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Abstract

In an increasingly risky world, more sophisticated tools to quantify and manage seismic

hazard and risk are required. In particular, the potential-loss and risk estimates of spatially-

distributed infrastructures and portfolios of buildings have posed major challenges to hazard

and risk analysts. Indeed, the quantification of the seismic performance of these systems

requires estimates of the spatial correlation of earthquake ground motions across a region.

The modelling of correlation has gained increasingly importance over the past decades,

because it still represents a crucial step in the catastrophe modelling process, but there

remain significant uncertainties.

This thesis attempts to advance the understanding of spatial correlation by critically

investigating the factors and physical parameters that most affect the spatial variability

of ground motions. A thorough literature review is provided along with analyses on large

databases of recorded strong ground motion from previous earthquakes and ground-motion

simulations. General outcomes suggest that spatial correlation properties are period-,

regionally- and earthquake-dependent, so that a single stationarity and isotropic spatial

correlation model, calibrated on heterogeneous databases including many regions and events,

may not be suitable to describe the spatial variability of ground motions for the region of

interest.
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Key findings are used to develop customised correlation models to be included in

deterministic (scenario-based) calculations to investigate to what extend spatial correlations

may affect risk estimates. Besides these, probabilistic event-based results are also presented

to further progress knowledge about the integration of spatial correlation and its associated

uncertainties into catastrophe models. Such outcomes may constitute a starting point for

the development of an upcoming earthquake catastrophe model for Italy.

Finally, the main results of this thesis can provide a primer for loss and risk modellers as

well as researchers to understand, interpret and model spatial correlation for the generation

of appropriate ground shaking maps and to improve hazard and risk assessments.



iii

Acknowledgements

I would like to thank my supervisor, Dr John Douglas, for his support and technical advice

throughout my PhD. I greatly benefited from his availability and punctuality, qualities that

have undoubtedly made the progress of my research easier. He has always supported my

research ideas and encouraged me to collaborate with international researchers, giving me

the chance to grow as a researcher and pave the way for my future career.

I am also grateful to my second advisor, Dr Stella Pytharouli, for her smiling recommenda-

tions during these three years.

My PhD has benefited from the collaboration with Impact Forecasting, Aon’s catastrophe

model developer. My sincere thanks go to Dr Goran Trendafiloski for making this joint

research project possible. A particular thank goes to Dr Svetlana Stripajová for our weekly

online meetings, which have kept me motivated throughout the time of the pandemic. I

would also like to thank Dr Peter Pazak for his precious help with translating our ideas

into python scripts.

I am very grateful to Chiara Smerzini for her kind advice that went beyond engineering

seismology matters. I am glad our paths have crossed again after so many years.

Thanks to Dr Carmine Galasso and Dr Alessandro Tarantino for carefully reviewing this

thesis and their valuable suggestions.

Thanks to the group at INGV in Milan (Sara, Giovanni, Francesca and Maria) for helping



iv

me with the data and for the fruitful discussions and opportunities that have lasted since

my Master’s thesis.

Thanks to Professor Jack Baker’s research group at Stanford University for providing helpful

feedback and advice at early stages of this research.

I wish to thank the University of Strathclyde for the opportunity to undertake this ex-

perience and funding my Ph.D. I am also very grateful to SSA (Seismological Society of

America) and the organisers of SECED 2019 for providing me with economic support to

attend the 17WCEE and SECED2019 conferences, respectively.

A special thank to Maite for her long-distance friendship and empathy. I could not have

imagined a better mate than you!

Thanks to Ema and Dani, for having given birth to Leonardo and Martino, my little

nephews.

Thanks to Simone for being my family away from home.

And finally, special thanks to my mum, my grandparents and my family for encouraging

me and supporting my decisions throughout these years. I could not have achieved any

goal without you.



v

Contents

Abstract i

List of Figures ix

List of Tables xxii

1 Introduction 1
1.1 Background and Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Scope and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Modelling the spatial correlation of earthquake ground motion: In-
sights from the literature, data from the 2016-2017 Central Italy earth-
quake sequence and ground-motion simulations 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Central Italy earthquake sequence . . . . . . . . . . . . . . . . . . . 21
2.3.2 Simulated ground-motions fields . . . . . . . . . . . . . . . . . . . . 22

2.4 Modelling of spatial correlation . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.1 Estimation of the within-event spatial correlation . . . . . . . . . . 25
2.4.2 Modelling caveats . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28



Contents vi

2.5 Major factors influencing spatial correlation . . . . . . . . . . . . . . . . . 29
2.5.1 Dependence on the estimation approach . . . . . . . . . . . . . . . 29
2.5.2 Dependence on the fitting method . . . . . . . . . . . . . . . . . . . 32
2.5.3 Dependence on magnitude . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.4 Dependence on period . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5.5 Dependence on local site effects and geological structure . . . . . . 37
2.5.6 Dependence on GMPEs . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6 Spatial correlation of different residual components . . . . . . . . . . . . . 44
2.7 Spatial correlation of PGV, PGD and integral ground-motion intensity measures 48
2.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Spatial correlation of broadband earthquake ground motion in Norcia
(Central Italy) from physics-based simulations 53
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2 3D Physics-based ground motion simulations . . . . . . . . . . . . . . . . . 56

3.2.1 3D Numerical modelling . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.2 ANN2BB: Broadband ground motions . . . . . . . . . . . . . . . . 58
3.2.3 Case-studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 Ground motion spatial correlation modelling . . . . . . . . . . . . . . . . . 64
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4.1 Mw 6.5 Norcia earthquake simulation . . . . . . . . . . . . . . . . . 68
3.4.1.1 Comparison with recordings . . . . . . . . . . . . . . . . . 68
3.4.1.2 Ground motion directionality . . . . . . . . . . . . . . . . 69
3.4.1.3 Spatial correlation anisotropic properties . . . . . . . . . . 72

3.4.2 Dependence of spatial correlation on source effects . . . . . . . . . . 74
3.4.2.1 Earthquake magnitude . . . . . . . . . . . . . . . . . . . . 74
3.4.2.2 Slip distribution . . . . . . . . . . . . . . . . . . . . . . . 76
3.4.2.3 Hypocentral locations . . . . . . . . . . . . . . . . . . . . 79
3.4.2.4 Finite fault Vs. point-source . . . . . . . . . . . . . . . . . 83

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4 Assessment of the uncertainty in spatial-correlation models for earth-
quake ground motion due to station layout and derivation method

90
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



Contents vii

4.2 Spatial correlation modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.2.1 Spatial variability of within-event residuals . . . . . . . . . . . . . . 93
4.2.2 Fitting methods for semivariogram models . . . . . . . . . . . . . . 94
4.2.3 Maximum likelihood estimation . . . . . . . . . . . . . . . . . . . . 95

4.3 Simulations set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.4 The effect of bin size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4.1 Least-squares regression Vs. Maximum-likelihood method . . . . . . 101
4.5 Dependence on the number of stations . . . . . . . . . . . . . . . . . . . . 101

4.5.1 Randomly simulated locations . . . . . . . . . . . . . . . . . . . . . 102
4.5.2 Station layouts of past earthquakes . . . . . . . . . . . . . . . . . . 108

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5 Exploring the impact of spatial correlations in the catastrophe mod-
elling process: a case study for Italy 125
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.2 Modelling spatial correlation of ground motion intensity measures . . . . . 128

5.2.1 Characterization of the spatial variability of univariate random functions129
5.2.2 Stationarity and isotropy assumptions . . . . . . . . . . . . . . . . 130
5.2.3 Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.2.4 Correlation models for the Mw 6.5 Norcia (Central Italy) event . . 132
5.2.5 Correlation models for the three macro-regions in Italy . . . . . . . 136

5.3 OpenQuake engine input models . . . . . . . . . . . . . . . . . . . . . . . . 141
5.3.1 Hazard component . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.3.1.1 Scenario - based seismic hazard assessment . . . . . . . . . 141
5.3.1.2 Event-based probabilistic seismic hazard assessment . . . . 143

5.3.2 Vulnerability component . . . . . . . . . . . . . . . . . . . . . . . . 145
5.3.3 Exposure component . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.4 Risk analysis and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.4.1 Scenario-base loss assessment . . . . . . . . . . . . . . . . . . . . . 148
5.4.2 Event-based probabilistic loss assessment . . . . . . . . . . . . . . . 151

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6 Conclusions 160
6.1 Key findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161



Contents viii

6.2 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Bibliography 167



ix

List of Figures

1.1 (a) Single-site seismic hazard assessment vs (b) multiple-site seismic hazard
assessment. In (a) the hypothesis of independency of IMs at closely spaced
sites is suitable for the estimation of the ground motion at a given site
(e.g. where a building is located). By contrast, in (b) the description of the
spatial variability of the ground motion is an essential element to quantify
the IMs at various sites in the region. . . . . . . . . . . . . . . . . . . . . 3

1.2 Between-event and within-event residual components of a GMM. The black
solid line represents a GMM, whereas the orange and green dashed lines
indicate the event-corrected ground-motion medians for earthquake 1 (EQ1)
and earthquake 2 (EQ2), respectively. Squares indicate the observed IMs
for the two events. [Modified from Atik et al. (2010)] . . . . . . . . . . . 4

1.3 (a) Histograms of aggregated economic loss for correlated and non-correlated
ground-motion fields [modified from Wagener et al. (2016)]; (b) Ratio
between disruption probabilities considering spatially-uncorrelated and
spatially-correlated ground-motion fields [modified from Costa et al. (2018)];
(c) Aggregated loss curves for the masonry-wall, mid-rise, low-code type for
the Firenze Administrative Province [modified from Weatherill et al. (2015)]. 6



List of Figures x

2.1 A typical selection of spatial correlation models for PGA: B03: Boore et al.
(2003); GH08: Goda and Hong (2008); GA09: Goda and Atkinson (2009);
JB09: Jayaram and Baker (2009); GA10: Goda and Atkinson (2010));
EI11ESM: Esposito and Iervolino (2011) ESM database; EI11ITACA:
Esposito and Iervolino (2011) ITACA database; EI12ITACA: Esposito and
Iervolino (2012) ITACA database; S12: Sokolov et al. (2012); DW13: Du
and Wang (2013); HM19: Heresi and Miranda (2019); HG19: Huang and
Galasso (2019). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Epicentres (stars) of the nineMw ≥ 5.0 earthquakes of the sequence. Mw ≥
2.5 events for one year after the Amatrice mainshock are also mapped with
blue dots to better highlight the spatial extent of the sequence. [source:
http:// cnt.rm.ingv.it/ ]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 (a) Records-distance distribution; (b) Magnitude-distance distribution; (c)
Events-magnitude distribution; (d) Distribution of stations in terms of EC8
site classification. Distances are in terms of Joyner and Boore distance
(Rjb, i.e. the distance to the surface projection of the rupture). . . . . . . 23

2.4 Example of median (deterministic) (a), stochastic (b) and random (c)
ground-motion fields. obtained through the above-described approach.
PGAs are expressed in cm/s2. The triangles represent the stations used in
the analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Exponential model. The black solid line is the theoretical model, whereas
black squares represent the experimental semivariogram. The sill and range
parameters are also highlighted. . . . . . . . . . . . . . . . . . . . . . . . 27

2.6 Correlation models proposed by Goda (2011) and Heresi and Miranda (2019)
[HM19] and obtained considering data from the Central Italy sequence for
PGA (a) and SA(3 s) (b). Solid lines represent the median values, whereas
shadow areas indicate the event-to-event uncertainty. Black dashed line
helps indicate the distances at which the correlation equals 0.05. . . . . . 30

2.7 Estimated range h0 normalized by the true value of the range h ∗ 0 as
a function of the number of sites (stations) using: (a) the Cressie and
Hawkins (robust) estimator; the Matheron (classic) estimator; and (c) the
covariance approach. Grey squares represent the mean value, whereas the
solid vertical lines indicate the variability of the estimates. The red dashed
line signifies a ratio of 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

http://cnt.rm.ingv.it/


List of Figures xi

2.8 Comparison between the ranges obtained through both the classic and
robust estimators, considering different numbers of stations. . . . . . . . 32

2.9 Correlation models obtained through the robust (a) and classic (b) estim-
ators. Blue curves indicate the results in which the weights used to fit
the experimental data are computed based on the number of pairs and
separation distance; red curves represent the results in which equal weights
are applied to all the data. Shadow area represent the standard deviation
of the results computed on 1000 simulations. The standard deviation of the
model with weights (8.7 and 7.12 km for the robust and classic estimators
respectively) is smaller than the standard deviation of the model without
weights (9.02 and 7.73 km). . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.10 Range as a function of magnitude: (a) PGA; (b) SA(4s). Ranges are
obtained by means of the robust semivariogram. We also apply a detrending
processing using second-order surface models to remove long-range spatial
trends. The dashed red line represents the bin size of 5 km. Any range
value smaller than the bin size is indicative of non-correlation and should
not be taken as an appropriate estimate. . . . . . . . . . . . . . . . . . . 35

2.11 Range a as function of magnitude Mw: a) PGV; b) PGD; c) CAV. Ranges
are obtained by means of the robust semivariogram. The dashed red line
represents the bin size of 5 km. Any range value smaller than the bin size
is indicative of non-correlation and should not be taken as an appropriate
estimate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.12 Range as a function of response-spectral period, T. The main studies are
reported along with a model for the Central Italy seismic sequence, denoted
as ‘This study ’. This model is calibrated by pooling all the data from the
nine Mw ≥ 5.0 events. The model of Jayaram and Baker (2009)) refers to
their model for heterogeneous soil condition, whereas the model of Du and
Wang (2013) is computed considering a Vs30 correlation of 4.5 km. . . . . 36

2.13 Range as a function of response-spectral period, T, computed using the
robust estimator for the nine Mw ≥ 5.0 events of the sequence. In black
we reported the weighted (geometric) average model, in which the weights
are given based on the number of stations that recorded each event. . . . 37



List of Figures xii

2.14 (a) Range as a function of the response-spectral period, T, for within-
event residuals εij (dWes) with and without the site correction factor; (b)
Correlation function in terms of PGA for within-event residuals εij with
and without the site correction factor. The black dashed line indicates a
correlation of 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.15 Correlation function in terms of PGA (a) and SA at T = 2 s (b). The
model referred as ‘This study’is computed by means of the code developed
by Ming et al. (2019) using data from the nine Mw ≥ 5.0 central Italy
earthquakes. The red shadow area represents the 95% confidence intervals
of the central Italy model. The black dashed line indicates a correlation of
0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.16 Within-event εij (dWes) correlation models for uncorrected and corrected
residuals and computed considering the GMPE by Bindi et al. (2011): (a)
PGA; (b) spectral acceleration for T equals 2 s. . . . . . . . . . . . . . . 42

2.17 Spatial correlation values as a function of period obtained for the Central
Italy region. Ad hoc refers to the GMPE calibrated on the dataset; ITA18
refers to the Lanzano et al. (2019) GMPE; K20 Erg refers to the ergodic
Kotha et al. (2020) GMPE; K20 Reg refers to the region-specific Kotha et
al. (2020) GMPE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.18 Sample semivariogram obtained using the GMPEs by Boore and Atkinson
(2008b) and Bindi et al. (2011). . . . . . . . . . . . . . . . . . . . . . . . 44

2.19 Residual plots to check if residuals show any systematic trend with predictor
variables: a) ηj (δBe) against Mw; b) δS2S against Vs30; c) δWSij against
RJB. Green dots in b) highlight stations with a measured Vs30 value,
whereas black dots stations for which the Vs30 is inferred from the slope,
following Wald and Allen (2007). . . . . . . . . . . . . . . . . . . . . . . 46

2.20 Semivariograms of different residual components for PGV obtained pooling
all the events considered in the analysis: a) Within-event residuals; b)
Site-to-site term; c) Event- and site-corrected residuals. Black squares
represent the original data, whereas red dots refer to the detrended data. 47

2.21 Range of within-event, site-to-site and event- and site-corrected term for
different IMs: a) Spectral acceleration at period between 0.1 and 5 s; b)
PGA, PGV, PGD, CAV and Ia. . . . . . . . . . . . . . . . . . . . . . . . 47



List of Figures xiii

2.22 Comparison among different correlation models: a) PGV; b) CAV (solid
lines) and Ia (dashed lines). Black dashed line points out a level of correla-
tion equal to 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1 Study area: (a) topography model; (b) shear-wave velocity model; (c)
sediment thickness model. Yellow stars indicate the epicentre (Mw 6.5
Norcia event), whereas the black rectangles define the surface fault projection. 58

3.2 Slip distribution along the causative fault. (a) Pizzi et al. (2017); (b) HB94
model for the Mw 6.5 scenario; (c) HB94 model for the Mw 6.0 scenario; (d)
HB94 model for the Mw 5.5 scenario. Yellow stars represent the hypocentral
locations, whereas the largest rectangles indicate the maximum dimension
of the fault (36km× 13km). The smallest rectangles represent the ruptured
faults, where the slip asperities (regions of very high slip) are concentred. 61

3.3 Slip distribution along the causative fault (Mw 6.5) along with the hypo-
central locations of scenarios S002-S008. . . . . . . . . . . . . . . . . . . 62

3.4 Rupture time distribution on the causative fault for scenarios Mw6.5_S002-
S008. The scenarios have the same slip distribution, but feature different
hypocentral locations. The position of the hypocentre is pointed out by a
yellow star. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5 Spectral acceleration at T = 2 s of the FP component: (a) Ground motion
data and fitted GMMs; (b) residuals as a function of Rline; (c) QQ plot
of residuals. Grey dots represent stations on the footwall for rock soil
condition and the grey line indicates the corresponding GMM; Green dots
represent stations on the hanging wall for rock soil condition and the green
line indicates the corresponding GMM; Orange dots represent station on
the hanging wall for basin soil condition and the orange line indicates the
corresponding GMM. The figure shows the results obtained considering the
Mw6.5_S001 scenario (30th October 2016 Norcia event). . . . . . . . . . 65

3.6 Experimental semivariogram and corresponding exponential and spherical
models: (a) SA (T = 1.5 s) Z component; (b) SA (T = 4 s) Z component.
Black dots represent the experimental semivariogram estimates for each
distance bin, whereas dashed lines are the fitted models. The figure shows
the results obtained considering the Mw6.5_S001 scenario (30th October
2016 Norcia event). In this example, we choose the exponential model for
SA (T = 1.5 s) and the spherical model for SA (T = 4 s). . . . . . . . . . 66



List of Figures xiv

3.7 (a) directional semivariograms computed for different directions: 0 - NS,
45 - NE-SW, 71 - FN, 90 - EW, 135 - NW-SE, 161 - FP; (b) Variogram
map. The black dashed arrow indicates the NS direction. The figure shows
the results obtained considering the Mw6.5_S001 scenario (30th October
2016 Norcia event). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.8 Spatial variation of within-event residuals of SA (FP) at T = 4 s: (a) Raw
data showing a gradual variation of the residual values; (b) detrended data
featuring a patchier distribution. Yellow star indicates the epicentre (Mw
6.5 Norcia event), whereas the grey and black rectangles are the surface
fault projection and the effective surface fault projection, respectively. The
figure shows the results obtained considering the Mw6.5_S001 scenario
(30th October 2016 Norcia event). . . . . . . . . . . . . . . . . . . . . . . 68

3.9 (a) Experimental semivariograms obtained by using the ANN2BB approach
(Predictions) and observed recordings for PGA; (b) Experimental semivari-
ograms for SA (T = 2s); (c) Experimental semivariograms for SA (T =
5 s); (d) Spatial distribution of the seismic stations (epicentral distance
< 30 km) that recorded the Norcia event. Dots are color-coded based on
the Vs30 values. The red star is the epicentre, whereas the black rectangle
represents the projected fault surface. [Data are from https:// esm-db.eu/ ]. 70

3.10 (a) Range as a function of the period T for different ground motion com-
ponents; (b) sill as a function of the period T for different ground motion
components.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.11 Ground motion maps for SA (T = 3s): (a) geometric mean component; (b)
FN component; (c) vertical component; and (d) FP component. . . . . . 72

3.12 Average range values, computed in the different directions, as a function of
the period T. (a) Geometric mean component; (b) vertical component; and
(c) FN over FP components ratio. The grey area represents the mean ±
standard deviation. The FN-direction and FP-direction range values as a
function of T are also reported on the graphs. . . . . . . . . . . . . . . . 73

3.13 Same as in Figure 3.12 but in terms of sill values, computed in the different
directions, as a function of the period T. . . . . . . . . . . . . . . . . . . 74

https://esm-db.eu/


List of Figures xv

3.14 Directional semivariograms for SA (T = 3s) for the geometric mean compon-
ent. Dots and squares represent the experimental semivariograms computed
considering azimuths of 71° (FN) and 161° (FP), respectively. Solid lines
represent the corresponding models. . . . . . . . . . . . . . . . . . . . . . 74

3.15 Range as a function of the period T for different Mw scenarios: (a) Geo-
metric mean component; (b) FN component; (c) vertical component; and
(d) FP components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.16 Sill as a function of the period T for different Mw scenarios: (a) Geometric
mean component; (b) FN component; (c) vertical component; and (d) FP
components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.17 SA (T = 2s ) Ground motion maps for Mw6.5_S001 (left panel) and
Mw6.5_S002 (right panel) scenarios: (a) and (b) FN component; and (c)
and (d) vertical component. . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.18 Ratio between Mw6.5_S001 and Mw6.5_S002: (a) range values; and (b)
sill values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.19 Ratio of FN/FP range for the different scenarios with varying hypocentral
location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.20 (a) Average and (c) standard deviation range values computed for scenarios
Mw6.5_S001-S008 for the different azimuth directions; (b) Average and (d)
standard deviation sill values computed for scenarios Mw6.5_S001-S008
for the different azimuth directions. . . . . . . . . . . . . . . . . . . . . 81

3.21 Ground motion maps of the GeoH spectral acceleration at 2 s [SA (T=2s)]
for scenarios Mw6.5_S002-S008: (a) S003; (b) S004; (c) S005; (d) S006; (e)
S007; (f) S008; (g) S002. The epicentral location is pointed out by a yellow
star. The black rectangle represents the surface projection of the fault. . 82

3.22 a) Average and (c) standard deviation range values computed on scenario
Mw6.5_S001-S008 for the different azimuth directions; (b) Average and
(d) standard deviation sill values computed on scenario Mw6.5_S001-S008
for the different azimuth directions. Results are for the FN component. . 83

3.23 (a) Average and (c) standard deviation range values computed on scenario
Mw6.5_S001-S008 for the different azimuth directions; (b) Average and
(d) standard deviation sill values computed on scenario Mw6.5_S001-S008
for the different azimuth directions. Results are for the FP component. . 84



List of Figures xvi

3.24 (a) Average and (c) standard deviation range values computed on scenario
Mw6.5_S001-S008 for the different azimuth directions; (b) Average and
(d) standard deviation sill values computed on scenario Mw6.5_S001-S008
for the different azimuth directions. Results are for the Z component. . . 85

3.25 Average range (a) and sill (b) values computed on the different azimuth
directions for the Mw4.0 point-source scenario. The shadow areas represent
the mean ± standard deviation. . . . . . . . . . . . . . . . . . . . . . . . 86

3.26 Ground motion maps for Mw4.0_S001 scenario: (a) and (b) SA (T=1s) for
the geoH and Z components, respectively; (c) and (d) SA (T= 4s) for geoH
and Z components, respectively. The yellow star represents the epicentre. 87

4.1 Empirical and fitted semivariogram models: (a) different techniques to
estimate the semivariogram parameters as introduced in this work. The
solid line is the exponential fitted model, whereas squares represent the
experimental semivariogram. The numbers close to the squares indicate
the number of pairs used to compute the semivariances within each bin.
(b) Different bin sizes to compute the experimental semivariogram. The
exponential models are fitted by using the OLS approach. . . . . . . . . . 95

4.2 Examples of Gaussian random fields characterized by a correlation length
of 5 km (top row) and 15 km (bottom row). . . . . . . . . . . . . . . . . 97

4.3 Number of stations pairs as a function of the separation distance for different
grid sizes: (a) 100 km; (b) 150 km; (c) 200 km. The black solid line is the
mean value computed over the 1000 simulations, whereas the black dashed
lines represent the mean ± the standard deviation. The red dashed line
indicate the minimum number (30) of station pairs required per bin to
obtain more robust estimates (see Schiappapietra and Douglas (2020) for
further details). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4 Range as a function of the grid dimension. Solid lines represent the median
values computed over the 1000 simulations, whereas dashed lines indicate
the first and third quartile. OLS and REML refer to the two different
approaches we use to estimate the range. The black dotted line indicates
the initial range value (30 km) imposed in the simulation. . . . . . . . . . 99

4.5 Bias median (a) and interquartile IQR (b) values as a function of the
number of stations for different bin widths and for two different approaches
(OLS, WLS). We impose an initial range value of 5 km. . . . . . . . . . . 100



List of Figures xvii

4.6 Bias median (a) and interquartile IQR (b) values as a function of the
number of stations for different bin widths and for two different approaches
(OLS, WLS). We impose an initial range value of 15 km. Note that the y
axis scale is different to that used in Figure 4.5. . . . . . . . . . . . . . . 100

4.7 Boxplots for range estimates obtained by using different bin size, different
h0 (5 and 15 km) and different number of available stations (40 and 100). 102

4.8 Bias (left panel) and Interquartile (right panel) range values as a function
of the number of stations. The different rows refer to the different initial h0
values. Different colours refer to the approaches employed in the correlation
estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.9 Bias (left panel) and Interquartile (right panel) range values as a function
of the number of stations. The different rows refer to the different initial h0
values. Different colours refer to the approaches employed in the correlation
estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.10 Bias (left panel) and Interquartile (right panel) range values as a func-
tion of h0. The different rows refer to the different number of stations
considered. Different colours refer to the approaches employed in the
correlation estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.11 Bias (left panel) and Interquartile (right panel) range values as a function
of the number of stations. The different rows refer to the different initial h0
values. Different colours refer to the approaches employed in the correlation
estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.12 Boxplots of range estimates for different number of stations and h0 = 20
km: (a) 20 stations; (b) 40 stations; (c) 80 stations: (d) 100 stations . . 108

4.13 Station layouts for the four selected events: (a) ESM1 - event id IT-2012-
0011; (b) ESM2 - event id ESMC-20160903_0000063; (c) NGA1 - event id
279; (d) NGA2 - event id 1011. Dots are colour-coded based on the within-
event residuals (one out 1000 simulated ground-motion fields). Coordinates
are normalized with respect of the epicentre of each event. . . . . . . . . 110

4.14 Median % error of the range estimates for the four different stations layouts
as a function of the number of stations. (a) OLS; (b) WLS; (c) ML; (d)
REML. The initial value of the range is set to 10 km. . . . . . . . . . . . 111



List of Figures xviii

4.15 IQR of the range estimates for the four different station layouts as a function
of the number of stations. (a) OLS; (b) WLS; (c) ML; (d) REML. The
initial value of the range is set to 10 km. . . . . . . . . . . . . . . . . . . 112

4.16 Median % error of the range estimates for the four different stations layouts
as a function of the number of stations.. The initial value of the range is
set to 20 km. We report the results obtained by using all the approaches
proposed in this study (top: OLS and WLS; bottom: ML and REML). . 113

4.17 Median % error of the range estimates for the four different stations layouts
as a function of the number of stations.. The initial value of the range is
set to 30 km. We report the results obtained by using all the approaches
proposed in this study (top: OLS and WLS; bottom: ML and REML). . 114

4.18 Median % error of the range estimates for the four different stations layouts
as a function of the number of stations.. The initial value of the range is
set to 40 km. We report the results obtained by using all the approaches
proposed in this study (top: OLS and WLS; bottom: ML and REML). . 115

4.19 IQR of the range estimates for the four different stations layouts as a
function of the number of stations. The initial value of the range is set to
20 km. We report the results obtained by using all the approaches proposed
in this study (top: OLS and WLS; bottom: ML and REML) . . . . . . . 116

4.20 IQR of the range estimates for the four different stations layouts as a
function of the number of stations. The initial value of the range is set to
30 km. We report the results obtained by using all the approaches proposed
in this study (top: OLS and WLS; bottom: ML and REML) . . . . . . . 117

4.21 IQR of the range estimates for the four different stations layouts as a
function of the number of stations. The initial value of the range is set to
40 km. We report the results obtained by using all the approaches proposed
in this study (top: OLS and WLS; bottom: ML and REML) . . . . . . . 119

4.22 Number of stations pairs within 12 km as a function of the number of
stations for the four station layouts. The dots indicate the number of
stations pairs in each simulation, whereas the solid lines represent the
average number of pairs as a function of the number of stations. . . . . . 120

4.23 Experimental semivariograms and theoretical models for three different
events recorded by 40 stations. The number of pairs in each bin is reported
close to each semivariance estimate (black dots). . . . . . . . . . . . . . 121



List of Figures xix

4.24 Experimental semivariograms and theoretical models for three different
events recorded by 80 stations. The number of pairs in each bin is reported
close to each semivariance estimate (black dots). . . . . . . . . . . . . . . 121

4.25 Application of the proposed logic tree for h0 = 20 km and number of
stations equal to 60 to use within a seismic risk assessment study. We use
the estimates obtained by using the REML approach. The graphs on the
left-hand side correspond to n spatially correlated random fields simulated
for each range value, 7 km, 20 km and 27 km, respectively. . . . . . . . . 124

5.1 p-value as a function of magnitude Mw: (a) isotropy test; and (b) station-
arity test. Red dashed line indicates the 5% significance level. The results
are for the Central Italy dataset and for IM = SA(T=1 s). . . . . . . . . 131

5.2 Set of Italian data: (a) Location of the epicentres as a function of Mw; and
(b) magnitude-distance scatter plot. JB stands for Joyner-Boore distance.
The rectangles (in dashed black) indicate the three sub-regions selected in
this study: NI: Northern Italy; CI: Central Italy; and SI: Southern Italy. . 134

5.3 Spatial correlation models obtained for the Mw 6.5 Norcia (Central Italy)
event. Dots and squares represent the ranges as a function of period,
whereas the solid lines represent the fitted models. Ad hoc refers to the
GMM calibrated on the Mw 6.5 Norcia observations only; ITA18 refers to
the Lanzano, Luzi, Pacor, Felicetta, Puglia, Sgobba and D’Amico (2019)
GMM; K20 refers to the Kotha et al. (2020) GMM. . . . . . . . . . . . . 135

5.4 (Left hand side) Computed weighted geometric mean and fitted model, and
(right hand side) computed weighted standard deviation and fitted model.
(Top) Northern Italy, (Middle) Central Italy, and (Bottom) Southern Italy. 138

5.5 Comparison among different correlation models: NI - Northern Italy; CI -
Central Italy; SI - Southern Italy; EI12 - ITACA - Esposito and Iervolino
(2012); EI12 - ESD - Esposito and Iervolino (2012); HM19 - Heresi and
Miranda (2019); HG19 - Huang and Galasso (2019); S19 - Sgobba et al.
(2019). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.6 Spatially-correlated ground-motion maps obtained by using different cor-
relation models: (a) No within-event spatial correlation; (b) Ad hoc spatial
correlation model; (c) ITA18 spatial correlation model; and (d) K20 spatial
correlation model. The yellow star represents the Mw 6.5 Norcia epicentre,
whereas the black rectangle defines the surface fault projection. . . . . . . 143



List of Figures xx

5.7 (a) Hazard curves showing the return period of different ground motion
levels in terms of PGA for three different cases: ground-motion fields are
generated without considering correlation; ground-motion fields are gener-
ated considering correlation; ground-motion fields are generated considering
correlation and its associated uncertainty. (b) ratio of ground motion levels
as a function of the return period. . . . . . . . . . . . . . . . . . . . . . . 145

5.8 (a) Classification of the building classes according to the European exposure
model. For further details on the labels, the reader should refer to Crowley
et al. (2021); (b) Area of interest: residential, industrial and commercial
buildings of graphs (a) and (c) are within the red rectangle; (c) Percentage of
replacement costs, divided into contents and structural and non-structural
components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.9 Losses (%TV computed based on different hazard models expressed in
terms of percentage of total value of the portfolio: (a) Spatial correlation
is not considered; (b) ad hoc correlation model; (c) ITA18 correlation
model; and (d) K20 correlation model. The yellow star represents the Mw
6.5 Norcia epicentre, whereas the black rectangle defines the surface fault
projection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.10 Histograms of economic losses computed based on different hazard models:
(a) Spatial correlation is not considered; (b) ad hoc correlation model; (c)
ITA18 correlation model; and (d) K20 correlation model. Red lines point
out the mean value, whereas the red dashed lines indicate the mean ± std. 151

5.11 EP curves in terms of loss in %TV for three different cases: ground-motion
fields are generated without considering correlation; ground-motion fields
are generated considering correlation; ground-motion fields are generated
considering correlation and its associated uncertainty. TV stands for total
value of the economic portfolio (2020 SERA exposure model). In the inset,
we show EP curves up to a return period of 1000 years, which is usually
the range of interest for (re)insurance industry. . . . . . . . . . . . . . . 153



List of Figures xxi

5.12 Loss ratio as a function of the return period for three different cases:
ground-motion fields are generated without considering correlation; ground-
motion fields are generated considering correlation; ground-motion fields
are generated considering correlation and its associated uncertainty. In the
inset, we show loss ratio curves up to a return period of 1000 years, which
is usually the range of interest for (re)insurance industry. . . . . . . . . 154

5.13 Average annual losses (AAL) for the flat homogenous portfolio (PGA)
obtained for three different cases: (a) ground-motion fields are generated
without considering correlation; (b) ground-motion fields are generated con-
sidering correlation; and (c) ground-motion fields are generated considering
correlation and its associated uncertainty. The yellow star represents the
Mw 6.5 Norcia epicentre, whereas the black rectangle defines the surface
fault projection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.14 EP curves in terms of loss in %TV for three different cases: ground-
motion fields are generated without considering correlation; ground-motion
fields are generated considering correlation; and ground-motion fields are
generated considering correlation and its associated uncertainty. Losses are
computed for flat homogeneous portfolios: (a) PGA; (b) SA at T = 0.3 s;
(c) SA at T = 0.6 s; (d) SA at T = 1 s. . . . . . . . . . . . . . . . . . . 157



xxii

List of Tables

2.1 Main published correlation models. PGA is peak ground acceleration, PGV
is peak ground velocity, SA is response spectral acceleration, Ia is Arias
intensity, CAV is cumulative absolute velocity and T is spectral period.
Mw is moment magnitude and RJB is Joyner-Boore distance. GMPE is
ground motion prediction equation. . . . . . . . . . . . . . . . . . . . . . 16

2.2 Main characteristics of the largest magnitude events of the Central Italy se-
quence. [source: Lanzano, Sgobba, Luzi, Puglia, Pacor, Felicetta, D’Amico,
Cotton and Bindi (2019)] . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Summary of the source parameters of the different simulated scenarios. For
the Norcia event (first row), the source is taken from the source inversion
model proposed by Pizzi et al. (2017), whereas HB94 refers to the kinematic
source rupture generator of Herrero and Bernard (1994). . . . . . . . . . 59

4.1 5%, 50% and 95% percentile values of the range estimates for different
h0 and different number of stations for the approaches used in this study.
Estimates are in km. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.1 Coefficients of the equations fitted to the ranges for the three GMMs
(equation 5.8 and 5.9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.2 Coefficients of the equations fitted to the ranges (equation 5.10, 5.11 and
5.12) for the three different regions. . . . . . . . . . . . . . . . . . . . . 139



List of Tables xxiii

5.3 Overall loss in %TV (percentage of total value of the portfolio) for the four
different case studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.4 Mean and Coefficient of variation of the losses obtained from the different
correlation models for two different IMs. . . . . . . . . . . . . . . . . . . 150



xxiv

Acronyms and Symbols

ANN Artificial Neural Network

a sill of the semivariogram

b range of the semivariogram

CAV Cumulative Absolute Velocity

CDN pre seismic Design Code

CDL Low seismic Design Code level

CDM Moderate seismic Design Code level

CDH High seismic Design Code level

COV covariance

CR Reinforced Concrete buildings

CV Coefficient of Variation

δB (η) Between-event (inter-event) residual component

δW (ε) Within-event (intra-event) residual component

δWS event-and-site corrected residuals

δS2S site-specific correction term

FP Fault Parallel

FN Fault Normal

γ̂ empirical semivariogram

GeoH Geometric Mean of the two horizontal ground motion components

GMMs (GMPEs) Ground Motion Models (Ground Motion Prediction Equations)

h separation distance

h0 imposed initial range



List of Tables xxv

Ia Arias Intensity

IMs Intensity Measures

IQR Interquartile range

MCF Confined Masonry buildings

ML Maximum Likelihood

Mw Moment Magnitude

MUR Unreinforced Masonry buildings

OLS Ordinary Least Squares

PGA Peak Ground Acceleration

PGV Peak Ground Velocity

PGD Peak Ground Displacement

PBS Physics-Based ground motion Simulation

PSHA Probabilistic Seismic Hazard Assessment

Q1 first quartile

Q3 third quartile

REML Restricted Maximum Likelihood

ρε within-event spatial correlation

ρη between-event correlation

ρT total spatial correlation

Rline Rline distance

RJB Joyner and Boore distance

S Steel buildings

SA Spectral Acceleration

SD Spectral Displacement

φ (σe) standard deviation of the within-event residuals

σTOT total standard deviation

τ standard deviation of the between-event residuals

Vs,30 Average shear-wave velocity of the upper-most 30 m

WLS Weighted Least Squares

Z Vertical ground motion component



1

CHAPTER 1

Introduction

1.1 Background and Motivations

Earthquakes are among the hardest natural hazards to predict and model. They reg-
ularly produce enormous losses and fatalities around the world and they still show the
largest protection gap across all natural perils. According to the statistics of the Centre
for Research on the Epidemiology of Disasters (CRED, https://www.cred.be), there have
been nearly 270,000 fatalities from earthquakes over the last decade. For instance, the
2010 Haiti event is thought to have killed about 222,500 people, making it one of the
deadliest earthquakes in recorded history. The 2011 Tohoku earthquake and tsunami caused
considerable economic losses, which amounted to approximately 220 Billion USD according
to the Japanese Cabinet Office1.

In an increasingly risky world, many private and public stakeholders, such as gov-
ernments, search-and-rescue organizations and insurance/reinsurance companies, require
more sophisticated tools to quantify and manage seismic hazard and risk. A reliable and
accurate evaluation of earthquakes risks is needed to: (1) gauge the socio-economic impact
of future earthquakes due, not only to direct structural damage, but also to non-structural
damage, content losses and business interruption; (2) enable firms to analyse the financial
implications of catastrophic events and to achieve a greater understanding of the risks their
businesses have to face; (3) manage emergency response and improve disaster management;

1UNESCO/IOC (2012). Summary Statement from the Japan - UNESCO - UNU Symposium on The
Great East Japan Tsunami on 11 March 2011 and Tsunami Warning Systems: Policy Perspectives 16 - 17
February 2012

https://www.cred.be
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and (4) provide decision makers with effective tools for risk mitigation and retrofitting
strategies.

The assessment of seismic risk and loss estimation is generally based on three pivotal
elements: (1) seismic hazard models, namely region-specific estimates of earthquake ground
shaking and its spatial variability; (2) exposure datasets; and (3) vulnerability and/or fra-
gility models, which provide the probability of damage and loss conditional on given ground
motion intensity measures (IMs) (Grossi and Kunreuther, 2005; Erdik, 2017). Within the
framework of seismic hazard modelling, three main issues have to be considered: locations
of potential future events, frequency of occurrence and severity. Once source parameters
are identified, local intensities are estimated at each location over the affected area (Grossi
and Kunreuther, 2005). The deterministic and probabilistic assessment of IMs at individual
sites is now routine. The ground motion due to an earthquake is usually quantified by
empirical ground motion models (GMMs, also known as ground motion prediction equations,
GMPEs), which provide an estimate of the ground shaking and its associated aleatory
variability based on the hypothesis of independency amongst IMs at all sites (including
those close-by). GMMs model the IM of interest as a lognormally-distributed random
variable that is a function of explanatory predictors (e.g. magnitude, source-to-site distance
and site conditions), and provide only their marginal probability distribution (Douglas
and Edwards, 2016). The seismic risk and loss assessment of spatially distributed building
portfolios and infrastructure systems (Figure 1.1) requires, however, the quantification of
the joint probability of occurrence of IMs at multiple locations over the region of interest,
which implies the need to model the spatial cross-correlation of ground motions (Weatherill
et al., 2015; Costa et al., 2018; Crowley et al., 2008; Wesson and Perkins, 2001; Markhvida
et al., 2018; Sokolov and Wenzel, 2019).

The spatial correlation of ground motions amongst different sites arises from: (1) a
common earthquake source, (2) similar travel paths and local site conditions, and (3) sites
being closely spaced with respect to the main fault asperities (Park et al., 2007). The first
element of the total correlation (e.g. common source) is usually taken into account by the
between-event (or inter-event) (δB) residual component provided by GMMs. Such a term
represents the average shift of the observed IMs of an individual event from the median
predicted by the GMM — it is common for all sites. Indeed, the ground motion caused
by an earthquake may be on average larger/lower than the GMM median values obtained
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Figure 1.1: (a) Single-site seismic hazard assessment vs (b) multiple-site seismic
hazard assessment. In (a) the hypothesis of independency of IMs at closely spaced
sites is suitable for the estimation of the ground motion at a given site (e.g. where a
building is located). By contrast, in (b) the description of the spatial variability of
the ground motion is an essential element to quantify the IMs at various sites in the
region.

from events of the same magnitude due to the intrinsic variability of the rupture process.
The spatial correlation due to the similarity of travel path, site conditions and distance
from the main slip asperities on the fault is generally accounted for by the within-event (or
intra-event) (δW ) residual component of the GMM. This component represents site-to-site
differences of observations from the median event-corrected predictions. An illustrative
scheme showing the different residual components is presented in Figure 1.2. Based on these
definitions, it is understood that defining how δW varies spatially is necessary to quantify
the joint probability of occurrence of IMs at multiple locations. It is also noted that the
total correlation never drops to zero; despite the spatial dependency of δW decreasing
as the inter-site distance increases, the δB correlation is always positive because of the
commonality of the rupture process among the different sites.

In the general framework of correlation of earthquake ground motions, the spatial correl-
ation of single IMs represents only one of the central tenets. Not only do the within-event
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Figure 1.2: Between-event and within-event residual components of a GMM. The
black solid line represents a GMM, whereas the orange and green dashed lines indicate
the event-corrected ground-motion medians for earthquake 1 (EQ1) and earthquake 2
(EQ2), respectively. Squares indicate the observed IMs for the two events. [Modified
from Atik et al. (2010)]

residuals feature spatial dependency, but they also exhibit cross-correlations among different
IMs at the same site (e.g. Baker and Cornell, 2006; Weatherill et al., 2015; Markhvida et al.,
2018; Kohrangi et al., 2021). Cross-correlation models are crucial in performance-based
earthquake engineering applications, such as ground motion record selection to perform
either dynamic analyses of structures or any other form of seismic response analysis. In
this context, Baker (2011) and Baker and Lee (2018) as well as Bradley (2010a) proposed
algorithms for ground motion selection (e.g. the mean conditional spectrum approach and
the generalized conditional intensity measure approach), which account for the correlations
among spectral parameters. To measure the joint distributions of multiple simultaneous
IMs at the same site, different methodologies have been proposed: (1) Markov-type approx-
imation (Goda and Hong, 2008); (2) linear model of co-regionalization (Loth and Baker,
2013); and (3) principal component analysis (Markhvida et al., 2018; Du and Ning, 2021).
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Although considering spatial cross-correlations would certainly lead to more comprehensive
regional hazard and risk assessments, this topic is beyond the scope of this thesis, which
will focus only on the spatial correlation of individual ground-motion IMs.

The past twenty years have seen increasingly rapid advances in the field of spatial
correlation (e.g. Boore et al., 2003; Jayaram and Baker, 2009; Esposito and Iervolino, 2011;
Sokolov et al., 2012; Markhvida et al., 2018; Huang, Tarbali and Galasso, 2020; Baker and
Chen, 2020; Sgobba et al., 2021). Most of the studies have assessed the spatial correlation of
IMs of main engineering interest such as the peak ground acceleration (PGA) and spectral
accelerations at different structural periods (SA), whereas little attention has been given to
other IMs [e.g. peak ground velocity (PGV), peak ground displacement (PGD), cumulative
absolute velocity (CAV)] useful for predicting damage to specific structural types and to
assess earthquake-induced ground failure (e.g. Du and Wang, 2013; Foulser-Piggott and
Goda, 2015; Huang, Tarbali and Galasso, 2020; Du and Ning, 2021). It is well-established
that the spatial correlation of within-event residuals is affected by the inter-site distance,
and that in general long-period IMs exhibit greater spatial correlation over longer distances.
Despite all correlation models accounting for these aspects, significant differences among
published relationships exist, meaning they predict different rates of decay of correlation
with inter-site distance. Understanding the dependency of correlation on factors, such as
magnitude, site conditions, ground motion frequency content and the spatial extend of
faults, has been a topic of research over the past decades (e.g. Wesson and Perkins, 2001).
A common consensus on these dependencies has not yet been achieved, however, and many
questions are still under debate.

One of the greatest challenges in developing ground-motion correlation models is a
lack of large numbers of closely-spaced recordings of previous earthquakes. This issue is
partially overcome by the use of worldwide databases, which, on the other hand, may
mask diagnostic spatial correlation characteristics due to dataset heterogeneities in terms of
epicentral distributions, magnitude and geological conditions. In this context, physics-based
ground-motion simulations (PBS) have emerged as a powerful data source (e.g. Smerzini
and Pitilakis, 2018; Chen and Baker, 2019; Infantino et al., 2021). Not only do PBSs provide
databases with exceptional size, especially in near-source regions, but they also facilitate
sensitivity studies of factors that may affect spatial correlations by means of controlled and
reproducible numerical experiments.
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Several studies have examined the impact of spatial ground-motion variability on risk
assessment and loss estimates at urban scales (e.g. Park et al., 2007; Weatherill et al.,
2015; Wagener et al., 2016; Costa et al., 2018), as shown in Figure 1.3. Such analyses have
highlighted the importance of considering the spatial correlation for a more appropriate
quantification of seismic risk and estimations of potential losses. Common findings suggest
that: (1) when the spatial dependency of IMs at closely-spaced sites is neglected, the losses
are significantly underestimated at low probabilities of exceedance, whereas when IMs are
perfectly correlated, rare losses are substantially overestimated (Park et al., 2007; Sokolov
and Wenzel, 2011; Weatherill et al., 2015); and (2) the spatial correlation is an essential
element to characterise the distribution of economic losses around the mean value (Wesson
and Perkins, 2001; Wagener et al., 2016).

Figure 1.3: (a) Histograms of aggregated economic loss for correlated and non-
correlated ground-motion fields [modified from Wagener et al. (2016)]; (b) Ra-
tio between disruption probabilities considering spatially-uncorrelated and spatially-
correlated ground-motion fields [modified from Costa et al. (2018)]; (c) Aggregated
loss curves for the masonry-wall, mid-rise, low-code type for the Firenze Adminis-
trative Province [modified from Weatherill et al. (2015)].
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In light of these considerations, it is evident that a proper definition of the spatial
correlation of IMs is a prerequisite to provide a more accurate representation of the
earthquake ground shaking and therefore enable more informed seismic hazard and risk
assessments. This motivates, firstly, investigations into the main factors influencing the
spatial correlation by critically reviewing already published studies and, secondly, based on
this the provision of insights to guide developers and users of spatial correlation models.
While there are no doubts on the relevance of spatial correlation in risk quantification,
most studies have employed correlation models calibrated on either worldwide databases
or regions other than the area of interest. The event-to-event and regional variability
of the spatial correlation stimulates us to understand its effects on potential losses by
developing custom correlation models for the region of interest as well as by including
correlation-associated uncertainties.

1.2 Scope and Objectives

The aim of this thesis is to improve spatial correlation models of earthquake ground
motions to enable more informed hazard and risk assessments. Therefore, this thesis
attempts to:

1. critically review the state-of-art of spatial correlation modelling by discussing the
impact of modelling decisions as well as by investigating the modelling elements that
may influence the spatial dependency of ground motions (Chapters 2 and 4);

2. compare different methodologies to characterise the correlation structure, with the
aim of understanding their main differences, advantages and limitations (Chapters 2
and 4);

3. provide evidence on the physical parameters that most affect the spatial correla-
tion properties, which is essential to answer questions regarding the selection and
development of either regionally-dependent or global models (Chapters 2 and 3);

4. form a helpful primer for scientists, engineers and loss modellers to understand,
interpret and model spatial correlation in ground motion (Chapters 2,3 and 4);

5. advance the understanding of spatial correlation within earthquake catastrophe
models by investigating different modelling hypotheses and including event-to-event
and regional correlation-associated uncertainties (Chapter 5).
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To this end, we employ synthetic ground-motion simulations, which provide controlled
environments where the true correlation structure is known. The 2016-2017 Central Italy
seismic sequence is chosen as a case-study because: (1) the abundance of high-quality
recordings from a limited period of time and in a limited area allows quantification of
the event-to-event variability for the same regional geological conditions; and (2) spatial
correlations of ground motion associated with the type of faulting mechanism (normal) of
these events has not been extensively addressed in literature. Finally, we take advantages of
3D PBSs for Norcia (Central Italy) to study the sensitivity of physical rupture parameters
on correlation properties.

1.3 Outline of the Thesis

This thesis consists of a collection of peer-reviewed journal articles. Each chapter is
therefore written in the form of stand-alone studies. Basic concepts may be repeated
throughout the dissertation and notational conventions may be not strictly identical for
each chapter. A complete list of acronyms and symbols can be found in the Acronysm and
Symbols Section. The thesis is structured as follows:

Chapter 2 critically reviews the literature on the spatial correlation of earthquake ground
motions. In particular, it provides a comprehensive overview of the current state of the art
of spatial correlation modelling and identifies research gaps. Factors that may affect spatial
correlations are investigated by using large databases of recorded strong ground motion
from previous earthquakes and Monte-Carlo ground-motion simulations. A special focus is
placed on: (1) comparing various elements of correlation models and modelling processes,
(2) identifying differences that emerge from the comparison, and (3) characterizing the
epistemic uncertainty in the process.

Chapter 3 extends the analysis of spatial correlation properties and explores the impact
of other physical parameters, such as the source rupture process and hypocentre locations, by
taking advantages of 3D PBSs. The study focuses on different ground-motion components
and provides more insights into the hypothesis of isotropy and anisotropy of correlation by
virtue of the unparalleled size of the simulated datasets.

Chapter 4 focuses on alternative approaches to characterize the spatial correlation of
IMs. It sheds light on maximum-likelihood methods, which, in contrast to the classic
semivariogram approach, directly determine the correlation structure. The impact of the
number of recordings stations as well as the station layout is discussed and some guidelines
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are provided to account for spatial correlation uncertainty within seismic hazard and risk
assessments.

Chapter 5 first develops ad hoc spatial correlation models for Italian macro-regions
for the purposes of improving the seismic hazard and risk assessment for an upcoming
earthquake catastrophe model for Italy. The models and their associated uncertainties
are then implemented in deterministic and probabilistic calculations to: (1) advance the
understanding of spatial correlations within the catastrophe modelling process, and (2)
investigate the effects of such custom models on potential losses.

Chapter 6 summarises the major findings of this dissertation and its limitations and
outlines potential directions for future research in this field.

1.4 List of Publications

The following is the full list of peer-reviewed journal articles and conference papers that
resulted from this thesis.

1. Schiappapietra, E. & Douglas, J. (2019). Spatial correlation of ground motions in
the 2016-2017 Central Italy seismic sequence. 2019 SECED conference, Greenwich
(UK). 9-10 September 2019.

2. Schiappapietra, E. & Douglas, J. (2020). Modelling the spatial correlation of
earthquake ground motion: Insights from the literature, data from the 2016- 2017
Central Italy earthquake sequence and ground-motion simulations. Earth-Science
Reviews, 103139. https:// doi.org/ 10.1016/ j.earscirev.2020.103139

3. Schiappapietra, E. & Douglas, J. (2020). Insights into spatially correlated ground
motion intensity measures using Italian earthquakes. 17th World Conference in
Earthquake Engineering, Sendai, Japan (postponed, 27 September - 2 October 2021).

4. Schiappapietra, E. & Smerzini, C. (2021). Spatial correlation of broadband earth-
quake ground motion in Norcia (Central Italy) from physics-based simulations. Bulletin
of Earthquake Engineering. https:// doi.org/ 10.1007/ s10518-021-01160-7

5. Schiappapietra, E., & Douglas, J. (2021). Assessment of the uncertainty in
spatial-correlation models for earthquake ground motion due to station layout and
derivation method. Bulletin of Earthquake Engineering. https:// doi.org/ 10.1007/
s10518-021-01179-w

https://doi.org/10.1016/j.earscirev.2020.103139
https://doi.org/10.1007/s10518-021-01160-7
https://doi.org/10.1007/s10518-021-01179-w
https://doi.org/10.1007/s10518-021-01179-w
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6. Schiappapietra, E., Stripajová, S., Pazák, P., Douglas, J., & Trendafiloski, G. (2021).
Exploring the impact of spatial correlations in the catastrophe modelling process: a
case study for Italy. Submitted to Bulletin of Earthquake Engineering.
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CHAPTER 2

Modelling the spatial correlation of
earthquake ground motion: Insights

from the literature, data from the
2016-2017 Central Italy earthquake

sequence and ground-motion
simulations

Over the past decades, researchers have given increasing attention to the modelling of
the spatial correlation of earthquake ground motion intensity measures (IMs), particularly
when the seismic risk of spatially distributed systems and earthquake-induced phenomena is
being assessed. The quantification of the seismic performance of these systems requires the
estimation of simultaneous IMs at multiple locations during the same earthquake, for which
the correlation between pairs of locations needs to be defined. Numerous spatial correlation
models of common IMs, such as peak ground acceleration (PGA) and spectral acceleration
(SA), have been published. Although the functional forms of the models are generally
similar, significant discrepancies exist in terms of the rate of decay of the correlation with
increasing inter-site separation distance. The main reasons for such differences lie with
the selected databases, the ground-motion models used to derive the spatial correlation
models, estimation approaches and regional geological conditions. Furthermore, little effort
has been directed towards other IMs suitable to characterize the resulting damage to struc-
tures and predict ground failure: peak ground velocity (PGV), peak ground displacement
(PGD) and spectral displacement (SD) as well as Arias intensity (Ia) and cumulative absolute
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velocity (CAV), to name but a few. A proper definition of the seismic action in terms
of spectral displacement ordinates has progressively gained importance in performance-
based seismic design, and Ia and CAV have been found to be adequate for many other
earthquake engineering applications, such as evaluating the susceptibility to liquefaction
and earthquake-induced landslides.

This chapter provides a comprehensive review of spatial correlation models, analysing
factors that most affect the spatial dependency of IMs. We use strong-motion records from
the 2016-2017 Central Italy earthquake sequence combined with ground-motion simulations
to examine the influence of various factors on spatial correlation models. In particular, the
dependency on: (1) the estimation method and model fitting technique; (2) the magnitude;
(3) the response-spectral period; and (4) local-soil conditions, is investigated. This chapter
is based on the following published article and conference proceeding (extended and updated
where appropriate):

1. Schiappapietra, E., & Douglas, J. (2020). Modelling the spatial correlation of
earthquake ground motion: insights from the literature, data from the 2016-2017
central Italy earthquake sequence and ground-motion simulations. Earth-Science
Reviews, 203, 103139. https:// doi.org/ 10.1016/ j.earscirev.2020.103139

2. Schiappapietra, E., & Douglas, J. (2020, September). Insights into spatially cor-
related ground motion intensity measures using Italian earthquakes. In 17th World
Conference on Earthquake Engineering.

2.1 Introduction

Stakeholders, such as government, search-and-rescue organizations and private com-
panies, require a reliable evaluation of the ground-motion field to assess the effects of an
earthquake for more informed risk management and decision making designed to reduce
economic and human losses (Park et al., 2007; Weatherill et al., 2015). The probabilistic as-
sessment of ground-motion intensity measures (IMs) at a single site is now a well-established
technique, and sophisticated methods have been developed for this aim. Traditional seismic
hazard and risk analysis tools usually determine the ground motion caused by an earthquake
through ground motion prediction equations (GMPEs). GMPEs provide an estimate of
the ground shaking and its associated aleatory variability at a given site, considering
IMs at different sites as independent. The seismic risk assessment of spatially-distributed

https://doi.org/10.1016/j.earscirev.2020.103139
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systems, such as long bridges, water and power lifelines and portfolios of buildings, however,
require not only the estimation of simultaneous IMs at multiple locations during the same
earthquake, but also the quantification of the correlation structure (Goda and Atkinson,
2009, 2010; Jayaram and Baker, 2009; Esposito and Iervolino, 2011, 2012; Weatherill et al.,
2015; Wagener et al., 2016; Heresi and Miranda, 2019). Indeed, understanding the spatial
characteristics of the ground motion arising from similarities in the seismic wave paths and
local-site effects is needed to provide a more accurate representation of ground-motion fields
(Verros et al., 2017). For instance, correlation models can be used to generate spatially-
correlated random fields for use in developing either scenarios for future earthquakes or
retro-scenarios of past events in terms of ground motion shaking, as well as for loss estimates.
Iervolino (2013), among others, discuss the importance of considering regional hazard for
calculation of aggregate risk. This author compared the annual rate of exceedance of a
specific IM in at least one site among several sites with the corresponding site-specific hazard
assessment, demonstrating that consideration of the joint probability of occurrence in the
hazard computation leads to larger values than those obtained for individual sites. Similar
conclusions are found in Sokolov and Ismail-Zadeh (2016) and Sokolov and Wenzel (2019).
These studies outline the discrepancies between site-specific PSHA and multiple-site PSHA:
smaller within-event correlations combined with larger reference areas make the hazard
assessment prone to remarkable differences in terms of annual rate of PGA exceedance
in at least one site. Besides, Sokolov and Wenzel (2019) demonstrated that the fraction
of the reference area in which the design ground motion level will be exceeded depends
not only on the considered return period, but also on the correlation model. For instance,
for a return period of 475 years, there is a 10% of probability that the design ground
motion level will be exceeded at least once in 50 years in 20% and 40% of the reference area
when within-event residuals are uncorrelated and perfectly correlated, respectively, with
corresponding impacts on loss estimates. The importance of defining spatially-correlated
ground-motion fields in seismic risk assessment was also demonstrated by Park et al. (2007)
and Sokolov and Wenzel (2011). Neglecting the spatial correlation may cause a bias in
loss estimates, overestimating the most likely losses and underestimating rare losses. On
the contrary, overestimating the correlation may lead to the opposite result. As remarked
in Park et al. (2007), the effects of including or not the spatial correlation depend also
on the considered portfolio. Analogous outcomes are provided in Crowley et al. (2008),
in which the authors compared the variation of the mean damage ratio of the loss model,
obtained considering uncorrelated and correlated ground motion fields as well as correlated
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ground motion fields constrained to the recordings available at a specified number of sites.
Given observations at recording stations and including proper correlation models makes the
variability of the ground motions lower, and hence the variability of the losses narrower.

Over the past decade, the number of studies on spatial correlation has increased
significantly. Many models have been published (Table 2.1) and common findings suggest
that: (1) within-event correlation decays rapidly with increasing inter-site separation
distances, and (2) ground-motion IMs associated with longer response-spectral periods
have larger correlation lengths (e.g. Jayaram and Baker, 2009; Esposito and Iervolino, 2012;
Wagener et al., 2016; Goda and Hong, 2008; Sgobba et al., 2019). Nevertheless, a thorough
comparison among the proposed models demonstrates significant inconsistencies, which
may make the assessed seismic risk prone to large uncertainties (Figure 2.1). The majority
of the studies are for different regions (e.g. California, Japan and Taiwan), suggesting that
the underlying database as well as regional and local-site effects are likely to play first-order
roles in the observed differences. Besides, the use of either existing GMPEs or ad hoc
GMPEs as well as different estimation approaches may contribute to different outcomes.
Further analyses are thus required to draw firm conclusions on the spatial correlation
structures of different IMs.

To address these issues, we use large databases of recorded strong ground motion
from previous earthquakes and ground-motion simulations. In particular, we carry out
a geostatistical analysis using the database of the 2016-2017 Central Italy earthquake
sequence, which includes nearly 6900 records from 63 Mw ≥ 3.7 events (and nearly 1600
records from nine events with Mw ≥ 5.0) that occurred over a period of five months
(August 2016 - January 2017). We choose this dataset because it allows: (1) removal
of some of the uncertainties related to the underlying region; and (2) quantification of
the variability of spatial correlation among different earthquakes when the same area is
considered. Conversely, simulation of spatially-correlated ground motion fields provides a
controlled environment to test the factors that most influence the correlation structure.

In this chapter our goal is to provide a well-structured review critically summarising the
main findings to advance understanding of the spatial correlation of strong ground motion.
We employ the outcomes from the simulations and observations to address the main issues
and research gaps.
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Figure 2.1: A typical selection of spatial correlation models for PGA: B03: Boore
et al. (2003); GH08: Goda and Hong (2008); GA09: Goda and Atkinson (2009);
JB09: Jayaram and Baker (2009); GA10: Goda and Atkinson (2010)); EI11ESM:
Esposito and Iervolino (2011) ESM database; EI11ITACA: Esposito and Iervolino
(2011) ITACA database; EI12ITACA: Esposito and Iervolino (2012) ITACA database;
S12: Sokolov et al. (2012); DW13: Du and Wang (2013); HM19: Heresi and Miranda
(2019); HG19: Huang and Galasso (2019).
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2.2 Basic definitions

The correlation of ground-motion IMs from an earthquake includes three main elements,
namely: (1) the spatial correlation among residuals of the same IM for adjacent sites;
(2) the correlation among residuals of different IMs at the same location; (3) the spatial
cross-correlation among residuals of different IMs for closely spaced sites (Weatherill et al.,
2015). We focus on the first of the above-mentioned elements. In general, the similarity
of ground-motion IMs at two different sites depends on: (1) the earthquake source; (2)
the propagation path from the source to the sites and local-site effects; (3) the position
of closely-spaced sites in near-source conditions with respect to the main fault asperities
(Park et al., 2007). The first of these aspects is commonly accounted for by the between-
event residual provided by the GMPE. GMPEs relate a ground motion IM (e.g. peak
ground acceleration, PGA; peak ground velocity, PGV; peak ground displacement, PGD; or
pseudospectral acceleration for 5% of critical damping, SA) to a set of explanatory variables
describing the source (e.g. magnitude and faulting mechanism), the wave propagation path
(e.g. distance metric and regional effects) and the site conditions (e.g. soil classification)
(e.g. Douglas and Edwards (2016)). IMs are commonly modelled as lognormally-distributed
random variables, through a mixed-effects approach. Therefore, GMPEs take the form:

log10(Yij) = log10 Yij(M,R, S, θ) + εij + ηi (2.1)

where Yij is the IM of interest at the jth site due to the ith event, whereas Yij is the predicted
median function of magnitude (M), distance from the source (R), local-site conditions (S)
and others explanatory variables (θ). ηi is the between-event residual term, assumed as
an independent, identically and normally distributed random variable with zero mean and
standard deviation τ . It denotes the systematic deviation of observed IMs associated to an
event with respect to the GMPE prediction and does not depend on the site. Conversely,
εij represents the independent within-event residual term, which is site dependent as it
accounts for differences from the average model due to the path and local-site effects. εij
follows a multivariate Gaussian distribution, completely defined by its mean function E[εij ],
and covariance function, which reflects the correlation of within-event residuals:

COVi(jk) = E[εijεik]− E[εij]E[εik] (2.2)

The within-event correlation between all pairs of sites during an earthquake due to the
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similarity of travel path and local-site effects depends on the inter-site separation distance.
Typically, it is modelled as an exponential function:

ρε(h) = exp(αhβ) (2.3)

where α and β are the model coefficients, usually inferred through a least-squares approach,
and h is the separation distance.
As above-mentioned, the between-event correlation, which arises from commonality of the
rupture process, is taken into account by the ηi term and is defined as the ratio between
the variability components:

ρη = τ 2/σ2
T (2.4)

in which σ2
T =

√
τ 2 + φ2 is the total standard deviation and φ is the standard deviation

of the within-event residuals. Therefore, the total correlation among residuals for closely
spaced sites, which considers both the between-event and within-event variability, is given
by:

ρT (h) = ρη + ρε
φ2

σ2
T

(2.5)

It is noted that the between-event correlation among different pairs is always positive, as
a result of all sites sharing the same source rupture. As a matter of fact, the total correlation
will never drop to zero, although ρε(h) decays to zero with increasing separation distance
(Heresi and Miranda, 2019). In this study, we focus only on the within-event correlation
because the within-event residual term is the only component of the total variability that
varies from site to site and thus affects the spatial dependency of IMs (Stafford, 2012).

Furthermore, only one observation from a given earthquake is available for each station,
making it impossible to draw any inferences from it (Webster and Oliver, 2007). Therefore,
the hypothesis of second-order stationarity and isotropy are generally assumed, so that
the mean function of the random variable (εij) is constant for all sites, and the covariance
COVi(j, k), and thus the correlation, depends only on the separation distance (h) between
two sites and not on their absolute position and orientation [ρ(εij, εik) = ρ(h)]. Finally, one
should be aware that the correlation is usually computed on the residual terms rather than
directly on the IM. Indeed, the diverse underlying distributions of each IM value, due to
different explanatory variables (such as R, S, θ), would make the assessment of the IMs
correlation inappropriate (Heresi and Miranda, 2019).
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2.3 Databases

2.3.1 Central Italy earthquake sequence

Starting from 24th August 2016, one of the most important earthquake sequences ever
recorded in Italy struck the Central Apennines between the municipalities of Amatrice
and Norcia, causing widespread damage, thousands of homeless and invaluable losses for
the historical heritage of the region. The first mainshock (Mw 6.0) struck on 24th August
2016 at 01:36 UTC near Amatrice and it was followed, within less than an hour, by a Mw

5.4 aftershock (Chiaraluce et al., 2017). After two months, two other large earthquakes
occurred: a Mw 5.9 on 26th October 2016 at 19:18 UTC, near the village of Ussita and a
Mw 6.5 on 30th October 2016 at 06:40 UTC with an epicentre close to Norcia (Luzi et al.,
2017). Four other Mw ≥ 5.0 earthquakes occurred on 18th January 2017 near the villages
of Campotosto and Montereale (Figure 2.2, Table 2.2).

Table 2.2: Main characteristics of the largest magnitude events of the Central Italy
sequence. [source: Lanzano, Sgobba, Luzi, Puglia, Pacor, Felicetta, D’Amico, Cotton
and Bindi (2019)]

Earthquake Event Time Latitude [°] Longitude [°] Depth [km] Mw # Records

Amatrice 24/08/2016 01:36 42.7 13.23 8.1 6.0 158
Amatrice Aftershock 24/08/2016 02:33 42.79 13.15 8 5.3 138
Visso I 26/10/2016 17:10 42.88 13.13 8.7 5.4 158
Visso II 26/10/2016 19:18 42.91 13.13 7.5 5.9 166
Norcia 30/10/2016 06:40 42.83 13.11 9.2 6.5 159
Montereale I 18/01/2017 09:25 42.55 13.26 9.2 5.1 127
Montereale II 18/01/2017 10:14 42.53 13.28 9.1 5.5 141
Pizzoli I 18/01/2017 10:25 42.49 13.31 8.9 5.4 129
Pizzoli II 18/01/2017 13:33 42.48 13.28 10 5.0 124

Event and stations metadata are from Lanzano, Sgobba, Luzi, Puglia, Pacor, Felicetta,
D’Amico, Cotton and Bindi (2019). All the events, generated by normal fault segments,
were recorded by permanent and temporary networks, set up to monitor the earthquake
sequence at a high resolution and to retrieve more accurate observations of the ground
shaking in the near-source region (Luzi et al., 2017). In this study, we select data from
44 Mw ≥ 4.0 well-recorded events with more than 100 recordings, recorded by 367 strong-
motion stations within an epicentral distance of 200 km. The distributions of the selected
data with respect to distance, magnitude and distance, magnitude and number of stations
per EC8 soil classes (CEN, 2004) are summarized in Figure 2.3. The site conditions at



Chapter 2. Modelling the spatial correlation of earthquake ground motion: Insights from the
literature, data from the 2016-2017 Central Italy earthquake sequence and ground-motion
simulations 22

Figure 2.2: Epicentres (stars) of the nine Mw ≥ 5.0 earthquakes of the sequence. Mw
≥ 2.5 events for one year after the Amatrice mainshock are also mapped with blue
dots to better highlight the spatial extent of the sequence. [source: http://cnt.rm.
ingv.it/ ].

each strong-motion station are expressed through the EC8 soil categories, which is based
either on the average shear-wave velocity of the upper-most 30 m (VS,30) or on the available
geological information. Only about 25% of the considered stations are characterised by
shear-wave velocity profiles, so that most of them are classified using geology. The majority
of the selected stations are labeled as site class B, which includes very dense sand or gravel
and very stiff clay deposits.

2.3.2 Simulated ground-motions fields

To simulate spatially-correlated ground-motion fields, we employ the approach described
in Strasser and Bommer (2009), which accounts for both the between- and within-event

http://cnt.rm.ingv.it/
http://cnt.rm.ingv.it/
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Figure 2.3: (a) Records-distance distribution; (b) Magnitude-distance distribution;
(c) Events-magnitude distribution; (d) Distribution of stations in terms of EC8 site
classification. Distances are in terms of Joyner and Boore distance (Rjb, i.e. the
distance to the surface projection of the rupture).

variabilities. The former is specified through the between-event standard deviation in the
IMs computation, whereas the latter is included through the computation of a random field
based on a multivariate normal distribution. The procedure includes the following steps:

[1] Generation of median ground motion fields using GMPEs (GMdet). We employ the
GMPE by Lanzano, Luzi, Pacor, Felicetta, Puglia, Sgobba and D’Amico (2019) for
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shallow crustal earthquake in Italy, considering homogeneous rock site conditions
(Figure 2.4a).

[2] Generation of ground motion random fields (Figure 2.4c).
The spatially correlated random field P (h0, φ) is computed through a multivariate
normal distribution characterized by an exponential correlation model with correlation
length h0 and standard deviation φ (see section 2.2). We choose different values of h0
(5, 10 and 30 km) and φ (0.1, 0.32 and 0.5) to allow a deeper insight into the impact
of these parameters on the analysis.

[3] Generation of ground-motion stochastic fields (Figure 2.4b).
This is obtained by combining steps 1 and 2:

GMsto = 10[GMdet+P (h,φ)] (2.6)

Figure 2.4: Example of median (deterministic) (a), stochastic (b) and random (c)
ground-motion fields. obtained through the above-described approach. PGAs are
expressed in cm/s2. The triangles represent the stations used in the analysis.

The ground-motion fields are generated on a 200 km × 200 km grid with a 2 km
resolution. Finally, we randomly locate strong-motion recording stations throughout the
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region and use the simulated IMs at these stations. We repeat the process 1000 times for
each h0 − φ pair to obtain stable results.

2.4 Modelling of spatial correlation

2.4.1 Estimation of the within-event spatial correlation

It is common practice to adopt an existing GMPE or an ad hoc study-specific GMPE
to compute the within-event residuals at each site in order to assess the within-event
spatial correlation ρε(h). This can be estimated with two different approaches, namely: (1)
computing directly the covariance and the correlation coefficient (e.g. Wang and Takada
(2005); Sokolov et al. (2010, 2012)), or (2) calculating the sample semivariogram, which
measures the average dissimilarity between spatially distributed data (e.g. Jayaram and
Baker, 2009; Esposito and Iervolino, 2011, 2012; Wagener et al., 2016; Heresi and Miranda,
2019; Sgobba et al., 2019). In the first method, the spatial correlation is estimated as:

ρε(h) = COV (εij, εik)/φ
2 (2.7)

where COV denotes the covariance function, whereas εij and εik are the within-event
variabilities for the jth and kth sites during the ith event with zero mean and standard
deviation φ.
The second method computes the experimental semivariogram to represent the spatial
dependency of IMs values with varying separation distance, which is defined as:

γ̂(h) =
1

2
V ar[εij − εik] (2.8)

in which V ar indicates the variance. It is common practice to adopt two different estimators
to compute the sample semivariogram:

[1] Method of moments (Matheron, 1962)

γ̂(h) =
1

2N(h)

∑
N(h)

[εij − εik]2 (2.9)

where γ̂(h) represents the empirical semivariogram and N(h) is the number of pairs
separated by h.
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[2] Estimator proposed by Cressie (1985)

γ̂(h) =
1

2

[ 1
|N(h)|

∑
N(h) |εij − εik|

0.5]4

0.457 + 0.494
|N(h)|

(2.10)

This is found to be a more robust estimator, being less sensitive to outliers (Esposito
and Iervolino, 2011, 2012; Du and Wang, 2013; Oliver and Webster, 2014).

Both the covariance and the semivariogram are calculated for each pair of stations (xj, xk)

whose inter-site spacing falls in a distance bin defined as h−∆h/2 ≤ |xj − xk| ≤ h+ ∆h/2.
Esposito and Iervolino (2012) and Du and Wang (2013) suggest setting the bin size in
such a way that there are at least 30 pairs in each bin. Other authors (e.g. Wagener et al.,
2016) advise having at least 100 pairs per bin to have more reliable and representative
estimations. Furthermore, the definition of φ is of primary importance. φ can be estimated
either from the sample semivariogram at large separation distances, where the within-event
residuals are assumed to be uncorrelated, or as the standard deviation of the within-event
residuals for a given event (Goda and Atkinson, 2010). Alternatively, Esposito and Iervolino
(2012) employ the standard deviation related to the GMPE as φ. However, this approach is
strongly discouraged by other studies, since using a constant value of φ for different events
might lead to a biased within-event correlation (Heresi and Miranda, 2019; Foulser-Piggott
and Goda, 2015).

Parametric functions are used to fit the experimental values computed either through the
sample semivariogram or covariance approaches. This allows for the spatial variation of εij
to be retrieved for any separation distance h. Examples of basic second-order stationary and
isotropic models are: (1) Matern; (2) Exponential; and (3) Gaussian (Webster and Oliver,
2007). The exponential model (Figure 2.5), which usually provides the best performance,
takes the form:

γ(h) = a[1− exp(−ch/b)] (2.11)

where h is the separation distance, a and b are the sill and the range of the semivariogram
and c is a given positive constant set to 3. The sill equals the variance of the data, whereas
the range represents the distance beyond which the correlation between sites is negligible.
In the case of the exponential model, the range is the distance at which γ (h) equals 0.95
times the sill. It is worth mentioning that in some studies (e.g. Wang and Takada, 2005;
Huang and Galasso, 2019) c is set equal to 1. Consequently, the range outlines the distance
at which the correlation equals exp (−c) = exp (−1) ∼= 0.37. The implementation of either
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one or the other value leads to a different meaning of the range, without however affecting
the spatial correlation structure of the IM of interest. Moreover, under the hypothesis of
second-order stationarity, the semivariogram and the covariance function are equivalent, so
that the following relation holds (Oliver and Webster, 2014):

Figure 2.5: Exponential model. The black solid line is the theoretical model, whereas
black squares represent the experimental semivariogram. The sill and range paramet-
ers are also highlighted.

γ(h) = φ2 − COV (εij, εik) = φ2[1− ρε(h)] (2.12)

being ρε(h) = COV (εij, εik)/φ
2.

Consequently, combining Eq. ( 2.11) and Eq. ( 2.12), we have that:

ρε(h) = 1− γ(h)

φ2
= exp(−ch/b) (2.13)

which is equivalent to Eq. ( 2.3).

Furthermore, the hypothesis of second-order stationarity may sometimes not hold. The
expected value of the random variable E[εij ] may not be constant across all sites, but indeed
varying depending on the location. In such cases, the semivariogram γ̂(h) increases with
separation distance, without reaching a stable sill (Diggle et al., 2007). These long-range
spatial trends should be removed so that small-range correlation structures can be detected.
It is common practice to model spatial trends through trend surface models, namely the
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mean function is described by either first- or second-order polynomial functions of the
geographic coordinates (Diggle et al., 2007; Oliver and Webster, 2014). Alternatively, the
spatial trends may be defined as a function of any other physical parameter of the site,
rather than coordinates, in order to better capture the spatial variation of the mean function
(Diggle et al., 2007). Besides, the trend and the semivariogram of the residuals can be
estimated all at once through the residual maximum likelihood approach, as suggested by
Oliver and Webster (2014) and Papritz (2018).

Different approaches have been used in previous studies to fit the experimental data, such
as the weighted least-squares and manual-fitting techniques. Jayaram and Baker (2009),
among others, suggest inferring the model parameters manually so that the experimental
data are better fitted at shorter separation distances. This technique should, however,
be discouraged as it involves a certain degree of subjectivity that can lead to prediction
errors. Regarding the least-squares approach, weights can depend on either the separation
distances (e.g. increasing the weights of data at shorter distances) or the number of pairs
in each bin.

2.4.2 Modelling caveats

The previously described approach suffers from some shortcomings. GMPEs (eq. 2.1) are
usually developed through regression analysis using either the two-stage algorithm proposed
by Joyner and Boore (1993) or the one-stage mixed-effects approach by Abrahamson
and Youngs (1992), considering independent within-event residuals. The similarity of the
earthquake source, path and local-site effects leads to spatially correlated within-event
residuals. This issue was firstly investigated by Hong et al. (2009)), who demonstrated that
the inclusion of spatial correlation in GMPE development does not affect the estimated
ground motion model coefficients but it does affect the variability of the between- and
within-event residuals. In particular, the between-event variance decreases, whereas the
within-event component increases, with consequences for the assessment of seismic risk of
spatially-distributed systems. Similarly, Jayaram and Baker (2010) adopted a different
approach and drew analogous conclusions. While spatial correlation model parameters can
be inferred from statistical analysis of residuals independently of GMPE regressions, caution
must be applied in the estimation of φ and τ . Ming et al. (2019) reviewed the studies by
Hong et al. (2009) and Jayaram and Baker (2010)), and pinpointed their main limitations.
They proposed a new algorithm (the scoring estimation approach) that, while achieving the
same results in terms of φ and τ , provides more statistically robust ground-motion models
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along with spatial correlation parameters to improve seismic hazard and risk assessments.
In addition, seismic risk analyses usually employ an average estimate of the correlation

structure, derived considering heterogeneous databases, without accounting for its event-to-
event variability. Goda (2011) investigated the event-to-event variability of within-event
spatial correlation, studying 41 different earthquakes individually. This author found
that the model by Goda and Atkinson (2010) reasonably fits the overall median tendency.
However, ±0.1 units should be added to the same spatial correlation model to take into
account the event-to-event uncertainty. Likewise, Heresi and Miranda (2019) quantified
the event-to-event variability, comparing the within-event residuals correlation of 39 well-
recorded earthquakes. They provided general equations to calculate the median and
dispersion of the correlation length (range), so that the uncertainty can be easily accounted
for in regional seismic risk computations.

In Figure 2.6, we compare the outcomes obtained analysing the data from the 2016-2017
Central Italy sequence (9 events with Mw greater than 5.0) with the models proposed by
Goda (2011) and Heresi and Miranda (2019) along with their event-to-event uncertainty.
We follow the approach described in Heresi and Miranda (2019) to compute the central
tendency and the standard deviation, based on the number of stations that recorded each
event. The Central Italy database features a smaller event-to-event variability because
all the earthquakes nucleated within the same region. Conversely, the two other models
are calibrated on worldwide datasets, leading to a larger variability in terms of correlation
length. According to our analysis, a region-specific variability should be considered when
performing regional seismic hazard and risk assessment to obtain more accurate results.

2.5 Major factors influencing spatial correlation

In this section we present a detailed literature review and the results from our analyses,
with the aim of understanding the main factors that affect the spatial correlation of
ground-motion IMs.

2.5.1 Dependence on the estimation approach

In section 2.4.1 we described two different approaches to estimate the within-event
spatial correlation, namely: (1) the covariance and correlation coefficient and (2) the
semivariogram. The implementation of either one or the other technique should provide
similar results as the semivariogram and the covariance are equivalent for second-order
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Figure 2.6: Correlation models proposed by Goda (2011) and Heresi and Miranda
(2019) [HM19] and obtained considering data from the Central Italy sequence for
PGA (a) and SA(3 s) (b). Solid lines represent the median values, whereas shadow
areas indicate the event-to-event uncertainty. Black dashed line helps indicate the
distances at which the correlation equals 0.05.

stationary random fields. Goda and Hong (2008) compared the results obtained for the
Mw 7.6 Chi Chi earthquake using both the approaches and found that the computation of
the covariance provides slightly different estimates. Similarly, Goda and Atkinson (2009),
while characterizing the spatial correlation of Japanese data, drew the same conclusions.
The correlation decays faster when the correlation coefficient is directly computed, and
some inconsistent trends may occur, especially if the number of available data is inadequate.
Nevertheless, they provided a general correlation model by averaging the results obtained
using both approaches, as subsequently suggested by Sokolov et al. (2012) and Sokolov and
Wenzel (2013).

In order to address this issue, we carry out a thorough geostatistical analysis of the
within-event correlation structure using simulated spatially-correlated ground-motion fields.
We compute the range implementing both the techniques and both the sample semivariogram
estimators by varying the number of sites. As found by Goda and Hong (2008) and Goda and
Atkinson (2009), the direct estimation of the correlation coefficient not only features slightly
different results, but also a larger dispersion compared to the semivariogram approach in
our simulations (Figure 2.7). Furthermore, the graph well illustrates how the availability
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of stations plays a crucial role in obtaining more robust outcomes: even though the mean
of h0 assumes to some extent a constant value, the uncertainty halves as the number of
stations increases.
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Figure 2.7: Estimated range h0 normalized by the true value of the range h ∗ 0 as
a function of the number of sites (stations) using: (a) the Cressie and Hawkins
(robust) estimator; the Matheron (classic) estimator; and (c) the covariance approach.
Grey squares represent the mean value, whereas the solid vertical lines indicate the
variability of the estimates. The red dashed line signifies a ratio of 1.

Most of the proposed models use the classic estimator of Matheron (1962) to compute the
sample semivariogram. The estimates obtained are variances and as such they are sensitive
to outliers, which might lead to less reliable semivariograms. A statistically more robust
estimator was proposed by Cressie (1985) to down-weight the effects of atypical observations
(Oliver and Webster, 2014). Esposito and Iervolino (2011) and Esposito and Iervolino
(2012) implemented both the estimators, concluding that there are negligible differences.
Du and Wang (2013) suggested using the robust approach directly to obtain consistent
estimations. Clearly, the two different estimators provide almost the same correlation
distance in terms of average value, as observed in Figure 2.7 and according to Esposito
and Iervolino (2011) and Esposito and Iervolino (2012). However, a more in-depth analysis
suggests that: (1) the classic estimator is likely to converge faster; (2) the two different
approaches do not provide always the same range, as shown in Figure 2.8. In particular,
the smaller the number of considered stations, the more significant are the differences.
Although our simulations do not show which is the best semivariogram estimator, Oliver
and Webster (2014) demonstrated that if the data features outliers, the classic estimator
diverges from the input function, in contrast to the robust estimator.
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Figure 2.8: Comparison between the ranges obtained through both the classic and
robust estimators, considering different numbers of stations.

2.5.2 Dependence on the fitting method

A number of methods have been proposed to fit experimental values by means of
parametric models. The trial-and-error (manual fitting) and least-squares regression, among
others, are the most common techniques. Jayaram and Baker (2009) recommend manually
fitting the experimental semivariogram so that shorter separation distances, which are
more important for engineering purposes, are weighted higher. Despite its high degree of
subjectivity, this approach was chosen also by Du and Wang (2013) for its versatility in
fitting the data. Esposito and Iervolino (2011) and Infantino et al. (2018) visually fitted
experimental semivariograms, assuming the least-squares regression as a basis. Conversely,
other studies, such as Esposito and Iervolino (2012), Sokolov et al. (2012), Wagener et al.
(2016), Heresi and Miranda (2019) and Sgobba et al. (2019) adopt the weighted least-squares
regression approach, using different weights. Some of the authors prioritise either the short
separation distances or the number of pairs in each bin; others apply the same weight to all
the experimental values, so that the model is fit equally over the full range of data. In our
analysis, we opt for the weighted least squares regression, in which weights are computed
based both on the number of pairs and on the separation distance, so that the impact of
longer distances is minimized as they are associated with low correlations (Jayaram and
Baker, 2009). However, we carry out a further analysis in which all the data are equally
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weighted to understand the influence of the fitting method on the correlation structure.
Figure 2.9 illustrates how the different weightings lead to dissimilar results. A similar
comparison can be found in Jayaram and Baker (2009), where the authors criticised the
study by Wang and Takada (2005). Stafford et al. (2019) achieved similar outcomes, arguing
that there is variability in the ranges due to the adopted technique. Therefore, according
to Jayaram and Baker (2009), among others, we suggest prioritising models that fit the
experimental data well at short separation distances, which have a significant impact on
seismic risk estimates.

Figure 2.9: Correlation models obtained through the robust (a) and classic (b) es-
timators. Blue curves indicate the results in which the weights used to fit the ex-
perimental data are computed based on the number of pairs and separation distance;
red curves represent the results in which equal weights are applied to all the data.
Shadow area represent the standard deviation of the results computed on 1000 simu-
lations. The standard deviation of the model with weights (8.7 and 7.12 km for the
robust and classic estimators respectively) is smaller than the standard deviation of
the model without weights (9.02 and 7.73 km).

2.5.3 Dependence on magnitude

The relationship between magnitude and correlation length is one of the most debated
topics in studies of spatial correlation. Some studies (e.g. Sokolov et al., 2012; Sokolov and
Wenzel, 2013; Foulser-Piggott and Goda, 2015) argue that the range tends to increase with
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increasing magnitude because moderate-to-large earthquakes feature lower frequency content
and hence an additional non-random component. Conversely, other authors (e.g. Jayaram
and Baker, 2009; Huang, Tarbali and Galasso, 2020) did not find any correlation between
these two parameters. Heresi and Miranda (2019) performed a statistical analysis and found
that only a small ratio of the variability in terms of correlation length can be explained
by considering the magnitude, in particular for SA at longer periods. Garakaninezhad
and Bastami (2017) showed that there is a positive correlation between magnitude and
anisotropy ratio (ratio between the ranges of the direction with the largest and smallest
spatial correlations, respectively) of residuals for the nine earthquakes analysed. This is
valid only for PGA, however, and it does not apply to spectral accelerations.

In Figure 2.10 and 2.11 we compare the ranges obtained for each Mw ≥ 4.0 earthquake
belonging to the Central Italy seismic sequence as a function of magnitude. The results
do not suggest any clear relationship (especially for shorter-period IMs) between range
and magnitude, at least for this Mw interval, in agreement with the findings of Jayaram
and Baker (2009). Similarly, while analysing data from 138 Italian events with Mw ≥ 4.0,
Huang, Tarbali and Galasso (2020) did not indentify any trend of the range with respect
to the magnitude. It is worth noting that both Sokolov et al. (2012), Sokolov and Wenzel
(2013) and Foulser-Piggott and Goda (2015) analysed a wider range of events in terms
of magnitude, grouping as moderate-to-large earthquakes all events with Mw ≥ 6.0. We
believe that our analysed database represents too narrow a magnitude interval to draw
sound conclusions on the relationship between magnitude and range. Besides, it is biased
towards small-magnitude earthquakes, which could influence the result. Other factors
should be considered to explain the variability in terms of correlation length, especially
when the same seismic region is considered. Stafford et al. (2019) demonstrated that the
rupture process of events of equal magnitude has a significant contribution on the variability
in the range. Likewise, while studying correlation spatial patterns using physics-based
ground-motion simulations, Chen and Baker (2019) found a dependence of the correlation
on source effects and on the relative position of a site with respect to the fault asperities.

2.5.4 Dependence on period

Previous research (e.g. Goda and Hong, 2008; Jayaram and Baker, 2009; Esposito and
Iervolino, 2012; Wagener et al., 2016; Infantino et al., 2018; Sgobba et al., 2019; Chen and
Baker, 2019) has demonstrated that the spatial correlation structure is affected by the
response-spectral period considered. Range and period are found to be directly proportional.
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Figure 2.10: Range as a function of magnitude: (a) PGA; (b) SA(4s). Ranges are ob-
tained by means of the robust semivariogram. We also apply a detrending processing
using second-order surface models to remove long-range spatial trends. The dashed
red line represents the bin size of 5 km. Any range value smaller than the bin size is
indicative of non-correlation and should not be taken as an appropriate estimate.

Figure 2.11: Range a as function of magnitude Mw: a) PGV; b) PGD; c) CAV. Ranges
are obtained by means of the robust semivariogram. The dashed red line represents
the bin size of 5 km. Any range value smaller than the bin size is indicative of
non-correlation and should not be taken as an appropriate estimate.

This is consistent with studies on ground-motion coherency, a measure of similarity between
waveforms and phases of two ground-motion time histories recorded at two different sites.
Hough and Field (1996) demonstrated that ground motions at frequencies up to 2-3 Hz
and distances up to 3-4 km are characterized by a high level of waveform coherence, which
by contrast drops for shorter period ground motions. Zerva and Zervas (2002), while
investigating spatial coherency, proved that small-scale heterogeneities in the travelling
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path strongly affect the short-period waves (short wavelengths), which therefore tend to be
less coherent, in contrast to long-period waves. Figure 2.12 provides an overview of the
correlation lengths as a function of period of the above-mentioned studies. All the range
values in Figure 2.12 are computed as the distance at which the correlation equals 0.05
in order to compare the results. Esposito and Iervolino (2012) and Wagener et al. (2016)
showed that at short periods (up to 0.5 s) it is not possible to clearly delineate a trend
between range and period. Goda and Atkinson (2010) found that the correlation is clearly
affected by the vibration period especially at short separation distances (h < 10 km), in
contrast to greater distances (h > 50 km), where the models tend to converge towards
similar results. Consequently, they proposed an average constant model (Figure 2.12),
calibrated on the results obtained at nine different periods. To further test the hypothesis
of a dependence of the correlation on period, here we present a model for the Central Italy
sequence computed by pooling all the data from the nine Mw ≥ 5.0 events.

As we summarise in Figure 2.13, we observe the increasing trend with period for all
Mw ≥ 5.0 events of the sequence taken individually, as well.
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Figure 2.12: Range as a function of response-spectral period, T. The main studies are
reported along with a model for the Central Italy seismic sequence, denoted as ‘This
study ’. This model is calibrated by pooling all the data from the nineMw ≥ 5.0 events.
The model of Jayaram and Baker (2009)) refers to their model for heterogeneous soil
condition, whereas the model of Du and Wang (2013) is computed considering a Vs30
correlation of 4.5 km.
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Figure 2.13: Range as a function of response-spectral period, T, computed using the
robust estimator for the nine Mw ≥ 5.0 events of the sequence. In black we reported
the weighted (geometric) average model, in which the weights are given based on the
number of stations that recorded each event.

2.5.5 Dependence on local site effects and geological structure

Several studies (e.g. Jayaram and Baker, 2009; Sokolov et al., 2010, 2012; Du and Wang,
2013; Infantino et al., 2018; Chen and Baker, 2019) indicated that the level of correlation is
strongly influenced by regional geologic and site conditions, especially when short-period
IMs are of interest. Conversely, Heresi and Miranda (2019) demonstrated that the clustering
of Vs,30 values does not explain the high variability in the correlation length. To address
this issue, we develop an ad hoc GMPE for the Central Italy sequence without accounting
for different site conditions and then we introduce a site-specific correction factor to remove
any dependency on local-site effects, following Sokolov et al. (2010), Sokolov et al. (2012)
and Sokolov and Wenzel (2013). The within-event spatial correlation is understood as a
non-random component in the residuals, which arises from neglecting a number of factors
in the GMPE, such as site, path and azimuth as well as hanging-wall and footwall effects
(Sokolov et al., 2012; Sokolov and Wenzel, 2013). Due to the shortage of data, we could not
derive a correlation model for each site class, similarly to Sokolov et al. (2012) and Sokolov
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and Wenzel (2013). The following functional form is assumed:

log10 Ȳij = b1 + b2Mw + (b3 + b4Mw) log10

√
R2
JB + b25 (2.14)

where Ȳij is the PGA or SA(T) for T equal to 0.2, 0.5, 1, 2, 3 and 4 s and RJB is the
Joyner-Boore distance (or the epicentral distance for those events where the fault geometry
is not defined and the point-source approximation holds). b1, b2, b3, b4 and b5 are the model
coefficients inferred through the maximum-likelihood regression method by Joyner and
Boore (1993). It is noted that our main goal is to estimate the residuals for correlation
purposes, and not to develop a new GMPE; therefore, we keep the functional form as
simple as possible. The between-event and within-event residual components are evaluated
using the mixed-effects approach. In the same way, we compute the site-specific correction
term δS2S, which represents the site-specific deviations from the average model calibrated
considering all sites in the dataset, as explained in Kotha et al. (2018). We evaluate the
sample semivariogram through equation (eq. 2.10) and we fit the values using the weighted
least-squares approach (section 2.5.2) considering an exponential model (eq. 2.11). We
follow the approach of Esposito and Iervolino (2011) and Esposito and Iervolino (2012)
to pool data from different events and we repeat these steps including the site-specific
correction term, so that the corrected IM is:

log10 Ȳij,corr = log10 Ȳij + δS2Sj (2.15)

Figure 2.14 provides an overview of the within-event correlation models obtained
considering or not the site-specific correction term. Similarly to Sokolov et al. (2010),
Sokolov et al. (2012) and Sokolov and Wenzel (2013), the range decreases if a correction
factor is included in the analysis, suggesting that neglecting site conditions might add
an artificial correlation due to systematic biases in the residuals (Stafford et al., 2019) .
Besides, the lower level of correlation found at longer periods (grey curve) requires further
analysis, since the local-site effects influence is expected to decrease with increasing period,
as demonstrated by Jayaram and Baker (2009) and Infantino et al. (2018), among others.

Furthermore, the level of correlation of Vs,30 values can be used as a proxy to represent
either homogeneous or heterogeneous local-soil conditions in terms of local-site effects, since
a smaller correlation indicates a more varied geological setting. Jayaram and Baker (2009)
identified a positive relationship between clustering of Vs30 values and correlation of spectral
accelerations, especially at shorter periods. They proposed a model to predict the range as
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Figure 2.14: (a) Range as a function of the response-spectral period, T, for within-
event residuals εij (dWes) with and without the site correction factor; (b) Correlation
function in terms of PGA for within-event residuals εij with and without the site
correction factor. The black dashed line indicates a correlation of 0.05.

a function of both the period and the Vs,30 range. Similarly, Du and Wang (2013) drew
analogous conclusions, illustrating that the influence of local-site effects on the correlation
of spectral accelerations drops with increasing period. Sokolov et al. (2012) provided a
relationship between the PGA range and the Vs,30 correlation, after finding a dependency
of these parameters for different regions in Taiwan. Garakaninezhad and Bastami (2017)
found that the anisotropy ratio of residuals tends to increase as the anisotropy ratio of
Vs,30 increases. However, this positive correlation is significant only for PGA, similarly to
the relationship with magnitude. To further emphasis this aspect, Figure 2.15 compares
the above-mentioned studies along with a model calibrated on the Mw ≥ 5.0 events of the
Central Italy sequence. We develop the latter using the code by Ming et al. (2019), which
was also used in Huang and Galasso (2019) to study the correlation observed in Italian data.
Two main observations are worthy of remark. Firstly, the effects of local-soil conditions on
spatial correlation models are much greater at shorter periods, compared to longer periods
where the different models practically overlap. Secondly, the comparison between the
Huang and Galasso (2019) and Central Italy models suggests that the correlation strongly
depends on the geological characteristics of the considered area, so that a single universal
correlation model based on large datasets is not suitable to represent small regions. Indeed,
the model of Huang and Galasso (2019) is obtained by including events that occurred in all
of the Italian mainland, thus leading to an average spatial correlation model calibrated on
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diverse geological contexts, with variable spatial dependency of IMs. The same was also
previously demonstrated by Sokolov et al. (2010, 2012) and Sokolov and Wenzel (2013) for
Taiwan. Besides, this behaviour is particularly evident at shorter periods, in agreement
with different studies, such as Jayaram and Baker (2009) and Du and Wang (2013), in
which these authors demonstrated the impact of local-site effects as a function of period.
Figure 2.12 illustrates this aspect: the Central Italy and the Huang and Galasso (2019)
models nearly coincide for T>1 s.
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Figure 2.15: Correlation function in terms of PGA (a) and SA at T = 2 s (b). The
model referred as ‘This study’is computed by means of the code developed by Ming
et al. (2019) using data from the nine Mw ≥ 5.0 central Italy earthquakes. The red
shadow area represents the 95% confidence intervals of the central Italy model. The
black dashed line indicates a correlation of 0.05.

2.5.6 Dependence on GMPEs

To develop a correlation model either an existing GMPE or an ad hoc relation is used
to assess the within-event residuals. Authors, such as Wang and Takada (2005), Jayaram
and Baker (2009), Esposito and Iervolino (2011, 2012) and Wagener et al. (2016), employed
an existing ground motion model in their analyses. Conversely, other authors such as Goda
and Hong (2008), Goda and Atkinson (2009, 2010), Sokolov et al. (2010) and Infantino et al.
(2018) developed a GMPE calibrated on their specific dataset. Du and Wang (2013) asserted
that the chosen GMPE does not affect the correlation results. Analogously, Jayaram and
Baker (2009) and Goda (2011) demonstrated that similar outcomes are achieved if different
GMPEs are used. In contrast, Sokolov et al. (2010) maintained that the decomposition of
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the total aleatory variability into between- and within-event components is influenced by the
particular GMPE and hence the spatial correlation is affected in turn, as it is calibrated on
the residuals. Infantino et al. (2018) built a ground-motion model based on their databases
to avoid any dependency on the GMPE. Likewise, we opt for the ad hoc GMPE approach
and we develop a study-specific ground-motion model, as described in section 2.5.5. We also
calibrate ad hoc models for each Mw ≥ 5.0 event of the Central Italy sequence to obtain a
specific correlation model for each earthquake. We assume the following functional form:

log10 Ȳij = b1 + b2 log10

√
R2
JB + b24 + b3

√
R2
JB + b24 (2.16)

where b1, b2, b3 and b4 are the model coefficients inferred through a one-stage ordinary
regression, which is justified as we are only using data from a single event each time. We
show some of the results in Figure 2.12 and Figure 2.13.

To investigate the dependence of spatial correlation on the chosen ground-motion model,
we repeat all the analyses using the GMPE provided by Bindi et al. (2011), which is also
calibrated on Italian data. This model was found by Michelini et al. (2020) to be the most
suitable to predict ground motions in shallow active crustal regions in Italy. Figure 2.16
presents a comparison between the correlation models obtained implementing both the ad
hoc and Bindi et al. (2011) GMPEs. We plot the results illustrated in section 2.5.5, in
which we consider both uncorrected and corrected within-event residuals. Interestingly, the
Bindi et al. (2011) model provides nearly the same range as the model obtained including a
site correction term for short-period IMs. At longer periods, the Bindi et al. (2011) model
approaches the range value inferred without incorporating any site correction factor. We
interpret these outcomes by also considering the results that we present in section 2.5.5. The
Bindi et al. (2011) GMPE takes into account the local-site effects through the definition of
coefficients based on the EC8 soil categories. Local-soil conditions most influence the spatial
correlation of short-period IMs and thus, it is not just chance that the correlation model
inferred through the Bindi et al. (2011) GMPE tends to the range obtained implementing a
site-specific correction term. Conversely, the influence of site conditions at longer periods is
weaker, and the Bindi et al. (2011) and the uncorrected correlation models nearly coincide.

In this regard, we also calibrate four different correlation models based on the same
dataset, which includes 50 Mw ≥ 3.7 events that occured in the Central Italy region (the
majority of data belongs to both the 2009 L’Aquila and the 2016 Central Italy sequences).
The models differ only for the reference GMPEs used to compute the within-event residuals,
so that it is possible to investigate the effect of the GMPE on the spatial correlation.
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Figure 2.16: Within-event εij (dWes) correlation models for uncorrected and correc-
ted residuals and computed considering the GMPE by Bindi et al. (2011): (a) PGA;
(b) spectral acceleration for T equals 2 s.

We develop an ad hoc GMPE and we choose the Lanzano, Luzi, Pacor, Felicetta, Puglia,
Sgobba and D’Amico (2019) (hereinafter ITA18) and the Kotha et al. (2020) (hereinafter
K20) models, which mainly differ for the working datasets. In particular, we provide
different correlation properties for the K20 GMPE: (1) range values obtained by using
the ergodic K20 GMPE, and (2) range values obtained by using the region-specific K20
GMPE. At intermediate and long periods, the four models converge towards very similar
values, suggesting that the underlying GMPE has negligible effects on the final correlation
structure. By contrast, at shorter periods (T ≤ 0.4s), the models show a different trend.
An explanation may lie with the different sensitivity of high-frequency and low-frequency
ground motions to the anelastic attenuation. Indeed, Kotha et al. (2020) found larger
regional differences of anelastic attenuation at short periods than at longer periods. The
larger range values of the K20erg model are likely to be attributable to the faster attenuation
of the Central Italy region with respect to the pan-European average (Kotha et al., 2020),
which is not modelled in the ergodic K20 GMPE and therefore it manifests as apparent
spatial correlation, in contrast to the region-specific K20 GMPE. The ITA18 GMPE shows
a trend similar to the region-specific K20 model, demonstrating that any suitable GMPE
may be used in correlation analysis with no significant differences in the final outcomes.
The ad hoc model based on the specific dataset may better capture the attenuation of
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high-frequency IMs, resulting in a lower spatial correlation at short periods.

Figure 2.17: Spatial correlation values as a function of period obtained for the Central
Italy region. Ad hoc refers to the GMPE calibrated on the dataset; ITA18 refers to
the Lanzano et al. (2019) GMPE; K20 Erg refers to the ergodic Kotha et al. (2020)
GMPE; K20 Reg refers to the region-specific Kotha et al. (2020) GMPE.

Overall, we believe that any GMPE can be used, provided that the selected ground-
motion model fits the data well, so that the residuals do not exhibit biases. Systematic
deviations from the predicted median might be mapped as an additional artificial correlation,
which inevitably would affect the seismic hazard and risk assessments of spatial distributed
systems. This behaviour is shown in Figure 2.18, in which we compare the semivariograms
obtained considering both the GMPE by Bindi et al. (2011) and Boore and Atkinson
(2008b). Clearly, the Boore and Atkinson (2008b) semivariogram diverges from the Bindi
et al. (2011) with increasing separation distance. This might be due to the trend of the
within-event residuals with distance found for the Boore and Atkinson (2008b) model, which
reflects the inability of the GMPE to properly capture the observed IMs.
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Figure 2.18: Sample semivariogram obtained using the GMPEs by Boore and Atkin-
son (2008b) and Bindi et al. (2011).

2.6 Spatial correlation of different residual components

Spatial correlation models are usually calibrated on the within-event component of
residuals, obtained based on ergodic GMPEs. The ergodic assumption implies that the
distribution of ground motions over time at given site is the same as their spatial distribution
over all site (Lanzano et al., 2017). In the last decade many efforts have been made in
order to relax the ergodic assumption, thereby leading towards a non-ergodic approach, in
which the systematic and repeatable characteristics of the ground motion (e.g. site-specific
and path-specific component) are specified to adjust the median prediction of a GMPE
and hence significantly reduce the aleatory uncertainties (e.g. Kotha et al., 2020). Despite
the importance of such approaches in case of site-specific PSHA, the assessment of spatial
correlation under the non-ergodic assumption has not been widely studied yet. The major
contributions in this context are by Kuehn and Abrahamson (2020) and Sgobba et al. (2019,
2021).

In this study, we decide to analyse the spatial correlation not only of the within-
event term, which includes spatial variation of both local-site and travel-path effects, but
also of the site-to-site term and event- and site-corrected residuals, estimated partially
relaxing the ergodic assumption. We therefore derive two GMPEs with identical functional
forms, but with different decomposition of residuals: (1) between-event and within-event
residuals and, (2) between-event, between-site (δS2S) and event-and-site corrected residuals
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(δWSij), so that εij = δS2Si + δWSij. The second model allows partially relaxing the
ergodic assumption through the definition of the site-to-site term (δS2S), which includes
all the local-site specific effects (Lanzano et al., 2017; Kotha et al., 2017), and thus further
investigating the factors that determine the spatial dependency of IMs. We use RotD50
values (that is the median horizontal ground-motion across all nonredundant azimuths) of
PGA, PGV, PGD, CAV, Ia and 5%-damped SA at 15 periods of vibration between 0.1 and
5 s; hence, the equation is:

log10 Yij = b1 + b2M + b3M
2 + (b4 + b5M) log10

√
R2
JB + b27 + b6

√
R2
JB + b27 + ηj + εij

(2.17)
where M is either the moment magnitude or the local magnitude and RJB is the Joyner-
Boore distance (i.e. the closest distance to the surface projection of the rupture). b1 ... b7
are the model coefficients inferred through a non-linear mixed-effect regression approach,
computed using the NLMER algorithm of Bates et al. (2014) implemented in R Core Team
(2019). The advantage of using such approach is twofold. Namely, it allows: (1) quantifying
the between- and within-event components and further partitioning the within-event group
into systematic and non-systematic components; and (2) obtaining unbiased regression for
each group (event or station) which has a different number of ground motion records (Lee,
2009). It is recalled that Eq. 2.17 does not involve any site-response parameter, hence δS2S

absorbs all site-specific features and it can be considered as a proxy of the amplification
function of each station (Kotha et al., 2018). Conversely, δWSij is the remaining aleatory
variability, computed as the different between the within-event and site-to-site term, and it
mostly accounts for path effects, being the events nucleated within the same source zone.

A visual inspection of both GMPEs residuals (Figure 2.19) suggests that the adopted
functional form (Eq. 2.17) is performing well, as no significant trends with respect to the
predictor variables are detected. It is noted that, for sake of brevity, we show only the plot
pertinent to the partially ergodic GMPE. However, we obtain similar results for the ergodic
GMPE, where ηj and εij are plotted against Mw and RJB, respectively.

Figure 2.20 compares the semivariograms obtained for the different residual components
of PGV, before and after the detrending processing. Indeed, εij and δWSij do not clearly
comply with the hypothesis of second-order stationarity, as the semivariogram tends to
increase without reaching a stable plateau. On the contrary, δS2S does not reveal any
spatial trend and thus we do not apply any detrending correction. Similar outcomes
were found by Sgobba et al. (2021), in which the authors model the spatial correlation
under the hypothesis of stationarity for the site term and non-stationarity for the path
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Figure 2.19: Residual plots to check if residuals show any systematic trend with
predictor variables: a) ηj (δBe) against Mw; b) δS2S against Vs30; c) δWSij against
RJB. Green dots in b) highlight stations with a measured Vs30 value, whereas black
dots stations for which the Vs30 is inferred from the slope, following Wald and Allen
(2007).

term, while analysing data from Central Italy. Kuehn and Abrahamson (2020) employed
a non-stationary covariance function, which includes a dependency on both the inter-site
distance and source-to-site distance, to investigate the correlation structure of the path
term. According to Kuehn and Abrahamson (2020), fitting both the spatial dependency of
IMs from near and distant stations is not appropriate; indeed, closely spaced sites located
near the source may show different travel paths due to small-scale heterogeneities in the
rupture process, whereas seismic waves to distant sites will be along almost identical travel
paths. Evidences of non-stationarity were also found by Chen et al. (2021), who proposed
novel methodologies to quantify non-stationary spatial variations in strong ground motion,
taking advantages of well-recorded earthquakes in New Zealand.

Figure 2.21 shows the spatial correlation results for different IMs by considering within-
event and event- and site-corrected residuals as well as the site-to-site term. In agreement
with Sgobba et al. (2021), the latter term does not show any correlation, with a very
small range for all investigated IMs. On the contrary, the correlation distance of εij tends
to increase with increasing period, as previously observed in the literature. The spatial
correlation structure is found to be affected by the response-spectral period considered:
in particular, range and period are directly proportioned. δWSij shows a very similar
behaviour to εij, despite lower correlation values at longer periods. This suggests that
spatial dependency of IMs is not due only to site-specific features, but also to travel-path
effects and other unexplained effects, not fully captured by our GMPE. A comparison
of these residual components for CAV and Ia was also investigated by Foulser-Piggott
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and Goda (2015), who concluded that the two terms have in general different correlation
structures, and thus this variability should be accounted for in seismic hazard and risk
analysis.

Figure 2.20: Semivariograms of different residual components for PGV obtained
pooling all the events considered in the analysis: a) Within-event residuals; b) Site-
to-site term; c) Event- and site-corrected residuals. Black squares represent the
original data, whereas red dots refer to the detrended data.

Figure 2.21: Range of within-event, site-to-site and event- and site-corrected term
for different IMs: a) Spectral acceleration at period between 0.1 and 5 s; b) PGA,
PGV, PGD, CAV and Ia.
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2.7 Spatial correlation of PGV, PGD and integral ground-

motion intensity measures

In addition to PGA and SA at different periods to define the ground-motion induced
by earthquakes, other IMs turn out to be suitable to characterise the resulting damage
to structures and predict ground failure: peak ground velocity (PGV) and peak ground
displacement (PGD) as well as Arias intensity (Ia) and cumulative absolute velocity (CAV),
to name but a few. A proper definition of the seismic action in terms of spectral displacement
ordinates has progressively gained importance in performance-based seismic design (Paolucci
et al., 2008), and Ia and CAV have been found to be adequate for many other earthquake
engineering applications, such as evaluating the susceptibility to liquefaction and earthquake-
induced landslides as well as predicting the structural damage (Foulser-Piggott and Goda,
2015; Du and Wang, 2013; Bullock, 2019; Huang, Tarbali and Galasso, 2020).

Ia is defined as the integral of the square of the acceleration time history a(t) over the
entire duration adjusted by a constant factor (Kramer et al., 1996):

Ia =
π

2g

∫ tmax

0

a(t)2dt (2.18)

where g is the acceleration of gravity. CAV is the area under the absolute acceleration time
history:

CAV =

∫ tmax

o

|a (t)| dt (2.19)

Differently from the other IMs, which are primarily related to either the amplitude
or the frequency content of the ground motion, Ia and CAV implicitly reflect multiple
characteristics of the time histories, including the cumulative effects of the ground motion
duration (Du and Wang, 2013; Costanzo, 2018). As a matter of fact, they turn out to be
more efficient to represent the cumulative potential damage due to the ground shaking
(Foulser-Piggott and Goda, 2015; Huang, Tarbali and Galasso, 2020).

In Figure 2.21b, there is a clear trend of increasing of the range value from PGA to
PGD. The PGD is indeed related to lower frequencies of the ground-motion, which are
generally found to be correlated over longer distances, as opposed to higher frequency IMs.
This result is in agreement with those presented in section 2.5.4.

In Figure 2.22, we compare our correlation models for PGV, CAV and Ia with some
of the studies reported in literature. In particular, we select the models of: (1) Esposito
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and Iervolino (2012), based on Italian data; (2) Sokolov and Wenzel (2013), calibrated
on Japanese events with 4.2 ≤ Mw ≤ 7.2; (3) Wang and Takada (2005), which selected
earthquakes recorded in Japan and Taiwan with 6.2 ≤ Mw ≤ 8; (4) Du and Wang (2013),
which developed a prediction equation for the range based on the correlation structure of
Vs,30 values, using data from events occurred in California and Japan; (5) Bullock (2019),
based on 172 events occured in New Zealand; (6) Huang, Tarbali and Galasso (2020),
calibrated on Italian events with Mw ≥ 4.0. Clearly, the models calibrated on different
regions show a much larger correlation distance than our results. This suggests that regional
and local site effects play a first-order role in defining the correlation structure. The range
estimated by Esposito and Iervolino (2012) is slightly larger than that found for Central
Italy. A possible explanation can lie with the extended database considered in Esposito
and Iervolino (2012), which includes events that occurred in all of the Italian mainland.
Similar outcomes were also found for spectral accelerations in Section 2.5.5, suggesting that
a unique correlation model based on a large database is not appropriate to represent small
regions. The Bullock (2019) model for CAV features a larger correlation with respect to the
other studies. This behaviour is likely to be related to the different types of earthquakes
considered; indeed, Bullock (2019) included not only shallow crustal, but also slab and
interface events. Besides, while the Ia models show comparable correlation values among
the different studies (as also observed in Huang, Tarbali and Galasso (2020)), CAV presents
a much higher variability across the regions, with the Huang, Tarbali and Galasso (2020)
having the lowest range. As stated in Huang, Tarbali and Galasso (2020), this result is likely
a consequence of the one-stage algorithm (Ming et al., 2019) used in their study in contrast
to the classical two-stage approach (as followed in this thesis). Finally, ranges estimated for
the Amatrice and Norcia earthquakes are compared to those obtained by Costanzo (2018).
CAV and Ia show very similar outcomes, in agreement also with Foulser-Piggott and Goda
(2015). However, our results differ to those by Costanzo (2018) and the main causes can be
attributable to the different estimation process.

2.8 Conclusions

In this chapter, we aimed to provide insights into the spatial correlations of earthquake
ground-motion intensity measures. A number of studies, such as Park et al. (2007), Goda
and Atkinson (2009), Esposito and Iervolino (2011) and Verros et al. (2017), highlighted
the importance of considering such spatial correlations in seismic hazard and risk analysis,
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Figure 2.22: Comparison among different correlation models: a) PGV; b) CAV (solid
lines) and Ia (dashed lines). Black dashed line points out a level of correlation equal
to 0.05.

especially when the seismic risk of spatially distributed systems has to be evaluated.
Nevertheless, the correlation models proposed over the past two decades feature significant
discrepancies, which may lead to underestimation or overestimation of the assessed seismic
risk. Therefore, in this article, we critically summarised the main findings of previous
studies and we attempt to address the primary questions about ground-motion spatial
correlation.

We showed the two main approaches to estimate the spatial correlation of ground-motion
intensity measures. In principle, the implementation of either one or the other technique is
expected to provide similar results, as the semivariogram and the covariance are equivalent
for second-order stationary random fields. Nevertheless, in agreement with Goda and Hong
(2008) and Goda and Atkinson (2009), we find that the results slightly diverge. Concerning
the computation of the semivariogram, the robust estimator (Cressie) is understood to
be less sensitive to atypical observations, as demonstrated by Oliver and Webster (2014).
Therefore, we preferred using this estimator in contrast to the classic one throughout the
analyses, although the results from our simulations did not find any significant difference
between the two estimators. To fit experimental data, we advise prioritising those techniques
that weigh the shorter separation distances more highly, since these distances have a strong
impact on seismic hazard and risk assessments of spatially-distributed systems. At the
same time, we discourage adopting a manual fitting due to the high level of subjectivity
involved.

Similarly to Jayaram and Baker (2009) and Huang, Tarbali and Galasso (2020), we do
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not find any relationship between magnitude and correlation distance. We are aware that
the analysed dataset is limited in terms of magnitude range (Mw 4.0 to 6.5), so that firm
conclusions cannot be drawn on this aspect. However, we believe that magnitude itself
cannot explain the large variability of correlation distance values, especially when the same
region is considered. Thus, other source effects, such as directivity, azimuth and hanging
wall and footwall effects, should be accounted for, as outlined in Stafford et al. (2019) and
Chen and Baker (2019).

We found a positive correlation between the range and response-spectral period, as
expected from the literature. Small-scale heterogeneities in the travel path tend to affect less
the long-period waves, which turn out to be more correlated, compared to high-frequency
waves.

We analysed the dependency of the spatial correlation on local-soil conditions, illus-
trating that the influence of local-site effects and regional geology is period-dependent, as
demonstrated by several authors, such as Jayaram and Baker (2009), Du and Wang (2013)
and Infantino et al. (2018). The comparison between our analysis of data from Central
Italy and the work proposed by Huang and Galasso (2019) is significant. Firstly, it confirms
the hypothesis that the dependency of spatial correlation on site conditions in terms of
local-site effects decreases as the period increases. Secondly, it suggests that a single rate of
decay of the correlation as a function of the inter-site separation distance is not suitable
for seismic hazard and risk assessment, as the range appears to be regionally-dependent,
even though all the data came from the same country (Italy in this case). We believe that
region-specific spatial correlation models should be derived.

Furthermore, our results suggest that any suitable ground-motion model can be applied
in correlation studies, provided that the residuals do not exhibit significant trends or biases,
which might result in an apparent larger correlation. Therefore, a single correlation model
could be used in seismic hazard analysis even if many different GMPEs are employed
to estimate ground-motion parameters. However, as suggested by Sokolov et al. (2012),
implementing a logic tree for correlation models as already incorporated in probabilistic
seismic hazard assessments, should be encouraged to account for the high uncertainty in
spatial correlation models.

In agreement with Kuehn and Abrahamson (2020), Sgobba et al. (2021) and Chen et al.
(2021), we found that event- and site-corrected residuals, which are mostly influenced by path
effects, do not comply with the hypothesis of stationarity. We got around the problem by
modelling spatial trends through trend-surface models, calibrated on geographic coordinates.
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However, the spatial variation of the mean function may be better calibrated using more
appropriate parameters of the site and this aspect requires further analysis to draw more
firm conclusions. Alternatively, the approach proposed by Kuehn and Abrahamson (2020),
which directly includes the computation of a non-stationary covariance function, could be
used. We also found that the analysed residual components have different degrees of spatial
correlation, which may be related to the varying underlying physical processes, as suggested
by Foulser-Piggott and Goda (2015). Therefore, seismic hazard and risk analysis should
account for this variability.

Finally, we note that generally the models are poorly constrained at short separation
distances (less than 2 km), due to a shortage of observations (Goda and Atkinson, 2010;
Wagener et al., 2016). Results of ground motion simulations could provide better constraints
to further advance insights into the spatial correlation of ground motions.

Data and resources

The full dataset of strong-motion waveforms of the nine Mw ≥ 4.0 earthquakes of the
2016-2017 Central Italy sequences is available at the Engineering Strong Motion database
(ESM, http:// esm.mi.ingv.it , last accessed September 2019) and the Italian ACcelerometric
Archive (ITACA, http:// itaca.mi.ingv.it , last accessed September 2019). The full dataset
of recordings of the Mw ≥ 2.5 events of the 2016-2017 Central Italy sequences is available
at http:// cnt.rm.ingv.it/ (last accessed September 2019).
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CHAPTER 3

Spatial correlation of broadband
earthquake ground motion in Norcia

(Central Italy) from physics-based
simulations

Despite many researchers have aimed to identify the factors that most affect the spatial
dependency of earthquake ground motions over the last 20 years, there are still open-
questions to be solved, as criticised in chapter 2. The main causes lie with the shortage of
a large number of closely-spaced earthquake recordings and the possibility of having data
from controlled environments. In this context, physics-based ground motion simulations are
likely to provide an alternative way to further advance insights into the spatial correlation
of ground motions. As a matter of facts, this chapter investigates the spatial correlation
of response spectral accelerations from a set of broadband physics-based ground motion
simulations generated for the Norcia (Central Italy) area by means of the SPEED (SPectral
Elements in Elastodynamics with Discontinuous Galerkin) software. We produce several
ground-motion scenarios by varying either the slip distribution or the hypocentral location
as well as the magnitude to systematically explore the impact of such physical parameters on
spatial correlations. We extend our analysis to other ground-motion components (vertical,
fault-parallel, fault-normal) in addition to the more classic geometric mean to highlight
possible ground-motion directionality and therefore identify specific spatial correlation fea-
tures. Our analyses provide useful insights on the role of slip heterogeneities as well as the
relative position between hypocentre and slip asperities on the spatial correlation. Indeed,
we found a significant variability in terms of both range and sill among the considered
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case studies, suggesting that the spatial correlation is not only period-dependent, but also
scenario-dependent. Finally, our results reveal that the isotropy assumption may represent
an oversimplification especially in the near-field and thus it may be unsuitable for assessing
the seismic risk of spatially-distributed infrastructures and portfolios of buildings.

This chapter is based on the following published article:

1. Schiappapietra, E., & Smerzini, C. (2021). Spatial correlation of broadband earth-
quake ground motion in Norcia (Central Italy) from physics-based simulations. Bul-
leting of Earthquake Engineering. https:// doi.org/ 10.1007/ s10518-021-01160-7

3.1 Introduction

Standard tools for Probabilistic Seismic Hazard Assessment (PSHA) estimate the ground
motion due to an earthquake by means of Ground Motion Models (GMMs), which provide
the median and the associated aleatory variability of ground motion Intensity Measures
(IMs) as a function of source, path and site parameters for a given site. As GMMs
consider IMs at all sites as independent variables, they do not provide a description of the
correlation structure of ground motion IMs at multiple sites. The quantification of the
spatial correlation properties of ground motions is of fundamental importance for estimating
risks to spatially-distributed infrastructures and portfolios of buildings. For instance,
Iervolino (2013), Sokolov and Ismail-Zadeh (2016) and Sokolov and Wenzel (2019) showed
the differences between site-specific and multiple-site PSHA, underlining the importance of
considering regional hazard for the calculation of aggregate risk.

Despite the progressive increase of studies on spatial correlation in earthquake ground
motions over the last 20 years, debates on the factors affecting spatial correlation still
continue. In chapter 2, we provide a thorough literature review, critically exploring the
main facets of spatial correlation that need to be addressed. Among these aspects, we report
dependence on: (1) the estimation approach; (2) the fitting method; (3) the earthquake
magnitude (Mw); (4) the vibration period; (5) local site-effects; and (6) ground motion
prediction models. In this regard, a valuable contribution can be also found in Baker and
Chen (2020), who recently propose an alternative approach to assess the uncertainty in
spatial correlation models in terms of both true and estimation variability. These authors
suggest that differences in terms of true variability in correlation among well-recorded
and poorly-recorded events are negligible. On the contrary, the estimation uncertainty is

https://doi.org/10.1007/s10518-021-01160-7


Chapter 3. Spatial correlation of broadband earthquake ground motion in Norcia (Central Italy)
from physics-based simulations 55

inversely correlated to the number of available stations, as demonstrated also in chapter 2
and by Infantino et al. (2021). Moreover, spatial correlation models are usually grounded
on the hypothesis of stationarity and isotropy. Namely, the correlation between any pairs
of sites with equal separation distance is the same, independently of the source-to-site
distance and orientation (Diggle et al., 2007; Goovaerts et al., 1997). However, different
studies (e.g. Chen and Baker, 2019; Huang, Tarbali, Galasso and Paolucci, 2020; Infantino
et al., 2021) demonstrate the presence of anisotropy in spatial correlation, which tends
to be stronger for long-period IMs. Garakaninezhad and Bastami (2017) examined the
effects of focal mechanism, Vs,30 (time-averaged shear-wave velocity in the upper 30 m),
magnitude and hypocentral distance on the anisotropy ratio and angle, and reported a
positive correlation between the anisotropy ratio of high frequency IMs and that of Vs,30
as well as with Mw. Similar conclusions were also drawn by Abbasnejadfard et al. (2020).
While analysing correlation properties of integral IMs from the New Zealand strong motion
database, Bullock (2019) found ground motions correlated over longer distances in the
fault-parallel direction due to directivity effects and that such anisotropic properties were
more evident in normal and reverse faulting mechanism.

Our knowledge on the factors mostly affecting ground motion spatial correlations is
partially hampered by both the shortage of ground motion recordings and the possibility of
having sufficient data from specific environments. In this framework, 3D Physics-Based
ground motion Simulations (3D PBSs) could be employed to provide further insights into
earthquake ground motion spatial correlations. 3D PBSs provide spatially-distributed
estimates of region-specific ground motions, as they are based on sufficiently detailed models
of the seismic source, propagation path and near-surface geology. 3D PBSs enable issues
due to the lack of observations to be overcome, especially in the near-source region. They
also allow investigation of the impact of factors such as local-site conditions, magnitude,
slip distributions and hypocentral locations, on the spatial correlation in a detailed way
that is not feasible with earthquake recordings. Infantino et al. (2021) studied the spatial
correlations of broadband 3D PBSs for seven different case-studies (Po plain, L’Aquila,
Marsica, Sulmona, Norcia - Italy; Thessaloniki - Greece; Istanbul - Turkey) and found a
strong variability in terms of correlation lengths due to a strong dependence of the ground
motion spatial variability on both local-site and rupture-propagation effects. Stafford
et al. (2019) investigated the impact of source kinematics on spatial correlation using
finite difference simulations, demonstrating that the rupture process of scenarios of equal
magnitude contribute markedly to the correlation length variability. Likewise, Chen and
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Baker (2019), taking advantage of the CyberShake database, reported supporting evidence
of the impact of source and path effects on spatial correlation.

In this context, we use 3D broadband PBSs to address some of the still open questions
on earthquake ground motion spatial correlation. We choose the 3D PBS of the 30th

October Mw 6.5 Norcia (Central Italy) earthquake as a case study (Özcebe et al., 2019).
The authors generated the simulations through the spectral element code SPEED (http:
// speed.mox.polimi.it , Mazzieri et al. (2013)), which replenishes the frequency spectrum at
the high frequencies by using a novel method that makes use of Artificial Neural Networks
(Paolucci et al., 2018). The numerical code and its ability to reproduce ground motion
spatial correlations have already been validated in different studies (e.g Stupazzini et al.,
2009; Paolucci et al., 2016, 2015, 2018; Infantino et al., 2021). In addition to the 3D PBS of
theMw 6.5 Norcia event, we generate several scenarios by varying either the slip distribution
or the hypocentral location to explore different spatial correlation properties, such as the
dependency on the rupture process and magnitude. While relaxing the hypothesis of
isotropy, we explore possible preferential directions of the ground motion spatial variability
as well as the relationship of such directions with the source mechanism and frequency
content of the ground motion.

Furthermore, spatial correlation models are usually calibrated on the horizontal com-
ponent of the ground motion and little effort has been directed towards other components,
such as the fault-normal (FN) and the fault-parallel (FP) directions as well as the vertical
component (Garakaninezhad and Bastami, 2017; Infantino et al., 2021). In the near-field,
the ground motion is strongly affected by both the slip distribution and fault mechanism,
which can cause a significant polarization of the ground motion (Bray and Rodriguez-Marek,
2004). Somerville et al. (1997) demonstrated that the ratios between the FN and FP
components of the motion are larger than 1 in the proximity of the fault due to rupture
directivity effects. Consequently, we extend our studies to the vertical (Z), FN and FP
components, in addition to the horizontal one (defined as the geometric mean of the two
horizontal components, geoH), to identify diagnostic spatial correlation features for each
component.

3.2 3D Physics-based ground motion simulations

In recent years, major advances in parallel high-performance computational resources
have allowed the development of high-order numerical methods to model the seismic response

http://speed.mox.polimi.it
http://speed.mox.polimi.it
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of 3D heterogeneous media under realistic tectonic and geomorphological conditions. 3D
PBSs embody physical and sufficiently accurate models of the seismic source, path and
local-site effects to provide region-specific earthquake ground motion predictions. These
estimates are, however, reliable only in the low-frequency spectrum (up to 1-1.5 Hz) due
to the current limitations in: (1) computational capabilities and (2) detailed knowledge of
the geological medium that would enable modelling the propagation of short wavelengths.
In this study, we use the spectral element code SPEED to generate spatially distributed
broadband ground motions for different scenarios. SPEED is designed to solve 3D seismic
wave propagation problems in complex heterogeneous media. Its main advantage lies on its
capability to generate realistic broadband ground motion waveforms by means of a novel
approach based on Artificial Neural Networks (Paolucci et al., 2018).

3.2.1 3D Numerical modelling

3D numerical simulations require three main inputs: (1) a crustal velocity model, (2)
a geotechnical model of local shallow geological structures (e.g. the Norcia basin), and
(3) a kinematic slip distribution along the causative fault. The numerical model of the
Norcia area (Figure 3.1) was produced in a previous project and the reader should refer to
Özcebe et al. (2019) for further details. We note here that the geological model used in the
simulations is rather simplified owing to the lack of a 3D crustal velocity model of the area
under study. Nonetheless, the results of the 3D PBS for the Norcia case were compared
against the available recordings and geodetic measurements to test the goodness of fit of
the simulated data. While using the same crustal velocity model and geotechnical setting
throughout the analysis, we implement different kinematic source models to allow for the
magnitude, slip distribution and hypocentre location to vary among the considered scenarios.
The full set of source parameters for the different case studies are given in section 3.2.3.
The final spectral element computational domain of the Norcia area, which includes the
source and velocity models as well as the surface topography (Figure 3.1a), extends over
an area of 40× 50× 21 km3 and consists of more than 350,000 hexahedral elements of 3rd

order. Such a configuration allows propagating seismic waves with a maximum reliable
frequency of 1.5 Hz.
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Figure 3.1: Study area: (a) topography model; (b) shear-wave velocity model; (c)
sediment thickness model. Yellow stars indicate the epicentre (Mw 6.5 Norcia event),
whereas the black rectangles define the surface fault projection.

3.2.2 ANN2BB: Broadband ground motions

Broadband ground motions are generated by combining the results of long-period PBSs
with predictions of an Artificial Neural Network (ANN) trained on set of strong motion
records. Such an approach, referred to as ANN2BB, has three main steps. First, an ANN
is trained on a dataset of ground motion recordings (in our case SIMBAD v6.0, which
includes also the Mw 6.5 Norcia observations, updated since Smerzini et al. (2014)) to
predict the short-period (T≤ T ∗) spectral ordinates based on the long-period ones (T > T ∗);
T ∗ indicates the threshold period below which ground motions from PBSs are not accurate.
Second, the trained ANN is applied to estimate short-period response spectral ordinates for
periods below T ∗. Third, a broadband waveform is constructed by combing the long-period
PBS with a linearly scaled stochastic signal, such that the corresponding response spectrum
approaches the ANN target spectrum at short periods. One of the main advantages of the
ANN2BB procedure, compared to standard hybrid approaches, is its ability to simulate the
specificity of the ground motion of the study area, particularly at shorter periods, and to
preserve the ground motion spatial correlation properties at high frequencies. This is made
possible by the correlation between short- and long-periods, as retrieved from the training
dataset of earthquake recordings, on which this approach is based. The reader should refer
to Paolucci et al. (2018) for further details on the ANN2BB methodology and its validation
tests and to Infantino et al. (2021) for systematic analyses that demonstrate the capability
of this approach to portray spatial correlation features.
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3.2.3 Case-studies

In the present study, we investigate the 30th October 2016 Mw 6.5 Norcia earthquake
simulation and ten different hypothetical scenarios obtained by varying the magnitude
(from Mw 4.0 up to Mw 6.5), the kinematic slip distribution and the hypocentral location.
While all the scenarios (except for the Mw4.0_S001) share the same fault geometry in the
numerical model (namely a fault with a dip angle of 40° and a strike of 161°), different fault
rupture scenarios are employed. A summary of the different source parameters is given in
Table 3.1.

Table 3.1: Summary of the source parameters of the different simulated scenarios.
For the Norcia event (first row), the source is taken from the source inversion model
proposed by Pizzi et al. (2017), whereas HB94 refers to the kinematic source rupture
generator of Herrero and Bernard (1994).

Case study ID Mw Epicentre
Depth
(km)

Vrup
(m/s) Rise time (s) Source

Fault
rupture
width
(km)

Fault
rupture
length
(km)

Norcia event S001 6.5 42.84°N
13.11°E

6.3 1700 Randomized
around 0.7

Pizzi et al.
(2017)

9 24

Hypothetical S002 6.5 42.84°N
13.11°E

6.3 1700 Randomized
around 0.5

HB94 11 21

Hypothetical S003 6.5 42.89°N
13.15°E

2.5 1700 Randomized
around 0.5

HB94 11 21

Hypothetical S004 6.5 42.81°N
13.19°E

2.5 1700 Randomized
around 0.5

HB94 11 21

Hypothetical S005 6.5 42.73°N
13.23°E

2.5 1700 Randomized
around 0.5

HB94 11 21

Hypothetical S006 6.5 42.87°N
13.07°E

8.3 1700 Randomized
around 0.5

HB94 11 21

Hypothetical S007 6.5 42.79°N
13.11°E

8.3 1700 Randomized
around 0.5

HB94 11 21

Hypothetical S008 6.5 42.71°N
13.15°E

8.3 1700 Randomized
around 0.5

HB94 11 21

Hypothetical S001 6 42.76°N
13.15°E

6.7 1700 Randomized
around 0.5

HB94 9 12

Hypothetical S001 5.5 42.89°N
13.07°E

7.8 1700 Randomized
around 0.5

HB94 6 5

Hypothetical S001 4 42.84°N
13.11°E

6.3 - 0.4 Point
source

- -
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Regarding the Mw6.5_S001 scenario (simulation of the Norcia event), preliminary ana-
lyses have been carried out by Özcebe et al. (2019) to test different source slip distributions
from available fault inversion studies. We adopt the slip distribution (Figure 3.2a) along
with the fault geometry and hypocentral location proposed by Pizzi et al. (2017), as it is
found to be the best performing in a comparison between observations and predictions.
Other parameters, such as rupture velocity and rise time, are determined through sensitivity
analyses to assess the impact of the modelling assumptions on the final outcomes. All
the other scenarios (except Mw4.0_S001) assume the kinematic source model proposed
by Herrero and Bernard (1994) (referred to as HB94), according to the target magnitude
and fault type (Figure 3.2 b,c,d). For each HB94 source model, the rise time is randomized
around a mean value of 0.5 s; however, scenarios from S002 to S008 share the same rise
time field so that the hypocentral location is the only varying parameters. Figure 3.3
shows the slip distribution along the causative fault together with the hypocentral locations
of scenarios S002-S008, whereas Figure 3.4 presents the distribution of the rupture time.
Such hypocentral configurations are intended to investigate rupture propagation effects
on the ground motion spatial correlation. Finally, the Mw4.0_S001 scenario assumes a
double-couple point-source, with a hypocentre located at the same location as scenarios
Mw6.5_S001 and Mw6.5_S002. The aim of such a configuration is two-fold: (1) to explore
the dependence of the spatial correlation on the magnitude, considering a broad magnitude
interval, and (2) to investigate the effect on the spatial correlation of an extended fault
compared to a point source.
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Figure 3.2: Slip distribution along the causative fault. (a) Pizzi et al. (2017); (b)
HB94 model for the Mw 6.5 scenario; (c) HB94 model for the Mw 6.0 scenario;
(d) HB94 model for the Mw 5.5 scenario. Yellow stars represent the hypocentral
locations, whereas the largest rectangles indicate the maximum dimension of the
fault (36km × 13km). The smallest rectangles represent the ruptured faults, where
the slip asperities (regions of very high slip) are concentred.
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Figure 3.3: Slip distribution along the causative fault (Mw 6.5) along with the hypo-
central locations of scenarios S002-S008.
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Figure 3.4: Rupture time distribution on the causative fault for scenarios
Mw6.5_S002-S008. The scenarios have the same slip distribution, but feature differ-
ent hypocentral locations. The position of the hypocentre is pointed out by a yellow
star.
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3.3 Ground motion spatial correlation modelling

In geostatistical analysis, the most common tool adopted to represent the correlation
structure between spatially distributed IMs is the experimental semivariogram, which
measures the average dissimilarity of a pair of random variables separated by an inter-site
distance h. The semivariogram is defined as:

γ̂ (h) =
1

2
Var[εij − εik] (3.1)

where Var indicates the variance and εij is the within-event residual representing the
misfit between the observed ground motion at an individual site j(k) due to an earthquake
and the event-specific average GMM caused by path and local-site effects. In this study,
we calibrate data-driven GMMs based on the simulated datasets for each ground motion
component and different IMs, such as the peak ground acceleration (PGA) and 5%-damped
spectral accelerations (SA) at 16 oscillator periods between 0.1 and 5 s. We perform a
sensitivity test on the GMM functional form to both find the most physically representative
average model and thus avoid bias. Similar analyses where carried out by Infantino et al.
(2021) for the Po Plain (Italy) case-study. These authors demonstrated how the calibration
of an appropriate GMM is a crucial step to both obtain robust estimates of the correlation
model parameters and avoid the application of further techniques (e.g., the detrending) to
get stable semivariograms. We thus adopt the following model:

log10 Ȳ ij = b1 − b2 log10 (Rline + b3) + b4 log10

(
Vs,30
800

)
+ b5HW (3.2)

where b1 . . . b5 are the model coefficients inferred through a one-stage non-linear regres-
sion; HW is a dummy variable introduced to specify if the site is located on the hanging wall
(HW = 1) or on the footwall (HW = 0) side of the fault; Rline is the closest distance from
the surface fault projection of the segment at the top edge of the rupture plan (Hashemi
et al., 2015). In contrast to the standard distance metrics used for GMMs, such as the
Joyner-Boore and rupture distances, we prefer using the Rline, as it is found to be more
efficient (i.e. lower dispersion) in describing the near-source ground motion (e.g. Paolucci
et al., 2016). We introduce the HW term to simply account for near-field effects due to
both the slip distribution and directivity, which otherwise would require a more complex
functional form. We assess the goodness-of-fit of the GMMs through visual inspection of the
residuals, computed as the logarithm (log10) misfit between observations and predictions,
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with respect to the predictor variables and a Quantile-Quantile (QQ) plot of the residuals.
An example is shown in Figure 3.5.

Figure 3.5: Spectral acceleration at T = 2 s of the FP component: (a) Ground motion
data and fitted GMMs; (b) residuals as a function of Rline; (c) QQ plot of residuals.
Grey dots represent stations on the footwall for rock soil condition and the grey line
indicates the corresponding GMM; Green dots represent stations on the hanging wall
for rock soil condition and the green line indicates the corresponding GMM; Orange
dots represent station on the hanging wall for basin soil condition and the orange line
indicates the corresponding GMM. The figure shows the results obtained considering
the Mw6.5_S001 scenario (30th October 2016 Norcia event).

To assess the spatial correlation structure on the residual fields, the main steps are: (1)
computing the experimental semivariogram (Eq. 3.1) through either the method of moments
(Matheron, 1962) or the estimator proposed by Cressie (1985), (2) choosing a parametric
function (e.g. exponential and spherical models) to fit the sample semivariogram, and (3)
estimating the parameters of the correlation models, namely the sill (i.e. the variance of the
data) and the range (i.e. the distance beyond which the spatial dependency between pairs of
sites is negligible) through a least-squares regression (Figure 3.6). In the present study, after
having shown that both the estimators provide comparable outcomes, we use the classic
estimator based on the method of moments to compute the experimental semivariogram:

γ̂ (h) =
1

2N (h)

∑
N(h)

{εij − εik}2 (3.3)

where γ̂ (h) represents the empirical semivariogram and N(h) is the number of pairs of
sites with an inter-site spacing given by h. We select a maximum separation distance of
25 km and an inter-site bin width of 1 km, which results in an average value of N(h) of
about 2 million in the first 10 bins and thus in well-constrained semivariances. We opt
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for an exponential function to model the correlation structure, as it is the most widely
adopted and best performing functional form in seismology applications. However, we also
implement the spherical model for some IMs because both the visual inspection of the fits
and the sum of the squared errors reveals a better performance compared to the exponential
model (Figure 3.6b).

Figure 3.6: Experimental semivariogram and corresponding exponential and spherical
models: (a) SA (T = 1.5 s) Z component; (b) SA (T = 4 s) Z component. Black dots
represent the experimental semivariogram estimates for each distance bin, whereas
dashed lines are the fitted models. The figure shows the results obtained considering
the Mw6.5_S001 scenario (30th October 2016 Norcia event). In this example, we
choose the exponential model for SA (T = 1.5 s) and the spherical model for SA (T
= 4 s).

In most articles, it is assumed that the correlation is isotropic and hence its properties
are only a function of distance and not of direction. However, this hypothesis may not
always hold, and the pattern of spatial variability may vary with direction. The anisotropy
can be either geometric or zonal. In the first case, the directional semivariograms feature
the same sill, but different range depending on the relative orientation between pairs of
sites; in the latter case, the sill varies with direction (e.g. Goovaerts et al., 1997; Oliver
and Webster, 2014). Either directional semivariograms or variogram maps can be used
to investigate anisotropic properties of the spatial correlation, as shown in Figure 3.7.
Directional semivariograms are computed for each pair of sites whose inter-site spacing falls
not only in a specified distance range but also in a precise azimuth bin. We investigate
common directions, such as NS and EW, and fix an azimuth tolerance of only 10◦. This
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was made possible by the wealth of data obtained from the simulations. A variogram
map (see Figure 3.7b) displays the semivariance contribution of each pair considering
simultaneously all distance and azimuth bins. Concentric contour plots imply an isotropic
variation, whereas patchier distributions reflect anisotropic patterns in correlation. Any
cross section of the map corresponds to the more familiar one-dimensional semivariogram.
Alternatively, nonparametric tests (e.g. Garakaninezhad and Bastami, 2017; Huang, Tarbali,
Galasso and Paolucci, 2020) can be employed to quantitatively assess anisotropy.

Figure 3.7: (a) directional semivariograms computed for different directions: 0 - NS,
45 - NE-SW, 71 - FN, 90 - EW, 135 - NW-SE, 161 - FP; (b) Variogram map. The
black dashed arrow indicates the NS direction. The figure shows the results obtained
considering the Mw6.5_S001 scenario (30th October 2016 Norcia event).

Furthermore, the hypothesis of stationarity may not be valid due to specific source
and path effects, as suggested by Chen and Baker (2019) and Infantino et al. (2021). In
such situations, the semivariogram tends to increase indefinitely without levelling off at a
constant sill value and the random variables (e.g. within-event residuals) exhibit a gradual
variation in space (Figure 3.8a) that masks potential small-range correlation structure.
Trend surface models are commonly adopted to model spatial trends and thus remove
large-scale correlation patterns, leading to a patchier distribution of the random variable
(Figure 3.8b) (Oliver and Webster, 2014). We implement such an approach in all those cases
where the GMM is not able to sufficiently describe the ground motion median behaviour
and capture specific features, such as rupture propagation and path effects. Alternatively,
nonparametric isotropic GMMs calibrated as a function of few explanatory variables by
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using other regression techniques, such as LOESS (locally estimated scatterplot smoothing),
could be used to potentially avoid this problem.

Figure 3.8: Spatial variation of within-event residuals of SA (FP) at T = 4 s: (a)
Raw data showing a gradual variation of the residual values; (b) detrended data
featuring a patchier distribution. Yellow star indicates the epicentre (Mw 6.5 Norcia
event), whereas the grey and black rectangles are the surface fault projection and the
effective surface fault projection, respectively. The figure shows the results obtained
considering the Mw6.5_S001 scenario (30th October 2016 Norcia event).

3.4 Results

3.4.1 Mw 6.5 Norcia earthquake simulation

3.4.1.1 Comparison with recordings

The 30th October 2016Mw 6.5 Norcia earthquake was recorded by more than 100 stations,
belonging to both permanent and temporary seismic networks, within an epicentral distance
of 200 km (Luzi et al., 2019). The uniqueness of this dataset lies on the availability of 36
near-source recordings at epicentral distances less than 30 km (Figure 3.9d). We compute
experimental semivariograms using the data from both simulations and observations and
compare them to assess the capability of 3D PBSs and ANN2BB to generate spatially
correlated ground motion fields accounting for the actual correlation structure. Recordings
and station-metadata are from the Engineering Strong Motion database (ESM, https:
// esm-db.eu/ ). Infantino et al. (2021) perform similar comparisons for the Po Plain

https://esm-db.eu/
https://esm-db.eu/
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(Northern Italy) case study, finding a good agreement between sample semivariograms
obtained from observations and simulations over a broad range of periods. As shown in
Figure 3.9 (a,b,c), the Norcia case-study does not show such satisfactory agreement. We
propose three possible reasons for this. First, the numerical model does not describe all the
small-scale irregularities of the geo-tectonic structure, making the ground motion prone
to be less variable. Indeed, the geological model used in the simulations is rather simple,
due to the lack of available 3D crustal velocity models of the area (in contrast to the Po
Plain case study). Second, 34 out of 36 location selected in the numerical model have a
constant Vs30 equal to 1700 m/s, whereas the ESM stations feature different Vs30 with an
average of about 650 m/s (Figure 3.9d); most of the simulated data are thus located on
homogeneous hard rock that undeniably makes the ground motion more correlated. Third,
source models are retrieved through finite-fault inversions and are usually calibrated on very
low frequency ranges (e.g. Pizzi et al., 2017). As a consequence, source models lack that
intrinsic complexity that is inherent in the real world and, in turn, the resulting ground
motion features a less variability, affecting both the sill and range. Nonetheless, we note
that our results show a realistic trend of the semivariogram, as the semivariances increase
with increasing separation distances until they level off at a constant sill value. Therefore,
such comparison supports the ability of 3D PBS along with the ANN2BB approach to
reproduce the ground motion spatial correlation structure, as already corroborated by
systematic analyses reported in Infantino et al. (2021).

3.4.1.2 Ground motion directionality

In the present study, in addition to the geoH horizontal component, we also present
results for other components to identify diagnostic spatial correlation features. Figure 3.10
illustrates the range and the sill as a function of the oscillator period for the different
ground motion components. First, we find that the spatial correlation structure in terms of
the range is generally proportional to the considered period, as also observed in chapter 2.
This applies to the FN and Z components, whereas the trend is less evident for the FP and
geoH ones. Besides, our results show that the correlation between range and period is not
well defined at shorter periods (T < 0.5s), as found in other studies, such as Esposito and
Iervolino (2012) and Wagener et al. (2016). Figure 3.10b suggests that the sill is similarly
affected by the vibration period. This result is noteworthy, as it is common practice to work
with normalized residuals and therefore the sill is not estimated, being equal to 1. Similar
outcomes are provided in Sgobba et al. (2019, 2021), who estimated the range and sill of
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Figure 3.9: (a) Experimental semivariograms obtained by using the ANN2BB ap-
proach (Predictions) and observed recordings for PGA; (b) Experimental semivari-
ograms for SA (T = 2s); (c) Experimental semivariograms for SA (T = 5 s); (d)
Spatial distribution of the seismic stations (epicentral distance < 30 km) that recor-
ded the Norcia event. Dots are color-coded based on the Vs30 values. The red star
is the epicentre, whereas the black rectangle represents the projected fault surface.
[Data are from https://esm-db.eu/ ].

the source-, path- and site-corrective terms of the ground motion model specific for the Po
Plain and central Italy regions, respectively. Secondly, the FN sill and range values tend to
be larger than the FP ones over a broad range of periods, in agreement with Infantino et al.
(2021), who investigated the FN/FP ratios for 6 different 3D PBSs. This is related to the

https://esm-db.eu/
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fact that the FN component is typically strongly affected by directivity effects, which cause
the ground motion to be more coherent and thus correlated over longer distances compared
to the FP. Indeed, the normal fault mechanism along with the slip distribution, which
is characterized by a slip asperity (regions of very high slip) close to the top edge of the
fault (Figure 3.2a), causes a focusing of the seismic energy from the propagating rupture
front along the up-dip direction. Besides, the differences in terms of range and sill rise
with increasing period (T >2.5s) as a consequence of directivity effects, being predominant
at longer periods. The same applies to the sill, which is strongly influenced by the slip
asperities. Likewise, the vertical component shows remarkable directivity effects due to the
focal mechanism, which is normal faulting with a dip of 40°. The Z component is indeed
characterized by larger range and sill values across almost all periods. To better explain
these outcomes, we show the ground motion maps for SA (T=3s) in Figure 3.11. Not only
does the vertical component feature homogeneous maximum peak values distributed over a
more extended area, but also higher variability in terms of peak values. As a consequence,
the resulting ground motion is correlated over longer distances (larger range values) and
is characterized by a larger sill with respect to the other components. Finally, it is noted
that the spherical model provides a better performance at long periods (T = 4 and 5 s)
for all the components; this leads to slightly smaller ranges compared to the exponential
functional form.

Figure 3.10: (a) Range as a function of the period T for different ground motion
components; (b) sill as a function of the period T for different ground motion com-
ponents..
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Figure 3.11: Ground motion maps for SA (T = 3s): (a) geometric mean component;
(b) FN component; (c) vertical component; and (d) FP component.

3.4.1.3 Spatial correlation anisotropic properties

We relax herein the assumption of isotropy and we compute directional semivariograms
for the following azimuths: (1) 0° (North); (2) 45° (North-East); (3) 71° (FN - normal to
the fault strike); (4) 90° (East); (5) 135° (South-East); (6) 161° (FP - parallel to the fault
strike). It is recalled that directions between 180° and 360° provide the same results because
of the symmetric property of the semivariogram (Webster and Oliver, 2007). Figure 3.12
and Figure 3.13 present the range and sill, respectively, as a function of period in terms of
average values computed over the different directions along with their standard deviations.
There is considerable variability across all periods in terms of both sill and range, meaning
that the hypothesis of isotropy is not suitable for any ground-motion component. We
also show the trends in the FN and FP directions, highlighting how the former represents
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a rough lower bound, whereas the latter constitutes an upper bound. This is a rather
remarkable but expected result. While the FN direction is mainly affected by the faulting
mechanism, rupture directionality effects have a strong impact on the FP direction, leading
to more coherent (larger range) and more variable (higher sill) ground motions. Such an
observation is also made by Sgobba et al. (2021). While applying their novel methodology
to produce non-ergodic shaking scenarios for the Mw 6.5 Norcia case-study, the authors
identify a strong azimuthal dependence due to rupture directivity along the strike direction.
This is likely connected to the main tectonic features of the Apennines region, where faults
mostly follow a NW-SE trend. Finally, the FN over FP range ratio shows that on average
the FN component is correlated over longer distances compared to the FP one due to strong
directivity effects, especially at longer periods, as found for the isotropic case (Figure 3.10).

Figure 3.12: Average range values, computed in the different directions, as a function
of the period T. (a) Geometric mean component; (b) vertical component; and (c) FN
over FP components ratio. The grey area represents the mean ± standard deviation.
The FN-direction and FP-direction range values as a function of T are also reported
on the graphs.

Finally, for the sake of completeness, we present in Figure 3.14 the experimental
semivariograms and the corresponding models obtained along the FN and FP directions
for SA (T=3s). Clearly, the semivariogram in the FP direction has a larger sill and range
compared to the one in the FN direction.
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Figure 3.13: Same as in Figure 3.12 but in terms of sill values, computed in the
different directions, as a function of the period T.

Figure 3.14: Directional semivariograms for SA (T = 3s) for the geometric mean
component. Dots and squares represent the experimental semivariograms computed
considering azimuths of 71° (FN) and 161° (FP), respectively. Solid lines represent
the corresponding models.

3.4.2 Dependence of spatial correlation on source effects

3.4.2.1 Earthquake magnitude

The relationship between magnitude and range has been extensively studied by several
authors but it is still under debate (see also chapter 2). Indeed, the database heterogeneity
in terms of, for example, fault mechanism and geometry, stress drop as well as regional
and local-site conditions, may contribute to the variability in the range in addition to
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the effect of magnitude. To deepen our knowledge on this topic, we carry out different
3D PBSs by varying the magnitude while keeping the same causative fault. Although a
clearer dependency of the range on the magnitude is evident when larger Mw differences
are considered (e.g. Mw 6.5 Vs. Mw 5.5 - 4.0), Figure 3.15 suggests that there is not
a unique and well-defined trend between magnitude and range for any component and
therefore other factors, such as the rupture process, should be considered to explain the
range variability. While larger events should feature larger correlation lengths because of
their lower frequency energy content, we believe that this is true only in the far-field where
the point-source assumption can be deemed valid. In the near-field, the effect of the fault
extension along with the intrinsic variability of the rupture mechanism are found to play
a crucial role in determining the correlation. A more heterogeneous slip distribution on
a larger fault may reduce the coherency of the ground motion, leading to smaller range
values. At the same time, more homogeneous slip asperities on the fault plane may induce a
ground motion correlated over longer distances. Such assumptions could explain the trend
of the Mw 4.0 scenario; although its range values are relatively small, it provides correlation
lengths as large as those of the higher-magnitude scenarios. Similar thoughts can be found
in Stafford et al. (2019). Indeed, while investigating the impact of the rupture process on
spatial correlations using finite difference simulations, Stafford et al. (2019) found a negative
correlation between magnitude and range, with Mw 3.0 scenarios having on average a larger
range compared to the Mw 6.0 ones. Besides the distribution of the slip asperities on the
fault, rupture propagation phenomena coupled with the morphology of the basin as well as
the topography may give rise to a higher range variability, masking the real dependency of
spatial correlations on magnitude.

The sill seems to be correlated to both the slip asperities, which contribute to the intrinsic
variability, and the relative position of such asperities with respect to the hypocentre. In
Figure 3.16, we observe that the Mw6.5_S001 scenario generally gives the highest sill
values across all periods and for any component. We do not find any particular trends with
magnitude for the geoH and FP components, where the sill values are rather comparable
across all the scenarios. Conversely, we note some magnitude dependency for the Z and
FN components, for which the fault mechanism and directivity effects, in addition to the
magnitude, play a significant role in determining the variability of the ground motion.
Finally, we recall that the slip distributions of Mw6.5_S002, Mw6.0_S001, Mw5.5_S001
and Mw4.0_S001 scenarios stem from the rupture generator by Herrero and Bernard (1994),
whereas the source model of Pizzi et al. (2017) was used for the Mw6.5_S001 scenario.
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Figure 3.15: Range as a function of the period T for different Mw scenarios: (a)
Geometric mean component; (b) FN component; (c) vertical component; and (d) FP
components.

This may contribute to the similarity in terms of sill values of the former.

3.4.2.2 Slip distribution

We examine herein the role of the slip distribution by considering two ground shaking
scenarios which, while having the same magnitude, hypocentre and causative fault, have
different source models (Mw6.5_S001-S002). The impact of the source model is clearly
evident in Figure 3.17, in which the maps of ground shaking are presented for SA(T=2s)
and for the Z and FN components. In scenario S001, the slip distribution has a large, more
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Figure 3.16: Sill as a function of the period T for different Mw scenarios: (a) Geo-
metric mean component; (b) FN component; (c) vertical component; and (d) FP
components.

homogeneous slip asperity close to the top edge of the fault, which is located along the
path from the hypocentre towards the footwall side. Large peak values are thus generated
at all sites located in the up-dip projection of the fault (Figure 3.17 a,c), leading to more
coherent ground motions. This is further highlighted by the range and sill ratios computed
as S001/S002 and presented in Figure 3.18. In general, scenario S001 features ground
motions correlated over longer distances and with a higher variability over a broad period
range for all ground-motion components, except for FN, with respect to scenario S002. The
different behaviour of the FN component is evident from Figure 3.17b. The S002 scenario
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is characterized by a bilateral rupture, which tends to enlarge the area characterized by
more homogeneous higher ground motion amplitudes. Therefore, the ground motion has a
correlation structure with a larger correlation length. Our outcomes are consistent with
Stafford et al. (2019), who demonstrated how the rupture process of scenarios with equal
magnitudes have a pronounced impact on the range variability. Similarly, Chen and Baker
(2019) and Infantino et al. (2021) identified different spatial patterns of the correlation
coefficient exclusively because of slip distribution and source propagation effects.

Figure 3.17: SA (T = 2s ) Ground motion maps for Mw6.5_S001 (left panel) and
Mw6.5_S002 (right panel) scenarios: (a) and (b) FN component; and (c) and (d)
vertical component.
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Figure 3.18: Ratio between Mw6.5_S001 and Mw6.5_S002: (a) range values; and
(b) sill values.

3.4.2.3 Hypocentral locations

The relative position between slip asperities and the hypocentre is a key element that
has a strong influence on the spatial correlation structure of earthquake ground motions.
Here, we address the role of the hypocentral location by considering scenarios S002-S008,
which differ solely in terms of their nucleation points. Figure 3.19 shows that we cannot
identify a unique correlation trend between the FN and FP components. The lack of
such tendency is attributable to the relative position between the slip asperity and the
hypocentre which determines the size of the directivity effects. For instance, in scenarios
S004, S005, S007 and S008 the path from the nucleation point to the main slip asperity
follows a fault-parallel direction, causing a polarization of the FP ground motion, compared
to the FN. As a result, the latter shows a correlation structure with a smaller correlation
length across almost all periods. The S006 hypocentre is located close to that of scenario
S002 and similarly it shows a significant directivity for the FN component. At the same
time, rupture propagation effects along the FP components are marked. The combination
of these effects leads to a similar correlation structure of the FN and FP in terms of range
values. Finally, the S003 hypocentre is symmetrical to that of scenario S002 with respect
to the main slip asperity; therefore, the rupture propagates in the opposite direction (i.e.
towards the asperity) causing considerable ‘backward’directivity effects and leading to a
correlated FN component over longer distances compared to the FP.

We further test the effects of the hypocentre location on spatial correlation by looking at
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Figure 3.19: Ratio of FN/FP range for the different scenarios with varying hypocent-
ral location.

possible anisotropy patterns. Figure 3.20a and Figure 3.20b compare the average range and
sill values computed for the various scenarios for each azimuthal direction, respectively. For
the sake of clarity, we plot on a different graph (Figure 3.20 c,d) the standard deviations
of the range and sill values for each considered direction. Four main observations can be
highlighted. First, the average range and sill values tend to increase with increasing period,
independently of the azimuth. Second, the range and sill in the FP direction represent
an upper bound, whereas those in the FN direction constitute a lower bound; rupture
propagation effects along the FP direction prevail over directivity effects along the FN
direction, thus leading to patterns of ground motion spatial variability with preferential
direction along the strike of the fault. Such a phenomenon is evident in Figure 3.21, which
shows the ground motion shaking of the spectral acceleration (geoH) at T = 2s for each
scenario. Similar outcomes were found by Garakaninezhad and Bastami (2017) especially
for strike-slip mechanisms. Third, there is higher variability in terms of both range and
sill along the FP direction compared to the FN one. While the latter is mostly influenced
by the focal mechanism, which is the same for all the scenarios, the former is strongly
sensitive to both the rupture propagation and hypocentral location, which vary among
the case-studies. As a result, the FP direction, besides having larger range and sill values,
features also a larger variability due to the rupture process. Fourth, the variability across all



Chapter 3. Spatial correlation of broadband earthquake ground motion in Norcia (Central Italy)
from physics-based simulations 81

scenarios both in terms of range and sill tends to increase with increasing periods, meaning
that the impact of rupture propagation phenomena on spatial correlations is stronger at
longer periods. These results refer to the geometric mean component; however, similar
outcomes are obtained for the other ground-motion components, as it can be observed in
Figure 3.22, 3.23 and 3.24.

Figure 3.20: (a) Average and (c) standard deviation range values computed for scen-
arios Mw6.5_S001-S008 for the different azimuth directions; (b) Average and (d)
standard deviation sill values computed for scenarios Mw6.5_S001-S008 for the dif-
ferent azimuth directions.
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Figure 3.21: Ground motion maps of the GeoH spectral acceleration at 2 s [SA
(T=2s)] for scenarios Mw6.5_S002-S008: (a) S003; (b) S004; (c) S005; (d) S006; (e)
S007; (f) S008; (g) S002. The epicentral location is pointed out by a yellow star. The
black rectangle represents the surface projection of the fault.
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Figure 3.22: a) Average and (c) standard deviation range values computed on scenario
Mw6.5_S001-S008 for the different azimuth directions; (b) Average and (d) stand-
ard deviation sill values computed on scenario Mw6.5_S001-S008 for the different
azimuth directions. Results are for the FN component.

3.4.2.4 Finite fault Vs. point-source

We mentioned in section 3.4.2.1 that the effect of a finite fault can be significant in
defining the correlation structure in the near-field. Here, we explore spatial correlation
patterns caused by a point-source. Because of the spherical propagation from the nucleation
point, we would expect a more isotropic ground motion field. However, Figure 3.25 shows
significant spatial anisotropies in the correlation of the Mw4.0_S001 scenario, especially
for the vertical component. Similarly to Figure 3.12 and Figure 3.13, Figure 3.25 presents
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Figure 3.23: (a) Average and (c) standard deviation range values computed on scen-
ario Mw6.5_S001-S008 for the different azimuth directions; (b) Average and (d)
standard deviation sill values computed on scenario Mw6.5_S001-S008 for the differ-
ent azimuth directions. Results are for the FP component.

the range and sill as a function of the period in terms of average values computed for the
different directions along with their standard deviations. We believe that such anisotropic
effects are likely caused by the radiation pattern, which may exhibit a distorted four-lobed
pattern due to propagation in the heterogenous medium. When dealing with finite faults,
this effect is also coupled with the rupture propagation on the fault plane; therefore,
considering an isotropic, rather than an anisotropic, spatial correlation model may be a
major simplification.

Furthermore, ground motion shaking maps (Figure 3.26) suggest that topographic
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Figure 3.24: (a) Average and (c) standard deviation range values computed on scen-
ario Mw6.5_S001-S008 for the different azimuth directions; (b) Average and (d)
standard deviation sill values computed on scenario Mw6.5_S001-S008 for the differ-
ent azimuth directions. Results are for the Z component.

amplifications may significantly contribute to spatial anisotropy patterns in addition to the
radiation pattern. Topographic effects are indeed not negligible in the numerical model
(Figure 3.1a). Finally, the sill shows a less pronounced variability, especially for the geoH
component ( Figure 3.25b). This is reasonable since the sill seems to be significantly coupled
with the slip asperities, that contribute to the intrinsic variability of the ground motion. In
this case-study, the slip is concentrated at a source-point and therefore does not feature the
inherent heterogeneity of the finite fault.
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Figure 3.25: Average range (a) and sill (b) values computed on the different azimuth
directions for the Mw4.0 point-source scenario. The shadow areas represent the mean
± standard deviation.

3.5 Conclusions

In this study, we explored the spatial correlation structure of response spectral accelera-
tions from a set of broadband physics-based ground motion simulations generated for the
Norcia (Central Italy) area. We use classic geostatistical tools, such as the semivariogram,
to evaluate properties of the ground motion spatial correlation under both the assumptions
of isotropy and anisotropy with a level of detail which could not be achieved by using
recordings. Indeed, semivariance estimates are well-constrained despite the relatively small
bin-width and azimuth tolerance used in computing the semivariograms.

It is widely recognized in literature that a positive correlation exists between range and
period of interest. Not only are our results in agreement with such statement, but we also
demonstrate that the sill also tends to increase as the period increases. This result is rather
interesting, as it is common practice to work with normalized residuals so that the sill is
not directly estimated.

In the near-source region, the polarization of the ground motion can be significant with
larger FN and Z peak values due to directivity effects. We, therefore, investigated the
spatial correlation structure of different ground motion components to identify diagnostic
features. The specific case of the Mw 6.5 Norcia event simulation (scenario Mw6.5_S001)
presents a FN ground motion with a larger intrinsic variability and correlated over longer
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Figure 3.26: Ground motion maps for Mw4.0_S001 scenario: (a) and (b) SA (T=1s)
for the geoH and Z components, respectively; (c) and (d) SA (T= 4s) for geoH and
Z components, respectively. The yellow star represents the epicentre.

distances compared to the FP component, as a result of strong directivity effects. The slip
distribution coupled with the normal faulting mechanism also significantly affects the Z
component, which consequently shows the largest range and sill values over a broad period
range. At the same time, the analysis of possible spatial anisotropy patterns reveals that
the ground motion field has a strong azimuthal dependence due to rupture propagation
effects along the strike direction (FP). This result is consistent with the tectonic setting of
the region, as also demonstrated by Sgobba et al. (2021).

The availability of different rupture scenarios generated for the same causative fault
allowed the investigation of several aspects of the spatial correlation, such as the dependence
on the magnitude, slip distribution and hypocentral location. We believe that the magnitude
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itself cannot explain the large variability of correlation lengths among different events,
especially when the same area is considered. As a matter of fact, Heresi and Miranda (2019)
found that only a small ratio of the range variability can be ascribed to magnitude. Our
results suggest that the rupture process, both in terms of slip distribution and hypocentral
location, has a strong contribution to determine the correlation structure of ground motion
IMs, in agreement with the findings of Stafford et al. (2019).

Simultaneously, we observed that the relative position between the hypocentre and
the main slip asperity has a strong impact on anisotropy patterns. Not only does the FP
direction show on average the largest range and sill values, but it is also characterized by a
larger variance among the different scenarios (S002-S008) owing to the different rupture
propagation phenomena. Conversely, the FN direction shows rather similar spatial patterns
among the case-studies, being mostly affected by the faulting mechanism. Similarly, Chen
and Baker (2019) and Infantino et al. (2021) suggested that non-stationarity and anisotropy
in spatial correlation strongly depend on the source rupture process.

Although the comparison with recordings shows some discrepancies due to the simplific-
ations of the numerical model, this work offers valuable insights into the spatial correlation
of ground motions. Such results would likely be challenging to reach with earthquake
recordings due to the shortage of data, especially in the near-source region of major earth-
quakes. Our outcomes suggest that the spatial correlation structure of ground motion IMs
is not only period-dependent, but also scenario-dependent, so that more care should be
taken when pooling data from different earthquake to calibrate a unique correlation model.
Consistently with other studies (e.g Chen and Baker, 2019; Huang, Tarbali, Galasso and
Paolucci, 2020; Infantino et al., 2021), our results strengthened the idea that the isotropy
assumption may be a strong simplification and thus not reasonable for the seismic risk
assessment of spatially-distributed infrastructure.

Finally, we can state that 3D PBSs represent a powerful tool that provide databases with
an unparalleled size and richness, which allows specific features of the spatial correlation
structure to be addressed. This is particularly important for those regions characterized
by sparse seismic networks, for which developing a well-constrained correlation model is
challenging. Further research should be undertaken to explore if the correlation properties
identified in this work have a significant impact on the regional seismic risk assessment of
portfolios of buildings, infrastructures and earthquake-induced phenomena.
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CHAPTER 4

Assessment of the uncertainty in
spatial-correlation models for

earthquake ground motion due to
station layout and derivation method

The evaluation of the aggregate risks to spatially distributed infrastructures and portfo-
lios of buildings requires quantification of the estimated shaking over a region. In chapter 2
and chapter 3 we analysed different factors that most affect the spatial dependency of
ground motion intensity measures (e.g. peak ground acceleration), such as the estimation
approach, source effects and soil conditions. A common geostatistical tool to characterize
the spatial correlation is the semivariogram and over the past decades, different fitting
approaches have been proposed in the geostatistics literature. A theoretically optimal
approach has not yet been identified, as it depends on the number of observations and
configuration layout, as mentioned in chapter 2. In this chapter, we further examine in depth
such aspect and investigate estimation methods based on the likelihood function, which, in
contrast to classical least-squares methods, straightforwardly define the correlation without
needing further steps, such as computing the experimental semivariogram. Our outcomes
suggest that maximum-likelihood based approaches may outperform least-squares methods.
Indeed, the former provides correlation estimates, which do not depend on the bin size,
unlike ordinary and weighted least-squares regressions. In addition, maximum-likelihood
methods lead to lower percentage errors and dispersion, independently of both the number
of stations and their layout as well as of the underlying spatial correlation structure. Finally,
we propose some guidelines to account for spatial correlation uncertainty within seismic
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hazard and risk assessments. The consideration of such dispersion in regional assessments
could lead to more realistic estimations of both the ground motion and corresponding losses.

This chapter is based on the following published article:

1. Schiappapietra, E., & Douglas, J. (2021). Assessment of the uncertainty in spatial-
correlation models for earthquake ground motion due to station layout and deriv-
ation method . Bulletin of Earthquuake Engineering. https:// doi.org/ 10.1007/
s10518-021-01179-w

4.1 Introduction

Many authors (e.g. Iervolino, 2013; Weatherill et al., 2015; Sokolov and Ismail-Zadeh,
2016; Sokolov and Wenzel, 2019) have demonstrated the importance of considering regional
hazard estimates when evaluating the aggregate risks to spatially-distributed infrastructure
and building portfolios. The assessment of the seismic hazard over a geographical region
requires the quantification not only of the expected ground shaking at a single location,
but also how this shaking could vary over distances of a few kilometres. This variation
is captured within spatial-correlation models. Spatial correlations have been increasingly
studied over the last 20 years and many researchers have aimed to identify the factors that
most affect the spatial dependency of earthquake ground motions. In chapter 2, we provide
a thorough literature review, shedding light on the dependence of correlation on: (1) the
estimation approach and fitting method; (2) earthquake magnitude; (3) structural period;
(4) regional and local site-effects; and (5) ground motion prediction equations (GMPEs).
Baker and Chen (2020) propose a novel approach to quantify both the uncertainty in the
correlation estimation and the underlying correlation variability among different earthquakes.
Further insights into the spatial correlation of ground motions are given by studies on
numerical ground motion simulations. In this regard, Stafford et al. (2019), Chen and
Baker (2019), Huang, Tarbali, Galasso and Paolucci (2020), Infantino et al. (2021) and
Schiappapietra and Smerzini (2021) provide valuable contributions on the factors that
cause the spatial dependency of earthquake ground motion to vary from case to case, with
particular emphasis on the earthquake rupture process. In general, studies suggest that the
spatial correlation structure is period-, regionally- and scenario-dependent.

Spatial correlation models are usually calibrated on a set of multiple events due to the
shortage of ground motion observations from each single earthquake. Using data from a

https://doi.org/10.1007/s10518-021-01179-w
https://doi.org/10.1007/s10518-021-01179-w
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single event would often lead to poorly constrained correlation parameters and models
that have limited applicability for future earthquakes. Although it is recognized that
the correlation varies from event to event, only few studies (e.g. Goda, 2011; Heresi and
Miranda, 2019) have taken into account such event-to-event correlation variability. The
consideration of this dispersion in regional probabilistic risk assessment could lead to more
realistic estimations of both the ground motion and corresponding losses. Baker and Chen
(2020) demonstrated that the true variability in correlation estimates of poorly-recorded
events does not significantly differ from that of well-recorded events and that the differences
in terms of apparent total variability are exclusively due to the larger estimation uncertainty
of poorly-recorded earthquakes.

In this broad framework, the research question we would like to answer is whether it
is best to have a local correlation model, even though it is not well constrained, or to
implement a global correlation model, characterized by a lower uncertainty but calibrated
on worldwide databases? We, therefore, focus our attention on improving the estimation of
correlation parameters by using alternative approaches. This study is a continuation of
chapter 2 and it aims to provide guidelines for developers and users of spatial-correlation
models. To achieve this goal, we use simulations of spatially-correlated ground motion fields
which, as opposed to real data, provide a controlled environment where the true model is
known.

Section 4.2 summaries spatial correlation modelling theory and it introduces the ap-
proaches for correlation estimation we use throughout this study. Section 4.3 describes the
steps to generate spatially correlated random fields. We propose here two different studies:
(1) ground-motion fields simulated on a fine grid, and (2) ground-motion fields simulated
only at recording locations corresponding to those of past earthquakes. Finally, sections 4.4,
4.5 and 4.6 discuss the main results and the implications of this work.

4.2 Spatial correlation modelling

Traditional seismic hazard and risk analysis tools usually employ GMPEs to estimate
the earthquake ground motion at a given site. The earthquake ground motion of interest to
engineering is often the transient ground shaking that occurs during an earthquake. This
ground motion is invariably evaluated in terms of one or more scalar intensity measures
(IMs), such as the peak ground acceleration, the peak ground velocity and, occasionally,
the peak ground displacement. The ground motion is also often expressed in terms of
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response spectral acceleration, which represents the maximum response of a single degree-
of-freedom system of a given oscillator period and damping subject to the ground motion
time-history. GMPEs provide the marginal probability distribution of the IM at a single site
as a function of a set of parameters describing the earthquake source, such as the magnitude,
the propagation path and local site conditions (e.g. Douglas and Edwards, 2016):

log10 Yij = log10 Ȳij (M,R, S, θ) + εij + ηi (4.1)

where Yij is the IM of interest at the jth site due to the ith event, whereas Ȳij is the predicted
median function of magnitude (M), distance from the source (R), local-site conditions (S)
and other explanatory variables (θ). εij and ηi are the within-event and between-event
residuals terms, respectively. εij represents systematic deviations between observed and
median predicted values due to path and local site effects, whereas ηi denotes systematic
deviations associated to an event. For this reason, while εij is site-dependent, ηi is common
for all sites. Both residual terms are assumed to be normally distributed with mean zero and
standard deviations ϕ and τ , respectively. To fully characterise ε, it is necessary to describe
how the within-event residuals vary in space, namely to model the spatial dependence of εij
and εik. Baker and Jayaram (2008) demonstrated that spatially distributed within-event
residuals are jointly normally distributed. Therefore, their spatial dependence can be
completely defined by the covariance matrix, which reflects their correlation structure.

4.2.1 Spatial variability of within-event residuals

In geostatistics, a common tool to describe the dependence structure of spatial distributed
random variables (i.e. the within-event residuals) is the semivariogram, which measures the
average dissimilarity of a pair of εij and εik separated by an inter-site distance h:

γ̂ (h) =
1

2
V ar [εij−εik] (4.2)

in which Var indicates the variance. The semivariogram is empirically evaluated from
observations by pooling all data with a given inter-site spacing h and then using either the
robust estimator proposed by Cressie (1985) or the classic method of moments proposed by
Matheron (1962). Usually, the individual separation distances between pairs of observations
are grouped into bins, so that the semivariances are computed for each pair of sites whose
inter-site distance falls in the interval [h−∆, h+ ∆]. The hypothesis of second-order
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stationarity and isotropy are generally assumed due to the lack of repeated ground motion
observations from the same event at a given site. Therefore, the correlation between any
pairs of sites with equal separation distance is the same, independently of the source-to-site
distance and orientation. Under such assumptions, the semivariogram and the correlation
are equivalent and the following relation holds (Diggle et al., 2007; Oliver and Webster,
2014):

γ (h) = ϕ2 − COV (εij, εik) = ϕ2 [1− ρε (h)] (4.3)

where COV is the covariance matrix and ρε the correlation function. The reader is referred
to chapter 2 for further details.

4.2.2 Fitting methods for semivariogram models

The experimental semivariogram of equation 4.2 is a discrete function, describing the
spatial continuity of the random variable ε. Parametric functions are used to fit the
experimental semivariogram to retrieve semivariogram models for any separation distance h.
In the literature, a number of admissible models (e.g. spherical, Gaussian and exponential)
exist; however, we choose the exponential function to model the correlation structure, as it
is the most widely adopted (e.g. Jayaram and Baker, 2009; Esposito and Iervolino, 2012;
Baker and Chen, 2020)) functional form in engineering seismology. The general form of the
exponential function is:

γ (h) = a

[
1− exp

(
−3h

b

)]
(4.4)

where a and b are the sill and the practical range of the semivariogram, respectively. The sill
represents the variance of the random variable, whereas the practical range is the separation
distance at which γ (h) equals 95% of the sill value. An illustration of an empirical and
fitted semivariogram model is presented in Figure 4.1a. Different fitting approaches have
been proposed in the geostatistics literature. In general the model coefficients are chosen so
that the misfit between observed and predicted values is minimised. Baker and Chen (2020)
provide a useful summary of the most common techniques, such as the ordinary (OLS)
and weighted (WLS) least squares, and they suggest a new weighting function to weight
the values from small distance more within the fitting step. A trial-and-error (manual
fitting) approach has been chosen by different authors for its versatility in fitting the data.
Nevertheless, we discourage performing a visual fit due to its high degree of subjectivity.

In our analysis, we implement the R package gstat (Pebesma, 2004) to compute the
experimental semivariogram and obtain semivariogram model coefficients by means of the
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OLS and WLS regression techniques.

Figure 4.1: Empirical and fitted semivariogram models: (a) different techniques to es-
timate the semivariogram parameters as introduced in this work. The solid line is the
exponential fitted model, whereas squares represent the experimental semivariogram.
The numbers close to the squares indicate the number of pairs used to compute the
semivariances within each bin. (b) Different bin sizes to compute the experimental
semivariogram. The exponential models are fitted by using the OLS approach.

4.2.3 Maximum likelihood estimation

The above-described method of least squares to fit semivariogram models is not direct
because it requires the computation of the experimental semivariogram as an intermediate
step (Li et al., 2018). Moreover, the final modelling outcomes depend on different assump-
tions such as the variogram estimators (Oliver and Webster, 2014) and weighting functions
(Baker and Chen, 2020; Schiappapietra and Douglas, 2020), and on the introduction of
arbitrary parameters such as the bin size. For instance, we plot in Figure 4.1b the empir-
ical semivariograms computed by using different bin widths and the corresponding fitted
exponential models. Nonetheless, this methodology is the most widely used to determine
the dependence structure of spatially distributed random variables and many geostatistical
software packages [e.g. R packages geoR (Ribeiro Jr et al., 2020), gstat (Pebesma, 2004),
georob (Papritz, 2020) and MATLAB functions variogram (Schwanghart, 2021a), vari-
ogramfit (Schwanghart, 2021b)] allow the user to obtain semivariogram parameter estimates
easily (Li et al., 2018). On the other hand, estimation methods based on the likelihood
function have increasingly gained influence in geostatistics, particularly in the presence
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of trends (Oliver and Webster, 2014). The parameters of the correlation structure model
are directly estimated by maximising a log-likelihood function without needing further
steps, such as computing the experimental semivariogram. Despite such an advantage,
maximum-likelihood approaches have not been commonly used in engineering seismology.
To the authors knowledge, only Ming et al. (2019) employed the maximum-likelihood
method to simultaneously estimate the GMPE and correlation function coefficients. One of
the main drawbacks of the maximum-likelihood estimation is that it requires the data (e.g.
within-event residuals) to be normally distributed. Normality of within-event residuals has
been shown to hold, at least within ±3 standard deviations of the mean (e.g. Strasser and
Bommer, 2009).

In our analyses, we take advantages of different techniques, such as the Gaussian
maximum likelihood (ML) and the restricted maximum likelihood (REML). In general, the
model for a set of geostatistical data Yi = Y (xi) [i = 1, . . . , n] at locations xi is defined
as the following:

Y (xi) = D (xi)
Tβ +B (xi) + εi (4.5)

where D (xi)
Tβ is the spatial trend, B (xi) is the Gaussian random field with zero mean

and covariance R(h, σ2, α) and εi is an independent distribution error with zero mean and
variance τ 2 (nugget effect). σ2 and α are the sill and range parameters of the covariance
function, whereas β is the vector of regression parameters of the spatial trend. For a
normally distributed Y, the log-likelihood for the estimation of σ2,α and β is defined as:

L
(
β, τ 2, σ2, α

)
= −0.5n log (2π) + log

{∣∣σ2R + τ 2I
∣∣}+ (y −Dβ)T (σ2R + τ 2I)(y −Dβ)

(4.6)
Therefore, the model parameters are obtained by maximising the function L (β, τ 2, σ2, α).
The reader should refer to Diggle et al. (2007) and Künsch et al. (2013) for deeper insights
into likelihood-based methods. We implement both the R packages geoR and georob for
the parameter estimation through maximum-likelihood approaches.

4.3 Simulations set up

We generate spatially-correlated ground-motion fields (i.e. the within-event residuals at
each station location), using a multivariate normal distribution, defined by a zero mean
and a covariance function, which reflects the correlation of the within-event residuals. The
(unconditional) simulations of Gaussian random fields for given covariance parameters are
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generated by using the R package geoR. We opt for an exponential correlation model with
correlation length h0 and we choose different values of h0 [5, 10, 15, 20, 30, 40 km] to cover
the typical estimates reported from ground-motion observations. Such broad range mainly
depends on magnitude, fault mechanism and source effects as well as regional and local-site
conditions, even when the same seismic region is considered (e.g. chapter 2 and 3). A
Monte Carlo approach is adopted to generate 1000 simulations of ground-motion residuals
for each h0 to obtain more stable and robust outcomes. Figure 4.2 illustrates two out of the
1000 simulations generated by imposing correlation lengths of 5 and 15 km, respectively.

Figure 4.2: Examples of Gaussian random fields characterized by a correlation length
of 5 km (top row) and 15 km (bottom row).

For each Monte Carlo simulation (i.e. for each within-event residual distribution), we
follow these steps to assess the performance of the different estimation approaches and the
influence of different parameters such as the bin size and number of available stations:

1. Randomly locate strong-motion recordings stations throughout the region. We select



Chapter 4. Assessment of the uncertainty in spatial-correlation models for earthquake ground
motion due to station layout and derivation method 98

a different number of stations [20, 40, 60, 80, 100] for each h0 to cover the number of
strong-motion stations that earthquakes are usually recorded by.

2. Estimate the empirical semivariogram and derive a semivariogram model (equation 4.4)
using both least-squares regression and maximum-likelihood techniques.

3. Compare the set of range estimates with the imposed initial range h0.

It is noted that for each h0, the simulated ground-motion fields are the same throughout
the analyses that consider different numbers of stations. Therefore, the number of available
stations is the only varying parameter. At the same time, the stations layout does not
change throughout the analyses for different h0. This means that, at equal number of
stations, the correlation structure is the only varying parameter among the different h0.

The ground-motion fields are generated on a 150 km× 150 km grid with a 1 km resolution.
We believe this grid dimension represents a good trade-off between computational cost and
the risk of boundary effects on the results. As shown in Figure 4.3, the grid dimension
affects the distance cut-off (i.e. the maximum separation distance in the semivariogram
computation). In particular, we observe, as expected, a sharp drop of the number of stations
at around 50 km when a grid of 100 km is used. By contrast, the number of stations
pairs increases for larger separation distances when a grid of either 150 km or 200 km is
chosen. Such maximum usable distance has an impact on the range estimates and their
variability, particularly when larger values of h0 are considered. As a matter of fact, we
plot in Figure 4.4 the median along with the first and third quartiles values of the range
estimates as a function of the grid dimension, for two different estimation approaches. The
150 km grid shows the minimum bias with respect to the initial h0 and the lowest dispersion
(as indicated by the first and third quartile) compared to the 100 km grid.

4.4 The effect of bin size

We present here some preliminary analyses performed by varying the bin size from 3 km
to 10 km. For each h0 and for an equal number of stations, the bin width is the only varying
parameter. This allows the lower range value that is resolvable to be determined and to
demonstrate how the bin size and range are interconnected. Figure 4.5 and Figure 4.6 show
the percentage error and the interquartile range (IQR) computed by:

%error =
ĥ− h0
h0

• 100 (4.7)
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Figure 4.3: Number of stations pairs as a function of the separation distance for
different grid sizes: (a) 100 km; (b) 150 km; (c) 200 km. The black solid line is
the mean value computed over the 1000 simulations, whereas the black dashed lines
represent the mean ± the standard deviation. The red dashed line indicate the min-
imum number (30) of station pairs required per bin to obtain more robust estimates
(see Schiappapietra and Douglas (2020) for further details).

Figure 4.4: Range as a function of the grid dimension. Solid lines represent the
median values computed over the 1000 simulations, whereas dashed lines indicate
the first and third quartile. OLS and REML refer to the two different approaches we
use to estimate the range. The black dotted line indicates the initial range value (30
km) imposed in the simulation.

IQR = Q3 −Q1 (4.8)
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where ĥ is the range estimate for each simulated ground motion field and Q3 and Q1 are
the third and first quartiles, respectively.

Figure 4.5: Bias median (a) and interquartile IQR (b) values as a function of the
number of stations for different bin widths and for two different approaches (OLS,
WLS). We impose an initial range value of 5 km.

Figure 4.6: Bias median (a) and interquartile IQR (b) values as a function of the
number of stations for different bin widths and for two different approaches (OLS,
WLS). We impose an initial range value of 15 km. Note that the y axis scale is
different to that used in Figure 4.5.

Independently of the technique employed to estimate the semivariogram coefficients
(in this case, the range), the lower the bin size, the lower the bias and the variability
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are. Because the estimated range value tends to increase with wider bins, we believe that
this apparent correlation comes exclusively from the bin size, which thus has a strong
impact on the lower range that can be retrieved. Particularly, if the width is too wide,
the correlation structure of ground-motion fields correlated over shorter distances may be
masked. Consequently, we opt for a bin size of 3 km in the following analyses.

Such a strong dependency on bin size and other choices has motivated us to seek different
approaches for the estimation of the correlation coefficients that do not depend on arbitrary
parameters like the bin size, the distance cut-off and semivariogram estimator. Hereafter, we
present a comparison of the outcomes obtained by means of the different techniques proposed
in section 4.2, namely least-squares regression and the maximum-likelihood approach.

4.4.1 Least-squares regression Vs. Maximum-likelihood method

We carry out a comparison between range estimates obtained by means of least-squares
regression (OLS and WLS) and maximum-likelihood methods (ML and REML). The results
of this preliminary analysis are summarised in Figure 4.7. It is noted that for each pair of h0
and number of stations, the bin size is the only varying parameter, so that the comparison
is straightforward. Not only do the two maximum-likelihood approaches (ML and REML)
provide the lowest bias and variability in the range estimates, but they also return the
same outcomes regardless of the bin size. By contrast, OLS and WLS feature increasing
median values as the bin becomes wider, as already shown in Figure 4.5 and Figure 4.6.
We believe that such results are promising, since ML and REML do not add additional
sources of uncertainty related to the choice of the bin width.

4.5 Dependence on the number of stations

To obtain robust estimates of the correlation structure from ground-motion observations,
ideally one would use a large number of closely-spaced data. Although the number of
earthquake recordings has dramatically increased over the last decades, seismic stations are
not homogeneously distributed, making it difficult to assess the spatial correlation in regions
characterized by sparse seismic networks. As already demonstrated in chapter 2 and by
Baker and Chen (2020), the correlation estimation uncertainty is inversely correlated to the
number of available stations. Here, we propose two different studies on the impact of the
number of stations that consider both random station locations and station locations based
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Figure 4.7: Boxplots for range estimates obtained by using different bin size, different
h0 (5 and 15 km) and different number of available stations (40 and 100).

on real networks. The main goal is to illustrate how the maximum-likelihood approaches
outperform the least-squares methods especially in terms of estimation uncertainty.

4.5.1 Randomly simulated locations

We present the results of the simulations performed as described in section 4.3 for
different values of the initial range h0 [5, 10, 15, 20, 30, 40 km] and different number
of stations [20, 40, 60, 80, 100]. Figure 4.8 and 4.9 illustrates the median value of the
percentage error along with the IQR, which is taken as a measure of the dispersion of the
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range estimates.
Four main observations can be highlighted. First, independently of h0, the maximum-

likelihood approaches (ML and REML) generally show a lower dispersion compared to the
least-squares methods (OLS and WLS). At the same time, ML and REML provide smaller
median % error values, especially when few stations are available. This is a promising
result, particularly for those regions characterized by fewer data. Second, median values
tend to zero as the number of available stations increases. Similarly, the IQR decreases,
halving its value as the number of stations rises from 20 to 100. Such outcomes corroborate
the findings of Baker and Chen (2020) who demonstrated that the estimation uncertainty
is larger for poorly-recorded events and that at least 100 stations are required to provide
robust correlation estimates. Third, when a large number of stations is available both
least-squares and maximum-likelihood approaches converge towards the same % error and
IQR, independently of the h0. Fourth, we observe that major differences exist among the
proposed estimation techniques for smaller h0, compared to the largest ones. We believe
that smaller correlations are more difficult to detect as they require a large number of
observations at very closely spaced stations. By contrast, earthquake ground motions are
often recorded by a limited number of stations separated by many kilometres, with average
inter-station distances in the range of 10-20 km, making it easier to measure ground motion
correlated over larger distances. As a further evidence of such a trend, we plot in Figure 4.10
and Figure 4.11 the % error and the IQR as a function of h0 for different number of stations
considered. It is evident that all the approaches tend to a % error of zero when residuals are
correlated over larger distances, independently of the number of stations. Besides, ML and
REML provide smaller % error compared to OLS and WLS especially for poorly-recorded
events and smaller h0. Such behaviour is mainly due to the semivariogram computation,
which is required in the least-squares approaches.
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Figure 4.8: Bias (left panel) and Interquartile (right panel) range values as a function
of the number of stations. The different rows refer to the different initial h0 values.
Different colours refer to the approaches employed in the correlation estimation.
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Figure 4.9: Bias (left panel) and Interquartile (right panel) range values as a function
of the number of stations. The different rows refer to the different initial h0 values.
Different colours refer to the approaches employed in the correlation estimation.
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Figure 4.10: Bias (left panel) and Interquartile (right panel) range values as a func-
tion of h0. The different rows refer to the different number of stations considered.
Different colours refer to the approaches employed in the correlation estimation.

Finally, we report in Figure 4.12 the boxplots of the range estimates for different number
of stations and for a given h0. Not only do the ML and REML feature narrower boxes
(limited by the first and third quartiles, i.e. those used in the computations of IQR)
compared to the OLS and WLS boxes, but they are also characterized by smaller whiskers
and more confined outliers. The latter are defined as the estimate values that are larger
than 1.5 times the IQR. Similar outcomes are obtained also for all other h0. For the sake of
brevity, we do not show all the figures here.

We recall that for an equal number of stations, the station layout is the same for different
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Figure 4.11: Bias (left panel) and Interquartile (right panel) range values as a function
of the number of stations. The different rows refer to the different initial h0 values.
Different colours refer to the approaches employed in the correlation estimation.
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h0. Therefore, the variability among the different approaches only lies with the different
correlation structure used in the simulation.

Figure 4.12: Boxplots of range estimates for different number of stations and h0 =
20 km: (a) 20 stations; (b) 40 stations; (c) 80 stations: (d) 100 stations

4.5.2 Station layouts of past earthquakes

We perform similar Monte Carlo simulations to those presented in section 4.5.1, but here
the ground-motion fields are simulated only at stations that recorded past earthquakes. We
take four different stations layouts as references, corresponding to four events selected within
both the ESM (Lanzano, Sgobba, Luzi, Puglia, Pacor, Felicetta, D’Amico, Cotton and
Bindi, 2019) and NGA-West2 (Ancheta et al., 2014) strong-motion flat-files. We consider
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only well-recorded earthquakes with more than 100 observations within 100 km from the
epicentre. Figure 4.13 show the four station layouts: (1) ESM1 is the Mw 6.0 29th May
2012 Emilia (Italy) event; (2) ESM2 is an Mw 4.3 event that occurred on 23rd September
2016 in Central Italy; (3) NGA1 is the Mw 6.9 13th June 2008 Iwate (Japan) event; NGA2
is a Mw 4.7 event that occurred on 18th May 2009 in California. We believe such layouts
are a good sample of the type of station distributions often seen in practice. We adopt a
Monte Carlo approach, generating 1000 simulations of ground motion residuals for each
h0 [10, 20, 30, 40] and for different numbers of stations [20, 40, 60, 80, 100], which are
randomly selected within each configuration. We note that for each correlation structure
(e.g. each h0), the only varying parameter is the number of selected stations, so that the
comparison is not affected by other factors. We also imposed the same seed, which sets the
starting number used to generate a sequence of random numbers. Hence, the underlying
residuals distribution is the same, although the station configurations are different in each
layout. This allows us to isolate the effect of the station layout.

Figure 4.14 and Figure 4.15 compare the median % error and the IQR computed for
the different station layouts and h0 = 10km by using the different methodologies proposed
in this study. Three main observations can be highlighted. Generally, ML and REML have
the smallest median % error and they lead to lower uncertainties compared to the OLS
and WLS approaches, independently of the correlation structure imposed. Such outcomes
agree with the findings presented in section 4.5.1, where residuals are simulated on a fine
grid and stations are randomly selected. Similar conclusions can be drawn for the other h0
values (20, 30, 40 km), as it can be observed from Figure 4.16 to Figure 4.21.

Furthermore, ML and REML feature similar values both in terms of median and
variability among the different station layouts. By contrast, OLS and WLS show a strong
variability among the four layouts. This applies to all h0 values, although differences are less
pronounced for ground motions correlated over larger distances (i.e. higher h0). We believe
that such behaviour is mainly due to the semivariogram computation, whose robustness
depends on both the bin size, as demonstrated in section 4.4, and the number of stations
within each bin. These parameters are strictly related to the station layout so that more
homogeneous station distributions would provide more reliable range estimates.

Finally, we note that generally the NGA2 configuration has the lowest median % error
and IQR among all the considered layouts. We believe that this result lies with the
more homogeneous and denser distribution of stations with respect to the other three
layouts, which leads to more accurate range estimates. To demonstrate this, we plot in
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Figure 4.13: Station layouts for the four selected events: (a) ESM1 - event id IT-
2012-0011; (b) ESM2 - event id ESMC-20160903_0000063; (c) NGA1 - event id 279;
(d) NGA2 - event id 1011. Dots are colour-coded based on the within-event residuals
(one out 1000 simulated ground-motion fields). Coordinates are normalized with
respect of the epicentre of each event.

Figure 4.22 the number of station pairs within 12 km as a function of the number of stations.
Systematically, the NGA2 configuration has the largest number of pairs in the first four bins
(12km/3km = 4), independently of the number of available stations. Conversely, the NGA1
layout has the lowest number of pairs and as a consequence it features the highest median %
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Figure 4.14: Median % error of the range estimates for the four different stations
layouts as a function of the number of stations. (a) OLS; (b) WLS; (c) ML; (d)
REML. The initial value of the range is set to 10 km.

error and IQR, especially when lower h0 are considered. Such observations apply to the OLS
and WLS approaches, whereas the ML and REML are not strongly affected by the different
station layouts. This is a promising outcome and demonstrates how maximum-likelihood
methods may outperform the least-squares approaches.
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Figure 4.15: IQR of the range estimates for the four different station layouts as a
function of the number of stations. (a) OLS; (b) WLS; (c) ML; (d) REML. The initial
value of the range is set to 10 km.

4.6 Discussion

In this study, we show that there is uncertainty in modelling the spatial correlation and
the size of this uncertainty depends on the availability of data as well as the derivation
technique. Specifically, spatial correlation models for areas with limited data (e.g. regions
without dense strong-motion networks and/or low seismicity) are more uncertain than those
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Figure 4.16: Median % error of the range estimates for the four different stations
layouts as a function of the number of stations.. The initial value of the range is set
to 20 km. We report the results obtained by using all the approaches proposed in
this study (top: OLS and WLS; bottom: ML and REML).

with extensive observations. Consequently, regional seismic hazard models should account
not only for the spatial correlation, but they should also capture its associated uncertainty,
which depends on the region.

This regional-dependent uncertainty leads to the following two questions. Which
correlation model or models should we use for regions with sparse observations? Is a
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Figure 4.17: Median % error of the range estimates for the four different stations
layouts as a function of the number of stations.. The initial value of the range is set
to 30 km. We report the results obtained by using all the approaches proposed in
this study (top: OLS and WLS; bottom: ML and REML).

global model truly able to capture the correlation of that specific area? These are similar
questions faced by hazard analysts concerning the selection, modification or development of
ground-motion models (e.g. Douglas, 2018).

Here, we propose some guidelines to model the spatial correlation uncertainty based on
the availability of recordings. In particular, we propose a logic tree with symmetrical lower,
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Figure 4.18: Median % error of the range estimates for the four different stations
layouts as a function of the number of stations.. The initial value of the range is set
to 40 km. We report the results obtained by using all the approaches proposed in
this study (top: OLS and WLS; bottom: ML and REML).

middle and upper branches using a standard three-point distribution with weights equal to
0.185, 0.63 and 0.185, respectively (Keefer and Bodily, 1983). Table 4.1 reports the 5%,
50% and 95% percentile values of the range estimates as a function of both the number
of stations and h0 for the different approaches used in this study. This logic tree should
capture the spread in the correlation estimates, thus leading to a more informed seismic
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Figure 4.19: IQR of the range estimates for the four different stations layouts as a
function of the number of stations. The initial value of the range is set to 20 km. We
report the results obtained by using all the approaches proposed in this study (top:
OLS and WLS; bottom: ML and REML)

risk assessment.
We are aware that this table does not cover all possible stations−h0 combinations, but

its aim is to provide a first-order estimate of the spatial correlation uncertainty that one
should consider when modelling spatial correlations for both regions where observations are
abundant and for those characterized by sparse recordings.
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Figure 4.20: IQR of the range estimates for the four different stations layouts as a
function of the number of stations. The initial value of the range is set to 30 km. We
report the results obtained by using all the approaches proposed in this study (top:
OLS and WLS; bottom: ML and REML)

Table 4.1: 5%, 50% and 95% percentile values of the range estimates for different h0
and different number of stations for the approaches used in this study. Estimates are
in km.

OLS WLS ML REML

h0 [km] # Stations 5% 50% 95% 5% 50% 95% 5% 50% 95% 5% 50% 95%

5 km 20 1.3 11.8 131.7 1.2 13.5 91.0 0.2 6.7 46.5 0.9 9.4 70.6
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40 0.8 8.2 39.5 0.8 9.3 35.9 0.1 6.2 24.9 0.6 6.8 27.9
60 0.6 7.5 26.2 0.6 8.6 26.9 0.1 5.2 18.8 0.5 5.7 21.1
80 0.6 6.5 19.7 0.5 7.1 20.1 0.1 4.9 13.7 0.4 5.1 14.4
100 0.6 6.4 16.3 0.5 6.6 16.6 0.1 4.7 12.0 0.4 5.0 12.6

10 km 20 1.6 14.0 319.1 1.3 17.9 154.4 0.2 10.0 48.7 1.0 12.4 65.8
40 1.1 13.1 60.3 0.8 14.0 50.7 0.2 9.8 28.7 0.7 10.8 32.4
60 0.8 11.3 34.3 0.7 12.6 33.1 0.2 9.3 21.6 0.8 9.9 23.5
80 0.7 10.7 24.2 0.7 11.8 26.1 0.2 9.5 18.1 0.8 9.8 19.2
100 0.8 10.8 22.6 0.8 11.5 24.0 2.5 9.5 17.1 2.5 9.9 17.8

15 km 20 1.6 19.7 196.5 1.4 24.6 121.6 0.3 14.6 56.5 1.1 17.2 80.4
40 1.3 16.3 64.8 1.1 17.8 55.7 0.2 14.3 34.3 1.0 15.6 39.6
60 1.1 16.2 41.0 0.9 18.2 41.3 1.9 14.4 28.0 2.2 15.2 30.9
80 4.1 15.9 33.2 1.4 16.7 33.5 5.3 14.2 25.1 5.8 15.0 26.7
100 5.2 15.2 29.0 3.4 16.3 29.1 7.2 14.3 22.5 7.4 14.8 23.9

20 km 20 2.1 23.0 175.3 1.6 28.1 110.3 0.3 16.2 53.8 1.5 19.9 74.9
40 1.9 21.0 67.2 1.4 22.8 59.0 0.4 18.3 38.5 1.5 19.8 43.9
60 4.9 20.5 49.2 1.7 21.7 47.3 7.2 18.6 33.7 7.7 19.9 37.6
80 6.3 20.0 41.4 3.6 20.9 41.0 8.3 18.4 30.9 8.4 19.4 33.1
100 9.1 19.9 36.2 6.0 20.8 36.3 11.1 18.5 28.8 11.4 19.3 30.4

30 km 20 2.7 31.0 340.9 1.7 35.3 148.3 0.4 24.1 67.4 1.8 29.5 103.3
40 5.3 29.2 93.6 1.6 31.4 79.9 5.6 25.6 52.7 6.5 28.6 61.6
60 10.8 28.8 70.6 7.9 31.6 66.7 11.9 27.1 47.2 12.3 28.9 53.1
80 13.2 28.7 59.5 11.4 30.2 55.7 15.6 27.1 44.2 16.5 28.7 48.2
100 15.4 28.9 53.8 13.4 30.6 53.7 16.7 27.4 41.6 17.5 28.7 45.1

40 km 20 3.6 39.1 578.8 2.4 42.1 207.2 0.5 30.8 78.8 2.2 38.1 123.7
40 10.2 39.2 144.2 3.1 42.3 104.7 12.8 34.6 65.4 15.1 39.2 79.9
60 16.7 39.2 105.4 14.7 40.9 84.9 18.9 34.4 58.8 20.1 37.6 67.2
80 19.8 38.7 94.2 18.4 40.6 77.7 20.9 35.8 58.8 21.9 38.3 65.6
100 21.8 39.3 80.4 20.3 39.8 72.4 24.1 36.5 57.5 25.1 38.8 63.4

We show here an example in which we compute the spatial correlation for six different
earthquakes recorded by 40 (3 events) and 80 (3 events) stations. The events are selected
within the ESM (Lanzano, Sgobba, Luzi, Puglia, Pacor, Felicetta, D’Amico, Cotton and
Bindi, 2019) flat-file and we use the OLS and REML approaches to estimate the range. We
note that the scope of this section is to discuss correlation uncertainty and not the optimal
method that best estimates the range.

Figure 4.23 presents the experimental semivariograms and the theoretical models com-
puted on the residuals of three different events recorded by 40 stations. If we look at the
REML estimates, the three events feature ranges equal to 41, 15 and 5.5 km. Based on
our simulations, such median estimates have the following confidence intervals, given the
number of available stations: (1) [15 - 80] km, (2) [1 - 40] km, and (3) [0.6 - 28] km. At
the same time, OLS provides median estimates equal to 21, 16.1 and 12.1 km, respectively,
which correspond to the following confidence intervals: (1) [1.9 - 67.2] km, (2) [1.3 - 64.8]
km, and (3) [1.1 - 60.3] km.
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Figure 4.21: IQR of the range estimates for the four different stations layouts as a
function of the number of stations. The initial value of the range is set to 40 km. We
report the results obtained by using all the approaches proposed in this study (top:
OLS and WLS; bottom: ML and REML)

Baker and Chen (2020) provide estimates of the correlation computed for a set of events
within the NGA-West2 database (Ancheta et al., 2014) and the corresponding number
of stations that recorded each event. For instance, the Mw 6.5 Big Bear-01 (1992) event
has a range equal to 15.7 km computed based on 45 observations. According to Table 4.1
(WLS, h0 = 15 km, 40 stations), the range estimate is within the [1.1 - 55.7] km confidence
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Figure 4.22: Number of stations pairs within 12 km as a function of the number of
stations for the four station layouts. The dots indicate the number of stations pairs
in each simulation, whereas the solid lines represent the average number of pairs as
a function of the number of stations.

interval. Analogously, the Mw 6.2 Christchurch (2011) event features a range of 18.9 km
evaluated on the basis of 80 stations. The corresponding confidence interval from Table 4.1
is [3.6 - 41] km. These confidence intervals appear wide but it should be recalled that these
are for the 5th to 95th percentiles.

While the median range estimates of the considered events differ from each other, the
confidence intervals overlap, suggesting that these earthquakes may, in fact, have similar
correlation structures. Similar conclusions can also be drawn from Figure 4.24, where we
show the results for three different events recorded by 80 stations.

These findings, while preliminary, may help us to answer the second question posed at
the beginning of this section about global versus local models. A global model calibrated
on data from multiple events may be suitable to describe the correlation structure of a
region for which observations are currently sparse since denser datasets would provide more
constrained range estimates. On the other hand, pooling data from multiple earthquakes
would not enable the study of the correlation due to a particular event to be investigated
and therefore it would increase the uncertainty in the estimates related to the specificity of
the region of interest.

While investigating the estimation uncertainty related to a single event, in this study we
have not explored multiple earthquakes uncertainties. Heresi and Miranda (2019) computed
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the central tendency and the dispersion of the range values from well-recorded NGA-West2
events. For instance, the spectral acceleration at T = 0.1 shows an average range of 14.3 km
and a standard deviation computed on the natural logarithm of the range values equal to
0.83. We performed similar analysis for the Central Italy region, and we obtained an average
range of 27.8 km and a standard deviation equal to 0.75 for the same IM. While these
studies account for the event-to-event dispersion, they do not investigate the estimation
uncertainty. Therefore, further work is then required to establish the fraction of uncertainty
which derives from pooling data from different events.

Figure 4.23: Experimental semivariograms and theoretical models for three different
events recorded by 40 stations. The number of pairs in each bin is reported close to
each semivariance estimate (black dots).

Figure 4.24: Experimental semivariograms and theoretical models for three different
events recorded by 80 stations. The number of pairs in each bin is reported close to
each semivariance estimate (black dots).

Finally, we report in Figure 4.25 a scheme showing the application of the proposed logic
tree for a median h0 = 20 km. We consider the estimates obtained by using the REML
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approach when 60 stations are available. Based on the correlation estimates in Table 4.1,
we simulate n spatially correlated random fields for each range to use in conjunction with
predicted median ground motions. The different branches (after assessing the risk, e.g.
after estimating the corresponding losses for each range) would then be averaged with
weights equal to 0.185, 0.63 and 0.185, respectively, to obtain the final risk assessment (e.g.
resulting losses) which account for the uncertainties in the correlation estimates.

4.7 Conclusions

In this work, we introduce alternative methods to classic least-squares regression for
the estimation of the correlation structure of earthquake ground motions. In particular,
we employ two maximum likelihood-based approaches, namely the Gaussian maximum
likelihood (ML) and the restricted maximum likelihood (REML). These have gained
increasing importance in geostatistics, particularly when spatial trends exist in the data
(Diggle et al., 2007; Oliver and Webster, 2014; Li et al., 2018). However, estimation methods
based on the likelihood function have not been commonly used to assess ground-motion
correlation. One of the main advantages of such approaches is that they are straightforward
and do not require further steps for the estimation of the correlation parameters.

We first showed that ML and REML estimates do not depend on the bin size, unlike
ordinary and weighted least-squares regression (OLS and WLS). Indeed, the latter requires
the definition of the experimental semivariogram, whose robustness depends on both the
bin width and the number of stations within each bin. Our outcomes are promising as
they show how ML and REML may outperform the least-squares approaches. There is a
trade-off between the bin width and the estimate robustness: wider bins include a larger
number of residuals pairs, which increases the robustness of the semivariance estimates,
but at the same time wider bins may mask shorter correlation lengths.

We then performed two different studies to show the dependence of the correlation
on the number of available stations and on the station layout. Firstly, we carried out
simulations of within-event residuals on a fine grid, varying both the h0 and the number of
stations available. Generally, ML and REML feature lower percentage errors and dispersion
compared to OLS and WLS, independently of the number of stations and of the underlining
spatial correlation structure (h0). This is a rather interesting result, especially for those
regions characterised by sparse strong-motion networks. Second, we carried out simulations
of within-event residuals only at recording stations of past earthquakes. We chose four
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different station layouts, which are considered as good examples of the type of station
distributions often seen in practice. Our outcomes suggest that OLS and WLS are more
affected by the station configuration because their estimates are based on the computation
of the experimental semivariogram. Thus, more homogeneous station layouts would provide
more reliable range estimates. By contrast, ML and REML seem to be less influenced by
the station layout both in terms of median percentage error and interquartile range.

This chapter intends to be a continuation of the work proposed in chapter 2, as it further
analyses the dependency of correlation on different factors such as the bin size and the
station configuration. We shed light on alternative approaches to characterize the spatial
correlation structure of earthquake ground motions, providing useful insights for users and
researchers interested in investigating ground-motion spatial correlation.

Finally, we proposed some guidelines to model the spatial correlation uncertainty based
on the availability of recordings, following a logic-tree approach. The main idea is to
provide hazard and risk assessment by using the median range estimate and the lower and
upper bounds range values (5% and 95% confidence intervals). The resulting risk analysis
accounting for the correlation uncertainties is eventually obtained by averaging all the
branches with suitable weights (0.185, 0.63 and 0.185, respectively).

These findings, while preliminary, may help researchers to model the spatial correlation
uncertainty that one should consider when performing regional seismic hazard and risk
assessment. Application of the proposed logic-tree to a specific case study may indicate
features for further developments.
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Figure 4.25: Application of the proposed logic tree for h0 = 20 km and number
of stations equal to 60 to use within a seismic risk assessment study. We use the
estimates obtained by using the REML approach. The graphs on the left-hand side
correspond to n spatially correlated random fields simulated for each range value, 7
km, 20 km and 27 km, respectively.
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CHAPTER 5

Exploring the impact of spatial
correlations in the catastrophe

modelling process: a case study for Italy

Catastrophe models are important tools to provide proper assessment and financial
management of earthquake-related emergencies, which still create the largest protection
gap across all perils. Earthquake catastrophe models include three main components,
namely: (1) the earthquake hazard model, (2) the exposure model and, (3) the vulnerability
model. Simulating spatially distributed ground-motion fields within either deterministic or
probabilistic seismic hazard assessments poses a major challenge when site-related financial
protection products are required. Based on the findings of Chapter 2 and 3, here, we
first develop ad hoc correlation models for different Italian regions (specifically northern,
central and southern Italy) and then we perform both deterministic scenario-based and
probabilistic event-based hazard and risk assessments in order to advance the understanding
of spatial correlations within the catastrophe modelling process. We employ the OpenQuake
engine for our calculations. This is an open-source tool suitable for accounting for the
spatial correlation of earthquake ground-motion residuals. Our outcomes demonstrate the
importance of considering not only the spatial correlation of ground motions, but also its
associated uncertainty in risk analyses. Although loss exceedance probability curves for the
return periods of interest for the (re)insurance industry show similar trends, both hazard
and risk footprints in terms of average annual losses feature less noisy and more realistic
patterns if spatial correlation is taken into account. Such results will have implications
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for (re)insurance companies evaluating the risk to high-value civil engineering infrastructures.

This chapter is based on the following manuscript submitted to Bulletin of Earthquake
Engineering:

1. Schiappapietra, E., Stripajová, S., Pazák, P., Douglas, J. & Trendafiloski, G. (2021).
Exploring the impact of spatial correlations in the catastrophe modelling process: a
case study for Italy.

5.1 Introduction

Catastrophe models are important tools to provide proper estimations and financial
management of earthquake-related emergencies, which still have the largest protection
gap across all perils. The mitigation of socio-economic losses and the development of
insurance and reinsurance strategies are, therefore, central targets in the assessment of
the seismic risk at urban and regional scales. Earthquake catastrophe models include
three main components: hazard, vulnerability and exposure (Grossi and Kunreuther, 2005).
The earthquake hazard requires a proper description of the earthquake ground motion
(intensity measures - IMs) and its spatial variability across the region using deterministic
or probabilistic earthquake hazard models. In particular, three main issues need to be
identified to achieve reliable estimates of local intensity and therefore catastrophe loss: (1)
locations of potential future events, (2) their frequency of occurrence, and (3) their severity.
The vulnerability component estimates the probability that structure damage will exceed
various levels as a result of ground motion. It usually defines loss ratios as a function of IM
values depending on material of construction, seismic design, building height, occupancy
and other modifiers of the building structures. The exposure component provides geocoding
of the analysed assets, i.e. (re)insurance portfolio, including asset’s vulnerability modifiers,
total insured value and policy conditions.

Simulating spatially-distributed ground-motion fields poses a major challenge when
site-related financial protection products are required. Indeed, the loss assessment of
spatially-distributed systems requires the consideration of: (1) the cross-correlation among
different IMs at the same site, (2) the spatial correlation of the same IM at different sites,
and (3) the spatial cross-correlation among different IMs at closely-spaced sites (Weatherill
et al., 2015). Several authors have demonstrated the importance of including correlation
models in risk analyses. For example, Park et al. (2007) and Sokolov and Wenzel (2011)
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evidenced that neglecting the spatial correlation may cause a bias in loss estimates, whose
magnitude depends on the considered portfolio. Similarly, Weatherill et al. (2015) proved
that the effects of including spatial cross-correlations is limited when larger footprints are
considered or a building typology is predomintant in the portfolio. While investigating the
losses in a district of Istanbul as a consequence of a Mw 7.2 earthquake scenario, Wagener
et al. (2016) found that the loss distribution changes clearly depend on the correlation
model in contrast to the mean loss, which is not affected. Wesson and Perkins (2001) also
demonstrated that the spatial correlation is crucial for explaining the variance of losses to
a spatially-distributed system, but not the mean loss. Costa et al. (2018) evaluated the
consequences of seismic events on transportation networks and observed that the probability
of disruption is higher when the spatial correlation is neglected.

It is well-established that IMs at multiple locations during the same earthquake are
spatially correlated and their degree of correlation tends to be higher for closely-spaced
sites and for low-frequency ground motions. In addition, several authors (e.g. Chen and
Baker, 2019; Schiappapietra and Douglas, 2020; Infantino et al., 2021; Schiappapietra and
Smerzini, 2021) have demonstrated that the spatial correlation of earthquake ground-motion
is period−, regionally− and scenario−dependent, so that the implementation of a unique
correlation model calibrated on worldwide databases may represent an oversimplification.
Besides, spatial correlation models are usually inferred from a set of multiple events due
to the limited number of ground-motion recordings from a single earthquake. The event-
to-event correlation variability should be therefore included in regional probabilistic risk
analysis to enable more realistic estimations of both the ground motion and corresponding
losses (Heresi and Miranda, 2019).

In this context, we firstly calibrate different correlation models based on observations of
the Mw 6.5 2016 Norcia (central Italy) earthquake. These models are used in deterministic
scenario-based calculations for the same event. The primary aim of such analyses is to
better investigate to what extend different input models may affect the overall economic
losses. Thereafter, we perform event-based probabilistic seismic hazard assassement (PSHA)
calculations in order to advance the understanding of spatial correlations within the
catastrophe modelling process. Indeed, the probabilistic seismic risk assessment is usually
required for decision-making and insurance/reinsurance purposes (Erdik, 2017; Kohrangi
et al., 2021). To account for the event-to-event correlation variability, we follow the
methodology proposed by Heresi and Miranda (2019), based on the median range value
and its associated dispersion. We employ the OpenQuake engine (Silva et al., 2014; Pagani
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et al., 2014) for our calculations, which is an open-source seismic hazard and risk modelling
tool that can account for the spatial correlation of earthquake ground-motion residuals.
In particular, we develop custom spatial correlation models, and we fine-tune the already
implemented approach to simulate spatially-correlated random fields to significantly reduce
the computational cost and to enable whole country event-based PSHA calculations.

The goals of this study are: (1) to illustrate the impact of spatially dependent modelling
on the resulting earthquake shaking losses of building portfolios or spatially-distributed
infrastructures and, (2) to investigate the effects on per-event and in-location loss estimates
for underwriting purposes. The results of this project, albeit only illustrative, will have
implications for (re)insurance companies evaluating the risk to high-value civil engineering
infrastructures.

This chapter is organized as follows. Section 5.2 describes the characterization of
the spatial correlation of ground motion IMs, with particular emphasis on the custom
correlation models derived for the regions of interest. Section 5.3 details the parameters
and models required as input to the OpenQuake engine. We mainly focus on the seismic
hazard assessment aspect, and only a brief description of the vulnerability and exposure
components is given. Finally, Section 5.4 examines the outcomes of the risk analyses with
the aim of illustrating the effects of spatial correlations within the catastrophe modelling
process. The chapter ends with some brief conclusions.

5.2 Modelling spatial correlation of ground motion in-

tensity measures

Empirical ground motion models (GMMs) provide an estimate of the ground shaking
at an individual site as a function of explanatory variables describing the source, the
propagation path and the site conditions (e.g Douglas and Edwards, 2016):

log10(IMei) = µIMei
+ δBe + δWei (5.1)

where IMei is the intensity measure of interest at site i due to the event e, whereas µIMei
is

the predicted mean of log10(IM)ei. δBe and δWei are the between-event and within-event
residuals, respectively, which are assumed to be independent and normally distributed with
zero mean and standard deviation τ and ϕ, respectively. δBe represents the average shift
of the observed IM of an individual event e from the median predicted by the model and
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it is common for all sites, whereas the various δWei account for site-to-site differences of
observations from the median event-corrected predictions. GMMs express the IMs of interest
as lognormally distributed random variables, providing only their marginal probability
distribution at an individual site. However, for regional seismic hazard and risk assessments,
one needs to quantify the joint probability of occurrence of IMs at multiple locations over
the region of interest. Therefore, it is necessary to model the spatial variability of δWei,
namely to define how the δWei vary in space.

5.2.1 Characterization of the spatial variability of univariate ran-

dom functions

In geostatistical analysis, the most common tool adopted to describe the spatial correl-
ation of a random function is the empirical semivariogram, which measures the average
dissimilarity of a pair of random variables z (xi) and z (xj) at locations xi and xj , separated
by an inter-site distance h:

γ =
1

2
E[zxi − zxj ]2 (5.2)

where E[] denotes the expected value. In seismological applications, the z (xi) represent the
(normalized) within-event residuals:

zxi =
δWei

σe
=
logIMei

− µlogIMei
− δBe

σe
(5.3)

in which σe is the sample standard deviation of the within-event residuals for earthquake e.
Due to the lack of repeated observations of ground motions at each site from a given

earthquake, further simplifications are needed to estimate γ, and the hypothesis of second-
order stationarity and isotropy are commonly assumed. This means that the correlation
between any pairs of sites with equal separation distance is the same, independently of the
source-to-site distance and orientation. Therefore, under these assumptions, equation (5.2)
can be rewritten as:

γ =
1

2
E[zxi − (zxi + h)] (5.4)

where h is the inter-site distance.
To assess the spatial correlation structure on the residuals with semivariograms, the

main steps are: (1) compute the experimental semivariogram γ̂(h); (2) choose a parametric
function (e.g. exponential and spherical models); and (3) estimate the correlation parameters,
namely the sill (i.e. the overall variance) and the practical range (i.e. the distance
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beyond which the correlation is negligible) through regression analysis. In this study, the
experimental semivariogram is computed based on the robust estimator proposed by Cressie
(1985) and the exponential function is used to model the sample semivariogram:

γ(h) = a[1− exp(−3h/b)] (5.5)

where a represents the sill and b is the practical range. In the case of the exponential model,
b is the distance at which 95% of the sill is reached. The sill is equal to 1 because of the
normalization of the within-event residuals and therefore, the range is the only correlation
parameter to be estimated. We opt for a weighted least-squares regression to fit the sample
semivariogram, in which the weights depend both on the number of pairs and the separation
distance, following Baker and Chen (2020):

wi = N(hi)exp(−hi/c) (5.6)

in which N is the number of pairs in each bin and c is a parameter that describes the decay
of the weights as the distances increases. We set it equal to 5 km, based on preliminary
analysis. We note that correlation parameters were also estimated through maximum-
likelihood approaches in preliminary analyses. In general, the results were similar in most
of the cases and therefore we favoured the method that provided a better fit and is more
common. The reader should refer to chapter 2 and 4 for further details on correlation
modelling.

5.2.2 Stationarity and isotropy assumptions

We use the test by Bowman and Crujeiras (2013) to verify the suitability of a stationary
and isotropic model to represent the spatial correlation. The validity of the stationary
assumption is determined through a test statistic which compares an estimated semivari-
ogram based on separation distance and location with that obtained as a function of only
separation distance. Analogously, the test of isotropy compares an estimated semivariogram
based on separation distance and azimuth with that obtained as a function of only separ-
ation distance. If the p-value of the statistical tests is greater than 0.05, the evidence of
non-stationarity and anisotropy is not statistically significant (at a 5% significance level)
and therefore the assumption of stationarity and isotropy cannot be rejected.

In this study, we test the validity of such assumptions by using the sm package (Bowman
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and Azzalini, 2018) in the R software (R Core Team, 2019). We perform the test for
each event in the database and IM considered (Peak Ground Acceleration, PGA; Spectral
Acceleration, SA, at 15 periods between 0.1 and 2 s). Figure 5.1 shows the p-values of
the statistical tests as a function of Mw considering the events within the Central Italy
database and for SA for a period of 1 s. The majority of events have a p-value larger
than 0.05, suggesting that the hypotheses of isotropy and stationarity are satisfied at a 5%
significance level. We decide to keep also the events with a p-value smaller than 0.05 in our
analysis after verifying that semivariograms and their associated parameters are reliable.
Similar results are obtained for the other IMs and events. These figures are not shown
here for the sake of brevity. In the following, we, therefore, describe the spatial correlation
for the different regions through stationary and isotropic models. We note that models
cannot be extrapolated to other IMs not considered in this study as we cannot guarantee
the validity of the isotropy and stationarity assumptions.

Figure 5.1: p-value as a function of magnitude Mw: (a) isotropy test; and (b) sta-
tionarity test. Red dashed line indicates the 5% significance level. The results are
for the Central Italy dataset and for IM = SA(T=1 s).

5.2.3 Databases

We employ the European Strong-Motion (ESM) dataset (Lanzano, Sgobba, Luzi, Puglia,
Pacor, Felicetta, D’Amico, Cotton and Bindi, 2019) to develop spatial correlation models
for Italy. In particular, we apply the selection criteria proposed by Kotha et al. (2020) to
select only shallow crustal earthquakes and records with an usable frequency range. Only
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those events with ≥ 40 records (within a Joyner-Boore distance RJB ≤ 120 km) in the
dataset are used to guarantee more robust correlation estimates. We further subdivide the
dataset into three sub-categories based on macro-regions: (1) Northern, (2) Central, and (3)
Southern Italy to calibrate ad hoc correlation models tailored to the specific macro-region.
Figure 5.2a summarises the characteristics of the three sub-datasets, whereas Figure 5.2b
shows the magnitude-distance scatter plot.

The Northern Italy dataset includes 23 earthquakes (1,408 records) that mainly occurred
during the 2012 Emilia seismic sequence with characteristic moment magnitudes of 4.0 -
5.0. All the events are recorded on average by 61 stations, which mainly belong to the soil
class C (according to the EC8 soil classes, CEN (2004)), i.e. soft soil characterized by a
Vs30 (average shear wave velocity of the top 30 m of the soil column) between 180 and 360
m/s. The prevailing style of faulting is thrust (TF) and only a few events have normal (NF)
or strike slip (SS) mechanisms.

The Central Italy dataset includes 4,363 records from 50 events characterized mainly by
normal-fault mechanisms (48 NF and 2 SS). The majority of data belongs to either the
2009 L’Aquila or the 2016 Central Italy sequences, and are from fault distances smaller
than 70 km, as well as moment magnitudes in the range 4.0 - 5.0. The largest earthquake
is the Mw 6.5 30th October 2016 Norcia event. All the earthquakes are recorded on average
by nearly 90 stations, which are mainly classified as soil class B, i.e. stiff soil with a Vs30 in
the range 360 - 800 m/s.

Finally, the Southern Italy dataset contains only 333 records from six events. Four out
of the six events have a magnitude of 4.5 and a NF mechanism. Each event is recorded on
average by 55 stations, which mainly belong to soil class B. We are aware that the Southern
Italy correlation model is not well constrained due to the shortage of data in this area.
However, we prefer to distinguish the three macro-regions as correlation models are found
to be period− and regionally− dependent (see chapter 2).

5.2.4 Correlation models for the Mw 6.5 Norcia (Central Italy)

event

Here, we propose three different spatial correlation models for the Mw 6.5 Norcia event
obtained through the methodology explained in section 5.2.1. The models differ only by
the reference GMM used to compute the within-event residuals. This makes it possible to
investigate the effect of the GMM on the spatial correlation and hence on the resulting
earthquake shaking losses of building portfolios. We choose the Lanzano, Luzi, Pacor,
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(a)

Felicetta, Puglia, Sgobba and D’Amico (2019) (hereinafter ITA18) and the Kotha et al.
(2020) (hereinafter K20) models, which mainly differ in terms of their underlying datasets.
The former is calibrated on Italian data whereas the latter includes also European events.
We also develop an ad hoc GMM specifically calibrated on the observations of the Mw 6.5
Norcia event. The latter takes the following form based on preliminary analyses:

log10Yij = b1 + b2log10

√
R2 + b23 + b4

√
R2 + b23 + b5log10

Vs30
800

(5.7)

where R is the RJB distance and b1, . . . , b5 are the model coefficients inferred through a
one-stage ordinary regression, which is justified as here we are only using data from a single
event.

Figure 5.3 presents the ranges obtained for PGA (T=0s) and SA at 15 periods between
0.1 and 2 s and the corresponding fitted models as a function of period. Generally, the
three different models have a range that is directly proportional to the period, as previously
observed in the literature (see chapter 2). At intermediate and long periods, the models
converge towards very similar values, suggesting that the underlying GMM has a negligible
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Figure 5.2: Set of Italian data: (a) Location of the epicentres as a function of Mw;
and (b) magnitude-distance scatter plot. JB stands for Joyner-Boore distance. The
rectangles (in dashed black) indicate the three sub-regions selected in this study: NI:
Northern Italy; CI: Central Italy; and SI: Southern Italy.

effect on the final outcomes. By contrast, at short periods (T ≤ 0.4s), the three models
show different trends. An explanation may lie with the different sensitivity of high-frequency
and low-frequency ground motions to the anelastic attenuation. Indeed, Kotha et al. (2020)
found larger regional differences of anelastic attenuation at short periods than at longer
periods. We believe that the larger ranges of the correlation model based on K20 are due to
the faster attenuation of the Central Italy region with respect to the pan-European average
(Kotha et al., 2020). Such strong attenuation is not modelled in the ergodic K20 GMM
and therefore it manifests as apparent spatial correlation. Conversely, the ITA18 and the
ad hoc GMMs better capture the anelastic attenuation of high-frequency IMs (e.g. term
b4
√
R2 + b23 in eq. 5.7), resulting in a lower spatial correlation at short periods.
The observed ranges are fitted either with a bilinear (ITA18 and K20) or linear (ad hoc

GMM) expression to facilitate its implementation in the OpenQuake software, as follow:

b(T ) =

 a0 + a1(T − t), T ≤ t

a0 + a2(T − t), T > t
(5.8)
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b(T ) = a0 + a1T (5.9)

where T is the period of interest and b is the range in km. The coefficients a0, a1, a2 and t
obtained through a one-stage regression are reported in Table 5.1 for the three different
cases. We recall that the model cannot be extrapolated to other periods as we cannot
guarantee that the hypothesis of isotropy and stationarity holds.

Figure 5.3: Spatial correlation models obtained for the Mw 6.5 Norcia (Central Italy)
event. Dots and squares represent the ranges as a function of period, whereas the
solid lines represent the fitted models. Ad hoc refers to the GMM calibrated on
the Mw 6.5 Norcia observations only; ITA18 refers to the Lanzano, Luzi, Pacor,
Felicetta, Puglia, Sgobba and D’Amico (2019) GMM; K20 refers to the Kotha et al.
(2020) GMM.

Table 5.1: Coefficients of the equations fitted to the ranges for the three GMMs
(equation 5.8 and 5.9).

a0 a1 a2 t

ad hoc 9.03 11.62
ITA18 15.96 -20.89 11.37 0.40
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K20 12.65 -53.62 14.62 0.40

5.2.5 Correlation models for the three macro-regions in Italy

It is recognized that the spatial correlation not only varies with geological context (e.g.
Sokolov and Wenzel, 2013; Schiappapietra and Douglas, 2020), but also from event to event
(Goda, 2011; Heresi and Miranda, 2019). In this study, we propose different correlation
models depending on the considered region (Northern, Central and Southern Italy) and
we provide an estimate of the event-to-event variability that should be accounted for to
obtain more informed regional risk assessments. We follow Heresi and Miranda (2019),
who proposed a simple methodology to include the event-to-event variability of spatial
correlation by providing the median range and its associated dispersion. In particular, the
main steps are:

1. compute the spatial correlation for each event in the database and for each considered
IM, following the methodology described in section 5.2.1. We use the ITA18 GMM to
compute the within-event-residuals;

2. compute the central tendency of the range for each IM as the weighted geometric
mean. Weights are proportional to the square of the number of stations that recorded
the earthquake;

3. compute the dispersion of the ranges for each IM as the weighted standard deviation
of the natural logarithm of b;

4. compute the empirical cumulative probability distribution of b for each IM and verify
that ranges are lognormally distributed through the Kolmogorov-Smirnov statistical
test; and finally,

5. fit the computed weighted mean and standard deviation with simple models as a
function of the period, as follows:

b(T ) =

 a0 + a1(T − t), T ≤ t

a0 + a2(T − t), T > t
(5.10)

b(T ) = a0 + a1T (5.11)
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σLn(b) = a0 + a1T + a2T
2 (5.12)

The fitted models for the median and variability are then used in conjunction with
equation 5.5 to simulate spatially distributed ground motion fields. For each earthquake
scenario in an event-based PSHA, b is sampled from a lognormal distribution with median
and dispersion provided by the fitted model. By so doing, the correlation structure of the
different ground motion field varies each time as would be expected in nature, rather than
being fixed.

The resulting ranges and their associated variability for the three regions are presented
in Figure 5.4 along with the fitted models, whereas the model coefficients are reported in
Table 5.2. We note that the appropriateness of these models is measured based on standard
criteria, such as the BIC (Bayesian information criteria) and AIC (Akaike’s information
criterion).
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Figure 5.4: (Left hand side) Computed weighted geometric mean and fitted model,
and (right hand side) computed weighted standard deviation and fitted model. (Top)
Northern Italy, (Middle) Central Italy, and (Bottom) Southern Italy.
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Table 5.2: Coefficients of the equations fitted to the ranges (equation 5.10, 5.11 and
5.12) for the three different regions.

Region a0 a1 a2 t

Northern Italy
b [km] 27.48 -52.20 15.81 0.55
σ 0.75 -0.30 0.08 -

Central Italy
b [km] 17.87 -8.52 7.85 1
σ 0.8 0.13 -0.1 -

Southern Italy
b [km] 23.25 -5.44 - -
σ 1.49 -1.11 0.51 -

The correlation parameters for the Northern and Central Italy regions are modelled
through bilinear (range - equation 5.10) and quadratic (dispersion - equation 5.12) expres-
sions, whereas the Southern Italy model for the range value is expressed through a simpler
linear equation (equation 5.11). We note that the Southern Italy model features a higher
dispersion compared to the other two regions. This is due to both the lower number of
events available for this region and the smaller number of stations that on average recorded
those events. The Northern Italy region has a lower variability with respect to the Central
Italy model. At the same time, the former features larger ranges compared to the latter
over all the considered periods, suggesting that the ground motion is on average correlated
over longer distances. Such a trend is most likely due to peculiarities of the local site effects
and propagation path, which may strongly affect the spatial correlation of a region, as
demonstrated for instance by Jayaram and Baker (2009), Sokolov and Wenzel (2013) and
Schiappapietra and Douglas (2020). The Central Italy region is indeed characterized by
a high degree of heterogeneities in terms of local site effects compared to the Po plain
(Northern Italy) region, where soil conditions are more homogeneous in terms of Vs30.

Finally, Figure 5.5 compares published correlation models with the models proposed in
this study. Some observations are worthy of remark. Firstly, although Sgobba et al. (2019)
provided correlation parameters of the corrective term (e.g. sum of the repeatable terms of
variability due to source, path and site effects) and not of the within-event residuals, our
Northern Italy model is in agreement with their results, suggesting that this region features
on average ground motions correlated over longer distances. The Huang and Galasso (2019)
and Esposito and Iervolino (2012)−ITACA models were developed based on events from the
entire Italian territory and therefore they provide an average spatial correlation structure.
While these models have different trends at shorter periods compared to those proposed in
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this study, differences with the Central Italy model are not significant for periods longer
than 0.8s. This may likely be due to the datasets on which the correlation parameters
were computed, which are dominated by normal faulting events that occurred along the
Apennine chain. It is noted that Esposito and Iervolino (2012) proposed two different
models based on the ITACA (URLhttp:// itaca.mi.ingv.it/ ItacaNet_31/#/home) and
ESD (http://www.isesd.hi.is) databases, respectively. For comparison, we also show the
ESD model, which is based on pan-European (and not just Italian) data. For the sake of
completeness, we also show the correlation model proposed by Heresi and Miranda (2019)
which is based on 39 well-recorded events from the NGA-West2 database (Ancheta et al.,
2014). Generally, this study has lower ranges with respect to the models developed for Italy,
suggesting that regional differences in spatial correlation cannot be neglected.

Figure 5.5: Comparison among different correlation models: NI - Northern Italy; CI
- Central Italy; SI - Southern Italy; EI12 - ITACA - Esposito and Iervolino (2012);
EI12 - ESD - Esposito and Iervolino (2012); HM19 - Heresi and Miranda (2019);
HG19 - Huang and Galasso (2019); S19 - Sgobba et al. (2019).

URLhttp://itaca.mi.ingv.it/ItacaNet_31/#/home
http://www.isesd.hi.is
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5.3 OpenQuake engine input models

5.3.1 Hazard component

The OpenQuake engine is used here to perform both deterministic and probabilistic
seismic hazard assessments for the region of interest. The following subsections describe the
input parameters and models required for both the scenario-based PSHA and event-based
PSHA calculations (Pagani et al., 2014).

5.3.1.1 Scenario - based seismic hazard assessment

The computation of ground-motion fields for a specific earthquake scenario requires
three main inputs: (1) a fault rupture model that defines the location and geometry of
the source, (2) a GMM, and (3) a model of the local site conditions. We consider a recent
earthquake, namely the Mw 6.5 30th October 2016 Norcia (Central Italy) event, as the
reference to define the rupture. The following parameters (https:// esm-db.eu/#/ event/
EMSC-20161030_0000029 ), along with the fault geometry, are used as input to OpenQuake:
epicentre latitude 42.82°; epicentre longitude 13.16°; focal depth 6.8 km; Mw 6.5; rake =
95°; strike 151°; and dip 47°. We select the ITA10 GMM (Bindi et al., 2011), which is
one of the best performing models for shallow active crustal regions in Italy according to
Lanzano et al. (2020). We choose an independent GMM compared to the ones used in
the correlation modelling, so that the correlation model is the only varying input. We
calculate ground-motion fields at multiple resolution grids with 1km and 250m grid
spacing. The finer grid is used for densely populated area with potential of high IMs values
to properly account for local site effects. Finally, the local site conditions are taken into
account following Mori et al. (2020), who derived a detailed Vs30 map for Italy (spatial
resolution of 50× 50m), which also includes data from Italian seismic microzonations.

The OpenQuake engine allows the simulation of multiple spatially-correlated random
fields to account for the aleatory variability in the ground motion by sampling the between-
and within-event variability components from the GMM and by considering the spatial
correlation of the within-event variability. To ensure the convergence of the mean and
associated standard deviations of the results, we generate 1,000 ground motion fields based
on the works of Silva (2016) and Costa et al. (2018). The spatial correlation is modelled
as mentioned in section 5.2.4. To investigate to what extent this feature impacts the
overall economic losses, we consider four different cases. First, we generate ground-motion

https://esm-db.eu/#/event/EMSC-20161030_0000029
https://esm-db.eu/#/event/EMSC-20161030_0000029
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fields without considering the spatial correlation. Thereafter, we employ the three models
described in section 5.2.4. It is noted that the algorithm to simulate spatially-correlated
random fields has been fine-tuned to reduce the computational cost and to enable a larger
number of sites to be tested. Instead of the original covariance formulation, which is already
implemented in OpenQuake, we use the randomization method of the Python package
gstools (Müller and Schüler, 2021). This method represents the spatial random field through
the Fourier integral (Wu and Baker, 2014) and it evaluates its discretised modes at random
frequencies.

We generate spatially-correlated ground-motion fields for PGA and SA at T = 0.3,
0.6 and 1 s. These IMs are used in the vulnerability component to calculate the building
damage. A building can be sensitive to vibrations of different periods depending on its
height and material of construction. Figure 5.6 provides a realization of the spatially-
correlated ground-motion field for PGA obtained by using the different correlation models.
The hazard footprint for the case without spatial correlation appears very noisy. Indeed,
the within-event residuals are randomly generated so that the IMs of interest at each site
are considered as independent random variables. By contrast, the distribution of PGA
values in the other cases show smoother patterns as a result of the spatial correlation,
which makes closely-spaced sites likely to experience similar ground-motion levels. The
comparison between the ad hoc and K20 models is also noteworthy. The latter has a greater
range (correlation length) which makes the ground motion correlated over longer distances.
Conversely, the shorter range in the ad hoc model results in a patchier distribution of the
PGA.

The ground-motion fields are then combined with the vulnerability and exposure
components to calculate the losses of the portfolio. The outcomes of the risk analysis are
shown in Section 5.4
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Figure 5.6: Spatially-correlated ground-motion maps obtained by using different cor-
relation models: (a) No within-event spatial correlation; (b) Ad hoc spatial correlation
model; (c) ITA18 spatial correlation model; and (d) K20 spatial correlation model.
The yellow star represents the Mw 6.5 Norcia epicentre, whereas the black rectangle
defines the surface fault projection.

5.3.1.2 Event-based probabilistic seismic hazard assessment

We use the event-based calculator from the OpenQuake engine to compute PSHA for
Italy through a Monte Carlo (MC) simulation-based approach (Pagani et al., 2014). The
first step generates synthetic earthquake catalogues, also called a stochastic event set,
by randomly sampling all possible ruptures from the input source model (Atkinson and
Goda, 2013; Musson, 2000). The events from the catalogue are then used to estimate the
ground-motion IMs of interest at each site by using a list of suitable GMMs in conjunction
with the model of the local site conditions. Likewise to the scenario-case, we adopt the Vs30
map proposed by Mori et al. (2020). A logic tree of GMMs is usually employed to describe
the ground-motion field with the aim of capturing the epistemic uncertainty. Finally, the
IMs estimates obtained at each site for each event are rearranged so that the seismic hazard
curves (annual maximum IMs as a function of the probability of exceedance) can be inferred.
Musson (2000) demonstrated that for a sufficiently large number of simulations the results
of the event-based PSHA are close to the outcomes of the classical PSHA, which uses the
numerical integration of the total probability integral. The reader should refer to Atkinson
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and Goda (2013) for further details and advantages of this approach over the classical one.
In our analyses, we implement the SHARE (Woessner et al., 2015) source and ground-

motion models for Italy. In order to account for spatial correlation models for three main
macro-regions of Italy (see Section 5.2.5), we take into account only the source area that
can contribute to the seismic hazard and risk of the region under study. With regard to
the GMMs, we slightly modify the GMM logic tree to enable the modelling of the spatial
correlation of the within-event residuals of the ground motion. Indeed, not all the GMMs
included in the logic tree (e.g. the Cauzzi and Faccioli (2008), Toro (2002) and Campbell
and Bozorgnia (2003) models) decompose the total aleatory variability into between- and
within-event components. For such GMMs, we set the within-event standard deviation
(ϕ) approximately up to 90% of the total standard deviation (σTOT ) based on preliminary
analyses of the ratio ϕ/σTOT of the other GMMs. We implement in the OpenQuake
engine the spatial correlation models developed in Section 5.2.5 to evaluate the impact of
such features on the risk outcomes. We perform three different tests: (1) not taking into
account spatial correlation; (2) including the event-to-event spatial correlation variability
as described in Section 5.2.5; and (3) considering only the median range to characterise the
spatial dependency of the ground motion. Figure 5.7a shows an example of hazard curves
for the Norcia city obtained for the three different case-studies. The curves represent the
return period (inverse of the annual probability of exceedance) of various PGA levels. While
hazard curves have the same trend at high probabilities of exceedance (short return periods)
independently of the correlation structure, results tends to diverge at lower probabilities
of exceedance (return periods larger than 200 years). Such trend is also highlighted in
Figure 5.7b, which shows the ratio of PGA values for the three different case-studies. Note
that the case in which the event-to-event spatial correlation variability is included is taken
as reference.
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Figure 5.7: (a) Hazard curves showing the return period of different ground motion
levels in terms of PGA for three different cases: ground-motion fields are generated
without considering correlation; ground-motion fields are generated considering cor-
relation; ground-motion fields are generated considering correlation and its associated
uncertainty. (b) ratio of ground motion levels as a function of the return period.

5.3.2 Vulnerability component

The vulnerability component defines loss ratios as a function of IM values depending on
the building structure class. In our study, we use the vulnerability functions that have been
developed in the framework of the 2020 SERA (Seismology and Earthquake Engineering
Research Infrastructure Alliance for Europe, http://www.sera-eu.org/ en/ home/ ) project.
Crowley et al. (2021), Martins and Silva (2020) and Silva et al. (2020) developed about
500 functions to cover the building classes of the European exposure database (Crowley
et al., 2020). The building classes for the area under study are shown in Section 5.3.3. The
adopted vulnerability functions employ PGA or SA at 0.3, 0.6 and 1 s as ground motion
IMs depending on the fundamental period of the different building classes. In general,
high-rise structures are associated with long-period IMs, whereas low-rise buildings are
associated with short-period IMs, such as the PGA or SA at 0.3 s. It is noted that, for
the sake of simplicity, and to highlight the effects of different correlation models, in our
analysis, we do not consider the uncertainties associated with the loss ratio. The reader
should refer to Crowley et al. (2021) and Martins and Silva (2020) for further details on
the calibration of the vulnerability component.

http://www.sera-eu.org/en/home/
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5.3.3 Exposure component

In our analysis, we implement the European exposure database (Crowley et al., 2021)
for Italy, which has been developed within the SERA project. The database reports the
distribution of the main residential, industrial and commercial buildings classes along with
their replacement costs and numbers of occupants. Buildings are classified according to:
(1) the main construction material (e.g. unreinforced masonry - MUR, confined masonry
- MCF, reinforced concrete - CR, steel - S); (2) lateral load resisting system; (3) number
of stories; (4) seismic design code level (e.g. pre-code - CDN, low code - CDL, moderate
code - CDM, high code, CDH); and (5) lateral force coefficient used in the seismic design.
The replacement cost is the value of replacing a building based on the latest building
codes of the country and it is given by the sum of structural and non-structural costs as
well as the cost of contents. As an example, Figure 5.8a shows the buildings per each
building class according to the European exposure database, and Figure 5.8c provides the
percentages of total replacement costs for the structural and non-structural components
and the contents. These data refer to the area of interest of both the scenario-case and
event-based calculations, as presented in Figure 5.8b. The reader should refer to Crowley
et al. (2021) for further details on the derivation of the exposure database.
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Figure 5.8: (a) Classification of the building classes according to the European ex-
posure model. For further details on the labels, the reader should refer to Crowley
et al. (2021); (b) Area of interest: residential, industrial and commercial buildings of
graphs (a) and (c) are within the red rectangle; (c) Percentage of replacement costs,
divided into contents and structural and non-structural components.
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5.4 Risk analysis and discussion

5.4.1 Scenario-base loss assessment

In this section, we present the potential economic losses obtained by combining the
vulnerability and exposure components with the hazard model presented in Section 5.3.1.1.
Figure 5.9 shows the distribution of losses (average computed over the 1000 simulations)
with respect to the total portfolio value (%TV). We derive mean loss maps for each of the
correlation models derived for the Norcia event to highlight the potential effects of considering
spatially-correlated ground-motion fields. The economic portfolio is disaggregated at the
grid level, based on the population density, in contrast to the original exposure model, which
assumes that all the buildings are located at the centroid of each municipality. Indeed, such
configurations would mask the actual effects of using various correlation models, especially if
the inter-site distance among the municipality centroids is larger than the correlation ranges.
In particular, we obtain population density data for each grid cell starting from available
raster (https://www.eea.europa.eu/ ) and we compute weighting factors as population
density in a given cell divided by population density in the corresponding municipality.
Eventually, the total economic value in each grid cell is calculated by multiplying the total
economic value of the municipality by the corresponding weighting factor.

Although differences in the spatial distribution of losses are discernible among the case
studies, risk calculations do not seem to be strongly affected by the specific correlation
model, as also highlighted in Table 5.3.

https://www.eea.europa.eu/
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Figure 5.9: Losses (%TV computed based on different hazard models expressed in
terms of percentage of total value of the portfolio: (a) Spatial correlation is not
considered; (b) ad hoc correlation model; (c) ITA18 correlation model; and (d) K20
correlation model. The yellow star represents the Mw 6.5 Norcia epicentre, whereas
the black rectangle defines the surface fault projection.

Table 5.3: Overall loss in %TV (percentage of total value of the portfolio) for the
four different case studies.

Correlation Model Overall Loss in %TV

No Correlation 4.56
Ad hoc 4.30
ITA18 4.63
K20 4.26

We believe that the exposure model, in terms of heterogeneity, plays a critical role in
determining such results. Indeed, as shown in Figure 5.3, the correlation models tend to
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converge toward analogous values as the period increases. This means that if mid- and
high-rise structures are predominant within the portfolio, the corresponding losses would
be similar as a result of ground motions being correlated over larger distances.

Such conclusions can also be drawn from Figure 5.10, which presents the histograms
of economic losses computed based on the different hazard models. We do not observe
significant differences in the loss distributions, in contrast to Wagener et al. (2016), who
found an increasing coefficient of variation (CV), i.e. the ratio between the standard
deviation and the mean, with increasing correlation length. The CV is indeed almost the
same (0.55) for all cases. In addition to the above-mentioned explanations, these diverging
outcomes could be associated with the portfolio dimension. Park et al. (2007) and Weatherill
et al. (2015) demonstrated that the effects of including spatial correlations are greater when
smaller portfolios (with a footprint within the correlation length) are considered. In such
cases, it is much more likely that ground motions are substantially higher/lower than the
median values at all sites within the exposure database, compared to larger portfolio.

To further highlight the impact of spatial correlation models within the risk assessment,
we therefore consider a homogeneous spatially-distributed flat portfolio for each IM (e.g.
PGA and SA at 1 s). In this case, only one building type is considered at all grid points
with same building cost. We compute loss distribution parameters, such as mean, standard
deviation and CV (Table 5.4), for each case to identify trends. In agreement with Wagener
et al. (2016), we now note that while the mean is almost constant, CV tends to increase
as the correlation length increases for short-periods IMs. On the other hand, the CVs
remain stable for long-period SAs. Indeed, the correlation models proposed in Section 5.2.4
converge towards comparable correlation lengths, thus resulting in similar loss distributions.

Table 5.4: Mean and Coefficient of variation of the losses obtained from the different
correlation models for two different IMs.

Correlation Model Mean (109) - PGA CV - PGA Mean (109) - SA 1s CV - SA 1s

No Correlation 6.4 0.79 29.2 0.64
Ad hoc 6.1 0.80 29.6 0.65
ITA18 6.4 0.88 30 0.65
K20 6.7 0.91 29.7 0.65
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Figure 5.10: Histograms of economic losses computed based on different hazard mod-
els: (a) Spatial correlation is not considered; (b) ad hoc correlation model; (c) ITA18
correlation model; and (d) K20 correlation model. Red lines point out the mean
value, whereas the red dashed lines indicate the mean ± std.

5.4.2 Event-based probabilistic loss assessment

In this section, we present the potential economic losses obtained by combining the
vulnerability and exposure components with the hazard model presented in Section 5.3.1.2
We focus only on the same geographical area (Central Italy) to better understand the impact
of including the spatial correlation in our analysis. Risk assessment for the whole Italian
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mainland will be the object of future developments. Figure 5.11 shows the exceedance
probability (EP) curves in terms of losses for three different case-studies: (1) ground-motion
spatial correlation is neglected; (2) ground-motion fields are generated by considering a
median correlation model as presented in Section 5.2.5; and (3) event-to-event spatial
correlation uncertainty is taken into account as explained in Section 5.2.5. In general, we
observe greater losses at higher return period (lower annual probabilities of exceedance)
when spatial correlation and its associated uncertainty are included with respect to the case
in which the spatial correlation is neglected. When only a median spatial correlation is used,
rare losses are slightly overestimated compared to when correlation is neglected. This trend
is also highlighted in Figure 5.12, which shows the ratio of losses for the three different
case-studies. Note that the case in which the event-to-event spatial correlation variability
is included is taken as reference. The results are in agreement, for example, with Park et al.
(2007) and Weatherill et al. (2015), even though our study does not show marked differences.
An explanation may lie with the heterogeneity of the portfolio along with its dimension,
which would also require the consideration of cross-correlation among different IMs to
obtain more robust loss estimates. On the other hand, for return period of interest for the
(re)insurance industry (up to 1000 years), EP curves show a similar behaviour, suggesting
that overall losses are not strongly affected by the different correlation structures. We are
aware that our outcomes are preliminary because an accurate estimation of the likelihood
of observing rare and frequent losses would require the definition of the cross-correlation,
especially in case of a heterogeneous portfolio. Nonetheless, such results provide useful
advances to better understand the impact of including not only spatial correlation but
also its associated variability. In particular, the consideration of the event-to-event spatial
correlation variability leads to an overestimation of the rare losses with respect to the
simple spatial correlation case, whereas a trend cannot be identified for frequent losses. We
recall that when only a median correlation model is considered, the range is constant for
each ground-motion field generated. Conversely, the correlation structure of the different
ground-motion fields varies each time when the dispersion of the range is considered in the
analysis.
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Figure 5.11: EP curves in terms of loss in %TV for three different cases: ground-
motion fields are generated without considering correlation; ground-motion fields are
generated considering correlation; ground-motion fields are generated considering
correlation and its associated uncertainty. TV stands for total value of the economic
portfolio (2020 SERA exposure model). In the inset, we show EP curves up to a
return period of 1000 years, which is usually the range of interest for (re)insurance
industry.
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Figure 5.12: Loss ratio as a function of the return period for three different cases:
ground-motion fields are generated without considering correlation; ground-motion
fields are generated considering correlation; ground-motion fields are generated con-
sidering correlation and its associated uncertainty. In the inset, we show loss ratio
curves up to a return period of 1000 years, which is usually the range of interest for
(re)insurance industry.
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To further highlight the impact of spatial correlation and its associated uncertainty
within the probabilistic risk assessment, we therefore account for a homogeneous spatially
disaggregated flat portfolio for different IMs, such as PGA and SA at 0.3, 0.6 and 1 s.
In this case, only one building type is considered in each grid cell. Figure 5.13 compares
the average annual losses (in %TV) obtained for the same three cases as considered for
the SERA economic portfolio (Figure 5.11). The inclusion of spatial correlation (with
and without the event-to-event variability) makes the risk footprints less noisy and more
realistic with respect to the case in which spatial correlation is neglected (Figure 5.13 a).
Indeed, the distribution of losses tends to be very noisy when neglecting spatial correlation
as a result of the ground motion being independent at neighbouring sites. Therefore, loss
estimates are also independent owing to the homogeneity of the flat portfolio. In contrast,
when the correlation is considered, closely spaced sites are likely to experience similar
ground-motion levels, so that the distribution of losses shows smoother patterns. Differences
are also evident when comparing Figure 5.13 b and c, which is when the associated spatial
correlation uncertainty is accounted for. Such outcomes demonstrate the importance of
considering not only spatial correlation, but also the event-to-event spatial correlation
variability in seismic risk assessments. We note that these results refer to PGA; however,
similar outcomes are obtained for the other IMs.

For sake of completeness, we show in Figure 5.14 the loss EP curves obtained for the
different IMs. Rare losses are generally underestimated if spatial correlation is not accounted
for. This is more evident for short period IMs, such as PGA and SA at T = 0.3 s, compared
to long period IMs (SA at T = 0.6 and 1 s). Indeed, the spatial correlation model for Central
Italy presented in Section 5.2.5 features ranges that decreases as the period increases up to
1 s. Therefore, the effects of considering spatially-correlated ground-motion fields diminish
with increasing period. Besides, we note that both frequent and rare losses are generally
higher if the correlation uncertainty is accounted for with respect to the simple spatial
correlation case for short period IMs. In contrast, sound conclusions are difficult to draw at
longer IMs, as the EP curves show negligible differences. Further analyses are still required
to advance the understanding of including the event-to-event spatial correlation variability
in loss estimates; however, we believe that these findings have significant implications for
providing more informed seismic risk assessments.
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Figure 5.13: Average annual losses (AAL) for the flat homogenous portfolio (PGA)
obtained for three different cases: (a) ground-motion fields are generated without con-
sidering correlation; (b) ground-motion fields are generated considering correlation;
and (c) ground-motion fields are generated considering correlation and its associated
uncertainty. The yellow star represents the Mw 6.5 Norcia epicentre, whereas the
black rectangle defines the surface fault projection.
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Figure 5.14: EP curves in terms of loss in %TV for three different cases: ground-
motion fields are generated without considering correlation; ground-motion fields are
generated considering correlation; and ground-motion fields are generated consider-
ing correlation and its associated uncertainty. Losses are computed for flat homogen-
eous portfolios: (a) PGA; (b) SA at T = 0.3 s; (c) SA at T = 0.6 s; (d) SA at T = 1
s.

5.5 Conclusions

In this work, we perform both scenario and event-based seismic hazard and risk calcu-
lations to advance the understanding of spatial correlations in the catastrophe modelling
process. We first derive custom spatial correlation models based on the Mw 6.5 Norcia
earthquake to better investigate to what extend different input models may affect the overall
economic losses. Thereafter, we extend our analyses to probabilistic calculations, which are
often important for decision-making and (re)insurance and underwriting purposes. In this
context, we develop not only median spatial correlation models, but we also provide an
estimate of the event-to-event associated dispersion to enable more realistic estimations of
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both the ground motion and corresponding losses.
Deterministic scenario calculations for the Norcia event suggest that the economic port-

folio in terms of both heterogeneity and footprint dimension affect the impact of considering
spatially-correlated ground-motion fields in risk analyses. Indeed, risk calculations for the
2020 SERA economic portfolio do not seem to be strongly affected by the specific correl-
ation model, even though differences in the spatial distribution of losses may be spotted.
To further highlight the role of different spatial correlation models, we thus assumed a
flat portfolio, in which only a single building type is considered at each grid point. In
agreement with Wesson and Perkins (2001) and Wagener et al. (2016), we find that the
variance of losses varies according to the specific spatial correlation structure used in the
generation of ground-motion fields. Therefore, these outcomes suggest that the hypotheses
on which spatial correlation models are grounded (e.g. ground motion models to compute
the within-event residuals) play a crucial role in the estimation of the overall potential
losses for the area of interest. As a consequence, the implementation of a unique correlation
model calibrated on worldwide databases may represent an oversimplification.

Event-based calculations shed light on the importance of considering not only the
ground-motion spatial correlation, but also its associated uncertainty in risk analyses. Loss
exceedance probability curves for both the SERA economic and flat portfolios indicate that
neglecting spatial correlation leads to biases in loss estimates. In particular, smaller losses
are expected at lower annual probabilities of exceedance. For return periods of interest
for the (re)insurance industry (up to 1000 years), we note that EP curves show a similar
behaviour, suggesting that overall losses are not strongly affected by the different correlation
structures. Nonetheless, both hazard and risk footprints in terms of average annual losses
feature less noisy and more realistic patterns if spatial correlation is taken into account.
Therefore, this study strengthens the idea that the inclusion of spatial correlation and of
its associated variability is crucial for enabling more informed risk assessments.

Although our outcomes demonstrate that spatial correlations in probabilistic seismic haz-
ard and risk assessments improves per-event and in-location loss estimates for underwriting
purposes, this study presents some caveats. When heterogeneous portfolios are of concern,
not only it is important to consider the spatial correlation at closely-spaced sites, but the
cross-correlation among different IMs should also be accounted for at once. Neglecting the
cross-correlation would lead to independent ground-motion fields for different IMs and thus
to inaccurate estimation of the likelihood of observing rare losses. The development of a
novel approach to simulate spatially cross-correlated ground-motion fields indicates features
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for further developments of this preliminary study.
Finally, the consideration of isotropic spatial correlation models may represent a strong

simplification. Although the non-parametric tests presented in Section 5.2.2 suggest that
the hypothesis of isotropy is satisfied at a 5% significance level, several authors (Chen and
Baker, 2019; Abbasnejadfard et al., 2020; Infantino et al., 2021; Schiappapietra and Smerzini,
2021) demonstrated that anisotropic models better capture the complex ground-motion
patterns. Further modelling work should be undertaken to establish the effectiveness of
including anisotropic spatial correlation structure in risk analyses.
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CHAPTER 6

Conclusions

Modelling the spatial correlation of earthquake ground motions is a key ingredient in
seismic hazard and risk assessment, especially when spatially-distributed building portfolios
and infrastructures are of interest. The consideration of regional rather than site-specific
seismic hazard has posed challenges to risk modellers and researchers, and therefore
modelling the spatial variability of ground motions has gained increasing importance
over the past couple of decades. Analyses of earthquake recordings have revealed that
ground-motion residuals (specifically the within-event components) exhibit not only spatial
correlation, but also cross-correlation among different intensity measures at the same site.
The majority of spatial correlation models are based on the hypotheses of: (1) ground-
motion residuals being jointly normally distributed, (2) stationarity, and (3) isotropy. While
the first assumption has been demonstrated by Baker and Jayaram (2008), isotropy and
stationarity are usually assumed for the sake of simplicity, especially due to the paucity of
earthquake recordings. Furthermore, existing research recognises the critical role played
by various elements, such as magnitude, structural period and geological conditions, on
the spatial variability of ground motions; however, a systematic understanding of how such
factors affect the spatial correlation was still lacking.

Therefore, this thesis focused on advancing the understanding of spatial dependency of
ground motion as well as addressing different research gaps in spatial correlation modelling.
The following provides a summary of the main conclusions and key contributions of this
thesis along with limitations and recommendations for additional investigations.
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6.1 Key findings

Throughout this thesis, we investigated the factors that most affect the spatial correla-
tion of ground motion in order to enable more informed seismic hazard and risk assessments.
In general, the outcomes suggest that spatial correlation is period-, regionally- and scenario-
dependent, so that empirical correlation models calibrated on heterogeneous databases
may not properly represent the spatial dependency of the ground motion in the region of
interest.

In more detail, analyses of strong-motion data from the 2016-2017 Central Italy seismic
sequence and 3D physics-based ground-motion simulations demonstrated that the range
parameter within spatial correlation models depends on the structural period of interest,
which is consistent with findings in the literature (e.g. Jayaram and Baker, 2009; Esposito
and Iervolino, 2012; Wagener et al., 2016; Sgobba et al., 2019; Chen and Baker, 2019). A
direct proportionality between the sill and period was also found.

The rate of decay of spatial correlation is affected by geological and local site condi-
tions, whose effects are greater for short-period intensity measures compared to long-period
measures. Homogeneous soil conditions result in a greater ground-motion correlation
over longer inter-site distances, in contrast to more heterogeneous local site conditions.
Many researchers (e.g Jayaram and Baker, 2009; Du and Wang, 2013; Sokolov et al., 2012;
Garakaninezhad and Bastami, 2017) have accounted for such trends by considering the
correlation of Vs,30 values. While employing country-specific databases to characterise the
correlation structure of a region is a reasonable choice as it leads to more statistically robust
estimates, our outcomes proved that such correlation properties correspond only to average
trends in the data. A comparison between the Central Italy and the Po Plain regions is an
instructive example. The former is characterised by shorter correlation lengths due to a
higher degree of heterogeneities of the local site effects compared to the latter, where soil
conditions are more homogeneous in terms of Vs,30. Similar conclusions can be inferred, for
instance, from Sgobba et al. (2019), Sgobba et al. (2021) and Infantino et al. (2021) for
Italy and Sokolov et al. (2012) and Sokolov and Wenzel (2013) for Taiwan.

Many researchers (e.g. Foulser-Piggott and Goda, 2015; Heresi and Miranda, 2019;
Stafford et al., 2019; Kuehn and Abrahamson, 2020) have long debated the impact of
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magnitude on the spatial correlation. The study on the 2016-2017 Central Italy earthquake
sequence did not evidence any well-defined trend between range and magnitude, although
an average positive correlation may be found at longer periods. This is in agreement
with previous studies (Sokolov and Wenzel, 2013; Foulser-Piggott and Goda, 2015), which
stated that the correlation length tends to increase with increasing magnitude, owing to the
stronger energy content at low frequencies for larger magnitude events. The analysis of 3D
physics-based ground-motion simulations for the Norcia area allowed for deeper insights into
the dependence of the range on magnitude. In the near-field, the spatial variability of the
ground motion is strongly affected by: (1) the fault extension, (2) slip heterogeneities, and
(3) the relative position of the hypocentre with respect to the main slip asperities. These
factors may give rise to a higher range variability, so that the magnitude itself cannot be
used as the only explanatory parameter to describe source effects. As a matter of fact, the
application case-study presented in Chapter 5 suggested that the event-to-event correlation
variability should be included in regional probabilistic risk analysis to enable more realistic
estimations of the ground motion and corresponding losses.

In the literature, questions have been also raised about the impact on the correlation
structure of the GMMs employed to compute the within-event residuals. Our results
demonstrated that the range is not significantly affected by the GMM, provided that the
selected models do not exhibit systematic trends in the residuals. Indeed, these biases
stem from factors (e.g. anelastic attenuation) not properly accounted for by the GMM
and would inevitably be reflected as artificial spatial correlation. We observed that the
apparent dependence of the correlation properties on the GMM is greater for high-frequency
intensity measures, such as PGA, compared to low-frequency ground motions. The different
sensitivities of short- and long-period ground motions to the attenuation and local site
conditions are found to be partially responsible for such trends.

In previous studies, little effort has been directed towards the characterization of the
correlation structure of other ways of combining the two horizontal ground-motion compon-
ents beyond the classic geometric mean of the two horizontal components and RotD50. In
the near-field, the polarization of the ground motion can be significant due to phenomena
such as directivity and rupture propagation effects, which may lead to diagnostic spatial
correlation features. For instance, the Mw 6.5 Norcia earthquake simulations showed that
the fault-normal and vertical components are characterised by a more coherent ground
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motion due to the effects of the slip distribution coupled with the faulting mechanism, which
result in a larger correlation length with respect to the fault-parallel and geometric mean.
We therefore believe that such strong variability in terms of correlation properties between
different components should be accounted for in seismic hazard and risk assessments to
provide a more accurate representation of ground-motion fields.

Although the least-squares regression is the preferable technique to fit experimental
semivariograms rather that trial-and-error (manual fitting), it still presents several draw-
backs. Some authors apply the same weight to all the experimental values, so that the
model is fit equally over the full range of data, whereas others implement a weighted
approach, prioritising either the number of pairs in each bin or the shorter separation
distances. There is still a high degree of subjectivity in the choice of weights, in the
same way as there is for the manual fitting. Moreover, additional investigations showed
that the computation of experimental semivariograms depends on: (1) the bin size; (2)
the number of recording stations; (3) the station location configuration; (4) the distance
cut-off; and (5) the semivariogram estimator. Such dependencies motivated us to explore
different methodologies to define the correlation structure of earthquake ground motions.
In particular, we shed light on maximum-likelihood approaches, which directly estimate
the correlation properties, without requiring intermediate steps. Our results suggest that
maximum-likelihood methods may outperform the least-squares regression approaches, so
that they can be considered as a valid alternative for developing spatial-correlation models
in the future.

While the hypothesis of isotropy has been deemed valid in the analysis of earthquake
recordings, 3D physics-based ground-motion simulations enabled us to explore possible
preferential directions of the spatial variability as well as the relationship of such directions
with the source mechanism and the frequency content of the ground motion. Our outcomes
demonstrated that the assumption of isotropy, i.e. independence of correlation on the azi-
muth, may represent a strong simplification, especially in near-field regions. Non-parametric
tests were also performed on the Italian dataset to verify the suitability of an isotropy model
to represent the spatial correlation. We believe that the sparsity of densely earthquake
observations prevented a robust assessment in this case.

Although deterministic scenario and event-based probabilistic risk calculations provided
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preliminary results, our analyses demonstrated the importance of considering not only
the ground motion spatial correlation, but also its associated uncertainty to obtain more
accurate loss estimates. For instance, both hazard and risk footprints in terms of average
annual losses feature less noisy and more realistic patterns when spatial correlation is
accounted for compared to the case in which it is neglected.

The region- and scenario-dependency of correlation properties poses great challenges
to hazard analysts when selecting, developing or adapting spatial-correlation models for
their region of interest. Therefore, this thesis can form a basis for users and researchers
interested in investigating ground-motion spatial correlation. Key findings can be used by
loss and risk modellers to understand, interpret and model spatial correlation to generate
appropriate ground shaking maps and improve hazard and risk assessments.

6.2 Future research

Future studies and further investigations that would extend the analyses presented in
this thesis are proposed in the following.

Firstly, it is understood that 3D physics-based ground-motion simulations provide a
powerful tool to further advance the understanding of spatial correlation. Their main
advantages are: (1) databases of unparalleled size, especially in the near-field, and (2) the
possibility of carrying out sensitivity analyses to quantify the effects of physical phenomena
on spatial correlation. Besides, these simulations may be used as a complementary tool to
the classic ground motion prediction equations in seismic hazard and risk assessments. The
inclusion of simulations from a set of rupture realizations in risk analysis would overcome
several limitations, such as the hypothesis of isotropy and stationarity on which empirical
spatial correlation models are usually grounded. Indeed, our outcomes along with other
recent studies (Chen and Baker, 2019; Infantino et al., 2021) demonstrated that such as-
sumptions may constitute a strong simplification. In addition, not only do such simulations
inherently account for spatial correlation, they also naturally represent cross-correlation
among different IMs, which is essential in the case of heterogeneous building portfolios.
A comparison with the analyses presented in Chapter 5 should be instructive to better
understand to which extend a proper description of the spatial variability of ground mo-
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tions impact the final loss and risk estimates with respect to the standard ground motion
prediction equation-based approach.

Key findings of this dissertation suggest that the spatial variability of earthquake ground
motions varies depending upon the period and region as well as the specific event. This is
of concern especially for those regions characterized by sparse seismic networks, for which
developing a well-constrained correlation model is challenging. In addition to simulations,
which however require validation, the development of methodologies, such as the backbone
approach (e.g. Douglas, 2018) for ground-motion prediction, may constitute a research topic
for developing spatial correlation models, especially for areas without dense strong-motion
networks and/or low/moderate seismicity.

This dissertation mainly focuses on spatial correlation for single intensity measures.
However, the consideration of spatial cross-correlation amongst intensity measures is also a
crucial consideration in the loss estimation process, especially when heterogeneous building
portfolios are of concern. Indeed, each building class is usually characterized by its own
fundamental period of vibration, which is associated to specific intensity measure and there-
fore fragility/vulnerability model. A considerable amount of literature has been published
on cross-correlation models. Nevertheless, the implementation of these models into software
packages for the probabilistic assessment of seismic hazard and risk [e.g. Openquake-Engine
(Pagani et al., 2014)] has posed challenges. In the same way as we fine tuned the spatial
correlation approach, the inclusion of spatial cross-correlation in Openquake may indicate
features for further developments.

Garakaninezhad and Bastami (2017), Abbasnejadfard et al. (2020), Infantino et al.
(2021), Chen et al. (2021) and Schiappapietra and Smerzini (2021), among others, demon-
strated that the hypothesis of isotropy is not generally valid. However, there has been no
detailed investigation of the effects of considering anisotropic spatial correlation models on
risk estimates. Preliminary work on this was recently undertaken by Abbasnejadfard et al.
(2021). The authors found that isotropic models generally provide higher loss estimates at
low probability of exceedance and underestimate loss values for events with a high frequency
of occurrence with respect to anisotropic models. In particular, the order of magnitude
of such effects depends upon the heterogeneity of soil conditions and the configuration of
building portfolios. Results of Chapter 5 could be extended by including ad hoc anisotropic
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spatial correlation models for the region of interest to further investigate the impact of
isotropic Vs anisotropic correlation properties. The implementation of such models should
not require additional computational efforts. However, the calibration of ad hoc anisotropic
spatial correlation models represents a great challenge owing to the dependency of aniso-
tropy on local-site conditions, propagation path and earthquake source. Similarly to the
isotropic case, uncertainties in the correlation properties should be considered to provide
more realistic estimations of both the ground motion and corresponding losses.

The number of earthquake recordings has dramatically increased over the last decades,
allowing relaxing the ergodic assumption in favour of a non-ergodic approach to model the
ground motion. Standard approaches identify systematic and repeatable characteristics of
the ground motion (e.g. source-specific, site-specific and path-specific components), which
are used to adjust the median prediction of a GMM and hence significantly reduce the
aleatory uncertainties. In recent years, more sophisticated approaches have been proposed.
For instances, Landwehr et al. (2016) and Lanzano et al. (2021) developed new GMMs with
spatially varying coefficients. Such models enable the regional variabilities to be inherently
accounted for in the median estimates. An ergodic GMM coupled with a spatial correlation
model should lead to similar results in terms of regionalization of ground motions. Further
research could usefully compare hazard and risk estimates derived by both approaches to
highlight their advantages and caveats.

Finally, the outcomes of Chapter 5 represent a starting point for the development of an
earthquake catastrophe model for Italy. In particular, next steps would include: (1) the
new seismic hazard model developed for Europe (http://www.efehr.org/ start/ ), and (2)
the development of ad hoc spatial cross-correlation models to achieve more reliable and
robust estimates of catastrophe losses.

http://www.efehr.org/start/
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