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Abstract

Nuclear plant operators require trusted data analytics tools to support the manage-

ment of asset health throughout their operating lifetimes. Management of the data

pipeline that serves data analytic tools, alongside the development of the analytic tools

themselves, creates an ecosystem whereby operators can more effectively access the

risk associated with the utilisation of data-driven systems within their decision-making

processes. Prognostics and health management, and structural health monitoring prac-

tices allow nuclear power plant operators to monitor the state of assets and structures

in the plant to avoid the financial strain and loss of generation from unexpected faults.

However, for these technologies to be adopted, they must have high accuracy to prevent

false alarms or missed faults, which can degrade operator trust in these tools. There is

a need for trustworthy analytics across the nuclear sector, with analytic tools capable of

uncertainty quantification to attribute risk to analytic outputs, and an understanding

of uncertainty sources in the full data pipeline serving these analytics.

This work firstly investigates the impact of data pipeline design on analytic per-

formance by using a SHAP-based explainability tool to form part of a novel pipeline

design interrogation framework. This framework identifies the highest impact posi-

tive and negative performance drivers, providing informed design decisions for data

pipelines to improve performance of analytic tools within these pipelines. The process

was shown to be transferable to the data pipeline designs of similar assets with less

available design data, leveraging insights from one system to reduce the uncertainty

sources within designs across other systems for improved fleetwide monitoring.

Secondly, this work demonstrates the development of a novel copula-based calibra-

tion module within a hierarchical modelling structure which is used to improve pre-
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Chapter 0. Abstract

dictions of transparent, but interchangeable, base models that are commonly applied

within the highly regulated nuclear sector. The approach has the additional benefit of

uncertainty quantification which attributes risk to the final prediction. The procedure

was shown to be effective for spatial and temporal data, demonstrating applicability to

a diverse set of engineering applications.

The methods developed in this work have made progress towards providing trust-

worthy data analytic tools and data pipeline designs to provide nuclear operators with

the risk associated with applying such tools to the management of the health and

maintenance of their assets.
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Chapter 1

Introduction

1.1 Quantifying uncertainty in data analytics for nuclear

applications

In power plants, operation and maintenance (O&M) account for a large portion of

generation costs, estimated to be between 40 - 70 % across different areas of the world

[1]. Streamlining and supporting this process has been given great attention over the

lifetime of the nuclear sector, which benefits from innovation exchange between similar

industries. Originally, most maintenance processes were conducted reactively once a

failure was evident and relied entirely on expert knowledge to diagnose and rectify.

This is the most expensive course of action [2], as assets must be taken offline with

little notice and the asset can be impacted by cascading faults, where a failure in

one part of the asset creates issues in wider subsystems. This incurs delays while the

faults are diagnosed, parts are sourced and arrangements are made to work around

the interruption, which has likely resulted in lost revenue [2]. With the introduction

of condition monitoring (CM) and condition based maintenance (CBM) [3], the health

status of assets are more closely monitored to allow maintenance to be scheduled with

equipment and interruptions planned for in advance, streamlining the process. In power

plants, such maintenance may involve replacing or lubricating bearings in rotating

plant such as pumps or motors [4]; identifying corrosion in piping [5] or cracks in civil

infrastructure [6]; or preventing electrical faults through replacing degraded wiring [7].
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To accurately assess the health status of monitored assets or identify developing

faults, data pertaining to important health indicators must be collected, which vary

from asset to asset and fault type to fault type. For example, this can include tem-

perature [8], or vibration monitoring [9], which may be measured by different types

of sensors. Data from these sensors can then be utilised to not only assess the health

of the asset at the current time, but be used to identify developing trends which can

permit predictions to be made on when the asset is likely to fail, known as predictive

maintenance [10]. Predictive maintenance utilises data streams monitoring different

process variables with data analytics to detect or diagnose developing faults, or predict

when the fault will develop into a system failure.

Data pipelines describe the flow and transformation of data through important

stages in a data acquisition system, from collection by the measurement system, through

to life-long storage and management. Accuracy in data pipelines can be eroded by data

quality, which can be circumvented with appropriate system design and calibration [11].

The form of (and range of) uncertainty in the CM data acquisition lifecycle and its

impact on data analytics within the pipeline is currently not fully understood and hence

is unquantified, necessitating a comprehensive study of uncertainty and its propagation

in data acquisition systems.

To incorporate the output of data analytics into maintenance decisions, operators

require thorough understanding of the risks incurred from the data quality of the data

pipeline and the type of analytics applied to the desired predictive problem. This pro-

vides flexibility and agency in how the outputs of the analytics are utilised to prevent

operators losing confidence in their data analytic tools. Investigating sources of uncer-

tainty and incorporating models which are capable of uncertainty quantification is one

method of attributing this risk to the data-driven system, or removing barriers to the

models success in the first place by improving data quality.

1.2 Scope and objectives

In this thesis, the uncertainty sources in the lifecycle of power plant asset data, alongside

methods and models able to quantify or explain this uncertainty, are investigated to
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support analytics for electrical, mechanical and civil engineering applications of interest

to the nuclear sector. This is approached through a variety of questions that are

subsequently investigated in the following chapters. Of interest to this thesis is the

impact of pipeline design on data analytics performance, the choice of analytics and

modelling strategy, and their effectiveness across diverse data types and applications,

as covered by the following research questions:

• What impact, if any, does the pipeline design have on analytic performance and

behaviour? If design changes degrade or improve model performance, can these

be reliably identified and explained?

• Can additional uncertainty quantification be built into the analytics stage, and

models or modelling approaches be combined to improve system robustness?

These questions have additional opportunities for investigation depending on the out-

come. This includes how different types of machine learning model may be impacted

differently under the same circumstances within a data pipeline design, potentially

adding another source of uncertainty to consider. Additionally, how the utilisation of

explainable models and explainability tools may affect analytic system transparency,

or allow explanations of one system pipeline to potentially be utilised for developing

designs in other systems. Lastly, to provide generalised approaches which are suitable

for multiple applications within data-based systems of relevance to the nuclear indus-

try, the approaches developed should be flexible to cover temporal and spatial data

applications.

1.3 Research novelty and contribution

Current data-based systems are at risk of deteriorated performance from so called

“rubbish in - rubbish out”, whereby any issues with data quality, data system design

or data analytics development can understandably produce untrustworthy outputs.

Understanding sources of uncertainty within the pipeline design and on the outputs

of machine learning model predictions can provide flexibility to users of these systems

to make decisions based on the level of provided risk. The research questions laid out
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in Section 1.2 aim to cover this risk from the data pipeline and the data analytics

within the pipeline, and the contributions of this thesis provide potential solutions. A

detailed breakdown of the novelty and contribution can be found at the beginning of

each technical chapter, but can be summarised as follows:

• In this work, a methodology is developed to demonstrate the impact of data

pipeline design on data-based and hybrid models across prognostic, diagnostic and

detection applications which is showcased on bearing fault data. This method-

ology is able to decouple and explain which design choices improve or degrade

analytic performance, and quantify the strength of this impact, allowing for the

informed design of condition monitoring systems involving data analytics. This

methodology is able to leverage design insights from one asset pipeline to those

of similar systems, promoting more efficient fleetwide monitoring.

• Focusing on the analytics stage of the pipeline, a hierarchical modelling method-

ology is developed to combine the advantages of explainable models with models

capable of uncertainty quantification to provide robust timeseries forecasting,

demonstrated in this case on a temperature monitoring application.

• The hierarchical approach comprised of explainable and uncertainty quantifica-

tion capable models were generalised further and applied to spatial data to cap-

ture uncertainty in the error of a structural health monitoring rig. As part of this

process, a structural health monitoring spatial dataset based on a photometric

stereo rig was collected, curated and released. The dataset covered civil engineer-

ing structural damage and materials while diversifying using household objects

to assess wider applicability across diverse geometries.

Each contribution is directly associated with answering and exploring beyond the pro-

vided research questions in Section 1.2. The first contribution (associated with Chapter

3) is associated with the first question, while the second and third contribution (as-

sociated with Chapter 4 and Chapter 5, respectively) investigate the second research

question.
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This thesis is conducted as part of a collaboration between the National Physi-

cal Laboratory, the University of Strathclyde, and partners of the Advanced Nuclear

Research Centre. This agreement has supported this research by providing access to

diverse expertise, equipment and industrial data which has been collected under realis-

tic operating environments. At time of writing, there are three publications associated

with this thesis: Chapter 3 has a published conference paper [12], and a published

journal paper [13]; and Chapter 5 has a published data article [14] with open source

data released.

1.4 Organisation and structure

This thesis is organised as follows: Chapter 2 contains the literature review covering

topics of interest across several chapters, including data analytics for condition moni-

toring in engineering, uncertainty quantification and trustworthiness, and dependency

modelling. Each technical chapter includes a brief literature review of topics pertaining

to that chapter. In Chapter 3, the methodology used to provide the impact, explana-

tion and leveraging of uncertainty sources in data pipeline design is presented; Chapter

4 brings focus to the analytics stage of the data pipeline where a hierarchical modelling

structure with uncertainty quantification is presented on a forecasting application for

the monitoring of nuclear power plant heat exchanger temperature data; in Chapter

5, the hierarchical modelling approach with uncertainty quantification was adapted for

handling spatial data from a structural health monitoring rig. Finally, the thesis is

concluded in Chapter 6, with a summary and future work discussion.
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Chapter 2

Literature: Uncertainty

quantification in prognostics and

health management for asset

condition monitoring

2.1 Prognostics and health management and structural

health monitoring for asset condition monitoring

Historically, without insight into the health status of an asset, maintenance of indus-

trial equipment was scheduled reactively [15] where technicians diagnose and perform

maintenance after a failure has occurred. This incurs lengthy and expensive downtimes

of equipment and in some scenarios can pose safety concerns. With the development

of expert knowledge, maintenance could be performed proactively where known fault

symptoms could be identified and addressed before developing into a system failure [16].

2.1.1 Types of maintenance strategies and methodologies

Experience-based maintenance informed time-based maintenance schedules to enable

timely replacements or upkeep of parts before fault symptoms emerged [17]. This was
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especially important for safety critical assets and improving maintenance schedule costs

while avoiding run-to-failure scenarios. The development of affordable sensor systems

allowed for condition monitoring (CM), providing more diverse information about the

current performance and health status of an asset. With greater understanding of

degradation modes in assets, condition-based maintenance (CBM) [18] became possible,

whereby the nature and severity of the developing fault can be established through data-

based or physics-based models before removing the monitored asset from use. This can

allow operators to forecast potential maintenance schedule options to optimise asset

management actions and prevent the replacement of healthy parts until it is required.

This eventually led to prognostic and health management (PHM) processes, where the

combination of historical sensor data and analytics can forecast potential degradation

scenarios, or diagnose developing faults based on the assets condition [19]. For ’passive’

assets, such as piping, asset housing or concrete, structural health monitoring (SHM)

[20] is applied to estimate asset condition and detect or diagnose fault scenarios. If

an asset experiences common failure modes, aggressive maintenance techniques such

as ’design-out’ strategies, involve design changes in the next generation of the asset to

mitigate the development of specific failure types [21,22].

2.1.2 Condition based maintenance cycle

The CBM system contains five stages from collecting sensor data from the monitored

asset through to informed decisions being made to optimise maintenance actions [23,24]:

1. Acquire condition monitoring data

2. Signal processing and data preparation

3. Condition Monitoring

• Feature selection

• Statistical Models/Machine Learning models

• Fault Diagnosis via operators/machine learning models

4. Prognostics and Health Management

7
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• Calculate Remaining Useful Life and Probability of Failure, potentially using

Physics of Failure models.

5. Operation and Maintenance systems

• Condition based maintenance using cost-benefit analysis and from Remain-

ing Useful Life and Probability of Failure estimates to inform risk budgets

and maintenance scheduling.

Diagnosis seeks to identify the location of the fault (isolate fault and trace to a

specific component) and the type of fault occurring (identify fault and type of damage

to the component). Fault symptoms can be signatures from sensed data, anomaly

detection results, residuals from system monitoring or features extracted from sensed

data. Expert systems [25] or classification algorithms [26] can be used to diagnose faults

and estimate fault severity from these sources. Prognosis takes the fault diagnosis and

attempts to determine the RUL of the system [27]. Physics based models describe the

condition of the asset/part by performing computations using the systems underlying

degradation and failure behaviour [28]. These are useful in situations with a lack of

empirical data (such as cases where assets cannot be run to failure due to cost or

safety factors), however limited understanding of the physics of failure, uncertainties

in the model and the potential oversimplification of the model physics can make them

inaccurate [29]. Improvements in accuracy and sophistication of these methods also

incur greater computational expense. Empirical models model the relationship between

normal real world system behaviour and different types of fault behaviour observed in

historical collected data [30]. These are less complex and easier to develop, however

require representative historical data to build robust models. In many applications,

equipment has not (or cannot) been run to failure in order to collect comprehensive

and diverse fault data [31], limiting the model based on available training data and

known fault modes which may have been collected from test rig equipment under non

representative operating conditions [23]. With new technologies and system integrations

becoming increasingly complex, a single method of informing maintenance may not be

enough, inspiring the creation of different modelling types and strategies.
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2.1.3 Condition monitoring for PHM and SHM in engineering appli-

cations

Maintenance is required to ensure the health and reliability of many assets across dif-

ferent engineering disciplines: from conveyor system imbalance in smart manufactur-

ing [32]; to broken railway tracks in the transport industry [33]; to wind turbine blade

erosion in the energy sector [34]. In this section, some examples of where maintenance

may be required in the aeronautical, power systems and power generation industries

are briefly discussed to demonstrate the diversity of fault types and where maintenance

strategies may be shared across different disciplines.

Aeronautical engineering

Aircraft require a high level of reliability in their electrical and mechanical systems,

as they must operate autonomously in highly dangerous environments. To ensure

personnel and customer safety, maintenance schedules must be balanced to maintain

high performance of the assets while ensuring the industry remains profitable.

In manned aircraft, fault management systems can be used to protect the elec-

trical systems using fault isolators to separate the faulted sub-system from healthy

sub-systems; current limiters to reduce current spikes to prevent overloading other com-

ponents; and current divertors to protect sensitive subsystems from fault currents [35].

Redundancy in the internal systems can keep aircraft operational despite occurring

faults, allowing the system to reconfigure to maintain functionality until maintenance

can be performed [36]. The performance of aircraft engines can degrade over time due

to the accumulation of wear and impact of various stresses from the different operating

environments and conditions [37]. Predicting the remaining useful life of engines can

provide a risk of failure to be estimated based on the degradation trends of the engine,

to allow maintenance to be scheduled before faults occur [38]. Aircraft rely heavily

on sensors to detect abnormal operation in subsystems, but these sensors themselves

can become faulty. Sensors can experience excess noise, oscillations, excessive drift or

become stuck at a given output which can create issues in flight control systems [39].

To mitigate this, redundancy is also applied to sensors, whereby different voting mecha-
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nisms can be employed to reduce the impact of incorrect or unstable measurements and

detect sensor issues [40]. Due to the fossil fuel consumption in the aviation industry,

there is a push for hybridisation or electrification of their future designs [41], which will

create new fault modes and maintenance requirements.

Unmanned aerial vehicles (UAVs), such as drones, can also be a tool in mainte-

nance strategies for other assets by delivering non-destructive testing sensors to testing

location sites. The use of drones for structural health monitoring applications allows

maintenance crews to conduct their work remotely without the safety risks of work-

ing at height [42]. Visual inspection can be conducted through UAVs equipped with

cameras, which can allow for: the detection of cracks, corrosion and impact damage

from birds or hail on aircraft exteriors [43]; for the diagnosis of erosion, mechanical

damage and lightning damage in wind turbine blades [44]; and, for the assessment of

civil infrastructure such as bridges, as either a part of routine inspection or for safety

assessments after natural disasters or extreme weather events [45]. Alternatively, sen-

sors requiring surface contact can be deployed to detect subsurface defects which are

not detectable through visual assessments. Ultrasonic sensors use reflections of pressure

waves to detect subsurface defects such as the corrosion of storage tanks or offshore

platforms in the oil and gas industry [46]. Eddy current sensors induce magnetic fields

in metal components which can diagnose subsurface faults, such as wall thinning in

pipes [47].

Power systems

Power networks in Great Britain consist of generation sources and high voltage trans-

mission networks connected to medium-low voltage distribution networks via trans-

formers to step the voltage, and protection devices designed to prevent, isolate or clear

faults. Each of these sections consist of many components requiring maintenance. Elec-

trical and thermal stresses inside transformers can weaken the insulation [48], putting

the system at risk of overheating and partial discharges [49]. Power lines responsible

for transporting power over long distances can either be above ground supported by

utility poles [50], or buried (on land [51], or undersea [52]). Safe transmission line
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operation is limited by thermal ratings. The temperature of cables is influenced by the

line loading and environmental conditions, which impact the lifetime of the conductor

material [53] and, for overhead lines, the sag of the line [54]. Above ground power

lines are additionally susceptible to damage from adverse weather, animal or human

involvement, and flora encroachment or damage [55]. The utility poles themselves are

also subjected to rot from environmental conditions and wildlife encroachment, such

as from fungi or insects [56], necessitating structural health monitoring to detect faults

which may not always be visible externally.

Circuit breakers are responsible for isolating faulted sections of the power grid to

prevent faults cascading through the network [57]. Circuit breakers are susceptible me-

chanical faults which can target the internal spring system used to trigger the opening

and closing mechanism, such as spring wear or jamming [58], or wearing of the spring

dampening mechanism [59]. Abnormal operation of the circuit breaker supply voltage

can also prevent normal operation, or even lead to breakdown if it exceeds expected

voltage limits [60]. The health of circuit breakers which may not operate for long

stretches of time can be inferred through tests during normal grid operation to prevent

undetected faults being observed when the circuit breakers are needed [57].

Generation sources can be from power plants, renewables or different forms of bat-

tery storage. Wind turbines are some of the most utilised renewables in the UK,

contributing 21.3 % of generated electricity in July 20241. Wind turbines contain gen-

erators, converters, transformers, gearboxes, and pitch and yaw systems. Generators

are responsible for the conversion of mechanical energy to electricity, and are suscep-

tible to bearing faults [61]. Convertors enable the electrical output of the turbine to

be compatible with connection to the wider grid [62] and can experience short or open

circuit faults due to the long term effects of thermal stress, moisture, debris accumula-

tion or voltage/current spikes [63]. Wind turbines do not rotate at the required speed

of electrical generators, and so gearboxes are utilised (in some designs) to compensate

for this difference [64]. Variability in lifetime can come from operating environment,

material properties and design defects which can result in mechanical failures in the

1National Grid, Great Britain’s monthly electricity stats, https://www.nationalgrideso.com/electricity-
explained/electricity-and-me/great-britains-monthly-electricity-stats
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gear teeth, bearings and shafts [64]. External components of interest are mainly on the

health of the turbine blades which are exposed to icing or lightning damage, cracks,

delamination, fatigue, corrosion and general wear [65].

Thermal generation and nuclear power plants

In a simplified view, power plants are constructed from several key components: com-

bustion engines, boilers or nuclear reactors for heat generation; heat exchangers for

steam generation (in most plant types); turbines and motors for energy generation;

pumps to circulate the coolant medium, and condensers to restart the cycle. Gas tur-

bines operate under high thermal and mechanical stress conditions which can degrade

the performance of the asset [66]. Chao et al [67] developed a calibration and uncer-

tainty quantification method for a hybrid gas turbine model used to predict turbine

performance at observed or new operating conditions. Monitoring of the heat exchange

between steam and sodium in the super heater of the ’Monju’ fast breeder reactor was

conducted by Gofuku [68] through a hybrid physics- and data-based diagnostic sys-

tem. Forecasting the reactor inlet header temperature for monitoring asset aging is

also presented in this thesis in Chapter 4. Rotating plant, such as motors and pumps,

rely heavily on bearings and gears [69] which are subjected to high speeds, tempera-

tures, and other stresses from friction, which can result in cracks, pitting and wear [70].

Across the variations of these designs and cycles, there are many sensor types across key

components in the plant, such as pressure sensors, temperature sensors, or vibration

sensors [71]. Sensor systems in plants can be linked through sensor selection to iden-

tify logical connections in sensor anomalies which suggest certain faults, for example:

anomalies in the flowrate sensor of the inner coolant loop and the inner loop temper-

ature sensor can together suggest a developing fault in the coolant pump [72]. Sensor

faults can cause the state of the plant to become uncertain and risks developing faults

from going unnoticed due to miscalibration, failure or drift [73]. Online calibration

techniques can be used to detect sensor calibration errors while minimising physical

intervention from maintenance staff in harsh environments [74]. Such techniques may

involve cross-calibration, where a collection of redundant sensors measuring the same
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process on the same asset are compared to provide an average estimate of the plant

state and a measure of deviation for each sensor [75].

Power plants and surrounding industries also contain many passive components

requiring monitoring, such as the reactor housing [76], reactor fuel channels [77, 78],

nuclear waste storage containers [79], piping [80], and concrete in supporting civil struc-

tures [81].

2.1.4 CBM and PHM in civil nuclear generation: Barriers and op-

portunities

To meet carbon targets in the energy sector, fossil fuel powered thermal plants are

being phased out to reduce the amount of CO2 being released into the atmosphere [82].

With the increased adoption of distributed renewable energy sources into the energy

network, there is a need for a reliable, high power, low carbon alternative to coal plants

to supply regional base loads for the energy network. Nuclear is a mature technology

with the potential to fulfill this role [83]. In this section, additional context surrounding

maintenance in the nuclear sector will be discussed.

Nuclear plants across the globe were commissioned and built in the late 1970s and

1980s with an expected 30-40 year lifespan [84, 85]. As such, many nuclear plants

are approaching the end of their initially expected lifespan, but with the cost and

planning difficulty associated with commissioning new sites and decommissioning the

old, many plant operators are looking at lifetime extension as the route forward [85].

However, aging assets may experience unexpected and lengthy downtimes while faults

are diagnosed, and the appropriate maintenance actions and equipment are organised.

To improve operating efficiency, prevent penalties and loss of generation revenues due

to asset downtime, many companies have turned to prognostic and health management

and condition monitoring techniques to monitor the health of aging assets more closely

[23]. This will have increased relevance in Great Britain, where growth of nuclear

generation is being planned to provide quadruple the current generation capability

over the next 25 years2.

2”Biggest expansion of nuclear power for 70 years to create jobs, reduce bills and
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In the nuclear sector, retrofitting modern sensors has been slow and expensive to do,

with novel technologies posing new opportunities and new problems. For example, a

shift to wireless data transfer avoids the need for shielded cables in adverse environments

[86], but introduces cybersecurity risks and reliability concerns due to electromagnetic

interference [87]. Similarly, new technologies such as industrial control systems, can be

vulnerable to cyber-physical attacks which have been increasing in frequency in recent

years [88]. These attacks may involve loss of communications or access to systems

due to denial of service attacks; and in severe cases, may either hide faulty operation

by masking real sensor readings or cause control systems to act unnecessarily due to

fake data injected into the system, putting assets at risk of automated tripping and

shutdowns [89]. In their 2023 report, The Nuclear Threat Initiative3, a non-profit global

security organisation, gave 17 out of 47 assessed countries the lowest score category

in cybersecurity protection for nuclear facilities, with the overall median at 50 %,

demonstrating a lack in sufficient cybersecurity measures [90].

It is estimated that 60-70 % of generating cost for US nuclear plants is due to oper-

ation and maintenance, however successful PHM schemes are estimated to save up to

$1 billion/year by avoiding loss of generation revenue and penalties from unscheduled

downtime of equipment [1,91]. Future generations of nuclear plants would benefit from

being designed for improved PHM and SHM adoption to avoid issues experienced while

upgrading legacy stations [92]. To improve current PHM practices in the nuclear sec-

tor, additional barriers identified by Coble et al [23] include: limited understanding of

physics of failure preventing improvement to physics based models, sensor choice and

placement schemes; limited uncertainty quantification poses problems for risk manage-

ment; lack of specialised signal and feature extraction techniques, and techniques which

are computationally feasible in cases with large datasets; trade-off between sensitivity

and accuracy of diagnostic models to developing faults [85]; and robust, affordable

sensor technologies and calibration schemes [24].

strengthen Britain’s energy security”, Department for Energy Security and Net Zero,
https://www.gov.uk/government/news/biggest-expansion-of-nuclear-power-for-70-years-to-create-
jobs-reduce-bills-and-strengthen-britains-energy-security

3https://www.ntiindex.org/about-the-nti-index/
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2.2 Machine learning analytics for prognostics and health

management

2.2.1 Data-based models

What machine learning models are available, and what domain the models receive the

condition monitoring data in are important considerations in implementing analytic

tools. The shortcomings and bias of these options will result in different types of er-

ror rates which may have more severe consequences in a given industrial application.

There are several categories which describe how models are trained which are roughly

covered by supervised learning, unsupervised learning, semi-supervised learning and

reinforcement learning. Supervised learning fits a model by learning from provided

input-output pairs to either predict a discrete or continuous variable [93]. This is suit-

able for classification tasks, where the inputs are mapped to a set of discrete labels

which represent meaningful groupings or states. For example, this can be used for

fault detection or fault diagnosis, where the inputs may contain ’symptoms’ of different

developing faults which can be identified by the model [94]. Supervised learning is also

suitable for regression tasks, where the model fits trends in the data which map to con-

tinuous outputs. This is suitable for prediction tasks such as forecasting (where future

trends are predicted from observed historical data) [95] and remaining useful life (where

the health of the asset is estimated and its degradation trajectory to component failure

is predicted) [96]. Unsupervised learning is used to identify structure or trends in the

data without known example pairs [97], making it suitable for clustering or anomaly

detection tasks. Clustering tasks identify grouping in the data which have a common-

ality identified based on a combination of features which can be used to identify assets

at different health stages or fault states [98]. Semi-supervised learning is a hybrid ap-

proach between supervised and unsupervised learning, which may be an appropriate

compromise based on the type or amount of labelled data available [99]. Lastly, rein-

forcement learning allows a model to develop based on set rewards and penalties which

it is designed to adapt to maximise and minimise, respectively [100]. This can allow

for more flexible prognostics of assets when the data-space fluctuates due to changing
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operating conditions [101]. While model task examples were given for each discussed

model learning category, the model tasks are not limited to only their allocated learning

category. For example, anomaly detection was discussed under unsupervised learning,

however this can also be achieved through other learning categories. There is plenty

of flexibility to be found depending on the circumstances and priorities, for example,

should the model design be task-driven, data-driven or environment-driven [100]. Fur-

ther discussion on regression models is given in Chapter 4, so data-based classification

models will be further discussed in this section.

Families of machine learning models attribute classification boundaries to input data

through different methods. Decision Tree models partition the data into progressively

smaller sets by learning decision rules based on the predictors which, ideally, lead to the

most information gained in the least number of splits. The complexity of tree models

can be controlled through limiting the number of splits per node, or the depth the tree

can grow to prevent overfitting. Other methods exist, such as pruning, which removes

branches in the trained model with the least amount of information gained. Tree models

are advantageous as they can capture hierarchical structures in the data and remain

interpretable, however they can provide different interpretations of the same data if the

data is reordered [102].

Support Vector Machine (SVM) models perform classification tasks by constructing

hyperplanes in high dimensional data spaces which aim to maximise the margin between

different class samples and capture the maximum number of samples of each class within

the boundaries. The kernel function used (linear, polynomial, Radial Basis Function,

sigmoid, etc) allows input data to be mapped to a feature space that allows a simpler

hyperplane to be fit to the data. The SVM’s kernel can allow complex structures within

the data to be captured through mapping to a more insightful feature space, however

this also makes the model difficult to interpret and the models performance contingent

on the suitability of the kernel chosen [103].

Naive Bayes models use density estimates to assign samples to the most probable

class. Despite the model’s assumption of conditional independence of the predictor

variables (which does not hold true in most applications) the posterior distributions of
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the classifiers tend to be robust to bias in the density estimates of each class, allowing

the Naive Bayes classifiers to often outperform more complex models [104].

The k-Nearest Neighbours (kNN) algorithm will implement a majority vote based

on the nearest training data samples to a query point using a chosen distance metric.

Different distance metrics (Euclidean, cosine, chebychev, etc) and different distance

weightings can result in the same data being clustered differently which may improve

the model fit. This mitigates a notable shortcoming of the kNN algorithm which is it’s

vulnerability to error in cases where the nearest neighbours cover a large distance or

there is a large class imbalance, and a smaller number of ’closer’ neighbours are more

reliable for predicting the class of the current query point [104,105].

Ensemble models average predictions from many ’weak learners’ which are simpler

models trained on different subsets or orderings of the training data to reduce bias

in the predictions. This allows the relative strength of the models being ensembled

(which may be the same type of model or a collection of model types) to be leveraged

while, ideally, the impact of the individual model weaknesses are reduced through

the averaging of all outputs. Ensemble methods can also allow for epistemic (model)

uncertainty estimation [106].

2.2.2 Hybrid models

A survey of 274 prognostic approaches by Lei et al [107] separated works into statistical-,

AI-, physics- and hybrid-based approaches, with 56% contribution from statistical based

methods, and 26% from AI based approaches which both rely heavily on available CM

data. ML or Deep Learning (DL) approaches are gaining increasing popularity as they

can handle complex prognosis problems which may be traditionally difficult to create

reliable physics or statistical models for, however due to their black-box nature it is

difficult to justify their usage in safety critical applications. The approaches which

gained the most attention for machine prognosis in Lei et al [107] review were Artificial

Neural Networks, Neuro-Fuzzy systems (both DL methods), Support Vector Machines

(SVM), K-nearest neighbour (kNN) and Gaussian Process Regression. DL approaches

require access to large quantities of high quality, representative data which can be unob-
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tainable in some industrial settings, however can produce excellent RUL predictions in

return. ML models such as the SVM and kNN methods can provide better performance

in cases with limited access to representative data, however are subject to appropriate

kernel and parameter selection [103]. Gaussian Process Regression are computationally

expensive when utilising large number of samples due to a required matrix inversion,

but is a flexible method that can be updated with new data, adapt to limited data and

incorporate uncertainties [108].

A single knowledge-, physics- or data- based approach is unlikely to provide effective

system coverage for multiple failure modes and fault types. Utilising a combination of

approaches aims to leverage the relative advantages of each individual method while

limiting the impact of their respective weaknesses [109]. Hybrid modelling strate-

gies utilise combinations of experience (through capturing expert knowledge), data

(through collecting sensor measurements) and physics (simulating the expected phys-

ical behaviour of the asset) based modelling techniques to enhance understanding of

asset degradation modes [21]. Goebel et al [110] found that combining a bearing physics

of failure model with an empirical method based on measured data (Dempster-Shafer

Regression) produced more accurate RUL prediction results than either method in-

dependently. Similarly, Chao et al [111] utilise a hybrid physics and data based deep

learning model which was found to provide an extended remaining useful life prediction

horizon for turbofan engines, while requiring less training data and suffering less from

the limitations of the chosen training data. Kundu et al [112] found that a hybrid

physics- and data-based prognostics framework allowed the limitations on gear damage

thresholds tied to historical training data can be relieved through a hybrid approach,

allowing users more flexibility to detect damage thresholds of interest.

The method of combining two or more of these methods in a hybrid approach varies

and tends to be application specific due to the relatively early development stage of

the research field as shown by the small (8 %) contribution to the canvassed literature

in Lei et al’s review [107]. As such, many methods of creating hybrid models are being

explored, such as utilising one model to estimate the asset health state and another

for RUL estimation; combining the RUL estimates from multiple methods; or utilising
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one method for short-term forecasting and another method for long-term forecasting

[113]. Of particular interest in this work is the combination of knowledge- and data-

based approaches. Incorporating domain knowledge into data-driven approaches allows

known trends and rules that govern the degradation patterns to be encoded to support

the prognostic tool in identifying and predicting the failure dynamics of well understood

failure modes. The data-driven component can provide the needed flexibility to apply

and extrapolate these rules into an RUL estimate tailored to the monitored asset, while

providing capability to identify new failure modes not included in the encoded expert

knowledge [114]. This approach was employed by von Hahn et al [115] who presented a

knowledge informed machine learning approach created via the inclusion of a Weibull-

based loss function (derived from the field of reliability engineering) in a neural network

model.

2.2.3 Dependency modelling, model calibration and uncertainty quan-

tification

Computer models of physical processes are not able to account for differences due to

real world factors, be it manufacturing, environmental or operational differences which

accumulate and fluctuate over the lifetime of a monitored asset, or important governing

quantities which are difficult to estimate. This causes the models simulated expected

behaviour to deviate from the actual behaviour of the asset. Using a hybrid approach,

physics based models can be calibrated using measured data to compensate for this

difference, and account for some uncertainty in the model. Using a Bayesian approach,

Kennedy and O’Hagan [11] were able to incorporate all types of uncertainty previously

discussed in the research space while capturing the discrepancies between the model

and real application not accounted for by the best parameter predictions. The forms

of uncertainty included parameter uncertainty, random effects, model inaccuracy, data

collection errors and uncertainty of the unseen code output. In both Chao et al [67] and

Hart [116], Gaussian Processes were used to calibrate and provide uncertainty quantifi-

cation for physics models for gas turbine and wind turbine applications, respectively.

Gaussian Processes are multivariate normal probability distributions over functions.
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Figure 2.1: a) Three randomly sampled functions taken from the Gaussian Process
prior, b) Three randomly sampled functions taken from the Gaussian Process posterior
(these are functions which fit well to the training samples), and c) An example output
of the Gaussian Process, showing the training samples, the mean prediction (most
probable function) and confidence interval which captures uncertainty in the output.

The mean of this probability distribution signifies the most likely function that fits the

observed data, while the standard deviation across the probable functions is used to

attribute a confidence interval to the fitted distributions. The covariance kernel used

can allow prior knowledge of the expected characteristics of the distribution governing

the relation between the input and output data to be encoded. This will constrain

the potential functions considered as prior distributions and can also be used with the

training and testing data to constrain the most probable functions to those that pass

through the training data points (noiseless case) or close to the training points (noisy

case). The covariance kernel can incorporate a scale factor which governs the strength

of a data points influence on its neighbours and the variance of expected noise in

the data. Gaussian Processes incorporate and propagate uncertainty estimation in an

intuitive manner, with lower uncertainty margins near observed data points, and larger

uncertainty margins far from observed data points where there is no information to

constrain the likely functional relation [117,118]. An example of the Gaussian Process

priors, posteriors and outputs are shown in Figure 2.1. Gaussian Processes are powerful

tools in uncertainty capture and model calibration, however have known scalability

issues due to potentially large matrix inversions during computation [119], making

them currently unsuitable for large datasets or very high dimensional modelling.

Uncertainty quantification can be provided across several model types due to tech-
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niques such as conformal prediction. Conformal prediction is a technique which uses

a non-conformity measure to convert input samples into prediction regions around the

model output with a given confidence (usually chosen to be 95 %) [120]. For input

samples which are similar to already observed samples, the confidence is higher, re-

sulting in a smaller prediction region, and vice versa for samples which deviate greatly

from previous observations. The use of such tools for uncertainty quantification can

be used for additional insights into data quality and systematic issues. In Olsson et

al [121], conformal prediction was used to detect systematic differences in data collec-

tion systems which led to degraded predictions, limit miss-classifications compared to

the base model alone, and identify cases most at risk for miss-classification in a cancer

diagnosis application. Conformal prediction is capable of providing region predictions

for traditional point estimator models across regression and classification tasks; is ca-

pable of operating in different states as required, from offline to online systems; and

provides limited assumptions except assuming samples are independent and identically

distributed [122]. However, it has been shown that limiting assumptions on the underly-

ing distributions has disadvantages, such as preventing conditional coverage guarantees

and limiting validity estimates for individual observations [123].

Copulas are a type of statistical model capable of dependency modelling, prediction

and uncertainty quantification tasks. They are a general model that can be adapted to

a wide variety of applications, are scalable to high dimensions and capable of capturing

linear and non-linear dependencies. Copulas are applied in Chapter 4 and Chapter

5, and will be discussed in more detail in Section 2.2.3. In Section 2.2.3, a brief

introduction to the fundamental theory of copulas is provided, along with a discussion

on the assumptions and limitations of fitting marginal univariates and common copula

families. This is followed by their extension to higher dimensions and their use with

respect to uncertainty quantification in other fields, such as biomedical [124], earth

science [125] and financial applications [126].
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Figure 2.2: Example of common univariate distributions showing the histograms and
KDE estimates of a) Gaussian, b) Beta and c) Uniform distributed variables.

Copulas

Sklar’s theorem [127] is used to describe a joint distribution function in N-dimensions,

GN , over random variables x1, ..., xN as a function of univariate uniform marginals with

interval [0,1] (given by passing xi through its cumulative distribution function (CDF),

Fi, for i = 1, ..., N) and a unique copula, CN :

GN (x1, ..., xN ) = CN (F1(x1), ..., FN (xN )) (2.1)

This has the convenience of allowing the joint distribution to be specified separately in

terms of its dependency and marginals.

To utilise the appropriate cumulative distribution function to transform the marginals,

the marginals (x1, ..., xN ) must first be fitted by the appropriate univariate distribution.

This may be from common families of distributions, such as Gaussian or Beta distri-

butions, or empirical methods such as Kernel Density Estimates (KDE). An example

of common univariate families are shown in Figure 2.2, which shows Gaussian, Beta

and Uniform histograms and KDE estimations. Non-parametric methods such as KDE

impart minimal assumptions on the properties of the distribution which allow for cap-

turing important detail in the data (for example, bi-modal structures) which may not be

represented in common parametric methods, however, the accuracy of non-parametric

methods may vary depending on the sample size of given data [128].

With fitted univariate marginals, the CDF can be computed via equations or esti-

mated empirically to provide uniform marginals to fit the copula. As with the univariate
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Figure 2.3: Examples of common copula families showing a) the Clayton copula (asym-
metric, strong lower tail dependence), b) the Frank copula (symmetric, low upper and
lower tail dependence) the Gumbel copula (strong upper and lower tail dependence),
and d) independence (no dependency relation between variables)

case, there are well-known families of copula which capture different behaviours: such as

Clayton copulas with strong lower tail dependence; Gumbel copulas with strong upper

and lower tail dependence, and Gaussian copulas which capture elliptical dependence.

These well-defined cases are limited to two dimensions. An example of common copula

families are shown in Figure 2.3. Contour plots are a visualisation method which can

be used to assess the shape of the fitted copula. This can rule out obvious issues with

the fitted copula model, and provide a general sense of how difficult the underlying

data structure may be to capture. An example contour plot is shown in Figure 2.4

which includes a good and poor copula fit compared to example target data.
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Figure 2.4: Example contour plots to visually inspect copula fitting. An example is
given of a good and bad fit compared to the target data contour plot.

While limited to two dimensions, bivariate copulas can be conditioned on other vari-

ables of interest which has seen application to financial timeseries prediction [126] and

in neuroscience where the changing relationship between stimuli and neuron behaviour

are captured by copula-based models [124].

As the copula is a joint probability function between two random variables, when

the value of one variable is known, the density of the copula can be used to estimate the

value and uncertainty in the estimate for the other variable. This provides a valuable

predictive tool for both the estimation of unknown marginal values and the uncertainty

attached to that estimate. The conditional density is useful to provide this predictive

capability, whereby values of known variables can be used to provide a distribution for

the potential values of unknown variables. The conditional density can be described as

follows [129]:

f(xN |x1, ..., xN−1) = fN (xN )
c(F1, ..., FN )

c(F1, ..., FN−1)
(2.2)

Where fi(xi) is the density of Fi, and c(F1, ..., Fi) is a copula density defined by the
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Figure 2.5: (a) Example showing a Clayton copula with its uniform marginals, and
(b) how the copula density may be used to predict the range of plausible values of an
unknown variable (X) when the value of the other variable is known (Y = 0.6).

derivative of the copula, C. Figure 2.5 shows an example of this process, where the

value of Y is known to be 0.6 and the copula density provides probable values of X.

For example, at Y = 0.6, X is likely between [0.3,1] with the most probable value

between [0.5,0.6]. The cumulative distribution function is used to find the expected

value (most probable value), and the value of the 5th and 95th percentile. This provides

a prediction, and upper and lower prediction bounds for uncertainty quantification. An

example of this is shown in Figure 2.6 which builds on part (b) of Figure 2.5 to get a

prediction and upper and lower prediction bounds from the copula conditional density.

Copulas were applied in [130] to quantify uncertainty in rainfall measurement data,

and shown by [131] that they are able to implement uncertainty propagation as de-

scribed by the theoretically rigorous “Guide to the Expression of Uncertainty in Mea-

surement”. In this literature review, the copulas are fit to general variables, X and

Y. In practice these are generally multivariate data. In this thesis, they are used for

lagged spatial and temporal data. In Chapter 4, the variables are time-lagged residuals

from a base model prediction for a temperature forecasting scenario. While in Chapter

5, the variables are prediction residuals from a base model on neighbouring points for
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Figure 2.6: Predictions and uncertainty quantification from copula conditional density
(building on (b) of Figure 2.5)

the correction of a structure surface reconstruction application.

Multivariate Gaussian copulas

Copula models have been extended to facilitate their application to higher dimensional

data in several ways, two of which are the Multivariate Gaussian copula, and vine

copulas. Multivariate Gaussian copula, C, is given by:

C(u1, ..., uN ;R) = Φ(ϕ−1(u1), ..., ϕ
−1(uN );R) (2.3)

Where ui are uniform univariate marginals for i = 1, ...N , which can be fitted using

common families of parametric distributions such as Gaussian, Gamma or Beta dis-

tributions; Φ is Multivariate Gaussian cumulative distribution function (CDF); ϕ−1 is

the inverse Gaussian CDF, and R is a N ×N correlation matrix between the marginal

variables. The correlation matrix in the Multivariate Gaussian copula captures the

dependencies between all variables which alleviates the dimensional limitations from

bivariate copula models, however, the Gaussian base copula is limited to capturing

elliptical behaviour which may not always be the most appropriate choice for a given

application.
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Vine copulas

Regular Vines are graphical models constructed of interconnected tree structures cre-

ated with nodes and edges. The graphical structure utilises bivariate and conditioned

bivariate copulas [124] to capture the dependency between all variables in a pairwise

manner. By linking smaller graphical networks (trees) together, complex dependencies

can be modelled using a variety of well-known copula families able to capture diverse

behaviour. Centre Vines are a subset of Regular Vines where each tree is created by

branching from a single, central, node. An example factorization of the joint depen-

dency for three random variables for a Regular Vine is given in [132] where the resulting

dependency, f(x1, x2, x3), is:

f(x1, x2, x3) =f1(x1) · f2(x2) · f3(x3)

· C1,2{F1(x1), F2(x2)}

· C2,3{F2(x2), F3(x3)}

· C1,3|2{F1|2(x1|x2), F3|2(x3|x2)} (2.4)

Where fi(xi) is the marginal probability density for i = 1, 2, 3, where xi is arbitrar-

ily distributed, and C are the bivariate or conditioned bivariate copulas between the

subscripted variables. Vines provide the advantage of allowing different families of bi-

variate copulas to be used to best fit the dependency between nodes, however, some

assumptions are often present to simplify tree construction which can result in impor-

tant conditional relationships being ignored [133]. Vine copulas have been applied for

high dimensional financial timeseries forecasting [133] and applied to spatio-temporal

data for streamflow prediction in earth science applications [134].

Hierarchical modelling

Hierarchical modelling structures involve the linking of the outputs of one model to

the inputs of another, facilitating the chaining of multiple specialist models and for

the calibration of model outputs to improve predictions. In Bull et al [135], a popula-

tion model is created using a hierarchical Bayesian approach for windfarm and truck
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Figure 2.7: Simplified diagram showing the thesis modelling contribution in an engi-
neering context: from sensor measurement; historical data collection; modelling; and
utilising model outputs to inform maintenance decisions.

fleet monitoring applications. Predictions were improved through the sharing of data

and model parameterisation with similar assets in subgroups within the hierarchical

structure, which benefited from the transfer of data between data-rich and data-sparse

assets. The calibration of outputs from a hybrid (physical and statistical) solar forecast-

ing model in Schulz et al [136] was found to provide improved performance at 48 hour

forecasting horizons which is important for estimating solar generation for integration

with the electrical grid.

Copulas can also provided calibration and uncertainty quantification in hierarchical

modelling structures. In Stephen et al [137], Multivariate Gaussian copulas formed part

of a hierarchical modelling approach that provided a means of capturing the dependency

between model residuals to calibrate and provide uncertainty quantification for low

voltage load forecasting. A similar structure was used by Möller et al [125] for weather

forecasting, where the Multivariate Gaussian utilised the dependency structure between

weather variables to calibrate the upstream model predictions. Multivariate Gaussian

copulas and Centre Vine copulas are applied in a hierarchical modelling structure in

Chapter 4 and Chapter 5 of this thesis. The copulas are used to calibrate and provide

uncertainty quantification for the predictions of a simple base model. This base model

is an ordinary least squares model for a temperature forecasting application in Chapter

4 and a polynomial regression model in Chapter 5.

The modelling process is shown with engineering context in a simplified diagram in

Figure 2.7, showing where the analytics are applied, the hierarchical structure and how

the outputs would be utilised across a diverse range of industrial settings.
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2.3 Trustworthy analytics and uncertainty

2.3.1 Robustness and transparency

Due to the prevalence and novelty of many artificial intelligence (AI) technologies be-

ing applied across different industries, there is an ongoing conversation between policy

makers, businesses and academics regarding consensus on definitions, safety and legal

considerations when applying ’AI’. From a policy stand point, emerging AI technolo-

gies present many economic and societal opportunities and threats, which in turn re-

quire regulation through legislation. Policy makers must be aware of novel technologies

emerging from academic or business spaces, and account for the potential breadth forms

of new AI technologies can take. For businesses, AI offers new ways to improve pro-

ductivity, development of consumer bases and forms of client or customer interaction,

which can prove profitable in many scenarios. Businesses are concerned with adhering

to laws and regulations, protecting their IP and reputation, as a failure to do so will

severely impact their finances. For academic spaces, researchers aim to innovate and

develop the state of the art to provide useful outputs and expertise for their partners

and remain competitive in such a fast moving field. As such, many stakeholders in

the field of AI are racing to provide clear, encompassing definitions which are able to

match both existing and developing research. This has led to a lack of true consensus

on certain definitions which are applicable to this thesis. While this thesis makes use of

machine learning rather than AI technologies, there is overlap in the concerns around

the use and reliance on new AI technologies which can be applied to the deployment

of data analytics.

Where definitions have been proposed, an umbrella term is usually used to cover a

series of more specific sub-terms, of which the number is also not yet agreed upon. For

example, trustworthy AI (EU Commission [138], UK House of Lords [139], White
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House OSTP [140], MIT Technology Review [141], ISO4, OECD5, NIST6, IBM7, and

Deloitte US8, etc.); ethical AI (Floridi et al [142], and UNESCO9, etc.); and Respon-

sible AI (UK House of Lords [139], University of Montreal [143], Ministry of Science

and Technology of the People’s Republic of China [144], NIST, Google10, etc) are pos-

sible umbrella terms being used by various government bodies, academic institutes and

businesses. Thiebes et al [145] published a review paper on new definitions proposed by

different parties, from Government organisations to individual researchers, and sum-

marised their findings into: Trust; Beneficence; Non Maleficence; Autonomy; Justice;

and Explicability. However, each of these terms or ideas were not always present within

each piece of literature that were reviewed. For example, it was found that ’trust’ was

interpreted in different ways:

• Trust is Lawful, Ethical and Robust [138]

• Trust is Performance, Purpose and Process [146]

• Trust is Functionality, Helpfulness and Reliability/Predictability [147,148]

• Trust is Competence/Ability, Benevolence and Integrity [149,150]

The commonality between all proposed versions are the desire to build reliable AI

technologies that sustainably benefit and protect human society, globally. Individual

parties generally tend to select which definition to use based on which terms align

well with their individual interests or prevent complications from overlapping jargon.

The chosen themes, in relation to this thesis, are considered most aptly described by

the definition of ’Trustworthy AI’ and associated principles proposed by the European

4”Towards a trustworthy AI”, International Organization for Standardization (ISO),
https://www.iso.org/standard/77608.html

5”Policies, data and analysis for trustworthy artificial intelligence”, Organisation for Economic Co-
operation and Development (OECD), https://oecd.ai/en/ai-principles

6”Trustworthy and Responsible AI”, National Institute of Science and Technology (NIST),
https://www.nist.gov/trustworthy-and-responsible-ai

7”Trustworthy AI”, IBM, https://research.ibm.com/topics/trustworthy-ai
8”Trustworthy AI™: Bridging the ethics gap surrounding AI”, Deloitte US,

https://www2.deloitte.com/us/en/pages/deloitte-analytics/solutions/ethics-of-ai-framework.html
9”Global AI Ethics and Governance Observatory”, UNESCO, https://www.unesco.org/en/artificial-

intelligence/recommendation-ethics
10”Responsible AI practices”, Google, https://ai.google/responsibility/responsible-ai-practices/
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Figure 2.8: Wheel of trustworthiness principles as described by the European Commis-
sion’s High Level Expert Group on Artificial Intelligence [138].

Commission, based on: relevancy (up to date with new technologies); diversity and

coverage of themes, and associated terminology; from a local (geographically) governing

body which would likely influence policy in the United Kingdom and neighbours; and,

actionable guidance and checklists to provide references for AI users.

The European Commission guidelines are summarised in Figure 2.8, with their

definitions summarised as follows:

• Human agency: Concerned with ensuring humans maintain their rights, free-

dom of choice and decision making ability, and ability to oversee AI technologies.

• Safety and robustness: Concerned with resilience to attacks, safeguards in the

face of failure, accuracy, reliability and reproducibility.

• Accountability/Auditability: Minimisation of, and reporting of negative im-

pact, trade-offs and redress, to manage who is responsible for actions made on AI

outputs.

• Privacy and data governance: Respect for privacy and data access, quality

and integrity.
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• Diversity and fairness: Prevent discrimination and bias, ensure it is accessible,

universal and includes stakeholders.

• Wellbeing: Sustainable, environmental and social societal wellbeing.

• Transparency: Traceability, explainability and communication.

Of particular relevance to this thesis is the terms covered by robustness, essentially

ensuring data analytics are able to do the task they are designed for, do it well, and do it

consistently. Of additional interest is the explainability, traceability and communication

of analytics, which is covered under the transparency theme. This would allow the

outputs of analytics to be interpreted by a human user based on an intuitive relationship

between the model inputs and outputs (such as with linear regression models), or for

this process to be explained to users through some additional means.

2.3.2 Trustworthy AI applications

Scenarios which fall under the key themes present in Figure 2.8 span across many tech-

nical disciplines which impact society in low impact (e.g movie recommender systems)

and high impact (e.g healthcare diagnosis) ways. Despite the diversity of disciplines,

most research goals align on the developmental outcomes being worked towards. For

example, in safety and robustness, machine learning and AI models are required to

be robust to small perturbations, robust against adversarial attacks, and also ensure

that the negative impact of such perturbations (malicious or otherwise) are minimised.

This can be shown in work by Eykholt et al [151] who propose a testing methodology

designed to generate highly impactful adversarial examples for deep neural networks

which, in their study, involves road signs. Deep neural networks are frequently used in

computer vision technologies which are the basis of self-driving vehicle technologies - a

highly safety critical application. For diversity and fairness, models must avoid any bias

and discrimination against particular groups or protected characteristics, which may

be introduced via the data, algorithm or evaluation methodology. Open source tools,

such as FairTest11 and FairLearn12, are being released to provide ML developers access

11FairTest [152], https://github.com/columbia/fairtest
12”Improve fairness of AI systems”, FairLearn, https://fairlearn.org/
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to ’fair’ evaluation criterion to provide insight into the presence of bias in their mod-

els. This has been observed in medical diagnosis where seemingly highly performing

classifiers underperform for certain patient groups [152]. Menon et al [153] investigated

the trade-offs and implications between model accuracy and fairness from a modelling

perspective, with an example given on gender-based assumptions and their potential

impact on loan applications and model bias. For transparency, there is a drive to ensure

the outputs of models are explainable to ensure that users are able to understand how

decisions made by ML- or AI-based systems are formulated [154]. This is a very active

area of research in deep learning as there is a need to explain how ’black box’ mod-

els derive their outputs, such as in sentiment analysis in natural language processing

systems [155,156]. Privacy principles are focused on the security and protection of sen-

sitive data, which can be important when training ML tools which may require access

to sensitive data from unrelated providers. This is being addressed through modelling

methodologies such as federated learning which allow participants to provide training

data to a global model while data is kept locally and separate [157]. This methodol-

ogy can be applied across all types of service providers where there are data silos that

cannot be openly aggregated and shared; from healthcare institutes, online shopping

recommendation systems or for the development of urban and transport planning in

smart cities [158]. The final two themes are accountability and human-agency which

describe how we govern AI and take responsibility for utilising their outputs in our deci-

sion making processes. These principles rely on a human’s ability to effectively engage,

oversee and interface with AI technologies, perhaps through human-in-the-loop [159],

and for there to be consistent auditing of utilised technologies [160].

2.3.3 Robustness and transparency tools

‘Trustworthiness’ tools are available for most stages in the data analysis pipeline,

which can most generally be described as pre-model (data preparation or collection

stage), model, and post-model stages (performance metrics, model decisions and out-

puts) shown in Figure 2.9. Due to the relevance of robustness and to some extent

explainability principles to this work, this will be further focused on. In the pre-model
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Figure 2.9: Examples of robustness tools and evaluation techniques in the pre-model,
model and post-model stages.

stage, open source toolboxes exist to assess incoming data for any domain shift or

model weaknesses to certain types or values of inputs. For example, GreatExpecta-

tions13 is a toolbox which specialises in ensuring if the input data is of the required

form and quality before it is passed further through the data pipeline. Evidently14 is

a toolbox for pre-model and model stage which is designed to provide sentiment and

toxicity monitoring for large language models; data quality evaluations through tests

for missing data, data correlations and new categories in the data; data drift which

implies changing data distributions; and traditional model evaluation with automated

testing and reporting for model development. Other toolboxes, such as Alibi Detect15,

AdvBox16 and Adversarial Robustness Toolbox17 are designed to generate, detect and

improve protection from adversarial examples, which can be used maliciously to attack

13GreatExpectations, GX OSS, https://github.com/great-expectations/great_expectations
14Evidently, https://github.com/evidentlyai/evidently
15Alibi Detect, https://github.com/SeldonIO/alibi-detect#adversarial-detection
16AdvBox, https://github.com/advboxes/AdvBox
17Adversarial Robustness Toolbox, https://adversarial-robustness-toolbox.org/
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ML and AI models to produce incorrect outputs. This can be particularly serious where

ML or AI tools are used within control loops which can cause purposeful equipment

malfunction and risk personnel safety [161].

At the model stage, there are several options to improve robustness which ties with

uncertainty quantification. Capturing uncertainty in ML outputs provides a level of

risk to that output, which can alert developers to model deficits and allow ML users

more flexibility in how much to trust given outputs. Uncertainty is often characterised

into two broad categories, Type A (aleatoric) [162] where the uncertainties are driven

by randomness, or Type B (epistemic) [163] where the uncertainties are driven by lack

of knowledge and so can feasibly be driven down through improved understanding or

measurement [164]. Examples of this in a data acquisition system could be sensor noise

(aleatoric), where further measurement can reduce the uncertainty to a certain extent

by averaging out random effects, versus increased fault observations (epistemic) where

more examples would provide a ML model with more characteristic information [165].

Ensembles involve training a collection of models on different data subsets [166] or

different model types [167] (or model hyper parameter initialisations [168]) to create

a prediction distribution to capture the uncertainty in the output. In such cases, the

individual models tend not to be able to attribute uncertainty to outputs on their own

(hence the use of the ensemble method). For models such as Gaussian Processes [169],

Bayesian modelling [170] and copulas [127], uncertainty quantification is an inherent

feature. The models are able to propagate uncertainty and create uncertainty bounds

on predictions which are intuitive, for example, the models are more confident close

to observed data points and less confident further from these points [117]. Lastly, for

monitoring models ’post-hoc’, there are a variety of explainability and monitoring tools

available, such as Dalex18, SHAP19 and Efemarai20 which provide methods to maintain

and update deployed models, test for edge cases and domain coverage to understand

model robustness, and explain model outputs through perturbation tests.

18Dalex, https://dalex.drwhy.ai/
19SHAP, https://shap.readthedocs.io/en/latest/index.html
20Efemarai Continuum, https://www.efemarai.com/
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2.4 Implications for trustworthy analytics for condition

monitoring in nuclear plants

Coolant pumps, steam generators, reactor buildings and sensing systems are a few com-

ponents within core sub-systems in a nuclear plant that require maintenance interven-

tion to ensure reliability of the full plant. Condition monitoring of these assets within

a PHM or SHM maintenance framework supports high performance of sub-systems

while maintaining personnel and asset safety. Understanding the health condition of

key assets in the plant allows for further lifetime extension of the plant so that current

stations may continue production. Understanding the degredation modes of monitored

assets allows for more flexible and dynamic maintenance scheduling which is a more

affordable alternative to reactive strategies which require failures to occur before action

is taken. Predictive maintenance supports better financial management in nuclear plant

operation and maintenance budgeting, but only if the fault prediction or diagnosis tools

are proven to be reliable. Prognostic tools rely on data from sensor systems which are

faced with a number of barriers in the nuclear industry. The harsh environments some

sensors are exposed to, such as high temperatures or radiation, can degrade the per-

formance and quality of the collected data. The costs involved with retrofitting these

systems into legacy plants and their upkeep or replacement can also be prohibitive.

Fault diagnosis or diagnostics tools incorporated into maintenance planning and risk

management must adhere to strict regulations to ensure traceability and accountability

can be taken for decisions incorporating suggestions from these tools. All of these barri-

ers make the adoption of prognostic tools slow in the nuclear sector compared to other,

less restricted industries. To ensure adopted tools have high reliability and can adhere

to risk management requirements, trustworthiness principles can be adopted. Adopt-

ing modelling practices with inherent uncertainty quantification or transparency can

ensure users of the tools can justify the model outputs with an appropriate confidence

attached. Model calibration, hybrid models or hierarchical modelling structures can

build on the strengths of individual models to improve the robustness of the prognostic

tool. Additionally, understanding sources of uncertainty from the sensor system which
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contribute data to these models can alert to data quality issues which may impact the

performance of prognostic tools. The use of ‘trustworthy’ fault diagnostic or prognostic

tools can ease their integration into the nuclear sector.
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Chapter 3

Uncertainty in design:

Transferring quantified

uncertainty in data pipeline

design to new systems

3.1 Explainable, transferable data pipeline design for im-

proved analytics performance and fleet-wide monitor-

ing

Most often, asset maintenance is conducted reactively, where-by corrective maintenance

is conducted once a failure has occurred [171]. In power plants, an unexpected out-

age of an asset can be expensive due to lost revenue from interrupted generation with

downtimes being potentially lengthened by the requirement to: retrospectively identify

the root of the fault, source required components and perform the maintenance action.

With many nuclear power plants (NPP) coming to the end of their designed lifetime,

many operators are utilising condition monitoring (CM) and condition based mainte-

nance (CBM) techniques to justify and manage NPP lifetime extensions and to avoid

unplanned outages [23]. This requires aging assets to be closely monitored to estimate
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asset health and ensure extension plans are affordable.

A common asset in power plants are rotating plant (e.g. motors, turbines, centrifu-

gal pumps, fans), which are prone to bearing failure [172]. These could be turbine or

motor driven pumps which form part of a larger generation or cooling system. Despite

being relatively simple components, bearings are largely responsible for the reliable

operation of rotating plant by supporting huge loads to reduce friction on downstream

components [173]. As such, if bearing faults are left untreated, damage could propa-

gate through the drivetrain and create wider system complications in more expensive

components, such as the gear box [174]. Cascading failures would lead to expensive

and lengthy maintenance intervention which would cause disruption to plant generation

and incur additional regulatory reporting overhead.

CBM and data based analytics can be used to estimate the RUL of rotating plant

bearings which, if effective, can provide sufficient warning of an impending failure,

with diagnostic tools providing an indication of the type of failure developing. An

operator can incorporate this into their resource scheduling and budgeting actions to

ensure the asset is taken offline and serviced while minimising disruption to plant

operation. However, developing and applying this approach requires access to data.

Systems within NPP’s were designed before modern digital sensing and monitoring

techniques were available and capable of operating within the hostile environments

they may be installed in, which is an additional consideration that can impact upon the

associated data acquisition components. This can result in operators making decisions

on unhealthy or unstructured data collected from NPP’s which are not ideally designed

for modern sensing systems, adding additional uncertainty to maintenance plans or

processes.

Sources of uncertainty can impact the data acquisition pipeline at every stage,

including: the choice of sensor type and placement; the chosen sampling rate; data

pre-processing steps to present the data in a specific format; and, the metric(s) used

by the analytics to convey information to an operator. Design choices at each of these

stages offer a trade off, which will incur uncertainty in the output of the pipeline at each

stage and can be compounded by the interaction between upstream and downstream
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pipeline stages. In addition to this, data based analytics generally do not attribute a

measure of confidence in their output, making it difficult to determine if the analytics

are performing poorly in a sub-optimal pipeline. This makes ML outputs difficult to

trust for inclusion in risk and cost assessments. They also do not provide the operator

with relevant information that could allow future improvements to the pipeline to be

made.

One method to quantify and account for operational uncertainty is calibrated hy-

brid models, employing physics, knowledge or data driven methods to improve model

accuracy and robustness. Hybrid models allow known physical relations to offset full

reliance on potentially untrustworthy data, whilst reducing the need for an abundance

of representative historical data to reliably identify the monitored asset’s underlying

behavioural trends. Calibration of the model then ensures the model is updated and

representative of the real monitored asset by accounting for differences between the

physics or knowledge model and CM data.

In Section 3.4, an open-source bearing knowledge informed machine learning (ML)

model and CM datasets are utilized in an illustrative bearing prognostic application.

The uncertainty incurred by the decisions made at key stages in the development of

the model’s data acquisition and processing pipeline is assessed and demonstrated by

the resultant impact on RUL prediction performance. It is shown that design decisions

could result in multiple valid pipeline designs which generated different predicted RUL

trajectories, increasing the uncertainty in the model output.

This analysis is extended in Section 3.5, to the explanation of how the design im-

pacts analytics, allowing an operator to make comparative and informed decisions on

the selection of pipeline features. To achieve this, a SHAP-based human-readable ex-

plainable AI (XAI) framework was used to rank and explain the impact of each choice

in a data pipeline on the analytics, allowing the decoupling of positive and negative

performance drivers. The explanations of a fully-observed asset facilitate the success-

ful selection of highly-performing pipelines. In Section 3.6 this operational insight is

then leveraged to utilise knowledge gained from the fully-observed data pipeline to a

similar, under-observed case. The transfer of uncertainties can provide insight into
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uncertainty drivers across a fleet of similar assets without repeating the computational

or cost overhead of fully redesigning the pipeline for the new systems. This empirical

approach presented across Section 3.5 and Section 3.6 is demonstrated on bearing fault

classification case studies, using well-understood open-source data.

3.1.1 Contribution and novelty

This chapter is covered by two publications. The first case study investigating the

impact of pipeline design on hybrid model performance was published and presented

at PHM Society European Conference 2022 [12]. The second case study is published

in Data-Centric Engineering [13].

The contribution of the first part of this chapter is not the creation of a novel

RUL technique, but to demonstrate and quantify the confidence associated with the

application of existing hybrid RUL approaches with the associated data acquisition

pipeline decisions. Confidence can be undermined by these choices, which impact the

performance of the underpinning model and can reduce the operators trust in the whole

decision support system. Without sufficient trust, especially in the heavily regulated

nuclear engineering environment, decision support tools will not be utilised to support

maintenance scheduling activities. As such, the methodology presented in Case Study

1 is concerned with investigating the uncertainty in analytic design and deployment

by capturing the sources of uncertainty and demonstrating how these impact on an

uncertainty budget for the whole data to decision pipeline rather than just the output

of the ML model. The uncertainty in the model performance due to the whole pipeline

design is captured by analysing the quantiles of the model outputs under different

data acquisition pipeline designs. To evaluate data pipeline uncertainty, evidence is

presented from open-source, curated test rig datasets (to reduce the impact of excessive

operational noise).

The motivation for the second part of this Chapter in Case Study 2A and 2B is to

demonstrate how the uncertainty associated with data pipeline design choices can be

identified, quantified (in terms of the choice’s contribution to analytic performance) and

leveraged as transferable knowledge when designing pipelines for similar engineering
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applications.

This contribution can be summarised in three ways:

• Demonstrating how the uncertainty from the imposed pipeline design constraints

can compound to create improved or deteriorated performance in fault diagnostic

systems.

• Identifying highly or under-performing system design options using a human-

readable XAI framework, leading to better or worse system performance, respec-

tively.

• Identification of uncertainty sources learned from a fully-observed pipeline sys-

tem design (source) to an unseen pipeline (target). This allows insight into the

target system’s pipeline without the computational overhead of fully observing

all possible pipelines or fully re-designing the new pipeline.

The first case study lays the groundwork for the first contribution, while the second

case study addresses all three.

3.2 Literature: Bearing prognostics, explainability tools

and transfer learning

The literature review covers research trends in bearing prognostics applications, which

are the key engineering problem covered by both case studies. This is followed by a

discussion on explainable AI which forms a central part of how the impact of the pipeline

design impacts the model outputs in Case Study 2; and finally, transfer learning which

is how the information gained in Case Study 2A is leveraged to another, under-observed

system in Case Study 2B.

3.2.1 Fault classification and Remaining Useful Life prognostics for

bearings

Bearings are subject to high stress operating conditions which makes failures common.

These can manifest due to overloading, imbalanced loading, or lubrication issues due
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to insufficient lubrication, contamination or sealing failures. Bearings are mechanical

faults and mechanical failures are most commonly monitored via vibration monitoring,

although have been approached using temperature, oil analysis and accoustic emission

approaches [175]. Vibration monitoring, while subjected to the robustness and cost of

the sensor system, allows changes in bearing health to be observed immediately and

has been proven as a reliable method for bearing fault prognosis. Temperature based

schemes are most useful for end of life where the fault has progressed significantly, oil

analysis methods require the bearings to have a dedicated supply system and acoustic

emission requires access to high quality measurements [173].

3.2.2 Explainable AI

Explainable AI (XAI) tools are being adopted into industrial fault diagnosis systems

as a way of improving the transparency of ML outputs for maintenance applications

[176]. XAI tools can be integrated into a ML model pipeline at several stages, and

used to provide different levels of explanations. Tools such as principal component

analysis (PCA) and t-distributed stochastic neighbor embedding, can be applied pre-

model where they provide insight into the structure of the collected data before any

model is selected for training [177], but inherently cannot explain how a chosen model

generates predictions from said data. Gaining interpretability during the model stage

can be achieved by using inherently transparent models where the underlying decision

processes are well understood, as with linear regression, generalized additive models or

decision trees [178], however this limits the selection of models which can be utilised.

The most flexible approach is applying ’post-hoc’ techniques where the decision

making process for a trained model is explained after training and producing pre-

dictions. This includes techniques such as gradient-based methods (such as saliency

maps [179] which can visually convey what the model has identified as the most im-

portant aspects of image-based input data), surrogate modelling (such as in [180],

where an inherently transparent model is used to approximate the behaviour of the

model of interest) or pertubation-based methods (such as Shapley Additive exPlana-

tions (SHAP) [181]). SHAP is based on Shapley values [182], a coalition game theory
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method, which computes the contribution of model input features to the obtained out-

put to provide insight into the importance of each feature. This importance can be

provided on a local or global scale, where global explanations provide an overview of

the models learned relationship between all input variable instances and resulting out-

put predictions, and local explanations provide insight into the contributions of one

observation or region in the model space [177].

Due to its flexibility in explanation levels and robust theoretical grounding, SHAP

is becoming an increasingly popular and widely adopted XAI approach [183]. SHAP

is used in [184], where a human-readable XAI framework utilises SHAP to explain

the outputs of 3 regression models predicting: power output in a combined cycle gas

plant; gearbox vibration; and, bearing wear in feed-water pumps. The human-readable

outputs are generated through encoding text explanations of SHAP outputs to aid non-

ML experts in engaging with their predictive tools in a more intuitive manner. In [176]

SHAP is used then compared with Local Depth-based Feature Importance for Isolation

Forest (Local-DIFFI) to explain feature importance of machine learning based fault

diagnosis of rotating machinary. More generally [185] investigates the application of

XAI techniques when using deep neural nets in predictive maintenance within the field

of aerospace integrated vehicle health management.

The literature has a general consensus that XAI techniques can contribute towards

establishing trust in automated machine learning processes. However, the literature

also denotes limitations in state-of-the-art XAI techniques related to the complexity

and human biases inherent in the XAI models themselves, in addition to XAI end-

users’ ability to understand the explanations provided. However, these limitations are

not the focus of this work, where SHAP, due to its robust theoretical foundation, is

used to explain the outputs of a decision tree trained to identify which features (pipeline

design options) lead to the success or failure of fault detection and diagnostic systems,

as measured through the model classification error.
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3.2.3 Transfer Learning

Industrial fault diagnosis has evolved through several stages. Initially, fault diagnosis

relied entirely on expert knowledge until data collection and processing became more

widely available. Access to historical, labelled data allowed the development and re-

sultant popularity of Machine Learning-based, and then Deep Learning-based (DL)

approaches as Big Data became possible. Both ML and DL approaches are heavily

impacted by the availability of data and labels, and incur high computational over-

heads when retraining on new datasets, pushing the need for transfer learning (TL).

Transfer learning can allow available data or pre-trained models to be adapted to a

new compatible task or application [186].

The lack of sufficient labelled data is a common problem in supervised learning.

However, the utilisation of knowledge gained from available (source domain) data can

often improve model performance in a situation where the new application (target

domain) may lack sufficient labelled data [187]. TL can be categorized in many ways:

from considering this lack of sufficient labelled data to also considering the similarities

between data domain or modelling tasks [188]. TL is usually defined by three high-

level categories: inductive; transductive; and, unsupervised, with some authors [188]

including a fourth to consider negative transfer. Inductive TL covers scenarios where

a degree of labelling is available in both domains or where tasks and data modalities

are the same. Transductive TL is where labelled data is only available from the source

domain or where the tasks are different but relevant to each other. Unsupervised TL

is where there is no labelled data from either domains or the domains and tasks are

different. Lastly, negative transfer considers when the transfer of knowledge hinders the

performance of the model in the target domain. TL can be further broken down into

the types of learning conducted and whether the transfer of knowledge focuses solely

on data [187], such as learning on instances. Learning on instances applies where there

is access to a small sample of labelled data in the target domain, with relevant data

able to be adapted from the source domain [188], i.e. is a sub-category of inductive TL.

Additionally, further sub-categorises for TL can be based upon data heterogeneity [189].

Finally, in [190], a different approach to categorisation is presented where four industrial
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transfer learning concepts are proposed, which focus on the description of the intended

application instead of the technique used to conduct the transfer.

As this work focuses on the industrial engineering application of transfer learning,

the concept of “cross-entity” transfer learning (from [190]) will be adopted. Cross-entity

transfer specifically focuses on the scenario where knowledge is transferred between two

similar assets, with similar functionality and faults. Inductive TL relates to this concept

as labelled data is available for both source and target assets/domain. However, the

labelled data in question varies in terms of different data quantity and data diversity.

Other works which combine TL and uncertainty quantification mainly focus on the

uncertainty of available data or model predictions. In [191] the authors use the vari-

ance in the outputs of an ensemble of pre-trained, re-weighted convolutional neural

networks to calculate epistemic uncertainty in the diagnosis of COVID-19 from med-

ical images. In [192], the authors use uncertainty quantification to identify the most

uncertain samples in available industrial elevator usage data while transferring their

hybrid digital twin and Neural Network architecture to new elevator usage scenarios.

However, in [193], the meta data for simulations used to characterise the design of

a previous crash box is used to predict the behaviour of a new, similar, early stage

design with limited simulations. The TL in [193] was designed to permit further un-

certainty quantification in new designs, but does not perform this analysis or explore

how potential designs may be compared.

3.3 Data pipeline stages and uncertainty sources

In this section, the considerations and selection of pipeline stages are discussed. This

process is situation dependant, but some examples and justifications for those choices

are presented. The methodology used to generate pipeline designs is presented, which

creates a new data set which can be analysed in various ways, as presented in the later

case studies.
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Figure 3.1: Illustration of the major stages and flow of data in a simplified industrial
data acquisition pipeline. (Domain expertise sections are shown in boxes with dashed
lines.)

3.3.1 Uncertainty quantification in data pipelines

Uncertainty is often characterised into two broad categories, Type A (aleatoric) where

the uncertainties are driven by randomness, or Type B (epistemic) where the uncer-

tainties are driven by lack of knowledge and so can feasibly be driven down through

improved understanding or measurement [162–164]. Examples of this in a data acqui-

sition system could be sensor noise (aleatoric), where further measurement can reduce

the uncertainty to a certain extent by averaging out random effects, versus increased

fault observations (epistemic) where more examples would provide a ML model with

more characteristic information [165]. The general components of the data pipeline in

industrial process condition monitoring, shown in Figure 3.1, are the sensor systems,

data communications channels, data processing and storage, data analytics and decision

metrics. At each of these stages, uncertainty sources impact the quality of the derived

information. Quality issues can arise from sensor calibration issues [194], the method

and standards for the data communication channels [195] and possible problems due

to data storage and bandwidth limitations [196], all of which increase uncertainty con-

tributions associated with the data. These uncertainty contributions often cannot be

accurately corrected for, resulting in a change in the confidence interval on the final out-

put [197]. Additionally, many ML models cannot attribute a confidence margin to an
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output decision which makes risk and cost assessments involving the output of machine

learning models problematic [198]. This inability to quantify prediction confidence re-

sults in either a lack of adoption of machine learning techniques or poorly-informed

decisions being made due to the poor quality of the data sources.

Many legacy industrial process plants (such as power plants), even when retrofitted

with modern digital data collection and acquisition systems, are likely to have sub-

optimal data pipelines which limits the information available for diagnostic and fault

detection systems. Hence, the automated design of data pipelines for machine learn-

ing applications in data science spaces is an active area of study [199–201]. This has

arisen due to the increasing popularity and desire for ’off the shelf’ machine learning

techniques. [199] proposes ’Auto-sklearn’ and improves on automated pipeline design

by taking account of historical performance and constructing ensembles evaluated dur-

ing Bayesian optimisation. [200] builds on ADMM (Alternating Direction Method of

Multipliers) optimisation by decomposing the pipeline optimisation problem into eas-

ier sub-problems and incorporating constraints on the objective, results in performance

improvements. [201] introduces a new greedy design protocol to gather information

about a new pipeline dataset efficiently and proposes ’TensorOboe’, which uses low

rank tensor decomposition as a surrogate for efficient pipeline search. However, these

state-of-the-art techniques still require calibration, albeit with less expert intervention.

Additionally, these techniques tend to focus solely on delivering the ’best’ performing

pipeline within a given search space but do not provide the developer with an under-

standing of why the proposed pipelines should be accepted or rejected. An associated

explanation of the interactions between engineering sub-systems and how they drive

the performance of the overall system is also lacking. The work in this Chapter aims

to provide insight into these elements of pipeline design.

To improve the trustworthiness of a data-driven ML system, it is desirable to reduce

uncertainty during the data pipeline design phase, as design changes are easiest at this

time. During the initial stages of the pipeline design, a developer will be presented

with many design choices, each incurring a different performance trade-off. Firstly,

inter-stage pipeline uncertainties may compound and propagate to mislead the analytic
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in unforeseen ways, preventing a developer from initially identifying under performing

choices. Additionally, pipeline design choices may be constrained by the desired system

functionality (consider the purpose of a fault diagnostic rather than a fault detection

system), and some sources of data may degrade the performance (e.g. due to poor sensor

positioning or calibration). Rapid design or automation of design for analytic pipelines

can assist in presenting a developer with explanations for the uncertainty sources in

possible designs, to help them identify important drivers of system performance. This

can identify areas to focus investment to reduce the overall uncertainty, and so risk, in

the system. A flowchart of the full approach proposed in this work to support pipeline

design is shown later in Figure 3.9, and will be described in subsequent sections.

3.3.2 Identifying key pipeline stages and design options

As identified in [202], the discretisation of a pipeline into stages may be dictated by

project, budget or domain expertise of the contributing engineers. Considering the

industrial data acquisition pipeline in Figure 3.1 as the basis for a fault detection or

diagnosis system, there are several key stages along with the consequences of the result-

ing design trade-offs. Some stages may be less important or less flexible, necessitating

effort to be directed at elevating performance in other stages. Some options to consider

are:

Sensors and Process Variable Measurements

This stage is primarily concerned with the fidelity of instrumentation/sensing coverage

on the asset and how the associated physical phenomena are measured, taking into

account the cost of installing and maintaining the measurement system. For example,

a rotating plant asset may be monitored by vibration, temperature, current, oil or

acoustic sensors [173], all of which provide different levels of insight into faults of

interest. Additional sensing points may provide more information about a developing

fault across different axes or, without suitable access to the fault location, may fail to

detect meaningful information allowing faults to develop unnoticed, but this may come

at an additional cost.
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Data collection

This stage covers the trade-off between the running and upfront cost of the sensors

against the resolution and sampling rate of the data acquired [195]. A high precision

sensor or high sampling rate may allow fault behaviour to be observed in great detail,

potentially allowing early fault detection, but will result in the collection of a large

amount of non-fault data which must also be handled/stored.

Data transmission

This stage covers the amount of data that can be reliably transmitted by the chosen

data transmission system against the cost of increased bandwidth [196]. Even if the

measurement system is capable of generating high frequency, high fidelity measure-

ments, the data transmission system may not be able to transmit this with sufficient

speed or quality to a centralised storage location. The amount of data that can be

transmitted as input to the data pre-processing stage may influence the analytic fur-

ther downstream by capturing insufficient asset behaviour to perform reliable analysis.

However, transmitting too much data associated with relevant asset behaviour may be

averaged out by the pre-processing stage, obscuring the fault from the analytic.

Data processing and storage

This stage is mainly concerned with the trade-off between the computational cost of

processing and storing data against the quantity and type of useful information pre-

served within the data [196]. This can include the format the data will be presented to

the analytic stage, such as a time series signal being translated to time, time-frequency

or frequency domain. Also, the trade-off between the amount of preserved informa-

tion against the dimensionality of the data during dimensionality reduction procedures

should be considered. The data may be amalgamated for long term storage to reduce

the time resolution of measurements while keeping the storage requirements low. Fur-

thermore, some data resolution or meta data concerning the data that was collected

may be lost during conversion to a designated storage format, impacting its usefulness

and trustworthiness. In [203], the high sampling rate time series data used to capture
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electrical faults actually carried it’s predictive value in the proportion of energy in fre-

quency domain subsets at relatively low resolution. In this instance, this stage of the

pipeline would have featured sharply characterised uncertainty across the choices of

pre-processing.

Analytics

This stage covers the trade-off between more informative model tasks (such as detailed

fault diagnosis) and model family bias against the required model accuracy, model

complexity and computational limitations [204]. Different model families identify re-

lationships within provided data by different means, all of which incur specific biases

that may only be suitable for limited applications. The computational requirements

for model hyperparameter tuning differs depending on the amount of data available

and type of model used. A developer may require the model choice to be transparent

to allow the decisions made by the model to be explainable. Additionally, the model

task can deteriorate the model performance through different ways. Some faults may

be more difficult to identify or separate from others, and the labels used to group data

may cause dissimilar samples to be grouped which can also deteriorate model perfor-

mance. However, access to more descriptive fault warnings can provide an operator

with more useful information to inform maintenance activities.

Decision metrics

The most informative decision metrics are generally application specific and their se-

lection usually driven by the cost of different types of model failure. False alarms can

cause healthy equipment to be taken offline to perform unnecessary maintenance, while

missed faults can cause unexpected outages of equipment. Both reduce trust in the

fault diagnostic system and can eventually result in the model recommendations being

ignored altogether. Metrics like accuracy cover the model’s general performance, but

can fail to represent the model’s skill in identifying different types of failures. The

utilisation of different metrics for model selection can lead to different models being

favoured, or even unacceptable models being selected if the validation requirements are
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not carefully considered [12].

Domain interpretation

The outputs of the ML-based system should be compatible with the linguistic terms

and procedures used in the intended application domain to support communication and

build trust with the system [205]. A system that can provide different levels of expla-

nation alongside the ML outputs can give the user more agency in engaging with the

system, better informing their resultant decisions. This could involve providing access

to raw data, generating visualisations or applying XAI tools to enhance explanations

of the ML outputs.

3.3.3 Data pipeline construction

Once the relevant pipeline stages and the choices of interest at each of these stages

have been identified, pipeline designs observing all combinations of each choice are

constructed following Algorithm 1. Note that the stages must be built sequentially in

order of the flow of data to ensure the pipeline is built in the required order (i.e. the

input sensor data must be chosen before the input data can be pre-processed) and for

stages that have a fixed design, the loops in Algorithm 1 will have only one iterative

loop. Lastly, the term Error, E, is the validation metric of choice. Algorithm 1 is an

exhaustive/greedy search and is needed to provide full observation of the system and

the interactions between stages and choices. This permits the prominent and important

relationships and dependencies to be uncovered in the model errors. The design, D,

and the model metric, E, now form a new set of data to perform meta-analysis on.

3.4 Case Study 1: Impact of pipeline design on data-based

and hybrid models

The proposed methodology to assess the uncertainty is presented in the form of a

case study that investigates the impact of decisions made in the data acquisition and

processing pipeline through the resulting uncertainty in the RUL prediction for motor
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Algorithm 1 Pipeline Construction

Variables:
Stage, S(1,N)
Choices, C((1, CS1), (1, CS2), ..., (1, CSN

)) where Cs is a vector of (1,CSs), choices for
stage, s

Error, E(1,Z) where Z =
∏N

i=1

∑CSi
j=1 j

Design, D(1,Z)
procedure BuildPipelines(S,C)

% Construct all design combinations
z = 1
for choice k, 1← CS1 do

for choice m, 1← CS2 do
...
for choice p, 1← CSN

do
% Build pipeline of design Dz

% Get model error, Ez

Dz = (S1(k), S2(m), ..., SN (p))
Ez = f(S1(k), S2(m), ..., SN (p))
z += 1

end for
...

end for
end for
return D,E

end procedure
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bearing prognostics.

3.4.1 Condition Monitoring Datasets

Two open source bearing prognostics datasets are used in this work: NASA IMS [206]

and NASA FEMTO [207]. Both datasets observe run to failure experiments for bearings

with no initial defects. Each data set has visibility of the bearings failures by vertically

and horizontally mounted accelerometers (termed ’x-axis’ and ’y-axis’ respectively),

with limited access to the vertical data for the IMS dataset. Four distinct bearing

failures are observed in the IMS dataset, with two occurring concurrently, while the

FEMTO dataset contains 17 run to failure examples. The IMS failures were accelerated

due to intensive, but in specification, bearing loading conditions, while the FEMTO

dataset was created using the PRONOSTIA test rig which artificially overloaded the

bearings to further accelerate wear.

3.4.2 Existing Hybrid Model

Combining Knowledge- and Data-driven Components

An open source hybrid RUL model consisting of a novel Weibull-based loss function

for Neural Networks (NN) by [115] was chosen as the basis for this study. Utilising a

Weibull distribution to capture domain knowledge from the field of reliability engineer-

ing, the authors create 9 NN loss functions to evaluate the success of their knowledge

informed ML model for bearing prognosis on the IMS and FEMTO datasets. The

knowledge component of the hybrid model is captured by using the data to calibrate

the Weibayes equation [208] shown in equation 3.1. The one parameter Weibayes has

been shown to produce accurate results for a small number of failures (<20) where

the estimated value of shape parameter, β, is representative of the true system be-

haviour [208]. The value of β was fixed at a value of 2 in [115] due to model stability

concerns, and this value being deemed a reasonable shape estimate for ball bearing

failures [208]. The values of η and β are used to calculate the Weibull cumulative dis-

tribution function (CDF) in equation 3.2. The 9 loss functions are shown in figure 3.2

and are incorporated into the model as the loss function to be minimised by the NN in
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Figure 3.2: Loss functions from [115]

the back-propagation step.

η =

[
N∑
i=1

tβi
r

] 1
β

(3.1)

F (t) = 1− e
−( t

η
)
β

(3.2)

Where

• t = time or cycles,

• r = number of failed units,

• N = total number of failures plus currently running units (incomplete failures)

• η = maximum likelihood estimate of the unit characteristic life (63.2 distribution

percentile)

• β = Weibull shape parameter, and
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Dataset Train. Val. Test.

IMS
Run 2 (B 1) Run 1 (B 3) Run 1 (B 4)
Run 3 (B 3)

FEMTO
Bearing1 1 Bearing1 2 Bearing1 3
Bearing2 1 Bearing2 2 Bearing2 3
Bearing3 1 Bearing3 2 Bearing3 3

Table 3.1: Data split between training, validation and testing

Parameter Selection Choice

Batch size 32, 64, 128, 256, 512

Learning rate 0.1, 0.01, 0.001, 0.0001

Lambda Floating point number 0-3

Number of layers Integer between 2 and 7

Number of units per layer 16, 32, 64, 128, 256

Probability of dropout 0.1, 0.2, 0.25, 0.4, 0.5, 0.6

Table 3.2: NN Architecture Hyperparameter Options Table from [115]

• F(t) is the Weibull CDF

RUL Estimation Procedure

The following process was conducted by [115] to generate RUL estimates for both the

IMS and FEMTO datasets. First, the input data from the horizontal sensors was

processed into spectrograms to obtain the frequency representation of the vibration

data. The number of input features was reduced by ’binning’ the spectrogram into 20

bins, where the maximum value of the frequency bands included in each bin is taken

as the value for that bin, repeated for each timestep. The response variable was the

lifetime percentile status of the bearing, with 0 % being healthy bearing at the start

of the experiment, to 100 % signifying the failure of the bearing at the end of the

experiment. The training, validation and testing split of the datasets are shown in

Table 3.1.

The Weibayes equation was calibrated with the training data to be incorporated

into the loss functions. To initialise and optimise the NN architecture, a random

search was conducted to select from the hyper parameters shown in Table 3.2 for each

of the loss functions, which the authors set to 1000 in their study. The coefficient of
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Pipeline Stage Parameter Settings

Dataset IMS or FEMTO dataset

Sensor channel Horizontal or Vertical aligned

Subsampling Lose 1/8, 1/4, 1/2 or no data

Spectrogram Bins 10, 20 or 40 bins

Hyperparam. Opt. Random search of 10, or 100

Model Choice NNs or Linear Regression (LR)

Table 3.3: Summary of pipeline stages and parameters

determination (R2) and Root Mean Squared Error (RMSE) were used to discard models

that performed poorly, with models with a R2 > 0.2 and RMSE < 0.35 progressed to

the testing stage. After testing, the models were filtered again by the R2 and RMSE

bounds before selecting a subset of the top performing models based on the R2 metric.

The authors found that the top performing loss function for the IMS dataset was the

Weibull-RMSLE combined, and the Weibull-MSE combined for the FEMTO dataset,

both containing the knowledge informed loss function.

3.4.3 Pipeline Design Uncertainty

For this sensitivity study, the data acquisition pipeline design was varied, considering

the following stages and settings, also summarised in Table 3.3.

Dataset

The FEMTO and IMS datasets were chosen due to initial bearing states with no faults;

their curated, open source nature; but also their differences in aging methods, timescales

and number of recorded failures. In the IMS dataset, the bearings are operated under

their maximum specified operating condition limits and failed after their design lifetime

(in number of revolutions). This represents scenarios where the bearings are operated

in an unhealthy but within technical specification manner. However, as it took weeks

to months to observe these failures, only 4 failures over 3 runs were observed, severely

limiting the analytic’s scope to learn from a diverse sample of run-to-failure trajecto-

ries. This issue is reversed for the FEMTO dataset, where 17 distinct failures were

observed due to the run-to-failure process taking several hours. However, the condi-
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tions the bearings were operated in would not be practical in an industrial setting as

the operating environment is purposefully designed to damage and wear the bearings

down at an escalated rate. Data pipeline choices at this stage investigate the impact on

the analytics RUL performance due to the amount and nature of the failures observed,

and how the analytics perform on the different methods of accelerated lifetime testing.

Sensor Channel

Both datasets have access to vertically and horizontally aligned vibration sensors (not-

ing limited availability for the IMS dataset). Depending on the nature of the fault,

ML models may be more successful in identifying failure signatures in one axis over

another, leading to more reliable RUL estimates if measurement data is available for

this orientation. However, it is not always feasible or maintainable to retrofit assets

with extensive sensor coverage, meaning the developing failure may not be measured

from the most suitable angle. With no prior knowledge of the bearing failure, data

pipeline choices at this stage investigate the consequences on the RUL estimate of

having limited, and potentially inadequate, sensor coverage of an impending failure.

Data Sampling

In an ideal scenario, condition monitoring would consist of high resolution, continuous

measurement to ensure that as much data is available to the prognostic algorithms

as possible. In practice, this would generate enormous volumes of data that would

be impractical to transmit, process and store, while potentially providing diminishing

returns on the useful information contained in the data streams. Communications

and storage infrastructure is limited in an industrial setting where fleets of assets are

expected to be monitored simultaneously. At this stage of data pipeline uncertainty

assessment, comparisons are made for RUL estimates where 1/8, 1/4, 1/2 and no data

is lost due to these constraints.
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Spectrogram Bin Count

The spectrogram binning process from [115] allows the frequency domain information

from the full spectrogram to be used while condensing this information into a more

manageable number of input features to the ML stage. This forms a trade off between

the amount of information lost in the binning process, and the dimensionality. The

spectrogram bin count is chosen to be 10, 20 (as original author) and 40, to compare

how the RUL is impacted by this trade off.

Hyperparameter Optimisation

NNs are computationally expensive to train, and it may be infeasible to evaluate a

large selection of models in order to optimise the selected hyperparamters. Selecting a

sub-optimal model will impact the quality of the RUL estimate. The original author

runs a parameter search by selecting n combinations of model hyperparameters (table

3.2), then filtering out models with unsatisfactory performance. Computational limi-

tations may make training many models to allow the most optimal hyperparameters

to be chosen an unfeasible action to take. This stage of the pipeline design process

investigates the impact on the RUL estimate when the best 10 models are selected

from a random search of 10 (90 unique models based on 10 random hyperparameter

initialisations for each of the original authors 9 loss functions) and a random search of

100 (900 unique models),

Model Choice

The original author utilises NNs in their study which are black box and computationally

expensive. This can undermine the operators trust in the chosen analytic as outputs

can not be explained by the model, increasing the risk associated with incorporating

model suggestions into decision making processes. Linear Regression (LR) models

reside at the other end of the model complexity spectrum as they are cheap to train

and simple to understand. However, NNs are able to tackle complex data problems with

complicated underlying relationships which cannot be captured by the LR model. In

this stage of the pipeline design process, the chosen models are NNs and LR models to
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compare the RUL prediction between computationally expensive, sophisticated models

and interpretable, computationally inexpensive models.

Evaluating Uncertainty

To evaluate the effect of uncertainty in data pipeline design based upon the design

choices described in Section 3.4.3, the original data for each dataset was processed to

remove every 8th, 4th or 2nd data point for every datafile in the dataset and resaved;

and this process was repeated for each sensor channel. This ensured all combina-

tions of dataset, data sampling and sensor channel were available to train the models.

Each model type was trained on all combinations of dataset, data sampling and sensor

channel, with the data preprocessed for each selected bin count. For each of these com-

binations, the NN model hyperparameters were chosen with a random search of 10 or

100, with the model and metrics saved for later processing. The metrics chosen to val-

idate the models were R2, mean squared error (MSE), RMSE, mean squared log error

(MSLE), root mean squared log error (RMSLE), in line with those chosen by [115]. The

conditions for successful models to be progressed to the testing stage were a training

(and for NN models, validation) performance of R2 > 0.2 and RMSE < 0.35, which

was applied again after the testing stage to shortlist the top models. To obtain the

quantiles, the testing data was run through each of the top models to obtain their RUL

predictions, where the 5 %, 25 %, mean, 75 % and 95 % percentiles were calculated for

each timestep. The choice of testing data was Run 1, Bearing 4 for IMS and Bearing 1 3

for FEMTO, as the original authors method performed well on these and was decided

to be a good point of comparison. This process generated results for all combinations

of the 2 datasets, 2 sensor channels, 4 data sampling regimes, 3 spectrogram bin counts,

2 hyperparameter optimisation searches and 2 model choices, resulting in 192 distinct

pipeline designs. For each pipeline, the maximum number of models to analyse is the

top 10 NNs and a LR model, however not all combinations produced this amount of

models that successfully passed the metric bounding criteria.
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Figure 3.3: IMS Run 1, Bearing 4 Test Results from [115]: R2 = 0.735, RMSE = 0.146

3.4.4 Case Study 1: Results

As mentioned in section 3.4.3, the case for comparison between [115] and this work was

Run 1, Bearing 4 testing data from IMS and Bearing 1 3 testing data for FEMTO.

IMS Results

The RUL prediction shown in Figure 3.3

shows [115] results for their best performing model on the IMS dataset. This NN

model has a Weibull-RMSE Combined loss function, 4 layers with 32 units per layer, 0 %

dropout probability, lambda of 0.53, Weibull shape parameter (β) of 2 and characteristic

lifetime (η) of 63.9 days. In Figure 3.3, the bearing lifetime extends from 0 % to 100

%, where the jumps are due to the gaps in data collection from the original IMS

experiment. The NN predictions are smoothed using a 2 hour rolling average to more

clearly demonstrate the trends in the prediction. As shown, the model fits this data

well, with a low RMSE score of 0.146, and a high R2 score of 0.735.

Figure 3.4 shows the quantiles and mean RUL estimate from the top NN models

across all IMS pipelines which met the training and validation metric bounding criteria.

The quantiles are calculated on the models performance on Run 1 Bearing 4 testing
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Figure 3.4: IMS Run 1, Bearing 4 Test Result Uncertainty (NN Model): R2 = 0.355,
RMSE = 0.228

data from the IMS dataset and the mean of these predictions result in a R2 of 0.355

and RMSE of 0.228. From approximately 50 % bearing lifetime the quantiles bound

the actual lifetime percentage until failure, with the mean fitting the true lifetime

percentage well from 60 % lifetime onwards. As shown, the models do not predict

early-mid life with any success, which may mislead an operator incorporating the model

into a maintenance decision as the model cannot distinguish between any states <

50% lifetime. Some of this deviation may be explained by the large jumps in lifetime

% within the first 10 days of the experiment, compared to the much smoother data

collection from day 15 to failure, regardless, this still undermines confidence in the

predictions.

The results for the IMS LR models are shown in Figure 3.5. While the quan-

tiles bound the true lifetime from experiment start to end, the lack of incorporated

knowledge allows the models to expand to many multiples of bearing lifetime and into

negative values. This results in a mean R2 score of -0.223 and RMSE of 0.314, despite
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Figure 3.5: IMS Run 1, Bearing 4 Test Result Uncertainty (LR Model): R2 = -0.223,
RMSE = 0.314

all of the models successfully meeting the R2 and RMSE bounds in the training stage.

Additionally, the RMSE for the testing results is still within [115] 0.35 boundary while

producing unreliable predictions, suggesting other forms of validation are required in

tandem to discount unsuitable models. This demonstrates that applying regression

models that minimise computational cost or maximise interpretability cannot always

perform the required task, and further demonstrates the need for hybrid modelling

approaches to incorporate known behaviour.

The pipeline design parameter summary is shown in Table 3.4 which shows the

breakdown of pipeline stage parameter counts in the final model selection. The maxi-

mum number of models is the top 10 NNs from the 46 IMS NN pipelines, and single LR

model for each of the 46 IMS LR pipelines if all of these models trained successfully.

This results in an acceptance rate of 79.8 % for the NNs (367 out of potential 460

models were successful) and only 39.1 % for the LR (18 out of potential 46 models were

successful), demonstrating that the NN is more likely to be successful at this prognostic
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Pipeline Stage Value NN LR

Max
Models

NN - 460 367 -
LR - 46 - 18

Sensor
Horizontal 214 9
Vertical 153 9

Sampling

Normal 101 4
- 1/8 95 4
- 1/4 86 4
- 1/2 85 6

Spec.Bins
10 126 2
20 127 8
40 114 8

HyperParam
Search

10 137 -
100 230 -

Table 3.4: Summary of IMS pipeline settings for LR and NN models (by successful
model counts)

task. For the 18 successful LR models, the sensor alignment choices are split evenly,

implying the sensor orientation neither hindered nor helped the models performance,

while the NNs tended to favour the horizontal channel as chosen by [115]. Interestingly,

for the sampling regime the LR models favoured learning from the least data and fared

equally amongst the other options. The NNs were also fairly evenly spread amongst the

sampling options, favouring the maximum amount of data. The LR models selected

the most condensed spectrogram the least, implying the higher dimensional represen-

tations provided more useful degrees of freedom to the model. Conversely, the NNs

were more evenly spread across the bin options, suggesting all options provided the

NNs with enough information. To summarise, it appears that on the IMS dataset, the

most influential design parameter was the dimensionality of the input data for the LR

models as shown by the aversion to the 10 bin spectrogram, and the time available

to optimise the hyperparameters for the NN as this displayed the largest diversion by

model contribution in favour of larger number of searches.

FEMTO Results

The RUL prediction shown in Figure 3.6 shows [115] results for their best performing

model on the FEMTO dataset, with a Weibull only RMSLE loss function, 2 layers with
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Figure 3.6: FEMTO Bearing 1 3 Test Results from [115]: R2 = 0.788, RMSE = 0.133

32 units per layer, 0.25 % dropout probability, lambda of 2.28, Weibull shape parameter

(β) of 2 and characteristic lifetime (η) of 4.8 hours. The trend of the predictions is

shown by a 2-minute rolling average with straight line from 0 - 100 % demonstrating

the bearing lifetime. This NN fits the data well as shown by the low RMSE of 0.133

and high R2 of 0.788.

The NN FEMTO uncertainty plot is shown in Figure 3.7, which shows the quantiles

bounding the whole bearing lifetime, but does not narrow as much as the IMS results

at end of life. This larger spread in predictions demonstrates the volatility of the

NN predictions on this dataset, as depending on the model, the prediction could be

anywhere between 0 and 60 % at start of life and 50-100 % at end of life. The mean

prediction has R2 of 0.729 and RMSE of 0.15 which suggest the mean has a decent

fit, however, it can be seen that the models tend to overestimate degradation early-

mid life and underestimates mid-end life. If used to inform maintenance schedules,

the start of life predictions could result in actions being taken too early where still

usable components are prematurely replaced. Actions taken based upon the end of life

predictions could be left too late, putting operators at risk of unplanned outages.
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Figure 3.7: FEMTO Bearing 1 3 Test Result Uncertainty (NN Models): R2 = 0.729,
RMSE = 0.150

The fit of the LR models in Figure 3.8 shows consistent estimations early-mid

life, then a huge divergence of multiple lifetimes in positive and negative direction is

observed in the final stages of the bearing life. This may be due to the rapid decay of

the bearings, as the spectrograms show a rapid increase in vibration for some of the

training data in the later stages of the experiment. As the end of life prediction is

arguably the most crucial aspect of prognostics, these LR models could be considered

a risk for any operator to employ in maintenance activities.

In the pipeline design summary in Table 3.5, both the NN and LR models have

relatively even contributions to the 198 successful NN models and 24 LR models from

all settings for the sampling and spectrogram bin options, suggesting these do not have

a great influence on the model performance. This is also true for the sensor align-

ment for the LR models, while for the NN models there is almost entirely self selected

horizontal channel, as in [115]. This suggests that the horizontal sensor provides the

most useful information for the NN model. Additionally, the NN has strong contribu-
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Figure 3.8: FEMTO Bearing 1 3 Test Result Uncertainty (LR Models): R2 = 0.383,
RMSE = 0.227

Pipeline Stage Value NN LR

Max
Models

NN - 460 198 -
LR - 46 - 24

Sensor
Horizontal 197 12
Vertical 1 12

Sampling

Normal 45 6
- 1/8 43 6
- 1/4 55 6
- 1/2 55 6

Spec.Bins
10 69 8
20 63 8
40 66 8

HyperParam
Search

10 77 -
100 121 -

Table 3.5: Summary of FEMTO pipeline settings for LR and NN models (by successful
model counts)
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tion from the larger hyperparameter search with a majority of models being chosen by

the random search of 100. Finally the NN models have an acceptance rate of 43.0 %

while the LR models have an acceptance rate of 52.2 %. Interestingly, while the mean

NN performance produces better results for R2 and RMSE, the LR models are more

consistently performing above the set metric boundaries and being accepted into the

testing stage. Despite their unsuitable design, the choice of metrics and bounds used

to assess these models suggest they should be accepted, again suggesting that models

require more diverse validation to determine their general suitability, or what situations

they may be best suited for. This may also require an appreciation of the similarity of

the training and testing data, as models that succeed at the training stage should be

trusted to succeed in the testing or online monitoring stage.

This sensitivity analysis has demonstrated that the approach taken to data pipeline

definition can have a significant impact on the accuracy of prognostic algorithms, with

evidence for a specific bearing vibration case-study provided. This case-study suggests

that when developing a data pipeline for this purpose valid models can be selected from

a variety of plausible data pipeline configurations while resulting in a diverse range of

learned RUL trajectories.

3.4.5 Case Study 1: Result summary and discussion

Civil nuclear is a safety critical industry which cannot readily deploy data-driven ana-

lytics in decision-making processes without quantification of the uncertainties involved.

Consequently, in this work an analysis of the impact of data acquisition pipeline design

decisions on the performance of an existing hybrid RUL model for bearing prognostics

was conducted. It was shown that the design decisions made at key stages of the data

acquisition pipeline can create a large variance of potential RUL trajectories for both

NN and LR models on both of the bearing run-to-failure datasets utilised in the study.

The models were more sensitive to some design decisions than others, such as the avail-

able number of hyperparameter optimisation searches for the NN or the dimensionality

of the input features for the LR model (on the IMS dataset). The presence of incompat-

ible design decisions was not suggested by the results as many stages produced an equal
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number of successful models across the different design options. This suggests that valid

models could be generated from completely different pipeline designs, which result in

an entirely different learned RUL trajectory. Understanding how the data acquisition

pipeline can impact on hybrid prognostic tools can allow nuclear plant operators to jus-

tify utilising resources towards reducing high uncertainty areas in the pipeline design

to provide more confidence in applying these tools to support maintenance processes.

This is of particular concern in the nuclear industry as ML algorithms applied to ro-

tating plant deployed in nuclear engineering environments experience unique operating

challenges, such as legacy data acquisition systems that have been upgraded over time

without emphasis on the data that will be used for ML purposes.

The models were filtered by a requirement of R2 > 0.2 and RMSE < 0.35 to remove

unsuitable models before progressing to the testing stage, as in [115]. The results

showed that the chosen metrics are not sufficient to definitively identify unsuitable

models and are not descriptive enough to show the operator where model application

should and should not be trusted. Additionally, the chosen training and testing data

may not have been sufficiently comparable for LR type models, as shown by models that

had been deemed acceptable in the training stage performing poorly on IMS testing

data in Figure 3.5.

To further develop this work, more analysis would be conducted on the impact of

metric bias in the model selection process. Models were selected and ranked based on

their R2 and RMSE scores, but a different selection of shortlisted models may have

been generated if different metrics had been used or prioritised. Additionally, if it was

discovered that some models were more accurate for end of life predictions while other

models are more suited for early-mid life, this may not be captured by summary statis-

tics used to qualify the overall model usefulness. Additional methods to describe where

the model is successful is needed to further justify the models use for specific prognostic

stages, which could be aided by the application of explainability tools. Finally, for a

more robust comparison, knowledge would be incorporated into different model types.

This would provide more hybrid combinations to compare against, while investigating

how model bias impacts the RUL prediction.
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3.5 Case Study 2A: Quantifying design uncertainty in data

pipelines

Bearings are prolific in industrial applications, and are a common point of failure in

rotating plant [173]. Accordingly, two well-understood open-source bearing fault test

rig data sets will form the basis of a transfer learning task, with Section 3.5 covering

the creation of the source domain pipelines, their diagnostic process choices and the

subsequent identification of negative and positive performance drivers for this asset.

For the source domain, the publicly available Case Western Reserve (CW) rotating

plant dataset [209] was chosen, which includes a selection of seeded bearing faults

introduced to key locations in a motor. Faults are present in the ball, inner race and

three locations in the outer race at both ends of the motor. The faults are monitored

by vibration sensors present at the motor fan end, drive end and base plate. The

motor operating conditions are varied between 0-3 HP, with data collected at 12 or

48 kHz (down-sampled to 12 kHz for consistency). This dataset has been extensively

utilised to demonstrate machine learning models for engineering applications, and in

this instance acts as a demonstrative baseline to showcase the framework rather than

the classification capability of a particular machine learning model.

To enhance the domain interpretation of the system, a SHAP-based human readable

explanation framework was constructed, as in [184]. This was created to explain how the

design choices in the pipeline relates to the uncertainty, in the form of the classification

error produced by the model in that pipeline. The design of the pipeline is ’one hot

encoded’, where categorical variables with n classes are converted into n separate binary

variables, with a 0 representing an absence of the choice in the design and 1 representing

the inclusion of the choice in the design. A decision tree regressor is fit over all available

data [210] with the encoded pipeline design as predictors and the model error as the

target. As the tree model is used to find relationships between the pipeline stages and

error, all available data is used for training [210].

To aid the understanding of SHAP plots produced by the SHAP-based framework,

human readable explanations are generated to explain the significance and type of influ-
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ence each choice has on the detection or diagnostic system performance. Explanations

provided by the framework elaborate on the choice’s individual impact on the system

error using domain relevant language. In cases where the SHAP tools have identified

the choice as a 100 % positive or negative influence, further information is provided

using the information from the raw pipeline design data. For such cases, the frame-

work allows for local explanations which provide further analysis of anomalous results.

From the human readable explanations, the most impactful positive and negative per-

formance drivers for each pipeline stage can be selected with the aim of producing the

’best’ and ’worst’ performing pipelines to validate the SHAP-informed pipeline config-

urations. To construct a highly performing pipeline, design decisions with a positive

influence and highest impact are selected for each pipeline stage.

The methodology followed throughout Case Study 2 (part A and B) is described in

Figure 3.9. This details the pipeline stage and design choice identification stage; design

construction process; applying the SHAP-based framework to explain the impact of

each design choice; creating improved pipeline designs from provided insights; and

finally, transferring these insights to designs for new systems. Each of these stages will

be discussed in the following sections.

3.5.1 Source domain pipeline design stages and decisions

Six key pipeline stages and their potential design decisions are identified with the choices

at these stages given in Table 3.6. The chosen stages reflect key areas in the pipeline

design for this dataset where a diverse range of decisions are available, and the optimal

solution is not immediately clear. The model choices are chosen similar to [204] due to

the range of classification boundary attribution methods, while the window length of

the vibration data and diagnostic task is decided based on the number of samples and

included fault types. The row ordering in Table 3.6 reflects the ordering of pipeline

stages that was applied in Algorithm 1.
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Figure 3.9: Flowchart of the pipeline design, construction, explanation and transfer to
new systems
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Table 3.6: Summary of pipeline stages, choices and their rankings for source and target
datasets (averaged over 5 runs)

Pipeline
Stage (num.
choices)

Pipeline Choice Rank
(Source
Dataset)

Rank
(Target
Dataset)

Sensor,
(4 (1*))

Fan end only sensor 6.0 + (N-A)
Drive end only sensor* 13.0 + 8.8 +
All sensors 15.4 - (N-A)
Drive end and base plate sensors 24.6 - (N-A)
Fan end and base plate sensors 29.4 + (N-A)
Drive end and fan end sensor 34.4 - (N-A)

Window,
(2)

0.5s window 26.8 + 20.6 +
1 s window 30.4 - 22.0 -

Model
Task, (6
(1*))

Task: Binary (TB) (0, healthy or 1, fault)* 1.0 + 1.0 +
Task: End (TE) (healthy, Fan end or Drive end faults) 3.0 + (N-A)
Task: Location (TL) (healthy, ball, inner race or outer race faults)* 31.0 + 20.4 +
Task: All (TA) (healthy, fan end ball, inner race, outer race or drive end ball, inner
race, outer race faults)

34.6 - (N-A)

Data
Domain,
(3)

Wavelet scattering with principle component analysis (PCA)** 2.0 + 2.0 +
Frequency (Power Spectral Density) with principle component analysis (PCA)** 7.6 - 6.6 -
Timeseries Statistics (mean, median, standard deviation, root mean squared (RMS),
peak, skewness, kurtosis, crest, shape and impulse)

20.8 + 23.4 +

Data
Alloc. (2)

Random Allocation 38.4 - 38.4 -
Prevalence Allocation 38.6 + 38.6 +

Model,
(22)

ESD (Ensemble subspace discriminant model) 4.0 - 4.8 -
GNB (Gaussian Naive Bayes model) 5.0 - 6.0 -
CGSVM (Coarse Gaussian support vector machine) model 7.8 - 10.2 -
CT (Coarse Tree) model 9.0 - 19.0 -
CSVM (Coarse support vector machine) model 10.2 - 17.2 -
FKNN (Fine K-Nearest Neighbours) model 11.2 + 7.2 +
MKNN (Medium K-Nearest Neighbours) model 12.4 + 9.0 +
MGSVM (Medium Gaussian support vector machine) model 15.4 - 22.6 -
KNB (Kernel Naive Bayes) model 15.6 - 26.6 -
CsKNN (Cosine K-Nearest Neighbours) model 16.6 + 12.0 +
WKNN (Weighted K-Nearest Neighbours) model 18.0 + 13.2 +
CbKNN (Cubic K-Nearest Neighbours) model 19.6 + 15.2 +
EBgT (Ensemble Bagged Tree) model 20.6 + 15.8 +
CKNN (Coarse K-Nearest Neighbours) model 22.6 - 23.4 -
LSVM (Linear support vector machine) model 23.4 - 35.0 -
QSVM (Quadratic support vector machine) model 26.2 + 34.0 +
MT (Medium tree) model 27.0 - 33.4 -
FT (fine tree) model 27.6 + 21.2 +
ESKNN (Ensemble subspace K-Nearest Neighbours) model 28.8 + 15.8 +
ERUSBT (Ensemble Random undersampling Boosted Tree) model 31.6 - 23.0 +
EBoT (Ensemble Boosted Tree) model 34.2 - 26.2 +
FGSVM (fine Gaussian support vector machine) model 36.2 - 30.6 -

* Subset of choices used for the target dataset, for all other stages the choices are the same. ** Number of principle
components chosen to explain at least 95% variance.
Choices are marked to indicate if they have an overall (+) positive or (-) negative influence on the system performance.
(N-A) marks choices unavailable to the target dataset.
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Figure 3.10: Probability distribution of classification errors across the source and target
data sets. The source data set consists of 31680 CW pipelines. Many pipelines result in
low, near 0 % errors and the distribution has a heavy tail at higher errors with a peak
around 40 %. The target data set consists of 2640 generated pipelines. Many pipelines
result in low errors, with a heavy tail towards high errors. There is another peak near
30 % error, similar to the source domain

3.5.2 Uncertain pipeline construction, explanation and selecting im-

proved pipeline designs

Classification testing error was collected for all combinations of variable settings for

pipeline design variables, with 5-fold cross-validation for each combination resulting in

31680 total pipelines. Varying the chosen design variable settings resulted in a wide

range of performance output, as shown by the testing error distribution in Figure 3.10.

Two dominant modes are present in the error distribution at ∼ 0 % and ∼ 40 % testing

error, with a heavy tail towards the upper end of the error range, representing setting

combinations which contribute to improved or degraded performance, respectively. The

fitted decision tree regressor model used to identify pipeline to error relations in the

SHAP-based framework resulted in a R2 score of 0.9788, with an ideal value of 1,

showing that the model fit the data well but still incurs some error. To account for

this, the model is retrained 5 times with each trained model being passed through the

human readable XAI framework.

Applying the SHAP tools within the human-readable XAI framework generated

magnitude plots which describe the ranking of design choices based on the magnitude
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of their impact on the bearing fault system error (taken from the trained decision

tree output), and summary plots which show the direction of this impact (i.e. do the

design choices drive the system error up or down). Example figures are included within

Appendix B. The SHAP tools and human readable explanation tools within the human-

readable XAI framework are used to order the design options based on the strength of

their impact on the performance outcome (which could be positive or negative). Each

design choice is ranked 1 to 39 (the total number of choices) for each retrain of the tree,

which is then averaged to give an overall score. The average ranking of all pipeline

choices across all stages for 5 decision tree model runs, shown in Table 3.6.

The high importance and positive influence of ’TB’ (Task: Binary) and ’TE’ (Task:

End) choices mean models are more likely to perform well on the simpler binary (TB)

fault detection case and can differentiate if the faults are present on the drive or fan end

of the motor (TE), suggesting the data is quite easily separable using these groupings.

Generally, the models seem to struggle with the ’All’ (TA) choice, the task containing

the highest diagnostic information and complexity, suggesting that separating the data

based on both motor cross section and end of the motor is difficult for the models to

separate accurately. The K-Nearest Neighbour (KNN) models are the most impor-

tant, positively performing model group, which attribute classification boundaries by

clustering, suggesting this method is the most appropriate for this case study. The

least successful models (ESD, GNB, CGSVM, CT, CSVM) have diverse boundary at-

tribution methods, but tend to be the ’coarse’ equivalent which restricts the amount

of detail that can be captured by the model. This suggests more complex models are

required to adequately capture the fault characteristics. The ’Wavelet’ (time-frequency

domain) method was the most impactful and positive influencing choice for the data

domain stage of the pipeline. This supports standard engineering understanding that

providing models with time and frequency information of a developing fault leads to

the strongest identification of the type of developing fault, instead of using only time

or frequency domain representations [211]. For the sensors, the combinations contain-

ing drive end sensor or baseplate sensor in tandem with other sensors tend to perform

negatively and the most important sensor combinations (fan end only with positive
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Table 3.7: Summary of ’best’ and ’worst’ pipeline choices per stage for source and
target datasets

Pipeline
Stage

CW Dataset Target Dataset (MFPT)
Best Choices Worst Choices Best Choices Worst Choices

Sensor Fan end sensor
only

All sensors Drive end only* Drive end only*

Window 0.5 seconds 1 second 0.5 seconds 1 second
Data Alloca-
tion**

Both (label prev-
elance and Ran-
dom)

Both (label prev-
elance and Ran-
dom)

Both (label prev-
elance and Ran-
dom)

Both (label prev-
elance and Ran-
dom)

Data Domain Wavelet (time-
frequency)

Frequency Wavelet (time-
frequency)

Frequency

Classification
task

Binary (fault de-
tection)

All - specific mo-
tor cross section
location and mo-
tor end

Binary (fault de-
tection)

Motor cross sec-
tion location

Classification
Models

Fine, Medium,
Cosine, Cubic
and Weighted
KNN models

Ensemble Sub-
space Discrimi-
nant, Gaussian
Naive Bayes,
Coarse Gaussian
SVM, Coarse
Tree and Coarse
SVM models

Fine, Medium,
Cosine, Cubic
and Weighted
KNN models

Ensemble Sub-
space Discrimi-
nant, Gaussian
Naive Bayes,
Coarse Gaussian
SVM, Coarse
Tree and Coarse
SVM models

Error 0.057 % (max), 0
% (min)

82.4 % (max),
50.8 % (min)

0 % (max), 0 %
(min)

70 % (max), 0 %
(min)

* There is only one sensor option, so must be selected for both best and worst pipelines. **
The data allocation stage was equally unimportant with a neutral influence on performance
between both datasets, so both options are included for selecting best and worst pipelines.

performance, drive end only with positive performance, all sensors with negative per-

formance) also have the most extreme positive or negative influences which drives up

their impact on the system performance. The fan end sensor may experience less noise

due to being slightly removed from the driving force, which may explain its generally

positive influence on the system performance. Lastly, the least significant contributing

features towards pipeline error were the design choices for the training and testing set

data allocation method stage (Random or Prevalence allocation). Due to the large

supply of fault examples in this curated data set, both methods may ensure a variety

of fault types would be visible to the models to allow for more consistent training.

Designing the best pipeline based upon the human readable explanations from the

SHAP plots identified the top choices as shown in Table 3.7. The original pipeline data
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Figure 3.11: Histogram of classification errors from SHAP recommended ’best’ pipeline
design choices for the source and target domains. All chosen source domain and target
domain pipelines have very low classification error of maximum 0.057 % and 0 % error,
respectively

was filtered using the chosen design choices, and the resulting error histogram for the

top 50 pipeline designs is shown in Figure 3.11 with the maximum error of 0.057 %.

3.6 Case Study 2B: Transferring quantified uncertainty to

another system

3.6.1 Transferring knowledge of design uncertainty to new systems

There is potential for knowledge gained from one system to be transferred to gain

insight into the uncertainty drivers in the design of a similar, less observed system. Fully

observing one system to an extent that provides enough information to meaningfully

compare pipeline designs and the drivers of uncertainty can require significant overhead.

Suitable sensor coverage, fault measurements and computational resources to compute

all design combinations must be provided, which may be possible on a test rig but may

be difficult to translate into a practical environment.

To transfer instances from the target domain to the source domain, there must

be alignment potential between the pipeline classification error between the source

and target domains, and the alignment potential between the pipeline design choices,
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ensuring the design of the pipelines should have the same or fewer design choices. This

can be determined through various metrics or visualisations, as demonstrated later

in this section. Instance transfer is conducted by converting the design of the target

domain pipeline to align with that of the source domain. Having the same or fewer

choices allows the instances from the target domain to align with the source domain,

as design options that are not observed in the source domain cannot be leveraged to

the target domain. This instance transfer will allow the pre-trained tree model in the

SHAP-based framework from the source domain to be applied to any of the target

domain pipelines with consistent encoding of the model inputs. As the model has

learned from the source domain, this knowledge can provide insight into the behaviour

of the target system pipelines.

A second system may be under-observed as the time and cost overhead required to

augment the asset to collect the same diversity of measurements and re-certify the asset

may be infeasible. Instead, with the construction of a source system completed, the

knowledge of the present uncertainty drivers can be transferred to the under-observed

target system. The open-source bearing test rig data set for the target system is the

Society For Machinery Failure Prevention Technology (MFPT) dataset [212].

The target dataset contains bearing faults introduced into the ball, inner race or

outer race of a motor driven bearing housing which is monitored by one vibration sensor.

The operating loading conditions are varied for each bearing health state: healthy data

is collected at 270 lbs (sampled at 97.656 kHz), inner race faults are collected for 0-300

lbs (sampled at 48.828 kHz) and outer race faults collected for 25-300 lbs (sampled at

48.828 kHz) and 270 lbs (sampled at 97.656 kHz). The input shaft is driven at 1500

rpm with each experiment lasting 3 or 6 seconds. Due to being a smaller dataset, the

48 kHz cases were upsampled for consistency.

While including similar bearing faults, the target dataset includes less sensor cov-

erage and fault locations than the source system, which limit the amount of pipelines

that can be designed. This specifically affects the sensor and classification task options,

as there is no access to fan end and base plate sensors or fan end faults. The summary

of pipeline stages and choices for the target dataset is shown in Table 3.6.
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Figure 3.12: Quantile-Quantile Plot of the source and target pipeline error distributions.
As the two systems align well with the theoretical plot, information gained from one
system would provide useful insight into the behaviour of the other. This is effectively
transference of the expected errors between the source and target systems

3.6.2 Target data pipeline design

To validate the methodology, the pipelines for the combination of all available choices

were constructed with the classification error collected for each pipeline with 5-fold

cross-validation, as in Section 3.5, resulting in 2640 total pipelines for the target case. A

subset of this will be provided to the human-readable XAI framework trained in Section

3.5. The histogram of errors over all pipelines is shown in Figure 3.10, with a peak at

∼ 0 % and ∼ 30 %, and a long tail towards high classification errors. The histogram

demonstrates the target domain behaves similarly to the source domain. A Quantile-

Quantile plot in Figure 3.12 is used as a comparison between the source and target error

histograms over all pipeline designs and captures the errors at the design extremity. The

Pearson correlation coefficient between the two distributions is 0.97 showing a strong

linear correlation between the quantiles of the two error distributions. The similar

behaviour (identical distributions follow the plotted theoretical line) suggests that the
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knowledge in the source pipelines is a good candidate to support the explanations of

the target case.

The data is one hot encoded to align with the source data and a subset of 110

pipelines are provided to the human-readable XAI framework (that as been trained

on pipeline data from Section 3.5), to explain the impact of each choice. The subset

chosen were those with a window length of 1 s, classification task of cross section

location (TL), data allocation method of random and the data domain of frequency

with all models and cross validation samples taken. These were chosen due to design

complexity (frequency domain and classification task offer increased complexity in their

pipeline stages), dataset limitations (only one sensor option), or randomly (there was

no obvious advantage within the choices for the dataset allocation or window length

stages).

The average ranking of each choice from the human-readable XAI framework is

shown in Table 3.6 (right hand column), allowing for a comparison with the source

case.

Many of the recommendations align with the source system, such as the allocation

methods being equally unimportant due to the balanced ratio of faulty to healthy

data; the high performance on the binary classification task; and processing data in

the wavelet (time-frequency) domain providing more useful information to the models.

The target case has several choice limitations compared to the source system, such

as the limited diagnostic tasks and sensor combinations, however the influence of the

available choices are in agreement with the source case (both contributing positively

to system performance). Due to the limited samples provided to the human-readable

XAI framework, the influence of some model types has changed, such as the Ensemble

Boosted Tree and Ensemble RUS Boosted Tree which perform well for the limited

pipeline samples provided for the target case. Lastly, the window lengths have increased

in importance but result the same influence. The target dataset has less data samples

than the source domain and the use of the 0.5 second window length can increase the

number of observations used to train the models.
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3.6.3 Selecting improved pipeline choices for the target system

Using the human readable explanations to rank the choices in each stage for the target

case, the ’best’ pipelines can be extracted from the all the target pipeline data, including

the held out design data. For the ’best’ pipelines, the choices presented in Table 3.7

are chosen. Aside from the limited sensor options and classification task, the rest of the

recommendations for the ’best’ pipeline choices align with the recommendations for the

source system. The histogram of errors for the ’best’ 50 pipeline designs are shown in

Figure 3.11 with the maximum error of 0 %. Applying the ‘worst’ choices highlighted

by the source domain do lead to degraded performance in the target domain data as

shown in Appendix B.

3.6.4 Case Study 2: Result summary and discussion

Highly regulated industries require complete understanding of the level of trust they

can have in their data acquisition and information systems. Trustworthiness can be

eroded along the entire length of a data pipeline, from sensor placement to the analytic

performing the fault diagnostics. The empirical study presented in this chapter has

contributed a means of explaining how uncertainties in each design stage of a pipeline

influence the overall error, and how this understanding can be transferred to new target

systems which may lack abundant labelled data. Once a source domain is created, the

explanation framework can then be used to prescribe high performing pipeline designs

in other, similar monitoring situations without repeating the exhaustive evaluation of

design choices. The approach in this work successfully demonstrated how constraints

placed on a bearing fault classification system can improve or degrade the performance

of the system through interactions between choices made at different data pipeline

stages. The SHAP-based framework explanations were able to adequately identify

choices which lead to the construction of better bearing fault classification pipeline

performance, even across difficult to compare data processing stages, providing an

operator with insight into the uncertainty drivers in their data acquisition systems

during the design stage.

The approach presented is flexible, it can allow developers to consider where de-
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sign decisions are made in their proposed pipelines and to investigate the impact their

choices can have on a data acquisition pipeline performance. In this presentation of

the work, no constraints were placed on the design of the pipeline, however if a devel-

oper must work to certain specifications, this methodology could allow them to design

around these constraints in order to improve system performance and understand the

resultant limitations. Additionally, the proposed methodology can be expanded to han-

dle more stages (or settings per stage) to suit the application and the human-readable

explanations can be customised to present end-users with more familiar language to

further enhance understanding of the outputs. Lastly, there is the potential to transfer

learned uncertainty drivers with human-readable explainability frameworks trained on

fully observed systems to gain insight into new, comparable cases which may allow

experimental test rigs to translate to practical assets. This was demonstrated success-

fully by decoupling the positive performance drivers in a target system using a smaller

subset of pipeline designs.

There are several notable limitations to the work, which would be high priority

for future work. Firstly, investigating if sufficient pipeline performance alignment can

be detected from the source and target input datasets would provide an early warning

system for the potential of negative transfer, where the insights from the source domain

may not apply to the target domain, before the pipelines are constructed. Additional

analysis on the sensitivity of the method to the alignment between the pipeline design

performance would further support the detection of negative transfer, which could be

conducted through sourcing a third, less applicable dataset or investigating the impact

of noise on the currently applied datasets. The SHAP framework applied in this work

depends on high accuracy from the decision tree used to explain the impact of the

pipeline designs. More investigation into the failure modes of this model type, with

specific attention paid to local level explanations where pipeline design performance

may deviate from identified patterns, would provide more insight and control to those

responsible for pipeline design. Currently, to demonstrate the explanations of the

pipelines applies to all designs explored within this work, an exhaustive search was

used to ensure all design choices were compared. This can be computationally expensive
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and depending on the impact of the insights may not provide additional benefits if the

design choices have little impact. In future, more intelligent algorithms can be explored

with a more cyclical approach, whereby the methodology discussed in this work could

provide updates when new pipeline design results are available to test the impact of the

new choices before they are exhaustively compared. A more intelligent search algorithm

could highlight the most informative design choices to create pipelines for, making more

effective use of the search space.

The application of this approach could be useful in cases requiring rapid design, or

automation of design for analytic pipelines for similar assets in a fleet, while providing

developers with information on where to focus resources to reduce diagnostic system

risk. Future work could involve investigating the trade-off between the cost of imple-

menting recommended design choices and savings generated by enhanced performance

of maintenance tools over time.

3.7 Conclusion, contribution and future work

In conclusion, in energy sectors, downtime in key assets can be costly for operators,

incurring lost generation revenues and associated penalties. To mitigate these costs,

many operators have turned to prognostic and health management (PHM) and con-

dition monitoring (CM) techniques to monitor the health of assets more closely [85].

PHM and CM techniques can utilize sensor data and machine learning (ML) models to

detect the onset of faults [23] or predict the remaining useful life (RUL) of assets, and

when these diagnostic approaches are applied to critical operational components they

can decrease maintenance efforts and expedite return to service - but only if they are

known to deliver high predictive accuracy.

Power plant operators are required to understand the uncertainties associated with

the deployment of detection, diagnostic or prognostics tools in order to justify their

inclusion in operational decision -making processes and to satisfy regulatory require-

ments. This is especially pertinent in the nuclear sector, where safety requirements are

suitably strict. Operational uncertainty can cause underlying detection, diagnostics or

prognostics models to underperform on assets that are subject to evolving impacts of
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age, manufacturing tolerances, operating conditions, and operating environment effects,

of which may be captured through a condition monitoring (CM) system that itself may

be degraded. Many industries require a high level of transparency when utilizing data

analytics to ensure plant operation is well informed and traceable to trustworthy evi-

dence for subsequent reasoning and decision making. It is vital to know when to trust

the output of analytics, and to understand where the largest uncertainty contributions

occur along the data pipeline. Knowledge of the uncertainty present in a data pipeline

de-risks the system by providing the operator with confidence in the quality of data

and decisions being made by a fault detection, diagnostic or prognostic system.

In this chapter, three main outcomes have been collated over two case studies in-

volving bearing fault prognostics or detection and diagnosis, the contribution of which

are summarised as follows:

1. Demonstrating that pipeline design impacts analytic performance within

fault diagnostic systems

• In Case Study 1, the data pipeline design was shown to impact the outputs

of data-based and hybrid models in a bearing prognostics application. This

impact could improve or degrade the predictive performance of the prognos-

tic system with data-based models being more negatively affected by this

degradation. Hybrid models which incorporated domain knowledge were

shown to be more robust to the negative impacts of poor pipeline design.

2. Identifying and explaining highly performing design options using a

human-readable XAI framework

• In Case Study 2A, explainability tools (SHAP) were applied to datasets cre-

ated from encoding pipeline design choices as predictors of analytic error

for a bearing classification application. This identified highly-performing

or poorly-performing design options, with the additional ability to compare

the impact of choices across pipeline stages to identify the most impor-

tant stages of the pipeline. This provides an operator with information on

where resources can be deployed to improve fault detection or diagnostic
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system performance by, for example, justifying the cost of installing higher

fidelity sensors or commissioning additional fault data collection projects.

High predictive accuracy was achieved when utilising the design recommen-

dations of the framework, resulting in a mean predictive error of < 0.1%,

while using the detrimental design options flagged by the framework re-

sulted in mean predictive error of > 50%. Distinguishing highly and poorly

performing pipeline design choices allows for the improvement of pipeline

design in cases of both very flexible design, where the choices are able to

be chosen to produce the best performing analytic; and in cases where the

design is constrained by fixed pipeline choices, where an associated risk can

be attached.

3. Improved fleetwide monitoring by leveraging insights from previous

designs to new systems

• In Case Study 2B, the insights gained from the fully observed system inves-

tigated in Case Study 2A were used to design pipelines for a similar system

with much fewer observations. Where systems are deemed similar (as shown

by the Q-Q plot in Figure 3.12), the time taken to exhaustively test one

asset can benefit the fleet of assets with less intensive testing required to

acquire the same insight. This can improve fleetwide monitoring by provid-

ing pipeline design suggestions leveraged from the combination of previous

designs and specific insights provided from minimum observations on the

new system.

The pipeline design approach was applied to bearings, a common failure point across

rotating plant, and shown to be successful across different maintenance tasks from

fault classification to remaining useful life prediction. The case studies presented were

composed of diverse types of pipeline stages which the framework was shown to acco-

modate, which could be tailored to many different assets. The transferability of insights

between assets can save time and funds by reducing the amount of data collection and

computational expense in computing the same amount of pipeline design observations
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for a whole fleet of assets. However, for an operator to benefit from these insights,

the assets are required to behave similarly and require enough fault samples to make

meaningful predictions (a limitation of the choice of analytic model).

3.7.1 Future work

In future, considerations could be made to incorporate further pipeline stages noted in

Figure 3.1, such as how operators can engage with the outputs of analytics. Addition-

ally, due to this chapter focusing on open source datasets, the design and implementa-

tion of a customisable analytic pipeline rig would provide more flexibility and control

to collect data under different conditions to provide more comprehensive coverage of

key pipeline stages and their interactions. In this work, different models were utilised

to provide coverage of different model ’families’, with some work done to utilise hy-

brid rather than purely data-based models. This could be expanded to consider more

complex models, and models with inherent uncertainty quantification. Additionally, to

fully observe a system required all pipelines to be constructed and evaluated to collect

data to be able to apply the explainable tools. This is a time consuming process, even

when no physical equipment is involved. There are methods being designed in data

labelling spaces which specialise in identifying the most impactful observations to be

labelled to gain the most information for the fewest labelled samples [213]. A similar

approach could be taken to identify the most impactful pipeline design combinations

needed to provide sufficient insight into the system performance drivers without requir-

ing exhaustive testing. This would improve the efficiency, speed and practicality of this

methodology. Lastly, the impact of transferring pipeline designs was discussed in this

work, but there was no consideration of transferring already trained models within a

pipeline. New models were trained within each pipeline which could result in a large

number of individual analytics requiring monitoring and maintenance across a fleet of

assets. In Appendix A, a short study into how pretrained bearing fault classification

models react to similar assets when trained on only one asset’s data versus a mixture

of both asset data is discussed. It was found that classifiers trained on only one asset

can perform poorly on the other asset data due to domain shift caused by operating
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condition differences between the assets. When the classifier is trained on a mixture of

both assets’ data, this effect is removed, and the models perform well on observations

from both assets.
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Chapter 4

Uncertainty in time: Quantifying

temporal uncertainty in

timeseries data for trustworthy

temperature forecasting

4.1 Providing confidence in timeseries predictions for as-

set temperature monitoring

Maintenance interventions are required to keep power generation component tempera-

tures within prescribed guidelines but with the consequence of lost generation days [1].

Understanding temperature increases caused by aging processes is critical to maintain

safe operation but avoid needless interventions, particularly where power plants are ap-

proaching the end of their planned operational lifetime when assets may not operate as

efficiently [85]. Temperature measurements can be subject to a variety of uncertainty

and noise stemming from plant configuration, sensor calibration changes and the gen-

eral variability of component aging. The capability to provide confidence bounds on the

predicted temperatures in the presence of measurement noise can permit maintenance

decisions to be made with sufficient certainty on lead time to select the best course of
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maintenance action given operational or financial constraints.

This chapter presents an approach for identifying the rate at which temperatures

can increase over a given operational horizon and presents a predictive distribution of

the error that may result from that estimate. A framework utilizing the dependency

structure between propagated measurement and modelling uncertainty is developed

through investigating a series of increasingly detailed copula based approaches applied

to the residuals from data-based predictive models. The generalised temperature time-

series forecasting methodology is demonstrated on both synthetic exemplar, open source

bearing temperature data and real operational data provided by industrial partners for

a heat exchanger in a nuclear power plant.

4.1.1 Contribution and novelty

The work presented in this chapter was conducted in partnership with Bruce Power,

Canada, who provided timeseries temperature data from the inlet headers which provide

coolant to reactor cores. In addition to this proprietary dataset, the methodology was

also demonstrated on open source data to provide a point of comparison to the wider

research community.

Many analytics tools struggle to provide capability at all temporal scales which

result in a trade off between short-term and long-term accuracy. This compromise

can be managed through the use of hierarchical modelling where models specialise in

different tasks which can improve predictions over long and short horizons. Providing

more accurate estimates of an assets future state, along with the uncertainty, and so

risk, in this estimate, provides more flexibility in the monitoring and maintenance of

the asset. Additionally, existing methods such as autoregressive models are capable of

timeseries prediction, and some of these can provide uncertainty quantification. For

example, Kalman filters can be applied to temperature forecasting but assume that

errors are Normally distributed. For data with more complex dependency structures

than linear, i.e. Gaussian distributed, this may result in degraded performance for au-

toregressive methods. This demonstrates a need to consider more complicated depen-

dency structures for temperature forecasting that are baselined against a multivariate
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Gaussian approach - contained herein as Multivariate Gaussian (Gaussian Marginals).

The difference between Vine copulas and Multivariate Gaussian copulas in terms of

their ability to capture linear and non-linear behaviour are shown in a short example

in Appendix C. Copulas were originally created to incorporate marginal distributions

with extreme tail behaviors into multivariate distributions [127] – in the context of

this work, extreme temperature prediction error variations. These extreme behaviors

are not necessarily expected values centered around the central mean but could also

represent non-symmetrical extremes and multi-modal behaviors. Copulas permit the

adopter to capture these extremes in a multivariate distribution and permit the depen-

dency behavior to be specified individually. Thereafter, using the joint distribution, the

derived conditional form can be used as a predictive model – in the context of this work,

across multiple predictive horizons. This chapter presents a hierarchical copula-based

modelling process for temperature timeseries forecasting with three key factors:

1. The underlying machine learning model is transparent and explainable which

allows the method to be more appropriate for highly regulated environments

(such as nuclear power plants).

2. The hierarchical approach combines the benefit of the long-term forecasting model

and the calibration capability of the short-term forecasting model.

3. The copula approach incorporates uncertainty into predictions which allows the

level of ’risk’ in the forecast to be acted upon.

This chapter is organised as follows: Literature covering timeseries forecasting and

the importance of temperature monitoring in PHM applications are presented in Sec-

tion 4.2. This covers the landscape of timeseries prediction in PHM, discussing the

impact of chosen forecast horizons, selected model inputs and managing sources of un-

certainty. The synthetic data case study, methodology and results are presented in

Section 4.3.2. The methods application to open source operational and real industrial

data are presented in Section 4.3.3 and Section 4.3.4, respectively. Finally, future work

and a summary of the results presented in this work are covered in Section 4.4.
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4.2 Literature: Temperature monitoring applications and

hierarchical timeseries forecasting

4.2.1 Temperature monitoring in prognostics and health management

Temperature measurements are an important indicator of health for many assets across

engineering applications [19, 214]. Temperature changes can alert to early signs of in-

creasing friction, component wear or reduced efficiency which, with lack of intervention,

can result in failures [215, 216]. Intervention may be in the form of simple mainte-

nance without need for replacement, such as lubrication to reduce friction in rotating

plant [217], or cleaning to improve efficiency in heat exchanging components [218], ex-

tending the operational lifetime of components. However, long term data trends can

provide important insight into the impacts of asset aging, which requires much more

extensive monitoring, careful operation and detailed planning to justify continued oper-

ation or replacement [107]. Timeseries forecasting can facilitate such planning through

providing predictions of the state of the plant at some future horizon based on previous

observations.

Heat exchangers play a key role in the generation capability of nuclear power plants

as their operating efficiency sets additional limitations on the reactor output. Without

efficient heat exchange, the amount of generation the plant can produce may be limited,

affecting production targets. Aging heat exchangers can significantly impact forecasted

operational and maintenance costs of plants as additional planned outages may be

required to conduct cleaning or other interventions to improve the performance of

the asset. When considering plant operation in its final operational years, the effects

of aging can be evident in the behaviour of assets which require close monitoring to

continue meeting plant generation targets [85]. There are several methods in place to

allow plants to operate efficiently despite the impact of aging, however this can lead to

unnecessary intervention depending on the uncertainty in the asset monitoring process.

Sensor calibration, noise and non-linear aging effects add uncertainty to the monitored

state of an asset and should be accounted for in any maintenance planning processes

to make best use of resources [219].
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4.2.2 Timeseries forecasting

One option to support short term maintenance planning is data-based timeseries fore-

casting to provide an estimate of the state of the plant ahead of time [23], [220], [221].

This can provide warnings for when operational limits may be exceeded or may identify

opportunities to increase production. Providing uncertainty alongside these forecasts

captures the associated ‘risk’ in the estimate and allows the comparison of expected

versus best- and worst-case scenarios to allow for more flexible planning [222].

Hierarchical models can allow for the capabilities of long-term forecasting models

and short-term forecasting models to be combined to provide more accurate estimates

of asset health [223], [224]. This can be achieved by training a data-based model

on data spanning many operational years to fit a general trend to the assets aging

process. The residuals of this model contain information which impacts the asset on

a timescale of weeks to months, such as sensor noise, sensor calibration intervention

or maintenance actions. This behaviour can then be learned by a secondary model,

and its predictions can be used to calibrate the final estimates of asset behaviour.

Providing uncertainty estimates alongside the expected value demonstrates the model’s

confidence in the prediction [225]. There are a wide range of candidate models for this

process, however, the nuclear domain has an understandable preference for transparent

modelling procedures [91]. Analytics which contain black-box models cannot be easily

explained, and so any decisions based on these approaches cannot be easily actioned on

in such a highly regulated environment. In this work we utilise a simple linear regression

model to act as the transparent, long-term model candidate and several copula-based

approaches to calibrate over the short-term.
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4.3 Complex temperature timeseries dependency mod-

elling with copulas

4.3.1 Data processing and hierarchical modelling structure

The hierarchical modelling structure with the training, validation and testing set paths

are shown in Figure 4.1 The modelling process involves two linked models, where the

base model is trained on a training set and tested on a validation set. The copula-based

model is trained on the residuals of the base model’s predictions on the validation set.

Both models are then able to contribute to the predictions on a held out testing set.

In this chapter, the base model is a linear regression trained on temperature and time,

while the copula-based model is a selection of high dimensional copula models which

are swapped out to investigate the limitations of key choices made on assumptions and

complexity in the copula model design. It should be noted that, while linear regression

is used as the base model, this can be interchanged with another model type, which

may be more suitable to different applications.

Seven copula-based approaches are compared on three datasets, with varying lev-

els of complexity and assumptions to cover several scenarios in model capability and

marginal assumptions. These are grouped by model type, where the capability of mul-

tivariate Gaussian copula and two types of vine copula (regular and centre vine) will

be demonstrated. Simplifications and increased flexibility on each models marginals

will also be tested to demonstrate how much complexity may be necessary to capture

the dependency structures within the case study data. Investigating different models

and marginal assumptions explores the trade-off between simplified modelling strategies

which are more easily managed, versus modelling strategies with increased complexity

but enhanced flexibility. This process is designed to answer: “Is it worth it to design,

manage and maintain a complex modelling strategy to enhance predictive performance

for our maintenance system?”. All vine models allow non-linear dependency in various

ways but will be compared with the same variety of marginal limitations as for the

Multivariate Gaussian models. The seven model variations are:

1. Multivariate Gaussian Copula
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Figure 4.1: Summary of the process, and subset of example results presented in Chapter
4, for the industrial partner dataset. The base model used in this example is a Linear
Regression (LR) and the chosen copula is the Centre Vine with Gaussian marginals.
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(a) Multivariate Gaussian Copula with Gaussian Marginals (Simple

variation): Showcasing the regular Multivariate Gaussian with no tail de-

pendency and all Gaussian marginals. Tail dependency captures behaviours

at the extremes which may represent high risk outcomes, such as large tem-

perature fluctuations, which these model simplifications may not account

for.

(b) Multivariate Gaussian Copula with kernel density estimated marginals

with Gaussian kernel (Complex variation): Showing the potential value

of heterogenous marginals which provides more flexibility. This method is

non-parametric, which imparts minimal assumptions on the properties of the

distribution to capture important detail in the data (for example, bi-modal

structures) which may not be represented in common parametric methods,

however, the accuracy can vary depending on sample size [128].

(c) Multivariate Gaussian Copula with best fit marginals (Complex vari-

ation, increased flexibility): Compares the fit of Gaussian, Beta, Gamma,

kernel density estimate with Gaussian kernel, or truncated Gaussian uni-

variate distributions. This expands the simple variation to demonstrate

heterogenous marginals but with an additional selection of parametric dis-

tributions alongside the non-parametric option. This range of options is

able to capture a wide variety of behaviour but results in higher modelling

complexity.

2. Vine Copula

(a) Regular Vine

i. Regular Vine with Gaussian Marginals (Simple variation): Lim-

ited to Gaussian marginals only.

ii. Regular Vine with best fit marginals (Complex variation): Flexible

marginal selection from the choice of Gaussian, Beta, Gamma, kernel

density estimate with Gaussian kernel, or truncated Gaussian univariate

distributions.
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Figure 4.2: Diagram showing the method of using lagged data windows of N timesteps
to train models to forecast up to N timesteps.

(b) Centre Vine

i. Centre Vine with Gaussian Marginals (Simple variation) : Limited

to Gaussian marginals only.

ii. Centre Vine with best fit marginals (Complex variation): Flexible

marginal selection from the choice of Gaussian, Beta, Gamma, kernel

density estimate with Gaussian kernel, or truncated Gaussian univariate

distributions.

For each dataset the copula models are trained on the machine learning residuals

from a validation set. The error residuals are lagged from et to et−N , where N is the

prediction horizon as described in Figure 4.2. This creates an m× (N +1) matrix with

m = L − N , where L is the length of the validation matrix, to account for missing

data due to the lags. The different Multivariate Gaussian copula and Vine models are

trained on the m × (N + 1) lagged error data. The autocorrelation plots of the data

used to train the copula models are shown in Appendix D. The data space is scaled

to a range of [0,1] and histogram equalisation used to create uniform marginals for

compatibility with the copula models. The scaling parameters required to complete

this transform are collected to enable values returned from the copula models to be

scaled back into the original data space to retain their original engineering context (e.g
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to allow for the presentation of temperatures in real values).

Predictions are computed on the testing set by providing the last known error

between the target timeseries and the machine learning prediction to the trained copula-

based models to predict the most likely correction value for timesteps up to a horizon of

N−1. This is similar to the cross-validation of autoregressive models provided by [226].

Conditional relationships are used as the prediction window is stepped through the

testing data set, where predictions from longer horizons can be used to inform the

newest updated prediction as shown in Figure 4.2. This provides N predictions per

timestep with varying ranges. The cumulative distribution (CD) value is computed for

the possible correction values with values corresponding to < 0.05 and > 0.95 used to

provide an upper and lower uncertainty estimate at each timestep. The predicted value

of et+1 is taken at each et as the prediction factors in the conditional behaviour across

the full prediction horizon, N . The copula confidence bounds provide an estimated

upper and lower temperature correction which are converted into a prediction interval

by adding to the machine learning outputs. This can be interpreted as best and worst

case risk for different maintenance scenarios. An example of a simplified case for a good

and poor performing timeseries is shown in Figure 4.3. The poor performing timeseries

plot shows that the example model predictions do not capture the true behaviour well,

and the prediction intervals are wide which does not provide useful information. This

behaviour will be assessed in the case studies of this chapter to distinguish models

which have performed well, or poorly.

To evaluate model performance, three metrics are chosen: mean absolute error

(MAE), continuous rank probability score (CRPS) and interval score. The MAE and

percentage improvement in MAE are used to generalise the model performance over

the timeseries and provides a direct point of comparison to the benchmark case where

only the machine learning model predictions are used.

The Continuous Rank Probability Score (CRPS) [227], is the generalisation of the

MAE which provides a comparable metric for the evaluation of probabilistic forecasts

rather than point forecasts. When the CRPS is arranged in negative orientation, as in

equation 4.1, it provides results in the same unit as the data space for direct comparisons
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Figure 4.3: Example timeseries plot showing poor and good performing example mod-
els. The prediction bounds should encapsulate the true data and be as small as possible
to provide useful risk information about the prediction.

[228]. In general terms, as the CRPS provides the MAE for probabilistic rather than

point forecasts, lower values are preferred.

CRPS∗(F, x) = EF |X − x| − 1

2
EF |X −X ′| (4.1)

Where CRPS ∗ (F, x) is the negative orientation of the CRPS, F is the distribution

function being evaluated at observations x, EF is the expected value, or mean function

[125] and X and X ′ are two independent random variables drawn from the distribution

function, F .

The interval score [228] evaluates the effectiveness of the upper and lower predicted

quantiles of interval forecasts. This is applied here to the upper and lower 90 % un-

certainty bounds of the copula predicted corrections. For all true observations, x, the

interval score, Sint, is evaluated using the forecasted upper, u, and lower, l, limits at a

quoted confidence level (1− α)× 100%. For a 90 % confidence interval, α = 0.1. The

interval score is calculated by:

Sint
α (l, u;x) =(u− l) +

2

α
(l − x)1{x < l}

+
2

α
(x− u)1{x > u} (4.2)
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Figure 4.4: Example depiction of good and poor results on a violin plot

Where 1{condition} defines the indicator function which takes a value of 1 if the

condition is met, and 0 otherwise. The indicator functions apply an additional penalty

where the bounds are violated by the true observation, with better forecasts covering

the true values with small bounds.

The predictions and prediction bounds are also visually assessed with violin plots.

An example case showing good or bad performance for a violin plot is shown in Figure

4.4. In this example case, the violin plots show residuals, whereby great performance

is signified by the 0 on the Y axis. If most points align with this perfect prediction

line, then the model predictions are high performing and generating minimal errors.

The poor performing plot shows data with large remaining errors, where the median

and much of the samples are not near 0. This can be used to compare how models

perform across prediction horizons to identify forecast horizons which produce reliable,

or unreliable results. It also allows comparison between models.
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4.3.2 Case Study 1 - Synthetic data: Benchmarking case on Clayton

copula synthetic data

Synthetic case study organisation and methodology

A benchmarking case based on synthetic data is presented to demonstrate the ap-

proach on an idealised case without the presence of unquantified operational noise and

uncertainty sources. The synthetic dataset is comprised of two components: a target

temperature timeseries and a machine learning approximation. The target temperature

timeseries is comprised of a linear rising trend (with slope = 15 and intercept = 0.05),

Gaussian noise (with µ = 0 and σ = 0.05) and consecutive error terms sampled from a

Clayton copula in range [0,1] with θ = 8 (to preserve the lower tail relationship between

lagged errors). The machine learning approximation is a linear rising trend with slope

= 15 and intercept = 0.05. The machine learning approximation represents a simple

linear model attempting to learn the data, where the resulting error relation between

the target timeseries and the machine learning approximation is the copula samples

and noise. In this case study, there is no requirement for a held out training set as our

base model is a simple linear trend which does not require training. As such, the data

is split into validation and testing set at a ratio of 75:25, with a total of 1000 sam-

ples. Figure 4.5 shows the target timeseries and the machine learning approximation

from the validation and testing set of the synthetic data. The horizon, N , is chosen as

5, and the lagged errors on the validation set are used to train the 7 copula models.

The testing procedure covered in Section 4.3.1 is completed to obtain the N horizon

predictions on each timestep.

Synthetic case study results

The MAE and percentage improvement in MAE for each copula-based correction

method and the benchmark case of no corrections are shown for each dataset in Table

4.1 and Table 4.2, respectively. The MAE values shown in Table 4.1 for the synthetic

dataset show that all copula models reduce the error down to the approximate level

of noise added to the signal. For Gaussian noise with σ = 0.05, 95.4% of samples will
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Figure 4.5: Validation and testing split of the synthetic timeseries, showing both the
target signal and the linear trend representing the predictions of a simple base model
attempting to learn the data.

Table 4.1: MAE for each copula-based correction method and the benchmark case of
no corrections on each dataset. The lowest MAE for each dataset is highlighted in bold
text.

Dataset
Synthetic Open Source Industrial

/model

No Correction (Benchmark) 0.4188 5.5327 12.2061

Regular Vine (Gaussian) 0.2516 4.6166 2.9275
Regular Vine (Best fit) 0.2738 4.9614 3.5263
Centre Vine (Gaussian) 0.2080 4.2258 2.1764
Centre Vine (Best fit) 0.1785 4.030 3.0277
Multivariate Gaussian (Gaussian) 0.1642 5.041 2.8993
Multivariate Gaussian (KDE) 0.1622 4.3865 3.5687
Multivariate Gaussian (Best fit) 0.1755 4.1098 3.0339
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Table 4.2: Percentage improvement over no corrections MAE for each copula-based cor-
rection method on each dataset. The largest percentage improvement for each dataset
is highlighted in bold text.

Dataset
Synthetic Open Source Industrial

/model
Regular Vine (Gaussian) 39.91 16.56 76.02
Regular Vine (Best fit) 34.61 10.33 71.11
Centre Vine (Gaussian) 50.34 23.62 82.17
Centre Vine (Best fit) 57.38 27.16 75.19
Multivariate Gaussian (Gaussian) 60.79 8.89 76.25
Multivariate Gaussian (KDE) 61.27 20.72 70.76
Multivariate Gaussian (Best fit) 58.09 25.72 75.14

be within ±2σ, which is roughly 20% of the scale of samples generated by the Clayton

copula on a scale of [0,1]. The minimum improvement made by the copula approaches

over the no corrections case shown in Table 4.2 is 39.9% by the Regular Vine with

Gaussian marginals (RVG), and the maximum improvement is 61.3% by the Multivari-

ate Gaussian copula with KDE marginals (MGK). For the three categories of models,

the Gaussian marginals were the highest performing Regular Vine model (RVG), the

best fit marginals were the highest performing Centre Vine model (CVB), and the KDE

marginals were the highest performing Multivariate Gaussian model (MGK), based on

MAE.

The target timeseries, machine learning approximation and corrected timeseries

with uncertainty bounds given by the CD values for the testing set of the synthetic

data are shown in Figure 4.6. In Figure 4.6, the Multivariate Gaussian (identified by

MGG, MGK or MGB) and Centre Vine models (identified by CVG or CVB) are able

to track the target signal (blue) with less noise in the chosen correction (red) and the

prediction intervals (orange) than the Regular Vine models (titled RVG and RVB).

In this case study, the largest barrier to the copula predictions is the Gaussian noise

added to the target signal, in spite of which, the Multivariate Gaussian and Centre

Vine models have performed well (both groups of models have a lower MAE than the

Regular Vine group as provided in Table 4.1) which has also led to having narrower

prediction intervals, showing increased confidence in the predictions compared to the

Regular Vine group.
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Figure 4.6: (Top left) Synthetic data timeseries of the target signal and the ML approx-
imation for the testing set; and timeseries plots of the target data, copula corrected
timeseries and prediction interval on the copula corrections.
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Figure 4.7: Violin plot of the N = 5 prediction horizons showing the residuals of the
Multivariate Gaussian corrections against the target signal (a perfect correction would
result in 0 residual) and the spread of the prediction interval over each horizon on the
synthetic data.

The residuals of the corrected timeseries (where a perfect correction results in 0

error) by prediction horizon, and the spread of the prediction interval are shown in the

violin plots seperated by copula type. The Multivariate Gaussian violin plot is shown in

Figure 4.7. The horizon CRPS and percentage improvement over the reference horizon

1 is shown for all models and horizons for the synthetic dataset in Table 4.3. At N = 2,

all copula models across the Multivariate Gaussian, Regular Vine and Centre Vine

groups have a very similar MAE at a resolution of 4 decimal places of 0.1497. The only

deviation is CVG at 0.1498 which suggests that there would be additional distinction of

more decimal places were included. All Multivariate Gaussian models have the largest

CRPS at the longest horizon (N = 5) which is expected as this horizon has the least

information. All models have improved CRPS at N = 2 over N = 1, which may be

due to improved model generalisation if the closest horizon is encouraging the model
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Table 4.3: CRPS and percentage change for each forecast horizon copula-based cor-
rection method and the benchmark case of no corrections for the synthetic dataset.
Horizon 1 is the reference for the percentage change with positive percentage changes
as improvements.

Model/
Metric

MGG MGK MGB RVG RVB CVG CVB

Horizon 1
CRPS

0.1829 0.174 0.1905 0.2606 0.2844 0.2251 0.1923

Horizon 1 %
improv.

0 0 0 0 0 0 0

Horizon 2
CRPS

0.1497 0.1497 0.1497 0.1497 0.1497 0.1498 0.1497

Horizon 2 %
improv.

18.17 13.97 21.44 42.55 47.36 33.47 22.16

Horizon 3
CRPS

0.202 0.217 0.2065 0.2519 0.2596 0.2493 0.2428

Horizon 3 %
improv.

-10.43 -24.67 -8.42 3.31 8.72 -10.73 -26.25

Horizon 4
CRPS

0.2299 0.221 0.2226 0.3388 0.3401 0.2296 0.2406

Horizon 4 %
improv.

-25.71 -27.0 -16.84 -30.02 -19.55 -1.98 -25.08

Horizon 5
CRPS

0.243 0.2477 0.2431 0.3469 0.3472 0.2666 0.2575

Horizon 5 %
improv.

-32.88 -42.34 -27.62 -33.12 -22.07 -18.45 -33.89

The model acronyms are MGG - Multivariate Gaussian (Gaussian), MGK - Multivariate Gaussian (KDE), MGB - Multivariate
Gaussian (Best fit), RVG - Regular Vine (Gaussian), RVB - Regular Vine (Best fit), CVG - Centre Vine (Gaussian) and CVB
- Centre Vine (Best fit).

to overfit to previously observed behaviour. The smallest extremes for the MGG and

MGK models are at N = 1, and N = 2 for the MGB model. This trend matches

the uncertainty bounds of each model, showing that model confidence matches the

model performance. Based on prediction horizon behaviour, MGK copula is the best

for shorter horizons, while the MGG model is the best performing of the MG models

at the furthest horizon. The violin plots for the Regular Vine models is shown in 4.8.

The Regular Vine models tend to overestimate the value of the target signal as shown

in Figure 4.8, where the median value increases above 0 for farther out prediction

horizons, where a value of 0 is a perfect correction. The Regular Vine models also have

the largest spread of residuals after correction for closer prediction horizons where a

higher accuracy would be expected, which is visible in the corrected timeseries as it

often over and under estimates the target signal. For both Regular Vine models, the

highest (worst) CRPS is at the longest horizon, N = 5, while both models improve

at N = 2 and slightly at N = 3. The smallest extreme residuals for both Regular

Vine models are at N = 2 with this matching the models uncertainty bounds on the

correction. This would suggest the model can accurately anticipate areas of higher
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Figure 4.8: Violin plot of the N = 5 prediction horizons showing the residuals of the
Regular Vine corrections against the target signal (a perfect correction would result in
0 residual) and the spread of the prediction interval over each horizon on the synthetic
data.
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Figure 4.9: Violin plot of the N = 5 prediction horizons showing the residuals of the
Centre Vine corrections against the target signal (a perfect correction would result in
0 residual) and the spread of the prediction interval over each horizon on the synthetic
data.

uncertainty, which follows for the RVB model with the largest uncertainty bounds at

N = 4 and the largest extreme residuals at N = 4. However, for the RVG model, the

largest uncertainty bound extremes are at N = 4 while the largest extreme residuals

are at N = 3, suggesting poorer uncertainty estimation. The Centre Vine violin plot

is shown in Figure 4.9. As with previous copula model groups, the worst CRPS is at

the furthest horizon (N = 5) and the best CRPS values are at N = 2, rather than

N = 1 (the closest horizon). The smallest extreme residuals follow the same trend

as the CRPS, with the smallest extreme residuals for both CVG and CVB model at

N = 2. The narrowest uncertainty bound also occurs at N = 2, showing the model

confidence is aligned with its performance. Similarly, the largest extremes are once

again at N = 5, where the largest uncertainty bounds on the correction occur. Overall,

for the Centre Vine group, the CVB model has the lowest CRPS across most horizons,

covering a decent amount of close and far horizons.
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Table 4.4: CRPS for corrections over different horizons showing the mean (µ) and
standard deviation (σ) for each model, the minimum CRPS, maximum CPRS and
their associated horizons.

Dataset Synthetic Open Source Industrial
Model µ ± σ minimum

(hori-
zon)

maximum
(hori-
zon)

µ ± σ minimum
(hori-
zon)

maximum
(hori-
zon)

µ ± σ minimum
(hori-
zon)

maximum
(hori-
zon)

MGG1 0.2015 ±
0.0334

0.1497(2) 0.243(5) 5.8211 ±
0.6167

4.6183(2) 6.5989(4) 3.6409 ±
0.5954

2.0842(2) 4.2552(7)

MGK2 0.2019 ±
0.0352

0.1497(2) 0.2477(5) 5.6903 ±
0.7449

4.3865(1) 6.8799(4) 3.898 ±
0.6317

1.8188(2) 4.4512(15)

MGB3 0.2025 ±
0.0316

0.1497(2) 0.2431(5) 5.236 ±
0.5779

4.1098(1) 6.001(8) 3.7214 ±
0.7118

1.7309(2) 4.5808(12)

RV G4 0.2696 ±
0.0715

0.1497(2) 0.3469(5) 6.0315 ±
0.8703

4.5783(2) 6.8688(5) 4.367 ±
1.0339

1.7375(2) 5.4438(9)

RV B5 0.2762 ±
0.0714

0.1497(2) 0.3472(5) 5.8636 ±
0.6781

4.623(2) 6.547(8) 5.1002 ±
1.1499

1.7881(2) 6.0263(11)

CV G6 0.2241 ±
0.04

0.1498(2) 0.2666(5) 5.7587 ±
0.8109

4.2258(1) 6.5333(5) 2.6104 ±
0.284

1.8126(2) 2.9193(15)

CV B7 0.2166 ±
0.04

0.1497(2) 0.2575(5) 5.4988 ±
0.7332

4.0303(1) 6.188(4) 2.9939 ±
0.3468

1.8103(2) 3.352(13)

1 Multivariate Gaussian with Gaussian marginals (MGG)
2 Multivariate Gaussian with KDE marginals (MGK)
3 Multivariate Gaussian with best fit marginals (MGB)
4 Regular Vine with Gaussian marginals (RVG)
5 Regular Vine with best fit marginals (RVB)
6 Centre Vine with Gaussian marginals (CVG)
7 Centre Vine with best fit marginals(CVB)

The CRPS for the suggested copula corrections for each model and the interval

score for the 90 % uncertainty bounds on the copula correction are summarised in Table

4.4 and Table 4.5, respectively. The MGG model has the lowest mean CRPS over all

horizons with the MGB model having the lowest standard deviation across all horizons,

as shown in Table 4.4. The lower standard deviation suggests that the performance of

the models has lower variance across all horizons and will perform more consistently,

however at a slightly higher CPRS value. The RVB model has the highest CRPS and

the RVG model has the highest standard deviation, showing this model group has high

variability across horizons and generally leaves higher residuals. All models have their

maximum and minimum CRPS horizons occur at the same points, at N = 5 and N = 2,

respectively. In this simplified example, this is expected as the furthest horizon has

the least information to narrow down potential behaviour while the horizon of N = 2

may allow the model to benefit from larger amounts of information while keeping good

generalisation. With the interval score, the models are penalised whenever the true

value falls outside the suggested interval and on the difference between the provided

interval, with narrow intervals awarded. The Regular Vine models have the highest

interval score at 5.4099 for the RVB model, as shown in Table 4.5, which means the 90
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Table 4.5: Interval score for all model 5 % and 95 % uncertainty bounds on the copula
correction, showing the mean (µ) and standard deviation (σ) for each model, the min-
imum interval score, maximum interval score and their associated horizons.

Dataset Synthetic Open Source Industrial
Model µ ± σ minimum

(hori-
zon)

maximum
(hori-
zon)

µ ± σ minimum
(hori-
zon)

maximum
(hori-
zon)

µ ± σ minimum
(hori-
zon)

maximum
(hori-
zon)

MGG1 3.8972 ±
3.1349

2.9315
(2)

4.7685
(5)

74.4523 ±
66.0736

62.0659
(2)

82.5907
(7)

75.846 ±
52.567

54.5494
(2)

87.9467
(7)

MGK2 3.9419 ±
3.2756

2.9379
(2)

4.8548
(5)

76.4303 ±
68.1522

59.9617
(2)

85.9058
(8)

81.1287 ±
56.2551

47.347
(2)

90.698
(15)

MGB3 3.9732 ±
3.2528

2.9383
(2)

4.7956
(5)

70.8578
±
66.5586

61.0319
(2)

87.6661
(8)

78.1224 ±
54.2014

46.33 (2) 92.8979
(12)

RV G4 5.1428 ±
4.2919

2.9428
(2)

6.7423
(5)

78.3235 ±
66.4062

61.81 (2) 88.4969
(7)

89.1464 ±
66.8781

39.8679
(2)

109.9289
(9)

RV B5 5.4099 ±
4.3648

2.9537
(2)

6.7547
(5)

75.6974 ±
65.2588

58.742
(2)

86.6243
(8)

102.7755
± 72.2326

37.7329
(2)

121.6813
(11)

CV G6 4.3391 ±
3.7619

2.9393
(2)

5.1442
(5)

72.0799 ±
62.18

61.9277
(2)

81.0617
(5)

58.3631
±
49.2017

44.3172
(2)

65.476
(15)

CV B7 4.2373 ±
3.5929

2.9421
(2)

5.0459
(5)

70.9053 ±
65.0337

58.7243
(1)

89.4956
(8)

62.9259 ±
50.8054

39.4543
(2)

73.0536
(1)

1 Multivariate Gaussian with Gaussian marginals (MGG)
2 Multivariate Gaussian with KDE marginals (MGK)
3 Multivariate Gaussian with best fit marginals (MGB)
4 Regular Vine with Gaussian marginals (RVG)
5 Regular Vine with best fit marginals (RVB)
6 Centre Vine with Gaussian marginals (CVG)
7 Centre Vine with best fit marginals(CVB)

% uncertainty bounds on the correction were not as accurate as for other models, such

as the MGG copula model which had the lowest score at 3.8972. For all models, the

uncertainty bounds on the N = 2 horizon produced the lowest interval score (better

bounding on the true prediction) and all models had the highest interval score at the

largest horizon N = 5, showing that they provide better uncertainty estimates for

closer horizons which have been calibrated using additional information gained over

more forecast horizons. The CRPS and interval score behaviour aligns, showing the

models are generally capable of providing uncertainty quantification which aligns with

their performance in practice.

The changes in histogram shape from the benchmark case in Figure 4.10 show that

all copula models have moved the residuals to be centred around 0 and are unimodal

in shape, which has improved upon the ”no corrections” case. The ”no corrections”

case entirely underestimates the value of the target signal (as designed), and all models

can recover this shift. The copula correction histograms seem to have improved the

Normality of the ’no corrections’ case, but to confirm this observation, the skewness

and kurtosis measurements of each distribution are shown in Table 4.6. If the model
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Figure 4.10: Residual histograms for the seven copula correction methods and the
benchmark case of no copula corrections for the synthetic dataset.
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Model Kurtosis Skewness

No Corrections -0.7558 0.6183

Multivariate Gaussian / Gaussian marginals -0.1205 0.2674

Multivariate Gaussian / KDE marginals -0.4336 0.0451

Multivariate Gaussian / best fit marginals 0.6107 0.4071

Regular Vine / Gaussian marginals 1.1163 0.6175

Regular Vine / best fit marginals -0.4841 -0.1652

Centre Vine / Gaussian marginals 0.2351 0.0155

Centre Vine / best fit marginals 0.6482 -0.0182

Table 4.6: Skewness and kurtosis values for the synthetic data model residual his-
tograms. The values for Gaussian distributions are 0 for kurtosis and skewness, as
reference. The values furthest from 0 are shown in bold while those closest to 0 are in
italics.

residuals are Gaussian and centred around 0, this implies that much of the relationship

in the data has been captured, except for random noise. For the distributions to be

Gaussian, the value of skewness and kurtosis would be 0. The largest value (furthest

from 0) for kurtosis is the RVG model, and the largest skewness is the ’no corrections’

case. This means all models improved the skewness value, moving the residuals to more

Gaussian behaviour. However, for kurtosis, the RVG model deteriorated that of the

’no corrections’ case. The lowest kurtosis value is from the MGG model at -0.1205, and

lowest skewness is from the CVG model at 0.0155. All models, except the RVG model,

improve on both the skewness and kurtosis of the ’no corrections’ case, suggesting they

have accounted for some remaining information available in the base model residuals.

Quantile plots (Q-Q Plots) are a visual technique used to compare samples or dis-

tributions [229]. Identical distributions would result in a linear line intercepting 0 due

to aligned quantile values. As shown in the Q-Q plot in Figure 4.11, the Multivariate

Gaussian copula and Centre Vine models match the quantiles of the target signal more

accurately than the Regular Vine models which have larger deviations in the lower

quantiles, where it overestimates the values. This is also visible in the timeseries plot

in Figure 4.6 where the Multivariate Gaussian and Centre vine models track the target

signal with less noise in the chosen correction (red) and the prediction intervals (or-

ange) than the Regular Vine models. For this case study, the chosen data is meant to

provide a benchmark which is designed to be relatively simple for the models to fit to,
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Figure 4.11: Quantile-quantile plot of the target signal quantiles against the corrected
signal quantiles for the synthetic dataset. Identical distributions result in a straight
line.
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and so the successful models’ predictions being able to match the target distribution is

expected. However, even in this simplified example, the Regular Vines are lacking in

ability at lower quantiles.

The copula fitting shown in Figure 4.12 presents how the models capture the rela-

tionship between et to et−1 which have been designed in this case study to specifically

have the strongest relationship. For each model, 1000 samples are taken. The tar-

get relationship is shown in the first plot (top left) which is the form of a Clayton

copula with Gaussian noise added. The Multivariate Gaussian copulas are based on

the Gaussian copula which captures elliptical behaviour, which generalises well to the

noisy Clayton. However, due to the constraints of the elliptical shape, the Multivariate

Gaussian copulas capture a tighter relationship in the upper tail than is present in

the target data. Additionally, the MGG model fails to capture the bi-modal structure

in the target density. The RVG, and more so the RVB, covers a large area without

capturing much detail. Between both models and in this selection of samples, the RVG

model seems to have more density in the centre (around [0.5,0.5]) while the RVB is

more dense in the lower tail, which is an important feature of Clayton behaviour. The

CVG model seems to have taken a more conservative estimate of the target behaviour,

without much distinction between the upper and lower tail behaviour, while the CVB

has distinguished the tight lower tail relation.

4.3.3 Case Study 2 - Open source data: Wind turbine generator bear-

ing temperature forecasting

Open source case study organisation and methodology

To demonstrate the method on operational data, an open source temperature timeseries

dataset is chosen comprising of the rear bearing temperature of a turbine generator on

Penmanshiel wind farm [230] located in Scotland. Bearings are a common point of

failure in rotating plant due to stress and wear during operation, and are found across

a vast range of industrial applications [173]. As per manufacturer advice, temperature

and vibration measurements allow the health of bearings in key assets to be moni-

tored [231], to provide advanced warning of early signs of degradation or faults. The
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Figure 4.12: Synthetic dataset relationship between et to et−1 for the target data and
sampled copulas.
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Figure 4.13: Training, validation and testing split for the Penmanshiel wind turbine rear
generator bearing temperature. The data is 3 hourly from 01/01/2021 to 30/06/2021.

turbine generator is an important generation asset located in an environment where

operational stress and ambient temperatures may cause the bearing temperatures to

reach unacceptable limits. The Penmanshiel’s wind farm timeseries runs from 1st Jan-

uary 2021 to the 30th June 2021, with data collected every 10 minutes. To permit day

ahead forecasting, the data is processed to contain data collected every 3 hours, on

the hour, with a day ahead horizon, N , chosen as 8. A linear regression model is used

as the long-term prediction model and the data is split into training, validation, and

testing sets at a ratio of 70:20:10 with 1426 total samples. The target signal and linear

regression predictions are shown for the training, testing and validation sets in Figure

4.13.

The errors from the linear regression model predictions on the validation set are

lagged from et to et−N , where N = 8, and used to train the copula models. Following

the process stated in Section 4.3.1, the testing predictions and corrections are collected

for each copula model.
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Open source case study results

The recorded MAE and percentage improvement in MAE for each copula model are

given in Table 4.1 and Table 4.2, respectively. The baseline improvements for all copula

models are much lower than for the synthetic dataset, as shown by the MAE values in

Table 4.1. This is expected as the synthetic dataset was designed to demonstrate the

capability of the copula methods and is not operational data, however, all models do

improve on the ’no corrections’ case. The best improvement shown in Table 4.2 is 27.16

% by the CVB model, while the worst improvement is 8.89 % by the MGG model. For

the three categories of models, the Gaussian marginals were the highest performing

Regular Vine model, the best fit marginals were the highest performing Centre vine

model, and the best fit marginals were the highest performing Multivariate Gaussian

model, based on MAE. In this case, the more complex marginals allowed most categories

to outperform those with simpler assumptions, with the KDE marginals supporting this

by being the second best performing Multivariate Gaussian model based on MAE.

The target timeseries, linear regression prediction and corrected timeseries with

uncertainty bounds given by the 90 % copula CDF values are shown in Figure 4.14. As

shown in Figure 4.14, the target signal (blue) has several large peaks and troughs which

the CVG and MGG model corrections (red) tend to underestimate compared to the

more complex marginal models. This does not hold for the RVGmodel, which does seem

to capture the troughs and peaks better than its more complicated counterpart, RVB.

The CVB model does well to capture the large ’trough - peak - trough’ pattern at the

end of the timeseries, but also tends to predict such features when they do not appear,

such as the peak in the latter half of the timeseries. The MGB and CVB models have

the highest percentage MAE improvement compared to the ’no corrections’ case and

also have much smaller prediction intervals (orange) than their less complex marginal

counterparts. The models that struggled more with this dataset have correspondingly

wider prediction intervals.

The violin plot of the predictions and prediction interval over each horizon for the

open source dataset are separated by model type. The Multivariate Gaussian models

are shown in Figure 4.15. The horizon CRPS and percentage improvement over horizon
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Figure 4.14: (Top left) Rear bearing generator temperature timeseries for Penmanshiel
wind farm dataset; and timeseries plots of the testing data, corrected timeseries, pre-
diction interval on the copula corrections for the 7 copula models on the open source
wind turbine data.
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Figure 4.15: Violin plot of the N = 8 prediction horizons for the Multivariate Gaussian
models on the open source wind turbine bearing data, showing the residuals of the
linear regression model and corrections against the target signal (a perfect correction
would result in 0 residual) and the spread of the prediction interval over each horizon.
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Table 4.7: CRPS and percentage change for each forecast horizon copula-based correc-
tion method and the benchmark case of no corrections for the open source wind turbine
generator bearing dataset. Horizon 1 is the reference for the percentage change with
positive percentage changes as improvements.

Model/
Metric

MGG MGK MGB RVG RVB CVG CVB

Horizon 1
CRPS

5.0408 4.3865 4.1098 4.6166 4.9614 4.2258 4.0303

Horizon 1 %
improv.

0 0 0 0 0 0 0

Horizon 2
CRPS

4.6183 4.7419 4.7456 4.5783 4.623 4.5701 4.6219

Horizon 2 %
improv.

8.38 -8.1 -15.47 0.83 6.82 -8.15 -14.68

Horizon 3
CRPS

6.003 5.5501 5.3454 6.1034 5.6124 5.8719 5.5292

Horizon 3 %
improv.

-19.09 -26.53 -30.07 -32.2 -13.12 -38.95 -37.19

Horizon 4
CRPS

6.5989 6.8799 4.9579 6.1445 6.2297 6.2926 6.188

Horizon 4 %
improv.

-30.91 -56.84 -20.64 -33.09 -25.56 -48.91 -53.54

Horizon 5
CRPS

5.9088 5.9711 5.3989 6.8688 6.2112 6.5333 5.8279

Horizon 5 %
improv.

-17.22 -36.13 -31.37 -48.78 -25.19 -54.6 -44.6

Horizon 6
CRPS

6.0148 5.8614 5.448 6.6824 6.2144 6.3488 6.0916

Horizon 6 %
improv.

-19.32 -33.62 -32.56 -44.75 -25.25 -50.24 -51.15

Horizon 7
CRPS

6.0744 5.9804 5.8815 6.8402 6.5097 6.096 5.5408

Horizon 7 %
improv.

-20.5 -36.34 -43.11 -48.16 -31.21 -44.26 -37.48

Horizon 8
CRPS

6.3102 6.1515 6.001 6.4179 6.547 6.131 6.1607

Horizon 8 %
improv.

-25.18 -40.24 -46.02 -39.02 -31.96 -45.09 -52.86

The model acronyms are MGG - Multivariate Gaussian (Gaussian), MGK - Multivariate Gaussian (KDE), MGB - Multivariate
Gaussian (Best fit), RVG - Regular Vine (Gaussian), RVB - Regular Vine (Best fit), CVG - Centre Vine (Gaussian) and CVB
- Centre Vine (Best fit).

1 is shown in Table 4.7. The CRPS slightly improves with predictions taken at N = 2

for MGG, but N = 1 remains the most successful forecasting horizon for MGK and

MGB. The smallest extreme residuals for all Multivariate Gaussian models are at a

horizon of N = 1, which is also the case for the uncertainty bounds for the MGG

and MGB models, suggesting the models are more successful and more confident in

their predictions at this range. The MGK model has the smallest uncertainty bound

extremes at N = 5, not aligning with its CRPS performance. The largest extreme

residuals are at N = 5 for the MGG model, N = 4 for the MGK model and N = 7 for

the MGB. By being more successful at shorter horizons compared to longer, it suggests

the models benefit greatly from the increased information of additional observations

for this case.

For the Regular Vine models, the violin plots are shown in Figure 4.16. Both models
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Figure 4.16: Violin plot of the N = 8 prediction horizons for the Regular Vine models
on the open source wind turbine bearing data, showing the correction residuals against
the target signal (a perfect correction would result in 0 residual) and the spread of the
prediction interval over each horizon.
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see slight improvement in CRPS moving to a different prediction horizons of N = 2.

The worst prediction horizon for each model is N = 5 for RVG (15 hours ahead) and

N = 8 for RVB (24 hours ahead). The reduced performance at the farthest horizon is

expected due to the lack of any updated information, however the worst performance

occurring at the middle horizon may be due to external factors in the data, such as

the impact of environmental temperature fluctuations (for example, moving from day

to night). This is especially of concern for exposed plant, such as wind turbines, who

are more exposed to daily and seasonal temperature fluctuations. One component of

future work which such cases could benefit from is the inclusion of other environmental

variables in the prediction, such as weather variables. The most extreme residuals are

at a horizon of N = 8 (24 hours ahead) for the RVG model and N = 4 (12 hours ahead)

for the RVB model. This aligns with the largest extremes in the uncertainty bounds

on the correction for the RVG model, but the largest uncertainty bound for the RVB

model instead occurs at N = 2. Additionally, the smallest extreme residuals for both

models on the correction and uncertainty bounds occur at N = 1. For both best and

worst cases, the uncertainty bound aligns with the model performance for the RVG

model, showing that the risk communicated by the uncertainty bounds reflect the state

of the model performance.

The violin plot in Figure 4.17 shows the predictions and prediction intervals of the

Centre Vine models over all horizons. For both Centre Vine models, the best MAE

is at a horizon of N = 1 with the worst for CVG at N = 5 (15 hours ahead), and

N = 4 (12 hours ahead). Both models struggle at far horizons, but this range of 12-15

hours ahead is particularly challenging for this model. For both models, the uncertainty

quantification capability matches the model performance. For example, the models are

more confident (narrower uncertainty bounds) at a horizon of N = 1 where the model

performs the best in terms of minimising extreme residuals, while the largest bounds

are at a horizon of N = 4 where the models experience the worst extreme residuals.

The interval score assesses the models uncertainty bounds over all horizons, penal-

ising estimations where the required correction falls outwith the recommended interval

and rewarding tighter, more accurate intervals. As such, lower values are preferred.
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Figure 4.17: Violin plot of the N = 8 prediction horizons for the Centre Vine models on
the open source wind turbine bearing data, showing the residuals of the linear regression
model and corrections against the target signal (a perfect correction would result in 0
residual) and the spread of the prediction interval over each horizon.

122



Chapter 4. Uncertainty in time: Quantifying temporal uncertainty in timeseries data
for trustworthy temperature forecasting

The CRPS is the expansion on MAE for probabilistic forecasts across all horizons,

with lower values being preferable. The highest performing model (CVB) has the low-

est interval score for the uncertainty bounds on the correction at a horizon of N = 1,

and the second lowest interval score across all horizons. This implies that the uncer-

tainty bounds are estimated more appropriately than other models, which have been

more heavily penalised for wider and, or, more inaccurate intervals. For all models ex-

cept CVB, the horizon with the lowest interval score, and so most accurate uncertainty

bounds on the copula correction, is N = 2, with CVB at N = 1. This does not always

occur alongside the lowest CRPS for each model, with MGG, RVG and RVB having

the lowest CRPS at N = 2, matching their lowest interval score horizon, while MGK,

MGB, CVG and CVB have the lowest CRPS at N = 1. In this case the most accurate

uncertainty quantification does not necessarily reflect where the model is performing

most accurately. This also applies to the maximum, where the maximum interval score

(most penalised uncertainty bounds) occurs at N = 5 ((15 hours ahead) for the CVG,

N = 7 (21 hours ahead) for MGG and RVG, and N = 8 (24 hours ahead) for MGK,

MGB, RVB and CVB (all models with the more complicated marginals)). The models

where the worst performance in terms of CRPS align with their largest interval score

are MGB, RVB and CVG, with the rest instead occurring at N = 4 or N = 5 (12 - 15

hours ahead).

Histogram plots of each method’s residuals are shown in Figure 4.18. All of the

copula correction methods have shifted the ’no corrections’ case to be more centred on 0,

with the Multivariate Gaussian model group, the RVG model and CVB model reducing

the scale of the maximum errors. To test if the copula methods have improved the

Normality of the residual distribution (thus implying the remaining error is approaching

Gaussian noise), the skewness and kurtosis values are calculated and presented in Table

4.8. The CVG has the highest kurtosis and skewness at 1.4699 and 0.8503, respectively.

This is even larger than the ’no corrections’ case with a kurtosis of 1.4352 and skewness

of -0.8046, although with a flipped sign. This suggests that the CVGmodel has even less

weight in the distribution tails but has changed the direction of the bulk of the errors to

skew negatively. The MGG model has the lowest kurtosis and skewness of all methods,
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Figure 4.18: Residual histograms for the seven copula correction methods and the
benchmark case of no copula corrections for the open source bearing dataset.
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Model Kurtosis Skewness

No Corrections 1.4352 -0.8046

Multivariate Gaussian / Gaussian marginals 0.2507 0.0261

Multivariate Gaussian / KDE marginals 0.5388 0.2969

Multivariate Gaussian / best fit marginals 0.4414 0.1032

Regular Vine / Gaussian marginals 0.2907 -0.0514

Regular Vine / best fit marginals 0.8233 -0.6441

Centre Vine / Gaussian marginals 1.4699 0.8503

Centre Vine / best fit marginals 0.3905 0.5206

Table 4.8: Skewness and kurtosis values for the open source data model residual his-
tograms. The values for Gaussian distributions are 0 for kurtosis and skewness, as
reference.

suggesting it’s residuals are the most Gaussian, and so most useful information has

been captured by the model.

The Q-Q plot of the timeseries corrections are shown in Figure 4.19. Understand-

ably, the models deviate much more than the linear line depicting equal quantiles than

for the simplified synthetic dataset. The models with the most balance across all quan-

tiles are the MGB and CVB models which have done well to match the target data.

This would result in more accurate predictions across the full range of temperatures

experienced. The models with the highest deviations are the MGG, CVG and RVB

at lower quantiles, where the RVB model overestimates the same quantiles while the

MGG and CVG underestimate. The RVB has the highest deviation at higher quantiles

where it underestimates the target quantile values. This has different consequences in

practice, especially underestimating higher quantile values as this will potentially allow

assets to experience higher temperatures than expected. This may mean potential in-

tervention may have to be conducted at much shorter notice than desirable. For cases

such as wind turbines, generation may have to be curtailed to prevent temperatures

in key assets rising higher than permitted levels, or parts may have to be replaced at

more frequent intervals due to the increased thermal stress.

The lagged target samples from et to et−1 and 1000 samples from the fitted copulas

are shown in 4.20. The target samples are located in a dense cloud in the centre at

[0.5,0.5], with sparse behaviour around this value in the lower tail. This is reflected in
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Figure 4.19: Quantile-quantile plot of the target signal quantiles against the corrected
signal quantiles for the open source wind turbine bearing data. Identical distributions
result in a straight line.
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Figure 4.20: Open source wind turbine bearing dataset relationship between et to et−1

for the target data and sampled copulas.
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the MGK samples where the lower tail behaviour is present around a dense centre. The

MGB model behaves similarly, as it has also captured the sparsity around the dense

centre but with reduced attention at the extremes. The MGG, RVG and CVG models

have generalised the trend to be more elliptical, with the RVG increasing the sparsity

in the upper half of the plot (increased density in the lower half of the et−1 samples)

and the CVG reflecting this behaviour to have higher density in the upper half of the

plot (higher values of et−1). The RVB and CVB depict similar behaviour where both

models have generalised the target data to have a tight upper tail dependence with

sparsity in the lower tail.

4.3.4 Case study 3 - Industrial partner data: Nuclear reactor coolant

temperature forecasting

Industrial case study organisation and methodology

The seven copula-based methods are applied to anonymised temperature data from a

nuclear plant heat exchanger. The data is pre-processed to include only effective full

power days (EFPD) and 30 EFPD post-outage are discarded to remove any settling

behaviour. This process ensures the models are trained on aging behaviour rather than

other modes of plant operation. The data is anonymised by normalising the tempera-

ture to a scale of [0,100] and the EFPD is anonymised by masking the timeseries from

0 to 1000 to preserve partner data privacy. A linear regression model is used to predict

the temperature timeseries over time. The target timeseries represents reactor inlet

header temperature which is created from empirical relationships between measured

header temperature, boiler pressure and feedwater temperature at different quadrants

of the reactor. The data is split into training, validation, and testing sets at a ratio

of 70:20:10 with 1840 total samples, and the timeseries for the inner zone temperature

sensor and machine learning prediction is shown in Figure 4.21. The jumps in the linear

regression model occur due to the masking of the sensor timeseries to remove gaps in

the the operational data due to outages or missing data.

For the inner zone temperature timeseries, a linear regression model is trained on

a training set and residuals are created from the linear regression predictions on a
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Figure 4.21: Anonymised inner zone temperature in a nuclear reactor with the linear
regression predictions on the training, validation and testing sets. The data is remasked
to anonymise gaps in the data after outages or sensor failures and to make the data con-
tinuous (this process causes the linear regression predictions to no longer look straight).
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validation set. The errors are lagged from et to et−N , where N = 15, to train the

seven copula-based methods. Prior to training the copulas, the errors are normalised

from [0,1] and the scaling parameters are kept so that the copula correction samples

may be scaled into the appropriate scale of the data space. The testing set predictions

are created using the conditional relationship between the last known error up to the

forecast horizon of N−1. Stepping through each timestep updates the predictions over

the new horizon to result in N correction predictions per data point.

Industrial case study results

For each copula-based method, the recorded MAE and percentage improvement in MAE

are given in Table 4.1 and Table 4.2, respectively. The industrial dataset MAE values in

Table 4.1 show that all copula models improve on the ”no corrections” benchmark, with

the worst improvement shown in Table 4.2 from the MGK model cutting the MAE by

70.8%, to the best improvement from the CVG marginals cutting the MAE by 82.2%.

For the three categories of models, the Gaussian marginals were the highest performing

Regular Vine model, the Gaussian marginals were the highest performing Centre Vine

model, and the Gaussian marginals were the highest performing Multivariate Gaussian

model based on MAE.

The target timeseries, linear regression prediction and corrected timeseries with

uncertainty bounds given by the 90% copula CDF values are shown in Figure 4.22

for each copula model. In Figure 4.22, the Regular Vine and Multivariate Gaussian

models seem to track (red) the target signal (blue) more accurately towards the end of

the testing set where a jump in the data is present. The Centre Vines, however, adapt

to this jump and manage to track the target signal throughout the testing dataset. The

Centre Vines models have very wide prediction intervals (orange) before the jump in

the data, which reduces once the jump has occurs and the models become less uncertain

about the state of the plant.

The violin plot of the predictions and prediction interval over each horizon for the

industrial heat exchanger dataset are separated by model type. The Multivariate Gaus-

sian models are shown in 4.23. The breakdown of the horizon CRPS and percentage
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Figure 4.22: Timeseries plots of the seven copula models with the true sensor testing
data, corrected timeseries and prediction interval on the copula corrections.
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Figure 4.23: Violin plot of the N = 15 prediction horizons for the Multivariate Gaus-
sian models on the industrial heat exchanger data, showing the residuals of the linear
regression model and corrections against the target signal (a perfect correction would
result in 0 residual) and the spread of the prediction interval over each horizon.
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improvement over horizon 1 is shown in Table 4.9. All Multivariate Gaussian copula

models have a percentage improvement over the reference horizon of N = 1 at N = 2,

with the MGK model having the largest improvement of 49.03 %. The worst CRPS

occur at different horizons for each model with MGG at the shortest horizon of N = 7

(week ahead) and MGK at the furthest horizon of N = 15. The furthest horizon in

this case study is N = 15, and so the poorest performance of the MGK model at this

forecast horizon makes sense due to the lack of information to make more informed pre-

dictions, however, for the MGG model, there is behaviour being learned that misleads

the model at this week ahead mark which makes it perform worse than further out

horizons where less information is available. The model uncertainty bounds demon-

strate that the model is able to recognise where it is not confident in areas where the

uncertainty intervals are larger and the model corrections under perform, as this means

more risk is being assigned to areas that are shown to possess more risk. The same

is true for the inverse, where the model is shown to perform well in areas it is more

confident in the correction. Looking at the extremes in both uncertainty bounds and

correction residuals, the MGK model has both of these aligned, performing the best

at N = 2, and worst at N = 10, with the uncertainty quantification in line with this

performance. The MGG model has aligned minimised uncertainty bounds and correc-

tion performance extremes at N = 4, and the MGB model does not have any aligned

maximum or minimum extremes across horizons. The violin plots for the Regular Vine

models are shown in Figure 4.24. For both models, there is significant improvement

at N = 2 over the chosen correction horizon, with the RVG model also showing slight

improvement at N = 3. This again, may be due to better generalisations at these hori-

zons. The minimum extremes in the correction residual and uncertainty bounds align

on the same forecast horizon for both models, with that horizon being N = 1 for the

RVG model and N = 2 for the RVB model. For the RVB model, the minimum extremes

occur on the same horizon with the best CRPS, while the RVG minimises the extremes

at the chosen horizon in the current methodology. Minimising extreme residuals may

be a more desirable metric than general performance (measured by CRPS, for example)

in a practical application. There may be threshold alarms on an asset which, if not
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Table 4.9: MAE and percentage change for each forecast horizon copula-based correc-
tion method and the benchmark case of no corrections for the industrial heat exchanger
dataset. Horizon 1 is the reference for the percentage change with positive percentage
changes as improvements.

Model/
Metric

MGG MGK MGB RVG RVB CVG CVB

Horizon 1
MAE

2.8993 3.5687 3.0339 2.9275 3.5263 2.1764 3.0277

Horizon 1 %
change

0 0 0 0 0 0 0

Horizon 2
MAE

2.0842 1.8188 1.7309 1.7375 1.7881 1.8126 1.8103

Horizon 2 %
change

28.11 49.03 42.95 40.65 49.29 16.72 40.21

Horizon 3
MAE

3.0687 3.6265 3.0692 2.8758 3.8826 2.5364 3.1815

Horizon 3 %
change

-5.84 -1.62 -1.16 1.77 -10.1 -16.54 -5.08

Horizon 4
MAE

3.3624 3.7306 3.5424 4.016 4.6081 2.5501 2.8019

Horizon 4 %
change

-15.97 -4.54 -16.76 -37.18 -30.68 -17.17 7.46

Horizon 5
MAE

3.1352 3.7116 3.4275 4.1421 5.1906 2.7202 2.8882

Horizon 5 %
change

-8.14 -4.0 -12.97 -41.49 -47.2 -24.99 4.61

Horizon 6
MAE

3.7932 3.9238 3.5594 4.3876 5.8578 2.4773 3.0453

Horizon 6 %
change

-30.83 -9.95 -17.32 -49.88 -66.12 -13.83 -0.58

Horizon 7
MAE

4.2552 3.9436 4.1059 5.3412 5.4259 2.4607 2.9818

Horizon 7 %
change

-46.77 -10.51 -35.33 -82.45 -53.87 -13.06 1.52

Horizon 8
MAE

3.724 3.9082 4.019 5.1606 5.759 2.8213 3.1938

Horizon 8 %
change

-28.44 -9.51 -32.47 -76.28 -63.32 -29.63 -5.49

Horizon 9
MAE

3.8917 3.974 3.5323 5.4438 5.7873 2.7196 3.2284

Horizon 9 %
change

-34.23 -11.36 -16.43 -85.95 -64.12 -24.96 -6.63

Horizon 10
MAE

3.9411 4.2645 3.8654 5.1837 6.0124 2.85 3.0407

Horizon 10
% change

-35.93 -19.5 -27.41 -77.07 -70.5 -30.95 -0.43

Horizon 11
MAE

3.807 4.4194 4.2213 5.0281 6.0263 2.8108 3.0175

Horizon 11
% change

-31.31 -23.84 -39.14 -71.75 -70.9 -29.15 0.34

Horizon 12
MAE

4.2056 4.2943 4.5808 4.8511 5.4499 2.7869 3.1681

Horizon 12
% change

-45.06 -20.33 -50.99 -65.71 -54.55 -28.05 -4.64

Horizon 13
MAE

4.1796 4.413 4.4129 4.8071 5.6946 2.7684 3.352

Horizon 13
% change

-44.16 -23.66 -45.45 -64.2 -61.49 -27.2 -10.71

Horizon 14
MAE

4.1659 4.4223 4.4576 4.7947 5.9275 2.7463 2.9398

Horizon 14
% change

-43.69 -23.92 -46.93 -63.78 -68.09 -26.19 2.9

Horizon 15
MAE

4.0999 4.4512 4.2626 4.8092 5.5663 2.9193 3.2321

Horizon 15
% change

-41.41 -24.73 -40.5 -64.28 -57.85 -34.13 -6.75

The model acronyms are MGG - Multivariate Gaussian (Gaussian), MGK - Multivariate Gaussian (KDE) and MGB - Multi-
variate Gaussian (Best fit), RVG - Regular Vine (Gaussian), RVB - Regular Vine (Best fit), CVG - Centre Vine (Gaussian)
and CVB - Centre Vine (Best fit).
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Figure 4.24: Violin plot of the N = 15 prediction horizons for the Regular Vine models
on the industrial heat exchanger data, showing the residuals of the linear regression
model and corrections against the target signal (a perfect correction would result in 0
residual) and the spread of the prediction interval over each horizon.
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Figure 4.25: Violin plot of the N = 15 prediction horizons for the Centre Vine models
on the industrial heat exchanger data, showing the residuals of the linear regression
model and corrections against the target signal (a perfect correction would result in 0
residual) and the spread of the prediction interval over each horizon.

expected to trip, have more consequences for the immediate intervention required on

the asset than being within a wider, but acceptable margin of error within an allowed

temperature threshold. The maximum extremes for both the correction residuals and

uncertainty bounds align on N = 7 for the RVG model, but not for the RVB model.

Again, this means that the RVB model is appearing more confident on a horizon which

is incurring the models most extreme residuals. Lastly, the violin plots for the Centre

Vine models are shown in Figure 4.25. The CVG model CRPS improves at a horizon of

N = 2, as with previous models, but the CVB model experiences interesting behaviour

in improvement across horizons. For previous models that have improved at multiple

horizons, it tends to occur chronologically, with improvement percentage lessening at

longer horizons. For the CVB model, improvements occur at N = 2, 4, 5, 7, 11, 14, with

the percentage improvement generally lessening the larger the horizon. This means

that, taking any of these horizons, the corrections would be better than for the horizon
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which provides the model with seemingly the most information. The largest improve-

ment is at N = 2, which aligns with all other models in this case study. The CVB model

also has aligned correction residual and uncertainty bound extremes for both the max-

imum and minimum cases, demonstrating a match in demonstrating when the model

believes it is confident or not, and when the model correction performance reflects this

belief.

The CRPS is given in Table 4.4 for each model over all horizons and the maximum

and minimum with corresponding horizons, and the interval score on the prediction

interval on the copula correction are shown in Table 4.5 across all horizons for each

model, with the horizon associated with the maximum and minimum interval score

provided. On the industrial heat exchanger case study, the CVG model has the lowest

mean and standard deviation for both the average CRPS across all horizons and the

average interval score on the uncertainty bounds across all horizons. The RVB model,

in contrast, has the highest (and so worst) mean and standard deviation across the

average CRPS and interval score on all horizons. All models have their lowest CRPS

and interval score occur at a horizon of N = 2, which, as discussed in previous case

studies, is likely due to a balance of model information across the number of available

forecasting horizons while preventing overfitting, preserving model generalisation. At

this horizon of N = 2, the MGB model had the best CRPS while the MGG had the

worst. For the the interval score, the RVB model had the lowest interval score of all

models at N = 2, while the MGG model had the highest. However, the worst CRPS

and interval score horizon changes per model. For CRPS and interval score, the MGK

and CVG models have the worst horizon at the furthest forecasting horizon of N = 15,

where the model is provided with the least information. The CVB model, on the

other hand, has its highest interval score at a horizon of N = 1, implying its poorest

uncertainty quantification performance occurs at the horizon of our chosen correction

where the risk associated with the prediction is most important. For model maximum

CRPS and interval score, the RVB model had the worst of all model maximums, while

CVG had the lowest.

The changes in histograms in Figure 4.26 show that all copula models have moved
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Figure 4.26: Residual histograms for the seven copula correction methods and the
benchmark case of no copula corrections for the industrial heat exchanger dataset.
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Model Kurtosis Skewness

No Corrections -0.9251 -0.0388

Multivariate Gaussian / Gaussian marginals 0.5598 0.0443

Multivariate Gaussian / KDE marginals 1.534 0.8597

Multivariate Gaussian / best fit marginals 0.2998 0.2858

Regular Vine / Gaussian marginals 1.4171 -0.1521

Regular Vine / best fit marginals 3.2703 1.2128

Centre Vine / Gaussian marginals 2.7392 -1.0488

Centre Vine / best fit marginals 0.1965 0.4619

Table 4.10: Skewness and kurtosis values for the industrial data model residual his-
tograms. The values for Gaussian distributions are 0 for kurtosis and skewness, as
reference.

the errors to be centred much closer to 0 than the benchmark ’no corrections’ case. The

’no corrections’ case entirely overestimates the value of the target signal, and all models

can recover this shift. To test the Normality of the residuals after each correction, the

skewness and kurtosis values are shown in Table 4.10

. The ’no corrections’ case has a negative kurtosis, which implies heavier tails than

a Gaussian distribution. All the copula models change the kurtosis to a positive value,

which implies less weight in the tails than expected for a Gaussian with the bulk of

the residuals centralised in the distribution. The only models with a smaller value of

kurtosis than the ’no corrections’ case are the MGG, MGB and CVB models, which

have made the ’no corrections’ case closer to Gaussian. The ’no corrections’ case has a

small negative skewness value which means the left tail is heavier than the right. None

of the copula models reduce the value of skewness, which implies some transform to

the data which has not resulted in leftover Gaussian noise. The RVG and CVG remain

negatively skewed, while the other models have shifted the skewness to a positive value.

The model with the highest kurtosis and skewness is the RVB model, with the RVG

model closely behind. The model with the lowest kurtosis is the CVB (3rd lowest

skewness), and lowest skewness is the MGG (3rd lowest kurtosis).

Compared to the synthetic dataset, the deviations on the Q-Q plots in Figure 4.27

are much more evident, with MGK, RVG, RVB and CVB models showing the highest

deviation in the mid quantile predictions where the models tend to overestimate the
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Figure 4.27: Quantile-quantile plot of the target signal quantiles against the corrected
signal quantiles for the industrial heat exchanger data. Identical distributions result in
a straight line.
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value of the target signal. The MGG, MGB and CVG models match with the target

signal on the Q-Q plot more accurately. The most severe deviations across the models

overestimate the target quantiles which in a practical setting could result in forecasts

being utilised to advise emergency maintenance or changes in plant operation to prevent

temperature thresholds from being violated. However, most of these deviations occur

at the mid quantiles which may not have as much impact as a deviation at an upper

extreme. Interestingly, all models seem to have decent calibration at the extreme

quantiles which is where, depending on the application, the most severe consequences

of temperature occur.

The copula fitting shown in Figure 4.28 shows that the more complex marginal

fitting processes (KDE or best fit) tended to capture the behaviour occurring in the

upper tail in the target residuals (top left of Figure 4.28), whereas the models with

Gaussian marginals tend to widen their focus, exhibiting longer lower tail behaviour.

However, based on other metrics, capturing more general behaviour may have allowed

the Gaussian marginal methods to succeed over the more complicated marginal meth-

ods.

4.3.5 Result overview and discussion

A variety of metrics and visualisations have been chosen to examine the model per-

formance from several view points, with success and failure in each metric resulting

in a different operational consequence. The percentage improvement in MAE at the

chosen horizon over the linear regression model justifies the additional computational

and theoretical complexity of the hierarchical copula approach. The CRPS, interval

score and violin plots analyse the copula model competency in providing suitable un-

certainty quantification that aligns with the performance of the model corrections. It

is expected that the model should provide a tight prediction interval on corrections

that are deemed to have less risk, and this should align with more accurate corrections.

Additionally, analysing the model performance over its forecast horizons can identify

barriers to model performance which may reveal areas for additional model develop-

ment. For example, it would be expected that forecasting to the furthest available

141



Chapter 4. Uncertainty in time: Quantifying temporal uncertainty in timeseries data
for trustworthy temperature forecasting

0.00 0.25 0.50 0.75 1.00
et

0.00

0.25

0.50

0.75

1.00
e t

 
1

Target

0.0 0.2 0.4 0.6 0.8 1.0
et

0.00

0.25

0.50

0.75

1.00

e t
 

1

Multivariate Gaussian / Gaussian marginals

0.00 0.25 0.50 0.75 1.00
et

0.0

0.2

0.4

0.6

0.8

1.0

e t
 

1

Multivariate Gaussian / KDE marginals

0.00 0.25 0.50 0.75 1.00
et

0.0

0.2

0.4

0.6

0.8

1.0

e t
 

1

Multivariate Gaussian / best fit marginals

0.00 0.25 0.50 0.75 1.00
et

0.00

0.25

0.50

0.75

1.00

e t
 

1

Regular Vine / Gaussian marginals

0.00 0.25 0.50 0.75 1.00
et

0.00

0.25

0.50

0.75

1.00

e t
 

1

Regular Vine / best fit marginals

0.00 0.25 0.50 0.75 1.00
et

0.00

0.25

0.50

0.75

1.00

e t
 

1

Centre Vine / Gaussian marginals

0.4 0.6 0.8 1.0
et

0.00

0.25

0.50

0.75

1.00

e t
 

1

Centre Vine / best fit marginals

Figure 4.28: Industrial heat exchanger dataset relationship between et to et−1 for the
target data and sampled copulas.
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horizon would be the most uncertain and inaccurate due to limited information being

available to the model. It would follow that closer horizons should be expected to be

more accurate due to benefiting from the additional observations. Where models do

not experience this behaviour, there may be additional relations in the data that either

misleads the model; information that is insufficiently related to the target variable; or

behaviour that the model is unable to capture. This may be permissible if the model

is able to accurately communicate the risk in the correction at these points, and if the

horizons affected have less impact on operational decisions. The histogram, timeseries

plot and Q-Q plot are three variations on visualising the model performance over the

testing data. The histogram provides the distribution of remaining residuals after the

corrections are applied, showing where the mode falls, the tendency and shape of the

distribution and the extreme values. The extremes provides a sense of the worst case

residuals while the timeseries plots demonstrate where these worst case residuals oc-

cur. Combined, the histogram provides an overview of how wrong the model is, and

the timeseries plot shows where the model goes wrong. To supplement this function

of showing where the model goes wrong, the Q-Q plot presents how well the model

captures the target distribution. Where the model deviates from the target distri-

bution, and if the model under or over estimates the value, can provide additional

understanding of risk in applying the model. If the model continuously underestimates

the upper extremes, the asset may be experiencing more severe temperatures than is

being communicated by the model. This may result in more severe wear over time,

or the unexpected tripping of alarms requiring immediate operation changes. Lastly,

the copula density plots provide a sanity check on how each copula model approaches

the first lagged temperature variable. The density plots demonstrate what features

the copula models have identified and prioritised, and also show where the copulas are

fitting poorly.

For the synthetic dataset, the MGG model was, across the different metrics, found

to be the best performing model with the most balance across the CRPS, interval

score and histogram metrics. The performance in these metrics was also visible in

the timeseries plots where the MGG model corrections were more able to track the
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target signal with less noise and peaks. The MGG also had the second best percentage

improvement in MAE over the linear regression benchmark, with third place going

to the MGB. The MGB model additionally performed well in the violin plots, with

the most balanced CRPS performance over all horizons. The MGB model also most

closely captured important detail in the lower tail of the copula density plots. The worst

performing model was the RVB model, closely followed by the RVG model. The RVB

model performed poorly across the percentage improvement in MAE over the linear

regression, had the most visible timeseries noise and had the highest CRPS across all

forecast horizons. For the CRPS summary, the RVB model had the largest mean of

all models for the averaged horizons and the largest CRPS across all models worst

performing horizon. The RVB uncertainty quantification ability was the poorest of all

models, with the highest mean and standard deviation of the averaged horizon interval

scores, and the largest interval score across all models best and worst horizons. The

RVG model performed poorly on the histogram metrics, with the highest kurtosis and

second highest skewness, showing poor improvement on improving the linear regression

residual Normality. It also had the largest deviations in the Q-Q plot at the lower

and mid quantiles, and the copula density showed a noisy circular behaviour with

poor conditioning to the target sample shape. In this case study, with the MGG and

MGB models as the top performing models, and the RVB and RVG models as the

bottom performing group, the Multivariate Gaussian has outperformed the Regular

Vine approach, regardless of marginal assumption choice.

For the open source wind turbine bearing temperature dataset, the MGB model

performed the best, tied jointly with the CVB model. The MGB provided balanced

performance across all forecasting horizons, minimising errors at longer timescales com-

pared to the other models. The mean and standard deviation on the averaged horizon

CRPS was the lowest for the MGB model, which also had the lowest maximum CRPS

of all models. Other than deviation at the lower quantiles, the MGB model experienced

the lowest deviation from the target quantiles in the Q-Q plot. The CVB model slightly

outperformed the MGB in percentage improvement over the linear regression, had the

lowest mean interval score averaged across all horizons and lowest minimum interval
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score across all horizons, hence achieving the second place spot. The worst models

were a tie between the MGG and RVG models. The MGG model underperformed in

the percentage MAE improvement over the linear regression base model and had vsibly

poorer tracking of the target signal in the timeseries plots, expecially the large peaks

and troughs. With the copula density plots, the MGG model opted for a large, general

coverage with less details captured compared to the other models. The RVG model

had poor CRPS balance across all horizons and underperformed in CRPS and interval

score. The RVG model had the largest mean and standard deviation in CRPS averaged

across all horizons and the highest CRPS of all models worst horizon. Additionally, the

RVG model had the highest mean interval score averaged across all horizons. In this

case, the complex marginal assumptions outperformed the simplified, with the MGB

and CVB outperforming the MGG and RVG. Once again, the Regular Vine features in

the underperforming models.

For the final case study on the partner industrial heat exchanger dataset, the CVG

model is the best performing, with no distinct second best model. The CVG performs

well across the percentage improvement in MAE compared to the linear regression

model and also has the most alignment with the target quantiles in the Q-Q plot, despite

some deviation in the upper quantiles. It has the best general performance across all

horizons, with the lowest mean and standard deviations in CRPS and interval score

averaged across all horizons. The CVG model has also minimised the maximum CRPS

and interval score at the worst performing horizons compared to the other models. The

worst performing models are the RVB, then MGK. The RVB underperforms across

most metrics: having poor performance across all horizons, the highest mean, standard

deviation and worst case maximum CRPS and interval score; the highest skewness and

kurtosis for the residual histograms; and lastly the largest Q-Q Plot deviations in the

lower quantiles. The MGK model only performs worse than the RVB model in the

percentage improvement in MAE over the linear regression base model and is visually

noisier with larger peaks in the timeseries plot. However, the MGK model seems to

capture the target behaviour most appropriately in the copula density plot. In this

case, the findings are less clear cut. This is the second time the Centre Vine models
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have appeared in the top group, the second time the Multivariate Gaussian models

have appeared in the bottom group, and the third time the Regular Vine models have

appeared in the bottom group, cumulatively, across all case studies. In this example, the

simpler marginal assumption model was a success, with the complex marginal methods

appearing in the bottom group. Additionally, across all case studies, only the Centre

Vine models have appeared in the top group exclusively. The Regular Vine models

have exclusively appeared in the bottom group, while the Multivariate Gaussian model

appears in both top and bottom groups cumulatively across all three case studies.

An overview figure emphasizing the process and some selected results from the

industrial heat exchanger dataset was presented prior to the case studies in Figure 4.1

to further highlight the practical benefit of this approach, and the consequences of no

intervention from the copula models. As shown in the outcome section of Figure 4.1, the

true measurement is much closer to the copula predictions and within the uncertainty

bounds estimated by the copula model, while the base model (linear regression) entirely

overestimates the true measurement by over 10 ◦C.

4.4 Conclusion, contribution and future work

Cost-effective maintenance for critical assets requires sufficient time margins and an

accurate assessment of the health of assets to prevent unnecessary interventions which

incur loss of revenue. One method of accomplishing this is through hierarchical mod-

eling to predict the temperature increases over a suitable time horizon. In this paper,

complex dependency modeling was used to calibrate and provide uncertainty quantifi-

cation for a base model in a hierarchical modeling approach applied to temperature

forecasting of critical infrastructure. A simple, interpretable data-driven linear re-

gression model was used to generate the initial temperature forecasts and statistical

Copula models were used to calibrate the predictions over short-term horizons. The

applicability of the approach to industrial data was the primary factor influencing the

adoption of Copulas, in order to represent time-series behavioral patterns. For ex-

ample, data quality and malfunctioning sensors may result in noise which is neither

linear dependent nor Gaussian distributed. In this chapter, this hypothesis has been
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executed through the demonstration of different multivariate distributions considered

for uncertainty propagation over time horizons (as detailed in tables 4.4 and 4.5). A

variety of high dimensional Copula models were compared in this study, investigating

the differences in Multivariate Gaussian and Vine Copulas with different levels of com-

plexity in the assumptions of their marginal distributions. The density in the Copula

models were used to provide corrections with a measure of uncertainty based on the

last known error between the linear regression model and the true state of the plant,

informed by predictions made at previous horizons. The uncertainty bounds provide

a measure of risk in the correction, showing where the Copula model is confident in

its calibration. Results demonstrate the Copula-based approach is robust against some

industrial data quality issues. For example, considering Figure 4.22, discrete changes

in the data due to maintenance or post-outage behavior did not degrade the methods

performance. Additionally, in the case of sensor noise (included as Gaussian noise) in

the synthetic dataset, the proposed method performed better than the base model in

all scenarios. Both these data quality issues are addressed as the proposed method is

robust to both the form of noise distribution and the form of dependency that dictates

the propagation of uncertainty.

Three datasets were used to demonstrate the methodology: the first was a synthetic

dataset designed to demonstrate the ability of the Copulas on a purpose built scenario;

the second was operational data of the rear bearing temperature of an operational tur-

bine, which is an openly available dataset showing the applicability of the method to

other industrially relevant timeseries; and lastly, the operational data of a nuclear plant

inner zone temperature used to estimate the effects of aging by evaluating the heat ex-

change between the reactor and coolant loop. In each dataset, long-term predictions

were provided by the base model and where the datasets were split into training, vali-

dation, and testing sets. As all models were validated against held-out data from real

operational environments, the models have not been previously exposed to this data,

thus the performance of the models have been evaluated without contamination. All

Copula models improved on the benchmark case which was the linear regression model

with no corrections. The Center Vine models out competed the Multivariate Gaussian
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and Regular Vine models on the operational datasets, with the best fit marginals pro-

viding 27.16 % improvement in MAE over the benchmark for the wind turbine dataset

and Gaussian marginals providing a 82.17 % improvement in MAE over the benchmark

for the nuclear plant data. For the synthetic dataset, the Multivariate Gaussian with

KDE marginals was the highest performing model with a 61.27 % improvement in MAE

over the benchmark. Overall, all models provided useful corrections to the base model,

which has the potential to significantly improve in cases where more complex, black

box base models would be acceptable.

4.4.1 Future Work

There are opportunities for the presented method to be developed and refined. This

work calibrated long-term predictions provided from a simple base model due to the

requirement to reflect a transparent and well-studied model that is used by the heavily

regulated nuclear sector. These constraints may be more flexible in other industries

with looser regulations and there exists the opportunity to use alternative, more ad-

vanced, base models that may lead to further performance improvements. Furthermore,

the computational efficiency of this method could be improved as discussed within sec-

tion 4.3.1 by the use of a surrogate model to replace computationally expensive CDF

calculations. This would allow more effective support for larger models to either include

other variables of interest or support longer prediction horizons. Other extensions to

this method may include the inclusion of other relevant system parameters and the use

of multi- or cross-modal data.

The generality of the Copula-based approach presented in this work imparts to it a

wide domain of applicability. The work builds on applications in finance [126], biotech-

nology [124], hydrology [130], and power distribution [137]. In this work, the method

was demonstrated on bearing data (section 4.3.3) which is critical to many other types

of rotating plant, e.g., motors, pumps, or generators, found across a range of industries

ranging from manufacturing, mining, or oil and gas. In addition, temperature is a

crucial measurement for process control often encountered within chemical engineering

or food processing equipment which may benefit from the type of predictive model
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presented in this work. In future, the proposed method could also be applied to spatial

or spatio-temporal data, for example, where the lagged timeseries data featured in this

work could be replaced with spatially adjacent data on a graph network and the depen-

dency structure between these adjacent points can be captured through the Copula.

Such scenarios may be relevant for tasks in the field of structural health monitoring.
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Chapter 5

Uncertainty in space:

Quantifying spatial uncertainty

to validate affordable structural

health monitoring test rigs

5.1 Photometric stereo test rigs for structural health mon-

itoring

Many industries rely on the integrity of large, complex structures to ensure safe and reli-

able operation. Structural health monitoring (SHM) allows the condition of an asset to

be monitored, supporting early detection and assessment of structural damage which is

essential for the development of cost-effective maintenance strategies. Non-destructive

SHM solutions exist which can allow surface damage to be recreated virtually for more

indepth assessment and the monitoring of the rate of degradation over time. One such

solution is photometric stereo. Photometric stereo photographs surfaces under various

lighting conditions to determine the topology of the surface, allowing detailed recre-

ation of damage shape and size. The virtual meshes created with this method can

allow operators to make complex decisions based on the location and geometry of the
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surface damage. However, inaccuracies or limitations in the capability of photometric

stereo based assessments can result in misinformed maintenance decisions, potentially

leading to either unnecessary maintenance being conducted or the worsening of surface

damage from lack of intervention.

Across many engineering applications, monitoring is required in areas that may

be hazardous, space-constrained or time-consuming to reach. In some cases, types

of contamination from severe environments may require the monitoring device to be

disposed of or discarded after only a few uses. As such, potential visual inspection rigs

must be portable, lightweight and affordable to promote usage in industry. However, a

compromise may have to be made in terms of accuracy of the rig due to the constraints

placed on its cost or size. The limitations introduced by these constraints can be

addressed to reduce the impact on the confidence of the rigs measurement of damage

shape and depth through the use of additional validation procedures using data-based

models and uncertainty quantification, which is the focus of this chapter.

In this work, the analysis and quantification of uncertainty sources in a photo-

metric stereo test rig was conducted through an intersystem comparison against a well-

characterised, laser-based method (coordinate measurement machine (CMM)). An open

source dataset was collated and published containing a variety of physical objects mea-

sured by the CMM and photometric stereo rig, and also a virtualised version where the

virtual rig, rendering process and virtual objects were curated for further analysis by

other researchers or future work. Three calibration methods were applied to quantify

the rig error and uncertainty with various levels of complexity: from the self-calibration

of the rig on a blank background; to residual dependency modelling using polynomial

regression; and high dimensional copula models. Within non-contact optical measure-

ment, a calibration object is often used to calibrate equipment [232]. This process is

accounted for in this work through calibrating the rig against a flat surface. Deep learn-

ing models capable of uncertainty quantification have been applied to spatiotemporal

data applications including air quality and epidemic modelling [233]. However, as dis-

cussed in Chapter 2, while the explainability of deep learning models are being actively

improved, they are still currently unsuitable for highly regulated environments, such as
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the nuclear industry. In geology applications, Kriging (based on Gaussian Process re-

gression) is used to provide interpolations between samples while providing uncertainty

quantification for 2D or 3D applications [234]. However, this suffers from the same

limitations discussed in Chapter 2; while the scalability of Gaussian Process Regression

is being developed, it is currently restrictive to smaller dataset sizes. The scale of the

datasets in this application is much larger, at 3̃00 k data points per object. Copula

models have been utilised in spatial data applications to capture dependence between

weather variables [125], or spatial and temporal dependence for rainfall prediction [235].

The limitations of the other methodologies with respect to the constraints imposed by

application domain and dataset size, alongside the successful demonstration of copulas

for spatial dependence modelling, supports the use of copulas in this work. Specifically,

copulas are used to capture the dependency between lagged base model prediction error

to provide model calibration and uncertainty quantification on a spatial dataset.

5.1.1 Contribution and novelty

Part of the work presented in this chapter is a published article [14] which contains

the extended discussion of the experimental design and data collection process, with

the data made open source for other researchers benefit. The work was conducted in

collaboration with the Civil Engineering group at University of Strathclyde, UK, who

provided access to the photometric stereo rig and associated software, while the CMM

access was provided and supervised by National Physical Laboratory at Huddersfield,

UK. Modelling and analysis work was jointly supervised by the Industrial Informatics

group at the University of Strathclyde and the Data Science team at the National

Physical Laboratory, Teddington, UK.

The contribution of this chapter broadly covers the data set collection and curation,

and the development of a data-based analytics framework for the collected data.

• Dataset creation contribution:

– The dataset collected and curated as part of this work provides a set of

benchmarks for understanding the uncertainty sources between 3D geome-
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tries and their 2D renderings under various lighting conditions.

– Objects included in the dataset are collected from built environments with

artefacts of damage, natural degradation, and high frequency surface tex-

tures relevant to engineering disciplines. This includes the presence of cracks

and spalling damage which, depending on the fidelity of the applied photo-

metric stereo method, would result in different consequences in civil engi-

neering maintenance applications.

– The materials represented in the dataset are relevant to civil applications

(concrete), and further diversified to additional disciplines with inclusion of

clay and common plastic used in 3D printing (PLA).

– Additionally, the dataset contains synthetic data with high resolution con-

crete textures to allow analysis and comparison of experiment virtualization

processes with lab collected data.

– Potential further applications of the dataset beyond those developed in this

work apply to researchers interested in developing methods for improving

the accuracy of photometric stereo assessments and 3D printed objects. The

data could be used to validate new photometric stereo algorithms by pro-

viding photometric stereo input information and their ‘ground truth’ mesh

comparisons or developing new methods of generating and validating syn-

thetic data.

• Modelling and analysis contribution:

– Analysis in this work addresses the unknown inaccuracy of an affordable,

portable test rig designed for visual inspection of civil engineering assets.

This is achieved through the application of data-based models in a hierar-

chical modelling structure designed to calibrate predictions made to quantify

the rig error and uncertainty.

– The rig geometry was embedded into useful feature data to perform data

based analysis using an explainable base model (polynomial).
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– The copula models utilised predictions made on nearest point cloud points to

predict the polynomial residual at a point of interest, providing calibration

for improved predictions and uncertainty quantification.

– The statistical models in the hierarchical modelling structure allow risk to

be assigned to both the data-based model predictions and the rig overall

performance. The approach used is translatable to other rig designs where

the trade off between cost and accuracy may result in a compromise, and

where rich data reserves have been produced for use to improve predictions

post rig application.

The rest of this chapter is organised as follows: Section 5.2 covers prerequisite lit-

erature including visual inspection in structural health monitoring applications and

photometric stereo fundamentals. Section 5.3 covers the intersystem comparison and

experiment virtualisation processes undertaken as part of the data collection process,

along with the pre-processing steps for data curation, and the objects chosen for in-

clusion in the dataset. Section 5.4 covers the analytics approach developed to provide

further analysis of the errors present in the rig, with discussions on the modelling re-

sults and computational considerations. Finally, Section 5.5 contains the conclusion

and future work.

5.2 Literature: Photometric stereo and visual inspection

for structural health monitoring

5.2.1 Visual inspection in structural health monitoring

SHM [236] allows the condition of an asset to be assessed to support maintenance

decision-making across a wide range of industries. Visual inspection is a non-destructive

testing method [237] focused on detecting visible surface damage which may indicate

the need for intervention due to compromised structural integrity based on the location,

damage severity and type of damage present. Common surface conditions include cracks

or spalling [238, 239], corrosion [240], or deposits which may be due to a build up of
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Figure 5.1: Diagram of the basic photometric stereo process, based on images captured
from a constant viewing angle using multiple light sources. The image intensity data
can be used to reconstruct the surface normals.

foreign material or wildlife encroachment [241]. In aviation, there is a growing interest

in visual inspection procedures due to the deployment of new composite materials in

aircraft which may experience novel defect modes, requiring further study [242]. In

naval applications, visual inspection based methods are required to automate ship hull

inspection processes [243]. Visual inspection techniques can be combined with data-

based approaches to allow for improved detection of defects, such as in [77] where

image stitching and processing was used to provide defect detection in nuclear plant

fuel channels; or in [244] where classifiers were used to differentiate treatment between

nuclear waste materials. In [245] and [246], a directional lighting rig was used to

enhance the detection of surface defects in concrete through the application of data-

based convolutional neural network models.

5.2.2 Photometric stereo

With a stationary camera and multiple light sources of known direction, photomet-

ric stereo algorithms can construct 3D representations of an object or surface from

a collection of 2D images [247]. An outline of the photometric stereo process is pro-

vided in Figure 5.1. The morphology of a surface, z = f(x, y), is characterised by a

set of unit normal vectors, n̂(x, y), which describe the local orientation of the surface.

These unit normals also largely determine the direction that incident light will be re-
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flected. The appearance of a surface under directional lighting is the combination of the

surface geometry, the lighting type and quality, and the surface material reflectance be-

haviour [248]. Combining pixel intensity, I(x, y), across several images with the known

incident light angles allows the determination of the surface structure based on sev-

eral assumptions related to the surface reflectance behaviour and type of lighting. The

captured intensity values encode the orientation of surface normals based on how the

light was reflected alongside knowledge of the location of the light source relative to

the surface (characterised in Figure 5.1 as the unit directions r̂1 and r̂2). In this way, a

normal map can be estimated directly from the intensity mappings. Traditional photo-

metric stereo algorithms assume light sources are point sources, which are far enough

from the surface of interest to result in light rays which are parallel to the surface [249],

additionally, it is assumed that the surface possesses Lambertian reflectance [250] qual-

ities (diffuse reflectance which is not dependent on view point), both of which are often

violated in practice [251]. However, addressing issues from unknown lighting direction,

different surface reflectance characteristics or even moving objects remain active areas

of research [252, 253]. Due to this increased practicality, photometric stereo has been

applied across many diverse applications which desire to recreate surfaces in high detail

using low-cost, easy to use and portable equipment. For example: capturing historical

artwork in remote caves for heritage digitization [254]; diagnosing skin conditions in

dermatology [255]; component defect detection for improved quality control in manu-

facturing [256]; or a proposed inspection method for structural health monitoring of

the reactor pressure vessel in nuclear power plants [257].

5.3 Spatial data collection and experimental design

The data collection methodology covers two routes detailed in Figure 5.2: the intersys-

tem comparison process covers the collection of data for objects under laboratory con-

ditions using a highly characterized CMM and a photometric stereo test rig intended for

use in SHM applications; and the experiment virtualization method develops a virtual,

idealised version of the photometric stereo test rig in 3D software to generate renders

of virtual objects [14]. The advantage of exploring both routes of data collection is the
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Figure 5.2: Diagram of intersystem comparison and experiment virtualization work-
flows
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decoupling of potential limitations of the photometric stereo rig implementation (hard-

ware) and chosen photometric stereo algorithm (software). Additionally, the processes

and outputs of both routes are symmetrical to facilitate further comparisons between

the full rig system and the software components. In this work, attention is focused on

the outputs of the intersystem comparison to initially analyse the full system, however

the choices made in the experimental design allows for further, more expansive studies

in future.

5.3.1 Intersystem comparison

Physical object selection

The intersystem comparison covers data collected by the CMM and the photometric

stereo test rig. The study covered 9 physical objects with 5 different materials, shown

in Figure 5.3. The objects were chosen to represent a range of surface features and

geometries, such as the plaster cylinder and sphere covering primitives; the plastic 3D

printed NIST Additive Manufacturing test artifact [258] acting as a feature reconstruc-

tion test; the ceramic household objects such as the rabbit, train and coral, covering

intricate, domestic objects; and the concrete damaged slab, chimney liner segment (un-

known material) and broken brick covering structural components of interest to civil

applications.

Primitives are described by simple mathematical equations and are some of the sim-

plest “building blocks” which can be used to approximate real world objects [259]. The

addition of primitive shapes, such as cylinders and spheres, allows the rig to be tested

on basic geometries before introducing the complexity of application specific objects.

For example, the chimney liner can be reasonably approximated as part of a cylinder.

Additionally, the generalisation of the data set was improved through the addition of

“household” objects, such as the rabbit, train and coral, which parallel the standard

reference objects in photometric stereo algorithm development and wider computer

graphics applications. For example, the Stanford bunny and Stanford dragon [260] are

part of a 3D scanning repository1 widely used in computer graphics for applications

1https://graphics.stanford.edu/data/3Dscanrep/

158



Chapter 5. Uncertainty in space: Quantifying spatial uncertainty to validate
affordable structural health monitoring test rigs

Figure 5.3: Objects used in the intersystem comparison study, A) 3D printed NIST
Additive Manufacturing test artifact (2.85 mm PLA) (approx. 99 x 99 x 17 mm), B)
Plaster of Paris sphere (approx.. 97 mm diameter), C) Plaster of Paris cylinder (ap-
prox.. 60 mm diameter, 97 mm length), D) Ceramic rabbit (max dimensions approx..
110 x 67 x 115 mm), E) Ceramic train (max dimensions approx.. 150 x 85 x 112 mm),
F) Ceramic coral (max dimensions approx.. 150 x 145 x 42 mm), G) Chimney liner
(unknown material) (max dimensions approx.. 200 x 145 x 20 mm), H) Damaged con-
crete slab ((max dimensions approx.. 270 x 144 x 50 mm), I) Broken concrete brick
(max dimensions approx. 212 x 94 x 45 mm)
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including surface reconstruction algorithms [261], physics simulations of material frac-

turing behaviour [262] or artistic rendering of trees and fur [263]. The trend of using

such figurines and statue objects persists in more recent photometric stereo datasets

such as in [264] with cats and frogs2, and in [252] with bears and teapots3. To spe-

cialise the dataset for the intended civil application, the chimney segment, broken brick

and damaged slab were included. These present typical wear and tear from exposure

to outdoor environments along with manually added impact damage to include more

elements of interest to the surface (such as for the damaged slab). Additional debris

such as loose material, dirt, plant matter or insects were removed prior to any mea-

surements to improve consistency between the CMM and PS. However, there may be

opportunity to further investigate how additional surface contamination may impact

the photometric stereo process due to different light reflectance behaviour. Most ob-

jects in the study present Lambertian qualities, where the surface is matte and diffuse.

The closest the dataset comes to including more specular qualities is the PLA plastic

used to print the NIST Additive Manufacturing test artifact as it is more reflective

than the other materials used. Fully specular data is being investigated in other data

sets as in [265,266] where metals are included.

Photometric stereo rig

The photometric stereo rig consists of a plastic hood surrounding a camera (Blackfly

USB bfs-u3-200s6c, 8 mm lens) with 4 white LED array strips on each of the 4 sides

(resulting in 16 LED strips). A box attached to the rig hood contains the electronics

required to automate, run and store the collected data, which includes a single board

computer and interchangeable battery packs. The rig is portable with dimensions of 54

x 54 x 27.5 cm, and lightweight, with much of the weight made up of the battery packs

and camera, allowing it to be maneuvered fairly easily. The rig is made of affordable

materials which are widely available, ensuring any repairs or part replacement can be

easily achieved. Lastly, the rig is easy to use, as the data collection process is automated

with the camera calibrated before each collection to allow for consistency between runs;

2https://vision.seas.harvard.edu/qsfs/Data.html
3https://sites.google.com/site/photometricstereodata/single
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Figure 5.4: Simplified diagram of the cross section of the photometric stereo rig showing
its key features: rig cover; LED strips and their lighting path; vertical camera and its
viewpoint; and, the object being scanned on a supporting surface.

and the easily interchangeable battery packs are accessible to prolong battery life. An

annotated diagram of the cross section of the photometric stereo test rig is shown in

5.4, with the virtual version shown in Figure 5.8 showing the rig in 3D.

The camera and lighting are trained on the centre of the resting surface of the rig,

directly below the camera, with working distances of 250 mm. The positioning of the

LED strips allows the object to be illuminated from 4 sides, at 4 angles (10, 30, 50 and

70 degrees to the horizontal). For each experiment, the camera is calibrated under 70

degree diffuse lighting, where each lighting direction at the same angle of 70 degrees

illuminates at once. An image is taken for the object illuminated by each LED strip

at each angle, and an image under diffuse lighting is taken for each level, where the 4

LED strips at the same angle light simultaneously. This produces 20 images – 4 for

each ‘ring’ of LED strips at the same angle to create the diffuse images and 4 different

angles on 4 different sides (an image for each of the 16 LED strips). Example images

are shown in Figure 5.5. These images, along with information concerning the rig and

camera set up are given to a proprietary photometric stereo algorithm to generate the
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Figure 5.5: Example output images from the photometric stereo test rig with the
train object. The top row shows the different lighting directions (images left to right):
lighting from left, bottom, right, top. The bottom row shows the lighting angles (images
left to right): object lit from the right by lighting at 10 degrees, 30 degrees, 50 degrees
and 70 degrees to the horizontal.

surface meshes. At the time of writing, the software provided by the Civil Engineering

Department at the University of Strathclyde used to generate the mesh output is not

open source, however, it is feasible to apply other photometric stereo algorithms to the

data collected due to the lighting and image data provided. Further information on the

camera and lighting calibration can be found in previous work [267].

The experimental set up for the rig involved elevating the rig on 10 cm high supports

at each corner above a flat concrete slab. Objects are placed centrally under the rig,

directly below the camera. The rig supports allowed objects to be removed from the

rig easily while maintaining alignment. Due to the height of the supports, objects were

also placed on supports to allow the area of interest to be within the working distance

of the camera and lights. After the objects were placed, a dark shroud made of thick

black fabric was placed over the test rig to prevent external light leakage. The test rig

automated the lighting regime and image collection process to generate the image data.

The number of runs per object, different support elevations or object orientations are

shown in Table 5.1.

Limitations due to the photometric stereo test rig include the nature of the camera

focus which introduces a depth limitation to capturing sharp images. If the depth of

the object exceeds this range, parts of the image may be unfocused which will impact

the output mesh. Additionally, the camera and lights on the test rig are focused on a
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Object name Number of
runs

Object eleva-
tions

Object orien-
tations

Sphere 3 1 1
Cylinder 2 1 2
NIST Additive Manufacturing
test artifact

1 1 1

Rabbit 2 1 2
Train 2 1 2
Coral 2 2 1
Chimney liner 2 1 2
Damaged slab 2 1 2
Broken brick 2 2 1
Blank background (no objects) 2 2 1
Blank background (steel rule) 2 2 1

Table 5.1: Number of runs and number of experiments with different object orientations
for photometric stereo data on real objects.

certain distance where the objects were elevated to by supports. Any inaccuracies in

the height of these supports may impact the camera focus and lighting quality. For the

camera, it was found in [267] that 200 mm - 450 mm provided acceptable clarity. For

consistency between objects and to minimise the impact of the lighting misalignment,

before each experiment, the supports were adjusted to suit the object being measured

and the height to the top surface was measured to be as close to 10 cm as possible. This

approach is sufficient for objects like the slab with a relatively flat surface, but becomes

more ambiguous for object like the rabbit which are round. After each experiment, the

output images were previewed to check for obvious blurring or illumination issues. In

situ, this would be less likely to occur because the rig is built to focus the camera and

lighting on the surface it is placed on, making it much more suitable for large, flatter

surfaces such as walls, floors or supports. While curved surfaces are covered in this

dataset by the primitives or chimney objects, further experimentation could be done

with the rig either physically or virtually to understand its limitations, if any, on larger

curved surfaces such as containers or cylindrical supports.
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Object name Number of
runs

High/low user
experience
level

Object orien-
tations

Sphere 7 6/1 1
Cylinder 5 1/4 1
NIST Additive Manufacturing
test artifact

1 1/0 1

Rabbit 1 1/0 1
Train 1 1/0 1
Coral 1 1/0 1
Chimney liner 2 2/0 2
Damaged slab 2 2/0 2
Broken brick 1 1/0 1

Table 5.2: User experience level, number of runs and number of experiments with
different object orientations for CMM data.

Coordinate measurement machine

The CMM used in this study is an articulated arm, model Hexagon Absolute Arm

7-Axis, with a laser scanner end effector, model Hexagon Absolute Scanner AS1, as

shown in the manufacturing guide4 in Figure 5.6. This type of CMM records the

location and orientation of the end effector by measuring the rotational position of

the joints using precision encoders and subsequently inputs that information into a

kinematic model of the arm. Uncertainties in measurements are attributed in line with

ISO 10360-8 annex D, and data was collected directly into Polyworks5 and converted

to a polygonal mesh at the point of data collection. The data is exported as an .STL

file which can be imported and processed in Blender [268] alongside the output meshes

from the photometric stereo test rig.

The experimental set up involved the CMM in range of a support bench where

the objects could be placed during the experiments. Experiments were taken multiple

times for certain objects to capture the variance between measurements of the same

object and were taken by operators with differing levels of experience to capture user

error. The information on user experience level, number of runs and number of different

orientations for each object is shown in Table 5.2.

4Hexagon AB, “Absolute Arm 7 axis”, https://hexagon.com/products/absolute-arm-7-axis
5Innovmetric, “PolyWorks”, https://www.innovmetric.com/
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As shown in Figure 5.6, the CMM is a larger measurement device than the pho-

tometric stereo rig, as it is capable of a measurement range of over 2 m3 with the

weight estimated from the product page as an upper limit of 10.5 kg. With different

support options, the portability of the CMM can be improved, however the base sta-

bility is highly important to the measurement accuracy and additional systems are in

place within the CMM to raise alerts when the device is unstable. As this device is

a complete product, there may be options for repair and replacement parts from the

manufacturer but is unlikely to be easily sourced externally. Additionally, due to the

fidelity and performance requirements of the CMM, it is likely to be much more ex-

pensive than the photometric stereo rig. The real time visualization of collected data

allows for easier identification of gaps or poor coverage of the object, which assists new

users in adapting to the initial complexity of operating the device. Additionally, the

CMM has the ability to attribute uncertainty to collected data points and is able to

collect multiple measurements of same place, replacing the points with higher accuracy

measurements. This ensures repeatability across and within the same measurement

process.

Physical data collection and pre-processing

The objects were transported between the photometric stereo rig at the University

of Strathclyde, Scotland, UK to the CMM at the National Physical Laboratory in

Huddersfield, England, UK. It is usually recommended to create specified registration

points on the objects (such as adding spheres) for registration purposes to allow the

meshes to be scaled and aligned. To allow safe transportation without damage to

the objects or any movement of these added registration points, it was decided that

spheres would not be added to the surface of the objects. The approach to registration

taken in this work is handled in Section 5.4, but it is worth mentioning that other

researchers [252] overcome this problem through the use of features in 3D software,

such as Meshlab’s mutual information method [269]. To permit the analysis of the

meshes in alternative software, all meshes were loaded into Blender (Version 3.4) and

a python script was developed to extract the x, y, z coordinates of each vertex in the
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Figure 5.6: Manufacturer’s buyers guide for the model of CMM used in the intersystem
comparison.
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mesh. This resulted in a point cloud of data points which represent the mesh vertices.

Traditionally, normal maps are of more interest when evaluating photometric stereo

algorithms [252, 270, 271], however as the rig as a whole is being evaluated in this

case, point clouds are of more interest due to the wider applicability and transfer of

the methodology to other spatial data representations outside of PS, such as aligning

with those used in the wider field of dimensional metrology [272]. The original mesh

files and vertex coordinates were curated in the dataset [14], along with normal map

representations of the output data for the photometric stereo rig outputs. It is also

possible for normal maps to be extracted for the CMM and virtual objects through

Blender (Version 3.4), as all mesh files generated in this process were compatible with

this 3D software. The trio of point clouds, 3D meshes and normal maps allows for more

potential approaches to analysing the rig in future. Alongside normal maps, heatmaps

of height error are often used to demonstrate results from traditional photometric stereo

algorithm validation [273], which are also utilised in the analysis part of this work in

Section 5.4.

5.3.2 Experiment Virtualisation

Another method explored to validate the photometric stereo test rig was to develop

a virtual version of the set up under ideal conditions. In the real rig, the positions

and angles of the components may not directly align with the information provided to

the photometric stereo algorithm due to measurement errors. Thus, investigating the

impact of variables of interest on the quality of the output mesh may be time consuming,

inaccurate and expensive to achieve on the real rig. However, creating lighting at

many angles and intensities, or changing the shape and scale of the rig is possible

with a virtual rig using precise dimensions. Generating data from virtual objects can

remove the influences from inaccuracies in the rig design (such as faulty LEDs or

camera misalignment) to test the performance of the photometric stereo algorithm used

to convert images to meshes. Additionally, generating data from virtual objects can

allow direct comparison with the ground truth for further validation or the additional

exploration of materials.

167



Chapter 5. Uncertainty in space: Quantifying spatial uncertainty to validate
affordable structural health monitoring test rigs

Figure 5.7: Virtual objects in the experiment virtualization study, A) Cracked slab with
0.5 cm gap, B) Cracked slab with 1 cm gap, C) Cracked slab with 2 cm gap, D) Vertical
cylinder, E) Extruded channels with varying width, constant slope and varying slope,
constant width, F) Indented channels with varying width, constant slope and varying
slope, constant width, G) Plane with hemisphere indent, H) Slab with sloped edge,
I) Interlocking spherical textured surface, J) Sphere, K) Cylinder, L) NIST Additive
Manufacturing test artifact.

Virtual object design

Virtual objects created in 3D software act as the ‘ground truth’ for this method, as

a perfectly accurate photometric stereo algorithm would aim to recreate the virtual

object exactly. The 3D modelling software of choice is Blender (Version 3.4). To

provide more realistic material behaviour, the albedo maps of 8 K resolution mappings

of real concrete surfaces were used for the virtual object texture maps6. The 3 concrete

materials were assigned over 12 virtual models, as shown in Figure 5.7. The design of

the virtual objects were chosen to investigate the test rig performance on a variety of

6Quixel, “Megascans”, https://quixel.com/megascans/
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surface features: 3 objects with a cracked surface of different crack widths to measure

the rig capability of capturing damage progression over time; 2 objects with channels of

varying width and varying depth (both inset into the surface and extruded out from it)

to test the precision limitations of the photometric stereo algorithm to gradual changes

in surface deformations; a rectangular sloped slab and slab with spherical deformation

were created to approximate spalling damage where the surface has been gouged or

worn away; a slab with extruded spherical surfaces to understand the limitations of

capturing complex surfaces with many shadows cast, not dissimilar to the broken brick

object from the physical objects list; and finally, for consistency with the intersystem

comparison, the NIST Additive Manufacturing test artifact [258], sphere and 2 cylinder

primitives were created.

The choice of concrete texture maps was to maintain focus on a civil engineering

context where concrete is a commonly found material. Additionally, the type of photo-

metric stereo algorithm applied is designed for objects with diffuse, spatially-uniform

reflectance (matte) as represented by the physical objects. As texture maps can be

easily changed, there are opportunities for other algorithms to be applied and experi-

mented with over a wider variety of materials in future. To further specify the dataset

on the intended application, objects depicting simplifications of surface damage were

created. The simplification was chosen at this stage as an approximation of much more

detailed surface features, such as cracks or spalling. Once positive results were obtained

on simplified geometries, more complex depictions of structural faults can be explored,

as capturing these features in a reasonable manner is more difficult to justify. If not

created digitally, there is also opportunity to have physical representations of these

features captured in a 3D mesh (through the CMM, for example). For more general

objects (such as the rabbit or train in the physical dataset) which are missing in the

virtual dataset, there are a multitude of sources where virtual objects can be bought

or procured for free through, for example, the Blender market place7 or the Unreal

market place8 which are popular sources in digital art and animation.

7https://blendermarket.com/
8https://www.unrealengine.com/marketplace/en-US/store
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Background Plane

Rig

Cam

Figure 5.8: Virtual rig in Blender (Version 3.4), (left) annotated rig shown in semi
transparent mode for component visibility, the parts of interest are the background
plane, the rig cover, camera, lighting strips and virtual object, (right) shows the rig set
up.

Photometric stereo rig virtualisation

Blender (version 3.4) was used to design the test rig, virtual objects and produce

rendered images. Blender has been utilised in other experiment virtualisation research,

such as in [274] where they investigated the utility of a virtual model in the optimisation

of a physical multi-camera metrology system. The dimensions of the virtual rig were

created from the information provided to the photometric stereo algorithm, namely:

the working distance from the camera to the bottom plane of the rig; the LED proximity

measured from the LED to the centre of the bottom plane of the rig; LED angle to the

horizontal; LED brightness (given as 0-255, with 255 as maximum brightness); camera

exposure, gain, red balance and blue balance. The horizontal and vertical distances

of the lights were calculated from the working distance of 250 mm at a given angle

(10, 30, 50 or 70 degrees to the horizontal) and the camera parameters were chosen to

emulate the test rig camera model data sheet. The annotated virtual test rig is shown

in Figure 5.8.

There are limitations to representing physical systems in Blender which may impact

the behaviour of lighting and material interactions. This was counteracted through the

use of high resolution scans of real concrete to define the virtual object materials, the

object distances could be precisely defined, and the camera properties were emulated
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as closely as possible to replicate the real rig under perfect conditions.

Virtual data collection and pre-processing

The render settings were chosen to balance fidelity and simulation runtime to a reso-

lution which matched the photometric stereo test rig output images. The lighting and

render regimes were automated through a python script with the image naming scheme

and rig meta data produced to match that created by the real rig for compatibility. The

rendered images and data files were processed by the photometric stereo software in an

identical process as followed for the physical objects. The vertex coordinates for the

virtual objects and the photometric stereo outputs on the virtual objects were extracted

through Blender to be further analysed in different software. As mentioned, there are

several approaches to overcome alignment issues between the meshes and further op-

portunity to explore other photometric stereo algorithms and material properties. In

future, more work could also be done to diversify the rig design to potentially explore

optimal designs or identify design limitations to further improve the physical rig. With

the virtual objects there is increased flexibility to increase or decrease the number of

vertices in the mesh to meet different data quantity or detail quality requirements. Ad-

ditionally, there is an opportunity to automate more diverse experiments, such as the

automating of crack progression and rendering to create an evolving dataset for future

analysis.

5.4 Uncertainty quantification through spatial error mod-

elling

With several methods implemented to provide diverse data for the investigation of the

photometric stereo rig errors, an analysis approach was developed. Two data-based

approaches were compared to both no intervention (assuming the rig is accurate) and

the rig self-calibration on a reference case (no objects) to understand what level of

intervention is required to capture the error in the photometric stereo rig. Additional

data processing was required to unify and prepare the chosen data formats for further
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Figure 5.9: Three industrial objects - slab, chimney and brick (left to right)

analysis and future deployment. Simple metrics were chosen which translate into real

world impact, such as: the largest maximum and minimum deviations providing a

measure of the most extreme errors; the mean absolute error (MAE) providing a general

approximation of comparative error across the methodologies; and the median providing

a non-Gaussian and directional estimate of the expected error.

5.4.1 Spatial data processing

The objects chosen for further analysis from [14] are the damaged slab, broken brick

and chimney liner, shown in Figure 5.9. These objects are the closest representation to

civil infrastructure in the provided dataset. A calibration benchmark of an empty frame

was also taken for the photometric stereo rig as the supporting surface is expected to

be flat.

Due to the different reference spaces between each method, the vertex coordinates

of the CMM and photometric stereo point clouds are of a different scale, rotation and

location in 3D space. The conversion from images to mesh results in a scaling factor

based on the number of pixels used in the proprietary photometric stereo algorithm.

To account for this, an image of a steel rule taken using the photometric stereo rig was

analysed to quantify the physical distance captured in a pixel which is proportional

to the resulting dimensions of the mesh. To transform and rotate the meshes, 3 or

more reference points were taken on each mesh representing areas of interest on the
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object, such as the deepest areas of damage, corners, or peaks of deposits on the objects

surface. An optimisation was run to align the same reference points on each mesh and

the transform and rotations applied to the full point cloud.

As the photometric stereo algorithm creates a mesh based on the full surface visi-

ble by the camera, a background surface is present in the meshes around the objects

and the side of the object is not visible. For compatibility of the method on new,

unseen photometric stereo meshes, a background plane was added the CMM meshes

for compatibility and any features not visible from above were removed. Additionally,

the CMM point clouds have a much higher density than the photometric stereo point

clouds which is limited by the pixel density of the camera. Harmonisation was achieved

through creating a flat plane of 400 by 400 points for each mesh and using a search

function to sample the nearest point in X and Y, and taking the Z value of that nearest

point. This allowed a reduction in the number of points in the CMM meshes to match

the amount of points in the photometric stereo meshes, equalising both. The processed

X, Y and Z coordinates of the point clouds are exported for further processing with a

total of 294007 points per point cloud. An example plot of the CMM and photometric

stereo point clouds for the slab before and after alignment are shown in Figure 5.10.

As shown, the processed objects are centred on the origin, the photometric stereo point

cloud is scaled to real space and aligned to the CMM mesh which has had the sides

removed and a background plane added. For the photometric stereo data, the largest

deviations are at the edges of the point cloud.

5.4.2 Spatial error modelling case study design

Three approaches are applied to model the error between the CMM and photometric

stereo point clouds with varying levels of complexity. The first uses the error in the

photometric stereo point cloud of a blank background (which is expected to be flat) to

calibrate the other meshes. This is expected to account for certain non-ideal systematic

behaviour in the rig due to imperfect lighting sources and positioning by comparing

the actual photometric stereo estimate to a theoretical ideal (flat plane). The second

method utilises a feature generated from the rig geometry to train a 3rd order poly-
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Figure 5.10: The slab object as: (a) the raw point cloud data exported from the CMM
and photometric stereo rig scans; and (b), the aligned, processed point cloud data for
the CMM and photometric stereo rig.

nomial model to predict the error in the Z coordinate between the photometric stereo

and CMM point clouds, which provides additional information about the potential

systematic errors from the non-ideal lighting sources. The last method is a hierarchi-

cal approach which combines the 3rd order polynomial models with high-dimensional

copulas. The copulas are used to calibrate the residuals of the polynomial models by

using the relationship between the polynomial predictions at the 4 closest neighbours

to the polynomial residual at each given point. The error in the Z coordinate was the

chosen target variable for all three approaches as this is significant to the estimation

of damage severity - it may result in cracks or spalling appearing less or more severe,

which will impact maintenance requirements. The modelling process for the data-based

approaches is shown in Figure 5.11. For all heatmap figures discussed in this section,

a randomly selected 1 % of points are plotted to reduce figure size due to the large

dimensions of the datasets.
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Figure 5.11: Data-based modelling process for the polynomial and hierarchical structure
for applying the copula models.

Spatial error prediction using photometric stereo rig estimation of an empty

frame

Due to the pre-processing steps taken in Section 5.4.1, the dimensionality between the

blank background point cloud and the three industrial objects are identical, allowing

1 to 1 comparison of each point. The blank background point cloud captured by the

photometric stereo rig contains many points which should have a Z coordinate of 0.

However, large deviations at the perimeter and radial patterns are present, as shown

in Figure 5.12. The point cloud is compared to an identical point cloud where all Z

coordinates are estimated to be 0, and the calibration using this method becomes the

inversion of the photometric stereo rig estimate (the values necessary to apply at each

point of the photometric stereo point cloud to result in all Z values returning to 0).

This calibration is applied to each point in the Slab, Brick and Chimney datasets and

the results are discussed in Section 5.4.3.
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Blank photometric stereo rig 
calibration

Figure 5.12: PS rig error in the estimate of a flat background (no objects). The true Z
is at 0 across the whole point cloud, showing the large deviations and radial patterns
in the photometric stereo rig error on a flat plane.

Spatial error prediction using 3rd order polynomial

Several parameters were considered as predictors for the error in the Z coordinate

between the photometric stereo and the CMM point cloud which were derived from

the design of the rig lighting. The lighting was expected to have a large impact on the

resulting mesh error due to its high importance in the photometric stereo algorithm

along with radial patterns observed in the errors between the CMM and photometric

stereo rig point clouds. To encode the influence of the lights on the mesh, several

additional features were created for every point in the point cloud, such as the distance

and angle to the lights, or a points radial angle on the X,Y plane. The selected feature

was the Euclidean distance between a point’s [X,Y] coordinate on the mesh and the

centre at [0,0] due to its consistency across all objects and polynomial trend. The

Euclidean distance from origin against the error in Z is shown for the chimney object

in Figure 5.13. The relationship between all considered geometric features and the Z

coordinate error are shown in Appendix E, along with the Euclidean distance from
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Figure 5.13: Polynomial comparisons tested on the Euclidean distance to origin against
Z error for the chimney dataset (trained on combined blank background and slab
datasets). The three polynomial models (Ordinary Least Squares, Theil-Sen regres-
sion and Bayesian Ridge Regression) follow a very similar trend in the data, and do
not meaningfully outperform one another. This plot shows 1 % of the 294007 ’true’
data points.

origin for all datasets plotted in Figure E.1.

The Euclidean distance from the origin is used as the predictor for Z coordinate er-

ror to train a 3rd order polynomial model. Several models of different complexity were

chosen to compare - Ordinary Least Squares (OLS), Theil-Sen Regression (TSR) and

Bayesian Ridge Regression (BRR) as implemented in the Scikit-Learn python library.

OLS is the simplest model, which aims to minimise the square distance between the

model fitting and training data points which makes OLS models susceptible to outliers.

TSR aims to build upon OLS by removing normality assumptions and limiting the im-

pact of outliers through the use of the median [275] to estimate regression slope, which

was made more robust by use of Kendells tau [276]. The ScikitLearn implementation

is based on work by [277] and [278] who are credited with generalising the model and

median function to multivariate cases, respectively. BRR provides uncertainty quan-

tification through the addition of a predictive distribution [279] and is based on the

algorithm in Appendix A of [280] and the parameter update process described in [281].
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Table 5.3: Polynomial model candidate comparison metrics

Metric Model** Blank and slab* Chimney Brick

R2
OLS 0.248 0.67 0.46

TSR*** 0.236 0.72 0.25
BRR 0.248 0.67 0.46

MAE
OLS 20.54 10.24 11.05

TSR*** 20.26 9.79 13.33
BRR 20.54 10.24 11.05

*Polynomial models are trained on blank and slab datasets.
**Differences between OLS and BRR show at scale of 1e-5.
***TSR oscillates between best and worst for each metric.

Table 5.4: Dataset organisation

Training Validation Testing
Blank Background, Chimney Brick Slab
Blank Background, Slab Chimney Brick
Blank Background, Brick Slab Chimney

However, the more complicated models were unable to meaningfully outcompete OLS

as shown in Table 5.3, and so the simpler model was chosen for this analysis, minimising

complexity and computational strain.

The polynomial models were trained on a data set consisting of the Euclidean

distance from origin and Z coordinate error for two point clouds, then tested on a held

out testing set consisting of one point cloud. The dataset organisation is shown in Table

5.4, with the polynomial method residuals for the slab testing set, brick testing set and

chimney testing set discussed in Section 5.4.3. For the uncertainty quantification, an

interval of 4σ are used for the BRR model, to represent a coverage of ±2σ, where σ is

the standard deviation.

Spatial error prediction using high-dimensional copula calibrated 3rd order

polynomial

In this work, four copula models are chosen to combine the complexity of different

marginal assumptions and different methods of translating bivariate copulas to high-

dimensional applications:
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• Multivariate Gaussian with Gaussian marginals (MGG), capturing a standard

assumption of Gaussian errors with linear relation.

• Multivariate Gaussian with best fit parametric marginals (MGB) (from Gaussian,

Beta, Gamma or Truncated Gaussian univariates), capturing an assumption of

non-Gaussian errors but with a linear relation.

• Centre vine copulas with Gaussian marginals (CVG), capturing the assumption

of Gaussian errors but with potential tail dependencies between spatial error

features.

• Centre vine copulas with Gamma marginals (CVB) (best fit univariate to target

variable for all chosen case studies), capturing both Non-Gaussian errors with

non-linear relations spatially.

The residuals of the OLS model trained on the Euclidean distance to origin to

predict Z coordinate error are used to train high dimensional copulas to provide further

calibration. The OLS model is trained on a data set consisting of the Euclidean distance

to origin and Z coordinate error for two point clouds then tested on a validation dataset

consisting of one point cloud. A K-nearest neighbours algorithm is used on subsets of

the point cloud to identify the 4 closest neighbours to each point. The polynomial

prediction at each neighbour is taken and the polynomial residual from the validation

set is taken for each point. Each high-dimensional copula model is trained on the

validation set and tested on the testing set.

To provide predictions of the required testing set calibration, the polynomial pre-

diction at the closest 4 neighbours to the testing point is used to condition the copula

model, and the density of the conditioned copula is used to provide a most probable

estimate of the polynomial residual at the testing point with a 5 % and 95 % con-

fidence bound on the estimate. The copula confidence bounds provide an estimated

upper and lower correction for the polynomial, which are converted into a prediction

interval by adding to the polynomial predictions. This captures the best and worst case

risk for the estimated height. The dataset organisation is shown in Table 5.4, with the

copula calibrated polynomial residuals discussed in Section 5.4.3. For the uncertainty

179



Chapter 5. Uncertainty in space: Quantifying spatial uncertainty to validate
affordable structural health monitoring test rigs

Table 5.5: Calibration methods residuals metrics

Dataset Metric Photometric stereo rig error Blank rig Polynomial (OLS)

Brick

MAE 28.498 34.048 14.968
Median±std. -25.901±17.607 32.707±14.021 13.519±10.077
Max 7.739 76.557 44.69
Min -110.272 9.843 -21.578

Chimney
MAE 18.711 21.551 9.92
Median±std. -10.168±22.476 15.75±20.531 -1.01±12.419
Max 23.328 80.233 26.872
Min -116.557 -21.555 -54.069

Slab
MAE 37.655 47.82 40.509
Median±std. -37.116±27.931 45.412±20.313 42.361±12.826
Max 3.839 100.7 77.173
Min -146.332 10.109 10.451

Dataset Metric MG(G)1 MG(B)2 CV(G)3 CV(B)4

Brick

MAE 10.763 12.095 10.797 12.049
Median±std. -7.84±10.552 -10.457±10.163 -8.008±10.292 -10.152±9.961
Max 29.786 24.879 23.886 23.363
Min -48.653 -46.626 -42.521 -48.354

Chimney
MAE 13.698 14.473 13.525 14.597
Median±std. -10.445±12.513 -11.715±12.364 -10.174±12.372 -11.747±12.379
Max 22.669 22.303 17.69 17.887
Min -65.226 -66.193 -63.267 -65.204

Slab
MAE 20.129 18.028 19.944 17.708
Median±std. 21.093±12.611 17.918±12.707 20.95±12.585 17.15±12.214
Max 60.176 55.503 57.107 51.197
Min -13.089 -18.931 -10.855 -12.697

Values in red bold italics are the worst case and values in blue bold are the best case for each metric.
All results are in millimeters (mm).
1 Multivariate Gaussian with Gaussian marginals (MG(G))
2 Multivariate Gaussian with best fit marginals (MG(B))
3 Centre Vine with Gaussian marginals (CV(G))
4 Centre Vine with best fit marginals (Gamma) (CV(B))

quantification, the provided uncertainty bounds represent the 95 % confidence bounds

converted to a prediction interval from the copula calibrated polynomials, which are

used in the results discussion.

5.4.3 Spatial error prediction results and discussion

The results of the different methodologies are presented on the three case study ob-

jects in this section. The chosen metrics are used to compare approaches along with

visualisations of the remaining error after each approach. Heatmaps and histograms

of the remaining error after the application of each calibration method are shown to

demonstrate the shape and scale of the residuals, and where they occur on the point

cloud. All metrics are shown in Table 5.5.

Case Study 1: Broken brick

As shown in Table 5.5, the MAE from calibrating the brick object with the photomet-

ric stereo blank background is worse than the original error between the photometric
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Figure 5.14: Heatmaps for the residuals of each correction method and original error
for the brick object showing the spatial distribution of errors. All figures share the
same axes. For the brick, the copulas result in the lowest MAE of all methods, with
MGG having the lowest MAE of all models.

stereo and CMM point clouds. Both data driven methods (polynomial and copula cal-

ibrated polynomial) improve upon the original error between the photometric stereo

and CMM point clouds, with all copula calibrated polynomial methods improving upon

the polynomial. The polynomial improves upon the MAE by 47.5 % while the best

copula model (Multivariate Gaussian with Gaussian marginals) improves by 62.2 %.

As shown in Figure 5.14, the copula models are able to smooth out the large perimeter

deviations from the original point cloud from dark blue (very large negative errors) to

green (slightly negative errors) with the object moved from the orange and red (large

positive errors) from the polynomial to yellow and orange (slightly positive errors). As

with the slab, the photometric stereo blank background calibration method residuals
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Residuals Histogram - Broken brick

MGG: Multivariate Gaussian / Gaussian marginals
MGB: Multivariate Gaussian / best fit marginals
CVG: Centre Vine / Gaussian marginals
CVB: Centre Vine / best fit marginals (Gamma)

Original photometric
stereo error

Figure 5.15: Histograms for each of the correction methods and original error for the
brick object, showing the error distribution and extreme errors across the point cloud.
The copula models have the lowest median value with the MGG copula having the
median closest to 0.

also results in the highest median, standard deviation, with the maximum and mini-

mum error both above 0 to prevent accurate predictions. The MGG copula holds the

lowest MAE and median of all correction methods, but also the largest minimum error

at - 48.653 mm. Meanwhile, the CVB copula holds the lowest standard deviation and

maximum residual (23.363 mm). This suggests that, overall, the copula methods are

able to recommend better corrections than the polynomial only, but may result in large

deviations in areas of high uncertainty, as shown in the corners of Figure 5.16 for the

centre vine models, but the centre bands for the Multivariate Gaussian models.

The histograms of the original error and all correction methods are shown in Figure

5.15. The original error is generally negative with a median of -25.9 with extreme errors

of [-110.3, 7.7]. The polarity has been reversed for the blank background calibration
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Figure 5.16: Heatmaps of the interval between the 5 and 95 % confidence bounds for
the copula models and 4 (± 2) σ for the BRR polynomial on the brick object. All
figures share the same axes. The corner areas for the CVG copula model is the highest
difference between the upper and lower confidence bound of all copula models.

method which has overcompensated and pushed errors into the positive with a higher

median of 32.7 but lower extremes of [9.8, 76.6]. Some of the most extreme errors have

been reduced, but at the expense of worse performance over the rest of the point cloud.

Due to the extreme errors, the blank background calibration method never covers 0,

and so is never able to accurately capture the rig error. The polynomial has a median

of 13.5 and tends to underestimate the error, with much of the histogram higher than

0, which is remedied by the copula models. The copulas tend to overestimate but with

median values closer to 0, with the closest being -7.8 for the MGG copula. All copula

models have median values under those for the other methods.

Radial behaviour is present in Figure 5.16 for the copula uncertainty intervals due to

the Euclidean distance to origin parameter used to train the polynomials compressing

the 2D representation to 1D, where similar Euclidean distance to origin values result in

similar uncertainties. This also varies with trends identified by the copulas, for example,

all corner points are not equally uncertain, which matches the different behaviour of

the original error and OLS polynomial from the left to the right side. The standard

deviation value given by the BRR is not a constant value, but varies so little across the
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point cloud that the difference is imperceptible on the common colour scale. As the

standard deviation value is much larger and more constant than the copula models, it

demonstrates that the BRR model is unable to provide more useful or more certain

information about the uncertainty across the point cloud than the copula models. The

highest uncertainty for the copula models, measured by the largest difference in upper

and lower prediction interval, is in the corner regions of the CVG copula model. This

trend is similar but less severe for the more flexible CVB copula.
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Case Study 2: Chimney liner

The worst performing method in terms of MAE for the chimney object is calibrating

using the photometric stereo blank background which has a higher MAE than the

original error but is the lowest MAE for this approach across all 3 objects, as shown

in Table 5.5. All data driven approaches improve upon the original error between the

photometric stereo and CMM point clouds, but for the chimney object, the polynomial

only approach has the lowest MAE. This is expected to be due to the photometric

stereo rig behaviour which attributes curves to objects (see the error in Figure 5.12),

and the chimney object being naturally curved, resulting in a lower error to correct

which is more easily captured by the Euclidean distance to origin feature (as shown by

the R2 score for the chimney dataset in Table 5.3 and Figure 5.13). As shown in Figure

5.17, the polynomial smooths out much of the large positive and negative errors in the

original point cloud, leaving the most visually obvious errors as slightly positive in the

centre of the mesh. While the copulas seem to address the error from the polynomials

in the centre to move it more towards green and yellow (slightly positive above 0), the

errors in the background of the object have deepened to blue (slightly negative) which

would degrade the overall copula performance.

The histograms for the residuals across the whole point cloud are shown in Figure

5.18. The original photometric stereo error has the smallest median compared to all

case study objects at -10.168, which is only rivaled by the polynomial median of -1.01.

All copula models have a smaller median than the blank background calibration, but

are all larger than the original photometric stereo error. The smallest copula model

median is the CVG at -10.174. The polynomial method residuals has almost matched

the upper value for the original error while limiting the lower value with extremes of

[-54.1, 26.9] for the polynomial and [-116.6, 23.3] for the original error.

Figure 5.19 shows the uncertainty quantification from the BRR and copula models.

Overall, the centre vines tend to be confident in the centre and uncertain at the corners

(where extreme errors tend to appear on the original photometric stereo error), whereas

the Multivariate Gaussian models are more confident in their centre regions, shown by

the narrower prediction interval. The CVB model has less severe uncertainty at the
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Figure 5.17: Heatmaps for the residuals of each correction method and original error for
the chimney object showing the spatial distribution of errors. All figures share the same
axes. For the chimney, the OLS polynomial results in the lowest MAE of all methods.
The chimney object has the lowest original MAE error of all case study objects.

corners than the less flexible CVG, however, the MGB is less confident in the centre

and extremes than its less flexible counterpart, MGG. The CVB is more confident

(smaller intervals) but has a higher MAE than its Gaussian assumption counterpart

(CVG), while the MGB model is less confident (larger intervals) and higher MAE than

its Gaussian counterpart (MGG). In this case, the Multivariate Gaussian models may

be able to provide more accurate uncertainty quantification, which aligns with each

models performance.
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Residuals Histogram - Chimney Liner

MGG: Multivariate Gaussian / Gaussian marginals
MGB: Multivariate Gaussian / best fit marginals
CVG: Centre Vine / Gaussian marginals
CVB: Centre Vine / best fit marginals (Gamma)

Original photometric
stereo error

Figure 5.18: Histograms for each of the correction methods and original error for the
chimney object, showing the error distribution and extreme errors across the point
cloud. The polynomial model has the lowest median of -1.01, which also corresponds
to the lowest MAE across the whole distribution.
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Figure 5.19: Heatmaps of the interval between the 5 and 95 % confidence bounds for
the copula models and 4 (± 2) σ for the BRR polynomial for the chimney object. All
figures share the same axes. The corner areas for the CVG copula model is the highest
difference between the upper and lower confidence bound of all copula models.

Case Study 3: Damaged slab

As shown in Table 5.5 for the slab object, calibrating using the photometric stereo

blank background has the worst MAE of all calibration methods, which results in a

higher MAE than the original photometric stereo to CMM point cloud error, degrading

the MAE by 27.0 %. However, the residuals from the polynomial approach also have a

higher MAE than the original error, degrading MAE performance by 7.58 %. All cop-

ula calibrated polynomial approaches improve upon the original error with the worst

performing copula (MGG) improving the MAE by 46.54 % and the best performing

copula (CVB) improving the MAE by 52.97 % over the original error. This is reflected

in Figure 5.20 where the original error has many deep blue (very negative) errors which

have been over corrected to deep red or orange (very positive) errors for the photo-

metric stereo blank background and polynomial method, then moved back towards

orange to green (above and below 0) by the copula models. The photometric stereo

blank background calibration method residuals also results in the highest median and

standard deviation, as well as the largest maximum error. This method results in the

smallest minimum error (both the maximum and minimum error are positive) which

suggests that all of its predictions have been shifted to result in errors above 0 which
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Figure 5.20: Heatmaps for the residuals of each correction method and original error
for the slab object showing the spatial distribution of errors. All figures share the same
axes. For the slab, the copulas result in the lowest MAE of all methods with the CVB
copula having the lowest MAE of the copula models. The slab object has the highest
original MAE of all case study objects, with the OLS polynomial resulting in a higher
MAE than the original error.

would prevent any accurate predictions. For the slab, the best performing model across

3 metrics is the CVB copula which performs well across MAE, median and standard

deviation, and holds the lowest maximum error. This is also reflected in the uncertainty

quantification where the centre vine model is generally more confident in its predictions

by providing much smaller 95 % uncertainty bounds than the other models in Figure

5.22.

Residual histograms for each method and the original photometric stereo to CMM

error are shown in Figure 5.21. The original photometric stereo error has the largest

median of all the case study objects at -37.1 which is still lower than the two worst

performing methods of calibrating with the blank background (median of 45.4) or the
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Residuals Histogram - Damaged slab

MGG: Multivariate Gaussian / Gaussian marginals
MGB: Multivariate Gaussian / best fit marginals
CVG: Centre Vine / Gaussian marginals
CVB: Centre Vine / best fit marginals (Gamma)

Original photometric
stereo error

Figure 5.21: Histograms for each of the correction methods and original error for the
slab object, showing the error distribution and extreme errors across the point cloud.
The copula models have the lowest median of all methods, with the CVB model having
the lowest at 17.15.
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Figure 5.22: Heatmaps of the interval between the 5 and 95 % confidence bounds for
the copula models and 4 (± 2) σ for the BRR polynomial for the slab object. All
figures share the same axes. The corner areas for the CVG copula model is the highest
difference between the upper and lower confidence bound of all copula models, even
higher than the BRR values.

polynomial (median of 42.4). All copula models have a median lower than the original

error, with the lowest at 17.15 for the CVB copula. The CVB copula model has the

best MAE, median and standard deviation of all models on the slab, and also limits

the extreme error range of the original error from [-146.3, 3.8] to [-12.7, 51.2].

The uncertainty quantification for the different copula models and BRR polyno-

mial are shown in Figure 5.22, where the first instance of the BRR polynomial’s large

standard deviation being lower than some points on the copula heatmaps is shown.

The BRR standard deviation is the lowest value across all case study objects which

shows an increase in model confidence, but still lacks any usable discernment across the

point cloud at this colour scale. For the copula models, similar trends to previous case

studies are present, with the Multivariate Gaussian models being the most confident in

the corner areas where extreme errors tend to be present, while the Centre Vine models

are more confident in the point cloud centre. The MGB model is overall more confident

than the MGG model, as shown by the narrower uncertainty intervals in the point cloud

corners and generally across the point cloud, but shows several regions where the un-

certainty interval spikes around the very centre to above that of the MGG copula. This

may present more fine tuned uncertainty quantification as particular regions are dis-
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cerned between without needlessly increasing the uncertainty intervals across the whole

point cloud. For the Centre Vine copulas, the CVB model has a lower MAE than the

CVG model, but higher uncertainty intervals in some areas, such as the intermediate

region between the point cloud centre and corners. The CVG model has the largest

interval for all models present in the point cloud corners which is lessened by the CVB

model. Again, the more flexible model may be providing more finely tuned uncertainty

quantification as it attributes higher uncertainty intervals to areas the CVG model is

not able to identify as more uncertain, and provides more reasonable intervals in areas

where both models experience high uncertainty.

An overview figure emphasizing the process and some selected results from the

damaged slab dataset are presented in Figure 5.23 to further highlight the practical

benefit of this approach, and the consequences of no intervention from the hierarchical

modelling approach constructed from the simple base model and copula model. As

shown in the outcome section of Figure 5.23, the photometric stereo rig has very large

deviations from the true measurement (given by the CMM) at the outer edges of the

mesh, driving up the error in the Z axis (≥ −125 mm) shown in the heatmap. The

second outcome shows the estimations of the Z error from the hierarchical modelling

process, which has been used to correct the photometric stereo rig mesh for visualisation

purposes. The overall reduction in error from the largest deviations can be observed in

the 3D representation of the points and the heatmap of remaining Z error.

5.4.4 Computational discussion

During this work, a large hurdle was the computational time required to evaluate the

copula models. This was heavily influenced by the Scipy function ’mvn.mvnun’ in the

Multivariate Gaussian module of the Copulas package used to calculate the cumulative

distribution function of a multivariate normal. The function is based on [282], and

utilises a Monte Carlo simulation with defined convergence tolerances. These tolerances

were defined by the Copulas package as 1e−5, while the original paper operated at

tolerances of 5e−3. This manifested in some CDF calculations taking upwards of 30

seconds due to the lack of convergence to the strict tolerances. The tolerances were
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Figure 5.23: Summary of the process, and subset of example results presented in Chap-
ter 5. The chosen datasets show the blank background and chimney as the training set,
broken brick as the validation set, and the damaged slab as the testing set. The base
model is a 3rd order Ordinary Least Squares (OLS) and the copula results are from
the Centre Vine with Gamma marginals (best fit marginals). All figures are plotting a
1% subsample of points due to the large dataset sizes. The range of Z axis errors on
the heatmap colour bar are from 25 mm to -125 mm.
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changed to 1e−3 which resulted in greatly improved computational times, with the

slowest calculations shifting from over 30 seconds, to approximately 0.5 seconds, with

an example change in CDF results being 0.1005452 for 1e−5 tolerance, to 0.1005371 for

the 1e−3 tolerance. A tolerance of 5e−3 was also tested, but did not result in significant

speed increases, and so 1e−3 was chosen to preserve a slightly tighter tolerance. As

the units of the data being studied is in millimetres, the consequences of setting the

absolute tolerance from 1e−5 mm to 1e−3 mm was deemed acceptable.

The computational delays were additionally exacerbated by the large dataset sizes

(294007 points per dataset) and the dimensions of the copula model (the number of

neighbour variables used to predict the target variable). An additional set of experi-

ments were conducted to compare the impact of using 4 or 8 neighbours to investigate

any improvements in model predictions against the computational overhead required.

The metrics used for comparison across the 4 types of copula model are shown in Table

5.7, with the percentage improvement of the 8 neighbour model over the 4 neighbour

model shown in Table 5.6. The chimney dataset results are used here as a condensed

example. Positive percentage improvements indicate that the 8 neighbour model has

improved on the 4 neighbour model, while negative values indicate the opposite. The

values highlighted in the table indicate the largest deviations for each metric, with

the Centre Vine models seeing improvements in both MAE and standard deviation by

expanding to 8 neighbours, while no models improve for the worst case (maximum)

absolute error. The minimum absolute error present in all models is generally very

small across the 4 and 8 neighbours as shown in Table 5.7 and so the large percentage

improvement or deterioration present is perhaps not as influential as the other cate-

gories. Overall, the 4 neighbour models limit the maximum absolute error (extreme

model error) and slightly improve the MAE and standard deviation for the Multivariate

Gaussian models, while the Centre Vine models see some small improvement in MAE

and standard deviation with the 8 neighbour models. In this application, increasing the

model complexity through expanding the model dimensionality has not led to signifi-

cant model improvements. However, this may not hold true for other cases where the

model dimensionality may provide necessary performance increases and computational
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Metric MGG1 MGB2 CV G3 CV B4

MAE -1.603 -1.446 2.502 4.841
Std.Dev -1.708 -1.760 2.311 1.468
Max (abs) -13.273 -8.857 -4.324 -23.794
Min (abs) 48.687 -509.094 -85.140 84.836
1 Multivariate Gaussian with Gaussian marginals (MGG)
2 Multivariate Gaussian with best fit marginals (MGB)
3 Centre Vine with Gaussian marginals (CVG)
4 Centre Vine with best fit marginals (Gamma) (CVB)

Table 5.6: Percentage improvement of 8 neighbour copula models over 4 neighbour
models for the chimney segment dataset. Negative values show where 4 neighbour
copula models outperform the 8 neighbour model. The largest deviations between
model dimensions for each metric are shown in bold.

limitations will require further consideration.

The 4 neighbour (5 dimensional) model and 8 neighbour (9 dimensional) models

were trained, tested and evaluated in parallel on two different workstations, and so a

direct computational comparison cannot be fully conducted. The workstation process-

ing the 4 neighbour models has a clock speed of 3.8 GHz and 32 GB RAM 9, while

workstation processing the 8 neighbour model has a clock speed of 3.4 GHz and 128 GB

RAM 10. The time taken to process the copula corrections across the two workstations

is shown in Table 5.7, with the Multivariate Gaussian models (MGG and MGB) taking

roughly double the computation time of the Centre Vine models (CVG and CVB) on

workstation 1 for the 5 dimensional models. These figures expand dramatically for

the 9 dimensional models on workstation 2, with the Multivariate Gaussian models

requiring approximately 10 times the processing time of the Centre Vine models, while

the Centre Vine models require less than 2 hours more than their lower dimensional

counterparts.

To investigate the trade off between model dimension and computation time, a

study was conducted on synthetic data with similar properties to the case study data

(damaged slab). A selection of 5 candidate univariate distributions were used to select

9AMD Ryzen 7 5800X, 8 core processor, 3.8 GHz, 32 GB RAM. The product page can be found at:
https://www.amd.com/en/products/processors/desktops/ryzen/5000-series/amd-ryzen-7-5800x.html

10AMD Ryzen 9 5950X, 16 core processor, 3.4 GHz, 128 GB RAM. The product page can be found at:
https://www.amd.com/en/products/processors/desktops/ryzen/5000-series/amd-ryzen-9-5950x.html
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Model Dimensions MAE Std.Dev Max (abs) Min (abs) Duration (hrs)

MGG1 5 20.144 21.060 57.992 1.524e-4 6.54∗

MGB2 5 19.463 21.516 53.858 8.621e-6 7.10∗

CV G3 5 20.005 21.073 57.174 1.019e-4 2.77∗

CV B4 5 19.196 21.202 50.642 2.055e-4 2.83∗

MGG1 9 20.466 21.419 65.689 7.820e-5 39.22∗∗

MGB2 9 19.745 21.894 58.627 5.251e-5 55.99∗∗

CV G3 9 19.504 20.586 59.646 1.886e-4 4.18∗∗

CV B4 9 18.267 20.891 62.692 3.116e-5 4.51∗∗

1 Multivariate Gaussian with Gaussian marginals (MGG)
2 Multivariate Gaussian with best fit marginals (MGB)
3 Centre Vine with Gaussian marginals (CVG)
4 Centre Vine with best fit marginals (Gamma) (CVB)

Table 5.7: Comparison of 4 neighbour and 8 neighbour copula models for the chim-
ney segment dataset. All units, except duration measured in hours, are measured in
millimetres. Processing duration on workstation 1 are marked with ∗, while those pro-
cessed on workstation 2 are marked with ∗∗.

the best fit (Beta, Gamma, Gaussian, Truncated Gaussian, Gaussian Kernel Density

Estimate), with a beta distribution selected for the neighbour variable, and a gamma

distribution selected for the target variable. Samples from both distributions along

with their parameter values are shown in Figure 5.24.

Synthetic training and testing sets were created by sampling the beta distribution

from 1 neighbour up to 9 neighbours, along with the sampled target variable, resulting

in 2 to 10 dimensional models. The data sets consisted of 1000 data points each, and

the copulas were sampled 20000 times to allow for the CDF and PDF calculations. The

average time taken to perform one copula correction prediction across the 1000 testing

samples was measured for the Multivariate Gaussian (Gaussian marginals), Multivari-

ate Gaussian (best fit parametric marginals), Centre Vine (Gaussian marginals) and

Centre Vine (Gamma marginals (best fit parametric)). The average iteration time

against model dimensions is shown in Figure 5.25. For dimensions under 6, both Mul-

tivariate Gaussian models and the simplified Centre Vine model (Gaussian marginals)

require less time per iteration than the most complicated Centre Vine model (best fit

parametric marginals). However, the general trend of the Centre Vine models is a gen-

tly rising linear trend, while the Multivariate Gaussian model is almost exponential.

196



Chapter 5. Uncertainty in space: Quantifying spatial uncertainty to validate
affordable structural health monitoring test rigs

0.6 0.7 0.8 0.9 1.0 1.1
Distance (mm)

0

100

200

300

400

500

Sa
m

pl
es

Fitted approximations of damaged slab data
Neighbour
Target

Figure 5.24: Fitted approximations of damaged slab nearest neighbour and target
variable using beta and gamma distributions, respectively. The beta distribution is
parameterised as: location = 0.0148, scale = 0.918, α = 15.407, and β = 0.759; while
the gamma distribution is parameterised as: location = 0.547, scale = 0.0396, and α
= 5.029,
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Figure 5.25: Model dimensionality against average iteration time (s) over 1000 test-
ing points for the Multivariate Gaussian with Gaussian marginals (MGG), Multivari-
ate Gaussian with best fit parametric marginals (MGB), Centre Vine with Gaussian
marginals (CVG), and Centre Vine with best fit parametric (Gamma) marginals (CVB)
on synthetic data based on the damaged slab dataset.

In all cases, a variation of the Centre Vine model may be more appropriate, however

become much more viable than the Multivariate Gaussian at high dimensions (≥ 6, in

this example).

5.5 Conclusion, contribution and future work

Affordable and portable rigs for non-destructive visual inspection is vital in many ap-

plications to performing cost- effective maintenance to maximise asset health and per-

sonnel safety. This may be achieved through the application of photometric stereo, a

method which uses images of surfaces lit under directional lighting to create 3D meshes

of the surface. However, applying such rigs under diverse environments requires some

understanding of their behaviour to reduce inaccuracies across different application

scenarios. To reiterate the contributions of the work described in Chapter 5:
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1. Novel benchmarking dataset created for comparison of real and synthetic surfaces

of relevancy to civil engineering

2. High dimensional copula approaches were able to model spatial uncertainty in re-

constructed 3D surfaces, with uncertainty quantification providing the confidence

in the error estimations

3. The hierarchical copula-based approach was shown to provide improved predictive

performance over the base model or rig self-calibration for damaged concrete

objects representative of those found in civil infrastructure

In this work, a dataset of 9 physical objects was curated through measurement by

a CMM (expensive, complex, and large-scale equipment) to provide a ground truth

against a photometric stereo rig (designed to be inexpensive, portable and easy to use).

The photometric stereo rig was digitalised through recreation in 3D software (Blender

Version 3.4) with 12 virtual objects created and processed by the photometric stereo

algorithm. Of this dataset, three industrial objects (slab, brick and chimney segment)

were selected for further analysis of the errors between the CMM and photometric stereo

rig. Three methods were applied to account for the error between the photometric stereo

rig and the CMM: using the photometric stereo rig to self-calibrate based on the error

from a blank background measurement; using 3rd order polynomials on feature data

generated by the rig geometry; using Multivariate Gaussian or Centre Vine copulas to

calibrate the residuals from the polynomial.

In summary of the modelling results, the presence of data-based methods always

outperforms using the rig to self calibrate using the blank background information or

leaving the error between the photometric stereo rig and CMM without calibration.

For the brick, both the polynomial and copula methods provide sufficient performance,

with the hierarchical approach through the addition of the copulas outperforming the

polynomial on its own. For the chimney, the polynomial outperforms the copulas, which

is suspected to be due to the combination of the natural curvature of the chimney object

and the rig attributing curves to surfaces resulting in ’less error’ to calibrate. This is

supported by the chimney having the lowest MAE between the photometric stereo
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rig and CMM point clouds originally, and also the photometric stereo rig calibration

using the blank background has the lowest MAE of all attempts to use this method.

For the slab, the polynomial reduces the performance over providing no intervention,

with the original error between the photometric stereo rig and CMM being the highest

across all datasets. However, with the addition of the copulas through the hierarchical

modelling structure, this approach produces much better results with a minimum MAE

improvement of 46.54 %.

In terms of uncertainty quantification, the data-based methods improve upon the

rig self calibration, as this method is unable to attribute uncertainty to its corrections.

The BRR uncertainty quantification seems unable to discern much variation across

the whole mesh and provides a large, almost continuous, uncertainty bound across the

whole mesh, which is difficult to action on in practice. The copula methods are able

to provide varying confidence bounds across the whole mesh with some expected, and

some surprising behaviour. For example, for most objects, the centre vines are more

uncertain in the corner regions and some bands around the middle of the mesh which

hold the largest errors between the photometric stereo rig to CMM point clouds. These

are expected to be the most uncertain as the behaviour of the mesh varies from corner

to corner. However, for the Multivariate Gaussian models, more uncertainty tends to

be attributed to the centre of the point cloud than the extremes. This may be due to

the influence of the object being captured which would change the behaviour at the

centre across all datasets.

Within the copula models, the Centre Vine model was the overall highest perform-

ing model type across the 3 case studies, outperforming the Multivariate Gaussian

copula models. Vine models have additional flexibility to account for dependency in

the extremes, which for applications where this is an important feature, can lead to

higher performance. By outperforming the other methods, and generally outperform-

ing the other copula methods, non-linear dependency was shown to be an important

consideration within the case studies presented in this spatial application. In surface

scanning scenarios where the surface texture is rough and surface damage is expected

to be present, the surface geometry can present sharp and uneven changes. Add to this
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unquantified error and measurement noise from the rig, linear and non-linear relation-

ships within the data are very likely present. Multivariate Gaussian models capture

linear dependency between inputs well but struggle capturing non-linear relationships.

Demonstrated by their ranking as the second highest performing method, they were

generally capable of accounting for a significant part of the dependency behaviour driv-

ing the rig error. Overall, the application of data-based models has accounted for a

large portion of error between the rig and CMM, additionally providing uncertainty

information to aid decision-making on outputs of the rig, supporting the application

of this methodology to similar situations. In an application setting, the hierarchical

copula based approach provides operators with an improved and affordable structural

health monitoring rig with attached risk, to improve decision making flexibility and

risk management in the monitoring and maintenance of large infrastructure.

5.5.1 Future work

Much of the usability concerns with the copula models could be improved upon in

future work. For example, to alleviate the large dataset sizes from the photometric

stereo rig, an investigation into accuracy against the number of points calibrated in a

certain region would alleviate computational expense if there is found to be a regional

scale where the calibration is equally appropriate. This would mainly rely on the rate

of change of the polynomial predictions, as areas with similar Euclidean distances from

the origin will have different predictions made across the whole mesh depending on the

polynomial slope in that range. Additional computational benefits could be gained from

improving the CDF calculation process, which may involve, for example, exchanging

the CDF calculation for a look-up table.

In future, more could be done with the curated dataset, some of which has been

previously mentioned in Section 5.3. Namely, more work could be done on rendering

fidelity and making more use of the advantages of the virtual environment, such as

investigating the impact of rig design on mesh accuracy, or automating crack progres-

sion, rendering and analysis. In this work, the photometric stereo algorithm used with

the rig was proprietary, but there is opportunity to swap this for more cutting edge
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algorithms which could be further tested across different scenarios and material types.

A comparison of other open source photometric stereo algorithms could see improve-

ment over the provided version which may alleviate inaccuracies within the system.

While photometric stereo algorithm development and comparison is not the focus of

this work, it may provide additional insights and challenges for the subsequent mod-

elling and analysis work, such as investigating an end to end propagation of uncertainty

should the photometric stereo algorithm be uncertainty aware. This ties in to two final

points of simply analysing more data, as this work only focused on a small subset, and

applying further explainability techniques to explain where the rig is going wrong: on

what surface features, in what scenarios and under what conditions? The combination

of already collected physical data and the potential of the virtual environment could

allow for a system study which may pinpoint the major sources of uncertainty from

the rig or its environment to allow for more targeted compensation methods to be de-

veloped, or for issues to be designed out in future. This would further align the work

with Chapter 3.
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Chapter 6

Conclusion

There is a drive in industry towards improved predictive maintenance and more efficient

plant management. Uncertainty sources impact the ability to accurately measure the

state of an asset, and in turn impact an analytics ability to derive the state of health

of said asset. Without the ability to then attach risk to decisions from analytics, it

becomes difficult to justify actioning their recommendations in industrial applications,

especially in environments with strict traceability requirements as in the nuclear sector.

As such, uncertainty quantification and explainability for machine learning applications

are both highly relevant and active areas of study.

Access to trustworthy data analytics tools capable of attributing risk to their out-

puts alongside tools able to interrogate the impact of the design of the data pipeline

serving these analytics, provides power plant operators with solutions to manage uncer-

tainty within their data-driven asset management processes. To address this need, this

thesis presented a framework for explainable pipeline design and an explainable hier-

archical copula-based modelling approach which were developed to handle uncertainty

sources throughout the full data analytic system.

The contributions of this thesis have targeted issues across different parts of the

maintenance process, shown in Figure 6.1. Chapter 3 approached the data pipeline

and provided a novel and transferrable pipeline design framework. Chapter 4 and

Chapter 5 then delved into the analytics stage and showcased the application of the

hierarchical copula-based modelling approach for both timeseries and spatial data. Over
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Figure 6.1: Thesis contributions across different parts of a summarised maintenance
process flow diagram.

both chapters, the approach was shown to provide improved predictive performance,

alongside the ability to add prediction intervals (derived from the copula confidence

bounds) to these predictions.

Throughout this thesis, it has been shown that the framework for explainable

pipeline design and the developed explainable hierarchical copula-based modelling ap-

proach could be applied across different engineering disciplines and were successful for

different types of common industrial assets. The applications utilised throughout the

case studies included, but are not limited to, applications within electrical, mechanical,

and civil engineering. Additionally, the techniques were proven across different machine

learning tasks which included the classification of faults, temperature forecasting, and

remaining useful life prediction. Lastly, the hierarchical copula-based modelling ap-

proach was shown to be generic enough to be applicable to spatial and temporal data,

covering an even wider set of potential applications. The following sections summarise

the most important conclusions from the technical findings of this thesis.

6.1 Chapter 3 Highlights

The highlighted contributions of Chapter 3, are as follows:

1. Demonstrating that pipeline design impacts analytic performance within fault

diagnostic systems

2. Identifying and explaining highly performing design options using a human-readable
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XAI framework, leading to systems with better predictive performance

3. Improved fleetwide monitoring by leveraging insights from previous designs to

new systems

The first contribution demonstrated how uncertainty sources in the analytics pipeline

design could manifest in different ways, with the main result being they could either

improve or deteriorate fault prognostic or diagnostic system performance. The detri-

mental impact of this was shown to be tempered through the application of different

modelling strategies, such as using hybrid models which were found to be more robust

to these compounding uncertainties.

In a second contribution, the presented explainability framework was used to iden-

tify and rank highly-performing or poorly-performing design options, which overall lead

to the design of better performing fault detection and diagnostic systems. It was shown

that following the recommendations of the framework resulted in a mean predictive er-

ror of < 0.1%, while using the detrimental design options flagged by the framework

resulted in mean predictive error of > 50%. Importantly, the explanations provided

by the framework allow operators to compare between designs and understand what

impact their design options might have on the fault detection or diagnostic system.

This is especially important in situations where a design option must be used in the

finalized system design, where this method provides evaluation and understanding of

the risk present in the system.

Finally, insights from the design of one fully-observed system pipeline were leveraged

to improve the design of other system pipelines, all without requiring the same level

of intensive observation. This has clear benefits where an operator may have a large

number of similar assets requiring monitoring, but where it would be infeasible to test

each individual asset to the same level.

The framework was shown to be adaptable to different maintenance scenarios (re-

maining useful life prediction and fault classifications) for motor bearings, and config-

urable to accommodate different amounts and types of pipeline stages. The flexibility

of the approach means it can be applied across different asset types, and the capabil-

ity of the framework to transfer insights between the same types of asset can save an
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operator time and cost by avoiding extensive data collection for all assets. A major

limitation of the approach is its reliance on the amount and diversity of fault samples

(which is similar to other machine learning approaches), and its requirement for assets

to behave similarly for insights to be transferred reliably.

6.2 Chapter 4 Highlights

The summarised contributions of Chapter 4 are:

1. Providing prediction intervals derived from confidence bounds on temperature

predictions for critical assets in presence of measurement noise and modelling

errors attributes useful risk to model outputs

2. The developed hierarchical copula-based method captures complex dependency

structures between time propagated measurement and modelling uncertainties

3. The approach improved performance on real operational data (nuclear heat ex-

changer and wind turbine generator bearings)

Chapter 4 demonstrated a hierarchical copula-based modelling approach applied

to temperature forecasting for three case studies: one synthetic, and two industrial

datasets. The hierarchical copula-based modelling approach was shown to improve

the predictions of a transparent base model that was previously adopted by the PhD

industrial partner. The copula models were applied over short-term intervals to correct

the long-term forecasts provided by the base model, with the additional advantage that

this novel method could also attribute risk on the short-term horizons. This chapter also

involved a comparison of several different high dimensional copula models where the

model type and the complexity of their marginal assumptions were varied to investigate

the effect this had on the predictions.

Most significantly, the results of this chapter demonstrated that the approach could

provide useful prediction intervals on the forecasts even in the presence of measure-

ment noise and modelling error. The case studies covered very different temperature

behaviours, including aging over long operational periods with large jumps due to
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maintenance and other interventions, or large temperature swings from environmental

interference. The models were found to be robust to these effects provided that the

data used to train the models was reflective of this behaviour, proving the models flex-

ibility in operational scenarios where temperature changes may be driven by different

physical processes. The novel approach was shown to provide superior predictive capa-

bility compared to the base model alone, for both synthetic and real operational data,

with the maximum mean error improvement being 82.17% on the nuclear plant data.

The Centre Vine model was the highest performing model type, followed by the Mul-

tivariate Gaussian, for the percentage improvement metric which captures the general

predictive performance gain over the base model. However, the Multivariate Gaussian

models had the smallest and/or most accurate prediction intervals, followed by the

Centre Vine models when evaluated by the interval score metric, which reflects the

accuracy of the models attribution of risk to the temperature forecast. The attributes

which are most desired by the operator would decide on which model type may be

most appropriate. Having access to a transparent, explainable modelling strategy that

can also attribute risk to short-term forecasting horizons allows an operator to deter-

mine courses of action, be this operational changes to mitigate undesired temperature

increases or provide evidence to action maintenance intervention, with sufficient confi-

dence and information. This becomes especially important if assets are operating close

to a temperature threshold, where the choice of intervention may avoid financial losses

from unexpected outages due to faults.

6.3 Chapter 5 Highlights

The outcomes of Chapter 5 are summarised as:

1. Novel benchmarking dataset created for comparison of real and synthetic surfaces

of relevancy to civil engineering

2. High dimensional copula approaches (as in Chapter 4) can be used to model

spatial uncertainty in reconstructed 3D surfaces, with uncertainty quantification

providing the confidence in the error estimations
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3. The hierarchical copula-based approach was shown to provide improved predictive

performance over the base model or rig self-calibration for damaged concrete

objects representative of those found in civil infrastructure

Chapter 5 presented a study on the verification of a structural health monitoring

test rig. The type of damage captured by the test rig and the location of the damage

on the concrete infrastructure can be analysed by engineers to prioritise and plan any

required maintenance actions. However, inaccuracies in the captured geometry may

cause incorrect maintenance decisions to be made. To validate the rig, a custom data

set was collected and curated that included physical objects with a range of different

attributes and geometries, including examples of worn building objects. The objects

were measured in the test rig and compared against the results from a more charac-

terised method. Additionally, virtual 3D models were tested in a virtual recreation of

the test rig to represent the case where environmental and measurement noise could be

completely removed.

The hierarchical copula-based approach and a transparent base model were applied

to the test rig outputs and shown to be capable of correcting the base model predictions

while also providing an uncertainty estimate across the surface captured by the rig.

The Centre Vine model was the overall highest performing model type across the 3

case studies, outperforming the Multivariate Gaussian copula models, the base model

on its own, and the rig self calibrating against a flat plane. The test rig offers a cheaper,

portable option for capturing damage in concrete infrastructure, but requires its outputs

to be validated to allow the generated meshes to be utilised in maintenance planning.

The hierarchical copula-based approach was able to provide this validation, with the

highest reduction surface estimate error being 47%, whilst also providing uncertainty

estimates across the captured surface to identify areas where the model correction is

high or low risk. This provides engineers with more accurate surface geometry estimates

and clearer associated risk which may be crucial for structurally significant areas of the

damaged infrastructure.
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6.4 Future work

While the initial goals of this research presented in Chapter 1 have been either achieved

or progressed, there is plenty of scope for future development. In future, the three parts

of this work could be more definitively combined, providing analytics capable of un-

certainty quantification on spatiotemporal data within an explainable data pipeline,

perhaps with further expansion to allow uncertainty sources to be traceable through

the entire system. This investigation could be supported through the design and con-

struction of a test rig which is designed to have a flexible and variable data pipeline

to observe different faults in a more realistic operating environment, rather than syn-

thesizing them. This would diversify and expand on the use of the structural health

monitoring rig utilised in this work and provide the possibility of releasing more open-

source data to the research community, with a particular focus on diagnosing data

quality issues from the design of the data acquisition system. This could potentially

align well with current research on digital twins1, which are models of real systems

used to assist in fault detection and diagnosis. Having access to both the real system

and a model of the system provides opportunities to explore both better digital twin

design, and also how high fidelity digital twins can be used to improve real systems,

either through the early detection of faults or providing operational suggestions to pre-

vent certain faults re-occurring quickly. Although several machine learning tasks and

engineering applications were covered in this work, more work could be done within

each application to investigate what type of observations (be it of poor data quality, or

at a point in the data space with high uncertainty) are most difficult for the analytics,

and so put the outputs at most risk. This would fall into the area of anomaly detection

or adversarial machine learning, where data points that deviate significantly, or create

specific failures in the analytics are studied to provide more robust analytics which are

more well defended against these situations.

1”Harnessing the power of digital twins”, The Alan Turing Institute,
https://www.turing.ac.uk/research/harnessing-power-digital-twins
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Bearing fault diagnosis across

similar assets - Considering the

impact of domain shift on

pretrained models

A machine learning solution that works well for one asset may not necessarily generalize

to a similar plant asset, and separate solutions for every rotating plant being monitored

may be infeasible. Different operating or environmental conditions, manufacturing

tolerances, maintenance schedules or fault severity cause shifts in the data collected for

similar assets with the same developing faults which may cause pretrained analytics to

fail. This work is an additional study alongside the pipeline design work in Chapter 3

which has been expanded to consider how pretrained models may transfer successfully

or unsuccessfully between similar assets.

To consider how domain shift may impact pretrained classifiers, the Case Western

Reserve1 (CW) and the MFPT2 bearing fault datasets were chosen to represent data

streams from two similar rotating plant. Both datasets contain inner race and outer

race faults, however both contain different operating conditions and the MFPT sensor

1https://engineering.case.edu/bearingdatacenter
2https://www.mfpt.org/fault-data-sets/
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locations and motor end containing the faults are not disclosed.

For this analysis, the classifiers were trained and tested on the CW dataset only,

then the pretrained classifiers were tested on MFPT data, and vice versa. The clas-

sifiers were also trained on a mixed dataset and tested on separated data from each

dataset to understand how the classifier performs on each asset. All data combinations

involved 5-fold cross validation and the settings chosen were a window length of 0.5

seconds, training and testing set allocation by random (75:25 split), all data domains

(timeseries statistics, frequency and wavelet), the classification tasks were fault detec-

tion (binary) and cross section location diagnostic with the process as described in

Chapter 3 Section 3.3.3. For the CW dataset, only fan end sensor data for fan end

faults and normal operation data were included. The models chosen were the Fine Tree,

Fine, Medium, Cosine, Cubic, Weighted and Ensemble Subspace k-Nearest Neighbours

and the Ensemble Bagged Tree, chosen due to diverse classification boundaries (lines,

polynomials, elliptic regions, etc) and methods.

The histograms and kernel density estimates of the testing errors for the 3 cases

are shown in Figure A.1, A.2 and A.3. As shown the classifiers perform well on the

testing data from the training data domain but perform poorly on data from the other

domain, demonstrating that similar assets with different operating conditions and data

collection methods can impact the classifiers’ ability to identify the same bearing faults.

The presence of the peaks at 50 % testing error in the histograms of the non-training

data domain suggest that the classifiers have resorted to random predictions, while the

prevalence of testing errors above this (60-80 % in Figure A.2, left) suggests the classifier

has learnt incorrectly and are more confident in allocating these incorrect predictions.

However, when the classifier has access to data from both domains (Figure A.3), the

domain shift can be learned allowing the classifiers to generalize better, producing

results comparable to those generated by the models trained solely on each dataset

with a slight performance deterioration.

Fleet wide monitoring using a smaller set of analytics reduces the amount of mainte-

nance required to upkeep these tools while providing the ability to increase the amount

of assets that can be assessed. As innate differences between similar assets cannot be
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Figure A.1: CW (left) and MFPT (right) testing error (%) histograms for models
trained on CW data only

Figure A.2: CW (left) and MFPT (right) testing error (%) histograms for models
trained on MFPT data only

Figure A.3: CW (left) and MFPT (right) testing error (%) histograms for models
trained on a mixture of CW and MFPT data.
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easily measured, it is important to understand the complication they pose to the ana-

lytic tools and how these problems can be mitigated. In this case study, it was enough

to provide the classifiers with labelled examples from both domains to generalise the

model behaviour and accommodate both assets. However, as more assets are moni-

tored with the same tools, the similarity between the assets in the same family will not

be consistent, requiring greater understanding of how domain shift can be successfully

quantified and how it impacts the analytics directly to be compensated for. Many

methods exist to align the data, align the features or generalise the model to perform

transfer learning, which require understanding of the nature of the domain shift and

application to advise on the most appropriate method. These options may be explored

further in future work.

213



Appendix B

Pipeline explanations - Example

SHAP plots and investigating

worst case design choices for

additional context

The intermediate stage between encoding the pipeline designs into an additional data

source and utilising the ranking of design choice impact is provided by SHAP plots.

These plots show the magnitude and direction of the impact the input variables have

on the output variable. These SHAP plots are not of direct focus to Chapter 3 and so

are instead provided here for additional context. In Chapter 3, the focus was placed on

demonstrating the identification and selection of design choices which lead to the highest

performance of analytics within the pipeline design, however, the process equally allows

the identification of negative performance drivers that should be avoided. This may be

of use as further justification for design selections, or may allow inefficiencies within

current system design to be identified for further improvement. All data presented in

this section can be found, summarized across all runs, in tables within Chapter 3 but

are visualized here for additional clarity.
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Figure B.1: (Left) Histogram of classification errors for the ‘worst’ design choices for the
source dataset (Case Western reserve dataset). (right) Histogram of the classification
errors for the ‘worst’ design choices identified for the target dataset (MFPT dataset).
The ‘worst’ choices across each stage for each dataset were summarised in Table 3 of
the paper.
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Figure B.2: (Left) Summary plot showing the pipeline choice ranking and direction of
impact on the pipeline classification error. When values of the choice is high, the choice
is present in the design, while a low value denotes the absence of the choice in a pipeline.
Some values, like the timeseries statistics choice, have generally low impact regardless
of its presence or absence in the design, while others such as the ’ESD’ (Ensemble
subspace discriminant) model have little impact when absent, but a large negative im-
pact when present in the design. (Right) Magnitude plot showing the pipeline choice
ranking and magnitude of impact on the pipeline classification error. The top 5 most
impactful choices in descending order are ’TB’ (Binary classification task), ’Wavelet’
(data processing domain), ’TE’ (motor end classification task), ’ESD’ (ensemble sub-
space discriminant model) and ’GNB’ (Gaussian Naive Bayes model). As shown, much
of the impact has reduced by the ’S2’ (Fan end sensor, only) choice, showing much of
the impact is concentrated in a relatively small fraction of the decisions.
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Figure B.3: (Left) Summary plot showing the pipeline choice ranking and direction
of impact on the pipeline classification error for the target design subset. For most
variables, their absence (low value) are concentrated nearer a SHAP value of 0, while
their inclusion (high value) tends to generate a more extreme SHAP value response,
showing the model is more sensitive to a design inclusion than absence in this case.
(Right) Magnitude plot showing the pipeline choice ranking and magnitude of impact
on the pipeline classification error for the target design subset. The top 5 most impactful
choices have 4 common choices with source case, with the addition being the frequency
data processing domain taking third place. Compared to the SHAP plots for the
source dataset, the impact of all variables is higher, however the most impact is still
concentrated within the top few variables (’TB’-’ESD’).

217



Appendix B. Pipeline explanations - Example SHAP plots and investigating worst
case design choices for additional context

218



Appendix C

Multivariate Gaussian and Vine

Copulas: Linear and Non-linear

data structures

High dimensional copula models may be applied to linear and non-linear dependency

structures. Vine copulas are generally more flexible and able to handle non-linear de-

pendency, whereas Multivariate Gaussian specialise in linear dependency. Both models

have their merits and should be evaluated on a variety of metrics to assess all facets

of the models performance for a given application. The application should inform on

what type of performance is most valued and the data will inform on potential chal-

lenges for different model types. For example, some cases may place high importance on

rare events which occur at the extremes, however, both Multivariate Gaussian or Vine

models may be sufficient for this purpose depending on the data structures involved.

In this appendix, a short example is given for linear and non-linear data to show how

Multivariate Gaussian and Centre Vine models perform on these simplified scenarios.

In the linear example, data is generated from Gaussian models which presents as

concentric rings on the training data contour plot in Figure C.1. Both the Multivariate

Gaussian and Centre Vine model are able to capture this behaviour, as shown by the

good overlap of samples on both plots, and similar structure in the contour plots.

In the non-linear example, training data is created by sampling a Frank copula. This
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Figure C.1: Multivariate Gaussian and Centre Vine models performance on Gaussian
(linear) training data.
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type of model has low upper and lower tail dependency, which means there is higher

deviation in the extremes due to this reduced dependency. In this case, the relationship

between the variables at the extremes is more volatile. In an engineering application,

this may be important for assigning risk at a highly uncertain point in the relationship

between the variables. Extreme values may be rare, but may be of great importance

in an operational sense, where intervention may be required to prevent operational

limits being exceeded. Couple this with the uncertainty in the relationship between

process variable X and Y at the extremes, and this could be an important scenario to

be modeled. The performance of a vine and multivariate gaussian copula on non-linear

training data is shown in Figure C.2. The copulas are sampled to provide data for

plotting, and the training data used to fit the copula models is shown. Contour plots

are provided to show the density of the copulas and training data. The vine copula

shows good performance at fitting the data (similar shape of the contour plots between

the training data and the vine samples, and good overlap of samples with the training

data). The Multivariate Gaussian has overcompensated to encapsulate the training

data, resulting in a wider spread of samples. The density on the contour plot is also

not as tight, which is not similar to the training data contour plot. However, the

Multivariate Gaussian has been able to identify that there are two density structures in

the upper and lower tails. The Multivariate Gaussian has captured the general trend

of the data, but not the details which were successfully captured by the vine copula.
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Figure C.2: Multivariate Gaussian and Centre Vine models performance on non-linear
training data (low upper and lower tail dependence).
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Autocorrelation plots for copula

timeseries analysis

Autocorrelation functions [283] measure the correlation (linear relationship) between a

timeseries function and itself at different lagged timesteps [284]. This is used to sepa-

rate out time dependent trends in the data which may be seasonal or periodic. High

correlation, whether positive or negative, indicates a strong linear trend. Correlation

values within the confidence bounds are considered insignificant and present no linear

relationship. While copulas can accommodate dependency structures that are linear

and non-linear, autocorrelation function plots are a common method for visualising

linear trends in data. In this appendix, the autocorrelation plots for the base model

residuals are presented to show the trends present in the data used to train the copula

models. The copula models are trained on: 5 lags for the synthetic dataset; 8 lags for

the open source dataset (representing a 24 hour forecast horizon); and, 15 lags for the

industrial dataset (representing a 2 week forecast horizon). To summarise, the autocor-

relation strength across the lags used to train the copula models are sufficiently strong

to be considered significant. Interestingly, the open source dataset has a sinusoidal au-

tocorrelation pattern which, across the 8 lags, drops below significance level and then

increases again.
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Figure D.1: Base model residual timeseries and autocorrelation plot for the Synthetic
dataset. The autocorrelation values are significant until lag 19 where it drops below
the confidence bounds. The lags used to train the copula model are up to 5 lags, which
present a strong linear trend.

Figure D.2: Base model residual timeseries and autocorrelation plot for the Open
Source dataset. The autocorrelation values are significant while above the confidence
bound lines. The lags used to train the copula model are up to 8 lags, which means two
of the lags used have no linear relationship, while the others present a positive linear
relationship.
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Figure D.3: Base model residual timeseries and autocorrelation plot for the Industrial
dataset. The autocorrelation values are significant passed lag 20. The lags used to train
the copula model are up to 15 lags, which present a reasonably strong linear trend.
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Appendix E

Dependency analysis of geometric

features for photometric stereo

rig error modelling

A total of 36 features derived from the photometric stereo rig geometry were compared

to select the feature most suited for modelling the rig error across all objects in the case

study. In this section, scatterplots of all 36 features against the Z error between the

coordinate measurement machine and photometric stereo rig are included for all objects

used in the study. Specifically, the objects utilised are the damaged slab, chimney liner,

broken brick and a benchmark dataset of an empty frame (blank background). The

features are measured in millimetres for distances and radians for angles, and cover:

• 2 features for the X and Y coordinates

• 2 features for the Euclidean distance to mesh centre (on [X,Y] plane) and the

angle to mesh centre (on [X,Y] plane)

• 16 features for the Euclidean distance in 3D to each lighting strip (Directions:

North, East, South, West; and angles: 10, 30, 50 and 70 degrees to the horizontal)

• 16 features for the angle from mesh point to each lighting strip (Directions: North,

East, South, West; and angles: 10, 30, 50 and 70 degrees to the horizontal)
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Figure E.1: Chosen feature - Euclidean distance to mesh centre on [X,Y] plane
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2D Euclidean distance from the mesh centre against the Z error.
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Figure E.3: Blank background - Scatterplots of Z error against the angle to all combi-
nations of lighting direction and lighting angle.
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Figure E.4: Blank background - Scatterplots of Z error against the 3D Euclidean dis-
tance to all combinations of lighting direction and lighting angle.
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Figure E.5: Damaged slab - Scatterplots of the X and Y coordinates, 2D angle and 2D
Euclidean distance from the mesh centre against the Z error.
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Figure E.6: Damaged slab - Scatterplots of Z error against the angle to all combinations
of lighting direction and lighting angle.
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Figure E.7: Damaged slab - Scatterplots of Z error against the 3D Euclidean distance
to all combinations of lighting direction and lighting angle.
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Figure E.8: Chimney liner - Scatterplots of the X and Y coordinates, 2D angle and 2D
Euclidean distance from the mesh centre against the Z error.
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Figure E.9: Chimney liner - Scatterplots of Z error against the angle to all combinations
of lighting direction and lighting angle.
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Figure E.10: Chimney liner - Scatterplots of Z error against the 3D Euclidean distance
to all combinations of lighting direction and lighting angle.
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Figure E.11: Broken brick - Scatterplots of the X and Y coordinates, 2D angle and 2D
Euclidean distance from the mesh centre against the Z error.

0.00 0.25 0.50 0.75 1.00
North, 70 degrees

50

0

Z_
Er

ro
r

0.5 1.0
North, 50 degrees

Z_
Er

ro
r

0.6 0.8 1.0 1.2 1.4
North, 30 degrees

Z_
Er

ro
r

1.4 1.6 1.8
North, 10 degrees

Z_
Er

ro
r

0.00 0.25 0.50 0.75 1.00
East, 70 degrees

50

0

Z_
Er

ro
r

0.0 0.5 1.0
East, 50 degrees

Z_
Er

ro
r

0.5 1.0 1.5
East, 30 degrees

Z_
Er

ro
r

1.50 1.75 2.00 2.25 2.50
East, 10 degrees

Z_
Er

ro
r

0.00 0.25 0.50 0.75 1.00
South, 70 degrees

50

0

Z_
Er

ro
r

0.5 1.0
South, 50 degrees

Z_
Er

ro
r

0.6 0.8 1.0 1.2 1.4
South, 30 degrees

Z_
Er

ro
r

1.4 1.6
South, 10 degrees

Z_
Er

ro
r

0.00 0.25 0.50 0.75 1.00
West, 70 degrees

50

0

Z_
Er

ro
r

0.5 1.0
West, 50 degrees

Z_
Er

ro
r

0.0 0.5 1.0 1.5
West, 30 degrees

Z_
Er

ro
r

1.4 1.6 1.8 2.0
West, 10 degrees

Z_
Er

ro
r

Z error against angle (radians) to lights (brick)

Figure E.12: Broken brick - Scatterplots of Z error against the angle to all combinations
of lighting direction and lighting angle.
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Figure E.13: Broken brick - Scatterplots of Z error against the 3D Euclidean distance
to all combinations of lighting direction and lighting angle.
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