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Abstract

The exploration of small Solar System bodies is a major topic for various space programs

due to their scientific potential, relevance to planetary defence, and resource utilization

possibilities. Designing the spacecraft’s close proximity operations for these types of

missions is extremely challenging mainly due to two factors. First, the dynamics of the

spacecraft are highly complex and non-linear due to the bodies’ irregular shape and

significant influence of the Solar radiation pressure. Second, the large distance to the

Earth and the small size of the bodies result in difficulties in the observational process

and brings about significant uncertainties in the modeling of the dynamics. Besides

the uncertainty due to Earth based observations, the difficulty in navigating around an

asteroid brings about uncertainties in the state of the spacecraft as well. These issues

can lead to higher risk of impact with the target body, reduced scientific return, and

increased planning and operational costs. This thesis presents novel methods and al-

gorithms for the design of close-proximity orbits and trajectories around small bodies,

which are capable of dealing with these issues. ESA’s Hera mission to binary asteroid

Didymos is considered as a test case throughout this thesis, to show the applicability

of these methods to real-life scenarios. First, two novel dynamics indicators are intro-

duced and used to characterise the uncertain orbital dynamics around Didymos. These

uncertain dynamical indicators are able to relate initial conditions to the sensitivity of

the state over time to different realisation of the uncertain parameters. Maps of these

indicators are made to determine the various orbits which are robust stable and thus

good options for a spacecraft. Additionally, as the two CubeSats on-board Hera plan

to perform a ballistic landing on Dimorphos, this thesis also develops a novel method

for the robust design of these landings. The previously defined uncertain dynamics
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indicators are applied to this case to constrain the impact velocity and angle to values

which allow for successful settling on the surface. This information is then used to

optimize the trajectory itself for minimal dispersion of the landing footprint. Finally,

the very-close flyby of Dimorphos by Hera is designed by developing a technique that is

able to combine the nominal trajectory design and navigation analysis steps to create

a trajectory which directly takes the uncertainties and navigation performance into ac-

count. It is shown that this significantly reduces the impact risk of the flown trajectory,

while obtaining long periods of good observability of Dimorphos. The results presented

in this thesis regarding the robust trajectory design of the different phases of the Hera

mission, show the importance of taking the uncertainties directly into consideration,

and present novel algorithms that are capable of doing this efficiently. It is therefore

extremely relevant for improving the performance and reducing the risks of future small

Solar System body missions.
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Chapter 1

Introduction

1.1 Small Solar System Bodies and their Exploration

Besides the eight planets, there are a large amount of different objects that reside in

various regions of the Solar System. These so called Small Solar System bodies (SSB),

or small bodies in short, consists of objects like asteroids, comets, Kuiper Belt Objects

(KBO), minor planets, and planetary moons.

These SSBs are early remnants of the Solar System [1], thus studying them can

provide vital information regarding fundamental scientific questions concerning: the

evolution of the Solar System, the formation of the planets, and the origin of life [6]. For

example, initial samples returned from asteroid Ryugu by the Hayabusa 2 mission has

already revealed various organic compounds, which can be compared with meteorites

that impacted Earth to investigate how materials like water were transported through

the early Solar system [7]. Besides their scientific potential, an impact of the Earth

with an asteroid, or other type of SSB, can have devastating consequences. The impact

of asteroid Chicxulub roughly 65 million years ago led to devastating atmospheric

shock waves, tsunamis around the globe, and large heat pulses. Furthermore, over the

following years the Earth’s surface was cooled as dust and debris was ejected into the

atmosphere. This event lead to a mass extinction of around 60 % of species that lived on

the Earth at that moment in time [8]. Understanding the properties of asteroids [9] and

testing method to deflect them [4] is thus of great importance to avoid future events.
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Finally, these asteroids and comets can contain several valuable resources, which can

be mined and brought back to Earth or used for in-situ resource utilization [10]. The

mining of valuable resources on SSBs can potentially have beneficial impacts on human

rights and reduces their environmental impact.

For these reasons, missions to SSBs have received a lot of interest in the past

decades. This section goes into the characteristics of the SSBs, and the missions that

have already visited several of these bodies. One upcoming mission called Hera is

highlighted, as this mission will be as an example and test case throughout the thesis.

1.1.1 Orbital and Physical Characteristics

Most of the SSBs reside in the dynamically most stable regions of the Solar System [1],

like the region between Mars and Jupiter (the Main Asteroid Belt), the region beyond

Neptune (the Kuiper belt and Oort cloud), and the Trojan asteroids in the region near

Jupiter’s triangular Lagrange points (which are stable equilibrium points found in the

three-body problem, which will be explained in section 2.3.2). An important class of

objects that do not reside in a particularly stable region are the Near-Earth Objects

(NEO), which have orbits that come close to the Earth’s orbit.

The Main Belt Asteroids (MBA) all reside within 2.1 and 3.3 Astronomical Units

(AU), have low average inclination of roughly between zero and 15 degrees, and mean

eccentricity of ∼ 0.14. When looking at the distribution of semi-major axes of these

MBAs, there are several prominent gaps where there are little asteroids. These regions

are called the Kirkwood gaps, and exist due to the fact these semi-major axes are in

resonance with the orbit of Jupiter, the most prominent ones being the 4:1, 3:1, 7:3, and

2:1 resonances. These resonances can increase the eccentricities of the bodies’ orbit over

time until it crosses the planetary orbit of Mars and/or Earth, which can cause their

removal due to gravitational interactions and/or collision. Not all the resonances with

Jupiter are destabilizing, specifically the ones located closer to Jupiter can actually

protect the asteroids from its own large gravitational perturbation and cause these

orbits to remain stable. For example, this happens for the Hilda class of asteroids,

which are in a 3:2 resonance with Jupiter.
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Figure 1.1: A collage of 20 of the 22 asteroids and comets that have been im-
aged by a spacecraft. Adapted from original montage ’Asteroids and comets vis-
ited by spacecraft’ by Emily Lakdawalla of The Planetary Society, ©ESA, 2019.
Updated 2022 by The Planetary Society. Data from NASA / JPL / JHUAPL /
SwRI / ESA / OSIRIS / ISAS / JAXA / Russian Academy of Sciences / UMD
/ China National Space Agency / Goddard / University of Arizona. Processed by
Emily Lakdawalla, Daniel Machacek, Ted Stryk, Gordan Ugarkovic, Thomas Ap-
pere. Image link: https://planetary.s3.amazonaws.com/web/assets/pictures/

small-asteroids-and-comets-visited-by-spacecraft-2022.jpg, date accessed:
March 21, 2024.
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The locations near Earth, where NEOs reside, are generally much less stable than

the region of the MBAs. NEOs have a relatively short lifespan of around 107 years

[1], which thus requires a constant resupply from other regions of the Solar System.

Numerical studies have shown that the most likely source of NEOs are the previously

mentioned Kirkwood gaps. This also requires that asteroids are constantly moved in

the asteroid belt to these gaps, which occurs likely due to collisions between asteroids

creating fragments that move to these gaps after the impact occurs. NEOs are one of

the most important class of objects as they are more easily studied from Earth and a

small but significant fraction of these objects end their life impacting the Earth, which

can cause significant harm to its inhabitants.

Impacts between asteroids can create another class of asteroids called rubble piles,

which consist of a large amount of rocky fragments with possibly large internal voids.

These rubble pile asteroids are likely a relatively large fraction of the total asteroid pop-

ulation, and many binary, or many-body, systems are also formed from these collisional

fragments [11]. Based on samples taken from the rubble pile asteroid Itokawa, visited

by JAXA’s Hayabusa mission, it is also hypothesized that these rubble pile asteroids

can absorbs shocks created by impacts much better compared to monolithic asteroids,

and thus also have a relatively longer lifetime [12].

Due to their small size, most small bodies are not spherical in shape. This results

in various different shapes and sizes for these bodies, as can be seen in figure 1.1,

where the various bodies that have been imaged by a spacecraft are shown. Besides

the location and morphology of the body, its spin state is also an important factor in

determining its dynamical history and evolution [13]. Roughly three different classes

can be defined: uniform rotators, tumblers, and synchronous rotators [14]. Uniform

rotators rotate around a single axis of rotation with a near constant rotational rate.

This is also the expected rotational state of most bodies as it is the minimum energy

state after all energy is lost due to tidal forces. Tumblers have a complex, non-periodic

or quasi-periodic, rotational state. This does not necessarily mean that all tumblers

are rotating chaotically. The number of observed tumblers is relatively low, however

this can also be due to the fact that these types of rotations might be hard to verify
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Figure 1.2: The rotational speed versus the size of a large group of asteroids taken from
various populations. The theoretical spin barrier can be clearly seen to correspond with
observations. Adapted from [1].
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Taxonomy Description Albedo Abundance

C Carbonaceous; Flat spectra; Have under-
gone little to no heating; Abundant in
outer belt

0.04 - 0.06 ∼ 40 %

S Stony; Fairly bright; Mostly in inner belt 0.14 - 0.17 30 - 35 %

D/P Quite dark; Reddish colour; Extreme
outer belt and Trojans

0.02 - 0.07 5 - 10 %

M/W Stony-iron; W when they have a water fea-
ture in their spectra; Undergone lots of
thermal evolution.

0.1 - 0.2 ∼ 5 %

Table 1.1: A summary of the taxonomy of asteroids. There are other classes out-
side these main ones, and there are other characteristics of these classes that are not
discussed here, but can be important when considering newly discovered asteroids.

through light curve observations [14]. The class of synchronous rotators only exists in

systems where they are orbiting a parent body. They are defined by having a orbital

period equal to their rotational rate. This state of rotation occurs frequently as non-

synchronous rotation often evolves into synchronous rotation due to tidal interaction

with the parent body. There is a clear relationship between the size of asteroids and

their spin rate [1], the smaller the asteroid the faster it can spin. Furthermore, a clear

upper limit can be observed for certain size ranges, as is shown in figure 1.2. This upper

limit exists due to the fact that a large part of the asteroid population is a rubble pile,

for which there is a theoretical limit of how fast they can spin before the centrifugal

force overcomes the cohesion of the internal fragments.

A final important characteristic of SSBs, and more specifically here asteroids, is

their composition. As these bodies are preserved remnants of the early Solar system,

their composition can reveal a lot regarding the formation of the Solar system. The

taxonomoy of asteroids is mostly based of their albedos and spectra, and a short sum-

mary of the main types is shown in table 1.1. This taxonomy is still used as of today,

however it is acknowledged that space weathering has an effect on the observation of

an asteroids spectra and reflectance, and thus the true composition of the interior may

differ from what is observed.

7



Chapter 1. Introduction

1.1.2 Small Body Exploration

One of the first missions to orbit an asteroid was the NEAR Shoemaker mission that

visited asteroid 433 Eros in 2000 [15]. It remained in a bound orbit around the asteroid

for around 1.5 years, requiring at the time novel mission design techniques to deal with

Eros’ complex shape and high spin rate [14]. Most of the orbit design and navigation was

done on-ground [16], relying on data from NASA’s Deep Space Network (DSN), laser

ranging, and optical images taken from the spacecraft. As the ground based observation

offered little knowledge about Eros’ physical properties, only after an initial flyby a

suitable orbit was selected, which fulfilled safety and observation requirements. After

this initial orbit, increasingly precise models for the asteroid were developed, which

allowed for lowering the orbit, which in turn resulted in more detailed observations of

the asteroid [17].

After the NEAR mission, another asteroid orbiter was developed by JAXA to visit

rubble pile asteroid Itokawa and return a sample from its surface in 2005 [18]. The

Hayabusa mission applied a hovering solution instead of inserting the spacecraft into a

gravitationally bound orbit around the asteroid, due to Itokawa’s low mass and thus low

gravitational attraction [19]. The spacecraft returned to Earth with a sample of regolith

taken from Itokawa’s surface in 2010. A second version of this mission, called Hayabusa

2, visited another rubble pile asteroid Ryugu, deployed a lander called Mascot on its

surface, and returned a sample from the surface [20]. Its trajectory design is relatively

similar to the first Hayabusa mission, with a hovering strategy employed to maintain

a favourable position with respect to the surface features it wanted to investigate.

Besides visits to asteroids, another mission called Rosetta was developed by the Eu-

ropean Space Agency to visit a comet called 67P/Churyumov-Gerasimenko. As with

the NEAR mission, the uncertainty in the shape and gravitational model during initial

analysis did not allow for orbit design prior to arrival [21]. Thus, several ”pyramid”

trajectories were designed where the spacecraft performed short arc flybys (with veloci-

ties above the systems escape velocity) at around 100 - 50 km to develop more accurate

comet models. Afterwards, an initial orbit at a distance of 29 km was selected, which

was lowered to 9 km for the final orbital phase. One of the challenges for the dynamics
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close to the surface of the comet was the interaction between the outgassing plume and

the spacecraft [22].

NASA’s Dawn spacecraft visited two SSBs called Vesta and Ceres. The difference

with previous missions is the fact that the size of these bodies is much larger then

previous missions, namely 530 km (Vesta) and 960 km (Ceres) in diameter compared

to 17 km for Eros, 313 m for Itokawa, and 4 km for 67P. This allowed for more detailed

orbital design with more stringent requirements before arrival. For example, the initial

orbit around Ceres was designed to have a minimal lifetime of 20 years under worst

case gravity field model [23].

OSIRIS-Rex is a recent mission developed by NASA. Its goal is to collect a sample

from the asteroid Bennu. The orbits around the asteroid are designed with the require-

ment that over 21 days, no maintenance manoeuvres are required to diminish ground

operations [24]. One of the special design considerations for the orbit around Bennu

is that the solar radiation pressure is relatively high compared to the gravitational at-

traction. For these types of systems, there exist a special class of stable orbits that are

located in the Sun-terminator plane (orbit normal pointing towards the Sun), which

are discussed more in detail in chapter 4. The OSRIS-REx mission used these orbits to

remain in a bounded trajectory around Bennu for long periods of time, showing that

these theoretically derived orbits are also practically stable [25].

1.1.3 Didymos and the Hera Mission

The main mission that will be used as a test case throughout this thesis is ESA’s

Hera mission, part of the Asteroid Impact and Deflection Assessment (AIDA) pro-

gram. AIDA is a collaborative mission between ESA and NASA to test the effec-

tiveness of a kinetic impactor, by impacting the secondary of binary asteroid system

(65803) Didymos, consisting of the primary body Didymos and smaller moon Dimor-

phos. ESA’s contribution to AIDA, the Hera mission, will visit the asteroid in late 2026

after NASA’s DART spacecraft successfully impacted Dimorphos in September 2022.

Hera aims to characterize the physical properties of the binary system and investigate

the consequence of the impact in more detail [2].

9



Chapter 1. Introduction

The impact by DART demonstrated the technical capability of a spacecraft to im-

pact an asteroid [26], and successfully demonstrated the viability of the kinetic impactor

technique as an option for asteroid deflection. Following the impact, observations of

the system by several telescopes and the accompanying CubeSat LICIACube found

that the impact changed the secondary’s orbital period around the primary by 33 min-

utes [27], and that the momentum of the spacecraft impact was enhanced due to the

ejecta of the impact by a factor of ∼3.6 [4]. This impact caused some other interesting

changes to the system as well, e.g. 37 boulders of up to 7 meters in diameter were

ejected from the system due to the impact [28], and a large tail of smaller ejecta could

be observed for months after the impact [29].

The goals of Hera related to the AIDA collaboration are as follows [2]: infer the

masses of Didymos (the primary) and Dimorphos (the secondary), observe the crater

created by DART, characterise the spin state of Dimorphos, and characterise the surface

and interior of Dimorphos. Several other scientific goals, which are seperate to the

impact measurements, are set as well, focusing on low gravity geophysics, the formation

of binary systems, and comparing Didymos and Dimorphos with other asteroids and

their properties. On board Hera there is an optical camera, hyperspectral imager,

LIDAR, and infrared imager. Besides the larger Hera mother spacecraft, two CubeSats

(called Milani [30] and Juventas [31]) will be released into orbits around the system

as well. They carry separate instruments to investigate the two asteroids, allowing

for riskier operations without compromising the main mission. An inter-satellite link

(ISL) will also be present to communicate between all the spacecrafts and perform radio

science, allowing for high resolution observations of the binary asteroid’s gravity field.

Hera will arrive in December 2026, and will fly in hyperbolic arcs around the sys-

tem, similarly to Rosetta. It will also perform several technology demonstration tests,

mainly concerning close proximity operations, autonomy, and optical navigation [32].

A summary of the timeline of Hera is given in Figure 1.3. The mission starts with

an Early Charachterisation Phase (ECP) of six weeks, where the initial properties of

the asteroid are estimated. Then, the Payload Deployment Phase (PDP) of two weeks

starts where the CubeSats are released and commissioned, followed by the two week

10



Chapter 1. Introduction

Figure 1.3: Timeline for the Hera mission. Image credit: ©ESA, ESA – Science
Office, image link: https://www.esa.int/ESA_Multimedia/Images/2019/01/Hera_

mission_timeline, accessed: March 21, 2024.

Detailed Characterisation Phase (DCP), improving the initial asteroid property esti-

mates by flying closer to the system. The main bulk of scientific requirements are

met during the 6 week Close Observation Phase (COP), followed by the Experimental

Phase (EXP) where additional science and technology demonstration objectives can

be met. Finally, both CubeSats and Hera plan to end their mission with a landing on

either Didymos or Dimorphos, which could significantly improve the scientific gain of

the mission.

1.2 Uncertainties

Uncertainties play an important role in astrodynamics as a whole, and especially in

small body missions. These uncertainties can come from several different sources, and

can represent random phenomena or uncertain quantities. Depending on the specific

subject, there are several ways to classify uncertainties. One general classification is be-

tween aleatoric and epistemic uncertainties [33]. Aleatoric uncertainties are irreducible

uncertainties, meaning that they are part of the system and cannot be diminished. An
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engineer has to deal with these uncertainties in their designs and cannot reduce their

effects, only mitigate them. Epistemic uncertainties, on the other hand, are reducible

and stem from the lack of knowledge of the system, and/or the numerical errors that

stem from modeling the system. Even though with increased effort these types of un-

certainties can be reduced, or even removed entirely, it might still require intensive

processes to do so and thus it might still be beneficial to design around them instead

of trying to reduce them.

There are several reasons for mission designers to try to reduce the impacts of un-

certainties: they can reduce the scientific performance of a mission [34], reduce the

accuracy of positioning systems for satellite-navigation applications [35], and possibly

cause catastrophic failure of a mission [36]. An especially important field where un-

certainties play a role is in the tracking of space debris [37], as continuous tracking

of all pieces of debris is not possible and thus the evolution of the probability density

function of the state of the different pieces of debris needs to be estimated to make sure

the debris does not interfere with active missions.

1.2.1 Uncertainties in Astrodynamics

For astrodynamics, the uncertainties can originate from three types of sources: dy-

namic, actuation, and navigation. Dynamic uncertainties come from the imperfect

modelling of the forces acting on the spacecraft, and from forces that are by nature

stochastic. Actuation uncertainties come from the improper execution of thrusters,

reaction wheels, or other devices that exert a force or torque on the spacecraft. Finally,

navigation uncertainties stem from the errors that come from estimating the state of

the spacecraft, and result in an uncertain position and velocity at certain instants of

time.

The full process of how all these uncertainties affect the operations and performance

of space missions is shown in Figure 1.4 and are as follows: first at some instant in time

an orbit determination (OD) arc starts, which can either be performed by ground or

autonomously on-board. During this arc measurements like range, range-rate, and/or

optical landmark tracking are taken, and a filter is used to process these measurements
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Figure 1.4: A visual explanation of how uncertainties affect the operations. The target
orbit is shown as a dashed circle around the asteroid. First, during the orbit deter-
mination (OD) arc, the knowledge of where the spacecraft is located and its velocity
is improved. Then, according to the measured difference between the mean estimated
state and the nominal state ∆r, a correctional manoeuver ∆v is executed. The uncer-
tain state is then propagated over time under the different forces and their uncertainties,
the uncertainty propagation (UP) arc, until the start of the following OD arc.

and estimate the state and its covariance [38]. At the end of the OD arc, the probability

distribution of the state is propagated until the next OD arc can be started. During

this arc, the dynamics itself and the uncertainties in the dynamical model affect the

evolution of the probability distribution, e.g. in figure 1.4 the uncertain gravity Fgrav

is shown to act on the spacecraft distribution. At any point of this arc (including at

the start or end), a thruster can be used to either change the orbit of the spacecraft

or perform stationkeeping manoeuvers. The actuation errors then come into play as

uncertainties in the performance of this thrust increase the uncertainty of the state. For

low-thrust/continuous-thrust missions these actuation errors need to be added together

over the whole thrusting period. The total uncertainty in the state at the start of the

OD arc is then reduced again using the measurements as the process starts again.

For Earth-orbiting missions, the main errors come from navigational and actuation

sources as the Earth environment is characterised with a high degree of precision [38].

Thus, the main influences are the navigation and actuation uncertainties. An exception

for this can be found for satellites in extreme Low Earth orbit, where the upper atmo-
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sphere plays an important dynamical role. This region of the atmosphere is affected by

space weather and is hard to model, hence it contains large uncertainties [39].

An important difficulty that arises in the uncertainty propagation (UP) process for

satellites and space debris, is the non-linearity of the dynamics. The main gravitational

force, with its 1/r term, causes the distribution to evolve non-linearly. This non-

linearity affects both the ability to predict the deterministic evolution of the spacecraft

and it causes an initial Gaussian probability distribution to lose its Gaussian nature

over time. For Gaussian random variables, the full distribution can be characterised

by the first two moments of the probability density function and simple techniques

are available to propagate them [33]. Most non-Gaussian distributions do not have

this property and thus require more complex techniques to propagate and quantify the

uncertainties.

1.2.2 Small Solar System Body Mission Uncertainties

The problem of uncertainties is made worse in the case of small body missions due to

the highly non-linear dynamics and imprecise dynamical modelling. First, the dynam-

ics become even more non-linear as perturbations like the non-spherical shape of the

body (sinusoidal terms) and Solar radiation pressure (1/r), are much more important.

Second, as in most cases before arrival only measurements from ground based obser-

vations are available, the knowledge about the dynamical environment contains large

uncertainties [40]. A summary of the various sources of uncertainties that affect a small

body orbiter during its operations is given in table 1.2.

Before arrival, in most cases the environment parameters are known with uncer-

tainties > 10 % [3]. Only after arrival can the uncertainties be lowered. For this, long

periods at the start of the mission are planned to perform in-depth investigations of

the physical characteristics of the body [53] [2]. The approach for most small body

missions to estimate the dynamical model parameters, like the gravitational parameter

and shape based gravity coefficients, is to use radiometric tracking of the spacecraft as

it moves around the body [56]. This mainly allows for the estimation of the gravity

based forces, and requires close proximity and free flight around the body.
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Source Type Notes References

Mass and
gravity
parameters

Epistemic - Different uncertainties for differ-
ent phases of the mission: radar ob-
servations, flyby observations, close-
proximity measurements
- Highest uncertainty radar (∼10
percent).
- Uncertainty of converting shape to
gravity can be calculated.

[41], [42], [18],
[43], [44], [45], [46]

SRP Epistemic - Uncertainties depend on model
and measured mass-to-area ratio.
- Rosetta experienced 5 to 10 per-
cent error during heliocentric phase.

[47], [48]

Outgassing Epistemic - Only Rosetta visitied outgassing
comet, thus not a lot of information
on the uncertainty.

[49], [50]

Navigation Aleatory - Most navigation uncertainties
come from ground based estimation.
- Error in estimation changes with
altitude.
- Generally, in initial orbit around
50 m uncertainty.
- Shape model is needed, which con-
tains non-Gaussian uncertainties.

[51], [52], [41],
[53]

Actuators Aleatory - Mainly errors considered when
performing trajectory corrections or
during momentum dumping from
translational components.
-± 0.6 mm/s for Rosetta (single mo-
mentum dumping manoeuvre) and
between 0.2 and 4 mm/s for Bepi-
Colombo.

[54], [55]

Table 1.2: A summary of different uncertainties, the categorization of them, and in
which references they are discussed in more detail.
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This was a problem for the Hayabusa spacecraft, as it mainly performed a controlled

hovering motion and the influence of Solar radiation pressure (SRP) was relatively high

compared to the gravitational force because of Itokawa’s small size. To remedy this

problem, the spacecraft performed several ballistic descents towards the surface, which

resulted in a mass estimate with an uncertainty of around 1.3% [57]. For Rosetta,

different challenges arose as the mass and gravity field was continuously estimated as

it moved from 100 km to 10 km from the body. At 30 km, the shape coefficients could

already be determined due to the complex shape of 67p, however between 10 and 20 km

the gas and dust cloud around the comet caused drag and reduced the impact from the

gravitational force, reducing the accuracy of the gravity field estimation [58]. For the

estimation of the gravity field of Bennu, again close distances were needed due to its

small size [59]. Another approach was formulated in this case where ejected particles

from the surface of Bennu were tracked to estimate the gravity field, resulting in a

highly accurate esimation of the shape based gravity coefficients [60].

1.3 Thesis Overview

1.3.1 Limitations and Challenges

As discussed in the previous sections, during the design and execution of small body

missions, engineers have to account for the highly non-linear and complex dynamics

during close proximity operations, and the large uncertainties that exist due to limited

information regarding the environment and complex navigational system. In dealing

with these problems, the following limitations in current approaches can be identified:

1. Simplified dynamical models. Outside of small body missions, Keplerian dy-

namics is mostly assumed where the motion of the spacecraft can be described by

conical sections. There are several methods to then patch these orbits together

using impulsive thrusts, leading to a simple design of the mission. Most orbiters

of SSBs experience large perturbations that make the dynamics non-Keplerian

and highly non-linear, which means that there are no closed-form solutions of the

dynamics, significantly complicating the mission design process. Furthermore,
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for other processes like uncertainty propagation and control/navigation system

design, the dynamical models are often linearised. However, for most small body

missions these linear dynamical models are not accurate anymore. In NASA’s

GNC Assessment for Future Planetary Science Mission report 1, the following

recommendation is made: ”To increase the effectiveness of mission design in the

future, increasingly more complex dynamical models must be used to perform pre-

liminary designs”.

2. Intensive ground operations. Most larger missions to small bodies take long

periods of time at the start of the mission to perform preliminary characterisa-

tion of the body and reduce the uncertainties in the environment parameters.

The mission designers then use this new information to validate and/or update

the current mission plan. For example, Hera’s Early Characterisation Phase lasts

approximately six weeks, allowing for preparation for the following phases [2].

The current trend in spaceflight is to move to smaller low-cost missions involving

CubeSats [61] [62]. These types of missions can significantly reduce the cost of

small body missions due to their smaller size, use of off-the-shelf components, and

shorter completion times. However, one segment that does not scale with size in

both cost and complexity is the ground based operations segment [63]. Requiring

large amounts of time at the start of the mission where the ground segment needs

to constantly interpret data, update the environment models, and iterate on the

mission plan, significantly limits the transition to small-scale and low cost small

body missions.

3. Decoupled Approach to Uncertainty Analysis. The chaotic dynamics, large

uncertainties, and long communication delays between the ground and spacecraft

can cause significant problems as small perturbations from the nominal state

can cause unexpected behaviour. This requires rapid response from ground to

1https://solarsystem.nasa.gov/system/downloadable_items/156_GNC_Tech_Assess_Part_I_

Onboard_and_Ground_NMD_130117_soo.pdf, accessed 03-08-2023.
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counteract, otherwise there is a significant possibility of the spacecraft escaping

the system or impacting the body. This rapid response is often not possible

due to the long distances involved and limited communication availability. This

problem is mostly tackled by performing a so-called navigation analysis after the

nominal design is done. This analysis determines the sensitivity of the trajectory

to uncertainties coming from navigation and control system performances, and

system parameter uncertainties. Based on this analysis, the nominal design is

updated by adding margins, implementing large amounts of trajectory correction

manoeuvers, and/or increasing distances with respect to the body [64] [65] [66].

These factors reduce the scientific gain of the mission, complicate the design, and

as this cycle is often repeated, the development time is also significantly increased.

1.3.2 Objective and Methodologies

Two approaches to improve upon the current limitations of designing low-cost, scalable,

and high performance small body missions can be identified: i) increasing the auton-

omy of spacecrafts, ii) designing with uncertainties and robustness in mind. Autonomy

mitigates the problems of intensive ground operations, and recent efforts have shown

that incorporating medium to high fidelity models in the autonomous decision mak-

ing process is possible [67]. However, an autonomous spacecraft still has to deal with

uncertainties in an efficient manner. Changing the mission design paradigm to focus

on implementing the uncertainty/navigation analysis from the start allows for reduced

operational costs during the execution of the mission, and potentially improved relia-

bility and scientific performance as the scientific goals can be met immediately after

arrival, in turn reducing the total mission lifetime. Furthermore, these two approaches

are not mutually exclusive, as an uncertainty focused mission design allows for better

formulation of the objectives and performance of an autonomous system, and improves

its reliability. This leads to the following thesis statement:

Thesis Statement

Combining efficient uncertainty propagation and quantification techniques with

trajectory design methods using high fidelity dynamical models, and applying them
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throughout the whole close-proximity operations design process, significantly improves

the robustness and performance of missions to small Solar System bodies.

To support this statement, several objectives are formulated which will be addressed

through the research presented in this thesis. These objectives are based on develop-

ing new techniques regarding the quantification of the effect of uncertainties on the

evolution of the spacecraft trajectory over time, and on novel approaches to apply

these techniques to different scenarios that are often present in SSB missions. These

objectives are as follows:

1. Determine the applicability and efficiency of different uncertainty propagation

techniques for trajectories around a binary asteroid, and develop an indicator

that can be used to quantify the sensitivity of a trajectory to the uncertainties

present in the system.

2. Use the previously developed indicators to determine robust stable orbits around

the binary asteroid system considering the full dynamical model.

3. Design ballistic landing trajectories on an asteroid that are reliable and have

low sensitivity to uncertainties in both the landing conditions and deployment

execution.

4. Develop a method to combine the navigation analysis and nominal trajectory

design to obtain robust trajectories for the very close flyby of an asteroid.

1.3.3 Structure

The thesis is structured as follows: at first the necessary background information re-

garding the modeling and analysis of the environment around a SSB is discussed in

Chapter 2. In this chapter, the various reference frames, force models, equations of

motion, and solution analysis methods are discussed. The following chapter, Chapter

3, then goes into the two uncertainty propagation methods that will be used through-

out this thesis: generalised intrusive polynomial algebra and non-intrusive Chebyshev

interpolation. This chapter also presents the novel ideas of the uncertain dynamical
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indicators that are used throughout this work, addressing objective 1. Chapter 4 starts

with the first application of these methods, namely the orbital motion around binary

asteroid Didymos. Mainly analysing the sensitivity to uncertainties of certain initial

conditions and the robust stability of specific orbits, focusing on fulfilling objective 2. In

chapter 5 the design of landing trajectories considering uncertainties is presented, intro-

ducing how the ideas of the previous chapters can be applied to improve the reliability

and performance of landing on Dimorphos, addressing objective 3. The application of

uncertainty propagation methods within trajectory optimization schemes to combine

the navigation analysis and nominal trajectory design is then discussed in Chapter 6,

where the very close flyby of the DART crater on Dimorphos is used as a test case,

which thus discusses objective 4. Finally, Chapter 7 presents the conclusions of this

work and recommends future directions to continue this research.
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Chapter 2

Dynamical Environment around

Asteroids

Two of the main challenges for the design of small body missions are the complex

dynamics of the spacecraft’s motion around the system and the uncertainties in the

small body environment. The main system considered in this thesis is the Didymos

(68503) binary asteroid, target of NASA’s DART and ESA’s Hera mission. This chapter

discusses the environment the spacecraft will encounter and the dynamics that govern

its motion around the asteroids.

The two bodies part of the Didymos (68503) binary asteroid system are the main

asteroid Didymos with a diameter of around 780 meters, and the secondary asteroid

Dimorphos of around 164 meters. An interesting challenge with this system is that

the DART spacecraft impacted Dimorphos in September 2022, changing some of its

properties. As this happened while this research was conducted, both pre- and post-

impact parameters are used at different stages of this research, mainly in chapter 4

the pre-impact parameters are used and in chapter 5 and 6 the post-impact ones.

The physical parameters determined from the pre- and post-impact observations of the

system can be found in Table 2.1. The effect of the DART impact on Dimorphos is

mainly seen in the change of orbital period of 32 minutes, and thus a change in the

semi-major axis of 48 meters [4]. The eccentricity is also slightly increased, to a value

of around 0.03. As this values is low enough to not alter the dynamics of the system
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Table 2.1: Physical parameters of the Didymos system, taken from [3] and the post
impact parameters are taken from [4].

System mass 5.28 (± 0.54) ·1011 kg
Mass ratio 0.0093 ± 0.0013
Heliocentric eccentricity 0.38 ± 7.7·10−9

Heliocentric semimajor axis 1.64 AU ± 9.8e-9 AU
Heliocentric inclination 3.41 +/- 2.4e-6 deg
Binary Orbit Obliquity 175 +/- 9 deg

Primary

Diameter 780 m ± 3 m
Rotational Period 2.26 h ± 0.0001 h
Ellipsoid semi-axes (a, b, c) 399, 392, 380 m

Secondary

Diameter 164 m ± 18 m
Ellipsoid semi-axes (a, b, c) 103, 79, 66 km
Binary eccentricity 0.03 (upper limit)
Binary semimajor axis 1.19 ± 0.035 km
Binary inclination 0.0 deg

Post impact

Dimorphos Orbital Period 11.372 ± 0.0055 hrs
Binary semimajor axis 1.144 ± 0.07 km

significantly for the problem considered in this work, a circular orbit will be assumed

for Dimorphos. Changes to the shape and mass of Dimorphos are also expected due to

the impact [68]. However, these changes can only be measured once the Hera spacecraft

arrives at the system, thus the shape and mass of Dimorphos used here is based on the

pre-impact measurements.

2.1 Reference Frames

This section describes the main reference frames that are used in this thesis. The orbit

of the small body with respect to the Sun is described in the heliocentric J2000 reference

frame (for brevity, this frame is referred to here as just the J2000 frame). This reference

frame is located at the center of the Sun, where the z-axis is normal with respect to the
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Figure 2.1: Didymos’ orbit in the J2000 reference frame.

ecliptic plane, the x-axis points to the location of the vernal equinox at the beginning

of the year 2000, and the y-axis completes the right-handed orthogonal reference frame.

This reference frame is mainly used to define the position of the small body with respect

to the Sun. The orbit of Didymos (68503) in the J2000 frame is shown in figure 2.1.

2.1.1 Quasi-inertial Didymos Equatorial Reference Frame

A quasi-inertial Didymos equatorial reference frame (see figure 2.2) is used to describe

the motion of the orbiter with respect to the asteroid system. The quasi-inertial de-

scription in this case refers to the fact that the heliocentric motion of the Didymos

system is not taken into account, as the time frames of the simulations discussed here

are significantly shorter than the dynamical timescales of the motion of the system

around the Sun. Under this assumption the reference frame can be interpreted as in-

ertial, even though in reality there is a small rotation happening, hence quasi-inertial.

It is also assumed that the motion of Dimorphos around Didymos is described by a

Keplerian orbit (with orbital parameters shown in table 2.1). The x − y plane of the

reference frame is defined to be in the binary’s orbital plane, where the x-axis points

in the direction of the Sun. The z-axis is parallel to the binary orbit normal. The ro-

tational motion of both bodies is described by a uniform rotation around the reference

frame’s z-axis, and coincides with the inertial frame at time t = 0. Didymos rotates
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Figure 2.2: The quasi-inertial Didymos equatorial reference frame and its orientation
with respect to the J2000 reference frame and the difference between Dimorphos’ orbit
and the Sun direction

at a speed of 0.0442 deg/s, whereas Dimorphos is tidally locked with the primary and

thus rotates at the same speed as the mean motion of its orbit around the primary. As

the obliquity of the binary orbit is around 175 degrees with respect to the heliocentric

orbit, the reference frame is flipped with respect to the J2000 frame, and the Sun is

located 5 degrees above the Dimorphos orbit plane and thus 5 degrees above the x-axis

of the quasi-inertial reference frame.

2.1.2 Synodic Reference Frame

A rotating reference frame centered at the barycentre of the binary system is also

considered, called the synodic reference frame. This reference frame rotates together

with the orbital period of the system. This results in both bodies being stationary

in this reference frame, where the x-axis is defined to be pointing in the direction of

Dimorphos, the z-axis in the direction of the orbit normal, and the y-axis completing

the right-handed frame. The advantage of this reference frame is the fact that the

equations of motion do not depend on time in this frame. The transformation between

the Didymos equatorial reference frame and the synodic reference frame is given as

follows:
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rI = RI
Sr

S =


cosωorbt − sinωorbt 0

sinωorbt cosωorbt 0

0 0 1



xS

yS

zS

 , (2.1)

where ωorb is the angular rate at which Dimorphos moves around Didymos, the

superscript of the vectors denote the reference frame in which it is taken, and for the

reference frame transformation R the subscript is the original frame and the superscript

denotes the target frame. It is important to note for the velocity components the

transport theorem needs to be used to perform the frame transformations.

2.1.3 Body-fixed Reference Frame

Finally, both bodies have an associated body-fixed reference frame. The origin of these

frames is located at the centre-of-mass (COM) of the body, and the axes align with

the constant density principal axes of the body, ensuring a diagonal moment of inertia

in this frame. As the body’s z-axes both align with the Didymos equatorial reference

frame z-axis, the transformation between them consists of only a rotation around the

z-axis:

RI
B =


cosωbt − sinωbt 0

sinωbt cosωbt 0

0 0 1

 , (2.2)

where ωb is the body spin rate.

2.2 Force Models

To model the different forces acting on a body in this system, various different models

are needed. In this thesis, the (non-spherical) gravitational forces of Didymos and

Dimorphos are considered, together with the Solar radiation pressure (SRP) force, and

the perturbing force from the gravitational influence of a ”third” body. The models

that are often used for these various forces are discussed in more detail in this section.
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2.2.1 Gravitational Force

One of the key differences between modelling the gravity of a planetary body and a

small Solar System body is their non-spherical mass distribution. This means that

using Newton’s law of Gravity is not possible, and therefore most of the results from

the two-body problem do not hold anymore. Hence, a different way of expressing the

gravitational force that the small body is exerting on an orbiter is needed.

A set of basic facts can be used to derive a condition that the gravitational model

needs to fulfill [14]. First, the gravitational force is conservative, which leads to the

fact that a potential U can be defined as follows: F = −∇U . Second, the gravitational

attraction between two different masses follows the inverse square law: F ∝ 1/r2.

Finally, the principle of superposition holds, i.e. the gravitational potential of a sum

of masses is equal to the sum of the gravitational potential of the different masses:

U =
∫
V

Gdm
r . It can be shown that from these three facts one of the most important

conditions can be derived, namely Laplace’s equation [69]:

∇2U = 0. (2.3)

Thus, any gravitational model that is a solution of Laplace’s equation and represents

the mass distribution of the small body well can be used. In this section, several of the

most common and relevant options are discussed.

2.2.1.1 Spherical Harmonics

One solution of Laplace’s equation can be found in terms of the spherical coordinates: r

the radial distance from the center of the body, δ the latitude, and λ the longitude. This

solution is called the spherical harmonics (SH) series and for modelling the gravitational

field of a non-spherical body the general expression is [38]:

Ug(r, δ, λ) =
µg
r

∞∑
l=0

l∑
m=0

(
R

r

)l

Plm(sin δ)[Clm cosmλ+ Slm sinmλ] (2.4)

where µg is the gravitational coefficient of the body, R is a normalizing radius which

is taken as the maximum radial size of the body, Plm are the Associated Legendre
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Functions (their expressions can be found in [14]), and Clm and Slm are the Stokes

coefficients which represent the mass distribution of the body.

There are various different solutions to Laplace’s equation, the reason this specific

solution is often used is due to several factors, most importantly is its functional or-

thogonality. To show why this is important and useful in modelling the gravitational

field, first two functions are defined:

Rm
l (δ, λ) = Plm(sin δ) cosmλ (2.5)

Sm
l (δ, λ) = Plm(sin δ) sinmλ (2.6)

When these functions are integrated over the unit sphere S, it gives the following

orthogonality relations:

∫∫
S

Rm
l R

q
pdS =

∫∫
S

Sm
l S

q
pdS = 0, if m ̸= q or n ̸= p, (2.7)

∫∫
S

(R0
l )

2dS =
4π

2l + 1
, (2.8)

∫∫
S

(Rm
l )2dS =

∫∫
σ

(Sm
l )2dS =

2π

2l + 1

(l +m)!

(l −m)!
. (2.9)

This orthogonality can be exploited to obtain an expression for the Stokes coeffi-

cients by multiplying the potential with Rm
l or Sm

l and integrate it over a sphere with

radius R as follows:

∫∫
S

Ug(R, δ, λ)R
m
l dS = Clm

µ

R

∫∫
S

(Rm
l )2dS (2.10)

∫∫
S

Ug(R, δ, λ)S
m
l dS = Slm

µ

R

∫∫
S

(Sm
l )2dS. (2.11)

To make sure that the Stokes coefficients do not vary significantly as a function of
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Figure 2.3: Representation of the influence of different degree and order SH coefficients
on modelling the mass distribution. The color on the spheres represent the normalised
value of the potential Ug at that location if only that coefficient is included, darker
regions represent higher values and vice versa.

l and m, a normalization is also applied. This normalization is selected to make sure

that the right hand side of Eqs. (2.8) and (2.9) are equal to 1, i.e.:

Nlm =

√
2(2l + 1)

(l +m)!

(l −m)!
. (2.12)

This also simplifies Eqs. (2.10) and (2.11) to:

∫∫
S

Ug(R, δ, λ)R
m
l dS = C̄lm

µ

R
(2.13)

∫∫
S

Ug(R, δ, λ)S
m
l dS = S̄lm

µ

R
. (2.14)

These equations basically show that if Ug is known at the different points of the

sphere S, i.e. the mass distribution of the body is known, the Stokes coefficients can
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be used to model this mass distribution and the gravitational potential it produces,

which is a direct result from the orthogonality of the SH series. This is one of the main

reasons the SH series is often used to model the gravitational field of non-spherical

bodies. A graphical representation of how the different coefficients influence the shape

of the gravitational field around the body is shown in Figure 2.3.

It can be shown from these integrals that there are several relations between the

Stokes coefficients and the higher order mass moments of an arbitrary body [14]. First

of all, the zeroth order cosine coefficient is always the same: C00 = 1. Then, C10,

C11, and S11 are all directly proportional to the position of the centre of mass of the

body. As Ug is always defined in the body fixed frame and, as stated in section 2.1, the

centre of this frame is located at the centre of mass of the body, all these coefficients

can be set to 0. The second order coefficients are all related to the different mass

moments of inertia (Ixx, Iyy, Izz, Ixy, Ixz, and Iyz). As the body fixed reference frame

is chosen to have its axis aligned with the constant density principal axes of the body,

i.e. Ixy = Ixz = Iyz = 0, this directly means that C21 = S21 = S22 = 0. This means

that for a second order and degree gravity field only the C20 and C22 coefficients remain.

It is important to note that the coefficients which are equal to zero are set to this value

because of the assumption of homogeneous density within the body. As during the

orbit determination process the coefficients are estimated from the path of an orbiter

(spacecraft or natural body), if it is found that these coefficients are non-zero, it is a

direct result of the non-homogeneous density distribution [14].

One significant disadvantage of the spherical harmonics model is that there is a

possibility of the model diverging for r < R, also known as the Brillouin sphere. This

significantly limits the use of the SH model for close proximity motion and landings

on the body itself. However, in the case that the bodies shape is sufficiently close to

a sphere or triaxial ellipsoid, there is a certain condition for the eccentricities of the

ellipsoidal shape which guarantees global convergence, namely that a < c
√
2 [70], where

a > b > c are the ellipsoid axes. Therefore, if the body used fulfills this condition, the

SH model can be used for every phase of the mission.

Another advantage for when the body is close in shape to an ellipsoid, is that there
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exists an analytical expression for the Stokes coefficients, assuming a constant density

body [70]:

R =

√
3

1
a2

+ 1
b2

+ 1
c2

(2.15)

C20 =
1

5R2
(c2 − 1

2
(a2 + b2)), (2.16)

C22 =
1

20R2
(a2 − b2), (2.17)

C40 =
15

7
(C2

20 + 2C2
22), (2.18)

C42 =
5

7
C20C22, (2.19)

C44 =
5

28
C2
22, (2.20)

where a, b, and c are the ellipsoid axes, ordered such that a > b > c.

There are several methods to calculate the acceleration from Eq. (2.4). In this

work, the representation of the spherical harmonics acceleration of [71] is used.

2.2.1.2 Polyhedron Model

Werner and Scheeres [72] developed a closed-form expression for bodies with arbitrary

shape, assuming constant density, using a polyhedron model. This model has been

used extensively in different studies and has been used for several missions, including

NEAR. The expression is as follows:

U(r) =
Gσ

2

 ∑
e∈edges

re ·Ee · reLe −
∑

f∈faces
rf · Ff · rfωf

 , (2.21)

where σ is the constant density of the body, G is the Cavendish constant, re is the vector

between edge e and r, and rf is the vector between face f and r. The expressions for

Ee (edge dyad), Ff (face dyad), Le (potential of edge e), and ωf (projected area of face

f) are all given in [14].

This method is computationally heavy, as many polyhedron shape models have a

large number of facets. The Euler-Descartes formula can give the amount of faces f and
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edges e necessary for a polyhedron specified by v vectors: f = 2v− 4 and e = 3(v− 2).

This shows that the sums of equation (2.21) can grow in numerical complexity quickly

as more detail is added to the polyhedron model. Furthermore, inherent to the model

is the need for a high resolution shape model, which is not available during all phases

of the mission. Finally, this model assumes a constant density body, as for each facet

the same density is assumed. This is often not close to reality as voids and density

variations are often found in the interior of asteroids, significantly affecting the exterior

gravity field.

2.2.1.3 Mascon model

The mass concentration, or mascon, model is a simple and easily interpretable method

that uses a set of point mass gravitation models placed inside the body and adds them

together to create a gravity field of an irregular body [72]. The total gravity field at an

exterior point becomes:

Ug(r) = G

Nm∑
i=i

ρiVi
|r −Ri|

, (2.22)

where Nm the number of mascons, ρi and Vi are the density and volume of mascon

i respectively, and Ri is the location of mascon i.

As simple as this model is, the amount of parameters that can be changed to form

the desired distribution, can make the use of these models quite complex [73]. Either

point mass or spherical mascons can be used, and several different ways of packing

the spherical mascons within the body are available: simple packing where all the

mascons are equally sized and space within a square grid, face centered packing where

the mascons are placed at the faces of a polyhedral model, or large packing where a

single large mascon is used together with smaller ones in a shell around it to represent

the density variations.

The mascon model has a similar problem as the polyhedron model, where to get

an accurate representation of the gravity field a shape model of the body is needed.

Furthermore, the discontinuous nature of the density distribution within the body can
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lead to inaccuracies and model divergence when close to the individual mascons [74].

2.2.1.4 Model Comparison

The models discussed here all have their own strengths and weaknesses, and there is no

clear choice for a model that can be used for a large variety of applications. Therefore,

it is important to consider first the application and from there select the desired model

based on their specific properties. In this section, a short comparison is made between

the different models and a summary is made of when which model is preferable.

For applications where highly non-spherical bodies are considered and a high amount

of accuracy is needed, e.g. close-proximity trajectory design, the polyhedron gravity

model is favourable. As this requires a reasonably accurate shape model of the body,

the use of this method is mainly advantageous post-arrival or post-flyby. Additionally,

the computational complexity of this method eliminates its use for early orbit and/or

trajectory design as this requires large amounts of evaluations, e.g. inside a trajectory

optimization scheme. Even though the polyhedron model is extremely accurate if a

high resolution shape model is available, the assumed homogeneous density can still

result in reduced accuracy. It was shown for asteroid 433 Eros, target of the NEAR

spacecraft, that even on a local scale the differences in gravity field can be in the order

of 1 % at the surface [56].

Even though the mascon model also requires large amounts of mascons to be used

to represent the shape of an asteroid, it does reduce the computational complexity of

the potential calculation compared to the polyhedron model, due to the simplicity of

the potential formulation. It was shown in [73] that a 1000 facet polyhedron model has

the same computational cost as for a model that uses 90,000 mascons. The same study,

however, found that the accuracy of this model does converge slowly, requiring 100,000

mascons to reach a 1 % accuracy. Furthermore, the various different packing methods

and tunable parameters like mascon sizes and locations can make this model difficult to

implement. The main application of this model can be found for near-spherical bodies

with large mass anomalies, e.g. the Moon [75], where a model with 1241 Mascons was

equivalent to a SH model of order 60 in terms of accuracy, and showed 2 to 8 times
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Model Advantages Drawbacks

Spherical
Harmonics

� Direct relationship of coeffi-
cients with mass distribution
of body.

� Can be easily used in orbit
determination process to esti-
mate coefficients.

� Numerically efficient for
(near) ellipsoidal shaped
bodies.

� No shape model (necessarily)
needed.

� Possible divergence below the
Brillouin sphere.

� For highly non-spherical bod-
ies a significant amount of
terms are needed.

Polyhedron
Model

� Depending on available data,
can be highly accurate.

� Can be used for landing, close
orbital motion, and far orbital
motion.

� Computationally inefficient
for high resolution shape
models.

� Assumes homogeneous den-
sity distribution.

� Hard to include shape and
mass distribution uncertain-
ties.

Mascon
Model

� Easily interpretable and im-
plementable.

� Efficiently model density per-
turbations on near spheri-
cal/ellipsoidal bodies.

� Various different customiza-
tion options in terms of mas-
con size, shape, and location
distribution to fit various dif-
ferent types of bodies.

� Computationally inefficient
for highly irregular bodies
requiring large amount of
mascons.

� Discontinuous density distri-
bution.

� Requires high effort fine tun-
ing of the various parameters
to get acceptable accuracy.

Table 2.2: Comparison of the three main gravitational models used in the study of the
dynamics around small Solar system bodies.
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computational speed increase.

The spherical harmonics model is the main model used in preliminary orbit design

and analysis applications due to its computational speed and direct relationship be-

tween the coefficients and the bodies’ mass distribution. Furthermore, the simplicity of

the expression allows for the use of this model in analytical frameworks [76]. The main

drawbacks can be found when using this model for extreme close-proximity operations

like landings, where the distance to the body is often below the Brillouin radius (as

mentioned before, this is not a problem for close to ellipsoidal bodies). Furthermore,

for applications where a high degree of accuracy during close-proximity operations is

needed, highly non-spherical bodies require a large degree and order model. This can

be problematic as even post-arrival the orbit determination process can only give infor-

mation up to a certain degree. For NEAR, it was shown that the coefficients could only

be found up until degree and order 10 as beyond this, the signal of these coefficients

would be below the noise level [56].

As can be seen from this analysis, there is no gravitational model that is always

preferable to others, and the specific model used depends highly on the application and

mission phase. Both Didymos and Dimorphos (the bodies considered mainly in this

work) are close to ellipsoidal in shape. Furthermore, the pre-arrival mission design pro-

cess is mainly considered in this work, where no highly accurate shape model is available

and the mass distribution uncertainties are high. Hence, the spherical harmonics model

is mainly used in this thesis.

It is noted that recently other gravitational models have been developed like hybrid

models [74] or machine learning based models [77], which are able to mitigate several

of the drawbacks seen in the models mentioned here. As these models have only been

developed recently and have not yet been extensively investigated and applied, they

are not considered here and are left for future work.

2.2.2 Solar Radiation Pressure

Solar radiation pressure (SRP) is the force acting on a spacecraft that is produced by

the impact of Sunlight on the surface of the spacecraft. The momentum produced by
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this impact imparts a small acceleration which over longer periods of time can influence

the trajectory of an object. In general, this force is quite small, but in specific cases it

can have a significant impact on the motion, e.g. for high area-to-mass ratio objects,

in libration point orbits, and for small body orbiters. Specifically, as the gravitational

force around small bodies is quite low, the SRP can be at the same order of magnitude

as the gravitational force, significantly affecting its trajectory.

To model the SRP, both the photons that are absorbed and that are reflected need

to be considered, where the reflection can be either specular or diffusive. As this force

depends on several factors (e.g. the material properties, spacecraft shape, spacecraft

attitude, and distance to the Sun) it can become quite complex to model. Three main

approaches are generally used for small body orbiters [78], which are (in order of least

to most complex): the cannonball model, the N-plate model, and the finite element

technique.

The most commonly used method of modelling the SRP is the cannonball model,

where it is assumed that a constant surface is shown to the incoming photon stream.

The acceleration for this model is given by the following formula:

aSRP = −(1 + κs)
P0

β
· r − r⊙
|r − r⊙|3

(2.23)

where κs is the specular reflection coefficient of the spacecraft, P0 is the solar constant,

β the mass-to-area ratio of the spacecraft, r the vector between the small-body and

the spacecraft, and r⊙ the vector between the small-body and the Sun. The cannonball

model provides a simple method of analysing the influence of SRP, but does not provide

the highest fidelity possible as more generally, no constant area is shown towards the

Sun (but this is often still a reasonable approximation as for most missions the solar

panels are pointed towards the Sun for a large part of the mission).

The N-plate model is a higher fidelity method, and is used when the shape of

the spacecraft becomes more complex and the attitude motion needs to be taken into

account. The spacecraft can then be modelled using a number of flat plates each with

different properties:
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aSRP =
P (d)

m

N∑
i

(
Ai cos θi

[
(1− κis)

r − r⊙
|r − r⊙|

+ 2(κis cos θi + κid/3)n̂i

]
H(θi)

)
,

(2.24)

where P (d) is the SRP at distance d from the Sun,m the mass of the satellite, Ai the

surface area of plate i, θi the angle between the incoming photon stream and the plate

normal n̂i, κ
i
s and κid are the specular and diffusive reflection coefficient respectively,

and H(θi) is the illumination function which is one if plate i is illuminated and 0 if not.

This model requires more input from the design of the spacecraft and is computationally

more expensive, but gives higher fidelity results and should be considered if the attitude

of the spacecraft with respect to the Sun changes significantly over time [40].

For even higher accuracy, a finite element technique can be used to include occulta-

tion and reflection by simulating the paths of rays of photons. The application of this

technique is, however, not suitable for inclusion in (faster then) real-time simulations

concerning the full dynamics of the environment. They can, however, be combined

with other techniques which are able to fit the results from these types of simulations,

to obtain less computationally expensive solutions. In [47] a new analytical model was

developed based on a Fourier expansion of the finite element SRP model, as the force is

periodic over its attitude angles. This model was applied to the OSIRIS-Rex spacecraft

and showed a reasonably high fidelity while minimizing the computational burden.

2.2.3 Third Body Perturbations

In general, when considering the gravitational force of a planetary body or the Sun

acting on a small body orbiter, the gravitational force will be equal to −µp/|r − d|3 ·

(r − d), where r is the position of the orbiter with respect to the small body (system)

centre of mass, and d is the position of the small body (system) centre of mass with

respect to the perturbing body. This expression can be used when an inertial reference

frame is considered, where the acceleration of the small body due to the perturbing

body is also taken into account. As the main interest here is the orbiter’s motion around

the small body, the acceleration of interest is with respect to the small body. Hence,
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the small body’s acceleration due to the perturbing body needs to be subtracted, giving

the perturbing acceleration as follows [38]:

ap = −µp
[

r − d

|r − d|3
+

d

|d|3

]
. (2.25)

The position of the perturbing body can either be taken from a simple two-body

solution, or from a pre-computed ephemeris.

2.3 Equations of Motion

Using the previously discussed force models, the equations of motion can be formulated.

The specific manner in which these equations are formulated is non-trivial as it depends

on various factors like the selected force models, specific use case, and the selected

reference frame. Hence, in this section the different options are discussed.

2.3.1 Generalised Inertial Form

In its most general form, the equations of motion of an orbiter are described in the

Didymos equatorial quasi-inertial reference frame I as follows:

F I
tot = F I

g,prim + F I
g,sec + F I

SRP + F I
g,Sun, (2.26)

where the specific forces of influence are the primary’s gravity F I
g,prim, the sec-

ondary’s gravity F I
g,sec, the SRP F I

SRP , and the gravity of the Sun F I
g,Sun. The specific

force model used depends on the specific dynamical regime considered. Ferrari et al. [79]

performed an analysis of the different dynamical regimes and which effects are most im-

portant in those different regimes. It was found that the SRP needs to be included for

most of the dynamical regimes due to the low gravitational influence of the asteroids.

For distances reaching 10 km and beyond, the third body effect of the Sun becomes

significant and needs to be included as well. Below this distance, the separate influence

of the two asteroids become significant, and as the distances to the bodies decrease to

below 1 km, the shape of the asteroids needs to be incorporated as well. It is important
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to note that this analysis was performed for the purpose of spacecraft trajectory design,

and thus different applications might require more or less accurate force calculations.

However, this does provide a good starting point for determining the most significant

forces for each dynamical regime.

2.3.2 Circular Restricted Three Body Problem

As Dimorphos is observed to be in a nearly circular orbit around the primary, and

the mass of the spacecraft is negligible compared to the two asteroids, the circular

restricted three-body problem (CR3BP) can be applied to model the system. In the

CR3BP, the synodic reference frame that rotates together with the orbit of Dimorphos

is considered. The dynamics of the third body, given in the synodic frame, can be

written as follows [78]:

ẍ− 2ẏ =
∂U

∂x
, (2.27)

ÿ + 2ẋ =
∂U

∂y
, (2.28)

z̈ =
∂U

∂z
. (2.29)

Here, the mass parameter µ = m2/(m1 + m2), the body separation distance R,

and the time constant 1/n (where n is the mean motion of Dimorphos) are used to

obtain dimensionless parameters and simplify the equations to only include µ and the

dimensionless coordinates x, y, and z. The potential U includes the rotational terms,

and other forces acting on the third body. The potential U in this case is given by:

U =
1

2
(x2 + y2) + Ug,1(x, y, z) + Ug,2(x, y, z), (2.30)

where Ug,1 and Ug,2 represent the gravitational potential of the primary and sec-

ondary respectively.

There are five equilibrium points, called the Lagrange points , which can be found

in this dynamical system by solving the following equation:
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∂U

∂x
=
∂U

∂y
=
∂U

∂z
= 0. (2.31)

All of these points lie in the x-y plane, where there are three colinear equilibrium

points on the x-axis (L1, L2, L3), and 2 equilateral points (L4, L5) [78]. The location

of the colinear points in the Didymos system (assuming point mass gravity) is shown

in figure 2.4.

The CR3BP allows an integral of motion called Jacobi’s constant, given by [78]:

C = 2U − V 2, (2.32)

where V is the velocity of the 3rd body. This variable can be seen as an energy

measure, where lower values correspond to higher energy spacecraft trajectories. Con-

stant values of C = 2U give surfaces where the velocity of the spacecraft is zero and are

called zero-velocity surface (ZVS). The ZVS restricts the motion of the spacecraft to

certain regions in space, as is shown by the black lines in Figure 2.4. For high values of

C, the ZVS blocks transport between the region around the two bodies, and between

the inner regions and the region outside of the system (Figure 2.4a). As the energy of

trajectories increases (decreasing value of C), the region near the first Lagrange point

L1 opens up to allow transport between the two bodies (Figure 2.4b). Increasing the

energy even further opens up the L2 point, which then allows for a spacecraft to enter

the inner region of the binary system (Figure 2.4c). Then, as C decreases more, the

ZVS opens at the L3 point (Figure 2.4d).

Analysing the phase space near the Lagrange points for values of C that correspond

to the ZVS opening around the Lagrange point can be of interest as the dynamical

structures in these regions can be exploited for mission design purposes [80]. Deter-

mining the eigenstructure of the linearized dynamics around the Lagrange point results

in the following general solution for planar motion:

x(t) = α1e
λtvλ + α2e

−λtv−λ + 2Re(βeiνtwν), (2.33)

where λ and ν are the eigenvalues of the linearized dynamics around the Lagrange
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(a) C = 3.17. (b) C = 3.15.

(c) C = 3.13. (d) C = 3.01

Figure 2.4: The ZVS plotted for four different Jacobi constant values.

point, v and w their corresponding eigenvectors ,and α1, α2, and β are constants

defining the specific solution. The state vector x(t) here is translated to be centered

at the chosen Lagrange point. This solution has three main components: an unstable

manifold in the direction of vλ, a stable manifold in the direction of v−λ, and a center

manifold projected on the phase space by wν . Depending on the signs of the constants

αi and β, the ZVS region in which the trajectory will end up in as t→ ±∞ is determined

by the sign of αi. Thus, for example, by selecting the proper values of these constants,

one can design trajectories that come from the exterior region and enter through the

L2 point into the interior region , moving towards L2 along the stable manifold and

moving away again along the unstable manifold. This can be an extremely powerful

tool in designing low energy trajectories that transport a spacecraft to specific desired
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regions in phase space. For example, in [81] and [82], these hyperbolic manifolds were

used to design ballistic landings on the secondary of a binary asteroid.

2.3.3 Lagrange Planetary Equations

A particularly useful way of formulating the equations of motion are the Lagrange

Planetary Equations (LPE), formulated in an inertial frame. The idea behind these

equations is that if a problem is taken that is integrable in terms of its constants

of motion, the Variation of Parameters method can be used to obtain the perturbed

solution where the constants of motion are now time varying parameters. However,

the transformation between the original constants of motion and the solution of the

problem still holds, thus these time varying parameters now describe the perturbed

solution as well [14]. For describing the motion around an asteroid, the original two-

body problem is used with its constants of motion being the standard orbital elements:

semi-major axis a, eccentricity e, inclination i, argument of periapsis ω, right-ascension

of the ascending node Ω, and σ = −nτ0 (where n is the mean motion and τ0 is the

time of periapsis passage), for which the physical meaning is explained in more detail

in [78]. If the perturbing forces can be formulated as a potential R, the LPE then take

the following form:

ȧ =
2

na

∂R
∂σ

(2.34)

ė =
1

na2e

[
(1− e2)

∂R
∂σ

−
√
1− e2

∂R
∂ω

]
(2.35)

i̇ =
1

na2
√
1− e2

[
cot i

∂R
∂ω

− csc i
∂R
∂Ω

]
(2.36)

ω̇ =

√
1− e2

na2e

∂R
∂e

− cot i

na2
√
1− e2

∂R
∂i

(2.37)

Ω̇ =
csc i

na2
√
1− e2

∂R
∂i

(2.38)

σ̇ = −1− e2

na2e

∂R
∂e

− 2

na

∂R
∂a

(2.39)

This set of equations can accurately describe how a regular two-body orbit is chang-
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ing over time due to a particular (combination) of perturbing forces. As the orbital

elements are useful for mission designers in the sense of giving a geometric interpreta-

tion of an orbit of a spacecraft, having an idea of how these elements change over time

can allow for improved design choices.

2.3.4 Uncertain Dynamics

This thesis is mainly concerned with how uncertainties affect the motion of a spacecraft

around an asteroid. Therefore, it is important to have a framework and set of definitions

to use when working with these uncertain dynamical systems.

In general, a dynamical system which is governed by fluctuating random forces

and/or random variables is called a stochastic system and is described by a so-called

Itô process [83]:

dx = f(x, t)dt+ σ(x, t)dW (t), (2.40)

where x is a state vector consisting of n random variables, f the the drift of the

system (i.e. the deterministic dynamics), W a Wiener process (also know as Brownian

motion process), and σ the n×n diffusion matrix of the Itô process which describes the

specific stochastic forces of the dynamics. For a given dynamical system that satisfies

Eq. (2.40), the probability density function (PDF) p(x, t) of the state random variable

X evolves over time according to the Fokker-Planck (FPE) equation [33]:

∂p(x, t)

∂t
= −

d∑
i=1

∂

∂xi
[p(x, t)fi(x, t)] +

1

2

d∑
i=1

d∑
j=1

∂2

∂xi∂xj
[Dij(x, t)p(x, t)], (2.41)

where xk represents the kth state variable and D is the diffusion tensor defined as:

D = 1/2σσT . Thus, given an initial PDF p(x0, t0) this partial differential equation can

be solved to obtain the evolution over time of the PDF due to an uncertain parameter

like the initial state and/or environment variables, and due to a stochastic process

characterised by σ.

The system described in Eq. (2.40) describes when there is a stochastic pertur-
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bative force present in the system. However, another important class of uncertain

dynamical systems are the systems with initial state and model parameter uncertainty,

i.e. parametric uncertainty, which is especially relevant for small body missions as the

environment around the body is often poorly characterized. In this case the diffusion

term of Eq. (2.40) disappears and the drift term now contains the uncertain variables.

The equations of motion can be described by a Cauchy problem as follows:


ẋ = f(x(t),β, t)

x(t0) = x0

(2.42)

where t is the time, x the state vector, and β a set of model parameter. Here,

x0 and/or β are uncertain and independent. In this work, parametric uncertainties

are mainly considered as these are the main sources of uncertainties for small body

missions [40]. There are certain cases for which stochastic perturbations are important,

e.g. the coupling of rotational state and SRP force for small particles [84] or the effect

of undesired translational thrusts from momentum dumping manoeuvers [85], which

should be studied in future work.

2.4 Solution Stability and Dynamical Indicators

In the previous sections the reference frames in which dynamics of an orbiter are de-

scribed were discussed, the different models for the forces have been outlined, and the

different setups for the equations of motion have been mentioned. This section will

go into how the different solutions to the equations of motion can now be found, and

how these solutions can be analysed from a stability standpoint. The discussion of the

methods presented in this section, together with chapter 3, will be used as a starting

point for the robust stability indicators presented in chapters 4 and 5.

2.4.1 Equilibrium Points and (Quasi-)Periodic Orbits

In general, the assumption is made here that the equations of motion are non-integrable

for all cases considered. This means that there is no closed-form solution to the equa-
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tions of motions, which is a key difference compared to the unperturbed two-body

system. If the dynamical evolution of a generic initial condition is desired, a numerical

integrator is used to obtain the future states. The solution obtained through numerical

integration has a finite timespan over which the solution is obtained, and always has

a limited precision. However, there are special solutions of the dynamics which are

exceptions to this, namely equilibrium points and periodic orbits, which are important

solutions to analyse as they represent important structures in the phase space of the

system.

Equilibrium points are states that satisfy the following equation: ẋ∗ = 0. Examples

of these types of points are the Lagrangian points of section 2.3.2, or the 1:1 mean

motion resonance when considering the dynamics around an asteroid in the body-fixed

reference frame [86] [87]. An equilibrium point is considered stable if any point in a

certain region around x∗ stays ”near” x∗ for an infinite amount of time. An even

stronger form of stability, called asymptotic stability, is defined for when all points in

the vicinity of x∗ converge towards x∗ over time. This form of stability is also known as

Lyapunov stability, or stability in the sense of Lyapunov [88]. By performing a Taylor

approximation around x∗, the dynamics of a small perturbation δx0 at time t0 is given

by: δx(t) = Φ(t, t0)δx0, where Φ(t, t0) is called the state transition matrix. This state

transition matrix has its own dynamics given by [14]:

Φ̇(t, t0) = A|x∗Φ(t, t0) (2.43)

A =
∂x(t)

∂x0
(2.44)

As this is a first order Taylor expansion, in general this state transition matrix is

only accurate close to the equilibrium point.

By analysing the eigenvalues and eigenvectors of Φ, the motion around an equilib-

rium point can be analysed. For Hamiltonian systems, Φ is a symplectic matrix [14],

which means that if σ is an eigenvalue, then so is its inverse, its complex conjugate,

and the inverse of the complex conjugate. This already provides the first observation
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regarding these types of systems, which is that no asymptotic stability is possible as

this requires negative real eigenvalues, which is not possible as for any negative real

eigenvalue, an inverse positive eigenvalue will also exist. It can also be shown that

there is a direct relation between the eigenvalues of Φ and A , which means that by

just analysing the eigenvalues of A (a much easier matrix to obtain), the motion near

the equilibrium due to Φ can be characterised.

From these properties of Φ, three different cases can be considered for the motion

near an equilibrium point. First, if a pure real eigenvalue is found, there will be one

positive and one negative eigenvalue (due to the symplectic nature), which results in

asymptotic stable and unstable motion near the equilibrium point. As was already

shown in Eq. (2.33) for the CR3BP system, this leads to a pair of manifolds in phase

space characterised by the corresponding eigenvectors, called the stable and unstable

manifold. The second case is when the eigenvalues are purely imaginary, which relates

to an oscillatory motion around the equilibrium point. This is a weak form of Lyapunov

stability, which does not guarantee any form of nonlinear stability. These eigenvalues

and eigenvectors define a 2D plane around the equilibrium point in which this periodic

motion is constrained, called the center manifold. The third case is for a complex

eigenvalue, which describes a combination of oscillation and attraction/expansion. The

associated manifold is similar to the central one, but instead of periodic motion it

consists of spiralling trajectories. In general, the motion near the equilibrium point is

described by a combination of all the different manifolds described before.

Besides equilibrium points, there is also another type of special solution to consider:

periodic orbits. A periodic orbit (PO) is a type of solution where the state repeats itself

after a period T , i.e. x∗(t) = x∗(t + T ) for any t. For a time-invariant system, this

condition is sufficient, however for time-variant systems it is also necessary that the

dynamics are periodic. Another difference between time-variant and time-invariant

systems is that for time-invariant dynamics there exists a large amount of possible

periods for the POs. This means that if a certain period is found for an orbit, it

is likely that there is a continuous family of POs in its neighbourhood with slightly

different periods. For time-periodic systems, the limiting period is the time-period of
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the dynamics, thus only isolated POs exist which are commensurable with the period

of the dynamics. Relating this back to small bodies, for uniformly rotating bodies

with perturbing forces that are not dependent on time there exist various families of

POs. For the Didymos system, in [89] several different periodic orbits were identified

(under the assumption that the rotation of the primary, SRP, and third-body effects

can be neglected), like direct and retrograde interior/exterior orbits, circum-secondary

retrograde orbits, and terminator orbits. In the case that the body is tumbling, and/or

there are time dependent perturbing forces, the POs seize to exist or they become

isolated if the dynamics are periodic [90].

The stability of POs can be analysed using Floquet’s theorem, which shows that the

stability can be determined from the eigenvalues of the state transition matrix taken

over one period, also called the monodromy matrix. If these eigenvalues have unit

magnitude, the periodic orbits is stable, and if the magnitude is not equal to one the

orbit is unstable. Similar to equilibrium points, one can define manifolds associated

with the different eigenvalues and eigenvectors of the PO. However, in this case the

manifolds have one additional dimension. This comes from the fact that along the

PO the eigenvalues remain constant but the eigenvectors not. Hence, from each point

along the PO a manifold emerges associated with either the stable, unstable, or center

eigenvectors and eigenvalues. The center manifold of a PO is especially important, as

it creates a torus around the PO on which quasi-periodic orbits (QPO) might exist.

These QPOs are interesting options for mission designers as they occupy large volumes

in phase space due to their high-dimensional manifolds, which allows for more trajectory

options in case there are stringent requirements on the orbit design. The difficulty lies

in the method to find general families of QPOs, and the computation of their stability.

These QPOs have been studied for small body missions in e.g. [91] and [92], where

they are shown to be excellent alternatives to periodic orbits due to their observation

characteristics.
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2.4.2 Averaging and Frozen Orbits

From a mission design perspective, it is often preferable to use orbital elements to define

initial conditions for the spacecraft and then derive how these elements evolve over time

due to the perturbations. As during a single orbital period the orbital elements can

evolve in a periodic manner, it is useful to instead only focus on the secular change of

the orbital elements to determine how the orbit changes over longer periods of time.

Specifically, it is desirable to find so-called frozen orbits where (a subset of) the orbital

elements stay constant [93]. This type of preliminary orbit design has been previously

applied to small body missions, e.g. for OSIRIS-REx a terminator orbit was chosen as

these types of orbits remain frozen in SRP dominated environments [25].

Several different techniques are used to find these types of orbits. The LPE are used

from Eqs. (2.34) - (2.39) to obtain the influence of the perturbations on the orbital

elements. As the secular dynamics are of interest, the LPE can be averaged over a

single period of the orbit to eliminate short-period dynamics. As the LPE have the

form of: f(x, t) = G(x)∂R∂x , it is possible to just average the perturbation over a single

period [14]:

R̄(x) =
1

2π

∫ 2π

0
R(x,M)dM, (2.45)

where the mean anomaly M is often used as the independent time variable. It is

important that if there are multiple time scales or frequencies of interest, these fre-

quencies have to be separated sufficiently so that one of them can be kept constant in

the averaged equations. For this reason, this technique is often applied to slow rotating

asteroids [94], where the orbital period is much smaller than the rotation period. Oth-

erwise, a doubly averaged perturbation can be considered, where the integral in Eq.

(2.45) is replaced by a double integral over both periods. The frozen orbits can then

be found by setting (a subset of) the LPE to zero and determining the initial orbital

elements that fulfill those equations. As these frozen orbits are basically equilibrium

points of the LPE, their stability can be determined using the methods described in

section 2.4.1 [94].
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2.4.3 Dynamical Indicators

The previous sections all considered special solutions (e.g. equilibrium points or peri-

odic orbits) or specific cases (e.g. frozen orbits). These solutions represent important

structures in phase space and their (linear) stability can be readily determined. How-

ever, they only represent a small number of possibilities for mission designers and when

considering real world objectives and constraints, other orbits and trajectories need to

be considered. The main problem with analysing trajectories in general is that there

are no dynamical constraints that can help predict their behaviour over all time spans.

For example, for a trajectory on a stable manifold the time evolution is known as

t → ∞, whereas for a trajectory starting from a generic initial condition (in the case

of a non-integrable system) there is no closed form solution for the time evolution and

the behaviour of neighbouring trajectories cannot be analysed in the same manner.

For this reason, several different types of indicators have been developed that mea-

sure how for a general solution nearby trajectories behave. These indicators are then

used to create maps that relate certain initial conditions to the value of the indicator.

These maps can characterize large areas of phase space and can be used to differentiate

between different types of motion (e.g. chaotic or regular, stable or unstable, periodic

or aperiodic, etc.). Several large reviews and comparisons of these indicators have been

performed (see e.g. [95] and [96]). This section will give a short overview of the most

frequently used indicators and their theoretical background, which in turn supports

the reasoning behind the uncertain dynamics indicators developed in this work and

introduced in section 3.2.1. For a more detailed description and comparison of these

indicators, readers are referred to the review papers mentioned previously. In this

thesis, three main categories of indicators are discussed: variational based indicators,

frequency based indicators, and Lagrangian descriptors.

The variational based indicators are derived from the equations describing how small

perturbations δx0 with respect to a nominal initial condition x0 evolve over time, i.e.

the variational equations. The variational equations for a time-invariant dynamical

system f(x) are given as follows:
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v̇ =
∂f

∂x
(x(t))v, (2.46)

where v represents the evolution of a vector v0 tangent to x0 at the initial time t0.

The original indicator that was based on this equation was the Lyapunov Characteristic

Exponent (LCE), which is given as follows [97]:

LCE = lim
t→∞

1

t
ln

|v(t)|
|v0|

. (2.47)

Thus, the LCE measures the exponential divergence of small perturbations at the

initial condition as time goes to infinity. This quantity is hard to measure as the limit

only converges after a large amount of time [98]. It was argued that the computation

of these tangent vectors over short timespans is much easier and still contain a lot of

information. This lead to the development of the Fast Lyapunov Indicator (FLI) [99] ,

which is defined as follows:

FLI = max
0≤t≤T

log10
|v(t)|
|v0|

. (2.48)

This indicator is easier to compute and allows for fast computation of the indicator

maps. It was used initially to characterize the motion of asteroids in the Solar System

[99], and has also been used to characterize the dynamics around small bodies [100].

The FLI can also be interpreted as the loss of precision digits due to the numerical

computation of the solution in this time interval [98], i.e. for chaotic regions small

numerical errors can lead to large differences in the computed state at time T . The

other popular indicator in this category is the mean exponential growth factor of nearby

orbits (MEGNO) [101]:

MEGNO =
2

t

∫ t

0

˙|v(τ)|
v(τ)|

τdτ. (2.49)

It can be shown that the MEGNO can be related to the FLI as follows [102]:
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MEGNO = 2[FLI− ¯FLI], (2.50)

where the bar denotes the average. The characteristic of the MEGNO is that it

is able to not only measure the exponential divergence of the trajectories, but also

able to distinguish certain types of periodic motion. This is done as it subtracts the

mean FLI up to that point from the instantaneous FLI. The Finite-time Lyapunov

Exponent (FTLE) is another indicator based on variational equations, however in this

case defined for a time dependent system f(x, t), with flow map F t
t0(x0) which brings

the state from time t0 to t. This flow map is used to produce the Cauchy-Green strain

tensor, defined as follows [103]:

Ct
t0(x0) =

[
DxF

t
t0(x0)

]T
DxF

t
t0(x0), (2.51)

where Dx is the gradient operator with respect to x. The FTLE is then defined as

follows:

FTLE =
1

t− t0
ln
√
λmax(Ct

t0
(x0)), (2.52)

where λmax(C
t
t0(x0)) is the largest eigenvalue of the Cauchy-Green strain tensor.

Again, this indicator is able to measure what happens with small deviations with re-

spect to x0, but needs to be calculated at each time step. This indicator allows for the

discovery of material surfaces which separate regions of different behaviour. These sur-

faces are called Lagrangian Coherent Structures (LCS), and are a generalization of the

invariant manifolds for time-dependent dynamical systems. The main weakness of the

FTLE indicator is the fact that it requires numerical discretization for the derivatives

which leads to noisiness in the FTLE maps. This noisiness requires smoothing which

can remove information from the FTLE maps [104].

The second class of indicators are the frequency based methods that are all based

on the analysis of the base frequencies of a dynamical system [105]. These types of

indicators measure the frequency vector ν of a trajectory, obtained using the Fourier

analysis of its time-series, and analyse how this changes over different time spans. It
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is argued that for quasi-periodic, regular, solutions in non-integrable systems ν stays

constant as different time spans are taken. Whereas for chaotic or non-regular solutions,

the Fourier approximation reveals different quasi-periodic solutions for different time

spans, and thus ν changes over time. Different indicators can then be used, like the

first- or second-order derivatives of the frequencies over time, and various methods of

performing the Fourier analysis can be chosen [96]. These methods are especially useful

for characterizing high dimensional systems like planetary systems and particle beam

accelerators.

Finally, the Lagrangian descriptors are a set of indicators which measure the arc-

length, or any other positive bounded quantity that characterizes the system [104].

If this positive bounded physical quantity is given by |F(x(t))|, then the Lagrangian

descriptor at time t with time span τ is given by:

LD =

∫ t+τ

t−τ
|F(x(T ))|γdT, (2.53)

where γ represent the specific norm taken, e.g. γ = 2 is the classic Euclidean

length. There is no mathematical definition for why this indicator works, and the

heuristic argument given is that across separating surfaces like the LCS, this quantity

(for a properly chosen F) changes rapidly for neighbouring initial conditions. Thus,

by observing the transversal change of the LD across different initial conditions, these

material surfaces can be found. Even though it has been shown that there are several

cases where this heuristic argument fails [106], various successful use cases have been

found for this type of indicator, including in the dynamics of rubble pile asteroids [13]

and in searching for regions of bounded motion in the Didymos system [107].

2.5 Chapter Summary

This chapter provides the theoretical background necessary for the understanding and

modelling of the environment and dynamics around a small Solar system body. First,

the various reference frames used in this thesis were presented: the J2000 frame, the

quasi-inertial Didymos equatorial reference frame, the synodic reference frame, and
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the body-fixed reference frame. The various gravitational models were discussed as

well, where the Spherical Harmonics model was determined to be most applicable to

the work in this thesis, due to its numerical efficiency and parametrization of the

mass distribution through the Stokes Coefficients, which aids in the model uncertainty

analysis performed later in this thesis. The different available setups for the equations

of motion were presented, and the methods used to analyse several special solutions to

the these equations, e.g. equilibrium points, periodic orbits, and frozen orbits, were also

mentioned. Finally, dynamical indicators were introduced to allow for the analysis of

general solution of the equations of motion, which will form the basis for the motivation

behind the uncertain dynamical indicators introduced later in this thesis.
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Chapter 3

Uncertainty Propagation and

Quantification

This chapter is based on the work published in:

Fodde, I., Feng, J., & Vasile, M. (2022). Uncertainty maps for motion around binary asteroids. Celestial

Mechanics and Dynamical Astronomy, 134(5), [41]. https://doi.org/10.1007/s10569-022-10096-2

Fodde, I., Feng, J., & Vasile, M. (2021). Uncertainty propagation for orbital motion around an asteroid using

generalized intrusive polynomial algebra: application to didymos system. Paper presented at 8th International

Conference on Astrodynamics Tools and Techniques.

As discussed in Chapter 1, uncertainties play an important role in space missions

as a whole as the spacecraft state and environment can never be known with perfect

certainty [108]. The mathematical techniques to deal with these uncertainties are thus

incredibly important in space mission design. This is especially the case for small body

missions, as ground based observations cannot accurately characterise the operating

environment due to the small size of the bodies, leading to large uncertainties in the

model parameters [109] (as can be seen in the observation results for Didymos in table

2.1). Furthermore, the techniques to perform relative navigation with respect to these

bodies are quite complex, leading to large uncertainties in the state itself [110].

Uncertainty propagation aims to describe the evolution of the uncertain spacecraft
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state over time. Usually, this process starts with a description of the stochastic force

and/or the uncertainty in the initial state and model parameters. This description

can consist of a full probability density function (PDF), uncertainty bounds, or a set

of moments (e.g. the mean and covariance). The Fokker-Planck Equation (FPE),

Eq. (2.41), can be solved to obtain the full statistical information at any point in

time, however this can only be done for certain low-dimensional systems like the linear

Langevin equation [111] and zero pressure incompressible fluids [112]. Otherwise, for

higher dimensional systems only local solutions using numerical techniques are available

[113]. Often, instead of solving the FPE, just the moments are propagated as this can

be done more easily. In some cases, the nonlinear dynamical system can be linearized

using a first-order Taylor expansion, which then results in simple analytical relations for

propagating the first two moments of a Gaussian distribution. This linearization using a

Taylor expansions can become problematic as the uncertainties grow [114] and/or when

the dynamical system is highly non-linear [115]. Therefore, the other method often used

is the Monte Carlo (MC) method, where a fully non-linear computational model of the

system can be used to propagate a set of samples and obtain the sample based moments.

One of the main problems with this method is that the approximation error scales with

a factor of 1/
√
N where N is the amount of samples. For computationally complex

models, propagating these samples with sufficient accuracy can become numerically

expensive. For these reasons, various semi-analytic uncertainty propagation techniques

have been proposed. An in-depth overview of these different methods can be found in

several surveys, e.g. [33] and [40].

These techniques can be broadly placed into two different categories: intrusive and

non-intrusive methods. The intrusive methods use the dynamical equations to obtain

the evolution of the uncertainties over time. The linearization approach is an example of

this type of method as it uses an analytically derived first-order polynomial expansion

of the system, but other more accurate methods, e.g. state transition tensors [115]

or differential algebra [116], are also frequently used. Their analytical nature makes

them generally numerically faster [117], but this also makes them not applicable to

all types of systems. The non-intrusive methods treat the dynamics as a black-box
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and can create an analytical representation of the dynamics using a set of samples by

numerically propagating them through the system and analysing the outputs. The MC

method is the most often used technique in this category. However, methods like non-

intrusive polynomial chaos [118] or the unscented transform [119] can be much more

efficient as much less samples are needed to obtain similar accuracy. As the dynamics

can be treated as a black-box, these methods are especially attractive for dynamics

which have complex, non-linear, equations of motion with uncertain and/or stochastic

elements [120].

Once the evolution of the state uncertainty is obtained, there are various different

types of analyses that can be done, e.g. analysing the effect of individual uncertain

parameters on the state uncertainty [121], or analysing the evolution of the moments

over time. Recently, newly developed indicators, related to the ones discussed in section

2.4.3, have been developed for uncertain systems ( see e.g. [122] [123] [124]). These un-

certain dynamics indicators (as they will be called here) use various different techniques

to quantify different properties, and are thus useful in understanding the underlying

structures of uncertain dynamical systems.

This chapter reviews the methodology behind the different uncertainty propagation

and quantification techniques that are used in this thesis. Several different tests are

performed to evaluate their numerical accuracy and efficiency. Furthermore, this chap-

ter introduces novel uncertain dynamical indicators which were developed as part of

this thesis. The application and effectiveness of these techniques will then be further

evaluated in chapters 4, 5, and 6.

3.1 Uncertainty Propagation

Consider again the parametric uncertainty dynamical system given by the Cauchy

problem from section 2.3.4:


ẋ = f(x(t),β, t)

x(t0) = x0

(3.1)
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where t is the time, x the state vector, and β a set of model parameters, and

assume that x0 and β are uncertain and independent. Now take a set of N independent

realisations [x1,0,β1,x2,0,β2, ...,xi,0,βi, ...,xN,0,βN ]. Each realisation corresponds to

a trajectory ϕi(xi,0,βi, t), which are solutions of problem (3.1). The corresponding

state vector at time tk is xi(tk) = ϕ(xi,0,βi, tk).

Now, consider a set of states at time t0 defined as follows:

Ωx0 = {x0(ξ) | ∀ ξ ∈ Ωξ}, (3.2)

where ξ is the vector containing all the uncertain variables defined over the uncer-

tainty set Ωξ, e.g. in the case of purely parametric uncertainty ξ = [x0, β]. In the

following we will assume that Ωξ is bounded. A bounded set can be defined also when

ξ is distributed according to a function ρ(ξ) with infinite support by taking Ωξ so that∫
Ωξ
ρ(ξ)dξ < ε with ε a given percentile. The set of all possible states at the given time

T induced by the realisations of ξ can be defined as follows:

ΩT (ξ) = {x(T, ξ) | x(T, ξ) = x0 +

∫ T

t0

f(ξ, τ)dτ ∀ ξ ∈ Ωξ}. (3.3)

If xt is continuous in ξ and the set is compact, ΩT (ξ) can be approximated using a

polynomial function:

Ω̃T (ξ) = Pn,d(ξ) =

N∑
i=0

ci(T )αi(ξ) =
∑

i,|i|≤n

ci(T )αi(ξ), (3.4)

where n is the degree of the polynomial, d is the number of variables of the poly-

nomial, i ∈ [0, n]d ⊂ Nd, | i |= i =
∑d

r=1 ir, ci(t0) are a set of coefficients, and

αi(ξ) = αi0(ξ0) · αi1(ξ1) · ... · αid(ξd) are multivariate basis functions generated using a

tensor product of univariate functions, which determine the numerical characteristics

of the approximation. The size, i.e. number of terms of the polynomial, is given by(
n+d
d

)
. The formulation of the indices in the second summation of Eq. (3.4) allows

for a more efficient implementation. The ordering and manipulation of these indices is

discussed in more detail in [125]. A polynomial model can have its accuracy and nu-
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Figure 3.1: A diagram explaining the general process of GIPA.

merical efficiency tuned using the polynomial order of the fitted model. Furthermore,

the final model is fully characterised by just its coefficients, allowing for easier analysis

of the model as will be shown in section 3.2.1. Several different approaches to obtaining

these polynomials are available. This thesis explores two specific methods, one intru-

sive (Generalised Intrusive Polynomial Algebra) and one non-intrusive (Non-intrusive

Chebyshev Interpolation).

3.1.1 Generalised Intrusive Polynomial Algebra

The Generalised Intrusive Polynomial Algebra (GIPA) method is a generalisation of

various methods like differential algebra [116], Jet transport [123], and Chebyshev

polynomial algebra [126]. These methods all obtain Ω̃T (ξ) by approximating the ini-

tial uncertain parameters using polynomial Pn,d(α) with basis functions α, creating

an algebra over the space of these polynomial consisting of elementary operations

⊕ = {+,−, ·, etc.} plus composition among polynomials Pn,d(α). The floating point

algebra normally used to obtain the solution xt = ϕ(x0,β, t) for a single determinis-

tic trajectory is then substituted with this polynomial algebra and all the elementary

functions in ϕ (e.g. 1/x, sin(x), cos(x), etc.) are substituted as well with their re-

spective polynomial expansion. The previously mentioned methods focus on a single
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polynomial basis α, but GIPA introduces a method to generalise this process for any

choice of polynomial. These steps and the generalisation introduced by GIPA is shown

in figure 3.1 and explained in detail in the following section.

The choice of basis determines the specific properties that the polynomial approx-

imation will have. The two bases that will be discussed in this work are the Taylor

polynomial basis and the Chebyshev polynomial basis. Taylor polynomials offer a good

approximation near the expansion point and provide analytic expressions for elemen-

tary functions, which results in more efficient computation. However, the accuracy

of a Taylor polynomial quickly drops off further away from the expansion point (as

can be seen in figure 3.2), and requires the function that is approximated to be n + 1

times differentiable. The Chebyshev polynomial approximation is uniformly convergent

across the expansion interval, and is able to handle discontinuities in the dynamics bet-

ter compared to a Taylor expansion [127]. The downside of a Chebyshev basis is the

fact that no general expression for elementary functions exist, which can decrease the

accuracy in certain cases and increase the computation time.

To graphically show the differences in error distribution between the two bases,

a simple propagation of one single orbit around Didymos is performed using the two

different bases. The distributions are then sampled using the resulting polynomial and

compared with numerically propagated trajectories (in figure 3.2 labeled as MC points).

The error as a function of the sampled location, labeled as x1 in adimensionalized units

−, within the set is shown in more detail in figure 3.2. The Taylor approximation is

more accurate near the central point whereas the Chebyshev approximation behaves

better near the ends of the distribution, as expected. There is still an increase in the

error away from the central point for the Chebyshev basis, which comes as a result of

the specific application of the GIPA method, as explained in more detail in this section

and reference [117]. There are other bases like the Newton basis and the Hermite

basis that might be more applicable to certain other types of problems, and can be

implemented and tested in a similar manner to the bases described here.

Once the basis is chosen, the next step of GIPA is to add a set of arithmetic

operations ⊗, which correspond to the commonly known arithmetic operations ⊕ ∈

60



Chapter 3. Uncertainty Propagation and Quantification

Figure 3.2: The error distribution of the two different GIPA bases as a function of the
location in the set. The top figure shows the spatial distribution of the differences,
where the bottom figure shows the differences between the two bases. Below the zero
line signifies better Chebyshev performance, whereas above the line shows better Taylor
performance.
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{+,−, ·, /}. Then, for any operation between two functions fa and fb, the corresponding

operations for their polynomial approximations, FA and FB, is given as follows:

fa ⊕ fb ∼ FA ⊗ FB. (3.5)

The polynomial space Pn,d(α) and the operations on that space together form an

algebra (Pn,d(α), ⊗) of size N =
(
n+d
d

)
, for which any polynomial part of this algebra

is completely defined by its coefficients c = {ci : |i| < n}.

Ref. [117] argued that for any polynomial basis, it is beneficial to transform the basis

to the monomial basis, given by ϕ, after the expansion of the initial set as this will reduce

the computational cost and only requires one set of operations to be implemented. The

downside is that the coefficients can get much larger compared to other bases and

the change of basis operation can be ill-conditioned. However, it was shown that

despite this, the monomial basis can still give accurate results [128]. The final order

of operations is as follows: first, the initial set is expanded in the desired polynomial

basis. Second, the basis is transformed to the monomial basis (if possible) by:

ν : Pn,d(α) → Pn,d(ϕ). (3.6)

Finally, the monomial algebra is constructed to propagate the initial set Ωx0 to the

desired final set Ωxt .

The ”general” part of GIPA is due the fact that irregardless of the choice of poly-

nomial basis, the operations remain the same due to the fact that a change of basis to

monomials is used after the initial expansion. These operations are further discussed

here.

The operations of subtraction and addition for the monomial algebra are as follows:

given two polynomials A(x) and B(x), with coefficients a and b respectively, the result

of addition and subtraction are:

c = a± b. (3.7)

Where the resulting polynomial C(x) can then be constructed from the coefficients
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c. The multiplication operation is given by:

A(x) ·B(x) = (
∑

i,|i|≤n

aix
i) · (

∑
i,|i|≤n

bix
i), (3.8)

where all the resulting monomials with orders higher than n are truncated by setting

them to zero to keep the resulting polynomial order equal to the order of A(x) and

B(x).

The composition operator can be used to create a set of elementary functions, and is

defined as follows: given a multivariate function g(x) and a d-dimensional multivariate

function y(x), with their respective polynomial approximations G(x) and Y (x), the

composition operator is given by:

g(y(x)) ∼ G(y) ◦ Y (x). (3.9)

Thus, a general definition is given by:

◦ : Pν,δ(ϕ)× [Pn,d(ϕ)]
δ → Pn,d(ϕ). (3.10)

To be able to use the elementary functions given by h(y) in the polynomial algebra,

the composition operator is used as follows:

h(f(x)) ∼ H(y) ◦ F (x). (3.11)

where H(y) is the univariate polynomial approximation of h(y) and f(x) a multi-

variate function with F (x) its polynomial approximation. In this case:

◦ : Pn,1(ϕ)× Pn,d(ϕ) → Pn,d(ϕ). (3.12)

The way in which H(y) ∼ h(y) is approximated has a large impact on the accuracy

and functionality of the polynomial algebra. For the Taylor algebra, the functions are

expanded using the well known order-n MacLaurin expansion, which expands around

a central point and does not require information about the interval over which it is
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approximated. For the Chebyshev algebra, an expansion on the interval I = [y, ȳ] is

performed using an order 100 Chebyshev interpolation. The Chebyshev series is then

obtained by truncating the interpolation to a certain order, and converting it to the

monomial basis. A problem with this is that a good estimation of I is needed to perform

the approximation of h(y) over this interval, which can give an overestimation of the

range for certain algorithms. This problem is discussed in more detail in [117]. If a

certain dynamics expression has a lot of elementary functions, this range overestimation

can become a large problem.

The difference in computational complexity for the expansion of the elementary

functions is relatively large between the two different bases. Following the analysis in

Ref. [117], the Taylor approach has a complexity of O(n), whereas for the Chebyshev

basis it is O(Nn,d + n3), where Nn,d =
(
n+d
d

)
is the size of the algebra. However,

besides the function expansion, for both bases the composition operation needs to be

performed as well when evaluating these elementary functions. This composition has

a computational complexity of O(d2n+1N 2
n,d), which has a much larger contribution

compared to the elementary function expansion complexity of both bases and needs

to be performed regardless of the basis choice. This means that the final runtime is

dominated by the composition operator, and thus close to equal between the two bases.

To summarise, consider now a numerical propagation scheme that can propagate

the state through the dynamical system given in Eq. (3.1), given by:

ψ(xk) → xk+1. (3.13)

The basic idea is to represent all the elements of the state vector x and model

parameters β as elements of the polynomial algebra (Pn,d(ϕ),⊗), then all operations

and elementary functions used in ψ, which consists of the dynamics Eq. (3.1), are

also represented using the algebra. Finally, ψ is used to propagate the system in time

using the same methods for a single state vector x, but now propagating the full set

represented by X.

An example can be given using the Euler scheme, given by:

64



Chapter 3. Uncertainty Propagation and Quantification

xk+1 = xk + f(xk, β, t)∆t. (3.14)

All the elements of the initial state vector x0 are expanded in the algebra to give

X0. f(xk) then has all its arithmetic operations and elementary functions changed to

the corresponding operations in the polynomial algebra to give at each timestep:

Xk+1 = Xk + Fk∆t. (3.15)

where Fk is the dynamics function represented in the polynomial algebra, evaluated

using Xk. This is done at each timestep until the final desired time is reached, at which

point Xkf represents the approximation of the set of final states resulting from the set

of initial states, given by Eq.(3.4).

An often discussed disadvantage of intrusive methods is that they require large

adaptions to existing software and methods. However, for GIPA it is possible to use

the same orbit propagators and dynamical models found in most astrodynamics applica-

tions, and only change the underlying elementary functions and arithmetic operations.

This can often be done using templates and overloading, which is possible in a range

of modern coding languages. The implementation of the algebra for this work uses the

open-source SMART-UQ software package [129]. Referring to figure 3.1, the basis spe-

cific methods of: expanding the initial state and model parameters in the polynomial

basis, representation of elementary functions, and basis conversion are implemented in

SMART-UQ for several different bases, including both Taylor and Chebyshev basis.

The general methods for the monomial algebra (the elementary operations and com-

position operator) are then also implemented such that the user defined propagation

can be performed by specifying the type of the state and model parameters that are

used as input for the dynamics function as a polynomial instead of floating-point and

overloading the operations and functions inside the dynamics using the SMART-UQ

operators and functions.
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3.1.2 Non-Intrusive Chebyshev Interpolation

As was mentioned previously, the non-intrusive methods use a set of samples from the

initial uncertainty set and propagate them through the dynamical system. Based on

the samples after propagation, an approximation of this input-output relationship is

made, which can be done in several different manners. This work follows a similar

approach as [126] and [130], and uses a Chebyshev polynomial basis together with a

Smolyak sparse grid sampling approach to obtain the polynomial from Eq. (3.4), which

is hereafter called the non-intrusive Chebyshev Interpolation (NCI) method.

The Smolyak sparse grid was developed in [131], and selects a set of input points

based on the extrema of Chebyshev polynomials. An important aspect is that they do

not suffer the curse of dimensionality, as the number of points grow polynomially with

the dimension of the problem instead of exponentially. A more in depth explanation of

this method for uncertainty propagation is given in [126].

Given the propagated samples, the coefficients of the polynomial can be obtained

by inverting the following system:

HC = Y, (3.16)

where:

H =


Ti1(ξ1) . . . Tis(ξ1)

...
. . .

...

Ti1(ξs) . . . Tis(ξs)

 , C =


ci1
...

cis

 , Y =


y1
...

ys

 (3.17)

where s = N =
(
n+d
d

)
, ξ1, . . . , ξs are the Smolyak sparse grid points, and Y the

vector containing all the corresponding propagated samples yi = ϕi(ξi, t).

This method is significantly less complex than the GIPA method, and allows for the

dynamics to be used as a black box, which makes this method interesting for dynamics

where the derivatives of the equations of motion are difficult to obtain.

In Ref. [117] the theoretical computational complexity of both the NCI and GIPA

method were compared. It was shown that if a similar final accuracy is assumed, the
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NCI method is much more efficient for systems where there is a low dimensionality but

high amount of evaluations of the dynamics. The GIPA, on the other hand, is more

efficient in the case of high-dimensional (generally d > 3) problem with less dynamics

evaluations. As in this thesis the main choice between NCI and GIPA is due to the

approach in which they are able to handle different numerical properties (as will be

explained in more detail in the following section), the efficiency is less of a factor.

Both the GIPA and NCI technique are used to obtain the same result: a polynomial

representation of the uncertainties that can be used to propagate the PDF/uncertainty

bounds through the dynamics. The difference in approach between the two methods

makes them each more applicable to different problems. As was said before, the GIPA

approach is more efficient whereas the NCI can be more easily implemented and handles

complex dynamical systems better. Therefore, the GIPA method will be used in the

numerically intensive applications discussed in chapter 4 and 6, whereas the NCI will

be used for the complex dynamics discussed in chapter 5.

3.1.3 Numerical Results

Some numerical results for both methods are discussed in this section. As the GIPA

method is used for the orbital motion discussed in chapters 4 and 6, the numerical tests

will focus on these scenarios. On the other hand, the main use of the NCI method is to

model the complex dynamics of the ballistic landing on Dimorphos discussed in chapter

5, hence the numerical tests performed for this method just focuses on its ability to

handle those dynamics.

3.1.3.1 GIPA

To determine the effectiveness of GIPA with a Taylor and Chebyshev basis, several

simulation settings have to be considered. These tests are performed for the generalised

inertial form of the equations of motion, where the force models used are: a SH model

of degree and order 4 for both bodies, a cannonball model for the SRP, and the third

body perturbation of the Sun. The rotation model for both Didymos and Dimorphos

mentioned in section 2 are also included.
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First, for the nominal trajectory a terminator orbit will be chosen, as this has been

known to be a stable choice for situations where the SRP has a significant impact on

the dynamics [132]. The requirements for the initial conditions for a circular terminator

orbit are as follows [76]:

Ωs = 90◦/270◦ + νh, (3.18)

is = 90◦ − ih, (3.19)

as <
1

4

√
µβ

G1
, (3.20)

where Ωs is the right ascension of the ascending node of the spacecraft, νh is the true

anomaly of the heliocentric orbit, is the inclination of the spacecraft, ih the inclination of

the heliocentric orbit, as the spacecraft’s semi-major axis, µ the asteroids gravitational

parameter, β the mass-to-area ratio of the spacecraft, and G1 a constant equal to

1 · 108 kg·km3

s2·m2 . The resulting maximum semi-major axis is equal to 8.13 km, thus

initially orbits with a semi-major axis of 7 km will be considered to ensure no escape

(considering no state uncertainties). Most of the simulations will be run for 10 days

as this is significantly longer than the time in between planned ∆V manoeuvers (3-4

days [133]) and thus can give results on how the orbit will evolve due to its natural

dynamics in those time spans, and what the risk is if those manoeuvers cannot be

executed. A Runge-Kutta 4 fixed step-size integrator is used to integrate the equations

of motion, with 1 hour steps. The initial uncertainties first considered have a magnitude

of 1% on the initial semi-major axis and orbital velocity (i.e. upper/lower bound of

the position xi will be xi ± 0.01a, where a is the semi-major axis, and of the velocity

vi will be vi ± 0.01
√
µ/a). The effect of larger uncertainties will be shown later in this

section. All the values are adimensionalized and scaled by dividing by the position and

velocity of Dimorphos.

Two metrics will be used to determine the accuracy of the GIPA: the root mean

square error (RMSE) and the maximum error, defined as follows:

68



Chapter 3. Uncertainty Propagation and Quantification

RMSE =

√√√√ 1

Ns

Ns∑
i=1

(x̂i − xi)2, (3.21)

Em = max
1≤i≤Ns

|x̂i − xi|, (3.22)

where x̂i is the GIPA calculated state and x is the true state at the same point in

time. This requires a large sample of ”true” trajectories to be generated, which will

be done by first randomly sampling a set of Ns = 1000 initial conditions, and then

propagating them using a Runge-Kutta 87 adaptive step-size integrator. In the rest

of this thesis, this method is referred to as a Monte Carlo simulation, even though no

comparison is necessarily made with the probability distribution or moments of the MC

simulation, which is the usual application of the MC method.

The degree of the polynomial expansion is an important factor that firstly needs to

be investigated for this specific problem. Figure 3.3 shows both the RMSE and maxi-

mum error as a function of the polynomial degree. Furthermore, it shows the runtime

for the application on a computer with an Intel© 8th generation core i7 processor and

16Gb of RAM. For reference, the runtime for the Monte Carlo simulation is also shown

in the figure. It can be seen that at lower degrees the Taylor basis performs better,

and at a degree of 5 for both bases the RMSE flattens out and no significant gains are

obtained if the polynomial expansion degree is increased. The maximum error does

seem to improve slightly if the degree is higher. This does come at the cost of a sig-

nificant increase in runtime between a degree 4 and degree 5 polynomial compared to

the increase in accuracy. However, if then figure 3.4 is observed, it can be seen that

earlier in the propagation, the RMSE of the degree 5 polynomial is much lower and only

becomes comparable with the degree 4 polynomial towards the end of the simulation.

As was mentioned in section 3.1.1, a good estimation of the range I of the expansion

is needed to estimate the elementary functions. The fastest method for this is to take

the sum and subtraction of all the coefficients to obtain the maximum and minimum,

respectively, for each state variable. In [117] it was shown that this method can lead

to large overestimation errors. Thus another method is tested here, where the range
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Figure 3.3: The accuracy after 10 days of propagation for different polynomial degree
expansions and coefficient range estimation algorithms. The horizontal line represent
the MC runtime.

is obtained by randomly selecting n samples and evaluating them using the expansion.

From this, the maximum and minimum values are then saved and used as the range.

Figure 3.3 and 3.4 both show how these methods give different results when using 20

samples. It can be seen that the sample based method requires a significantly longer

runtime, but at lower degrees produces a much better result. However, at a degree of

5 and higher, the sample based method does not seem to result in much improvement

compared to the coefficient based method. If the evolution of the accuracy is observed

in figure 3.4, then for a polynomial degree of 4 the increase in accuracy at earlier times

is clearly visible. However, for a polynomial degree of 5, it can be clearly seen that a

maximum accuracy has already been reached and that changing the range estimation

function does not influence the accuracy much. For the coming results, a polynomial

of degree 5 will be considered with normal coefficient based range estimation, unless

stated otherwise.

Now, the influence of choosing different uncertainty values (represented in GIPA by

the size of the to be propagated set) and orbital parameters is discussed. First, a range

of possible initial set sizes is investigated for the state variables. The relative set size is

considered, where the sizes are determined as a percentage of the initial semi-major axes

70



Chapter 3. Uncertainty Propagation and Quantification

Figure 3.4: The change in accuracy over time for various GIPA settings.

Figure 3.5: Grid of several initial set sizes and the corresponding RMSE and maximum
error (norm over whole state vector) at the final time.
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and orbital velocity for the position and velocity state variable respectively, i.e. xi±σpa

and vi ± σv
√
µ/a. A grid of relative set sizes with values σp = [1%, 2%, 3%, 4%, 5%],

σv = [1%, 3%, 5%] is taken, where σ represents the radius of the uncertainty ellipsoid.

The results of the accuracy at the final time for the whole grid for both the Taylor

and Chebyshev bases are shown in figure 3.5. It can be seen that the difference in accu-

racy between the (1%, 1%) size and the (5%, 5%) (corresponding to (70m, 7mm/s) and

(350m, 3.5cm/s) respectively) differs two to three orders of magnitude in both RMSE

and maximum error. There is, furthermore, no clear distinction in sensitivity to either

the position or velocity state variables with respect to an increase in RMSE. For lower

sizes, the difference in accuracy between the bases is small. However, when increasing

the set size, the relative difference between the accuracy of both bases shows that the

Chebyshev basis performs better. This is due to the fact that the Taylor polynomial

loses accuracy further from the central expansion point, whereas the Chebyshev uni-

formly converges over the whole set. For the results discussed afterwards, a set size of

(1%, 1%) is chosen. The conclusions taken there still hold for larger set sizes, as only

the absolute accuracy shown might differ.

Two other dynamical parameters that have a large influence on the dynamics are

discussed here: the initial semi-major axis a and eccentricity e. Figure 3.6 shows the

influence of changing the initial a. There, it can be seen that there is clear trend between

the accuracy and the altitude. As the altitude decreases, the dynamics become more

complex and the accuracy of the GIPA decreases. Except for slight variations at earlier

times, the performance of both bases is comparable at all values of a.

In figure 3.7, a is fixed at 7km and the eccentricity is increased in 5 steps. For

higher eccentricity values it can be seen that the accuracy significantly decrease as the

spacecraft moves closer to periapsis. For smaller values of the eccentricity, it can be

seen that after crossing periapsis the accuracy increases again. This is shown in more

detail in 3 dimensions in figure 3.8 for e = 0.3. The RMSE initially increases before

approaching and reaching the peak when at the periapsis. Here it can be seen in figure

3.8 that the accuracy, especially at the ends of the set, is relatively low compared to

previous steps. However, instead of remaining at the same RMSE or increasing RMSE
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Figure 3.6: The influence of the starting semi-major axis on the accuracy development
over time. The green lines are for the Taylor basis and the red lines for the Chebyshev
basis.

afterwards, the RMSE decreases again when approaching apoapsis. This shows clearly

that the accuracy is highly dependent on the complexity of the dynamics, which is

higher near the bodies. Compared with the influence of a, the two bases show much

more difference in their performance. Before approaching the periapsis, the performance

is similar, however the Taylor polynomial retains much more accuracy after periapsis

passage compared to the Chebyshev basis. This could be due to the fact that the

Chebyshev basis builds up overestimation error over time, which it cannot lose again

after periapsis. For the Chebyshev basis at e = 0.5 and e = 0.7, a jump in RMSE and

maximum error happens after a period of time. This happens as the large eccentricity

causes the uncertainty set to wrap around the body and thus cause the range of the

Cartesian coordinates to intersect the center of Didymos. This causes a numerical

divergence and significantly increases the error. If these high eccentricity orbits are

used, this problem can be resolved by changing the used state variables as was done

in [134] using the generalised equinoctial elements.
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Figure 3.7: The influence of the starting eccentricity on the accuracy development over
time at a semi-major axis of 7 km.

Figure 3.8: Monte Carlo versus Taylor basis GIPA of the e = 0.3 orbit for 5 points in
time. The order in time for the different steps is represented by the number next to it.
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3.1.3.2 NCI

To show the effect of different sampling approaches on the accuracy of the coefficients

obtained from inverting Eq. (3.16), an analysis is done on a typical landing trajectory

where there is a ballistic flight phase, and a landing and surface motion phase. The

complexity in the dynamics stemming from the moment of landing can be particularly

difficult on the approximation. The accuracy is measured by taking a set of uniformly

sampled points and comparing the samples at different times along the trajectory be-

tween a MC approach and the polynomial expansion of Eq. (3.4). Both the RMSE and

maximum error over all samples are calculated. As a comparison against the Smolyak

sparse grid, the Latin Hypercube Sampling (LHS) method is used. The LHS method

divides the sampling space into several uniformly spaced subspaces in which a random

sample is taken for each individual subspace. The resulting RMSE and maximum error

along the trajectory is given in figure 3.9, where the CR3BP with SH gravitational

model is used. Both methods show relatively equal accuracy during the ballistic phase.

However, the sparse grid method handles the landing much better compared to the

LHS method for which a large jump in RMSE and max error happens.

3.2 Uncertainty Quantification

The final propagated set given by Eq. (3.4) provides a surrogate dynamical system

which propagates samples from the uncertain set at the initial time to the final time.

This surrogate dynamical system can be efficiently evaluated and is fully defined by its

coefficients. These two properties allow for different types of analyses to be performed

on the uncertain dynamical system.

First, the uncertain dynamics indicators are defined, which are a set of dynamical

indicators specifically designed for the analysis of uncertain systems. The first two

indicators, the variance indicator and the n + 1 indicator are original to this thesis,

whereas the pseudo-diffusion indicator was developed in Ref. [124]. Afterwards, the

different approaches for the estimation of the moments of (a subset of) the uncertainty

sets are discussed.
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Figure 3.9: LHS sampling accuracy compared against the Smolyak sparse grid accuracy.
The RMSE and max error are taken of the norm of the full state. The zoomed in part
of the figure is the time epoch when the landing occurs. Both the RMSE and max error
are given in the dimensionless values of the CR3BP.

3.2.1 Uncertain Dynamics Indicators

Dynamics indicators like the FLI and the FTLE quantify the difference, in phase space,

between trajectories that start from nearby initial conditions. However, they intrin-

sically assume the dynamics to be deterministic. Hence, if the dynamics is uncer-

tain, commonly used deterministic dynamics indicators would have different values for

each realisation of the uncertain quantities. In order to fully analyse the system in

question, the deterministic indicators would need to be re-computed for a sufficiently

large amount of different realisations (or sampling) of the uncertain quantities. This

can quickly become computationally expensive, especially as the dimensionality of the

uncertain space increases. Therefore, for dynamical systems affected by uncertainty,

different types of indicators are needed that can quantify the effect of the uncertainty

in the dynamics without an extensive sampling of the uncertainty space. To this end,

in [135] and [124] the authors proposed a pseudo-diffusion indicator and a stochas-

tic version of the FTLE. Here we propose two alternative indicators that capture two

aspects of the effect of uncertainty on the evolution of non-linear dynamical systems.
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In the following we will develop scalar indicators that capture the evolution of Ωxt

and will show how the value of these indicators gives an indication of the level of

sensitivity to uncertainties. The indicators are derived from the propagation of the

uncertainties through the dynamics.

3.2.1.1 Variance Indicator

For each realisation of the uncertain quantities ξ the dynamical system can follow a dif-

ferent trajectory, even for exactly the same initial conditions. Thus multiple realisations

correspond to an ensemble of trajectories.

Definition 3.2.1. We define the diffusion of the ensemble of trajectories induced by

the uncertainty ξ in the dynamics as the evolution, over time, of the relative separation

among the trajectories in the ensemble. More formally, we want to measure the ex-

pected difference between a trajectory in the ensemble x(t) and the expected trajectory

x̄(t) or:

σ2(t) = E[(x(t)− x̄(t))2] (3.23)

for t > T and x̄(t) =
∫
Ωξ

x(t)ρ(ξ)dξ.

Thus we can measure the degree of diffusion by following the time variation of the

variance σ2(t) of the trajectories in the ensemble.

Diffusion in celestial mechanics has been studied before for several different types of

processes, see e.g. [136] and [137]. The idea of a variance indicator comes from the fact

that in dynamical systems subject to a diffusive random process, like a random-walk, the

mean square displacement is proportional to tγ where γ is the diffusion exponent [138].

In one dimension, this can be expressed in the following form:

E[(x(t)− x̄)2] ≈ Kγt
γ , (3.24)

where Kγ is the diffusion coefficient and x̄ is a reference position. In normal dif-

fusive processes, like Brownian motion, γ = 1 and (3.24) reduces to the Einstein and

Smoluchowski, linear time relationship E[(x(t)−x̄)2] ≈ 2Dt, with D the diffusion coeffi-

cient, x̄ the mean of a Gaussian distribution, from which one can calculate the variance
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σ2 = E[(x(t) − x̄)2]. Thus if one takes an ensemble of trajectories the variance of the

state vector at a given time t can be written as:

σ2 = E[(x(t)− x̄(t))2] ≈ Kγt
γ , (3.25)

Given (3.25), in the following we propose the direct use of σ2 to measure the de-

gree of diffusion induced by an uncertainty in initial conditions and dynamic model

parameters.

The quantity σ2 gives an indication of the separation of two trajectories over time

due to the uncertainty in the initial conditions and dynamics. If this separation is

induced by an uncertainty in a static parameter of the dynamic model, it implies that

without an exact knowledge of that parameter, the true trajectory can diverge from

the expected one. If the uncertainty is due to a time-dependent diffusive stochastic

process, σ2 would measure the degree of diffusion induced by this process at a given

point in time. In [139] it was also observed that if the uncertainty is parametric and

the dynamics is chaotic, the variance can present a rapid increase locally even if the

process is not diffusive on the long term. If the uncertainty is in the initial conditions or

a combination of initial conditions and model parameters, chaotic diffusion can cause

an increase in the variance. However, as also observed in [139], chaotic attractors only

cause diffusion in a local, bounded, region of phase space as the trajectories remain

bound to the surface of this attractor. Thus, chaotic dynamics does not necessarily

imply long term diffusion.

We now observe that when the uncertainty set is approximated with an expansion

in polynomials Hi(ξ) that are orthogonal with respect to a weight function ρ(ξ), the

variance is a function of the sum of the square of the coefficient of the polynomial. In

fact:

x̄(t) = E[x(t)] ≈ E[Pn,d(ξ)] =

∫
Ωξ

 ∑
i,|i|≤n

ci(t)Hi(ξ)

 ρ(ξ)dξ = c0, (3.26)

where the fact that H0 = 1 and E[Hi] = 0, ∀i ̸= 0 is used to obtain the final
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relation. With this result, the second moment, or the variance, is obtained:

σ2 = E[(x(t)− x̄(t))2] (3.27)

≈
∫
Ωξ

 ∑
i,|i|̸=0

ci(t)Hi(ξ))

 ·

 ∑
i,|i|̸=0

ci(t)Hi(ξ)

 ρ(ξ)dξ (3.28)

=
∑

i,|i|̸=0

⟨Hi, Hi⟩ c2i (t). (3.29)

As the monomial basis used in the GIPA method is not an orthogonal basis, the

polynomial in Eq. (3.4) has to be transformed into an expansion in an orthogonal basis.

If one uses a Hermite basis, the conversion from one basis to the other is given by the

expression [140]:

ξn = n!

n/2∑
m=0

1

2mm!(n− 2m)!
Hn−2m(ξ), (3.30)

where H is the probabilistic Hermite polynomial. The Hermite polynomials are

orthogonal under a weight function ρ(ξ) = e−
ξ2

2 and are defined as follow:

⟨Hn, Hm⟩ =
∫ ∞

−∞
Hn(ξ)Hm(ξ)ρ(ξ)dξ = n!

√
2πδnm, (3.31)

where δnm is the Kronecker delta function. The statistical moments of the quantity

described by the orthogonal polynomials (in this case the set Ωξ) can be calculated

using the definitions of the moments.

Thus, by using the results from Eq. (3.29) and Eq. (3.31), the variance can be

obtained from summing the square of the non-zeroth order coefficients and adding a

constant factor ⟨Hi, Hi⟩ =| i |!
√
2π. From Eq. (3.24) and Eq. (3.29), it can be seen

that the coefficients of the orthogonal polynomial expansion can be used as an effective

indicator of the diffusion for different initial conditions. As the relative value of the

variance between different initial conditions is considered, the factor | i |!
√
2π remains

constant, while the sum of the squared coefficients changes in value. Therefore, this

factor can be ignored and simply the sum of the square of the coefficients is used.
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In multiple dimensions the mean square displacement is defined as the sum of the

mean square displacements along each dimension. Here, the maximum value of ησ over

all state variables is taken to represent the maximum degree of diffusion, leading to the

indicator:

ησ = max
j
σ2j , j = 1, 2, .., d (3.32)

The variance of Eq. (3.29) is based on the variance of the Cartesian state variables.

However, it can be generalised to a state vector containing different representations of

the state. The Keplerian orbital elements, i.e. the semi-major axis a, eccentricity e,

inclination i, argument of perigee ω, and right ascension of the ascending node Ω, can

give an intuitive view of the geometry of an orbit around the system. From the mission

design perspective, having an orbit with these elements staying relatively bounded over

time and are not sensitive to off-nominal conditions is important as this allows for

predictable behaviour and low chances of impact or escape. However, in a highly non-

linear and uncertain system, like the one considered here, this is not always the case

and the variance of the possible orbital elements can grow quickly over time. Therefore,

it is important to look at the evolution of these orbital elements and determine if they

remain relatively bounded over time. Specifically, the a and e have a large effect on

the shape of the orbit and are thus important elements that need to stay relatively

constant over time.

Using the same principle as the coefficient based variance for a general state vector,

the diffusion of a and e can be calculated. Using the operations defined by the GIPA

method, the polynomial approximations of the state variables can be converted to

polynomial approximations of a and e using the well-known conversions [78]:

a =
1

2
r −

v2

µ

(3.33)

e =
v × h

µ
− r

r
, (3.34)
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where µ is the gravitational parameter of the central body (Didymos) and h = r×v

is the angular momentum. The eccentricity can then be obtained by taking the vector

norm of Eq. (3.34). However, a problem arises when the norm is taken of e when the

final orbit is close to circular, as a Taylor approximation of a square root around zero

diverges. Thus instead the squared eccentricity, |e|2 = e21 + e22 + e23 is used instead.

Using Eq. (3.29), the variance in a and e2 can then be calculated, representing the

diffusion of the shape-based orbital elements.

In this work, the pseudo-diffusion indicator developed in [124] is used to characterise

the dynamics of ballistic landings on Dimorphos. This indicator is selected as it mea-

sures the rate of growth of the uncertainty set over time, which in the case of a (partial)

landing of the uncertainty set should be very low compared to uncertainty sets which

have bounced away from the body and are moving around the system. Therefore, this

indicator should allow for the identification of these different dynamical regimes.

The pseudo-diffusion indicator is based on the characterisation of diffusive processes

given by Eq. (3.24). Using the fact that the state is expanded using the polynomial of

Eq. (3.4) and that for any polynomial with orthogonal basis the variance can be given

by Eq. (3.29), the following expression can be derived:

∑
i,|i|̸=0

κi c
2
i (t) = Kγt

γ , (3.35)

where κi = ⟨Hi, Hi⟩, which is equal to | i |!
√
2π in the case of a Hermite basis.

Assuming large t, γ can be approximately found using the following expression:

γ ≈ γ̃ =
log(

∑
i,|i|̸=0 κi c

2
i (t) + 1)

log t
(3.36)

Where γ̃ is called the pseudo-diffusion exponent. In the multivariate case, the

covariance matrix of the polynomial expansion can be found using Eq. (3.37):

Σx(t) ≈
∫
Ωξ

 ∑
i,|i|̸=0

ci(t)Hi(ξ))

 ·

 ∑
i,|i|̸=0

ci(t)Hi(ξ)

 ρ(ξ)dξ =
∑
i,i̸=0

κ ci(t)c
T
i (t).

(3.37)
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From this expression and Eq. (3.36), a definition for the general pseudo-diffusion

indicator can be given as follows [124]:

γ̃ =
log(

√
maxi λi(c(t)) + 1)

log t
, (3.38)

where λi is the ith eigenvalue of the covariance matrix Σx(t). This equation for γ̃ is

again fully defined by the coefficients of the polynomial approximation of the dynamics

and its relation with the diffusive process of Eq. (3.24). In the case of γ̃, it specifically

indicates the expansion of the set over time.

3.2.1.2 n+ 1 Coefficient Indicator

The accuracy of the Taylor approximation of the dynamics depends on several char-

acteristics of the system. In [114], it was found that an increase in the size of the

uncertainty set over time leads to a less accurate polynomial approximation of the set,

due to the truncation of the polynomial at a certain degree. Note that this observation

not only holds for Taylor expansions but can be shown to also hold for Chebyshev poly-

nomials [141], although this is not as straight forward as for the Taylor polynomial. In

the rest of this thesis this indicator is only calculated using the Taylor approximation,

hence this discussion can be limited to just this case.

Given a degree n Taylor approximation Pn,d(x) of the function f around the origin,

where f is n + 1 times differentiable and the (n + 1)th derivative of f is bounded as

follows: f(a)(n+1) ≤ M, a ∈ (0,x), the error bound in the approximation because of

the truncation at degree n can be obtained as follows:

| f(x)− Pn,d(x) | ≤
M

(n+ 1)!
xn+1 = cn+1 · xn+1. (3.39)

As f represents the dynamics of the system, and the n + 1 coefficient is related

to the (n + 1)th derivative of f in the region over which the Taylor approximation is

performed, the specific value of this coefficient can give information on the dynamical

behaviour in that region. The specific value of cn+1 can be affected by several different

factors, e.g. the propagation time, initial uncertainty size, and the non-linearity of
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the system [114]. It can be seen that for a Taylor approximation with a high cn+1,

trajectories that start close together in the domain of the Taylor approximation can

have significantly different behaviours.

An example illustration of this effect is shown in figure 3.10. Two sets, A and B,

are propagated through two different dynamics (this can be two different dynamical

systems or two different regions in phase space of the same system). At tf , the shape

of set A has been significantly deformed because of the non-linearity of the dynamics.

Set B has grown larger compared to set A but has been deformed less, due to the

more linear dynamics which can only cause a rotation and expansion (or contraction)

of the set. Hence, a low degree n polynomial can accurately approximate set B as

there are no higher order, non-linear effects, which causes cn+1 to be small. If the

same order n is used for the approximation of set A, the error in the approximation

would be high as higher order terms are needed to capture the non-linear effects that

cause this deformation. This leads to a high value of cn+1 in this case. Therefore,

fixing the degree n of the polynomial approximations (keeping the degree high enough

to accurately approximate most of the phase space) and comparing the values of cn+1

for different regions of phase space gives the relative non-linearity of those regions.

The extent of non-linearity that is measured by the n + 1 coefficient can be an

indication of diffusion or chaos. On the other hand, a high value of the n+1 coefficient

can indicate that the trajectories, in an ensemble induced by the uncertain quantities,

behave very differently, but are not necessarily diffusing. This would be the case of a

system that is chaotic but all trajectories remain confined in a region of state space. Vice

versa, trajectories subject to a linear dynamics can diverge exponentially. For example,

two trajectories with different initial conditions of the linear dynamics dx/dt = x will

diverge exponentially over time. Thus the concepts of diffusion and non-linearity are

only linked for certain cases and measuring them both can give different insights into

the dynamics.
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Figure 3.10: Diagram showing two sets being propagated. The gray shaded area is
where the actual trajectories are located and the black square represents the range of
the set. Set A represent the propagation through more non-linear dynamics while set
B has larger variance but is less non-linear.

In [123], the maximum initial set size for a Taylor approximation was calculated

using the estimated truncation error, and used as a dynamics indicator for the circular

restricted three body problem. Furthermore, in [122] a Taylor algebra with a truncation

error based domain splitting technique was used as an indicator of the stability of certain

orbits under uncertainties, by measuring the amount of splits at a specific location in

phase space. In this work a similar approach is used, namely the size of the n+1 degree

coefficients is used as an indicator to determine suitable initial conditions for robust

stable orbits. This method avoids the use of methods like automatic domain splitting,

which decreases the efficiency and ease-of-use of GIPA.

The size of the n+1 degree coefficients is calculated as follows. First, a set of initial

conditions and model parameters is propagated using the GIPA method. Second, from

the resulting polynomial approximation, the size of the coefficients of a specific degree

i are calculated, up to polynomial degree n as follows:

Si =
∑
|i|=i

ci. (3.40)

Using the values of Si for all the different degrees up to and including n, a least-

squares fit algorithm is used to get an analytical expression for the size of the coefficients
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for a specific degree. To improve the accuracy and efficiency of the fitting procedure, a

linear fit is performed using the equation as follows:

logSi = logA−B · i, (3.41)

where A and B are constants estimated using the least squares algorithm. Finally,

using Eq. (3.41), the value for the n+1 degree coefficient size, Sn+1, can be estimated.

As the Sn+1,j represents the n + 1 coefficient size for each different state variable,

the direction of maximum non-linearity can be found by taking the maximum value of

Sn+1,j over all state variables. This value is then used as the indicator as follows:

ηn+1 = max
j
Sn+1,j , j = 1, 2, . . . , d (3.42)

3.2.1.3 Duffing Oscillator Tests

The main focus of this research is on the use of these derived indicators for the analysis

of the dynamics of a third body around the near-Earth binary asteroid system Didymos.

However, to validate the indicators, a dynamical system with a well studied behaviour,

called the Duffing oscillator, is used. As the pseudo-diffusion indicator has already

been verified in Ref. [124], the focus in this section will be on the variance and n + 1

indicator.

The Duffing oscillator is a two-dimensional non-linear dynamical system which mod-

els a damped and driven oscillator. The system is defined in equation (3.43).


ẋ = vx,

v̇x = A cosωt− δvx − αx− βx3.

(3.43)

The two state variables are x and vx, the driving force is oscillatory described by

amplitude A and frequency ω. The damping of the system, the linear stiffness, and the

non-linearity are given by δ, α, and β, respectively.

Chaotic behaviour can appear in this system for specific sets of model parameters
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Figure 3.11: Phase plot of two trajectories (dashed green and solid blue lines) for the
Duffing oscillator with slightly different initial conditions. The system parameters are
as follows: γ = 0.4, ω = 1.0, δ = 0.25, α = −1.0, β = 1.0.

and initial conditions. An example of this is shown in figure 3.11, where two trajec-

tories are plotted with slightly different initial conditions around the origin that are

represented with a blue and green dot. It can be seen that for a short amount of time

the two trajectories remain close but diverge rapidly afterwards, as indicated by the

two triangles marking the final states. The amount of divergence depends on the initial

conditions and the time window over which the system is analysed, due to the non-

autonomous behaviour caused by the driving force [103]. Therefore, it is important to

determine the initial conditions that lead to more regular behaviour.

For the Duffing oscillator, the goal is to validate the performance of the indicators by

comparing the results with the known dynamical structure. In [123], a Taylor polyno-

mial algebra based method (using only state uncertainty) to determine the Lagrangian

Coherent Structures (LCS) was compared with results using an FTLE indicator. It

was found that both these methods give similar results. Therefore, in this research

the Duffing oscillator is analysed using just state uncertainties and compared with the

FTLE results from previous analyses (e.g. [103]).

A grid of a 100 by 100 initial conditions is taken in the range of x = [−1.5, 1.5]

and vx = [−1.5, 1.5]. For each of these initial conditions, an initial uncertainty set with
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a range of 0.03 is defined for both coordinates, corresponding to the size between the

points in the initial conditions grid. This set is then propagated to T = 8, where both

the indicators are calculated, using a Taylor basis setup for the GIPA method.

(a) ηn+1. (b) ησ.

Figure 3.12: The uncertain dynamics indicators maps for the Duffing oscillator with
state uncertainty at T = 8. The letters in the maps correspond to several sample
trajectories shown in figure 3.13.

The grids for both the ηn+1 indicator from Eq. (3.42) and the ησ indicator from Eq.

(3.32) are obtained and displayed in figure 3.12. The structure of the maps from both

indicators can be compared to find the differences between the two indicators. The

regions of irregular or diffusive motion (green to yellow, i.e. higher indicator value)

are similar between the two maps. Showing that the effect of high diffusion on both

the ηn+1 and ησ indicator is similar. However, there are more differences found when

observing the areas of regular motion (dark blue, i.e. lower indicator value). Regions

showing the lowest indicator values for ησ do not correspond to the minimum ηn+1

regions, and vice versa. As the ηn+1 indicator measures the non-linearity, which is

affected by other factors besides the divergence of trajectories as well, these regions are

likely affected more by the non-linearity due to non-diffusive effects compared to the

regions of lower ηn+1 values.

A Monte Carlo analysis for a set of sample initial conditions for a longer integration
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time (T = 16, N = 500) is shown in figure 3.13. Trajectories C (ηn+1 = 4.58e−12,

ησ = 2.09e−6) and D (ηn+1 = 2.07, ησ = 32.64) show clearly the non-diffusive and

diffusive behaviour respectively. Both trajectory A (ηn+1 = 2.12e−15, ησ = 9.03e−6)

and B (ηn+1 = 3.11e−14, ησ = 3.55e−5) can be seen in figure 3.13 to have slightly

more diffusion than C, but remain much closer together than trajectory D. However,

comparing the values of the ηn+1 indicator shows that trajectory A has the lowest

value instead of C. To determine further what is the cause, the coefficients and a set

of samples taken from the polynomial at the final epoch are shown in figure 3.14 and

figure 3.15, respectively. The main influence on the lower value of ηn+1 for A comes

from the higher degree coefficients, which have a lower value compared to those of C.

As ησ is mainly influenced by the first couple of degrees, which are similar between A

and C, this difference does not have as large an effect on the variance. The shape of the

final sets from a number of samples is shown in figure 3.15. Even though the diffusion

of A is larger than that of C, the higher non-linearity of C, shown by the difference in

shape between the two sets, increases its value of ηn+1. Therefore, showing that ηn+1

is affected by the non-linearity in general, and not only the diffusion.

The ησ indicator map has a clear physical interpretation, where high values indi-

cate a high amount of diffusion, or a large divergence of trajectories. As previously

discussed, the ηn+1 indicator map demonstrates the difference of the non-linearity be-

tween different regions in phase space due to the difference of the size of higher order

terms in the polynomial approximation. The physical consequence of this is that tra-

jectories that start close together can have significantly different behaviours. For high

ηn+1, this non-linearity and diffusion are linked (case D), whereas for low ηn+1 the

trajectories can still diverge though with smaller non-linearity (see case A).

Comparing to previous analyses of the dynamical structure (e.g. [103]) from the

FTLE indicator, figure 3.12 shows similar structures by using the uncertain dynamics

indicators. The advantage of the uncertain dynamics indicators is that the uncertainties

can also be considered for the model parameters, which is demonstrated by applying

them to the Didymos system in chapter 4.
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(a) A (ηn+1=2.12e−15, ησ=9.03e−6). (b) B (ηn+1=3.11e−14, ησ=3.55e−5).

(c) C ((ηn+1=4.58e−12, ησ=2.09e−6). (d) D (ηn+1=2.07, ησ=32.64).

Figure 3.13: Sample trajectories from the uncertain dynamics indicator maps propa-
gated until T = 16 for the Duffing oscillator.

Figure 3.14: The polynomial coefficients at the final epoch from test trajectories A and
C.
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Figure 3.15: Samples taken from the resulting polynomial and translated to be centered
around (0, 0) for initial conditions A and C at the final epoch.

3.2.2 Expectation Estimation

Another way of analysing and quantifying the uncertainties is by estimating the mo-

ments of the PDF over time. As was shown in Eqs. (3.26) and (3.37), the moments of

the uncertainty set can be estimated using the coefficients of the polynomial expansion.

In Ref. [142] it was shown that using the Polynomial Chaos technique for any polyno-

mial basis where the weight function represents a PDF, e.g. the Hermite polynomials

represent a Gaussian distribution through the weight function ρ(x) = e−
x2

2 , then the

polynomial expansion converges to this PDF and the moments of this PDF are given

by Eqs. (3.26) and (3.37). Thus, by converting to the proper basis one can obtain the

moments analytically after the polynomial expansion has been performed.

As will be shown in chapter 6, sometimes only the moments for parts of the uncer-

tainty set need to be estimated. In this case one needs different methods. A simple MC

approach where N samples are taken to estimate these moments is the most straight

forward approach. However, the accuracy of this method converges slowly and again a

large amount of samples need to be taken. If this needs to be done a large amount of

times, this can become numerically intensive even for polynomial evaluations. Another

approach is to use an Unscented Transform [119], where the first two moments of a
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Gaussian distribution can be estimated by properly selecting the samples to be taken.

This is more efficient, however the accuracy is fixed and if a higher accuracy is needed

there is no way to tune this method. Therefore, another method is used here based on

sparse grids and Hermite-Gauss quadrature.

The propagation of Normally distributed variables in general requires integrating

the following types of equation:

1/
√
πd|Σ|

∫ ∞

−∞
e−

1
2
(x−µ)TΣ−1(x−µ)f(x)dx, (3.44)

where µ are the means and Σ the covariance matrix. f(x) can be various functions,

e.g. f(x) = x for the mean and f(x) = (x − µ)T (x − µ) for the covariance. These

integrals can be solved numerically using Gauss-Hermite quadrature and a change of

variables (x =
√
2Ly+µ, where Σ = LLT and L is determined using Cholesky decom-

position), as follows [143]:

1/
√
πd

∫ ∞

−∞
e−yT yf(

√
2Ly + µ)dy (3.45)

≈
N∑
i=0

wi√
πd
f(
√
2Lζi + µ), (3.46)

where wi are the Gauss-Hermite weights and ζi the roots of the Hermite poly-

nomial. The accuracy of the integration can be tuned by increasing the number of

quadrature points. In case of propagating a set of Gaussian variables, e.g. the state

knowledge, from time tk to tk+1, a large number of quadrature samples would need to

be numerically integrated. However, as a polynomial approximation is used, instead

of a numerical integration only a polynomial evaluation is needed for each quadrature

point, significantly reducing the computation time. For example, the mean of the state

at time tk+1 can be calculated as follows:

µxk+1
≈

N∑
i=0

wi√
πd

Ω̃tk+1
(
√
2Lζi + µ). (3.47)

Normally, the multivariate quadrature points are constructed as a Cartesian prod-
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ucts of univariate ones. This method suffers from the curse of dimensionality in d, thus

here a similar approach to the NCI method is used where a sparse grid is constructed

instead.

3.3 Chapter Summary

In this chapter the different approaches that will be used for uncertainty propagation

and quantification are discussed.

For propagation, the GIPA method is shown to work well for orbital motion around

the Didymos system. The choice of Chebyshev basis works well when the uncertain-

ties are large as it provides more uniform convergence across the expansion domain.

However, certain cases, namely the highly eccentricity orbits, show bad performance

in terms of accuracy as the uncertainty set starts to include the dynamical singularity

at the centre of the body. The Taylor basis does not have this problem and is more

efficient compared to the Chebyshev basis, at the cost of lower accuracy for large uncer-

tainties. The NCI method works well with complex dynamical systems with possible

discontinuities in the equations of motion.

The resulting propagated state is now expanded using a polynomial, which is fully

defined by its coefficients. Two dynamical indicators are developed which can measure

the sensitivity of the state to the uncertainties in both the initial state and model

parameters. The variance indicator uses the fact that for orthogonal polynomial bases

the variance of the set can be found analytically, which relates directly to the degree

of diffusion of neighbouring trajectories. The n+ 1 indicator measures the truncation

error, which is argued to be higher for more sensitive initial conditions. A test is

performed using the Duffing oscillator to see how these indicators perform. It is found

that both these indicators perform well, and furthermore they both measure slightly

different dynamical structures. The n+1 indicator directly measures the non-linearity

of a certain initial condition, which is not strictly affected by the sensitivity to the

uncertainties. Thus these two indicators can together measure various characteristics

of uncertain dynamical systems.

Quantifying the uncertainties can be further performed by determining the evolution
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of the moments of the uncertain state over time. Several methods are discussed here,

namely the MC sampling approach, the coefficient based approach, and the Guassian-

Hermite quadrature (GHQ) based approach. The GHQ uses an efficient sampling

technique, and is thus the preferred approach over the MC approach when the moments

of small subsets of the uncertainty set need to be determined. Whereas the coefficient

based method is the most efficient if the moments of the full uncertainty set needs to

be estimated.
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Uncertainty Dynamical Maps of

Orbital Motion around Didymos

This chapter is based on the work published in:

Fodde, I., Feng, J., Riccardi, A., & Vasile, M. (2023). Robust stability and mission performance of a CubeSat

orbiting the didymos binary asteroid system. Acta Astronautica, 203, 577-591. https://doi.org/10.1016/j.

actaastro.2022.12.021

Fodde, I., Feng, J., & Vasile, M. (2022). Uncertainty maps for motion around binary asteroids. Celestial

Mechanics and Dynamical Astronomy, 134(5), [41]. https://doi.org/10.1007/s10569-022-10096-2

Fodde, I., Feng, J., & Vasile, M. (2021). Uncertainty propagation for orbital motion around an asteroid using

generalized intrusive polynomial algebra: application to didymos system. Paper presented at 8th International

Conference on Astrodynamics Tools and Techniques.

Due to the complex dynamics around a binary asteroid system, it is important to

find specific orbits that remain stable for longer periods of time, as this can significantly

reduce the amount of station-keeping manoeuvers and reduce the risk of an impact or

escape from the system in case of failures.

In previous studies (see e.g. [144], [89], [79]), only the nominal system was investi-

gated, or only after the nominal design was performed were the uncertainties included.

This is more time intensive, and for larger uncertainties it can affect which orbits are
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determined to be stable [89]. In this chapter, a novel methodology is used to efficiently

include the uncertainties in the orbit design, without decoupling these two processes.

This is done using the GIPA uncertainty propagation method of section 3.1.1 and the

uncertain dynamics indicators of section 3.2.1. It is shown how using the methodology

presented here the uncertainties can be directly included in the analysis of the close

proximity motion, and therefore improving the understanding of the uncertain dynam-

ics of the system and aiding in the design of robust and stable orbits for spacecrafts

orbiting this system.

4.1 Didymos Mass Uncertainty

Measuring the sensitivity of the very close proximity motion near Didymos to uncertain-

ties in the parameters describing the dynamics using the uncertain dynamics indicators

is important to both validate the indicators themselves and to investigate the changing

dynamical structure around Didymos. This is especially important for both the design

of extreme close proximity motion of a spacecraft around the asteroids, and for the

investigation of the regions where dust and ejected particles might reside. The CR3BP

model of section 2.3.2 is used as this allows for validation (by comparing to other works

investigating this system, e.g. [123]) and because the Jacobi constant can be used to

reduce the dimensions of the system (this process will be discussed later in this section).

A second degree and order spherical harmonics field is used as the gravitational model,

this combined model will be called the spherical harmonics CR3BP (SH-CR3BP) here,

to seperate it from the standard CR3BP where a point mass gravity is used. In this

analysis, it is assumed that the primary rotates at the same rate as the binary orbit

period. This makes the system easier to analyse as it becomes an autonomous system

in the synodic reference frame (rotating together with the orbit of the secondary), even

considering non-spherical gravity. The uncertainties in the mass variables of both bod-

ies are taken, as they are fairly large (in the order of 10 percent) as can be seen from

table 2.1.

The Didymos dynamical system is a 3 degree of freedom (DOF) system with 6 state
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(a) ηn+1. (b) ησ.

Figure 4.1: The maps of the uncertain dynamics indicator for the SH-CR3BP with
model uncertainties at T = 3 with C = 3.1. The red area contains the secondary,
therefore no initial conditions appear there.

variables, while the Duffing oscillator (used to test the uncertain dynamics indicators

in section 3.2.1) has one DOF with 2 state variables. To reduce the dimensionality of

the problem, only the planar case (z = 0 and vz = 0) is considered, as the motion then

remains constrained to this plane during the integration. Furthermore, the initial y-

coordinate can be set to zero and then the initial vy-coordinate can be found according

to a pre-determined Jacobi constant C, using Eq. (2.32).

A similar grid as with the Duffing oscillator can be constructed, using the range of

x = [0.3, 1.5] and vx = [−2, 2] for 100 by 100 grid points. The lower x-values are not

taken into account here due to the presence of the primary. Additionally, the region

where the secondary is located is removed from the grid. As was mentioned before, an

uncertainty of 10 percent in the masses of the two bodies is used.

A polynomial degree of 5 is chosen for the Didymos system as this keeps the RMSE

sufficiently low, below 10−6 for the specific case considered in Figure 3.3, and the

runtime manageable for the larger grids.

The maps, representing the ηn+1 and ησ indicators, are shown in figure 4.1. For all
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maps, the white areas represent the regions where no initial condition with the selected

value of C is possible. For the ησ indicator, a maximum variance of 10−3 was set.

For both maps, there are several regions, indicated by a bright yellow colour, where

the indicators are at the maximum value or show noisy behaviour. These regions are

where the polynomial approximation intersects the center of either the primary or

the secondary at some point during the integration, as was also observed in the high

eccentricity orbits analysed in section 3.1.1. This causes the polynomial approximation

to diverge as the gravitational dynamical model includes a 1/r term. If r = c0 + n(r),

where n(r) are the higher order terms of the polynomial approximation, the inverse

can be written as follows:
1

r
=

1

c0
· 1

1 + n(r)
c0

. (4.1)

As for a Taylor polynomial c0 represents the central reference point, if the central

point of the position uncertainty set approaches either of the bodies, the inverse of Eq.

(4.1) will become (close to) singular and the approximation diverges. As part of the

trajectories in the set impact with one of the bodies in this case and cause a singularity

with a high likelihood, they are considered as infeasible trajectories.

Analysing the maps from figure 4.1 further, several regions of low diffusion (dark

blue) can be found. Motion outside the system (x > 1−µ) is found to have mainly low

diffusion. The inner region (x < 1−µ) shows various different structures, where a clear

diagonal line of low diffusion can be found, showing that there are inner regions where

the uncertainty of the masses of the primary and secondary has less of an influence on

the motion of a third body. This line is slightly shifted when compared between the two

indicators. As for the Duffing oscillator, this difference is likely due to the non-diffusive

effects that affect the non-linearity more for certain regions. The more diffusive regions

do correspond between the two different indicators.

To validate the dynamical structures from the uncertain dynamics indicator maps

from figure 4.1, four initial conditions have been chosen from figure 4.1a and 4.1b. A

Monte Carlo analysis was performed with double the total propagation time of the map.

The four different results are shown in figure 4.2. Trajectory A (ηn+1 = 4.51 · 10−6,
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(a) A (ηn+1 = 4.51 ·10−6, ησ = 5.68 ·10−4). (b) B (ηn+1 = 1.02 · 10−3, ησ = 0.10).

(c) C (ηn+1 = 9.79 ·10−7, ησ = 4.11 ·10−3).(d) D. (ηn+1 = 1.62·10−7, ησ = 4.78·10−5).

Figure 4.2: Sample trajectories from the uncertain dynamics indicator maps propagated
until T = 6. The ZVS are shown from the nominal system parameters.
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Figure 4.3: The polynomial coefficients at the final epoch from test trajectories A and
C from figure 4.1a.

ησ = 5.68 · 10−4) is taken from the low ησ area and trajectory C (ηn+1 = 9.79 · 10−7,

ησ = 4.11 · 10−3) is taken from the low ηn+1 area. A small difference is observed in

terms of the diffusion of the trajectories, where A shows lower diffusion compared to

C. Similar with the Duffing oscillator case, this is likely due to the higher non-diffusive

component of the measured non-linearity for A. Indeed, the coefficients and polynomial

samples shown in figures 4.3 and 4.4 show this similar effect for the Didymos grid. The

polynomial of A has lower Si compared to that of C for lower degree coefficients, which

decreases the value of ησ. However, the higher degree coefficients are larger in size,

hence increasing the value of ηn+1. The samples of figure 4.4 show as well that the

diffusion (and therefore ησ) is larger for C, while the deformation of A is larger due

to the higher non-linearity (and thus higher ηn+1). Trajectory B (ηn+1 = 1.02 · 10−3,

ησ = 0.10) shows high diffusion and non-linearity, as both ησ and ηn+1 are large, and

trajectory D (ηn+1 = 1.62 · 10−7, ησ = 4.78 · 10−5) shows the low diffusion and non-

linearity behaviour for the outer region, confirmed by the low value of both indicators.

In addition to the dynamical structure of the inner region for different vx, a second

set of initial conditions is investigated. For these maps, both the x and y velocities are

set to zero and a set of values for x and y are selected. A grid of a 100 by 100 points is
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Figure 4.4: Samples taken from the resulting polynomial and translated to be centered
around (0, 0) for initial conditions A and C at the final epoch for figure 4.1a.

(a) ηn+1. (b) ησ.

Figure 4.5: The uncertain dynamics indicator maps for the SH-CR3BP with model
uncertainty at T = 3 with velocities set to zero.
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taken for x = y = [−1.25, 1.25], where the points further than 1.25 from the barycentre

are removed as they correspond to generally low values of the indicators. Furthermore,

orbits inside the Brillouin sphere of both bodies, together with a small region around

the surface of the bodies, are also removed as they generally impact with the bodies at

some point.

The maps for the zero velocity motion are shown in figure 4.5. Contrary to previous

maps, the ηn+1 maps and the ησ indicator maps show mostly similar results. This

indicates that for these initial conditions, the largest part of the non-linearity is caused

by the divergence of the trajectories. There are two distinct areas with low indicator

values that are of interest. The first is located in front of the secondary in the direction

of its motion and the second around the bottom of the primary. These regions can

allow motion close to the bodies which is not sensitive to off-nominal conditions, and

thus can be of interest for a spacecraft observing the system.

Four sample trajectories from the maps in figure 4.5a and figure 4.5b are propagated

to validate the dynamical structures, which are demonstrated in figure 4.6. Figure 4.6a

and 4.6b show trajectories from two areas with low values for the indicators. As ex-

pected from the maps, all trajectories here remain close together. The test trajectories

from figure 4.6c and 4.6d show trajectories from regions with high values for the un-

certain dynamics indicators. These test trajectories show more spread in the different

trajectories, which indicates that they are more sensitive to the mass uncertainties of

the Didymos system.

4.2 Didymos High-Fidelity Model

In section 4.1 the focus was more on the characterization of a specific regime of the

dynamics, namely the very close proximity motion with just environment uncertainties,

and on giving an example of how the uncertain dynamics indicators can be used for these

types of systems. Now, the goal is to apply the different techniques discussed in chapter

3 to a realistic mission scenario. In this case the design of the close proximity orbits for

a spacecraft around Didymos, specifically for the Hera mission. Two CubeSats (called
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(a) Trajectory A. (b) Trajectory B.

(c) Trajectory C. (d) Trajectory D.

Figure 4.6: Sample trajectories from the uncertain dynamics indicator maps of the zero
velocity initial conditions propagated until T = 6.
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Milani [30] and Juventas [31]) will be released into orbits around the system besides

the Hera spacecraft. The Hera spacecraft plans to follow hyperbolic arcs around the

system, while the CubeSats will use the natural dynamics of the system to orbit more

closely to the bodies (for Milani, this only holds for the final phase of the mission as

mainly it will also use hyperbolic arcs). Therefore, the full dynamics as described by

the generalised inertial form is used.

Here, a spherical harmonics model of Didymos is considered to calculate the force

due to its non-spherical shape. For the main purpose of trajectory design, the spherical

harmonics terms up to and including the fourth order need to be considered [145]. In

the case of Didymos, the C20 and C22 terms are at least one order of magnitude larger

than the higher order terms of the gravity field. As a large uncertainty of about 10

percent is considered in these second order coefficients, the higher order terms will have

a significantly lower impact on the gravitational acceleration compared to the effect of

the large uncertainties in C20 and C22. Therefore, the spherical harmonics acceleration

is truncated at the second order and degree. Similarly, higher fidelity models based on

the current polyhedron shape of Didymos (e.g. see [146]) would increase the accuracy

of the calculated trajectories for the deterministic case, but for the uncertain case

the accuracy improvement is less significant due to the uncertainties in the physical

parameters considered for these models.

As the orbits considered are at a minimum distance of 2 km from the Didymos

centre, the secondary is considered to have a point mass gravity field, as was shown to

be sufficiently accurate for these dynamical regimes in [79]. The gravitation of the Sun

is assumed to be described by a point mass as well, due to the large distance between

the asteroids and the Sun.

For the SRP acceleration, a cannonball radiation pressure model is used. As was

discussed in chapter 2, the relative position of Didymos with respect to the Sun remains

constant for the timescales discussed here, and is located at a distance of 1.831 AU (the

distance on July 2027, which is during the operational phase of the two CubeSats [147]).

In this SRP model the specific difference in reference areas between the different sides

of the CubeSat are not taken into account, as the uncertainties in the reference area
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considered in this work include these differences. The analysis of the effect of the

(uncertain) attitude on the SRP force, similar to [148], is left for future work. The

nominal value for the mass-to-area ratio of the CubeSat is taken as 25.86 kg/m2 (The

mass-to-area ratio of Juventas [31]).

4.2.1 Robust Stability

The variation of the volume of the uncertainty set and its shape over time are a measure

of the evolution of an ensemble of trajectories induced by multiple realisations of ξ.

If the trajectories are moving apart over time one would expect an increase in the

volume of the set. On the other hand the set can stretch in one particular direction

without increasing its volume. If the trajectories in the ensemble grow apart, whether

increasing the volume of the set or just by stretching it in some directions, we call the

process diffusive. The degree to which the trajectories in the ensemble grow apart is

a function of the level of uncertainty and of the dynamics governing the evolution of

each trajectory.

We can now provide a definition of robust stability.

Definition 4.2.1 (Robust Stability). Given the uncertainty set Ωξ, the initial bounded

set Ωx0 and propagated states (3.3), consider a restriction Ωyt of Ωxt to the subspace

defined by only some of the components yt of xt. A robust stable motion is such that

for every realisation of ξ ∈ Ωξ every restriction Ωyt is such that
∫
Ωyt

dyt < εy, ∀t > 0,

for a sufficiently small phase space volume εy. In other words the motion remains

bounded over time in all directions.

Following the definition of diffusion of an ensemble of trajectories, this means that

if the diffusion remains low when parametric uncertainties are also considered, the orbit

is defined to be robust stable. A robust stable orbit around an asteroid thus shows that

the spacecraft will be stable, even if the true environment is different from the nominal

dynamical model. Comparing the measure of robust stability between different initial

conditions allows for the comparison of different regions in phase space against each

other to determine regions of less sensitive motion.
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Table 4.1: The initial conditions for the three different maps.

Parameter Grid 1 Grid 2 Grid 3

a [km] [2 - 6] [2 - 6] 3
e [-] 0 [0 - 0.4] 0
i [◦] [0 - 180] 85 [0 - 180]
Ω [◦] 90 90 [0 - 180]
ω [◦] -90 -90 -90
ν [◦] 0 0 0

The uncertain dynamics are investigated for a set of initial conditions that are

generated from a range of Kepler orbital elements. As this is a highly perturbed

environment, these orbital elements will quickly diverge from the classical two-body

values (or their original values) and thus are only used to generate a set of interpretable

initial conditions and to understand the evolution of the shape of the orbit over time.

The initial orbital elements are converted to Cartesian coordinates to perform the

integration. Three grids of 80 by 80 points are constructed from the different initial

conditions. For each grid two orbital elements vary and the other orbital elements

remain constant. The specific initial conditions for each grid are shown in table 4.1.

The first grid investigates the effect of a and i for circular orbits facing the Sun. The

second grids focuses specifically on the terminator orbits and the effect of e. Finally,

for a fixed a the orbital plane is varied with a grid in i and Ω.

Each point on the three different grids is propagated for five orbital periods (cal-

culated from the initial a), using a Runge-Kutta 4 numerical integrator. Uncertainties

are considered in the initial state (position and velocity), C20, C22, and the spacecraft

SRP force. The SRP uncertainty stems from both uncertainty in the parameters and

inaccurate modelling of this force. However, GIPA works with individual uncertain

variables, hence only parameter 1/B is considered to have an uncertainty in this case,

and the inaccurate modelling is not considered for this analysis. The uncertainty of the

parameter 1/B is directly proportional to the uncertainty in the final acceleration for

the Cannonball SRP model, and can thus represent the total uncertainty in the SRP

force. The state uncertainties are set to a value of 1 percent to be able to determine
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the effect of small perturbations in the state. The model parameters, i.e. C20, C22,

and B will have a larger uncertainty of 10 percent, representing the possible values

these parameters can take. Furthermore, a polynomial degree of 5 is selected as this

has previously been shown to be a good trade-off between speed and accuracy [149].

All values used during propagation are adimensionalized and scaled by dividing them

by the position and period of Dimorphos with respect to Didymos, based on their re-

spective units. This improves the numerical efficiency of the integration. Hence, all

the indicator values do not have a unit as well. As the indicators are mainly used in

maps to compare their relative values and find regions of relatively robust stability,

their absolute values are of less significance.

Figure 4.7 shows the result for the ηn+1 indicator and the ησ indicator for grid 1.

Where the Cartesian state is considered for the ησ indicator. The colors in the two

plots represent the values of the variance ησ and non-linearity ηn+1 indicator. Lower

values of both these indicators means in general that those initial conditions are less

sensitive to changes in both the initial conditions and dynamical parameters, and thus

these trajectories remain more closely bounded. Hence, they can generally be viewed

as being more robust stable than regions with higher values of the indicators, according

to the definition given in Section 4.2.1.

Compared to the results for the SH-CR3BP, the ηn+1 and ησ maps here are very

similar in terms of relative values within the map. Thus, it can be concluded that the

effect mainly driving the absolute value of the ηn+1 indicator is similar to the diffusion

that the ησ is measuring.

Several general regions of interest can be found in these maps. First, the prograde

and retrograde orbits (<∼ 90◦ and >∼ 90◦ respectively) at larger a show unstable

behaviour. For these regions, the SRP is of a similar order with the gravitational

force and therefore has a significant destabilizing effect on these orbits. Due to this

sensitivity to the SRP, the uncertainty in the B parameter increases the diffusion of

these trajectories as well. Closer to the system, the retrograde orbits become more

stable as the SRP force becomes less significant compared to the gravity of both bodies.

However, the prograde orbits remain relatively unstable compared to the retrograde
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ones. The retrograde orbits experience less influence from the non-spherical gravity

contributions due to the high relative velocities with respect to the asteroid. This also

means that the uncertainties in the C20 and the C22 value have less of an influence on

these trajectories. Closer to the body, the influences of both the resonances with the

spin of the primary and the orbital motion of the secondary can be observed in the

maps (2:1 mean motion resonance at 2.1 km and the 3:1 orbital resonance at 2.475

km). These resonances in combination with the uncertainties in the gravity field can

be seen to cause both stable and unstable behaviour. The most stable behaviour can

be found around the terminator orbit, which corresponds to previously found results,

e.g. [76], showing that these orbits are robust against uncertainties in the gravity field

and SRP force.

(a) ηn+1. (b) ησ.

Figure 4.7: The uncertain dynamics indicators for grid 1.The colormaps represent the
value of the respective indicator, thus the amount of variance and non-linearity. The
letters indicate the set of sample orbits that are used to verify this grid, which are
shown in Figure 4.8.

To validate the map of grid 1, a Monte Carlo analysis with 1000 samples for a longer

period of time of 8 orbital periods of the spacecraft is performed for four different

initial conditions shown in figure 4.7. The resulting trajectories are shown in figure
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4.8 using different colours for the different Monte Carlo samples. From the robust

stability grids, the two trajectories A and D are expected to be unstable, which is proven

by the diffusive behaviour among the different sample trajectories and by the rapid

change of the eccentricity and semi-major axis over time of most sample trajectories.

Furthermore, the two stable trajectories B and C have significantly less diffusion and

remain close to the initial orbit.

(a) Sample orbits A. (b) Sample orbits B.

(c) Sample orbits C. (d) Sample orbits D.

Figure 4.8: Sample trajectories from the uncertain dynamics indicator maps propagated
until tf = 8 periods.
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For grid 2, the effect of e on the terminator orbits (see i = 90◦ from figure 4.7)

is investigated. The results are shown in figure 4.9. The eccentricity can be seen to

have a significant effect on the robust stability of an orbit. For higher semi-major axes,

the eccentricity can be increased and the orbit remains relatively stable. While for low

semi-major axes, small initial eccentricities can already lead to unstable orbits. Small

values of e result in close approaches to the asteroid system in the case of low a, which

results in destabilizing effects due to the higher gravitational acceleration.

(a) ηn+1. (b) ησ.

Figure 4.9: The uncertain dynamics indicators for grid 2.The colormaps represent the
value of the respective indicator, thus the amount of variance and non-linearity.

A set of sample trajectories from a similar Monte Carlo analysis as before are also

plotted in figures 4.10a and 4.10b. From these figures it seems as if trajectories from

E are more stable then expected compared to F. However, from the evolution of the

distance from the centre of Didymos and the velocity, seen in figure 4.11, it can be seen

that the amplitude for both variables are decreasing over time for F. Whereas for E

these are slightly increasing over time.
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(a) Sample orbits E. (b) Sample orbits F.

(c) Sample orbits G. (d) Sample orbits H.

Figure 4.10: Sample trajectories from the uncertain dynamics indicator maps propa-
gated until tf = 8 periods for grid 2 and 3.
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(a) Sample orbits E. (b) Sample orbits F.

Figure 4.11: The distance r from the centre of Didymos and velocity v of different
trajectories over time for sample orbits E and F.

Finally, the results for grid 3 can be seen in figure 4.12. For these maps there is a

more clear difference between the ηn+1 and ησ indicators, as there are several regions

and structures in the ηn+1 map which do not appear in the ησ map. From the discussion

in section 3.2.1.2, it is observed that ηn+1 is an indicator of the non-linearity, which is

not strictly affected by the diffusion. Hence, it is possible that these factors increase

the ηn+1 more for these regions and structures, therefore changing the relative value.

The two main regions of unstable motion are similar between the two indicators.

They can be found in the range of i ≈ [20◦−70◦], Ω ≈ [40◦−90◦] and for i ≈ [0◦−20◦],

Ω ≈ [125◦ − 175◦]. Various robust stable structures can be found in these maps. As

can be seen from figure 4.7, the value of a used for this map is close to the transition

where the SRP force becomes less dominant and the non-spherical shape become more

dominant, as the retrograde orbits go from unstable to stable. This leads to various

different robust stable combinations of i and Ω.

Two sample initial conditions, G and H, are taken from the two maps and analysed

using a Monte Carlo analysis. The results can be seen in figures 4.10c and 4.10d. These
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analyses match with the expected robust stability as around G the trajectories diffuse

more compared to H.

(a) ηn+1. (b) ησ.

Figure 4.12: The uncertain dynamics indicators for grid 3. The colormaps represent
the value of the respective indicator, thus the amount of variance and non-linearity.

Besides the ησ indicator for the variance in the Cartesian state, the variance in a

and e is also measured. These indicators are shown for grid 1 in figure 4.13. These

maps show how the bounds of the orbital elements evolve over time due to sensitivity to

the state and model parameters. It can be seen that in general these results agree with

the robust stability indicators from figure 4.7. The orbital elements a and e remain the

most bounded for terminator orbits and close (< 3km) retrograde orbits, whereas the

orbits with a high influence of the SRP show high variance.
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(a) Variance in a. (b) Variance in e2.

Figure 4.13: The variance in the semi-major axis a and squared orbital eccentricity e2

at the final time for grid 1. The letters indicate the set of sample orbits that are used
to verify this grid, which are shown in Figure 4.8.

The results from figure 4.13 can be verified using a similar MC method as was

discussed before. The same sample points, A to D, are used (see figure 4.13) and the

spread and evolution of the trajectories from the Monte Carlo analysis are investigated

in more detail. The bounds of the orbital elements for the four sample regions are shown

in figure 4.14a. As expected, the bounds of a and e for A and D are both increasing

over time, whereas for B and C these remain much more constant. For C (around the

3:1 orbital resonance), the bounds of a seem to shrink until 3 orbital periods is reached

after which the bounds increase again as can be seen in figure 4.14b. These results

agree with what is expected from the maps developed in figure 4.13.
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(a) Orbital elements bounds. (b) Sample orbits C.

Figure 4.14: Maximum and minimum values for the semi-major axis and eccentricity
of the different initial conditions and the sample orbits shown for C.

The same similarity between the robust stability indicators and the variance in a

and e of grid 1 can be found for grid 2 in figure 4.15. The main difference in the variance

maps is that the contrast for regions of high and low robust stability is greater for the

orbital elements maps compared to the Cartesian maps. This shows the sensitivity

of the orbital bounds to the effect of the uncertain dynamics in different regions of

initial conditions. In [76], an analytical estimate of the eccentricity as a function of

semi-major axis for a stable terminator orbit conditions was derived as:

e = cosΛ, (4.2)

tanΛ =
3(1 + κs)P0

2B

√
a

µdidµSunaH(1− e2H)
, (4.3)

where aH and eH are the heliocentric semi-major axis and eccentricity. This function

is shown in the maps of Figure 4.15 as a white dotted line. It can be seen that for a

larger a, this theoretical value is located in the region with the low ησ and low ηn+1

region, thus it still is able to predict the stable e values well. As the orbit gets closer to

the system, other unmodelled perturbations like the gravity of Dimorphos reduce the
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accuracy of Eq. (4.2) and thus show more unstable behaviour.

The orbital element bounds for sample orbits from E and F are shown in figure

4.16. The stable region F has relatively constant bounds and also has a decreasing

mean value for e. In contrast, the bounds for E are growing slowly. Furthermore,

due to the orbital resonance around this initial condition, an empty region is found

after around 4 periods. This resonance alters the orbits around this region to form two

different groups.

(a) Variance in a. (b) Variance in e2.

Figure 4.15: The variance in the semi-major axis a and squared orbital eccentricity
e2 at the final time for grid 2. The dotted line represents the theoretical frozen orbit
condition from Eq. (4.2)

115



Chapter 4. Uncertainty Dynamical Maps of Orbital Motion around Didymos

(a) Orbital elements bounds. (b) Monte Carlo results for E.

Figure 4.16: The orbital elements over time for two different test trajectories from grid
2. In 4.16a the bounds are shown, and in 4.16b the results for E are shown in more
detail.

For grid 3, the results are shown in figure 4.17. The highest values for the variance

of a are lower compared to the previous maps, showing some more structure in both the

unstable and stable regions. It can be seen that there are several structures of stable

behaviour within the unstable regions. Furthermore, the region around i = 180◦ shows

the lowest variance in the orbital elements, representing regions of bounded motion.

The bounds for the sample orbits in figure 4.18 show again the difference between

the stable and unstable region. The difference is relatively small for a. However, for e

it can be seen that the difference in both the growth of the mean and variance is larger.

The maps show as well that the effect of Ω is more significant for the prograde motion,

where more regions of high variance are found.

The analysis performed using the indicators in this section does not directly measure

the safety against impact, as the time period over which the polynomial propagation

is performed is not long enough to find impact trajectories. However, for Monte Carlo

analyses of several unstable orbits for longer periods of time (e.g. figure 4.8a), several

orbits were found to impact with one of the asteroids in the system. Therefore, it is
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implied here that orbits from regions of high indicator values of the robust stability

maps have a higher risk in terms of possible impacts. A more quantitative analysis of

this impact risk is left for future work.

(a) Variance in a. (b) Variance in e2.

Figure 4.17: The variance in the semi-major axis a and squared orbital eccentricity e
at the final time for grid 3.
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Figure 4.18: Maximum and minimum values for the semi-major axis and eccentricity
of the sample orbits from grid 3.

4.2.2 Mission Performance

From the perspective of mission operations, the robust stability discussed in section

4.2.1 is an important factor in the selection of an orbit for a spacecraft as it shows how

frequent adjustments need to be made to the trajectory to keep it within the desired

bounds. In addition, the spacecraft needs to fulfill a certain set of operational and

scientific requirements that are influenced by the specific orbit the spacecraft is in. In

previous studies ( [31], [79], [150]) the different constraints and requirements for the

trajectory design of the different spacecraft orbiting Didymos and observe Dimorphos

are discussed. One of the main important factors that is discussed is the observability

of Dimorphos in terms of lighting for the passive instruments (e.g. optical cameras).

To determine the observability of Dimorphos, several key factors need to be taken

into account [151]. These factors are all related to the illumination and geometry of

the system. It is required for several instruments on-board the spacecraft to observe

the body with sufficient illumination to determine all the necessary features. First, the
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angle between the lines connecting the Sun and Dimorphos, and the spacecraft and

Dimorphos is calculated (i.e. the phase angle). If this angle is smaller than 90 degrees,

the illumination is sufficient. Second, it is determined whether Dimorphos is located in

the shadow of Didymos, where the shape of the shadow is taken to be conical. Finally,

it is determined whether Dimorphos is not located behind Didymos with respect to the

position of the spacecraft. At all evaluation points in an orbit, these three factors are

calculated. If they are all shown to be favourable (i.e. Sun angle less then 90 degrees,

not in shadow, and Didymos is not blocking Dimorphos), then at that time Dimorphos

is deemed observable. If any of these factors are determined to be false, then Dimorphos

is not observable. At the end of a simulation run, the percentage of time Dimorphos

is observable is calculated. This measure of observability is similar to the one used for

the trajectory design of the close proximity phase of the Hera spacecraft [5].

To test the ability of this method to analyse the mission parameters and perfor-

mance, the observability for the three grids is measured.

The upper and lower bounds for the observability is shown in figure 4.19 for grid

1. The stability of the region around the terminator orbit makes the bounds of the

observability lie close together (30 - 50 percent). The unstable regions allow for both

lower minimal values (higher chance of bad observability conditions), but also higher

maximum values (higher chance of good observability). This is caused by the diffusion

of trajectories allowing for a wider spread of trajectories with different geometries.

Part of these trajectories allow for better observability conditions. Therefore, from

these plots a trade-off can be made among the robust stability and boundedness shown

in figures 4.7 and 4.13, and the observability of the secondary in figure 4.19.

The same effect can be seen for grid 2 in figure 4.20. However, there is a much larger

difference between the uncertain dynamics maps and the observability maps for grid

3, as is shown in figure 4.21. The terminator orbit is again shown here to have much

smaller difference between the maximum and minimum bounds, indicating that the

geometry for these orbits is less sensitive to state and model parameter uncertainties.

Due to these small bounds, the terminator orbits minimize the worst case scenario

observability while also lowering the maximum possible observability. The coverage
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of Dimorphos was not taken into account for this analysis, however it is noted here

that the terminator orbits tend to observe the same face of the asteroid, reducing the

coverage of the body from these orbits [5].

(a) Minimum observability. (b) Maximum observability.

Figure 4.19: Minimum and maximum observability, shown in percentage of the trajec-
tory for which Dimorphos is observable for grid 1.
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(a) Minimum observability. (b) Maximum observability.

Figure 4.20: Minimum and maximum observability, shown in percentage of the trajec-
tory for which Dimorphos is observable for grid 2.

(a) Minimum observability. (b) Maximum observability.

Figure 4.21: Minimum and maximum observability, shown in percentage of the trajec-
tory for which Dimorphos is observable for grid 3.
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4.3 Chapter Summary

This chapter presents a methodology of how the GIPA method and the uncertain

dynamics indicators can be used in the characterisation of the dynamics and the design

of close proximity orbits that are both stable and robust against uncertainties.

First, the methodology was applied to Didymos system, modeled using the CR3BP

with spherical harmonics gravitational models. The effect of just the uncertainty in

the gravitational parameter was analysed using the variance and n+1 indicator for ex-

tremely close proximity motion (interior to the system). The variance indicator shows

that there are possible regions of low diffusion, i.e. initial conditions for which the tra-

jectories that originate from these conditions remain together even if the gravitational

parameter is different. The n+ 1 indicator on the other hand showed the influence of

non-linearities on the evolution of trajectories, specifically showing that the regions of

low diffusion and low non-linearity are not always the same.

This analysis gave a first indication of how the indicators can be used to characterise

the uncertain dynamics. The next step is to apply these indicators to a high-fidelity

model and analyse the effect of both the state and model uncertainties, defining that if

an orbit that has a low sensitivity to both these uncertainties, that it is robust stable.

The classical orbits that are determined to be stable like the terminator orbits are found

to be generally also robust stable. However, this stability breaks down closer to the

bodies and the resonances with the orbit of Dimorphos show to have large influences on

the stability of certain regions in phase space. Other combinations of orbital parameters

were also found to be robust stable, allowing for various options for mission designers.

The polynomial algebra is then used to investigate the effect of uncertainties on

the parameters that determine the performance of the mission, like the observability

of Dimorphos. This analysis shows that the robust stable orbits found by applying

the uncertain indicators to the Cartesian or Kepler elements do not always correspond

to the highest performing orbits in terms of observability. Hence, it is important to

consider both these factors when selecting mission orbits.
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Chapter 5

Ballistic Landing Trajectory

Design under Uncertainty

This chapter is based on the work published in:

Fodde, I., Feng, J., Vasile, M., & Gil-Fernández, J. (2023). Design and Analysis of Robust Ballistic Landings

on the Secondary of a Binary Asteroid. Journal of Guidance, Control, and Dynamics. In-review.

Fodde, I., Feng, J., Gil-Fernández, J., & Vasile, M. (2022). Binary asteroid landing trajectory design from

a self-stabilized terminator orbit considering parametric uncertainties. Paper presented at 73rd International

Astronautical Congress 2022, Paris, France.

Fodde, I., Feng, J., & Vasile, M. (2022). Landing area analysis for ballistic landing trajectories on the secondary

of a binary asteroid. Paper presented at AAS/AIAA Astrodynamics Specialist Conference 2022, Charlotte,

United States.

Fodde, I., Feng, J., & Vasile, M. L. (2022). Robust trajectory design for ballistic landings on Dimorphos. Paper

presented at American Institute of Aeronautics and Astronauts SCITECH 2022 Forum, San Diego, United

States. https://doi.org/10.2514/6.2022-1476

Landings on the surface of asteroids are incredibly valuable in terms of scientific

return as the spacecraft-surface interaction provides direct information on the internal

structure and material properties of the asteroid while their instruments can do some

in-situ measurements to characterize the asteroid in more depth. Various previous
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missions performed landings or surface touchdowns, among them the Hayabusa mission

[152], Rosetta [51], Hayabusa 2 [153], and OSIRIS-REx [24]. Precise landings require

a complex and precise guidance, navigation, and control (GNC) system, increasing

the complexity of the spacecraft. As the Hera CubeSats have a limited size and mass

budget, a dedicated landing GNC system might not be feasible. Therefore, ballistic

landings, i.e. with no closed-loop control of the translational state during descent,

are good options for the landing manoeuver. The main drawback of ballistic landings

are their sensitivity to errors in the deployment manoeuver and uncertainties in the

dynamical parameters [154]. Therefore, when designing ballistic landing trajectories,

the impact of uncertainties needs to be taken into account.

The complex dynamics due to the large influence of the primary, the non-spherical

shape of both bodies, and the low gravitational forces make the landing trajectory de-

sign difficult. Previous work has focused on using the hyperbolic manifolds around the

L2 point to find trajectories that intersect with the surface of the secondary [81], [155],

[156], [82], [157]. These types of trajectories are very efficient and robust, however

often require deployment from close to the L2 point and do not guarantee favourable

landing conditions (e.g. large touchdown velocity and/or shallow impact angle). Other

approaches involving bisection based methods to find minimum touchdown velocity

landing trajectories for any landing location on the body have also been investigated

in [154] and [158]. These methods give insight into what dynamically is the minimum

touchdown velocity of a certain location, but it cannot consider any additional con-

straints on the trajectory itself. The bouncing and surface motion of landers has also

been investigated in detail in [159], [160], [161], [162], and [163]. These studies highlight

the importance of implementing accurate and efficient models for the dynamics of this

phase of the landing trajectory design as well as it can have a large influence on to the

lander settling location and success of the landing itself.

Besides the complex dynamics, another problem in the trajectory design process is

the highly uncertain environment in which the spacecraft needs to operate, as ground

based observations are not able to determine the asteroid’s property with a high degree

of accuracy [40]. Often, these uncertainties are only included in the analysis after a
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nominal trajectory has been designed to check the sensitivity of the trajectory to them.

This decoupling is inefficient and can lead to worse performances as conservative safety

margins are added [65]. Furthermore, conventional methods for this process like linear

covariance analysis require the dynamics to be close to linear and/or the uncertainties

to be small. More accurate techniques like the Monte Carlo method, on the other

hand, requires a large amount of samples to be propagated through the dynamics

(error is roughly proportional to 1/
√
N where N is the amount of samples) [164].

Hence, this technique is not numerically efficient enough to be used in applications

like determining phase space structures or trajectory optimization algorithms, which

require large amount of initial conditions to be investigated and thus need more efficient

uncertainty propagation and quantification techniques.

This section introduces a novel methodology for the analysis and design of ballistic

landing trajectories, which takes into account the uncertainties present in the system

throughout the full process. The proposed method first uses non-intrusive Chebyshev

interpolation (NCI) to propagate the uncertain state of the lander for a large amount

of landing conditions (velocity magnitude and direction). For each landing condition,

the rate of growth of the uncertain state is then determined using the pseudo-diffusion

indicator of section 3.2.1.1. This information allows for the discovery of conditions that

lead to a high probability of a successful landing, which is then used to design the final

ballistic landing trajectory. This trajectory is again designed with the uncertainties

taken into account, by applying NCI inside the trajectory optimization transcription

and minimizing the final variance of the state.

5.1 Surface Motion

The motion of the spacecraft during touchdown and the phase after landing where it can

bounce and move around the surface is mainly defined by the shape of the surface, the

characteristic of the surface material to dissipate the energy of the spacecraft, and the

presence of surface features like rocks and/or craters. Previous research has investigated

the surface motion for a large range of fidelity, from simple point mass models with

no rocks on the surface (e.g. [159]) to full polyhedron models of the spacecraft and
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asteroid surface (e.g. [162]). It was shown previously in [160], [161], and [163] that

the shape of the lander has a significant impact on its surface motion. Considering

the spacecraft shape allows the effects like frictional torque and rolling resistance to be

modeled, however it also requires an accurate shape of the body to be implemented.

In the case of a preliminary analysis of the landing manoeuver, the surface properties

like the local slope, rock sizes and distribution, and surface composition will only be

known with a high degree of uncertainty. Therefore, this work focuses more on the

implementation and analysis of uncertainties within the dynamical models (in this case,

the energy damping coefficient of the surface and the local normal vector) and apply

a relatively simple point mass model for the surface motion. Future work, when the

surface properties of the post-impact Dimorphos are better know, should incorporate

higher fidelity dynamical models and determine the impact of them on the analyses

presented here.

5.1.1 Surface Impact

The spacecraft is assumed here to be a point mass, while Dimorphos is modelled as

a triaxial ellipsoid. Therefore, Dimorphos can be parametrized using the previously

defined ellipsoidal axes of Table 2.1 as follows:

E(x, y, z) =
x2

a2
+
y2

b2
+
z2

c2
= 1, (5.1)

where the x, y, and z coordinates are with respect to the ellipsoid centre. This

significantly simplifies the condition of when an impact occurs to:

E(x, y, z) ≤ 1, (5.2)

and the normal at any point along the surface can be found through the gradient

operator:

n̂(x, y, z) = ∇E(x, y, z) = 2[x/a2, y/b2, z/c2]T . (5.3)

The surface of a small body can often be modeled as either a hard rock type surface
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(a) No surface features. (b) With surface features.

Figure 5.1: 2D representation of the geometry during landing.

or a soft regolith type surface [165]. During its multiple impacts, Philae encountered

both of these types of surfaces [166], showing the importance of both of these types

of models. For the soft surface case, a numerically expensive discrete element method

(DEM) is usually used, which also requires a good knowledge of the surface conditions

and parameters. Hence, it is less useful for this type of analysis.

The energy dissipation during an impact is characterised using the coefficient of

restitution (CoR) 0 ≤ ϵ ≤ 1, which is defined here as follows:

ϵ =
v+N
v−N

, (5.4)

where the plus and minus sign indicate the post- and pre-impact velocity respec-

tively, and the N subscript represents the normal component of the vector. Using the

geometry of the impact shown in figure 5.1a, the post-impact velocity vector can be

calculated as follows:

v+ = v+
T + v+

N (5.5)

v+
N = −ϵ(n̂ · v−)n̂ (5.6)

v+
T = v− − (n̂ · v−)n̂. (5.7)

Thus, given an impact point and impact velocity, the post-impact velocity can be

127



Chapter 5. Ballistic Landing Trajectory Design under Uncertainty

calculated and used to initialise the following arc of ballistic flight that is propagated

using the dynamics described in section 4.1 (i.e. the SH-CR3BP).

For the design of landing trajectories, it is important to study which landing condi-

tions lead to the highest probability of a successful landing, which is defined as having

the spacecraft remain on the surface of Dimorphos. In this case, the important un-

certain dynamical parameters that govern this probability are ϵ and the uncertainties

in the gravitational field given here by the spherical harmonics coefficients. To find

the range of landing conditions that give a high probability of success, a large number

of landing velocities |vland| and landing angles θland (defined as the angle between the

local normal and the incoming velocity vector, see figure 5.1a) are taken and used to

calculate the initial post-impact velocity vector. From there, based on the sampling

method discussed in section 3.1.2, a set of samples are propagated. Each time if one

sample is determined to impact with Dimorphos, the post-impact vector is calculated

again. Once enough time has passed (defined here to be 12 hours), the pseudo-diffusion

indicator is calculated. From various previous studies, the range of possible values for

ϵ are taken to be [0.55, 0.85] (see e.g. [167], [168], [169], [60], [170]), and the C20, C22,

and C40 are all taken to be in the range of their nominal value with ten percent un-

certainty, which is close to the uncertainties given for most parameters in the Didymos

reference model [3]. The surface location on Dimorphos has a large influence on the

results. In this case, the landing location is taken to be the crater made by the DART

impact, located at 90 degrees longitude facing the direction of motion of Dimorphos.

The results of γ̃ are shown in the map in figure 5.2.

As is explained in section 3.2.1.1, low γ̃ indicates regions of low diffusion, i.e. where

trajectories that have slightly different initial conditions or dynamical parameters still

behave similarly and stay close to each other. In the case of a spacecraft landing sce-

nario, the lowest diffusion happens when all realisations of the uncertainties result in the

remaining of the spacecraft on the surface of Dimorphos. When part or all of the reali-

sations result in the spacecraft bouncing away from the surface into prolonged ballistic

flight, the diffusion will likely increase as during the ballistic flight the trajectories can

move away from each other due to the different environmental parameters and initial
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Figure 5.2: γ̃ for CoR only model at DART crater location.

conditions. Therefore, the regions of low γ̃ correspond to landing conditions that allow

the spacecraft landing on Dimorphos with a high likelihood, which is defined here as a

successful landing condition. It can be seen that this happens for most conditions with

the |vland| < 10 cm/s and θland < 20 degrees. As the landing velocity decreases until

around 6 cm/s, successful landings become more likely for higher θland. After that, the

direction of impact does not have any significant impact on the γ̃ value. For most of

the landing velocities above 10 cm/s, γ̃ is much higher and thus there is a low likelihood

of having a successful landing. The transition region between these two limits (i.e. the

region between 5 cm/s and 10 cm/s for larger impact angles) shows many interesting

structures which result in part of the trajectories landing on Dimorphos and part of

them going into bounded motion around both the primary and secondary.

To validate this map and show the relationship between the value of γ̃ and the size

of the resulting uncertainty sets, the MC analyses of a set of sample are performed

for certain initial conditions, corresponding to the letters A, B, C and D shown in

figure 5.2. The resulting trajectories, plotted in the synodic reference frame in all

three dimensions, are illustrated in figure 5.3. The final positions of all the sample

trajectories can also be seen in figure 5.4. The two cases in the transition region, A and

B, have part of the trajectories landed on Dimorphos and part of them in a bounded
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(a) A: 10.3 cm/s, 80 deg. (b) B: 8 cm/s, 50 deg.

(c) C: 13 cm/s, 10 deg. (d) D: 4 cm/s, 5 deg.

Figure 5.3: A set of the trajectories plotted from the example MC analyses performed
for the case of an uncertainty in the CoR and spherical harmonics coefficients only.
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(a) x-y plane. (b) x-z plane.

(c) y-z plane.

Figure 5.4: Distribution of the final locations of the MC analyses performed for the
case of an uncertainty in the CoR and spherical harmonics coefficients only.

trajectory around the system. For the case of C with high γ̃, it can be clearly seen that

all samples are escaped from the surface of Dimorphos and moving away from both

bodies. Whereas for D with low γ̃, all trajectories remain on the surface of Dimorphos,

some bouncing several times before going stationary.

5.1.2 Surface Rocks

In the previous section, the only parameter that influences the post-impact bounce

velocity is the coefficient of restitution ϵ, where the normal vector is calculated assuming

a smooth ellipsoid as the shape of Dimorphos. This does not necessarily correspond

to the real shape of Dimorphos, due to the likely presence of surface features like

boulders and craters. Therefore, these features need to be implemented to ensure
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(a) Nominal Rock Shape. (b) Flat Rock Shape.

Figure 5.5: Distribution of the angles with respect to the local surface normal for
different rock shapes.

proper modelling of the surface motion of the lander.

The high-fidelity modelling of the landing on the surface of Dimorphos can be

achieved by using polyhedral models of the spacecraft, surface topography, and rock

shapes (see e.g. [161] and [162]). In this work, the main focus is on the effect of the

uncertain landing conditions, including uncertainty in the local surface features, on

the motion of the spacecraft. Therefore, the use of accurate shape models is not as

beneficial and models that more easily incorporate the uncertain nature of the problem

are preferred. Therefore, the rocks are modelled here as a stochastic perturbation on

the normal vector n̂, used in Eq. (5.6) and (5.7). This models has some drawbacks,

such as the bias of the lander towards low slope areas and the failure to register grazing

impacts [160], but is numerically efficient and allows for easy implementation of the

knowledge of the distribution of the shape and size of rocks. The model considered here

is thus not only uncertain in terms of the parameters describing the model anymore,

but now as well stochastic due to the ”noisy” normal vector.

The distribution of the normal vector perturbation is taken from observations of

previous rubble pile asteroids like Ryugu. It was found that when the boulders from

images of the spacecraft are fitted to ellipsoidal shapes, the mean values of b/a and c/a

were found to be around 0.7 and 0.44, respectively [171]. This can then be converted to

a distribution of normal angles θn̂p of the perturbed normal vector n̂p w.r.t. n̂, where
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(a) Nominal Rock Shape. (b) Flat Rock Shape.

Figure 5.6: γ̃ for different rock models at DART crater location.

the different variables are explained graphically in figure 5.1b. The found distribution is

shown in figure 5.5a. This distribution is then fitted to a Beta probability distribution

function and implemented in the dynamical model. To determine the influence of

different shapes, a more flat shaped rock (b/a = 0.9 and c/a = 0.2) was implemented

as well, as is shown in figure 5.5b. If increased fidelity is needed, the same procedure

can be used to combine various different rock shapes to create a single distribution of

normal angles. However, for a first analysis, here a single rock shape is used for each

simulation.

The γ̃ map of the new dynamical system with the distribution taken from both the

nominal rocks (left) and the flat rocks (right) can be found in figure 5.6. First, it can

be seen that the difference between the two rock distributions is minimal, thus showing

that the shape of the rocks has less of an effect on the large scale distribution of the

final states. If compared with the results without rocks, the main difference is that the

impact angle has less impact on the results than that of the landing velocity. It can be

seen that now the main driver is that the landing velocity should be below around 8

cm/s to ensure a high probability of landing. The impact angle should still be low, as

there still is a slight slope on the boundary between the low and higher diffusion areas,
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(a) A: 11 cm/s, 10 deg. (b) B: 9 cm/s, 10 deg.

(c) C: 6 cm/s, 10 deg.

Figure 5.7: A set of the trajectories plotted from the example MC analyses performed
for the case of an uncertainty in the CoR, spherical harmonics coefficients, and with
stochastic perturbation of the normal vector.

but this slope is much less significant compared to figure 5.2. Another feature to note

is that as the impact velocity increases, the diffusion increases as expected. However,

there is another band of lower diffusion between 10 and 12 cm/s, after which for higher

velocities the diffusion increases again.

Three different example MC analyses are performed again to analyse these different

regions, where each one is taken with a similar impact angle but landing velocity taken

from the different regions discussed before. The results can be seen in figure 5.7 and

5.8. As expected, C shows that most of the trajectories remain bounded on the surface

of Dimorphos. The difference between A and B is seen more clearly in the distribution

of final positions of figure 5.8, where it is shown that even though the higher landing
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(a) x-y plane. (b) x-z plane.

(c) y-z plane.

Figure 5.8: Distribution of the final locations of the MC analyses performed for the
case of an uncertainty in the CoR, spherical harmonics coefficients, and with stochastic
perturbation of the normal vector.

velocity of A results in more trajectories going in far orbits around the system, the

lower velocity of B between 8 and 10 cm/s have small chances of some trajectories

being captured into far orbits which increases the diffusion.

5.2 Minimum Touchdown Velocity

During the proximity operations at Didymos, the spacecraft will move slowly towards

the bodies over time. During the final phase, when it is the closest to the system, the

manoeuver to put it on the landing trajectory towards Dimorphos will be executed.

As mentioned before, for this study it is assumed that the translational state is not

continuously controlled during descent. Hence, the minimum possible landing velocity
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Figure 5.9: Diagram showing the process of finding the minimum landing velocity when
considering uncertainties.

cannot be controlled and is determined by the natural dynamics of the system.

This minimum landing velocity for Dimorphos is determined as follows. For the

nominal case, [172] developed a bisection method to determine the minimum touch-

down velocity for ballistic landings on asteroid surfaces. This was then further ex-

tended in [158] to use uncertainty propagation methods to include state and dynamical

uncertainties in the process. This method is used here to determine the touchdown ve-

locity, considering the current, pre-arrival uncertainties in the total mass of the system

and the mass distribution of Dimorphos. For the sake of completeness, this method is

explained here as well.

The method starts by selecting a landing location and initialising an upper and

lower bound for the landing velocity, vl and vu respectively. For each iteration of the

algorithm, the landing velocity vc is taken to be the middle point of these bounds, i.e.

vc = (vu + vl)/2. As was shown in section 5.1, the highest probability of the spacecraft

remaining on the surface of Dimorphos after bouncing is when the landing happens

perpendicular to the surface. Therefore, the impact angle is taken to be 0 degree, and

the landing state can be seen as a point located at the desired landing location with

the velocity vector pointing towards the center of Dimorphos. The trajectory is then

propagated backwards in time, until either the spacecraft reaches a pre-determined
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deployment distance rdep (which can be either the distance at which a mothercraft

is orbiting at deployment, or the previous operational orbit of the spacecraft before

starting the landing manoeuver), the spacecraft lands back on Dimorphos, or the flight

time of 12 hours is reached. If rdep is reached, the landing velocity might be too large,

thus the upper bound of the next iteration is lowered to the vc of the current iteration.

For the other possibilities (flight time larger than 12 hours or re-impact on the surface),

vc is too low and thus the lower bound of the landing velocity for the next iteration

is set to vc of the current iteration. A maximum flight time of 12 hours is selected for

operational purposes and to minimize the maximal growth of the set of states. This

process is repeated until the difference between vl and vu reaches a set tolerance, taken

here to be 1 · 10−8.

In the case that uncertainties are also considered, the process remains relatively

similar except for the fact that the state is now an uncertain set, which needs to be

propagated using the NCI method discussed in section 3.1.2. Furthermore, determining

how to adjust the velocity bounds is now done according to the value of the minimum

distance between the set of lander states and Dimorphos. The method is shown graph-

ically in figure 5.9, where case A shows the scenario where the full set of lander states

reaches the deployment distance and case B where the landing velocity is not high

enough to reach the deployment distance. Additionally, a summary of the method is

shown in algorithm 1.
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Algorithm 1 Robust trajectory design al-
gorithm

Set vlb, vub
Set µp ± σµp , µs ± σµs

Set C20,s ± σC20,s , C22,s ± σC22,s

while |vub − vlb| < TOL do
vl = (vub + vlb)/2
Propagate Ω̃xf

→ Ω̃x0

if rlb < rsurf then
vlb = vl

else if rlb > rdep then
vub = vl

else
vlb = vl

end if
end while

Figure 5.10 shows the results for Dimorphos, with rdep = 2.0 km (the final orbital

distance of Juventas) and the uncertainties at 10 percent of their nominal values. The

surface of Dimorphos can be divided into two different regions, the side facing away

from Didymos (longitude between -90 and 90 degrees) and the side facing towards

Didymos (longitude between -90 and -180 degrees and between 90 and 180 degrees).

The latter region shows in general high landing velocities as it needs to travel further to

reach the deployment distance and to avoid Didymos. Only for high latitudes can lower

touchdown velocities be reached, as Didymos can be avoided more easily from these

landing locations. In general, the landing velocities in this region are too high to be

feasible for a ballistic landing strategy. For the region facing away from Didymos, the

lowest touchdown velocities are near the (0, 0) degrees latitude and longitude point,

where velocities around 5 cm/s can be found. Moving towards the desired landing

location at the DART crater (i.e. (0, 90) degrees latitude and longitude), the velocity

increases again, reaching around 38 cm/s. As determined in section 5.1, this landing

velocity does not guarantee that the spacecraft remains on the surface of Dimorphos

after touchdown (for both the cases of rocks and no rocks). Therefore, either the

assumption of landing perpendicular to the surface needs to be relaxed, or a braking

manoeuver needs to be added to the landing trajectory to reduce the speed of the

spacecraft before touchdown.
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Figure 5.10: Minimum landing velocity for different landing areas, considering also
uncertainty in the mass of both bodies and the C20 and C22 coefficients of Dimorphos.
It is important to note that the colors are plotted according to a power law to allow
for more detail in the low velocity areas.

Figure 5.11 shows the influence of the incoming velocity direction on the minimum

landing velocity. The angle θvland
corresponds to the impact angle discussed in section

5.1 and the azimuth is the angle of the landing velocity vector with respect to the

negative x-axis of the synodic frame. As can be seen from figure 5.11, there are options

for low velocity landings (between 7 and 10 cm/s) with a very shallow impact angle

around 180 degrees azimuth, corresponding to the velocity vector pointing away from

the barycentre of the system. However, even for the lower velocities found there, the

very shallow impact angle will significantly increase the likelihood of the spacecraft

bouncing away from the surface again as was shown in section 5.1. Therefore, if the

goal is to land in or near the DART impact crater, a braking manoeuver closer to the

surface is the only option to have a high probability of a successful landing.

5.3 Robust Trajectory Optimization

After finding the target conditions of the lander at the surface in section 5.1, the

goal now is to design a trajectory that can ensure that the spacecraft can reach these

conditions reliably. As mentioned in section 5.2, the minimum touchdown velocity at

the DART crater for a direct deployment from rdep = 2.0 km is around 38 cm/s, whereas
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Figure 5.11: Minimum landing velocity for different landing vector orientations at the
DART impact crater, considering also uncertainty in the mass of both bodies and the
C20 and C22 coefficients of Dimorphos.

from the γ̃ maps of section 5.1 it was found that the touchdown velocity should be below

10 cm/s, preferably below 7 cm/s if a rocky environment is found, to ensure a high

probability of settling on the surface of Dimorphos. Therefore, a braking manoeuver is

needed between the deployment manoeuver and the time of landing.

For the ballistic landing considered here there is no dedicated navigation system

that is capable of estimating the state and correcting for off-nominal conditions, hence

the braking manoeuver is performed open-loop using a pre-calculated ∆V manoeuver.

As the spacecraft has no capabilities to correct for the uncertainties in the state of the

spacecraft stemming from manoeuver errors and dynamical model uncertainties, both

the deployment and braking manoeuver needs to be generated such that the landing

success percentage is the highest. Normally, this is done by first designing a nominal

trajectory, then doing a sensitivity analysis (often using a MC method) to asses the

impact of uncertainties, and finally altering the nominal trajectory based on the found

sensitivities. This process often needs multiple iterations and is thus time consuming

and can result in worse trajectories with added safety margins [65]. In this section, the

NCI uncertainty propagation technique is used to generate landing trajectories that

directly take into account all the different uncertainties and minimize its sensitivity to

them.
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Figure 5.12: Diagram explaining how the robust landing trajectory optimization works
using the NCI uncertainty propagation method. The grey areas represent the actual
area which the trajectories occupy whereas the squares represent the total propagated
area using NCI.

The approach taken here is based on the direct multiple shooting method developed

in [173]. The landing trajectory is divided into two segments: the deployment segment

spanning from the deployment point to the braking point, and the terminal segment

stemming from the braking point to the landing point. A Non-Linear Programming

(NLP) solver is then used to find the optimal values of the decision variables u, which

consist of the deployment velocity vector vdep, the braking manoeuver ∆v, and the time

of the braking manoeuver t∆v. The trajectory is then propagated using the selected

u after which the different objectives and constraints are evaluated and used to select

a new u. When considering uncertainties, this point-wise propagation of the state is

substituted by the propagation of the uncertainty set, which is performed here using

the NCI method. In principle, the full trajectory can be propagated in one go obtaining

one polynomial representation of the landing trajectory under uncertainty. However,

both the required polynomial degree and number of samples increases quickly as the

number of uncertain variables increases. Therefore, it is more efficient to separate the

polynomial for the two different segments. The continuity between the two segments

is guaranteed using a re-initialisation approach, which is shown graphically in figure

5.12. First, the uncertainty set at the deployment point is propagated using NCI to
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Table 5.1: The results of the optimization of the landing trajectory.

Variable Point Robust

vdep 40.9 cm/s 29.6 cm/s
ϕdep 186.3 ◦ 182.7 ◦

θdep 93.7 ◦ 98.1 ◦

∆v 39.9 cm/s 26.3 cm/s
ϕ∆v 185.3 ◦ 162.6 ◦

θ∆v 84.7 ◦ 78.3 ◦

t∆v 7.071 hours 7.070 hours

Landing success 74.3 % 94.7 %
Landing Latitude (mean, 1-σ) 2.49 ± 26.5 ◦ 9.46 ± 26.9 ◦

Landing Longitude (mean, 1-σ) 77.9 ± 41.5 ◦ 18.2 ± 27.5 ◦

θland (mean, 1-σ) 35.9 ± 19.4 ◦ 41.4 ± 17.9 ◦

vland (mean, 1-σ) 8.68 ± 0.46 cm/s 7.12 ± 0.71 cm/s

the braking point, shown as the grey areas in the left side of figure 5.12. The initial

uncertainty range for the terminal segment needs to be represented by an upper and

lower bound of the various state variables, i.e. a hypercube in phase space. This means

that the shape of the final set of states at the braking point, which is often shaped

very differently from a hypercube, cannot be used directly as an input for the initial

state uncertainties of the terminal phase. Hence, the uncertainty set at the braking

point is re-initialised as a hypercube that conservatively bounds the set (the dashed

box). This hypercube can be used as the input for the following phase, and is then

propagated through the terminal segment until the time of landing. As the resulting

hypercube is an overestimation of the actual uncertainty set, a set of samples are first

propagated using the deployment segment polynomial and then used as an input for

the terminal segment polynomial to obtain the actual distribution at the landing point,

see figure 5.12. This distribution is then used to obtain the necessary objective and

constraint values that are formulated as part of the NLP, which are now functions of

the distribution of landing trajectories.

The robust optimization problem considered here is formulated as follows:
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min
u

max(diag(Σr,land)), (5.8)

s.t. xk+1 = Ω̃tk+1
(ξk), k = 0, 1 (5.9)

E[rland]− rcrater < 100m (5.10)

E[|vland|] < 10cm/s (5.11)

E[θland] < 25◦ (5.12)

The maximum variance of the state at the final time is selected as the cost function

that needs to be minimized. Using this objective will desensitize the landing trajectory

to the uncertainties and thus reduce the landing footprint. To ensure that the spacecraft

will land mostly in the DART crater hemisphere, constraint (5.10) is added to ensure

that the mean landing state should be within 100 meters of the DART crater location.

Constraints (5.11) and (5.12) are derived from the γ̃ maps for the case of a smooth

surface, where landings below these two values have sufficiently low γ̃ such that the

probability of settling on the surface is high. For the rocky case, the θland constraint

can be relaxed whereas the |vland| constraint needs to be lowered to 7 cm/s. However,

it will be shown that the result with the constraints set for the smooth surface case

also work well for the rocky case, thus this setup is kept for now.

Initially, a point-wise propagated trajectory is found using a simple single shooting

approach, where the trajectory is propagated backwards from the estimated DART

crater location to the final time, minimizing the difference between the actual final

position and the desired deployment location (assumed here to be located on the x-axis

of the synodic frame at 2.0 km away from the barycentre). This trajectory is then used

as both a comparison against the robust method discussed here and as an initial guess

for the NLP solver. The uncertainties considered here are: 100 meters (3-σ) in the

deployment position, 5 percent (3-σ) in the velocity magnitude of the deployment and

braking manoeuver, and 3 degrees (3-σ) in the pointing of the deployment and braking

manoeuver. The specific solver used here is the WORHP algorithm [174].

The results of a MC analysis of both the point-wise and robust approach are sum-
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(a) Landing location distribution and 3-σ el-
lipse.

(b) Landing geometry distribution.

Figure 5.13: The distributions of landing location and geometry of both the robust
optimization method and the nominal point-wise method.

marised in table 5.1. The main result is the large increase in trajectories landing on

Dimorphos, going from 74.3 % to 94.7 %. This is done by significantly reducing the

magnitude of the manoeuvers and at the same time changing the pointing slightly while

keeping the braking time almost the same as for the point-wise result. This results in

a smaller uncertainty set due to the proportionality of the ∆v error and thus results in

a significantly smaller landing ellipse, as can be seen in figure 5.13, and in significantly

reducing the landing velocities, as shown in figure 5.13b. However, this does come at

the cost of moving the mean landing location more away from the estimated crater

location and also increasing the mean impact angle (see table 5.1).

To determine how these results relate to the desired landing conditions found in

section 5.1, the MC results are projected on the γ̃ maps in figure 5.14. It can be seen

that for both cases the trajectories of the robust solution are located in lower γ̃ regions

compared to the point-wise solution. For the smooth case in figure 5.14a, the higher

impact angle does result in a significant part of the trajectories from the robust solution

residing in the transition region and therefore not necessarily all settling on the surface.

However, for the rocky case the decreased sensitivity to this angle and the fact that the
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(a) Smooth surface. (b) Rocky surface.

Figure 5.14: The distributions of landing geometry of both the robust optimization
method and the nominal point-wise method projected on the γ̃ maps.

mean touchdown velocity is much lower, results in the most of the MC samples for the

robust solution residing in low γ̃ regions, which directly relates to a high probability of

a successful landing.

5.4 Chapter Summary

This chapter introduces a novel methodology for the design and analysis of ballistic

landing trajectories on the secondary of a binary asteroid. The methodology shows how

efficient uncertainty propagation and quantification tools, specifically Non-Intrusive

Chebyshev Interpolation (NCI) and the pseudo-diffusion indicator, can be used to anal-

yse the uncertain dynamics and design a robust landing trajectory.

It is shown how the pseudo-diffusion indicator can be used to determine constraints

on the landing geometry and touchdown velocity that ensure high probability of the

spacecraft settling on the surface of the asteroid. For the model where a smooth surface

of the asteroid was assumed, a maximum touchdown velocity of 10 cm/s was found and

a maximum impact angle of 20 degrees. As the touchdown velocity decreases, the
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maximum allowable impact angle also increases, where for around 6 cm/s almost all

impact angles result in settling on the surface. A transition region also appears for

touchdown velocities between 10 and 6 cm/s and high impact angles, where part of the

trajectories settle on Dimorphos’ surface and part go into an orbit around the system.

When the dynamics are altered to model surface features like rocks and craters using

a stochastic perturbation on the local surface normal, the dependency on the impact

angle is less significant and the maximum touchdown velocity decreases to around 8

cm/s.

Using a NCI based bisection method, it was then found that if a landing location in

the DART crater hemisphere is considered with a deployment point 2 km away from the

system, the necessary minimum touchdown velocity would be much higher than what

is required for settling on the surface. Thus an extra braking manoeuvre is needed

along the trajectory to reduce the touchdown velocity.

The deployment ∆v, braking ∆v, and time of the braking ∆v were then determined

using a novel method which incorporates the NCI uncertainty propagation method into

the trajectory optimization transcription. This method was able to find a trajectory

which increase the landing success percentage from 74.3% to 94.7% compared to a

trajectory designed without considering the uncertainties. Furthermore, the landing

footprint on Dimorphos was also significantly reduced together with lowering the mean

touchdown velocity. This comes at the cost of increasing the mean impact angle and

moving the mean landing longitude away from the desired location. However, even

with these changes the robust trajectory was found to be much more desirable.
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Chapter 6

Robust Crater Fly-by Trajectory

Design

This chapter is based on the work published in:

Fodde, I., Feng, J., Vasile, M., & Gil-Fernández, J. (2023). Chance-Constrained Trajectory Design for Hera’s

Experimental Phase using Polynomial Algebra. In-development.

Fodde, I., Feng, J., Gil-Fernández, J., & Vasile, M. (2023). Combined Trajectory Design and Navigation Analysis

for Hera’s Very-Close Flyby of Dimorphos. Paper presented at 74th International Astronautical Congress 2023,

Baku, Azerbaijan.

The final nominal phase of Hera is the experimental phase, where the highest reso-

lution images of the impact crater will be taken. As during this phase the closest fly-bys

of Dimorphos will take place, it is important to ensure the safety of the spacecraft and

minimise the risk of impact. Therefore, the trajectory design of these fly-bys needs to

consider the performance of the navigation system, and the possible execution errors

of the ∆V manoeuvers.

This is mostly tackled by performing a so-called navigation analysis after the nomi-

nal design is done. This analysis determines the sensitivity of the trajectory to pertur-

bations, navigation and control system performances, and system uncertainties. Based

on this analysis, the nominal design is updated by adding margins, implementing large
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amounts of trajectory correction manoeuvers, and/or increasing distances with respect

to the body [64] [65] [66]. These factors reduce the scientific gain of the mission, com-

plicate the design, and as this cycle is often repeated, the development time is also

significantly increased.

Within the trajectory optimization field, there has been a focus on solving this

by incorporating uncertainties into the trajectory optimization process, which allows

for solving problems with so-called chance constraints [175], and controlling the state

covariance along the vehicle’s path [176]. Within asteroid missions, various previous

works have focused on robust trajectory design under uncertainties. An optimization

approach for minimizing the covariance in orbital transfers was proposed in [177], using

linear dynamics for the covariance. In [178], a soft landing trajectory was found using a

robust optimization technique where the landing area dispersion was minimised. Simi-

larly, [179] designed a landing trajectory using a reliability assessment involving a Monte

Carlo analysis. These approaches use either linearization or Monte Carlo methods to

propagate the uncertainties. As the uncertainties can be quite large in this case, the lin-

earization technique is not accurate enough. A Monte Carlo approach is more accurate,

but its convergence is slow and most problems require large amounts of samples to be

propagated, hence this can become inefficient. More efficient uncertainty propagation

(UP) methods have also been investigated. In [180] and [181] an Unscented Transform

was used to propagate the first two moments of normally distributed state variables

and design a robust guidance policy. The authors of [182] and [173] applied polynomial

algebra based UP techniques to general trajectory optimization problems. Recently,

several works have focused on introducing the measurement process and closed-loop

control within the trajectory optimization process. These types of systems are called

partially observable Markov decision processes (POMDP), which is a decision-making

system within a stochastic environment in which the state is not perfectly known [183].

This was applied to spacecraft trajectory design in [130], using non-intrusive polynomial

interpolation and a multiple-shooting type transcription.

The approach introduced in this chapter starts from the method described in [130],

and applies it to the design of the very-close fly-bys (VCFB) of asteroid Dimorphos
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for the Hera mission, combining the trajectory design and navigation assessment to

produce more robust solutions. This requires altering the method for the use with the

autonomous optical navigation system of Hera. Furthermore, the Generalised Intrusive

Polynomial Algebra (GIPA) method will be used instead of the original non-intrusive

method for the uncertainty propagation, as it is generally more efficient compared to

its non-intrusive counterpart.

6.1 Experimental Phase

The mission and trajectory design of Hera is similar to Rosetta, where mostly hyper-

bolic arcs are flown around the system [21]. The mission has various phases, each one

having different observational requirements and arc geometries. Between each phase

the distance to the system is decreased, as the observations made during the previous

phases reduces the uncertainties regarding the physical parameters of the two bodies,

and thus the trajectories can be predicted with more accuracy. The final nominal close-

proximity operations phase of Hera is the experimental phase (EXP). The main goal

of the EXP is the detailed characterization of the crater made by the DART impact.

This section details the requirements associated with the EXP, the nominal trajec-

tory design, and the basic guidance, navigation, and control (GNC) algorithms used.

6.1.1 Nominal Trajectory Design

The EXP consists of three hyperbolic arcs: one approach arc, one fly-by arc, and one

return arc connecting again to the start of the approach arc. The geometry of the EXP

can be seen in more detail in figure 6.1.

During the fly-by arc, also known as the very-close fly-by (VCFB), the spacecraft

will try to image the crater at extremely close distances. This arc starts with a com-

pletely open-loop manoeuver, computed on-ground and uploaded during the previous

arcs. Two additional manoeuvers are planned during the VCFB, which have two differ-

ent purposes: sequentially reduce the periapsis of the VCFB, and correct for off-nominal

conditions using an autonomous GNC system. Reducing the periapsis sequentially al-
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Figure 6.1: A diagram of Hera’s experimental phase.

lows for a more robust design as any missed thrust event will result in a relatively

high flyby periapsis, reducing the risk of impact. Furthermore, the autonomous GNC

system can significantly reduce the dispersion at close-approach (C/A).

After the C/A, the dispersion of the spacecraft will increase and once it is sufficiently

far away from the system another pre-computed manoeuver will put the spacecraft on

the return arc. During this arc, ground based orbit determination will be performed

and using a manoeuver at the home point the difference with respect to the nominal

trajectory will be corrected for.

This phase consists of several technology demonstration objectives, mainly related

to optical navigation and autonomous operations [32]. The main scientific goal is related

to the close observation of the DART impact crater. For the observation of the crater

at C/A there are several requirements [5]:

1. Crater imaged with a resolution of < 10 cm/pixel.

2. Spacecraft elevation angle (ϵs/c) between 20 and 70 degrees.

3. Sun elevation angle (ϵ⊙) between 25 and 75 degrees.

4. Phase angle (ϕ) between 5 and 90 degrees.

The definition of these angles can be seen in figure 6.2, where n̂c is the crater normal,

rs/c the spacecraft position with respect to the crater, and r⊙ the position of the Sun

150



Chapter 6. Robust Crater Fly-by Trajectory Design

Figure 6.2: Definition of the various angles that influence the lighting conditions during
close approach.

with respect to the crater. Requirements 2 - 4, related to the lighting conditions of

the crater, are especially important as when these angles are outside their respective

bounds, the quality of the observation is significantly reduced.

An important operational requirement is to have a certain velocity margin C, i.e.

an excess velocity above the escape velocity vesc, during the various arcs. This velocity

margin is defined as follows:

Vs/c = (1 + C)

√
2µ

r
= (1 + C)vesc. (6.1)

Here, the value required for C is 0.4 or above, i.e. the velocity is always 1.4 times

the escape velocity. This is to ensure that if a thruster failure or missed thrust event

happens, the spacecraft will escape the system on a collision free trajectory.

The trajectory design of the VCFB consists of selecting the following variables: the

position of the initial open-loop point, the initial open-loop manoeuver, the open-loop

∆v and time of the first auto-GNC point, and the open-loop ∆v, time of the second

auto-GNC point. The true anomaly of Dimorphos’ orbit around Didymos at the start

of the VCFB, i.e. the timing of the first manoeuver, is selected to ensure optimal C/A

observation conditions, especially related to ϵ⊙ as this parameter is independent of the

spacecraft location, instead only relating to the true anomaly of Dimorphos at C/A.

In this work, the nominal trajectory for the VCFB is obtained semi-analytically.

A two-body system is initially assumed, which allows for the use of several simple
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(a) Trajectory from semi-analytic method.

(b) Observation parameters.

Figure 6.3: The semi-analytically designed nominal VCFB trajectory and its obser-
vation parameters given over time. The time of closest approach with respect to the
crater is given by the black cross, and the shaded regions in the observation parameter
plots are the desired constraint regions. Furthermore, the vertical dashed lines show
when the periapsis lowering manoeuvers are executed.
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equations to obtain the final trajectory. First, the desired sequence of pericentre radii

(with respect to the system) are selected, in this case: rp = {4, 3, 1.5} km. Then,

for the first arc a velocity margin is also selected, which allows for the calculation of

the pericentre velocity using Eq. (6.1). Using these values the semi-major axis a,

eccentricity e, and semi-latus rectum p of the first arc are calculated using the vis-viva

equation and other common two-body equations (see e.g. [78]). For the following arc

the desired pericentre radius is taken from the previously selected sequence. Then, the

corresponding velocity margin can be selected to give the desired characteristics of the

following arc. However, this velocity margin cannot be freely selected as the two arcs

must intersect at some point. The possible second velocity margin is found by taking

a set of possible manoeuver times t∆v, and for each t∆v use the following procedure to

determine for what margin the arcs intersect:

1. Calculate the true anomaly of the initial arc, νi, corresponding to the current t∆v.

2. Take a possible Ci+1, and calculate ai+1, ei+1, pi+1, and νi+1.

3. Calculate the difference in distance:

∆rt∆v =
pi

1 + ei cos νi
− pi+1

1 + ei+1 cos νi+1
. (6.2)

4. Repeat steps 2 and 3 using new guess for Ci+1 until ∆rt∆v < tol, where tol can

be set to a desired accuracy, here taken to be 1 · 10−8.

Solving for ∆rt∆v in steps 2 - 4 is done using a root-finding algorithm, e.g. the

Newton-Raphson method. After this procedure, the desired Ci+1 can be obtained by

selecting the corresponding t∆v which minimizes ∆rt∆v for that Ci+1. This process is

repeated for all three arcs of the VCFB to obtain the trajectory for the two-body sys-

tem, which is then tested in a ”full” dynamical system including seperate gravitational

influences for Didymos and Dimorphos (where Dimorphos is moving around Didymos),

and including the Solar Radiation Pressure (SRP) effect (see [79] for an overview of the

relative importance of the different accelerations in the Didymos environment). The

C/A timing is set such that Dimorphos is located exactly along its orbit where the
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Sun elevation with respect to the crater will be 45 degrees. The resulting trajectory is

shown in figure 6.3, where the evolution of the various observation parameters is also

shown. It can be seen that at C/A, all the observation parameters are located within

the desired bounds, and that a minimum resolution below 10 cm/pixel is achieved.

6.1.2 GNC System Design

The presence of dispersion in position and velocity at the initial time of the VCFB,

together with imperfect manoeuver execution, will result in the actual trajectory not

following the one previously designed. If this initial dispersion is not corrected for,

there is a large chance that the observation constraints will not be met, or in the worst-

case scenario there will be a collision with one of the bodies. Therefore, besides the

previously calculated open-loop manoeuvers that lower the periapsis distance, these

manoeuvers will also correct for the off-nominal conditions using the GNC system. As

these manoeuvers happen within several hours of each other, there is little time to

collect sufficient observations, downlink navigation data, perform orbit determination,

calculate the desired correction manoeuver, and uplink the desired new manoeuver.

Therefore, the GNC system has to perform this process autonomously.

The two so-called auto-GNC manoeuvers now consist of three parts:

∆V = ∆VOL + δ∆v + ϵ∆V , (6.3)

where ∆VOL is the open-loop manoeuver calculated in section 6.1, δ∆v the closed-

loop manoeuver that is used to bring the true trajectory back to the nominal trajectory,

and ϵ∆V the execution error which cannot be controlled. The execution error is mod-

elled using spherical coordinates, where there is a proportional error in the magnitude

and a fixed error in the angles. For the closed-loop manoeuver, a simple linear targeting

approach is used, which calculates the manoeuver using the linearized dynamics around

the nominal trajectory given by Φ as follows:

δrf
δvf

 = Φ

 δr0

δv0 + δ∆v0

 (6.4)
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=

Φ1,1 Φ1,2

Φ2,1 Φ2,2

 δr0

δv0 + δ∆v0

 , (6.5)

where δr and δv are the differences in position and velocity with respect to the

nominal values, and δ∆v0 is the closed-loop manoeuver. Eq. (6.5) can then be inverted

to obtain δ∆v0:

δ∆v0 = −Φ−1
1,2

(
Φ1,1 Φ1,2

)δr0
δv0

 (6.6)

This linear targeting controller requires an estimate of the state at the time of ∆V

execution. This estimate comes from the navigation system of Hera which uses images

of Dimorphos to measure its relative state. Dimorphos is used for optical navigation

as during large parts of the VCFB, Didymos will not fit within the field-of-view of the

on-board camera. Observables like the centre of brightness are extracted from these

images and fed into a navigation filter to obtain an estimate of the position and velocity

together with their covariance, also known as the state knowledge distribution. The

image processing pipeline that is used to obtain these observables is out of the scope of

this work, readers are referred to [110], [184], and [185] for more in-dept information. As

it is important to measure the influence of the performance of the navigation system,

this work uses an analytical approximation of the evolution of the state knowledge,

which is based on the actual performance of the optical navigation system. This is

to reduce the complexity of the implementation and improve the numerical efficiency

when implemented in a trajectory optimization context, which is discussed in more

detail in section 6.2. The analytical model is given as follows:

σr̃ =


σ0,r̃ + ϵ∆V · (t− t∆V ) t < t1

(σ0,r̃ + ϵ∆V · (t− t∆V )) · e−(t−t1)/τ t1 ≤ t < t2

σss,r̃ t2 ≤ t

(6.7)
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σṽ =


σ0,ṽ + ϵ∆V t < t1

(σ0,ṽ + ϵ∆V ) · e−(t−t1)/τ t1 ≤ t < t3

σss,ṽ = σss,r̃/τ t3 ≤ t

, (6.8)

where σ represents the standard deviations, σ0 the standard deviations at the start

of the current arc, ϵ∆V = 2.5% ·∆v the expected error in the initial manoeuver which

influences the initialization of the filter, t∆V is the time of the initial manoeuver, τ the

characteristic time representing the performance of the optical navigation equal to a

sixth of the orbital period of Dimorphos (T ), and t1 = T/10. The navigation reaches a

steady-state error after a certain amount of time, which is calculated as follows:

σss,r̃ =

√(
R

5

)2

+ σ2ephem, (6.9)

where R is the radius of Dimorphos and σephem is the error in the ephemeris of

Dimorphos, estimated to be 10 meters at the time of the VCFB. The time of steady-

state is then calculated by solving the following equation for time:

(σ0,v + ϵ∆V ) · e−(t2/3−t1)/τ = σss,r/v. (6.10)

As Dimorphos is the target body for optical navigation, the observability of Dimor-

phos also needs to be taken into account. Dimorphos will not be observable during

both the period of its orbit when it is in the shadow of Didymos, and when Didymos is

blocking the view of Dimorphos relative to the spacecraft (occultation). During these

times, the position knowledge error increase is calculated simply using: σi+1 = Bσi,

where B =
( I3×3 ∆tI3×3

I3×3/∆t I3×3

)
. The evolution of the position variance for this model is

shown in figure 6.4.

For the design of the VCFB trajectory, there are several sources of uncertainties

and errors that need to be taken into account. First, the initial state of the spacecraft

at the start of the VCFB will be uncertain due to execution errors from previous

manoeuvers to get to that point. Second, the commanded ∆V will not be exactly the

same as the executed ∆V due to imperfect pointing and thruster performance. Finally,
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Figure 6.4: The evolution of the position knowledge variance based on the analytical
model. The red areas are the blackout periods where Dimorphos is not visible.

the knowledge of the state required for the linear targeting controller is not perfect,

making the executed ∆V different from the desired one corresponding to the true state

of the spacecraft. The values for these uncertainties used throughout this work are

summarised in table 6.1.

Source Magnitude (1-σ)

Initial position dispersion 700 m
Initial velocity dispersion 10 mm/s
Initial position knowledge 100 m
Initial velocity knowledge 0.5 mm/s

∆V magnitude 0.33 %
∆V angle 1.0◦

Table 6.1: Uncertainties considered for the VCFB, taken from [5].

The performance of this GNC system is simulated using a Monte Carlo (MC)

method, and presented in figure 6.5. Even though the GNC system is able to reduce

some of the dispersion, there is still a significant probability of impact with Didymos,

i.e. roughly 3 percent, as can be seen in figure 6.5a where the impact plane, also

known as the B-plane, is shown for the flyby of Didymos which occurs after the flyby
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of Dimorphos. In most cases, an iterative process will be used where the MC results

are used to change the semi-analytical trajectory by for example increasing the peri-

centre radii or changing the velocity margins. Often, the semi-analytical trajectory is

numerically optimized as well using some sort of trajectory optimization scheme, with

heuristically obtained constraints to improve the safety of the trajectory [64]. This de-

coupled method, where the nominal trajectory design is separated from the uncertainty

analysis, can reduce the scientific gain of the mission, complicate the design, and as this

cycle is often repeated, the development time is also significantly increased. Section

6.2 will present a novel methodology where the nominal design is combined with the

uncertainty analysis.

6.2 Trajectory Optimization under Uncertainty

For the deterministic trajectory design case, first an optimal control problem is for-

mulated, which is then transcribed into a non-linear programming problem, which in

turn is solved using an optimization algorithm. There are several methods like multiple

shooting or orthogonal collocation that are usually used for the transcription. How-

ever, to transcribe the problem considered here, other methods need to be used as both

uncertainties and state measurements need to be taken into account. This work uses

transcription method developed in [130], which was applied to design the Clipper flyby

of Jupiter’s moon Europa. However, there ground-based radiometric navigation was

considered. Furthermore, a non-intrusive uncertainty propagation method was used,

which can be more computationally expensive compared to intrusive methods. Thus,

here this method is adapted for use with Generalised Intrusive Polynomial Algebra

(GIPA) [117], and for use with autonomous optical navigation.

6.2.1 Problem Definition

In the deterministic case, an optimal control problem (OCP) can be formulated to

obtain an optimal control law u⋆(t) ∈ U , where u are the control variables and U the

set of admissible control values, which minimizes the cost function J under a set of
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(a) B-plane of Didymos flyby.

(b) 3-σ evolution of observation parameters.

Figure 6.5: The results for the Monte Carlo analysis of the semi-analytically determined
trajectory. The B-plane distribution for Didymos is shown on the left, where the ellipse
is the 3-σ region. And the evolution of the different observation parameter mean (solid
line) and 3-σ region (dotted lines) on the right.
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(a) Deterministic OCP.

(b) Uncertain OCP.

Figure 6.6: Diagram showing an example two-variable system in the case of a determin-
istic OCP (above) and an uncertain OCP (below). The shaded green areas represent
the probability distribution of u∗ and x0, and in 6.6b the solid lines represent realisa-
tions of the uncertainties.

path and boundary constraints. This can be formulates as follows:

min
u∈U

J = ϕ(t0,x0, tf ,xf ) +

∫ tf

t0

L(τ,x,u)dτ, (6.11a)

s.t. ẋ = f(x,u,β, t) (6.11b)

b(t0,x0, tf ,xf ) ∈ B (6.11c)

g(t,x,u) ∈ G (6.11d)

where ϕ are the boundary objectives and L the path objectives, f(x,u,β, t) are

the system dynamics with β a set of model parameters, b are the boundary variables

with constraint region B, and g are the path variables with constraint region G.

If any uncertainties are introduced in x0, u, and/or β, any found optimal control
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law u⋆ does not lead any more to a single trajectory x(t), but to a set of trajectories that

together results in a distribution of the objective J , and constraints b and g. A simple

example of this is shown in figure 6.6. For this example, a two dimensional state with a

single control variable is shown, where a cost function is used that is only dependent on

the final state, with a simple boundary inequality constraint: {x1(tf ) < b1, x1(tf ) < b2}.

Figure 6.6a shows the deterministic case where an optimal control law u⋆(t) is found

that brings the state from its initial state x0 to the minimum cost function value

at tf , while abiding by the boundary constraints. However, if u⋆(t) and/or x0 is

uncertain, e.g. due to imperfect actuation and/or state estimation errors, the true

control law and trajectory might differ from the desired ones, resulting in a set of

possible trajectories. This case is shown in figure 6.6b, where the shaded areas are the

probability distributions of the now random variables u⋆(t) and x0. This results in

both the final cost and constraint values becoming random variables as well. Figure

6.6b shows two samples taken from both the distribution of u⋆(t) and x0, which result

in four different trajectories with increased cost values with respect to the nominal case

and possible violated constraints.

To determine an optimal control law which is robust against these uncertainties,

the deterministic OCP needs to be reformulated. An uncertain parameter vector ξ =

[x0,u] is defined which contains all the uncertain parameters, which has a probability

distribution p(ξ) and sample space Ωξ. For the uncertainty propagation process it is

assumed that Ωξ is bounded. In the case that ξ has a probability distribution p(ξ) with

infinite support, Ωξ can be taken such that
∫
Ωξ
ρ(ξ)dξ < ε with ε a given percentile.

Obtaining the evolution of the state probability distribution p(x(t)) can be a significant

challenge, and becomes especially complex once the state measurement updates need

to be incorporated as well [33]. Besides estimating p(x(t)), the formulation of the

objectives and constraints is also a non-trivial task [175]. Various statistical measures

can be used for the cost function, e.g. the mean, variance, conditional value-at-risk,

etc. And for the constraints either an expected value formulation or chance formulation

can be used. The chance constraints can also be calculated using the expectation of the

indicator function, however here these types of constraints are separated as this way of
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calculating the chance constraints can create discontinuities in the gradient and in some

cases other methods exist to calculate the probability [186]. This will be discussed in

more detail for the specific case considered here in section 6.3. In general, the uncertain

OCP can be formulated as follows:

min
u∈U

E[ϕJ(t,X ,U ,B)], (6.12a)

s.t.


Ẋ = f(X,U ,B, t)

X+ = H(X−, t)

(6.12b)

E[ϕb(t0,X0, tf ,Xf )] ∈ B (6.12c)

E[ϕg(t,X ,U)] ∈ G (6.12d)

Pr[b(t0,X0, tf ,Xf ) ∈ B] < ϵb (6.12e)

Pr[g(t,X ,U) ∈ G] < ϵg (6.12f)

where the capital letters X , U , and B are the uncertain variables corresponding

to x, u, and β respectively. Besides the uncertain dynamics equation for Ẋ in Eq.

(6.12b), the measurement update equation H is also present for the uncertain case.

Furthermore, ϕ here represents the specific statistical function used, e.g. for the mean

cost ϕJ = J which leads to E[ϕJ ] = E[J ] = J̄ , and for the variance ϕJ = (J− J̄)(J− J̄).

The expectation operator E itself is defined as follows (where Z is a generic random

variable):

E[ϕ(Z)] =
∫
Ωξ

ϕ(ξ)p(ξ)dξ (6.13)

Finally, Pr is the probability operator, where ϵ represents the desired percentile.

As there are many types of problems where the chance of a certain event happening

needs to be constrained, this type of trajectory optimization problem is also known as

a chance-constrained problem [175].

As in most cases this problem can only be solved numerically, the following sections
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(a) UP and sampling. (b) Sample distribution
propagation.

(c) Re-sampling. (d) Calculate new
bounds.

Figure 6.7: The different steps that are performed at each segments to solve the UOCP.
In figure 6.7a and 6.7c a large number of samples are shown, however the knowledge
distribution and its propagation is only shown for a subset of points for clarity. Thus,
it is important to keep in mind that these steps are performed for all points.

will go over this process in more depth.

6.2.2 Transcription Method

Similar to a multiple shooting scheme used to solve a determinsitic OCP, for solving the

UOCP of Eqs. (6.12a) - (6.12f), the trajectory will be discretised into several segments.

As in the case considered here the control consists of impulsive manoeuvers:

u(t) =

N∆v∑
i=0

δ(t− ti)∆vi, (6.14)

the trajectory is discretised into the various segments between control points. In

[130], specific segments for the ground-based observation windows were considered.

However, the autonomous navigation system considered in this work is constantly run-

ning, even during blackout periods where the knowledge is decreasing. Thus, only the

impulsive segments are considered, requiring the optimizer to find the optimal timing of

the manoeuvers considering the evolution of the state knowledge during each segment.

For the VCFB, there are three distinct segments of the trajectory, which begin and

end with an impulsive manoeuver. For the transcription of the UOCP, there are several

steps that are in general repeated for each segment. The general process is shown in

figure 6.7. The process starts with taking the state dispersion of the previous segment,

or if it is the initial segment, the initial dispersion of the state, which is represented by

the grey rectangle in figure 6.7a. Then, using GIPA, this dispersion is propagated from

the start time of the segment ti until the end time ti+1, which provides a polynomial
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model Pn,d(ξ) for efficiently propagating any realisation of the uncertainty vector ξ at

time ti.

Once the polynomial model is generated, a set of M sample state observations are

taken from Ωξ, denoted by yki , where k = 1, ...,M , which are represented by the black

dots in figure 6.7a. Each of these observation samples have an associated knowledge

distribution, given by:

X k
i = p(xi|yk

1:i), (6.15)

which are represented by the green areas around the observations in figure 6.7.

For each X k
i , a ∆v is calculated, which can either consist of the execution error

component and either only the open-loop component, or of both open- and closed-loop

components. In the latter case, the closed-loop ∆v is calculated based on the mean

state observation value. Each knowledge distribution X k
i , which can now be seen as

a dispersion for which the ∆v is applied to the whole distribution, is propagated to

ti+1. This process is shown in figure 6.7b. For a generic type of distribution, there are

several different types of methods that can be used to propagate the distribution, e.g.

importance sampling [130]. However, here it is assumed that these distributions are

Gaussian, and can hence be characterised by their first two moments: the mean µ and

covariance Σ. After propagation, this distribution might not be Gaussian anymore as

non-linear effects can change the nature of the distribution [115]. However, as is done

with most types of filters like the Extended and Unscented Kalman filter, it is assumed

that the propagated distribution can be sufficiently characterised using just the first

two moments.

The propagation of Normally distributed variables in general requires integrating

the following types of equation:

E[f(x)] = 1/
√
πd|Σ|

∫ ∞

−∞
e−

1
2
(x−µ)TΣ−1(x−µ)f(x)dx. (6.16)

These integrals can be solved numerically using Gauss-Hermite quadrature and a

change of variables (x =
√
2Ly+µ, where Σ = LLT and L is determined using Cholesky
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decomposition), as follows [143]:

E[f(x)] = 1/
√
πd

∫ ∞

−∞
e−yT yf(

√
2Ly + µ)dy (6.17)

≈
N∑
j=0

wj√
πd
f(
√
2Lζj + µ), (6.18)

where wj are the Gauss-Hermite quadrature weights and ζj the roots of the Hermite

polynomial. The accuracy of the integration can be tuned by increasing the number

of quadrature points. For our purpose of propagating a Gaussian distribution, i.e.

X k
i , from time ti to ti+1, a large number of quadrature samples would need to be

numerically integrated. However, as a polynomial approximation is used, instead of a

numerical integration only a polynomial evaluation is needed for each quadrature point,

significantly reducing the computation time. In this sense, the mean of the distribution

at time ti+1 can be calculated as follows:

µkXi+1
≈

N∑
j=0

wk
j√
πd

Ω̃xi+1

(√
2Lxiζ

k
j + µxi

)
, (6.19)

and the covariance using:

Σk
Xi+1

≈
N∑
j=0

wk
j√
πd

[
Ω̃xi+1

(√
2Lxjζ

k
i + µxi

)
− µkXi+1

]
·
[
Ω̃xi+1

(√
2Lxiζ

k
j + µxi

)
− µkXi+1

]T
.

(6.20)

Normally, the multivariate quadrature points are constructed as a Cartesian prod-

ucts of univariate ones. This method suffers from the curse of dimensionality in d, thus

here a another sampling approach is used, called a Smolyak sparse grid. The Smolyak

sparse grid was developed in [131], and selects a set of points based on the extrema

of Chebyshev polynomials. An important aspect is that they do not suffer the curse

of dimensionality, as the number of points grow polynomially with the dimension of

the problem instead of exponentially. A more in depth explanation of this method for

uncertainty propagation is given in [126].

Once the distributions at time tk+1 are available, it is possible to update these
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distributions with the navigation solution, obtaining the final updated distributions for

the next segment. However, this can lead to an exponential increase of sample points

as for the next segment M new observations would need to be sampled from each

individual propagated distribution, increasing the amount of trajectories, navigation

solutions, and control laws calculated significantly over time. Hence, a step needs to be

incorporated which combines the different distributions at time ti+1. This is performed

by combining the different X k
i+1 into a Gaussian Mixture Model (GMM), given by:

X−
i+1 =

M∑
k=1

bkX k
i+1 =

M∑
k=1

bkN (xk+1|µkXi+1
,Σk

Xi+1
), (6.21)

M∑
k=1

bk = 1 (6.22)

where bk are the mixture weights, and N represents a single Gaussian distribution.

This distribution can then be re-sampled to obtainM new observation samples at time

ti+1, for which the covariance is obtained through the navigation process simulated from

time ti to ti+1. If the full measurement and filtering process needs to be simulated,

before sampling the GMM from Eq. (6.21) the individual knowledge distribution can be

updated using the simulated measurements and the corresponding calculated Kalman

gain [130]. This increases the fidelity of the navigation simulation, but also decreases

the efficiency of the method. Therefore, it is left for future work. The re-initialisation

process is shown in figure 6.7c. The expected value of any function, e.g. the objectives

and constraints can also be calculated from the GMM, using the quadrature rule from

Eq. (6.18):

E[f(xi)|y1:i] =

M∑
k=1

bk
N∑
j=0

wk
j√
πd
f(
√
2Lkζkj + µk). (6.23)

The final step of the transcription is to calculate the initial manoeuver for the next

segment for each individual sample. Then, using the sample state observations, their

distribution, and their respective ∆v manoeuver, the new state and manoeuver bounds

are calculated and the polynomial for the following section is re-initialized using those
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bounds. This process is shown in figure 6.7d. The next segment uses the samples and

manoeuvers calculated during this final step of the current segment, to start the process

again for the following segment. This re-initialization process is similar to what is done

in [173], and guarantees continuity between the segments, which for normal multiple

shooting schemes needs to be added as a constraint.

6.3 Results

A combined trajectory design and navigation analysis can now be performed for the

Hera VCFB, where probabilistic objectives and constraints are included. The GNC

system discussed in section 6.1.2 is modelled, and the nominal semi-analytic trajectory

from section 6.1 is used as an initial guess and comparison with respect to the trajectory

found using the methods discussed in section 6.2. The uncertainties shown in table 6.1

are used within the optimization process as well.

The final NLP problem for this trajectory is given as follows:

min
u∈U

E[r(tC/A,dim)], (6.24a)

s.t.


X−
i+1 = F (Xi,Ui)

X+
i+1 = H(X−

i+1)

, i = {0, 1, 2} (6.24b)

Pr[x(tC/A,dim) ∈ Bdim] < 0.1% (6.24c)

Pr[x(tC/A,did) ∈ Bdid] < 0.1% (6.24d)

E[Cmarg(x, t)] > 0.4 (6.24e)

E[θ(tC/A,dim)] ∈ Θ (6.24f)

The objective is the expected value of the flyby altitude of Dimorphos, as the goal

of the EXP phase is to have high resolution images of the DART crater. The dynamics

equation, Eq. (6.24b), consists of both the creation of the polynomial model of Eq.

(3.4) using GIPA, and its use to propagate the distributions Xi and create the GMM
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X−
i+1 of Eq. (6.21).

The chance constraints (6.24c) and (6.24d) are referring to the probability of impact

with either one of the bodies, where here B represents the space occupied by either

Didymos or Dimorphos. As mentioned before, the calculation done in Eq. (6.23) can

also give the probability of an event by having f = 1A, where 1A is the indicator

function, given by:

1A(x) =


1 if x ∈ A

0 otherwise

(6.25)

The probability is then calculated by: Pr(x ∈ A) = E[1A(x)]. The problem with

this formulation is that the indicator function is discontinuous, and thus for use in a

gradient based solver it needs to be smoothed, which decreases its accuracy. For the

case here, another approach is used. First, the first two moments of the uncertain

height at C/A, HC/A, are calculated using Eq. (6.23) with for the mean f(x) =

h(x) =
√
x2 + y2 + z2, and for the variance f(x) = (h(x)− h̄)2. This is done for each

observation to create M height distributions Hk. Then, it can be observed that the

GMM of Eq. (6.21) can also give the mixture model for the cumulative distribution

function (CDF) Φ by replacing N k with the CDF of each observation:

ΦH(h) =
M∑
k=1

bkΦ(h|µkH, σkH). (6.26)

Then, the probability of impact can be formulated as:

Pr(h(tC/A) < rb) = ΦH(rb). (6.27)

The two expectation constraints pertain to the velocity margin constraints, (6.24e),

and the observation angles of figure 6.2, which are combined into a single vector θ =

[ϕ, ϵs/c, ϵ⊙] in constraint (6.24f), with Θ the desired observation values.

The NLP problem of (6.24) is solved here using the IPOPT algorithm [187]. At

each iteration the same number of samples are used, and throughout the optimization

process their spacing within the bounds are kept constant in order to remove sampling
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based changes in the objective and constraint values when calculating the gradient.

The UP step is done using a Taylor polynomial basis with degree 3.

6.3.1 Optimised Trajectory

The resulting trajectory found by IPOPT is shown in figure 6.8, where a MC analy-

sis was performed using 1000 samples. The original semi-analytical trajectory, which

will be called the non-robust trajectory here, is also shown as a reference. It can be

seen that the mean crater C/A distance, i.e. obtained resolution, of both the robust

and non-robust method is similar. Hence, to increase the robustness of the trajectory

does not necessarily result in a decrease in performance. Furthermore, the observa-

tion parameters all fall well into the requirement region resulting in good expected

performance with respect to observation.

The main problem found with the original semi-analytic, non-robust, trajectory is

the high probability of impact (PoI) with Didymos. The found trajectory significantly

reduces this probability as can be seen in figure 6.9, where the b-plane parameters of

both the non-robust and robust method are shown. The confidence region of the robust

solution does not intersect the red region, representing Didymos, suggesting a very low

PoI. This is achieved by having a slacker trajectory entering the C/A of the crater.

As can be seen in the resolution in figure 6.8b, after C/A of the crater the resolution

remains lower for longer periods of time. This results in a trajectory which does not

immediately turn towards Didymos and thus decreases the PoI.

Finally, the most important performance indicator of the trajectory is the time

spent during the trajectory in good observation conditions, which are defined here

according to the requirements stated in section 6.1. The distribution of these times

for both trajectories is shown in figure 6.10, where it can be clearly seen that the

robust trajectory has much better performance. The robust solution averages about

1.5 hours with cases of up to roughly 3 hours, where the non-robust trajectory only

goes to around 0.5 - 0.75 hours on average. This increase in performance comes from

both the slacker trajectory as mentioned before, and from considering the distribution

of observation angles inside the optimization problem.
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(a) Trajectory from uncertain optimization method.

(b) Observation parameters.

Figure 6.8: The trajectory obtained from the uncertain optimization procedure, for
which the NLP is given by (6.24). The MC results for this trajectory in Cartesian
space is given on the left and the observation parameter mean and 3-σ regions are
given on the right.
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Figure 6.9: The B-plane distribution of both the semi-analytical and robust trajectory
for the Didymos flyby section.

Figure 6.10: The distribution of observation times, which is defined to be the time
spent within the observation parameter requirements, including resolutions higher than
10 cm/pixel. 171
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6.4 Chapter Summary

In this chapter the trajectory design of the experimental phase (EXP) of Hera is per-

formed. For this phase, a very-close flyby of Dimorphos needs to happen to image the

crater with high levels of details, leading to stringent requirements on both observation

conditions and safety. Using the conventional method of designing a nominal trajec-

tory without considering uncertainty and GNC performance, however the trajectory

was also shown to have a high probability of impact.

To solve this, a novel method based on uncertainty propagation using Generalised

Intrusive Polynomial Algebra (GIPA) combined with knowledge distribution propaga-

tion is derived. This method is able to performance trajectory optimization considering

chance-based and expectation-based constraints, while also taking into account the per-

formance of the GNC system.

A novel trajectory is found with a significantly reduced probability of impact and

equal, even in some cases improved, performance. These results show the need to taken

uncertainties into account, and how this is done for a real-life scenario.
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Conclusion

In the introduction of this thesis, an overall thesis statement was made and several

objectives were formulated which in turn can support this statement if fulfilled. In this

chapter, using these objectives a summary is made of the work in this thesis, and the

contributions of that work towards the objectives are highlighted. Then, the limitations

of this thesis are addressed and recommendations on future work are given that could

improve the findings in this thesis.

7.1 Summary and Contributions

The different objectives formulated in section 1.3.2 are repeated here for convenience.

For each objective a summary is given of the work done and the main findings are

presented.

Objective 1: Determine the applicability and efficiency of different

uncertainty propagation techniques for trajectories around a binary aster-

oid, and develop an indicator that can be used to quantify the sensitivity

of a trajectory to the uncertainties present in the system.

In chapter 3, the Generalised Intrusive Polynomial Algebra (GIPA) method for

uncertainty propagation was introduced and applied to orbital motion around binary

asteroid system Didymos. It was found that a Chebyshev basis performed better with

respect to a Taylor basis for larger uncertainties. However, in highly eccentric cases the
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Chebyshev basis showed some numerical problems, leading to divergence. For the case

of landing on either of the bodies, the non-intrusive Chebyshev interpolation (NCI)

method was tested, which handled the discontinous dynamics well when using a sparse

sampling method.

Additionally, two novel dynamics indicators were introduced, named the variance

indicator ησ and the n+1 indicator ηn+1 (defined in Eqs. (3.32) and (3.42) respectively).

The theory and motivation behind them is discussed in depth in section 3.2.1. Then,

in chapter 4, they were combined with the GIPA method to study the motion around

a binary asteroid system under uncertainty in model parameters and initial conditions.

It was shown how to use these indicators to create a map, in phase space, of the

evolution of ensembles of trajectories starting from the same initial conditions.

The ηn+1 indicator was shown to provide slightly different results compared to the

ησ indicator. It was found that the ηn+1 is more sensitive to the deformation of the

set of propagated states rather than the diffusion of the ensemble of trajectories. This

was confirmed by observing the differences between the polynomial coefficient values

of different sample trajectories. On the other hand, the ησ is more geared, by its own

nature, towards capturing the diffusion of the ensemble regardless of the non-linearities.

Compared to deterministic indicators, the ησ and ηn+1 indicators allow one to di-

rectly quantify the effect of parametric uncertainties in the dynamical system without

the need of a Monte Carlo analysis for the variation of deterministic indicators. Since

in many real world applications, the parameters of the dynamical model are not com-

pletely known as a priori, the ησ and ηn+1 indicators can give a better understanding

of the effect of the uncertainty on the evolution of the dynamics.

When the two indicators were applied to the dynamics around Didymos, several

regions of robust motion were found, both for the inner region of the system and for

motions around the two bodies. These regions of low diffusion and non-linearity are

less sensitive to parametric uncertainties. Therefore, under the assumption that the

dynamical model used in this work is only affected by parametric uncertainty in the

mass of the two primaries, a trajectory that starts from these regions would be less

affected by differences in the masses of the two bodies compared to others.
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In conclusion, this research demonstrates that the two defined indicators are capa-

ble of detecting regions of diffusion and non-linearity around binary asteroid system

Didymos considering model uncertainties.

Objective 2: Use the previously developed indicators to determine ro-

bust stable orbits around the asteroid system considering the full dynamical

model.

Chapter 4, also showed a novel method of determining the robust stability of orbital

motion. This was more broadly applied to study the dynamics under uncertainties of

a spacecraft around the Didymos system.

Using the variance and n+ 1 indicators, it is shown that the terminator and close

retrograde orbits show robust stable behaviour. This corresponds with previous results

(e.g. [148]) which also found that these types of orbits are stable. This verifies the abil-

ity of the indicators to find robust stable orbits, and thus allows for the further study

of other features of the uncertain dynamics. When the motion is close to the body, the

stability of the terminator orbit is not guaranteed as the dynamical structure becomes

more complex due to the effect of the non-spherical gravity, the uncertainties in C20

and C22, and the presence of resonances with Dimorphos’ orbit. Furthermore, slightly

eccentric terminator orbits show stable behaviour for higher semi-major axes (corre-

sponding to previous analytical predictions [76]), but the range of stable eccentricities

decrease if the semi-major axis decreases. Finally, several different stable regions besides

the terminator plane were found when changing the ascending node and inclination,

allowing for different options when the terminator orbit is not desirable.

Additionally, the performance of certain orbits in terms of the observability of Di-

morphos are analysed. It is found that in general the stable regions show smaller

bounds for the observability, minimizing the worst case scenario but also not allowing

the maximum observability to become larger compared to other initial conditions. This

is especially the case for the terminator orbits, showing less favourable geometry for

the maximum observability.

This study thus shows that the robust stability of the orbital motion around Didy-

mos can be analysed using the uncertain dynamics indicators developed in this thesis,
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considering the full, complex, dynamical model of the system. Using GIPA it is also

shown that other paremeters, like the observability of Dimorphos, can also be analysed

efficiently.

Objective 3: Design ballistic landing trajectories on an asteroid that

are reliable and have low sensitivity to uncertainties in both the landing

conditions and deployment execution.

Chapter 5 introduces a novel methodology for the design and analysis of ballistic

landing trajectories on the secondary of Didymos, i.e. Dimorphos. The methodology

shows how efficient uncertainty propagation and quantification tools, specifically Non-

Intrusive Chebyshev Interpolation (NCI) and the pseudo-diffusion indicator, can be

used to analyse the uncertain dynamics and design a robust landing trajectory.

It was shown how the pseudo-diffusion indicator can be used to determine con-

straints on the landing geometry and touchdown velocity that ensure high probability

of the spacecraft settling on the surface of the asteroid. For the model where a smooth

surface of the asteroid was assumed, a maximum touchdown velocity of 10 cm/s was

found and a maximum impact angle of 20 degrees. As the touchdown velocity decreases,

the maximum allowable impact angle also increases, where for around 6 cm/s almost

all impact angles result in settling on the surface. A transition region also appears for

touchdown velocities between 10 and 6 cm/s and high impact angles, where part of the

trajectories settle on Dimorphos’ surface and part go into an orbit around the system.

When the dynamics are altered to model surface features like rocks and craters using

a stochastic perturbation on the local surface normal, the dependency on the impact

angle is less significant and the maximum touchdown velocity decreases to around 8

cm/s.

Using a NCI based bisection method, it was then found that if a landing location in

the DART crater hemisphere is considered with a deployment point 2 km away from the

system, the necessary minimum touchdown velocity would be much higher than what

is required for settling on the surface. Thus an extra braking manoeuvre is needed

along the trajectory to reduce the touchdown velocity.

The deployment ∆v, braking ∆v, and time of the braking ∆v were then determined
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using a novel method which incorporates the NCI uncertainty propagation method into

the trajectory optimization transcription. This method was able to find a trajectory

which increase the landing success percentage from 74.3% to 94.7% compared to a

trajectory designed without considering the uncertainties. Furthermore, the landing

footprint on Dimorphos was also significantly reduced together with lowering the mean

touchdown velocity. This comes at the cost of increasing the mean impact angle and

moving the mean landing longitude away from the desired location. However, even

with these changes the robust trajectory was found to be much more desirable.

These results show the potential of this methodology for the design of a ballistic

landing on Dimorphos. The increased knowledge about the uncertain and stochastic

dynamics gained through the NCI and pseudo-diffusion indicator techniques increase

the robustness and performance of these types of missions and thus it is important to

use them in the mission design process.

Objective 4: Develop a method to combine the navigation analysis and

nominal trajectory design to obtain robust trajectories for the very close

flyby of an asteroid.

Chapter 6 shows that a polynomial surrogate model of the uncertain dynamics, gen-

erated by the GIPA method, can be used in the context of uncertain optimal control

problems to perform combined trajectory design and navigation analysis. The specific

method discussed is able to find trajectories that optimally consider the uncertain-

ties stemming from the GNC system and thus generate a robust, high performance,

trajectory.

The EXP phase of Hera is considered, where first a nominal trajectory is constructed

based on a two-body approximation. An autonomous GNC system was also developed

and implemented to correct for the off-nominal conditions. A navigation analysis is

performed for this trajectory, which shows that even though the scientific objectives

are met, the probability of impact is significantly high, which renders this trajectory

infeasible.

A methodology is discussed in Chapter 6 that is able to immediately take into

account the uncertainties and GNC performance, and subsequently is able to consider

177



Chapter 7. Conclusion

chance-constrained problems, like the one presented here. Using this method, a new

trajectory is found that is able to both improve upon the performance of the original

trajectory, as the time in favourable observation conditions is increased, and reduce the

probability of impact to much more desirable values below 0.1%.

This thus shows that this methodology can produce effective and risk-reduced tra-

jectories, which are produced with the performance of the autonomous GNC system in

mind.

7.2 Limitations and Future Work

Investigate more in-depth the numerical issues found for the Chebyshev

basis.

Chapter 3 showed the potential of using GIPA with a Chebyshev basis, as the uni-

form convergence property overcomes some of the Taylor basis’ shortcomings. However,

its numerical issues and slightly worse runtime led to the selection of a Taylor basis

for large parts of the results. Future research should focus on the Chebyshev basis and

how it can be adapted to improve efficiency and numerical performance. On-going re-

search is focusing on how changing the state-representation can already overcome some

of these issues, e.g. [134].

Add more test cases for the uncertain dynamics indicators regarding

stochastic forces.

In testing GIPA and the uncertain dynamics indicators, the main focus was on para-

metric uncertainties as this allows for less complex test cases to show the applicability

and performance of the indicators. The use of these indicators in case of stochastic

forces was then introduced for the surface motion after landing in 5. Stochastic dy-

namics are important cases for the uncertain dynamics indicators, as it is not possible

to use variational based chaos indicators for these systems. As there are several cases

where stochastic forces are encountered in spaceflight dynamics, this should be explored

more in future work. The stochastic coupling between SRP and rotational state, trans-

lational components of de-saturation manoeuvers, impacts due to clouds of asteroid

ejecta and/or space debris, and unmodelled accelerations are all important dynamical

178



Chapter 7. Conclusion

components and cannot currently be used within the framework of deterministic in-

dicators. Hence, analysing these models using uncertain dynamics indicators can be

beneficial.

Determine the applicability of these methods to autonomous mission

architectures.

Section 1.3.2 mentioned that both robust mission design and autonomy are solutions

for the problems currently found with mission performance under large uncertainties.

The largest potential gains can be found when combining these two techniques. This

requires both the application of these uncertainty propagation techniques on-board the

spacecraft [188], and investigating the different ways these techniques can be used to

improve the robustness of autonomous systems.

Implement higher fidelity models of the autonomous GNC system.

Chapter 6 introduced a technique that allows for the incorporation of a navigation

system inside the trajectory optimization process. An analytical model of the optical

navigation was used for efficiency reasons. Incorporating the simulation of optical

measurements and the state estimation filter would increases the fidelity and improve

the final performance of the found trajectory. Thus, this is an important point for

future research.

Incorporate both aleotoric and epistemic uncertainties.

Epistemic uncertainties were not considered in this thesis, as additional methods

would need to be developed. However, it is of importance that these types of uncer-

tainties are also considered in the UP process as they represent an important class

of uncertainties that affect space missions. GIPA and NCI have been shown to lend

themselves well to the incorporation of epistemic uncertainties in [173] and [130]. Thus,

future research should focus on incorporating this to the uncertain dynamics indicators

developed here.
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[77] Dario Izzo and Pablo Gómez. Geodesy of irregular small bodies via neural density

fields. Nature Communications Engineering, 1(1):1–12, 12 2022.

[78] Karel Wakker. Fundamentals of Astrodynamics. Institutional Repository Delft

University of Technology, Delft, 1 2015.

188



Bibliography

[79] Fabio Ferrari, Vittorio Franzese, Mattia Pugliatti, Carmine Giordano, and

Francesco Topputo. Trajectory Options for Hera’s Milani CubeSat Around

(65803) Didymos. The Journal of the Astronautical Sciences, pages 1–22, 9 2021.

[80] Shane Ross, Wang Koon, Martin Lo, and Jerrold Marsden. Dynamical Systems,

the Three-Body Problem, and Space Mission Design, volume 1.2. 6 2011.

[81] Simon Tardivel and Daniel J. Scheeres. Ballistic deployment of science packages

on binary asteroids. Journal of Guidance, Control, and Dynamics, 36(3):700–709,

4 2013.
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