregator Contract Starting Positions and its Impact on Clearing Prices  

Section 8.3.2 showed the effect of customer contracts on clearing price evolution. 

This section deals specifically with the aggregators and their contract offers to the 
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market. Figure 8-17 shows the impact of different contracts on the market dynamics. 

Aggregators are given their starting contract position (including risk stance) via a 

CSV input file. This CSV file assigns different contract types244 to the domestic 

customers randomly and these customers are assigned to an aggregator. The 

aggregator therefore has a portfolio of different contract types i.e. contracts 0-2. The 

“all aggs diff”245 line in the graph below reflects the case where the aggregator has a 

mix of contract types and in this scenario has risk management enabled, whereas the 

“all-risk off” reflects the same inputs but without risk management. In the case of the 

“contract 0”, “contract 1”, and contract 2” lines, the aggregator contract portfolio is 

assumed to be all of the same type e.g. “Contract 1” etc. 

                                         
244 Revenue business models (section 4.2.7) define the contract types. Contract 0 - pay as clear %, 

Contract 1 – pay as bid and Contract 2 – Pay fixed price 
245 Short for all aggregator starting inputs different. 
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Figure 8-17: Short-term simulation of six aggregators with various starting conditions 

The overall shape of the simulations are obviously driven by imbalance volume 

assumptions246, but the starting positions of the aggregators (in terms of risk approach 

and contract type), clearly have a significant impact on clearing prices e.g. £200-

£500/MWh difference. 

8.5.5 Aggregator Selection by Customers 

Each agent can select one of six aggregators, numbered 0-5 during the simulation. 

Aggregators can change business models yearly, but change terms monthly. A number 

of contracts expire each month and are renegotiated. Essentially aggregators are 

locked into a contract type (with or without risk management) for the year, but can 

change the parameters associated with the contract type monthly. Figure 8-18 shows 

how the aggregator business model choices change through time for four different cases 

                                         
246 This is an input. 
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of note for two key agents. 

Key agent 6 changes its contracts at the end of March and agent 8, at the end of 

December.  

 

Figure 8-18: Aggregator choice by case through time for two key agents 

For example in case 10247, key agent 8 changes its aggregator many times and 

contracts with 4 different entities over 5 years. It appears that the agent with the 

most connections, lowest MC and highest flexibility volumes is more volatile in its 

choice of aggregators over time, but care should be taken with this conclusion. Future 

work should focus on aggregator changes, because frequent changes, may be bad for 

aggregator performance and consumer confidence.  

8.5.6 Number of Customers: Evolution Through time 

Collation of the customers by various types allows consideration of market 

performance. Figure 8-19 shows the evolution of market share for the six aggregators 

modelled through time, and Figure 8-20 uses market share data to calculate the HHI248 

index for the market through time for a variety of cases set out in Table R-1 in  

                                         
247 See Appendix R for a description of the long-term cases. 

248 See section 7.1.5 for description of HHI. 
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Appendix R.  

 

 

Figure 8-19: Market share evolution across four scenarios 

 

 

Figure 8-20: HHI evolution across four scenarios 

Case 10249 shows some unusual market share trends with one aggregator 

dominating, then another, and the HHI levels would be unacceptable to regulators in 

the UK and USA250. In cases 1, 3, 5, and 10, aggregator 6 drops to near zero market 

                                         
249 See Appendix R for a description of the long-term cases. 

250 Requirement of HHI of 2,000 and 2,500 respectively. 
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share and at this level, the aggregator would find it hard to turn a profit. Note in 

prior analysis it was shown that aggregators would need around 6,000 domestic 

customers to breakeven251, so aggregator 6 would probably leave the market after a 

few years of low market shares. This would affect future model evolutionary output.  

8.5.7 Contract Type Market Share Evolution 

Figure 8-21 extends the analysis on market share and categorizes the output by 

contract type for a selection of cases (with propagation via social networks) and a “no 

propagation“ case252.  

 

 

Figure 8-21: Market share by contract type 

                                         
251 Assuming 700 or so Industrial customers. 

252 For case 2. 
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Figure 8-21(d) provides a comparison of all contract types over the 5 years of 

simulation. There is clearly a different response to preferred contracts with and 

without propagation dynamics. The “pay customers as bid” contract is generally 

preferred in this example, but this may be a function of the starting margin selected 

in the simulation. 

8.5.8 Aggregator Business Model Evolution 

Aggregators in this simulation are provided with a starting business model (BM) 

numbered 0 – 5. The first three BM’s (0 - 2 inclusive) do not include risk management 

whereas the last three (3-5) include it253. The cost of operating such business models 

depends on how many customers have joined up with a specific aggregator254 and 

whether the business model includes a risk management function. To switch from a 

non-risk management to a risk management stance, requires an one-off investment of 

£0.5 million pounds255.  

Figure 8-22 shows how the BM’s change through time at the end of each year. A 

selection of aggregators and case studies are shown for brevity. The simulations so far 

indicate that aggregators do not wish to switch between a risk management one and 

a non-risk management one. It is not exactly clear why this happens, but it is probably 

because the cost of switching is too high and also because aggregators change contract 

conditions to limit losses associated with the simulation. This requires further 

investigation but will be considered in future work. 

                                         
253 These are related to the scheme numbers 1-6 presented in section 4.2.6. 

254 See section 4.1.5 for variation of costs with customer numbers. 

255 Assumption based on authors experience in a risk management organization and with discussions 

with industry contacts. 
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Figure 8-22: Business model selection evolution 

Although it is not shown, aggregator 1 in case 1 does not change from its initial, 

business model throughout the simulation.  

8.5.9  Aggregator Risk 

The evolution of risk for three aggregators is shown in Figure 8-23. The figure 

shows risk premia expressed in £/MWh over the 5 year simulation for various cases. 

Risk premium for the aggregators are relatively high, much higher than were expected 

from the initial analysis presented in Chapter 5. On reflection and with inspection of 

the results, this is because the CP volatilities are around 90-150% in the actual 

simulation whereas the analysis presented in Chapter 5 uses volatilities in the region 

of 20-40%. In addition, option exercise prices are also different in the simulation.  
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Figure 8-23: Risk evolution for various cases 

As aggregators lose customers, target bid prices to cover operating and capital 

costs increase. This impacts on exercise price256 which in turn increases option or risk 

value. The minimum risk of all the aggregators (Figure 8-23 (b)) represents the risk 

associated with the aggregators with the most customers and also the best profits. 

The maximum risk (Figure 8-23 (c)) is associated with the worst performers. Social 

networking appears to help in reducing risk in certain aggregators (Figure 8-23 (b)); 

cases with propagation vs no propagation). In the case where social network 

accelerates loss of customers, risk would be expected to be higher (Figure 8-23 (c)). 

 

                                         
256 The target price is the exercise price. 
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8.6 Agent_Zero Simulation Questions 

This section provides results for simulations associated with the last two questions 

in Table 8-1. These pertain to how Agent_Zero assumptions affect the simulations. 

 

8.6.1 Agent_Zero Weights 

The Agent Zero model in this simulation uses a base dispositional score D which 

is a weighted average of V, S, P, as discussed in section 6.4. The base case uses equal 

weights set at 1/3. Sensitivities using different weights e.g. Vwt=1 Pwt=0, Swt=0, and 

so on, have been performed and the results for clearing price evolution for one year is 

shown in Figure 8-24 and summarized in Table 8-4. 

 

Figure 8-24: Effect of Agent_Zero weights 
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Table 8-4: Summary statistics; Effect of Agent_Zero weights 

Results show that differences in clearing prices can occur with different 

assumptions in Agent_Zero weights. The differences can be greater than those for 

network structure effects alone. The assumption that all agents have the same 

weighting is obviously an artificial one, but without actual data, provides a good 

starting point. Interestingly if all agents based their decision solely on social scores 

then clearing prices would be some 15% lower than the cases where weights are 

apportioned evenly (V=S=P=0.333). In a production model of this simulation it will 

be important to calibrate customer weights once appropriate data is acquired. 

 

8.6.2 Long-term Impact on Evolution of Agent_Zero Values 

Collection of data for key agents (section 8.1.3) in the simulation allows for the 

development of a narrative that would be difficult to achieve when looking at 50,000 

agents or just their summary statistics. Key agent 8 is more highly connected than 

agent 6 and also provides or has access to twice as much flexibility. The marginal 

costs of their flexibility is also lower. Agent 6 is associated with aggregator 4 and 

agent 8 with aggregator 3. Figure 8-25 -Figure 8-26 presents the evolution of 

Agent_Zero scores for V,S,P and D for two key agents through time for 262 weeks  
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(~ 5 years)257. 

 

Figure 8-25: Agent_Zero scores for two key agents: 5 year simulation 

 

 

Figure 8-26: Agent_Zero disposition (D) scores for two key agents – 5 year simulation 

Key agent 8 get more progressively “angry” with its current aggregator as time 

                                         
257 See section 6.4 for a description of agent_zero D, V S and P scores. 
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goes on (negative V score). Key agent 8 has more connections than key agent 6 does 

(nearly 400 more), so angry or happy messages are more likely to be propagated from 

and to this agent. Because it can supply more flexibility at low cost, it would be 

expected from a revenue point of view, that agent 8 would be much happier than 

agent 6 would be. That is the case in the early weeks of the simulation but not in 

later weeks. Figure 8-27 looks at the difference between the V and P, and the S and 

P, scores for the two agents using case 9. 

 

Figure 8-27: Difference in V/S and P in two key agents 

The differences show how the agent feels emotionally/socially vs its logical 

position. Large differences258 mean that the Agent_Zero model will be having more 

impact than a traditionally logical model. It is clear from Figure 8-27 that there are 

some periods where there are large enough differences to impact the simulation and 

results in an impact on aggregator choice at contract end. 

On the emotional side agent 6 (higher MC, lower connections and lower volumes) 

has more V-P events than does agent 8.  

                                         
258 Remember the scale for Agent_Zero has been normalised to 1 and -1. 
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If one focuses on case 10; it can be seen that on average agent 8 has a higher P 

score (rational) than agent 6259. However, the negative social scores from many 

connected agents drives down the emotional scores, and affects the dispositional score 

for the current aggregator. In a similar way to Epstein’s “jury” or “slaughter of the 

innocents” examples [89], social influences flip/override the logical view that an agent 

may take in this simulation i.e. it may be more logical to select aggregator x, but 

social influences flip this choice to aggregator y. 

 

8.7 Cost Benefit Analysis of Aggregation 

The provision of flexibility/aggregation services, under the right conditions 

provides net-benefits to customers and other stakeholders. A number of works have 

quantified these benefits from an infrastructure point of view [10, 11, 13, 567, 599], 

but none as far as it is known, have quantified the benefits of aggregation from a pure 

market or price point of view. The simulation here-in provides us with an ability to 

do this. At its simplest, aggregation reduces average clearing prices over a business as 

usual case with just generation flexibility. However, this is not the whole story as 

benefits/costs flow to/from different stakeholders as shown in Figure 8-28. Each 

stakeholder benefits differently from the other and some can be in conflict.  

                                         
259 Higher volumes and lower MC associated with agent 8 would result in higher cleared volumes, and 

therefore results in higher revenues producing a higher P score. 
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Figure 8-28: Aggregator market cost/benefit flows 

Equations used in the assessment of benefits and costs are provided in Appendix 

L. The equations make the simplifying assumption that “flexibility up” volumes cancel 

out “flexibility down” volumes over the year so that average volumes over the year 

remain the same. This is considered a reasonable assumption based on historical data 

patterns. Using average clearing price values for one year from the various simulations 

and the equations in Appendix L, stakeholder benefits are shown in Figure 8-29 using 

different assumptions on imbalance volume levels and the amount of generation 

flexibility available. Other assumptions are also detailed in Appendix L. The 

simulation results have been scaled to reflect total UK benefits260.  

                                         
260 That is, multiplied by 20 million/50,000 which equates to Total UK customers/case study numbers. 
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Figure 8-29: Stakeholder benefits 

The analysis is based on the data from the first year of a number of simulations 

and is therefore an approximation. The analysis indicates that 4-6 aggregators will be 

required to provide positive benefits to the customers in the market analysed. Net UK 

benefits of the order of £2-20 Billion/year (2020) might be expected from aggregation 

alone excluding benefits from transmission/distribution infrastructure. This will 

depend on the state of the market e.g. flexibility available and the level of congestion261. 

  

8.8 Fuzzy Cognitive Mapping: Making Sense of the Simulations 

Fuzzy Cognitive Mapping (FCM) [600-603] is a useful method to help understand 

the dynamics of complex systems and can be used to aid in the validation of a model. 

                                         
261 Reflected in higher levels of flexibility demand. 
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It can also be used to involve stakeholders such as regulators in understanding complex 

relationships and explain their effects in a visual way. Typically, FCM networks would 

include the significance of the effects of one parameter on another using a strength 

factor typically between [-1,1]. In the representations below, only the direction of the 

effect is shown e.g. using +1 or -1. Note future work using NN or multilinear regression 

representation could be used to derive these values262. 

Software such as FCMapper (Excel) [604] and FCM Expert [605] could be used to 

create maps and analyse them. FCM expert would be useful in reducing the complexity 

of such networks in future work. 

Figure 8-30 provides a high level FCM for the simulation presented in this chapter. 

Imbalance volumes, which is effected monthly and yearly through an elasticity effect, 

is a key driver of clearing price as is the volumes available to provide such flexibility 

(section 8.2.2). 

 

Figure 8-30: FCM of key actors and its effects on clearing price 

                                         
262 For example, using standardized betas. 
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Figure 8-31 provides a slightly different map which includes a risk management 

element shown in purple. Changes in influences are shown with thicker connecting 

lines 

 

Figure 8-31: FCM with risk hedging effects on simulation 

With aggregator risk hedging on, significantly lower clearing prices are seen in the 

simulations.263 Clearing price averages appear to hover around a target price that 

reflects the average cost of covering the operating (OPX) and capital costs (CPX). 

This is because of the supporting structure of the hedge which dampens the need to 

adjust target prices to high levels. The hedge “keeps” the aggregators profits on target, 

without large changes to bidding prices. Although this conclusion could have been 

reached using “agent tracing”, it was found that FCM diagrams proved useful in 

validating this particular result.  

                                         
263 That is when comparing runs with risk on and risk off for all aggregators. 
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8.9 Summary and Discussion 

A novel Python based ABM simulation framework for simulating power 

aggregators and domestic customers in a city the size of Dundee or York in the UK 

has been constructed. Aggregators can learn to alter bids to maximise profits; domestic 

customers have been given emotions in the form of a modified Agent_Zero model and 

can interact with other customers using a social network. “Gossiping” about prices 

and aggregator performance are currently modelled in a social network. The 

framework can be extended to include other agent types and it is based on work and 

coding from the Java based EMLab. 

8.9.1 Market Design Implications 

There is a natural conflict in the objectives of aggregators, regulators, participating 

flexibility customers and non-flexibility participants e.g. like those from non-affluent 

backgrounds or from customers that are indifferent to price and do not wish to be 

inconvenienced. This is summarized in Table 8-5264. Scores indicate the level of 

acceptance of aggregation under high, middling, and low, clearing price scenarios.  

 
Table 8-5: Stakeholder views on aggregation and customer flexibility 

                                         
264 Authors own view of the scores based on outputs and analysis from the simulations. The table 

highlights the direction of acceptance and is useful in emphasizing conflicting objectives. 

Clearing 

Price 

Level Aggregators

Flex 

Particpating 

customers

Non 

Participants 

Government 

eg HMRC 

Taxes Regulators

High 4 4 0 2 -3

Middling 3 2 2 1 1

Low -1 -1 3 1 3
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The simulations show that high clearing prices are good for aggregators and under 

certain conditions (contract types based on margins), good for flexibility participating 

domestic customers. High prices do not benefit non-flexibility participants265 and 

Regulators. Low prices result in reduced and negative profits for aggregators, which 

may result in market exit and hence reduce market liquidity. This would be a bad 

outcome for a newly formed aggregator market place. 

The output from the linear aggregator model (section 8.2) and Table 8-5 suggest 

that any market place that can provide a middling clearing price level would satisfy 

all of the various stakeholders in this marketplace and may result in a successful 

rollout of flexibility provision in power markets. Of course, all of these results depend 

on the assumptions/data inputs used within the simulation, so a key area for future 

research is to obtain more realistic consumer data from surveys, interviews and pilots. 

This should be combined with consumer econometric and social data like affluence, 

and technology views. Some of this data may need to be purchased from the likes of 

Experian using their Mosaic platform [25-27]. 

 

8.9.2 Key messages from Simulation Output 

 Contract type offers (type, starting prices and margins) at the beginning of 

market formation will be important determinant of clearing price dynamics. 

                                         
265 Non-flexibility participants would typically be associated with less affluent customers those 

potentially living in fuel poverty. 
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 Social propagation helps to reduce prices (average effect £30/MWh) and 

provides an estimated benefit to consumers of up to £0.24 billion per year266. 

 Underlying market structure (need for balancing and the customer flexibility 

available in any region267) has a significant impact on clearing prices, consumer 

benefits and aggregator profits. A one-size fit all approach to regions with 

different characteristics could result in a less optimal solution, where no 

aggregators are willing to participate and the flexibility market ceases to exist. 

 It is difficult for aggregators to make profits when generation flexibility is high, 

in this particular case study. This means that regulators should consider 

mechanisms to promote the development of the market in these areas. 

 Risk management helps to keep clearing prices significantly lower resulting in 

an overall reduction in average clearing prices of £50/MWh. This could reflect 

a benefit to consumers of around £0.4 billion per year.  

 Aggregator bucketing algorithms will impact clearing prices and aggregator 

profits significantly. 

 The AZ framework can result in behaviours that are in conflict with those that 

would be taken using logic/economics alone i.e. social influences flip/override 

the logical view that a rational agent may take in this simulation. However, 

such behaviour is realistic and usually not accounted for. 

                                         
266 Based on 20 million customers at 4,000 kWh/year assuming 10% of CP is reflected in energy retailer 

prices (20*4000/1000*30)*0.1. 
267 This would be reflected in the power network topology. 
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 The use of Fuzzy Cognitive Mapping (FCM) in an Agent Based modelling 

setting, to aid in the validation and understanding of the dynamics of complex 

systems such as modelled in this thesis, is a new contribution to research. 
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Chapter 9  
 
Conclusions, Recommendations 
and Future Research 

 

9.1 Research Objective and Approach 

The research objective of this thesis was to deliver an electricity market focused 

agent based model (ABM) that could allow researchers to experiment with future 

designs of flexibility markets necessary to enable and achieve a better understanding 

of the dynamics of these designs. In particular, the focus is on the aggregation of 

flexibility bids by thousands of domestic customers. Capturing human interactions 

and corporate behaviours in a social setting was a key aim of the model design. In 

that regard, a literature review coupled with experimentation on existing ABM 

systems has been carried out and Java EMLab in Python268 was chosen as the base 

framework. Python is easier to use than Java, as it is useful to provide rapid 

prototypes, and when used with Numpy and Xarray can be extremely fast so the Java 

based EMLab was ported to Python to create PyEMLab. As far as it is known, it is 

the first Python power based ABM in existence. Speed issues have necessitated 

changing the structure slightly to include array vectorised calculations using Numpy, 

resulting in a speed increase of 10 - 20 times over the standard “list processing” 

approach taken in many ABM systems. Use of Python scripting allows for the 

                                         
268 PyEMLab is a Python port of EMLab (Java), written by the author of this thesis. 
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simulation of many parameters and the changing of agent roles and learning 

paradigms. Aggregation will form an important part of any future low carbon network 

providing flexibility services. EMLab’s base agents and structure have been extended 

to include agents such as generators, domestic and industrial customers, an ISO and 

aggregators. Customers have been provided with a human behavioural model based 

on the Agent_Zero framework [89] that combines emotions, cognition (logic) and 

social influences. It is believed that that this is the first time that the Agent_Zero 

framework has been used to model customers in the power domain. 

Aggregators are represented as corporate entities that optimise profits, adjust bid 

prices and can risk manage. This necessitated the need to develop a methodology to 

represent risk and risk management within a corporate setting. Drawing on real 

examples of risk strategies within energy companies, and by reviewing the literature 

on options and real options in particular, a novel option based approach has been 

developed to represent risk in an aggregator. The same approach has been used to 

represent risk management (hedging) in these agents. The framework can be extended 

to include more sophisticated risk management strategies including CVaR and Delta 

hedging with market/exchange options269. To simulate corporate aggregator actions, 

the SmartNet bucketing approach [8, 9, 82] has been expanded and updated. This 

methodology fits well with the risk management approach developed in the thesis. 

Existing aggregator simulator models270 also treat customers and aggregators as 

marginal cost bidding agents without adaption. Using Cliff’s ZIP trader methodology 

                                         
269 That is by buying and selling options and future instruments on exchanges such as NYMEX or ICE. 

270 For example SmartNet. 
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[19-21, 477, 478], agents (customers and aggregators) have been given a simple 

adaptive bidding behaviour. It is believed that this is the first use of the ZIP trader 

agent in a power aggregator setting. 

Social Network Analysis (SNA) is a very active area of research especially in the 

social sciences. Social networks have been added to the simulation framework using 

the Python based NetworkX and SNAP frameworks. These networks, ultimately 

represented as an adjacency matrix, for speed, have been used to simulate the 

propagation of “good” and “bad” messages about aggregator performance. Price 

information is also shared amongst customers using connections on this simulated 

social network. Different types of social networks including those based on Facebook, 

Twitter and the small world paradigm [188, 606], have been used to investigate how 

propagation of these messages changes price dynamics and interaction during the 

simulation. 

Little work has been completed on the effect of social networks on power market 

dynamics, especially when combined with modelling human emotions. So this work 

presents a novel view of how customer dynamics can be modelled in a power domain, 

using a relatively simple but complex framework in the form of an adapted 

Agent_Zero model [89] on a large social network. 

To assess the modelling framework, a case study of an area of the size of 

Dundee/York with 50,000 domestic customers, 4,500 industrial customers and six 

aggregators, has been created to prove the use of PyEMLab-Agg in a low carbon 

context.  
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9.2 Results and Insights 

Many hundreds of simulations have been carried out in testing, validating and 

experimenting with this simulation model. The effects of various parameters, as well 

as the impact of modelling paradigms like social network propagation, the effect of 

agent zero weights, contract starting positions and the effect of risk management have 

been investigated. The complexity of the model makes it somewhat difficult to 

understand all of the aspects, so a statistical analysis using techniques borrowed from 

the social science discipline has been used to analyse these various drivers affecting 

the model. A derivation of a linear version of this work has allowed the construction 

of a visualisation of the interaction of these variables. This has proved to be extremely 

useful in validation and to highlight the various effects that parameters have on the 

model. Fuzzy cognitive modelling (FCM)271 has also been used to help understand the 

complex interactions within the model and in validating such interactions. There is 

still much work to perform and other agents will be added to the simulation in due 

course e.g. EV’s, P2P providers and so on. The key results seem from these initial 

simulations are as follows: 

 

 At least four to six aggregators will be required depending on market 

characteristics (e.g. the amount of flexibility, the balancing demand 

requirements and so on) to meet regulator/HHI requirements. 

                                         
271 Really just a cause and effect map. 
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 Sophisticated bucketing heuristics like those based on Scargles’s Bayesian 

Blocks algorithm in AstroPy [561, 607] could significantly improve the 

aggregators performance. 

 Aggregator bucketing and bidding algorithms will be an important 

determinant of future power and flexibility/balancing market prices and 

dynamics. This will be an area an active area of future research. 

 Unsurprisingly, demand for flexibility and the availability of flexibility services 

are important determinants of price in the market. 

 A competitive aggregated flexibility market will reduce prices significantly over 

the base case of do nothing. 

 A one-size fits all approach is not likely to be an appropriate strategy for 

regulators or companies participating in the market. Under certain conditions 

aggregators and customers will not perform well and are likely to exit any 

potential market in the early stages. Careful design should take account of 

these conditions and look to minimise any potential problems. 

 Domestic customers could benefit to the tune of £2-10 billion per year (2023 

real terms), from aggregation under the right conditions.  

 The benefit associated with lower wholesale prices because of competition in 

aggregation markets, is far greater (by a factor of 10 - 20) than the benefit 

associated with directly providing flexibility provision. This is important as 

those customers in fuel poverty could benefit greatly from the actions of more 

affluent customers providing flexibility services. Direct benefits of flexibility 

provision can be relatively small and may result in a lower take up of flexibility 
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provision. It is therefore important that these customers are nurtured272 so that 

significant benefits to all, in the form of lower prices is realised. 

 Corporate behaviours such as those exemplified by risk management in this 

simulation can have a substantial effect on both dynamics and overall clearing 

price levels. Risk management could reduce average balancing clearing prices 

by around £50/MWh. 

 Encouraging aggregators to offer a diverse set of contracts/services could result 

in significant price reductions to customers. 

 

9.3 Future Work and Research  

There is still much work to perform, but this thesis is the first step to exploring 

the intricacies of a how a future low carbon network will work using such concepts as 

aggregation, but by including customer behaviours. Most importantly future work 

needs to add realistic distribution networks, to the simulation, so that network flows 

are better represented. This will add another level of complexity to the simulation, 

but it will be interesting to see how two networks (Power and Social) interact to form 

different dynamics. Using SNA, these networks could be characterized273, to see if there 

are any links between dynamic patterns seen in the market and the types of networks 

used in the simulation. The results in section 8.4 indicate that system dynamics do 

                                         
272 For example, highlight the benefits of lower prices as well as the direct benefits seen from flexibility 

provision. 
273 Different networks structures can be represented by network statistics such as average characteristic 

path length, degree, clustering density and so on. 
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differ when social network interaction patterns are changed.  

Detailed power distribution network data on large networks is not readily available 

in the public domain. However, DING0 [608, 609] was developed precisely to overcome 

this issue and it may prove useful in providing many synthetic distribution networks 

for researchers. Unfortunately, this addition is likely to increase runtime significantly 

so in the longer term a simple representation of congestion issues and its effect on 

flexibility may be useful. Ideas for representing the networks as Neural networks like 

those in references [610, 611], may also be useful. 

9.3.1 Economic dispatch Vs OPF 

To simplify power flow calculations and make computation run times reasonable, 

an economic dispatch (ED) formulation of the market has been used to clear the 

market. Economic dispatch assumes market clearing without any power flow 

calculations. It is a fast methodology, omitting network details and assumes no 

losses274.  

Optimized Power Flow (OPF) [612, 613] can be used to account for network 

representations275 and costs and used to derive the clearing price in these zones as well 

as individual distribution nodes. OPF can be used at the distribution level to calculate 

power flows, identify congestion issues and provide locational marginal pricing at each 

node. Such an approach would provide clear signals to flexibility providers. Software 

formulations such as MATPOWER [176, 177], PyPower [187] and PandaPower [614] 

                                         
274 Losses can be accounted for by assuming that supply will need to be higher than demand by an 

average loss factor. 
275 Losses are calculated as part of OPF. 
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can be used to specify and solve AC OPF problems, but calculations can be time 

consuming for large systems. Future work will include an OPF model and in that 

regard tests have been carried out using the PowerGama [28, 29] and PandaPower 

frameworks.  

9.3.2 Incorporating EV’s into Future Work 

Electric Vehicle’s (EV’s) are currently represented in the simulation as a single 

static entity. Ideally, a future model would include mobile units (agents representing 

EV movement) and allow modelling of charging and discharging across the network 

in response to price changes. There are currently no EV ABM models based in Python 

that we know of and few that take account of pricing. A Python prototype that 

simulates drivers in Netherlands using data and modelling methodology from work 

outlined in [581] has been constructed, although the model has not yet been linked to 

PyEMLab. Although it would be a relatively simple task to do so276. Daina et al [582] 

have developed a methodology that incorporates charging price as one of its variables 

and uses stated response surveys to create a linear based algorithm/heuristic that is 

used to choose from a variety of discrete options e.g. charge, no charge or stay at 

home. It would be useful to incorporate this methodology in the EV ABM model 

discussed above as it models price impacts in a more simplistic way. Note none of the 

ABM EV models that have been investigated incorporates V2G interactions i.e. selling 

battery storage back to the grid. Storage decisions via a storage aggregator has been 

modelled in the SmartNet project [6] and could be incorporated later. 

                                         
276 The downside would be increased run times. 
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9.3.3 A More Sophisticated Emotional Model: Emotions Affecting Cognition 

Agent_Zero has proved to be a useful framework for representing a “simple” 

emotional and social response in the simulation, but the current framework ignores 

links between emotions and cognition277. In the context of this simulation, it would be 

rational to assume that angry customers would treat aggregator contract offers 

differently from those that were happy. This may have a dynamic impact on the AZ 

module weights, or it may change parameters in the logistic equation used to provide 

a logical contract utility value. The appropriate design and use of customer survey 

data/interviews might allow us to better model these effects and chose an appropriate 

modelling environment for further AZ extensions. Without this survey data, it is not 

clear how emotion/cognitive issues would affect customer interactions with the market 

and is therefore a future key research objective.  

9.3.4 Different Flexibility Service Provisions 

The current framework focuses on aggregation but other business models as 

discussed in Chapter 4 would be available to stakeholders. The PyEMLab-Agg 

framework allows for the easy introduction of these additional business models and 

any additional agent types. Abstract versions of some of these agents have already 

been added to the model e.g. P2P. 

Different customers will be drawn psychologically to certain services rather than 

                                         
277 Note the current simulations have an indirect link in that when the AZ dispositional score D 

< -0.2, domestic customers stop bidding. Social influence and extinction in the AZ framework can 

increase this value over time.  
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another e.g. some will prefer P2P to aggregation; some will just prefer to stay with 

their current retail energy retailer. The current Agent_Zero emotional model will need 

to be adapted to model these competing services both from a logical and emotional 

point of view. Connectionist models278 like those discussed in Chapter 6 could provide 

a methodology to represent the competing emotions between these different services. 

Alternatively, the Rescola Wagner model could be modified. 

9.3.5 Other Future Work 

Other work that future researchers could consider are as follows: 

 The inclusion of CO2 and commodity markets and investment in new 

generation (as modelled in the EMLab/ base PyEMLab).  

 Extend model to include customer reactive power services.  

 Extend AZ to Industrial customers and possibly aggregators. 

 Investigate the effect on the simulation of customer mix e.g. the effect of 

customer affluence on network (social and power) and simulation dynamics. 

 The addition of other learning paradigms such as reinforcement learning and 

learning automata. 

 The addition of a more realistic risk management strategy that uses exchange 

instruments like futures and options. 

 Research into the use of more sophisticated portfolio management techniques 

for bucketing; e.g. to include risk management and other clustering parameters 

into bucketing algorithms or the use of genetic algorithms. 

                                         
278 Those that represent memory and cognitive performance, typically using neural nets, genetic 

algorithms and deep learning. 
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 Investigate aggregator “cherry picking” behaviour effects on market evolution 

and customer benefits. 

 Modelling of more sophisticated aggregated business models the inclusion of 

sophisticated geographically and digitally based aggregators e.g. Google, 

Amazon. 

 Include models of congestion within aggregator agents. 

 Updating social network interactions to include inputs from aggregator 

companies, from regulators and from media outlets like newspapers. For 

example, newspapers report on retailer price behaviour and such news spreads 

more widely and more quickly than the normal routes via consumer’s social 

connections, resulting in an avalanche of contract switching actions. 

 The addition of a Regulator agent to the simulation. 

 Extend the framework to include human or hardware in the loop [615-621]. 

 Norm and coalition modelling. 

 Further validation of the model especially once data is obtained from work on 

consumer surveys on attitudes. 

 The addition of other elements discussed in the ideal simulator discussion 

(section 3.3). 

 

There is much work to do here but it is hoped that this framework will help 

researchers to simulate the evolving issues and challenges in this important fast 

changing area. It provides a relatively easy to use framework, to which additional 

agent types can be added. Python scripting allows for easy modification of parameters 
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and agent roles. Social network representations and the use of a modified Agent_Zero 

framework has allowed the representation of human behaviour in a social setting in a 

relatively “simple” but sophisticated way. The investigation of the effect of message 

propagation and emotions on the dynamics of aggregation in a future low carbon 

network setting shows that these emotional and network effects are significant and 

supports the idea that it is important to model psychological/behavioural effects in 

power markets.  
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Appendix A: Analogous Industries: 

Lessons for Aggregators  
 

Other Industries provide useful lessons for future aggregators in the context of 

business model evolution and in the evolution of competition in newly forming 

markets. US gas retailing companies in the 1990’s and 2000’s developed sophisticated 

gas business models that included storage businesses that used trading and risk 

management principles that are rarely used in European businesses. The mid 1980’s 

and early 1990’s provide some useful clues as to the evolution of embryonic or newly 

formed markets which may prove useful to companies entering the aggregation 

business market. An analysis of this data shows how margins have reduced rapidly 

over a few years as competition opened up. Companies also sustained losses for a 

number of years before exiting the market and consolidation of companies is likely to 

occur in the longer term. 

 

A.1 Industrial Gas Markets in the United States 

 

A.1.1 Background 

In the United States, gas marketing as an industry evolved out of the development 

of open-access transportation of gas in the mid-1980’s. Marketing companies sold gas, 

often re-bundled with interruptible transportation, at unregulated prices that were 

lower than the prices paid by pipeline company customers for regulated sales service.  

A.1.1.1 Competition 

However, increased competition following re-structuring led to an environment 
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where firms evolved to offer many different types of services to remain competitive. 

Creating different value-added combinations of supply and transportation services 

resulted in increased revenues and profits for marketers. A wider array of services was 

being offered279, including supply aggregation, supply procurement, balancing, capacity 

reservation, storage facilities and risk management services. These services have been 

offered since the mid 1990’s in the US gas market. 

The result has been that many marketers/retailers have consolidated to remain 

competitive, whilst many smaller firms went out of business. The further evolution of 

this segment of the industry depended on issues such as the ability to capitalize on 

new business opportunities, market hubs, storage access and to maintain 

creditworthiness. 

As margins on reselling gas in the US became thinner because of competition, the 

use and creation of financial tools enabled marketers to differentiate their services, 

gain more market share, boost their revenues and increase profits. However, using risk 

management techniques can result in substantial losses as well as gains. 

A.1.2 Consolidation and Diversification 

Growing competition in the US led to the development through time of fewer, 

larger firms. These mergers and acquisitions have taken place for the following reasons: 

 To diversify the mix of services offered as margins fell. Rather than expanding 

internally, marketers purchased or teamed up with other firms. 

                                         
279 And is still is – in deregulated markets. 
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 Security of supply. Alliances with producers became more common as marketers 

sought more secure supplies of gas, and producers sought greater marketing 

expertise. 

 Merging allowed marketers to reach more customers. Wider geographical markets 

enabled marketers to increase market share. 

 To strengthen their financial position. By merging with larger firms, smaller 

companies were able to eliminate concerns about their credit risk. 

Historically, creditworthiness has been the downfall of several US marketers280, as 

they have been unable to meet stringent credit requirements. In the US, 

creditworthiness is the lifeblood of gas and power marketers, as they frequently act as 

the intermediary between buyers and sellers of gas and need credit to serve as 

collateral in case either of the parties to the transaction defaults. Marketers who are 

not considered creditworthy by a producer will not receive supplies. Credit is less of 

an issue for those marketers owned by major producers (large oil companies), banks 

or pipeline companies and therefore backed by asset-rich balance sheets. This provides 

their marketing subsidiaries with equity support to expand volume of throughput by 

using varied financing tools and the power of their parent company. 

A.1.2.1 US Gas Prices 

Figure A-1 shows historical US industrial, spot and wellhead gas prices - over 10 

years during the early formation of the market. It is clear that there is a correlation 

                                         
280 Both in the gas and power markets. 
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between delivered industrial prices and the wellhead/spot price281 but industrial 

prices fell more sharply. Prices fell as competition in the market took hold. 

 

Figure A-1: US natural gas prices 1986-1996 

A.1.2.2 US Gas Marketer Margins 

The differential between industrial (factory gate) and spot/wellhead prices is made 

up of transportation, other costs/overheads and the marketer’s margin.282 From 

previous analysis on transportation and operating costs, an estimate of operating 

margins of marketers in the US, has been made. 

Figure A-2 shows these US marketer margins over the period 1986-1996. The 

margins are plotted for marketer supplies from both spot and producer sources, and 

reflect the decline in margins as penetration of the market by marketers has increased. 

Margins in the mid 1990’s, would appear to be in the range 2 - 8%. 

 

                                         
281 The cost of producing the gas. 

282 Retailers typically bought this gas off the spot market or from offshore producers and sold this on at 

industrial prices. The difference between these values after other costs such as transmission and 

distribution/Admin represents the retailer’s margin.  
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Figure A-2: US natural gas: Average US marketer operating margins 

In the next section, the UK industrial gas market is analyzed, to highlight any 

parallels that can be drawn with the US experience. Although the UK deregulation 

process started much later than in the US, there are some similarities. The time-period 

analyzed for the UK is also much shorter, from 1993 to 1996. 
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A.2 Industrial Gas Markets in the United Kingdom 

 

A.2.1 The UK Industrial Gas Market in the early 1990’s 

Gas is used across the industrial spectrum in the UK and examples are; Iron and 

Steel, Engineering, Food, Drink & Tobacco, Paper & Printing, Minerals & Mining and 

is also used for power generation 

Industrial gas demand is driven primarily by the level of economic activity in the 

UK, and is split between tariff customers (~6% of volume in 1996) and contract 

supplies (~94% of volume in 1996). The contract market was further divided between 

firm customers (~36% of volume) with guaranteed supplies, and interruptible 

customers (~58% of volume) who may have their supplies cut off for varying periods 

at the supplies discretion. The interruptible customers are responsible for ensuring 

that they have an alternative fuel source available. The gas price paid varies 

considerably according to the type of supply (firm or interruptible). However to 

simplify the analysis the graphs that follow show an average “firm” price across all 

sizes and type of customer. 

A.2.1.1 UK Gas Prices 

Figure A-3 compares UK firm industrial and spot gas prices since the beginning 

of 1994. Firm industrial prices reflect the average gas price paid by all sizes of firm 

industrial customers. Prices in the firm market have shown a steady decline from highs 

of over 1.5p/kWh (real terms 2020) in early 1994 to levels of close to 0.8p/kWh in 

1996. This decline has been led by the spot price, which over the same time period, 
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has fallen from 1.3p/kWh to 0.78p/kWh. Note that margins have fallen rapidly.283 

It appears from this figure that the industrial price is related to the spot price 

albeit with a time lag. Thus the industrial/spot prices link in the US also appears to 

occur in the UK. 

 

Figure A-3: UK gas prices 1993-1996 

A.2.1.2 UK Market Share vs Margins 

Using published financial data from a number of energy retailing companies over 

the period 1993 – 1995, operating margins (i.e. revenue-costs before taxes), have been 

extracted and plotted against turnover, which has been used as a proxy for market 

share. Figures A-4 to A7 plot operating margin and turnover for the years 1993 to 

1995. 

                                         
283 Difference between industrial and spot price is nearly zero. 
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Figure A-4: UK gas retailer operating margins 1993 

 

Figure A-5: UK gas retailer operating margins 1994 

 

 

Figure A-6: UK gas retailer operating margins 1995 
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Note that these graphs appear to show that: 

 The operating margin increases with market share, as expected. 

 The negative slope of the trend line flattens through time i.e. margins are reducing 

as competition bites and the market evolves. 

 For those players with a 15% market share, margins have probably reduced from 

9% to 7% over two years. 

 Margins for smaller market shares are low and can be negative. 

A.3 Analogous markets (Airlines and Retail) 

 

In the following section a discussion about the margin experiences seen in other 

industries is given, highlighting those lessons which are applicable to the future power 

aggregation industry in the UK. Similar but slightly different trends are seen in all of 

these industries but it is clear that companies will and have made losses for many 

years in some of these markets. It therefore may take some time before aggregators 

making losses exit the market. 

A.3.1 US Deregulation : General Trends 

The experience of US companies after deregulation provides a valuable road map 

on what might happen in a newly formed aggregator market. The analysis below 

highlights the pattern of competitive dynamics that unfolds when artificial constraints 

are suddenly lifted and new entrants allowed to rush in. 

In the US telecoms market, prices of long distance telephone calls (previously 

companies’ most profitable business) fell 38% in the 4 years after deregulation. 
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However, prices on local services rose by around 43%. In the US airline industry, many 

prices fell by around 42% while prices on previously less profitable routes rose. In 

short, what appears to have been a less attractive market before regulation often 

becomes more sensible post-deregulation as the more savvy competitors avoid the rush 

of new entrants and anticipate large price changes (both up and down). Thus, the 

variation in profitability widens [205]. 

Each deregulated industry saw profitability deteriorating quickly as new entrants 

shattered pricing for all competitors for at least 5 years. The surprise to many was 

that it took only one competitor with small market share to shatter prices for everyone. 

Price reductions of 30-40 % ensued but resulted in surprisingly little gain in overall 

market share. 

After five years of intense competition in the US airline industry, the strain on 

industry performance forced many of new entrants to leave (66%) and within 10 years 

some 56% of the larger players had also left. 

It was found that successful low cost entrants do not compete on price for very 

long. They generally specialize. Typically, there are no more than 5 - 7 firms that 

remained as broad based competitors after 5 years of deregulation. 

A.3.2 Competitive Margins 

The ‘PIMS’ study in 1974-1975 [206, 622] showed that pre-tax returns on 

investment [ROI] (i.e. pre-tax profit/investment) were related to market share and 

that they typically ranged from around 10 to 30% as shown in Figure A-7. 
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Figure A-7 PIMS study results 

The study also highlighted relationships between ROI and other variables such as 

R&D spend and company types. ROI is related to pretax profit margin by the inverse 

of the turnover efficiency ratio (i.e. Turnover/Investment). A typical value for this in 

the electricity retailing business is of the order of 10. This means that the ROI 

presented above would equate to profit margins of 1 to 3%. In the case of an integrated 

oil company like BP (they may enter the aggregation business) these ‘PIMS’ values 

would equate to 5 - 12%284. However, there is a different level of risk associated with 

this business and of course a different degree of competition. 

A.3.3 Electricity Supply Business Margins –1990’s 

Although all electricity supply companies give details of their overall corporate 

profitability in their annual reports it appears that only Eastern Electricity285 broke 

down their accounts by business type during the 1990’s. Their 1994 annual report 

                                         
284 They have different turnover ratios. 

285 Eastern Electricity was one of the 12 regional electricity companies offered by the Government for 

privatisation in 1990. It covered the areas of Cambridgeshire, Hertfordshire, Huntingdonshire, the Isle 

of Ely, Norfolk, Suffolk and parts of Bedfordshire, Buckinghamshire, Essex, Middlesex, Oxfordshire and 

the Soke of Peterborough. Eventually the distribution rights of Eastern were sold to EDF energy. 
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indicates that the profit margin on their retailing business was some 1.1%. Note 

current margins in recent years have been much higher (~ 5%) [623].  

A.3.4 US Gas Marketers 

Section A.1.2.2, outlined the results of analysis into the US gas market, where it 

was estimated that the margins being earned by marketers after the market was 

liberalized was is in the range of 2-8%. This range reflects both the maturity of the 

market at that time, and the extent to which marketers have diversified the services 

they offer. That is they are no longer just selling electricity or gas but provide other 

services or sell across geographies. 

A.3.5 UK Energy Marketers 

Analysis of publicly available data in 2000 (summarized in Section 2.2 below) 

indicates that margins for the smaller energy retail companies at that time, seem to 

be around 2-3%.286 These companies are buying and selling both gas and electricity 

products. In its simplest terms these gas marketer were taking little or no risk. There 

is therefore little premium that a ‘non risk taking’ gas retailer should earn in a fully 

liquid and competitive market. On the other hand, a wholesaler who has either 

developed an offshore gas field or large power generation or buys gas/electricity on a 

long-term basis is taking a much larger risk. In the domestic market, the profit margin 

historically paid to British Gas (BG)287 has been of the order of 0.27p/kWh (real terms 

2020 over the period 1971 -1991). This equates to a profit margin of around 30%288. 

                                         
286 Analysis of public accounts. 
287 Originally a monopoly buyer of gas pre 1990. 

288 Author’s calculation. 
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Over time, this this profit dropped to 0.03-0.1p/kWh289. This equates to 7-14% profit 

margin. British Gas (now Centrica) is an example of a company that would be called 

a wholesaler or an aggregator. 

A.3.6 Margins over time/Domestic Margins 

The analysis above shows that profit margins in the UK industrial market are 

linked to market share, and have reduced over time. The analysis above appears to 

show that average margins in the Industrial gas market have reduced from above 10% 

in 1990/1991 to between 1 and 2% by 1995 (Figure A-8). 

 

Figure A-8: Profit margin evolution 

This curve follows an exponential decline and fits well with a view that margins 

decline by an exponential diffusion process. Similar patterns were seen in the US gas 

retailing market but declines took longer. One might expect that aggregator margins 

will decline with the same characteristics. In industries like US airlines and 

telecommunications markets margins were eroded within 1 to 2 years. 

 

                                         
289 Authors calculation. 
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A.3.7 The US Airline Industry 

Until 1978, the US airline industry was regulated, thereafter migrating to a profit 

based industry which moved from conventional selling to low cost distribution. The 

US airlines contributed through various moves and counter-moves to large-scale 

destruction of value. In summary, the evolution of the airline industry in the US was 

as follows: 

 Airlines initially spent money to differentiate their service from their 

competitors. 

 Post deregulation in 1978, the airline business became a commodity market. 

 Players fought aggressively to expand market share. 

 The consequent reduction in prices expanded demand for service from leisure 

travelers. 

 Some players expanded too quickly, lost money and left the industry allowing 

profitability to improve. However, this situation did not prevail for long. 

 In efforts to win market-share, airlines invested in new airplanes that were not 

needed. These additional aircraft caused further reductions in utilization levels 

causing further reduction in price. 

 Airplanes were not retired when players left the market leaving utilization at 

around 50%. Thus high fixed cost assets with low utilization led to price wars. 

 The result was that after five years of deregulation some airlines merged with 

their rivals and others withdrew from the market. 
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 The economics of this business was such that it made sense for companies to 

reduce prices rather than lose market share. 

A.3.7.1 Lessons Learnt 

Operating margins fell from 6.1 % in 1978 to -2.5% in 1990, but recovered in the 

1990’s. The losses suffered in the early 1990’s are partly the result of the Gulf War in 

1990-91, when few Americans travelled abroad and partly due to recessionary impact 

upon business and leisure travel. 

 

Figure A-9: Airline industry profitability 1970 -1993 

However, the data appears to show that the US airline industry follows a business 

cycle of anything from three to five years, and that profitability in the industry 

remains fickle. 

A.3.7.2 Differences between US airlines and UK Energy Industry 

Although it would appear that the US airline industry has been on average a zero 

profit making industry over the last 20 years there are some important differences to 

consider when comparing their experiences with the UK energy market. These are: 

 There is a utilization of 50% in US airlines, but even though companies went 

bankrupt airplanes were not retired as banks were willing to sell them off to new 
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entrants to get some payback for their debts. New players therefore started off from 

a lower cost base than existing incumbents. 

 Many of the larger UK aggregator players are unlikely to go bankrupt as most are 

likely to be subsidiaries of larger organizations. In the UK gas industry a smaller 

number of players, control the industrial gas market. In the 1990/2000’s the top 

six players control over 75% of sales to the industrial gas market. 
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Appendix B: Return on Equity; 
Additional Graphs 

 

This appendix provides a set of additional graphs that show the variation in 

breakeven clearing prices and returns on equity with changes in parameters like Beta 

(Risk), the number of domestic customers and so on. This is in addition to the work 

presented in Chapter 4.  

 

B.1 Max Bid to meet ROE Targets 

 

Max value that can be accepted as a bid if the aggregator is to meet its return on 

equity targets consistent with Beta values shown. 

 

 

 

Figure B-1: Max bid to meet ROE targets by domestic customer numbers 

 

B.2 Profit Margin Variations with Clearing Price 

 

Profit margin outturn (%) with number of domestic customers where the bid price 

is set to a % of the expected clearing price. All graphs for the pay as bid model. That 
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is, the aggregator pays customer their bid price. 

 

 

Clear price = £300/MWh 

 

Figure B-2: Aggregator profit margin variation; Clear price = £300/MWh 

Clear price = £200/MWh 

 

Figure B-3: Aggregator profit margin variation; Clear price = £300/MWh 

 

 

 

B.3 Aggregator Margin Requirements vs Contract Type, Beta …  

 

Minimum Aggregator profit margin requirements for the pay a % of the Cleared 

price case vs number of customers. 
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Pay % of clear price to customer is shown 

 

 

Figure B-4: Aggregator profit margin requirement 

Solid lines represent the minimum profit margin required for different risk i.e. 

Beta. Beta determines the expected ROE for that company and hence profit margin. 

The dash lines represents the profit margin achieved for different margins to the 

aggregator in the Pay % of clear model. To be profitable the aggregator must chose a 

business model (dotted line) with an appropriate level of customers that is above the 

expected level of profit margin at the business risk level (beta) i.e. the solid lines. 

 

 

B.4 Aggregator Profit Margin Variation 

 

Accounting profit margin for the pay a % of the Cleared price vs number of 

customers. Note Margin is the margin to the aggregator. 

 

 

 

Clear price = £300/MWh 
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Figure B-5: Aggregator profit margin; Clear price =£300/MWh 

 

Clear price = £200/MWh 

 

Figure B-6: Aggregator profit margin; Clear price =£200/MWh 

 

B.5 Minimum Aggregator Margin Requirement 

Note “Margin” is the margin to the aggregator. With the following assumptions 

what will be the minimum margin that the aggregator should take to meet its 

ROE/Profit margin targets. 

 

Clear price = £300/MWh 
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Figure B-7: Minimum margin required to breakeven; Pay as cleared CP =£300/MWh 

 

 

Clear price = £200/MWh 

 

Figure B-8: Minimum margin required to breakeven; Pay as cleared CP =£200/MWh 
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Clear price = £500/MWh 

 

Figure B-9: Minimum margin required to breakeven; Pay as cleared CP =£500/MWh 

 

Note it is currently believed that aggregators in the market are only receiving 30% 

of the cleared price. Based on the assumptions of the costs supplied, it would appear 

that this model would only be sustainable with clearing prices in the region of 

£500/MWh on average and with 6000-10000 customers. Note the base assumption is 

that 50% of the max potential of the flexibility is available. If this were to rise to 75% 

then a price of £350 - 400/MWh would be required. With half of the operating costs 

and a 50% take up this clearing price requirement would drop to £300 -£400/MWh. 

 

B.6 Variability in Profit Margins with Amount of Flexibility 

 

Note that to make a 10% profit margin that flexibility volumes needs to be 

relatively high i.e. > 50%. 
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Figure B-10: Profit margin; pay as bid vs max flexibility 

 

 

Figure B-11: Profit margin; pay percentage of clear vs max flexibility 
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Appendix C:  Options; General 

Overview 
 

C.1 Option Theory - Financial 

The famous Black Scholes formula [270]290 for valuing options, uses the movement 

in an asset’s price essentially stock or share price or a commodity price to value the 

likelihood of that price being above some value the exercise price. The Black Scholes 

option valuation depends upon the following factors: 

1. The current spot price of the underlying asset S (or assets in our case; three of 

them) 

2. The exercise price or strike price at which the option has been struck (X or K) 

3. The price volatility σ of the underlying asset (or asset) 

4. The risk free interest rate (r) or discount rate 

5. The time to expiry t – which is relatively small in the case of options in this thesis 

e.g. 1 hour or maybe 10 days if we use a hedging strategy using futures 

6. The dividend yield on dividend paying securities- not applicable in this case 

7. Whether it’s a put or a call 

For a call option higher volatilities result in higher option prices – unless the option 

is so far out of the money it does not affect it. That is the price of the asset is either 

                                         
290 Wilmott’s book provides a good introduction to options and Black Scholes formula [270]. Note the 

original Black Scholes paper can be found here -  

https://www.cs.princeton.edu/courses/archive/fall09/cos323/papers/black_scholes73.pdf. 
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>>> or <<< exercise price of the option. 

Longer periods to expiration, increase the value of the option but in our case, 

periods are small (1 hour). Note our volatilities during these small-time frames are 

high. UK balancing price volatilities in 2015-2020 period were of the order of 20 % 

(hourly). Higher asset or commodity prices result in higher option values assuming 

the asset price is above or near the exercise price. Higher exercise price (in our case 

the minimum price we need to cover our costs), the lower the value of the option. 

Even though the options in this thesis are valued differently from the standard vanilla 

Black Scholes model the general conclusions of price and volatility movements still 

hold. Put options drive the value in the same way but the movement of option value 

to commodity price and exercise price will be the reverse of that discussed above. 
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Appendix D: Pseudo Code for Three 

Asset Aggregation Risk Option 
 

This code is based on an algorithm presented by Haug [309] for a three-asset 

Monte-Carlo option (with correlation) and adapted for an aggregator risk evaluation 

as discussed and presented in this thesis (Chapter 5). Details on the Box Muller and 

Halton algorithm are provided in [309] . This is a general algorithm and calculates 

both call and put option values. Final values are calculated for the three different 

revenue models discussed in Chapter 4/5 of this thesis. Namely:  

 AssetValue_payasbid  

 AssetValue_pay%ClearPrice 

 AssetValue_payfixedprice 
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#Inputs => CallPutFlag, S1, S2, S3,X, T, r , v1, v2, v3 ,rho12, rho13, rho23,  nSimulations, 1 
margin, Pfixed 2 

# S1, S2, S3 expected asset value  3 

# S1- Clear Price 4 

#S2 – Volume of Bid MWh;  5 

#S3 – Bid Price £/MWh 6 

# X – exercise price – that is the min profit required by the aggregator ; r – discount rate; T – 7 
time to expiry (years) 8 

# V1 V2, V3 - Volatilities of assets S1,S2,S3 … (yearly volatilities) 9 

# Correlation coefficients - rho12, rho13, rho23 10 

#margin – margin % of revenues  paid to aggregator ; (1- margin) to customer 11 

#Pfixed  - Fixed price £/MWh paid to customer 12 

    If CallPutFlag = "p" Then Z=1 else Z=-1              # p = put; c = Call 13 

    Drift1 = (b1 - v1 * v1 / 2) * T 14 

    Drift2 = (b2 - v2 * v2 / 2) * T 15 

    Drift3 = (b2 - v3 * v3 / 2) * T 16 

    v1Sqrdt = v1 * (T)0.5 17 

    v2Sqrdt = v2 * (T) 0.5 18 

    v3Sqrdt = v3 * (T) 
0.5 19 

    g = ((1 - rho132) / (1 - rho12 2- rho23 2- rho13 2+ 2 * rho12 * rho13 * rho23) 0.5    20 

    sum = 0 21 

    For i = 1 To nSimulations 22 

St1 = S1  # Clear Price 23 

   St2 = S2  # volume MWh 24 

  St3 = S3  # Bid price £/MWh 25 

   #  Halton function is a Quasi Random Number Generator 26 

# BoxMuller function when used in combination with the Halton function generates 27 
random numbers more randomly  than usual random generator function. 28 

  Epsilon1 = BoxMuller(Halton(i, 3), Halton(i, 5) 29 

  Epsilon2 = BoxMuller(Halton(i, 7), Halton(i, 11)) 30 

  alpha2 = rho12 * Epsilon1 + Epsilon2 * (1 - rho12 ^ 2) 0.5 31 

alpha3 = BoxMuller(Halton(i, 13), Halton(i, 15)) / g + (rho23 - rho13 * rho12) *                          32 

Epsilon2 + rho13* Epsilon1 * (1 / (1 - rho12 2)) 0.5 33 

  St1 = St1 * exp(Drift1 + v1Sqrdt * Epsilon1) 34 

St2 = St2 *exp(Drift2 + v2Sqrdt * alpha2) 35 

  St3 = St3 * exp(Drift3 + v3Sqrdt * alpha3) 36 

st2b = min(S2, St2) # volume 37 

sum_payasbid = sum + + max(z * (St1 * st2b - st2b * St3 - X), 0)    # pay as                                                            38 
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bid >>  max [ 0,VMWh * Pclear - VMWh*Pbid – X]   39 

sum_pay%clear = sum + max(z * ((St1 * st2b*margin) - X), 0)    # pay % of clear 40 
price  >>          max [ 0,(VMWh * Pclear )*margin – X]   41 

sum_payfixed = sum + max(z * (St1 * st2b - st2b * Pfixed - X), 0)    # pay as bid 42 
>>    max [ 0,VMWh * Pclear - VMWh*Pfixed – X]  43 

  44 

    Next i 45 

    AssetValue_payasbid  = exp(-r * T) * sum_payasbid / nSimulations   # value Pay as bid 46 

    AssetValue_pay%ofClearPrice  = exp(-r * T) * sum_pay%clear / nSimulations   # value 47 
Pay % of  clear price 48 

    AssetValue_payfixedprice  = exp(-r * T) * sum_payfixed / nSimulations   # value Pay 49 
fixed 50 

  51 

 52 
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Appendix E: Array Representations 

within PyEMLab-Agg 
 

Arrays are represented in Numpy matrices within the PyEMLab Aggregator 

model. Use of Numpy arrays allows for vectorization as well as data-slicing on various 

parameters and results in simulations at a much higher speed. It allows fast filtering 

of data such as all contracts associated with “aggregator 5” that have cleared and 

have a bid price less than £105/MWh.  

The following figures are excel representations of some of the more important 

arrays used in the simulation presented in this thesis. These excel representations were 

used to design the arrays required for this simulation. 

 

Note the # symbol is used to represent “number”. 

 

Repository Package (“Repo”) 

The repository package enables the simulation to store in-memory data that is 

used by a variety of different agents. Results are stored in arrays in the “repo” and 

are used later in analysis and output. Note hypothetical data is provided in the 

examples below. 
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E.1 Current Aggregator Offers to Customers 

 

 
Figure E-1: Aggregator contract offers array 

 

 

E.2 Bids to Aggregator from Domestic Customers 

 

 
Figure E-2: Customer bids to aggregator array 

 

E.3 Propagation Matrix Customer to Customer 

 
Figure E-3: Propagation array 

 

E.4 Aggregator Flex Bid Matrix - Bids by Bucket 

 

eg might want to 

offer diff contracts 

to diff customer 

types

contract terms customer type

0 1 2 3 4 5 6 7 8 9 10

Agg 

Number

start yr 

month

Contract length 

Months

Contract 

type margin Bid min FP customer type cluster type

1 23 12 0 0.5  

1 12 12 0 0.5  

1 0 12 1  0

2 123.55

0 - dome 1 = ind gen 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ID for Bid Agg# Bid P Bid Vol

Customer 

Bid seg

Cleared 

% Cust type

Actual 

Volume profit agg Revs Cust

Contract 

Type margin%

price bid 

min

Price 

fixed

FAKE 

INDX

1 1 200 5 0-9 or -1 -10 0 0 0.5 100

2 1 200 5 1 0 0.3

3 1 123 3 1 0 0.2

4 2 85 2 1 0

5 2 45 1 0.8 0

Customer ID Agg number Good stim Bad stim

send msg 

to

prob of 

RX On/off Final Good Rx

Final Bad 

RX Code Unique

1 0 0.3 2222 0.5 1 0.3 0 1

2 0 0.5 0.1 1254 0.5 0 0 0 2

1 3 0.1 0.6 85 0.5 1 0.1 0.6 3000001

                                                    

                                                 Bucket Number>>         

                                           

0 1 2 3 4 5 6 7 8 9

0 Price low 2 15 24 36 38 44 54 55 85 95

1 Price High 15 24 36 38 44 54 55 85 95 96

2 Volume Kwh Total 4444 66666 5555

3 Bid max of buckets 15 24 36 38 44 54 55 85 95 96

4 Bid weighted  buckets 10.5 16.8 25.2 26.6 30.8 37.8 38.5 59.5 66.5 67.2

5 Vol pay as bid

6 Average bid price of customers paty as bid

7 volumes pay as clear

8 Average bid price of customers paty clear 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7

9 Volume of pay fixed

10 Average  price of customers pay fixed 12 15 34 64 84 24 55 61 66 69

11 Vol of dom Customers ???

12 Volume of Ind ???

13 clear fraction 1 1 1 0.8 0 0 0 0 0 0

14 Final bid price 9.41 20.96 31.34 29.40 28.05 35.24 44.81 47.51 64.55 75.82

15 Weighted margin of bid 0.2 0.1 0.7 0.3 0.5 0.5 0.55 0.3 0.21 0.4
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Figure E-4: Aggregator bid buckets array 

 

E.5 Bids to ISO by Aggregators/Generators  

 

 
Figure E-5: Bids to ISO array 

 

 

E.6 Customer Contract Database 

 

 

 
 

 

 
 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ID for Bid

Agg/Gen

number Bid P Bid Vol

Custome

r Bid seg

Cleared 

% type

actual 

voll Spare Spare Spare Spare Spare Spare Spare

1 1 200 5 0-9 or -1 -10 0 2

2 1 200 5 1 1 2

3 1 123 3 2 1 2

4 101 85 2 3 1 500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ID bid Agg strat yr

Customer 

cluster 

membership 

(SPSS)

Contract 

renewal 

month 

Contract 

length 

Months

Expecatatio

n pound per 

yr Cleared

Volume 

bid

Contract 

type margin Bid min FP Revs agg

revs 

customer tick

next 

expiry 

mnth

1 1 0 4 0 12 100 1 1 0 0.5  12

2 1 0 1 0 12 250 1 2 0 0.5  12

3 1 0 4 0 12 150 1 2 1  0 100 12

4 1 0 1 0 12 0 1 2 1  0 12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

ID bid Agg start yr

Customer 

cluster 

membership 

(SPSS)

Contract 

renewal 

month 

Contract 

length 

Months

Expecatatio

n pound per 

yr Cleared

Volume 

bid

Contract 

type margin Bid min FP   revs agg

revs 

customer tick

next 

expiry 

mnth in market

bidup MC 

base 

Bid Down 

MC Base

bid up 

Current

bid Down 

Current

Current 

Vols 

contract 

yr

current 

revs 

contract 

yr Volume up max

Volume 

down max

Volume 

up bid 

actual

Volume 

bid Down 

Actual

Zip up 

factor Zip down

Customer 

type

learning 

method flexpot

cust vol 

var

customer 

underbid 

factor

Weekly 

cust Revs

Weekly 

Vol bid 

total

Weekly 

Vol 

accepetd

total

Weekly 

aggs Revs 

total 

latest 

target p

1 1 0 4 0 12 100 1 1 0 0.5  12 1 324 not used 0.2 15 11 11 15

2 1 0 1 3 12 250 1 2 0 0.5  12 1 eg 0 = MC 0.3 32 11 8 23

3 1 0 4 8 12 150 0 2 1  0 100 12 1 34 12 12 33

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

ID bid Agg start yr

Customer 

cluster 

membership 

(SPSS)

Contract 

renewal 

month 

Contract 

length 

Months

Expecatatio

n pound per 

yr Cleared

Volume 

bid

Contract 

type margin Bid min FP   revs agg

revs 

customer tick

next 

expiry 

mnth in market

bidup MC 

base 

Bid Down 

MC Base

bid up 

Current

bid Down 

Current

Current 

Vols 

contract 

yr

current 

revs 
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Figure E-6: Customer contract and bid matrix 

 

 

E.7 Profit and Loss Accounts  

Aggregators keep track of their profit and loss accounts and use such data to 

adjust bids and to determine at the end of the year whether they are to change 

business model or to exit the market. P&L’s are kept for each aggregator company 

daily monthly and yearly. Note COS – is cost of supply – that is the payments made 

to the customers supplying flex + the cost of hedging. 

 
Figure E-7: Aggregator profit and loss account; internal  

 

As in the real world, “yearly accounts” are broadcast to all agents one year after 

accounting year-end (i.e. placed into the public domain via government reporting 

agencies).  
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Figure E-8: Aggregator profit and loss account: Public domain (seen by others) 

 

E.8 Domestic Customer Agent_Zero Disposition Matrices 

 

Used to keep account of the agent_zero scores associated with Disposition D, 

affective (emotional) V, Social S, and logic scores P for each of the 50,000 customer 

agents. Disposition D is the weighted average score of V, S and P. 

 

 
 

 
 

Figure E-9: Domestic customer Agent_Zero disposition matrices 
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Appendix F: Example Input Data 
from CSV Files 

 

 

F.1 Aggregator Input Data 

 

 

 
 

Figure F-1: Aggregator input file 

 

F.2 Demand Shape CSV File 

 

 
Figure F-2: Demand input file 
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F.3 Generator Input Data 

 

 
 

Figure F-3: Generator input file 
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Appendix G: Clustering of Customer 

Data 
 

To aid in later analysis Customer input data was clustered using SPSS [194, 589] 

clustering tools. Output from this process is summarized below. Data from the analysis 

was used as an input to customer agents, so that data could be summarized for later 

analysis by customer class. 

 

 

 
 

Figure G-1: AIC vs number of clusters; Customer input f=data for flex 

Akaikes Information criterion (AIC) provides a measure of the quality of models 

for a given set of data. The lower the number the better the model. According to 

Figure G-1, one might pick 9 or 10 clusters to reduce the AIC factor to an acceptable 

level. However, with 10 clusters it was found that it was difficult to theorize about 

the various differences in cluster. As a general rule of thumb, typically researchers use 

2 - 5 clusters, as it is easier to explain the meaning of cluster membership. An analysis 

of five clusters is therefore presented below using output from SPSS 25. 
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G.1 Overview of Customer Clusters 

The five clusters were extracted from the input data using a 2-step clustering 

process. The results and the various distributions are summarized below. 

 

 

 
Figure G-2: Customer cluster sizes and distribution 
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G.2 Relative distributions 

 

 
 

Figure G-3: Customer cluster comparisons using Box-Whisker plots 
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G.3 Categorization of Customer Clusters 

  

Cluster Number Description 

1 Everything Low (bids & Volumes) 

2 High DSR flex, everything else low 

3 High Solar and High Wind flex 

4 High Volumes of EV flex 

5 High Battery Thermal and Wind flex 

Table G-1: Categorization of customer clusters; Description 

Note about 50% of those customers in Cluster 1 would be considered as customers 

in fuel poverty.  

 

 

  



423 
 

 

Appendix H: Class Diagrams 
 

As this is a large package only a selection of class diagrams are shown. An “m” in 

a pink circle refers to methods and “f” in a yellow circle to fields.  

 

 
Figure H-1: Code overview 
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Figure H-2: Class diagrams – Overview 

H.1 Domestic Customer Agent 

 
Figure H-3: Class diagrams – Domestic Customer agent 
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H.2 Current Aggregator Offers to Customers 

 

 
Figure H-4: Class diagrams – Aggregator offer to customers 

 

H.3 Bids to aggregator from Domestic Customers 

 
Figure H-5: Class diagrams – Bids to Aggregator 
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H.4 EMLabRole 

 
Figure H-6: Class diagrams – EMLabRole  

 

H.5 Aggregator Flex Bid Matrix - Bids by Bucket 

 
Figure H-7: Class diagrams – Bidding  
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H.6 Bids to ISO by Aggregators/Generators  

 

 
 

Figure H-8: Class diagrams – Bids to ISO  
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Appendix I: Aggregator: Selection of 

Business Models at Year End 
 

At the end of each calendar year, (31st of December) aggregators assess their 

performance and consider changing business model. A forecast of future performance 

for the various business models (six in this case) is performed. Note in a future 

iteration of the simulations, calendar years will be allowed to start at any point in the 

year e.g. 31st July as opposed to 31st Dec. Currently a “naïve” forecast of Clearing 

Price (CP) is carried out using last year’s CP as a predictor of the future.291 

Although NPV could be used to assess future economic performance, in the current 

model a profit margin comparison has been performed. It is expected that with the 

assumptions made the two approaches will be broadly similar. Profit margins 

equations for the three base business models are provided in equations ((I-1) – (I-3) 

below. Risk is accounted for using the Ang, Chen and Sundaresan model discussed in 

Chapter 5 (equation (5-12)). 

  

( * * arg )*(1 )
Pr _  %     

( * )

clear mwh
percent

clear mwh

P Vol m in Depr OPX taxrate
ofit Pay clearing price

P Vol


  
  (I-1) 

(( )* )*(1 )
Pr _       

( * )

clear bid mwh
percent

clear mwh

P P Vol Depr OPX taxrate
ofit Pay bid price

P Vol


   
  (I-1) 

(( )* )*(1 )
Pr _  fixed      

( * )

clear fixed mwh
percent

clear mwh

P P Vol Depr OPX taxrate
ofit Pay price

P Vol


   
  (I-2) 

Where:  

clearP - Expected clearing price in market £/MWh 

                                         
291 The actual methodology looks at clearing prices associated with the upcoming demand. It uses 

CP/demand data with a lookback horizon of 1 year from the current tick. 
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bidP  - Average expected bid price
 

argm in - Aggregators margin % 

fixedpriceP  - Fixed price offered £/MWh 

mwhVol - Average volume of customers (MWh) 

Depr  - Yearly depreciation  

OPX - Yearly Operating costs 

taxrate - Corporate tax rate 

 

The new Business Model for the ensuing year is found by comparing the values 

provided by equations above with adjustment for risk292. 

  

                                         
292 The maximum utility value is chosen. Expected profit along with expected volatilities and the value 

of risk (if appropriate) are used to calculate a utility for each business model using the Ang, Chen and 

Sundaresan model. 
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Appendix J: Agent Model Description 

ODD Protocol  
 

 

ODD Model description 

The agent based model presented herein is described in accordance with the ODD 

(Overview, Design concepts, and Details) protocol [525-527]. In addition Müller et al., 

[625] extended the ODD methodology to include for human decision making (ODD 

D+ (decision plus) ). Although this thesis does not strictly follow the additional 

categories outlined in ODD D+, descriptions are added where it was felt appropriate293. 

 

Figure J-1: ODD framework: Reproduced from Fig 1 from [528] 

The ODD framework description for the current PyEMLab-Agg is given below: 

 

1. Purpose: This model has been developed to simulate a low-carbon distribution 

network where customers provide flexibility via a bidding market managed using 

                                         
293 Mainly on agent decision making. 
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aggregators and an ISO. The effect of corporate behaviour (aggregator companies with 

risk management) and more human like customers (emotional and bidding behaviours) 

have been included to provide a more holistic view of how this market might operate 

in the future. 

2. Entities, state variables, and scale: In this model, agents are individual households 

(domestic customers), small and medium sized entities (industrial customers), 

aggregator companies, generators and the Independent System Operator (ISO). 

  

Domestic Customer agents are characterized by the state variables: identity number, 

marginal cost (for Up and Downward volumes – this is a starting value), up and 

downward flexibility volumes (MW), expectation for yearly revenues (£ per year), 

cluster ID number (type of customer e.g. affluent with 2 EV’s, or customer with 

limited flexibility), contract types and conditions e.g. price payment terms. Revenues 

from biding per contract year (running totals) are also stored, as well as the last bid 

(volumes and price). Domestic customer agents keep track of their emotional state 

about particular aggregators using an Agent_Zero framework described in section 6.4 

of the thesis. They can also change contracts with Aggregator agents yearly. 

 

Industrial Customer agents are characterized by the state variables: identity number, 

marginal cost (Up and Downward), up and downward flexibility volumes, current 

aggregator and contract terms with aggregator. They are similar to Domestic 

Customer agents, but do not utilize the Agent Zero logic and do not change 

Aggregators during the course of the simulation, nor contract type. They simply bid 

at marginal costs and volumes. 
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Aggregator agents are characterized by the state variables: identity number, name, 

latest contract offers, capital and operating costs, portfolio bucket volumes, bidding 

prices for aggregation and disaggregation. The number of up/down bid buckets, 

option/hedging values, clearing price forecasts, price volatility values and various 

status flags/values such as Risk/Hedging on, a risk aversion factor and the current 

business model. Aggregators keep an account of their costs and revenues generated 

using an internal set of matrices (P&L matrices). 

 

ISO agents are characterized by the state variables: identity number, name of ISO, 

reserve volume % and Volume of lost load (VOLL) value. In the current simulation, 

only one ISO agent is present. Its primary purpose is to “clear” the market, store bids 

and inform bidders (aggregators and other larger entities such as generators) of their 

winning bids in the market and to pay them as necessary. In the current simulation, 

the ISO does this at zero cost. 

Generator agents represent large generation assets i.e. power plants of different types 

and associated costs. Costs are fixed at the beginning of the simulation. Agents are 

characterized by the state variables: identity number, generator name, technology 

type, Marginal cost (Up and Downward), up and downward flexibility volumes, 

expectation for yearly profits (£ per year) and an update price methodology (a number 

which is used to determine how bidding prices will be updated). A record of the 

revenues and profits generated from bidding are included in a set of profit and loss 

matrices. 
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3. Process overview and scheduling— In this model, users control the process by using 

a python scripting language that specifies what procedures/modules need to be run 

and in what order. Users can therefore run the model with and without social message 

propagation for example. The base model uses the following procedures that are run 

hourly, weekly, monthly and yearly as described in more detail in Chapter 7 of the 

thesis.  

  

Initialization 

 Read in customer (Industrial and Domestic), aggregator, generator, flex demand 

data from CSV files. 

 Create and Initialise agents using Agent Factory’s294  

 Initialise various in-memory arrays to store data. 

 

Hourly 

 Domestic Customers Create And Send Bids to its current aggregator     

 Industrial Customers Create And Send Bids to its current aggregator                          

 Generators Create And Send Bids directly to ISO 

 Aggregators forecast future price volatilities and clearing price probabilities based on 

historical data 

 Aggregators aggregate bids from Industrial and Domestic customers into multiple buckets 

e.g. 10 

 Aggregators Risk Manage – estimate risk of each bucket and decide whether to hedge. 

Calculate and account for cost of hedge         

  Aggregators send bucket bids to ISO 

 ISO takes bids and clears the market using economic dispatch – and calculates a clearing 

price where demand = supply. ISO sends out cleared bids (i.e. bucket bids and generator 

bids) that have been accepted. 

                                         
294 The factory pattern [626] is a common design pattern to create objects. The objects in this case are 

a collection of heterogeneous agents.  



434 
 

 Aggregators disaggregate: Takes cleared bids and apportions these cleared bids to the 

various customers. Accounts for payments to individual customers. Model assumes instant 

payment. 

 Generators update accounts of cleared bids 

 Aggregators Update Accounts (daily monthly) & use Zip trader algorithm to adjust future 

bids 

 Customers (industrial and domestic) process Cleared Bids and update internal accounts of 

agents 

 Update customer zip trader to enable adjustment in customer bid level  

 Update generator bids and accounts 

 

Weekly  

 Update Customers Agent_Zero (AZ) modules – Updates emotions etc. 

 Propagate Messages (Social Media) to connected agent (if thresholds in customer AZ 

module are met). 

 Calculate Hurst exponents and Store 

 Collect dispositions etc. and Store weekly stats 

 Update propagations and effects on Agent Zero models within Agents  

 

Monthly        

 Update Agent_Zero Scores using Social Scores from other connected  agents  

 Aggregators review performance of existing contract and choose new contract type and 

terms if applicable 

 If domestic customer is due to renew the customer compares and selects from aggregator 

offered Contracts.   

 Calculate elasticity Impact on monthly demand by comparing last months average Clearing 

Price with this months 

 Collect monthly stats and store   

 

Yearly 

 Assess aggregator yearly performance and aggregator checks for market exit     

 Aggregator Business Model (BM) Assessment And Selection change BM 

 Calculate yearly elasticity effect on demand  

 At end of simulation, store various in-memory matrices into hdf5 database.   

 

The model synchronously updates. All agents bid at the same time and currently 

order does not matter. Each simulation time step represents 1 hour. Simulation steps 

occur every hour for five years. 
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4. Design concepts 

Emergence: Emergent phenomena are expected to be seen in this model as it is a 

complex simulation that includes adaptive behaviour with emotions. The use of Hurst 

coefficients/exponents have been used to detect such emergent behaviour. 

 

Adaptation: Agents adapt to changing prices and offers made to them by aggregation 

agents. Social media in the form of a network is used to transport messages to from 

connected domestic agents. Messages on aggregator performance as well as price 

bidding information is used. 

 

Objective: Different agents have different objectives. In this model These are 

summarized in Table J-1. 
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Table J-1: Agent objective summary 

 

Interaction: Domestic Agents who are connected via some form of social group, 

represented as a social network, can interact with each other. Different networks are 

able to be assigned to the model and affects propagation mechanics and results output. 

Every hour/week/month (timeframe can be changed), domestic customers agents 

interact by sharing bid price information and their views on their current aggregator 

Agent Type Objective

Domestic 

Customer

To achieve its expected yearly revenues (an input), 

or to follow clearing prices if this is higher. Daily 

bids are adjusted using Zip Trader Algorithm 

(section 6.2.3).

Industrial 

Customer

To bid its marginal cost as per input assumptions.  

This is provided to the simulation using an input 

file (CSV). 

Generators

To bid its marginal cost as per input assumptions.  

This is provided to the simulation using an input 

file (CSV).

Aggregator

1/To maximise its profits and also to meet 

minimum Return on Equity Target over the year. 

Daily bids are adjusted using Zip Trader Algorithm 

(section 6.2.3).  Target prices are set in a manner 

discussed below.

2/ To apportion bids into 10 buckets or bins so that 

it maximises its profits under different contract 

terms.

3/ To select  at year end, an appropriate Business 

model that will provide the greatest economic 

value to the Aggregator.

4/ To adjust contract terms monthly (for new 

contracts) to maximise profits.

ISO

Simply to clear the market using an Economic 

dispatch algorithm.  Future work will include an AC 

OPF formulation which will be used to clear the 

market at minimum cost. 
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with their neighbours. 

Aggregator Agents “capture” domestic customers by advertising contract details 

monthly, prices type of contract etc. Domestic customers evaluate said contracts at 

the end of their contracts and based on this may choose to change their aggregator 

relationship e.g. leave the current one for a new one with a contract with better terms. 

Only a certain proportion of the agents reach the end of their contract in any one 

month and is based on OFGEM data on contract renewals throughout the year. 

Aggregators collate bids from domestic and industrial customers and package these 

bids into a number of buckets – Ten295. That is the aggregator presents ten bids to the 

ISO. These bids are submitted to an ISO agent who also receives bids from generator 

agents. The ISO agent clears the market and notifies aggregator and generator agents 

of the current clearing price and the volumes that were accepted. In some cases some 

of the aggregator buckets bid might not be cleared. 

 

Learning: Agents use a ZIP Trading algorithm to alter their bid prices. In the case of 

Domestic customers, the ZIP algorithm uses a set point (target) that is a combination 

of past clearing prices and expectations about revenues. The customer agent has a 

view on what level of revenues it wishes to earn over the year (input data driven), but 

will also be swayed by the value of the recent historical clearing prices. 

In the case of the aggregators, they estimate setpoint/target prices that should 1/ 

cover their operating and capital costs and 2/ provide them with the maximum profit.  

Aggregators also collect data during the simulation and use optimization routines 

                                         
295 This can be changed. 



438 
 

to change their offers to domestic customers. These offers represent potential new 

contracts. In the current simulation Generators, Industrial customers and the ISO 

agent have no learning abilities, although this can be easily extended. 

 

Decision-making: Currently only the Aggregator and Domestic Customer agents, are 

making decisions during the simulation. This is summarized in J-2. 

 

Agent Type Decision Description 

Aggregator 

Risk management 

Infrastructure 

Investment 

Whether to pay for additional equipment/hardware 

if not already risk managing 

  Hedge 

Whether to pay for the cost of the hedge and buy an 

option to cover potential revenue reductions 

  

New Business 

Model 

At year end; decides on whether to change its 

business model. One of six - Revenue generation 

model and risk management stance 

  Contract Terms 

Decide on the contract terms to offer to new and 

expiring customers- uses optimization to decide on 

price terms and contract type. Changes monthly 

  Bucket Bid Price 

Adjusts bucket bids using a ZIP trader algorithm 

adjustment factor 

 

Bucketing 

Algorithm 

Current runs are fixed with one type but some 

options allow for the number of buckets to be 

changed during the simulation. The Bucket edges 

e.g. 20-60 £/MWh; 61 -200 etc. are apportioned 

during the bucketing process using predictions of 

clearing price  

  Exit Market 

After X years of losses whether or not to exit the 

market 

Domestic 

Customer New contract 

At end of existing contract, choose from offers from 

the various aggregators or not at all  

  Bid Price 

Uses previous or base marginal costs for flexibility 

adjusted by a factor which is adjusted using a ZIP 

trader algorithm 
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Agent Type Decision Description 

 Domestic 

Customer 

contd. Exit market 

If after x years of not meeting customer expectations 

whether to leave the market or not 

  

Volume of flex to 

bid (option) 

Currently all sims use the max volumes of flex. The 

model is able to adjust those volumes. E.g. should a 

customer only supply 50% of the max volumes 

Table J-2: Decision-making in key agent types 

 

Prediction. To evaluate and choose bucketing ranges (bin sizes for aggregation) the 

aggregator uses historical data to estimate a probability distribution function (PDF) 

of clearing prices. This PDF is used to apportion bids to buckets so that the Agent is 

likely on a probabilistic basis to maximize its revenues.  

 

Sensing: Agents update emotions based on the interactions with other agents on a 

social network. Clearing prices produced by the ISO from economic dispatch of power 

are broadcast to all agents, who can analyse such data to improve bids. This data is 

used by the ZIP trader routines. Aggregators also publish their new contract terms 

monthly (type and values) and are shared with domestic customers – who use such 

data to assess whether they would like to take a new contract. 

 

Stochasticity: The bidding algorithms used by the various agents have a random 

element within them. Analysis has shown that clearing prices could have a variability 

of +- £5-15/MWh dues to such random fluctuations.  

Current Customer input data has been randomised. For example, expectations, 

Customer location on social network randomized. 
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Propagation of messages between domestic customer agents depends on 

probabilities associated with an emotion value stored within the agent. Higher emotion 

values have a higher probability of being sent. A base receive probability of 30% is 

used296. That is, if a random number is <=30% messages sent by connected agents 

over a social network will be received and processed.  

 

Observation: Data is collected and collated into in-memory arrays and output into an 

hdf5 database at the end of the run. Data collected includes around 50 sets of variables 

some stored as three-dimensional arrays so that data is split by customer type and by 

aggregator. Histograms and distributions of contract terms (e.g. prices, margins) are 

also collected through time. Agent_Zero values for key agents are also collected. 

Data output and trends have been plotted using Excel, although software packages 

such as Miner3D [627, 628], SPSS [194, 587, 589] have also been used. 

 

5. Initialization: A total of 50,000 Domestic customer agents, 4500 Industrial customer 

agents, 59 Generator agents and six Aggregator agents were created, using Agent 

Factories. Agents’ characteristics were initialized with data collected for households’ 

locations and socioeconomic characteristics. Model parameters such as simulation 

length, time steps, propagation probabilities etc. are initialized at start up. Data is 

read in from CSV files. 

 

6. Input data: The model uses input data in the form of CSV files. Appendix F 

                                         
296 This can be changed and could be assigned individually to individual agents. 
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provides examples of these files. 

 

7. Sub models: The model consists of a number of sub models as outlined below.  

7.1Agent_Zero (AZ): The AZ framework [89] has been adapted to allow customers 

to keep track of emotions social interaction scores and incorporate logic associated 

with contract performance (see thesis section 6.4). The AZ framework is embedded in 

domestic customers and keeps track of emotions and provides a score which is used to 

assess relative aggregator performance. 

7.2 Risk Evaluation: Agents calculate risk values by using an algorithm discussed 

in section 5.7 & 5.8 of the main part of the thesis. 

7.3 Zip Trader: See section 6.2. Dave Cliffs ZIP trader [21] has been used to adjust 

bids during the simulation.   
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Appendix K: Notes for Long Term 

Cases presented in Table R-1 Appendix 

R 
 

*Notes for Table R-1 in Appendix R. 

All cases use the same Customer and aggregator input data. All cases bar case 6 and 7 use 

equal number of bids in each bucket as the bucketing algorithm 

Base Case Assumptions 

Balancing demand sensitivity factor = 1.5. # Balancing demand is 50% higher than those 

presented in the input file 

Generation output sensitivity factor = 0.3  # All generators produce 30% of the levels 

specified in the input file 

Domestic Customer flexibility sensitivity factor= 1  # Multiplies supply of flex volumes for 

each customer as contained in input file 

Domestic Customer bid price sensitivity factor= 1 # Multiples Marginal costs in input file by 

said factor - used in customer bidding values 

Aggregator_opx_CPX_sensi_factor= 1 # OPX CPX 

Elasticity long term effects flag on = True  # Yearly effect 

Elasticity short term effects flag on = True  # Elasticity short term i.e. monthly effects 

Probability of domestic customer agent receiving message = 0.3 

Stimulation adjustment factor =1  # e.g. need 1 stim from neighbour to get a 1 one stim 

score sent to agent zero V 

agentzero_learn_rate=0.1 
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agentzero_V_wt=0.333 

agentzero_P_wt =0.333 

agentzero_S_wt = 0.333 

Aggregator number of buckets=10 

Number of aggregators = 6 

Bucketing algorithm - Equal numbers of bids in each buckets 

Frequency adjuster for demand =1 

Domestic customer yearly expectation =£10/Year 

Aggregator Risk - as per data input ( 3 with risk hedging on and 3 aggregators with off) 

Aggregator Numbers = 6 

Domestic customers = 50000 

Industrial Customers = 4500 

Table K-1: Parameters – Base case 
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Appendix L: Stakeholder Equations 

for Cost Benefit Analysis 
 

Equations for the different stakeholders under the base case. Figure L-1 provides 

a high level overview of how the three tables shown in more detail in Figures L-2 – 

L-4 are related. In particular Figure L-4 presents the difference between Figure L-2 

and Figure L-3 and represents the net benefit to particular stakeholders. CPNew 

represents the clearing price with aggregation and CPbase without aggregation. A 

tax rate of 20% is assumed (0.2 factor in some equations). ISO’s are assumed not to 

charge for their services. See section at end of tables for definitions of variables. 

 

 

Figure L-1: Cost /Benefit overview 

See below for details on each of tables shown above. 

Clearing  Price >> CP base CPNew Benefits/Costs

Case >> Base as Usual Case: No Aggregation Flex Case Difference

Aggregator 0 (CPNew *Vols_flex*marginagg - OPX-CPX)*.0.8 (CPNew *Vols_flex*marginagg - OPX-CPX)*.0.8

Customers  providing  flex 0 CPNew *Vols_dom_flex*(1-marginagg) CPNew *Vols_dom_flex*(1-marginagg)

Energy Retailer

V_Dom_tot*margin_retail*CPbase*0.8/0.

45*affectonDAprice factor

V_Dom_tot*margin_retail*CPNew*0.8/.45*affect

onDAprice factor

-V_Dom_tot*margin_retail*(CPbase - 

CPNew)*0.8/.45*affectonDAprice factor

Domestic Customer 

energy Retail

-V_Dom_tot * 

((1+margin_retail)*CPbase)/0.45*affecto

nDAprice factor >>>>>>

-V_Dom_tot * 

((1+margin_retail)*CPNew)/0.45*affectonDAprice 

factor >>>>>>

(V_Dom_tot*(1+margin_reatil)*(CPbase-

CPnew)/0.45*affectonDAprice factor

Government (Tax)

(Energy_Retailer 

+Producers_Generators_wholesale 

+ProducersFlex 

+Industrial_Customers_Wholesale)/0.8*0

.2

(Aggregator+ Energy_Retailer 

+Producers_Generators_wholesale 

+ProducersFlex + Industrial_CustomersFlex + 

Industrial_Customers_Wholesale)/0.8*0.2

(Aggregator+ Energy_Retailer 

+Producers_Generators+Industrial_CustomersFlex + 

Industrial_Customers_Wholesale)/0.8*0.2

ISO 0 0 0

Producers Generators 

wholesale

margingen*CPbase*volgensbase*0.8*aff

ectonDAprice factor

margingen*CPNew*0.8*vol 

gensnew*affectonDAprice factor

-margingen*(Cpbase*volgenbase-CPnew 

*volgennew)*0.8*affectonDAprice factor

Producers Flex CPbase*volgenflex*0.8 CPNew*volgenflex*0.8 (CPNew-Cpbase)*volgenflex*0.8

Industrial Customers Flex 0 (1-marginagg)*CPNew*vol_ind_flex*0.8 (1-marginagg)*CPNew*vol_ind_flex*0.8

Industrial Customers 

Wholesale

(Industrial_out_val -

vol_ind_tot*CPbase*affectonDAprice 

factor)*0.8

(Industrial_out_val -

vol_ind_tot*CPNew*affectonDAprice factor)*0.8

-(Industrial_out_val -vol_ind_tot*(Cpbase- 

CPNew)*affectonDAprice factor)*0.8
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Figure L-2: Cost/benefits to stakeholders in Business as Usual case 

 

CP price >> CP base

Case >> Base as Usual Case: No Aggregation

Aggregator 0

Customers  providing  flex 0

Energy Retailer

V_Dom_tot*margin_retail*CPbase*0.8/0.

45*affectonDAprice factor

Domestic Customer 

energy Retail

-V_Dom_tot * 

((1+margin_retail)*CPbase)/0.45*affecto

nDAprice factor

Government (Tax)

(Energy_Retailer 

+Producers_Generators_wholesale 

+ProducersFlex 

+Industrial_Customers_Wholesale)/0.8*0

.2

ISO 0

Producers Generators 

wholesale

margingen*CPbase*volgensbase*0.8*aff

ectonDAprice factor

Producers Flex CPbase*volgenflex*0.8

Industrial Customers Flex 0

Industrial Customers 

Wholesale

(Industrial_out_val -

vol_ind_tot*CPbase*affectonDAprice 

factor)*0.8
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Figure L-3: Cost/benefits to stakeholders in aggregation case 

 

CP price >> CPNew

Case >> Flex Case

Aggregator (CPNew *Vols_flex*marginagg - OPX-CPX)*.0.8

Customers  providing  flex CPNew *Vols_dom_flex*(1-marginagg)

Energy Retailer

V_Dom_tot*margin_retail*CPNew*0.8/.45*aff

ectonDAprice factor

Domestic Customer energy 

Retail

-V_Dom_tot * 

((1+margin_retail)*CPNew)/0.45*affectonDApr

ice factor

Government (Tax)

(Aggregator+ Energy_Retailer 

+Producers_Generators_wholesale 

+ProducersFlex + Industrial_CustomersFlex + 

Industrial_Customers_Wholesale)/0.8*0.2

ISO 0

Producers Generators 

wholesale

margingen*CPNew*0.8*vol 

gensnew*affectonDAprice factor

Producers Flex CPNew*volgenflex*0.8

Industrial Customers Flex (1-marginagg)*CPNew*vol_ind_flex*0.8

Industrial Customers 

Wholesale

(Industrial_out_val -

vol_ind_tot*CPNew*affectonDAprice 

factor)*0.8
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Figure L-4: Net (Differential) Cost/benefits to stakeholders 

 

 

Case >> Benefits/Costs (Difference Case flex - BAU))

Aggregator (CPNew *Vols_flex*marginagg - OPX-CPX)*.0.8

Customers  providing  

flex CPNew *Vols_dom_flex*(1-marginagg)

Energy Retailer

-V_Dom_tot*margin_retail*(CPbase - 

CPNew)*0.8/.45*affectonDAprice factor

Domestic Customer 

energy Retail

(V_Dom_tot*(1+margin_reatil)*(CPbase-

CPnew)/0.45*affectonDAprice factor

Government (Tax)

(Aggregator+ Energy_Retailer 

+Producers_Generators+Industrial_CustomersFlex + 

Industrial_Customers_Wholesale)/0.8*0.2

ISO 0

Producers Generators 

wholesale

-margingen*(Cpbase*volgenbase-CPnew 

*volgennew)*0.8*affectonDAprice factor

Producers Flex (CPNew-Cpbase)*volgenflex*0.8

Industrial Customers 

Flex (1-marginagg)*CPNew*vol_ind_flex*0.8

Industrial Customers 

Wholesale

-(Industrial_out_val -vol_ind_tot*(Cpbase- 

CPNew)*affectonDAprice factor)*0.8
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The equations have been used to create a net benefit analysis with graphs for 

various stakeholders under different assumptions shown in section 8.7 in the main 

thesis. 

  

where:

CPbase Clearing price before aggregation base case

CPNew Clearing price average after introduction of aggregation

V_Dom_tot Total domestic Volumes Mwh of customers in retail

margin_retail Retailer margin

margingen Generator owner margin

Volgensbase Generator volumes Mwh before aggregation

Volgennew Generator volumes Mwh after aggregation

Vols_flex Volumume of flexibility supplied Mwh (Domestic and Industrial) = Vols_dom_flex+Vols_ind_flex

marginagg Aggregrator margin.  Customer receivers margin of (1-marginagg)

vol_ind_tot Total Industrial customer volumes Mwh - All volumes incl flex

OPX/CPX operating and Capital costs

Vols_dom_flex Doemstic customers flex volumes

Vols_ind_flex Industrial customers flex volumes

Industrial_out_val Industrial company sales revenue

affectonDAprice factor Assuming that proportion of the costs associetd with Balancing prices is apassed onto DA prices - reasonable assumption

Assumes 

Vtot remains constant

Industrial margin is (1-marginagg) .  In practice margins to the Industrial customer may be different from Domestic customers

Yearly Industrial volumes remains the same

45% of the retailer final price to consumers is associated with wholesale prices (CP)

Gens and Ind customers pay CP =- sop ignores some transmission and distribution costs

Value of Industrial output remains the same

That Generators pass on wholesale prices to their customers so their profits are a function of the wholesale price

Assuming that 5% of the CP proice in the balancing market is passed on to the Day ahead price - which would impact the retailing busininess
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Appendix M: Updating  Aggregator 

Bids   
 

Although it would be possible to utilize a Learning Automata (LA) or 

Reinforcement Learning (RL) engine to estimate and change bids, an analyses of 

historical bidding prices with its effect of customer numbers would provide us with 

clues as to how to set the optimum value. Aggregators are collecting contract and 

bidding data and could analyse historical data on an ongoing basis to help set margins, 

fixed prices and more generally the hourly bids.  

As margins to the aggregator increase, one would expect the number of customers 

to decrease as per Figure M-1a. Figure M-1 a & b assume a linear trend, but in practice 

other trends may be seen. In a similar way as the aggregator offers a greater fixed 

price to its customer’s one would expect the number of customers to increase (Figure 

M-1b). 

Use of Machine learning (ML) with such data, could also provide clues as to how 

the adjust the contract price (Pfixed) and or the margins, to maximize the profits to 

the aggregator. 

Let us assume that the relationship between the number of customers can be 

represented as a linear relationship as per Figure M-1. In practice, points would not 

exactly lie on the line as shown. 
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Figure M-1: Theoretical Relationship between number of customers and contract terms 

In Figure M-1 a the number of customers would be expected to decrease as the 

aggregator increases the % of the profit (margin) that it keeps for itself. In Figure M-1 

b an increase in the fixed prices offered to customers would result in an increase in 

customers. 

With a linear relationship the profit π can be described by the following 

relationships, which changes as the number of customers, N, changes. 

  

% %     * * arg *clear clear mwhPay clearing price N P m in Vol    (M-1) 

    *( )*fi a hxedpr rice cle r fixedp ice mwPay Fixed Price N P P Vol    (M-2) 

% * argclearN m m in c         for % clear model 

 

(M-3) 

*fixedprice fixedpriceN m P c     for fixed price model 

 

(M-4) 

 

Where  

N – Number of customers 

clearP - Expected clearing price in market £/MWh
 

argm in - Aggregators margin % 

fixedpriceP  - Fixed price offered £/MWh 

mwhVol -  Average volume of customers (MWh) 

m - slope of relationship between number of customers and margin/fixed price 

C – Intercept of linear relationship between numbers of customers and margin/fixed price 
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The slope of the line m and the intercept c can be estimated from the data 

presented in the form of (M-3) - (M-4). By substituting equation (M-3) into (M-1) 

and (M-4) into (M-2) we get (M-5) and (M-6). The profits with respect to N will be 

maximized when d

dN

  = 0 (equations (M-7) and (M-8)). 
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Solving for argm in  and fixedpriceP  provides the solutions shown in equations (M-9) 

and (M-10). 

 

arg
(2 * * )

opt
clear

c
m in

m P


    

 

(M-9) 

( * )

2 2 2opt

clear clear
fixedprice

m P c P c
P

m m


     

 

(M-10) 

 

The equations can be extended to include a quadratic representation or other types 

of trend-line. Use of such analysis after trend fitting data provides the aggregator with 

a mechanism to estimate the optimum margin or fixed price that it should offer. This 

is used in the Aggregator Agent logic. 
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Appendix N: Buckets - Limiting the 
Number of Bids 

 

It will be difficult for the traditional operators of the power grid to interact with 

so many devices and individuals, so a “middle man”, or a so called aggregator, will be 

required to manage their participation. The TSO and/or DSOs will still need to deal 

with a large number of aggregators, so to make the interactions manageable and to 

facilitate market clearing. The TSO/DSOs will need to limit the number of bids that 

each aggregator can submit to participate in Ancillary Services and/or flexibility 

markets. In California, Demand Side Response aggregators (DSR) are currently 

limited to a maximum of 10 bids per hour per aggregator [629]. The number chosen 

seems somewhat arbitrary, but fewer buckets would result in less granularity in price 

bids, whilst taking significantly more bid buckets would result in additional 

computational complexity and a requisite increase in solution time. 

Aggregators will eventually take many forms and follow different types of business 

models. Some aggregators will specialize on different types of devices e.g. Electric 

Vehicles (EV) or CGCL. Some will focus on multiple groups. As a first step SmartNet 

developed five types of aggregators (Storage, CHP, CGCL, thermostatically controlled 

Loads [TCL] and Atomic Loads (e.g. washing machines) [165]). Each aggregator 

focuses on those specific devices only. The SmartNet aggregators do not have business 

models, model risk or have any form of learning. Aggregators do not compete against 

each other. One aggregator is placed at one MV/HV node. Aggregators take customer 

bids at marginal cost (MC) and bid at MC. This thesis extends the authors work on 



453 
 

the SmartNet CGCL aggregator to include all of aspects like risk management, 

competition and representations of contracts. 

So far the major focus of research has been on the aggregation of EV’s, mainly 

from an algorithmic and optimization point of view [630, 631]. There is therefore a 

lack of work looking at aggregation of customers in general, as well as the role of the 

commercial aggregator. Optimization is one method that could be used to aggregate 

bids, but other alternatives should be investigated. 

In that context, the work on bucketing that follows borrows from the finance and 

risk management sector as it is believed that many future commercial aggregators 

would use simpler more pragmatic solutions based on bucket concepts which fit well 

with portfolio and risk management theories and industrial practices.  

Buckets could be time based [632], risk based [633], default based [634] or price 

/cost based.  

Choosing which devices go into which buckets can be thought of as clustering 

exercise. At its simplest, if risk is ignored, bids can be clustered on price/cost but in 

practice, a more sophisticated clustering strategy would usually be required.  

The current design of SmartNet does not address risk in any sophisticated way, 

but does include a cost adjustment, or delta, that can be added to the marginal bid 

cost. Calculation of the delta value has not currently been implemented. 

Although simulation approaches using stochastic optimization with constrained 

chance [635] provides a potential solution to managing risk, the bucket approach 

presented in this thesis (Section 7.2.3) and used in the thesis simulation, will allow us 

to represent risk as in a way that is familiar to many risk professionals in trading 

companies and banks. In addition, run times for stochastic optimization algorithms 
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can be of the order of 30 minutes to just over one hour [636] and may prove to be 

impractical in the context of real time electricity market clearing.  
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Appendix O: Estimates of Future 

Imbalance Volumes  
 

O.1 The Impact of Drivers on Future Imbalance Volumes and its Volatility 

Intra-day or balancing prices reflect the fact that forecasts or volume bids from 

the previous 24 hours have been incorrect or that system failures/ congestion issues 

have occurred that had not been foreseen. 

However, there are a few papers that have looked at forecasting errors associated 

with wind power, EV charging and the effects of weather on demand. Nonetheless, 

the overall effect on imbalance volumes have not been addressed in literature.  

In the section that follows a brief review of the effect of historical drivers on these 

various components is given along with a view on how different parameters such as 

wind penetration and EV penetration levels would be expected to change the volatility 

of balancing demand in the UK. Note this view does not include the impact of DSR. 

It therefor provides a view of imbalance volumes before DSR measures. This is useful 

as it means that this can be used as an input directly into a simulation without 

recourse to simulation of many networks. DSR effect measures are provided by the 

simulation. 

O.2 Weather Impact: Forecasting 24 Hours Ahead 

Imbalance volumes will be a function of system outages/congestion297 issues and 

changes in weather forecast over the day. Outturn balancing or flexibility prices would 

                                         
297 Congestion is a sign of a constraint or set of constraints in a transmission or distribution system. 

Usually, physical flow restrictions are put in place by the operator to avoid system instability, 

overheating, and unacceptable voltage levels. Congestion may be permanent due to the network 

structure or may only be temporary due to an equipment fault. 



456 
 

be expected to be related to the effect on the underlying demand curve and the 

intersection of this adapted curve with the flexibility supply curve which in the future 

will include “supply” from EV’s and flexibility provided by consumers.  

Short-term weather forecasts are used extensively by the energy sector to improve 

forecasting of demand and renewable supply [637-640]. Indeed, being able to accurately 

forecast relevant meteorological conditions will become increasingly important for 

managing and mitigating stress in a future low carbon energy networks, and will be 

especially important for aggregation companies in forecasting prices and demand for 

their services. 

Work on the effect of weather on electrical demand has been lacking either in 

scope or limited over the period in which it has been investigated [641] but the 

literature “focuses predominantly on winter-time peak demand conditions and a 

limited number of studies explore extreme stress using a whole system energy model 

“[642]. 

Peak electricity demand in the UK has a strong negative relationship with 

temperature where lower temperatures drive higher demand. 

It is difficult to predict weather many days ahead but as time horizons shorten, 

forecast become more accurate. Figure 1 in reference [643] shows the accuracy of day 

ahead predictions of a site in Exeter and indicates that 1 day ahead temperature 

forecast could be +-0.5-0.75 degree C for this particular site at the 90% confidence 

level (reproduced in Figure O-1). 
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Figure O-1: Possible temperature values – with confidence levels (Figure 1 ref [643]) 

Thorton [644] indicates that a 1 degree C change in temperature equates to 

approximately 1% of the UK electricity demand. Drax [645] provides some figures in 

absolute terms which equates to around 1.3% 298.  

Staffel uses his own model DESSTinEE (Demand for Energy Services, Supply and 

Transmission in EuropE)299, a model of the European energy sector to 2050 to forecast 

demand and can be used to look at how temperature affects demand. Results presented 

in the paper [641] for the years 2015-2030, suggests that power demand sensitivity to 

temperature (GW per deg C ) would be some 80-100% higher in the next 15 years. So 

one would expect demand flexibility to rise too300. See Figure 4 & 9 in [641] 

(Reproduced in Figure O-2 below). 

 

                                         
298 Thesis Author’s calculation 820 MW/62 GW. 

299 https://wiki.openmod-initiative.org/index.php?title=DESSTinEE. 

300 Author’s calculations based on data in Jan & Jul and using median temperatures and demand 

presented. 

https://wiki.openmod-initiative.org/index.php?title=DESSTinEE


458 
 

 

Figure O-2: Demand forecasts (2015-2030). Taken from [641] 

 Note that it may be possible in future work to adapt DESSTinEE to provide 

better granularity on the potential for consumers to deliver flexibility. However, this 

only accounts for weather conditions, whereas much of the flexibility required will be 

due to local congestion on distribution networks. 

Note that currently a 0.5 degree temperature change has approximately a 0.5% 

impact on UK demand forecasts a day ahead. This far lower than the numbers seen 

in [641]. 

O.3 The Impact of EV’s, Wind and Solar on Imbalance Volumes 

In the next few sections, literature is reviewed to estimate the various effects that 

EV charging, wind and solar forecasting have on day ahead demand forecasting and 
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therefore its impact on overall imbalance volumes. Results from this literature review 

are used in a simple Monte-Carlo model to ascertain the impact on future balancing 

volumes under different scenarios of EV and renewable penetration. 

O.3.1 Wind Forecasting 

The penetration of wind in the UK is around 19%, with Solar at 6% [646]. In 

Scotland, however, renewables generated 42.9% of Scotland's electricity output in 

2016 [647]. Balancing prices in 2015301 were found to have an average volatility of 7% 

(SD) with a range of -15.4 to 11.2%. Wind Penetration levels were around 20% in the 

UK at that time. 

Mechanisms such as EV’s and the behaviour of customers in a potentially new 

flexibility market would have an effect on these balancing values. The work in [641] 

is UK wide, so specific areas in the UK could have much more volatile flexibility 

requirements, although this is a good starting point in which to test out potential 

impacts on the system. Work on congestion in the US North East market by FERC 

[648] shows that balancing volume requirements can increase by 50% during 

congestion periods in certain areas of the US . Note this was for transmission volumes 

only. Distribution congestion could be higher. 

Graabak and Korpås [649] reviewed the variability of wind and solar resources in 

Europe (Sweden and Scotland) and reference a number of papers which have useful 

data for estimating variability on wind and solar resources. As renewable energy 

resources are likely to become more important in years to come, their impact on 

balancing volumes will become ever more important. The authors looked at various 

                                         
301 Authors calculations from data. Note volatility here refers to the standard deviation measure. 
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time horizons but the horizon of interest in this thesis is 24 hours. That is, what is 

the variability in forecasts over each hour of the next day. Weather is a major driver 

of the output of these systems. 

Several of the papers reviewed in [649] refer to ‘Step Changes’ as a variability 

characteristic. Step changes are changes in resource availability that occur over short 

time steps ranging from minutes to a few hours. 

Figure 4 in the reference shows examples of step changes in simulated power 

production scenarios in Scotland and Northern Sweden. In this example, production 

in Scotland decreases by about 40% (from 66% to 25%) over a 12-h period, while in 

Sweden it decreases from 38% to 10% in 18 h, followed by an immediate increases to 

49% in 13 h. 

O.3.2 Solar Forecasting Errors 

Predicting solar output is more fraught with difficulties as cloud cover is obviously 

more difficult to predict day ahead.  

Day ahead forecast errors for solar sites in South Korea in [650]302 are provided 

(see figure 7 in reference ). With the authors new methodology errors in the range 3-

5% are seen over the month but on certain days (figure 9); errors were much larger 

than this e.g. forecast 100% of output and got zero. 

A study in the US South West [651] indicates that the forecasting techniques that 

they compared showed mean absolute errors in day ahead forecasting of 20% - 27% of 

the nameplate capacity (Table 2 in reference). 

The point here is that systems with large amounts of renewable resources will 

                                         
302 See figure 7 in [650]. 
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obviously produce greater uncertainty in the balancing market, and storage and DSR 

will help to relieve this.  

In an Italian study [652], they show weekly numbers with errors ranging 2-5%. Fig 

5 in the paper provides probability distribution for the day ahead forecast which 

suggests that forecast are within -10% and +15% 

Table 8 in [649] summarizes 1 hour ramp rates from a study in [653] for differing 

amounts of wind and solar in the mix. If the distributions were normal this would 

suggest that variability over 24 hours could be of the order of 10-15% on average. 

In a Swedish study [654] (also referenced in [649]) shows that a lower variation 

occurs for portfolios with more wind as a percentage when compared to solar. With 

100% wind, output could be 20% out over 24 hours303 but 100% with all solar. 

O.3.3 EV Forecasts 

Islam, Mithulananthan and Hung develop a probabilistic model for forecasting EV 

charging loads day ahead [655] and use a MATLAB model to forecast EV charging 

loads on a probabilistic basis. Visual inspection of Figure 13 in the reference shows 

that on a probabilistic basis, load forecasts may be some 10% higher than the 

maximum likelihood value expected from the methodology. Figure 16, which uses a 

machine learning approach in the same paper, suggest loads could be 16% lower than 

the expected (worst case with a confidence limit of 95%). 

Xydas et al [656] use a support vector machine to forecast EV loads and compare 

various methodologies with actuals. Visual inspection of the figures in the paper (fig 

5 and 6) indicates errors of 7-14% in forecasting EV loads a day ahead. 

                                         
303 Author estimate – based on square root of time and normal distribution. 

https://ieeexplore.ieee.org/author/37282789500
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Altogether, it appears that day ahead forecast errors of EV’s could be some 16% 

in the worst case. Overall penetration of EV charging in the UK is expected to be 

around 30% in 2030 and 95 % by 2050304 [70] .  

O.3.4 Other Effects 

UK penetration of wind currently sits at around 20%. From the discussion above, 

it would appear from that peak balancing demand would be expected to 10% of total 

demand if EV and solar penetration was assumed to be zero.  

Assuming this was the case, then it is easy to deduce305 that there is around 5% of 

imbalance volumes being produced by other effects i.e. generation outages, system 

failures and transmission constraints. 

O.3.5 Combining the Forecasting Elements 

Using literature, the previous section outlined the impact that various components 

could have on imbalance volumes expressed in percentage terms of total demand. A 

simulation which uses a simple Monte-Carlo model, which takes each of these errors 

into account and uses different wind and EV penetration values, has been made. When 

these components are combined, it would appear from the analysis below that 

balancing volumes over the next 24 hours could be as variable as 15-32% (peak), 

dependent on renewable energy mix and EV penetration levels. Figure O-(a) shows 

the worst case contribution for each element discussed above. This bar chart simply 

stacks the contributions without regard to any offsetting effects between the various 

elements. 

                                         
304 Depending on scenario. 

305 By subtraction. 
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Figure O-3: Effect of various components on balancing demand 

Figure O-3(b) shows the output from a Monte-Carlo simulation of imbalance 

volume changes for 5000 simulations. The P95306 or a high balancing demand 

requirement is shown for a number of wind penetration cases. Variables in the 

simulation are as assumed normally distributed and independent. Independence results 

in a lower % balancing demand output than that shown by Figure O-3 (a) as when 

some components are high others are low and so on. This analysis is based on UK 

wide data so specific area or other operational issues could increase these values. 

Assuming a normal distribution,307 this equates to a standard deviation (SD) of 

around 7% to 10%. This about twice as high as the volatility derived in the time series 

analysis presented in section 2.6(Main thesis). 

This simple analysis therefore suggests that balancing volumes could be some 50% 

                                         
306 95th Percentile. 

307 That ranges from +- 3 Standard Deviations. 
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- 100% higher in 2030, depending upon wind penetration and assuming a 30% EV 

penetration in 2030. Note a sensitivity factor that reflects this range has been used in 

the simulations presented in Chapter 8. 
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Appendix P: Generalized Logistic 

Equation Use  
 

The generalized logistic function or Richards curve is an extension of 

the logistic or sigmoid functions originally developed for growth modelling. It allows 

for more flexible S-shaped curves such as those used in technology modelling. The 

function is named after F. J. Richards, who proposed the general form for the family 

of models in 1959 [657]. 

 

The Richards's curve has the following form: 

 

The shape of the curve can be altered with the appropriate selection of variables. 

The work herein use the symmetrical curve which takes values of A=0, K=1, C=1, 

Q=1, Beta =0.5 and V=1. However, experimentation with other potential curves was 

made. Note Q moves the symmetrical curve left to right, and increasing beta gets to 

the curve to the value of one earlier. 
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Harsher 

than 

symmetrical 

Symmetrical  

(Used in 

simulations) 

Move 

to 

right 

Easily 

pleased 

One  

sided to 

the 

RHS 

Nearly 

straight 

A 0 0 0 0 0 0 

K 1 1 1 1 1 1 

C 1 1 1 1 1 0.5 

Q 0.5 1 4 0.001 1 1 

Beta 3 0.5 1 3 1 0.1 

V 0.5 1 1 1 0.1 0.4 

Table P-1: Suggested generalized logistic parameters for different curve shapes 

To get the full extent of the shape of the curve, input values (x axis values) need 

to range from [-7,7] (see Figure P-1). The values in the simulation are [-1,1] so a 

transformation is used to fit the agent_zero scores which range from [-1,1] to the value 

of [-7,7] . In addition, the satisfaction score needs to range from [-1,1], so another 

transformation around the 0.5 is required. 

 

Figure P-1: Symmetrical general logistic curve 

Domestic customer agents are given expected revenue targets as an input at 

initialization of the simulation. The concept modelled here, is that customers will be 

looking for an expected revenue. Amounts over this expected revenue will contribute 

to the normalized score. Based on internal discussion once the raw score is 1.5 times 

the expected revenue, the normalized score from the logistic equation would saturate 
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at a value of one. See Figure P2 below. 

 

 
Figure P-2: Normalized score for Agent_Zero input 

 

 

The curve in Figure P-2 has been coded into the domestic customer agent and is 

used to create a normalized score that can be used with the Agent_Zero framework. 
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Appendix Q: Valuation of an 

Aggregator Portfolio using a Call 
Option  

 

The value of the aggregator portfolio can be represented using a call option. For 

completeness, the option valuation of aggregator bucket using a call option approach 

is shown in Figure Q-1. As discussed previously, Delta Hedging can be used with this 

option to manage risk using optimization techniques or by normal Delta hedging using 

futures (Ch 20 example in [256]).  

 

Figure Q-1: Aggregator call option value (£/MWh) for three business model cases 
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Appendix R: Longer Terms 

Simulations: Summary Results from 
14 Cases 
 

To show the effect of different assumptions on the longer-term evolution of the 

simulations, 14 cases are presented and summarized in Appendix K. In the future, an 

analysis using multilinear regression like that presented in section 8.2 (main thesis) 

will be used to investigate the impact of various drivers, but a simple comparison 

between the cases is performed here. Table R-1 below suggests that there is a 

relationship between clearing price and volatility in the said clearing308, but at lower 

prices (e.g. less than £200/MWh) the relationship is less clear. There is less of a trend 

when CP is compared with the average Hurst coefficient.  

 

 

Table R-1 Five-year long-term simulation case summary (*see notes appendix K) 

                                         
308 Note analysis based on averages and uses all years, the first year and last year data. 

Case 

Number Brief Description Assumptions/Parameters*

Average 

CP in 

year 5  

£/Mwh

Average 

CP in 

year 1 

£/Mwh

Average 

CP all 

years

Average 

Volatility 

in year 5  

%

Average 

Volatility 

in year 1 

%

Average 

Volatility 

all years 

%

Hurst 

Coefficient 

in year 5 

Hurst 

Coefficient 

in year  1

Hurst 

Coefficient 

all years

1

Base Balancing Demand =1; 

OPX/CPX factor =0.4

Bal Demand Factor = 1, OPX/CPX factor =0.4, Yearly 

Elaticity = off 705 243 521 124% 180% 145% 0.75 0.66 0.72

2

Higher Balancing Demand; Higher 

customer expectations

Case 1 with higher Balancing Demand = 1.5 and 

customer expectation =£100/year 54 456 593 344% 143% 144% 0.33 0.70 0.63

3 Aggregator Risk Hedge On As case 3 with all aggragtors with risk hedging On 62 457 600 314% 143% 143% 0.36 0.70 0.64

4 Aggregator Risk Hedge Off As case 3 with all aggragtors with risk hedging Off 139 445 566 196% 145% 142% 0.55 0.69 0.67

5

Higher Balancing Demand and 

requires more stimulation from 

social interactyion to act

Bal Demand Factor = 1.7, Stimulation adjustment 

factor =5 1884 531 1127 54% 148% 99% 0.67 0.72 0.71

6

Astropy bucketing with 

Stimulation Factor of 5

Case 5 with Astropy Bucketing.  Customer 

Expectations =£10/year Stimulation Factor =5 181 757 949 232% 123% 111% 0.02 0.73 0.54

7

Astropy bucketing with 

Stimulation Factor =1 .  Different 

Fixed Price and Margin

Aggregators use Astropy bucketing algorithm to 

aggregate bids. Start FP=100 and initial aggragtor 

margin =0.3 , Stimulation adjustment factor =5; 

Balancing Demand Factor = 1.7; Stimulation Factor 

=1 228 727 944 177% 122% 110% 0.51 0.71 0.65

8

Customers use Marginal costs to 

bid No adjustmnet

As Case 3 but with  with Domestic customer 

Expectations =£50/contract year; Start FP=100 and 

initial aggregator margin =0.3 233 223 294 200% 206% 199% 0.60 0.63 0.64

9

Customerts and Aggragtors both 

use Marginal costs to form bid

As Case 8 with Domestic customer Expectations 

=£50/contract year 233 223 294 200% 206% 199% 0.60 0.63 0.64

10 P=1; Logic preveails

Case3 assumptions but with balancing  demand 

factor  = 1.5 and P=1,V=0, S=0 1884 531 1127 54% 148% 99% 0.71 0.71 0.53

11

Domestic Customer follows Clear 

price rather than expectations

Domestic Customer Expectation = £10/yr, 

Balancing Demand =1.5 330 333 813 131% 161% 126% 0.70 0.67 0.62

12

Generation with Zip Trader rather 

than fixed Marginal Cost bidding

As Case x but Generators use a Cleraring Price 

following zip trader to alter bids. 137 446 547 199% 155% 148% 0.67 0.72 0.71

13

Domestic customer and Aggragator 

both follow CP rtaher set tragets in 

other ways

As Case 11 but with Aggregators and domestic 

customers following Clearing Price rather setting a 

target price based on expectations or profits 328 328 810 131% 161% 126% 0.70 0.66 0.63

14 V=1 Emotions prevail As Case 10 but with P=0, V=1,S=0 181 462 553 120% 154% 1.498275 0.51 0.73 0.69
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Figure R-1: Clearing price variability with Hurst coefficient and price volatility 

Table R-1 also provides simulation summary values for average clearing price 

(CP), the volatility in those prices and Hurst Coefficients. Average CP’s differ 

significantly from year 1 to year 5. This is not the case for case 8 and 9, where marginal 

costs are used to simulate clearing price output309.  

Rolling 24-hour clearing price averages are shown in figures that follow, to ease 

the understanding of trends310. Differences in evolution of the CP is seen across cases 

in Figure R-2. 

                                         
309 This is the usual way to simulate clearing prices – e.g. as in SmartNet. 

310 Hourly graphs are too detailed to compare case trajectories. 
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Figure R-2: Five-year evolution of clearing prices under different assumptions 

 


