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Abstract

Since their discovery over 30 years ago, ordered mesoporous silica (OMS) has been

widely demonstrated to be an incredibly useful and valuable nanomaterial, in a variety

of applications. Its usefulness is derived from its underlying structure, consisting of

well-ordered mesopores, the size of which can be tuned by modifying the synthesis

procedure used. This structure is determined early in the synthesis by the self-assembly

of a surfactant template in the presence of a silica precursor. Therefore, understanding

the mechanisms underpinning this self-assembly behaviour allows the properties of the

final material to be more readily controlled. However, efforts to produce OMS on a

larger scale have been unsuccessful due to several factors surrounding its laboratory

synthesis route, which make it uneconomical and unsustainable at a commerical scale.

While greener, more scalable synthesis routes for producing porous silica exist, they are

unable to produce materials with the same degree of order as OMS, hampering their

effectiveness in many applications. Understanding how the degree of order of OMS is

determined and maintained during synthesis is therefore of utmost importance, in order

to develop new, greener synthesis routes for this valuable class of nanomaterials.

In this thesis, the mechanisms which determine the degree of structural ordering in

OMS are investigated in detail. Both computational and experimental approaches are

utilized. In the computational work, multi-scale modelling is used to develop a coarse-

grained model for the self-assembly of OMS. In the experimental work, the design of

experiments approach is taken, allowing relationships between synthesis conditions and

material properties to be established, with a particular focus on the degree of order of

samples produced. This work also presents a rapid room-temperature synthesis route
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Chapter 0. Abstract

for producing OMS, demonstrating a greener pathway for producing these materials

than the traditional synthesis method, which requires long reaction times and harsh

conditions. In both approaches, the use of bio-inspired additives to aid in the synthesis

of OMS is investigated, demonstrating that if correctly chosen, they may be used to

improve the degree of order of materials obtained through this new synthesis route.

The computational portion of the work is then expanded to study the pH-responsive

surfactant, dodecylamine, showing how its self-assembly behaviour is strongly dictated

by changes in the proportion of charged surfactant species, a behaviour that could be

exploited to produce alternative routes for producing OMS.

This work identifies that two related, but distinct, stages of OMS synthesis are

responsible for dictating the degree of order of the resultant material. The first of

these is the self-assembly process, which is shown to be most strongly influenced by

charge-matching behaviour between surfactant and silica species. This highlights the

importance of carefully controlling the relative quantities of charged silica precursor,

and charged surfactant species, which is strongly dependent on both the relative con-

centrations of these species in solution, and the system pH. The second stage of OMS

synthesis which strongly influences the ordering of pores is the condensation of silica

precursor species, which effectively locks in the structure formed by self-assembly. This

work shows that when these condensation reactions proceed rapidly, the ordered struc-

ture is maintained, while slower reactions lead to disordering of the silica-surfactant

mesophase before it can be locked in. Once again, system pH plays a strong role in this

stage of the synthesis, since the kinetics of silica condensation is strongly dependent

on it. In addition, if carefully selected, bio-inspired additives can aid in locking in the

ordered structure by catalysing silica condensation reactions at the silica-surfactant in-

terface. These findings demonstrate the effectiveness of computational modelling as a

tool to better understand the complex mechanisms governing order formation in OMS.
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Chapter 1

Introduction

The synthesis of ordered mesoporous silica (OMS) materials, such as MCM-41 [5] and

SBA-15 [6], relies on the self-assembly of a surfactant mesophase around which sil-

ica precursor species aggregate. The structure of the material which forms, dictates

its performance in a broad variety of applications, and is largely decided by this self-

assembly process. Therefore, understanding the mechanisms underpinning surfactant

self-assembly, particularly in the presence of silica precursor species, is of great im-

portance to allow greater control over the structural properties of these materials. In

particular, since the traditional routes for producing OMS rely on energy intensive and

wasteful methods which are challenging to scale and have severe environmental impacts

[7], it becomes increasingly important that these mechanisms are understood so that

this knowledge can be transferred to design greener alternative synthesis routes for these

materials in a more rational fashion. One promising avenue to producing porous silica

in a more environmentally friendly way follows a bio-inspired approach, which adopts

a rapid, room temperature synthesis route which may also be economically attractive

due to low energy costs [8]. However, this synthesis is still relatively poorly understood

from a mechanistic perspective [1].

Whilst experimental approaches have been applied to study OMS synthesis, in re-

cent years computational modelling has been applied to great effect to study the self-

assembly of OMS [9]. Whilst this has provided unprecedented insight into the OMS

synthesis process, accurately modelling the self-assembly which takes place during syn-
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thesis remains a significant challenge. This is due to the relatively large time and length

scales over which OMS synthesis takes place, making it inaccessible to traditional atom-

istic modelling approaches and necessitating the use of coarse-grained and multi-scale

modelling. These techniques have also only been applied to study bio-inspired porous

silica in a more limited capacity [10, 11].

In this work, a new model for OMS self-assembly is developed which takes advantage

of the latest advances in modelling approaches, in particular a new atomistic force field

for silicate species [12] and the Martini 3 coarse-grained force-field [13]. This model is

used in conjunction with experimental synthesis and characterisation of OMS to pro-

vide new insight into the synthesis process. The incorporation of bio-inspired additives

to enhance the synthesis of OMS is explored experimentally, supported by simulations

which provide mechanistic insight into the potential of these additives in OMS syn-

thesis. The same coarse-grained modelling technique is also applied to investigate the

mechanisms of self-assembly for pH-switchable surfactants, providing a possible avenue

for more environmentally friendly synthesis routes for OMS, as well as demontrating

the effectiveness of this technique in modelling more complex self-assembly behaviour.

1.1 Prior Work

The basis for the synthesis procedure used in this work (see Chapter 5) resulted from

an investigation by Dr Carlos Brambila in the Green Nanomaterials Research Group

at the University of Sheffield, under the supervision of Prof. Siddharth Patwardhan.

The specific details of this synthesis procedure are given in Chapter 5, Section 5.2.1.

This synthesis procedure utilized the amino acid, arginine, which is frequently used as

a bio-inspired additive in the synthesis of bio-inspired silica [14, 15], and resulted in

well-ordered mesoporous silica being obtained at room temperature with a synthesis

time of just 5 minutes and without hydrothermal treatment. This had previously not

been reported in literature to the knowledge of the research group. The material was

characterized by TEM imaging and gas adsorption. It displayed a narrow pore size

distribution (see Figure 1.1) of well-ordered pores with a hexagonal arrangement (Figure
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1.2). BET analysis also showed that the sample had a large surface area of 726 m2 g−1.

However, the mechanism by which arginine could promote the formation of an ordered

mesoporous material without a hydrothermal treatment step was not understood. This

prompted the investigation into this synthesis route, which is explored in this work.

Figure 1.1: Pore size distribution of preliminary sample produced by Dr Carlos Bram-
bila.

Figure 1.2: TEM imaging of preliminary sample produced by Dr Carlos Brambila.
Image credit to Dr John Nutter, Henry Royce Institute, Sheffield.
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1.2 Thesis Outline

This thesis is organised as follows. In Chapter 2, an overview of ordered mesoporous

silica synthesis is provided, including currently understood mechanisms of self-assembly

for these materials. Bio-inspired silica is introduced and synthesis methods are dis-

cussed. This is followed by a review of the most important computational modelling

studies of porous silica synthesis. The chapter is concluded with a brief overview of silica

and surfactant chemistry, focusing on the concepts that are most relevant to this work.

In Chapter 3, the background methodology for both computational and experimental

work is provided, with a focus on methods relevant to molecular dynamics and more

specifically, coarse-grained molecular dynamics and the Martini force field, as well as

experimental analysis methods used in this work. In Chapter 4, results are presented for

the development of a coarse-grained model for molecular dynamics that is compatible

with the Martini 3 force field. In Chapter 5, an experimental investigation following the

Design of Experiments approach is presented in which links between synthesis conditions

and material properties are estabished, supported by simulation results. In Chapter 6,

the modelling methodology presented in Chapter 4 is applied to pH-responsive amine

surfactants to study the phase behaviour of these surfactants in response to changes in

the proportion of charged surfactant species present in the system. Chapters 4 to 6 are

prefaced with an introduction which highlights specific literature relevant to that chap-

ter, followed by a description of computational and experimental methods which are

relevant specifically to that chapter. Finally, in Chapter 7, conclusions and proposals

for possible directions for future work are given.
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Chapter 2

Literature Review

2.1 Silica and Surfactant Chemistry

The synthesis of OMS relies on the formation of a supramolecular assembly, consisting

of surfactant molecules and silica precursors. This assembly is frequently referred to as

a “template” because it imparts its structure on to the final mesoporous material, mean-

ing that a direct link can be drawn between the arrangement of the silica/surfactant

mesophase and the final material’s properties. This is an example of “bottom-up” syn-

thesis, which stands in contrast to “top-down” synthesis methods such as electrochemical

etching in which a structure is “carved out” of of an existing material. Due to this link

between mesophase formation and material properties, an understanding of silica and

surfactant chemistry is crucial to describing the formation of mesoporous silica from a

mechanistic perspective and enabling tailored material design.

2.1.1 Chemistry of Silica

The formation of porous silica materials typically starts from a solution of small silica

species that are soluble in water, the smallest being monosilicic acid (Si(OH)4), which

consists of a single silicon atom bonded to four oxygen atoms in a tetrahedral arrange-

ment. The formation of large silica networks occurs via polymerization of these small

species to form particles, which occurs above the solubility limit (approximately 100

ppm, 1 mM) [16]. This polymerization involves the condensation of the silanol (SiOH)
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groups of different silica molecules to form Si-O-Si bonds.

(OR)3Si OH + HO Si(OR)3
Condensation

Hydrolysis
(OR)3Si O Si(OR)3 + H2O (2.1)

where R can be a hydroxyl group, or connected silica units in the case of condensation

reactions between higher oligomers of silica. Through this condensation process, a

range of small oligomers of silica are formed. These small orthosilicic acid oligomers

have various structures, including cyclic trimers and cubic octamers (see Figure 2.1).

The deprotonation equilibria for monomers and dimers can be written as:

SiOi−1(OH)(i−1)−
5−i

K i
m

SiOi(OH)i−4−i + H+ (2.2)

Si2Oi(OH)(i−1)−
7−i

K i
d

Si2Oi+1(OH)i−6−i + H+ (2.3)

where Ki
m and Ki

d are the equilibrium constants for monomers and dimers, respectively.

Only very limited experimental data is available for the pKa values of small silicate

species. The most comprehensive review on the topic gives the pKa values only for

monomers and dimers [17] as 9.5 and 9.0, respectively. Notably, the pKa value of a silica

surface (that is, the surface of a significantly condensed silica network) is 6.8 [18], much

lower than the pKa of small oligomers. Generally, silicic acid molecules will condense

so that the number of Si-O-Si bonds is maximised, meaning that cyclic species are more

common in the early stages of condensation. As cyclic oligomers dominate, smaller

oligomers (i.e. monomers, dimers) will react preferentially with cyclic species due to

the higher density of ionized silanol groups [16]. These small species will continue to

undergo condensation reactions, eventually forming small silica particles. Throughout

particle growth, smaller silica particles dissolve and the silicic acid from these particles

deposits on larger particles in a process known as Ostwald ripening. These particles then

grow and become linked together to form branched chains, and then three-dimensional

gel networks [19].

Close to neutral pH, particles will continue to grow until the negative surface charge
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causes them to repel one another. Salts and other charged species can screen the charge

between particles, allowing them to aggregate and form more condensed networks. Un-

der certain conditions, such as high pH, the reactivity of small silicate species is low

and silica will remain present in solution as small oligomers.

Figure 2.1: Selected examples of some forms of silicic acid, formed through polyconden-
sation reactions.

2.1.2 Chemistry of Surfactants

Surfactants are molecules that are defined by their dual nature, comprising of a polar

or hydrophilic head and a nonpolar or hydrophobic tail (see Figure 2.2). This structure

gives surfactants interesting properties, which allows them to carry out important roles

in biology and makes them useful in detergents and other consumer products. The am-

phiphilic nature of surfactants imparts on them two important behaviours: adsorption

on surfaces or interfaces at low concentration, termed “surface activity”, and aggrega-

tion into micelles or liquid crystal phases at higher concentrations [20, 21]. The liquid

crystal phases that form include lamellar, hexagonal and cubic phases, depending on

both the properties of the surfactant molecules and the environment they are present

in. This assembly into liquid crystal phases also gives rise to their use as templates in

the synthesis of mesoporous materials [22].
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The interactions between surfactant molecules that give rise to aggregation and the

formation of structured phases are driven by relatively weak van der Waals, and stronger

electrostatic interactions, in contrast to solid particles or rigid macromolecules which

are held together by strong covalent or ionic bonds. This gives aggregate surfactant

structures flexibility and causes them to be responsive to changes in their environment,

critically factors such as pH and electrolyte concentration [20].

In aqueous solution above the critical micelle concentration (CMC), surfactant

molecules will typically arrange into spherical micelles or bilayers. Surfactants with

a single hydrophobic chain as a tail typically form micelles, whereas those with double-

chains form bilayers (see Figure 2.3). This is due to the relative size of the hydrophilic

and hydrophobic regions of the surfactant; surfactants with bulkier tails often cannot

pack into smaller spherical micelles. Molecules arrange themselves in this way in order

to minimise the surface area of the hydrophobic region with water. For this reason,

bilayers will often arrange into spherical vesicles with aqueous regions contained both

inside and outside the vesicles.

To understand how systems of surfactant molecules form aggregated structures in

aqueous solution we must consider the relevant intermolecular interactions in general

statistical thermodynamic terms. For these aggregates to form, the chemical potential

of all identical surfactant molecules in different aggregates must be the same.

Figure 2.2: Simple diagram of a surfactant.
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Figure 2.3: Diagram showing the arrangement of surfactant molecules in micelles, bi-
layers and spherical vesicles.
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µ = µN = µ◦
N +

kT

N
log

(
XN

N

)
= constant, N = 1, 2, 3, ... (2.4)

where µN is the mean chemical potential of a surfactant molecule in an aggregate with

a number of molecules N (i.e. N = 1 refers to monomers or “free” surfactant molecules,

N = 2 refers to dimers, N = 3 refers to trimers etc.), µ◦
N is the mean interaction free

energy per molecules in these aggregates and XN is the concentration of molecules in

these aggregates. Molecules form aggregates when the free energy of the aggregated

states is less than the dispersed states. The value of µ◦
N will remain constant if all

different-sized aggregates experience the same interaction with their surroundings.

XN = NXN
1 for µ◦

1 = µ◦
2 = µ◦

3 = ... = µ◦
N (2.5)

X1, which corresponds to the isolated molecules (or monomers), must be < 1, meaning

that XN ≪ X1, so most molecules will be present as monomers. Therefore, for the

formation of large stable aggregates to become probable, it must be the case that µ◦
N <

µ◦
1. The relationship between µ◦

N and N is therefore of great importance to determining

the physical properties of aggregates. Importantly, depending on the functional form of

this relationship, a number of different values of N may be stable for a given system,

allowing for structurally different populations to coexist. The general functional form

for the simplest shaped structures (e.g. rods, discs, spheres) is given by the following

equation.

µ◦
N = µ◦

∞ + αkT/Np (2.6)

where α is a positive constant which depends on the strength of interactions between

surfactant molecules, and p is dependent on the shape or dimensionality of surfactant

aggregates. From Eq. (2.6) it can be shown that:

XN ≈ N [X1e
α]N (2.7)

At low monomer concentrations where X1e
α ≪ 1, then X1 > X2 > X3 > ... for any
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value of α. This means that most surfactant molecules will be present in the solution as

free monomers and will therefore not form aggregates. However, as X1 approaches e−α

it cannot increase any further since XN cannot be greater than 1. This places a limit

on the number of surfactant molecules that can be present as monomers, and above

this concentration, aggregates must form. This concentration is known as the critical

micelle concentration (CMC), a very important property of surfactants.

Above the CMC, the geometry of surfactant aggregates is dependent on the relative

size of the surfactant’s hydrophobic and hydrophilic parts. At the CMC, the types of

aggregates that form can be predicted by calculating the critical packing parameter, p:

p =
v

aolc
(2.8)

where v is the volume of the hydrophobic tail, a0 is the effective head group area and lc

is the length of the hydrophobic tail (see Figure 2.4). The expected shapes of aggregates

that will form based on the value of the packing parameter are summarised in Table

2.1. However, this value of p is not fixed as concentration increases above the CMC

and also changes in response to solutes in solution [23, 24]. Phase diagrams are often

used to display the dependence of phase behaviour on various system conditions. Most

commonly, two dimensional surfactant phase diagrams are constructed as a function of

surfactant concentration and temperature (see Figure 2.5). Since the addition of further

species such as oils, co-surfactants and acids may also induce phase transitions in some

surfactants, ternary (isothermal) phase diagrams may also be constructed [21].

Table 2.1: Expected aggregation shape for surfactants based on the critical packing
parameter, p.

p Shape

0 < p ≤ 1/3 Spherical micelles

1/3 < p ≤ 1/2 Rod-like or hexagonal

1/2 < p ≤ 1 Planar (sheet or bilayer)
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Figure 2.4: Diagram of a surfactant indicating parameters used to calculate the critical
packing parameter, p.

Figure 2.5: An example of a surfactant phase diagram for the surfactant cetyltrimethy-
lammonium bromide (CTAB). Adapted from [25].
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2.2 Ordered Mesoporous Silica

OMS materials were discovered in the 1990s by scientists at Mobil and in Japan [5,

26, 27]. This came about from investigations looking to identify new porous materials

that could be used as catalysts and molecular sieves, focusing on combining what was

known about zeolites and pillared layered materials. Zeolites were favoured for their

stability, however they are limited to small pore sizes (less than 1.2 nm) [22]. Pillared

layered materials possess mesopores, however they have a wide pore size distribution

and are not thermally stable enough for many applications [28]. The theory proposed

by a small group of researchers at Mobil was that zeolites that were formed via layered

intermediates could be used to form pillared porous materials with zeolite character,

a concept which eventually led to the discovery of materials such as MCM-22 [29].

Some of these attempts used long chain alkyltrimethylammonium surfactants at high

pH in the presence of a reactive silica source which was then hydrothermally treated

[28]. The materials formed showed strange properties, later discerned to be indicative of

mesoporous structure, which included extremely high surface area and high hydrocarbon

sorption capacities [30].

This material would eventually be named MCM-41 (MCM standing for Mobil Com-

position of Matter), representing a new family of mesoporous molecular sieves. MCM-41

possesses a hexagonal array of uniform mesopores that can be varied in size from 1.5-10

nm, depending on the chain length of surfactant used for synthesis [5]. Similar ma-

terials in this new M41S family, such as MCM-48 and MCM-50, were also discovered

by studying the effect of changing the surfactant to silicate ratio [31]. These materi-

als also showed order on the mesoscale but exhibited different structure, with MCM-48

exhibiting a cubic pore system and MCM-50 possessing a lamellar arrangement of pores.

Following the initial discovery of MCM-41, there was an explosion of research into

this area in an attempt to identify new, useful, porous materials. The nature of the

pore structure obtained is highly dependent on the surfactant used.

In the case of quaternary cationic surfactants such as cetyltrimethylammonium bro-

mide (CTAB), it has been shown that varying the length of the alkyl chain will change
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the pore size of the MCM-41 obtained [5]. This can be used to create porous materi-

als with tunable pore sizes, simply by changing the length of the surfactant used. By

varying the ratio of surfactant to silicate concentration, MCM-48 and MCM-50 can be

obtained which exhibit cubic and lamellar arrangements of pores, respectively. Cationic

surfactants with large head groups, such as gemini or bolaform surfactants, are capable

of forming cubic mesostructures, producing SBA-1 or SBA-6 depending on pH [32].

However, despite their effectiveness at producing ordered mesoporous materials, these

surfactants are expensive and toxic, prompting researchers to investigate alternative,

non-ionic structure directing agents.

Attard and co-workers produced ordered porous silica materials with a variety of

mesostructures using the non-ionic surfactants octaethylene glycol monododecyl ether

(C12EO8) and octaethylene glycol monohexadecyl ether (C16EO8), their form mimicking

the organic mesophase of the surfactant used [33]. While this added an element of

predictability in the synthesis of OMS, low pH values (pH 2) are required with the

proposed mechanism, involving charge matching between positively charged silicate

oligomers via an electrical triple layer. Another avenue that has been investigated is

the use of block copolymers, appealing due to being readily available commercially, low

in cost, biodegradable and non-toxic [22]. Zhao et al. used the triblock copolymer

poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO)

to synthesise the mesoporous silica material SBA-15, which possesses highly ordered

hexagonal pores up to 30 nm in diameter [6]. However, ordered silica structures are

only formed under highly acidic conditions (pH < 1) while under neutral conditions

only amorphous pores are obtained, once again necessitating harsh conditions to form

ordered mesoporous silica.

The need for charged surfactant species and extreme pH results from the underlying

intermolecular interactions taking place during the dynamic self-assembly of templating

molecules. It is likely that in all cases where ordered mesoporous silica is produced, the

formation of the supramolecular template is driven by strong electrostatic interactions.

When non-ionic surfactants are employed under neutral pH, only relatively weaker hy-

drogen bonding interactions take place, which appear to be insufficient in promoting
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order in the supramolecular assembly, causing the resultant silica to possess only poorly

ordered, amorphous pores. Contrary to this, a so-called “neutral templating route” has

been proposed to describe the formation of hexagonal mesoporous silica, driven by hy-

drogen bonding interactions [34]. However, recent experimental and simulation work

has determined that this does not in fact represent a viable description of the synthe-

sis mechanism, and that the process is instead driven by the charge-matching of ionic

interactions [11].

2.3 OMS Synthesis Method and Mechanism

Generally, mesoporous silica is synthesised following the “hydrothermal” method. A

surfactant is dissolved in a solvent (typically water) followed by a silicate precursor,

commonly tetraethyl orthosilicate; however other precursors such as silica gels or water

glass (sodium silicates) may be used [22]. Water hydrolyses the silicate precursor, form-

ing a sol of silicate oligomers. This process typically takes place under acidic or basic

conditions, depending on the surfactant used, which catalyses the hydrolysis reaction

of silicates. Silicates and surfactant molecules interact cooperatively, self-assembling

into an arrangement that mimics the structure of the final silica material (see Figure

2.6). This is followed by hydrothermal treatment which allows polymerization and con-

densation of silicates, improving the mesoscopic regularity and stability of pores [35].

This process takes place at elevated temperatures (between 80 and 150°C) which must

be maintained for a long period of time, often multiple days or even weeks [22]. This

makes the synthesis process of OMS incredibly time-consuming. After hydrothermal

treatment, the surfactant template must be removed in order to obtain the porous

silica material. Calcination is the most common method employed for this, as it com-

pletely removes the template by thermal decomposition. This involves heating at very

high temperatures (in the case of MCM-41, 550°C [5]) for several hours in order to fully

break down the surfactant molecules, destroying the valuable template in the process.

This method is both energy intensive and wasteful, but is frequently necessary due to

the strong surfactant-silica interactions that govern the initial self-assembly process in
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Figure 2.6: A simplified schematic of the templating mechanism that forms the ordered
mesoporous material MCM-41. Initially, surfactant molecules form small micelles at the
surfaces of which silica aggregates. These micelles fuse to form larger worm-like micelles
and eventually a hexagonal mesostructure. The surfactant is removed (typically by
calcination), leaving behind a porous silica structure.

the case of ordered materials, which make template removal by other methods chal-

lenging. Alternative methods for template removal have been proposed, however each

presents its own issues, frequently resulting in incomplete template removal, disordering

of pores or increased energy intensity [36, 37].

This initial mechanism of template formation is termed cooperative self-assembly

and is accepted as by far the most common synthesis pathway for this class of materi-

als. However, a different mechanism was proposed by the scientists who first synthesised

MCM-41. In this mechanism, termed liquid-crystal templating (LCT), instead of be-

ing actively involved in the self-assembly of the surfactant mesostructure, the silicates

simply condense around a preformed liquid crystalline surfactant phase. While this

mechanism is now considered to be less common in the synthesis of OMS, mesoporous

molecular sieves have also been synthesised that are believed to follow this alternative

LCT route [33].

As the name suggests, cooperative self-assembly relies on cooperative interactions

between the surfactant and silica species in order to form the supramolecular template.

This is typically driven by electrostatic Coulomb forces, however mechanisms involving

hydrogen bonding [34] and covalent bonding [38, 39] have also been proposed. The

mechanisms most relevant to mesoporous silica synthesis are summarised in Table 2.2.

In the most straightforward mechanisms, S+I− and S−I+, the charged surfactant

is paired with the inorganic precursor, which promotes assembly into a mesostructure,

the interface of which is rich with inorganic species. This was described as the “direct”
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Table 2.2: Summary of the interactions between surfactant and inorganic species that
give rise to mesoporous materials. S are surfactants, I are inorganic species (often silica)
and X are counter-ions.

Interaction Type Conditions Example Materials Reference

S+I− Electrostatic Basic M41S [5]

S−I+ Electrostatic Basic/Acidic/Neutral Mesoporous metal oxides [40]

S+X−I+ Electrostatic, double layer H bond Acidic SBA-1, SBA-2, SBA-3 [41]

S0H+X−I+ Electrostatic, double layer H bond Acidic SBA-15 [6]

S0I0 H bond Neutral HMS, MSU (disordered) [34, 42]

S+− I− Covalent bond Basic Mesoporous silica [38, 39]

pathway by Stucky and co-workers [40]. In some cases, the inorganic species promotes

aggregation of the surfactant to form the mesophase template. An example of the

S+I− pathway is the formation of the M41S family of materials, such as MCM-41.

Through the use of in situ Si NMR measurements, Firouzi et al. demonstrated that

at pH 13 silica is present primarily as double-four-ring (cubic octamers) with smaller

quantities of monomers and double-three-ring species [43]. Thus, at the conditions

under which mesoporous silica materials (such as MCM-41) are frequently synthesised,

silica is initially present as small, negatively charged oligomeric species which interact

strongly with the cationic surfactant template. In a similar manner, cationic oxide

species may be used in conjunction with anionic surfactants to form mesoporous metal

oxides (e.g. iron, aluminium and lead). Although the latter case is not relevant to

mesoporous silica synthesis, it is included here for completeness.

Alternatively, interactions between surfactant and silica species are made possible

by counter-ions in the “mediated” pathways, S+X−I+ and S0H+X−I+. These occur at

very low pH, where silica species are positively charged and must be mediated by anionic

species (e.g. bromide, chloride, sulphate, nitrate). The mediating counter-ion allows

for assembly of same-charge surfactant and inorganic species through a double-layer

hydrogen bonding interaction.

The neutral templating mechanism, S0I0, was first proposed by Tanev and Pinnavaia

in the synthesis of hexagonal mesoporous silica [34]. In this mechanism, the formation

of the inorganic/surfactant mesophase is proposed to be driven entirely by hydrogen

bonding interactions rather than interactions between charged species. This includes
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neutral amine surfactants and non-ionic surfactants. However, the computational study

of Centi et al. demonstrated that this neutral templating mechanism does not represent

a realistic description of the self-assembly behaviour, and instead demonstrates that the

mesoscale structure must be formed via charge-matching interactions between the amine

surfactant and silicate species [11], casting doubt over the proposed neutral templating

mechanism.

The final mechanism relevant to mesoporous silica synthesis, S+− I−, involves sur-

factants containing hydrolyzable silane groups which can directly react with silicate

species, forming covalent bonds. The surfactants assemble into an ordered mesostruc-

ture without the need for an additional templating molecule.

2.4 Bio-Inspired Silica

In nature, many organisms, such as diatoms and sponges, have been observed to ex-

hibit a wide variety of ordered silica structures [44]. This is achieved through the use of

bio-molecules which are able to promote the growth of silica structures from low concen-

tration silicic acid environments at ambient conditions. The structures formed exhibit

order over even hundreds of micrometers, which is rarely achieved in synthetic systems,

particularly under such mild conditions [45]. This implies that nature is capable of

producing ordered silica structures using complex routes that have been found through

evolution, an observation that has led to the development of bio-inspired silica (BIS).

A better understanding of the mechanisms underpinning silica formation in nature may

yield great insights into how the synthesis of ordered silica structures can be made more

economical and sustainable.

Initially, investigations into silica synthesis following a bio-based pathway involved

using bio-molecules thought to be responsible for silica formation in nature (such as in

the cell walls of diatoms) outside of their natural environment (in vitro) in order to form

porous structures. Two main classes of molecule were found to be tightly embedded

within the cell walls of diatoms: proteins called silaffins, and long-chain polyamines

[46]. These molecules were shown to promote the formation of silica nanostructures in
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the presence of silicic acid [47, 48]. In silaffins, key functional groups were identified,

namely the presence of lysine amino acid residues and polyamine moieties [49]. In addi-

tion, long-chain polyamines were found to be present on lysine residues, and in certain

silaffins, sulphate ions [50] and quaternary ammonium groups [51] have also been ob-

served. Long-chain polyamines have been shown to catalyze the condensation of silicic

acid in water, even becoming embedded within the silica structure after polymerisation

[52]. Much like silaffins, polyamines can self-assemble in vitro to form silica nanospheres.

In sponges, proteins called silicateins play a very similar role to the silaffins identified in

diatoms, self-assembling into a larger template upon which silica precipitates [53]. These

investigations clearly show that, similarly to fully synthetic ordered silica structures, the

precipitation of silica into complex structures is largely dependent on complex electro-

static interactions, in particular the formation of a molecular template by amphiphilic

molecules.

While gaining a better understanding of in vitro synthesis was a huge step toward

producing porous silica structures under more environmentally friendly conditions than

fully synthetic methods, the limited supply of these bio-molecules and costs associated

with acquiring them prevent scale-up for industrial production. Nevertheless, the in-

sights gained from these in vitro studies allow for consideration of which fully synthetic

molecules have potential to control porous silica formation. These molecules, termed

additives, have been identified as a result of having similar chemical and physical prop-

erties to bio-molecules that promote precipitation of silica [45]. These additives take

on a variety of forms, from simple molecules to complex organic polymers. Additives

can work in several ways, either by catalysing silica condensation, promoting the ag-

gregation of silicates or by providing a template for silica to precipitate around. Some

additives will fill more than one of these roles [54].

Patwardhan et al. used poly-L-lysine (PLL) and poly(allylamine hydrochloride)

(PAH) to precipitate silica in just minutes at mild pH and temperature, forming poly-

disperse spherical particles with amorphous pores [55, 56]. Leading on from this, further

studies using polymeric bio-inspired additives were carried out, including natural and

synthetic polymers, block co-polymers, polypeptides and dendrimers [45]. The use of
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these additives allows the porosity of BIS to be controlled in a predictable manner,

particularly in the case of multi-amine molecules [57]. However, synthesis of BIS with

ordered pores is still not possible, with materials possessing amorphous pores, predom-

inantly in the microporous range (less than 2 nm in diameter) [15].

Some examples exist of mesoporous silica that follow bio-inspired methods. Coradin

et al. showed that porous silica with a high surface area (>500 m2/g) could be syn-

thesised at neutral pH and ambient temperatures using arginine-based surfactants.

The material obtained from this method has a broad, bimodal distribution of pore

sizes with micropores between 0.25-0.35 nm and meso-to-macropores between 10 and

100 nm [58]. Sun et al. used polyethylene glycol (PEG) to synthesise porous silica

with high surface areas (1030 m2/g) under acidic conditions. The pores in this ma-

terial range from 2 to 20 nm in diameter depending on the silica to PEG ratio and

possess a broad size distribution [59]. Li et al. synthesized chiral mesoporous silica

(CMS) using the bio-inspired chiral surfactant N-palmityl-L-alanine (N-PLA) and 3-

aminopropyltriethoxysilane (APTES) as a co-structure directing agent. This material

exhibited a helical mesostructure with mesopore diameters ranging from 3.7 to 5.7 nm

and surface areas up to 789 m2/g, however the mesostructure was poorly ordered as

evidenced by small-angle XRD patterns [60].

Another approach that has been taken is to create new, customised additives based

on the chemical properties identified in bio-molecules that promote silicification. Inves-

tigations using such additives have the advantage of being able to test how each of these

common properties affect silicification individually, enhancing our understanding of the

interactions at play. For example, in order to better understand the role that polyamines

play during silicification, Belton et al. investigated how the degree of polymerization,

the level of amine methylation and the size of the amine chain spacers impacted the

function of polyamines when forming silica structures. Their findings enabled the rapid

synthesis of hollow silica particles under ambient conditions [57]. Another example is a

study using an arginine-based surfactant, chosen due to the abundance of cationically

charged groups. These surfactants simultaneously promoted silica formation and acted

as templates, forming porous silica structures [58]. Specially designed polymers and
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block co-polymers containing amine groups have also been shown to promote the for-

mation of a range of silica structures including hollow nanofibres [61] and monodispersed

silica-polymer hybrid particles [62].

Some attempts have been made to better control bio-inspired mesoporous silica

synthesis, which may provide insights into how order can be imparted to these materials.

A recent study by Gorbunova et al. showed that the surface area, pore volume and pore

size of PEG-mediated silica can be tuned by adjusting pH [63]. This pH dependence

was explained by its effect on silica condensation rate. At lower pH values, there is

an increase in the rate of condensation reactions resulting in the formation of larger

particles, which in turn leads to the formation of larger pores as PEG works to bind these

particles together. However, regardless of pH, a wide, bimodal pore size distribution

is obtained. It was also demonstrated that the structure of bio-inspired CMS was

dependent on the pH and stirring speed employed during synthesis. At higher pH values,

a more well ordered structure is produced, while stirring at lower speeds allowed for the

formation of longer particles [60]. Although the final material obtained is ultimately

still poorly ordered, this provides promise that some level of structural order can be

achieved in bio-inspired silicas by tuning synthesis conditions.

Studies into bio-inspired silica have allowed for the creation of a diverse array of

new silica structures with different porosity, morphology and size. In addition, bio-

inspired additives allow for control over the rate of condensation and growth of silica

structures, most notably allowing for silica structures to form under ambient conditions

in just seconds. This offers an advantage over traditional mesoporous silica materials

that require much harsher synthesis conditions and significantly longer synthesis times.

Despite this, bio-inspired synthesis suffers from a lack of control over the structure

of the final product. Porous silica structures produced using bio-inspired additives

typically possess a broad pore size distribution and are always disordered, hampering

their performance versus OMS materials that possess well ordered, monodisperse pores

(see Figure 2.7).
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Figure 2.7: A comparison of the XRD and pore size distribution of bio-inspired silica
with two archetypal ordered mesoporous silica materials, SBA-15 and MCM-41.

2.5 Computational Modelling of Porous Silica Synthesis

Computational modelling offers an invaluable tool in our attempts to better understand

the mechanisms at play in complex chemical systems, particularly those in which ex-

perimental evidence proves inadequate in explaining the underlying interactions that

govern the system. The synthesis mechanism of mesoporous silica materials such as

MCM-41 is a prime example of this, where the synthesis mechanism was originally

postulated by comparing various synthesis conditions and the properties of the final

product. The challenge in this approach is the complex nature of the synthesis process,

which includes self-assembly, condensation reactions and phase separation, all taking

place simultaneously in solution [64]. Computational models provide a way of describ-

ing these complex systems, giving us a clearer picture of the interactions taking place.

The first computational model of the synthesis of MCM-41 was developed in the early

2000s [65], and since then, significant advances have been made allowing for a near

complete description of this synthesis process, as well as gaining key insights that can

be extrapolated to similar systems.

The first computational model developed by Siperstein and Gubbins was used to

investigate the ternary phase diagrams of the surfactant/solvent/silica systems present

in the synthesis of MCM-41 [65, 66]. Due to the simplicity of the lattice Monte Carlo

(MC) simulations used, only qualitative trends could be observed, however they were
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able to demonstrate the phase separation into a concentrated, hexagonally ordered

silica/surfactant phase and a dilute aqueous phase. The model was later extended to

describe the phase equilibrium of periodic organosilica precursors [67–70] and block

copolymer-templated materials [71, 72]. A further extension to explicitly account for

silica polymerisation reactions showed that allowing silica condensation to occur too

early in the self-assembly process resulted in a disordered amorphous silica, rather

than an ordered hexagonal liquid crystal (HLC) phase [73]. Despite these successes,

the simplifications inherent in lattice-based models make it difficult to retain chemical

specificity (e.g. a lattice model for a surfactant can represent a number of different

chemical species) and hence to make direct connections with experimental systems.

The first molecular dynamics (MD) studies of MCM-41 synthesis were published

in 2007 by Jorge et al. [74]. This fully atomistic model simulated the surfactant de-

cyltrimethylammonium bromide (DeTAB) instead of the more commonly used CTAB

to reduce the size and therefore computational expense of the simulation. This model

showed that silicates interacted more strongly with small micelles than with free surfac-

tant monomers, and also showed that silica promoted the formation of larger micelles

than a reference simulation without silica. This provided strong evidence for the co-

operative templating pathway. Due to the computational demand of the atomistic

simulation, it was not possible to extend this investigation to study the aggregation

of CTAB micelles, or to observe transitions in micelle shape. In an effort to bypass

these limitations, the same group developed a coarse-grained (CG) model to describe

the self-assembly of silica/surfactant mesostructures during periodic mesoporous silica

synthesis [75]. Pérez-Sánchez et al. developed this model using the Martini CG poten-

tial developed by Marrink and co-workers [76]. The model was calibrated by comparing

CG behaviour with atomistic data for a small system containing a single CTAB micelle.

The model could then be used to investigate time and length scales that were previ-

ously out of reach of atomistic simulations. This was used to show that the presence of

silica allowed for the formation of long wormlike micelles at concentrations that would

form only spherical micelles without silica present, and it was proposed that this was

due to charge screening by the silicate species. This model was later extended to in-
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clude silicate oligomers [77]. The CG model showed that the formation of a hexagonal

mesophase, reminiscent of OMS materials such as MCM-41, was only possible when

the concentration of dimers (as a percentage of total silicate species) was over 33%, in

agreement with experimental observations [43]. This suggests that some condensation

of the silicate species is required before the formation of a hexagonal structure, because

this allows silicates to bind to more than one micelle at a time. This study also found

that a transition from a hexagonal to a lamellar mesophase could be induced either by

increasing the charge density of silica oligomers (thereby decreasing the effective area

per surfactant headgroup), or by the introduction of a benzene co-solvent (which in-

creased the effective volume of the surfactant tail). These results were all in qualitative

agreement with experimental observations.

Further investigations were carried out by the authors of this model to probe the

phase diagram of the silica/surfactant/solvent system [78]. They found that the addition

of monomers actually inhibited the formation of the hexagonal mesophase, favouring

instead the formation of a bi-continuous or lamellar mesophase even when the starting

configuration was a pre-equilibrated hexagonal arrangement. Similarly to the previous

study, it was found that higher oligomers were required to allow for the transition to a

hexagonal mesophase. These results provide strong evidence against the LCT templat-

ing mechanism for the synthesis of MCM-41. In fact, it was shown that the addition of

silica to a concentrated CTAB system actually initially destroys the CTAB template,

which is then reformed later after sufficient condensation of silica to higher oligomers. It

does however provide some evidence that the LCT route may be adopted in the synthesis

of MCM-50. At high concentrations of CTAB, a lamellar mesophase is formed both for

systems without silica, and for systems containing either silica monomers and dimers.

This suggests that the addition of silica to solutions containing high concentrations

of surfactant could cause silica to condense around the preformed lamellar mesophase

without destroying the template.

Despite the useful insights gained from this work, only one of the studies mentioned

above (the lattice model of Jin et al.. [73]) has directly taken into account silica poly-

merisation, which is a key aspect of understanding OMS synthesis. Other researchers

24



Chapter 2. Literature Review

have developed models describing these reactions using a variety of methods such as

reactive potentials, kinetic MC, Continuous Random Network and reactive MC [79–89].

The only example in which these methods were applied directly to OMS synthesis, how-

ever, was in the work of Schumacher and co-workers [90], which used a kinetic Monte

Carlo reaction scheme based on the Continuous Random Network model of the silica

network [88]. This attempted to simulate the entire MCM-41 process by splitting it

into several stages which were modelled separately. Significant simplifications had to be

made to the models used to ensure computational feasibility, which casts some doubt

on the reliability of insights gained from this model. It is important to consider that

the original aim of this work was to generate realistic models of MCM-41 for adsorption

predictions, not to model the synthesis process accurately. This method was improved

upon by Ferreiro and co-workers [91] to study other OMS materials (SBA-2 and STAC-

1). They were able to explain experimental adsorption isotherms by the roughness of

pores and provide a hypothesis that explains the connecting “windows” between pores.

In addition, this study provided evidence that dimers and higher oligomers were re-

quired in high concentration before an ordered mesostructure could form, in agreement

with the conclusions drawn from the CG model presented by Pérez-Sánchez et al.. [77].

Recently, a new coarse-grained reactive silica model has been developed [92] based

on the Martini framework. This “Sticky Martini” model simulates the polycondensation

of silicates by the association of “Virtual Sites” which are able to mimic the making

and breaking of chemical bonds between silicates on-the-fly during MD simulations. As

a proof-of-concept for the applicability of this new approach, the authors were able to

simulate the self-assembly of a surfactant micelle in the presence of reacting silicates

and the encapsulation of that micelle with a shell of condensed silica. This approach

opens up huge opportunities to investigate systems relevant to porous silica synthesis at

the mesoscale whilst explicitly taking into account the condensation reactions of silica

species.

Computational modelling studies of bioinspired silica synthesis have so far been

much more limited. Some studies have examined the self-assembly of silaffin molecules

without including silica [93], while other studies that included silica have focused on
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relatively simple amine-based surfactants without including the reactive features of the

system [10, 11, 94]. As discussed previously, these simulations have shown that the

formation of mesostructures for both polyamine and alkylamine surfactants is driven by

electrostatic interactions [10, 11], rather than by weaker hydrogen bonding as originally

postulated [34]. This may explain why the degree of order of porous silica materials

is lowered as we approach neutral pH, since the driving force for order decreases with

the concentration of charged species in the system; however, more detailed studies are

needed to verify this hypothesis.
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Methodology

3.1 Principles of Molecular Simulation

Computer simulations of molecular systems are an invaluable tool to investigate many

phenomena, particularly those which are expensive, dangerous or challenging to probe

experimentally. Simulations allow unprecedented insight into the microscopic behaviour

of chemical systems (i.e. the movement of atoms and molecules), allowing behaviour to

be observed that is difficult or impossible to study with experimental methods. Molec-

ular dynamics (MD) simulations study the evolution of the positions and velocities of

atoms and molecules in time by numerically solving Newton’s equations of motion by

computing the forces acting between particles. MD simulations have been extensively

applied in theoretical physics, biochemistry and materials science. Applications include

studies of protein folding [95], surfactant properties including micelle self-assembly and

phase behaviour [96], and even uncovering the origins of life [97]. As available compu-

tational power increases and improved algorithms are developed, molecular simulations

are more often being used as a tool to study complex phenomena in an efficient and

cost-effective way. In this section, the basic principles underpinning MD simulations are

summarised. Attention is then given to coarse-grained MD, which is used extensively

in this work, and in particular the Martini force field.
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3.1.1 Statistical Mechanics

A given system can be described on various scales. However, these detailed descriptions

do not necessarily tell us how the system will behave on a scale relevant to humans. In

this case we make use of macroscopic quantities, for example temperature and pressure,

which arise as a result of these microscopic interactions. Since computer simulation is

carried out at the microscopic level, it is necessary to be able to convert this detailed

information into macroscopic properties of the system. Statistical mechanics makes this

possible, allowing us to take insights gained from computer simulation and apply these

to real systems. The most detailed, microscopic level description of a given system may

involve atoms and molecules, and in the case of quantum mechanics, even subatomic

particles such as electrons. It is possible to express the Hamiltonian H as a function of

the coordinates ri and momenta pi of each particle, i, by making the Born-Oppenheimer

approximation which averages out the motion of electrons.

r = (r1, r2, ..., rN ) (3.1)

p = (p1,p2, ...,pN ) (3.2)

If this classical description is sufficient, the Hamiltonian H can be written as a sum

of the kinetic and potential energy functions.

H(p, r) = K(p) + V(r) (3.3)

For simple systems consisting of discrete atoms, the kinetic energy K takes the form:

K =
N∑
i=1

∑
α

p2iα/2mi (3.4)

where mi is the molecular mass, and α is an index running over different directional

components of the momentum of any given atom i.

A particular microscopic system containing N particles in 3-dimensional space can

be completely described by specifying the positions rN (t) and momenta pN (t), giving
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the system 6N dimensions, which change with time (t). The positions and momenta

taken together are described as the ‘phase space’ (Γ) of the system. The instantaneous

value of a macroscopic property A must be a function of the phase space. Since these

positions and velocities change with time, the experimentally observed value of this

macroscopic quantity can be calculated by averaging this value over a very long time:

Aobs = lim
t→∞

1

t

∫ tobs

0
A(Γ) dt (3.5)

Since the particles move according to Newton’s equations of motion in a simple

classical system, in theory this equation can be solved. However, the number of particles

that represent a macroscopic quantity is on the scale of 1023 and therefore solving this

system of equations for this number of particles up to an infinite time is not possible

even on modern computers. Instead, it may be sufficient to average this macroscopic

quantity over a large but finite number of timesteps τobs. We rewrite eqn (3.5) as:

⟨A⟩time =
1

τobs

τobs∑
τ=1

A(Γ) (3.6)

The time evolution of the phase space is incredibly complex for systems with many

particles. For this reason, the time average is instead replaced by the ensemble average.

An ensemble considers all possible microstates that a system may be in, which are in-

dependent, but macroscopically identical. These microstates are distributed according

to a probability density function ρ(Γ) which is determined by fixing macroscopic pa-

rameters. If we are able to sample the entire phase space, the ensemble average could

be given by the sum over the entire phase space, weighted by the probability density

function ρens for the ensemble of interest.

⟨A⟩ens =
∑
Γ

A(Γ)ρens(Γ) (3.7)

By way of example, if we choose to fix the total number of particles, the volume

and the energy of the system, the possible microstates are distributed according to the

various configurations of phase space Γ that result in the same number of particles in
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the system, and the same system volume and energy, i.e. we sample the microcanonical

(NVE) ensemble. Each of these microstates has an equal probability, given by ρNVE(Γ).

We can define a “partition function” for this ensemble (QNVE) which is a sum over

all the possible states our system can be in, and can be evaluated to obtain other

thermodynamic variables of the system.

QNVE =
∑
Γ

δ [H(Γ)− E] (3.8)

where δ is the Kronecker delta if the set of states is discrete, either 0 or 1, or the Dirac

delta function if the states are continuous. For an atomic system, this can be written

as a classical expression for QNVE where the phase space (Γ) is given by the positions

(r) and momenta (p) of the particles.

QNVE =
1

N !

1

h3N

∫
δ [H(r,p)− E] drdp (3.9)

where the factor 1/N accounts for the indistinguishability of particles and h is Planck’s

constant. The fundamental thermodynamic potential of the microcanonical ensemble

is entropy, which can be calculated from the partition function.

S = kB lnQNVE (3.10)

While it is possible to sample the microcanonical ensemble by solving Newton’s

equations of motion (since energy is conserved), and this ensemble is the default for

MD, practically we are often more interested in systems at fixed temperatures and/or

pressures, which can be more easily compared with laboratory experiments. To fix the

temperature of a system, energy fluctuations must be allowed, while to fix pressure,

the system volume must be allowed to change. The canonical (NVT) and isothermal-

isobaric (NPT) ensembles are by far the most commonly used in MD simulations, with

temperature and pressure control achieved through the use of thermostats and barostats,

which are discussed further in Section 3.1.5. The ensembles commonly employed in

molecular simulations are summarised in Table 3.1 with the respective classical partition
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function and relevant thermodynamic potential.

Table 3.1: Ensembles commonly employed in molecular simulations.

Name Fixed Variables Classical Partition Function (Qens) Thermodynamic Potential

Microcanonical N, V, E 1
N !

1
h3N

∫
δ [H− E] drdp S = kB lnQNVE

Canonical N, V, T 1
N !

1
h3N

∫
exp [−H/kBT ]drdp A = −kBT lnQNV T

Isothermal-Isobaric N, P, T 1
N !

1
h3N

1
V0

∫
dV

∫
exp [−(H+ PV )/kBT ]drdp G = −kBT lnQNPT

Grand Canonical µ, V, T
∑
N

1
N !

1
h3N exp (µN/kBT )

∫
exp [−H/kBT ]drdp Ξ = −kBT lnQµV T

According to Liouville’s theorem, the probability density function ρens for an equi-

librium ensemble does not change with time, dρens/dt = 0. This means that as we

move on from one time to another, when considering our full ensemble of possible mi-

crostates, no state can be created or destroyed. Instead, each state must be replaced

by an identical state, creating a chain that necessarily must repeat itself. If during the

course of this time evolution, the system is able to explore all possible microstates, it

is considered ‘ergodic’. However, the time taken to explore every single microstate for

systems with many particles is always incredibly long. This makes the ergodicity of

such a system impossible to prove, however it is an assumption that is frequently made

in molecular simulation.

In MD, we take our system of interest at some initial state and allow the system to

evolve in time, from one timestep to the next. So long as the initial starting distribution

ρ(Γ) tends towards the probability density ρens(Γ) of the ensemble of interest, which

does not change with the evolution of the system, the ensemble average will be equal

to a time average, provided that the system is ergodic.

⟨A⟩ens = ⟨A⟩time =
1

τobs

τobs∑
τ=1

A(Γ(τ)) (3.11)

The implementation of MD requires algorithms that are discussed further in Section

3.1.4. An alternative approach to MD which is used to sample statistical ensembles

is the Monte Carlo (MC) method. Unlike MD, MC does not involve the evolution

of a system in time. Instead, random sampling is used to generate a representative

ensemble of system configurations. In an MC molecular simulation, each move made
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by an atom is either accepted or rejected based on a probability that depends on the

potential energy change of the system, allowing the system to reach equilibrium. Since

there is no time evolution in MC simulations, it can only be used to study equilibrium

properties, however since the moves that are made can be tailored, the method is very

flexible and can be useful in certain contexts.

3.1.2 Interaction Potentials in Molecular Systems

The potential energy V contains information on intermolecular interactions, which are

frequently separated into terms that depend on individual atoms, pairs, triplets, etc.:

V =
∑
i

vi(ri) +
∑
i

∑
j>i

v2(ri, rj) +
∑
i

∑
j>i

∑
k>j

v3(ri, rj , rk) + ... (3.12)

The first term represents the effect of external fields on the system, while the second

term, v2, represents the pair potential, and is generally the only multi-body term that

is calculated in molecular simulations due to the additional computational expense of

calculating the additional terms (which involve triplets, quadruplets etc.). This pair-

wise potential is typically adequate to give a good description of liquid properties, and

additional terms are often accounted for by defining an “effective” pair potential which

accounts in part for the effect of three-body terms. The effective pair potential is al-

ways strongly positive at very short distances (i.e. repulsive) which reduces to reach a

negative (i.e. attractive) well. This well is responsible for cohesion in condensed phases

[98]. At distances beyond the well, the potential increases asymptotically towards zero,

giving an attractive tail at large separations. There are many ways in which potentials

can be treated in molecular simulations to reproduce the effective pair potential. This

may involve splitting the repulsive and attractive regions of the potential and treating

each with different functions, or using a single function to reproduce the desired be-

haviour of the pair potential, which is often derived empirically. Most frequently, the

Lennard-Jones (LJ) 12-6 potential is used.

vLJ(rij) = 4ε
[
(σ/rij)

12 − (σ/rij)
6
]

(3.13)
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where rij is the distance between pairs of atoms. The parameters ϵ and σ are chosen

to accurately represent the pair interactions of particles in the system of interest. This

function approximates the effective pair potential well, representing the repulsive core,

attractive well and attractive tail (see Figure 3.1). The value of ϵ gives the depth of

the potential well while the value of σ gives the distance at which the potential energy

between particles is zero. ϵ and σ are defined for identical pairs of atoms, while for

non-identical pairs, the Lorentz-Berthelot combining rules are typically used.

σij =
1

2
(σii + σjj) (3.14)

εij = (εii · εjj)
1
2 (3.15)

Figure 3.1: Graph of the standard Lennard-Jones potential function.

The Buckingham potential (Eq. 3.16) is an alternative potential function that is

frequently used, which allows for increased flexibility and a more realistic repulsive

term [99], however, it is more expensive to compute. Therefore, only the Lennard-Jones

potential is used in this work.

vbh(rij) = Aij exp (−Bijrij)−
Cij

r6ij
(3.16)
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For ions and polar molecules, additional consideration is needed to represent elec-

trostatic interactions. Most simply, an additional Coulomb charge-charge interaction

can be used to supplement the pair potential.

vqq(rij) =
qiqj

4πϵ0rij
(3.17)

where qi and qj are the charges on the ions i and j and ϵ0 is the permittivity of free space.

The charges on atoms and molecules may be placed at the same point as the Lennard-

Jones interaction site, or partial charges may be distributed around the molecule in

order to reproduce known multipole moments [100]. This is often sufficient for the

representation of molecular systems. However, electronic polarization that results from

the distortion of the electronic charge cloud of a molecule by the electronic field of

other molecules is more challenging to represent, as it cannot be broken down into

a sum over pairwise interactions [98]. In situations where electronic polarizability is

important, several methods have been employed such as the induced point multipole

model, the fluctuating charge model and the drude oscillating model [101, 102], however

these models are not applied in this work.

While, ideally, chemical bonds in molecules could be treated with interatomic po-

tential energy terms, this approach is rarely taken. Instead, chemical bonds within

molecules are typically treated separately from effective pair potentials defined pre-

viously, either through the use of a harmonic potential (Eq. 3.18) or rigid fixed bond

lengths which are handled by constraint algorithms in MD, such as LINCS [103], SHAKE

[104] or SETTLE [105].

Vb(rij) =
1

2
kbij(rij − bij)

2 (3.18)

Angles and proper dihedrals are handled similarly between triplets or quadruplets

of atoms, respectively.
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Va(θijk) =
1

2
kθ(θijk − θ0)

2 (3.19)

Vd(ϕijkl) = kϕ(1 + cos (nϕijkl − ϕs)) (3.20)

Taken together, the set of equations and parameters used to describe the interac-

tions (both bonded and non-bonded) between atoms or particles in a particular system

is called a force field. Many generic force fields are available (e.g. OPLS [106], AMBER

[107], CHARMM [108]), and the choice of which force field to use is critical to ensur-

ing correct representation of the system at hand. Force fields are typically developed

semi-empirically using both experimental data and quantum calculations to derive po-

tential terms. Coarse-grained force fields are of particular interest for this work, and

are discussed further in Section 3.1.6.

3.1.3 Initiation Configuration and Boundaries

A given system is initially defined by two components. The first is the topology, which

describes the force field, supplemented by information about which chemical bonds

exist between atoms. The second is the initial configuration of atoms, which contains

their initial positions and velocities, providing a starting point for simulations. Since

calculations can only be carried out on a finite number of atoms, the simulation “box”

in which calculations are carried out is a representative sample of a larger system. In

order to avoid the complication and physical effects of implementing interfaces at the

boundaries of the simulation box, periodic boundary conditions are typically employed.

As an atom travels across the boundary of the simulation box, it re-enters through the

opposite side of the box (see Figure 3.2). Bonded and non-bonded interactions also

take place across periodic boundaries, allowing representation of an effectively infinite

system in every direction as atoms interact with periodic replicas. When using periodic

boundaries, care must be taken that the size of the box is large enough so that atoms

do not interact with their own periodic replicas.
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3.1.4 Molecular Dynamics Algorithms

In molecular dynamics simulations, the classical equations of motions for a system of

N particles interacting with a potential V are solved. From this potential, the force, F,

acting on each particle can be resolved considering that the force is simply the negative

gradient of the potential energy function.

F(r) = −∇V(r) (3.21)

Since the potential acting on each atom in the system can be calculated at any

particlar point in time, t, the new positions and velocities of atoms after a time step,

δt, are straightforward to calculate. When choosing an appropriate time step, the most

important factor is ensuring energy conservation which is degraded as the time step is

Figure 3.2: Diagram demonstrating a two-dimensional system with periodic boundaries.

36



Chapter 3. Methodology

increased. Since the computational cost of simulations is increased as the time step is

reduced, the time step should be maximized whilst still conserving energy. The most

common algorithm used in molecular dynamics codes to solve for the positions and

velocities of atoms at each time step is the velocity Verlet algorithm [109], based upon

the Verlet alogrithm [110].

v(t+ 1
2δt) = v(t) + 1

2δta(t) (3.22)

r(t+ δt) = r(t) + δtv(t+ 1
2δt) (3.23)

v(t+ δt) = v(t+ 1
2δt) +

1
2δta(t+ δt) (3.24)

In the first step of this algorithm, the velocities at an intermediate “half time step”

(v(t + 1
2δt)) are calculated from the velocities and accelerations of the atoms at the

current timestep t. This velocity is then used to compute the new positions of the

atoms after a time step δt. The velocities of the atoms at this new position are then

calculated from the half step velocities and the acceleration of the atoms at their final

position. This loop is repeated at every step, and since the velocitiy of the atoms at

each step is explicitly calculated, quantities such as the kinetic energy of the system

can easily be calculated.

Another alogirthm that is frequently employed for molecular dynamics simulatons

is the “leapfrog” algorithm [111].

v(t+ 1
2δt) = v(t− 1

2δt) + δta(t) (3.25)

r(t+ δt) = r(t) + δtv(t+ 1
2δt) (3.26)

In this algorithm, the mid-step velocities are calculated from the previous mid-step

velocities using the acceleration of atoms at the current time step. These mid-step ve-

locities are then used to calculate the new atomic positions. When using this algorithm,

a further calculation is required to obtain the current velocities, which are needed to
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calculate energies.

v(t) = 1
2

(
v(t+ 1

2δt) + v(t− 1
2δt)

)
(3.27)

These algorithms rely on the calculations of intermolecular potentials, which were

described previously in Section 3.1.2. Often, the Lennard-Jones potential is used to rep-

resent repulsion and dispersion interactions at short distances while Coloumbic charge-

charge interactions describe electrostatic interactions. This approach is used in this

work, with additional electrostatic interactions such as polarizability and multipole mo-

ments being neglected. Since the largest contribution to the potential acting on any

particular atom comes from nearby particles, a spherical cutoff is frequently applied to

both LJ and electrostatic potentials so that the pair potential between atoms at this

cut-off distance is zero. To ensure that thermodynamic properties of the system are still

maintained, long-range corrections are then applied to compensate for this truncation.

For LJ interactions, it is generally assumed that the cut-off is sufficiently large that the

repulsion term can be neglected and only the dispersion term is taken into account.

This is particularly important for free energy calculations and ensuring correct pressure

in the NPT ensemble, in which the correction can be large. The correction terms for

energy and pressure are calculated by assuming that the radial distribution function

g(r) ≈ 1 beyond the cut-off distance. The relations between the radial distribution

function and energy and pressure are then used to apply long-range corrections. For

long-range electrostatic interactions, the Ewald summation was first introduced [112]

which converts a single slowly-converging sum into two quicky-converging terms and a

constant term. However, the particle mesh Ewald (PME) method [113], which assigns

charges to a grid using interpolation, is more frequently used due to its much improved

computational efficiency.

3.1.5 Thermostats and Barostats

Control of temperature and pressure in MD simulations is achieved through the use

of thermostats and barostats, respectively. This is usually necessary to allow for com-
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parison with experimental data, which is often obtained at a specific temperature and

pressure. Many thermostats and barostats are available, so the discussion here is limited

to a description of those used in this work.

Thermostats

Consider that the equipartition theorem relates the kinetic energy of a system (K) to

the veloctities of the atoms.

K =

〈
N∑
i=1

1

2
miv

2
i

〉
=

3

2
NkBT (3.28)

where m is the mass of the atoms, v is the velocity of the atoms, N is the number of

particles, kB is the Boltzmann constant and T is the system temperature. Therefore, the

most straightforward way of implementing temperature control is to scale the velocity

of all atoms by some factor, λ at every time step.

λ =
√
Trequired/Tcurrent (3.29)

However, this type of thermostat (known as a velocity-scaling thermostat) does

not correctly reproduce the canonical ensemble because it does not allow for thermally

realistic fluctuations. It is therefore not appropriate for most MD simulations, however

it can be useful for quickly equilibrating systems at a particular temperature. A similar,

approach, Berendsen temperature coupling [114], couples the system with an imaginary

heat bath which is at a constant temperature, T0, via coupling parameter τ .

dT (t)
dt

=
1

τ
(T0 − T (t)) (3.30)

While this allows for the strength of the temperature coupling to be controlled, the

Berendsen thermostat still does not reproduce the canonical ensemble and so should only

be used for equilibration purposes. A velocity rescaling thermostat with a stochastic

component was proposed by Bussi et al. [115]. This thermostat is similar to the

Berendsen thermostat, but adds a stochastic noise term to velocity rescaling. This
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allows temperature fluctuations that are consistent with the canonical ensemble, as

velocities are sampled following the Maxwell-Boltzmann distribution.

dK = (K0 −K)
dt
τT

+ 2

√
KK0

Nf

dW
√
τT

(3.31)

where K is the kinetic energy, Nf is the number of degrees of freedom and dW is a

Wiener process. This velocity rescaling thermostat is used in all production simulations

in this work.

An alternative approach to controlling temperature of a system is the “extended-

ensemble” approach, upon which the Nosé-Hoover thermostat is based [116, 117]. In the

extended-ensemble approach, the system is extended to introduce a thermal reservoir

and a friction force on each particle, which is a product of its velocity. This modifies

the equations of motion for particles.

d2ri
dt2

=
Fi

mi
−

pξ
Q

dri
dt

(3.32)

where the equation of motion for the heat bath parameter ξ is:

dpξ
dt

= (T − T0)Nfk (3.33)

where Nf is the number of degrees of freedom and k is Boltzmann’s constant. The

constant Q, called the mass parameter, determines the strength of the coupling. In

some systems, the Nosé-Hoover dynamics can be nonergodic, so chains of Nosé-Hoover

thermostats are often used to improve ergodicity [118]. However, this method still

does not guarentee ergodicity [119]. The Hamiltonian for the extended system can be

expressed as:

H =

N∑
i=1

p2
i

2mi
+ U(r1, r2, ..., rN ) +

p2ξ
2Q

+NfkTξ (3.34)
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Barostats

The pressure of a system must be controlled by modifying the system volume. The

Berendsen algorithm [114] for pressure coupling rescales all atom coordinates and box

vectors at every time step (or at a set interval of time steps) with a matrix, µ. This

relaxes the actual pressure of the system (P ) towards the desired pressure (P0) with a

coupling parameter, τp, similar to Berendsen temperature coupling.

dP(t)

dt
=

1

τp
(P0 − P(t)) (3.35)

The scaling matrix, µ, is related to the isothermal compressibility, β, of the system.

The value of β must be estimated, but critically its value will only affect the time

constant of pressure relaxation and will not affect the average pressure. This value is

β = 4.6× 10−5 bar−1 for water at 1 atm, 300 K, and is suitable for most liquids. While

the Berendsen barostat is effective in achieving the correct average pressure, it does not

reproduce the NPT ensemble accurately as, similarly to the Berendsen thermostat, it

does not allow for realistic fluctuations in pressure or volume.

For production simulations, the Parrinello-Rahman [120, 121] barostat is used as

it reproduces the correct NPT ensemble. For this barostat, the box vectors obey the

matrix equation of motion, b.

db2

dt2
= V W−1b′−1(P − Pref ) (3.36)

where V is the box volume, and W is a matrix parameter that determines the strength

of coupling, which is related to the estimated isothermal compressibility of the system

at hand. Similarly to the Nosé-Hoover thermostat, the equations of motion of particles

in the system are changed.

d2ri
dt2

=
Fi

mi
− M

dri
dt

(3.37)

M = b−1

[
b

db′

dt
+

db
dt

b′
]
b′−1 (3.38)

41



Chapter 3. Methodology

Giving the modified Hamiltonian:

H = V +K +
∑
i

PiiV +
∑
ij

1

2
Wij

(
dbij
dt

)2

(3.39)

3.1.6 Multi-Scale Modelling & Coarse-Graining

Since calculations for interactions between particles in a molecular simulation must be

carried out between each pair of particles at every timestep, the number of calculations

which must be carried out increases dramatically as the system size increases. Despite

significant advances in the computational resources available in recent years, the time

and length scales which are realistically accessible to traditional atomistic models (i.e.

where each atom in the system is explicitly represented) remain limited. Therefore,

molecular simulation studies of large systems or of phenomena that take place over

relatively long time scales must employ special techniques to reduce the computational

burden of these calculations. Coarse-graining is a technique that simplifies the represen-

tation of a molecular system whilst still capturing its essential behaviour, reducing the

number of calculations that must be carried out to achieve a result. In coarse-grained

(CG) modelling, atoms are grouped into “beads”. These beads interact via a potential

which aims to accurately reproduce the key properties of the system without the need

to explicitly simulate individual atoms. The increase in the characteristic length scale

resulting from coarse-graining also usually allows for larger simulation timesteps to be

used [98]. Multi-scale modelling is a technique which uses models at different scales (e.g.

quantum, atomistic, coarse-grained) in conjunction to investigate a system of interest.

Frequently, more detailed models from higher levels of theory are used to calibrate

simplified models in a “bottom-up” approach, for example using quantum models to

calibrate atomistic models, or atomistic models to parameterize coarse-grained models.

Alternatively, CG models may be parameterized to reproduce experimental properties

of the system, such as bulk density or liquid-vapor surface tension, in a “top-down” ap-

proach [122]. Often, a mixture of both bottom-up and top-down approaches are utilized,

in a hybrid approach.
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3.1.6.1 Approaches to Coarse-Graining

The first major consideration that must be made when developing a coarse-grained

model is what atoms or parts of each molecule are represented by each bead, referred

to as the “mapping” scheme. Here, a clear trade-off is made between improved speed

of calculations and the accuracy of the model. If a mapping scheme is used in which

beads represent only a small number of atoms, then it can reasonably be expected that

a high degree of accuracy can be acheived due to the increased degrees of freedom. Al-

though not commonly referred to as coarse-grained models, united atom models could

be considered to have the highest level of detail when coarse-graining. In these models,

only the hydrogen atoms bonded to organic chemical groups are not explictly repre-

sented and the interaction potential of “heavy” atoms bonded to hydrogen is modified

to account for this. More commonly, larger groups of atoms containing both heavy (i.e.

non-hydrogen) atoms and adjoined hydrogen atoms are respresented by beads, allow-

ing for a far greater reduction in the number of calculations that must take place at

each simulation step. For example, the popular Martini force-field maps, on average,

four heavy atoms to each CG bead [76]. A higher resolution mapping typically allows

for more chemical specificity to be maintained, since multiple chemical groups do not

need to be represented by a single bead. Conversely, some generic, or “toy”, models

forgo chemical specificity in favour of simplicity, aiming only to reproduce the general

behaviour of the molecules represented [123].

Calculations involving solvent molecules, most often water, constitute a large pro-

portion of the computational expense for simulations but are crucial as the solvent

typically screens electrostatic interactions. Therefore, the coarse-graining approach to

represent solvent molecules is particularly important. One possible approach is to forgo

explicit representation of the solvent entirely, instead treating the solvent as a contin-

uous medium with its properties reproducing the average behaviour of the real fluid

and utilizing a modified dielectric constant to screen electrostatic interactions. While

implicit solvent models can be effective, the dielectric potential used is often concen-

tration dependent, which presents challenges in high concentration and heterogeneous
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systems [124]. Alternatively, the solvent may be represented explicitly. For larger sol-

vents, the approach is the same as any other coarse-grained representation, and solvent

molecules may be represented by a single or multiple coarse-grained beads, depending

on the resolution of the model. The case for water, which is the most common solvent

used in MD simulations, is more complicated as representing each molecule with a sin-

gle CG bead affords little benefit in terms of computational efficiency over atomistic

representation. Therefore, CG representations of water often aim to represent multiple

molecules in a single bead, for example the Martini model maps four water molecules to

each CG water bead, allowing for more significant computational savings [76]. A con-

sequence of mapping multiple water molecules to a single bead is a loss of electrostatic

charges, necessitating the use of a modified dielectric constant to account for screening of

electrostatic interactions. To provide a more rigorous representation of electrostatic in-

teractions, CG models have been developed that account for the polarizability of water.

A noteworthy example is the polarizable water model for the Martini force-field, which

introduces additional point charges connected to the LJ bead of each water molecule

[125]. However, this approach comes with significantly increased computational cost.

After the mapping scheme is determined, the next crucial consideration is the in-

termolecular forces acting between beads. As previously mentioned, this may follow

a top-down or bottom-up approach. In the bottom-up approach, the intermolecular

potentials are calibrated to match a higher resolution model, most frequently at the

atomistic scale. In practice, several approaches have been taken for this, including

minimisation of relative entropy, force matching and machine learning [122]. Top-down

approaches instead aim to choose intermolecular potentials for each bead that reproduce

experimental data. While development of intermolecular potentials following a bottom-

up approach can produce very accurate potentials for a particular system of interest,

they are usually limited in their transferability, for example when the molecules being

investigated are changed or when simulation conditions, such as component concentra-

tions or system temperature, are altered.
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3.1.6.2 The Martini Force Field

The Martini family of CG force fields takes a different approach to many coarse-graining

methods that are developed and parametrised to study a particular system of interest.

The first version of Martini was developed to study lipid and surfactant systems [126],

but was later expanded to study a variety of biomolecular systems [76] including pro-

teins [127] and DNA [128]. In Martini, beads are mapped based on underlying chemical

specificity and parameterized based on a range of experimental data including free ener-

gies of vaporisation, free energies of hydration and water/oil partition coefficients. This

creates a model which does not rely on rigorous fitting to particular systems and should

therefore, in theory, permit a greater degree of transferability between different sys-

tems. The beads which are parametrised under the Martini scheme represent common

chemical groups, allowing mappings for new molecules to be easily generated following

a “building blocks” approach. While originally developed for studying biomolecular sys-

tems, the Martini model has been applied to a broad variety of contexts, including in

nanotechnology [129] and material design [77, 130].

The Martini 3 force field [13] is a new version of Martini that looks to improve upon

many issues that were inherent to the previous model [76], such as systematic deviations

in packing and intermolecular interactions [131]. This new version is similar in many

ways, employing the same “building block” approach which allows this model to be ap-

plied to a broad range of systems, but offers several improvements over the previous

version. Like the previous version of Martini, the new version, on average, represents

every 4 heavy atoms as a single “bead”. In total there are 29 different bead types, an im-

provement over the 18 available in Martini 2. The type of bead specifies the nonbonded

interactions with other beads in the system, which are described by Lennard-Jones po-

tentials. Charged beads (e.g. ions) also interact with Coulombic interactions. The bead

type for any particular group of atoms is chosen based on the chemical structure of atoms

represented by that bead. The bead types are grouped into the following categories; po-

lar (P), intermediate/non-polar (N), apolar (C), halo-compounds (X), monovalent ions

(Q), divalent ions (D), water (W). For example, a highly polar chemical group will be
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represented by a polar (P) bead and will interact more strongly with other polar beads

than it does with apolar (C) beads. The authors of Martini 3 also provide suggested

bead types for common chemical groups, for example the C1 bead type is suggested for

linear alkanes while the P5 bead type is suggested for primary amides. An interaction

matrix determines the strength of interaction between each pair of beads, depending on

bead type, with 21 possible interaction levels ranging from “hyper attractive” to “super

repulsive”, a vast improvement over the 10 interaction levels available in Martini 2 [76].

In addition, new to this version of Martini, several “labels” are available that modify this

potential representing properties like hydrogen bonding capabilities and partial charges.

The beads also come in three different “sizes”, tiny, small and regular. Small and tiny

beads allow for higher resolution mapping, representing fewer heavy atoms per bead.

Small beads, on average, represent 3 heavy atoms in a single bead while tiny beads

represent 2. These smaller beads can also be used to provide improved mapping for

fully branched or cyclic structures. While small beads were available in the previous

version of Martini, tiny beads are new, allowing for higher resolution mapping than was

previously possible. In addition, cross-interactions between beads of different sizes are

modified, allowing for improved intermolecular interactions and packing [13].

Once a sensible bead type is selected, bond lengths, angles, dihedrals and their

corresponding force constants need to be determined. Typically, harmonic potentials

are used, or constraints in the case of very rigid bonds. The parameters of bonded

potentials are determined from an atomistic reference simulation, following a bottom-

up approach. The center-of-geometry of the group of atoms described by each bead is

calculated from the atomistic trajectory at each timestep, and the harmonic potential

parameters are fitted to this reference data for angles and dihedrals between beads.

3.2 Experimental Methods

3.2.1 Design of Experiments

Design of Experiments is a structured statistical method which allows the relation-

ships between “factors” (inputs) and “responses” (outputs) to be determined. Factorial
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two-level experimentation is a particularly efficient technique to study the effect that

combinations of changes in input factors have (i.e. identifying where changing two

factors at once changes a response), which would otherwise be missed in simpler ap-

proaches that vary only one factor at a time. In factorial two-level studies, each factor

is assigned two levels, typically a “low” and “high” value. An experiment is carried out

for each combination of low and high factors, meaning that the total number of runs

is equal to 2k, where k is the total number of factors chosen [132]. This means that

the number of experiments that must be carried out increases exponentially with the

number of factors investigated, meaning it is important to limit the number of factors

to a reasonable number (as every additional factor investigated will double the number

of experiments that must be carried out). After the factorial two-level study, any inter-

esting findings can then be investigated further through targeted experiments, making

this method effective for screening potential factors at an early stage of investigation.

Figure 3.3: An example of a factorial two-level experimental design with 3 factors. The
circled points are the conditions under which experiments would be carried out.

3.2.2 Gas Adsorption

Gas adsorption analysis is a widely used method in material science for characterizing

the surface properties and porous structure of materials. It involves measuring the
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quantity of gas adsorbed onto a material’s surface under controlled temperature and

pressure. Nitrogen adsorption at 77 K is the most common technique, due to nitrogen’s

inert nature and well-characterized adsorption behaviour. In nitrogen adsorption, the

same is cooled to 77 K under vacuum. Starting at low relative pressure, nitrogen is

introduced to the sample at set points allowing the quantity of nitrogen adsorbed to be

measured as a function of relative pressure, P/P0.

The function of quantity of nitrogen adsorbed versus relative pressure is known

as the nitrogen adsorption isotherm and can be analysed to obtain various properties

of the material. The isotherm itself can be characterized according to the IUPAC

classifications. There are 6 main classifications with two additional subtypes introduced

in the 2015 reclassification [133]. These types are summarised in Table 3.2 and Figure

3.4.

Figure 3.4: The IUPAC classifications of gas adsorption isotherms, taken from [133].
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Table 3.2: Description of the IUPAC classifications of gas adsorption isotherms.

Type Character Description

I(a) Narrow Microporous Initial sharp increase corresponding to filling of small
micropores followed by a plateau. Typical of micro-
porous materials (pore width < 1 nm)

I(b) Wider Microporous Gradual increase at low relative pressure correspond-
ing to gradual filling of micropores followed by a
plateau. Typical of microporous materials (pore
width 1-2 nm)

II Non-Porous or
Macroporous

Continuous, convex upward adsorption curve with
no plateau. Reflects adsorption on a relatively flat
surface.

III Weak
Adsorbate-Adsorbent
Interaction

Concave upward curve with no inflection point. In-
dicates weak interactions between the adsorbent
and adsorbate with adsorption occuring primarily
through adsorbate-adsorbate interactions. Typical
of hydrophobic surfaces.

IV(a) Mesoporous Adsorption
with Capillary
Condensation

Initially similar to Type II followed by sharp increase
at intermediate pressures and a plateau. Hysteresis
loop on desorption caused by capillary condensation
in mesopores. Typical of mesoporous materials (2-50
nm).

IV(b) Narrow Mesoporous
Adsorption with
Capillary Condensation

As Type IV(a) but with more pronounced hystere-
sis. Typical of materials with narrow mesopores (2-4
nm).

V Weak Interaction with
Capillary Condensation

Initially similar to Type III followed by steep rise
at intermediate pressures. Occurs due to weak
adsorbate-adsorbent interactions but capillary con-
densation occurs in mesopores. Typical of meso-
porous materials with hydrophobic surfaces.

VI Stepwise Multilayer
Adsorption

Adsorption occurs in steps corresponding to succes-
sive molecular layers. Indicates a homogeneous, non-
porous surface. Rarely observed except with highly
ordered materials (e.g. graphite).
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The adsorption isotherm can be used to determine the surface area of a mate-

rial. The most common method is the Brunauer-Emmett-Teller (BET) method [134].

This method extends Langmuir’s theory of adsorption to include multilayer adsorption.

Langmuir’s adsorption model makes the following assumptions:

• The surface is homogeneous.

• The energy of adsorption is equal for all sites.

• Each site can hold only one molecule.

• There are no interactions between adsorbed molecules.

Under BET theory, the above assumptions are applied to each adsorbed layer. In

addition, the following assumptions are made:

• Gas molecules adsorb on solid layers infinitely.

• Each layer only interacts with adjacent layers.

• The enthalpy of adsorption of the first layer is greater than subsequent layers.

• The enthalpy of adsorption for the second layer and greater is equal to the enthalpy

of liquefaction.

The BET equation is:
P

V (P0 − P )
=

1

VmC
+

C − 1

VmC
· P

P0
(3.40)

where P is the equilibrium pressure of the adsorbate, P0 is the saturation pressure of the

adsorbate, V is the volume of gas adsorbed, Vm is the monolayer adsorbed gas volume

and C is the BET constant which is related to the adsorption enthalpy. This equation

is rearranged to plot P/(V (P0 − P ) against P/P0 at low relative pressures (typically

0.05 < P/P0 < 0.3), so that the slope and intercept of the linear region can be used to

calculate Vm and C. The specific surface area can then be calculated from Vm:

S =
Vm ·NA · σ

M
(3.41)
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where S is the specific surface area, NA is Avogadro’s number, σ is the cross-sectional

area of the adsorbate molecule and M is the molar volume of nitrogen.

While the BET method for determination of surface area is typically effective, there

are limitations particularly when applied to microporous or mesoporous materials. Rou-

querol et al. suggested modifications to the method which refine the analysis by im-

proving the choice of pressure range for the BET region [135]. According to this, the

following criteria must be met when selecting the pressure range for BET analysis:

• The fit against BET transformed data must be linear.

• The constant, “C”, must be positive.

• A Rouquerol plot of V (1 − P/P0) against P/P0 must be increasing in the range

selected.

• Vm must be within the limits of the portion of the adsorption isotherm that was

used for the BET fit.

• The value of 1/(
√
C + 1) ≈ P/P0 at the monolayer capacity.

Applying these additional criteria ensures isotherm data represents physical monolayer

adsorption and avoids errors due to capillary condensation or multilayer effects.

There are several methods available for determination of pore volume and pore size

distributions from nitrogen adsorption isotherms, such as the Barrett-Joyner-Halenda

(BJH) [136], Density Functional Theory (DFT) [137] and Horvath-Kawazoe (HK) [138]

methods. Of these methods, only BJH and DFT are appropriate for determination of

pore sizes in mesoporous materials. The DFT method is more flexible and allows for

determination of properties in more complex pore systems with a broader range of pore

size, however it requires careful model selection to ensure accurate results [139]. BJH

is more straightforward to apply, but should only be applied to mesoporous materials

(2-50 nm pores) and assumes that pores are cylindrical. Since the materials of interest

in this work are expected to have cylindrical pores in the mesoporous range, this method

is used for estimation of pore volume and pore size distribution.
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The BJH method is an extension of BET theory that is typically applied to the

desorption isotherm. When pressure is reduced during desorption, liquid in the pore

evaporates from the “core” of the pore, leaving behind adsorbed molecules of a certain

“thickness”. The radius of the pore (rp) simply results from the sum of the core radius

(rk) and adsorbate thickness (t):

rp = rk + t (3.42)

The Kelvin equation can be used to calculate the core radius [140], and various

methods, mostly empirical, are available to calculate adsorbate thickness as a function

of the relative pressure. These include the Halsey [141], Harkins and Jura [142] and

Broekhoff-de Boer [143] methods. The volume of gas desorbed at each pressure step

during desorption is corrected by the volume of gas still adsorbed, and this is used to

calculate the pore volume. As mentioned previously, the BJH method is only applicable

to pores > 2 nm, since below this diameter the adsorbate cannot be considered a real

liquid with bulk properties and therefore the Kelvin equation does not apply. BJH also

assumes cylindrical pores, and may be affected based on pore geometry (for example, if

larger pores are only accessible through smaller pore windows).

3.2.3 X-Ray Diffraction

X-ray diffraction (XRD) is an analytical technique which is frequently used to charac-

terize the crystalline structure and textural properties of porous materials. In XRD,

the X-rays passing through a material are scattered by periodic atomistic planes, due to

the material’s structure, and their constructive interference is measured. The intensity

of diffracted X-rays is measured against the angle of incidence of the X-rays giving a

plot of intensity versus 2θ which is known as the diffraction pattern. Results can be

interpreted by considering Bragg’s law:

nλ = 2d sin θ (3.43)

where n is the order of the diffraction, λ is the wavelength of the X-rays, d is the inter-

planar spacing and θ is the angle of incidence [144]. This creates a relationship between
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the angle at which peaks in the diffraction pattern are observed, and the size of related

structural characteristics that cause these peaks. This has an inverse relationship, so

peaks in the diffraction pattern at low angles indicate larger features, while peaks at

high angles indicate smaller features. Often, XRD is carried out over a broad range of

angles in order to record as many diffraction peaks as possible, corresponding to differ-

ent crystal phases within the material, which can be referenced against known data from

a database [145]. In addition, different 2θ values correspond to specific crystal planes.

The orientation of a plane within a crystal lattice can be described by the Miller index,

which is a set of three numbers, h, k and l (see Figure 3.5). For hexagonal lattices, the

four-index Miller-Bravais notation is often used which introduces the redundant index

i where i = −(h+ k).

Figure 3.5: Miller notation for simple cubic planes.

Small angle XRD can be used to provide information on the long-range periodicity

and pore arrangement in mesoporous materials, such as MCM-41 [5]. In this case, the

XRD pattern does not come from atomic planes but instead from periodic mesoporous

walls. The peaks in the diffraction pattern can be indexed assuming a hexagonal (p6mm)

symmetery. The peaks which are typically indexed for MCM-41 are the (100), (110)

and (200) peaks (see Figure 3.6). The (100) peak is the most intense and corresponds

to the hexagonal periodicity of mesopores, while the (110) and (200) peaks correspond

to higher order reflections which indicate further structural ordering.

As well as providing a qualitative analysis of whether certain phases exist within a

material, the varying intensities of different diffraction peaks gives an indication of the

amounts of each phase present [145]. In the case of MCM-41, this has been used to
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provide a measure of the long-range structural ordering in the material [146]. This is

dicussed in further detail in Chapter 5.

Figure 3.6: Example of a typical X-ray diffraction pattern for MCM-41 with the peaks
corresponding to hexagonal lattice parameters labelled.
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Chapter 4

Development and Validation of

Coarse-Grained Model

4.1 Introduction

Since the morphology of OMS is determined by the silica-surfactant self-assembly pro-

cess, understanding the formation of the liquid crystal phase allows for prediction of

the structure of the resultant porous material, creating a crucial link between synthesis

conditions and material properties. Many experimental studies have attempted to un-

derstand the mechanisms of self-assembly using a broad variety of techniques including

in situ x-ray and neutron scattering [147]. However, due to the complexity of the syn-

thesis process, which involves a range of phenomena including self-assembly, chemical

reactions, nucleation and phase separation taking place simultaneously over a broad

range of time and length scales, it is a challenging system to probe experimentally.

Therefore, a variety of computational modelling techniques have been applied to study

this system, which were extensively reviewed by Jorge et al. [9] and discussed in Section

2.5.

One fruitful approach followed a multi-scale strategy, using atomistic models of sil-

ica and surfactant species to tune coarse-grained molecular dynamics models using the

Martini 2 framework [75, 77]. Later work using this model explored systems with higher
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surfactant concentrations to investigate the formation mechanism for OMS materials

[78]. The system modelled by Pérez-Sánchez et al. involves silicate species, the cationic

surfactant cetyltrimethylammonium bromide (CTAB) and water. First, the model for

CTAB was validated with a binary CTAB and water system, comparing average micelle

size and surfactant aggregation number to experimental data. Next, the model for an-

ionic silica monomers was developed using a comparison between CG simulations and

an atomistic reference [75]. The atomistic model used as a reference for anionic silicates

was the model of Jorge et al. [74, 148] which was adapted from the neutral silicates

model of Pereira et al. [149] with new charges and geometries obtained from DFT calcu-

lations [150]. This CG model was later extended to include higher oligomers of anionic

silica, namely dimers, linear trimers and tetramers, cyclic trimers and tetramers, and

cubic octamers [77]. In these higher oligomers, one CG bead is used per silicon atom

and the same parameters are used for all beads in all oligomers with the exception of

cyclic oligomers, which used the same bead type but with an “S” (meaning small) prefix,

thus changing interactions with other small beads. However, in Martini 2, interactions

between small beads and regular sized beads are unchanged when this prefix is applied.

It should be noted, however, that the parameters used for higher oligomer beads are

different from those used for monomers. This is because in atomistic simulations of a

single CTAB micelle, the silica monomers were absorbed into the headgroup of the mi-

celle whereas the dimers aggregated primarily outside the headgroup region. Therefore,

the parameters of dimers were adjusted from the original monomer model to reproduce

this behaviour.

The model of Pérez-Sánchez et al. was built using the Martini 2 force field [76].

This is a “building block” based force field where four heavy (non-hydrogen) atoms

are mapped to each bead on average, based on their chemical specificity. Martini 2 is

an incredibly popular force field with a broad range of applications. However, it has

certain limitations. In particular, it lacks cross interactions between beads of different

sizes and provides poor agreement with experimental data for both solutes and solvents

where short bond lengths are used [131]. In recent years, the Martini 3 force field has

been published which aims to fix some of the issues with the previous version whilst
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also expanding the range of bead types available [13]. The Martini 3 force field was

discussed in more detail in Section 3.1.6.2.

The availability of the Martini 3 force field [13] and of a new force field for atomistic

simulation of silicate species [12] presents an opportunity to improve upon the CG model

for OMS formation of Pérez-Sánchez et al. [77]. The new atomistic model for silicates,

recently developed by Jorge et al.[12], was parametrized according to the Polarisation

Consistent Approach (PolCA) [151, 152] and validated against available experimental

data for organosilicates. The availability of this improved model motivates the need to

re-parametrize any CG model used in this work, to ensure that it is validated against the

most up-to-date atomistic models for silicates. In addition, the increased degree of cus-

tomisation built into the Martini 3 force field when compared to the previous iteration

in terms of additional bead types, sizes and labels, allows for the CG model to be more

finely tuned to match data from both experiment and more detailed (i.e. atomistic)

simulations, permitting finer control over the interactions in the system that give rise

to OMS formation. Furthermore, the use of the Martini 3 model provides an improved

ability to incorporate additional species into the system. By creating a model using the

Martini 3 force field, taking advantage of these improvements, compatibility with future

models for species relevant to mesoporous silica formation (e.g. additives, surfactants,

co-surfactants) is ensured. For these reasons, we adopt the Martini 3 framework in this

work, which implies that the models for all molecules need to be re-developed and/or

revalidated.

4.2 Defining the System

To allow for the investigation of the alternative bio-inspired mesoporous silica route, a

model is required that accurately describes the self-assembly of the surfactant, CTAB, in

the presence of orthosilicic acid residues (referred to as “silicates”) and the bio-inspired

additives. From previous experimental work (see Section 1.1), the bio-inspired additive

arginine was proposed to be effective at promoting the rapid precipitation of ordered

mesoporous silica at ambient temperature. In experimental work carried out for this
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thesis (see Chapter 5), pentaethylenehexamine (PEHA) was also investigated as an al-

ternative additive. Therefore, models for both of these additives are required. In a

typical synthesis, the components are combined in solution forming a high pH mixture

(pH > 13). Acid is then added, resulting in precipitation of ordered mesoporous silica.

The addition of acid lowers the pH to a reaction pH which has been observed to yield or-

dered material, between pH 7 and 11. However, the self-assembly of the silica-surfactant

HLC phase is expected to occur at the initial high pH, approximately 13.0-13.5, and

therefore the CG model will focus primarily on species which are present at this pH.

Silicates are present in solution at varying degrees of oligomerisation (i.e. monomers,

dimers, trimers etc.). Therefore, the model ideally needs to be able to represent these

different oligomers. However, anionic silica dimers have been shown to be sufficient

for representing the self-assembly of the HLC phase in prior work [77] and therefore

the development of an accurate model for silica dimers is prioritised in this work. As

in the work of Pérez-Sánchez et al., dimer parameters are thereafter assumed to be

valid for higher oligomers; the validity of this assumption will be analysed later in the

thesis. For dimers, the first two pKa values, which correspond to the deprotonation

of a single silanol group bonded to each silicon atom, have been reported as 9.0 and

10.7, while the pKa value corresponding to the first deprotonation of a silanol group in

silica monomers is 9.5 [17] (see Figure 4.2). The relative composition of the different

degrees of protonation for dimers between pH 7 and 14 is given in Figure 4.1. Species

with more than a single deprotonated silanol group per silicon atom are present only

at extremely high pH values [17]. Thus, they are not present in significant quantities

in the self-assembly of OMS materials, which typically occurs below pH 14, and are

therefore not considered here.

As previously mentioned, in addition to being present as both neutral and anionic

species in this system, silicates condense to form oligomers in solution, requiring the

model to describe higher oligomers as well as monomers. Two approaches can be taken

for this. The first is to develop a “non-reactive” model, in which silicates of multiple

degrees of oligomerisation are parametrized separately. These pre-formed oligomers can

then be inserted into CG simulations directly, either at the start of the simulation to
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Figure 4.1: Distribution of charge states for siica dimers between pH 7 and 14. The
total molecular charge for each degree of protonation is given in the legend.

Figure 4.2: Diagram of pKa values corresponding to the ionisation of silanol groups in
silica monomers and dimers.

represent a single stage in the condensation process, or added throughout the simulation

manually to represent gradually increasing oligomerisation. With this approach, each

oligomer should be validated separately, significantly increasing the number of molecules

that must be validated. The second approach is to implement a reactive model, such

as the model of Carvalho et al. [92], which explicitly includes silica polycondensation

reactions. In this case, only monomers need to be parameterised as higher oligomers are

simply represented by “reactive potentials” between monomers. The prior approach is

taken in this work as the integration of the reactive model into self-assembly models is

a significant challenge, and the representation of small oligomers (in particular, dimers

and cubic octamers) is sufficient to study the self-assembly of OMS materials. However,

to fully investigate the behaviour of the system during the reaction stage of synthesis

(i.e. after acid is added to the mixture to trigger the precipitation of silica) the use of
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a reactive model would be required.

Arginine has three ionisation points, corresponding to pKa values of 2.17, 9.04 and

12.48 [153]. The most relevant protonation state in this work is shown as IV in Figure

4.3, which is present in high proportions (>75%) during HLC self-assembly in the

early stages of OMS synthesis. This form has an overall negative charge situated on

the carboxylate group of the amino acid backbone. The guanidinium group of the

arginine sidechain, which is typically positively charged at physiological pH, becomes

deprotonated at high pH.

Figure 4.3: Diagram of pKa values corresponding to the ionisation of multiple chemical
groups in an arginine molecule. Taken from Wang et al. [153].

PEHA has two ionisation points, corresponding to pKa values of 9.7 and 11.0 [154]

(shown in Figure 4.4). The most relevant protonation state to this work is when the

molecule bears an overall neutral charge with deprotonated amine groups, which occurs

at high pH values. The relative composition of different degrees of protonation for both

bio-inspired additives between pH 7 and 14 are given in Figure 4.5.

The pores formed are on the mesoscale, similar in size to that of MCM-41 (without

the presence of an auxiliary organic), that is approximately 2-4 nm [5]. To observe

self-assembly, large simulation box sizes are required; previous MD simulations have

used cubic boxes with 36 nm side lengths [77]. Simulations of this size involve around

106 atoms, significantly out of reach of fully atomistic simulations. Therefore, as in

previous work, a CG model must be employed [77].
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Figure 4.4: Diagram of pKa values corresponding to the ionisation of terminal amine
groups in PEHA.

Figure 4.5: Distribution of charge states for bio-inspired additives arginine (left) and
PEHA (right) between pH 7 and 14. The total molecular charge for each degree of
protonation is given in the legend.

61



Chapter 4. Development and Validation of Coarse-Grained Model

4.3 Model Development Methodology

A straightforward “building blocks” based approach is suggested by the authors of the

Martini 3 force field, describing how new molecules should be parametrized under this

framework [13]. The procedure follows these steps, which are described in more detail

below:

1. Map CG beads to the atomistic model

2. Assign (first guess) bead types

3. Generate bonded parameters from atomistic reference data

4. Validate and refine bead type if required

As described previously, each Martini “bead” represents a number of atoms, with

on average 4 heavy atoms being described by each bead (“4-1 mapping”). Atoms in

the molecule must therefore be divided up into groups, taking care to avoid splitting

chemical groups between beads. Where it is necessary to create a group of less than 4

heavy atoms, small or tiny beads can be used to represent 3 or 2 atoms, respectively.

In addition, fully branched structures and aliphatic rings should typically use a smaller

bead type than linear structures. For example, a fully branched structure representing 4

heavy atoms should use a small bead instead of a regular sized bead. Higher resolution

(i.e. 3-1 or 2-1) should also be considered in cases where chemical groups with different

behaviours would otherwise be mapped to the same bead, as this allows for better

reproduction of site-specific molecular interactions.

When the molecule is fully mapped, each bead must be assigned a “type”. In to-

tal there are 29 different bead types available in Martini 3, including a special bead

type for water. The bead types are grouped into the following categories; polar (P),

intermediate/non-polar (N), apolar (C), halo-compounds (X), monovalent ions (Q), di-

valent ions (D), water (W). The bead type chosen determines that bead’s interactions

with other beads in the system through a matrix using 21 discrete interaction levels

from “hyper attractive” to “super repulsive”. These interactions can be tweaked further
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with the use of “labels” as described previously. The selection of bead types is critical to

the function of the CG model and will often need to be revised during the development

and validation of the model.

Once a sensible bead type is selected, bond lengths, angles, dihedrals and their cor-

responding force constants need to be determined. This should be done according to

the centre-of-geometry of each bead, and can be calculated from an atomistic refer-

ence simulation. This can be done easily by using PyCGTOOL [155] by supplying an

atomistic simulation trajectory of a single molecule in water and the mapping scheme

corresponding to the molecule to be mapped.

As described previously, Pérez-Sánchez et al. [75, 77] established a procedure for

developing a CG model for silicates compatible with the Martini 2 CG force field in

the context of OMS synthesis. In this work, a similar procedure to that presented by

Pérez-Sánchez et al. [75] has been applied to develop the CG model under the Martini 3

framework. This involves first validating a model for CTAB, then extending this model

to include silicates. The approach used for validation will depend upon the availability

of either experimental data or atomistic level models for a particular chemical species.

A summary of the species requiring validation and the data used for that validation

is given in Table 4.1. For CTAB, the experimentally determined aggregation number

and phase behaviour were used to validate the coarse-grained model, similar to the

approach of Pérez-Sánchez et al. [75]. Silicates are only stable in aqueous solution

at very low concentration and/or very high pH as silicic acid and its derivatives. At

higher concentrations and closer to neutral pH, silicic acid precipitates as a gel [19] and

therefore there are no pure-fluid experimental properties that can be used to directly

validate the CG model. To circumvent this limitation, in our previous work, an atomistic

model for silicates was validated against experimental data for organosilicates, such as

density and enthalpy of vaporization, since organosilicates are stable as pure liquids

[12]. In the present work, the CG model for silicates is validated against this atomistic

model of Jorge et al., and therefore the CG model is also indirectly validated against

experimental data. Therefore, for all new species modelled, a combination of “top-

down” and “bottom-up” approaches is employed, increasing our confidence in the model
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Table 4.1: Summary of experimental data and atomistic reference models that were
used to validate the CG model. Species that are already present in the Martini 3 force
field are excluded (e.g. water, ions).

Species Experimental Data Atomistic Model

Silicates (neutral and anionic) None Jorge et al. [12]

CTAB cation (CTA+) Aggregation number, mesophase diagram OPLS-AA [106, 156–160]

Arginine (-1, neutral) Transfer free energies OPLS-AA [106, 156–160]

PEHA (neutral, +1, +2) None OPLS-AA with 1.14*CM1A-LBCC [106, 156–163]

to accurately predict real molecular level behaviour.

In this work, the following nomenclature for describing silica species is used: anionic

silica is identified as “SI” while neutral silica is identified as “SN”. This is followed by a

number indicating the degree of condensation of the silica molecule (i.e. the number of

silicon atoms), for example “SI1” for anionic silica monomers and “SN2” for neutral silica

dimers. For oligomers with three or more silicon atoms, a suffix label is used to indicate

the structure: l for linear molecules, y for cyclic molecules (three silicon atoms with each

bonded to the other two by the Si-O-Si bond) and c for cubic molecules (as in silica

octamers). For example, anionic cyclic trimers are named “SI3y” while anionic silica

octamers are labelled “SI8c”. Silica oligomers with both anionic and neutral groups are

labelled with the number of anionic groups followed by the number of neutral groups,

followed by a label indicating structure where applicable. For example, silica dimers

with a single deprotonated silanol group (therefore bearing a -1 overall molecular charge)

are identified as “SISN”, while cubic silica octamers with a -4 charge are identified as

“SI4SN4c”.

4.4 General Simulation Methods

4.4.1 Software

All computational work was carried out using the GROMACS 2022.1 software package

which allows molecular dynamics (MD) simulations to be carried out with high com-

putational efficiency due to the use of state-of-the-art algorithmic optimizations and

parallelization [164, 165]. Calculations for large simulations were carried out on a GPU.
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The general purpose programming language Python 3 [166] was used to aid in setting

up and running simulations. For analysis of simulation data the built-in GROMACS

analysis tools were used as well as the MDAnalysis library for Python [167, 168]. Graphs

were generated using the Matplotlib library for Python [169].

4.4.2 Atomistic Simulation Details

For atomistic simulations, the leapfrog algorithm [111] was used with a time step of

2 fs. All simulations took place at room temperature (298 K) and pressure (1 bar)

using the velocity-rescaling thermostat [115] and the Parrinello-Rahman barostat [120,

121]. Cubic boxes with periodic boundary conditions were used. A 1.2 nm cut-off was

used for Lennard-Jones (LJ) interactions with a switching function between 0.9 and

1.2 nm. Long range dispersion corrections for both energy and pressure were applied.

Electrostatic interactions were accounted for using the particle-mesh Ewald method

[113, 170]. Before MD for all atomistic simulations, energy minimisation was carried

out using the steepest descent algorithm followed by equilibration in the NVT and NpT

ensemble consecutively for 100 ps each.

The rigid single point charge (SPC/E) potential was chosen to represent water

molecules [171]. CTAB molecules in this work are present as CTA+ cations, and refer-

ences to CTAB throughout this work refer to this cationic form. For the CTA+ cations,

parameters were taken from the OPLS potential [106, 156–160] using a fully atomistic

model with explicit hydrogens. Silicates were modelled using the model of Jorge et

al. [12] parametrized according to the Polarization-Consistent Approach (PolCA) [151,

152]. For arginine and PEHA, atomistic models were used only to determine bonded

parameters for the CG model, so in both cases an atomistic model corresponding to an

overall neutral molecular charge was used (removing the need to include counter-ions

in these simulations). The parameters for arginine were taken from OPLS, with param-

eters initially generated using the gmx pdb2gmx tool in GROMACS. The charge of the

alpha carbon was then reduced by 0.02 in order to achieve a neutral overall charge for

the molecule, because the initial output of the gmx pdb2gmx did not achieve a overall

neutral molecular charge for this form of arginine. However, this small change is not
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expected to affect the behaviour of the molecule. The atomistic model for PEHA was

generated using the LigParGen OPLS/CM1A parameter generator utility with localised

bond-charge corrected CM1A charges [161–163].

Atomistic simulations were used for two purposes. Firstly, simulations of single

molecules solvated in water were used to generate atomistic reference data for bonded

parameters based on centre of geometry mapping. In these atomistic simulations, a

single molecule was placed in a cubic box with a side length of 3 nm. The box was

then solvated with an appropriate number of water molecules to achieve a realistic

density using the gmx solvate tool in GROMACS. A simulation time of 50 ns was

used for calculation of these bonded parameters. Bonded parameters were generated

from simulation trajectories using the PyCGTOOL utility [155]. Secondly, atomistic

simulations of a single preformed CTAB micelle were used as a reference to assess how

closely the CG model matched atomistic micelle morphology, and also to validate the

interactions of other molecules in the system (i.e. silicates and bio-inspired additives)

with the surfactant by examining their interaction with a single surfactant micelle in

water. In order to evaluate this, radial density profiles for all species present in the

simulations were calculated from the micelle centre-of-mass. Simulations involving a

single micelle were set up starting from a pre-formed micelle used in previous work [77].

Any relevant solutes and bromide counter-ions were added randomly to the simulation

box before solvation in water using the gmx solvate tool. For arginine, an additional

simulation was carried out in the presence of anionic silica dimers in order to provide a

reference for the interactions between arginine molecules and oligomeric silica species.

A summary of all atomistic simulations carried out in this work is provided in Table

4.2.
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Table 4.2: Details of single micelle atomistic simulations carried out. N is the number of molecules of each species (denoted by
the subscript) present in the simulation. L is the box length in the x, y and z direction.

Simulation NCTAB NSI NSI2 NSI3l NSN NSN2 NSN3l NSISN NArg NBr NWater L (nm)
Preformed Micelle Simulations
No solutes 100 0 0 0 0 0 0 0 0 100 49803 11.6
SI1 100 100 0 0 0 0 0 0 0 0 49470 11.6
SI2 100 0 50 0 0 0 0 0 0 0 49573 11.6
SI3l 100 0 0 33 0 0 0 0 0 1 49582 11.6
SN 100 0 0 0 100 0 0 0 0 100 49082 11.6
SN2 100 0 0 0 0 100 0 0 0 100 49057 11.6
SN3l 100 0 0 0 0 0 100 0 0 100 48721 11.6
SISN 100 0 0 0 0 0 0 50 0 50 49469 11.6
Arginine 100 0 0 0 0 0 0 0 25 100 49568 11.6
Arginine + SI2 100 0 50 0 0 0 0 0 25 0 49342 11.6
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4.4.3 Coarse-Grained Simulation Details

Coarse-grained simulations were carried out using the suggested parameters proposed by

the authors of the Martini 3 model [13]. After setting up the initial configuration, energy

minimisation was carried out using the steepest-descent algorithm. NVT equilibration

was carried out using a velocity-rescaling thermostat [115] with a 2 fs time step. NpT

equilibration was carried out using the Berendsen barostat, also with a 2 fs time step.

Full MD simulations used a timestep of 30 fs unless otherwise stated, using the leap-frog

algorithm. For temperature control, a velocity-rescaling thermostat was used and the

pressure was controlled with the Parrinello-Rahman barostat [120, 121]. For Lennard-

Jones terms, the Verlet cutoff scheme [110] was used with a cutoff value of 1.1 nm.

Electrostatics were accounted for using reaction field with a cutoff value of 1.1 nm and

a relative permittivity of εr = 15. Full details of all simulations carried out in this

chapter are provided in Table 4.3.

The thermodynamic integration free-energy technique was utilised in the develop-

ment of the coarse-grained model for arginine. The free energy of solvation for a small

molecule was calculated in each relevant solvent by first carrying out energy minimisa-

tion of a simulation box containing a single molecule surrounded by solvent molecules.

A series of simulations were carried out in which the non-bonded interactions between

solute and solvent were scaled from full to none according to a coupling parameter, λ,

and the free energy difference was estimated through Bennett’s acceptance ratio (BAR)

[172] using the gmx bar command in Gromacs. 11 evenly spaced λ values between 0

and 1 were used. Soft-core potentials [173] were applied with an alpha parameter of 0.5

and linear change in coupling with λ.
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Table 4.3: Details of coarse-grained simulations carried out for model validation. N is the number of molecules of each species
(denoted by the subscript) present in the simulation. Note that each water bead represents 4 water molecules. L is the box length
in the x, y and z direction. t is the total simulation time.

Simulation Box Type NCTAB NSI NSI2 NSI3l NSI8c(4−) NSN NSN2 NSN3l NSISN NArg NPEHA NBr NWater Lx (nm) Ly (nm) Lz (nm) t (µs)
Preformed Micelle Simulations
CTAB Cubic 100 0 0 0 0 0 0 0 0 0 0 100 12500 11.6 11.6 11.6 0.15
SI1 Cubic 100 100 0 0 0 0 0 0 0 0 0 0 12500 11.6 11.6 11.6 0.5
SI2 Cubic 100 0 50 0 0 0 0 0 0 0 0 0 12500 11.6 11.6 11.6 0.5
SI3l Cubic 100 0 0 33 0 0 0 0 0 0 0 1 12500 11.6 11.6 11.6 0.5
SN1 Cubic 100 0 0 0 0 100 0 0 0 0 0 0 12500 11.6 11.6 11.6 0.5
SN2 Cubic 100 0 0 0 0 0 100 0 0 0 0 100 12500 11.6 11.6 11.6 0.5
SN3l Cubic 100 0 0 0 0 0 0 100 0 0 0 100 12500 11.6 11.6 11.6 0.5
SISN Cubic 100 0 0 0 0 0 0 0 100 0 0 0 12500 11.6 11.6 11.6 0.5
Arg Cubic 100 0 0 0 0 0 0 0 0 0 25 100 12500 11.6 11.6 11.6 0.5
Arg + SI2 Cubic 100 0 100 0 0 0 0 0 0 0 25 0 12500 11.6 11.6 11.6 0.5
CTAB Solutions
3 wt% Cubic 500 0 0 0 0 0 0 0 0 0 0 500 82000 21.7 21.7 21.7 9.0
6 wt% Cubic 2000 0 0 0 0 0 0 0 0 0 0 2000 160000 27.4 27.4 27.4 9.0
15 wt% Cubic 840 0 0 0 0 0 0 0 0 0 0 840 24000 15.5 15.5 15.5 1.0
50 wt% Cubic 2800 0 0 0 0 0 0 0 0 0 0 2800 14250 15.5 15.5 15.5 1.0
65 wt% Cubic 3600 0 0 0 0 0 0 0 0 0 0 3600 9750 15.4 15.4 15.4 1.0
75 wt% Cubic 4200 0 0 0 0 0 0 0 0 0 0 4200 7000 15.6 15.6 15.6 1.0
CTAB/Silica Solutions
SI1 Cubic 4000 4000 0 0 0 0 0 0 0 0 0 0 240000 31.6 31.6 31.6 3.0
SI2 #1 Elongated 1000 0 500 0 0 0 0 0 0 0 0 0 10000 8.2 8.2 27.3 6.0
SI2 #2 Half-Cubic 2000 0 1000 0 0 0 0 0 0 0 0 0 120000 31.6 31.6 15.8 12.0
SI4SN4c Elongated 1000 0 0 0 250 0 0 0 0 0 0 0 13000 8.7 8.7 29.9 3.0
SN1 Cubic 2000 0 0 0 0 2000 0 0 0 0 0 2000 120000 25.0 25.0 25.0 6.0
SN2 Cubic 2000 0 0 0 0 0 1000 0 0 0 0 2000 120000 25.0 25.0 25.0 6.0
Additive Solutions
Arg Half-Cubic 2000 0 0 0 0 0 0 0 0 250 0 2000 120000 31.6 31.6 15.8 6.0
PEHA Cubic 500 0 0 0 0 0 0 0 0 0 250 500 160000 21.7 21.7 21.7 3.0
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4.5 Model Development

4.5.1 CTAB

4.5.1.1 Atomistic Simulations

Atomistic single micelle simulations for CTAB with no solutes behaved as expected and

in agreement with previous simulation work [75], with the micelle remaining stable over

5 ns of simulation time. The radial density profile is shown in Figure 4.6. The micelle

size can be approximated by the modal value of the surfactant headgroup radial density

profile, giving an approximate size of 2.4 nm, which is in agreement with experimental

estimates [174, 175]. Bromide counter-ions are present at the surface of the micelle, as

expected.

Figure 4.6: Radial density profile of single CTAB micelle taken from centre of mass.

4.5.1.2 Model Mapping and Bonded Parameters

CTA+ is made up of 20 heavy (non-hydrogen) atoms in a linear arrangement, therefore

the most straightforward mapping scheme is 5 regular size Martini beads (i.e. 4-to-1

mapping) as shown in Figure 4.7. The same mapping scheme was used in the model

of Pérez-Sánchez et al. [75]. Linear alkanes are readily described by the C1 bead, so

this bead type was used for the four beads representing the alkane tail of the molecule.

The charged head group is similar in nature to a tetramethylammonium cation which

is represented well in Martini 3 by a Q2 bead [13] (see Figure 4.7). Bonded parameters

70



Chapter 4. Development and Validation of Coarse-Grained Model

were generated from the reference atomistic model as described in 4.4.2 and are shown

in Tables 4.4 and 4.5. The parameters generated indicate that the bond between the

surfactant headgroup and first tail bead (H 1-T 2) is shorter and more rigid than bonds

between surfactant tail group beads, which are slightly longer and more flexible.

Figure 4.7: The Martini 3 mapping scheme for CTA+ cations. The beads representing
the alkane tail of the surfactant are shown in blue (T2-T5), while the bead representing
the cationic head is shown in orange (H1).

Table 4.4: Bonded parameters for CTA+ Martini 3 model. Bead names refer to labels
in Figure 4.7. bij is the bond length and kij is the bond force constant.

Bond bij (nm) kij (kJ mol−1 nm−2)

H 1-T 2 0.375 39,000

T 2-T 3 0.478 3,450

T 3-T 4 0.478 3,450

T 3-T 5 0.483 3,450

Table 4.5: Angle type parameters for CTA+ Martini 3 model. Bead names refer to
labels in Figure 4.7. θijk is the angle between beads and kijk is the angle force constant.

.

Beads θijk (degrees) Calculated kijk (kJ mol−1 deg−2)

H 1-T 2-T 3 156 180

T 2-T 3-T 4 150 100

T 3-T 4-T 5 150 100
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4.5.1.3 Validation

For the single micelle simulation, the CG model reproduces the density profile of the

atomistic simulation well (Figure 4.8). The micelle was stable over the simulation time,

which confirms that this CG model produces stable micelles at an aggregation number of

100 surfactant molecules, in agreement with the atomistic model. In addition, bromide

counter-ions are present on the surface of the micelle in CG simulations, as was observed

in atomistic simulations. The density of the surfactant head and tail are similar in both

the atomistic and CG model, implying that the CG model reproduces the morphology of

a single micelle accurately. However, it should be noted that the surfactant headgroup,

in particular, has a slightly broader and shorter peak in the radial density profile,

which may indicate that the micelle is on average less symmetrical and adopts a more

elliptical morphology. Taking block averages of the surfactant headgroup density for CG

simulations (Figure 4.9) shows that the peak is broader and shorter in the final time

interval (120-150 ns), indicating that over longer time periods the (average) micelle

morphology shifts. This behaviour is not observed in similar block averages for the

shorter atomistic simulations, where instead the micelle profile remains quite stable

after a short initial equilibration period (within the first ns of simulation time). This

might suggest that the distortion of the micelle that occurs in CG simulations is a slower

process which will not be easily captured by atomistic simulations. However, it may also

be the case that the CG model results in a more “flexible” micelle morphology. In any

case, the modal density of the surfactant headgroup occurs at approximately 2.4 nm,

which can be approximated as the size of a single micelle. This is in good agreement

with experimental data [174, 175] and atomistic results.
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Figure 4.8: Comparison of single micelle density profiles for atomistic (filled line) and
CG simulations (dashed line), calculated from the micelle centre of mass.

Figure 4.9: Average density of CTAB headgroup measured from the micelle centre of
mass in atomistic (left) and CG (right) simulations taken over block averaged time
intervals.
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4.5.2 Silicates

4.5.2.1 Atomistic Simulations

Atomistic results obtained in this work for micelle radial density profiles in the presence

of anionic silica monomers and dimers, and neutral silica monomers, are shown in

Figure 4.10. Anionic silicates are shown to aggregate just outside of the micelle surface

for all oligomers simulated. This is due to strong electrostatic interactions between

the negatively charged silicate anions and the positively charged cationic surfactant

headgroup. This result is in agreement with atomistic simulations carried out in previous

work for anionic dimers [77] (shown by the dotted line in Figure 4.10c). However, the

result for monomers differs from previous work. In the atomistic simulations used for

model validation by Pérez-Sánchez et al. (shown by the dotted line in Figure 4.10a),

anionic silicate monomers were absorbed within the headgroup of the micelle, whereas

in this work, anionic monomers are located outside of the headgroup. This is likely

to be due to the difference in the atomistic model used in this work, which results in

slightly more hydrophilic silicate species.

The work of Pérez-Sánchez et al. used a silica model based on the work of Pereira

et al.[149] modified according to DFT calculations [148] whereas this work employs the

recently developed model of Jorge et al. which, as previously described, is validated

against experimental data [12]. Thus, the atomistic results obtained in this work should

be considered as a more accurate description of the behaviour of silicates. It was pre-

viously suggested that silica oligomers were required in order to bridge adjacent CTAB

micelles to form the mesophase structure of MCM-41. However, this conclusion was

drawn from a CG model in which monomers absorbed into the micelle surface whereas

dimers aggregate on the surface outside the micelle, and therefore this behaviour will

be re-examined later in this chapter.

Neutral silicates are much more soluble in water than their anionic counterparts,

remaining largely in the bulk solution, as shown in Figure 4.10a. This trend decreases

slightly as the degree of oligomerisation increases, however. There is a small peak in the

radial density profile for neutral silica monomers which sits just inside the surfactant
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headgroup, suggesting that a small amount of neutral silicates is absorbed within the

micelle surface. A peak is also present for neutral dimers, however it sits outside the

headgroup (Figure 4.10d). This may be because the higher oligomers are larger and

therefore too bulky to penetrate into the micelle surface. The new atomistic model for

neutral silica is clearly more hydrophilic than the atomistic model employed by Pérez-

Sánchez et al. [75] (shown by the dotted line in Figure 4.10b and d), with a much

larger amount of silicates present in the bulk water and only a small amount of silicates

aggregating near the micelle surface.

75



Chapter 4. Development and Validation of Coarse-Grained Model

(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Time averaged radial density profile of single micelles in the presence of
anionic silicate monomers (a), dimers (c) and trimers (e) and neutral silicate monomers
(b), dimers (d) and trimers (f). For SI1, SI2 and SN1 the results obtained from the
atomistic model used in the work of Pérez-Sánchez et al. [75] are also shown by a dotted
line (while the results obtained using the new atomistic model of Jorge et al. [12] are
shown by the solid line).
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4.5.2.2 Model Mapping and Bonded Parameters

Silicate monomers (both neutral and ionic) contain five heavy atoms in a branched

arrangement and therefore were mapped to a single regular size Martini bead. Dimers

and trimers were modelled with two and three regular beads, respectively, splitting

bridging oxygen atoms between beads in order to maintain the symmetry of the molecule

(see Figure 4.11). A similar procedure was carried out for cyclic and cubic fragments,

with beads centred on the silicon atom and bridging oxygens split between beads where

necessary (see Figure 4.12). For beads in cyclic and cubic molecules, the small bead

size should be used as per the recommendation of the Martini 3 authors [13].

Figure 4.11: Martini 3 mapping scheme for neutral (green) and anionic (red) silicates
showing monomers, dimers and linear trimers. Anionic and neutral silicates are given
the label SI and SN, respectively.

Figure 4.12: Martini 3 mapping scheme for cyclic silica oligomers. For cubic oligomers,
the mapping scheme is displayed for the front face (leftmost image), for which there is
a symmetrical arrangement on the back face (up to SIc8.)
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To allow the CG model for silicates to represent linear oligomers of any degree of

condensation and at any ionisation state, it was necessary to generate bonded parame-

ters for each possible combination of anionic and neutral silicates. Since the CG model

only requires bond and angle parameters, it is straightforward to achieve this for linear

fragments with a series of simulations of trimers of differing ionisation states. From

these simulations, the average bond length was calculated for each bond type and these

parameters were used for all CG simulations involving linear silicates. For cyclic frag-

ments, reference atomistic simulations were carried out for fully deprotonated cyclic

trimers and cubic octamers. These bonded parameters are given in Tables 4.6 and 4.7.

When using the larger timesteps of circa 30 fs, which are frequently employed using

the Martini model, high bond force constants (>30,000 kJ mol−1 nm−2), representing

very stiff bonds, can cause the oscillation of the bond to be much faster than the simula-

tion timestep. This can cause issues with energy conservation and the numerical stability

of simulations. There are two approaches that could ideally be applied to handle this

situation. The first is to reduce the simulation timestep to improve stability, however

this has obvious and unacceptable impacts on the computational cost of simulations.

The second is to instead treat these bonds as rigid by using a constraint algorithm, such

as the LINear Constraint Solver [103]. This is practical in some circumstances, however

large numbers of constraints, particularly when they are interconnected (as would be

the case in cyclic fragments) can cause instabilities as identified by the authors of the

Martini 3 force field [13]. Some unique approaches have been demonstrated to reduce

the number of constraints required for describing stiff cyclic molecules, such as the hinge

model of Melo and co-workers used for sterols and hopanoids [176]. However, this ap-

proach adds additional complexity to model development and is not compatible with

the objective of creating a general model capable of representing larger silica oligomers

whilst retaining numerical stability. Therefore, the approach taken in this work is to

compromise strict agreement with atomistic reference data in favour of numerical sta-

bility. For all silicates, force constants greater than 30,000 kJ mol−1 nm−2 were reduced

to 30,000 kJ mol−1 nm−2. While the equilibrium bond length remains unchanged, this

significantly improves numerical stability at larger timesteps (30 fs) whilst still retaining
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an element of bond rigidity.

Cubic octamers present an additional difficulty, as the large number of bonds in

an interconnected network make achieving numerical stability difficult, even with a

reduction in the bond force constant to 30,000 kJ mol−1 nm−2. Therefore, the force

constant of this bond was significantly reduced to 1250 kJ mol−1 nm−2 and in addition

the angle force constant was relaxed to 25 kJ mol−1 deg−2 to further improve numerical

stability. For simplicity, protonation states were not considered for cyclic oligomers,

assuming the bonded parameters between neutral silicate beads in a cubic or cyclic

arrangement are the same as the bonded parameters for anionic silicate beads. The

bond lengths and angles in these oligomers were averaged to give a single bond length

and angle for cyclic and cubic segments.

Table 4.6: Bond type parameters for silica Martini 3 model. bij is the bond length and
kij is the bond force constant. The calculated kij values were produced from atomistic
reference simulations while the model kij values are the values actually used for the CG
model.

Bond bij (nm) Calculated kij (kJ mol−1 nm−2) Model kij (kJ mol−1 nm−2)

SI - SI 0.3500 50,000 30,000

SI - SN 0.3570 67,000 30,000

SN - SN 0.3640 75,000 30,000

SIc - SIc 0.3135 >100,000 1250

SIy - SIy 0.3330 33,000 30,000
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Table 4.7: Angle type parameters for silica Martini 3 model. θijk is the angle between
beads and kijk is the angle force constant. The calculated kij values were produced
from atomistic reference simulations while the model kijk values are the values used for
the CG model.

Silica Beads θijk (degrees) Calculated kijk (kJ mol−1 deg−2) Model kijk (kJ mol−1 deg−2)

SI - SI - SI 102 270 270

SI - SI - SN 103 440 440

SI - SN - SI 105 400 400

SI - SN - SN 104 530 530

SN - SN - SN 102 740 740

SN - SI - SN 101 640 640

SIc - SIc - SIc 90 8874 25
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4.5.2.3 Bead Type Selection

Initially, an attempt was made to select a bead type to represent silicates from the

standard bead types available in Martini 3. For anionic silicates, all available charged

(Q) bead types were tested and for neutral silicates, various N (neutral) bead types

were tested. Ideally, the same bead type should be used for segments of silica oligomers

as is used for silica monomers, as this permits the simulation of oligomers of any length

without the need to parametrize the model again for each different oligomer. The initial

goal is therefore to choose a bead for each ionisation state of silica (neutral and anionic)

that is capable of representing multiple oligomerisation states of silica with reasonable

accuracy.

First, simulations involving monomers and dimers were compared against atom-

istic data, generated as described in Sections 4.5.2.1 and 4.5.2.2. There are several

approaches that can be taken to assess the comparison between CG and atomistic data.

Perhaps the most straightforward method is to directly compare the silica radial density

profile generated from CG simulations with the silica radial density profile generated

from atomistic simulations. This comparison is displayed in Figure 4.13. For anionic

silicates, all bead types produced qualitatively similar radial density profiles for silica,

with a region of high silicate concentration close to the micelle surface. To quantita-

tively describe the peaks, the peak density value and corresponding radial distance from

the micelle centre were determined (see Table 4.8). From these results, it is clear that

there is a balance to be struck when deciding on a bead type to match both the peak

height and location of the atomistic reference data.

While the behaviour of silica monomers and dimers is quite similar in atomistic

models, there is a large difference in behaviour between equivalent bead types in the

CG model. In general, CG simulations of silica monomers result in silica density profiles

that indicate more hydrophilic character than is present in the atomistic model, with

a higher concentration of silicates present in the bulk solution (> 4 nm from micelle

centre). In contrast, CG simulations of silica dimers result in silica density profiles that

more closely match atomistic data, with a larger quantity of silicates aggregating close
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Figure 4.13: Radial density profiles for anionic silica monomers (left) and dimers (right)
comparing atomistic results with various Martini 3 standard bead types.

Table 4.8: Comparison of silica peak density and location simulations for different
Martini 3 bead types.

Species Bead Peak Density (kg m−3) Peak Location (nm)

SI1

Atomistic 138 2.575

Q1 69 2.475

Q2 69 2.575

Q3 54 2.525

Q4 42 2.675

Q5 37 2.725

SI2

Atomistic 161 2.675

Q1 140 2.525

Q2 136 2.525

Q3 113 2.525

Q4 86 2.625

Q5 92 2.675

to the micelle surface. This suggests, firstly, that the standard Martini 3 bead types

are not ideal for representing anionic silica monomers, and secondly that the best bead

type used for representing monomers may not scale well to higher oligomers of silica

using the Martini 3 model. Therefore, it was decided to select different bead types for

silica monomers and dimers, with the choice for dimers being more likely to scale well

to higher oligomers of silica.
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However, direct comparison of the silica density in isolation does not give a complete

picture of the quality of the fit between atomistic and CG simulation data. This is illus-

trated in Figures 4.14 and 4.15, which show the complete density profile of all species

present in simulations involving silica monomers and dimers for all Martini 3 charged

bead types (Q1 to Q5). Comparing the relative heights of the peaks for the CTAB

headgroup and silicates throughout all bead types, one can see that all surfactant head-

group peaks are shorter and wider in CG simulations than in the atomistic reference.

This will have an effect on the silica peak, which appears to follow a similar behaviour.

Thus, it can be argued that consideration of the full profile of all species (in particular

the surfactant headgroup and silica densities) is important to determining the best fit.

However, from simply examining the profiles visually (as was done in previous work

[75, 77]) it is difficult to draw distinctions between bead types, leading to a subjective

choice of which bead type is most suitable.
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(a) (b)

(c) (d)

(e)

Figure 4.14: Comparison of the time averaged radial density profile around a single
CTAB micelle in the presence of anionic silica monomers for the atomistic model (filled
line) and CG model (dashed line). Silica monomers are represented using the Martini
beads labelled in the legend.
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(a) (b)

(c) (d)

(e)

Figure 4.15: Comparison of the time averaged radial density profile around a single
CTAB micelle in the presence of anionic silica dimers for the atomistic model (filled
line) and CG model (dashed line). Silica dimers are represented using the Martini
beads labelled in the legend.
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Since a subjective assessment of the quality of fit between CG and atomistic data is

not a robust method for model development, it is desirable to develop a more thorough

procedure for comparing silica and surfactant interactions for simulations involving a

single micelle, in order to provide an objective measure for bead type selection, which

can also be more generally applied to other systems, particularly those which involve

co-operative self-assembly. As such, the following fitting parameters were devised based

on the results of single micelle systems (see Figures 4.14 and 4.15).

The first fitting parameter, H, is based on the relative peak heights of the surfactant

headgroup and silicate species in the single micelle radial density profile:

H =

(
hSI,CG

hH,CG

)
(
hSI,A

hH,A

) (4.1)

where h represents the peak height in the radial density profile, with the subscript

representing the species and type of simulation (atomistic or CG), respectively. A

perfect fit gives an H value of 1 indicating that the relative heights of the surfactant

headgroup and silica peaks are the same as atomistic simulations. To assess the fit for

peak location, the fitting parameter R is used, which takes into account the relative

locations (radial distance from micelle centre) where the peaks occur:

R =

(
rSI,CG

rH,A

)
(
rSI,A

rH,A

) (4.2)

where r is the radial distance from the micelle centre of mass where the peak occurs.

A final fitting parameter, Nads, is proposed, which is simply based on the quantity of

silica molecules that are adsorbed onto the micelle surface in CG simulations versus the

atomistic reference.

Nads =
Nads,CG

Nads,A
(4.3)

This figure is a simplistic measure of the relative balance between micelle surface ad-

sorption and bulk water solubility. To determine Nads, the average number of silica

86



Chapter 4. Development and Validation of Coarse-Grained Model

molecules adsorbed on the micelle surface is calculated over the simulation trajectory

after equilibrium has been reached for both atomistic and CG simulations. For CG

simulations, a silica molecule is considered adsorbed if any bead of it is within 0.73 nm

of the CTAB headgroup bead, which is approximately the distance at which the first

minimum in the radial density function between silicate species and surfactant head-

group is observed. For the atomistic reference simulation, the distance is calculated

between each silicon atom in silicate species and the nitrogen atom in the surfactant

headgroup.

The values of fitting parameters H, R and Nads for the bead types tested are pre-

sented in Table 4.9 and plotted in Figure 4.16. Firstly, considering parameter H, which

indicates how proportional the surfactant headgroup and silica peaks are to atomistic

data, different optimum values are observed for monomers and dimers. The value of H

for monomers is significantly lower than that of dimers for the same bead type. Ex-

amining the trends in the relative heights of the silica peaks for different bead types

(shown in Table 4.8 and Figure 4.13) it can be seen that for all bead types, the silica

peak height is much lower than the atomistic reference, with all bead types producing

peak densities less than half the height of the atomistic reference. This indicates that

all standard Martini bead types tested are too hydrophilic to represent silica monomers

optimally, with a large proportion of silicates remaining in bulk water. This stands in

contrast to simulations with dimers, where most bead types have a value of H > 1,

indicating that dimer species for these bead types are too hydrophobic, with a dispro-

portionate quantity of silica molecules being adsorbed onto the micelle surface. Overall,

both the Q1 and Q2 bead types provide approximately equivalent fits for parameter H

for monomers, while the Q4 bead provides a very good fit for dimers.

Now considering parameter R, which indicates the location at which silicate species

adsorb on the micelle surface in CG simulations versus reference atomistic simulations.

For monomers, the Q3 bead achieves the best fit, while for the dimers, the Q4 and Q5

beads both achieve perfect agreement with atomistic data. Finally, we consider param-

eter Nads which indicates the quantity of silica bound to the micelle in CG simulations

versus the atomistic reference. For monomers, the value of Nads was significantly below
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Table 4.9: Comparison of fitting parameters against atomistic data for different Martini
3 bead types.

Species Bead H R Nads

SI1

Q1 0.68 0.94 0.63
Q2 0.68 0.98 0.63
Q3 0.61 1.00 0.51
Q4 0.49 1.06 0.42
Q5 0.42 1.06 0.36

SI2

Q1 1.24 0.94 1.10
Q2 1.27 0.94 1.11
Q3 1.14 0.94 1.03
Q4 0.98 1.00 0.89
Q5 0.88 1.00 0.83

Figure 4.16: Comparison of fitting parameters for different Martini 3 bead types repre-
senting anionic silica monomers (SI1) and dimers (SI2) versus atomistic reference data.
The red dashed line is a guide for the eye that indicates a perfect fit with atomistic data
for each parameter.

88



Chapter 4. Development and Validation of Coarse-Grained Model

1, once again indicating the standard Martini 3 bead types are too hydrophilic to rep-

resent silica monomers optimally. The closest agreement is once again achieved by both

the Q1 and Q2 bead types, however it is worth noting that this value is still relatively

low at 0.63. The standard Martini 3 bead types provide much better agreement for

dimers, however, with the Q3 bead achieving the best fit with atomistic data in this

case.

Overall, from examination of these parameters it can be concluded that the ideal

bead type for representing anionic silica dimers lies between Q3-Q5, with Q4 providing

overall the best balance between all fitting parameters. While the fit against atomistic

data is generally poorer for monomers for all bead types (in particular for parameters H

and Nads), the Q1 and Q2 bead types provide the best fits out of the standard Martini 3

bead types, with either being likely to provide reasonable representation of anionic silica

monomers. The Q2 bead type was favoured due to a slightly improved fit for parameter

R. In either case, the bead type choice indicated by these parameters is different from

the range identified for modelling silica dimers, which suggests that increasing the degree

of condensation may alter the silica-surfactant interactions sufficiently to warrant the

use of different charged bead types for oligomers. Indeed, the model of Pérez-Sánchez

et al. employed different intermolecular interactions for silica oligomers than were used

for monomers [77], setting a precedent for this approach.

The increased hydrophobicity of the Martini 3 monomer model versus the atomistic

reference may be of some concern where this factor is critical to the result of future

simulations. However, given that silica monomers are expected to play only a minor

role in the formation of HLC phases versus multiply charged oligomers due to their

inability to facilitate multidentate binding of micelles, this is less of a concern in this

work. Improving the agreement of the CG model with atomistic data may be possible by

scaling the hydrophobic/hydrophilic interactions of silicate species, a method adopted by

Thomasen et al. to improve agreement with experimental data when using the Martini

3 force field to model flexible proteins [177]. Alternatively, the individual intermolecular

parameters of the beads used for silicates could be manipulated (effectively creating a

new “Q” bead type) to develop a bespoke model. However, both of these approaches are
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not straightforward and are likely to hinder compatibility with other species modelled

using the Martini 3 force field.

Finally, a CG single micelle simulation was carried out using trimers, represented

using Q4 beads. This allows us to assess the applicability of using the same bead choice

for higher oligomers as is used for dimers by seeing how the atomistic agreement scales

with increasing degree of condensation. Note that each silica bead in these trimers

carries a negative charge (giving the molecule an overall -3 charge). As shown in Figure

4.17, the agreement when using the Q4 bead is reasonable, maintaining good agreement

for both silica peak density location and height. However, when comparing the relative

heights of the surfactant headgroup and silica peaks, the Q4 CG model appears to

be slightly more hydrophobic than the atomistic model. This may suggest that as the

degree of condensation for linear silicates increases, the hydrophobicity of the individual

beads required to represent each segment should be reduced, as was the case when

moving from silica monomers (Q2) to silica dimers (Q4). On balance, it was decided

to sacrifice accuracy in favour of simplicity and transferability, and therefore Q4 beads

were used to represent silicates in all anionic oligomers.

Figure 4.17: Comparison of the time averaged radial density profile around a single
CTAB micelle in the presence of linear anionic silica trimers for the atomistic model
(filled line) and CG model (dashed line). Silica trimers are represented using the Martini
Q4 bead.

The radial density profiles generated using several different N (neutral) bead types

to represent neutral silica species are shown in Figure 4.18, where the silica density is

compared to the atomistic reference simulation. Since there is a peak in silica density
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near the micelle surface, the same procedure employing fitting parameters H, R and

Nads was used to select an appropriate bead type for both monomers and dimers. These

values are tabulated in Table 4.10 and displayed graphically in Figure 4.19.

Figure 4.18: Radial density profiles for neutral silica monomers (left) and dimers (right)
comparing atomistic results with various Martini 3 standard bead types.

Table 4.10: Comparison of fitting parameters against atomistic data for different Martini
3 bead types.

Species Bead H R Nads

SN1

N1 3.85 0.94 1.00
N2 2.56 0.91 0.68
N3 1.29 0.98 0.37
N4 1.08 1.00 0.34
N5 0.75 1.00 0.24

SN2

N4 3.02 0.92 0.90
N5 1.53 1.00 0.53
N6 0.86 0.96 0.34

For neutral silica monomers, the N4 bead provides the best agreement with atomistic

data for parameters H and R. Conversely, the N1 bead provides the best agreement

for Nads. However, examination of the radial density profile of silica indicates that the

use of this bead type results in significant quantities of silica being absorbed within

the micelle, a behaviour which is not present in the atomistic model. Therefore, the

fitting of parameters H and R is prioritised, as this appears to give the most reasonable

agreement with atomistic behaviour, and the N4 bead type was chosen for monomers.
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Figure 4.19: Comparison of fitting parameters for different Martini 3 bead types rep-
resenting neutral silica monomers (SN1) and dimers (SN2) versus atomistic reference
data. The red dashed line is a guide for the eye that indicates a perfect fit with atomistic
data for each parameter.

For dimers and neutral silica fragments in higher oligomers of silica, the N5 bead was

chosen as it achieves a good balance between the three fitting parameters.

The full radial density profiles for neutral silica monomers and dimers are shown in

Figure 4.20. Both monomers and dimers show relatively good agreement with atomistic

reference data, though in a similar manner to previous cases there is a broadening and

shortening of the CTAB headgroup peak. Finally, the full radial density profile for linear

neutral silica trimers is shown in Figure 4.20c. Here there is relatively good agreement

against atomistic data, indicating that this bead type produces interactions that scale

relatively well to higher oligomers of neutral silica species.

An important aspect of the CG model is the ability to represent silica oligomers

with both anionic and neutral silica units. This allows larger oligomers with a variety

of charge states to be investigated, which is particularly important when considering
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(a) (b)

(c) (d)

Figure 4.20: Comparison of the time averaged radial density profile around a single
CTAB micelle in the presence of neutral silica monomers (a), dimers (b) and linear
trimers (c) as well as singly charged dimers (d) for the atomistic model (filled line) and
CG model (dashed line). Neutral monomers are represented using the N4 bead, while
neutral beads in higher oligomers are represented using the N5 bead and charged beads
are represented using the Q4 bead type.
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systems at different pH values. Therefore, the model is tested by taking the simple

case of a silica dimer with a single deprotonated hydroxyl group, giving the molecule an

overall charge of -1. Under this model, this would be represented using one Q4 bead and

one N5 bead. The bonded parameters for these mixed oligomers were also generated

from atomistic data and can be found in Tables 4.6 and 4.7.

The results of this simulation compared with an atomistic reference simulation are

shown in Figure 4.20d. The agreement between the atomistic reference and CG is rel-

atively poor, with the silica peak of the CG model far less pronounced than in the

atomistic model, even when accounting for the broadening and shortening of the surfac-

tant headgroup peak. This might indicate that simply mixing charged and neutral CG

beads is not particularly effective at estimating the atomistic behaviour for oligomers

with mixed charge states. A possible reason for this are so called “proximity effects”

which are discussed by the Martini 3 authors (supporting information of reference [13]).

The interactions of a bead may be affected by their proximity to other beads, and this

effect is especially pronounced for neutral beads which are connected to charged beads.

One way to account for the proximity effect of deprotonated silanol groups is to

alter the bead type of beads adjacent to charged beads in oligomers. This is observed

in some of the “built-in” models present in Martini 3, such as the model for arginine

which uses the SC3 bead to represent the aliphatic carbons adjacent to the charged

guanidinium chemical group, which is represented by a charged bead type. The bead

type typically suggested for linear alkanes is the C1 bead type (or the SC1 bead type

in the case of 3 carbon atoms) and therefore the SC3 bead type is slightly more polar

than the bead type that would typically be employed if following the Martini “building

blocks” approach, due to the adjacency to the very polar guanidinium group. Since

the case with mixed silica oligomers is similar (i.e. a neutral bead adjacent to a polar

charged group), the same technique of modifying the usual bead type to a more polar

bead type could be applied, however this was not carried out in this work due to the

additional complexity of the parameterization process.
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4.5.2.4 Effect of Interactions on Fitting Parameters

While the model presented in this work, which was validated extensively against atom-

istic data, is deemed accurate for representing HLC phase formation for this system

of interest, gaining a deeper understanding of how the model parameters affect HLC

phase formation is useful to understand whether the model can be improved and to aid

the development of future models of this system, as well as other systems with coop-

erative templating effects. It has previously been established that the use of different

charged (“Q”) bead types to represent silica dimers significantly alters self-assembly be-

haviour (see Figure 4.41). Since the previous model of Pérez-Sánchez et al. [77] using

the Martini 2 force field also demonstrated hexagonal phase formation, it is useful to

compare the preliminary models investigated in this work with the model developed in

prior work. Electrostatic interactions in both models are identical, but Lennard-Jones

parameters vary between the two models. Interaction strengths (dispersion energy) and

distance (particle “size”) are displayed in Tables 4.11 and 4.12 respectively.

Table 4.11: Comparison of the interaction strength between silica and other CG beads
used in this work with those used in the work of Pérez-Sánchez et al. [77].

Interaction
Interaction Strength (kJ mol−1)

Martini 2 Q3 Q4 Q5

SI-SI 5.6 5.45 5.95 6.45

SI-W 5.6 5.69 5.96 6.34

SI-CTAB Head 4.5 4.7 4.45 4.45

SI-CTAB Tail 2 2.315 2.143 2.046

The difference in these interactions may explain the different behaviour exhibited

in single micelle simulations, which are summarised in Table 4.8. Two interactions, in

particular, strongly govern the affinity of silicate species to surfactant micelles. The first

is the interaction of silica beads with surfactant tail groups. This interaction is likely

to be important to determining the distance at which silicate groups aggregate at the

micelle surface. As this value is reduced, silica species, which interact strongly with the

surfactant head group, are able to move closer to the micelle centre, which is reflected
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in the trend observed in peak distance (Table 4.8). The second important interaction

is between silicate species and water. The relative hydrophobicity of bead types is very

important as it governs the quantity of silicates that aggregate at the micelle surface

versus the quantity that are present in bulk water, reflected by the trend observed in

peak height between different bead types (Table 4.8).

Other interactions in the system will also be critical to self-assembly behaviour, in

particular surfactant-surfactant, surfactant-water and water-water interactions. This

is further complicated by the addition of species such as co-surfactants and the bio-

inspired additives which are investigated in this work. However, since the models for

these species are validated independently of silica, it is not desirable to alter these

interactions in this context as it will affect the compatibility of the model with new

species and may have unintended consequences. In addition, tuning parameters for a

specific system (i.e. particular components, component concentrations and component

ratios) may lead to “overtuning” the model to achieve specific results. Thus, a basis in

bottom-up calibration (i.e. against atomistic data) where possible should be maintained.

Nevertheless, the improvement of existing models for species other than silica may yield

more realistic results (though it may require a modified silica model to be retuned).

To create a completely new Martini 3 bead type, it would be necessary to specifiy

the interaction parameters between that bead type, and every other bead type in the

Martini 3 force field. To avoid this, an existing bead type can be used instead of creating

a completely new bead type, only modifying specific interactions to achieve the desired

behaviour. In this case, the Q5 bead is used as a basis, and only the silicate to water

Table 4.12: Comparison of the interaction distances between silica and other CG beads
used in this work with those used in the work of Pérez-Sánchez et al. [77].

Interaction
Interaction Distance (nm)

Martini 2 Q3 Q4 Q5

SI-SI 0.47 0.47 0.47 0.47

SI-W 0.47 0.465 0.465 0.465

SI-CTAB Head 0.47 0.47 0.47 0.47

SI-CTAB Tail 0.62 0.52 0.57 0.62
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Figure 4.21: A comparison of the silica radial density profile in several simulations
using a Q5 bead with modified silica to water interaction strengths, compared with the
atomistic result and the result for a regular, unmodified Q5 bead. The silica to water
interaction strengths for simulations using a modified Q5 bead are given in the legend
in units of kJ mol−1.

interaction strength is modified with the goal of achieving the correct hydrophobicity,

creating a modified “Q5M” bead type. All other interactions remain identical to a

standard Martini 3 Q5 bead.

Several values for silica to water interaction strength were tested in a single micelle

simulation using the same procedure as in Section 4.5.2.3. A comparison of the silica

radial density profile generated from these simulations is shown in Figure 4.21. The

expected trend of higher peak density as the silica to water interaction strength is

reduced can be observed. A slight shift in the peak location towards the micelle centre

can also be seen. From a straightforward comparison of the silica peak height and

location against atomistic data, it appears as if reducing the silica to water interaction

strength of the Q5 bead from its standard value of 6.34 to 5.0 kJ mol−1 improves the

fit with atomistic data.

While considering only the silica radial density may suggest that reducing the silica

to water interaction strength is effective in improving the fit against atomistic data, it

has previously been demonstrated that a more thorough fitting procedure which takes

into account the relative densities of surfactant and silica species as well as amount

of adsorbed silica may be more appropriate. The fitting parameters H, R and Nads

which are described in Section 4.5.2.3 are applied to the simulations using the modified

Q5 bead. A summary of the results for these fitting parameters is given in Table 4.13
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and parameters H, R and Nads are plotted in Figure 4.22. In these results, it can

be observed that reducing the silica to water interaction from 6.34 to 6.0 kJ mol−1

slightly improves the fit of the Q5 bead against atomistic data when considering these

fitting parameters. Since it has previously been established that using a bead type

that optimizes these fitting parameters allows for the expected liquid crystal phase

behaviour of the CTAB/silica solution to be reproduced, it is possible that further

optimising the interactions of the standard Martini 3 beads to match these parameters

may yield a more accurate coarse-grained representation of silica species. Such an

optimisation may also include simultaneously tweaking silica to water interactions and

silica to silica interactions in order to achieve a perfect fit based on all three established

fitting parameters. However, since the Q4 bead was previously demonstrated to be

suitable for representing both anionic silica dimers and higher oligomers, this was not

explored further in this work. It is also worth considering that this fitting procedure

would be specific to the oligomer of silica that was being fitted, and other oligomers

(e.g. monomers, cubic octamers) would have to be fitted individually, reducing the

transferability of the model and negating the benefits of the Martini “building block”

approach versus using the Martini 3 standard bead types.

Table 4.13: Comparison of fitting parameters against atomistic data for modified Mar-
tini 3 beads based on the standard Q5 bead type. SI-W refers to the interaction strength
between silica and water beads in units of kJ mol−1. For the Q5M bead types, all other
interactions are the same as a regular Martini 3 Q5 bead.

Species Bead SI-W H R Nads

SI2

Q5M 4.50 1.34 0.93 1.25

Q5M 5.00 1.28 0.95 1.16

Q5M 5.50 1.22 0.97 1.05

Q5M 6.00 0.91 1.00 0.94

Q5 6.34 0.88 1.00 0.83
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Figure 4.22: Comparison of fitting parameters H, R and Nads for Martini 3 beads with
different silica to water interaction strengths versus atomistic reference data. The red
dashed line is a guide for the eye that indicates a perfect fit with atomistic data. Labels
on the x axis indicate the silica to water interaction strength in units of kJ mol−1 for
simulations using a modified Q5 bead, or the Martini 3 bead type.
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4.5.2.5 Silica Bead Types Summary

The Martini 3 bead types used in the model developed in this work for a selection of

silica oligomers are displayed in Table 4.14. For bonded parameters, refer to Tables 4.6

and 4.7.

Table 4.14: Examples of the bead types used in the Martini 3 model for silicates devel-
oped in this work. The bead type listed is used in each unit of the oligomer or in the
case of mixed oligomers in each anionic/neutral unit respectively.

Species Charge Nomenclature Bead Type(s)

Anionic Silica Monomer -1 SI1 Q2

Anionic Silica Dimer -2 SI2 Q4

Linear Anionic Silica Trimer -3 SI3l Q4

Cyclic Anionic Silica Trimer -3 SI3y SQ4

Cubic Anionic Silica Octamer -8 SI8c SQ4

Neutral Silica Monomer 0 SN1 N4

Neutral Silica Dimer 0 SN2 N5

Linear Neutral Silica Trimer 0 SN3l N5

Cyclic Neutral Silica Trimer 0 SN3y SN5

Cubic Neutral Silica Octamer 0 SN8c SN5

Mixed Silica Dimer -1 SISN Q4/N5

Mixed Silica Octamer -4 SI4SN4c SQ4/SN5
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4.5.3 Arginine

4.5.3.1 Atomistic Simulations

The single micelle density profile for arginine in the presence of a single CTAB sur-

factant micelle in atomistic simulations is shown in Figure 4.23. Arginine was present

in its form with an overall neutral molecular charge (form III in 4.3). The results

show that arginine does not interact strongly with the micelle surface, with no adsorp-

tion on the micelle surface and a high concentration of arginine remaining in the bulk

water. However, the results of atomistic simulations where bromide counter-ions are

replaced by anionic silica dimers (Figure 4.24) appear to show that the presence of

these oligomeric silica species facilitates stronger interactions between arginine and the

micelle surface, perhaps due to a double layer of charge-charge interactions between

the positively charged surfactant headgroups, negatively charged silica species and pos-

itively charged side-chain of the arginine molecules. This results in a small amount

of aggregation of arginine molecules close to the micelle surface, however this effect is

small with a relatively high concentration of arginine remaining in the bulk water.

Figure 4.23: Time averaged radial density profile of single micelles in the presence of
arginine in atomistic simulations. The full profile with all species (except for bromide
counter-ions, which are hidden) is shown on the left, while only the surfactant headgroup
and arginine densities are shown on the right.
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Figure 4.24: Time averaged radial density profile of single micelles in the presence of
arginine and anionic silica dimers in atomistic simulations. The full profile with all
species is shown on the left, while only the surfactant headgroup, arginine and silica
densities are shown on the right.

4.5.3.2 Model Mapping and Bonded Parameters

Two potential mapping schemes were tested for arginine. The first, which follows the

typical mapping used for arginine residues in proteins and is suggested by the authors

of the Martini 3 model [13], is comprised of 3 beads with the amino acid backbone

represented by a single bead (see Figure 4.25, left). While this is practical for models of

proteins which contain many connected backbone beads, for forms of arginine that do

not have a zwitterionic backbone, (instead having only either a positively charged amine

group or a negatively charged carboxylate group) combining the carboxylate group and

the primary amine group into a single bead may not be sufficient to capture the full

behaviour of the molecule. Therefore, to more accurately capture this behaviour and

allow for the representation of different protonation states of arginine (and in particular

the high pH form present during OMS self-assembly), an alternative mapping scheme

based on 4 beads is proposed, in which the backbone is divided into two beads, one

representing the primary amine group and adjoined carbon whilst the other represents

the charged carboxylate group (see Figure 4.25, right). The side chain is mapped with

the alkane group represented by one bead with a 3-1 mapping, while the guanidinium

group is captured in another bead.

For the 3 bead model, the same parameters are used as in the arginine model

102



Chapter 4. Development and Validation of Coarse-Grained Model

Figure 4.25: CG mapping schemes for arginine. The standard Martini 3 mapping
scheme is shown on the left while the 4 bead model mapping used in this work is shown
on the right.

for proteins developed by the Martini 3 authors [13]. For the 4 bead model bonded

parameters are determined from a reference atomistic simulation as described in Section

4.4.2. Both sets of bonded parameters for bonds and angles are provided in Tables 4.15

and 4.16 respectively.

Table 4.15: Bonded parameters for arginine Martini 3 models. Bead names refer to
labels in Figure 4.25. bij is the bond length and kij is the bond force constant.

Bond bij (nm) kij (kJ mol−1 nm−2)

3 Bead Model

BB1-ARG1 0.330 5000

ARG1-ARG2 0.380 5000

4 Bead Model

BB1-BB2 0.253 37000

BB2-ARG1 0.363 4500

ARG1-ARG2 0.387 9600
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Table 4.16: Angle type parameters for arginine Martini 3 models. Bead names refer
to labels in Figure 4.25. θijk is the angle between beads and kijk is the angle force
constant.

.

Beads θijk (degrees) Calculated kijk (kJ mol−1 deg−2)

3 Bead Model

BB1-ARG1-ARG2 180 25

4 Bead Model

BB1-BB2-ARG1 84 60

BB2-ARG1-ARG2 141 44

4.5.3.3 Bead Type Selection

The side chain beads for both the 3 and 4 bead models (ARG1 and ARG2) are identical

and therefore can be considered separately from the backbone bead selection. The

bead types for arginine side chain suggested by the Martini 3 authors are the SC3 bead

for the alkane chain (ARG1) and the SQ3p bead for the charged guanidinium group

at the end of the side chain (ARG2). However, to more finely tune the side chain

interactions, an approach that can be taken is to calculate the free energy difference

in different solvents of the side chain beads using different candidate bead types, and

compare these to experimental values. This procedure was carried out for alternative

charged bead types representing the guanidinium group (ARG2). All small charged bead

types were tested using the p label, which represents the hydrogen bonding potential

of the group. The two solvents used were water and cyclohexane, for which there is

experimental data for a neutral analogue of the arginine side chain, N -propylguanidine,

[178, 179] which gives a free energy of partitioning value of -24.2 kJ mol−1. The free

energy of partitioning between water and cyclohexane for the arginine side chain was

calculated by thermodynamic integration for each bead. The electrostatic charge of the

ARG2 bead was switched off and only Lennard-Jones contributions to the free energy

were considered, as only these interactions are affected by the choice of bead type. The

results are presented in Figure 4.26. These results show that the SQ4p bead provides

the closest match to experimental data, with a calculated value of -22.95 kJ mol−1,

suggesting that this bead may be more appropriate to represent the guanidinium group
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Figure 4.26: Partition free energy between water and cyclohexane for different Martini
3 bead types representing the guanidinium group in the arginine side chain analogue.

in arginine. Therefore, this bead type was considered for the CG model.

The mapping scheme used for the backbone of the 3 bead and 4 bead models is

different, and therefore requires a different approach. For the 3 bead model a single bead

is required to represent the negatively charged carboxylate group as well as the primary

amine group of the backbone. The bead types suggested by the Martini 3 authors for a

carboxylate group and primary amine group are Q5n and N6d, respectively, while the

bead type used for amino acid backbone beads that are part of a protein (and therefore

uncharged) is the P6 bead. This suggests that a highly hydrophilic bead type is likely

to be required, and so the Q5 bead type is selected initially to represent the BB1 bead

for the 3 bead model.

For the 4 bead model, the carboxylate group and the primary amine group are split

across two beads (BB1 and BB2). Therefore, the SQ5n bead type is used to represent

the carboxylate group (a small bead size is used due to the 3-1 heavy atom to bead

mapping) and the TN6d bead is used for the primary amine group (a tiny bead size is

used due to the 2-1 heavy atom to bead mapping).

4.5.3.4 Coarse-Grained Model Validation

For validation simulations, three different candidate models were tested, one 3 bead

model and two 4 bead models. The bead types assigned are summarised in Table

4.15. These three models were validated against atomistic single micelle radial density
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profiles. In these single micelle simulations, the form of arginine that was used was

the one with an overall neutral molecular charge (form III in 4.3). The CG simulation

results are compared for each model in Figure 4.27.

Table 4.17: Martini 3 bead type assignments for CG models tested. Bead names refer
to labels in Figure 4.25.

Model Backbone Side Chain

3 bead BB1 ARG1 ARG2

3 Q5 SC3 SQ3p

4 bead BB1 BB2 ARG1 ARG2

4A SQ5n TN6d SC3 SQ3p

4B SQ5n TN6d SC3 SQ4p

All three candidate models showed qualitatively similar behaviour to the atomistic

reference, with very little adsorption of arginine at the micelle surface and a large

quantity of arginine molecules remaining in the bulk water. Looking more closely at

the arginine radial density profile, the 4 bead models appear to better represent the

behaviour of arginine in this system, as the 3 bead model shows slightly too much at-

traction towards the micelle surface compared with both 4 bead models. Comparing

the two 4 bead models, model 4B, which uses the SQ4p bead to represent the guani-

dinium group of the arginine side chain, has a density profile that agrees slightly more

closely with atomistic data. Given this result, and the closer agreement of this bead

choice against experimental free energy determinations, the 4B model was chosen for

subsequent use.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.27: Radial density profiles of a single CTAB surfactant micelle in the presence
of arginine comparing atomistic (filled line) and CG (dashed line) simulations. Full
density profiles including all species (except bromide counter-ions which are hidden)
are shown on the left hand side while density profiles of only arginine are shown on the
right. The model used to represent arginine is indicated in the legend in brackets and
refers to the bead assignments given in Table 4.17.
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Next, a CG simulation was carried out of a single CTAB micelle with arginine and

anionic silica dimers. The micelle radial density profiles are shown in Figure 4.28. Much

like in previous CG micelle simulations, the surfactant headgroup and silica peaks are

shorter and broader than atomistic simulations, but accounting for this, the agreement

with atomistic data for these species remains good. However, the CG model shows much

weaker attraction of arginine molecules to the surface of the micelle than is present in the

atomistic model. This may suggest that the Martini 3 model is not able to fully capture

the double-layer charge interactions between surfactant, silica and arginine species, lead-

ing to a weaker attraction of arginine to the micelle surface and most arginine remaining

in the bulk water. This may be explained by the relatively simple representation of elec-

trostatic interactions in the Martini 3 model, where charged groups are represented by

a single integer point charge, compared to the atomistic model which is able to more

accurately describe the charge distribution within each molecule. In addition, water in

the Martini 3 model is represented by neutral beads without electrostatic charge, with

electrostatic screening provided by an effective relative permittivity value. Therefore,

the models’ ability to accurately describe more complex electrostatic interactions be-

tween multiple charged species is limited. Due to these factors, it is unlikely that the

model can be further improved to display the full behaviour of arginine in this system

without significant modification of the core Martini 3 framework.
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(a) (b)

(c)

Figure 4.28: Time averaged radial density profile of a single CTAB micelle in the pres-
ence of arginine and anionic silica dimers comparing atomistic (filled line) and CG
(dashed line) simulations. The full profile with all species is shown in (a), the surfac-
tant headgroup, arginine and silica densities are shown in (b) and only arginine is shown
in (c).
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4.5.3.5 Arginine Bead Types Summary

The Martini 3 bead types used in the model selected in this work for arginine are

summarised in Table 4.18. For bonded parameters, refer to Tables 4.15 and 4.16.

Table 4.18: Summary of bead type assignments for arginine.

Bead Charge Bead Type

BB1 -1 SQ5n

BB1 0 SP2

BB2 0 TN6d

BB2 +1 TQ4p

ARG1 0 SC3

ARG2 +1 SQ4p

ARG2 0 SQ4p
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4.5.4 PEHA

4.5.4.1 Model Mapping and Bonded Parameters

Pentaethylenehexamine is made up of 16 heavy atoms. Each end of the molecule termi-

nates in a primary amine group which is connected by repeating secondary amine groups

interspersed with two carbons. To maintain the symmetry of the molecule, each of these

repeating units is represented by a single small Martini bead, while the end groups are

represented by a tiny Martini bead representing the primary amine and nearest bonded

carbon atom (as well as bonded hydrogen). The mapping scheme is presented in Figure

4.29.

Figure 4.29: Martini 3 mapping scheme for PEHA molecule. Terminal primary amine
groups with adjacent carbon are given the label H1 and H6 while secondary amine
groups have labels P2−5.

Bonded parameters generated for this mapping scheme are presented in Tables 4.19

and 4.20. Calculated bond lengths and force constants for H-P and P-P bonds and H-P-

P and P-P-P angles are averaged to a single value. Bonded parameters were generated

using a single PEHA molecule with an overall neutral charge, and the parameters are

also used for CG models of charged PEHA molecules.

4.5.4.2 Bead Type Selection

The bead type assignment for the chosen mapping is straightforward, since both primary

and secondary amines have bead types recommended by the authors of the Martini 3
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Table 4.19: Bonded parameters for PEHA Martini 3 model. Bead names refer to labels
in Figure 4.29. bij is the bond length and kij is the bond force constant.

Bond bij (nm) kij (kJ mol−1 nm−2)

H1-P2 0.308 6900

P2-P3 0.368 9400

P3-P4 0.368 9400

P4-P5 0.368 9400

P5-H6 0.308 6900

Table 4.20: Angle type parameters for PEHA Martini 3 model. Bead names refer to
labels in Figure 4.29.θijk is the angle between beads and kijk is the angle force constant.

.

Beads θijk (degrees) Calculated kijk (kJ mol−1 deg−2)

H1-P2-P3 144 238

P2-P3-P4 146 384

P3-P4-P5 146 384

P4-P5-H6 144 238

force field [13]. The assignment is therefore only dependent on the charge state of

the bead. For neutral primary amines and adjacent carbon (H 1 and H 6), with a 2-1

mapping, the TN6d bead type is recommended with the label representing the hydrogen

bond donor characteristic of the amine group. When the terminal primary amine group

is positively charged, the TQ5p bead is used instead. For the secondary amine groups

and adjoining carbons (P2−5), the SN4 bead type is recommended for neutral amine

groups. While not explored in this work, the SQ2p bead could be used to represent

positively charged secondary amine groups in PEHA, which occur at low pH. These

bead type assignments are summarised in Table 4.21.

Table 4.21: Summary of bead type assignments for PEHA.

Bead Charge Bead Type

H 0 TN6d

H +1 TQ5p

P 0 SN4

P +1 SQ2p
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In this work, three charge states are considered, which correspond to pKa values of

9.7 and 11 and an overall molecular charge of +2, +1 and 0. For the neutral molecule

(i.e. net charge of 0), both terminal beads (H 1 and H 6) are uncharged and therefore

represented by the TN6d bead type. For the +1 charge molecule, a single terminal

bead (H 1) is represented by the TQ5p bead type, and for the +2 charge molecule, both

terminal beads are represented by the TQ5p bead type.

4.5.4.3 Micelle Coarse-Grained Simulations

Simulations of PEHA at the three different charge states (0, +1 and +2) in the presence

of a single CTAB micelle, both without silica present and in the presence of anionic silica

dimers, were carried out. The radial density profiles generated from these simulations

are shown in Figures 4.30 and 4.31.

In the simulations without silica present, generally there is weak interaction between

PEHA species and the surfactant micelle, with a majority of PEHA therefore remaining

in the bulk water. Out of the three charge states, the neutral molecules interacted most

strongly with the micelle and a small peak in density can be observed close to the micelle

surface. The charged PEHA species interacted less strongly with the micelle, which is

to be expected given that both the charge of the micelle surface and the overall charge

of PEHA molecules are positive.

In simulations with silica, as expected, the negatively charged silica molecules adsorb

strongly onto the positively charged micelle surface. When PEHA molecules possess no

overall charge, their behaviour is similar to simulations without anionic silica dimers

present, with only a small peak in density close to the micelle surface. As the degree

of positive charge possessed by PEHA molecules is increased, the interaction between

PEHA and the surfactant micelle is reduced, however it is notably higher than in sim-

ulations that do not contain silica. This can be explained by attraction of positively

charged PEHA molecules to negatively charged bound silica species. In addition, the

peak in silica density is reduced, which suggests that the presence of charged PEHA

species slightly reduces the interaction of silica with the surfactant micelle. This may

be explained by the increased quantity of positively charged species in the bulk water,
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which in turn increases the propensity of silica to be solvated.

Overall, these results indicate that the interaction of PEHA with surfactant micelles

is generally low, but strongest when PEHA molecules bear a neutral charge. The

interaction strength between PEHA and silica, however, increases as the charge of PEHA

molecules increases. At high pH, relevant to the self-assembly of OMS materials, PEHA

species will predominantly be uncharged. However, as pH is lowered towards neutral,

the proportion of charged PEHA species will increase. Therefore, the nature of the

interaction between PEHA species and the silica-surfactant template may change as

the pH is lowered during synthesis.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.30: Time averaged radial density profile of single micelles in the presence of
PEHA. The overall molecular charge of PEHA is given in the legend of each figure. Left
hand figures (a, c and e) show all species excluding bromide counter-ions while right
hand figures (b, d and f) show only CTAB headgroup and PEHA densities.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.31: Time averaged radial density profile of single micelles in the presence of
PEHA and anionic silica dimers. The overall molecular charge of PEHA is given in the
legend of each figure. Left hand figures (a, c and e) show all species excluding bromide
counter-ions while right hand figures (b, d and f) show only CTAB headgroup, PEHA
and silica densities.

116



Chapter 4. Development and Validation of Coarse-Grained Model

4.6 Coarse-Grained Simulations of Self-Assembly

4.6.1 CTAB Solutions

CTAB self-assembly simulations at 3 wt% and 6 wt% resulted in an average aggregation

number of 125 and 167 surfactant molecules, respectively (see Figure 4.33, left). Note

that in Figure 4.33, left, a time of 0 µs corresponds to the start of production MD (i.e.

after equilibration). The experimental aggregation number for CTAB in water has been

shown to increase with concentration [180, 181], and experimental data from literature

[174, 175, 180–186] is presented in Figure 4.33, right. The CMC of CTAB in water is

approximately 0.03 wt% [187], and all literature values presented here are above this

value. Only values for pure CTAB/water systems are taken. It can be seen that the

aggregation numbers obtained in the 3 wt% and 6 wt% simulations agree well with

the experimental trend. Snapshots of the initial and final configurations of the 6 wt%

system are shown in Figure 4.32.

Figure 4.32: Simulation snapshots of the 6 wt% CTAB system, showing the initial
configuration (left) and final configuration (right) after 9 µs of simulation time. CTAB
head group beads are shown in red and tail group beads are shown in green. Bromide
counter-ions and water are hidden for clarity.

Figure 4.34 shows visualisations of the mesophases formed after 1000 ns of simu-

lation time for higher concentrations of CTAB. The CTAB model showed qualitative

agreement with experimental observations for mesophases formed upon increasing the
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Figure 4.33: (Left) Aggregation number during self-assembly simulations using CG
model for CTAB at 3 and 6 wt%. (Right) The experimental aggregation numbers for
CTAB are plotted at various concentrations with data taken from [174, 175, 180–186].
The aggregation number obtained in the simulations is shown by red circles.

concentration of CTAB surfactant in an aqueous system [188]. At relatively low con-

centrations (15 wt%) micellar rods are formed, then upon increasing concentration first

a hexagonal mesophase is formed (50 wt%), followed by a bicontinuous phase (65 wt%)

and finally a lamellar phase (75 wt%). These points are plotted on the experimental

phase diagram in Figure 4.35.

Overall, the results of all CG simulations agree with both atomistic simulation results

and available experimental data, suggesting that the surfactant model is suitable for

reproducing surfactant behaviour.
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(a) (b)

(c) (d)

Figure 4.34: Simulation snapshots obtained at CTAB concentrations of: 15 wt% showing
micellar rods (a), 50 wt% showing hexagonal phase (b), 65 wt% showing bicontinuous
phase (c) and 75 wt% showing lamellar phase (d). Surfactant heads are shown in red
while surfactant tails are shown in green. Water and bromide counter-ions are hidden
for clarity. All simulations were carried out at 390 K.
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Figure 4.35: Phase diagram for CTAB in water showing the experimentally observed
liquid crystal phases at a range of surfactant concentration and temperature values.
The labels on the diagram refer to the visualisations shown in Figure 4.34. Adapted
from [25].
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4.6.2 CTAB/Silica Solutions

4.6.2.1 Effect of Surfactant Concentration and Box Dimensions on Self-

Assembly

The choice of simulation box dimensions over which periodic boundaries are drawn is an

important practical consideration for simulations studying self-assembly behaviour of

the ternary surfactant/silica/water system. Employing appropriately sized boxes may

allow systems to more easily phase separate and promote the formation of periodic

phases across boundaries. This is particularly important for hexagonal liquid crystal

(HLC) phase formation at relatively low concentrations of surfactant (< 20 wt%), as

equilibration of a well-ordered hexagonal phase requires the alignment of several rods.

This is a slow process, and the system is prone to becoming kinetically arrested in

metastable arrangements due to periodic boundary conditions.

This decision is also closely related to surfactant concentration, which determines the

quantity of surfactant molecules in the system and therefore the “size” of the surfactant

phase in relation to the box volume. Ideally, to demonstrate formation of the HLC phase

there should be a sufficient quantity of surfactant to achieve a separated surfactant phase

that bridges periodic boundaries, with a large enough size to demonstrate the periodicity

of the phase. This must be carefully balanced with the increased computational demand

incurred from increasing the total size of the system, which quickly becomes prohibitive

for systems with a number of coarse-grained beads greater than 1×105. In this section,

the self-assembly behaviour of a silica/surfactant/water system is studied using different

box dimensions and surfactant concentrations. All simulations use the silica dimer

model described previously using the Q5 bead to represent dimers (note that this is

a different bead type than is used in the model validated elsewhere in this work, see

Section 4.6.2.2), and start from a completely random initial configuration. In all cases,

a 1:1 ratio of silicon atoms to surfactant molecules was adopted (giving a 2:1 ratio of

surfactant molecules to silica dimers). Simulations are run for a maximum of 6 µs, and

details are summarized in Table 4.22.
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Table 4.22: Details of coarse-grained self-assembly simulations carried out to study the effect of box dimensions and surfactant
concentration on self-assembly behaviour. N is the number of molecules of each species (denoted by the subscript) present in the
simulation. Note that each water bead represents 4 water molecules. L is the box length in the x, y and z direction. t is total
simulation time.

Simulation CCTAB (wt%) NCTAB NSI2 NWater Lx (nm) Ly (nm) Lz (nm) t (µs)
Small Cubic 6 1000 500 60000 19.9 19.9 19.9 6.0
Small Cubic 12 2000 1000 60000 20.5 20.5 20.5 6.0
Large Cubic 6 4000 2000 240000 31.7 31.7 31.7 6.0
Elongated 20 1000 500 13000 8.7 8.7 28.9 6.0
Slab 6 1000 500 60000 7.9 31.7 31.7 6.0
Slab 12 2000 1000 60000 8.1 32.5 32.5 6.0
Slab 20 2000 1000 29000 6.7 26.7 26.7 6.0
Half-Cubic 6 2000 1000 120000 31.7 31.7 15.8 6.0
Half-Cubic 12 4000 1000 120000 32.4 32.4 16.2 6.0
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Cubic Boxes

The most straightforward box shape is a cubic box where each dimension (x,y and z)

is equal in length. Initially, small systems containing 60,000 water beads (representing

240,000 water molecules) were run at two concentrations of surfactant, 6 and 12 wt%.

Simulation snapshots of the final configurations are shown in Figure 4.36a and 4.36b.

At the lower concentration (Figure 4.36a) the separated silica/surfactant phase fails

to bridge the periodic boundaries of the simulation box, which prevents the formation

of rods. This is most likely due to there being an insufficient number of surfactant

molecules to bridge the box length and form a continuous phase. For the higher con-

centration simulation (Figure 4.36b) the number of surfactant molecules was doubled,

and as expected the surfactant phase is able to bridge the periodic boundaries of the

simulation. However, rods do not have a particular preference to form across a partic-

ular box dimension, which leads to a surfactant phase bridging multiple boundaries (2

in this case). In the simulation time allowed, the configuration appears to be trapped

in this arrangement where further organisation of the surfactant rods is impeded by the

phase being “stretched” across multiple dimensions, preventing the rods from achieving

a parallel and ordered arrangement as is expected for these systems. This behaviour

was also demonstrated in a larger simulation at 6 wt%, which is shown in Figure 4.36c.
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(a)

(b)

(c)

Figure 4.36: Final configuration after 6 µs of simulation time starting from a random
configuration of surfactant, silica dimers and water using a cubic box type. (a) shows
a small box at 6 wt % surfactant, (b) shows a small box at 12 wt % and (c) shows a
large box at 6 wt%. Full details are provided in Table 4.22. CTA+ head group beads
are shown in red, tail group beads are shown in green and silica is shown in purple, and
water beads hidden for clarity.
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Elongated Boxes

One approach that has been used in previous work to promote faster phase separation is

the use of “elongated” simulation boxes. These periodic boundary conditions are charac-

terised as having a single dimension (in this case the z dimension) which is significantly

longer than the two other dimensions, allowing periodic phases to form easily over the

shorter box dimensions.

While the resultant phase appears to have rods ordered in a hexagonal arrange-

ment, the limitations of this box type are also observed. While phase separation is

rapid, rod-like micelles have a tendency to bridge across periodic boundaries in differ-

ent orientations. Since these rods are effectively infinitely long due to the periodicity of

the simulation box, reorganisation of the rods is not possible (within reasonable simula-

tion time) and the system appears to become kinetically arrested. However, evidence of

parallel ordering of rods in a hexagonal arrangement can still be observed. Due to the

small size of this system (in terms of total number of coarse-grained beads) this makes

elongated boxes a useful tool for the quick investigation of periodic phases.

Due to the small system size and therefore lower computational cost of running

simulations using this elongated configuration, one strategy that could be employed is

to run multiple replicas of these simulations in parallel, in order to assess the tendency

of the simulation to achieve a well-ordered HLC phase. However, perhaps a more

pragmatic approach is to use these simulations to assess whether the model is providing

some evidence of HLC formation (for example during model development), followed by

a larger simulation using a different configuration (e.g. cubic, slab or half-cubic) to

further validate the model. The former method is employed in the development of the

silica model described in this chapter.
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Figure 4.37: Simulation snapshot of the final configuration for a system containing
CTA+ and anionic silica dimers in water after 6 µs of simulation time at 20 wt%
surfactant. The Colour code is the same as in Figure 4.36.

126



Chapter 4. Development and Validation of Coarse-Grained Model

Slab Boxes

One possible solution to allow for periodic boundaries to be bridged more easily, whilst

preventing rods from forming in multiple directions, is to use a simulation box with a

single shorter dimension across which the HLC can easily form. This box configuration

can be considered a “cross-section” of a cubic box, which reduces the total simulation

size, thereby reducing computational demand. The ratio of box dimensions used for the

“slab” configuration is 1:4:4 (x:y:z).

Simulations using this slab configuration were carried out at three concentrations of

surfactant, 6, 12 and 20 wt%. At 6 wt%, some evidence of hexagonal phase formation

is observed (see Figure 4.38a) with parallel ordered rods, however, due to the limited

number of surfactant molecules, it is difficult to conclusively state that this is a true

HLC phase. Increasing the concentration to 12 wt% allows for a more extensive surfac-

tant phase which has the potential to better demonstrate the periodicity of the HLC

phase, however as was observed in simulations using the cubic box type this causes the

surfactant phase to bridge the longer box dimensions (see Figure 4.38b), causing the

structure to become kinetically trapped. This effect is further pronounced at a surfac-

tant concentration of 20 wt%, in which surfactant rods bridge all three box dimensions

(see Figure 4.38c).

Aside from the obvious issues at higher concentrations, one potential cause of con-

cern with using this box configuration is that the short dimension is not sufficiently long

to distinguish whether the rods formed represent the long parallel rods we would expect

to aggregate during HLC formation, or if the appearance of parallel rods is simply an

artefact of the short periodic boundary dimension. In order to clearly show this, the

short box dimension should be many times the width of a surfactant rod. An exact

ratio of surfactant rod length to radius is not clear, but increasing this ratio should

provide more confidence in the structure formed at the cost of increased computational

expense.
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(a)

(b)

(c)

Figure 4.38: Final configuration after 6 µs of simulation time starting from a random
configuration of surfactant, silica dimers and water using a slab box type. The surfactant
concentration is 6 wt% in (a), 12 wt% in (b) and 20 wt % in (c). Full details are provided
in Table 4.22. Colour code is the same as in Figure 4.36.
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Half-Cubic Boxes

The use of a “half-cubic” box follows the same concept as the slab box type, but using

a smaller ratio between the short and long box dimensions. As the name suggests, this

box configuration uses a box dimension ratio of 2:1:1 (x:y:z), allowing for easy bridging

of the short box dimension while maintaining a high ratio of surfactant rod length to

radius across the shorter dimension.

Simulations using the half-cubic box type were run at a surfactant concentration of

6 wt% and 12 wt%. The final configuration at 6 wt% is shown in Figure 4.39a. Clear

evidence of HLC phase formation can be observed, however, similarly to the simulations

at low concentration using slab type boxes, there are not enough surfactant molecules

to form a full HLC structure (i.e. at least 7 parallel rods in a hexagonal arrangement).

In addition, the rods appear to be somewhat twisted and further organisation of the

rods may not occur within reasonable simulation time. However, the final configuration

provides sufficient evidence for hexagonal phase formation in this model, and therefore

is useful as a final validation of the silica model.

The simulation at a higher surfactant concentration of 12 wt% results in a final

configuration with a more extensive surfactant phase, consisting of many rods (see Fig-

ure 4.39b. However, there is significant twisting of rods, which may require significant

time to resolve into a well-ordered structure. The time taken to reach a well-ordered

arrangement may be further increased by the larger quantity of surfactant and there-

fore number of surfactant rods. However, some evidence of hexagonal ordering is still

observable and is still likely to accurately represent the early stages of HLC formation.
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(a)

(b)

Figure 4.39: Final configuration after 6 µs of simulation time starting from a random
configuration of surfactant, silica dimers and water using a half-cubic box type. The
surfactant concentration is 6wt % in (a) and 12 wt% in (b). Full details are provided
in Table 4.22. Colour code is the same as in Figure 4.36.
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Conclusions on Box Types

Overall, out of the box types investigated in this section, the two box types and sur-

factant concentrations which appear useful for investigating HLC formation are the

elongated boxes at 20 wt% and half-cubic box types at a lower concentration. The for-

mer may be used at an early stage (such as in model development or the assessment of

a new system) to give an indication of whether HLC phase formation is likely to occur

whilst keeping computational cost low, while the larger half-cubic simulations provide

a more thorough assessment of the mesophase formed. There is a clear relationship

between the quantity of surfactant, the short box dimension and the number of rods

that form. This may be used to inform the appropriate system size for investigating

HLC phase formation for a given system.

131



Chapter 4. Development and Validation of Coarse-Grained Model

4.6.2.2 Validation of Coarse-Grained Model

After initial calibration against the atomistic model for silicates, validation of the bead

type selection is carried out by studying the self-assembly behaviour of the ternary

silica/surfactant/water system and comparing this with expected behaviour from ex-

periments and previous simulation studies. Simulations are carried out with different

speciation of silica (degree of condensation and ionisation states), with different ex-

pected behaviour in each case. For this initial validation, the number of silicate species

was set so that the system contains an equal number of silicon atoms as surfactant

molecules, which also results in a net zero charge without any counter-ions when fully

deprotonated anionic silicates are used. For simulations with neutral silicates, bromide

counter-ions are added. The concentration of surfactant used in all simulations for this

section corresponds to the micellar region of the CTAB phase diagram (see Figure 4.35)

and, without the presence of silica, should produce spherical and/or elongated micelles

similar to those shown in Figure 4.32. All simulations started from a completely random

arrangement of the molecules in the simulation box.

Firstly, neutral silicates were added to an initial random configuration of surfactant

molecules. Snapshots of the final configurations achieved in self-assembly simulations

involving neutral silicates (both monomers and dimers) are shown in Figure 4.40 (a and

b). The configurations obtained in both cases are very similar to the control system

without silicates present, suggesting that the presence of neutral silicates is not sufficient

to promote aggregation of surfactant micelles, as expected.

Next, anionic silica monomers were added to an initial random configuration of

surfactant molecules. The final configuration after 3 µs of simulation time is shown in

Figure 4.40c. The presence of anionic silicate monomers promotes the fusion of spherical

micelles to form long worm-like micelles. However, in agreement with previous simu-

lation studies [75] and experimental observations [43], anionic silica monomers are not

sufficient to promote phase separation and hexagonal phase formation at this concen-

tration of surfactant. These observations support the choice of bead type (Q2) made for

anionic silica monomers. This also indicates that despite the differences in the atomistic
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models used for parameterization in this work and in the previous work of Pérez-Sánchez

et al. [75], resulting in monomers adsorbing outside the surfactant headgroup rather

than being absorbed within the micelle surface, the self-assembly behaviour of CTAB

in the presence of silica monomers remains qualitatively unchanged.

(a) (b)

(c)

Figure 4.40: Simulation snapshots of the final configuration starting from a random con-
figuration of surfactant, water and bromide counter-ions with neutral silica monomers
(a), neutral silica dimers (b) and anionic silica monomers (c). CTA+ head group beads
are shown in red, tail group beads are shown in green and silica is shown in purple, with
bromide counter-ions and water beads hidden for clarity.
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Previously, comparison against atomistic data for a single micelle identified that the

correct bead type for anionic silica dimers lies in the range of Q3-Q5, with Q4 being

selected as a good compromise. Therefore, it is important to test the sensitivity of

the self-assembly results to this choice of bead. Hexagonal phases were observed to be

formed experimentally in the presence of a distribution of silicate oligomers [43], and

in previous simulation studies, in the presence of both oligomers and dimers [77, 78].

Therefore, we tested the ability of our new model to reproduce these observations in

a solution of CTAB and anionic silica dimers. This initial test makes use of elongated

simulation boxes, which were used in previous work [77] in order to promote faster phase

separation and organisation. A relatively high surfactant concentration (of 20 wt%)

was used to ensure that the surfactant phase is large enough to show the periodicity

of the HLC phase whilst keeping the total simulation time small enough to reduce

computational demand (see Section 4.6.2.1). Note that this is still within the micellar

region of the pure CTAB phase diagram (Figure 4.35). Each simulation was carried out

for 6 µs.

Simulation snapshots of the final configurations obtained for these initial tests are

shown in Figure 4.41. For the Q3 bead type, the presence of dimers promotes the

aggregation of surfactant micelles into rods, full phase separation does not occur, and

there is no evidence of HLC phase formation. This may be due to the Q3 bead resulting

in a model for silica that is too hydrophobic, with excessive adsorption of silica dimers at

the interface between surfactant headgroup and water, preventing adequate aggregation

of the surfactant phase. For the Q4 bead type, clear evidence of phase separation

and HLC phase formation can be observed, with several surfactant rods ordered in

a “honeycomb” arrangement. This provides strong evidence that the Q4 bead is the

right choice for modelling silica dimers. For the Q5 bead type, while phase separation

does occur in this case and some evidence of parallel ordered rods can be observed,

the arrangement of these rods appears to be somewhat disordered. Compared with

the Q4 bead, the Q5 bead is more hydrophilic, which results in a higher proportion of

silica dimers remaining in the bulk water rather than adsorbing at the interface between

surfactant headgroup and water. This may result in there being too few silicate species
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to permit the assembly of an ordered HLC phase. These results indicate that the

bead type selection for representing silicates is critical to reproducing the co-operative

templating phenomena observed in silica/surfactant/water systems.

Figure 4.41: Simulation snapshots of the final configuration for a system containing
CTA+ and anionic silica dimers in water after 6 µs of simulation time using the Q3, Q4
and Q5 bead types to represent anionic silica beads. The colour code is the same as in
Figure 4.40. The corresponding fitting parameters for these bead types are displayed
alongside.

For a more thorough validation, larger simulations using a rectangular, “half cubic”,

box with dimensions of 31.6 x 31.6 x 15.8 nm were carried out (see Section 4.6.2.1). The

shorter dimension in the z direction allows the surfactant phase to more easily bridge

periodic boundaries and promotes rod formation in a single direction whilst ensuring

that the small simulation box size does not artificially produce periodic phases. This

z dimension is large enough (many times larger than a surfactant micelle) to ensure

rods that form are sufficiently long compared to their width. The final configuration

of this simulation after approximately 24 µs is shown in Figure 4.42. The formation of

a hexagonal phase made up of multiple parallel rods spanning the shorter z dimension

is clearly visible. The progression of the simulation with time is also shown in Figure

4.43. Starting from a random arrangement of surfactant and silicate species dispersed

in water, surfactants very quickly form micelles, which occurs within 15 ns of simu-
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lation time. Silicates are attracted to the surface of micelles, screening the repulsive

interactions between them and promoting the aggregation of micelles into several long

worm-like micelles, which occurs approximately in the first 60 ns. The rod-like micelles

then aggregate and phase separate, which is complete after approximately 600 ns. After

this point, reorganisation of the surfactant phase into a more ordered HLC arrangement

takes place, which is a much more lengthy process.

Figure 4.42: Simulation snapshots of the final configuration obtained using Q4 beads to
represent silica dimers from different angles. Panel a) shows all species present, while
in panel b) silica tail group beads are hidden to show the formation of rods across the
short box dimension. Snapshots in panel c) are taken from a side-on perspective (y
direction) while panels d) and e) are taken from top-down (positive z) and bottom-up
(negative z) directions, respectively. Colour code is the same as in Figure 4.40.
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Figure 4.43: Simulation snapshots that show the progression of simulations for self-
assembly of the surfactant HLC phase in the presence of silica dimers. Colour code is
the same as in Figure 4.36.

While the presence of anionic silica dimers has been demonstrated to be sufficient to

promote the formation of the HLC phase, higher oligomers such as cubic octamers and

cyclic trimers have been shown to promote HLC formation in prior computational work

[77]. These larger oligomers are often more directly relevant to experimental systems,

for example under the synthesis conditions of MCM-41 approximately 70% of silicate

species are present as cubic octamers. Therefore, a simulation was carried out to ensure

that HLC formation is possible in the presence of these larger oligomers of silica. The

final configuration after 3 µs is shown in Figure 4.44, revealing the formation of a very

well-ordered phase-separated HLC.

While the presence of anionic silica dimers has been demonstrated to be sufficient to

promote the formation of the HLC phase, higher oligomers such as cubic octamers and

cyclic trimers have been shown to promote HLC formation in prior computational work

[77]. These larger oligomers are often more directly relevant to experimental systems,

for example under the synthesis conditions of MCM-41 approximately 70% of silicate

species are present as cubic octamers [43]. Therefore, a simulation was carried out to

ensure that HLC formation is possible in the presence of these larger oligomers of silica.

The final configuration after 3 µs is shown in Figure 4.42d, revealing the formation of a

very well-ordered phase-separated HLC.
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Figure 4.44: Simulation snapshot of the final configuration for a system containing
CTA+ and anionic silica octamers with a -4 charge in water after 3 µs of simulation
time, using SQ4 beads to represent anionic segments and SN5 beads to represent neutral
segments. Colour code is the same as in Figure 4.36.
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4.6.3 CTAB/Arginine Solutions

To study the effect that arginine has on the self-assembly of CTAB surfactants, a sim-

ulation was carried out starting from a random configuration of CTAB and arginine

dispersed in water with a surfactant concentration of 8 wt%. A half-cubic box type

was used with full simulation details given in Table 4.3. The final configuration after 6

µs of simulation time is given in Figure 4.45. The behaviour of the surfactant is very

similar to that of the system with no arginine present (see Figure 4.32) suggesting that

the presence of arginine does not influence the self-assembly process when silicates are

not present, which can be explained by the weak interaction between arginine and the

surfactant identified in single micelle simulations.

Figure 4.45: Simulation snapshots of the final configuration after 6 µs starting from a
random configuration, for self-assembly simulations with CTAB surfactant and arginine
using a half-cubic box. CTAB headgroups are shown in red, tails shown in green and
arginine is shown in orange. Bromide counter-ions and water are hidden for clarity.
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4.6.4 CTAB/PEHA Solutions

Initially, a self-assembly simulation was carried out for a system containing only CTAB

and neutral PEHA molecules (with bromide counter-ions to balance charge), with a

surfactant concentration of 1.5 wt%. A cubic box was used, full simulation details are

given in Table 4.3. The final configuration after 3 µs of simulation time is shown in

Figure 4.46. The surfactant behaviour does not seem to be affected by the presence

of neutral PEHA and forms spherical micelles. This suggests that the self-assembly of

the surfactant is not affected by PEHA at high pH when silica species are not present,

which can be explained by weak interactions between PEHA species and surfactant that

were identified in single micelle simulations.

Figure 4.46: Simulation snapshots of the final configuration after 3 µs starting from a
random configuration, for self-assembly simulations with CTAB surfactant and neutral
PEHA molecules using a cubic box. CTAB headgroups are shown in red, tails shown
in green and PEHA is shown in orange. Bromide counter-ions and water are hidden for
clarity.

4.7 Conclusions

In this Chapter, a coarse-grained model that is able to describe the early stages of or-

dered mesoporous silica synthesis is presented, capable of accurately representing the
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interactions of silica precursor species (monomeric and oligomeric silicates with a va-

riety of sizes and charge states) in the presence of templating surfactant species, and

the bio-inspired additives arginine and PEHA. This coarse-grained model is the first

to be calibrated against the atomistic model of Jorge et al. which provides improved

interactions that are validated against experimental data [12]. It is based on the Martini

3 force-field [13], which offers several advantages over previous coarse-grained models.

While this model is calibrated based on interactions with the popular cationic surfac-

tant, CTAB, it can readily be extended to include other surfactant species that are

compatible with the Martini 3 framework, or by following the procedure for surfactant

model development described here. The development of this model is supported by a

robust multi-scale modelling methodology based on fitting parameters which employs

a rational approach to determining appropriate interaction parameters between inor-

ganic precursor and templating species. This will aid future model development for

similar systems as well as indicating how manipulation of these parameters affects self-

assembly behaviour. The effect of using different simulation box dimensions was also

studied, showing that elongated and half-cubic box shapes were most useful for studying

the self-assembly of HLC phases. In addition, the effectiveness of carrying out simple

modifications to standard Martini 3 bead types when parameterising silica models was

discussed.

Self-assembly simulations of pure CTAB solutions as well as CTAB/silica solutions

yielded results in excellent agreement with available experimental data. In particular,

the experimental dependence of the CTAB aggregation number with concentration is

captured accurately by our CG model, while the silica model can describe the forma-

tion of hexagonal mesophases under conditions observed experimentally. Neutral sili-

cate species were observed to have very little influence on the surfactant self-assembly

process, in agreement with previous observations that the degree of order of OMS-like

materials decreases as the pH decreases due to the reduction in the ability of silicates to

balance the charge around surfactant micelles [11]. The bio-inspired additives arginine

and PEHA were shown to have no significant influence on surfactant self-assembly be-

haviour, which can be attributed to their weak interactions with the surfactant. Anionic
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silica monomers, on the contrary, rapidly induced a sphere-to-rod transition in dilute

surfactant solutions, again in agreement with experimental observations. Despite the

fact that our new CG model for silica monomers (and, by implication, the atomistic

model it was based on) is substantially more hydrophilic than previous models [74, 75,

148], this does not seem to affect the morphology or self-assembly mechanism of the

worm-like micelles obtained in those solutions. Simulations of CTAB solutions with

silica dimers and cubic octamers, representative of the early stages of OMS synthesis,

confirmed the crucial role played by silica oligomers in promoting micelle aggregation

into an ordered hexagonal array by acting as "bridges" between different micelles.
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Chapter 5

Experimental and Computational

Study of Bio-Inspired Routes to

OMS

5.1 Introduction

Bio-inspired silica (BIS) is characterised by extremely mild synthesis conditions, which

make it appealing from both an economical and environmental standpoint [7, 189]. BIS

makes use of simple organic amine-based “additives” to precipitate porous silica and

has been discussed further in Section 2.4. In contrast, ordered mesoporous silica (OMS)

materials (e.g. MCM-41 [5], SBA-15 [6]) have incredibly narrow pore size distributions.

This is due to their well-ordered porous network, formed from a surfactant liquid crys-

tal template that self-assembles in solution during synthesis. However, achieving this

highly ordered porous structure currently involves the use of much harsher synthesis

conditions than those employed for BIS synthesis. In particular, a typical synthesis of

MCM-41 involves a lengthy hydrothermal treatment step to increase the mesoscopic

regularity of pores, which takes place at high temperatures (between 80 and 150 °C)

making the process both time and energy intensive [1]. Only a handful of previous

studies reported the synthesis of ordered MCM-41 materials at room temperature, but
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the evidence is somewhat contradictory. Lin et al. [190] used a "delayed neutraliza-

tion" method, whereby acid was added after the silica precursor (sodium silicate) and

surfactant were allowed to self-assemble at high pH. They obtained MCM-41 materials

at room temperature, but achieving a high degree of order required prolonged ageing

of the synthesis solution over a period of several days. Cai et al. [146] reported the

formation of highly ordered MCM-41 at room temperature from tetra-ethyl orthosili-

cate (TEOS), but only in a very narrow window of pH values. Results from a later

study, however, suggest that hydrothermal treatment is necessary to produce MCM-41

materials with a high degree of order, such that they show well resolved XRD peaks at

reflection lines (110) and (200) [191]. Moreover, even in the study of Cai et al., synthesis

times of at least 2 hours were required [146]. As such, the exact mechanisms by which

well-ordered structures can be obtained and controlled without hydrothermal treatment

remain unclear, and, at best, reaction times on the scale of hours are required.

BIS synthesis is much faster than OMS synthesis and takes place under milder

conditions. For this reason, it was hypothesised that bio-inspired additives can be

used to promote the formation of OMS under milder conditions than those typically

utilised for OMS synthesis [1]. Preliminary work indicated that hexagonally ordered

mesoporous silica could be formed in minutes at room temperature in the presence of

arginine (see Section 1.1). Arginine was initially chosen due to its known importance

in biological silica formation and its reported ability to accelerate bio-inspired silica

synthesis [14, 15, 192]. However, the behaviour of the bio-inspired additive in this

system, and its interactions with both templating surfactants and silica precursors, are

not well understood from a mechanistic perspective.

In this Chapter, we attempt to elucidate the role of arginine in this system and

understand if and how bio-inspired additives may aid the formation of well-ordered

mesoporous silica materials under ambient conditions, with the goal of enabling a more

sustainable and scalable synthesis approach for OMS that does not rely on an energy-

intensive hydrothermal treatment step or a lengthy ageing period. A design of ex-

periments (DoE) approach is taken to identify which conditions impact the synthesis

and resultant material properties, focusing on material porosity and morphology at the
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mesoscale (2-50 nm) as proxies for its performance in potential applications. Attention

is also given to factors that influence the scalability and economics of the synthesis, for

example the material yield and the quantity of reagents required for synthesis [189].

The experimental work is supported by coarse-grained molecular dynamics simu-

lations of the co-operative self-assembly of the surfactant and silica precursor species,

which gives rise to the resulting structure of these materials. The computational mod-

elling work in this chapter uses a coarse-grained model based on the Martini 3 frame-

work, the development of which has been presented in the previous chapter. In this

chapter, new insight is provided into how bio-inspired additives interact with silica and

surfactants, and how these interactions can influence the onset of order in mesporous

silica materials.

5.2 Methods

5.2.1 Synthesis of Mesoporous Silica

Learning from the synthesis of BIS, we adopted a synthesis method that is similar

in spirit to the "delayed neutralization" approach of Lin et al. [190]. In a typical

synthesis procedure, sodium metasilicate pentahydrate, Na2SiO3·5H2O (Sigma Aldrich

≥ 95.0%), cetyltrimethylammonium bromide (CTAB, Sigma Aldrich ≥ 98%) and L-

arginine (Sigma Aldrich 99%) were dissolved in 100 mL of deionised water in a 150 mL

plastic tub, under constant stirring with a magnetic stirring rod at 800 rpm, at room

temperature. The initial pH was measured to ensure the resulting solution had a stable

pH > 13, which was the case for all experiments carried out here. A solution of 1.0

M hydrochloric acid was then added rapidly to the mixture under constant stirring at

800 rpm to achieve the final desired pH (typically between 7 and 10) - we henceforth

refer to this as simply the "pH", since it is one of our control variables. The pH was

monitored using a pH probe throughout the reaction and maintained to within ± 0.05

of the synthesis pH after the initial addition of acid by dropwise addition of additional

hydrochloric acid. Rapid precipitation was observed within seconds of acid addition,

indicated by a visible increase in turbidity. The rapid rate of reaction may indicate that
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precipitation reaction kinetics could be limited by mixing. The mixture was left under

stirring for 5 minutes, at which point it was transferred to 50 mL conical centrifuge

tubes. These were centrifuged for 7 minutes at 5000 rpm and the supernatant was

discarded. The solid white precipitate was re-suspended in deionized water and shaken

vigorously in order to wash the precipitate. The suspension was then centrifuged again.

This washing procedure was repeated 3 times for each sample, and the conductivity of

the supernatant for each wash was measured each time using a handheld conductivity

probe to ensure a significant reduction of salts present in the supernatant by the final

wash, below the detectability limit of the probe. The precipitate was then dried in

an oven at 60 °C for 48 hours. The dried sample was weighed, and then placed in a

furnace in a heat-proof crucible for 6 hours at 550 °C, obtaining the final mesoporous

silica product which was then weighed. A diagram illustrating the synthesis procedure

is shown in Figure 5.1.

Figure 5.1: Flow diagram showing the typical procedure used for the synthesis of meso-
porous silica with bio-inspired additives.

5.2.2 Design of Experiments

The design of experiments (DoE) involves systematically changing input parameters

(factors) to study how this affects output variables (responses), allowing for an un-

derstanding of the relationship between these factors and responses to be obtained.
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This procedure was applied to the synthesis of mesoporous silica following the method

outlined in Section 5.2.1 to create a link between synthesis conditions and material

properties. Initially, a two-level full factorial design was used, meaning that for each

factor, two-levels are explored, and every combination of these factors is tested. Com-

pared with an experimental design that modifies one factor at a time, this design has

the advantage of being able to identify the effects of changing combinations of factors

[132].

From prior work with bio-inspired silica [15] and surfactant-templated silica mate-

rials [22], four factors were initially identified as having potential importance in the

synthesis system, giving 16 synthesis conditions in total for the initial two-level four-

factor experimental design: concentration of the silica precursor ([Si]), silicon to amine

molar ratio (Si:N), silicon to CTAB molar ratio (Si:CTAB), and final reaction pH. The

silicon to amine ratio (Si:N) refers to the molar ratio of silicon atoms to amine groups

in the bio-inspired additive, which has been shown to be important in directing bio-

inspired silica synthesis [15, 57], and does not include the nitrogen in the ammonium

group present in CTAB molecules. The final reaction pH refers to the pH following

the addition of hydrochloric acid, which induces the precipitation of silica. The levels

used in the two-level four-factor experiment design are given in Table 5.1 (Samples 1-1

through 1-16). These are compared with three samples from literature, the synthesis

conditions of which are labelled A, B and C in Table 5.1. The first sample (A) chosen

for comparison is the initial synthesis of MCM-41 by Beck et al. In this synthesis, a rel-

atively high surfactant concentration was used (25 wt %) and hydrothermal treatment

was carried out at 100 °C for 144 hours [5]. The second sample (B) is a synthesis of

well-ordered MCM-41 at room temperature using a low surfactant concentration, pre-

sented by Cai et al.. This synthesis used TEOS as a silica precursor, and ammonia was

used to control the synthesis pH. A minimum reaction time of 2 hours was used in this

synthesis [146]. The third sample (C) is a synthesis of MCM-41 from sodium silicate.

This synthesis used the same silica to surfactant ratio as Cai et al. but did not obtain

very well ordered materials except after hydrothermal treatment was used, as indicated

by reported XRD patterns. The sample chosen for comparison was the one synthesised
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at room temperature without hydrothermal treatment [191].

After the initial two-level four-factor study, further experiments were carried out

to look in more detail at the responses of modifying particular factors on material

properties. Full details of these experiments are also given in Table 5.1, including the

effect of modifying the component ratios, Si:N and Si:CTAB (Samples 2-1 through 2-6);

the effect of using alternative bio-inspired additives (Samples 3-1 through 3-5); the effect

of modifying Si:N ratio and reaction time for a system with pentaethylenehexamine

(PEHA, Sigma Aldrich technical grade) instead of arginine (Samples 4-1 through 4-7).
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Table 5.1: Input parameters for synthesis of bio-inspired ordered mesoporous silica.
The conditions of selected syntheses from literature (labelled A-C) are also included for
comparison.

Sample No. [Si] (mM) Additive
N per

additive Si:N Si:CTAB pH trxn (min)
A [5] 800 None - - 0.87 > 13 2880

B [146] 106 Ammonia 1 0.014 8 11.4 120
C [191] 106 None - - 8 11 120

Preliminary 100 Arginine 4 2 2 10 5
1-1 24 Arginine 4 0.10 0.40 7 5
1-2 112 Arginine 4 0.22 0.28 7 5
1-3 24 Arginine 4 0.10 4.00 7 5
1-4 112 Arginine 4 0.22 4.08 7 5
1-5 27 Arginine 4 5.00 0.45 7 5
1-6 128 Arginine 4 5.00 0.32 7 5
1-7 27 Arginine 4 5.00 4.50 7 5
1-8 126 Arginine 4 5.00 4.59 7 5
1-9 27 Arginine 4 0.10 0.45 10 5
1-10 100 Arginine 4 0.20 0.25 10 5
1-11 27 Arginine 4 0.10 4.50 10 5
1-12 112 Arginine 4 0.20 4.08 10 5
1-13 27 Arginine 4 5.00 0.45 10 5
1-14 120 Arginine 4 5.00 0.30 10 5
1-15 27 Arginine 4 5.00 4.50 10 5
1-16 126 Arginine 4 5.00 4.59 10 5
2-1 100 Arginine 4 2 2 10 5
2-2 100 Arginine 4 2 8 10 5
2-3 100 Arginine 4 2 16 10 5
2-4 100 Arginine 4 16 2 10 5
2-5 100 Arginine 4 16 8 10 5
2-6 100 Arginine 4 16 16 10 5
3-1 100 Arginine 4 2 2 10 5
3-2 100 Ammonia 1 2 2 10 5
3-3 100 PEHA 6 2 2 10 5
3-4 100 Propylamine 1 2 2 10 5
3-5 100 None - - 2 10 5
4-1 100 PEHA 6 0.333 8 10 5
4-2 100 PEHA 6 0.083 8 10 5
4-3 100 PEHA 6 0.056 8 10 5
4-4 100 None - - 8 10 5
4-5 100 PEHA 6 0.333 8 10 60
4-6 100 PEHA 6 0.083 8 10 60
4-7 100 None - - 8 10 60
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5.2.3 Sample Analysis

After the synthesis was carried out following the procedure in Section 5.2.1, critical

responses were measured. The critical responses identified and the analysis techniques

used to identify them are summarised in Table 5.2. To identify whether any responses

to changes in synthesis conditions were statistically significant, uncertainties were es-

timated based on repeat samples synthesised under the same conditions (described in

Section 5.3.2).

Table 5.2: Measured responses to two-level four-factor experimental design and their
respective analytical technique.

Response Variable Unit Uncertainty Analysis Technique(s)

Yield Y % 10 Weighing after calcination

Organic Content - % 5 Weight loss after calcination

BET Surface Area SBET m2g−1 70 N2 Adsorption (BET)

Pore Size Distribution - - 0.06 N2 Adsorption (BJH Desorption)

Pore Volume Vpore cm3g−1 0.1 N2 Adsorption (BJH Desorption)

Pore Size dpore nm 0.1 N2 Adsorption (BJH Desorption)

Diffraction Pattern - - - XRD

d100 spacing d100 nm - XRD

Pore Wall Thickness twall nm 0.1 XRD / N2 Adsorption (BJH Desorption)

Order Parameter I200/I110 - 0.1 XRD

The yield of silica is defined as the percentage of silica precursor that is converted

into mesoporous silica product. Since the initial concentration of silicon is known, the

yield can be calculated from the final mass of silica after calcination:

Yield (%) =

(
mSiO2
MSiO2

)
CSi · V

× 100 (5.1)

where mSiO2 is the mass of dried silica after calcination, MSiO2 is the molecular weight

of silica (60.02 g mol−1), CSi is the concentration of silicates in the reaction mixture

and V is the reaction volume. It is assumed that dried samples contain no water after

48 hours of drying at 60°C, so the dried weight includes only precipitated silica, the

bound surfactant template and any additive embedded within this structure. Since

150



Chapter 5. Experimental and Computational Study of Bio-Inspired Routes to OMS

these species are completely removed by the calcination step, the organics content of

the precipitate before calcination can be calculated.

Organic Content (%) =
mdry −mSiO2

mdry
× 100 (5.2)

where mdry is the dry mass of silica before calcination.

N2 adsorption measurements (at 77K) were taken using the Micromeritics Tristar

II 3020. BET surface area was determined using the Brunauer-Emmett-Teller (BET)

method [134] and following the procedure of Rouquerol et al. to improve consistency

in surface area determination [135]. The pore size distribution was determined through

the Barrett-Joyner-Halenda [136] method from desorption data, which can be used to

determine total pore volume within a particular range of pore sizes in the mesoporous

region. These methods are described in greater detail in Section 3.2.2. Pore volumes

(Vpore) reported in this work were calculated by taking the cumulative pore volume

between 1 and 10 nm as determined by BJH desorption. The average pore size (dpore)

was determined from the location of the primary peak of the pore size distribution.

Diffraction data was obtained using the Panalytical X’Pert3 X-ray diffraction (XRD)

system. The XRD method is described in further detail in Section 3.2.3. The d100

spacing, which relates to the inter-pore distance (a0) for hexagonally ordered pores, can

be determined from the location of the first XRD peak using Bragg’s equation.

2d100 sin(θ) = nλ (5.3)

a0 can be determined from d100 for a hexagonal lattice:

a0 =
2d100√

3
(5.4)

The inter-pore distance (a0) can also be used in conjunction with the pore size

(dpore) to estimate the pore wall thickness (twall).

twall = a0 − dpore (5.5)
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A diagram showing the relevant dimensions reported in this work is shown in Figure

5.2.

Figure 5.2: Diagram displaying the important dimensions describing a hexagonally
ordered porous material.

In order to quantify the degree of structural ordering present in samples, an order

parameter is devised, based on the relative XRD intensity of reflection lines (200) and

(110). This procedure was previously used by Cai et al. in the characterisation of MCM-

41 materials [146]. A ratio closer to 1 indicates a higher level of structural ordering as

there is a proportional relationship between the two directions of the crystal structure.

Where no peak at reflection line (200) is detectable by the software but a peak exists

at reflection line (110), the order parameter I200/I110 is considered to be 0, indicating a

very low level of hexagonal ordering. To determine the order parameter I200/I110 from

literature data, the intensity of peaks I200 and I110 were measured graphically and the

baseline reflection was subtracted (see Figures 5.3 and 5.4). For samples characterised

in this work, the intensity of each peak, I200 and I110, is taken as the net height of these

peaks as reported by the Panalytical Data Viewer software version 1.9a. An example

of a typical XRD reflection pattern for a hexagonally ordered MCM-41 type material

can be found in Chapter 3, Figure 3.6, with the expected reflection lines labelled.
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Figure 5.3: XRD pattern reported by Beck et al. in the original synthesis of MCM-41,
taken from [5]. The red line indicates the baseline reflection from which the relative
intensities of peaks (110) and (200) were measured (labelled in blue).

Figure 5.4: XRD pattern reported by Cai et al. in their synthesis of MCM-41, taken
from [146] for the most well-ordered sample, produced at room temperature. The red
line indicates the baseline reflection from which the relative intensities of peaks (110)
and (200) were measured (labelled in blue).
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5.2.4 Simulation Details

All computational work was carried out using the GROMACS software package, which

allows molecular dynamics (MD) simulations to be carried out with high computational

efficiency due to the use of state-of-the-art algorithmic optimizations and parallelization

[164, 165]. The general purpose programming language Python 3 [166] was used to aid

in setting up and running simulations. For analysis of simulation data, the built-in

GROMACS analysis tools were used as well as the MDAnalysis library for Python [167,

168]. Graphs were generated using the Matplotlib library for Python [169].

To better understand the experimental findings, coarse-grained MD was used to

study the formation of the silica/surfactant mesophase under different conditions. This

self-assembly occurs in solution during the early stages of OMS synthesis (i.e. before

addition of acid), at high pH (≥ 13). The CG models for silicates and CTAB and

the bio-inspired additives arginine and PEHA under high pH conditions (at which self-

assembly takes place) were developed and validated in the previous chapter, consistent

with the Martini 3 framework [13]. After setting up the initial configuration, energy

minimisation was carried out using the steepest-descent algorithm. NVT equilibration

was carried out using a velocity-rescaling thermostat [115] with a 2 fs time step. NpT

equilibration was carried out using the C-rescale barostat [115], also with a 2 fs time

step. Production MD runs used a timestep of 30 fs unless otherwise stated, using the

leap-frog algorithm. For temperature control, a velocity-rescaling thermostat was used

and the pressure was controlled with the Parrinello-Rahman barostat [120, 121]. For

Lennard-Jones terms, the Verlet cutoff scheme [110] was used with a cutoff value of 1.1

nm. Electrostatics were accounted for using reaction field with a cutoff value of 1.1 nm

and a relative permittivity of εr = 15.

The effect of Si:CTAB ratio and pH on self-assembly was studied initially, as these

factors were identified as having the greatest impact on the degree of order of the

materials that were synthesised experimentally. For these simulations, arginine was

neglected for simplicity. Self-assembly simulations were carried out at Si:CTAB ratios

between 0.5 and 16, and pH values of 7, 10 and 13. A “slab” shaped rectangular
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box arrangement was adopted with a single short dimension (Lz) and two longer box

dimensions (Lx and Ly). This short dimension allows for phase separation to occur

while using fewer surfactant molecules and thus limiting the overall size of simulations,

preventing them from becoming too computationally demanding. A fixed number of

surfactant molecules are used for each simulation (NCTAB = 1000) and the total number

of silicon atoms are set to achieve the desired Si:CTAB ratio. The speciation of silica

species represents an experimentally realistic population at pH 13, based on the work

of Firouzi et al. [43], of 25% monomers and 75% cubic octamers.

To account for the deprotonation of hydroxyl groups of silica oligomers at varying

pH, a series of pKa values for each subsequent deprotonation needs to be determined.

Each pKa value corresponds to the deprotonation of an exposed hydroxyl group bonded

to a different silicon atom. The number of pKa values required is therefore equal to

the number of silicon atoms in the oligomer (or in the case of the coarse-grained model,

the number of silica beads). Note that this ignores the possibility of multiple hydroxyl

groups bonded to a single silicon atoms becoming deprotonated, which can occur in small

oligomers. However, this only occurs at extremely high pH values [17], and therefore

for simplicity this is neglected in this model.

Only very limited experimental data is available for the pKa values of silicate species.

The most comprehensive review on the topic gives the required pKa values only for

monomers and dimers [17]. However, the pKa value of a silica surface (that is, the

surface of a significantly condensed silica network) is also known [18]. Therefore, an

empirical relationship can be devised between the number of silicate units in an oligomer

and the pKa value of the first deprotonation. A simple functional form is chosen which

has a horizontal asymptote at 6.8, meaning that at large values of silica units (i.e.

corresponding to a silica particle), the pKa is equal to the pKa of a silica surface. The

equation takes the form:

pKa =
a

b×NSi + 1
+ 1.7(i− 1) + 6.8 (5.6)

where NSi is the number of silicon units in the oligomer, i corresponds to the degree
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of deprotonation (i.e. i = 1 gives the pKa of the first deprotonation, i = 2 gives the

pKa of the second deprotonation and so on). The values of a and b are found by fitting

to the known values for the first deprotonation of silica monomers and dimers, which

are 9.5 and 9.0, respectively [17], and found to be a = 3.49412 and b = 0.294118 by

non-linear least squares fitting. The prefactor before the term i is the difference in

pKa between the first and second deprotonation in dimers, and it is assumed that this

difference is maintained for subsequent deprotonations in higher oligomers. The pKa

values determined by this method for silica oligomers containing up to 8 silicon atoms

(i.e. octamers) are given in Table 5.3 and Figure 5.5.

It is important to note that this model only allows for a single negative charge per

silicon atom, including the case of monomeric silicic acid. Based on pKa values reported

in literature [17], a significant proportion of monomeric silicic acid will be present as

doubly charged at pH 13, the initial pH of the system in this work, however, this is

neglected for simplicity under the assumption that silicic acid is primarily present as

higher oligomers [43].

Table 5.3: Table of pKa values for silica oligomers with up to 8 silicon units. NSi gives
the number of silicon units while i corresponds to the degree of deprotonation. pKa
values are calculated from Eq. 5.6.

i

1 2 3 4 5 6 7 8

NSi

1 9.50 - - - - - - -

2 9.00 10.70 - - - - - -

3 8.68 10.38 12.08 - - - - -

4 8.47 10.17 11.87 13.57 - - - -

5 8.30 10.00 11.70 13.40 15.10 - - -

6 8.16 9.86 11.56 13.26 14.96 16.66 - -

7 8.05 9.75 11.45 13.15 14.85 16.55 18.25 -

8 7.95 9.65 11.35 13.05 14.75 16.45 18.15 19.85

This model can be applied to approximate the proportion of silicate species of each

degree of deprotonation for a given system pH. This is shown in Figure 5.6 for silica

octamers between pH 7 and 15.
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Figure 5.5: Estimated pKa values for silica oligomers with up to 8 silicon units. The
legend labels refer to the value of i, which is described by Eq.5.6.

Figure 5.6: Charge composition for silica octamers between pH 7 and 15. The legend
labels refer to the total (negative) molecular charge.
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The charge of silica species is calculated based on system pH, following the method

described above. Charged states with a low proportion of species (less than 5%) are

disregarded and the total population is adjusted proportionally. The populations of

charged silica species used in these simulations are summarised in Table 5.4. For

Si:CTAB ratios between 2 and 16, the number of water molecules is adjusted to achieve

a constant concentration of silica species. For Si:CTAB ratios of 0.5 to 1, a silica

concentration 4 times lower is used in order to prevent the simulation volume from

becoming too small, leading to low values of box dimensions x and y, which allows the

concentrated surfactant phase to bridge across these dimensions (see Section 4.6.2.1 for

further discussion of box dimensions). This lower silica concentration is not expected

to affect self-assembly behaviour, as at low Si:CTAB ratios the silicate species become

concentrated in the surfactant rich region of the simulation box, regardless of the bulk

concentration of silica. In order to speed up phase separation and equilibration of the

system, the initial configuration concentrates all surfactant species within one area of

the simulation box, while other species are randomly distributed throughout the entire

box. After initial equilibration, calculations are carried out for 3 µs of simulation time.

Table 5.4: Population of charge states for silica octamers and monomers used in simu-
lations to represent different system pH.

pH
% Octamer Charge % Monomer Charge

0 -1 -2 -3 -4 0 -1

13 0 0 0 50 50 0 100

10 0 26 74 0 0 76 24

7 87 13 0 0 0 100 0

Self-assembly simulations were also carried out in the presence of the bio-inspired

additives. For these simulations, only anionic silica dimers were used, as these have

been shown to be sufficient to permit the formation of the hexagonal liquid crystal

phase [77], and the interactions of the additives with the silica/surfactant interface

are not expected to be significantly different when a more realistic population of silica

species (i.e. cubic octamers and monomers) is used. These simulations started from a

random configuration of CTAB, arginine/PEHA and silica dimers in water, using an
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elongated simulation box to speed up phase separation and the formation of a HLC

phase as in the work of Pérez-Sánchez et al. [77]. Full simulation details are given in

Tables 5.5 and 5.6.
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Table 5.5: Details of coarse-grained simulations carried out to investigate the effect of Si:CTAB ratio and pH on self-assembly.
N is the number of molecules of each species (denoted by the subscript) present in the simulation. Note that each water bead
represents 4 water molecules. L is the box length in the x, y and z direction. t is the total simulation time.

Si:CTAB pH Box Type NCTAB NSN1 NSI1 NSN8c NSI8c(1−) NSI8c(2−) NSI8c(3−) NSI8c(4−) NBr NTMA NWater Lx (nm) Ly (nm) Lz (nm) t (µs)

0.5 13 Slab 1000 0 20 0 0 0 30 30 770 0 26000 22.4 22.4 7.5 3.0
1 13 Slab 1000 0 40 0 0 0 60 60 540 0 52000 31.6 31.6 6.9 3.0
2 13 Slab 1000 0 80 0 0 0 120 120 80 0 26000 22.4 22.4 7.5 3.0
4 13 Slab 1000 0 160 0 0 0 240 240 0 840 52000 31.6 31.6 7.1 3.0
8 13 Slab 1000 0 320 0 0 0 480 480 0 2680 104000 44.7 44.7 6.8 3.0
16 13 Slab 1000 0 640 0 0 0 960 960 0 6360 208000 63.3 63.3 6.7 3.0
2 10 Slab 1000 61 19 0 62 178 0 0 563 0 26000 22.4 22.4 6.8 3.0
4 10 Slab 1000 122 38 0 125 355 0 0 127 0 52000 31.6 31.6 7.1 3.0
8 10 Slab 1000 243 77 0 250 710 0 0 0 747 104000 44.7 44.7 6.8 3.0
16 10 Slab 1000 486 154 0 499 1421 0 0 0 2495 208000 63.3 63.3 6.7 3.0
2 7 Slab 1000 80 0 209 31 0 0 0 969 0 26000 22.4 22.4 6.8 3.0
4 7 Slab 1000 160 0 418 62 0 0 0 938 0 52000 31.6 31.6 7.1 3.0
8 7 Slab 1000 320 0 835 125 0 0 0 875 0 104000 44.7 44.7 6.8 3.0
16 7 Slab 1000 640 0 1670 250 0 0 0 750 0 208000 63.3 63.3 6.6 3.0
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Table 5.6: Details of coarse-grained simulations carried out with bio-inspired additives. N is the number of molecules of each
species (denoted by the subscript) present in the simulation. Note that each water bead represents 4 water molecules. L is the
box length in the x, y and z direction. t is the total simulation time.

Simulation Box Type NCTAB NSI2 NArg NPEHA NWater Lx (nm) Ly (nm) Lz (nm) t (µs)

SI2 Elongated 1000 500 0 0 10000 8.2 8.2 27.3 6.0
Arg + SI2 Elongated 1000 500 250 0 10000 8.3 8.3 27.5 6.0
PEHA + SI2 Elongated 1000 500 0 250 13000 8.8 8.8 29.3 6.0
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5.3 Results

Full tables of all results and plots of adsorption isotherms, XRD diffraction patterns

and pore size distributions obtained in experimental work can be found in Appendix A.

In this section, the key results are discussed alongside supporting simulation results.

5.3.1 Preliminary Sample

The characterisation results for a material synthesised following the method described

in Section 5.2.1 using arginine as an additive are shown in Figure 5.7. The conditions

for this synthesis were; [Si] = 100 mM, [Si:N] = 2, Si:CTAB = 2, pH = 10, trxn = 5 min.

The TEM imaging shows that particles are hexagonally ordered, and this is supported

by XRD, which shows three well-resolved peaks (100), (110) and (200) that indicate

a hexagonal arrangement of pores. The sample possesses a high BET surface area of

1149 m2 g−1 and pore volume of 0.789 cm3 g−1. The pore size distribution is relatively

narrow with a mean pore diameter of 2.18 nm.

Figure 5.7: Characterization results for representative OMS samples produced using
our synthesis method. TEM imaging is shown on the left, BJH pore size distribution
(top) and XRD reflection patterns (bottom) are shown in the middle, and a summary
of the yield, BET surface area, pore volume, mean pore diameter and order parameter
I200/I110 is shown on the right. On the XRD graph, the reflection lines (100), (110)
and (200) are labelled. TEM images shown are for the preliminary sample while the
remainder of the results are for Sample 3-1, which was synthesised under the same
conditions.

To investigate the effect of the multiple synthesis parameters in more detail, we
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carried out an initial two-level four-factor experimental design, the conditions of which

are shown in Table 5.1 (Samples 1-1 through 1-16). A plot showing the parameter

space covered by this design is shown in Figure 5.8, together with the parameters of

the preliminary experiment. Each factor has two-levels, one low and one high value,

and expands the parameter space from the original sample in all directions. We now

examine the effect of each synthesis parameter separately.

Figure 5.8: Parameter space covered by the two-level four-factor experimental design
detailed in Table 5.1. The preliminary experiment is shown as a red cross. Symbol size
is proportional to silicate concentration.

5.3.2 Uncertainty Analysis

To estimate the uncertainty in results for yield, organic content and material properties

of samples in this work, the values obtained for two sets of two samples that were

synthesised under the same conditions were compared to give an approximate expected

range of results. The first set of samples are 2-1 and 3-1, which were synthesised under

the same conditions (see Table 5.1 of the main paper). The second set of samples

(R-1 and R-2) were synthesised under the following conditions: [Si] = 100 mM, Si:N

= 2, Si:CTAB = 2, pH = 10.8. For this second set of results, only gas adsorption

results were available. The estimated uncertainty for each property is given in the final

column of Table 5.7, which is estimated based on the range of results for both sets of
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samples (where available). Although a more rigorous analysis, based on multiple repeat

experiments would have been desirable, we believe the vaues in Table 5.7 provide a

conservative estimate of the real experimental uncertainty. Results were considered

statistically significant when the p-value was less than 0.05, and error bars on graphs

represent the 95 % confidence interval.

Table 5.7: Summary of differences in yields, organic contents and material properties
obtained for repeat samples synthesised under the same conditions.

Parameter R-1 R-2 ∆ 2-1 3-1 ∆ Estimated
Uncertainty

(±)

Yield (%) - - - 87 80 7 10

Organic Content (%) - - - 56 59 3 5

BET Surface Area (m2 g−1) 1211 1277 66 1159 1149 10 70

Pore Volume (cm3 g−1) 0.958 0.952 0.006 0.843 0.789 0.054 0.06

Pore Diameter (nm) 2.31 2.21 0.1 2.13 2.18 0.05 0.1

Wall Thickness (nm) - - - 1.31 1.21 0.1 0.1

Order Parameter - - - 0.12 0.06 0.06 0.1

5.3.3 Silica Precursor Concentration and Final Synthesis pH

Although not commonly reported in OMS synthesis studies, the yield is a crucial variable

for scale-up, strongly influencing the economic viability of the material manufacturing

process. Yield results for the screening experiments are summarized in Table 5.8, while

Figure 5.9 shows the dependence of yield on both silica concentration and pH (notice

that, as explained in section 5.2.1, this is the final synthesis pH). At low silica precursor

concentration (< 30 mM), the yield of all samples synthesised at pH 10 is consistently

higher than samples synthesised at pH 7. At high silica precursor concentration (>

100 mM) samples showed much higher yields than low concentration samples, and the

dependence on pH was no longer observed. A majority of samples produced at the

higher silica precursor concentrations showed high yields of over 75%, suggesting that

a large amount of silica precursor present in the system is precipitated in the solid

product. The Si:N ratio and Si:CTAB ratio did not appear to have any strong influence

on yield.
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Figure 5.9: Dependence of yield on silica concentration and pH for all samples produced
in the two-level four-factor factorial design.

These results clearly suggest that a higher silica concentration is favourable to im-

prove the overall yield of the synthesis, which may be explained by faster reaction

kinetics due to the increased concentration of silicate oligomers. The reduced yield at

low silica concentration and pH 7 can be explained by the fact that the proportion of

charged silicates will be much lower at pH 7 than pH 10, with a significant proportion

of silicates being present as uncharged molecules [17]. These neutral silicate species will

react to form small colloidal silica particles rather than being attracted to the surfac-

tant mesophase [19]. These colloidal particles, which remain suspended, are then lost

during centrifugation as they cannot be easily separated from water. At pH 10, a higher

proportion of the silicate oligomers are charged and therefore are strongly attracted to

the surfactant interface, which improves yield. This effect is reduced at higher silica

concentrations, possibly due to the abundance of silicate species which could favour the

Ostwald ripening process, causing small silica particles to dissolve and provide material

for the growth of larger MCM-41 particles.

A summary of the porosity data is also shown in Table 5.8, while the corresponding

adsorption isotherms, pore size distributions (PSD) and X-ray diffraction (XRD) spectra

for each sample are provided in Appendix A (Figures A.1 and A.5). Note that samples

synthesised at low concentration are not included because the sample mass obtained

was too low for reliable characterisation by N2 adsorption and XRD. Since the focus of

this investigation was to identify possible “green” synthesis routes for OMS, the samples
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synthesised at low silica concentration are not of particular interest due to their low

yield, and were disregarded from further discussion.

Table 5.8: Summary of yield and porosity data for two-level four-factor screening sam-
ples that were characterized by N2 adsorption and XRD. The variables are fully de-
scribed in Section 5.2.3. Comparison is made to available material properties for MCM-
41 samples from literature (Samples A, B and C).

Sample
No.

Yield
(%)

SBET
(m2 g−1)

Vpore
(cm3 g−1)

dpore
(nm)

d100
(nm)

a0
(nm)

twall
(nm)

I200
/I110

A [5, 26] - 1040 0.79 4.00 3.98 4.60 0.60 0.62

B [146] - - - - 3.48 4.02 - 0.65

C [191] - 1312 0.86 3.14 3.05 3.52 0.38 0.00

1-2 78 1120 0.906 2.48 4.03 4.65 2.17 0.00

1-4 84 1005 0.828 2.45 3.88 4.48 2.03 0.28

1-6 57 970 0.721 2.51 3.98 4.60 2.09 0.00

1-8 94 1030 0.839 2.30 3.81 4.40 2.10 0.27

1-10 82 1181 0.966 2.63 3.80 4.39 1.76 0.00

1-12 81 1259 0.834 2.12 3.50 4.04 1.92 0.06

1-14 80 1217 1.003 2.55 3.82 4.41 1.86 0.04

1-16 58 1210 0.850 2.14 3.68 4.25 2.11 0.08

According to the extended IUPAC classifications [133], all samples with the excep-

tion of Samples 1-12 and 1-16 exhibit Type IV(a) behaviour (Figure A.1): mono and

multilayer adsorption plus capillary condensation [193], which is typical of mesoporous

materials [194], with a hysteresis loop indicating irreversible adsorption. However, the

hysteresis effect is not strong, indicating small mesopores close to or below the critical

width (< 4 nm). Samples 1-12 and 1-16 show Type IV(b) isotherms, indicating meso-

pores with dimensions much smaller than the critical width. The average pore sizes

dpore, which are also reported in Table 5.8, confirm these observations. Most PSDs

(Figure A.5) show a relatively narrow peak centered around 2-2.5 nm, indicating that

those samples contain mesopores with a regular size.

The BET surface area for all samples was high (> 970 m2 g−1) indicating a high

level of porosity. This is comparable to the value of 1070 m2 g−1 reported in the initial

discovery of MCM-41, which was synthesised with a hydrothermal treatment step [5].
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Surface area was most strongly dependent on synthesis pH, with samples synthesised

at pH 10 having a surface area that was, on average, 186 m2 g−1 greater than samples

synthesised at pH 7 (see Figure 5.10), which is statistically significant. While the pore

volume also seems to be slightly higher at pH 10, this is within the estimated statistical

uncertainty (Figure 5.11).

Figure 5.10: Dependence of BET surface area on pH. The line is a guide to the eye.

Figure 5.11: Dependence of pore volume on pH. The line is a guide to the eye.

All samples showed a well-resolved XRD peak at approximately 2θ = 2°(Figure

A.5), corresponding to the reflection line (100) and indicating the presence of an or-

dered hexagonal structure. Two further peaks can be seen between 2θ = 4-5°, which

correspond to the reflection lines (110) and (200). The intensity of these lines indicates

a well-ordered hexagonal pore geometry for these materials [195]. All samples possess
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a discernable peak at reflection line (110), however only five of the samples (Samples

1-4, 1-8, 1-12, 1-14 and 1-16) possess a clear peak corresponding to reflection line (200).

This suggests that the degree of structural ordering of the remaining samples (Samples

1-2, 1-6 and 1-10) is poor. This finding is in agreement with the pore size distributions

generated from N2 adsorption isotherms (Figure A.5), suggesting that a high Si:CTAB

ratio promotes the formation of a more well-ordered hexagonal structure than when a

low Si:CTAB ratio is used. The samples synthesised using both a high Si:CTAB ratio

and a pH of 7 had the highest order parameter by a significant margin. This may be

attributed to the faster reaction rate of silica condensation at pH 7 versus pH 10, which

allows the hexagonal mesophase formed at high pH to become “locked in” as suggested

by computational studies of mesoporous silica synthesis [9], a point to which we will

return later in this chapter. It also indicates that, while samples synthesised at both pH

values have comparable pore size distributions, the samples synthesised at pH 7 possess

a higher degree of order despite having lower surface area and pore volumes, suggest-

ing that there is a trade-off between achieving high surface area and a high degree of

order, and that the surface area of the material is not strongly dependent on the level

of ordering of pores.

The material properties of samples obtained by this synthesis procedure are com-

pared with selected MCM-41 samples from literature (Samples A, B and C in Table

5.8). Note that no gas adsorption data was provided by Cai et al. (Sample B) pre-

venting comparison of some material properties. Materials synthesised in this work

showed similar BET surface areas and pore volumes when compared to samples A and

C. The pore diameters of samples synthesised in this work are smaller than reported

in samples A and C, while the pore wall thickness is much larger. Thick pore walls

were also observed in the work of Lin et al. [190], which was attributed to the “delayed

neutralization” procedure, in which the self-assembly of the material takes place at high

pH, prior to addition of an acid, which brings the pH to a value in which silica conden-

sation takes place. However, Lin et al. did not observe ordered materials at reaction

times of 30 minutes, with samples requiring several days of ageing in order to achieve

well-resolved XRD peaks characteristic of hexagonal ordering. The reason that ordered
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materials were obtained without ageing in this work may be due to the rapid addition

of acid, which is added in a single step rather than being added slowly. This rapid

addition of acid may allow the highly ordered structure to be more effectively locked in

before disorganisation of the mesophase can occur.

The largest difference from literature samples is observed in the order parameter

I200/I110. All samples synthesised in this two-level four-factor screening possess a lower

order parameter than sample A, which was synthesised using hydrothermal treatment.

However, two of the samples synthesised by this method, samples 1-4 and 1-8, pos-

sess significantly higher order parameters than sample C, which was synthesised from

sodium silicate without hydrothermal treatment. This demonstrates that a high level

of structural ordering can be obtained without the need for hydrothermal treatment

by modification of the synthesis method. The key difference is that the reaction pH

is achieved by first obtaining a high pH mixture, and then rapidly adding acid to in-

duce precipitation of the porous silica mixture. As discussed by Lin et al. [190], this

pH control method helps to maintain the well-ordered structure that forms at high pH

throughout the synthesis step. Sample B, which was synthesised at room temperature

using a low surfactant concentration, has a higher degree of order than the samples

obtained in our DoE study. However, this was achieved through manipulation of the

Si:CTAB ratio, which is investigated further in Section 5.3.5. Sample B also had a

significantly longer reaction time of 2 hours, while the samples presented here were

precipitated in just 5 minutes. None of the literature synthesis studies compared here

presented yield values, which are rarely reported in material synthesis despite being

critical for scale-up.

5.3.4 Si to N Ratio

In the two-level four-factor screening investigation, changes in the Si:N ratio, at least

within the examined range, did not produce any noticeable changes in the responses

examined, either in structural properties or yield. This was somewhat surprising, and

casts some doubt on the role of the chosen bio-inspired additive, arginine, for promoting

the rapid formation of ordered silica materials under ambient conditions. To investigate
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this further, additional experiments were carried out with different Si:N ratios at the

high end of the range, as well as a "control" experiment without any additive - i.e.

with a Si:N ratio of infinity. The Si:CTAB ratio was also varied in this new set of

experiments, in order to study the effect of that parameter in more detail (see Section

5.3.5). The synthesis procedure is the same as was laid out in Section 5.2.1, and the

silica concentration and synthesis pH were kept fixed at 100 mM and 10, respectively.

The synthesis conditions used in this investigation are shown in Table 5.1 (Samples 2-1

through 2-6).

The yield results and porosity data are summarised in Table 5.9 (see also Appendix

A, Figure A.2 for the nitrogen adsorption isotherms). The yield seems to be virtually

independent of the Si:N ratio, and no strong correlations were found between that

factor and BET surface area, pore volume, pore size, d100 spacing or wall thickness.

This confirms the conclusion of the screening study, and suggests that the presence

of arginine does not play a major role in controlling the structural properties of the

material. More importantly, it also seems to have no effect on the promotion of order

within the pore network, as observed by comparing the pore size distributions and

XRD spectra (see Figure 5.12) for these samples. In fact, it is quite remarkable that the

sample synthesised without any bio-inspired additive also produces mesoporous silica

with a high degree of order.

Figure 5.12: Pore size distributions (left) and XRD data (right) for selected samples
with varying quantities of arginine. For XRD data, baseline intensity was removed
manually to allow for easier comparison between peaks.

170



Chapter 5. Experimental and Computational Study of Bio-Inspired Routes to OMS

Table 5.9: Summary of yield and porosity data for component ratio investigation sam-
ples that were characterized by N2 adsorption and XRD. The variables are fully de-
scribed in Section 5.2.3.

Sample
No.

Yield
(%)

SBET
(m2 g−1)

Vpore
(cm3 g−1)

dpore
(nm)

twall
(nm)

I200
/I110

2-1 87 1259 0.971 2.31 1.80 0.12

2-2 47 1165 0.841 2.15 1.78 0.46

2-3 16 1159 0.843 2.13 1.84 0.00

2-4 91 1193 0.857 2.22 1.84 0.11

2-5 39 1144 0.824 2.14 1.82 0.50

2-6 17 1194 0.898 2.25 1.76 0.07

In order to understand why arginine does not impact the structure of materials

formed in this synthesis, a coarse-grained MD simulation of the self-assembly of the

silica/surfactant mesophase was carried out with arginine present. The final configura-

tion after 6 µs of simulation time is shown in Figure 5.13b. The surfactant can clearly

be seen to adopt a HLC arrangement, identical to the behaviour exhibited in a system

containing CTAB and silica dimers where arginine is not present [77]. This suggests

that the presence of arginine does not affect the silica-surfactant mesophase formation.

A snapshot of a cross section of the simulation box showing only arginine and sur-

factant headgroup beads is shown in Figure 5.13c. From this snapshot, it is clear that

arginine primarily inhabits the bulk water region, with only a small number of arginine

molecules being present within the surfactant-rich region. This can be attributed to

weak interaction of arginine with the silica-surfactant interface. This is further evi-

denced in Figure 5.13d, where the relative density of arginine approximately follows

the relative density of water, with high relative density in the bulk water and very

low relative density in the surfactant rich region. This may explain why incorporating

arginine into OMS synthesis does not affect the properties of the material produced.

Since the arginine primarily inhabits the bulk water, it is likely to be excluded from

the self-assembled surfactant template. However, given the previous reports on the in-

terfacial interactions and catalytic effects of arginine in silica formation [14, 15, 192],
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results reported herein on the self-assembly do not rule out arginine’s potential role in

catalysing the early stages of silicic acid condensation. We aim to address this in future

work using in situ measurements of chemical kinetics coupled with simulations of the

reactions using reactive models for silica condensation [92].
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(a)

(b)

(c)

(d)

Figure 5.13: Snapshots of the final configuration after 6 µs are shown for self-assembly
simulations without additive (a) and with arginine ((b) and (c)) starting from a random
configuration. CTAB headgroups are shown in red, tails in green, silica dimers in purple
and arginine in orange. Water is hidden in all snapshots for clarity. In (d), the time
averaged relative densities (calculated as ρ/ρmax) across the z axis for all species are
shown.
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5.3.5 Silica to Surfactant Ratio

Contrary to the Si:N ratio, our experiments revealed that the Si:CTAB ratio can have

a pronounced effect on at least some material properties. First of all, there is a clear

correlation between Si:CTAB ratio and yield, as shown in Figure 5.14. While data for

low Si:CTAB ratios is rather noisy, it is clear that when Si:CTAB is increased above

approximately 4, the yield decreases dramatically, reaching below 20% at a Si:CTAB

ratio of 16. As the quantity of surfactant is reduced (increasing Si:CTAB), the amount

of surfactant likely becomes insufficient to form large quantities of the product. These

observations can be explained by the limited quantity of surfactant compared to sili-

con being ineffective in adequately concentrating silicate species within the surfactant

mesophase. Therefore, when the pH is lowered to promote the reaction, silica pre-

dominantly forms as colloidal silica particles, as fewer silicate species are bound to the

surfactant species, and these colloidal particles are lost during post-synthesis separation

(washing and centrifuging).

Figure 5.14: Dependence of yield on Si:CTAB ratio for samples synthesised at pH
10 with a high silica concentration (>100 mM). Data points for series Samples 1-X
correspond to samples 1-10, 1-12, 1-14, and 1-16. The dashed line provides a guide for
the eye.

The organics content of the precipitate is also strongly dependent on the Si:CTAB

ratio, as shown in Figure 5.15. Synthesis carried out at a low Si:CTAB ratio, i.e.

with a high concentration of surfactant species compared with the silica concentration,

produced a precipitate with a high content of organic species, suggesting that additional
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surfactant molecules are bound to condensed silica when compared with syntheses where

less surfactant is present. Sample 1-3 appears to be an outlier with a high organic

content despite the high Si:CTAB ratio; however this can be explained by the extremely

low quantity of material that was obtained under these synthesis conditions, which

resulted in no measurable quantity of silica being present after calcination. Therefore,

this sample is not shown in the plot of Figure 5.15.

A significantly higher organics content present in samples at a low Si:CTAB ratio

(prior to calcination) indicates a greater surfactant uptake in the precipitated solid

phase when the concentration of surfactant is increased. However, since this is not

accompanied by an increase in yield of silica, this is more likely to be the result of

surfactant rich assemblies that are bound to silica particles but do not possess sufficient

silica to result in a porous solid being obtained after calcination. This is generally

unfavourable, as the quantity of surfactant needed for these syntheses is much higher,

without resulting in an increase in the quantity of mesoporous silica obtained. This is

particularly pertinent when using calcination to remove the surfactant template from

silica, as this bound surfactant is destroyed. Thus, a high ratio of Si:CTAB (and

therefore a low concentration of CTAB) is desirable, particularly in terms of process

scalability and economics.

Figure 5.15: Dependence of organic content on Si:CTAB ratio for all samples produced
in the two-level four-factor factorial design. The line is a guide to the eye.

While there are no strong correlations between Si:CTAB and BET surface area,

pore volume, pore size, d100 spacing or wall thickness (Table A.2), this factor does
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seem to affect the degree of order of the pores. For instance, samples synthesised using

a Si:CTAB ratio of 8 appear to possess a narrower pore size distribution and more

clearly defined XRD peaks (Figure 5.16), and a higher I200/I110 order parameter (Table

A.2). This suggests improved regularity of pores in these samples and a higher degree

of structural ordering. However, this does not result in improved bulk characteristics,

such as increased surface area or total pore volume. In contrast, the resolution of the

XRD peaks in samples obtained with a Si:CTAB ratio of 16 is extremely poor and their

order parameter is close to zero (Figure 5.16). This suggests that these samples possess

a very low degree of hexagonal ordering. Examining the order parameter more closely

over the whole range of samples synthesised (see Figure 5.17), it appears to be highest in

samples synthesised with a Si:CTAB ratio of 8. The degree of order obtained for these

samples is similar to the highly ordered MCM-41 samples synthesised by Cai et al., but

with a much shorter reaction time [146]. This indicates that the degree of structural

ordering of hexagonally arranged pores is improved as the Si:CTAB ratio is increased

from 2 to 8, but that this effect is diminished as the ratio is increased further from 8 to

16.

Figure 5.16: Pore size distributions (left) and XRD data (right) for selected samples syn-
thesised with different Si:CTAB ratios. For XRD data, baseline intensity was removed
manually to allow for easier comparison between peaks.

This demonstration of the dependence of both yield and degree of order on Si:CTAB

ratio is particularly important, as although previous studies have highlighted the impor-

tance of silica to surfactant ratio on material properties [146, 191], most studies do not
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Figure 5.17: Dependence of order parameter I200/I110 on Si:CTAB ratio for all samples
synthesised at a high silica concentration. The blue line is a guide for the eye.

consider yield. As demonstrated, the optimal conditions for achieving a well-ordered

porous structure do not achieve the greatest yield, indicating that a trade-off exists that

must be considered when attempting to scale-up these synthesis processes.

To understand the effect of the Si:CTAB ratio and pH on the degree of order, coarse-

grained MD simulations of self-assembly were carried out under different conditions.

Snapshots of the final configurations obtained at varying Si:CTAB ratios are shown in

Figure 5.18. At pH 13, which represents the system during the early stages of synthesis

before the addition of acid, at all Si:CTAB ratios, the presence of silicates is effective

in promoting aggregation and phase separation of the surfactant phase. However, the

degree of order of this surfactant phase varies with the Si:CTAB ratio. At low Si:CTAB

ratios, 0.5-2 (Figure 5.18 a, b, c), the degree of order is low and (at best) only an

incipient HLC phase is observed. However, at a Si:CTAB ratio of 4 (Figure 5.18d),

a much more well ordered HLC phase is formed. This well-ordered arrangement is

preserved at a ratio of 8 (Figure 5.18e). At a ratio of 16 (Figure 5.18f), the curvature of

the surfactant phase appears to increase, resulting in a less well-ordered arrangement.

In Figure 5.19, the relative amount of silica that is bound to the surfactant phase

is compared with the overall Si:CTAB ratio (i.e. in the entire simulation box). The

former is calculated by taking an average of the number of silicates that are within

0.73 nm of a surfactant headgroup bead, which corresponds to the first minimum of the
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(a) (b)

(c) (d)

(e) (f)

Figure 5.18: Snapshots of the final configurations obtained from self-assembly simula-
tions at pH 13 with varying Si:CTAB ratios: (a) = 0.5, (b) = 1, (c) = 2, (d) = 4, (e)
= 8, (f) = 16. Full simulation details are given in Table 5.5.
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surfactant to silica radial distribution function, after the initial equilibration period.

The red dashed line indicates where these quantities are equal, i.e. all silicon atoms are

bound to the surfactant phase. At low Si:CTAB ratios, the data (orange circles in Figure

5.19) closely follow this line, indicating that all silica species are bound to the surfactant

phase. As the Si:CTAB ratio is increased, the divergence from the ideal line increases,

which indicates that as more silicates are added to the system, more remain in solution

while the interface becomes saturated. This divergence increases dramatically at a

Si:CTAB ratio between 2 and 4, which corresponds to the formation of the HLC phase

observed in simulation snapshots (Figure 5.18). The bound Si:CTAB ratio then reaches

a maximum, at which point further increases in the overall Si:CTAB ratio do not increase

the bound Si:CTAB ratio, suggesting that the surfactant interface is fully saturated

with silicates. This can be explained by considering the overall charge at the surfactant

interface, shown in Figure 5.19, which takes into account all charged species that are

bound to the surfactant interface, including bromide counter-ions. As the Si:CTAB

ratio is increased, the interface charge, which is initially positive due to excess of cationic

surfactant heads, decreases until it becomes approximately neutral. At this point, there

is no strong driving force for further attraction of silicates to the surfactant interface,

as this process is primarily driven by electrostatic interactions between the positively

charged surfactant headgroups and the negatively charged anionic silica species. Hence,

further addition of silicates past this point does not result in an increase in silica species

at the surfactant interface.

Figure 5.19 also shows data for bound Si and charge obtained at lower pH values,

while Figure 5.20 shows snapshots of the final simulation configurations at a Si:CTAB

ratio of 8. A hexagonal arrangement is observed at pH 13 (Figure 5.20a) as previously

discussed. However, at pH 10 (Figure 5.20b), while the presence of silica is effective in

promoting phase separation, this phase is less well-ordered and appears to have reduced

curvature of the silica/surfactant interface, forming wider, less cylindrical “pores”. As

the pH is reduced further to 7 (Figure 5.20c), the silicates are less effective at pro-

moting phase separation, with the surfactant instead forming worm-like and spherical

micelles. This can be attributed to the much lower proportion of charged silica species

179



Chapter 5. Experimental and Computational Study of Bio-Inspired Routes to OMS

present at this pH, which appears to be insufficient to screen the repulsive charge be-

tween surfactant micelles, preventing further aggregation of the surfactant phase. This

interpretation is confirmed by the data in Figure 5.19. At pH 13, the charge at the

interface is approximately neutralised at a Si:CTAB ratio of 4, however at pH 10 it

is still strongly positive, which may explain the disorder of the phase. While further

increases in Si:CTAB ratio appear to reduce the interface charge, the effect is dimin-

ished as Si:CTAB ratio is increased, and it is possible that the charge may not be fully

neutralised at this pH even at very high Si:CTAB ratios. The positive charge of this in-

terface allows for more silicates to be attracted to the surfactant phase as the Si:CTAB

ratio is increased, as shown in Figure 5.19.

The snapshot at pH 7 (Figure 5.20c) shows that silicates appear to aggregate into

solid clusters due to the lack of charged groups, which would otherwise prevent cluster-

ing. This behaviour is not likely to be realistic, as in reality these silica species would

undergo condensation reactions to form a more extensive silica network. During the

experimental synthesis, these condensation reactions may occur before such extensive

rearrangements of the silica/surfactant phase take place, effectively locking in the more

well-ordered structure that forms at higher pH. However, since the model used in this

work does not allow for silica polymerisation reactions to take place, this process can-

not be accurately observed. Since in the experimental synthesis it was observed that

Figure 5.19: Effect of varying the Si:CTAB ratio on the quantity of silicon atoms bound
to the surfactant phase (left) and the overall charge at the surfactant interface (right) at
different pH values, determined from MD simulations. The dashed red line represents
an ideal case where all silicon atoms are bound to the surfactant phase.
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hexagonally ordered structures were obtained at both pH 7 and 10, we can conclude

that extensive rearrangement of the silica/surfactant phase does not take place upon

the reduction in pH, which facilitates silica precipitation. Furthermore, the fact that

experimental materials synthesised at pH 7 possess a higher degree of order than the

materials synthesised at pH 10 suggests that the faster reaction kinetics of silica conden-

sation reactions at pH 7 allows for the highly ordered structure that forms at high pH

(>13) to become locked in more rapidly before rearrangement of the silica/surfactant

phase can occur.
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(a) (b)

(c)

Figure 5.20: Snapshots of the final configurations obtained from self-assembly simula-
tions at a Si:CTAB ratio of 8 and at varying system pH: (a) = 13, (b) = 10, (c) = 7.
Full simulation details are given in Table 5.5.
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5.3.6 Alternative Bio-Inspired Additives

Since the presence of arginine did not appear to affect the assembly of OMS by this

method, it was decided to carry out the same synthesis procedure (Section 5.2.1) using

alternative bio-inspired additives. Aside from the additive used, all synthesis conditions

were kept the same between samples and are displayed in Table 5.1 (Samples 3-1 through

3-4). The common feature of all additives in this investigation is the presence of primary

or secondary amine groups. The number of these groups present in each additive is also

listed in Table 5.1.

Yield results are shown in Table 5.10. The yield did not change significantly with

the use of different additives, although there was a small decrease in yield when using

propylamine. Bulk porosity data is also similar, with all samples exhibiting mesopores

of similar size (see Figure 5.21) and similar BET surface areas and pore volumes (Table

5.10). Furthermore, these values are comparable to the sample synthesised without an

additive, confirming that the presence of an additive is not essential to obtaining high

surface area silica following this synthesis method.

Figure 5.21: Pore size distributions (left) and XRD data (right) for selected samples
synthesised with different additives. For XRD data, baseline intensity was removed
manually to allow for easier comparison between peaks.

A closer look at the pore size distributions (see Figure 5.21), however, shows that
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Table 5.10: Summary of yield and porosity data for additive investigation samples that
were characterized by N2 adsorption and XRD. The variables are fully described in
Section 5.2.3.

Additive Yield
(%)

SBET
(m2 g−1)

Vpore
(cm3 g−1)

dpore
(nm)

twall
(nm)

I200
/I110

Arginine 80 1149 0.789 2.18 1.21 0.06

Ammonia 78 1203 0.835 2.17 1.21 0.00

PEHA 74 1218 0.938 2.40 1.23 0.28

Propylamine 65 1273 0.969 2.35 - 0.00

None 81 1218 0.911 2.24 1.26 0.20

samples synthesised with arginine and ammonia have slightly broader pore size distribu-

tions that extend below 2 nm, towards the microporous region, whereas the presence of

PEHA appears to result in a narrower pore size distribution, suggesting improved struc-

tural ordering compared to the other samples. This is confirmed by the XRD results

shown in Figure 5.21. The sample that was synthesised with PEHA has exceptionally

well-resolved reflection lines (100), (110) and (200), and the highest order parameter

I200/I110 of all samples (Table 5.10).

To understand why the presence of PEHA was effective in increasing the degree of

order of OMS synthesised following this method, a self-assembly simulation was carried

out for silica and CTAB in the presence of neutral PEHA molecules, which resembles

the system at high pH (pH > 13). The final configuration after 6 µs of simulation time

is shown in Figure 5.22. The formation of a HLC phase can be observed, indicating

that PEHA does not significantly alter mesophase formation at the beginning of the

synthesis, while the pH is still high. However, unlike what was previously observed with

arginine (see Figure 5.13), PEHA molecules are present in significant quantities at the

silica-surfactant interface, interspersed throughout the HLC phase. This is illustrated in

Figure 5.22c, which shows that the relative density of PEHA peaks at the same positions

as the CTAB headgroup and silica densities. This indicates that at high pH, where the

formation of the OMS template takes place, PEHA is incorporated into the framework

that will become the porous silica network. Since amine groups (which are numerous
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in PEHA) are known to catalyse the condensation of silica [15], this behaviour may

provide insight into how the presence of PEHA during synthesis is able to improve the

degree of structural ordering in OMS. Incorporation of PEHA species into the HLC may

allow it to catalyse the condensation of silica, “locking in” the structure more quickly

before it can become disordered due to the drop in quantity of anionic silicates after

acid addition.

(a)

(b)

(c)

Figure 5.22: Simulation snapshots of the final configuration after 6 µs are shown for self-
assembly simulations with PEHA ((a) and (b)) starting from a random configuration.
CTAB headgroups are shown in red, tails in green, silica dimers in purple and PEHA in
orange. Water is hidden in all snapshots for clarity. In (c), the time averaged relative
densities (calculated as ρ/ρmax) across the z axis for all species is shown.

Given the promising results obtained in the sample with PEHA, we have carried out

additional experiments using several ratios of silica to PEHA, with Si:N between 0.333

and 0.056. The Si:CTAB ratio was kept fixed at a value of 8, which was previously

identified to produce the most well-ordered materials (see Section 5.3.5). To test if the
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degree of structural ordering is also affected by reaction time, some of the syntheses

were also carried out with two different reaction times, 5 and 60 minutes. A summary

of the synthesis conditions is given in Table 5.1 (Samples 4-1 through 4-7).

The results (Table 5.11) show that the presence of PEHA leads to a significant

increase in yield for reaction times of both 5 and 60 minutes, compared to the case

where no additive is present (samples 4-4 and 4-7) as well as samples with arginine

under equivalent conditions (samples 2-2 and 2-5, cf Table A.1). For both reaction

times, the highest yield is achieved with PEHA at a Si:N ratio of 0.083. This suggests

that PEHA addition may be an effective way to increase the yield of silica at higher

ratios of Si:CTAB, where previously yields decreased but product quality improved (see

Section 5.3.5).

Table 5.11: Summary of yield and porosity data for PEHA investigation samples that
were characterized by N2 adsorption and XRD. The variables are fully described in
Section 5.2.3. Additional data is provided in Section A (Tables A.2 and A.1).

Sample
No.

Yield
(%)

SBET
(m2 g−1)

Vpore
(cm3 g−1)

dpore
(nm)

twall
(nm)

I200
/I110

4-1 65 983 0.706 2.20 1.35 0.52

4-2 80 961 0.736 2.27 1.41 0.49

4-3 69 926 0.679 2.24 1.37 0.00

4-4 41 1186 0.830 2.09 1.35 0.18

4-5 78 783 0.608 2.80 - 0.00

4-6 86 878 0.686 2.74 - 0.00

4-7 57 1142 0.841 2.10 1.30 0.29

Looking at the results for porosity (Table 5.11), the samples synthesised with PEHA

generally possess somewhat lower BET surface areas and pore volumes than samples

synthesised without PEHA, and this effect is enhanced at long reaction times. However,

examination of the XRD data and pore size distributions (Figure A.8) shows that,

with the exception of the sample synthesised with the lowest Si:N ratio (4-3), samples

synthesised with PEHA and a reaction time of 5 minutes have a markedly improved

degree of order when compared with the control samples (4-4 and 4-7). Specifically, if
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we take porosity, yield and degree of order into consideration, a PEHA concentration of

0.083 appears to strike a good balance, yielding materials with well-resolved reflection

lines at (100), (110) and (200) that indicate hexagonally ordered mesopores with a

narrow size distribution.

An increase in the reaction time had the inverse effect on samples synthesised with

and without PEHA. Without any additive present, a longer reaction time seems to

slightly increase the degree of order (although the difference is only marginally above

statistical uncertainty), in line with previous observations [190]. In contrast, the XRD

patterns for samples 4-5 and 4-6, which were synthesised with PEHA present and a

reaction time of 60 minutes, are significantly different from other samples. There are no

discernible peaks corresponding to reflection lines at (100), (110) and (200) indicating

materials with no hexagonal ordering. The shift and broadening of the peaks towards

values below 2° 2θ suggests that these samples possess larger, amorphous pores, which

is well supported by the broader pore size distributions presented in Figure A.8. This

is accompanied by a reduction in BET surface area of about 200 m2 g−1. No such large

mesopores are present in the corresponding sample without PEHA (4-7). This suggests

that PEHA interacts with the system through a relatively slow mechanism that results in

a broader pore size distribution. This may be explained by the formation of a secondary

disordered porous silica phase, promoted by the presence of PEHA, which reduces the

porosity of the bulk material, but occurs at a slower rate than the formation of the

primary mesoporous silica phase, and therefore is not present in significant quantities

at low reaction times.

Although high yields of OMS were achieved previously without the use of an additive,

this necessitated the use of larger quantities of surfactant, with Si:CTAB ratios of 2

being required to achieve yields >80% when either no additive or arginine was used

in synthesis. The use of PEHA allows for high yields to be achieved with a relatively

low quantity of surfactant, e.g. a Si:CTAB ratio of 8. This ratio also has benefits in

terms of material structure, as identified in Section 5.3.4. However, when reaction time

is increased, there is a reduction in surface area, pore volume and degree of structural

ordering. Since these phenomena happen at different time scales, it may be favorable to
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carry out synthesis with a low reaction time to maximize the quantity of well-ordered

porous silica, whilst minimizing the secondary process that reduces the degree of order

in the resultant material.

188



Chapter 5. Experimental and Computational Study of Bio-Inspired Routes to OMS

5.4 Conclusions

In this work, a detailed investigation was carried out to study the effects that bio-

inspired additives have on ordered mesoporous silica synthesis under mild conditions

with short reaction times. Initially, a two-level four-factor design of experiments ap-

proach that utilised arginine as an additive was adopted. This identified that both pH

and Si:CTAB ratio have a pronounced effect on the structural properties of the meso-

porous silica obtained. A high Si:CTAB ratio appeared to be essential for well-ordered

materials to be obtained, and the degree of order was significantly higher for samples

synthesised at pH 7. A further investigation into the effect of component ratios iden-

tified that the most well-ordered materials were obtained with a Si:CTAB ratio of 8,

while the degree of order was actually reduced as this ratio was increased to 16. Coarse-

grained molecular dynamics simulations showed that the Si:CTAB ratio is critical to

achieving a balance of charge at the silica/surfactant interface, which appears to be the

key for achieving a well-ordered hexagonal mesophase. This structure was also shown

to be significantly disrupted by changes in pH, suggesting that for well-ordered materi-

als to be obtained as pH is lowered during synthesis, the structure formed at high pH

must become “locked in” by silica condensation reactions, which proceed most rapidly

at pH close to 7. While this method of “delayed neutralization” was explored by Lin et

al. [190], rapid addition of the acid appears to facilitate the formation of well-ordered

materials with significantly shorter synthesis times than previously reported.

Throughout these investigations, the quantity of arginine used did not appear to

have any effect on yield or material properties, even when more extreme ratios of Si:N

were used. In response to this, several different additives were trialled and compared to a

control system in which no additive was used. Surprisingly, the control system resulted

in a very well-ordered mesoporous material with a reaction time of just 5 minutes

and without hydrothermal treatment. This confirmed that hydrothermal treatment is

not required in order to obtain well-ordered mesoporous silica from a sodium silicate

precursor, and rapid precipitation is possible simply by modifying the system pH.

The tests with alternative bio-inspired additives showed that the sample synthesised
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using PEHA had a higher degree of order compared with the sample synthesised with

both alternative additives and no additive present. Coarse-grained molecular dynamics

studies of self-assembly at high pH were carried out with both PEHA and arginine,

which showed that while the self-assembly of the HLC phase is not directly affected,

PEHA is readily absorbed within the silica/surfactant interface, while arginine remains

largely in the bulk water phase. This suggests that the role played by additives is most

likely catalytic, aiding in locking in the well-ordered structure that forms during the

early stages of OMS synthesis by increasing the rate of silica condensation reactions

whilst the structure is well-ordered, preserving the well-ordered structure by creating

an extensive network of silica before it is rearranged by the change in system pH. The

influence of PEHA was investigated further, where it was shown that at low reaction

times the presence of smaller quantities of PEHA significantly improved both the degree

of structural ordering and the synthesis yield. However, the presence of PEHA resulted

in pores becoming broader and less well ordered as the reaction time or concentration of

PEHA was increased. This suggests that PEHA may be used to promote the formation

of well-ordered mesoporous silica particles, but reaction times must be kept low to avoid

changes in the material’s morphology. Both high Si:N and Si:CTAB ratios are desirable

from a process economics point of view, as higher ratios of silica to other components

lowers the quantity of reactants required. It is also desirable from a green chemistry

perspective due to improved atom economy.
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Chapter 6

pH-Responsive Phase Behaviour of

Amine Surfactants

6.1 Introduction

The structure of surfactants, consisting of a polar or hydrophilic head and a nonpo-

lar or hydrophobic tail, gives surfactants interesting properties, as discussed in Section

2.1.2. A particularly interesting class of surfactants are those that exhibit a dynamic

response to their environment, e.g. changing their self-assembly behaviour in response

to changes in pH [196], light [197], CO2 concentration [198], magnetism [199], etc. These

“switchable” surfactants most often have amine-containing headgroups, as their respon-

sive behaviour depends on switching of this headgroup between neutral and cationic

forms. Injection of CO2 can be used to trigger this behaviour, as it reacts with pure

water to form carbonic acid, making the solution more acidic. The reaction can be

reversed by bubbling nitrogen, air or argon through the solution [198]. This switchable

behaviour can be exploited to aid separation processes in emulsion polymerization [200]

and demulsification in enhanced oil recovery [201], and the separation and transport of

crude oil [202].

In solution, long-chain alkylamines behave as surfactants, as they consist of a hy-

drophobic alkyl tail and a hydrophilic amine headgroup. While similar in nature to
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cationic surfactants such as cetyltrimethylammonium bromide (CTAB), a unique fea-

ture of alkylamine surfactants is their ability to donate a proton of their headgroup (at

high pH) to become uncharged, a process that does not occur when this amine group

is fully methylated. Amine surfactants have been studied for use in flotation [203–205],

the synthesis of carbon nanotubes and nanowires [206, 207], and as a templating agent

in the synthesis of hexagonal mesoporous silica (HMS) [34]. In these applications, their

effectiveness is often highly dependent on the pH of the environment. For example,

Yuhua et al. found that dodecylamine (DDA) was most effective at recovering iron-

bearing minerals at increased pH [203], which is likely related to deprotonation of the

amine group with a pKa value of 10.63 [208].

Given that the surfactant-templated synthesis of mesoporous silica materials is

primarily driven by charge matching between cationic surfactant and anionic silicate

precursor species [9, 209], permanently charged surfactants have been generally used.

However, this imposes limits on the economic viability and environmental impact of

those processes, since ammonium surfactants are toxic and hard to remove and recover.

Amine-based species, which are at the heart of recent bio-inspired silica synthesis pro-

cesses [8, 15, 37, 189], offer an interesting alternative because they are more environmen-

tally friendly and potentially easier to remove [7, 37]. However, when amine surfactants

were used previously for this purpose, a much lower degree of order was present in the

materials produced, resulting in disordered worm-like mesoporous silicates [210–212]. A

deeper understanding of the self-assembly of amine surfactants as a function of solution

pH is therefore needed in order to promote the formation of ordered mesoporous silica

materials under “green” conditions [1].

Alkylamine surfactants show interesting properties in mixtures with acids due to

proton transfer between the acid and the alkylamine. The phase behaviour that results

from this proton transfer depends strongly on the nature of the acid present. For

mixtures of alkanoic acids and alkylamines in solution, this proton transfer results in

the formation of amphiphilic species, and the relative lengths of the alkyl chains in

these species strongly dictate the phases that form. When the length of the alkyl chains

of both species is similar, a catanionic surfactant complex is formed. The morphology

192



Chapter 6. pH-Responsive Phase Behaviour of Amine Surfactants

of this complex tends towards a lamellar liquid crystalline phase in equilibrium with

nearly pure water close to an equimolar ratio of acid and amine, dominating a large

region of ternary amine/acid/water phase diagrams [213, 214]. Mixtures of alkylamine

and alkanoic acids where the alkyl chain of the acid is much shorter than that of the

alkylamine, produce a larger variety of phases including isotropic (micellar), as well

as cubic, lamellar and hexagonal liquid crystalline phases, more similar to the phase

diagrams of cationic surfactants such as CTAB [215]. Ternary phase diagrams have

been created for systems containing dodecylamine (DDA), water and acids including

acetic acid [216], acrylic acid and methacrylic acid [217].

Since the phase diagrams are different when different acids are used, this implies

that phase transitions are driven by both proton transfer between the acid and amine

species, and interactions between the resulting salts and surfactant species. Experimen-

tal studies that examine the phase behaviour of alkylamine surfactants provide limited

information, and isolating the dependence on surfactant charge is not possible due to the

presence of salts that form by proton transfer between acid and surfactant species [216,

217]. Computational approaches offer the ability to isolate this phenomenon, permit-

ting greater understanding of the fundamental mechanisms underpinning liquid crystal

phase formation of pH-responsive surfactants.

Due to advances in computational modelling algorithms and increased availability

of computing resources, various modelling approaches have been successfully applied to

study surfactant self-assembly, as reviewed recently by Taddese et al. [96]. Atomistic

molecular dynamics (MD) models are of limited effectiveness for studying surfactant

phase behaviour due to the relatively small time and length scales that are accessible,

and therefore are typically limited to studying properties of preformed micelles. Al-

though a few studies have been able to simulate micelle self-assembly with fully atom-

istic models [218–220], they are limited to surfactants that self-assemble quickly and

form relatively small aggregates. Furthermore, even very lengthy atomistic simulations

often fail to reproduce experimental aggregation numbers [221].

Given the difficulty in simulating important surfactant phenomena using atomistic

simulations, coarse-grained (CG) methods are frequently applied, as discussed in Sec-
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tion 3.1.6. Different “flavours” of CG approaches have been used in the past to study

surfactant phase diagrams, including dissipative particle dynamics (DPD) [222–225],

the ‘SDK’ model [226–228], implicit-solvent models [229, 230], and even lattice-based

models [231–234]. The ‘SDK’ model, was presented by Shinoda et al. [226, 227] based

on the behaviour of surfactants in atomistic simulations. The SDK model has been

used to study surfactant micellization [228], lipid bilayer loading [235] and adsorption

in the lamellar phase of nonionic surfactants [236]. However, the SDK model has not

been applied to study phase behaviour at higher surfactant concentrations. Dissipative

particle dynamics (DPD) [222] has been applied extensively to study surfactant sys-

tems. The soft repulsions used in DPD allow systems to behave as a mean-field fluid,

meaning they can be mapped to polymeric Flory-Huggins χ-parameters, which is useful

for parameterisation of DPD models [222, 237, 238]. DPD models have been used to

study micelle formation for nonionic [239] and ionic surfactants, [223] and to construct

phase diagrams for sodium laurylethoxysulfate [224] and alkyl ethoxylate surfactants

[225]. More recently, machine learning approaches have been applied to produce phase

diagrams for nonionic surfactants and were found to be particularly effective in filling

missing data from incomplete data sets [240].

In this context, the MARTINI CG force field [76] offers a good balance between com-

putational efficiency and realism, and has been widely used to study the self-assembly of

micelles [229, 241, 242] and the phase behaviour of anionic and cationic surfactants [243],

as well as nonionic surfactants [244–246], providing good agreement with experimental

phase diagrams. The MARTINI model has also been successfully applied to reproduce

the self-assembly of the cationic surfactant CTAB in the context of periodic mesoporous

silica synthesis [75], generating phase diagrams for both binary surfactant/water and

ternary silica/surfactant/water systems [77, 78]. A similar approach was applied to

study the self-assembly behaviour of the alkylamine DDA in the presence of silica pre-

cursor species, which occurs in the early stages of the synthesis of HMS. Centi et al. [11]

found that the formation of the mesophase must be driven by charge matching between

surfactant and silica precursor species, in marked contrast with the neutral templating

mechanism that was originally proposed for the synthesis of these materials [34] . They
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identified that the synthesis was heavily dependent on solution pH due to its effect on

the relative quantities of charged species present [11].

In this chapter, a coarse-grained molecular dynamics approach is applied using the

most recent version of the Martini force field [13], which has previously been used

to accurately model the self-assembly behaviour of silica/CTAB/water systems [247].

The modelling approaches that were previously applied to study permanently charged

binary CTAB systems [78] are applied to study the phase behaviour of DDA with

varying degrees of charge, allowing the phase transitions that occur by protonation of

the primary amine group to be studied directly, a property which can be controlled

experimentally by modification of system pH. This is the first computational study

that focuses on isolating this pH-responsive behaviour of alkylamine surfactants in the

context of liquid crystal phase behaviour. The same modelling approach is then applied

to study the phase behaviour of ternary DDA/water/silica systems at relatively low

surfactant concentrations, which is particularly relvant to the synthesis of HMS [34].

6.2 Methods

6.2.1 Simulation Details

The GROMACS 2022.1 software package was used to carry out simulations [164, 248].

Simulations were set up and analysed using built-in GROMACS tools and visualisations

were created using the Visual Molecular Dynamics software package [249]. The size and

density profiles of micelles were measured using an in-house cluster counting script

based on the Hoshen-Kopelman counting algorithm [250]. Graphs were created using

the Matplotlib library [169] for Python [166].

Atomistic simulations were used to generate bonded parameters for the CG DDA

model. For bonded parameter generation, a single neutral DDA molecule was placed in

a cubic periodic simulation box with a side length of 3 nm and solvated with an appro-

priate number of water molecules to achieve a realistic density using the gmx solvate

tool in GROMACS. The rigid single point charge (SPC/E) potential was chosen to rep-

resent water molecules [171]. The atomistic models for both positively charged DDA and
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neutral DDA were generated using the LigParGen OPLS/CM1A parameter generator

utility [161–163]. The leapfrog algorithm [111] was used for all atomistic simulations

with a time step of 2 fs. Atomistic simulations were at room temperature (298 K)

and pressure (1 bar). The velocity-rescaling [115] thermostat and Parrinello-Rahman

barostat [120, 121] were used to control temperature and pressure, respectively. The

Lennard-Jones (LJ) cut-off was set at 1.2 nm, with a switching function between 0.9

and 1.2 nm. Long range dispersion corrections were used for both energy and pressure.

The particle-mesh Ewald method [113, 170] was used to account for electrostatic inter-

actions. Energy minimisation was carried out using the steepest descent algorithm, and

equilibration was carried out for 100 ps, first in the NVT ensemble, followed by NpT. A

simulation time of 50 ns was used for calculations of bonded parameters. The PyCG-

TOOL utility was used to generate bonded parameters from the atomistic trajectories

[155].

The Martini 3 force field was used for all coarse-grained simulations [13]. Before pro-

duction MD runs, energy minimisation, NVT equilibration and NpT equilibration were

carried out. The steepest descent algorithm was used for energy minimisation. Dur-

ing equilibration, the velocity-rescaling thermostat [115] and the Berendsen barostat

[114] were used with a 2 fs time step. A 20 fs time step using the leap-frog algo-

rithm was used for production MD. Temperature and pressure were controlled with the

velocity-rescaling thermostat and Parrinello-Rahman barostat [120, 121], respectively.

The Verlet cutoff scheme [110] was used with a cutoff value of 1.1 nm. The reaction

field scheme was used to account for electrostatic interactions with a cutoff value of 1.1

nm and relativity permittivity set to εr = 15. The thermostat for CG simulations of

surfactant self-assembly was set to 348 K to allow phase formation to occur within a

reasonable simulation time.

Self-assembly simulations of binary DDA/water systems were carried out starting

from a random configuration of DDA molecules in a cubic simulation box. Simulations

with a low concentration of DDA (i.e. 5 wt%) used 200 molecules, while higher con-

centration simulations used 1000 DDA molecules. Chloride counter-ions were used to

neutralize the total charge of the system. Chloride counter-ions were used as they have
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weak nucleophilic behaviour, and are therefore relatively inert compared with other

anions. Therefore, they are least likely to modify surfactant phase behaviour allowing

the phase behaviour of DDA to be studied in isolation. It should be noted that the

degree of charge of DDA molecules in these simulations is at a fixed value, and there-

fore assumes that the surfactant charge is independent of aggregation state. However,

in experimental systems the degree of charge of some surfactants has been observed to

be strongly dependent on aggregation state [251]. Water molecules were then added to

achieve the desired concentration of DDA. Calculations were carried out to achieve a

total simulation time of 1 µs initially, and in some cases these calculations were extended

until an equilibrium configuration was obtained. In cases where the nature of the phase

that formed was not clear, simulations of larger systems (i.e. increased number of DDA

molecules) were carried out. Full simulation details for binary DDA/water simulations

are given in Table 6.1.

Self-assembly simulations of ternary DDA/water/silica systems were carried out

at DDA concentrations that correspond to the micellar region of the binary surfac-

tant/water phase diagram. The model for silicates which was developed in Chapter 4

was used. For these simulations, the total number of charged DDA species was kept

constant at 1000 DDA molecules, with additional neutral DDA species added to achieve

the correct proportion of charged DDA species. The total number of silicon atoms (i.e.

CG beads of silica) was set to achieve a Si:DDA ratio of 4, which is close to the Si:DDA

ratio of 3.7 used in the synthesis of HMS reported by Tanev and Pinnavaia [34]. The

first set of simulations was carried out using only silica dimers. The ionisation state

for the population of dimers in each simulation was determined from the proportion of

charged DDA species by calculating the pH at which that proportion of charged surfac-

tant species would be found, using the pKa value corresponding to the deprotonation

of the amine group which is 10.63.

pH = pKa + log

(
DDA+

DDA

)
(6.1)

This pH was then used to calculate the proportion of silica dimers that are present
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as doubly charged (SI2), singly charged (SISN) and uncharged (SN2), using the exper-

imentally determined pKa values corresponding to the first and second deprotonation

of silica dimers (9.0 and 10.7, respectively). The second set of simulations used only

silica cubic octamers, using the same Si:DDA ratio of 4. For these simulations, only

fully charged (SI8c), half charged (SI4SN4c) and neutral (SN8c) species were used. The

proportions of each of these species were taken from the equivalent proportion of dimers

(i.e. the proportion of fully charged, half charged and neutral dimers) for that propor-

tion of charged DDA. It should be noted that this is a different procedure than was

used in Chapter 5, and the drawbacks of this approach are discussed in more detail

later in this chapter. TMA counter-ions were then added to the system to achieve a

neutral overall system charge. Finally, the required number of water molecules was then

calculated to achieve the correct overall concentration of DDA, and the initial system

volume was then determined to achieve the correct density for the system. Box dimen-

sions x and y were set to 8 nm initially, while the z dimension was set to achieve the

desired system volume. For the initial configuration of these simulations, the surfactant

molecules were all inserted close together in the centre of the simulation box to reduce

the simulation time needed for aggregation to occur.
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Table 6.1: Details of coarse-grained simulations of DDA phase formation. N is the
number of molecules of each species (denoted by the subscript) present in the simulation.
Note that each water bead represents 4 water molecules. L is the box length in the x,
y, and z direction. t is the total simulation time.

No. CDDA (wt%) Charge % T (K) NDDA+ NDDAn NCl NWater Lx (nm) Ly (nm) Lz (nm) t (µs)
1 1.86 100 348 210 0 210 28550 15.34 15.34 15.34 1.2
2 5 100 348 200 0 200 10000 11.00 11.00 11.00 1
3 5 90 348 180 20 180 10000 11.00 11.00 11.00 1
4 5 80 348 160 40 160 10000 11.00 11.00 11.00 1
5 5 70 348 140 60 140 10000 11.01 11.01 11.01 1
6 5 60 348 120 80 120 10000 11.03 11.03 11.03 1
7 5 50 348 100 100 100 10000 11.03 11.03 11.03 1
8 5 40 348 80 120 80 10000 11.02 11.02 11.02 1
9 5 30 348 60 140 60 10000 11.03 11.03 11.03 1
10 5 20 348 40 160 40 10000 11.04 11.04 11.04 1
11 5 10 348 20 180 20 10000 11.06 11.06 11.06 1
12 5 0 348 0 200 0 10000 11.06 11.06 11.06 1
13 13 80 348 800 200 0 17200 13.55 13.55 13.55 2
14 20 100 348 1000 0 1000 10000 11.64 11.64 11.64 1
15 20 90 348 900 100 900 10000 11.64 11.64 11.64 1
16 20 80 348 800 200 800 10000 11.65 11.65 11.65 1
17 20 70 348 700 300 700 10000 11.65 11.65 11.65 1
18 20 60 348 600 400 600 10000 11.68 11.68 11.68 1
19 20 50 348 500 500 500 10000 11.69 11.69 11.69 1
20 20 40 348 400 600 400 10000 11.68 11.68 11.68 1
21 20 30 348 300 700 300 10000 11.72 11.72 11.72 1
22 20 20 348 200 800 200 10000 11.76 11.76 11.76 1
23 20 10 348 100 900 100 10000 11.81 11.81 11.81 1
24 20 0 348 0 1000 0 10000 11.84 11.84 11.84 1
25 26 100 348 1000 0 1000 7500 10.82 10.82 10.82 3
26 35 100 348 1000 0 1000 4780 9.77 9.77 9.77 5
27 35 100 348 4000 0 4000 22885 16.11 16.11 16.11 12
28 35 90 348 900 0 900 4780 9.76 9.76 9.76 3
29 35 80 348 800 0 800 4780 9.76 9.76 9.76 3
30 35 80 348 3200 800 3200 22885 16.11 16.11 16.11 12
31 35 70 348 700 0 700 4780 9.76 9.76 9.76 3
32 35 70 348 2800 1200 2800 22885 16.11 16.11 16.11 6
33 35 60 348 600 0 600 4780 9.78 9.78 9.78 3
34 35 60 348 2400 1600 2400 22885 16.14 16.14 16.14 6
35 35 50 348 500 0 500 4780 9.79 9.79 9.79 3
36 35 40 348 400 0 400 4780 9.79 9.79 9.79 3
37 35 30 348 300 0 300 4780 9.84 9.84 9.84 3
38 35 20 348 200 0 200 4780 9.85 9.85 9.85 1
39 35 10 348 100 0 100 4780 9.91 9.91 9.91 1
40 35 0 348 0 0 0 4780 9.98 9.98 9.98 1
41 35 100 348 4000 0 4000 22885 16.12 16.12 16.12 6
42 54 100 348 1000 0 1000 2191 8.52 8.52 8.52 1
43 60 100 348 1000 0 1000 2054 8.44 8.44 8.44 1
44 60 90 348 900 100 900 2054 8.39 8.39 8.39 1
45 60 80 348 800 200 800 2054 8.46 8.46 8.46 1
46 60 70 348 700 300 700 2054 8.47 8.47 8.47 1
47 60 60 348 600 400 600 2054 8.42 8.42 8.42 1
48 60 50 348 500 500 500 2054 8.41 8.41 8.41 1
49 60 40 348 400 600 400 2054 8.43 8.43 8.43 1
50 60 30 348 300 700 300 2054 8.46 8.46 8.46 1
51 60 20 348 200 800 200 2054 8.52 8.52 8.52 1
52 60 10 348 100 900 100 2054 8.57 8.57 8.57 1
53 60 0 348 0 1000 0 2054 8.64 8.64 8.64 1
54 75 5 348 50 950 5 857 7.82 7.82 7.82 1
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Table 6.2: Details of coarse-grained simulations of DDA/silica phase formation. N is the number of molecules of each species
(denoted by the subscript) present in the simulation. Note that each water bead represents 4 water molecules. L is the box length
in the x, y, and z direction. t is the total simulation time.

No. CDDA (wt%) Charge % T (K) NDDA+ NDDAn NSI2 NSISN NSN2 NSI8c NSI4SN4c NSN8c NTMA NWater Lx (nm) Ly (nm) Lz (nm) t (µs)

Silica Dimers
1 13 95 348 1000 52 63 1413 628 0 0 0 539 18108 8.26 8.26 45.60 2
2 13 90 348 1000 111 160 1703 359 0 0 0 1023 19124 8.28 8.28 48.32 2
3 13 80 348 1000 250 407 1914 179 0 0 0 1728 21517 8.28 8.28 48.32 2
4 13 70 348 1000 428 733 2013 110 0 0 0 2479 24581 8.35 8.35 62.58 2
5 13 65 348 1000 538 938 2049 89 0 0 0 2925 26474 8.36 8.36 67.49 2
6 13 60 348 1000 666 1179 2080 73 0 0 0 3438 28678 8.37 8.37 73.24 2
7 11 70 348 1000 428 733 2013 110 0 0 0 2479 29718 8.32 8.32 72.47 3
8 9 80 348 1000 250 407 1914 179 0 0 0 1728 32509 8.26 8.26 75.70 1
9 7 90 348 1000 111 160 1703 359 0 0 0 1023 37966 8.22 8.22 84.56 1

Silica Octamers
10 13 95 348 1000 52 0 0 0 15 354 157 536 18108 8.06 8.06 44.49 4
11 13 80 348 1000 250 0 0 0 101 480 44 1728 21517 8.10 8.10 53.13 6
12 13 60 348 1000 666 0 0 0 294 521 18 3436 28678 8.16 8.16 71.36 4
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6.2.2 DDA Model

For the Martini 3 DDA model, one bead is used to represent the headgroup which

contains the charged amine group, while the alkane tail is described by three beads,

representing four carbon atoms (and adjoining hydrogens) each (see Figure 6.1). The

bond and angle parameters generated for this mapping scheme are presented in Tables

6.3 and 6.4 respectively. The same mapping scheme is used for both neutral and charged

DDA species. Martini 3 bead types were selected following the suggestions of the

authors of the Martini 3 forcefield [13]. The alkane tail beads (T2-T4) are assigned the

C1 (strongly apolar) bead type in both neutral and charged models. For neutral DDA,

the headgroup bead (H1) is assigned the TN6d bead type (N6 describes a neutral and

mildly polar group), while for the charged model, the TQ5p bead type is used (Q5

describes a charged polar bead). These headgroup beads use the tiny bead size (since

they represent only one heavy atom), and the ‘d’ and ‘q’ labels represent hydrogen bond

donor behaviour.

Figure 6.1: The Martini 3 mapping scheme for DDA cations. Alkane tail beads are
shown in blue (T2-T4), while the charged head bead is shown in orange (H1).

Table 6.3: Bonded parameters for DDA Martini 3 model. Bead names refer to labels in
Figure 6.1. bij is the bond length and kij is the bond force constant.

Bond bij (nm) kij (kJ mol−1 nm−2)

H 1-T 2 0.420 4,070

T 2-T 3 0.379 4,600

T 3-T 4 0.369 5,690

201



Chapter 6. pH-Responsive Phase Behaviour of Amine Surfactants

Table 6.4: Angle type parameters for DDA Martini 3 model. Bead names refer to labels
in Figure 6.1. θijk is the angle between beads and kijk is the angle force constant.

.
Beads θijk (degrees) Calculated kijk (kJ mol−1 deg−2)

H 1-T 2-T 3 141 62

T 2-T 3-T 4 144 72

6.2.3 Phase Diagrams of DDA

The closest description of experimental phase behaviour for the amine surfactant, DDA,

to protonation/deprotonation of the primary amine group is given in the work of Karls-

son et al., who studied the phase behaviour of a ternary system of water, DDA and

acetic acid [216]. In that study, acetic acid was added to systems to induce phase tran-

sition of the DDA/water phase, driven by proton transfer between the acid and DDA

species. Since the acid used by Karlsson et al. is much smaller than DDA, the salt

produced by this proton transfer is less likely to influence phase behaviour, acting as an

organic counter-ion rather than forming a catanionic surfactant complex, which occurs

when the length of the alkyl chain in acid and amine is similar [213, 214]. In order

to isolate the effect of changing the protonation state of the amine group, the salt of

acetic acid is not simulated explicitly here; instead, only the proportion of charged DDA

species is varied. As previously discussed, chloride counter-ions are added to achieve a

neutral overall charge for the system due to their relatively inert nature, allowing the

effect of modifying the proportion of charged DDA species to be isolated.

To compare with phase behaviour in this experimental system, it is necessary to

transform the experimental phase diagram produced in that study (shown in Figure

6.2a) to a plot of the proportion of charged DDA species (which results from the addition

of acid) against the surfactant concentration, as this phase diagram can be directly

explored through simulation by varying the proportion of charged DDA molecules in

the system. In Figure 6.2a, the black line indicates an equimolar ratio of acetic acid to

DDA, at which point it is assumed that all DDA species become charged due to proton

transfer between acid and DDA. Below this line (the shaded region in Figure 6.2a) only

a proportion of DDA species are charged. The proportion of charged DDA species at
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any point in this region is simply calculated from the ratio of acid to DDA:

xDDA+ =
Cacid

Camine
(6.2)

where xDDA+ is the proportion of charged DDA species, and Cacid and Camine are the

molar concentrations of the acid and amine, respectively. Through this method, the

ternary phase diagram in Figure 6.2a is transformed into a phase diagram for a binary

DDA/water system dependent on the DDA concentration and the proportion of charged

DDA species, presented in Figure 6.2b.
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(a)

(b)

Figure 6.2: In (a), a ternary phase diagram of the water/DDA/acetic acid system is
shown, adapted from [216]. The black line represents an equimolar ratio of acetic acid
and DDA and the shaded region under this line represents the region in which a propor-
tion of DDA species are uncharged. The figure labels correspond to the experimentally
observed phases: liquid/micellar (L), hexagonal (E), cubic (cub.) and lamellar (D),
while the unlabelled region indicates insolubility of DDA in water. In (b), the shaded
region of the phase diagram in (a) is transformed to an experimental phase diagram
for a binary DDA/water system dependent on DDA concentration and proportion of
charged DDA species.
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6.3 DDA Simulation Results

6.3.1 Cationic DDA System

Initially, a set of simulations was carried out with all DDA molecules fully protonated

to assess the validity of the model against the experimental phase diagram for a binary

DDA/water system (see Figure 6.3). One simulation was carried out at very low surfac-

tant concentration (0.1 M or 1.86 wt%) in the liquid region of the phase diagram, one

near the interface between liquid and hexagonal regions (26 wt%), one in the hexago-

nal region (35 wt%) and one in the lamellar region (60 wt%). Snapshots of the final

configurations obtained in these simulations are shown in Figure 6.4. At 0.1 M, a small

number of approximately spherical micelles are formed. At 26 wt%, worm-like micelles

are formed, indicating that this concentration lies above the sphere-to-rod transition.

At 35 wt%, a well-ordered hexagonal phase is observed, and at 60 wt%, a lamellar

phase forms. All phases observed in simulations agree well with the experimental phase

diagram for DDA, indicating that the model reproduces the experimentally observed

phase behaviour well.

Figure 6.3: Experimental phase diagram for a binary DDA/water system dependent on
DDA concentration and temperature, adapted from [252] with experimental data taken
from [253]. Letters indicate the following phases: L, liquid; E, hexagonal liquid crystal;
D, lamellar liquid crystal; Xα and Xβ , dry crystal; X.nW, crystal hydrate with n water
molecules. The dashed lines indicate boundaries for metastable regions. The symbols
indicate points at which simulations were carried out: 0.1 M at 50 °C (blue cross) and
26 wt% (red circle), 35 wt% (red diamond) and 60 wt% (red triangle) at 75 °C.
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(a) (b)
(c)

(d)
(e) (f)

Figure 6.4: Simulation snapshots of the final configurations for DDA self-assembly at
1.86 wt% (a), 26 wt% (b), 60 wt% (c) and 35 wt% (d-f), corresponding to points marked
on the experimental phase diagram (Figure 6.3). Red beads represent charged DDA
headgroups, while green beads represent DDA tail groups. Water and chloride counter-
ions are hidden for clarity.

6.3.2 Effect of Proportion of Charged DDA

To understand the influence of charge on the phase behaviour of DDA, the phase dia-

gram of DDA concentration against proportion of charged species (presented in Figure

6.2b) was explored computationally by selecting points to probe the regions at which

phase transitions are expected to occur, as summarized in Table 6.1. The phases ob-

served in simulations were superimposed on the experimental phase diagram [216], in

Figure 6.5. At points on the phase diagram that lie between distinct phases, phase deter-

mination is more difficult. These points are labelled as “transition” points on the phase

diagram in Figure 6.5. Under these conditions, the arrangement of surfactant molecules
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may exhibit characteristics of multiple phases, which can be attributed to overlapping

free energy minima that trap the surfactant phase in a metastable arrangement in which

one particular phase is not dominant.

At lower DDA concentrations (CDDA ≤ 35 wt%) agreement with the experimental

phase diagram is excellent. In particular, the phase transition from a liquid (micellar)

to an insoluble phase is very well predicted by the computational model. The hexag-

onal region of the phase diagram predicted by the computational model appears to be

somewhat contracted when compared with experimental data, and a disordered region

is observed in the transition between the hexagonal and insoluble regions (i.e., as the

proportion of charged DDA species is reduced). At high surfactant concentrations, the

phases observed differ significantly from those reported experimentally by Karlsson et

al. [216]. Namely, the cubic and lamellar phases reported experimentally are not repro-

duced by the computational model. Instead, a large lamellar region is observed at higher

proportions of charged DDA, while an insoluble region is observed when only very few

charged DDA molecules are present. This large lamellar region is, however, observed in

other experimental studies of ternary DDA/water/acid systems at high surfactant con-

centrations, close to the equimolar ratio of amine and acid. Harmann et al. observed

large lamellar regions under these conditions with both acrylic acid and methacrylic

acid [217], while studies of binary amine surfactant/water systems consistently observe

lamellar phases at high amine surfactant concentrations [213, 253, 254].

The differences between the phases observed in this work and in the experimental

study of Karlsson et al. can be explained by three main factors. Firstly, as previously

discussed, acetic acid, which is present in the experimental study of Karlsson et al., is

not explicitly present in our simulations. Acetate ions, the conjugate base of acetic acid,

may well play a role in phase behaviour and its effect is likely to be more pronounced

at high surfactant concentrations, i.e. close to the equimolar ratio of surfactant and

acid, due to the larger proportion of acid and conjugate base present compared with

water. Secondly, the simulations in this work take place at a higher temperature (348 K)

than that of the experimental system (298 K), which was necessary to promote phase

formation within achievable computational time. Thirdly, simulations are limited in
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terms of both system size and simulation time. Therefore, it cannot be guaranteed that

systems reach a true equilibrium state within the permitted simulation time, or that

the relatively small simulation box sizes do not inhibit the formation of certain phases,

particularly those that are periodic. In particular, the disordered phases observed in the

region that is predicted to form hexagonal phases may actually represent a metastable

state that occurs before a true stable equilibrium is reached. However, it is not clear

how long would be required for these simulations to reach a true equilibrium state. It

is also possible that the experimental data presented by Karlsson et al. is not entirely

accurate. This is particularly true of the lamellar and cubic regions of the phase diagram

(labelled D and cub. in Figure 6.5, respectively). As mentioned previously, an extensive

lamellar region is typically observed for binary water/alkylamine surfactant systems at

high surfactant concentrations, however, this region is surprisingly absent from the

phase diagram produced by Karlsson et al., and instead there is a small cubic region

that is not observed in other work [213, 253, 254]. In addition, since DDA has poor

solubility in water at low proportions of charged DDA, as shown by both simulations in

this work and the large insoluble region in the phase diagram produced by Karlsson et

al., the observation of a lamellar region where no acid is added is surprising. Since the

experimental observations of Karlsson et al. have not been verified by further studies, it

is possible that these unusual observations do not represent the real behaviour of these

systems.
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Figure 6.5: Experimental phase diagram for a binary DDA/water system dependent on
DDA concentration and proportion of charged DDA species with simulation observa-
tions plotted. Data is derived from [216]. Labels on the diagram which correspond to
experimental observations are the same as in Figure 6.2a while observations at points
where simulations were carried out are given in the legend.
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Simulation snapshots of the final configurations obtained at 5 wt % DDA for selected

values of xDDA+ are shown in Figure 6.6. At 5 wt % DDA and high proportion of charged

surfactant (xDDA+ > 0.7), DDA molecules arrange into spherical micelles that are sta-

bilised by repulsive electrostatic interactions between surfactant headgroups, similarly

to what takes place in solutions of permanently charged alkylammonium surfactants

[220]. As small proportions of neutral DDA species are added, these are incorporated

into the micelles. Although the neutral amine head group is not nearly as polar as when

it is charged, it still shows some degree of amphiphilic behaviour, and so it adopts a sim-

ilar position as charged DDA at the micelle surface - i.e., with alkyl tails in the micelle

core and amine head groups at the surface. However, because they are not charged, the

more neutral DDA molecules are present, the lower the repulsion between head groups.

This decrease in electrostatic repulsion causes a decrease in the overall curvature of the

aggregates, and therefore the average micelle size increases (see Figure 6.7). At xDDA+

= 0.7, this curvature decrease drives a sphere-to-rod transition wherein much larger,

elongated micelles are formed, incorporating both charged and neutral DDA. At xDDA+

< 0.6 the DDA species become insoluble in water and separate out into a single cluster,

with a small number of charged DDA molecules remaining present in water as isolated

monomers.

It is important to note that the insoluble cluster formed at a low proportion of

charged DDA species is different in nature to the micelles formed when there is a higher

proportion of charged DDA species present. This is demonstrated in Figure 6.8, where

the average radial density profiles of the cluster(s) are compared. At xDDA+ = 1.0

(Figure 6.6a), the headgroup is concentrated in a single region at the surface of the

clusters, indicating a well-defined micellar structure. This structure is initially retained

as the proportion of neutral DDA increases (Figure 6.6b). However, at xDDA+ = 0.0

(Figure 6.6d) a significant proportion of the headgroups of DDA molecules is contained

within the cluster and its distribution is nearly flat, indicating that the aggregate is

amorphous in nature.
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(a) (b)

(c) (d)

Figure 6.6: Simulation snapshots of the final configurations for DDA self-assembly
simulations at 5 wt % of DDA at varying xDDA+ , (a) = 1.0, (b) = 0.7, (c) = 0.6, (d) =
0.0. Red and purple beads represent charged and neutral DDA headgroups respectively,
while green and blue beads represent neutral DDA tail groups respectively. Water and
chloride counter-ions are hidden for clarity.
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Figure 6.7: DDA micelle size (average number of DDA molecules) for different degrees
of charge at 5 wt% DDA as determined by simulation. The dashed red line indicates
the maximum possible micelle size, which is equal to the total number of surfactant
molecules in the simulation box.

(a) (b) (c)

Figure 6.8: Radial density profiles taken from the centre of mass of aggregates for
systems at 5 wt % DDA for xDDA+ = 0.0 (a), xDDA+ = 0.8 (b) and xDDA+ = 1.0 (c).
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When the total concentration of DDA is increased to 20 wt % (see snapshots in

Figure 6.9) the behaviour is analogous. Spherical micelles are still observed at high

proportions of charged DDA (xDDA+ > 0.6) and a similar transition to an insoluble

phase is observed at xDDA+ = 0.5, below which DDA appears to be insoluble in water.

(a) (b)

(c) (d)

Figure 6.9: Simulation snapshots of the final configurations for DDA self-assembly at
20 wt % of DDA at varying xDDA+ , (a) = 1.0, (b) = 0.7, (c) = 0.5, (d) = 0.4. Red and
purple beads represent charged and neutral DDA headgroups respectively, while green
and blue beads represent neutral DDA tail groups respectively. Water and chloride
counter-ions are hidden for clarity.

213



Chapter 6. pH-Responsive Phase Behaviour of Amine Surfactants

Upon increasing DDA concentration to 35 wt % (see snapshots for selected values of

xDDA+ in Figure 6.10), a well ordered hexagonal liquid crystal (HLC) phase is observed

at high proportions of charged DDA (xDDA+ ≥ 0.9). As the proportion of charged DDA

is reduced to xDDA+ = 0.8, while the system still consists of long wormlike micelles,

these become disordered because the proportion of charged species is not sufficient to

promote the formation of a stable ordered phase. At xDDA+ = 0.5, a transition is

observed, with this system showing a lamellar character, with several bilayer sheets

being stabilised by charged DDA species at the surface. Once again, this transition

from a hexagonal to a (potentially) lamellar phase can be traced back to the decrease

in curvature caused by decreasing electrostatic repulsion between head groups as the

percentage of neutral DDA increases. As the proportion of charged species is lowered

even further ( xDDA+ ≤ 0.4), the DDA phase fully separates into an insoluble region.

At a DDA concentration of 60 wt % (see snapshots in Figure 6.11), a well ordered

lamellar phase is observed for a broad range of proportions of charged DDA (xDDA+ ≥

0.4). At xDDA+= 0.3, a transition is observed towards an insoluble phase, as there are

too few charged species to stabilise the bilayers of the lamellar phase. Notably, this

transition phase is similar to that observed at 35 wt % DDA at xDDA+ = 0.5 (Figure

6.10c), suggesting that the lamellar phase may extend to even lower DDA concentrations

than 60 wt %. At xDDA+ ≤ 0.3, the DDA phase fully separates from water, becoming

insoluble.

Two further regions of the experimental phase diagram in Figure 6.2b were explored

in simulations. The first is at a DDA concentration of 54 wt % and xDDA+= 1.0,

which is predicted to assemble into a cubic phase. However, in this simulation a well-

ordered lamellar phase is observed (Figure 6.12a). The second region explored lies in

the lamellar region of the experimental phase diagram at a DDA concentration of 75

wt % and xDDA+= 0.05. In this simulation the DDA species remain insoluble in water

with no lamellar phase observed.
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(a) (b)

(c) (d)

Figure 6.10: Simulation snapshots of the final configurations for DDA self-assembly
simulations at 35 wt % of DDA at varying xDDA+ , (a) = 1.0, (b) = 0.8, (c) = 0.5, (d)
= 0.1. The colour code is the same as in Figure 6.6 with water and chloride ions hidden
for clarity.
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(a) (b)

(c) (d)

Figure 6.11: Simulation snapshots of the final configurations for DDA self-assembly
simulations at 60 wt % of DDA at varying xDDA+ , (a) = 1.0, (b) = 0.5, (c) = 0.3, (d)
= 0.2. The colour code is the same as in Figure 6.6 with water and chloride ions hidden
for clarity.
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(a) (b)

Figure 6.12: Simulation snapshots of the final configurations for DDA self-assembly
simulations at 54 wt % of DDA, xDDA+ = 1.0 (a) and 75 wt %, xDDA+ = 0.05 (b). The
colour code is the same as in Figure 6.6 with water and chloride ions hidden for clarity.
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6.3.3 DDA/Water/Silica Systems

In Figure 6.13, the phases observed in simulations of ternary DDA/water/silica dimer

systems are superimposed on the experimental binary DDA/water phase diagram. The

points where simulations were carried out correspond to the micellar region of the

experimental phase diagram, for which good agreement was observed with previous

simulations of binary DDA/water systems. With the addition of silica dimers at higher

proportions of charged DDA (xDDA+ ≥ 0.7), DDA molecules arrange into micelles that

are smaller at higher proportions of charged DDA, and grow in size to form long, worm-

like micelles as the proportion of DDA is reduced (see Figures 6.14 and 6.15b and c),

similarly to the behaviour of the binary DDA/water system. To assess whether the

aggregation into longer, worm-like micelles is promoted by the inclusion of silicates, an

additional simulation at 13 wt% DDA without silica was carried out (for full details, see

Table 6.1, simulation number 13). The surfactant aggregation number for the simulation

with silica was 215, versus an aggregation number of 105 for the simulation without

silica. This indicates that the presence of silicate species promotes the aggregation of

spherical micelles into longer, worm-like micelles, similarly to the behaviour observed

with the CTAB surfactant in this work (see Chapter 4), and in literature [75, 220]. At

lower proportions of charged DDA (xDDA+ ≤ 0.6), the DDA phase becomes completely

separated from water. However, instead of an insoluble phase, which was observed

in binary DDA/water simulations, an ordered lamellar phase is observed, as shown in

Figure 6.15a.
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Figure 6.13: Experimental phase diagram for ternary DDA/water/silica dimer systems,
dependent on DDA concentration and proportion of charged DDA species with simu-
lation observations plotted. Labels on the diagram which correspond to experimental
observations are the same as in Figure 6.2a while observations at points where simula-
tions were carried out are given in the legend.

Figure 6.14: DDA micelle size (average number of DDA molecules) for different degrees
of charge at 13 wt% DDA in the ternary DDA/water/silica dimer system, as determined
by simulation.
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Simulations carried out with silica octamers at 13 wt% showed significantly different

phase behaviour than simulations with silica dimers at the same points of the phase

diagram (see Figure 6.16). At xDDA+ = 0.6, while a layered structure resembling a

lamellar phase also forms, the curvature of the phase is significantly increased versus

the phase observed with silica dimers present. At xDDA+ = 0.8, instead of long, worm-

like micelles, a lamellar phase forms, with the surfactant phase fully separated from

the aqueous phase. At xDDA+ = 0.95, the surfactant phase remains separated from

the aqueous phase, in contrast to the system with silica dimers which formed dispersed

micelles. In this concentrated phase, the surfactant is arranged as disordered rods.
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(a)

(b)

(c)

Figure 6.15: Simulations snapshots of the final configurations for DDA/silica dimer self-
assembly simulations at 13 wt % of DDA at different proportions of chaged DDA and
silica species, xDDA+ = 0.6 (a), xDDA+ = 0.8 (b) and xDDA+ = 0.95 (c). The population
of charged silica species is determined by the corresponding pH of the system and is
given in Table 6.2. The colour code for DDA species is the same as in Figure 6.6. In
the top image, for each value of xDDA+ , charged silica beads are shown in yellow whilst
neutral silica beads are shown in grey. In the bottom image, silica species are hidden
for increased clarity of the surfactant phase. Water and chloride ions are hidden in all
snapshots for clarity.
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(a)

(b)

(c)

Figure 6.16: Simulations snapshots of the final configurations for DDA/silica octamer
self-assembly simulations at 13 wt % of DDA at different proportions of charged DDA
and silica species, xDDA+ = 0.6 (a), xDDA+ = 0.8 (b) and xDDA+ = 0.95 (c). The
population of charged silica species is determined by the corresponding pH of the system
and is given in Table 6.2. The colour code is the same as in Figure 6.15. In the bottom
image, silica species are hidden for increased clarity of the surfactant phase. Water and
chloride ions are hidden in all snapshots for clarity.
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These results clearly show that, similarly to the case with CTAB systems (see Chap-

ter 4), the presence of silica species significantly affects the phase behaviour of DDA,

promoting aggregation and separation of the surfactant concentration under conditions

where only micelles would form without silica present. The simulations carried out at

13 wt% and xDDA+ = 0.95 most closely mimic the experimental conditions under which

HMS is synthesised [34], with an initial solution pH of approximately 9.2 according to

Centi et al. [11]. The differences between the phases formed in simulations carried out

with silica dimers and silica octamers indicate that condensation of silicate species plays

an important role in facilitating the formation of the surfactant template for these ma-

terials. The range of xDDA+ explored by these simulations corresponds to a pH change

in solution from approximately 9.3 (at xDDA+ = 0.95) to 10.6 (at xDDA+ = 0.6).

Throughout this pH range, the relative proportions of fully charged, partially charged

and neutral silicate species change significantly. As the proportion of charged silicate

species increases, the proportion of charged DDA species decreases. Since this charge-

matching behaviour is important to promote self-assembly, as identified by Centi et al.

[11], and earlier in this work (Chapter 5), understanding how a correct balance of charge

between these two populations of species is established (i.e. by controlling system pH)

will be important to achieving ordered structures.

There are several limitations to the approach presented here which make it unlikely

that the simulations carried out represent the real experimental system in the synthesis

of HMS. As previously mentioned, the calculation used to determine the proportion of

charged silica octamer species is only based on the pKa value for dimers, rather than

the more detailed method laid out in Chapter 5. Therefore, the population of silica

octamers used will not represent an experimentally realistic population under the range

of pH values investigated. More critically, as previously mentioned, the effective pH of

the solution, based on the proportion of charged DDA species present, is approximately

9.3 to 10.6. Under this pH range, silica species will not remain stable as small oligomers,

and will undergo extensive condensation reactions to form larger silica particles [19].

Therefore, neither the simulations with dimers or octamers represent experimentally

realistic populations of silica. To obtain a more experimentally realistic system, it
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would be necessary to develop a reactive model for silicates. However, despite these

limitations the results here clearly indicate that both the relative proportions of charged

species (both surfactant and silicates), and the degree of condensation of silicates play an

important role in directing the phase formation of amine surfactant templated materials.
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6.4 Conclusions

In this work, we have demonstrated the effect that the proportion of charged (cationic)

versus uncharged (nonionic) surfactant species has on the liquid crystal phase behaviour

of an alkylamine surfactant, dodecylamine, at a range of surfactant concentrations in

solution. Both micellar and liquid crystal phases with lamellar and hexagonal mor-

phology were observed, in equilibrium with water. The solubility of the surfactant was

demonstrated to be strongly dependent on the proportion of charged species present,

which can be attributed to the increased hydrophilicity of the protonated headgroup.

At low and intermediate surfactant concentrations, the phase behaviour observed in

simulations closely agreed with experimental data for a ternary water/DDA/acetic acid

system, which is the closest experimental comparison for the binary DDA/water system

explored in this work. The differences observed at higher DDA concentrations are dis-

cussed in detail. However, these results clearly demonstrate how DDA phase behaviour

is altered by protonation/deprotonation of the surfactant headgroup, which may be

achieved experimentally through control of the system pH. Understanding of this be-

haviour is important for many applications, including the synthesis of HMS, where the

formation of the templating surfactant phase has been shown to be strongly dependent

on system pH [11]. With the inclusion of precursor silica species, developed in previous

work (Chapter 4), the phase behaviour was explored within the micellar region of the

binary DDA/water phase diagram. This showed that the presence of silica dimers and

octamers was capable of significantly altering phase behaviour, with lamellar and disor-

dered regions both observed. While the limitations of the brief investigation presented

in this chapter were discussed, this demonstrated the importance of both the degree of

condensation of silicate species, and the relative proportions of charged surfactant and

silicate species on directing the self-assembly of pH-responsive surfactants. The model

could also be applied to study the interactions of surfactant species on solid surfaces at

different pH values, which is relevant to flotation applications [203].
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Conclusions and Future Work

7.1 Conclusions

In this thesis, a detailed investigation into the mechanisms governing the self-assembly of

surfactant species and silica was presented, with particular focus on the self-assembly of

templates for ordered mesoporous silica (OMS) synthesis. Two distinct, but complemen-

tary, approaches were applied: experimental synthesis and characterisation, and molecu-

lar simulations. Special attention was given to the factors surrouding self-assembly that

may influence the degree of structural order in materials obtained through templated

synthesis, as understanding these factors is critical to enable production of valuable

well-ordered OMS via alternative, greener pathways, without the need for energy in-

tensive and wasteful synthesis processes, a proposition that still remains a significant

challenge. Through this work, critical observations are made as to how ordered struc-

tures are formed early during OMS synthesis, and what factors may affect this degree of

order as synthesis progresses. In particular, charge matching at the silica to surfactant

interface is demonstrated to be critical to the initial formation of ordered structures,

which occurs as silicates are present as oligomers of silicic acid. This self-assembly be-

haviour is strongly dependent on the protonation/deprotonation of these oligomers by

varying the balance of charge at the silica/surfactant interface. Since the charge state

of silica oligomers is most strongly controlled by system pH, the pH under which the

initial self-assembly takes place is crucially important. When the pH is lowered during

226



Chapter 7. Conclusions and Future Work

synthesis, silica polycondensation reactions occur rapidly as silica precipitates. These

reactions are necessary to obtain OMS, but careful consideration of silica condensation

reaction kinetics is required to ensure that the well-ordered phase formed during self-

assembly is maintained to effectively provide a template for the resultant material. The

results in this work suggest that when these reactions are allowed to proceed rapidly,

the well-ordered structures are maintained, whereas, when they proceed slowly, the or-

dering of the silica/surfactant phase is disrupted leading to less well-ordered silica. This

is because the charge balance is disrupted by the change in pH, leading to disordering

of the silica/surfactant phase before silica precipitates out of solution.

The first major outcome of this work, which is presented in Chapter 4, was the

development of a coarse-grained (CG) model for the self-assembly of OMS, which uses

the Martini 3 framework [13]. This model was also extended to include the bio-inspired

additives arginine and PEHA, so that their effect on self-assembly behaviour could be

observed. Building on methods used to develop previous coarse-grained models for

OMS self-assembly, in particular the model of Pérez-Sánchez et al. [75, 77], this model

is validated against a more realistic atomistic model for silicate species [12] and is fully

compatible with the latest version of Martini, which allows the model to be applied to

a broader range of systems owing to the increased versatility of Martini 3. In addition,

this work establishes the use of fitting parameters to allow for a rational, quantitative

approach for fitting the coarse-grained silica model parameters to atomistic data, in

contrast with the purely qualitative approach adopted previously in the literature. This

chapter also presented an analysis of the effect of using different box dimensions for

self-assembly simulations that utilize CG MD models, and identified that elongated

and “half-cubic” box dimensions were particularly effective for simulating liquid crystal

phase assembly.

In Chapter 5, an experimental investigation into the synthesis of OMS following a

rapid, room temperature synthesis was presented. The incorporation of bio-inspired ad-

ditives into this synthesis was also investigated. This work, which was carried out follow-

ing a design of experiments (DOE) approach, identified several key factors that strongly

impacted both the synthesis yield and resultant material properties. The synthesis yield
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was shown to be most strongly impacted by silica precursor concentration and the sil-

ica to surfactant ratio. A much greater yield was obtained for samples synthesised at

higher silica concentrations (> 100 mM), however, yield was observed to decrease sig-

nificantly as the silica to surfactant ratio was increased. However, incorporating even

small amounts of the bio-inspired additive PEHA into the synthesis results in a marked

increase in yield. The yield of synthesis is proposed to be primarily affected by com-

petitive formation of colloidal silica particles outside of the silica-surfactant mesophase.

The structure of the materials obtained in this synthesis, most notably the BET surface

area and degree of structural ordering of pores, were shown to be affected by several

factors, including the silica to surfactant ratio, reaction pH and the presence of certain

bio-inspired additives. The effect of silica to surfactant ratio was investigated in CG

MD simulations, and it was shown that varying this parameter substantially changed

the balance of electrostatic charge at the silica-surfactant interface under the condi-

tions at which self-assembly takes place. Therefore, it was proposed that this balance of

charge is critical to achieving a well-ordered hexagonal mesophase which results in more

well-ordered OMS. The observed effect of reaction pH and additives was proposed to be

the result of the impact these factors had on reaction kinetics. Factors that promoted

faster silica condensation reactions, following acid addition, produced more well-ordered

materials, suggesting that the well-ordered mesophase formed at high pH was “locked

in” as pH is lowered. In particular, in CG MD simulations, PEHA, which promoted

more ordered structures, was shown to be present at the silica-surfactant interface prior

to acid addition, whereas arginine, which did not promote order, was not. Since the

amine groups in PEHA are known to catalyse silica condensation reactions, this sup-

ports the hypothesis that rapid reaction following acid addition is essential to producing

well-ordered OMS following this method. This finding offers a promising avenue of in-

vestigation for rapidly producing well-ordered OMS by maximising silica reaction rate

following self-assembly at high pH.

In Chapter 6, a CG MD model was developed for the amine surfactant dodecy-

lamine (DDA), which shows interesting pH responsive behaviour and has been used

as a surfactant template in the synthesis of hexagonal mesoporous silica [34]. Surfac-
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tants with this pH responsive behaviour have great potential for a synthesis of OMS

by methods which are able to extract and recycle the surfactant template by exploting

this behaviour. Using this model, the phase behaviour of DDA, following changes in

both surfactant concentration and degree of charged surfactant species, was explored,

clearly demonstrating how phase behaviour is strongly dependent on the proportion

of charged DDA species, which experimentally can be controlled by modifying solution

pH. A preliminary investigation into a ternary DDA/water/silica system was presented,

showing that the relative proportions of both surfactant and silicate species which are

charged strongly influences self-assembly behaviour, as does the speciation of silicate

species. This model, and the method presented in this chapter, provide a crucial step

towards exploiting pH-responsive surfactants for use in producing well-ordered meso-

porous silica, as well as optimizing their use in a variety of other applications.

Through this work, two main mechanistic factors can be highlighted as having pro-

found impact on the degree of order of OMS materials. The first of these, which occurs

during the self-assembly process itself, is the balance of charge at the silica-surfactant in-

terface. This factor is controlled by modifying the relative proportions of charged species

present in the system, as was clearly demonstrated by thorough simulation studies of

modifying silica to surfactant ratio in the case of OMS self-assembly (see Section 5.3.5)

or modifying the proportion of charged surfactant species in the case of DDA phase

behaviour (see Section 6.3.2). This charge-matching behaviour, which was previously

identified by Centi et al. [11], is explored in detail in this work and appears to be

the primary drive behind the formation of thermodynamically stable ordered surfactant

mesophases which provide the template for OMS materials. Achieving these ordered

structures in the early stages of OMS synthesis is essential to achieving ordered struc-

tures in the final materials. The second critical factor behind achieving well-ordered

mesoporous silica appears to be the optimisation of silica condensation reaction kinet-

ics. Upsetting the conditions under which OMS self-assembly takes place will lead to

disordering of the material, as demonstrated by CG MD simulations of the effect of

changing system pH (see Section 5.3.5). The traditional synthesis method for OMS

relies on hydrothermal treatment to maintain the equilibrium structure of the silica-
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surfactant mesophase, whilst sufficient silica condensation reactions occur to lock in the

porous structure. However, alternative methods that use pH modification to promote

rapid silica condensation reactions must pay close consideration to how the rate of these

reactions can be maximized to lock in this structure before disordering can occur. By

optimizing these two factors, it will be possible to synthesize mesoporous silica with a

high degree of order following rapid, low-energy and environmentally friendly methods.

7.2 Future Work

Progression of this work could follow either of the two main mechanistic factors which

were identified above. The first is related to understanding and controlling the equilib-

rium structures that form in the early stage of OMS synthesis. Whilst the model devel-

oped in this work is perfectly adequate for describing the self-assembly of a CTAB/silica

mesophase at high pH (> 13), which gives rise to MCM-41, the methods employed could

also be extended to study precursor solutions of other mesoporous silica materials, such

as SBA-15 [6] or HMS [34], to similar effect. One potential avenue of investigation would

be to focus on those surfactants that may be more easily removed from the porous sil-

ica structure following synthesis, such as pH-responsive amine surfactants which were

investigated in this work (see Chapter 6). Another family of surfactants with great

potential in this area are amino acid based surfactants, particularly those that possess

cleavable amide groups, which may present an alternative approach for template re-

moval [255]. Due to the strong electrostatic interactions that make template removal

challenging, milder methods of template removal (compared with calcination) often rely

on modification of system pH [37]. Therefore, modelling the pH-responsive behaviour

of these surfactants is crucial to understanding how these species can be removed from

silica surfaces without destruction of the valuable porous material.

In this work, CG MD simulations were shown to be effective in understanding the

way in which bio-inspired additives can complement the synthesis of templated OMS.

However, simulations were limited to only two available bio-inspired additives, out of

a broad range of potential species [15]. With these methods established, it would be
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possible to use simulations to screen a large number of potential bio-inspired additives

which may assist in identifying candidates for further experimental synthesis studies.

Furthermore, this system still has great potential to be further optimized, taking into

account the important factors identified in this work such as silica to surfactant ratio,

pH, silica concentration and reaction time. Simulation studies could be used to predict

optimal conditions for synthesis, allowing for more efficient design of future experiments.

The second mechanistic factor relates to the kinetics of silica condensation, which,

as identified in this work, play a crucial role in locking in the ordered equilibrium

structures that form. The models presented in this work are non-reactive, that is, silica

condensation reactions are not explicity represented, meaning that the speciation of

silica oligomers is fixed for any given simulation. True representation of how the kinetics

of silica reactions disrupt, or lock in, the structures which form at high pH would require

a CG reactive model for silica condensation. Such a model has already been presented

by Carvalho et al., compatible with Martini 2 [92]. While the same method could be

applied to this Martini 3 model, it is not straightforward to modify the reaction rate

of silica species using this method. Since the relative rates of surfactant self-assembly

and silica condensation reactions are clearly of great importance to understanding this

phenomenon, creation of a model in which the silica reaction rate can be modified is

critical. One potential approach would be to adopt the recently published reactive

Martini approach of Sami et al. [256], which is compatible with Martini 3. In this

approach, energetic barriers can be applied to reactive sites, allowing the reaction rate

to be tuned. With this approach, the effect of reaction rate on phase behaviour could

be observed, providing additional evidence for the findings presented in this work.
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Appendix A

Full Experimental Results

Full experimental results for samples synthesised in Chapter 5 are provided in this

section. Table A.1 contains sample weights and yields. Table A.2 contains porosity

data obtained by gas adsorption and XRD. Figures A.1 through A.4 contain adsorption

isotherms. Figures A.5 through A.8 contain pore size distribution plots determined by

BJH desorption and XRD patterns.
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Table A.1: Sample weights and calculated yields for experimental work.

Sample
No.

Dried
Weight

(g)

Calcined
Mass
(g)

Organics
Mass
(g)

Organics
Content

(%)

Yield
(%)

1-1 0.49 0.019 0.474 96 13
1-2 9.01 0.526 8.479 94 78
1-3 0.00 0.000 0.004 100 0
1-4 1.07 0.565 0.503 47 84
1-5 0.80 0.015 0.788 98 9
1-6 10.54 0.438 10.099 96 57
1-7 0.02 0.008 0.012 61 5
1-8 1.26 0.712 0.547 43 94
1-9 1.40 0.047 1.352 97 29
1-10 10.91 0.489 10.420 96 82
1-11 0.15 0.065 0.090 58 40
1-12 1.26 0.543 0.712 57 81
1-13 1.47 0.048 1.422 97 30
1-14 13.23 0.573 12.655 96 80
1-15 0.14 0.063 0.078 56 39
1-16 0.96 0.440 0.521 54 58
2-1 1.20 0.52 0.68 56 87
2-2 0.57 0.28 0.29 50 47
2-3 0.26 0.10 0.16 63 16
2-4 1.30 0.55 0.75 58 91
2-5 0.47 0.23 0.24 50 39
2-6 0.21 0.10 0.11 51 17
3-1 1.14 0.48 0.66 59 80
3-2 1.20 0.47 0.73 61 78
3-3 1.14 0.44 0.69 61 74
3-4 1.19 0.39 0.80 67 65
3-5 1.16 0.49 0.67 58 81
4-1 0.73 0.39 0.34 47 65
4-2 0.84 0.48 0.36 42 80
4-3 0.78 0.42 0.36 46 69
4-4 0.49 0.25 0.25 50 41
4-5 0.87 0.47 0.40 46 78
4-6 0.88 0.51 0.37 42 86
4-7 0.64 0.34 0.30 47 57
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Table A.2: Summary of the porosity data for all samples that were characterized by N2

adsorption and XRD. The variables are fully described in Section 5.2.3. Comparison is
made to available material properties for MCM-41 samples from literature (Samples A,
B and C).

Sample
No.

Primary
Isotherm

Type

SBET
(m2 g−1)

Vpore
(cm3 g−1)

dpore
(nm)

d100
(nm)

a0
(nm)

twall
(nm)

I200
/I110

A [5, 26] IV(a) 1040 0.79 4.00 3.98 4.60 0.60 0.62
B [146] - - - - 3.48 4.02 - 0.65
C [191] IV(a) 1312 0.86 3.14 3.05 3.52 0.38 0.00

1-2 IV(a) 1120 0.906 2.48 4.03 4.65 2.17 0.00
1-4 IV(a) 1005 0.828 2.45 3.88 4.48 2.03 0.28
1-6 IV(a) 970 0.721 2.51 3.98 4.60 2.09 0.00
1-8 IV(a) 1030 0.839 2.30 3.81 4.40 2.10 0.27
1-10 IV(a) 1181 0.966 2.63 3.80 4.39 1.76 0.00
1-12 IV(b) 1259 0.834 2.12 3.50 4.04 1.92 0.06
1-14 IV(a) 1217 1.003 2.55 3.82 4.41 1.86 0.04
1-16 IV(b) 1210 0.850 2.14 3.68 4.25 2.11 0.08
2-1 IV(b) 1259 0.971 2.31 3.56 4.11 1.80 0.12
2-2 IV(b) 1165 0.841 2.15 3.40 3.93 1.78 0.46
2-3 IV(a) 1159 0.843 2.13 3.44 3.97 1.84 -
2-4 IV(a) 1193 0.857 2.22 3.52 4.06 1.84 0.11
2-5 IV(b) 1144 0.824 2.14 3.43 3.96 1.82 0.50
2-6 IV(a) 1194 0.898 2.25 3.47 4.01 1.76 0.07
3-1 IV(b) 1149 0.789 2.18 3.39 3.91 1.73 0.06
3-2 IV(b) 1203 0.835 2.17 3.38 3.90 1.73 0.00
3-3 IV(b) 1218 0.938 2.40 3.63 4.19 1.79 0.28
3-4 IV(a) 1273 0.969 2.35 - - - 0.00
3-5 IV(b) 1218 0.911 2.24 3.50 4.04 1.80 0.20
4-1 IV(b) 983 0.706 2.20 3.55 4.10 1.90 0.52
4-2 IV(b) 961 0.736 2.27 3.68 4.25 1.98 0.49
4-3 IV(b) 926 0.679 2.24 3.67 4.24 1.94 0.00
4-4 IV(b) 1186 0.830 2.09 3.44 3.97 1.88 0.18
4-5 IV(a) 783 0.608 2.80 - - - 0.00
4-6 IV(a) 878 0.686 2.74 - - - 0.00
4-7 IV(b) 1142 0.841 2.10 3.40 3.93 1.83 0.29
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Appendix A. Full Experimental Results

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.1: N2 adsorption isotherms for two-level four-factor screening samples. Letters
a-h represent samples 1-2, 1-4, 1-6, 1-8, 1-10, 1-12, 1-14 and 1-16, sequentially. The
blue line indicates adsorption while the green line indicates desorption.
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Appendix A. Full Experimental Results

(a) (b)

(c) (d)

(e) (f)

Figure A.2: N2 adsorption isotherms for component ratio investigation samples. Letters
at to f represent samples 2-1 to 2-6, sequentially. The blue line indicates adsorption
while the green line indicates desorption.
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Appendix A. Full Experimental Results

(a) (b)

(c) (d)

(e)

Figure A.3: N2 adsorption isotherms for additive investigation samples with different
additives: (a) L-arginine, (b) ammonia, (c) PEHA, (d) propylamine, (e) no additive.
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Appendix A. Full Experimental Results

(a) (b)

(c) (d)

(e) (f)

(g)

Figure A.4: N2 adsorption isotherms for ordered mesoporous silica samples using PEHA
as an additive in synthesis. Letters a to g represent samples 4-1 to 4-7, sequentially.
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Appendix A. Full Experimental Results

Figure A.5: Pore size distributions (left) and XRD data (right) for two-level four-factor
screening samples. For XRD data, baseline intensity was removed manually to allow
for easier comparison between peaks.
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Appendix A. Full Experimental Results

Figure A.6: Pore size distributions (left) and XRD data (right) for component ratio
investigation samples. For XRD data, baseline intensity was removed manually to
allow for easier comparison between peaks.
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Appendix A. Full Experimental Results

Figure A.7: Pore size distributions (left) and XRD data (right) for investigation with
different additives. For XRD data, baseline intensity was removed manually to allow
for easier comparison between peaks.
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Appendix A. Full Experimental Results

Figure A.8: Pore size distributions (left) and XRD data (right) for samples using PEHA
as an additive in synthesis. For XRD data, baseline intensity was removed manually to
allow for easier comparison between peaks.
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Data Availability

All data underpinning this thesis is openly available from the University of Strathclyde

KnowledgeBase at https://doi.org/10.15129/bea3ae03-cf04-42ca-8804-52af416

b2289.
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