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Abstract
Medical and statistical studies and research have shown that respiratory viruses are im-

portant and dangerous to human life.

Daily data were studied for Acute Respiratory Illness (ARI) and influenza-like illness (ILI)

consultations for surveillance for influenza from all 14 health boards (HBs) in Scotland.

The National Health Service (NHS) provided the data from 2009 to 2014.

The weekly case ratio (WCR) method, developed for pandemic detection, may be a useful

way of detecting seasonal influenza. The target is to find a simple way to extend the WCR

method and compare it to other well established systems. This method is based on two

terms, the value of WCR defined as the total influenza rates reported to all GPs in week

w divided by the total rates in week w− 1 and NHB defined as the number of HBs which

have a WCR > 1. We use daily data for ILI consultations. The starting point is using

Scotland data to investigate how effective the WCR method would be for Scotland data.

We then extend this situation, through simulation based upon the Scottish data to have

more than 14 HBs with the same structure as Scotland.

The next step is to develop the WCR algorithm for smaller spatial areas. We created

another data structure using 30, 40 and 50 HBs from the original Scottish data, using

different population size structures, then simulated more than 3,000,000 cases of ILI,

considering the rate as flat during the year, then we got the joint distribution for WCR

and NHB in the case of no epidemic.

We attempted to identify a rejection region for a test using the null joint distribution

between WCR and NHB.

The modified WCR system exceeds performance of other systems in some circumstances.
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Chapter 1

Background about influenza

This chapter contains background information about influenza, while the next chapter 2 is

about description of data. In chapter 3, statistical methods for the detection of outbreaks

are reviewed. Applying and modifying some well-known detection systems for influenza is

presented in chapter 4. Chapters 5 and 6 give an overview of the system. Different sce-

narios for the simulation study are reviewed in chapter 7. Results of tests of the detection

system and comparison with other systems are presented in chapters 8 and 9. Chapter 10

draws conclusions.

In this chapter, in sections 1.1, 1.2 and 1.2.1, there are a definition and description of in-

fluenza, transmission and classification of influenza, while in section 1.3 the symptoms are

discussed. During a pandemic or seasonal influenza case, people should take precautions

regarding transmission, and this is reported in section 1.2. Section 1.4, reports history

of influenza, while the burden of influenza is discussed in section 1.5. Sometimes a virus

becomes out of control and is reported as a pandemic or seasonal influenza, respectively

discussed in section 1.6. Section 1.7 discusses vaccination against influenza and treatment

after infection is reported in section 1.8.

1.1 What is influenza?

Today, there are a lot of disasters that threaten humans in their lives. Wars are one of

the obstacles of life. There is a kind of war that does not kill people by using bullets and

guns, but by the spread of viruses in the air. It is “viral diseases”.

According to Whimbey et al. [175], respiratory viruses are more active in winter than

other seasons. Also influenza accounts for nearly 50% of virus diseases. The first ap-

1
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pearance of an influenza virus was in 1878 in South Asia, but there is no detailed report

regarding it [3,148,171]. It is an indication of the seriousness of influenza that pandemics

ravaged human beings in the past for example, 1918, 1957–1958, 1968–1969 and 2009 pan-

demics [153]. Because influenza transmits quickly between infected and healthy humans

(direct infection) as well as between infected animals and humans (non-direct infection),

it is important to take advantage of science and research methods that help to discover

influenza before an epidemic or pandemic occurs, to be prepared for taking protective

vaccines before widespread infection. Early detection of the emergence of influenza each

year is important for planning and treatment.

Humans are still trying to study treatments and preventive vaccinations for viruses. Dis-

eases caused by viruses have been known as famous diseases from the past. Respiratory

viruses are viruses which are more active in winter than other seasons [77, 97, 175]. Also,

influenza accounts nearly for 50% of the viral diseases [152, 154]. Influenza is one of the

well-known illnesses which infect humans through influenza viruses. The first appearance

of an influenza virus was in 1878 in South Asia, but there is no detailed report regarding

it. It was for a young girl who lived near to poultry and she was infected, then she died.

After that, her mother was infected. Actually, there is evidence for the virus moving

from poultry to humans (non-direct transmission) and also from human to human (direct

transmission) [3, 24, 87]. Another kind of source of a virus non-directly transmitted from

animals is the virus reported to infect humans through pigs [171].

1.2 Transmission

A first step to combat spread of the disease when it occurs in the community is full

knowledge and awareness about the modes of transmission of the disease. The influenza

virus is able to continue in the population because it is capable of continuing evolution

in mutations, and there are significant changes in the composition of the virus, leading

to epidemics that can cause morbidity and mortality in a global catastrophe [18, 31].

People infected with influenza in the context of health care and hospitals pose a threat

to workers in hospitals, as well as inpatients, in what can lead to the rapid spread of the

virus and its outbreak in a community. The opinion of many health workers is that the

solution to this is to isolate a patient with the virus. A humid environment is considered

capable of transmitting influenza viruses and of ensuring the survival of the virus alive if

there is not enough ventilation. It is also important to mention that desiccation of the

virus does not eliminate infectivity [172]. Non-pharmaceutical interventions, including

facemasks, improved hand hygiene, cough etiquette, isolation of the sick and quarantine

of exposed individuals, social distancing measures, and travel restrictions, have been used
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by many countries to control an influenza pandemic, at its beginning especially. However

for pandemic or non-pandemic influenza, concerning modes of influenza virus transmission

among people, there is no strong evidence of the validity of simple personal protective

measures, such as facemasks and hand hygiene [36, 149]. Doctors can clearly diagnose

influenza in patients by recording signs and symptoms soon after fever starts and using a

clinical case definition and knowledge to know that the influenza virus is spreading within

the community [8]. Also the age of humans is an important factor in infection. One study

showed that 1% and 26% of people who are older than 18 and younger than 64 are infected

with influenza annually [23]. A community should know the ways that human influenza

is transmitted, to protect itself, families and their children. Human influenza can infect

people by direct contact through inhalation of infectious droplets. In 1997, one infection

was reported for influenza A (H5N1) during daily contact between a mother and her child.

During the time that the influenza virus is alive in the environment, there are many ways

for more infection to spread. From the first thinking about and understanding of influenza,

it has been known that infected (contaminated) water can keep the influenza virus alive

and transmit the infection directly during swimming or by breathing spray from infected

water [151,181]. In hospitals, diagnosing influenza virus infection is more conservative, and

less defensive detection methods such as antigen detection and virus isolation are used,

with less accuracy [158]. The best solution to avoid the disease influenza is by taking

preventive vaccinations against the virus, as well as to stay away from infected people and

crowded places without ventilation.

1.2.1 Classification of influenza

In 1995, influenza viruses ware classified to HA and NA groups. HA means “haemagglu-

tinin” and NA means “neuraminidase”. Only the influenza A virus was known from birds,

but also viruses of all 15 (H1, H2,. . . , H15)(HA) and 9 (N1,N2,. . . , N9) (NA) influenza

subtypes have been taken from avian species. Classification of influenza viruses gives

us individual characteristics for some influenza subtype viruses. Two subtypes H5 and

H7 are challenging because of their near 100% chance of causing “Fowl Plague”, “highly

pathogenic avian influenza” (HPAI). Other viruses are much less virulent than H5 and H7

for respiratory disease, denoted “low pathogenicity avian influenza” (LPAI) [3, 159].

1.3 Symptoms

Symptoms or signs of any disease or illness can be defined as indicators which can be diag-

nosed by a doctor as evidence of illness or infection. Some cases need specific analysis to

confirm illness or infection. The duration between infection and manifestation of disease
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differs according to some factors like kind of illness, age and patient immunity. Usually,

the first point of diagnosis of any disease is with the general practitioner (GP), as most

people are registered with a GP [101]. Many studies in the past and at the current time

collect their data from GP records, as the diseases in the world are preceded by symptoms

and signs which give direct or non-direct evidence of a specific ailment. Influenza has a

fixed cycle of indicator symptoms. The combination of fever and cough has been shown

to be an accurate symptom of influenza infection in the influenza season. In one paper

about influenza symptoms, patients were monitored daily by nurses for the presence of a

cough (more than usual or acute onset) and elevated body temperature (37.8 C and over).

Other symptoms that might be associated with influenza are sore throat, rigours or chills,

myalgia, headache, obstructed nose or inflammation of the membrane of the nose, acute

onset of symptoms, and malaise or weakness. Cough is one of the influenza symptoms with

the highest sensitivity compared with the other symptoms, because influenza symptoms

are not all equally common [96,158]. Monitoring GP records can indicate the presence of

influenza in a community from the frequency of relevant symptoms in people which are

highly indicative of influenza, i.e. serious cough and fever (body temperature 37.8 C or

over). Also cough and fever are the best two predictors of a laboratory-confirmed better

diagnosis of influenza. Many studies show that cough and fever are a better indicator of

influenza infection than either syndrome alone, e.g. [20,96]. From those studies, there is no

difference in influenza symptoms between different subtypes of influenza viruses. Influenza

disrupts the daily activities of individuals because most people are incapacitated by this

disease, which be a considerable burden to society, e.g. causing many days of lost work,

or death in more vulnerable people.

1.4 History of influenza

Some influenza viruses have been known for some time, such as H1, H2 and H3, but this

does not mean there are only three viruses which can infect humans. In 1878, one disease

known as “Fowl Plague” caused mortality for humans and in 1901, the main cause for

this disease was known but not in detail until 1995, because in this year influenza viruses

were classified to HA and NA groups. In 1959, a first case regarding HPAI was observed

in poultry and reported 17 times for five turkeys and twelve chickens, caused by the H5

influenza subtype [3, 155].

Influenza A subtype H7 was reported in England in 1991. The rate of virus spread was

different between virus locations, as the reports show that the rate in England in 1991 was

much less than others in the USA in 1983, Mexico in 1994 and Pakistan in 1995. Because

the virus was reported in different geographical locations, the disease become widespread,
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causing large number of birds to die or be killed as part of a control policy [3].

Table 1.1 shows some occurrences of different strains of influenza since 1959.

Reported HPAI isolates from poultry since 1959

No Region Kind of poultry Kind of Influenza Subtype of virus

1 Scotland Chicken A H5N1

2 England Turkey A H7N3

3 Ontario Turkey A H5N9

4 Victoria Chicken A H7N7

5 Germany Chicken A H7N7

6 England Turkey A H7N7

7 Pennsylvania Chicken A H5N2

8 Ireland Turkey A H5N8

9 Victoria Chicken A H7N7

10 England Turkey A H5N1

11 Victoria Chicken A H7N3

12 Queensland Chicken A H7N3

13 Mexico Chicken A H5N2

14 Pakistan Chicken A H7N3

15 NSW Chicken A H7N4

16 Hong Kong Chicken A H5N1

17 Italy Chicken A H5N2

Table 1.1: Occurrences of dangerous influenza subtypes H5 and H7 (HPAI) in different

countries from 1959 [3].

In 1997, the influenza virus H5 killed 6 of 18 infected humans. Some kinds of influenza

virus infect people non-directly, like influenza virus which comes from animals in the

human environment, such as birds or pigs [144]. People believed that avian influenza

could not move outside birds and infect humans. This event clearly led scientists to

two main causes for avian influenza, i.e. live poultry markets as breeding grounds for

the influenza virus, and also an Asian source of the H5 influenza virus apart from Hong

Kong severe acute respiratory syndrome (SARS). Influenza viruses like H1,. . . , H15 have

subtypes. H5N1 virus was found in duck meat imported from China between 1997 and

2003. A complication in this problem was that China did not have official reporting for

the H5N1 virus. During such events, countries must show the public that they are taking

steps to contain the virus [118, 171]. Another kind of influenza is H7, which needs lab

analysis to create an antivirus. One serious problem in this situation is that H5 and H7
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are very fast spreading viruses which lead to quick infection between chickens and turkeys

before moving to infect humans. H7 and H9 subtypes can also cause influenza in humans.

In the past ten years from 2003, influenza arrived in humans because both H6 and H9

influenza viruses had spread from a wild aquatic bird reservoir. One subtype of influenza

virus called H9N2 infected both humans and pigs [118,171].

One avian influenza virus called H5N1 infected humans though birds. In 2009, H5N1 killed

humans in Southeast Asia, and the first human death was in Indonesia [151]. In Asia, one

kind of influenza virus is widespread, called influenza A subtype (H9N2) [119]. In 2002,

the global spread of SARS caused the public to become keenly aware of emerging infectious

disease. In 2003, highly pathogenic strains of avian influenza virus, also H5N1 and H7N7

subtypes, were included among those strains which can pass to humans. Before 1997, direct

avian to human influenza transmission was unknown. H5N1 (avian influenza) can move

to infect humans and this happened in February 2003 when a young girl from Hong Kong

died of an unidentified respiratory illness after she visited mainland China [42]. After that

the fatal illness passed to her father, showing that this virus can also move from human to

human. In March 2003, another alarming situation with a highly pathogenic H7N7 avian

influenza outbreak occurred at the other side of the world, in the poultry industry of the

Netherlands. Many veterinarians died of respiratory infection. Fortunately, the worst case

scenarios did not come about in either of these 2003 avian influenza virus outbreaks.

Doctors and researchers are now better equipped with technologies and reagents to rapidly

identify and respond to pandemic influenza threats, since 1997. This development increases

the responsibility of scientific communities to use those improvements to stop hearsay and

give public and nations accurate knowledge regarding influenza, means of infection and

also ways to avoid infection. The World Health Organization (WHO) started the devel-

opment of a Global Agenda for influenza surveillance and control in 2001. In May 2002, a

document written by WHO was adopted after a proposal was made and public comment

was invited. This document advocates developing and improving methods and reagents

that can be used to rapidly identify all influenza virus subtypes, as part of integrated

influenza surveillance in humans and animals. The WHO with its global influenza net-

work works in international cooperation for the rapid exchange of viruses, reagents and

information to improve early rapid surveillance for all influenza virus subtypes [171].

1.5 Burden of influenza

From the results of our literature search we conclude that the influenza virus occupies a

large number of scientific studies, as well as being a major subject of study in the statistical

work of health organizations in the world. Winter is the season when preparations must

be made before the spread of the virus is greatest. Several studies have discussed the
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issue of global influenza virus, confirming that influenza virus is an annual major concern

in public health and is responsible for an average of 36,000 excess deaths annually. Also

114,000 hospitalization cases per year are caused by the influenza virus [84,85,108,172].

1.6 Pandemics, seasonal influenza

There is a famous and straightforward definition for a pandemic, accepted internationally,

written in the Dictionary of Epidemiology: “an epidemic occurring worldwide, or over

a very wide area, crossing international boundaries and usually affecting a large number

of people” [171]. Influenza outbreaks differ between geographical locations, meaning an

outbreak can happen in one country over a limited time period. In 1995, community

surveillance by the Scottish Centre for Infection and Environmental Health monitored

outbreaks of influenza A and B starting in week 6 and 1 respectively [126]. Sometimes

pandemic influenza happens as outbreaks like avian influenza A (subtype H5N1), which

infected poultry and moved to humans in Southeast (SE) Asia. At first, infection is

caused by contact between birds and humans with limited spread from human to human,

but then infection spreads between humans after a human is infected, which can lead to

an outbreak then spread worldwide via the global transportations network. This happens

more quickly than an adequate supply of the vaccine matching the new version can be

produced. This is the main reason for building models for rapid detection by researchers

and scientists [9, 55, 86, 143], to create more time to manage the outbreak. Pandemic

influenza occurs unpredictably, such as the H7N7 virus in European poultry and humans,

the H5N1 virus which infected Asian poultry and humans, and also swine flu which infected

pigs in the United States [171]. The main challenge during pandemic influenza is the

time factor, because manufacturing and developing a vaccine to match the new identified

influenza takes 6-8 weeks [85]. Infections also depend on some factors like time, age, and

location, because many studies observed that a pandemic during the winter season has

the highest level of infection. Also during non-pandemic influenza years, people who are

younger than 65 years have 10% less influenza illness according to GP consultations [23].

To conclude, at a time when we see influenza come and infect humans, then kill them,

unexpectedly, part of a solution should be storing treatments and generic drugs for use at

the first attack of influenza. One treatment that it is advised to store is “Oseltamivir” [151].

Another kind of influenza infection in the community occurs in the winter, which is called

“seasonal influenza”. The influenza virus spreads around the world in winter, and many

studies confirm that the major season for influenza infection is in the winter. The strains

are usually different from one year to the other. It is possible to get infected by the

influenza when it is not influenza season, but this is less likely. An average of 10% of the

population suffers from annual influenza in the world during the weeks of an influenza
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outbreak [8].

One of the signs that many cases of influenza occur when weather temperature decreases

is that numbers of recorded deaths rise in winter. This sign leads scientists and health

organizations in the world to take care and prepare to face this season to avoid poorer

health scenarios [95]. There is clearly oscillation in occurrence of influenza, as recorded

by many studies. One reason reported by the American Journal of Clinical Nutrition, is

acute decrease of vitamin D, because the main source for vitamin D is sun exposure; thus,

season can affect serum vitamin D concentrations [157].

1.6.1 Geographic pattern

Often the spread of viral diseases varies from one country to another depending on the

nature of the atmosphere and weather in those states. According to WHO, global seasonal

influenza activity is different depending on geographical location. It is more active and

continuing in the southern hemisphere, while elsewhere influenza activity stays low.

Figure 1.1: Influenza map [182]

The map in figure 1.1 comes from WHO, and shows the last update on 20th October 2017

Update number 301 [182] notes some points, which are that over the study period:

• Influenza and respiratory syncytial virus (RSV) activity took a downward trend

throughout most of the sub-regions in conservative South America.

• Influenza activity continued to decrease, with influenza B viruses most frequently

detected in Southern Africa.

• In Oceania, seasonal influenza activity continued to drop, with influenza A(H3N2)
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triumphant, followed by B viruses.

• Influenza and RSV activity remained at low levels overall in the tropical countries

of South America.

• Respiratory illness indicators in the Caribbean and Central American countries and

influenza activity stayed low in general, but RSV activity remained high in several

countries.

• Influenza activity remained low in general in Southern Asia. In India, influenza

A(H1N1)pdm09 and A(H3N2) virus detections continued to be reported.

• In Western Asia, there was increasing influenza activity in Oman, with influenza

A(H1N1)pdm09 virus predominantly detected, followed by a small proportion of

A(H3N2) and B viruses.

• Influenza activity remained low in general in East Asia.

• In Western and Middle Africa, influenza detections continued to be reported, with all

seasonal influenza subtypes present in the region. In Eastern Africa, little influenza

activity was reported, with the exception of Réunion Island.

• Little to no influenza virus detections were reported in North Africa.

• In Central Asia, Influenza-like illness (ILI) and severe acute respiratory infection

(SARI) indicators appeared to increase in Kazakhstan, Tajikistan and Uzbekistan,

with few influenza detections.

• Influenza activity remained low in Europe.

• Overall, influenza virus activity remained low, with detections of predominantly

influenza A(H3N2) and B viruses in North America.

1.7 Vaccination

First, it is usual to face challenges for development of any vaccines against any virus such

as the influenza virus. This because influenza viruses have many subtypes, and developing

any antiviruses requires study of all specifications and life cycle for this virus subtype.

On the other hand, we also need to study and know all impacts, effectiveness, positive

and negative effects and duration of effectiveness for humans who are infected with the

virus. Those processes must be done as soon as possible from the first information about

the virus, in order to face it and also to avoid virus spread. In the history of vaccines

since the early 1980s, developed countries established large-scale influenza vaccination

programmes, now starting in developing countries [31,63]. Regarding the influenza virus,
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some challenges can be faced by early knowledge about the subtypes, from the time of

first emergence. If the challenge is time, e.g. the next influenza pandemic were to begin

tomorrow, using a vaccine will confine the disease, which means the possibility for the

infection to infect people will be reduced. Now, there are tissue culture – based and live

debilitates vaccines authorized and allowable in some countries, which could complement

the supply of inactive vaccines [171]. People in some age groups need more health care,

like older people or small children. Persons of 65 years old or more are advised by the

Advisory Committee on Immunization Practices (ACIP) of the Public Health Service to

receive the influenza vaccine annually.

More recent studies have shown reduced levels of influenza infection and death of people

who receive vaccine. Results in the study by Nichol et al. [110] found that elderly people

living in the community had less infection than people in hospitals during the influenza

seasons, while they all took the vaccine against influenza [14, 99]. That is the reason for

doctors advising people to take the vaccine against influenza before they have any symp-

toms. The current recommendation from ACIP to each person with increased risk for

complications of influenza or who would like to avoid influenza is to have annual vaccina-

tion against influenza [109]. Also, the Centre for Disease Control and Prevention (CDC)

in the United States and the Department of Health in the United Kingdom (UK) strongly

advise the influenza vaccine for people who have chronic illnesses or who are in long-term

care homes. It is a serious issue because comparison of elderly people who receive the

vaccine with those who refuse the vaccine shows a reduction in infection and mortality for

vaccinated people [126]. Developments in medical devices and advanced technology make

it possible for doctors and people who are interested in public health to do more work and

research to give humanity successful solutions for influenza disease. One third of people

who are infected require hospitalization, and one tenth die from influenza. Treatment and

prophylaxis with antiviral drugs during influenza outbreaks in healthcare institutions are

recommended by ACIP. Rapid diagnostic tests and efficient monitoring systems are very

important because the first introduction of control measures depends on them [158]. To

treat influenza effectively requires taking antivirals directly with no waiting for traditional

laboratory diagnosis [96]. However valuable advice for the public is that influenza vaccine

is recommended, especially for persons of a certain age [23].

1.8 Treatments

There is clearly a need for effective treatments that can reduce influenza impact on society

and individuals. During influenza, using antivirals as early as possible can help to control

the influenza infection and to prevent the infection of uninfected people. Amantadine and
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Rimantadine are two currently available antiviral agents for the treatment of influenza,

but are not widely used because of limited availability in some countries, and there is also

concern about side effects of those treatments. They are also effective against influenza

subtype A alone, which leads to problems when a mixed outbreak occurs, so it is clearly

important to look for antiviral agents able to face more subtypes, which can be used with

different cases. An antiviral agent to face the previous challenge, the treatment of influenza

A and B, is called Zanamivir. The advantage of using Zanamivir is that it reduces the time

over which symptoms appear by about 3 days, and studies also dramatically illustrate a

clear response from the second day when using this treatment [95]. Another oral prodrug of

oseltamivir carboxylate can treat influenza A and B, called oseltamivir, and it also has fast

response from symptom onset. Taking oral oseltamivir as early as possible after the onset

of influenza symptoms can start the effectiveness after 24 hours from receiving the drug.

This is called the IMPACT (IMmediate Possibility to ACcess oseltamivir Treatment).

Educating the community about the symptoms of flu that everyone can observe is very

important to start disbursement procedures for appropriate treatment early on. Early

intervention reduces the total duration of the disease by half or more compared to waiting

and treating at a later time, resulting in faster recovery and resumption of normal activities

[8]. Occurrence of a primary infection in children is associated with higher rates of viral

replication, owing to a lack of previous immunity, so there is a difference in resistance

rates between children and adults [10,13,41].

1.9 Aims and objectives

This thesis concerns the development and testing of statistical methods for detecting

outbreaks of influenza.

The main aim of this research is trying to develop the WCR method for use to detect

seasonal flu by establishing a simpler method of calculating the critical values (cut-offs).

We will starting by reviewing and studying various well-known methods used for early

warning systems and control of infectious diseases, and to try to improve on these.

Also the aim is to investigate trends in the GP consultation rates over time and to compare

the patterns in the different health boards, to develop an extended WCR method to detect

the next influenza epidemic and to study WCR performance compared to CUSUM and

MEM under situations of an increase in different circumstances. Such an extended method

would start to detect the beginning of the seasonal flu epidemic each year and to give as

much advance warning as possible.

The focus in this project is finding a simple way to extend the WCR method and compare

it to other well established systems.
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1.10 Conclusion

This first chapter of this thesis has discussed the definition, transmission, symptoms,

history and burden of influenza, as well as pandemics and seasonal influenza, vaccination

and treatments of influenza.

Chapter 2 now examines ILI and ARI data for Scotland, which will be used as a basis for

the work in the rest of the thesis.



Chapter 2

Data Description

As influenza is such a serious respiratory virus, most world countries have surveillance

systems to try and detect when the virus is circulating in their communities. This is

often based upon consultations for respiratory symptoms at GP practices. Respiratory

viruses like influenza infections are the most widespread causes of primary care consulta-

tion and appear to be a serious economic burden worldwide [35, 92]. The annual attack

rate of influenza is estimated at 5–10% in adults and 20–30% in children in a typical

season, although not all cases request medical care and are captured by the surveillance

systems [105, 183]. It is widely admitted that surveillance of influenza should address

the following objectives: monitoring the circulating virus strains in the early stages, the

timing, strength and riskiness of the epidemic patterns, providing information about the

implicit risk conditions, as well as provisioning epidemiological and virological support for

a pandemic at an early stage [180].

In this chapter, we investigate daily data for Acute Respiratory Illness (ARI) and influenza

like illness (ILI) consultations for surveillance for influenza in Scotland, as they give signs

or evidence about influenza infection [55, 106, 140, 184], and are used as a basis for the

later work in this thesis. This chapter uses data description and modelling for data

familiarisation.

2.1 Scotland Data

We are using data collected from all health boards in Scotland. There are fourteen health

boards which are spatially located. See figure 2.1 for these administrative areas. The

health boards are responsible for protecting and improving the health of the population,

as well as the provision of health care services such as the National Health Service (NHS)

[102].

13
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The NHS provided the data from 2000 to 2014. The Department of Mathematics and

Statistics in the University of Strathclyde has formal collaboration which gives access to

these data and they do not require ethical approve as the data are aggregated from GPs

and these data are anonymised.

Figure 2.1: Map of the territorial health boards in Scotland [66]

Table 2.1 shows a list of HBs and their abbreviations used in this thesis. The National

Health Service (NHS) provided the data on the ILI and ARI consultations from the mid-

year of 2009 to the mid-year of 2015. The aim of this analysis is to investigate the trends

in the GP consultation rates over time and to compare the patterns in the different health

boards.
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Health Board Abbreviation

Ayrshire and Arran AA

Borders BR

Dumfries and Galloway DG

Fife FF

Forth Valley FV

Grampian GG

Greater Glasgow and Clyde GGC

Highland HI

Lanarkshire LN

Lothian LO

Orkney OR

Shetland SH

Tayside TY

Western Isles WI

Table 2.1: Abbreviations of names of Scottish health boards.

2.2 Methods

We use the software R [129] to analyse NHS consultation rates for ILI and ARI. We use

Poisson regression to model the data as the numbers of consultations are considered as

count data and because the counts are small compared to the total population size in each

HB. We also use a generalised additive model (GAM) model with spline time functions

each year to describe the seasonal trends within a year. The second method used to sum-

marise the seasonal trend is to use a fourteen day moving average model. Finally, we will

compare our GAM models for each health board every year to investigate the similarity

of the seasonal trend in each health board [194].

2.3 Data

We treat the data for each health board separately, then run a 12 months’ time series

analysis for each of them. Number of GP consultations for ILI and ARI by the population

are available on a daily basis for complete years starting from August 2009 until the end

of July 2010 and so on until the end of July 2015. There are 6 years of complete data,

2009-10, 2010-11, 2011-12, 2012-13, 2013-14, 2014-15 where each year runs from August

to July.
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2.4 Scotland Data analysis

Swine flu has been reported as outbreaks in many countries in the world in 2009, e.g.

Mexico [25, 121], America in New York [83, 127], Australia and New Zealand [7, 19] and

in many other countries in the world. Scotland is one of those countries which suffered

from influenza in 2009 [1]. So we expect high rates when we examine either ARI or ILI

consultations in Scotland. It is worth studying because of this.

We will start by presenting ARI GP consultation rates in the whole of Scotland from the

mid-year of 2009 to the mid-year of 2015. Figure 2.2 shows the ARI rates during 2009

to 2015, and clearly the rate exceeds the normal range for ARI in the winter seasons in

general. As there was an outbreak in 2009, we see the rates for ARI in winter of 2009

reported as more than 800 consultations per 100,000 population and similarly in winter

of 2010. In the winter of 2011, 2012, 2013 and 2014, we see decreases in reported rates to

under 600 consultations per 100,000 population.
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Figure 2.2: ARI weekly consultations rates in 2009-2015 for Scotland, for all 14 health

boards.

Figure 2.3 presents the ILI GP consultation rates for the whole of Scotland from mid 2009

to mid 2015. We can see the rates in the winter of 2009 exceed the normal threshold (50

consultations per 100,000 population [56,64,142]). The ILI rates exceed 200 consultations

per 100,000 population in winter 2009 and 150 consultations in winter of 2010 and decrease

to fewer than 25 consultations per 100,000 population reported in the winter of 2014. In

the winters of 2012 and 2014 the reported rates were lower than those reported in the

winter of 2011 and 2013 but still under the normal fixed threshold.
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Figure 2.3: ILI weekly consultations rates in 2009-2015 for Scotland, for all 14 health

boards.

When we see figure 2.3, there are lots of zeros in the ILI consultations rates in 2009-2015

for Scotland, so we will find many zero rates when we present the individual rates by

dividing Scotland into the 14 health boards. So we choose now to focus on the ARI data

for investigating the data. Next we will present the individual ARI rates by dividing

Scotland into the 14 health boards.

As the ILI data is more specific to influenza, we used ILI data later when developing the

detection system.
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2.5 GAM model

Statistical tools can now help with understanding the trend in real data and also can

be useful to generate other simulated observations. Generalized Additive Models (GAMs)

have become very important methods for modelling data in recent years. We chose a GAM

model in this data analysis because it is more flexible than linear regression, as GAMs

can model non-linear trends. Consultation rates tend to be seasonal but a parametric

model with sine and cosine terms does not fully capture the seasonal pattern, and so using

Generalized Linear Models (GLMs) with sine and cosine terms to model the seasonal

component is not the best solution. Tools for GAMs (and generalized ridge regression)

are provided by the R mgcv package [178]. Penalized regression splines are used to represent

smooth terms in the package mgcv, which can be used to fit a generalized additive model

to data. The aim of this package is to provide the convenience of GAM modelling in R, and

also model selection methodology was much improved from an earlier version [57,134,179]:

the smooth functions were rewritten by using an acceptably chosen set of basic functions.

Each of those functions has a joint penalty which enables its (effective) degrees of freedom

to be controlled through a single smoothing parameter [179]. There is a large family of

splines which can be used with GAMs in mgcv, such as cubic splines, B-Splines, natural

splines, thin-plate splines and smoothing splines. S(Time) is one of the smoothing splines

which is used in GAMs in this analysis.

We consider the smoother given by the function f(Xi) in:

Y = α+ f(Xi) + εi (2.5.1)

where εi ∼ N(0, σ2). Now, an expression for function f(Xi) can be written like a linear

regression model, which means that f(Xi) is built up in basic constituents, called the basis

functions bj(Xi) as: f(Xi) =
p∑
j=1

βj × bj(Xi).

Consider p = 4, giving: f(Xi) = β1b1(Xi) + β2b2(Xi) + β3b3(Xi) + β4b4(Xi).

Now assume that b1(Xi) = 1, b2(Xi) = Xi, b3(Xi) = X2
i and b4(Xi) = X3

i .

So,

f(Xi) = β1 + β2Xi + β3X
2
i + β4X

3
i . (2.5.2)

This is a cubic polynomial and can produce a wide range of shapes, depending on the

values of β1, β2, β3 and β4 and the value of function f using the expression in equation

2.5.1, but the problem is that in practice we do not know the values of β1, β2, β3 and β4.
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Also the shapes of the function f are not flexible enough to model more complicated

patterns. We do know the value of Xi as it is a measured explanatory variable. The usual

approach to solve those two problems is that the explanatory variables Xi are already

known, so consider dividing the dependent variable Y = f(Xi) into four segments and for

each segment fit the model in the last equation 2.5.2 using ordinary least squares (OLS),

so we can find β1, β2, β3 and β4 per segment, and by using multiple segments we can fit

more complicated patterns [194].

Many smoothing techniques can be used to do this GAM curve fitting. We used the R

package mgcv [194]. A GAM in mgcv uses splines identified by s(Time) where time here

is X, and we used s(Time) as the ARI or ILI cases are not linear with changing time.

The advantage of using GAMs in mgcv is that we can do cross-validation to fit the model,

especially for health boards which have a large geographical area with low population, and

we could generalise the models to include terms for age group, gender and spatial location

(i.e. health board), for example. We choose explained deviance as a measure of the fit of

the predictive model.

2.5.1 ARI Data for each (HB) with GAM models

Here we are presenting the real ARI cases in each year for each health board (HB) individ-

ually and also we fitted GAMs to see the general pattern for each HB, after smoothing of

the data. Figure 2.4 shows the first year analysis from 01/08/2009 to 31/07/2010 for ARI

consultations. We see that the majority of health boards have almost the same pattern

in the GAM model. The rates start from under 100 consultations per 100,000 population

and increase in December and January to rates around 150-200 per 100,000 population.

There is clearly a different pattern in health boards Tayside (TY) and Lanarkshire (LN),

which start from rates of over 150 consultations per 100,000 population before Septem-

ber. Some of the models in this 12 month period did not fit the data very well because

the deviance explained ranges from 7% in Orkney (OR) to 55-57% in Lothian (LO) and

Highland (HG). In most of the health boards, the best fitting GAM is based upon about

9 degrees of freedom and the model captures the general seasonal pattern throughout the

year. This model does not capture the daily variation associated with weekday. See table

2.2 for a summary of model fit for each HB and year.
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Figure 2.4: ARI consultation rates in 2009-2010 for Scotland with fitted GAM models

shown in red.
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Figure 2.5 shows the second year analysis from 01/08/2010 to 31/07/2011. We see that

the majority of health boards have almost the same pattern in the GAM model. The rates

are not much different from the previous year and start from under 100 consultations per

100,000 population and increase in December and January to rates around 200-300 per

100,000 population, except for Shetland (SH) which shows under 100 consultations per

100,000 population, and Borders (BR), which is clearly different and increases from 100-

400 consultations per 100,000 population. There is clearly a different degree of variation

in health boards Western Isles (WI) and Shetland (SH), which have very marked daily

variation. Some of the GAM models in these 12 months did not fit the data very well

because the deviance explained ranges from 4% in Shetland (SH) to 44% and 46% in

Grampian (GR) and Lanarkshire (LN) respectively. See table 2.2 for a summary of model

fit for each HB and year.

Figure 2.6 shows the third year analysis from 01/08/2011 to 31/07/2012, and we see

that the majority of health boards have almost the same pattern in the GAM model. The

rates are not much different from the previous years and start from under 100 consultations

per 100,000 population and increase in December and January to rates around 150-250

per 100,000 population, except for Highland (HG), which shows under 150 consultations

per 100,000. The peak winter rate is lower in this year compared to previous years.

Highland (HG) shows a very unusual increase on 18/04/2012 in the consultations per

100,000 population. There is clearly a difference in variation for health boards Orkney

(OR) and Western Isles (WI) which have very acute daily variation during this year. Some

of the GAM models in these 12 months did not fit the data very well because the deviance

explained ranges from 15% in Lanarkshire (LN) to 33% in Grampian (GR). See table 2.2

for a summary of model fit for each HB and year.
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Figure 2.5: ARI consultation rates in 2010-2011 for Scotland with fitted GAM models

shown in red.
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Figure 2.6: ARI consultation rates in 2011-2012 for Scotland with fitted GAM models

shown in red.
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Figure 2.7 shows the fourth year analysis from 01/08/2012 to 31/07/2013, and we see that

the majority of health boards have almost the same pattern of the GAM model. The rates

are not much different from the previous years, which start from under 100 consultations

per 100,000 population and increase in December and January to rates around 200-250

per 100,000 populations. Highland (HG) again in this year shows a very unusual increase

on 25/06/2013 by to 1078.87 consultations per 100,000 populations. There is clearly a

different variation in health boards Orkney (OR) and Shetland (SH) which have very

acute daily variation during this year. Some of the GAM models in these 12 months did

not fit the data very well because the deviance explained ranges from 23-24% in Shetland

(SH) and Western Isles (WI) to 49% in Grampian (GR). See table 2.2 for a summary of

model fit for each HB and year.

Figure 2.8 shows the fifth year analysis from 01/08/2013 to 31/07/2014, and we see that

the majority of health boards have almost the same pattern of the GAM model. The rates

are low when compared with the previous years, starting from under 80 consultations per

100,000 population and increasing in December and January to rates around 100-150 per

100,000 population. There is clearly a different variation in health board Orkney (OR),

which has very acute daily variation during this year. Some of the GAM models in these

12 months did not fit the data very well because the deviance explained ranges from 25%

in Orkney (OR) to 42-43% in Tayside (TY), Dumfries and Galloway (DG) and Grampian

(GR). In most of the health boards, the best fitting GAM model is based upon about 9

degrees of freedom and the model captures the general seasonal pattern throughout the

year. This model does not capture the daily variation associated with weekday. See table

2.2 for a summary of model fit for each HB and year.
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Figure 2.7: ARI consultation rates in 2012-2013 for Scotland with fitted GAM models

shown in red.
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Figure 2.8: ARI consultation rates in 2013-2014 for Scotland with fitted GAM models

shown in red.
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The period from 01/08/2014 to 31/07/2015 is the last period we want to analyse in this

section. It seems to be very similar to the period of 2013/14 as presented in figure 2.9

except for some decreasing rates in the health board of Greater Glasgow and Clyde (GGC)

and some increasing rates in the health boards of Grampian (GR) and Lothian (LO). In

most of the health boards, the best fitting GAM model is based upon about 9 degrees of

freedom and the model captures the general seasonal pattern throughout the year. This

model does not capture the daily variation associated with weekday. The majority of

the GAM models in these 12 months did not fit the data very well because the deviance

explained ranges from 24% in Western Isles (WI) to 54% in Highland (HG). See table 2.2

for a summary of model fit for each HB and year.

In general the models explain the data less well in the smaller HBs where the fluctuations

are more erratic (table 2.2).

HB 2009-2010 2010-2011 2011-2012 2012-2013 2013-2014 2014-2015

AA 36.60% 35.70% 27.50% 38.40% 32.70% 39.40%

BR 23.30% 25.50% 29.50% 35.20% 41.40% 46.20%

DG 23.80% 27.90% 30.30% 42.90% 42.80% 40%

FF 37.60% 26.20% 23.80% 46% 41.80% 48.20%

FV 23.10% 39.20% 25.10% 46.20% 38% 41.70%

GGC 31.20% 30.20% 22.50% 40.80% 41.40% 47.10%

GR 49.80% 44% 32.70% 48.90% 42.60% 51.70%

HG 55% 35.90% 23.40% 50.60% 37.30% 54.30%

LN 26.80% 45.50% 15% 34.90% 36.30% 50.80%

LO 56.70% 39.50% 17.10% 41.10% 32.50% 39.30%

OR 7.05% 15.90% 20.40% 16.80% 24.50% 29.10%

SH 22.70% 3.95% 18.30% 22.80% 34.60% 27.90%

TY 46.30% 40.10% 25.40% 44.50% 42.20% 50.80%

WI 20.80% 24.80% 21.50% 23.90% 39.50% 24.10%

Table 2.2: Deviance explained for each GAM of ARI rates in Scotland, for each health

board and year.
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Figure 2.9: ARI consultation rates in 2014-2015 for Scotland with fitted GAM models

shown in red.
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2.5.2 GAM models only for health boards

In the next six graphs, we consider the GAMs’ seasonal trends for the different health

boards in each year separately without the original data. It will be easier to compare and

check the patterns with different health boards. Smaller HBs make the picture confusing

as they show unusual trends, which are very variable and often do not fit in with the

general pattern, so we will drop them (SH, OR, WI and DG) from the plots. We also plot

all HBs on the same plot for comparison.

Figures 2.10 to 2.15 show the fitted trend from the GAM models for each health board

for the periods 2009-10, 2010-11, 2011-12, 2013-13, 2013-14 and 2014-15 respectively. The

general pattern in each is that there is a clear peak around the period December to

February (winter). In 01/08/2009 to 31/07/2010 (Figure 2.10) the peak for the majority

of the boards is earlier in November and the range of rates over the larger boards is 80-200

consultations per 100,000 population in November. Of the larger regions, HG has a slightly

different pattern, with a much higher rate in December. In March, the health boards show

gradual decreasing to achieve finally around 90 consultations per 100,000 populations in

July.
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Figure 2.10: GAM models for 2009-2010

In figure 2.11, which covers the period of 01/08/2010 to 31/07/2011, there is a suggestion

of 2 peaks, one in October and the main one in January. We see clearly that the different

health boards always have the same patterns, starting from around 50-90 consultations in

September then decreasing before going again to the annual increase in January to achieve
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around 150 consultations. In March, the health boards show gradual decreasing to achieve

around 100 consultations in July. Borders (BR) shows the highest variation during this

year.
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Figure 2.11: GAM models for 2010-2011

GAM models for different health boards from 01/08/2011 to 31/07/2012 are presented in

Figure 2.12. We clearly see the majority of health boards (apart from the long yellow line

– HG) always have the same pattern, keeping in a limited range starting with a median

of 70 consultations until the beginning of November, then they increase to achieve around

100 consultations, until the beginning of May before they go back to 70 consultations in

July. The health board of HG shows a similar pattern to the majority, but it leaves them

from March to reach a peak at 240 consultations in May, then it goes back to the majority

trend at the beginning of July. Also GR is high.
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Figure 2.12: GAM models for 2011-2012
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Figure 2.13: GAM models for 2012-2013

In 01/08/2012 to 31/07/2013 (Figure 2.13) there is a suggestion of 2 peaks, one in Septem-

ber and the main one in January. We see clearly that the different health boards always

have the same patterns, starting from around 40-120 consultations in September, then

they show very little decrease before they go back again to the annual increase in January
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to achieve the median of 150 consultations. In March, the health boards show a gradual

decrease to achieve around 70 consultations in July. HG again showed a peak, in February

2013.
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Figure 2.14: GAM models for 2013-2014

This year has shown a marked difference in trend compared to previous years. A similar

pattern appears for all health boards. The greatest rise in this year was in March, which

did not happen in the previous years. Figure 2.14 shows GAM models for different health

boards from 01/08/2013 to 31/07/2014. We clearly see that the majority of health boards

always have the same pattern. All health boards are keeping in a limited range, starting

with a median of 60 consultations until the beginning of November, then they show a

sharp jump to achieve around 100 consultations, until the arrival of the top level this

year at the beginning of March, before decreasing to 50 consultations in July. Health

boards show homogeneity, with very little disagreement in their patterns. Figure 2.15

shows GAM models for different health boards from 01/08/2014 to 31/07/2015, which

show very similar patterns to the last year.
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Figure 2.15: GAM models for 2014-2015

2.6 Comments

Given the graphs of Acute Respiratory Illness (ARI) consultations for different years and

health boards, we note that there are differences between years for each health board,

but it should be noted that mostly the trends (curves) are similar each year. We see a

decrease in Acute Respiratory Illness (ARI) consultation rates in the summer in general,

and a corresponding rise in the rates in the period of winter and low temperature can

be seen clearly in the months December, January, February, March, then the level begins

to decline and return to the normal level. A few health boards have clear differences in

trend from the other health boards in some years. One published study in November

2014 (which dealt with the analysis of infectious diseases in England and Wales) has also

indicated that there is a remarkable increase in numbers of hospital records during the

winter period and low temperatures. It also showed differences in the records for influenza

for different health sectors in England and Wales [75].

This chapter has investigated data trends in ARI consultation rates for all the health

boards in Scotland over the period 2009-10 to 2014-15. It is important to be able to

predict when the winter rise in the consultation rates will begin, in order to take any

necessary action (as discussed in chapter 1). Chapter 3 now outlines the main methods

used for routine monitoring of diseases in order to detect the start of an epidemic, some

of which will be used in later chapters.



Chapter 3

Influenza detecting methods

In this chapter, and before starting the review of the research methods, here we present

an overview of some of the methods used for the control of infectious diseases, as well

as some early warning systems for these diseases. There are three important criteria

to compare any early warning system: sensitivity (Does the system detect an increase

when it occurs?), specificity (Does the system avoid an alarm when no increase occurs?)

and finally the average time to detect an increase once it happens. The main measure

from those is sensitivity, as it is a more important characteristic for influenza epidemic

detection than specificity, since the announcement of the start of an influenza epidemic

could encourage media attention to raise the level of preparedness of the people to benefit

from the prevention of influenza and allow control measures such as the use of vaccination

campaigns or the implementation of non-pharmacological interventions [162]. The general

idea for creating a system to monitor the number of those infected by a particular disease

and the establishment of an early warning system is not a new idea but a well established

one. However with the development of science came additions, amendments and proposals

to increase the efficiency of these methods. Surveillance systems are different depending

on geographical location and the possibility of collection of relevant data used in each area.

Here is a search and evaluation of some available literature in early detection methods

of infectious diseases, especially influenza. Google scholar is used here in this literature

search.

There are many detection systems to monitor infectious diseases, such as detecting in-

fluenza epidemics using search engine query data [55], MassTag Polymerase-Chain-Reaction

[79], rapid antigen tests [82] and many other systems depending on the available data

which can be used. The applied work developing early warning systems raises fundamen-

tal questions such as: Which data are useful for early detection? What are the timeliness

requirements for outbreaks caused by different agents? How should we measure timeliness

35
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of a detection system for a specific type of outbreak? [164].

Below some methods using influenza data are presented in more detail.

3.1 Threshold method

The idea of the establishment of disease surveillance control systems goes back to the late

19th century, to Dr. Selwyn Collins, who worked as a chief of the Statistics Section in the

Epidemiology Branch in the Communicable Disease Center in Atlanta. He was the first to

think of the creation for monitoring systems of death due to influenza. The general idea

is that the system revolves around three themes: firstly, estimation of expected deaths,

rather than analysing the epidemic after mortality. Secondly, replacing deviations from

expectancy with a graphic representation of “expected seasonal mortality” and actual

deaths, and finally, use of total number of deaths instead of rates [139]. This method is

considered as a basis for all methods of early prediction of influenza that set off an alarm

after a certain point. There are multiple ways to get to the warning alarm, that combine

speed, accuracy and sensitivity.

A large group of cities in the United States reported cases of deaths caused by influenza in

September, 1918 [32]. One of the first studies that focused on early detection of influenza

is the study conducted by Collins, collecting evidence in interviews about respiratory

diseases since 1917 and until 1931. Collins noted that “for every period in which there is a

definite peak of excess mortality from influenza and pneumonia, there is a corresponding

peak of excess mortality credited to causes other than influenza and pneumonia”. For a

given week, using the median (weekly) number of deaths during non-epidemic years, he

defined the number of expected deaths from influenza and pneumonia, or from all causes.

The difference between the observed number of deaths and the expected number of deaths

gives the number of excess deaths from pneumonia and influenza, or from all causes. In the

period 1956-1960, Eickhoff et al. [45] studied the weekly pneumonia and influenza (P and

I) deaths which covered 108 cities and the obtained measure of the extent of an influenza

epidemic was “the number of deaths due to P and I in excess of the usual expectancy”.

In [45] deaths over successive four-week periods were used to fit a regression equation, then

the data for the influenza epidemic weeks were omitted. The number predicted from the

regression equation was used to define the expected number of deaths for a given period,

and finally, the difference between the observed and expected numbers defined the excess

deaths due to an influenza epidemic.

One method of detection uses the number of expected cases in week w and defines the cut-

off point so an alarm will signal if this cut-off point is exceeded for two weeks consecutively.

This method is called the threshold method [56, 142], and the dynamic linear model [80,
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174]. In Scotland for example the baseline for influenza activities is between 0 to 50

consultations per 100,000 population, 50 to 600 consultations per 100,000 population for

normal seasonal activity, while 600 to 1000 consultations per 100,000 population is higher

than expected, and more than 1,000 consultations per 100,000 population is exceptional

[56,64,142].

One of the methods predicting using a threshold technique is prediction (nowcasting) of

influenza epidemics over years, using the total population, for example, in Östergötland

County, Sweden [145].

3.2 Time series technique

This method is simple and free from complicated steps because it does not require special-

ized statistical software and can be applied directly on the raw data. Let n be the number

in the series of observations. The proposed model for n observations yt is described by

the equations:

yt = θt + vt

where vt ∼ N(0, V ) and

θt = θt−1 + wt

where wt ∼ N(0,W ) and θt denotes the chain of unobserved system parameters which

describe the correlation between sequential weeks, while the errors vt and wt are inwardly

and reciprocally independent. From the data, variance V can be estimated. The parameter

W must be prespecified and represents the assumed smoothness of influenza prevalence

changes from week to week [37].

3.2.1 ARIMA method

In this section, we describe analyzing time series data using a class of stochastic models,

called an autoregressive integrated moving average (ARIMA) process. These provide

different classes of models, stationary or not, which can be applied to many time series

datasets in epidemiology.

Let (Zt, t = 1, 2, ...) be a progression of dependent random variables called a time series or

stochastic process. At time t, Zt might correspond to the observation of an experiment.

Discrete empirical time series come from collections of dependent (not necessarily inde-

pendent) observations of an experiment, taken at regular time intervals. Different classes

of mathematical models in an ARIMA process describe a kind of dependence through

the observations in an experiential time series. Stationary stochastic processes cannot

describe many experiential time series (e.g., weekly pneumonia and influenza P & I), but

some suitably differenced series may be stationary [29].
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Processes for forecasting by ARIMA models start from fitting an ARIMA model to the

empirical time series. Box and Jenkins [22] developed a four stage iterative procedure for

selecting a model and forecasting: i) exploratory specification (or identification); ii) esti-

mate parameters ; iii) check diagnostics; and iv) forecasting. Exploratory or preliminary

specification of an ARIMA model is based on examination of two terms: 1. the auto-

correlation function (rk, k = 1, 2, ...) and partial autocorrelation function (ρk, k = 1, 2, ...)

of a given series. For the time series Zt, rk is the autocorrelation coefficient of order k

between Zt and Zt+k, while the partial correlation coefficient of Zt on Zt+k after removing

the effects of Zt+1, Zt+2, ..., Zt+k−1 is the partial autocorrelation coefficient of order k, ρk,

where rk and ρk are independent of t because of the stationarity. The nonlinear least

squares method is able to estimate the parameters in the model when an ARIMA model

is tentatively specified. Now, after the parameters are estimated, the “Q-statistic” (analo-

gous to the Pearson’s goodness-of-fit Chi-square statistic) and inspection of the estimated

noise series αt; t = 1, 2, ..., can measure the goodness-of-fit of the model. If the model

fits the data adequately, the model can be used to forecast the future observations of the

series. If it does not fit, going back to the preliminary identification step, then doing the

following stages can make forecasting more accurate.

Choi and Thacker [29] presented this method of detection based on the time series anal-

ysis of historical data and using the seasonal autoregressive integrated moving average

(ARIMA) techniques in 1981. Their method showed something new, taking into account

the time-dependence of the data. Held and others [68] used a stochastic model approach

through analysing simulated data and real notification data taken from the German in-

fectious disease surveillance system, administered by the Robert Koch Institute in Berlin.

Some recent publications have been using ARIMA methods to detect influenza outbreak

in different health institutions in different countries such as Egypt [76], the United States

[50,116], China [150,165,166], Cameroon [93] and Abidjan [107].

3.3 Moving Epidemic Method (MEM)

One of the ways recently used to monitor influenza and to launch early warning to minimize

human losses from disease is the Moving Epidemic Method (MEM) [161, 162]. The aim

from this method is to model influenza epidemics by using historical data from different

locations. The modus operandi can be summarized this way in three steps, which are:

firstly, division of the time from the beginning to the end of the epidemic into three periods,

as follows: the period before the epidemic (pre-epidemic), the epidemic period, and the

period after the epidemic (post-epidemic); secondly, calculating a baseline level of activity

and an epidemic threshold using data from the pre-epidemic and post-epidemic periods

from historical data; and finally, computing thresholds for different levels of intensity



3.3. Moving Epidemic Method (MEM) 39

within the epidemic period.

MEM searches for the optimum epidemic point by starting with one week and seeing how

many cases represent the total epidemic. The one-week period is chosen by maximizing

the number of cases that a period can contain, that is, getting the peak. The one-week

period which contains the most cases is the period that contains the peak. If the one-week

period has, say, 50 cases and the total number of cases in that season is 500, then the

one-week period represents 10% of the total (50/500). Then we add one more week to form

the two-week period and repeat the process: to find the two-weeks period that contains

the highest number of cases (probably the peak and a neighbour). If that period has, say

100 cases, then it represents 20% of cases. So adding one week (from one to two) we have

gained 10% (from 10% to 20%).

For the first step, estimate the length of the epidemic period as the minimum number

of sequential weeks with the maximum accumulated rates percentage (MAP), for each

season individually. The maximum accumulated rate for a period of length r, expressed

as a proportion prj of the total rate for the jth season, gives the curve of the MAP. In each

season j = 1, ..., N :

trj = max
k=1,...,S−r+1

{ k+r−1∑
i=k

ti,j

}
, ∀r = 1, ..., S and prj = trj

/
tSj , and tSj =

S∑
i=1

ti,j

where ti,j is the ith rate of the jth season, N is the number of seasons, and S is the number

of surveillance weeks per season. Now, using a smoothing regression of prj over r, choosing

an auto-parameter for the smoothing window, will give p̆rj as the smoothed MAP [21,74].

Calculating the increase in the percentage prj from one period of r weeks to the next one

will give the optimum number of weeks for each season:

4r
j = p̆r+1

j − p̆rj .

The optimum is found when this increase is lower than the predefined criterion:

rj∗ = min
r=1,...,S−1

{r : 4r
j < δ}

where rj∗ denotes the optimum duration of the jth season and δ is the minimum percentage

we gain from adding one week to the epidemic period. Then that gain is smaller than

δ, we stop adding weeks and that is the optimum because there is no point in adding

new weeks that add only a small percentage of the cases to what we already have. The

higher the δ parameter, the fewer weeks we are going to include in the epidemic (i.e. a

shorter epidemic). The shorter the epidemic, in practice probably the higher the post-

epidemic threshold. But in theory, they are not related. The parameter δ is used in the

determination of the epidemic, not the calculation of thresholds. Also, the post-epidemic
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threshold does not have a significance itself but is a comparison of mean pre-epidemic

and post-epidemic values, but never a threshold for ending an epidemic. The way it is

calculated invalidates it as a threshold for the end of the epidemic. If fact, we never use

it.

Once the optimum epidemic duration is found, the value k∗ that maximises the expression

used to calculate the prj will determine the timing:

k∗ :

k∗+r∗j−1∑
i=k∗

ti,j = max
k=1,...,S−r∗j+1

{ k+r∗j−1∑
i=k

ti,j

}

where k∗ gives the week when the epidemic begins, and k∗ + r∗j − 1 gives the end week

of the epidemic, (1 to k∗-1) denote the weeks before the epidemic period (known as the

pre-epidemic), and (k∗ + r∗j to S) give the weeks after the epidemic period (known as the

post-epidemic):

pre-epidemic epidemic post-epidemic

week 1

X

k* -1

X

k* +r* -1

S

Calculating the baseline and threshold using pre-epidemic values of historical seasons is

the second step. The mean of all pre-epidemic rates of all historical seasons gives the

baseline.

To calculate the threshold, we should consider pre-epidemic values only. Choosing the

highest n values from the pre-epidemic period in each season where n = 35/(number of

seasons),

∀j →
(
t(1),j , t(2),j , ..., t(n),j

)
where t(i),j is the ith pre-epidemic highest rate.

Vega et al. (2013) [161, 162] used 30 weeks not 35 as they assumed a winter period of 30

weeks. Here we are using a longer winter period.

A one-sided 95% confidence interval for the pre-epidemic threshold can be calculated from

all these n×N values by:

(0, t̄+ z0.05 · St)

where z0.05 denotes the upper 5% percentile of a standard normal distribution, St the

standard deviation of the sample, and t̄ is the arithmetic mean of the selected pre-epidemic

values:

t̄ =

n∑
i=1

N∑
j=1

t(i),j

/
n ·N
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The epidemic threshold is defined as the upper limit of the confidence interval as: t∗ =

t̄+ z0.05 · St where S2
t =

n∑
i=1

N∑
j=1

(
t(i),j − t̄

)2/
n ·N − 1

This is used to calculate the pre-epidemic threshold, and in the same way we can calculate

the post-epidemic threshold. The post-epidemic baseline can be found by calculating the

mean of all post-epidemic rates. Finally, coming to the third step in the MEM method,

rates in the post-epidemic period are expected to be lower than the post-epidemic threshold

rate.

By using the n highest values for each epidemic period to build a sample of n · N rates,

thresholds can be evaluated for different levels of intensity. Using the arithmetic mean and

50%, 90% and 95% confidence levels with each sample, one-sided confidence intervals are

evaluated to give upper limit thresholds for the different levels of intensity of the epidemic.

Some recent publications have been using the MEM method in different health institutions

to detect influenza outbreaks in different places such as Spain [12], Europe [161], the United

Kingdom [59,65], the United States [39], Cambodia [88], Portugal [115], France [120] and

Scotland [100].

3.4 Cumulative Summation (CUSUM) Method

The CUSUM (or cumulative sum control chart) is a sequential analysis technique in sta-

tistical quality control. It was developed by E. S. Page of the University of Cambridge.

The CUSUM makes use of the cumulative sum of distance from a standard level. The

CUSUM chart draws the cumulative sum of distances from the standard level for the sep-

arate observations. It is usually used for monitoring change detection [61]. The Moving

Average Cumulative Sums (Mov. Avg Cusum) method [146] is a method based on regres-

sion or time series analysis of ILI data. This method relies on use of a series of stationary

data. New detection methods based on advanced statistical approaches, especially those

aimed at real-time monitoring and projecting of influenza cases, are hindered when there

is a change in level of rate of occurrence without this signifying an epidemic. The main

challenge is how to use ILI surveillance data with a simple and efficient method to raise

an alarm in the early stages of the pandemic influenza.

We describe several applications of the CUSUM method, to have a clear view about it,

as many recent papers use this approach [37, 40, 122, 146, 192]. Assume that we observe

a sequence of random variables X1, X2, .... Suppose the first observations x1, x2, ..., xn−1

correspond to a pre-epidemic state, with a given distribution function for the rates, while

the observations after xn−1, xn, xn+1, ..., correspond to an epidemic state, with a different

distribution function for the rates. Say FB is the first distribution function, for the obser-

vations x1, x2, ..., xn−1, and FE is the distribution for xn, xn+1, ..., with FB 6= FE . Assume
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that we know all parameters except n; that is, the distribution function changed but we

do not know the time of this shift, so the aim is to determine when the shift has occurred

the first time. The CUSUM approach finds this time n using the last k where:

Sn =
n∑
i=1

log
fE(xi)

fB(xi)
−min

k6n

k∑
i=1

log
fE(xi)

fB(xi)
> L,

where fB and fE are densities corresponding to FB and FE respectively, and L is a constant

that sets the operating characteristics of the system. L does not depend on n. The Sn

can be calculated as:

Sn = max

(
Sn−1 + log

fE(xn)

fB(xn)
, 0

)
.

The incipient point for the CUSUM, S0, will be some number between 0 and L [67].

This method is used to detect sudden changes to the arithmetic average of a set of spe-

cific values and is commonly used in industrial operations control to supervise the level of

production quality [135].

Let yt, t = 1, 2, ... be a series of observations. Then the upper CUSUM limit over a d−week

period can be defined at time t, C+
t , as:

CUSUM+
t = max

{
0,
yt − ỹ(7)
S̃(7)

− k + CUSUM+
t−1

}
with CUSUM C+

t−d = 0 [37,94]. The parameter k gives the lowest standardized difference

from the operating mean to be ignored by the system. The operation mean ỹ(7) and also

the operation variance S̃2
(7) are calculated from the 7 weeks series yt−d−7, ..., yt−d−1 prior

to the most recent d weeks. Φ(1−α/2) where Φ is a standard Normal deviate (z value), is

the pre-specified threshold used to control the alarm. When CUSUM C+
t surpasses the

identified threshold; the alarm will be raised [37]. This CUSUM procedure assumes that

the counts are normally distributed. There are other variations. Singh et al. in 2010 [142]

used this method by analysing data from the 2001-02 season through to the 2008-09 season

of seasonal ILI cases. These are normally reported weekly over a period of 33 weeks (from

the first week of October to the third week of May) in different age- and sex-classes, by

sentinel general practices (GPs) across Scotland. Scottish Enhanced Respiratory Virus

Infection Surveillance (SERVIS) sentinel GPs cover all health boards in Scotland. They

compared the performance of this method with the pandemic detection algorithm and the

basic method called the threshold method [34, 137]. This showed the CUSUM method to
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perform well, but it did not outperform other methods used in the same study.

Griffin and others [60] used the CUSUM method to generate early detection of influenza

outbreaks using the District of Columbia Department of Health’s syndromic surveillance

system, starting from monitoring the daily statistics Si defined as:

Si = max
(

0, Si−1 +
(
Xi − µ

)
− k
)

where Xi indicates the observation taken in day i, µ presents the mean daily count esti-

mated from the data, and k is an off-set parameter selected by the user. An alarm is set

off at time τ̂ = inf{i : Si > h}, where h is calculated experimentally to guarantee a fixed

false positive rate (specified by the user) in times out of the influenza seasons.

This method has became widely used in different health institutions in different countries

such as China [189], Taiwan [49], Australia [169] and in different studies [53,70,114,138].

Also as this method is robust, it has been used in recent published papers for comparison

with other methods, e.g. [2, 5, 17,27,28,89,167,168].

3.5 Hidden Markov Model

The Hidden Markov Model (HMM) can be defined as a twofold stochastic operation with

an implicit stochastic operation which is not observable (it is hidden) but with other

stochastic operations that output the series of observations [130]. Hidden Markov Models

(HMMs) are a suitable statistical instrument to explain events showing serial dependency

in data.

Let Y be yt observations, t = 1, 2, ..., n, which are an output of the stochastic operation.

The general idea of the hidden Markov model is to join with each Yt a hidden random

state variable St to determine the conditional distribution of Yt ; if St = j, the conditional

distribution of Yt will be fjt(yt; θj), where fjt belongs to a family of certain distributions

and θj are the parameters which we aim to estimate. Assuming that the unobserved

series St follows an m-state identical Markov chain of order 1 with stationary transition

probabilities, then

αij = P (St = j|St−1 = i), i, j = 1, ...,m.

Given the heterogeneity, we note that the Markov chain is stable and homogeneous, but

the reverse is not always true. The variables Yt are independent conditionally on the

random variables St. In this Markov-dependent mixture model the sequence of states is
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unobserved, so the mixture model is called a hidden Markov model. If there are two un-

derlying distributions correlating with (ILI or ARI) incidence rates, then yt explains the

observed (ILI or ARI) incidence rate in week t and is imagined to be created from one of

the two distributions, and α12 explains the switching probability from the first distribution

1 to the second distribution 2 in two sequential weeks [81].

Hidden Markov Models have been used with Bayesian methods to estimate the model

parameters by Watkins and others [170] for disease surveillance of case counts reported

daily (hepatitis A) in postcode areas in Western Australia. They found that the HMM is

more highly responsive to the accumulation of events close in time than the cusum-based

algorithms. Also the false alarm rate was less than 0.1.

In a previous study by Rath and others [132] the HMM method was used to detect influenza

in France using ILI (1985-1996). They decided to use two states in the HMM, where the

first state with non-epidemic rates was modelled with an Exponential distribution and

the second state with epidemic rates was modelled with a Gaussian distribution. They

found their model described the data well without needing to model seasonal and trend

effects. They concluded that a better adjustment to the variations in the data is provided

by the Exponential distribution, which also avoided the need for complicated parameter

assessment that would be needed with Gaussian models.

3.6 Weekly Cases Ratio (WCR) method

One way to detect pandemic influenza is the method of Singh et al. published in 2010 [142].

This WCR algorithm is based on two main metrics obtained from weekly reported cases

(e.g. ILI or ARI), namely the WCR and NHB metrics: NHB is the number of health

boards (HBs) which had a reported increase in cases in the current week w compared to

the previous week w− 1, i.e. which had a value of WCR above 1, where weekly case ratio

(WCR) can be defined as:

WCR =
Rate in week w

Rate in week w-1
(defined for week 2 onwards) (3.6.1)

where Rate is the total rate of ILI or ARI cases reported to all SERVIS sentinel GPs.

Because WCR is based on the previous week’s reported ILI or ARI cases in the denomi-

nator, zero can simply be replaced in the denominator of equation 3.6.1 by 1.

Singh et al. [142] obtained the joint pmf of a discretised version of WCR (using bins of size
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0.1) and NHB. This pmf was based on large scale simulated data generated using Poisson

distributions with a mean given by the weekly case ratio for a given HB from 6 seasons of

historical data. A threshold probability is chosen and an alarm is raised in the first week

when the joint pmf value of an observation of (WCR,NHB) lies below this threshold.

Testing the algorithm for specificity means checking if it does not detect a pandemic when

no pandemic is occurring. To check this, firstly calculate WCR and NHB for each week

in the ILI (or ARI) time series. Secondly, with the chosen threshold probability value

δ, we count how many non-epidemic weeks there are in which the joint probability of

the observed (WCR,NHB) calculated from the pmf of the simulated data falls below

the threshold. The total counts give the number of false alarms (FAs(δ)) in season s.

Theoretically, FAmaxs , the maximum number of false alarms in the season s, is the total

number of weeks minus 1 (because we cannot calculate WCR in the first week). Finally,

the specificity of the detection algorithm for a given threshold probability can be calculated

as:

1−

( ∑
s=seasons

FAs(δ)

/ ∑
s=seasons

FAmaxs

)
The probability of threshold δ gives rise to a pre-set specificity of this detection method.

This δ defines the detection threshold. To compare this algorithm with other algorithms

with the same constant specificity, δ can be adjusted in order to give realised specificities

of 95% and 99%, for example.

3.7 Farrington method

The seasonal fluctuations of organisms causing diseases should be detected for public

health reasons. According to Farrington et al. [47, 51], any increase on top of expected

patterns should be noted and any count that is abnormally high should be focused on.

Moreover, a routine scanning system that entails sensitivity, timeliness, specificity as well

as easily interpretable outputs should be used. This will ensure that outbreaks are detected

in time and necessary interventions are taken. This should be done in a way that the

confidence of the system is not compromised [112,131]. The three components (sensitivity,

timeliness and specificity) determine the statistical features of the system. Data should

be collected over a week and should undergo epidemiological investigations at the end of

the week. A single robust algorithm should be used for all organisms. The system has to

be sufficiently flexible to accommodate the wide range of organism seasonal patterns and

underlying trends. With this view, a log-linear regression model was chosen and it was

adjusted based on overdispersion, seasonality, secular trends and past outbreak of a given

disease. The expected value for the week is calculated based on past data as well as a



3.7. Farrington method 46

threshold above which the outcome will be rated unusual [47].

The basis of the system was a network of laboratories, including the 49 laboratories of

the Public Health Laboratory Service and over 200 National Health Service laboratories,

which reported to the Communicable Disease Surveillance Centre (CDSC) in London. In

this method, a log-linear regression model was used, taking into account overdispersion,

seasonality, secular trends and past outbreaks of weekly data from the CDSC for more

than one organism (such as rotavirus, Clostridium difficile, Salmonella derby, Shigella

sonnei, influenza B and Salmonella typ).

One of the methods used in outbreak detection is the regression method. It relies on

laboratory outcomes and reported infections for detecting outbreaks in a surveillance sys-

tem. The approach basically uses standardised residuals. The threshold value is obtained

from the distribution of the residuals when an outbreak does not happen. This method

can be taken as an extension of the Shewhart chart. The Parametric model in which the

projected infection count in a specific month x is computed as the average of the recorded

count at months (x− 1), x and (x+ 1) for a specified period of years, is another method

used. The approach adopted ensures that effects that happen seasonally are catered for by

the method instead of the explicit modelling hence an aspect of quality is provided [156].

When recording statistical data, the reference date is taken to be the reporting date on

which the specimen is taken from the patient. This eliminates biases as a result of delay

in reporting [47, 132, 173]. Despite this, the timeliness and sensitivity of the detection

mechanism is influenced due to delay between infection and reporting as an additional

source of variability. The effect of delay can be investigated formally as follows: Take

F (x) to be the accumulated distribution of delay in reporting with x denoting the span

between infection of an individual and the reporting date of the organism and let X(t)

represent specimens collected at a period t. The expected number of reports at time t is

given by:

Y (t) =

∫ t

0
X(u) f(t− u)du

where f(x) represents the density function of the reporting delay distribution, taking

X(t) = 1 for t ∈ [0, ∂] and X(t) = 0 otherwise. It follows that if the threshold value is

α < 1 which Y (t) must attain for the outbreak to be detected, then the detection time td

satisfies the equation:

α = F (td)–F (td − ∂)

where F (t− ∂) = 0 for t < ∂ [47].

Outbreaks of short duration are detected close to the mode tm of f provided f(tm) > α/∂.

Long duration outbreaks are detected at td = F−1(α) [47].
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The Farrington methods of detecting influenza are elaborate and reliable. The statistical

approach makes the methods quantifiable as well. The Farrington methods have been

widely used in other parts of the world such as Hong Kong and China [6]. Other re-

searchers have equally considered similar approaches in influenza detection. Amorós et

al. [6], Conesa et al. [33], and Cox et al. [38] consider statistical approaches in detecting

influenza outbreak.

Deeper review of the literature reveals that the Farrington method is being used to detect

influenza in some countries [48,71,90,122,132,176].

System Advantage Disadvantage Example of when

and where used

Threshold

Method

Simple, widely

used.

Easily affected by

historical data.

Scotland, Eng-

land and Wales

in 2009, Sweden

2014.

Time Series Tech-

nique

Simple. Easily affected by

historical data,

not widely used

currently.

Egypt 2014, The

United States

2013.

Moving Epidemic

Method (MEM)

Robust, accurate. Relatively af-

fected by histori-

cal data.

Europe 2015,

Scotland 2016.

Cumulative Sum-

mation (CUSUM)

Method

Robust, simple,

widely used.

China 2017, Tai-

wan 2017, Aus-

tralia 2008.

Hidden Markov

Model

Not widely used

recently.

France 1985.

Weekly Cases

Ratio (WCR)

Method

Perform well with

rapid change.

Need huge simu-

lations with each

use.

New method.

Farrington

Method

Robust, accurate. Performs best

with repeated

same scenarios.

Hong Kong 2015.

Table 3.1: Short list of advantages, disadvantages and examples of when and where the

detection systems are used.

In the Farrington method performing best with repeated same scenarios is considered as a
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disadvantage because influenza does not occur in the same scenario every year (especially

when we think about outbreaks).

3.8 Conclusion

In this chapter, we have discussed and reviewed a number of disease surveillance methods

that have been proposed for identifying outbreaks of infectious diseases as they emerge

in the very early stages of the epidemic. Methods which are suitable for use to detect

an influenza epidemic include the threshold method, ARIMA method, Moving Epidemic

Method (MEM), Cumulative Summation (CUSUM) Method, Weekly Case Ratio (WCR),

Hidden Markov Model and Farrington method. This review shows that some range of

statistical methods have been proposed for prospective outbreak detection.

The choice of which statistical method to use depends on the intended application. Meth-

ods that are designed for the surveillance of a single infection or syndrome are tuned to the

specific features of that infection and may need frequent user intervention. By contrast,

systems designed for routine application for hundreds or thousands of potential infections,

with different frequencies and time patterns, will require robustness and automation –

such systems like the Farrington method and general time series methods are unlikely to

be optimal in the case of flu surveillance.

Systems will also vary according to the features they are designed to detect; for example,

trends and seasonal change may be relevant depending on the context. No statistical

technique is likely to be ideal in every setting.

The threshold method is a simple method for deciding a threshold for any infectious dis-

eases, especially seasonal and pandemic influenza, and aspects of this method are present

in the MEM method. The ARIMA method and Hidden Markov Model have not been

widely used recently to detect influenza cases each year. The Farrington method works

very efficiently when we have a recurring scenario each year but influenza, as we have

seen in historical data, has no fixed and repeated scenario every year. For example, in the

Scotland Data we see the increase starting in October sometimes, sometimes in November,

and sometimes there is a peak in January.

CUSUM is widely used in comparing detection systems in many publications, e.g. [2,5,17,

27, 28, 89, 167, 168] and is also used in comparison with the original WCR method [142].

MEM is now widely used in many European countries [12, 59, 161, 162] and by Health

Protection Scotland (which supplied our data).

To compare the performance of any methods, we need to choose robust methods to get

fair comparison. For the reasons provided above, in the next chapter, we will apply some



3.8. Conclusion 49

of these methods, namely MEM (in section 3.3) and WCR (in section 3.6) with real data.

CUSUM is also used later (in chapters 7, 8 and 9).



Chapter 4

Applying and modifying detection

systems

In this chapter, we apply some of the well-known established detection systems. Here,

we will show how the Moving Epidemic Method (MEM) (section 3.3) and Weekly Cases

Ratio (WCR) method (section 3.6) work with some real data (examined in chapter 2).

We selected here the ARI and the ILI data from all 14 health boards in Scotland to apply

these methods.

Since the WCR method is the subject of study for this thesis, we also analyzed the values

of WCR in summer to compare them with the corresponding values in winter, and check

whether the data could be normally distributed. We also linked the WCR values with

NHB, in summer and winter, and check whether these follow the same joint distribution.

These results are used in the development of our extended WCR system in chapters 5 to

9.

4.1 Applying the MEM method to the data for Scotland

In this section, we show how MEM works and how to use the data from the 2009-2010 to

2013-2014 winter seasons to detect an increase in the 2014-2015 winter. We selected data

for each winter, from the start of October to the end of May in the following year (we have

used this period for winter at this stage, but we decided later on to use the end of March as

the end of winter because there were lots of zeroes in the consultations reported in many

HBs during April and May). Weekly aggregate numbers of acute respiratory infection

(ARI) and influenza-like illness (ILI) were used for the 14 health boards in Scotland.

The general idea can be written in three parts: firstly, dividing each winter into three

50
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periods as follows: the period before the epidemic (pre-epidemic), the epidemic period

and the period after the epidemic (post-epidemic); secondly, calculating a baseline and

the epidemic threshold using the pre-epidemic data and post-epidemic data from historical

data; and finally, computing thresholds for different levels of intensity.

In applying MEM to the data, we used the default setting of mem package [160] in R [129]

which are the threshold parameter calculated from the arithmetic mean and point 95%

confidence interval (standard deviations).

For each health board, we used ARI and ILI historical data from the winter of 2009-2010

to the winter of 2013-2014 to describe the pre-epidemic and post-epidemic thresholds.

After that we compared those thresholds with the real period of the 2014-2015 season

(pre-epidemic, epidemic and post-epidemic). The pre-epidemic threshold is expected to

be higher than the pre-epidemic period rates, and the post-epidemic rates are expected to

be lower than the post-epidemic threshold. Then we can assess rate of false alarms, the

detection lag and timeliness for the method using the 2014-2015 season. We can define

some terms which we will use with the 2014-2015 season [162]:

• Alert week: The first week in the 2014-2015 season which shows a rate above the

pre-epidemic threshold. We consider this as the start week of epidemic.

• False alarm: A weekly rate from the modelled pre-epidemic period of the 2014–2015

season which is above the pre-epidemic threshold.

• Detection lag: The delay between the alert week and the start of the epidemic period

modelled by MEM for the 2014-2015 season. If there is no delay, the lag is zero.

• Timeliness: The number of weeks between the first week of the epidemic period

modelled by MEM for the 2014–2015 season and the alert week; either the alert

week is after the start of the epidemic period or vice versa.

For example, if the MEM system raised the alarm in week 7, and the first week of the

epidemic period modelled by MEM is week 7, then the detection lag will be zero and

timeliness will be zero. If the MEM system raised the alarm in week 10, and the first

week of the epidemic period modelled by MEM is week 7, then the detection lag will be

10-7=3 weeks and timeliness will be 10-7=3 weeks. If the MEM system raised the alarm

in week 2, and the first week of the epidemic period modelled by MEM is week 7, then

the detection lag will be zero (because the alarm was already raised before the epidemic)

and timeliness will be 7-2=5 weeks.

These last two are often similar in our results.

Cross-validation was used to evaluate the accuracy of the method [162]. Each single season

was taken away from the historical data, to be used as the objective season of interest for
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each health board. The beginning and the end of the epidemic period of the 2014-2015

season and the pre- and post-epidemic thresholds on the basis of the remaining seasons,

excluding the target season, were calculated by MEM. Then we repeated this procedure

for each season available per health board.

The rates of the target season before and after the epidemic period set by MEM were

compared with the thresholds calculated using all historical information to assess the

quality of the method. The following measures were used to assess performance of the

threshold:

1. Sensitivity: calculated as number of epidemic weeks above the pre-epidemic thresh-

old (before the peak) and number of epidemic weeks above the post-epidemic thresh-

old (after the peak) divided by the epidemic length in weeks.

2. Specificity: calculated as number of non-epidemic weeks below the pre-epidemic

threshold (before the peak) and number of non-epidemic weeks below the post-

epidemic threshold (after the peak) divided by the number of non-epidemic weeks.

3. Positive predictive value (PPV): number of epidemic weeks above the threshold

divided by the total number of weeks above the threshold.

4. Negative predictive value (NPV): number of non-epidemic weeks below the threshold

divided by the total number of weeks below the threshold.

5. Median timeliness: Median of the time to detection.

The ARI and ILI data from the 14 health boards with a period from October 2014 to

the end of May 2015 were selected as the target season. The results for the modelled

2014-2015 season are summarised in table 4.1 for the ARI data and in table 4.2 for the ILI

data, and are also plotted by health boards in figure 4.1 for ARI data and in figure 4.2 for

the ILI data. Considering the historical data from 2009-2010 to 2013-2014, for ARI data,

the pre-epidemic threshold per 100,000 population ranged from 86.45 in GGC to 260.49

in SH and from 3.08 in LO to 24.61 in OR for ILI data. Post-epidemic thresholds were a

little different to pre-epidemic thresholds. For most HBs these varied in a range of ±10%

above or below the pre-epidemic ones except for GGC, SH and WI for ARI data and LN,

LO and OR for ILI data. In tables 4.1 and 4.2, we can see some missing values in the

detection lag and timeliness, such as for DG, LN, LO and SH for the ARI data and OR

for ILI data. The reason for this is that there were high rates in the previous seasons,

which affects the pre-epidemic threshold and leads to failing to raise an alarm.
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No. HB Pre-threshold Post-threshold length of epidemic False alarms Detection lag Timeliness

(n/100,000) (n/100,000) 2014-2015 2014-2015 (n) 2014-2015 (w) 2014-2015

1 AA 123 118 19 0 3 0

2 BR 150 144 20 0 3 0

3 DG 204 204 16 0 0 0

4 FF 130 136 17 0 0 0

5 FV 106 129 19 0 0 0

6 GGC 86 139 20 0 5 0

7 GR 107 111 18 0 5 0

8 HG 185 205 18 0 0 0

9 LN 133 135 17 0 6 0

10 LO 91 95 17 0 6 6

11 OR 89 98 16 0 0 0

12 SH 260 447 10 0 1 1

13 TY 160 172 18 0 3 0

14 WI 223 358 13 0 0 0

Tot. Scot 118 122 18 0 3 0.5

Table 4.1: Pre-epidemic and post-epidemic thresholds based on historical data (ARI) until

2013-2014, and comparison with the observed 2014–2015 season; n denotes number of cases

and w are weeks.

No. HB Pre-threshold Post-threshold length of epidemic False alarms Detection lag Timeliness

(n/100,000) (n/100,000) 2014-2015 2014-2015 (n) 2014-2015 (w) 2014-2015

1 AA 4 4 14 0 0 0

2 BR 8 4 14 0 5 0

3 DG 7 7 12 0 0 0

4 FF 4 5 13 0 0 0

5 FV 4 6 14 0 0 0

6 GGC 3 6 11 0 4 0

7 GR 4 5 13 0 0 0

8 HG 10 9 12 0 0 0

9 LN 4 7 11 0 3 0

10 LO 3 6 15 0 9 0

11 OR 25 15 13 0 1 1

12 SH 6 13 9 0 2 2

13 TY 5 7 13 0 0 0

14 WI 20 15 11 0 8 0

Tot. Scot 3.6 6.3 11 0 2 0.21

Table 4.2: Pre-epidemic and post-epidemic thresholds based on historical data (ILI) until

2013-2014, and comparison with the observed 2014–2015 season; n denotes number of

cases and w are weeks.
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Figure 4.1: Epidemic threshold, levels of intensity and modelled ARI season 2014-2015,

by HBs. MEM plots include the pre-epidemic period (blue), epidemic period (red), and

post-epidemic (green), while the triangle gives the alert week and the red line presents the

pre-epidemic threshold, while the post-epidemic threshold is presented by the green line.

A 5 year series (2009/10 to 2013/14) is used in MEM.



4.1. Applying the MEM method to the data for Scotland 55

●

●

●
●

●
●

●

●

●●

●
●

●
●

0 5 10 15 20 25 30 35

5
15

25

AA

Week

IL
I R

at
e

●●
●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●●

●
●

●●
●

●●

●

●

●

●●

●
●

0 5 10 15 20 25 30 35

0
20

40
60

BR

Week

IL
I R

at
e ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●●●●

●
●

●

●●●
●

0 5 10 15 20 25 30 35

0
40

80
12

0

DG

Week

IL
I R

at
e

●
●

●
●

●

●

●

●

●

●

●

●●
●

●
●●

●
●

●●

●
●●●

●

●

●●

●

●●
●

●●

0 5 10 15 20 25 30 35

5
15

25
35

FF

Week

IL
I R

at
e

●

●

●
●

●●

●
●

●

●

●
●

●●

●●

●

●●
●● ●

●
●

●

●

●
●

●
●

●

●
●

●●

0 5 10 15 20 25 30 35
0

10
30

FV

Week

IL
I R

at
e

●

●
●

●

●

●

●●

●●●

●

●

●

●
●●●●●

●
●

●●●
●

●
●

●

●●

●
●

●●

0 5 10 15 20 25 30 35

10
30

GGC

Week

IL
I R

at
e

●
●

●
●

●

●

●

●
●

●●
●

●●

●
●

●
●

●
●●

●

●●
●

●

●

●

●

●●

●●

●●

0 5 10 15 20 25 30 35

5
15

25
35

GR

Week

IL
I R

at
e

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●●

●●●
●

●●●
●

●●

●

●
●

●

●●

●

0 5 10 15 20 25 30 35

10
30

50

HG

Week

IL
I R

at
e

●

●

●
●●

●

●
●

●

●●●
●

●●
●

●

●●●
●

●
●●

●

●

●

●●

●
●

●

●

●

●

0 5 10 15 20 25 30 35

5
15

25
35

LN

Week
IL

I R
at

e

●

●

●●
●

●

●
●●

●
●

●

●
●

●

●●

●

●

●●

●

●
●

●

●

●

●●●●●●

●●

0 5 10 15 20 25 30 35

5
15

25

LO

Week

IL
I R

at
e

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●●

●●
●

●

●
●●

●

●

●
●

●
●

●
●●●

0 5 10 15 20 25 30 35

0
40

80

OR

Week

IL
I R

at
e

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●●●● ●●

●

●●

●

●●

●

●●●

0 5 10 15 20 25 30 35

0
20

40
60

SH

Week

IL
I R

at
e

●

●

●
●

●
●●

●

●

●

●

●●●●●●●●●

●

●●

●●●
●

●

●●●●
●

●

●

●

●

0 5 10 15 20 25 30 35

10
30

50

TY

Week

IL
I R

at
e ●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●
●●

●
●

●

●

●

●

●

●

●●

●●

●●

0 5 10 15 20 25 30 35

0
50

15
0

WI

Week

IL
I R

at
e

●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●
●

●
●

●●

Figure 4.2: Epidemic threshold, levels of intensity and modelled ILI season 2014-2015,

by HBs. MEM plots include the pre-epidemic period (blue), epidemic period (red), and

post-epidemic (green), while the triangle gives the alert week and the red line presents the

pre-epidemic threshold, while the post-epidemic threshold is presented by the green line.

A 5 year series (2009/10 to 2013/14) is used in MEM.

Now, we want to see how MEM works with the total ARI and ILI data. Firstly, we apply
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MEM for ARI and ILI for 5 years of historical data (from October to the end of May) to

detect any increase in winter 2014-2015, then we reduce the number of years of historical

data. Figure 4.3 shows how MEM works to detect the pandemic in 2014/2015 using 5, 4,

3 and 2 years historical data. Sensitivity and specificity for the same periods are shown in

figure 4.4. We see that the time of detection for ILI data is shorter than for ARI data, which

gives an advantage to using ILI data, according to median time of detection. Sensitivity

and specificity are better using ARI data in these periods. The second step is trying

to consider each two years to detect the following year, then calculating sensitivity and

specificity to see the overall sensitivity and specificity curve. From the different curves

in figure 4.4, we have not found a curve that we can judge as the best in performance

because, as we observe, if we find high sensitivity we find low specificity at the same time.
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Figure 4.3: MEM figures for ARI data using 5, 4, 3 and 2 years historical data to detect a

pandemic in winter 2014/15. MEM plots include the pre-epidemic period (blue), epidemic

period (red), and post-epidemic (green), while the triangle gives the alert week and the red

line presents the pre-epidemic threshold, while the post-epidemic threshold is presented

by the green line. We used the default setting of mem package [160] in R [129] which is the

threshold parameter (δ) calculated from the arithmetic mean and point 95% confidence

interval (standard deviations).
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Figure 4.4: Sensitivity and specificity using MEM for ARI data with 5, 4, 3 and 2 years

historical data to detect a pandemic in winter 2014/15.

As for the ARI data, we do the same with the ILI data to assess MEM’s performance.

MEM detects the outbreak with less timeliness, as presented in figure 4.5. However, the

best performance is not achieved so far, because there is a clear imbalance when we review

the sensitivity and specificity plots in figure 4.6. This may be due to the presence of weeks

during the period identified by the system as a epidemic, but which have lower rates, less

than the pre-epidemic threshold. This is clearly influenced by the calculation of sensitivity

according to this system.
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Figure 4.5: MEM figures for ILI data using 5, 4, 3 and 2 years historical data to detect a

pandemic in winter 2014/15. MEM plots include the pre-epidemic period (blue), epidemic

period (red), and post-epidemic (green), while the triangle gives the alert week and the red

line presents the pre-epidemic threshold, while the post-epidemic threshold is presented

by the green line. We used the default setting of mem package [160] in R [129] which is the

threshold parameter (δ) calculated from the arithmetic mean and point 95% confidence

interval (standard deviations).
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Figure 4.6: Sensitivity and specificity using MEM for ILI data with 5, 4, 3 and 2 years

historical data to detect a pandemic in winter 2014/15.

To try getting better performance for detecting the outbreak (high sensitivity and speci-

ficity) with MEM, we use the 2009/10 and 2010/11 seasons to detect the next outbreak

for 2011/12, and so on until we use 2012/13 and 2013/14 to detect the 2014/15 outbreak,

so we have 4 MEMs. For the ARI data, figure 4.7 shows sensitivity and specificity plots

of each MEM. For the ILI data, we see sensitivity and specificity plots of each MEM

presented in figure 4.8.

Here there are similar results, as there is no curve which we can confirm as having the

best performance. We have found a curve that we will say is the worst, which is the top

left curve in figures 4.7 and 4.8. The simple reason for this is that including the 2009 data

in the historical data will raise the pre-epidemic threshold and thus affect the sensitivity
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directly. The remaining curves indicate a high sensitivity with low specificity.

Figure 4.7: Sensitivity and specificity using MEM for ARI data with 2 years historical

data to detect a pandemic in the following winter.
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Figure 4.8: Sensitivity and specificity using MEM with ILI data with 2 years historical

data to detect a pandemic in the following winter.

As we did not yet find a suitable plot to choose a cut-off point, we will consider another

approach and see the performance. Now, we consider using 3 years of data to detect the

following year, which mean we will have 3 MEMs. Figure 4.9 shows how this works with

the ARI data, while figure 4.10 shows plots for the ILI data. Again, they are similar to

when we used 2 years of historical data, as there is no curve we can confirm as having the

best performance. We have found a curve that we will say is the best, which is the top left

curve in figures 4.9 and 4.10. The remaining curves indicate a high sensitivity with low

specificity. Combined performance (average of sensitivity and specificity) with ARI data

in figure 4.9 (the bottom right curve) may indicate better performance than for the ILI

data in figure 4.10 (the bottom right curve), and this may be because ARI data is more

general.
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Figure 4.9: Sensitivity and specificity plots using MEM for ARI data with 3 years historical

data to detect a pandemic in the following winter.
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Figure 4.10: Sensitivity and specificity plots using MEM for ILI data with 3 years historical

data to detect a pandemic in the following winter.

As we are looking get the best performance, we will now use the last chance for MEM, by

using 4 years data to detect the fifth year, which means we have 2 MEMs for our data.

Figure 4.11 shows the sensitivity and specificity plots for the ARI data, while figure 4.12

shows the output with the ILI data. Here we come to the last scenario where 4 years of

historical data were used (the default situation requires 5 years and this is what we used

in the first attempt and then tried to modify it). So far, a there is a similar result as

higher specificity came with lower sensitivity, and vice versa, as the higher the sensitivity

the lower the specificity, and away from the point of preference in this curve.
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Figure 4.11: Sensitivity and specificity plots using MEM for ARI data with 4 years his-

torical data to detect a pandemic in the following winter.

Figure 4.12: Sensitivity and specificity plots using MEM for ILI data with 4 years historical

data to detect a pandemic in the following winter.

One example for monitoring influenza used by Vega et al. [162] included weekly aggregate

numbers of influenza-like illness (ILI) and acute respiratory infections (ARI) for 19 Euro-

pean countries or regions since 1996. For each region or country, thresholds (pre-epidemic

and post-epidemic) were defined, based on historical data from the start of surveillance in

the country until the end of the 2008-2009 season. Then, those thresholds were compared

in the modelled period in the next year (the 2009-2010 season) with all levels (pre-epidemic,

epidemic and post-epidemic). Rates in the epidemic period were expected to be higher
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than pre-epidemic period rates, while lower levels were expected again in the post-epidemic

period. Cross-validation was used to evaluate the accuracy of this method, and each sin-

gle season was taken from the historical data to be used as the objective season for each

country. The MEM method was used. The performance measures can be standardized

using these terms: sensitivity (across all countries providing data this was 71.8%), speci-

ficity (above 90% in all countries), positive predictive value (PPV) (defined by number of

epidemic weeks above the threshold divided by the number of weeks above the threshold)

and negative predictive value (NPV) (defined by number of non-epidemic weeks below the

threshold divided by the number of weeks below the threshold). The PPV and NPV of

the MEM exceeded 80% in all countries. The last measure is the median timeliness of

epidemic detection, which was 1 week. Some of these measures are also used in the work

in this thesis.

4.2 Applying the WCR method to the Scotland data

We first analyse the data in Scotland by breaking down the whole year to two periods,

which are summer and winter:

1. Summer period from April to the end of September.

2. Winter period from October to the end of March.

Singh et al. in 2010 [142] defined the value of WCR as:

WCR =
ILI or ARI rates reported to all sentinel GPs in week w

total ILI or ARI rates reported to all sentinel GPs in week w-1

Here, in our work, we defined WCR =
Rate(w)

Rate(w−1)
where Rate(w) is the number of cases in

week w divided by the population size in week w. Because we cannot expect a big change

in the population from week w to week w − 1, we will expect to get a very similar value

of WCR as using the definition of WCR from Singh et al. [142].

First we look at the summer period.

4.2.1 Using the WCR method for summer

We present the WCR in the summer period (April - September) in 2010. Figure 4.13 shows

WCR against weeks in this period. Overall the level of WCR show neither increasing not

a decreasing trend over the period. Instead they fluctuate about a roughly constant level.

Here the mean value of WCR should be around one. For health board BR there are very

high weeks followed by very low weeks so the WCR oscillates, the average WCR is still

around one. Some health boards show similar violation cases to the general pattern, like
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Figure 4.13: WCR against weeks in 2010 (April to September).

those cases in health boards DG, FF, FV, GR, LN, LO, SH and WI. Another case to

mention is health board OR. It shows stability in WCR during most weeks, except for an

unusual case in week 2 with a very high level and WCR = 15. Table 4.3 gives the mean

of WCR for each HB in summer 2010. The mean for OR is 1.55, for BR it is 1.18, and

for SH it is 1.28, but all others are around 1.

The second year 2011 in the same period (April-September), presented in figure 4.14,

shows WCR less than 1 in most cases. This means that mean cases reported in week w

are less than cases reported in week w − 1. As for the previous year, some health boards

showed different patterns, like week 5 for all health boards (apart from SH), and week

23 for FF. Health board SH shows very unusual cases (25 and 15) in weeks 14 and 24

respectively. Table 4.4 gives the mean of WCR for each HB in summer 2011. For all

except SH those are close to 1.

Now, we want to see if there are any patterns in the third year, 2012, for the same period
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No. HB Mean of WCR No. HB Mean of WCR

1 AA 1.0393 8 HG 1.0178

2 BR 1.1803 9 LN 1.0372

3 DG 1.0737 10 LO 1.0797

4 FF 1.0509 11 OR 1.5512

5 FV 1.0577 12 SH 1.2824

6 GGC 1.0219 13 TY 1.0179

7 GR 0.9967 14 WI 1.0864

Table 4.3: Means of WCR in 2010 (April to September) for each health board; higher

values are shown in bold.
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Figure 4.14: WCR against weeks in 2011 (April to September).
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No. HB Mean of WCR No. HB Mean of WCR

1 AA 1.0184 8 HG 0.9910

2 BR 1.0624 9 LN 0.9864

3 DG 0.9911 10 LO 1.0155

4 FF 1.0148 11 OR 1.0435

5 FV 1.0072 12 SH 3

6 GGC 0.9949 13 TY 1.0009

7 GR 0.9950 14 WI 1.0434

Table 4.4: Means of WCR in 2011 (April to September) for each health board; higher

values are shown in bold.

No. HB Mean of WCR No. HB Mean of WCR

1 AA 0.9947 8 HG 1.0473

2 BR 1.0033 9 LN 1.0018

3 DG 1.0076 10 LO 0.9945

4 FF 1.0029 11 OR 1.1132

5 FV 1.0018 12 SH 1.0737

6 GGC 1.0014 13 TY 0.9907

7 GR 0.9895 14 WI 1.0013

Table 4.5: Means of WCR in 2012 (April to September) for each health board; higher

values are shown in bold.

(April to September). Health boards (apart from HG) show increases and decreases in

WCR within the range 0.8 to 1.4. The health board of HG (as mentioned in the previous

section) shows a very unusual increase in week 5, with a WCR of nearly 3. These can be

seen in figure 4.15. Table 4.5 gives the mean of WCR for each HB in summer 2012. The

highest value 1.11 is for OR, while all others are close to 1.

Now we look at WCR in the period of April to September 2013. Figure 4.16 shows stability

in a fluctuation in the ups and downs for the different health boards, in the range from

0.6 to 1.4. As usual, some health boards present differently. Some reported very high

WCR values, which happened with OR, SH and HG in some weeks. In general, all health

boards showed fluctuations which did not have a clear pattern. Table 4.6 gives the mean

of WCR for each HB in summer 2013. The highest value is about 1.1 for SH, while the

others are close to 1.

When we come to the last year (2014), it is different from previous years, as we can see a

clearly defined pattern in figure 4.17 for each health board, and in most cases 0.4 to 1.4

is the general range of WCR. Health boards AA, BR, FF, GGC, FV and TY show a less

specific pattern. We must point out that there are again some anomalous points, as is

evident in OR, SH and WI. Table 4.7 gives the mean of WCR for each HB in 2014. The
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Figure 4.15: WCR against weeks in 2012 (April to September).

No. HB Mean of WCR No. HB Mean of WCR

1 AA 1.0080 8 HG 1.0073

2 BR 1.0105 9 LN 0.9983

3 DG 1.0091 10 LO 1.0096

4 FF 1.0054 11 OR 1.0543

5 FV 1.0083 12 SH 1.0989

6 GGC 1.0046 13 TY 0.999

7 GR 0.9946 14 WI 1.0046

Table 4.6: Means of WCR in 2013 (April to September) for each health board; higher

values are shown in bold.
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Figure 4.16: WCR against weeks in 2013 (April to September).
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Figure 4.17: WCR against weeks in 2014 (April to September).

highest value of 1.10 is for OR, while all others are close to 1.

We can conclude with the important and clear note that the mean WCR in all summers

is generally close to 1 (sometimes higher and sometimes lower than 1), which means the

prevailing situation in summer is stable numbers of GP consultation. Exceptions are

generally for the smaller health boards.

4.2.2 Using the WCR method for winter

Now we investigate what happens in the cold seasons during the year when many people

complain of influenza (as seen in the analysis of the rise in GP consultations in November,

December and January) in section 2.4. We present WCR in the period October - March

in 2010/2011. WCR is shown against weeks in this period in figure 4.18. Most health

boards showed wide spread in WCR values with a range of 0.6 to 1.7. There is limited
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No. HB Mean of WCR No. HB Mean of WCR

1 AA 0.9868 8 HG 1.0220

2 BR 0.9939 9 LN 1.0193

3 DG 0.9862 10 LO 1.0235

4 FF 1.0051 11 OR 1.1049

5 FV 0.9876 12 SH 1.0444

6 GGC 0.9898 13 TY 1.0093

7 GR 1.0322 14 WI 1.1333

Table 4.7: Means of WCR in 2014 (April to September) for each health board; higher

values are shown in bold.

No. HB Mean of WCR No. HB Mean of WCR

1 AA 1.0107 8 HG 1.0306

2 BR 1.0748 9 LN 1.0166

3 DG 1.0529 10 LO 1.0189

4 FF 1.0236 11 OR 1.1902

5 FV 1.0195 12 SH 1.3341

6 GGC 1.0122 13 TY 1.0108

7 GR 1.0377 14 WI 1.0277

Table 4.8: Means of WCR in 2010/11 (October to March) for each health board; higher

values are shown in bold.

pattern, with clear oscillation in WCR. In some health boards there are some anomalous

values, as in DG, FV, TY and WI. Health boards OR and SH again has a completely

different value of WCR, an unusual ratio over 2. Table 4.8 gives the mean of WCR for

each HB in winter 2010/11. The mean for BR is 1.07, for DG it is 1.05, OR it is 1.19 and

for SH it is 1.33, but all others are around 1 and we can see all of them are at least a little

higher than 1.

Cold seasons in 2011/12 showed a similar pattern to the previous year, with a range of

WCR (0.7 to 1.4) in the majority of health boards and they showed clear pattern in the

high values from 0.9, as presented in figure 4.19, which shows some oddities about the

general pattern in the health boards of BR, DG, FV, LO, OR and WI. SH is a health

board which does not conform to the general pattern in other health boards. It showed a

lot of zeroes and some unusual high points in WCR, up to a value of 30. The means of

each health board are presented in table 4.9 and the highest value of 3.28 is for SH, while

all others are fairly close to 1.

It appears that in the year 2012/13 there is consensus over most health boards, as in

general they have WCR in the range 1.004 to 1.048 (apart from OR). Figure 4.20 presents

WCR for 2012/13. Table 4.10 shows the means of WCR for the different health boards
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Figure 4.18: WCR against weeks in 2010/11 (October to March).

No. HB Mean of WCR No. HB Mean of WCR

1 AA 1.0162 8 HG 1.0123

2 BR 1.0353 9 LN 1.0183

3 DG 1.0256 10 LO 1.0027

4 FF 1.0140 11 OR 1.1295

5 FV 1.0228 12 SH 3.27631

6 GGC 1.0158 13 TY 1.0128

7 GR 1.0222 14 WI 1.0371

Table 4.9: Means of WCR in 2011/12 (October to March) for each health board; higher

values are shown in bold.
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Figure 4.19: WCR against weeks in 2011/12 (October to March).
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Figure 4.20: WCR against weeks in 2012/13 (October to March).

and the highest value of 1.1 is for OR, while all others are quite close to 1.

For this period from October 2013 to March 2015, Figure 4.21 shows WCR values which

are spread in the range of 0.7 to 1.2. If WCR > 1, this means there are more cases in

week w compared with week w−1. There are some health boards which have some points

which can be classed as outside the general pattern in their WCR, like OR, SH and WI.

Health board AA does not show any pattern in this year. The means of WCR in this

period are presented in table 4.11. The mean for OR is 1.05, for SH it is 1.05 and for WI

it is 1.16, but all others are around 1 and we can see that all of them are higher than 1.

We can conclude with an important and clear note that the mean WCR in all winters

is higher than 1 in all health boards, which means that the prevailing situation in winter

is increasing numbers of consultations. Higher mean values tend to be for smaller health

boards.
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No. HB Mean of WCR No. HB Mean of WCR

1 AA 1.0183 8 HG 1.0120

2 BR 1.0138 9 LN 1.0189

3 DG 1.0203 10 LO 1.0036

4 FF 1.0060 11 OR 1.0969

5 FV 1.0094 12 SH 1.0481

6 GGC 1.0134 13 TY 1.0162

7 GR 1.0194 14 WI 1.0363

Table 4.10: Means of WCR in 2012/13 (October to March) for each health board; higher

values are shown in bold.
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Figure 4.21: WCR against weeks in 2013/14 (October to March).
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No. HB Mean of WCR No. HB Mean of WCR

1 AA 1.0194 8 HG 1.0188

2 BR 1.0208 9 LN 1.0247

3 DG 1.0203 10 LO 1.0127

4 FF 1.0225 11 OR 1.0535

5 FV 1.0067 12 SH 1.0469

6 GGC 1.0138 13 TY 1.0107

7 GR 1.0116 14 WI 1.1608

Table 4.11: Means of WCR in 2013/14 (October to March) for each health board; higher

values are shown in bold.

4.2.3 The joint probability distribution of (WCR,NHB)

Above we examined the WCR rates for each health board in each year, in summer and

winter. Now we consider probability distributions for these data.

Figure 4.22 represents the joint frequency distribution of (WCR,NHB) over all health

boards and in all years over summer (defined from April to September) and winter (defined

from October to March). N.HB.Increase in the plot now represents NHB. There is a

pattern, that as NHB increases, WCR also increases. We also present summer and winter

in separate figures, figure 4.23 and 4.24 to compare the different patterns.
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Figure 4.22: The joint frequency distribution of (WCR,NHB) over all health boards in

all years, for summer and winter combined. Individual points represent different weeks

within any one year.

Figure 4.23: The joint frequency distribution of (WCR,NHB) over all health boards in

all years, for winter. Individual points represent different weeks within any one year.
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Figure 4.24: The joint frequency distribution of (WCR,NHB) over all health boards in

all years, for summer. Individual points represent different weeks within any one year.

When we compare figures 4.23 and 4.24, we see the same increasing trend (as NHB in-

creases, so does WCR) but the joint distribution of (WCR, NHB) in summer is lower

down than the joint distribution in winter, meaning that the rates reported increase in

winter, as expected. We will test this below.

Univariate and bivariate testing

In this section, we want to determine whether the different samples (from summer and

winter) came from the same distribution or not. There are different tests which can be

used to see whether the data in the summer period (defined from April to September)

follows the same distribution as the data in the winter period (defined from October to

March) or not.

In the graph of the joint distribution, NHB is on the horizontal axis and WCR is on the

vertical axis, and we want to compare the distributions in three situations:

1. WCR in summer against WCR in winter.

2. NHB in summer against NHB in winter.

3. Two-dimensional distributions for WCR and NHB in summer against winter.

The first and second of these can be tested by using the Kolmogorov-Smirnov test [177]
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to see if they follow the same distribution, and the Anderson-Darling test can be used to

check if the WCR are normally distributed. As NHB takes numbers 0 to 14, it is clear

that it cannot be normally distributed. Firstly, we check the hypotheses for the test of

the WCR data over the total period in summer compared to winter:

H0: WCR in summer and winter follow a single distribution and H1: WCR in summer and

winter do not follow the same distribution. The p-value for the Kolmogorov-Smirnov test

[177] is 0.09, so the null hypothesis cannot be rejected since the p-value is higher than 0.05,

the default value of the level of significance. According to this test, the difference between

the two samples is not significant enough to say that they have different distributions. We

can break down the period for each year individually, and we get the same conclusion,

as in table 4.12 below, which presents p-values for the Kolmogorov-Smirnov tests of each

summer period against the corresponding winter period.

Test no. Year p-value

1 Summer 2010 and winter 2009-2010 0.7327

2 Summer 2011 and winter 2010-2011 0.9966

3 Summer 2012 and winter 2011-2012 0.3071

4 Summer 2013 and winter 2012-2013 0.1531

5 Summer 2014 and winter 2013-2014 0.9966

Table 4.12: The Kolmogorov-Smirnov test p-values for tests of WCR in each summer

period against the corresponding winter period.

We now consider whether the distribution of WCR could be normal. We check if WCR

in summer and winter is normal or not by using the Anderson-Darling test: as before,

checking the total period in summer and winter. The hypotheses tested are H0: WCR

follows a normal distribution and H1: WCR does not follow a normal distribution. In

winter, the p-value for the Anderson-Darling test is 0.0001, while the p-value in summer

is 0.009, so we strongly reject the null hypothesis since each p-value is much less than

α= 0.05, the significance level. According to this powerful test, the WCR for all years

combined in summer and winter are both not normally distributed. As before, we can

break down the period, for each year individually, as in table 4.13 below, which presents

p-values for the Anderson-Darling tests of each summer and winter period. Now every

test is non-significant, so we cannot reject normality (at significance level 0.05) of WCR

in any season or year.
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No. Year p-value Year p-value

1 Summer 2010 0.36 winter 2009-2010 0.15

2 Summer 2011 0.66 winter 2010-2011 0.06

3 Summer 2012 0.06 winter 2011-2012 0.11

4 Summer 2013 0.12 winter 2012-2013 0.09

5 Summer 2014 0.93 winter 2013-2014 0.46

Table 4.13: The Anderson-Darling p-values for the normality test of WCR in each summer

period and winter period.

We now come to step 2, to do the Kolmogorov-Smirnov test for the NHB in the total

period in summer and winter. The hypotheses are H0: NHB in summer and winter

follow the same distribution, and H1: NHB in summer and winter do not follow the same

distribution. The p-value for the Kolmogorov-Smirnov test is 0.59, so we cannot reject

the null hypothesis since the p-value is higher than α= 0.05. According to this test, the

difference between two samples is not significant enough to say that they have different

distributions.

As we did with WCR, we can break down the period for each year individually, and we get

the same conclusion, as in table 4.14 below, which presents p-values for the Kolmogorov-

Smirnov tests of each summer period against the corresponding winter period.

Test no. Year p-value

1 Summer 2010 and winter 2009-2010 0.72

2 Summer 2011 and winter 2010-2011 1

3 Summer 2012 and winter 2011-2012 0.72

4 Summer 2013 and winter 2012-2013 0.79

5 Summer 2014 and winter 2013-2014 0.99

Table 4.14: The Kolmogorov-Smirnov test p-values for tests of NHB in each summer period

against the corresponding winter period.

Finally, we come to step 3, to compare the two-dimensional distributions for WCR and

NHB in summer and winter. Using the Crossmatch test [4, 69], we test H0: WCR and

NHB in summer and winter follow the same joint distribution, against H1: WCR and

NHB in summer and winter do not follow the same joint distribution. The p-value for this

test is 0.75, higher than 0.05, so we cannot reject the null hypothesis and we conclude that

the joint distributions for WCR and NHB in summer and winter are also not different.

This means that we can combine the data over summer and winter.

We check here the whole period (not each year individually) as we expect to get the same

result and because the joint distribution in any one year contains less data.
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The above work applies to the ARI data.

When the ILI data was investigated, interesting results were obtained. The results did not

follow a similar distribution pattern in summer and winter as was observed with the ARI

data. Testing WCR in summer against WCR in winter gave a p-value of 0.02 < 0.05, so

the test of the difference between the two samples is significant enough to conclude that

they have different distributions. Testing NHB in summer against NHB in winter gave a

p-value of 0.3 > 0.05 from the Kolmogorov-Smirnov test, so the difference between the

two samples is not significant enough to say that they have different distributions, while

testing the two-dimensional distributions for WCR and NHB in summer against winter

using the Crossmatch test gave a p-value < 0.0001 < 0.05. We conclude that the joint

distributions for WCR and NHB in summer and winter are different for the ILI data, as

are the distributions for WCR alone, although for NHB they could be assumed to be the

same. So for the ILI data on the basis of these tests it would not make sense to combine

the data for summer and winter but we did in fact do this later because we wished to use

the ILI data which is more specific to influenza, and as presented in section 2.4, there are

lots of zeroes in the numbers of ILI consultations in the summer period compared to the

winter period.

We did not check the normality situation here as we know from chapter 2, section 2.4,

that ILI consultations in Scotland included lots of zeroes (especially in the summer and

also in small HBs). Later in chapters 5 and 6, we do assume normality of the WCR data,

but this is based on millions of simulations.

Singh et al. in 2010 [142] analysed Scottish ILI data from the 2001-02 season through

to the 2008-09 season. The ILI cases are normally reported weekly over a period of 33

weeks (from the first week of October to the third week of May) in different age and

sex classes, by sentinel general practices (GPs) across Scotland. Scottish Enhanced Res-

piratory Virus Infection Surveillance (SERVIS) sentinel GPs cover all health boards in

Scotland. The Singh et al. paper does not consider the health board of the Western

Isles as it did not then take part in the SERVIS network. The population size differed

widely between health boards, from 20,000 to 1,360,000. The percentage of the popula-

tion registered with sentinel GPs range from 2.7% to 4.9% of the Scottish population of

around 5.15 million. This system was designed for general use as a national surveillance

scheme, not for each health board separately. Weekly ILI cases were aggregated at the

HB level in the data analysis. Historical data in the seasonal influenza for 2001-2002 until

2006-2007 were used in estimating the background pattern of the seasonal ILI cases. In

season 2007-08, the ILI data from 23 sentinel GPs recorded only 93 cases while the other

seasons had over 300 cases recorded, so this season was excluded from the weekly case

ratio (WCR) method. The 2008-09 data included real pandemic influenza A (H1N1), so
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it was used for performance testing with the detection algorithm and not as part of the

historical data. Singh et al. compared the WCR method with the well-known CUSUM

method and the threshold method. Different values were used for the case reporting rate

(α) in simulated data and pre-set specificity (Sp) values. The specificity was used to set

the threshold probability for the WCR method. Results for this comparison were based

on sensitivity (Sen), and median detection time (MDT) with three case reporting rates

(α= 0.5%, 1% and 5%) and two levels of specificity (Sp) of 95% and 99%. In general,

the WCR method showed satisfactory performance in sensitivity, as it was almost 100%

sensitive (98%, with a very low case reporting rate of 0.5%, was the lowest sensitivity

value). The worst performance in terms of sensitivity was the CUSUM method with 77%

to 97%, while the threshold method showed satisfactory performance of 100%. Regarding

MDT, WCR was the best as it achieved only 3-5 weeks, compared with 4-6 weeks in the

CUSUM and threshold methods. The ILI rate threshold method used a threshold of 24

and 34 cases per 100,000 population for 95% and 99% specificity respectively. The WCR

method and also the CUSUM method outperformed the ILI threshold method in influenza

seasons in terms of time to detection, though CUSUM was less sensitive than the other

methods. Rapid detection is very important because the aim from any method is buying

time before a pandemic occurs. The WCR method outperformed the other two methods

by quick exposure in most model runs at Sp of 99% and α of 0.5%. In the first six weeks,

it detected a pandemic in more than 50% of all runs. The CUSUM and the threshold

methods detected pandemics, respectively, in <25% and <35% of total runs in this case.

In general, under the same conditions WCR was superior to other methods in terms of

rapid detection.

In this chapter, we applied the MEM method (section 3.3) and the WCR method (section

3.6) working with the real data, the ARI and the ILI data from all health boards in

Scotland.

In section 4.1, we can see that MEM with ARI data outperforms the ILI data in terms of

sensitivity and specificity. We cannot determine a certain number of years to use from the

historical data to say that it will give the best performance. This is because sensitivity

and specificity of MEM depend on a threshold which is directly related to data from past

years.

Using the WCR method in section 4.2, we do not see much difference between the data

of ARI and ILI when we applied the first part of the WCR method and did not apply

the second part using NHB. We did not neglect this inadvertently but tried to investigate

whether we could use winter and summer data together in section 4.2.3. We analyzed the
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values of WCR in summer to compare them with corresponding values in winter and check

the distributions, and similarly for NHB. We also linked the WCR with NHB in summer

and winter and checked whether they follow the same joint distribution in summer and

winter. We concluded that the joint distributions for WCR and NHB in summer and

winter are not different for the ARI data though they are different for the ILI data (this

may be because we have lots of zeroes in numbers of ILI consultations; especially in the

summer season).

The problem of the Singh et al. WCR system for routine use is that it requires a simulation

each time it is used to decide whether or not an observation of (WCR,NHB) is abnormal.

The challenge now is to find a simpler system defining values of WCR and NHB that we

would consider unusual (indicating an increasing rate), and this is what we will discuss

in the next chapters 5 to 9. This is an extension to the work of Singh et al. (2010) for

detection of epidemics using WCR and NHB.



Chapter 5

Overview of the system -

Simulation

In chapter 4, we applied MEM and WCR systems to the data from Scotland and we

identified that the WCR method is not easy to use because we must have a reference

point for WCR each time. The major difficulty with the application of the WCR system

is that there is no simple way of deciding whether or not an increase in the rate has

occurred. In order to do this, we try to understand the joint distribution between the

WCR and NHB when the rate is constant. By considering the joint distribution when

the rate is constant (meaning there is no change in the rate) that will enable us to set

up a system to detect when there has been a change. The region in the top right corner

in figures 4.22, 4.23 and 4.24 will be the region where the signal will be and this will be

covered in detail in chapter 6.

In this fifth chapter, we will see whether or not we can find a simple way of describing

the joint bivariate distribution. We will describe the main points of our detection system

using the WCR method. As we already have a real case, from the data for Scotland we

will generate another environment similar to this real environment. This lets us consider

the possibility of generalizing the use of these data to detect an outbreak when it occurs

in other environments which differ in the number of geographical regions and population

size. We make use of the ILI data to set up simulations.

5.1 Simulation with different spatial locations and struc-

tures

In the Scottish data, we have 14 locations (HBs) and we have the total population of

those locations. Each location has a different size of population. We start from the total

86



5.1. Simulation with different spatial locations and structures 87

Scotland population in 2014 of 5.4 million people [103], and also the individual population

size for each health board, so that gives us a general view about total population size in

different areas and the percentage of the population in those big areas which is in each

sub-area or health board.

Different scenarios can be generated from the Scottish data, so we start by explaining

those scenarios. The first case we consider is the total population in big area A which

equals 5 million, similar to the Scotland population, and 25 million in big area B which

is similar to Saudi Arabia [52], North Korea [123], Netherlands [185] and Romania [186],

and in area C we consider a total population of 50 million people like the population in

Colombia [124], South Korea [125], Italy [187] and Spain [188]. The second factor is the

number of sub-area locations (HBs) in each area. We will consider 14 sub-area locations in

area A (like Scotland), 30 sub-area locations in area B and 50 sub-area locations in area C.

The third factor is the population in each sub-area, with two structures considered here:

• using the same proportions of the total population which we already have in Scottish

HBs, which we call structure P1.

• using an equal split which divides the total population by the number of regions,

which we call structure P2.

It is also possible to use other structures which may be of interest concerning the num-

ber of geographic regions or population. The aim from this kind of work is to attempt

to generalise the actual situation (Scotland) in terms of the division of places and the

population, so that we can apply the early-warning system to other countries and we can

answer questions such as:

1. Does the WCR method work better when there are more sub-areas (regions)? or

does it not make any difference?

2. Does the WCR method give better performance with a higher population size? or

does it not make any difference?

3. Can we use the simulated cases to find a general model, so we can apply the WCR

method by giving the number of sub-regions?

Table 5.1 presents three different scenarios for simulating with different spatial locations.

Case A B C

Population (in million) 5 25 50

no. of regions 14 30 50

Pop. structure a. Scotland (P1) b. Equal (P2)

Table 5.1: Population structures considered.
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In this chapter, we will use structure P2, while structure P1 will be used later in chapter

9.

5.2 Different spatial locations - Steady State

In this section, we create a virtual environment for a state of stability in rates, with-

out outbreaks. The aim of this is to see whether we can consider the opposite of this

environment to detect of increasing rates.

We start in the first step to assume that the influenza rates are flat during the year. We

need a baseline in order to simulate cases around it, and we choose to consider the base

point of this steady state as max(ILI) count in L + min(ILI) count in L
2 through the years in

each location L. This is the mid-range, a simple average, which equals 478, 430 and 525

in the case of 14, 30 and 50 HBs respectively. They are not exactly the same as we

take samples from the Scottish HBs to generate data for more than 14 HBs. The results

from this scenario can be used to see if the mean of WCR increases as NHB increases

in other situations (HBs= 30, 50) like it does in the actual Scottish data. We simulated

10,000 weekly values for WCR and NHB over 6 years using a Poisson distribution, to give

3,110,000 cases in the end. The simulation uses HBs= 14, 30 and 50, and generates a joint

distribution of WCR and NHB from these 3,110,000 cases. For HBs= 14, we have for each

HB the baseline count and population size. To generate results for HBs= 30 and 50, we

randomly sample HBs from the 14 HBs which we start with. We see from this flat rate

that the mean of WCR increases as NHB increases, for all population sizes and number

of sub-area locations, either 14, 30 and 50 (case A, B and C), as in the real Scottish data

considered in chapter 4. At NHB= 7 the mean WCR is 1.001146, while at NHB= 4 the

mean is 0.8917849 and at NHB= 10 the mean is 1.020732. Furthermore the range of val-

ues is 0.9817849, 1.0207320. We present the joint relative frequency distribution between

WCR and NHB in all situations in table 5.1, using the population structure P2, in figures

5.1, 5.2 and 5.3 for 14, 30 and 50 HBs respectively.
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Figure 5.1: WCR against NHB for flat rates with 14 HBs and population of 5 million.

The black gradient reflects the intensity of the number of simulations. This uses 10,000

cases each week for 6 years.

Figure 5.2: WCR against NHB for flat rates with 30 HBs and population of 25 million.

The black gradient reflects the intensity of the number of simulations. This uses 10,000

cases each week for 6 years.
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Figure 5.3: WCR against NHB for flat rates with 50 HBs and population of 50 million.

The black gradient reflects the intensity of the number of simulations. This uses 10,000

cases each week for 6 years.

There is an interesting outcome, as the plots for WCR and NHB all look similar, with a

possible vertical axis of symmetry at NHB
2 and mean WCR equal to 1. As expected, in

each case as NHB increases, the distribution of WCR shifts upwards. We will check the

normality of WCR at each NHB by plotting the histogram of each set of WCR values.

We found that they appear to be normally distributed, as shown in figures A.1, A.2, A.3,

A.4, A.6, A.7 and A.8 in the Appendix. (It is worth mentioning that in fact not all the

graphs are normal. They are when there are a lot of observations but not in the tails of

the distribution of NHB when there are relatively few values of WCR). We treat them

as symmetric and we will use the cases from NHB from 0 to NHB
2 − 1 and add them to

the cases from NHB
2 + 1 to the end of NHB. So now we get nearly double the number of

cases in our simulation in the rest of this chapter. For example, with HBs= 14, if we have

values of WCR of (0.85, 0.88, 0.95) for NHB of 5, we can add them up to the cases for

NHB of 9 but increase them to be symmetric about 0, so they will be (1.15, 1.12, 1.05).

5.2.1 Approaches to choosing different baselines for the simulation

When we want to do simulations, we have different baselines which we can consider as the

mean of a Poisson distribution to simulate from. Table 5.2 shows how to deal with each

kind of baseline as each one has two choices of population structure. We can list those

approaches as below:
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1. Considering the Scotland ILI count in each HB, we choose to divide (max (ILI) count

in L + min (ILI) count in L) by different suitable numbers (say 2, 10 and 20). We

can choose either population structure, equal sub-area population sizes or like the

Scottish structure. We considered here the case that the populations are equal in

each HB. This is assumed in section 5.2.

2. Considering the baseline of simulation as a fixed rate in each HB. We can also choose

either the equal population structure or the Scottish structure.

3. Considering the baseline of simulation as varying rates in each HB. We can also

choose either the equal population structure or the Scottish structure.

5.2.2 Choosing from Scottish ILI counts

In table 5.1, justified by logical considerations, there we choose to sample ILI counts for

30 and 50 HBs from the Scottish 14 HBs. Here, we choose to divide (max (ILI) count

in L + min (ILI) count in L) by different suitable numbers (say 2, 10 and 20). The

Scottish population in our data is around 5 million. When we take randomly 30 and 50

ILI counts to achieve new datasets for 30 and 50 HBs, we take a sample from the ILI

counts in different HBs but we considered different populations in these 30 and 50 HBs

(we considered the weekly population around one million in each HB). This approach 1 is

used in this chapter and tested in chapter 8.

5.2.3 Fixed rate in all locations

In this approach to calculate the baseline counts for simulation, we will consider the rate

as fixed in each location and we can consider it as 1, 3 or 5 per 100,000 (we can choose

any number but we select those to compare with the other structure below). The same

logical consideration to sample ILI counts for 30 and 50 HBs from the Scottish 14 HBs in

section 5.2.2 was considered.

When we come to calculate the rate, our samples from Scottish data correspond to 25 and

50 millions of population in area B and C respectively (in section 5.1). This affected the

rate calculation as the new population was consistent each week and higher than what was

reported in 14 HBs. So, here we will take every sample from the Scottish ILI counts data

with its corresponding population. Here also we will consider two population structures

which are:

a Considering equal populations in each different location.

b Considering the Scottish population structure.
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5.2.4 Varying rate in different locations

Here, we can consider the base point of simulation as using varying rates in each location,

but keeping the average as in the Scottish data. To calculate the rate in the end, we can

use the same Scottish structure as in section 5.2.3.

For example, if we consider the rate as 1 per 100,000, with a fixed rate, all different

locations will take the same rate 1 per 100,000, but with varying rates, the rate will move

up and down (say 0.8 per 100,000 in L1 and 1.2 in L2) between different locations, but

keeping the average for all locations as 1 per 100,000.

Approaches 2 and 3 (section 5.2.3 and 5.2.4) are used and tested in chapter 9. We decide

to use different approaches to simulation because the WCR is a ratio of rates which are

affected in the end by the population size used.

No. Baseline point Population structure

1 max(ILI) count in L + min(ILI) count in L
2 a. equal population in each HB

b. Scottish structure

2 fixed rate in each HB a. equal population in each HB

b. Scottish structure

3 varying rate in each HB a. equal population in each HB

b. Scottish structure

Table 5.2: Approaches to choosing different baselines for the simulation.

5.3 Finding functions to relate WCR and NHB (1)

The second aim from using the simulations using a constant rate of consultations scenario

is trying to check the possibility of finding functions to describe the distribution of WCR

with a given NHB. To investigate this we will check the normality of WCR for each NHB

with the different population sizes. We already checked their histograms in section 5.2 but

we will use other approaches for confirmation. We present normal quantile-quantile plots

(Q-Q plots) [190] in the Appendix A.1.2, which are in figures A.9, A.10, A.11, A.12, A.14,

A.15 and A.16, to check the normality situation before giving the equation relating WCR

and NHB, and we found that all of them appear to be normally distributed. (Again, it is

worth mentioning that in fact not all the graphs are normal. They are when there are a

lot of observations but not in the tails of the distribution of NHB when there are relatively

few values of WCR). We now try to model the mean and standard deviation of WCR

values for each NHB.

First we consider the mean of WCR. Below is shown the formulae of models m14, m30,
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m50 (in formula 5.3.1) used to model the means for each number of HBs, and table 5.3

shows a short summary of each model, while details of those models are shown in Appendix

A.2:

µij ∼ αj + βj × nij (5.3.1)

where µij represents the mean for WCR in each NHB, nij represents NHB, i starts from

the mid-point to the end of HBs (e.g. for 14 HBs, i takes values 7 to 14), and j represents

number of HBs (14, 30, 50). This model is fitted by weighted GLM regression. Weights are

used because we cannot assume that all NHB have the same frequency in the simulations,

as presented in figures 5.1, 5.2 and 5.3 so, weights reflect the number of simulations in each

NHB. Table 5.3 shows that all the models have significant coefficients. The intercepts are

similar and the slopes are all small.

HBs= 14 (m14)

coefficient estimate p-value AIC

Intercept 0.9570 <2e-16 -96.37

slope 0.00623 <2e-16

HBs= 30 (m30)

Intercept 0.9545 <2e-16 -166.53

slope 0.00306 <2e-16

HBs= 50 (m50)

Intercept 0.9573 <2e-16 -225.86

slope 0.00172 <2e-16

Table 5.3: Short summary of models m14, m30 and m50 for the mean of WCR.

In order to find a relationship between WCR and NHB, we plot the relation between

the mean (µ) and standard deviation (σ) of WCR for each NHB separately. Figure 5.4

presents the relation between NHB and µ in the cases of 14, 30 and 50 HBs. We see the

fitted linear models in the red lines, and we see that the points seem to follow a line in

each case. The fitted lines have similar intercepts though the slopes differ a bit (and are

all very small). The size of the circles represents the number of simulations in each NHB.

We can see that the red line crosses the majority of simulated means, except at the end

of NHB because of the low number of simulations in that region.
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Figure 5.4: The relation between NHB and µ (mu) in the cases of 14, 30 and 50 HBs

(left to right). The red lines are straight lines fitted to the mean of WCR in each HB

using models m14, m30, m50 in Appendix A.2. The size of circles represents the number

of simulations at each NHB.

The next step is predicting µ for the case of 30 and 50 HBs and showing them together

with the case of 14 HBs. The approach taken uses values of µ between the maximum NHB

and the minimum NHB
2 − 1 in the case of 14, 30 and 50 HBs, then taking a sequence of

values between these two extremes. Figure 5.5 presents the predicted means for the case of

14 HBs and predicted means from the cases of 30 and 50 HBs using the three fitted models

shown in figure 5.4. We can see from figure 5.5 that the predicted means for the case of 14

HBs and predicted means from the cases of 30 and 50 HBs using the fitted models follow

similar linear patterns and seem to be close to each other, which suggests that the models

fitted give useable results and we could use the model for 14 HBs to predict the mean

WCR for any value of NHB in the range considered above, with a new number of HBs.
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Figure 5.5: Predicted mean of WCR for the case of 14 HBs (red) and predicted mean

WCR from models based on the cases of 30 (blue) and 50 (black) HBs from figure 5.4.

Now we consider modeling the standard deviation of WCR. Below is shown the formulae

of models sd14, sd30, sd50 (in formula 5.3.2) used to model the standard deviation for

each number of HBs, and table 5.4 shows a short summary of each model, while details of

those models are shown in Appendix A.2:

σij ∼ αj + βj × nij (5.3.2)

where σij represents the standard deviation for WCR in each NHB, nij represents NHB, i

starts from the mid-point to the end of HBs (e.g. for 14 HBs, i takes values 7 to 14), and j

represents number of HBs (14, 30, 50). This model is fitted by weighted GLM regression.
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HBs= 14 (sd14)

coefficient estimate p-value AIC

Intercept 0.0144 <0.00001 -102.77

slope -0.00025 0.00315

HBs= 30 (sd30)

Intercept 0.00981 <0.00001 -191.48

slope -0.000047 0.0148

HBs= 50 (sd50)

Intercept 0.000693 <0.00001 -236.57

slope -0.0000285 0.0793

Table 5.4: Short summary of model sd14, sd30 and sd50 for the standard deviation of

WCR.

The relationship between NHB and σ is presented in figure 5.6. The size of circles repre-

sents the number of simulations at each NHB. As well as figure 5.6 clearly showing the

poor fit of the model in formula 5.3.2, results from table 5.4 confirm this poor fit as the

slope is non-significant for sd50. The models differ in terms of slope and intercepts.
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Figure 5.6: The relation between NHB and σ (sd) in the cases of 14, 30 and 50 HBs (left

to right). The red lines are straight lines fitted to the standard deviations of WCR in

each HB using models sd14, sd30, sd50 in Appendix A.2. The size of circles represents

the number of simulations at each NHB.

It is clear that the relationships between the standard deviation of the WCR and NHB

are not linear, as shown by the red lines in figure 5.6. Consequently we will consider

suitable transformations to investigate if it is possible to derive a simple model. The

Box-Cox approach [136] is one method which can provide the appropriate power of model

transformation. Figure 5.7 shows the appropriate power for each σ in different cases of

NHB. Suitable powers to get a linear model from the Box-Cox method in the case of 14,
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30 and 50 locations are 14, -1 and 3 respectively. Figure 5.8 presents the relations in the

different cases after transformation of the values of σ with these powers. The red lines

present the generalized linear models [91] with the power of 14, -1 and 3 in the cases of

HBs equal to 14, 30 and 50 respectively. The first plot in figure 5.8 with HBs= 14 fits well

but the other two with HBs= 30 and 50 still do not fit well. Also, the levels are different

for different HBs (14, 30 or 50).

Below is shown the formulae of models sd14BC, sd30BC, sd50BC (in formula 5.3.3) used

to model the transformed standard deviation for each number of HBs, and table 5.5 shows

a short summary of each model, while details of those models are shown in Appendix A.2:

σ
λj
ij ∼ αj + βj × nij (5.3.3)

where σij represents the standard deviation for WCR in each NHB, nij represents NHB, i

starts from the mid-point to the end of HBs (e.g. for 14 HBs, i takes values 7 to 14), and j

represents number of HBs (14, 30, 50). This model is fitted by weighted GLM regression,

and λ represents suitable powers to get a linear model from the Box-Cox method for each

number of HBs.

HBs= 14 (sdBC14)

coefficient estimate p-value AIC

Intercept 4.599e-27 3.46e-06 -996.39

slope -3.145e-28 3.92e-05

HBs= 30 (sdBC30)

Intercept 100.1242 <0.00001 73.489

slope 0.6368 0.0114

HBs= 50 (sdBC50)

Intercept 2.978e-07 2.59e-06 -571.7

slope -2.406e-09 0.1

Table 5.5: Short summary of models sdBC14, sdBC30 and sdBC50 for the transformed

standard deviation of WCR.

As well as figure 5.8 clearly showing the poor fit of the model in formula 5.3.3, the results

from table 5.5 support this poor fit as the slope is non-significant for sdbc50.
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Figure 5.7: The suitable power (λ) of σ in the cases of 14, 30 and 50 HBs using the

Box-Cox technique, shown as the maximum point of the log-likelihood curve.
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Figure 5.8: The relation between NHB and σ in the cases of 14, 30 and 50 HBs. The red

lines present the models with the power of 14, -1 and 3 in the cases of 14, 30 and 50 HBs

respectively using models sd14BC, sd30BC, sd50BC in Appendix A.2. The size of circles

represents the number of simulations in each NHB.

We tried predicting σ for the case of 30 and 50 HBs and presenting them together with

the case of 14 HBs. We used the same approach which we used with µ to fit the minimum

and maximum limits of NHB to consider, but as we found the σ were not linear functions

of NHB, we will predict the σ with the suitable power models suggested from the Box-

Cox technique. The predicted standard deviation for the case of 14 HBs and predicted

standard deviations from the cases of 30 and 50 HBs are presented in figure 5.9. We

can see from figure 5.9 that the predicted standard deviation for the case of 14 HBs and

predicted standard deviations from the cases of 30 and 50 HBs using the fitted models do

not have the same patterns and seem to be far away from each other, which suggests that

the models fitted do not give useable results. They do all follow a straight line trend, but

different lines. No single model describes the situation for all values of HBs, so we could

not use the line for HBs= 14 to predict the standard deviation of WCR for any NHB and

a new value of HBs.
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Figure 5.9: Predicted standard deviation of WCR for the case of 14 HBs with the power

of 14 (red) and predicted standard deviations of WCR from models based on the cases of

30 HBs with the power of -1 (blue), and 50 HBs with the power of 3 (black) from figure

5.8.

We can see from this section that the model for the means showed a promising result

which we can use to investigate the possibility of having an equation for the mean of

WCR with any given NHB from 14 to 50. Regarding the standard deviation, it did not

show a promising result for an equation for the standard deviation of WCR with any

given NHB from 14 to 50 using the normal distribution. We will not give up here as we

still have another approach to use, using a different distribution, for example.

5.3.1 New simulation for WCR and NHB

As the lines showing the relation between the standard deviation of WCR and NHB in

figure 5.9 are at very different levels depending on the number of locations used in the

model, unlike the situation for mean WCR in figure 5.5, we cannot find one model for the

relationships between the standard deviation of WCR and NHB in a Normal distribution.

We will use a new simulation with a different dataset and try to apply µ and σ from the

previous cases to compare 95% confidence intervals for HBs = 14, 30 and 50 and present

those to compare them with the new simulation case, to see whether they have the same

trend or not. We consider HBs= 40 in the new simulation. A plot of WCR against NHB

for HBs = 40 is presented in figure 5.10. As before for other values of HBs, this shows an

increase in the mean of WCR, in that the distribution for WCR shifts upwards as NHB

increases.
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Figure 5.10: WCR against NHB for flat rates with 40 HBs and population of 50 million.

The black gradient reflects the intensity of the number of simulations.

Setting coverage intervals (CI)

We decided to continue looking for possible useable equations of means and standard

deviations of WCR, and to see how confidence intervals for WCR using µ and σ match

with new data for the HBs. As we have a new simulation for 40 HBs from section 5.3.1,

we will use µ and σ from the models in figures 5.5 and 5.9, which means we calculate µ

and σ individually for each group of HBs, to calculate 95% confidence intervals [72] for

WCR with NHB from 21 to 40, according to the following equation:

µ ± 1.96 × σ (5.3.4)

assuming a normal distribution for WCR.

Figure 5.11 shows the result of simulation of 40 HBs, giving the joint distribution of

(WCR, NHB), with 95% confidence intervals for WCR at each value of NHB calculated

from the case of HBs =14, 30 and 50. It shows that the new simulated dataset of 40

HBs, compared to the 95% confidence intervals from the case from HBs =14, 30 and 50,

is consistent with these confidence intervals. This is discussed further below.
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Figure 5.11: WCR against NHB for flat rates with 40 HBs and population of 50 million.

The black gradient reflects the intensity of the number of simulations. This uses 10,000

cases each week for 6 years. Red squares show the upper and lower 95% confidence intervals

for WCR from the µ and σ from the model from the case of 14 HBs, and purple circles

represent the same for HBs =30, and green triangles represent the same for HBs =50.

5.4 Finding functions to relate WCR and NHB (2)

As presented in section 5.3, we cannot model the standard deviation of WCR with the

Normal distribution. But when we see the confidence interval limits in figure 5.11, we

cannot ignore the strong relation in the increase in the pattern of all HBs =14, 30, 40

and 50, so we now continue trying to link WCR and NHB using a Gamma model for

the variance of WCR. First of all, we will show the general framework of the data for

clearer understanding when we model the mean and the variance. Table 5.6 shows the key

parameters needed as:

• ng : this gives the number of geographical locations. We called those HBs before,

with values (14, 30, 40, 50).

• ni : this gives how many locations reported an increase (WCR > 1) (we set the
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starting points as ng
2 to the end of ng). This is the same as NHB but starts from

the middle of the range of values for NHB.

• mu: this gives the mean of WCR in each ni.

• var : this gives the variance of WCR in each ni.

• n.i.midway : this gives number of increases above midway in NHB, to get all increases

on the same scale, which can be calculated as n.i.midway = ni−ng
2 . In case of having

odd number of ng, we will subtract the first integer number before ng
2 , for example,

ng=17 then n.i.midway= 8.

• weights: this is used to calculate a weight for each NHB as follows:

1. Choosing a Binomial probability as the NHB are integers, then calculating each

probability for each ni in each ng. For example: probability p when ng=14 =

dbinom(ni(0,1,...,14),14,0.5) and the same with the remaining ng.

2. Calculating the maximum probability from step (1) for each ng.

3. Dividing each probability from step (1) by each maximum calculated in step

(2) to give the weight for each NHB.

Again weights are used because we cannot assume that all NHB have the same

number of simulations as they are really different. If we did not use weights, that

means we assumed that all NHB occur in the same number of simulations and their

impact will be equal, which is not a correct approach.

5.4.1 Modelling of means

When we have more than one possible model for predicting data, the simplest model with

least variables is generally the best to predict the data [193]. We now consider some

different models. As presented in section 5.3 about the possibility to model the mean,

now we will again find a linear model (using lm in R) to relate the mean and NHB for each

ng. Tables 5.7, 5.8, 5.9 and 5.11 show the models used in this section (z1, z2, z3, z4),

while details of those models are shown in Appendix A.3.
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ng ni mu var n.i.midway weight

14 7,8,...,14 µ7, µ8, ..., µ14 σ27, σ
2
8, ..., σ

2
14 0,1,...,7 w7, w8, ...w14

30 15,16,...,28 µ15, µ16, ..., µ28 σ215, σ
2
16, ..., σ

2
28 0,1,...,13 w15, w16, ...w28

40 20,21,...,35 µ20, µ21, ..., µ35 σ220, σ
2
21, ..., σ

2
35 0,1,...,15 w20, w21, ...w35

50 25,26,...,42 µ25, µ26, ..., µ42 σ225, σ
2
26, ..., σ

2
42 0,1,...,17 w25, w26, ...w42

Table 5.6: General framework used for modelling µ and σ2 for each HBs = 14, 30, 40,

50. The reason that µ and σ2 for HBs= 30, 40, 50 do not continue to the end of HBs is

because the joint distributions of WCR and NHB in those cases do not continue to the

end of HBs, as shown in figures 5.2, 5.3, 5.10 and 5.11.

From the summary of the regression model (z1) shown in table 5.7, we can see that the

intercept in the model for ng=14 (used as the baseline) is significant, but the adjustments

for ng= 30, 40, 50 are not significant at the 0.05 significance level.

z1= lm(m ∼ n.i.midway * factor(ng))

coefficient estimate p-value

Intercept 0.9998 <2e-16

n.i.midway 0.0064 <2e-16

factor(ng)30 -0.00004 0.935

factor(ng)40 0.0004 0.410

factor(ng)50 -0.00011 0.809

n.i.midway:factor(ng)30 -0.00326 <2e-16

n.i.midway:factor(ng)40 -0.00425 <2e-16

n.i.midway:factor(ng)50 -0.00465 <2e-16

Table 5.7: Short summary of model (z1) for the mean of WCR.

The slopes in the linear models for different ng, namely 14, 30, 40, 50, are presented in

table 5.8 (z2). From the model (z2) shown in table 5.8, (n.i.midway:factor(ng)) for

ng= 30, 40 and 50, we see from the p-values below 0.05 that the different slopes between

ng= 14 and ng= 30, 40, 50 from n.i.midway to the end of the range of values for ng are

significant.
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z2= lm(m ∼ n.i.midway:factor(ng))

coefficient estimate p-value

Intercept 0.9998 <2e-16

n.i.midway:factor(ng)14 0.00646 <2e-16

n.i.midway:factor(ng)30 0.00319 <2e-16

n.i.midway:factor(ng)40 0.0025 <2e-16

n.i.midway:factor(ng)50 0.001805 <2e-16

Table 5.8: Short summary of model (z2) for the mean of WCR.

We can see that the different slopes for all ng= 14, 30, 40, 50 from n.i.midway to the

end of the range of values for ng are significant at significance level 0.05, but we should

consider the weight for each NHB, as the means are decreasing, so we will add the weights

into the model.

Model (z3) in table 5.9 includes the weights and we see from the p-values less than 0.05

that the different slopes for all ng= 14, 30, 40, 50 from n.i.midway to the end of the range

of values for ng are significant.

z3= lm(m ∼ n.i.midway:factor(ng), weights= weight)

coefficient estimate p-value

Intercept 0.9994 <2e-16

n.i.midway:factor(ng)14 0.0067 <2e-16

n.i.midway:factor(ng)30 0.0033 <2e-16

n.i.midway:factor(ng)40 0.0024 <2e-16

n.i.midway:factor(ng)50 0.0019 <2e-16

Table 5.9: Short summary of model (z3) for the mean of WCR.

Figure 5.12 represents the means for all ng= 14, 30, 40, 50 against NHB and the predicted

values from model (z3) in Appendix A.3. This figure shows the predicted values in dark

points using model (z3) in Appendix A.3 and they show clearly that the model fitted the

means reasonably well. The model for ng= 14 looks slightly different from the others.
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Figure 5.12: Means (m) of WCR against n.i.midway for ng= 14, 30, 40, 50 represented

as circled points. Dark points represent the predicted values from model (z3) table 5.9.

The size of circles represents the number of simulations for each ni.

We can now use the fitted slopes from the above model (z3) in a new equation (z4) to

give the mean WCR for ng equal to any value between 14 and 50. Table 5.10 gives slopes

in the model (z3) of the mean for each ng and these are now used in a general model (z4)

below.

Results

ng slope p-value

14 0.006745331 <2e-16

30 0.003341988 <2e-16

40 0.002432858 <2e-16

50 0.001905165 <2e-16

Table 5.10: Slopes in the model (z3) for the mean WCR for each ng.

From model (z3) in table 5.9, we can get the mean with a given slope from equation 5.4.6

for any ng, even above 50, as:

mean = slope × (n.i.midway) + 0.9994 (5.4.5)

From model (z4) in table 5.11, we can write a general equation for the slope with any ng,
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even more than 50, as:

log(slope) = −0.98682 × log(ng) − 2.38015 (5.4.6)

Figure 5.13 shows the suggested model for the slope for ng= 14, 30, 40, 50, (and also

ng= 20) and the blue line represents the predicted slope for each ng. We can see from the

figure that the blue curve is close to all slopes, which confirms that the model fitted the

slopes well.
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Figure 5.13: Slopes of the model for the mean WCR against ng=14, 20, 30, 40, 50. The

blue line represents the predicted slope for each ng (from the model (z4) in table 5.11).

z4= lm(log(slope) ∼ log(ng))

coefficient estimate p-value

Intercept -2.38015 0.00222

slope -0.98682 0.00109

Table 5.11: Short summary of model (z4).

Using equations 5.4.6 and 5.4.5, we can conclude that the mean WCR can be given as:

mean = 0.0925367 × (ng)−0.98682 × (n.i.midway) + 0.9994 (5.4.7)

So we can use equation 5.4.7 to model the mean WCR for any value of HBs or NHB,
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assuming a normal distribution for WCR. We should note that an approximation has not

been validated for ng > 50.

5.4.2 Modelling of variance

In section 5.4.1, we have been relatively successful in deriving an equation for the mean

of the WCR at all values of the number of increases for a range of groups from 14 to

50. We now turn attention to the standard deviation or variance of the WCR at all

values of the number of increases. From section 5.3, we found no possibility to model

the standard deviation of WCR as a single function of NHB in the different ng using the

normal distribution. So we consider a new general model using a different distribution.

Statistical models attempt to separate a signal from noise in data. For example, a simple

linear regression model involves fitting a straight line, explaining how a response variable

varies with an explanatory variable. The responses seldom fall perfectly on the fitted line;

their departures from the line are assumed to reflect noise in the data. As with ordinary

linear models, with generalized linear models (GLMs), we seek one mathematical abstrac-

tion: a mathematical description of the uncertainty or noise as captured by a probability

distribution. For linear models, the first is taken to be a straight line relationship between

the response and a single explanatory variable, and the second is taken to be a normal

distribution with unknown but constant variance [58].

GLMs extend ordinary least squares (OLS) linear regression models to allow distributions

other than the normal distribution to explain random variation. These include the Gamma

distribution. They also allow various response types, which include counts and positive

continuous data. GLMs extend OLS models in that they allow for an additional function

to link the mean of the response to the linear predictor. In this part of the work, we

will consider how to fit such models to data, and how to test hypotheses about and find

confidence intervals for the model parameters. We will also consider how to assess the

adequacy of our models [104].

Here we will try to model the variance of WCR (not the standard deviation) using NHB

and a generalized linear model (GLM) with a Gamma distribution (which is often used

to model a variance). The processes for a GLM can be listed in three steps, which are:

choosing the model (model selection), then parameter estimation, and finally, prediction.

Estimation proceeds by defining a measure of goodness of fit between the observed data

and the fitted values, generated by the model [91].

Figure 5.14 shows all variances of WCR over all ng from the mid-point of NHB, and the

trend is not always linear. It is clear that there are differences either in the intercept or

in the slopes for different ng. We examine the normality of the variance of WCR for all



5.4. Finding functions to relate WCR and NHB (2) 108

● ●
●

●

●

●

● ● ● ● ● ●

●

●

●

● ● ● ● ● ●
●

● ●

●

●

● ● ● ● ● ● ● ●

● ●

●

●

0 5 10 15

0.
00

00
0

0.
00

00
5

0.
00

01
0

0.
00

01
5

n.i.midway

va
r

●

●

●

●

14
30
40
50

Figure 5.14: Variances (var) of WCR against n.i.midway for ng= 14, 30, 40, 50 repre-

sented as circles. The size of circles represents the number of simulations for each ni.

ng by plotting the histogram presented in figure 5.15, which shows the variance is not

normal. Figure 5.16 shows box plots of the variance of WCR for each ng to show the

distribution, the median level and any outliers. As shown in figure 5.15, the distributions

of the variance for different ng are varied but not especially normal. The median levels

of variance in different ng are clearly different, there are clear outliers for ng= 30, 40 and

50, and there are no outliers for ng= 14.

Firstly, we will present the models which compare variances for ng=14 with other ng.

Tables 5.12, 5.13 and 5.15 show the models used in this section (z5, z6, z7), while details

of those models are shown in Appendix A.3.

From the p-values in the result of the regression model (z5) in table 5.12, n.i.midway *

factor(ng) for ng= 30, 40 and 50, which are less than 0.05, we can see that the different

intercepts between ng=14 and ng=30, 40, 50 from n.i.midway to the end of the range of

values for ng are significant. But when we see the scales of the models between ng=14

and the other ng, we found the scales are small compared to the change in intercepts.
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Figure 5.15: Histogram of variance of WCR over all NHB in all ng, which clearly shows

the variances are not normally distributed.
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Figure 5.16: Box plots of variance of WCR for each ng, to show the distribution.
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z5= glm(var ∼ n.i.midway * factor(ng), family = Gamma, weights = weight)

coefficient estimate p-value

Intercept 6386.82 <2e-16

n.i.midway 145.10 <2e-16

factor(ng)30 5931.42 <2e-16

factor(ng)40 12544.25 <2e-16

factor(ng)50 20493.32 <2e-16

n.i.midway:factor(ng)30 -62.39 0.0024

n.i.midway:factor(ng)40 -57.32 0.0133

n.i.midway:factor(ng)50 -66.64 0.0117

Table 5.12: Short summary of model (z5) where var represents the variance of WCR in

each NHB and n.i.midway represents NHB starting from the mid-point to the end of HBs.

Weights reflects the number of simulated cases in each NHB and ng reflects HBs (14, 20,

30, 40, 50).

From the summary of model (z6) in table 5.13, we see from the p-values (less than 0.05)

that the different intercepts between all ng=14, 30, 40, 50 from n.i.midway to the end of

the range of values for ng are also significant.

z6= glm(var ∼ n.i.midway + factor(ng) - 1, family= Gamma, weights = weight)

coefficient estimate p-value

Intercept 106.483 <2e-16

factor(ng)14 6431.593 <2e-16

factor(ng)30 12274.279 <2e-16

factor(ng)40 18890.132 <2e-16

factor(ng)50 26810.344 <2e-16

Table 5.13: Short summary of model (z6) for the variance of WCR.

Figure 5.17 shows the variances for all ng=14, 30, 40, 50 against NHB and the predicted

values from the (z6) model. We can see that the predicted variances from model (z6)

(dark points) almost coincide with the actual variances (circled points) which indicates

that model (z6) fitted the variances reasonably well. The trends are different for each ng.
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Results

ng Coefficient (ng) p-value

14 6431.593 <2e-16

30 12274.279 <2e-16

40 18890.132 <2e-16

50 26810.344 <2e-16

Table 5.14: Intercepts of the model (z6) of the variance of WCR for each value of ng.
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Figure 5.17: Variances against n.i.midway for ng= 14, 30, 40, 50 represented as circled

points. Dark points represent the predicted values from model (z6) in table 5.13. The

size of circles represents the number of simulations for each NHB.

We can now use intercepts from the above model (z6) for the variance of WCR to gener-

alize the model for the variance to a new equation, even for ng above 50. Table 5.14 gives

the intercepts in the model (z6) of the variance of WCR for each ng.

From model (z7) in table 5.15, we can write a general equation for the intercept with any

ng (even above 50):

log(Coefficient(ng)) = 0.0400227 × (ng) + 8.2160336. (5.4.8)

Figure 5.18 shows ng=14, 30, 40, 50 (and also ng= 20) and the blue line represents from

model (z7) the predicted intercept for each ng, which fits well. Now, from model (z6) we
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z7= lm(log(Coefficient (ng)) ∼ ng)

coefficient estimate p-value

Intercept 8.2160336 0.000018

ng 0.0400227 0.000595

Table 5.15: Short summary of model (z7).

can get the variance with given intercepts as in equation 5.4.8 from any ng (even above

50) following this equation:

V ariance =
1

106.483 × (n.i.midway) + Coefficient(ng)
. (5.4.9)

Using equations 5.4.8 and 5.4.9, we can conclude that the variance equals:

V ariance =
1

106.483 × (n.i.midway) + 3699.686 × exp(0.0400227 × (ng))
.

(5.4.10)

Again as we mentioned with the mean in section 5.4.1, we should note that an approxi-

mation has not been validated for ng > 50.

Figure 5.18: Intercepts of the model (z6) for variance of WCR (Coefficient (ng)) against

ng=14, 20, 30, 40, 50. The blue line represents the predicted intercept for each ng from

model (z7) in table 5.15.
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At the end of sections 5.4.1 and 5.4.2, for a fixed rate based upon the level given by
max(ILI) count in L + min(ILI) count in L

2 and equal populations, we have got 2 equations

which give the relationship between the mean and variance for WCR as it changes as the

value of ng (HBs) increases.

5.5 Testing coverage intervals (CI) for the link between

WCR and NHB

In section 5.4, we presented general equations for the mean of WCR in equation 5.4.7

and the variance in equation 5.4.10 with given ni and ng. Here, we will simulate another

3,110,000 cases using flat rates for new values of ng=25, 34 and 44, then we will apply

the same approach which we used in section 5.3.1 for the 95% CI and also the equation

µ ± 2.58 × σ for the 99% CI. After that we can compare the CI with the new simulation.

We are more interested in the area from n.i.midway to the end of the range of values for

ng. These values are from 12.5 (we consider 12) to 25 when ng=25, and from 17 and 22

when ng=34 and 44 respectively.

The reason for choosing the new values of ng as 25, 34 and 44 is to examine the 95% and

99% CI from the µ and σ2 equations together with the new simulated 3,110,000 cases to

see whether they have the same trend and pattern or not.

Figures 5.19, 5.20 and 5.21 show WCR plotted against NHB for 3,110,000 cases with

ng=25, 34 and 44 respectively. The red squares represent the 95% CI and the green

triangles represent the 99% CI using the general equation for the mean and variance. We

can see from the figures that the 95% and 99% CI from µ and σ2 equations have the same

general trend and pattern with the new simulated 3,110,000 cases, for each ng.



5.5. Testing coverage intervals (CI) for the link between WCR and NHB 114

Figure 5.19: WCR againstNHB for 3,110,000 cases with ng=25. The red squares represent

the 95% CI and the green triangles represent the 99% CI using the general equations to

get the mean and standard deviation of WCR. The black gradient reflects the intensity

of the number of simulations. This uses 10,000 cases each week for 6 years.
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Figure 5.20: WCR againstNHB for 3,110,000 cases with ng=34. The red squares represent

the 95% CI and the green triangles represent the 99% CI using the general equations to

get the mean and standard deviation of WCR. The black gradient reflects the intensity

of the number of simulations. This uses 10,000 cases each week for 6 years.
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Figure 5.21: WCR againstNHB for 3,110,000 cases with ng=44. The red squares represent

the 95% CI and the green triangles represent the 99% CI using the general equations to

get the mean and standard deviation of WCR. The black gradient reflects the intensity

of the number of simulations. This uses 10,000 cases each week for 6 years.

We can see from figures 5.19, 5.20 and 5.21, that the confidence intervals using µ and σ

from equations 5.4.7 and 5.4.10 almost cover the majority of simulated cases which gives

a good sign of using these equations to help of setting some rejection region in the top

right as mentioned earlier in this chapter.

5.6 Conclusion

During this chapter, we have taken several important steps and reached important results,

as follows. Firstly, we created the joint distribution of WCR and NHB with different

numbers of spatial locations and different population structures in sections 5.1 and 5.2.

Secondly, we tried to link the mean and standard deviation of WCR with a given NHB

using a normal distribution but it did not give good prediction of either the mean or the

standard deviation in section 5.3. Thirdly, we linked the mean and variance of WCR with

a given NHB using a Gamma distribution which gave good prediction of the variance in

section 5.4. Finally, we tested the previous promising equation using 95% and 99% CI

with different numbers of spatial locations and they gave the right coverage of the data.

From this chapter, under the situation which we have looked at with number of HBs from

14 to 50, it looks as if we can predict the mean and the variance of WCR, so we can



5.6. Conclusion 117

conclude with two promising equations for µ (equation 5.4.7) and σ2 (equation 5.4.10)

to link WCR to NHB in the flat rate situation for any reasonable ng from 14 to 50+.

These equations can then be used to find a critical region for deciding if there has been

an increase in the rates, which is covered in the next chapter.

Chapter 6 will investigate the possibility of using these promising models in an early

detection system, by identifying a rejection region for a test of (WCR, NHB).



Chapter 6

Detection system

In chapter 3, we discussed some statistical and mathematical methods for early warning of

influenza. Many of these methods depend on getting data on flu cases, without taking into

account the geographical areas in which cases occur. When the researcher has such extra

details about the data it is beneficial to make use of these. Here in this research, we wish

to use data that are not limited only to the number of influenza cases but the geographic

locations of those influenza cases, integrating spatial data with (ILI) consultation data

from primary care centres.

In the previous chapter 5, in section 5.4, we ended with general equations for the mean

and variance of WCR with a given NHB. We will use those equations in the WCR system

in this chapter using a hypothesis testing approach.

Singh et al. in 2010 [142] tested the value of an observation of (WCR, NHB) by assessing

the value of the joint pmf for (WCR, NHB) from the historical data. Our approach

develops a rejection region for a test of (WCR, NHB). This extends the work of Singh et

al. in 2010 [142].

In chapter 5, we appear to have promising results which will enable us to predict the mean

and variance of the WCR when the rate is constant for any NHB and for any reasonable

ng (number of HBs) from 14 to 50 and maybe more. These equations can then be used

to find a critical region for deciding if there has been an increase in the rates. We have

derived a system for the joint distribution of WCR and NHB for any ng, and now we are

going to test this out.

Firstly, we will draw a general view about the WCR system. Then we will present how

this system works, manually step by step, starting with simple steps then try to make

these steps general. Then we will see the possibility of using a suitable approach with

NHB to specify the start and the end of the region for the detection system to focus on.

118
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After that we will see a useful approach to set cut-offs for the rejection region of WCR

and NHB. This can be done by calculating a quantile for WCR in each NHB. Those

quantiles use probabilities, so we will find a useful approach to set those probabilities.

To calculate a quantile of WCR in each NHB, we have two possible approaches:

1. Using simulated cases in each NHB to calculate a quantile of WCR.

2. Using µ and σ from equations 5.4.7 and 5.4.10 in each NHB to calculate a quantile

of WCR.

We will present these two approaches and test their validity here.

6.1 General view of the system

In the previous chapter, in section 5.3.1, in figure 5.11, we can see that the Y axis rep-

resents the WCR, which are ratios in the range (0.95, 1.05), while the X axis represents

NHB, which are integer values in the range (1, 40). We are trying to find an area in this

plot using some conditions to include values with WCR higher than 1 and high NHB.

We consider the range of NHB
2 + 1 to the maximum NHB, by setting cut-off points for

WCR at each NHB. We prefer not to cover the whole area of NHB
2 + 1 upwards as we

must take into account the sensitivity level of those cut-offs compared to the total number

of simulations. We are trying to identify an area which can be used as the rejection re-

gion in a hypothesis test of the levels of WCR and NHB, to detect the start of an epidemic.

Figure 6.1 shows the general ideas which can be applied for any size of NHB, and in order

to understand the graph, we will explain some general terms:
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Figure 6.1: General approach to identifying a rejection region from the distribution of

WCR and NHB, which can apply to any case of NHB.

• The target significance level (α) is shown by the purple area plus the orange area.

The probability of the joint distribution of WCR and NHB being in the purple and

orange areas could be estimated as the number of simulations in the purple and

orange areas divided by the total number of simulations.

We are going to use a Binomial distribution in conjunction with the normal dis-

tribution for WCR and the equations from chapter 5, section 5.4, to calculate the

probability of being in the orange and purple region without the need for simulation.

• The area where WCR is less than 1 and NHB is higher than N∗
HB, shown in the

graph by yellow, is very unlikely to apply in any case of an epidemic as WCR will

tend be very high in this situation as fewer than half of the health boards have an

increase.

• The area where NHB is less than N∗∗
HB, shown in the graph by light green, should

never signal as the middle of the range of NHB has not been reached.

As the X axis contains only integer numbers (1, 2, 3, ..., NHB), we will use the Binomial

distribution to calculate the probability of different values of NHB, so the processing will

be as follows:
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1. Choosing the significance level (α), say 5 % (the most common value of α). Later

in chapter 9, we also used α equal to 1%.

2. Finding the cut-off N∗
HB by solving Pr (NHB > N∗

HB) = α1 ; where 0 6 α1 6 α.

Solving this probability can give the minimum NHB with all WCR higher than 1.

The achieved value α1 will be close to α, but not equal to α, because we are using a

discrete distribution. (The dotted vertical blue line in figure 6.1 shows the position

of N∗
HB).

3. Finding N∗∗
HB which we consider here as NHB

2 + 1. (The dotted vertical red line in

figure 6.1 shows the position of N∗∗
HB).

4. Calculating the decreasing area (the orange area in figure 6.1) by:

(N∗
HB−1)∑

i=N∗∗
HB

Pr(NHB = i)× Pr(WCR > τi | NHB = i) (6.1.1)

where the term τi in equation 6.1.1 can be calculated by finding the quantile of WCR

for each NHB in the range N∗∗
HB to (N∗

HB − 1) using decreasing probabilities, because the

means of WCR are increasing as NHB increases, so we are trying to achieve the condition

of each quantile for NHB(t) being lower or equal to the quantile for NHB(t−1). This is

important because of the increasing nature of the joint distribution of (WCR, NHB) and

we need these probabilities to address this increase.
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Figure 6.2: Size of Binomial probabilities for a given ng, with success probability 0.5,

because we assumed that WCR are symmetric in section 5.2.

The first part of this equation 6.1.1 (Pr(NHB = i)) comes from Binomial probabilities of

each NHB as in figure 6.2. The purple area in figure 6.1 represents the probability of the

number NHB with an increase in the rate being greater than or equal to N∗
HB, as all WCR

for all NHB are equal or higher than 1 in this area. The total area beyond the quantile

in the purple and orange area will give the theoretical probability close to the significance

level (α).

6.1.1 Example

In this example, we consider the case of HBs= 40 and as we did in section 5.2, we will

simulate 10,000 cases for each week with flat rates to get 10, 000 × 52 (number of weeks in

year) ×6 (number of years) = 3,120,000 cases. To calculate WCR, we cannot calculate it

in the first week as we do not have a previous week, so the total number of simulations will

be 3,120,000 - 10,000 = 3,110,000 cases. Those cases are shown in figure 6.3 by the black

and gray colour. The next step is to find N∗
HB, which reflects the minimum NHB with all
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WCR higher than 1. It is 31 in this case, shown in the plot by the red dashed vertical

line. The second step is finding N∗∗
HB, which equals 40

2 + 1 = 21, shown by the orange

dashed vertical line. The third step is calculating the quantile of each NHB from N∗∗
HB to

(N∗
HB−1) using equation 6.1.1 with significance level α = 5%. To get decreasing quantiles

from N∗∗
HB to (N∗

HB − 1) we will use manual choosing of decreasing probabilities which

equal (0.99999, 0.9999, 0.999, 0.991, 0.78, 0.3, 0.1, 0.04, 0.01, 0.001) to find the second

part with τi in equation 6.1.1. The area from N∗
HB to the end of NHB is considered to

have probabilities =100% as all WCR > 1 as there is no point to exclude any WCR

when all of them are higher than 1. These probabilities values are chosen manually with

trying to achieve two terms together: 1. each quantile for NHB(t) being lower or equal to

the quantile for NHB(t−1), 2. achieving the exact value of our chosen α. The shaded area

in orange (figure 6.3) represents the theoretical probability, equal to the significance level

(α) ≈ 5.00% from the total number of simulations. We used here simulated cases and we

did not come yet to use equation of µ and σ from the last chapter.

From the means and standard deviations for the cases of HBs= (14, 30, 50) used in the

previous chapter and as we found that each NHB is normally distributed, we scale these

µ and σ from the midway to the end of HBs to be equivalent to this case with HBs= 40,

then we can use each µ and σ to find the cut-offs and can apply those cut-offs, in the

current case in which HBs= 40. R provides the function qnorm [11, 16] which can give a

quantile from the normal distribution using µ and σ from HBs= (14, 30, 50). The red

steps in figure 6.3 represent cut-offs of WCR for HBs= 40 calculated using the case of

µ and σ from HBs= 14. Cut-offs of HBs= 40 calculated using the case for HBs= 30 are

presented by purple lines, while the green lines represent cut-offs for HBs= 40 calculated

using the case of HBs= 50. The percentages of observations above those cut-offs from the

total number of simulations are presented in table 6.1. Those can be compared to the

target significance level of 5%.
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Figure 6.3: WCR against NHB for flat rates with 40 HBs and population of 50 million.

The black gradient reflects the intensity of the number of simulations. This uses 10,000

cases each week for 6 years. Red steps show the cut-offs from the µ and σ calculated from

the case of 14 HBs and purple steps represent the cut-offs from HBs= 30 and green steps

represent the cut-offs from HBs= 50 after scaling them from the midway to the end of

HBs to be equivalent to this case with HBs= 40.
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3,110,000 simulations

HBs Percentage of simulations above the cut-offs

14 4.55%

30 5.45%

40 5.00%

50 7.00%

Table 6.1: Percentage of simulations above the cut-offs for WCR, using different HBs,

from the total number of simulations. Here, limits are calculated from 3,110,000 simulated

cases. The bold text corresponds to the actual number of HBs (40).

We can see from table 6.1 that the percentages of simulations above the cut-offs, using

calculations for different HBs, from the total number of simulations, are between 4.55%

and 7% and this limited variation gives a hint about a possible way to calculate quantiles

for any number of HBs. We used 95% CI (z - intervals) from HBs= 14, 30 and 50 after

scaling to correspond to the case of HBs= 40 to calculate the cut-offs.

6.2 Notes and modifications to generalize the system

Previously we used only simulations to determine N∗
HB (the minimum number of increases

such that WCR > 1 for all number of increases above N∗
HB). Now we consider two

modifications described below to try to get more general results. They are:

Note 1 Above we found N∗
HB by solving Pr (NHB > N∗

HB) = α1, where 0 6 α1 6 α,

assuming that solving this probability equation can give the minimum NHB with

all WCR higher than 1. When we calculated this probability, we used the number

of simulations in each NHB to find the first NHB with all WCR higher than 1.

To have a fair system in various situations, we need to assume some more general

considerations. We now use the Binomial distribution to do this calculation, so that

it can work more generally, for NHB between N∗∗
HB to N∗

HB − 1. Steps to do these

calculations are explained in the next section 6.3.

Note 2 We calculated the quantile for each NHB from N∗∗
HB to (N∗

HB − 1) (the orange

area in figure 6.1). Because calculating a quantile must consider a probability or

weight (k) for each quantile, we used manual selection of those k, trying to achieve

at the same time: 1. each quantile for NHB(t) being lower or equal to the quantile

for NHB(t−1), and 2. achieving the exact value of our chosen α. We calculated the

quantile from the simulation using manual selection of weights in the probability

calculation in formula 6.1.1 (we used manual scaling here). We need to find an
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automatic approach to identify these probabilities or weights. Another alternative

way of using simulation with each quantile calculation assumes that we already have

a model for µ and σ, and then we will use another more general calculation without

basing it on the manual probabilities.

6.3 More general terms in the system

Note 1 above uses a Binomial distribution but does not use an automatic method of

calculating quantile probabilities k. We will consider new assumptions in this section to

give a more flexible and general system. Relevant quantities are:

• n.area, the number of locations (previously called HBs)= 14, 30, ..., 50.

• prob.binom, the Binomial probability mass function (pmf) on domain (0, n.area)

with probability of 0.5 (as we assumed WCR has a symmetric probability density

function (pdf) for each NHB). We already explained in section 5.2 how to consider

WCR from NHB from 0 to NHB
2 − 1 as symmetric with the cases from NHB

2 + 1 to

the end of NHB. For example, with HBs= 14, if we have values of WCR of (0.85,

0.88, 0.95) for NHB of 5, we find we have values of WCR of (1.15, 1.12, 1.05) for

NHB of 9.

• cum.binom, the cumulative sum of prob.binom.

• (α), the size of the area from the simulated cases from N∗∗
HB to NHB, shown as the

orange area plus the purple area in figure 6.1. This is a fixed value and we consider

it, as before, to equal 5%.

• (α.nhb) which we used to find the theoretical area between N∗∗
HB to (N∗

HB − 1),

shown as the purple area in figure 6.1.

• (α− α.nhb) which is calculated from the simulated cases (shown as the orange area

in figure 6.1).

• N∗
HB which gives the theoretical level above which we expect to set the NHB with

all WCR higher than 1. It can be approximately calculated as min(cum.binom ≥
(1−α.nhb)) (dotted vertical red line in figure 6.1). These previous steps covered the

suggested modification of note 1.

• N∗∗
HB which gives the midpoint of NHB, which equals NHB

2 + 1. If NHB is an odd

number, we use instead the first integer number before NHB
2 (dotted vertical orange

line in figure 6.1).

• In the previous chapter in section 5.4, we suggested equation 5.4.7 for the mean of

WCR and equation 5.4.10 for the variance of WCR. Aiming to make the system
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generalized and valid without repeating the simulation, we calculate qnorm in R with

the µ and σ from this model (equations 5.4.7, these quantiles have to be combined

with Binomial probabilities, and 5.4.10) instead of using quantile in R based on the

simulation cases (the orange area in figure 6.1).

The second note is finding an automatic way to calculate the cut-off, using the R quantile

function with µ and σ and specified probability k.

Looking at equation 6.1.1, τi represents k for each NHB from N∗∗
HB to (N∗

HB − 1). We will

add the rest of the area from N∗
HB to the end of NHB and we assume the total will equal

our α. The whole equation will be as below:

(N∗
HB−1)∑

i=N∗∗
HB

Pr(NHB = i)× Pr(WCR > τi | NHB = i) + (1− ρ) (6.3.2)

where ρ= cum.binom from 0 to N∗
HB−1. We will consider more than one way to calculate

the ki in equation 6.3.2, and our aim is now to get 5% or 1% depending on our α. As in

example 6.1.1, we can set those ki manually to get our α, but we will show some functions

that can be used to calculate ki automatically. The overall curve of the probabilities starts

high (say, 85%), and it depends on our predefined level of α, then starts to decreases until

the end. The current task is to search for a function with this gradient in the curve. Our

reason for moving from the manual setting to the automatic setting (using a function) is

so that we can generalize the system to any number of HBs.

To see ki clearly, we will present the R commands for quantile and qnorm to calculate

the quantile of WCR at each NHB, below:

> qnorm(mean= mu , sd= sd , lower.tail= TRUE , log.p = FALSE , p=k)

> quantile(subset(simulation ,N(HB))$WCR ,p=k)

Those two R codes were used to set the cut-offs of WCR in each NHB to specify the

rejection region.

In qnorm, mu and sd are the mean and standard deviation using the equations 5.4.7 and

5.4.10, while quantile is using simulated cases of WCR for each NHB. The value ki is k

in the above command.

We consider below some different possible functions to use for calculation of k.

6.3.1 Linear Function (f1)

In order to find a general way to calculate the probabilities in equation 6.1.1, we will look

to find a suitable decreasing function. The first attempt will be the simplest way to give
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the highest probability at N∗∗
HB and the lowest probability at N∗

HB − 1. Figure 6.4 shows

this kind of linear function in the red squares, but this is rather unrealistic as ideally we

would like a curve because the mean of WCR is sightly increasing and we are looking to

get some curve probabilities that relate to this increase in WCR.

6.3.2 Ellipse Equation (f2)

Another possible way to find a general method to calculate the probabilities in equation

6.1.1 for each quantile is to use a concave decreasing function with a gentle decrease.

The ellipse equation [15,98] is a well-known function with a flexible setting of its curve and

a decreasing shape in the top right quadrant. The general equation of an ellipse centered

on (0,0) is:

x2

a2
+
y2

b2
= 1 (6.3.3)

where a here is the length from 0 to a in the X - axis, and b is the maximum value in the

Y - axis. As we may sometimes need to shift up the curve to finish at (N∗
HB − 1) with a

value of r, we rewrite equation 6.3.3 as:

y =

√
(θ2 × s2)− (θ2 × x2)

s2
+ γ (6.3.4)

where θ+ γ represents the maximum value in the Y - axis. It reflects the maximum value

which should be close to 1 to use it as k in qnorm at N∗∗
HB, and γ represents the minimum

value in the Y - axis. It reflects the minimum value which should be close to 0 to use it as

k in qnorm at N∗
HB − 1, s is the length of X - axis, it is the length from N∗∗

HB to N∗
HB − 1,

and x represents each point on this length of X - axis. It represents each NHB from N∗∗
HB

to N∗
HB − 1.

Our target is to use and modify the top right curve in figure 6.5, using equation 6.3.4 to

get suitable decreasing probabilities (k).

The purple triangles in figure 6.4 present the shape of this ellipse function.
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Figure 6.4: Quantile probabilities (k) at each NHB are shown by the red squares for f1

(section 6.3.1), and by purple triangles for f2 (section 6.3.2). Blue triangles represent f3

(section 6.3.3) and the orange diamonds represent f4 (section 6.3.4). Dark green circles

represent the manual values (m) of quantile probabilities (section 6.1). This is based on

our example in the following section 6.3.5 which considers HBs= 40. Here 1 in the X - axis

represents N∗∗
HB, and, 7 represents N∗

HB.



6.3. More general terms in the system 130

Figure 6.5: The general shape of an ellipse centered on (0,0).

6.3.3 Concave Ellipse Equation (f3)

In the ellipse function in section 6.3.2, equation 6.3.3, we used the formula in its natural

form which is concave. Next we tried a different concave curve as in equation 6.3.5, to

give a result corresponding to the predefined level of α, using:

y = −

(√
(θ2 × s2)− (θ2 × (x− s)2)

s2

)
+ γ (6.3.5)

where γ reflects the maximum value which should be close to 1 to use it as k in qnorm

at N∗∗
HB and (γ − θ) reflects the minimum value which should be close to 0 to use it as k

in qnorm at N∗
HB − 1, s is the length from N∗∗

HB to N∗
HB − 1, and x represents each NHB

from N∗∗
HB to N∗

HB − 1.

Our target is to use and modify the top right curve in figure 6.5 to get same shape of the

bottom left curve using equation 6.3.5.

Blue triangles in figure 6.4 present the shape of this inverse ellipse function.

6.3.4 Exponential function (f4)

When we think of the shape of an exponential pdf [117], this gives an opportunity to make

a curve which is concave and decreases from the highest point on the Y -axis, using the

following equation:

y = γ × e−θ×x 0 6 x 6 s (6.3.6)

where γ reflects the maximum value which should be close to 1 to use it as k in qnorm at

N∗∗
HB, while θ sets the rate of decrease of the curve, s is the length from N∗∗

HB to N∗
HB − 1,

and x represents each NHB from N∗∗
HB to N∗

HB − 1. The shape of this curve is shown in

figure 6.4 by the orange diamonds.
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We can apply the different approaches in sections 6.3.1, 6.3.2, 6.3.3 and 6.3.4 in equation

6.3.2, or apply the manual values to satisfy the predefined level of α (say 5%, as before).

To calculate the parameters in each function, we specified a value for k (maximum k) at

N∗∗
HB, the specified value for k (minimum k) at N∗

HB, which gives two equations (maximum

and minimum) then solved them. In the Ellipse and Exponential cases, we did this by

iterative processes to achieve equation 6.3.2.

6.3.5 Example

Here, we use the same data which we already used in the last example 6.1.1, but with

two changes: 1. using the cumulative sum of the Binomial to set N∗
HB which became 27

instead of 31 in the last example. 2. we will use an automatic setting f1 as in section 6.3.1,

f2 as in section 6.3.2 (θ = 0.85, γ = 0.10), f3 as in section 6.3.3 (θ = 0.75, γ = 0.85) and

f4 as in section 6.3.4 (θ = 0.35, γ = 1.21) to calculate the probabilities used each time in

R function qnorm. In figure 6.6, the plot gives the quantile for each NHB in the case of

the manual setting and the value from qnorm for each NHB in the case of the automatic

setting (f1 ,f2, f3 and f4).

The manual results are rather oscillating up and down, and the curve-based approaches

are smoother.
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Figure 6.6: Quantiles (cut-offs) from N∗∗
HB to N∗

HB − 1 are represented by the red squares

for f1 in section 6.3.1, while purple triangles represent f2 in section 6.3.2. Blue triangles

represent f3 in section 6.3.3, and the orange diamonds represent the quantile from f4 in

section 6.3.4. Dark green circles show the manual values to calculate quantiles (m) in

section 6.1.

We can compare the percentage of coverage using each approach and the total number of

simulations (3,110,000) in table 6.2.
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percentage of coverage

α =5%

f1 (Linear) 0.0497

f2 (Ellipse) 0.0128

f3 (Concave Ellipse) 0.1368

f4 (Exponential) 0.0402

Manual 0.0505

Table 6.2: Percentage of coverage in the rejection region, using different approaches and

the total number of simulations (3,110,000).

From table 6.2, we can see that after applying different functions for the probabilities (f1,

f2, f3, f4 and manual choice) with the real cases of simulation, they covered around our

predefined significance level of α (5%) except for f2 and f3. We exclude f3 from now on as

the coverage is too large. Using f2 the coverage is rather low. This may seem obvious but

we discuss each function separately and review them in line with the first considerations

we have set for the system in section 6.1. The fourth step states that the quantiles of WCR

for each NHB from N∗∗
HB to (N∗

HB − 1) should satisfy a pattern of decreasing probability,

with the condition that each quantile of WCR for NHB(t) is recommended to be lower or

the same as the quantile for NHB(t−1). This condition will lead us to exclude use of f2

and f4. This leaves case f1 (which is not perfect, but is acceptable).

We can see that after trying 4 different approaches to calculate the probabilities of quan-

tile of WCR that the linear function for ki which is used to calculate cut-offs from a

normal distribution, combined with a Binomial probability, gives acceptable coverage at

5% compared to manual computation from simulations.

6.4 Making the system more general

We have investigated and tested the system with 14 locations with relatively high rates,

which vary over location, and now we want to test the system with lower rates.

In the previous chapter in section 5.4, we talk about modelling of the mean and the

standard deviation or variance of WCR, so we conclude this section with equation 5.4.7

for the mean and another equation 5.4.10 for the variance. Now, we check for the possibility

of adopting those means and variances in the calculation of cut-offs for WCR at each NHB

using qnorm.
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The weekly cases ratio at week w as defined in equation 3.6.1 is:

WCR =
Rate(w)

Rate(w−1)
. (6.4.7)

When we see this equation and consider again our mean and variance models in equations

5.4.7 and 5.4.10, we did not take into account that those means and variances are for a

ratio (WCR) and this may directly affect the mean and standard deviation equations. We

will check the first step of our 3,110,000 simulations in section 5.2 to see if it is still usable.

In table 6.3, we show key values relating to the data set using number of locations from 1

to 14 HBs as it is the basis of all the other data sets.

In table 6.3, Location gives the number of locations (HBs). Min ILI count gives the

minimum ILI weekly count in some specific location from the Scottish data from 2009 to

2015. Max ILI count gives the maximum ILI weekly count in some specific location from

the Scottish data from 2009 to 2015. Min+Max
2 gives the average of Min and Max ILI

count for each location, and Min+Max
10 gives the min plus max of the ILI count divided by

10 for each location. Population is the median of total weekly population in each location.

Here we will list some comments about this table:

•
∑

of Min+Max
2∑

Population equals 0.000246871 if the rate was the same in all locations, and

0.000247 means 247 cases per 100,000, which is high compared to the actual baseline

of influenza activity (0-50) cases [56,64,142].

• Some locations like 1, 2, 3, 5, 11, 12 and 14 registered 0 as minimum ILI counts and

their maximum ILI counts are also low compared to the other locations, which cause

extreme variation between different locations. For example, the rate used in location

12 equals 15
27,125,219.9/14 × 100, 000 = 0.8 per 100,000 population, while the rate used

in location 6 equals 1572
27,125,219.9/14 × 100, 000 = 80 per 100,000 population. It is clear

there is a large difference between 0.8 and 80, and this is caused by assuming equal

populations in all locations or HBs.
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Location Min ILI count Max ILI count Min+Max
2

Min+Max
10 Population

1 0 412 206 41.22 27,125,219.9/14

2 0 237 118.5 23.78 27,125,219.9/14

3 0 426 213 42.66 27,125,219.9/14

4 1 527 264.1 52.83 27,125,219.9/14

5 0 721 360.5 72.14 27,125,219.9/14

6 5 3139 1572.15 314.43 27,125,219.9/14

7 1.35 1650 826.03 165.21 27,125,219.9/14

8 0.75 1565 782.94 156.59 27,125,219.9/14

9 0.75 1458 729.77 145.95 27,125,219.9/14

10 2.06 1933 967.88 193.58 27,125,219.9/14

11 0 77 38.5 7.72 27,125,219.9/14

12 0 30 15 3.05 27,125,219.9/14

13 2.34 1131 567.07 113.41 27,125,219.9/14

14 0 67 33.5 6.71 27,125,219.9/14∑
– – 6696.41 1339.283883 27,125,219.9

Table 6.3: Details of key values for 1 to 14 HBs weekly total and their populations (more

details in the text).

To consider these issues in further detail, as WCR =
Rate(w)

Rate(w−1)
where in our work Rate(w)

is the number of cases in week w divided by the population size in week w (which is as-

sumed constant in all locations). To make the explanation clearer (as explained in section

4.2), we will say WCR ≈ ili(w)

ili(w−1)
and ili ∼ Poisson(θ), V ar(ili) = θ and E[ili] = θ.

Now, we know that WCR is a ratio, so we will now calculate the mean and variance of

the ratio. As ili(w−1) and ili(w) reflect numbers of reported cases in different weeks, they

are independent variables, assumed independent as the underlying rate is constant and

we do not assume serial correlation. It is worth to mention that it is often in infectious

disease modeling is assumed that case in week w depend on case in week w− 1 but we are

assuming independent rates here.

Approximation of the means and variance of ratios of independent variables can be calcu-

lated as below:

E

[
ili(w)

ili(w−1)

]
≈

E(ili(w))

E(ili(w−1))

or

E

[
ili(w)

ili(w−1)

]
≈

E(ili(w))

E(ili(w−1))
−
cov(ili(w), ili(w−1))

[E(ili(w−1))]2
+
V ar(ili(w−1))E(ili(w))

[E(ili(w−1))]3
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using the bivariate first order Taylor expansion from [46,147] respectively.

As ili(w) and ili(w−1) are independent Poisson (θ) random variables in the steady state

case, (we know in influenza seasons, case in week w depended to case in w − 1, but we

assuming steady state here), so cov(ili(w), ili(w−1)) = 0, and

E

[
ili(w)

ili(w−1)

]
≈ θ

θ
+ 0 +

θ2

θ3

E

[
ili(w)

ili(w−1)

]
≈ θ

θ
+

1

θ

E

[
ili(w)

ili(w−1)

]
≈ 1 +

1

θ
≈ 1 (6.4.8)

which means that the mean of any WCR ratio is approximately 1. For the variance, using

the bivariate second order Taylor expansion [46,147] of WCR,

V ar

(
ili(w)

ili(w−1)

)
≈

(E(ili(w)))
2

(E(ili(w−1)))2
×
[
var(ili(w))

(E(ili(w)))2
−2×

cov(ili(w), ili(w−1))

E(ili(w))× E(ili(w−1))
+
var(ili(w−1))

(E(ili(w−1)))2

]

V ar

(
ili(w)

ili(w−1)

)
≈

E(ili(w))
2

(E(ili(w−1)))2
×
[
var(ili(w))

(E(ili(w)))2
+

var(ili(w−1))

(E(ili(w−1)))2

]

V ar

(
ili(w)

ili(w−1)

)
≈ θ2

θ2
×
[
θ

θ2
+

θ

θ2

]
≈ 2θ

θ2
≈ 2

θ
. (6.4.9)

We can show the effect of equations 6.4.8 and 6.4.9 by presenting the following example.

Let θ1 = 20, θ2 = 30, θ3 = 40 and θ4 = 50. We will use the Poisson pmf with mean θ to

simulate 10,000 cases. With θ1 = 20, we will simulate 10,000 cases from the Poisson pmf

with mean of 20 and consider that as the ILI rate in week w (let’s call it Ci), then simulate

another 10,000 with the same mean and consider that as the ILI rate in week w -1 (let’s

call it Ci−1). We can calculate the WCR as Ci
Ci−1

, then calculate the mean and variance

of WCR. We can do this with all the considered values of θ, as presented in table 6.4.
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θ1= 20 θ2= 30

E (WCR)=1.05121 E (WCR)=1.0343

Var (WCR)=0.1302 Var (WCR)=0.0731

2/θ1=0.1146 2/θ2=0.0724

θ3= 40 θ4= 50

E (WCR)=1.0342 E (WCR)=1.0228

Var (WCR)=0.0586 Var (WCR)=0.0403

2/θ3=0.0543 2/θ4=0.0432

Table 6.4: Example to show how the ratio WCR is distributed in 10,000 simulations from

a Poisson (θ) pmf.

In table 6.4, we can see the mean of WCR using θ1, θ2, θ3 and θ4 is around 1+ 1
θx

, while the

variance of WCR using θ1, θ2, θ3 and θ4 is close to 2
θx

where x = 1, 2, 3, 4. This example

illustrates the approximate mean and variance of WCR as shown in equations 6.4.8 and

6.4.9. Where θ is large the variance is small and where θ is small the variance is larger.

We will investigate the system coverage when using different baseline values of θ which are

lower to give more realistic numbers of cases. We started with θ = Min+Max
2 = θA, say.

We now consider different θ, written as θA
r , where r is a scaling factor. Using r = 1 gives

θA and we call this WCRv1. Using r = 5 gives θ = Min+Max
10 and we call this WCRv2.

Using r = 10 gives θ = Min+Max
20 and we call this WCRv3.

All we are doing is making the underlying rates, as we are using constant populations,

smaller so there will be a greater chance of zeroes in some of the NHB and also it will be

more discrete as the Poisson means will be smaller and we will have a greater chance of

exactly the same values two weeks in a row, giving NHB where there is neither an increase

nor a decrease.

Figure 6.7 shows the system in the steady state case and with r = 5. The aim from

this figure to compare the cut-offs using simulated cases to the cut-offs from the normal

distribution by using the mean of WCR in equation 5.4.7 and the variance in equation

5.4.10.
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Figure 6.7: WCR against NHB for steady rates using r = 5 with 14 HBs and a 5 mil-

lion population. N∗
HB is presented in the dotted vertical orange line while the dotted

vertical purple line represents N∗∗
HB. The red shaped area columns came from calculating

the quantile (cut-offs) using µ and σ from many simulated cases with a flat rate. They

represent around 5% of the most extreme observations under the steady state. The green

shaped area columns came from calculating qnorm (cut-offs) using µ and σ from equations

5.4.7 and 5.4.10. They represent around 9% of the most extreme observations under the

steady state. Darkness of the black colour reflects the number of simulated cases.

In figures 6.7, B.1, B.2, B.3, B.4 and B.5 in the Appendix and also in table 6.5, we used

the exact same ways to set N∗∗
HB, N∗

HB, and the same quantile probabilities (k) to compare
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percentage of coverage

HB= 14 simulation equation HB= 34 simulation equation

r = 1 0.05 0.05 r = 1 0.05 0.04

r = 5 0.05 0.09 r = 5 0.05 0.16

r = 10 0.05 0.10 r = 10 0.05 0.17

Table 6.5: Percentage of coverage of the rejection region using the total number of sim-

ulations (3,110,000), where r is the scaling factor used. “simulation” means the cut-offs

were based on the actual simulated cases, while “equation” means that the cut-offs were

calculated based on mean and variance equations 5.4.7 and 5.4.10.

the cut-offs using simulated cases to the cut-offs from the normal distribution by using the

mean of WCR in equation 5.4.7 and the variance in equation 5.4.10. These show both the

small case of HBs= 14 and the big case of HBs=34, and we can see that is not accurate in

general to assume µ and variance from equations 5.4.7 and 5.4.10 to calculate the cut-off

in the value of WCR for each NHB (see table 6.5). This is because of the large variations

in the variance when the baseline of simulation (θ) changes as shown in table 6.4. So we

will test the performance of the system using the WCR based on doing many simulations

with each value of the number of HBs.

6.5 Conclusion

Now at the end of this chapter, we make some comments and suggestions which are very

important, as below:

• In section 6.1, we used a general attempt to set the start and the end of the area

of interest in NHB (defining N∗∗
HB and N∗

HB) which we expected to work in general

circumstances. This works only in specific circumstances, so we moved to a more

general attempt.

• In section 6.2 and 6.3, we show how to set an automatic function to calculate the

quantile probabilities at each NHB, either using simulation or equations, by using 5

different approaches.

• Postulating an automatic way of defining the detection area under any circumstances

only works when the scaling factor r =1 or is close to 1. We consider this issue in

section 6.4 and suggest scaling the value of θ, but as presented in table 6.5, this did

not work well. This is likely to be because the variance of WCR will then increase.

• In section 6.4, we compared cut-offs in WCR using equations for the mean and

variance of WCR (using command qnorm in R), with cut-offs from simulated cases
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for each NHB (using command quantile in R) and we did not find the cut-offs

calculated from equations to be similar to the cut-offs calculated from simulated

cases, so we will test further the performance of WCR using simulated cut-offs

rather than using equations.

In chapter 7, we now set up different situations to be considered in the simulation study,

concerning patterns of GP consultations for ILI over time and define some system per-

formance measures which we will use to compare our WCR system with other detection

systems.



Chapter 7

Simulation study

In the previous chapter 6 in section 6.4, we conclude that we cannot use equations for the

mean and variance of WCR (assumed to be Normal (µ, σ2)) to set cut-offs for the WCR

system, so we will use simulation to calculate quantiles of WCR in each NHB.

In this seventh chapter, we want to simulate a new environment to reflect the real data

which we already have. The aim from this simulation is to create different cases in a virtual

world that simulate what is actually likely to happen. This will enable us to evaluate how

the detection systems will perform in reality. As we already have over 5 years of historical

data from August 2009 to the end of July 2015, we aim to simulate many cases from those

years.

Various other studies have used simulation to study such detection systems. One study

about measures against transmission of pandemic H1N1 influenza in Japan in 2009 sim-

ulated the expansion of pandemic H1N1 influenza in a realistic society called the virtual

Chuo Line which models an area to the west of metropolitan Tokyo. It estimated the

coefficient of transmission from outbreaks of pandemic H1N1 influenza among school chil-

dren. Isolation at home, school closure, post-exposure prophylaxis and mass vaccinations

of school children are included as evaluation measures in this simulation study, and it con-

cluded that isolation at home and school closure together with post-exposure prophylaxis

significantly reduce the total number of cases in society and can alleviate the expansion

of pandemic H1N1 influenza, even when there is a delay in the availability of vaccine [191].

Another simulation study in the United States used a large-scale stochastic simulation

model to probe the dispersal of a pandemic strain of influenza virus and recommended

that in a highly mobile population, restricting travel after an outbreak could delay a little

the time course of the outbreak without affecting the final number of cases [54]. Another

141
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study simulated time series data to study the impact of air pollution on health using a

Generalized Additive Model (GAM) based on historical data [43].

From the historical data in many studies, the trend for influenza usually increases in the

winter, as in the United States between 1959 to 1999 [133] and as monitored in England

and Wales in 1975 to 1990 [111], and also in Norway [78]. Data from Australia, France and

the United States from 1972 to 1997 also confirm the trends in the winter [163]. So, we

can see the increasing trend in winter, but this is not enough because the influenza rates

may have different shapes of increasing trends, which we should consider. When we see

the historical data from 2009 to 2015 in Scotland, we find that consultation rates tend to

be seasonal, but a parametric model with sine and cosine terms does not fully capture the

seasonal pattern (as presented in section 2.4), and so GLMs with sine and cosine terms to

model the seasonal component are not the best solution. For this reason GAM models for

data are more flexible than linear regression as GAMs can model non-linear trends more

easily. Therefore we focus on GAMs in our simulation study.

7.1 Plan of the simulation study

As we cannot guarantee what will happen in reality, we can use what we can imagine

from the historical shapes of a trend in cases, and simulate many cases from these, so

this can cover real cases in the future in practice. The main and major target from the

simulation study is to assess which system will work with high accuracy to raise the alarm

in winter by applying the early detection systems with real data. We will consider some

early detection systems to test them with simulated cases, i.e. the following methods:

• Weekly Cases Ratio (WCR) Method (section 3.6).

• Cumulative Summation (CUSUM) Method (section 3.4).

• Moving Epidemic Method (MEM) (section 3.3).

We have actual ILI cases from all of Scotland and also the aggregated 14 health boards

(HBs) for weekly consultations in all GPs from the middle of August 2009 to the middle

of August 2015.

Now, we are considering many scenarios in our simulation because the real data which we

already have may or may not represent different patterns of data which may occur. Also,

with the real data we cannot exactly know when the winter increase in rates begins, as

different methods detect the start of an epidemic at different times. Another reason for

our simulation is that the real data may have trends which we may not take into account,

so we can build in a factor to the data by doing the simulation, which means there will
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be a fixed pattern in which we know when the winter peak will happen and we can assess

the accuracy of the different methods in detecting this. Also in the simulation we can

consider different shapes and curves which may occur (for example, two peaks, a very

sharp triangle, and flat increasing and decreasing shapes in the winter), as we want to

know if the shape influences the results of the winter peak.

The first scenario considered using the historical data for Scotland from 2009/10 to 2013/14

to detect the alarm in winter 2014/15. This scenario was chosen as it already happened

in the past, so it is realistic to apply it in this simulation study. It is possible also to have

a repeated scenario every year, so we decided to pick one of the past years and repeat

it 5 times, which is assumed as the second scenario in our simulation study. The third

and fourth scenarios are considering increasing and decreasing trends which may happen

also. We pick one of the past years and repeat it 5 times with an increasing or decreasing

factor. One of our aims for using these two shapes is to see which system will be affected

when we test them. As we are dealing with real consultations here, we chose a GAM to

fit the pattern every year.

As we know from the data that influenza shows a very rapid fluctuation in the rises and

falls, the GAM again is not sufficient to cover all patterns because the GAM is not sym-

metric and so can have a steeper increase than decline. In this case we go back to sine and

cosine terms as they are symmetric about the peak, and these are used in many published

papers to simulate influenza cases [30,44,73,141], which we call the Serfling model.

The fifth, sixth and seventh scenario are using this Serfling model, but changing its pa-

rameters to give different shapes.

We still need to think about an outbreak case (like a sudden jump) which is not covered

in the above scenarios, so the eighth, ninth and tenth scenarios will be based on a linear

model which can cover many cases.

As MEM requires 5 years of data to apply it, we will use 5 years data to detect the

following year.

Now, we will explain each scenario below:
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7.2 Different Shape Cases

In this section, we want to try different shapes in our simulation as we cannot guarantee

what will happen in the future. We choose different shapes and patterns from the historical

ILI data which we already have, so we can list various scenarios below:

7.2.1 Simulate from a GAM from all 5 years historical data

Here, we used the GAM to fit what happened in the previous five years (2009/10-2013/14),

then applied the detection system to test the early alarm using the simulated cases. We

started by simulating one time series from a Poisson distribution with mean equal to the

predicted values (µ̂t) from the following formula:

gam(round(ILI.Corr ,0))~ s(week ,bs="cc") + factor (year)

+ offset(log(Pop)), family=poisson , data=result)

where ILI.Corr gives the aggregated weekly cases of ILI in week t, s(week,bs="cc")

gives the spline function [26, 62] of gam, Pop represents the Scottish population in week

t, and result is the data frame containing all the historical ILI data. Year is used as

a factor rather than using it as linear because we are dealing with influenza cases which

have increases and decreases over time.

To imagine situations that mimic the reality that we have, we need a model to describe the

current reality and then extrapolate to predict what could happen. So we used a GAM,

already described in the second chapter 2, section 2.5.

A simulation of weekly cases from this GAM from the five previous years (historical data)

is presented in figure 7.1, as an illustration.
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Figure 7.1: Simulated weekly cases from the historical ILI data (2009-2015).

Now, we present the results of how MEM and CUSUM work based on the simulated cases

from the historical data. We used the winters of 2009/10 to 2013/14 to test the detection

in winter 2014/15. Figure 7.2 shows (in the top plots) how MEM and CUSUM methods

work with the ILI data and the lower plots present the results for the ARI data, and show

when the alarm is raised. MEM clearly did not work well with the ILI data as the epidemic

started without an alarm. When we investigated the reason for this, we found that the

ILI rate in the first week was 16.64 per 100,000 population and the trend was increasing

until week 6 before going to another peak in week 15. Also MEM delayed 3 weeks in the

ARI data, and the reason for this was that we considered the 2009-2010 outbreak in the

system and this raised the pre-epidemic threshold.

CUSUM raises the alarm in week 2 for the ILI data while its alarm is raised in week 8 for

the ARI data. Both of these are faster than MEM but we should say we cannot guarantee

whether they are false alarms or not. We will cover this in the next chapter.
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Figure 7.2: MEM and CUSUM methods’ performance with simulated cases from the

historical ILI and ARI data; MEM plots (left) include the pre-epidemic period (blue),

epidemic period (red), and post-epidemic (green), while the triangle gives the alert week

and the red line presents the pre-epidemic threshold, while the post-epidemic threshold

is presented by the green line. A 5 year series (2009/10 to 2013/14) is used in MEM.

CUSUM plots (right) include the normal weeks (black) and the epidemic weeks (red),

while the dotted line presents the threshold based on the fact that 95% of the area of a

normal distribution is within 1.96 standard deviations of the mean.

From this example, we can see the effect of including the outbreaks from the historical

data on system performance. Outbreaks directly affect any system using long historical

data as a basis of the system.

7.2.2 Simulate from a GAM from only the last year

In this section, we are doing the same fitting of a GAM for 2013/14 and repeating the

fitted GAM 4 times to have 5 similar series, then simulating one time series from a Poisson
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distribution with the mean equal to the predicted values (µ̂t) from the previous GAM in

the formula in section 7.2.1. Simulating weekly cases from the GAM for the previous year

(2013/2014) and repeating this five times is shown in figure 7.3. This gives a repeating

trend.
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Figure 7.3: Simulated weekly cases from the historical data (repeating 2013/14 scenario 5

times).

7.2.3 Repeating with an increasing trend

Other possible cases to face in reality are increasing and decreasing trends. We will

consider these two shapes to test which system will be affected more in those scenarios.

We did not expect an effect in the WCR system as this system did not use much data

from the past. Here, we are using a similar scenario to the one in section 7.2.2, but we

are using an increasing trend. The simple way to do this is by choosing one of the years

which have low rates (say 2014/2015) and repeating it 6 times with an increasing factor

each year (we can use any number as the main idea is just to get an increasing trend; we

used 50 counts cases here (which means that between 2009/10 and 2013/14, the ILI case

rate per 100,000 increased by approximately 50). Then we simulate one time series from

a Poisson distribution with the mean equal to the predicted values (µ̂t) from the previous

GAM in the formula in section 7.2.1. Figure 7.4 illustrates this scenario.
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Figure 7.4: Simulated weekly cases from the historical data (repeating 2013/14 scenario 5

times with an increasing trend).

7.2.4 Repeating with a decreasing trend

In this section, we are doing the same fitting of a GAM for 2013/14 and repeating the fitted

GAM 4 times similarly to the previous situation in section 7.2.3 but with a decreasing

trend, to give 5 scenarios. Again the simple way to do this is by choosing one of the

years which have high rates (say 2009/2010) and repeating it 6 times with a decreasing

factor each year (again we can use any number as the main idea is just to get a decreasing

trend; we used 50 counts cases here (which means that between 2009/10 and 2013/14,

the ILI case rate per 100,000 decreased by approximately 50), then simulating one time

series from a Poisson distribution with the mean equal to the predicted values (µ̂t) from

the previous GAM formula in section 7.2.1. Figure 7.5 illustrates this scenario.
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Figure 7.5: Simulated weekly cases from the historical data (repeating the 2009/10 scenario

5 times with a decreasing trend. There is a discrete jump at the end of each year because

we selected year 2009/10 and this year has an end rate higher than its start rate (as the

idea is to get a decreasing trend).

7.2.5 Serfling model

One of the old established methods to simulate influenza cases is the Serfling method. The

Center for Disease Control and Prevention (CDC) have used a cyclic regression model to

describe the starting of influenza activity (epidemic) and mortality caused by influenza

in their influenza surveillance programmes since the mid-1960s [113]. This method for

determining the epidemic threshold bears the name of Serfling as he did the original

model formulation [113]. The Serfling method uses five years data of weekly influenza

cases to fit a cyclic regression model including terms for an intercept, linear tendency, and

a pair of symmetric terms to catch the following sinusoidal pattern of seasonal influenza.

The Serfling model is formulated as a simple linear regression [113]:

yt = α+ β1sin

(
2π

(
t

52

))
+ β2cos

(
2π

(
t

52

))
(7.2.1)

where yt represents observed influenza cases in week t of the whole five year period, and

α and β1, β2 are regression coefficients to be estimated. Because the model can estimate

the epidemic and non-epidemic seasonal baseline, we can consider the weeks which are

more likely to have influenza activities, which is the winter in Scotland, from September

to April.

We consider here 3 different shapes by changing β1 and β2 in equation 7.2.1 to have a one
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peak scenario, a two peaks scenario (a low peak then increasing trend) and another two

peaks scenario (a high peak then a low peak).

• Using the Serfling model [128] to predict cases with one peak in the year is shown

in figure 7.6.
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Figure 7.6: Simulated weekly cases from the Serfling model (single peak in winter), α =

−9, β1 = 1, β2 = 1.

• Using the Serfling model [128] to predict cases with two peaks in the year (one high,

then one low) is shown in figure 7.7.
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Figure 7.7: Simulated weekly cases from the Serfling model (double peaks with main peak

in winter), α = −9, β1 = 1, β2 = 0.5, β3 = 0, β4 = 1.

• Using the Serfling model [128] to predict cases with peak then increasing trend in
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the year is shown in figure 7.8.
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Figure 7.8: Simulated weekly cases from the Serfling model (peak then increasing trend),

α = −9, β1 = −0.1, β2 = −0.1, β3 = 0.4, β4 = 1.2.

7.2.6 Linear Model

Another scenario not covered by either the GAM or the Serfling model is when the number

of influenza cases changes suddenly (increases or decreases), so we want to consider more

sudden scenarios from linear models by using linear step functions rather than GAMs or

Serfling models which have much smoother changes.

Here, we show how to model the influenza activities in the winter season. It is similar to

the Serfling model but is a linear model which can include some different scenarios like

sudden increasing or decreasing. The advantage from these scenarios is that they consider

some sudden events which are not part of smooth scenarios. Serfling models and GAMs

can consider only the smooth scenarios. The first shape here is one peak in the year with

stability at a low level (say around the normal influenza activity), then sudden stability

at a high level (say around the influenza season’s activity or outbreak) before a sudden

decrease to a low level (the normal influenza activity again) (case 1). Low rates reflect

the summer season and high rates reflect the winter seasons.

The second scenario of a linear shape is one peak in the year with stability at low level

then a gradual deviation to a peak level, then a gradual decrease to a low level (case 2).

We can model that by the linear model:

Yt[increasing] = minY + (maxY −minY )/L1 (7.2.2)

Yt[decreasing] = maxY − (maxY −minY )/L2 (7.2.3)
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where Yt represents the counts of cases in week t with increasing and decreasing shapes;

maxY and minY give the maximum and minimum counts of cases; and L1 and L2 are

the length of the periods for increasing and decreasing weeks.

The last scenario considered from the linear shape is one peak in the year with stability at

a low level, then a gradual deviation to a peak level, then a sudden decrease to a low level

(case 3). This will use the increasing model 7.2.2 before dropping the number of cases

suddenly to the low level.

• Using a linear model to predict cases with one peak in the year (case 1) is shown in

figure 7.9.
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Figure 7.9: Simulated weekly cases from a linear shape (stability at a low level, then

sudden stability at a high level, before going back suddenly to a low level).

• Using a linear model to predict cases with one peak in the year (case 2) is shown in

figure 7.10.
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Figure 7.10: Simulated weekly cases from a linear shape (stability at a low level, then a

gradual increase to a high level before going back gradually to a low level).

• Using a linear model to predict cases with one peak in the year (case 3) is shown in

figure 7.11.

2010 2011 2012 2013 2014 2015

0
50

10
0

15
0

Weeks

IL
I R

at
e

Figure 7.11: Simulated weekly cases from a linear shape (stability at a low level, then a

gradual deviation to a peak level, then a sudden decrease to a low level).

There is one possible scenario we did not consider, which is suddenly increasing then

gradually decreasing. The reason is that we care about increasing cases and this sudden
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increasing scenario is already covered in case 1, although there the sudden increase is

stable and is not followed by a gradual decrease (see figure 7.9).

7.3 Illustration

Here in this simulation study, we have illustrated what we get from simulating one case

in different scenarios. For all of our simulations, the following points apply:

• We repeated the same scenario 5 times (5 years).

• We used the size of the Scottish population as the median population in the period

2009-2014., which is 5,400,000 people.

• We ignored weekends (meaning each week contains 5 days).

• The winter season is considered to last from the first of September to the end of

April and the summer season is considered to run from May to the end of August.

• Each week during the year corresponds to the date as presented in table C.1 in the

Appendix.

7.4 Performance measurements

Now, for the 10 different scenarios in section 7.2, we need to specify the week which is

taken as the week when rates increase (which means we start to calculate sensitivity from

this week). In the case where influenza activities are linear and they clearly jump in a

specific week (the first case in section 7.2.6), we can easily set the week when the rates

increase. In the other scenarios, we can set a percentage increase and consider the week

when the rates exceed the baseline rate by this amount as the increase week (say, 10%).

We will start testing the sensitivity, specificity and the number of weeks between the time

of the alarm and the time of the increase. Those three terms to test performance of the

WCR system, CUSUM and MEM are defined below:

• Alert week (AW ): This reflects the week judged to be the start of increasing rates

of influenza (the “increase week”).

• Sensitivity (SN): Does the system detect an increase when it occurs (“correct

alarm”; CA)? A good system should have a high SN . SN is the percentage of

“increase weeks” in which an alarm is raised.

• Specificity (SP ): Does the system detect an increase when it does not occur (“false

alarm”; FA)? A good system should register a high SP . SP is the percentage of

weeks when there is not an increase in which the system does not detect an increase.
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• Median time to detection (MED): How many weeks are there between the alert

week and the alarm week issued from the system? A good system should register a

low positive MED. This was calculated here as the number of the alert week minus

the number of the week when the alarm is raised. Negative MED means there are

delays in the alarm compared to the alert week. Values of MED close to zero are

desired.

Example

Figure 7.12 presents an example of specifying the alert week, and calculating SN , SP

and MED. The red curve represents the ILI rates, and the blue horizontal dotted line

represents an ILI rate of 10% above the first week’s rate. The green vertical dotted line

represents the “increase week” or alert week AW (week 10 in this example). This starts

when the ILI rate exceeds a level of 10% above the first week. From this week, we can

start to consider any alarm as correct (the sensitivity region, the ILI rate of which is the

light blue area). This will continue until the purple vertical dotted line which represents

the point when the ILI rates dropped below this higher level. Any alarm before the green

vertical dotted line week will be considered as a false alarm (the specificity region, which

is the light yellow area). If the alarm is raised in week 10 (alarm number 2), the MED

equals 0 and this is the best case. If the alarm is raised in week 3 (alarm number 1), the

MED equals 10-3= 7 weeks before AW . If the alarm is raised in week 18 (alarm number

3), the MED equals 10-18= -8 which mean there are 8 weeks delay in the alarm.
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Figure 7.12: Example of specifying the start of rates increasing, and calculating SN , SP

and MED. More details are given in the text above. A1, A2 and A3 represent alarms 1,

2 and 3 respectively.

7.5 Conclusion

In this chapter, we presented 10 different shape cases of variation in rates, as we cannot

guarantee what will happen in practice. We aim to test performance of WCR, CUSUM

and MEM under those situations of an increase in different circumstances. Some of those

scenarios related to historical data and some of them were based on imagination of what

might happen (stylised or extreme versions of reality). The mechanism used has been

clarified, such as the size of population and the number of weeks and days during this

simulation study.

In the next chapter, we will test WCR with other detection systems and compare their

performance in terms of sensitivity, specificity and median time to detection.



Chapter 8

Testing WCR with other systems

(1)

We concluded chapter 6 with a version of the WCR system. In this chapter, we want

to test the performance of this WCR system and compare it with the CUSUM method

(section 3.4) and MEM (section 3.3). During this testing, we will use different scenarios,

listed in chapter 7. Also we will modify the WCR system if needed and explain the reason

and the means of modification.

8.1 Simulation for different scenarios

In chapter 7, section 7.2, we assumed 10 scenarios of patterns of GP ILI consultation rates

during the years, namely historical rates, repeating 2014 rates, repeating 2014 rates with

an increasing trend, repeating 2014 rates with a decreasing trend, three shapes of linear

increasing and decreasing rates and three shapes of Serfling model [133] rates.

We have also simulated 3,110,000 cases from the steady state situation in chapter 5 in

section 5.2. One of the targets for this big simulation is to set up cut-off points when

the rates are assumed to be a flat rate, which we discussed in the previous chapters. The

purpose of this big simulation with steady states is to establish the boundaries of WCR

and NHB in lots of situations where there is no change in the rate. We can consider that

we have a hypothesis test based on the two hypotheses below:

The null hypothesis H0: the observation of (WCR, NHB) comes from the steady state,

and the alternative hypothesis H1: the observation did not come from the steady state.

So, all the simulations from the steady state are used to set cut-offs for the hypothesis

test.

In order to investigate the questions in section 5.1, we are going to simulate 100 cases

157
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each week over 6 years for each different scenario, which will give the total of 31,100

simulated cases in each scenario with number of health boards (ng) equal to 14 and 34

and using population structure P2 in table 5.1 (using an equal split which divides the total

population by the number of regions).

The aim of doing such simulations to have 10 reasonable situations which can happen

(idealised versions of reality). Also the reason for this simulation is to find out where this

method will detect a jump in the rates with those scenarios which look reasonable. If we

have data which are not from the steady state, we expect extreme values of (WCR,NHB)

to occur more than 5% of the time. For example, figure 8.1 represents WCR against NHB

for historical rates with 14 HBs and a 5 million population. In the steady state, the light

blue shaped area covers 5% of the total number of simulations but in the current scenario

we expect it will cover more than 5% (it covers around 36%), as this scenario came from

historical rates.

In other words, when we see the distribution of WCR and NHB in figure 8.1, we find

many observations above the cut-offs, more than we expected based on having a steady

state. We have many more observations in the rejection region derived from the steady

state than we got with the steady state, so we conclude that the rates are not following

the steady state.

Since we now have a statistical test of a huge number of situations with constant rates

(3,110,000 cases), we can apply it to the different scenarios from section 7.2, so that the

increase in simulated cases should not be in the region of the steady state (i.e. lies in the

region corresponding to H1) to get a Correct Detection (CD) rate (sensitivity) in the cases

of increasing rates. On the other hand, if we do not have an increase in cases (depending

on the scenario specified), we expect to be in the region of the steady state (H0). If that

happens and we observe the region representing H1, it can considered as a False Alarm

(FA).
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Figure 8.1: WCR against NHB for historical rates with 14 HBs and a 5 million population.

N∗
HB is presented in the dotted vertical orange line while the dotted vertical purple line

represents N∗∗
HB. The blue shaped area columns came from calculating the quantile using

µ and σ from the flat rate. They represent the 5% most extreme observations under the

steady state. Darkness of the black colour reflects the number of simulated cases.

8.2 Testing the WCR system (1)

In this section, we are going to test WCR as in section 6.4 against CUSUM and MEM

with 10 realistic situations presented in section 7.2. We found that the WCR system

raised the alarm at a very early stage compared to CUSUM and MEM. In this case, we
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should not consider those alarms as an advantage of the WCR system because there is a

possibility for those alarms to be false. To test this point, we will choose linear scenarios

because we can then know the exact week of increase in rates.

Figure 8.2 shows a comparison in the week when the alarm is raised between WCR (blue

triangles), CUSUM (green dots) and MEM (red crosses) in the top figure, and an overview

of the scenario used in this test is presented in the bottom figure. This figure represents

the data set of ng=14. Week 10 is the first week when the rate jumps. Weeks 1 to 9

should be considered as steady rates because they were simulated from the steady state,

so any alarms before week 10 are false alarms. We can see clearly from the graph that

the majority of false alarms are for the WCR system (92 false alarms) compared to the

systems CUSUM and MEM, using the 100 simulated cases. CUSUM has relatively few

false alarms (18 false alarms). MEM registered 40 false alarms. In the WCR system, we

see that alarms are frequent and unpredictable and not as in the two systems CUSUM

and MEM. When the alarm system fails in a situation of stable rates (before a sudden or

gradual increase occurs), it is a sign that the system will fail when applied to situations

derived from reality, when there is an increase.
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Figure 8.2: The top figure shows a comparison of detection of alert weeks between WCR

(blue triangles), CUSUM (green dots) and MEM (red crosses). The bottom figure shows

the scenario used to clarify the location of the jump in rates; it shows the mean of the 100

simulated cases.

When we investigate the reason for this weakness in the WCR system (too many false

alarms), we found that it is very common to have a number of geographic regions NHB in

the mid-region (NHB
2 + 1). We got the same result for either ng= 14 or 34. Now, we will

move to see the result when we have another scenario (repeating the 2014 data six times).

The difference in this scenario is that we used a realistic reference from 2014 where the

rise is gradual and not surprising, and figure 8.3 represents the comparison between the

three systems at the time of raising the alarm during the weeks. We are not considering
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any one week as an alert week in this figure (so we do not quote numbers of false alarms).

WCR shows very early detection because the increase in week 2 leads to a significant

result (rejecting H0 in the hypothesis test in section 8.1) which means it is decided that

it is not from the steady state.

Figure 8.3: The top figure shows a comparison of detection of alert weeks between WCR

(blue triangles), CUSUM (green dots) and MEM (red crosses). The bottom figure shows

the scenario used to clarify the location of the increase in rates; it shows one of the 100

simulated cases.

Because of getting the alarm in very early weeks in figure 8.3 or raising an alarm while

the simulation is from steady rates (figure 8.2), we will try to modify the system so that
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it starts after the midpoint of the number of geographical regions (ng).

In order for the system to be general for all ng (no matter how different the number

of NHB), we will choose the beginning of the system (N∗∗
HB) to be when the cumulative

distribution of the Binomial function is close to 80% and the ending of the system (N∗
HB)

when the cumulative distribution of the Binomial function is close to 99.99%, presented

in figure 8.4. We will name this setting WCRv1, meaning version 1.
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Figure 8.4: The beginning of the system (N∗∗
HB) when the cumulative distribution of

the Binomial function is close to 80%, and the ending of the system (N∗
HB) when the

cumulative distribution of the Binomial function is close to 99.99%.

Now, in this current setting, while the aim is to raise the alarm in one specific week, WCR

raises many alarms in more than one week, as shown in figure 8.3. From this point we

will start comparing the three systems depending on the sensitivity and specificity of the

system, and the number of weeks from the week of the alarm raised to the increase week.

Those three measures to compare the three systems were defined in the last chapter 7, in

section 7.4.

We will continue now to apply the system for all our assumed scenarios presented in section

7.2, and compare the performance between WCRv1, CUSUM and MEM. We can set the

epidemic week (alert week or AW ) by choosing a specific rate of increase in that week

compared to the first week, so all those weeks from week 1 to this specific week of increase

will be considered for calculation of specificity, and those weeks after that will be used for

calculation of sensitivity. In this approach, we will choose the alert week (week of increase)

as the first week when the rate is at least 10% higher than in week 1.

Figure 8.5 presents a comparison of detection of the alert week of WCRv1 (blue triangles),
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and CUSUM (green dots). The bottom figure shows the scenario used to clarify the

location of the increase in rates (this scenario is based on historical data from 2009 to

2014 and the target season is the winter of 2014-2015 (Sep 2014 - April 2015)). MEM did

not detect any alarms. The reason for missing the alarms with MEM is because MEM

considers the pre-epidemic threshold as the average rate in the pre-epidemic periods in the

past years, and we know from the actual data that there was an outbreak in winter 2009,

which causes an increase in the average rates in the pre-epidemic periods and leads in the

end to missing the alarms (the WCR system raised 66 false alarms, while the CUSUM

system raised 14 false alarms).

Table 8.1 shows a comparison between these three systems when using version 1 of WCR

in section 8.2 (WCRv1) and again using 100 simulations. We see that performance is quite

similar for both 14 and 34 HBs, and we can give some comments:

• In the historical scenario, CUSUM performance is the best. MEM failed here because

its warnings depend on the average rates in the past 5 years. There was an outbreak

in 2009, which caused a rise in the average rate of the past years and thus an absence

of alarms before the epidemic start.

• In the scenario of repeating 2014 cases six times, we got similar results to the his-

torical scenario with WCR but not as good with CUSUM, while MEM showed high

sensitivity and specificity with a delay in its alarm.

• In the increasing scenario, the best performance was with the CUSUM system, while

WCR and MEM systems do not show good sensitivity and specificity.

• In the decreasing scenario, WCR and CUSUM do not show perfect detection as the

sensitivity and specificity are low with WCR and high with CUSUM but with a

delay for CUSUM.

• For the shape of the first linear scenario, CUSUM performance is the best, then

MEM comes second, while WCR is the worst as its sensitivity is very low.

• For the shape of the second and third linear scenarios, and the shape of the first

Serfling scenario, CUSUM performance is the best overall in terms of all 3 measures.

MEM has better sensitivity and specificity but has a delay in its alarm, while WCR

is the worst as its sensitivity is very low.

• For the shape of the second Serfling scenario, MEM shows high sensitivity and

specificity (but with a delay in alarms), as does CUSUM with 14 HBs but not 34

HBs, while WCR shows the worst performance and detects a little early.

• For the shape of the third Serfling scenario, WCR and CUSUM show low sensitivity

and high specificity with 14 HBs. MEM again here shows high sensitivity and speci-
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ficity but a delay in its alarm. With 34 HBs, WCR and MEM have low sensitivity.

MEM has very poor time to detection with 34 HBs in this scenario.

Figure 8.5: Comparison of detection of alert weeks between WCRv1 (blue triangles),

CUSUM (green dots). The bottom figure shows the scenario used to clarify the location

of the increase in rates (this scenario is based on historical data from 2009 to 2014 and

the target season is the winter of 2014-2015 (Sep 2014 - April 2015)); it shows the mean

of the 100 simulated cases.
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ng=14

WCRv1 CUSUM MEM

Kind of Shape Sen. Sp. MED Sen. Sp. MED Sen. Sp. MED

Historical 0.04 0.04 0.96 0.94 0.94 0.05 F F F

Repeat 2014 0.05 0.05 0.95 0.62 0.62 0.38 1 1 -3.7

Increasing 0 0.5 1.9 0.94 0.94 0.05 0.01 0.51 1.05

Decreasing 0.02 0.02 0.98 1 1 -4 F F F

Linear 1 0.04 0.89 6.6 0.86 0.98 0.8 0.71 0.97 1.7

Linear 2 0.03 0.88 5.2 0.37 0.97 1.2 1 1 -1.7

Linear 3 0.02 0.91 8.6 0.84 0.99 0.92 1 1 -2.4

Serfling 1 0.21 0.21 0.79 0.63 0.63 0.32 1 1 -8.2

Serfling 2 0.46 0.46 0.45 1 1 -6 1 1 -6.2

Serfling 3 0 0.9 4 0 0.9 1.02 1 1 -1.2

ng=34

WCRv1 CUSUM MEM

Kind of Shape Sen. Sp. MED Sen. Sp. MED Sen. Sp. MED

Historical 0.02 0.02 0.98 0.96 0.96 0.04 F F F

Repeat 2014 0.02 0.02 0.98 0.56 0.56 0.44 1 1 -3.8

Increasing 0 0.67 2.7 1 1 -1 0 0.66 3

Decreasing 0.07 0.07 0.93 1 1 -4.2 F F F

Linear 1 0.07 0.9 6.02 0.85 0.98 0.7 0.69 0.96 2.03

Linear 2 0 0.88 5.03 0.33 0.92 1.1 1 1 1.8

Linear 3 0.04 0.91 8.01 0.75 0.98 1.34 1 1 -2.4

Serfling 1 0.18 0.18 0.82 0.76 0.76 0.23 1 1 -8.1

Serfling 2 0 0 1 0.11 0.11 0.89 1 1 -1

Serfling 3 0 0 1 0.03 0.7 0.93 0 1 -30

Table 8.1: Comparing performance of WCRv1 with CUSUM and MEM in different sce-

narios, Sen. represents sensitivity, Sp. represents specificity, MED represents median time

to detection, F means that the method failed to raise an alarm.

We already mentioned the shape of each scenario in section 7.2. From the first illustration

(as in figure 8.5), we find that WCRv1 almost always raises the alarm in the first week, and

before we can consider this as an advantage for WCRv1, we should test it in the steady

state without any increase to check if those are false alarms or not. Another point worth

mentioning is that MEM always misses the detection when there are outbreaks in the

historical data or reported high rates in the past or if the history is a decreasing scenario.

To see the performance of WCRv1 when there is no increase at all, we will change the rate
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to be a flat rate and see how many alarms are raised with this steady state situation.

Figure 8.6 shows the false alarms (FAs) (because we assumed a flat rate). WCRv1 raised

63 FAs, while CUSUM raised 53 FAs and MEM raised 72 FAs. The lowest FA rate in this

case was found with CUSUM, while the worst performance was found with MEM, and

WCRv1 was between the two.

Figure 8.6: Comparison of false alarms (FA) in weeks between WCRv1 (blue triangles),

CUSUM (green dots) and MEM (red crosses); in the flat rate case with 100 simulations.

As we found lots of FAs in figure 8.6, we may accept some of those FAs with CUSUM and

MEM, since they rely mainly on historical data, but we will think again about some ways

to raise the cut-offs in WCRv1 and make some change in its setting to avoid those FAs

with the steady rates.

In section 6.4, we talk about the possibility of adoption of the mean and standard deviation

of WCR at each NHB in the calculation of cut-offs in each NHB by using qnorm, and
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we concluded that is not accurate to assume µ and σ from equations 5.4.7 and 5.4.10

to calculate the cut-offs at each NHB, so we will test the WCR based on doing many

simulations with different numbers of locations (HBs).

Also, we suggested using different values of the scaling factor r in the mean of the assumed

underlying Poisson distribution for the rates (r = 1, 5, 10) for testing the WCR system.

We checked the performance when we considered r= 1 (WCRv1). Now, we will show

the performance when we consider the mean θ= Min+Max
10 , so r= 5 (WCRv2), and θ=

Min+Max
20 , so r= 10 (WCRv3).

Using WCRv1, WCRv2, and WCRv3 we can compare the performance when the baseline

of hypothesis simulation is lower, as explained in section 5.2.

8.2.1 Testing WCRv2 and WCRv3

Here, in WCRv2 every setting will be the same as for WCRv1 except that the scaling

factor r will equal 5, so cut-offs will change for this reason. Again in this approach, we

will choose the alert week (week of increase) as the first week when the rate is at least

10% higher than in week 1. Results of comparison of the performance of the methods is

shown in table 8.2.

Then we will continue to apply the system for all our assumed scenarios presented in

section 7.2 and compare the performance between WCRv2 and WCRv3 in table 8.2 with

WCRv1 and CUSUM and MEM in table 8.1.

We can find the epidemic week by choosing a specific rate of increase compared to the first

week (we considered the alert week as the first week where the rate is 10% above the rate

in week 1), so all those weeks from week 1 and before this specific week of increase will be

considered for specificity and those weeks from the increase week and after that will be for

sensitivity. Table 8.2 shows the comparison between using version 2 of WCR (WCRv2)

and version 3 of WCR (WCRv3) in section 8.2. We did not include CUSUM and MEM as

we do not expect changes in the result as there is not any change in their setting. Again

here we are using 100 simulations. We see that performance is quite similar in most cases

for both 14 and 34 HBs, and we can give some comments:

• In the historical, repeating 2014, decreasing, and the first Serfling scenarios, the

performances are quite similar between WCRv2 and WCRv3 for either HBs= 14

and 34.

• In the increasing scenario, there are clear similarities in sensitivity and specificity

between WCRv2 and WCRv3 with either HBs= 14 and 34 with a delay in their

alarms except for WCRv2 with HBs= 14 as there is no delay in MED.
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• For the shape of the first, the second and the third linear scenario, we see that with

HBs= 34 there is lower sensitivity and specificity and also lower MED for either

WCRv2 and WCRv3 compared to HBs= 14.

• For HBs= 34, both WCRv2 and WCRv3 have sensitivity and specificity zero with 1

week to detection.

• For the shape of the second Serfling with HBs= 14, the sensitivity and specificity

are better as is the time to detection.

• For the shape of the third Serfling with HBs= 14, the specificity is better for both

WCRv2 and WCRv3.

• The sensitivity for WCRv3 with the second and third Serfling are not bad with

HBs= 14.

.
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ng=14

WCRv2 WCRv3

Kind of Shape Sen. Sp. MED Sen. Sp. MED

Historical 0.02 0.02 0.98 0.06 0.06 0.94

Repeat 2014 0.02 0.03 0.97 0.06 0.06 0.94

Increasing 0.29 0.65 0.91 0.53 0.87 -6.7

Decreasing 0.07 0.07 0.93 0.07 0.07 0.93

Linear 1 0.36 0.93 3.9 0.84 0.98 0.88

Linear 2 0.12 0.89 2.7 0.51 0.94 0.01

Linear 3 0.39 0.94 4.5 0.78 0.98 1.3

Serfling 1 0.24 0.24 0.74 0.31 0.31 0.66

Serfling 2 0.5 0.5 0.46 0.42 0.42 0.49

Serfling 3 0 0.9 3.9 0 0.9 3.7

ng=34

WCRv2 WCRv3

Kind of Shape Sen. Sp. MED Sen. Sp. MED

Historical 0.03 0.03 0.97 0.05 0.05 0.95

Repeat 2014 0.04 0.04 0.96 0.04 0.04 0.96

Increasing 0.33 0.89 -10.5 0.26 0.9 -14

Decreasing 0.03 0.03 0.97 0.06 0.06 0.94

Linear 1 0.22 0.91 4.3 0.6 0.96 2.4

Linear 2 0.02 0.88 4.09 0.34 0.92 1.7

Linear 3 0.22 0.93 5.5 0.68 0.97 1.9

Serfling 1 0.17 0.17 0.83 0.16 0.16 0.84

Serfling 2 0 0 1 0 0 1

Serfling 3 0 0 1 0 0 1

Table 8.2: Comparing performance of WCRv2 and WCRv3 in different scenarios, Sen.

represents sensitivity, Sp. represents specificity, MED represents median time to detection.

8.2.2 Testing WCRv1,2,3 with different setting of the alert week

In the results in tables 8.1 and 8.2, we see that warnings often came late with the MEM

system. This cannot be considered as a disadvantage with MEM, because MEM adopts a

different strategy for the onset of the epidemic, as we showed in section 3.3.

Now, we will WCRv1, WCRv2 and WCRv3 and compare the performance with CUSUM

and MEM as we did in section 8.2 and 8.2.1 but now changing the alert week to be the
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same as in the MEM setting. Firstly, we will test WCRv1, using scaling factor r= 1, and

table 8.3 shows the comparison between these three systems when using version 1 of WCR

from section 8.2.

We see that performance in many cases is similar, for both better or worse, with 14 and

34 HBs and we can give some comments:

• MEM outperformed the other methods in general and this is because of the different

approach of the MEM method for the alert week setting.

• For the first linear shape, the CUSUM method outperformed in general the MEM

method, which came second, while WCRv1 had the worst performance.

• Here we cannot ignore to mention that there is clear poor performance of WCRv1

and CUSUM with HBs= 34. It is still poor with HBs= 14 but worse with HBs=

34 apart from CUSUM with either increasing or decreasing shape. 14 HBs is the

baseline used and the data for 34 HBs come from re-sampling these 14 HBs, but the

reason for the poor performance is not clear.
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ng=14

WCRv1 CUSUM MEM

Kind of Shape Sen. Sp. MED Sen. Sp. MED Sen. Sp. MED

Historical 0 0.91 5 0 0.91 4 F F F

Repeat 2014 0 0.91 5 0 0.91 4.4 0.71 0.97 0.3

Increasing 0 0.91 3.9 0 0.91 2 0 0.91 3

Decreasing 0 0.91 5 0.99 0.99 0.01 F F F

Linear 1 0.07 0.92 6.3 0.78 0.98 1.1 0.66 0.97 2

Linear 2 0 0.91 7.5 0 0.91 3.4 0.78 0.98 0.1

Linear 3 0 0.91 10 0 0.91 3 0.3 0.94 0.7

Serfling 1 0 0.91 9 0 0.91 8 1 1 -0.2

Serfling 2 0 0.91 7 0 0.91 6 0.21 0.93 0.8

Serfling 3 0 0.91 6 0 0.91 3 0.19 0.93 0.8

ng=34

WCRv1 CUSUM MEM

Kind of Shape Sen. Sp. MED Sen. Sp. MED Sen. Sp. MED

Historical 0 0 5 0 0 4 F F F

Rep. 2014 0 0 5 0 0 4 0.82 0.82 0.18

Increasing 0 0 2 1 1 -0.9 0 0 3

Decreasing 0 0 5 1 1 -0.3 F F F

Linear 1 0.07 0.07 6 0.79 0.79 1.1 0.74 0.74 1.4

Linear 2 0 0 8.8 0 0 4.4 0.07 0.07 1.2

Linear 3 0 0 11 0 0 4.5 0.41 0.41 0.6

Serfling 1 0 0 9 0 0 8 1 1 -0.1

Serfling 2 0 0 2 0 0 1.8 1 1 0

Serfling 3 0 0 29 0 0 29 1 1 -2

Table 8.3: Comparing performance of WCRv1 with CUSUM and MEM in different sce-

narios, Sen. represents sensitivity, Sp. represents specificity, MED represents median time

to detection, F means that the method failed to raise an alarm.

Now, we will continue to apply the system for all our assumed scenarios presented in section

7.2 and compare the performance of WCRv2 and WCRv3 in table 8.4 with WCRv1, and

CUSUM and MEM in table 8.3.

We can find the epidemic week by assuming the alert week to be the same as in the MEM

setting, as explained in section 3.3.
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ng=14

WCRv2 WCRv3

Kind of Shape Sen. Sp. MED Sen. Sp. MED

Historical 0 0.91 5 0 0.91 5

Repeat 2014 0 0.91 5 0 0.91 5

Increasing 0.03 0.91 2.9 0.19 0.95 -5.8

Decreasing 0 0.91 5 0 0.91 5

Linear 1 0.34 0.94 4.1 0.75 0.98 1.3

Linear 2 0 0.91 6 0.1 0.92 1.6

Linear 3 0 0.91 5.6 0 0.91 3.9

Serfling 1 0 0.91 8.8 0 0.91 8.7

Serfling 2 0 0.91 7.4 0 0.91 7.5

Serfling 3 0 0.91 5.9 0 0.91 5.4

ng=34

WCRv2 WCRv3

Kind of Shape Sen. Sp. MED Sen. Sp. MED

Historical 0 0 5 0 0 5

Repeat 2014 0 0 5 0 0 5

Increasing 0.35 0.59 -8 0.34 0.67 -10

Decreasing 0 0 5 0 0 5

Linear 1 0.23 0.23 4.6 0.56 0.56 2

Linear 2 0 0 5.9 0 0 3.7

Linear 3 0 0 8.5 0 0 6

Serfling 1 0 0 8.9 0 0 8.7

Serfling 2 0 0 2 0 0 2

Serfling 3 0 0 29 0 0 29

Table 8.4: Comparing performance of WCRv2 and WCRv3 in different scenarios, Sen.

represents sensitivity, Sp. represents specificity, MED represents median time to detection.

8.3 Conclusion

From these tables 8.3 and 8.4, we can conclude that:

• In general, the relationship between sensitivity and MED is inverse, which means

that when the sensitivity is high, we will lose some time from MED.

• CUSUM and WCR (in its different versions) usually raise the alarms before MEM,

which is an advantage for CUSUM and WCR.



8.3. Conclusion 174

• MEM usually has high sensitivity and specificity compared to CUSUM and WCR

in this setting.

• If we had an outbreak in the past years, MEM will never raise an alarm.

• In the decreasing scenario, MEM did not raise any alarm.

• When we compare WCRv1 (r = 1), WCRv2 (r = 5) and WCRv3 (r = 10), keeping

the alert week (week of increase) as the first week when the rate is at least 10% higher

than in week 1, we found that the sensitivity and specificity are higher when the

scaling factor r is higher (i.e. the baseline rates θ are lower) while maintaining good

performance in MED. In the same setting, we found high sensitivity and specificity

with clear delay in alarms (MED) with MEM.

• When we compare WCRv1, WCRv2, WCRv3 and CUSUM, keeping the alert week

to be the same as in the MEM setting (as explained in section 3.3), we found the

sensitivity and specificity are in general low, while maintaining good performance in

MED. Again, in this setting, we found higher sensitivity and specificity with clear

improvement in delay of alarms (MED) with MEM.

• For ng= 14, sensitivity of CUSUM is high for linear 1 and decreasing scenarios.

• For ng= 14 and WCRv3 sensitivity is high for linear 1 shape.

• Moreover the performance in MED is not always good i.e. with ng= 34 and all

methods apart from MEM the Serfling 3 shape has MED= 29.

• The linear 3 and Serfling 1 shapes seem to have high MED sometimes for WCRv1,

WCRv2, WCRv3 and CUSUM.

• When we did this simulation study to compare performance between these three

systems, we show WCRv1, WCRv2, WCRv3, testing sensitivity and specificity each

time, and we did not repeat those tests with CUSUM and MEM. The reason for this

is because the change in the system happened in WCR only.

To conclude this chapter, we can see clear deficiencies in performance of WCR compared

to CUSUM and MEM, and this requires more investigation to find the reasons for these

problems.

In section 5.1, we can see that the population in each location was considered to be

one million, but this is not realistic. When we did the flat rate simulation in section

5.2, the baseline of simulation was very high, which affects the steady state hypothesis

test. Finally, a very important point is that we assumed all WCR in the area NHB from

0, 1, 2, ..., ng2 − 1 are symmetric with all WCR in the area NHB from ng
2 + 1, ..., ng, but in

reverse (see chapter 5, section 5.2) but this may not be accurate enough.
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We will discuss those points in more detail and present some suggested solutions and

further results in the next chapter.



Chapter 9

Testing WCR with other systems

(2)

In chapter 5, we discussed a virtual environment to consider as the normal situation and

examined possibilities for determining the situation when an alarm should be raised in the

WCR system. When we tested the system in different scenarios in section 8.2, we found

some limitations in our assumptions which may have affected the results. We reconsider

these here and make changes to try to generate better results from our extended WCR

system.

• In chapter 5, section 5.1, we considered the population in each sub-region as equal,

around one million. In reality, this is not realistic as we cannot guarantee this size

in different countries.

• In chapter 5, section 5.2, we considered the baseline of simulation as the ILI counts

in Scotland and as we mentioned in section 6.4, this leads to a rather high rate per

100,000 of population in the steady state case, which affects the hypothesis test used

in the WCR system. We will consider a different baseline here.

• In chapter 5, section 5.2, we assumed that all WCR in the range of NHB in

0, 1, 2, ..., ng2 − 1 are symmetric with all WCR in the range of NHB in ng
2 + 1, ..., ng,

but in reverse. When we investigate the exact numbers in each NHB, for example,

we can see table 9.1 with ng= 14. It tells us that NHB before 7 are not equal to

NHB after 7, as they are not symmetric. The reason why they are not symmetric

is because if we take ng=14, for example, then looking at the count in week i it is

greater than in week i−1, and when the rate is low, for example, 1 per 100,000, then

it is easy to have the same number of NHB in the different weeks, which means no

increase in NHB. This also affects another consideration, which is the success prob-

176
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NHB 0 1 2 3 4 5 6

number of cases 50 3493 21505 82260 217621 416212 593224

7 8 9 10 11 12 13 14

650381 543014 344809 164341 57246 13570 1942 132

Table 9.1: Example for the number of cases in each NHB with ng=14. The total number

of simulated cases is 3,110,000. This is based on steady state simulation.

ability of the Binomial distribution for NHB considered in section 6.3. We address

each of these limitations in the sections below.

9.1 Symmetry deception

When we investigate the exact numbers of each NHB occurring in the simulations with

different ng, we found the frequency of each value of NHB before the midway point is not

the same as the frequency of each value of NHB after the midway point, which means they

are not symmetric. This affected another consideration, which is the probability of the

Binomial distribution for NHB used in section 6.3. When we calculated the Binomial pmf

function for NHB, we considered the success probability = 0.5 as we thought the NHB

were symmetric, but they are not. For example, table 9.2 presents the actual means of

NHB divided by ng when ng=14 and 34, which estimate the actual success probability in

each case.

Binomial probability with fixed rate

ng 1 per 100,000 3 per 100,000 5 per 100,000

14 0.4425 0.4679 0.4753

34 0.4159 0.4536 0.4644

Binomial probability with varying rate

ng 1 per 100,000 3 per 100,000 5 per 100,000

14 0.4417 0.4676 0.4751

34 0.4155 0.4535 0.4646

Table 9.2: Actual mean of NHB divided by ng when ng=14 and 34. These came from

3,110,000 simulations of ILI cases in the steady state case.

To examine this problem and its effects, we present an example of the Binomial pmf with

probability = 0.5 in figure 9.1 as well as the actual Binomial pmf with probability =

0.4159 for ng= 34. They do not match well. This is a serious issue which affects the

setting of N∗∗
HB and N∗

HB, and so affects the hypothesis test in chapter 8, section 8.1. This
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means we need to calculate the actual mean of NHB divided by ng to use as the success

probability in the Binomial distribution for NHB. All future results in chapter 9 all use

this modification.

Figure 9.1: Binomial probability mass function with probability = 0.5 shown by the green

columns and the actual Binomial pmf with probability = 0.4159 shown by the orange

column, for 34 HBs.

9.2 Baseline of simulation (hypotheses)

In the fifth chapter, section 5.2, we considered the mid-range max(ILI) + min(ILI)
2 , where

max and min are maximum and minimum ILI count in L, L is a location, over all the

years in each location as the base point of our simulation of ILI counts from a Poisson

distribution with that mean value. We did not take into account that in any NHB, the ILI

rates usually decreased to zero in the summer, which means the baseline will be max(ILI)
2

and so using the mid-range leads to too high a number for the baseline of our simulation.

The mid-range was around 500, and when we simulated from this number (as the mean

ILI count) and calculated the rate, then calculated the WCR, we found the mean rate

was around 30 cases per 100,000 of population. In fact, this cannot be considered as a
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Simulation label Rate structure Kind of rate

6 ⇔ 1 1 per 100,000 Fixed rate

7 ⇔ 2 3 per 100,000 Fixed rate

8 ⇔ 3 5 per 100,000 Fixed rate

9 ⇔ 4 5 per 100,000 Varying rate

10 ⇔ 5 10 per 100,000 Varying rate

Table 9.3: Illustration of parameters of each approach of simulation.

baseline of the steady state, as this is too high. This point was already shown in table 6.3

in chapter 6.

There are different ways to set the base point of simulation. In chapter 5 in section 5.2.3

and 5.2.4, we explained how to use fixed and varying rates as base points to simulate ILI

counts. In the fixed rate case, we use this approach to calculate the baseline counts for

simulation: we will consider the rate as fixed in each location and we can consider it as

1, 3 or 5 per 100,000 (we can choose any number but we select those to compare with the

other structure below). The same logical consideration to sample ILI counts for 30 and 50

HBs from the Scottish 14 HBs in section 5.2.2 was considered. For the varying rate case,

we can consider the base point of simulation as using varying rates in each location, but

keeping the average as in the Scottish data. To calculate the rate in the end, we can use

the same Scottish population structure as in section 5.2.3. For example, if we consider

the rate as 1 per 100,000, with fixed rate, all different locations use the same rate 1 per

100,000, but with varying rate, the rate will move up and down (say 0.8 per 100,000 in

L1 and 1.2 in L2) between different locations with keeping the average for all locations as

1 per 100,000.

As explained, there are two possible ways to consider the population in each location,

which are:

a Considering the Scottish population structure (P1).

b Considering equal populations in each different location (P2).

Before now, we have used structure P2. Here we selected P1, the Scottish population

structure, as it is more realistic, and the means of WCR using P1 and P2 are similar, so

we will consider it here, with another 5 cases labelled 6 to 10 in table 9.3. Cases 1 to 5

considered P2 and their results (means) are presented in figure 9.2.

Figure 9.3 represents means of WCR for each NHB using fixed and varying rates, and

figure 9.4 represents variances of WCR for each NHB with fixed and varying rates. In
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each case, the trend is similar when we use fixed or varying rates, so we will assume one

of them (we will choose fixed rates).

From figures 9.2, 9.3 and 9.4, we will investigate modelling of the mean and variance of

WCR to check for the possibility of adopting those means and variances in the calculation

of cut-offs for WCR at each NHB. Means seem to increase against NHB while variances

seem to be constant.

We used the same notations (ni, mu, var, n.i.midway,weights) as in section 5.4.

Figure 9.2: Means (m) of WCR against NHB for fixed rates (labelled 1, 2, 3) and varying

rates (labelled 4, 5) in table 9.3 represented as circles based on 3,110,000 simulations of

ILI consultations using the steady state case. The size of circles represents the number of

simulations for each ni.
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Figure 9.3: Means (m) of WCR against NHB for fixed rates (labelled 6, 7, 8) and varying

rates (labelled 9, 10) in table 9.3 represented as circles based on 3,110,000 simulations of

ILI consultations using the steady state case. The size of circles represents the number of

simulations for each ni.

Figure 9.4: Variances (Var) of WCR against NHB for fixed rates (labelled 6, 7, 8) and

varying rates (labelled 9, 10) in table 9.3 represented as circles based on simulation of

3,110,000 ILI consultations using the steady state case. The size of circles represents the

number of simulations for each ni.
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z7= lm(m ∼ n.i.midway + rate + ng, weights= weight)

coefficient estimate Std. Error p-value

Intercept 1.0429080 0.0045276 <2e-16

n.i.midway 0.0157269 0.0011714 <2e-16

rate -0.0089893 0.0004590 <2e-16

ng 0.0008943 0.0001192 <2e-16

Table 9.4: Short summary of model (z7).

z8= glm(var ∼ n.i.midway + rate + ng, family = Gamma, weights= weight)

coefficient estimate Std. Error p-value

Intercept -11.2329 4.0867 0.006373

n.i.midway -9.3168 0.9155 <2e-16

rate 265.4865 1.6027 <2e-16

ng -0.3855 0.1022 0.000198

Table 9.5: Short summary of model (z8).

9.3 Modelling means and variance

In chapter 5, sections 5.3 and 5.4, we discussed possible ways to find a general model

for the mean and the standard deviation or variance of WCR for each NHB, assuming

WCR had a normal distribution for each NHB. We will now try to find a model for the

means and variances with the new many simulated cases as presented in section 9.2. A

summary of the linear model for the means (z7) is presented in table 9.4. This model

includes weights (as in section 5.4). We can see from the p-values less than 0.05 that the

terms in the model are significant. Model (z8) in table 9.5 shows the summary of glm for

variances.

Details of models (z7) and (z8) are presented in Appendix D.1 and tables 9.4 and 9.5.

Figures 9.5 and 9.6 show predicted values of the means and variances. As presented in

the plots, the means show an increasing trend from the midway point to the end of NHB,

while the variances show much more constant rates.
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Figure 9.5: Means (m) of WCR against NHB for fixed rates (labelled 6, 7, 8) and vary-

ing rates (labelled 9, 10) in table 9.3 represented as open circles. Coloured solid circles

represent the predicted values from (z7) model. The size of circles represents the number

of simulations for each ni. Despite trying more complex models with interactions and

transformations, (z7) model did not fit very well as there is under prediction with high

rates like 10 per 100,000.

Figure 9.6: Variances (Var) of WCR against NHB for fixed rates (labelled 6, 7, 8) and

varying rates (labelled 9, 10) in table 9.3 represented as open circles. Coloured solid circles

represent the predicted values from (z8) model. The size of circles represents the number

of simulations for each ni.
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Using the fitted models (z7), and (z8), we can write the equations for the mean and

variance of WCR for each value of HBs (ng) as below:

Mean = 1.0429 + 0.0157269× (n.i.midway)− 0.0089× (Rate) + 0.0009× (ng). (9.3.1)

V ariance =
1

−11.2329 − 9.3168× (n.i.midway) + 265.4865× (Rate)− 0.3855× (ng)
.

(9.3.2)

9.3.1 Testing of mean and variance equation

As explained in chapter 6, section 6.4, there were problems developing accurate equations

for the mean and the standard deviation or variance of WCR to use in the calculation of

cut-offs for WCR with each NHB. We will consider the performance of the new equations

9.3.1 and 9.3.2 for the mean and variance of WCR for each NHB.

We will investigate the system coverage of the rejection region when we consider a fixed

rate= 1, 3 or 5 cases per 100,000 population.

Figure 9.7 shows the system in the steady state case and with fixed rate= 1 per 100,000

population when the significance level α = 5%. It compares the cut-offs using µ and σ

from 3,110,000 simulated cases in the flat rate case to the cut-offs using µ and σ from

equations 9.3.1 and 9.3.2. We can see that the equations 9.3.1 and 9.3.2 for the mean and

variance of WCR are also not usable for cut-off limits because using the µ and σ equations

did not give the same or similar cut-offs as using the simulated cases.
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Figure 9.7: WCR against NHB for steady rates using fixed rate = 1 per 100,000 population

with 14 HBs. N∗
HB is presented in the dotted vertical orange line while the dotted vertical

purple line represents N∗∗
HB. The red shaped columns came from calculating the quantiles

(cut-offs) using µ and σ from many simulated cases (3,110,000) in the flat rate situation.

They represent around 5% most extreme observations under the steady state. The green

columns came from using qnorm to calculate cut-offs using µ and σ from equations 9.3.1

and 9.3.2. They represent around 6% most extreme observations under the steady state.

Darkness of the black colour reflects the number of simulated cases.

In figures 9.7, D.1, D.2, D.3, D.4 and D.5 in the Appendix and tables 9.6 and 9.7, which

show the small case of HBs= 14 and big case of HBs=34, we can see that it is not accurate
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percentage of coverage when α = 5%

HB= 14 simulation equation HB= 34 simulation equation

fr = 1 0.05 0.06 fr = 1 0.05 0.06

fr = 3 0.05 0.03 fr = 3 0.05 0.07

fr = 5 0.05 0.04 fr = 5 0.05 0.007

Table 9.6: Percentage of coverage of the rejection region using the total number of simu-

lations (3,110,000), where fr means fixed rate, “simulation” means the cut-offs are based

on the actual simulated cases (3,110,000), while “equation” means that the cut-offs are

calculated based on mean and variance equations 9.3.1 and 9.3.2. The simulated cases did

to calculate the cut-off and then these are repeats with further simulations using the same

cut-off.

percentage of coverage when α = 1%

HB= 14 simulation equation HB= 34 simulation equation

fr = 1 0.01 0.02 fr = 1 0.01 0.02

fr = 3 0.016 0.008 fr = 3 0.01 0.002

fr = 5 0.015 0.02 fr = 5 0.01 0.0008

Table 9.7: Percentage of coverage of the rejection region using the total number of simu-

lations (3,110,000), where fr means fixed rate, “simulation” means the cut-offs are based

on the actual simulated cases (3,110,000), while “equation” means that the cut-offs are

calculated based on mean and variance equations 9.3.1 and 9.3.2. The first set of simu-

lated cases were used to calculate the cut-off and then these were repeated with further

simulations using the same cut-off.

to assume µ and σ from equations 9.3.1 and 9.3.2 to calculate the cut-offs for WCR with

each NHB as the percentage of coverage of the rejection region using this approach does

not match well in various cases with the coverage from the simulations. This means that

we have failed to find a simple equation to describe the relationship between both the

mean and variance of WCR at each NHB.

So instead we will test the WCR system based on doing many simulations with each

change of the number of subset regions (HBs).

Fixed rates were used in sections 9.2 and 9.3.1. In figures 9.8 and 9.9 the cut-offs from

fixed and varying rates over regions are compared. It can be seen that they are very

similar and for this reason no further investigation with varying rates is adopted.
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Figure 9.8: WCR against NHB for steady rates using fixed rate = 1 per 100,000 population

with 14 HBs. N∗
HB is presented in the dotted vertical orange line while the dotted vertical

purple line represents N∗∗
HB. The red shaped columns present cut-offs using 3,110,000

simulations from the fixed rates situation, while the light blue columns present cut-offs

using simulations from varying rates.
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Figure 9.9: WCR against NHB for steady rates using fixed rate = 1 per 100,000 population

with 34 HBs. N∗
HB is presented in the dotted vertical orange line while the dotted vertical

purple line represents N∗∗
HB. The red shaped columns present cut-offs using 3,110,000

simulated cases from the fixed rates situation, while the light blue columns present cut-

offs using simulated cases from varying rates.

9.4 Testing the WCR system (2)

We previously tested the WCR system in 10 different scenarios and compared its perfor-

mance with CUSUM and MEM in chapter 8. Here we have made some modifications of

the WCR system in this chapter, so we will again test the WCR system with its new
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modifications (cut-offs from the simulations and non-symmetric Binomial with probabili-

ties calculated from the simulations) under the hypothesis test with significance levels of

1% and 5%.

We will start as we did in section 8.2 and we will choose the alert week (week of increase) as

the first week when the rate is at least 10% higher than in week 1. We use 100 simulations.

Table 9.8 shows the performance of the modified WCR system when ng=14 and 34 and

fr = (1, 3, 5) with α = 5%, with CUSUM and MEM in different scenarios. From this

table, we mention some points below:

• In the historical scenario, CUSUM performance is much the best. MEM fails here

because its warnings depend on the average rates in the past 5 years. There was an

outbreak in 2009, which caused a rise in the average rate over the past years and

thus a loss of alarms after the epidemic start. WCR is relatively poor.

• In the scenario of repeating the 2014 cases six times, as for the historical scenario

WCR is much poorer than CUSUM, while MEM shows the best, high, sensitivity

and specificity but with a delay in its alarm.

• In the increasing scenario, the best performance is with CUSUM, while the WCR

and MEM systems do not show good sensitivity.

• In the decreasing scenario, MEM fails completely. WCR and CUSUM do not show

perfect detection as the sensitivity and specificity are low for WCR, and although

they are perfect with CUSUM there is a delay in the alarm for CUSUM.

• With the shape of the first linear scenario, CUSUM performance is the best, then

MEM comes second, while WCR is the worst as its sensitivity is generally low

(except for ng= 34 where it does well).

• With the shape of the second and third linear scenarios and the shape of the first

Serfling scenario, CUSUM performance is considered the best overall, then MEM

comes second as it has perfect sensitivity and specificity, but with a delay in its

alarm, while WCR is the worst as its sensitivity is very low for ng=14 though it

does well with ng=34 (excluding the first Serfling scenario).

• With the shape of the second Serfling scenario, for ng= 14, CUSUM and MEM show

high sensitivity and specificity but with delay in alarms, as does MEM with ng= 34,

while WCR shows the worst performance.

• With the shape of the third Serfling scenario, for ng= 14, WCR and CUSUM show

low sensitivity and high specificity. MEM again here shows high sensitivity and high

specificity but with a delay in its alarm. For ng= 34 all methods are poor.
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• When we compare WCR with different fr = 1, 3, 5, keeping the alert week as the

first week with a rate at least 10% higher than in the first week, we found the

sensitivity and specificity are sometimes higher (there is no clear trend) when fr is

higher and good performance in MED is maintained. WCR tends to raise alarms

early.

• With MEM, we found generally high sensitivity and specificity, but with clear delay

in alarms (MED).

• When we compare the performance of WCR with ng=14 and 34, we found that

WCR often performs better with a larger number of areas and this is most evident

with sudden rises in the rate.

9.4.1 Testing WCR with different alert weeks

Now, we will test WCR with different fixed rates fr = 1, 3, 5, and compare the perfor-

mance with CUSUM and MEM, as we did earlier in section 9.4 but changing the alert

week to be the same as in the MEM setting (as we did in section 8.2.2). Table 9.9 shows

the result of testing using this setting when ng=14 and 34.

From table 9.9, we can mention some points below:

• The results are generally poorer than with the previous setting of the alert week.

• In general, the relationship between sensitivity and MED is inverse, which means

that when the sensitivity is high, we will lose some time from MED, so the delay is

longer.

• CUSUM and WCR (in its different versions) almost always raise the alarm before

MEM, which may be counted as an advantage of CUSUM and WCR.

• MEM generally has high sensitivity and specificity compared to CUSUM and WCR

in this setting.

• If we had an outbreak in the past years, MEM will never raise an alarm unless the

outbreak data are discounted.

• In the historical and decreasing scenarios, MEM did not raise any alarm.

• When we did this simulation study to compare performance between these three

systems, we considered WCR with different fr = 1, 3, 5, testing sensitivity and

specificity each time and we did not repeat those tests with CUSUM and MEM. The

reason for this is that the change in the system affects WCR only.

• When we compare the performance of WCR with ng=14 and 34, we found that

WCR performs better with large ng with the first linear scenario.
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• When we compare WCR with different fr = 1, 3, 5 and CUSUM, keeping the alert

week to equal the setting of MEM in section 3.3, we found the sensitivity is gen-

erally low though specificity is high. Again, we generally found higher sensitivity

and specificity with an improvement in alarms (MED) with MEM compared to the

previous setting of the alert week.

9.5 Improving WCR performance

In the previous section 9.4, we found that the WCR method has poor performance (mean-

ing low sensitivity), either using the alert week (week of increase) as the first week when

the rate is at least 10% higher than in week 1, or the same as in the MEM setting in

section 3.3.

We can change the sensitivity by changing the significance level of the test.

Therefore we think about decreasing the significance level α in our hypothesis test in

section 6.1 from 5% to 1% (this means only 1% of simulations from the large simulation in

section 5.2 would be considered as not coming from the steady state). We mentioned the

WCR system coverage in table 9.7 with α=1%. The reason for decreasing the significance

level α to 1% and not increasing it (say to 10%) is because we are looking to minimize the

rejection region, to avoid false alarms.

Figure 9.10 shows a comparison in performance between WCR (blue triangles), CUSUM

(green dots) and MEM (red crosses) in the top figure, and an overview of the scenario

used in this test is presented in the bottom figure. This figure represents the dataset of

ng=14. Week 10 is the first week of a jump in the rate either using the alert week (week of

increase) as the first week when the rate is at least 10% higher than in week 1, or the same

as in the MEM setting in section 3.3. Week 1 to week 9 should be considered as steady

rates because they were simulated from the steady state, so all the alarms raised before

week 10 are false alarms. We can see clearly from the graph that the majority of the false

alarms are with systems CUSUM and MEM, based on the 100 simulated cases. In the

WCR system, we see that around 90% of the alarms are correct and not as in the two

systems CUSUM and MEM. WCR registered 10 false alarms, while CUSUM registered

24 false alarms and 39 false alarms were registered when using MEM.
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Figure 9.10: The top figure shows a comparison of detection of alert weeks between WCR

(blue triangles), CUSUM (green dots) and MEM (red crosses). The bottom figure shows

the scenario used to clarify the location of the jump in rates; it shows the mean of the 100

simulated cases. Here ng= 14.

We show another example when ng=34 and try a different scenario in figure 9.11. In this

example, we can see the difference between the two ways used to set the epidemic start.

When we consider the MEM structure (the first green dotted line is the epidemic start),

we will consider all WCR alarms and the majority of the CUSUM alarms as false alarms

as they are before the alert week. Also when we using alert week (week of increase) as the

first week when the rate is at least 10% higher than in week 1, we will consider all MEM

alarms as delayed alarms as they are after the alert week. When we consider the alert

week (week of increase) as the first week when the rate is at least 10% higher than in week

1, WCR did not register any false alarms, while CUSUM registered 20 false alarms and

all MEM alarms are delayed alarms. But when we consider the alert week as the same

as in the MEM setting in section 3.3, all WCR and CUSUM alarms are false alarms and

MEM registered only 3 false alarms.
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Figure 9.11: The top figure shows a comparison of detection of alert weeks between WCR

(blue triangles), CUSUM (green dots) and MEM (red crosses). The bottom figure shows

the scenario used to clarify the location of the gradual increase in rates; it shows the mean

of the 100 simulated cases. Here ng= 34. Green dotted lines represent the start and the

end sensitivity area according to MEM setting while orange dotted lines represent the

alert week (week of increase) as the first week when the rate is at least 10% higher than

in week 1.

We will start as we did at the start of section 9.4 and we can find the week of the epidemic

by choosing a specific rate of increase compared to the first week, so all those weeks from

week 1 to this specific week of increase will be considered for calculation of sensitivity and

those weeks after that will be considered in the calculation of specificity. Firstly, we will

consider the alert week as the first week when the rate is at least 10% higher than in week

1.

Table 9.10 shows the performance of theWCRmethod when ng=14 and 34 and fr = 1, 3, 5

with α = 1% for CUSUM and MEM in different scenarios. From this table, we mention

some points below:
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• In the historical scenario, CUSUM performance is much the best. MEM fails here

because its warnings depend on the average rates in the past 5 years. There was an

outbreak in 2009, which caused a rise in the average of the past years and thus a

loss of alerts before the epidemic start. WCR is relatively poor.

• In the scenario of repeating the 2014 cases six times, as for the historical scenario

WCR is much poorer than CUSUM, while MEM shows the best, high sensitivity

and specificity but with a delay in its alarm.

• MEM does not seem to have delay in the increasing situation, either for ng= 14 or

ng= 34 WCR has delays in this situation except for fr = 5, ng= 14.

• In the decreasing scenario, MEM fails completely. WCR and CUSUM do not show

perfect detection as the sensitivity and specificity are low in WCR, and although

they are perfect with CUSUM there is a delay in the alarm for CUSUM.

• With the shape of the third Serfling scenario for ng= 14, WCR and CUSUM show

low sensitivity and high specificity. This is also true for WCR with fr = 5 for ng=

34.For the other WCR with ng= 34 and CUSUM with ng= 34 both sensitivity and

specificity are low. MEM again here shows high specificity for ng= 14 and ng= 34

but with delay in its alarm. It has high sensitivity for ng= 14 only.

• With the shape of the second and third linear scenarios for ng= 14 and ng= 34

and for the first Serfling scenario with ng= 14, WCR with fr = 1 is better than

CUSUM. For the first Serfling scenario with ng= 34 they are the same in sensitivity

and specificity but WCR alarms with a slight delay whilst CUSUM alarms slightly

late. In all cases MEM has performed sensitivity and specificity, but with a delay in

its alarms. So overall WCR with fr = 1 is the best in this case.

• With the shape of the second Serfling scenario, MEM shows high sensitivity and

specificity but with delay in alarms, as does CUSUM with ng= 14, while WCR

shows the worst performance.

• With the shape of the third Serfling scenario, for ng= 14, WCR and CUSUM show

low sensitivity and high specificity. This is also true for WCR with fr = 5 and ng=

34. For other WCR with ng= 34 and CUSUM with ng= 34 both sensitivity and

specificity are low. MEM again here shows high specificity but with a delay in its

alarm. It has high sensitivity for ng= 14 only.

• When we compareWCR with different fr = 1, 3, 5, keeping the alert week as the first

week with a rate at least 10% higher than in the first week, we found the sensitivity

and specificity are higher when fr is 1 and MEM is generally good. WCR has delays

in this situation except for fr = 5, ng= 14.
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• With MEM, we found generally high sensitivity and specificity, but with clear delay

in alarms (MED).

• When we compare the performance of WCR with ng=14 and 34, we found that

WCR performs generally, but not always, slightly better with the larger number of

areas and this is most evident in the linear cases.

We can see that using α = 1% (table 9.10) has led to a marked improvement in performance

of WCR, especially in case ng=14, compared to the results in section 9.4 where α = 5%

was used (table 9.8).

We can test WCR in different cases of fr = 1, 3, 5 and compare the performance with

CUSUM and MEM, as we did earlier in section 9.4.1, considering the alert week to be the

same as in the MEM setting in section 3.3.

From table 9.11, we mention some points below:

• Again the results are generally poorer than with the previous approach to defining

the alert week.

• In general, the relationship between sensitivity and MED is inverse, which means

that when the sensitivity is high, we will lose some time from MED, so the delay is

longer.

• CUSUM and WCR (in its different versions) almost always raise the alarm before

MEM, which may be counted as an advantage of CUSUM and WCR. WCR does

show delay in the increasing scenario.

• MEM often has high sensitivity and specificity compared to CUSUM and WCR in

this setting.

• If we had an outbreak in the past years, MEM will never raise an alarm unless the

outbreak data are discounted.

• In the historical and decreasing scenarios, MEM did not raise any alarm.

• When we did this simulation study to compare performance between these three

systems, we considered WCR with different fr = 1, 3, 5, testing sensitivity and

specificity each time and we did not repeat those tests with CUSUM and MEM. The

reason for this is that the change in the system affects WCR mainly and there are

only minor effects with CUSUM and MEM.

• When we compare the performance of WCR with ng=14 and 34, we found that the

WCR performs slightly better with large ng with the first linear scenario.

• When we compare WCR with different fr = 1, 3, 5 and CUSUM, keeping the alert
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week the same as for the setting of MEM in section 3.3, we found the sensitivity is

generally low though specificity is high. Again, we generally found higher sensitivity

and specificity with delay in alarms (MED) with MEM when the alert week is taken

as the first week with a rate 10% above the rate in week 1.

Using this approach to defining the alert week, there is no longer a marked improvement

in WCR using α = 1% (table 9.11) compared to the results in section 9.4.1 where α = 5%

(table 9.9), except for the first linear case.

9.6 Conclusion

In this ninth chapter of this thesis, we made some big changes in the WCR system, trying

to improve its performance. These changes are summarised below:

• We tried a new baseline of simulation using fixed and varying rates as baselines when

we simulated 3,110,000 cases. This affected the hypothesis test of the steady state.

• In this chapter, we investigated the symmetry of WCR in each NHB from 0 to
NHB
2 − 1 compared to these in each NHB from NHB

2 − 1 to the end of NHB. We

confirm in section 9.1 that they are not symmetric and we considered this in the

same section.

• We tried to get equations for the mean and variance of WCR, aiming to calculate

cut-off points for WCR using µ and σ, but results of these equations were not as

helpful as we expected.

• We tested the performance of the WCR system with its new setting using different

significance levels for the rejection region, as we used 1% and 5%. Using the signif-

icance level of 1% seems to be more useful for WCR in general, especially with a

linear increase in the rate.

The WCR method does not look to be a good candidate to replace CUSUM or MEM,

despite being based upon a bivariate distribution. In the next final chapter, we will discuss

some conclusions and possible further work related to this thesis.



Chapter 10

Conclusions and further work

In this final chapter, we will talk about some results and make some suggestions for future

work for anyone who is interested in early detection systems for pandemic and seasonal

influenza.

In this thesis, chapter 1 contains background information about influenza, while the next

chapter 2 is about description of data. In chapter 3, statistical methods for the detection

of outbreaks are reviewed. Applying and modifying some well-known detection systems

for influenza is presented in chapter 4. Chapters 5 and 6 give an overview of the proposed

system. Different scenarios for the simulation study are reviewed in chapter 7. Results of

tests of the detection system and comparison with other systems are presented in chapters

8 and 9. Here chapter 10 draws conclusions.

The main aim of this research is trying to develop the WCR method for use to detect

seasonal flu by establishing a simpler method of calculating the critical values (cut-offs).

We have developed a method to set the cut-offs based on simulation of previous trends and

it is possible to use the simulated data with an ellipse equation to derive cut-offs which

could be used.

Our system has extended the WCR system of Singh et al. (2010) [142] and we have carried

out simulations to examine its performance.

In particular the Singh et al. (2010) approach is to obtain a joint pmf for NHB and a

discretised version of WCR, using smoothed historical data, and then to trigger an alarm

if an observed value of (WCR,NHB) corresponds to a low value of this pmf, lower than a

specified threshold. This setting performed well with pandemic influenza but we look to

modify it to work also with seasonal influenza.

In our system, we simulated huge numbers of joint frequencies for (WCR,NHB) in the

case of the steady state, then we develop the WCR algorithm for different numbers of

201
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spatial areas. We created another data structure using 30, 40 and 50 HBs from the

original Scottish data, using different population size structures, then simulated more

than 3,000,000 cases of ILI counts, considering the rate as flat during the year, then we

got the joint distribution for WCR and NHB in the case of no epidemic. Then we created

a rejection region for a test of whether or not an observation of (WCR,NHB) comes from

the steady state and used more than one significance level for this test (5% and 1%). We

used more than one approach to set up our baseline of the steady state.

10.1 Conclusions

In this section, some general conclusions are listed, related to our work and the work of

others:

• Influenza is one of the most important infectious diseases, which kills many people

annually in the world, so it is an important topic to study for researchers.

• Influenza cases do not occur with the same pattern throughout the world but they

are different in each region. However throughout the world, the influenza cases are

reported in the winter more than in other seasons.

• There are many methods to monitor influenza cases and also there are many methods

to use those monitored data to detect the next increase in influenza rates.

• Those detection methods are different in their performance.

Now, we will list some specific results related to our work in this thesis:

• In chapter 2, we observed in the Scottish data that we used during data analysis

that ARI and ILI rates have the same patterns but because ILI is more specific

to influenza, consultation rates for ILI are lower than for ARI, which includes all

respiratory diseases. Both recorded a rise in rates in winter compared to the rest of

the year. There was also a shortfall for both ARI and ILI (zeroes in consultation

rates) on public holidays, when the GP surgeries were closed. Another point worth

mentioning is that the population size varies widely between the regions of Scotland.

Patterns of consultations were especially different in the smaller health boards.

• When we talk about approaches for choosing different baselines of simulation in

chapter 5, section 5.2.1, we found it is not acceptable to use equal population sizes

in different sub-regions when we use real ILI counts to simulate other ILI counts by

using a Poisson mean. The reason for this is the big variation between population

sizes in different sub-regions.

• In chapter 6, section 6.4, and also in chapter 9, section 9.2, all equations for the
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WCR mean and standard deviation in each NHB did not work well when using a

normal approximation for WCR to calculate cut-offs to use in the WCR system.

This means we must do a new simulation with each change in number of HBs.

• Throughout our tests in chapter 8 and 9 of the performance of WCR, MEM and

CUSUM, generally no one method outperformed the others in all cases that have

been tested but there is a disparity in performance between the various methods.

• In cases of a sudden rise (which represents an outbreak rather than a seasonal in-

crease each winter), the WCR method recorded remarkable superiority in its per-

formance compared to other methods used in chapters 8 and 9. This was actually

the reason why the WCR system of Singh et al. (2010) [142] was initially devised.

• In general, the WCR and CUSUM methods are similar in performance in different

situations and this is clear in chapters 8 and 9.

• In all methods used, there is an inverse relationship between sensitivity and MED

because the more careful we are to get early alarms, the more false alarms there are

likely to be.

Our WCR method should not be used for seasonal influenza but it can still be used for

pandemic detection, like the version of Singh et al. (2010) [142].

10.2 Further work

To extend the work done and improve its performance, we recommend to simulate millions

of weekly cases rather than simulate thousands of weekly cases as this may affect the

results.

Secondly, we recommend to try using varying rates in each HBs, with the emphasis not to

use equal population sizes in each HBs but using an equivalent approach for the Scottish

population.

Some factors such as sex, age, rurality were not considered in our work. Also potential

differences between HBs because of these factors were not considered. Our modelling is

limited because of these factors. It is a good recommendation to consider these factors if

they are available.

We did not find equations for the mean and variance of WCR that worked especially well.

This could be investigated further.

Updated ILI data could be used in the historical data set.

It could be useful to vary more the significance level α used in the WCR system.
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We did not make a direct comparison of our WCR approach to the WCR approach of

Singh et al. (2010) [142] in our experiments. Both these two methods work well with an

outbreak scenario, but it would be useful to do a comparison as we expect to get similar

conclusions.

It would be interesting to do similar work based on the data of other countries when the

data are available through collaboration with any health institution as we do not know if

there any available data in the public domain, or using ARI data, or also using different

infectious diseases to find out if similar conclusions would be reached.

As the weather changes in different places, from rainy weather to dusty weather in Saudi

Arabia, for example, it could be interesting to try similar work based on data from those

different environments.



Appendix A

Chapter 5: Overview of the system - Simulation

A.1 Different spatial locations - Steady State

A.1.1 Investigation of Normality of WCR: histograms of WCR

Figure A.1: Histograms of WCR for each NHB in the case of HBs=14 with best fitting

normal pdf. 3,110,000 simulated cases from the steady state are used here.
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Figure A.2: Histograms of WCR for each NHB in the case of HBs=14 with best fitting

normal pdf. 3,110,000 simulated cases from the steady state are used here.
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Figure A.3: Histograms of WCR for each NHB in the case of HBs=30 with best fitting

normal pdf. 3,110,000 simulated cases from the steady state are used here. WCR does

not start from zero of NHB because the joint distributions of WCR and NHB in this cases

do not start from zero, as shown in figure 5.2.
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Figure A.4: Histograms of WCR for each NHB in the case of HBs=30 with best fitting

normal pdf. 3,110,000 simulated cases from the steady state are used here.
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Figure A.5: Histograms of WCR for each NHB in the case of HBs=30 with best fitting

normal pdf. 3,110,000 simulated cases from the steady state are used here. WCR does

not extend to the end of NHB because the joint distributions of WCR and NHB in this

cases do not extend to the end of NHB, as shown in figure 5.2.
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Figure A.6: Histograms of WCR for each NHB in the case of HBs=50 with best fitting

normal pdf. 3,110,000 simulated cases from the steady state are used here. WCR does

not start from zero of NHB because the joint distributions of WCR and NHB in these

cases do not start from zero, as shown in figure 5.3.
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Figure A.7: Histograms of WCR for each NHB in the case of HBs=50 with best fitting

normal pdf. 3,110,000 simulated cases from the steady state are used here.
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Figure A.8: Histograms of WCR for each NHB in the case of HBs=50 with best fitting

normal pdf. 3,110,000 simulated cases from the steady state are used here. WCR does

not extend to the end of NHB because the joint distributions of WCR and NHB in these

cases do not extend to the end of NHB, as shown in figure 5.3.
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A.1.2 Investigation of Normality of WCR: normal QQ plots

Figure A.9: Normal QQ plot of WCR for each NHB in the case of HBs=14.
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Figure A.10: Normal QQ plot of WCR for each NHB in the case of HBs=14.
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Figure A.11: Normal QQ plot of WCR for each NHB in the case of HBs=30. WCR does

not start from zero of NHB because the joint distributions of WCR and NHB in these

cases do not start from zero, as shown in figure 5.2.
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Figure A.12: Normal QQ plot of WCR for each NHB in the case of HBs=30.



A.1. Different spatial locations - Steady State 217

Figure A.13: Normal QQ plot of WCR for each NHB in the case of HBs=30. WCR does

not extend to the end of NHB because the joint distributions of WCR and NHB in these

cases do not extend to the end of NHB, as shown in figure 5.2.
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Figure A.14: Normal QQ plot of WCR for each NHB in the case of HBs=50. WCR does

not start from zero of NHB because the joint distributions of WCR and NHB in these

cases do not start from zero, as shown in figure 5.3.
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Figure A.15: Normal QQ plot of WCR for each NHB in the case of HBs=50.
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Figure A.16: Normal QQ plot of WCR for each NHB in the case of HBs=50. WCR does

not extend to the end of NHB because the joint distributions of WCR and NHB in these

cases do not extend to the end of NHB, as shown in figure 5.3.
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A.2 Finding functions to relate WCR and NHB (1)

> m14 #(Modelling for mean with HBs=14)

Call:

glm(formula = m ~ ni , weights = w2)

Deviance Residuals:

Min 1Q Median 3Q Max

-8.279e-04 -4.966e-04 7.009e-05 4.152e-04 9.153e-04

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.570e-01 7.612e-04 1257.30 < 2e-16 ***

ni 6.232e-03 7.901e-05 78.88 2.8e-10 ***

---

(Dispersion parameter for gaussian family taken to be 4.368385e-07)

Null deviance: 2.7204e-03 on 7 degrees of freedom

Residual deviance: 2.6210e-06 on 6 degrees of freedom

AIC: -96.369

Number of Fisher Scoring iterations: 2

######################

> sd14 #(Modelling for standard deviation with HBs=14)

Call:

glm(formula = sd ~ ni , weights = w2)

Deviance Residuals:

Min 1Q Median 3Q Max

-8.540e-04 -1.705e-04 8.546e-05 2.328e-04 2.839e-04

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.448e-02 5.103e-04 28.368 1.27e-07 ***

ni -2.517e-04 5.297e-05 -4.753 0.00315 **

---

(Dispersion parameter for gaussian family taken to be 1.963305e-07)

Null deviance: 5.6126e-06 on 7 degrees of freedom

Residual deviance: 1.1780e-06 on 6 degrees of freedom
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AIC: -102.77

Number of Fisher Scoring iterations: 2

######################

> sd14BC #(Modelling for standard deviation

#(using Box -Cox) with HBs=14)

Call:

glm(formula = sd^14 ~ ni , weights = w2)

Deviance Residuals:

Min 1Q Median 3Q Max

-4.269e-28 -8.887e-29 -6.842e-29 1.020e-28 2.874e-28

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.599e-27 2.830e-28 16.25 3.46e-06 ***

ni -3.145e-28 2.938e-29 -10.70 3.92e-05 ***

---

(Dispersion parameter for gaussian family taken to be 6.040332e-56)

Null deviance: 7.2836e-54 on 7 degrees of freedom

Residual deviance: 3.6242e-55 on 6 degrees of freedom

AIC: -996.39

Number of Fisher Scoring iterations: 1

#############################################

> m30 #(Modelling for mean with HBs=30)

Call:

glm(formula = m ~ ni , weights = w2)

Deviance Residuals:

Min 1Q Median 3Q Max

-5.881e-04 -2.587e-04 -6.522e-05 4.098e-05 1.637e-03

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.545e-01 7.763e-04 1229.50 <2e-16 ***

ni 3.058e-03 4.042e-05 75.64 <2e-16 ***

---
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(Dispersion parameter for gaussian family taken to be 4.002341e-07)

Null deviance: 2.2949e-03 on 13 degrees of freedom

Residual deviance: 4.8028e-06 on 12 degrees of freedom

AIC: -166.53

Number of Fisher Scoring iterations: 2

######################

> sd30 #(Modelling for standard deviation with HBs=30)

Call:

glm(formula = sd ~ ni , weights = w2)

Deviance Residuals:

Min 1Q Median 3Q Max

-3.910e-04 -1.489e-04 2.893e-05 9.169e-05 6.479e-04

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.814e-03 3.185e-04 30.815 8.57e-13 ***

ni -4.718e-05 1.658e-05 -2.845 0.0148 *

---

(Dispersion parameter for gaussian family taken to be 6.735385e-08)

Null deviance: 1.3535e-06 on 13 degrees of freedom

Residual deviance: 8.0825e-07 on 12 degrees of freedom

AIC: -191.48

Number of Fisher Scoring iterations: 2

######################

> sd30BC #(Modelling for standard deviation

#(using Box -Cox) with HBs=30)

Call:

glm(formula = sd^(-1) ~ ni , weights = w2)

Deviance Residuals:

Min 1Q Median 3Q Max

-7.7218 -1.1902 -0.3907 1.7699 5.7653

Coefficients:
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Estimate Std. Error t value Pr(>|t|)

(Intercept) 100.1242 4.1012 24.414 1.34e-11 ***

ni 0.6368 0.2135 2.982 0.0114 *

---

(Dispersion parameter for gaussian family taken to be 11.16999)

Null deviance: 233.36 on 13 degrees of freedom

Residual deviance: 134.04 on 12 degrees of freedom

AIC: 73.489

Number of Fisher Scoring iterations: 2

#############################################

> m50 #(Modelling for mean with HBs=50)

Call:

glm(formula = m ~ ni , weights = w2)

Deviance Residuals:

Min 1Q Median 3Q Max

-3.620e-04 -2.050e-04 -8.854e-05 9.188e-05 1.294e-03

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.9573079 0.0006249 1532.05 <2e-16 ***

ni 0.0017151 0.0000205 83.66 <2e-16 ***

---

(Dispersion parameter for gaussian family taken to be 2.089265e-07)

Null deviance: 1.4655e-03 on 17 degrees of freedom

Residual deviance: 3.3428e-06 on 16 degrees of freedom

AIC: -225.86

Number of Fisher Scoring iterations: 2

######################

> sd50 #(Modelling for standard deviation with HBs=50)

Call:

glm(formula = sd ~ ni , weights = w2)

Deviance Residuals:

Min 1Q Median 3Q Max
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-1.082e-03 -1.751e-05 2.079e-05 7.897e-05 7.037e-04

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.934e-03 4.641e-04 14.940 8.11e-11 ***

ni -2.854e-05 1.523e-05 -1.874 0.0793 .

---

(Dispersion parameter for gaussian family taken to be 1.15281e-07)

Null deviance: 2.2495e-06 on 17 degrees of freedom

Residual deviance: 1.8445e-06 on 16 degrees of freedom

AIC: -236.57

Number of Fisher Scoring iterations: 2

######################

> sd50BC #(Modelling for standard deviation

#(using Box -Cox) with HBs=50)

Call:

glm(formula = sd^3 ~ ni , weights = w2)

Deviance Residuals:

Min 1Q Median 3Q Max

-7.539e-08 -5.254e-09 2.146e-09 6.165e-09 8.822e-08

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.978e-07 4.204e-08 7.083 2.59e-06 ***

ni -2.406e-09 1.379e-09 -1.745 0.1

---

(Dispersion parameter for gaussian family taken to be 9.456423e-16)

Null deviance: 1.8009e-14 on 17 degrees of freedom

Residual deviance: 1.5130e-14 on 16 degrees of freedom

AIC: -571.7

Number of Fisher Scoring iterations: 1

A.3 Finding functions to relate WCR and NHB (2)

>z1 #(Modelling for mean with different HBs=30, 40 and 50
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#comparing to HB= 14)

Call:

lm(formula = m ~ n.i.midway * factor(ng), data = Data)

Residuals:

Min 1Q Median 3Q Max

-0.0016042 -0.0001003 0.0001032 0.0002810 0.0016564

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.998e-01 3.773e-04 2649.778 <2e-16 ***

n.i.midway 6.472e-03 9.019e-05 71.763 <2e-16 ***

factor(ng)30 -3.932e-05 4.798e-04 -0.082 0.935

factor(ng)40 3.900e-04 4.693e-04 0.831 0.410

factor(ng)50 -1.118e-04 4.607e-04 -0.243 0.809

n.i.midway:factor(ng)30 -3.268e-03 9.817e-05 -33.292 <2e-16 ***

n.i.midway:factor(ng)40 -4.254e-03 9.560e-05 -44.501 <2e-16 ***

n.i.midway:factor(ng)50 -4.653e-03 9.402e-05 -49.484 <2e-16 ***

---

Residual standard error: 0.0005845 on 48 degrees of freedom

Multiple R-squared: 0.9979, Adjusted R-squared: 0.9976

F-statistic: 3259 on 7 and 48 DF , p-value: < 2.2e-16

> z2 #(Modelling for mean between different HBs=14, 30, 40 and 50)

Call:

lm(formula = m ~ n.i.midway:factor(ng), data = Data)

Residuals:

Min 1Q Median 3Q Max

-1.558e-03 -1.111e-04 6.911e-05 2.959e-04 1.680e-03

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.998e-01 1.466e-04 6817.9 <2e-16 ***

n.i.midway:factor(ng)14 6.459e-03 5.701e-05 113.3 <2e-16 ***

n.i.midway:factor(ng)30 3.193e-03 2.596e-05 123.0 <2e-16 ***

n.i.midway:factor(ng)40 2.250e-03 2.171e-05 103.6 <2e-16 ***

n.i.midway:factor(ng)50 1.805e-03 1.859e-05 97.1 <2e-16 ***

---
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Residual standard error: 0.0005785 on 51 degrees of freedom

Multiple R-squared: 0.9978, Adjusted R-squared: 0.9976

F-statistic: 5821 on 4 and 51 DF , p-value: < 2.2e-16

>z3 #(Modelling for mean between different HBs=14, 30, 40 and 50

# using weighted regression)

Call:

lm(formula = m ~ n.i.midway:factor(ng), data = Data ,

weights = weight)

Weighted Residuals:

Min 1Q Median 3Q Max

-1.366e-03 -2.052e-04 -8.959e-05 1.400e-06 9.056e-04

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.994e-01 7.794e-05 12823.51 <2e-16 ***

n.i.midway:factor(ng)14 6.745e-03 8.002e-05 84.29 <2e-16 ***

n.i.midway:factor(ng)30 3.342e-03 4.717e-05 70.85 <2e-16 ***

n.i.midway:factor(ng)40 2.433e-03 3.873e-05 62.81 <2e-16 ***

n.i.midway:factor(ng)50 1.905e-03 3.328e-05 57.25 <2e-16 ***

---

Residual standard error: 0.0004223 on 51 degrees of freedom

Multiple R-squared: 0.9957, Adjusted R-squared: 0.9954

F-statistic: 2986 on 4 and 51 DF , p-value: < 2.2e-16

>z4 #(Modelling for log(slope) for mean and log(ng))

Call:

lm(formula = log(slope) ~ log(ng), data = Results)

Residuals:

n.i.midway:factor(ng)14 n.i.midway:factor(ng)30

-0.014480 0.035331

n.i.midway:factor(ng)40 n.i.midway:factor(ng)50

0.001722 -0.022573

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.38015 0.11245 -21.17 0.00222 **
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log(ng) -0.98682 0.03265 -30.23 0.00109 **

---

Residual standard error: 0.03139 on 2 degrees of freedom

Multiple R-squared: 0.9978, Adjusted R-squared: 0.9967

F-statistic: 913.5 on 1 and 2 DF , p-value: 0.001093

>z5 #(Modelling for variance with different HBs=30, 40 and 50

#comparing to HB= 14

# using weighted regression)

Call:

glm(formula = var ~ n.i.midway * factor(ng), family = Gamma ,

data = Data , weights = weight)

Deviance Residuals:

Min 1Q Median 3Q Max

-0.018070 -0.006605 -0.003130 0.001493 0.017452

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6386.82 21.34 299.279 < 2e-16 ***

n.i.midway 145.10 13.02 11.142 6.54e-15 ***

factor(ng)30 5931.42 42.23 140.458 < 2e-16 ***

factor(ng)40 12544.25 57.36 218.682 < 2e-16 ***

factor(ng)50 20493.32 75.59 271.112 < 2e-16 ***

n.i.midway:factor(ng)30 -62.39 19.46 -3.206 0.0024 **

n.i.midway:factor(ng)40 -57.32 22.29 -2.572 0.0133 *

n.i.midway:factor(ng)50 -66.64 25.41 -2.622 0.0117 *

---

(Dispersion parameter for Gamma family taken to be 6.194123e-05)

Null deviance: 17.5004015 on 55 degrees of freedom

Residual deviance: 0.0030914 on 48 degrees of freedom

AIC: -1706.1

Number of Fisher Scoring iterations: 3

>z6 #(Modelling for variance between different HBs=14, 30, 40 and 50

# using weighted regression)

Call:
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glm(formula = var ~ n.i.midway + factor(ng) - 1, family = Gamma ,

data = Data , weights = weight)

Deviance Residuals:

Min 1Q Median 3Q Max

-0.025708 -0.005840 -0.001104 0.002024 0.017690

Coefficients:

Estimate Std. Error t value Pr(>|t|)

n.i.midway 106.483 8.732 12.2 <2e-16 ***

factor(ng)14 6431.593 19.561 328.8 <2e-16 ***

factor(ng)30 12274.279 31.531 389.3 <2e-16 ***

factor(ng)40 18890.132 43.465 434.6 <2e-16 ***

factor(ng)50 26810.344 56.933 470.9 <2e-16 ***

---

(Dispersion parameter for Gamma family taken to be 7.486974e-05)

Null deviance: NaN on 56 degrees of freedom

Residual deviance: 0.0039733 on 51 degrees of freedom

AIC: -1695.7

Number of Fisher Scoring iterations: 3

>z7 #(Modelling for log(variance intercept) for variance and ng)

Call:

lm(formula = log(Var.Int) ~ ng , data = Results)

Residuals:

n.i.midway:factor(ng)14 n.i.midway:factor(ng)30

-0.007374 -0.001454

n.i.midway:factor(ng)40 n.i.midway:factor(ng)50

0.029453 -0.020626

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.2160336 0.0352087 233.35 1.84e-05 ***

ng 0.0400227 0.0009769 40.97 0.000595 ***

---

Residual standard error: 0.02597 on 2 degrees of freedom

Multiple R-squared: 0.9988, Adjusted R-squared: 0.9982
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F-statistic: 1679 on 1 and 2 DF , p-value: 0.0005952



Appendix B

Chapter 6: Detection system

B.1 Making the system more general

Figure B.1: WCR against NHB for steady rates using r = 1 with 14 HBs and a 5

million population. N∗
HB is presented in the dotted vertical orange line while the dotted

vertical purple line represents N∗∗
HB. The red shaped area columns came from calculating

the quantile (cut-offs) using µ and σ from many simulated cases with a flat rate. They

represent around 5% of the most extreme observations under the steady state. The green

shaped area columns came from calculating qnorm (cut-offs) using µ and σ from equations

5.4.7 and 5.4.10. They represent around 5% of the most extreme observations under the

steady state. Darkness of the black colour reflects the number of simulated cases.
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Figure B.2: WCR against NHB for steady rates using r = 10 with 14 HBs and a 5

million population. N∗
HB is presented in the dotted vertical orange line while the dotted

vertical purple line represents N∗∗
HB. The red shaped area columns came from calculating

the quantile (cut-offs) using µ and σ from many simulated cases with a flat rate. They

represent around 5% of the most extreme observations under the steady state. The green

shaped area columns came from calculating qnorm (cut-offs) using µ and σ from equations

5.4.7 and 5.4.10. They represent around 10% of the most extreme observations under the

steady state. Darkness of the black colour reflects the number of simulated cases.



B.1. Making the system more general 233

Figure B.3: WCR against NHB for steady rates using r = 1 with 34 HBs and a 5

million population. N∗
HB is presented in the dotted vertical orange line while the dotted

vertical purple line represents N∗∗
HB. The red shaped area columns came from calculating

the quantile (cut-offs) using µ and σ from many simulated cases with a flat rate. They

represent around 5% of the most extreme observations under the steady state. The green

shaped area columns came from calculating qnorm (cut-offs) using µ and σ from equations

5.4.7 and 5.4.10. They represent around 4% of the most extreme observations under the

steady state. Darkness of the black colour reflects the number of simulated cases.
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Figure B.4: WCR against NHB for steady rates using r = 5 with 34 HBs and a 5

million population. N∗
HB is presented in the dotted vertical orange line while the dotted

vertical purple line represents N∗∗
HB. The red shaped area columns came from calculating

the quantile (cut-offs) using µ and σ from many simulated cases with a flat rate. They

represent around 5% of the most extreme observations under the steady state. The green

shaped area columns came from calculating qnorm (cut-offs) using µ and σ from equations

5.4.7 and 5.4.10. They represent around 16% of the most extreme observations under the

steady state. Darkness of the black colour reflects the number of simulated cases.
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Figure B.5: WCR against NHB for steady rates using r = 10 with 34 HBs and a 5

million population. N∗
HB is presented in the dotted vertical orange line while the dotted

vertical purple line represents N∗∗
HB. The red shaped area columns came from calculating

the quantile (cut-offs) using µ and σ from many simulated cases with a flat rate. They

represent around 5% of the most extreme observations under the steady state. The green

shaped area columns came from calculating qnorm (cut-offs) using µ and σ from equations

5.4.7 and 5.4.10. They represent around 17% of the most extreme observations under the

steady state. Darkness of the black colour reflects the number of simulated cases.
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Chapter 7: Simulation study

C.1 Illustration

W W L W B W W L W B W W L W B W W L W B

1 31 04 Aug 14 44 03 Nov 27 5 02 Feb 40 18 04 May

2 32 11 Aug 15 45 10 Nov 28 6 09 Feb 41 19 11 May

3 33 18 Aug 16 46 17 Nov 29 7 16 Feb 42 20 18 May

4 34 25 Aug 17 47 24 Nov 30 8 23 Feb 43 21 25 May

5 35 01 Sep 18 48 01 Dec 31 9 02 March 44 22 01 June

6 36 08 Sep 19 49 08 Dec 32 10 09 March 45 23 08 June

7 37 15 Sep 20 50 15 Dec 33 11 16 March 46 24 15 June

8 38 22 Sep 21 51 22 Dec 34 12 23 March 47 25 22 June

9 39 29 Sep 22 52 29 Dec 35 13 30 March 48 26 29 June

10 40 06 Oct 23 1 05 Jan 36 14 06 April 49 27 06 July

11 41 13 Oct 24 2 12 Jan 37 15 13 April 50 28 13 July

12 42 20 Oct 25 3 19 Jan 38 16 20 April 51 29 20 July

13 43 27 Oct 26 4 26 Jan 39 17 27 April 52 30 27 July

Table C.1: Week locations and numbers during the year, where W = week number (1-52),

and W L: week location in the year (31-52) and (1-30), and W B : week begin date.
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Chapter 9: Testing WCR with other systems (2)

D.1 Testing WCR with other systems (2)

>z7 #(Modelling for mean between different HBs=14, 30, 40 and 50

# using weighted regression)

Call:

lm(formula = m ~ n.i.midway + rate + ng , data = Data.sct ,

weights = weight)

Weighted Residuals:

Min 1Q Median 3Q Max

-0.054526 -0.010021 -0.000423 0.011122 0.083715

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.0429080 0.0045276 230.342 < 2e-16 ***

n.i.midway 0.0157269 0.0011714 13.426 < 2e-16 ***

rate -0.0089893 0.0004590 -19.585 < 2e-16 ***

ng 0.0008943 0.0001192 7.503 8.34e-13 ***

---

Residual standard error: 0.02373 on 280 degrees of freedom

Multiple R-squared: 0.7007, Adjusted R-squared: 0.6975

F-statistic: 218.5 on 3 and 280 DF , p-value: < 2.2e-16

>z8 #(Modelling for variance between different HBs=14, 30, 40 and 50

# using weighted regression)

Call:

glm(formula = var1 ~ n.i.midway + rate + ng , family = Gamma ,

data = Data.sct , weights = weight)

237
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Deviance Residuals:

Min 1Q Median 3Q Max

-0.262284 -0.013496 -0.000588 0.012021 0.274348

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -11.2329 4.0867 -2.749 0.006373 **

n.i.midway -9.3168 0.9155 -10.176 < 2e-16 ***

rate 265.4865 1.6027 165.650 < 2e-16 ***

ng -0.3855 0.1022 -3.772 0.000198 ***

---

(Dispersion parameter for Gamma family taken to be 0.003306198)

Null deviance: 194.24104 on 283 degrees of freedom

Residual deviance: 0.92075 on 280 degrees of freedom

AIC: -3747.3

Number of Fisher Scoring iterations: 4
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D.2 Testing of mean and variance equation

Figure D.1: WCR againstNHB for steady rates using fixed rate = 3 per 100,000 population

with 14 HBs. N∗
HB is presented in the dotted vertical orange line while the dotted vertical

purple line represents N∗∗
HB. The red shaped columns came from calculating the quantiles

(cut-offs) using µ and σ from many simulated cases (3,110,000) in the flat rate situation.

They represent around 5% most extreme observations under the steady state. The green

columns came from using qnorm to calculate cut-offs using µ and σ from equations 9.3.1

and 9.3.2. They represent around 3% most extreme observations under the steady state.

Darkness of the black colour reflects the number of simulated cases.
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Figure D.2: WCR againstNHB for steady rates using fixed rate = 5 per 100,000 population

with 14 HBs. N∗
HB is presented in the dotted vertical orange line while the dotted vertical

purple line represents N∗∗
HB. The red shaped columns came from calculating the quantiles

(cut-offs) using µ and σ from many simulated cases (3,110,000) in the flat rate situation.

They represent around 5% most extreme observations under the steady state. The green

columns came from using qnorm to calculate cut-offs using µ and σ from equations 9.3.1

and 9.3.2. They represent around 4% most extreme observations under the steady state.

Darkness of the black colour reflects the number of simulated cases.
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Figure D.3: WCR againstNHB for steady rates using fixed rate = 1 per 100,000 population

with 34 HBs. N∗
HB is presented in the dotted vertical orange line while the dotted vertical

purple line represents N∗∗
HB. The red shaped columns came from calculating the quantiles

(cut-offs) using µ and σ from many simulated cases (3,110,000) in the flat rate situation.

They represent around 5% most extreme observations under the steady state. The green

columns came from using qnorm to calculate cut-offs using µ and σ from equations 9.3.1

and 9.3.2. They represent around 6% most extreme observations under the steady state.

Darkness of the black colour reflects the number of simulated cases.
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Figure D.4: WCR againstNHB for steady rates using fixed rate = 3 per 100,000 population

with 34 HBs. N∗
HB is presented in the dotted vertical orange line while the dotted vertical

purple line represents N∗∗
HB. The red shaped columns came from calculating the quantiles

(cut-offs) using µ and σ from many simulated cases (3,110,000) in the flat rate situation.

They represent around 5% most extreme observations under the steady state. The green

columns came from using qnorm to calculate cut-offs using µ and σ from equations 9.3.1

and 9.3.2. They represent around 7% most extreme observations under the steady state.

Darkness of the black colour reflects the number of simulated cases.
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Figure D.5: WCR againstNHB for steady rates using fixed rate = 5 per 100,000 population

with 34 HBs. N∗
HB is presented in the dotted vertical orange line while the dotted vertical

purple line represents N∗∗
HB. The red shaped columns came from calculating the quantiles

(cut-offs) using µ and σ from many simulated cases (3,110,000) in the flat rate situation.

They represent around 5% most extreme observations under the steady state. The green

columns came from using qnorm to calculate cut-offs using µ and σ from equations 9.3.1

and 9.3.2. They represent around 0.7% most extreme observations under the steady state.

Darkness of the black colour reflects the number of simulated cases.
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[145] A Spreco, O Eriksson, Ö Dahlström, B J Cowling, and T Timpka. Evaluation of

nowcasting for detecting and predicting local influenza epidemics, Sweden, 2009–

2014. Emerging Infectious Diseases, 24(10):1868, 2018.

[146] S H Steiner, K Grant, M Coory, and H A Kelly. Detecting the start of an influenza

outbreak using exponentially weighted moving average charts. BMC Medical Infor-

matics and Decision Making, 10(1):37, 2010.

[147] A Stuart and K Ord. Kendall’s Advanced Theory of Statistics, Arnold, volume 1.

London, 1994.

[148] K Subbarao, A Klimov, J Katz, H Regnery, W Lim, H Hall, M Perdue, D Swayne,

C Bender, J Huang, M Hemphill, T Rowe, M Shaw, X Xu, K Fukuda, and N Cox.

Characterization of an avian influenza A (H5N1) virus isolated from a child with a

fatal respiratory illness. Science, 279(5349):393–396, 1998.

[149] B L Taylor, H E Montgomery, A Rhodes, and C L Sprung. Protection of patients

and staff during a pandemic. Intensive Care Medicine, 36(1):45–54, 2010.



Bibliography 258

[150] Y Teng, D Bi, X Guo, D Feng, and Y Tong. Epidemic potential for human infection

with influenza A (H7N9) virus in China through web search behaviors: A data-

driven study. bioRxiv, page 168, 2017. doi 10.1101/168112. https://www.biorxiv.

org/content/early/2017/08/26/168112. Last accessed 06 December 2018.

[151] The Writing Committee of the World Health Organization (WHO) Consultation

on Human Influenza A/H5. Avian influenza A (H5N1) infection in humans. New

England Journal of Medicine, 353(13):1374–1385, 2005.

[152] W W Thompson, L Comanor, and D K Shay. Epidemiology of seasonal influenza:

use of surveillance data and statistical models to estimate the burden of disease.

Journal of Infectious Diseases, 194(Supplement 2):S82–S91, 2006.

[153] W W Thompson, M R Moore, E Weintraub, P-Y Cheng, X Jin, C B Bridges, J S

Bresee, and D K Shay. Estimating influenza-associated deaths in the United States.

American Journal of Public Health, 99(S2):S225–S230, 2009.

[154] W W Thompson, D K Shay, E Weintraub, L Brammer, N Cox, L J Anderson, and

K Fukuda. Mortality associated with influenza and respiratory syncytial virus in the

United States. Journal of the American Medical Association, 289(2):179–186, 2003.

[155] S A Tweed, D M Skowronski, S T David, A Larder, M Petric, W Lees, Y Li, J Katz,

M Krajden, R Tellier, C Halpert, M Hirst, C Astell, D Lawrence, and A Mak.

Human illness from avian influenza H7N3, British Columbia. Emerging Infectious

Diseases, 10(12):2196, 2004.

[156] S Unkel, C Farrington, P H Garthwaite, C Robertson, and N Andrews. Statistical

methods for the prospective detection of infectious disease outbreaks: a review.

Journal of the Royal Statistical Society: Series A (Statistics in Society), 175(1):49–

82, 2012.

[157] M Urashima, T Segawa, M Okazaki, M Kurihara, Y Wada, and H Ida. Randomized

trial of vitamin D supplementation to prevent seasonal influenza A in schoolchildren.

The American Journal of Clinical Nutrition, 91(5):1255–1260, 2010.

[158] C Van Den Dool, E Hak, J Wallinga, A M Van Loon, J W J Lammers, and M J M

Bonten. Symptoms of influenza virus infection in hospitalized patients. Infection

Control, 29(04):314–319, 2008.

[159] R A Van Deusen, V S Hinshaw, D A Senne, and D Pellacani. Micro neuraminidase-

inhibition assay for classification of influenza A virus neuraminidases. Avian Dis-

eases, 27(3):745–750, 1983.

https://www.biorxiv.org/content/early/2017/08/26/168112
https://www.biorxiv.org/content/early/2017/08/26/168112


Bibliography 259

[160] T Vega and J E Lozano, November 2018. https://cran.r-project.org/web/

packages/mem/mem.pdf. Last accessed 18 January 2019.

[161] T Vega, J E Lozano, T Meerhoff, R Snacken, J Beauté, P Jorgensen, R Ortiz
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