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Abstract

The thesis reports on two strands of experiments in which we employ Bose-
Einstein condensates of caesium atoms. Caesium provides favourable scattering
properties due to a rich spectrum of magnetic Feshbach resonances at low fields.
In particular, we take advantage of the tunability of the interaction strength to
implement experiments to study matter-wave interferometry and solitons.

In a first series of experiments, we employ a magnetic levitation scheme and
the tunability of caesium BEC to measure micro-g accelerations by using atomic
interferometry, demonstrating free-evolution times of 1 s. We analyse the intrinsic
effects of the curvature of our force field due to the magnetic levitation, and we
observe the effects of a phase-shifting element in the interferometer paths.

In the second series of experiments, we exploit the tunability of our Bose-
Einstein condensate to generate bright matter-wave solitons in quasi-1D geome-
try. We study the fundamental breathing mode frequency of a single matter-wave
soliton by measuring its oscillation frequency as a function of the atom number
and confinement strength and we observe signatures of the creation of second-
order solitons.

Aside from introducing some general concepts of ultra-cold atomic collisions
and BECs, I also present a brief overview of the experimental apparatus. This
includes details of the vacuum setup, laser cooling, magnetic field coils and diag-
nostic procedures, and sequence for generating BECs of caesium atoms.

ii



Acknowledgement

The achievement of my PhD would have not been possible without the contri-
bution and the help of many extraordinary people that I met during these four
years.

I want to dedicated a special thank to my first supervisor Dr. Elmar Haller.
Elmar, you have been the best supervisor I could of asked for. You trusted
me with the construction of the new experiment and you provided me your full
support during these years. Most of my growth as experimental physicist is due
to your dedication. You are an awesome and skilled scientist who is an incredible
hard worker. I learned a lot from you. Outside the lab, you have been always
willing to help me with any problem I encountered during my stay in Glasgow. I
am infinitely grateful for your support.

Another special thank is devoted to my second supervisor Prof. Stefan Kuhr.
You gave me the opportunity of joining your research group and allowing me to
work with very talented people. Your precious advices and your enthusiasm have
been the perfect ingredients for pushing me to do my best and for improving
my self-confidence. I admire your clear way of explaining physics, it is simply
fantastic.

I also would like to thank my lab mate Craig Colquhoun, who shared with
me the good and bad times in the lab. You have been a huge help during these
four years, which has been essential to my success. Your kindness is a quality
that belongs to extraordinary man. You are a talented scientist, I wish you all
the best in your career.

I thank Andrés Ulibarrena, Adrián Costa and Matthew Johnson who shared
with me the best lunches in the best places in Glasgow, talking about politics,
history, physics and meaning of life. We had nice weekends in which we prepared
typical dishes from our home countries. I am appreciative of all of them.

I thank Dylan Cotta who hosted me during the first weeks in his flat and
invited me to eat the best cous cous I ever had.

I thank all the members of the quantum gas microscope experiment, Bruno
Peaudecerf, Manual Andia, Ilian Despard, Harikesh Ranganath, Matthew Brown
and Arthur La Rooij for their help and suggestions along with all other members
of the EQOP group. The group encourages collaboration and inspires a warm
welcoming environment for all that have the pleasure of working here.
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Chapter 1

Introduction

In 1925, A. Einstein extended the statistical arguments introduced for photons

by S. Bose [1] to massive particles and discovered a phase transition in which a

macroscopic number of particles populate the ground state of the physical sys-

tem [2]. This phenomenon was called Bose-Einstein condensation. Despite the

initial skepticism about the real existence of Bose-Einstein condensation [3] in

nature, F. London speculated in 1938 about a connection between Bose-Einstein

condensation and the newborn phenomenon of superfluidity in liquid 4He [4],

which was discovered by P. Kapitza, J. F. Allen and D. Misener [5, 6]. How-

ever, this relationship was still not evident due to the strong interparticle in-

teractions between helium atoms. In 1947 N. Bogoliubov employed the idea of

Bose-Einstein condensation for the development of the theory of superfluidity for

weakly interacting Bose gases [7]. A deeper understanding of the connection be-

tween Bose-Einstein condensation and superfluidity was provided by L. Landau,

O. Penrose and L. Onsager with the introduction of the concept of off-diagonal

long-range order [8–10], which is intimately related to the coherent behaviour of

a Bose-Einstein condensate (BEC).

Despite remarkable theoretical advances for weakly interacting systems, strongly

interacting superfluid 4He was the principal subject of experimental investiga-

tion. In 1975, the proposal of laser cooling of neutral atoms by T. Hänsch and

A. Schawlow [11], made an important advance towards the goal of a weakly in-

teracting BECs. A few years later, the achievement of micro-kelvin temperatures
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in vapour of alkali-metal atoms by laser cooling [12] in combination with the

development of evaporative cooling [13] for hydrogen atoms, led to the realisa-

tion of Bose-Einstein condensation in 1995, for weakly interacting dilute gases of

rubidium-87 [14], sodium-23 [15] and lithium-7 [16]. These pioneering experimen-

tal works were a milestone in quantum physics and they paved the way for the rich

and prolific field of quantum gases. Since then, the coherent and the weakly inter-

acting nature of Bose-Einstein condensates of alkali-metal atoms were intensively

explored, leading to the demonstration of matter-wave interference [17,18], to the

development of atom lasers [19,20], to the realisation of Josephson effects [21,22],

to the observation of four wave mixing with matter waves [23], vortices [24, 25],

vortex lattices [26, 27], dark solitons [28, 29], bright solitons [30, 31]. In addi-

tion, BECs in optical lattice potentials are employed for studying and simulating

strongly correlated quantum systems in condensed matter physics [32,33].

In this context, it is desirable to have a high degree of control of most of

the parameters which characterise the system, in particular of the interatomic

interaction strength. Among the other alkali-metal atoms, caesium offers very

favourable scattering properties and a precise control of the interaction strength

due to a rich spectrum of magnetic Feshbach resonances at low magnetic field

strengths [34, 35]. In particular, caesium in the |F = 3,mF = 3〉 state possesses

a broad resonance at -12.8 G, which causes a smooth variation of the scattering

length, permitting to tune the strength of the interactions over a wide range and

with high precision. In addition, the zero crossing associated with this resonance

is located at a relatively low magnetic field of 17.12 G in comparison with the other

alkali-metal elements [30, 36–40]. This exceptional control on the interactions of

caesium atoms was successfully exploited for the first proof of Efimov resonances

in thermal clouds [42], for the suppression of collisional dephasing mechanisms

in Bloch oscillations [43], for the first realisation of a super-Tonks-Girardeau

gas [44] and for the creation of a metastable Mott-insulator state with attractive

interactions [45]. Caesium is also the heaviest stable alkali element and possesses

and a relatively large hyperfine splitting. These properties are convenient for

reaching very low temperatures just by laser cooling [46–48].
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Despite the advantages described above, caesium was the last stable alkali-

metal atom to reach the quantum degeneracy regime [41], after long lasting at-

tempts [49–51]. The main causes for this delay were exceptionally large two-body

spin relaxation rates in the |F = 4,mF = 4〉 state [50,52], and in the |F = 3,mF = −3〉
state [49,53,55], and later an unexpected large three-body recombination rate in

the state |F = 3,mF = 3〉 [54]. Due to these intrinsic features, an uncommon

procedure, based on the employment of optical traps combined with magnetic

levitation and an offset field to tune interactions, was developed in 2002 by the

group of R. Grimm in Innsbruck for reaching Bose-Einstein condensation [41].

The thesis focusses on two strands of experiments in which we exploited the

favourable features of BEC of caesium. In the first series of experiments we em-

ploy a magnetic levitation scheme and the tunability of caesium BEC to measure

micro-g accelerations by using atomic interferometry [56]. We also study the

intrinsic effects of the curvature of our force field due to the magnetic levita-

tion, and we observe the effects of a phase-shifting element in the interferometer

paths. Also, we demonstrate expansion times of 1 s in a guiding dipole beam. In

the second series of experiments we take advantage of the aforementioned zero

crossing at 17.12 G to set the effective interaction between the atoms to attrac-

tive, allowing us to generate bright matter wave solitons in quasi-1D geometry.

In particular, we study the fundamental breathing mode frequency of a single

matter-wave soliton by measuring its oscillation frequency as a function of the

atom number and confinement strength [57]. Furthermore, we observe strong

indications of the creation of higher-order solitons, in particular the second-order

soliton.

This thesis is structured as follows: in Chapter 2, I introduce the general

concepts such as the scattering length, Feshbach resonances and Bose-Einstein

condensation. Chapter 3 provides an overview on our experimental apparatus and

on the cooling sequence for generating BECs of caesium. In Chapter 4, I report

on the interferometric measurement of micro-g acceleration with levitated atoms,

and in Chapter 5, I discuss the excitation modes of a bright matter-wave soliton.

In the concluding Chapter 6, I draw the conclusion, and I present some ideas for
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Chapter 2

General concepts

In this chapter, I recall the basic theoretical concepts which are used frequently in

the framework of this thesis. It is organised as follows: in Section 2.1, I describe

the general theory describing collisions between ultra-cold atoms. In Section 2.2,

I discuss and provide a brief explanation on the mechanism of magnetic Feshbach

resonances. Section 2.3 illustrates the phenomenon of Bose-Einstein condensation

and focuses on BECs in harmonic trapping potentials.

2.1 Collisions between ultra-cold atoms

This section reviews and summarises basic concepts of scattering theory which

are essential in the description of interactions in dilute atomic gases in the low-

energy regime. We are dealing with dilute gases and we can assume that two-body

collisions prevail, simplifying considerably the scattering problem. An exhaustive

treatment of the scattering theory can be found in textbooks [58–61], summer

school lectures [62,63] and a review paper [64].

2.1.1 Elastic collisions

Let us consider two distinguishable particles of mass m, with no internal degrees

of freedom, which interact by means of the two-body potential V (r), with r

being the relative coordinate. In the reference frame of the centre of mass the

Schrödinger equation describing the system is:

6



2.1. COLLISIONS BETWEEN ULTRA-COLD ATOMS

(
p2

2µ
+ V (r)

)
ψk(r) = Ekψk(r) , (2.1)

where µ = m/2 is the reduced mass of the particles and Ek = ~2k2/2µ is the

energy value of scattering state. Here, k is the wave number which in general is

a vector.

At this point, one needs to find a solution of the previous equation and this

is a complex task if we consider a general potential V (r). For our purposes we

can assume a spherically symmetric potential, V (r), which has a finite range rb.

With this assumption, the asymptotic form, i.e for rb � r, of the solution of

equation 2.1 can be written as:

ψk(r) = eik·r + f(k, θ)
eikr

r
, (2.2)

where the first term represents the incoming plane wave and the second describes

the outgoing scattered wave as shown in Figure 2.1. Here, k = |k| is the modulus

of the wave-number vector. The quantity f(k, θ) is called the scattering amplitude

and takes in account all effects which are coming from the interaction between the

two particles. Since we assumed a spherically symmetric potential, the scattering

amplitude will depend on the scattering energy through k and on the direction

Figure 2.1: Representation of the scattering of an incoming plane wave with a
wave vector k, from a spherically symmetric potential V (r) with a finite range
rb.

7



2.1. COLLISIONS BETWEEN ULTRA-COLD ATOMS

through the scattering angle θ between the incoming particle and the observation

direction. It can easily be shown that it is possible from the scattering amplitude

f(k, θ) to calculate the cross-section of the collision by integrating the scattering

amplitude over the solid angle Ω:

σtot(k) =

∫
dΩ |f(k, θ)|2. (2.3)

This results is valid only for the scattering of two distinguishable particles. For

identical particles the orbital component of the wave function must be symmet-

rical or antisymmetrical depending whether the particles are bosons or fermions.

This fact leads to the following expression for the cross-section:

σtot(k) =

∫
dΩ |f(k, θ)± f(k, π − θ)|2, (2.4)

with 0 ≤ θ ≤ π/2, where the plus sign refers to bosons and the minus sign to

fermions.

2.1.2 Partial-wave decomposition

To carry out a more detailed analysis, it is possible to decompose the scattered

wave functions into a radial part and into a set of spherical harmonic functions

with different angular momenta, which are labelled by the orbital quantum num-

ber l = 0, 1, 2, .... This way of expressing the wave function is called partial-wave

expansion and each partial wave is named depending on the value of orbital quan-

tum number i.e l = 0 is s-wave, l = 1 is p-wave, etc. For each partial wave it is

possible to obtain a one-dimensional Schrödinger equation for the determination

of radial wave functions uk,l(r)

[
d2

dr2
+ k2 +

l(l + 1)

r2
+

2µ

~2
V (r)

]
uk,l(r) = 0, (2.5)

where the additional term l(l+ 1)/r2 represents the repulsive centrifugal barrier.

At large distances, r � rb, the interatomic potential becomes negligible and the

asymptotic solution of the previous equation has the form

8



2.1. COLLISIONS BETWEEN ULTRA-COLD ATOMS

Figure 2.2: a) Comparison between the solutions of the radial wave function in
the absence (red line) or in the presence (blue line) of the interatomic potential
(grey line). For distances which are bigger than the characteristic potential range
the main effect of the potential is to add a phase shift δl on the partial wave. b)
Effective radial potentials experienced by two colliding atoms for angular momen-
tum values of l = 0 and l = 1 (red curves). In particular for l = 1 the presence of
a potential barrier can be noticed. For low enough collisional energies (blue line)
this barrier suppresses the phase shift contribution of partial waves with l > 0.

uk,l(r) ∼ Al sin

(
kr − πl

2
+ δl(k)

)
, (2.6)

which is analogous to the free wave solution except for a phase shift δl(k), which

takes into account the effects of the inter-atomic potential on the reflected outgo-

ing wave, and for an amplitude term Al, which in general depends on the orbital

quantum number l. We can thus express the scattering amplitude in terms of the

phase shifts δl(k) of the partial waves:

f(k, θ) =
∞∑

l=0

2l + 1

k cot δl(k)− ikPl(cos θ), (2.7)

where Pl(cos θ) are the Legendre polynomials. The cross-section of the scattering

is given by

σtot(k) =
4π

k2

∞∑

l=0

(2l + 1) sin2δl(k). (2.8)

9



2.1. COLLISIONS BETWEEN ULTRA-COLD ATOMS

Figure 2.3: Differences between the solution u0(r) and the extended solution v0(r)
for low energies. The extended solution matches totally the full solution for large
distances and approximates it for r which tends to zero. For small values of r,
expanded view in dashed box, the zero crossing of the extended wave function
represents the geometrical interpretation of scattering length a. In this particular
case the scattering length is positive but it can also assume negative values.

For identical particles, only even (bosons) or odd (fermions), values of the orbital

quantum number l contribute to the computation of the scattering amplitude and

the cross-section.

2.1.3 Scattering length

We are interested in the collision properties of bosons at very low collisional

energies, usually below 100 µK, which are lower than the centrifugal barrier1 as

depicted in Figure 2.2b. Thus, we can neglect the phase shift δl(k) derived from

the partial waves with l > 0 and consider only the s-wave contribution to the

scattering amplitude. In this limit we can thus focus on equation 2.5 with l = 0.

We know that for distances r large compared to the range of the potential the

solution uk,0(r) behaves as sin[kr + δ0(k)] [61]. Let us denote with vk,0(r) the

function that extends, for all r, the asymptotic form of the full solution uk,0(r),

i.e vk,0(r) = A sin[kr + δ0(k)]. If we expand the extended solution vk,0(r) around

kr = 0 we obtain:

vk ∼ A(sin δ0(k) + kr cos δ0(k)) ∝ (r − a), (2.9)

1For caesium the energy needed for overcoming the centrifugal barrier is about 190 µK [65].

10



2.1. COLLISIONS BETWEEN ULTRA-COLD ATOMS

where we have defined the scattering length a

a = − lim
k→0

tan δ0(k)

k
. (2.10)

The scattering length has a simple geometrical interpretation: it is the point of

intersection of the extended wave function vk,0(r) with the r axis that is the clos-

est to the origin for k or E that goes to zero, as show in Figure 2.3. The scattering

length can assume either positive or negative values and this corresponds respec-

tively to an effective repulsion or attraction between the atoms [61]. It is possible

to write the scattering amplitude and the cross section for bosons in terms of the

scattering length a:

f(k) = − a

1− ika (2.11)

σB(k) =
8πa2

1 + k2a2
. (2.12)

As can easily be noted from the previous equations, the scattering length is the

only relevant parameter to describe the collision process in the low-energy limit,

although its value depends crucially on the exact potential V (r). In particular,

the presence of a bound state which is immediately close to the continuum has

a considerable effect on the scattering length making it very large and positive if

the bound state is below or large and negative if it is above [61,62].

Generally, in order to study the macroscopic behaviour of the dilute gas at

low temperatures, one can neglect the real potential and consider the scattering

length as a given experimental parameter. Furthermore, it is possible to introduce

a so called pseudopotential:

Vpseudo(r) =
4π~2a

m
δ(r)

∂

∂r
(r...), (2.13)

which reproduces exactly, for arbitrary k, the result for the scattering amplitude

reported in equation 2.11. The pseudopotential Vpseudo(r), in the limit of small
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values of ka, can be approximated by the delta potential [61,62]:

Vd(r) = gδ(r), (2.14)

with:

g =
4π~2a

m
. (2.15)

2.2 Feshbach resonances

This section is devoted to an introduction and a brief explanation of the physics of

the so-called Feshbach resonances. Feshbach resonances were investigated initially

in the contexts of nuclear physics by H. Feshbach [66, 67] and of atomic physics

by U. Fano [68] for the study of the resonance phenomena that originate from the

coupling of a discrete state to the scattering state. In the framework of ultra-cold

gases, Feshbach resonances have been considered in references [69,70] which first

pointed out the possibility of using an external magnetic field for changing the

sign and magnitude of the scattering length of the atoms. The first experimental

demonstration of a magnetically induced Feshbach resonance in ultra-cold atoms

was provided by W. Ketterle’s group in 1998 [36]. Since then, these resonances

have become a crucial tool for the study of collapse of BECs [71–73], soliton

generation [30, 31], molecule formation [74, 75], for exploration of the crossover

from molecular BEC to a BCS superfluid of weakly bound Cooper pairs in fermi

gases [76–78], and very recently for the creation and investigation of the Bose

polaron in BEC [79].

2.2.1 Description of a magnetic Feshbach resonance

We give a general picture on the underlying physics of a Feshbach resonance.

Further details on this topic can be found in the review article [80]. The typical

mechanism that gives rise to a Feshbach resonance is depicted in Figure 2.4. A

pair of atoms is prepared in the scattering state, also called incident channel, with

a corresponding collision energy Ecoll. The atoms will experience a background
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2.2. FESHBACH RESONANCES

Figure 2.4: Representation of a two-channel magnetic Feshbach resonance: the
open channel potential (red line) sets the background scattering length abg as
shown in the left plot (dashed blue line), a closed channel which has a bound
molecular state and a different magnetic moment (green line) can couple to the
incident channel (blue line). The detuning between the energy of the bound state
and the scattering state can be varied by applying an external magnetic field.
The value of the scattering length a is affected by the presence of bound state in
the closed channel as shown on the left plot. At the resonance point, i.e B0, the
scattering length diverges.

potential Vbg(r), called open channel, which, in the asymptotic limit, lies below

the incident channel. We denote with Vc(r), named closed channel, the molecular

potential that the atoms would feel if they were in a different internal state. We

also assume that this potential lies above the incident channel in the asymptotic

limit, and possesses at least a bound molecular state near the threshold of the

open channel. If the incident and closed channel are coupled together, a Feshbach

resonance appears whenever the collision energy of the scattering state in the open

channel approaches the bound molecular state of the closed channel. In particular,

in the case that the closed channel has a different magnetic moment from the open

channel, the two potentials can be varied by the amount ∆E = ∆µ·B by applying

an external magnetic field B. The presence of such a resonance affects the value

of the scattering length a, which can be expressed as a function of the magnetic

field B by the formula [81]:

a(B) = abg

(
1− ∆B

B −B0

)
. (2.16)
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Here abg, called background scattering length, is the value of scattering length

when the bound state is far from resonance, B0 represents the position of the

resonance, and ∆ is the width of the resonance which depends on the coupling

strength between the two channels. The typical behaviour of the scattering length

is shown in Figure 2.4: it diverges nearby the resonance position B0 and tends

towards the value abg for magnetic field values B far from B0. Associated with a

Feshbach resonance there is the zero crossing point which occurs at B = B0+∆B.

This point is fundamental since it allows to switch the sign of the interactions.

2.2.2 Feshbach resonances in caesium

Caesium is characterised by a rich spectrum of Feshbach resonances and molecu-

lar states. The richness of collision properties is due mainly to strong relativistic

interactions such as magnetic spin-spin interaction and second order spin-spin

interaction [80]. The first intensive investigations on Feshbach resonances of cae-

sium atoms have been performed by the group of S. Chu [34, 82, 83] in which

more than 60 Feshbach resonances were discovered at relatively low magnetic

field (B < 250 G). These early results led to the construction of accurate theoret-

ical models of the mutual potential of two caesium atoms [34, 84, 85]. Following

experimental works [86–88] have found good agreement with these models. Re-

cently, new Feshbach resonances, for caesium in its absolute ground state, have

been discovered in the high magnetic field region between 450 G and 1000 G and

have been used for the improvement of the previously mentioned theoretical mod-

els [35].

Figure 2.5 shows the magnetic field dependence of the scattering length for

caesium atoms, in the absolute ground state |F = 3,mF = 3〉, in the range we

are interested in for our experiment. A broad resonance located at around -

12.8 G causes a smooth variation of the scattering length. This allows us to tune

the scattering length with high precision. An interesting point is the magnetic

field value in which the scattering length is zero. This point is at 17.12 G and

has been precisely measured by minimising the interaction-induced dephasing

of Bloch oscillations [43]. The zero crossing is particularly useful because it
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Figure 2.5: Scattering length a, in Bohr radii, a0, versus magnetic field B for
the |F = 3,mF = 3〉 state of caesium. A broad Feshbach resonance positioned at
−12.8 G causes a smooth variation of the scattering length and allow us to fine
tune it for a wide range of scattering length values. At the zero crossing the value
of the slope is 67.5 a0/G . Further narrow resonances are located 19.8 G, 47.9 G
and 53.4 G.

permits to change sign of the scattering length and this is what we will need later

for studying Bose-Einstein condensates in the regime of attractive interaction.

Additional narrow resonances are positioned at 19.8 G, 47.9 G and 53.4 G [35,86].

2.3 Theory of Bose-Einstein condensation

The phenomenon of Bose-Einstein condensation derives from the indistinguisha-

bility of identical particles. In particular, for bosons, the assumption that the

wave function of the total system must be symmetric by exchange of atoms in

a pair of particles affects the statistical behavior of a Bose gas. A qualitative

description starts by considering the relevant length scales which describe the

system [61]. The spatial density of the gas n sets the mean interparticle distance

d = n−
1
3 whereas the temperature T of the gas enters in the expression of the so
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called thermal deBroglie wavelength defined by

λdB(T ) =

√
2π~2

mkBT
, (2.17)

where kB is the Boltzmann constant and m is the mass of the particle. If we

take in account the interactions between the particles of the gas, the significant

length scale is set by the range of the potential rb. For large temperatures with

λdB � rb � d, the collisions between the particles involve many partial waves

and their trajectories can be regarded as classical and the equilibrium is described

by a Maxwell-Boltzmann (MB) distribution. By cooling the atomic ensemble,

when rb � λdB � d, quantum effects manifest in the collisions, as described

previously, but, essentially, the Bose gas is still described by a MB distribution.

By further lowering the temperature or, equivalently, by increasing the spatial

density of the Bose gas, the thermal deBroglie wavelength approaches the mean

interparticle distance. Here the particles start to show wave-like behaviour and

effects of the quantum statistic due to indistinguishability are more evident. Such

a phenomenon has the feature of a phase transition and occurs for a critical

temperature Tc or critical density nc. Well below Tc or well above nc all the

particles populate macroscopically the ground state and the system behaves like

a giant matter wave.

2.3.1 Formal definition of a BEC

This simplified picture can be represented in a more quantitative and formal way.

According to Leggett [89, 90], a rigourous and general definition of a BEC has

been given by Penrose and Onsager [10]. Let us consider a system of N interacting

boson particles. We introduce the single-particle density matrix ρ(r′, r; t) defined

as

ρ(r′, r; t) = N
∑

i

pi

∫
dr2dr3...drNΨ∗i (r

′, r2, ..., rN; t)Ψi(r, r2, ..., rN; t), (2.18)
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where Ψi(r, r2, ..., rN; t) is a many-body normalised wave function which is sym-

metric under the exchange of any pair of particles and pi represent the probability

to find the system in the pure state Ψi(r, r2, ..., rN; t). The single-particle density

matrix ρ(r′, r; t) satisfies the eigenvalue equation

∫
dr′ρ(r′, r; t)ϕi(r

′, t) = ni(t)ϕi(r, t), (2.19)

where the function ϕi(r, t) represents the single-particle wave function and ni(t) is

the occupation number of the single-particle state ϕi(r, t). The functions ϕi(r, t)

are well defined in the general case of non uniform and interacting systems of

particles and do not need to be eigenfunctions of the single-particle Hamiltonian.

They also provide a basis for rewriting the single-particle density matrix in the

diagonalised form:

ρ(r′, r; t) =
∞∑

i=0

ni(t)ϕ
∗
i (r
′; t)ϕi(r, t). (2.20)

From the previous equation it is now straightforward to define a BEC as the

condition in which one of the single particle states, usually the ground state, is

macroscopically occupied. In other words, a BEC occurs when the population in

one state, denoted by N0, is of the order of the total particle number N , whereas

the other single particle states have a occupation of order one. This definition

of a BEC2 is particularly suitable because of its connection with the concept of

coherent matter waves usually associated with a BEC. Suppose the system is in

the BEC regime, it is convenient to write equation 2.20 in the separated form

ρ(r′, r; t) = N0ϕ
∗
0(r′)ϕ0(r) +

∞∑

i=1

niϕ
∗
i (r
′)ϕi(r). (2.21)

This expression highlights that the state of the atomic ensemble can be regarded

as composed by a coherent matter wave, represented by the macroscopic occupied

single particle state ϕ0(r), and an incoherent component, described by sum of dif-

2Other definitions make use of the concept of off-diagonal long-range order [91] and sponta-
neous symmetry breaking [97]. Further discussions on this topic can be found in [90,92].
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ferent single states ϕi(r) which are characterised by unity occupation and relative

random phases. If now we consider values of r and r′ such that their distance

is of the order of the deBroglie wavelength λdB, it is reasonable to expect that

the incoherent component will interfere destructively, giving a small contribution

whereas the condensate wave function contribution will still be non-negligible:

ρ(r′, r; t) ∼ N0ϕ
∗
0(r′)ϕ0(r), |r′ − r| � λdB, (2.22)

showing that in the BEC regime, matter behaves as a coherent wave. Experi-

mental confirmation of the coherent nature of a BEC has been given by many

ground-breaking experiments [17,18,93–95]. We will exploit the coherence prop-

erties of BECs for the experiment on the interferometric measurement of micro-g

acceleration with levitated atoms.

2.3.2 BEC in harmonic potentials

Additional quantitative details can be provided by analysing the standard case of

a non-interacting Bose gas in a harmonic potential. Here, I discuss the essential

results whereas for a thorough treatment I refer the reader to the following text-

books [96, 97] and review article [98]. In the framework of the grand canonical

ensemble, the average particle occupation number ni of the single-particle state

ϕi(r), associated with the energy Ei, is given by:

ni =
1

eβ(Ei−µ) − 1
, (2.23)

where β = 1/kBT and µ is the chemical potential. The chemical potential is a

constant which is fixed by the normalisation condition N =
∑

i0
ni. In the case

of our interest, i.e. the harmonic trapping potential

Vext =
1

2
mω2

xx
2 +

1

2
mω2

yy
2 +

1

2
mω2

zz
2, (2.24)
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it is possible to find the critical temperature Tc in which the BEC transition

occurs [97]:

Tc = 0.94
~ωho

kB

N
1
3 , (2.25)

where ωho = (ωxωyωz)
1
3 i.e., the geometrical average of the oscillator angular fre-

quencies. Well below the critical temperature Tc, in the limit of T = 0, the atoms

will populate macroscopically the single-particle ground state of the harmonic

potential which is given by [97]:

ϕ0(r) =
(mωho

π~

) 1
4

exp
[
−m

2~
(
ωxx

2 + ωyy
2 + ωzz

2
)]
, (2.26)

whereas the density distribution becomes n(r) = Nϕ0(r). The characteristic

length scale of the condensate is fixed by the average harmonic oscillator length:

aho =

√
~

mωho

. (2.27)

So far we have not considered the interactions between the particles in the

description. At temperatures T which are well below the critical temperature Tc,

the relevant length scales are set by the mean inter-particle distance d and by

the range of the interactions rb which in the limit low-energy collision we have

shown to be the scattering length a. In general, the scattering length can assume

either small or large values compared to the mean inter particle distance, we are

interested in the weakly interacting regime defined by the condition:

|a| � d or equivalently n|a|3 � 1. (2.28)

The Hamiltonian of a system of N interacting bosons in an external potential

Vext(r) is given by [61]:

H =
N∑

i=1

[
− ~2

2m
∇2
i + Vext(ri)

]
+

1

2

N∑

i=1

N∑

j=i

V (ri − rj), (2.29)

where V (ri − rj) is a generic two-body potential. At T = 0 we assume that
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the system is in the BEC regime, therefore all the bosons will occupy the single

particle state ϕ(r). The total wave function will be thus:

ΦN(r1, r2, ..., rN, t) =
N∏

i=1

ϕ(ri, t). (2.30)

By using a variational approach analogous to the least action principle and con-

sidering that in the limit of low energy the interparticle potential is given by

V (r) = gδ(r), it is possible to derive the so called Gross-Pitaevskii equation

(GPE) [90,97]:

i~
∂

∂t
Ψ(r, t) =

[
− ~2

2m
∇2 + Vext(r, t) + g|Ψ(r, t)|2

]
Ψ(r, t), (2.31)

where Ψ(r, t) =
√
Nϕ(r, t) is the so called order parameter3 and it is normalized

to the total particle number N :

∫
|Ψ(r, t)|2dr = N. (2.32)

The GPE was discovered by Gross and Pitaevskii [99, 100] in 1961 and later

successfully employed for the description of the superfluid properties of weakly

interacting trapped BECs [98]. For time independent external potentials we can

seek solutions of the form Ψ(r, t) = ψ(r)e−iµt/~ and substitute it in equation 2.31.

We thus obtain:

[
− ~2

2m
∇2 + Vext(r) + g|ψ(r)|2

]
ψ(r) = µψ(r), (2.33)

where µ is the chemical potential. The solution of the previous equation, in

the general case, must be found numerically. However, it is possible to find

an explicit solution when the energy of the harmonic oscillator ~ωho is smaller

than the interaction energy per particle. In this case, which is equivalent to the

condition Na/aho � 1, we can neglect the kinetic term in equation 2.33, the

3This nomenclature derives from considering the Bose-Einstein condensation a phase tran-
sition in which then appears a spontaneous symmetry breaking and thus a process that can be
described in the framework of the Landau theory of phase transitions.
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Thomas-Fermi approximation (TFA), and obtain the following solution for the

wave function:

ψ(r) =





√
µ−Vext(r)

g
if µ > Vext(r)

0 otherwise.

(2.34)

From this solution we obtain that the particle density n(r) = |ψ(r)|2 has the

shape of an inverted parabola with a peak given by:

npk =
µ

g
, (2.35)

and vanishes when the condition µ = Vext(r), is satisfied. Such condition defines

the so called Thomas-Fermi radii Ri with i = x, y, z which are:

Ri = aho

(
15Na

aho

) 1
5 ωho

ωi
. (2.36)

From the normalisation condition given by equation 2.32, it is possible to provide

an explicit expression for the chemical potential:

µ =
~ωho

2

(
15Na

aho

) 2
5

. (2.37)

The TFA describes very well the behaviour of the wave function when its variation

is such that the kinetic energy can be neglected. This assumption is no longer

valid in the proximity of the Thomas-Fermi radii where the TFA predicts the

formation of sharp edges instead of a smoother decay. The natural length for

which the wave function decays, also called the healing length, is obtained by

equating the kinetic energy and the interaction energy of equation 2.33 and is

given by [97]:

ξ =

√
~2

2mgnpk

. (2.38)
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Chapter 3

Experimental apparatus and

BEC sequence

This chapter describes the experimental apparatus and the sequence we employ

for the generation of a Bose-Einstein condensate of caesium. For achieving Bose-

Einstein condensation, a vacuum chamber, lasers for cooling, magnetic fields,

diagnostic procedures as well as computer control of the experimental sequence,

are needed. Since we started the project with empty optical tables, the construc-

tion of the whole experimental apparatus and the optimisation of the sequence

took a considerable part of my doctoral work. The work was performed collabo-

ratively with my colleague Craig Colquhoun and I will refer to his PhD thesis for

further details on our experimental apparatus and on the cooling sequence [101].

The chapter is structured as follows: Sections 3.1 to 3.3 provide an overview of

the vacuum setup, the laser setup, and the magnetic coils. In Section 3.4, we dis-

cuss our diagnostic methods, such as the imaging setup, microwave spectroscopy,

and our computer control system. In Section 3.5, we describe our experimental se-

quence to generate a BEC, which starts with a two-dimensional magneto-optical

trap (2D+MOT), which acts as a bright source of cold atoms for the 3D-MOT

cooling stage. The atoms are further cooled by degenerate Raman sideband

cooling, and then magnetically levitated. The cold cloud is captured by a large-

volume dipole trap, and its density is increased by a small-volume dipole trap.

Finally, the atoms are cooled to quantum degeneracy by evaporative cooling.
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3.1 Vacuum setup

An experiment with ultracold atoms needs to be performed in a vacuum cham-

ber in order to minimise the destructive collisions between the atoms and the

background gas. Our vacuum setup is based on a two-chamber design with two

glass cells, as shown in Figure 3.1. Glass cells are used instead of a stainless steel

chamber in order provide improved optical access and to reduce eddy currents.

The high-pressure section on the right in Figure 3.1 is the 2D-MOT chamber

and it consists of a caesium oven and an epoxy-glued glass cell. The oven is a

bellow, which contains an ampoule with 5 g of caesium. The bellow is connected

to the glass cell by a valve, which is used to regulate the amount of caesium

effusing into the chamber. The glass cell, manufactured by Japan Cell, has ex-

ternal dimensions of 50 mm × 50 mm × 150 mm, and has anti-reflection coating

at a wavelength of 852 nm on its internal and external surfaces. A pressure of

10−8 mbar in this part is provided by an ion pump (Agilent VacIon 8 L/s).

In the low-pressure section on the left in Figure 3.1 (main chamber) all cooling

stages that lead to the BEC are performed. It consist of an un-coated, optically-

contacted glass cell (Japan Cell) with external dimensions of 50 mm × 50 mm ×
150 mm, and of a double cube with four glass windows that can be used to steer

the atomic beam coming from the 2D+MOT section. The cube is connected to a

titanium sublimation pump and to an ion pump (Agilent VacIon Plus 55), which

are used to reach a pressure of 5× 10−11 mbar.

The two sections are connected by a differential-pumping tube, which allows

a differential pressure of at least four orders of magnitude to be supported, and

acts as a geometrical filter for the atomic beams. A central valve is employed to

separate the two sections when the experiment does not run. The pressures in

the two sections are monitored by two pressure gauges. In order to reduce stray

magnetic fields, each ion pump is shielded by µ-metal casing. Further details on

the preparation of the vacuum setup can be found in the PhD thesis of Craig

Colquhoun [101].
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Figure 3.1: Vacuum setup consisting of two chambers with two glass cells. On
the right: high-pressure section, consisting of a caesium oven and an epoxy-glued
glass cell. On the left: low-pressure section, consisting of an un-coated, optically-
contacted glass cell and of a double cube with four glass windows. Ion pumps
and a titanium sublimation pump keep the low pressures in the sections.

3.2 Laser cooling setup

This section describes the diode laser setup that we use to drive the cooling and

imaging transitions of caesium-133. It is based on a master-slave configuration

using polarisation spectroscopy for frequency stabilization [102,103] and tapered

amplifiers to increase the output power. Our laser frequencies are on the D2-line

with a wavelength of 852 nm. As shown in Figure 3.2, two sets of frequencies are

employed, which are close to the hyperfine transitions |F = 4〉 → |F ′ = 5〉 and

|F = 3〉 → |F ′ = 3〉 to drive cycling transitions and to repump the atoms.

The light driving the cycling transition for the magneto-optical traps is red-

detuned with respect to the |F = 4〉 → |F ′ = 5〉 transition. We use a detuning of

10 MHz and 20 MHz from the cycling hyperfine transition for the 2D+MOT and

3D-MOT respectively. To allow for a larger detuning for an optical molasses and

a compressed MOT, we employ an offset-locking scheme to control the frequency

of the 3D-MOT light over a range of 90 MHz. In addition, light for absorption

imaging is also resonant to the cycling transition and the light to generate the
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Figure 3.2: Diagram of the transitions and light detunings used for the various
cooling stages of caesium atoms. The figure is adapted from [104].

lattice for degenerate Raman sideband cooling is resonant with the |F = 4〉 →
|F ′ = 4〉 transition.

Although the light of the MOT is far detuned by 251 MHz from the next possi-

ble transition, |F = 4〉 → |F ′ = 4〉, there is a small but non-negligible probability

to excite atoms to the hyperfine state |F ′ = 4〉 from which the atoms can emit

a photon by spontaneous emission and decay into the state |F = 3〉. Atoms in

this state are no longer resonant with the cooling transition |F = 4〉 → |F ′ = 5〉
and a second laser system is necessary to repump the atoms back into the cooling

cycle. Due to the small probability for decay to the |F = 3〉 state, this laser has

relatively low power of a few milliwatts.
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Figure 3.3: External cavity diode laser used as master laser.

3.2.1 Master lasers

In order to operate a MOT efficiently, a narrow-band, frequency-stabilized source

of light source is required with a linewidth below 1 MHz. Typically, free running

laser diodes provide a wider linewidth of tens of MHz, and the presence of current

and thermal fluctuations, and other sources of noise, lead to a drift of the light

frequency.

A broad linewidth of the diode can be reduced by using an external cavity

diode laser (ECDL). We employ an ECDL in the so-called Littrow configuration,

based on the design described in [105], in which a holographic grating is used

to reflect a small amount of the laser emission back into the laser diode, thus

forming an external cavity. The retro-reflected beam forces the laser diode to emit

radiation at frequency modes allowed by the external cavity. We vary the laser

frequency by changing the current, the temperature and the angle of the grating.

The laser is mounted on a Peltier element that is used to stabilise and change the

temperature, which is monitored by a thermistor. A piezoelectric transducer is

used to finely adjust the grating. The ECDL is shown in Figure 3.3. The whole

system is controlled by electronic PID regulators for current and temperature

(MOGLABS DLC202).
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Current and thermal fluctuations and drifts, and mechanical vibrations lead

to a change of the frequency of the light, and an active stabilization that locks

the frequency on to a reference point is needed. The reference point is given by

a well-defined atomic transition obtained by means of polarization spectroscopy

[102, 103]. The experimental setup for the polarization spectroscopy is shown in

Figure 3.4. A σ+-polarized light beam, called pump beam, passes through a cell

containing caesium vapor. Because of the selection rules with ∆mF = ±1, on

resonance, the pump beam will optically pump the atoms toward increasing mF -

states causing a non-uniform population distribution in the different magnetic

sub-levels. A second and weaker counter-propagating, linearly-polarized beam,

called probe beam, is overlapped with the pump beam. Considering that linearly

polarized light can be written as a superposition of σ+ and σ−, the probe beam

will experience a different index of refraction for the two orthogonal components

σ+ and σ−, due to the anisotropy in the atoms population induced by the pump.

This leads to a phase shift between the two components of the polarization,

which induces a rotation of the polarization plane of the light. This rotation

is measured by setting the polarization of the probe beam to 45◦ and by using

a polarizing beam splitter (PBS) and a differential photodiode to measure the

difference between the signals as shown in Figure 3.4.

3.2.2 Slave laser and tapered amplifier

The two master lasers generate an output power of approximately 40 mW, which

is insufficient for the MOT and the Raman cooling. To amplify the light, we use

two slave lasers, each capable of generating a maximum output power of 150 mW

for cooling and repumping transitions. Both slave lasers are temperature and

current controlled by PID controllers and are locked to the frequencies of the

master lasers by means of injection seeding. We send a small amount of light

(< 400µW) from the master laser into the diode of the slave laser, which forces

the diode to adopt frequency and polarization of the master laser. The light of

the slave lasers is again amplified by two commercial tapered amplifiers (TA)

(Thorlabs TPA850P10), generating light for the 2D-MOT, 3D-MOT and the
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Figure 3.4: a) Scheme of polarization spectroscopy. b) Spectrum of the polarisa-
tion absorption spectroscopy associated to the cooling laser. The locking point
(circle) is at the zero crossing of the signal difference and corresponds to the
|F = 4〉 → |F ′ = 5〉 transition. The second figure is taken from [101].

lattice for the degenerate Raman sideband colling. Both TAs provide an output

power of about 1 W. We continuously monitor the frequencies of the slave lasers

and tapered amplifiers by a commercial Fabry-Perot cavity (Thorlabs SA210-8B).

A detailed scheme of the whole laser setup is shown in Figure 3.5.

3.3 Magnetic fields

A precise control over the magnetic fields is indispensable to produce BECs. In

our experiment we need magnetic field gradients, which are employed for the

2D+ and 3D MOTs and for the levitation of the atoms, offset fields for tuning

the interactions, as well as shim coils for stray field corrections and fast magnetic

field control. As described in Section 3.1, our vacuum setup is divided into the

2D+MOT chamber and a main chamber, and our coil design follows a similar

arrangement. Here, we provide only a general overview of the magnetic fields

(further details can be found in [101]).

3.3.1 2D+MOT coils

For creating the two dimensional quadrupole field in the 2D+MOT chamber,

we employ two pairs of rectangular coils, which are made from 0.8 mm diameter

copper wire in 14 layers from the centre, with 10 windings per layer. The inner
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Figure 3.5: Detailed scheme of the cooling laser setup. ECDLs provide stable and
narrow-band laser frequencies. A small amount of light from the ECDLs seeds
two slave lasers, which are amplified by tapered amplifiers. Each lasing device is
protected from back reflections by optical isolators. Acoustic-optic modulators
are intensively employed for shifting the light frequency by a few tenths of MHz.
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dimensions of each coil are 30 mm× 150 mm. The coils are supported by a 3D-

printed mount of a graphite compound (3D-Alchemy), as shown in Figure 3.6 a.

The gradient coils and the shim coils are glued to the inner and outer sides of the

support, Figure 3.6 b. The gradient coils are driven by a power supply (TENMA

72-10495) in a counter-propagating current configuration, allowing us to generate

magnetic field gradients of about 10 G/cm with current of 1 A.

3.3.2 Main coils

In the main chamber we perform all the cooling stages that lead to Bose-Einstein

condensation. Magnetic fields for the 3D MOT, for the levitation and for tuning

the interactions are provided a by single pair of coils. Each coil is divided in 7

independently controllable sections in order to have a good flexibility. They are

made of rectangular copper wire with dimension of 2×1 mm. The coils have an

inner diameter of 12 cm and are separated by a mutual distance of approximately

6 cm. They are mounted on a non-metallic 3D-printed support (Duraform) in

order to minimise eddy currents. The coils can generate a heating power of up

to 6 kW, and require water cooling. Our cooling design uses water channels in

the enclosure of the coils, in combination with thin copper sheets, which serve

as heat sinks to transfer heat from the inside of the coils to the water channel,

Figures 3.6c,d.

We employ two switch-mode power supplies to drive the coils (Delta Elek-

tronika SM120-50, SM7020-D) providing maximal currents of 50 A and 20 A for

the generation of a homogeneous magnetic field and a field gradient, respectively.

As will be explain in Chapter 4, a precise control of the gradient field is crucial

for levitating the atoms. We control the currents with a feedback loop that con-

sists of a current transducer, to measure the current, and a PID controller, which

drives a MOSFET to regulate the current.
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Figure 3.6: a) 3D-printed support for 2D-MOT coils. b) Gradient coils and shim
coils glued onto the mount. c) Cross section of the main coil, to illustrate the
design of water channels in the non-metallic enclosure and the layout of the copper
sheets. d) Main coils in the nylon enclosure before being closed and sealed.

32



3.4. DIAGNOSTIC AND COMPUTER CONTROL

3.4 Diagnostic and computer control

In this section, I summarise the procedures we use for measuring the physical

properties of our cold cloud, for diagnosing magnetic fields in our main chamber

and for controlling the experimental sequence.

3.4.1 Imaging

In our experiment, we use absorption imaging to detect the spatial distribution

of the atomic cloud. We illuminate the atoms with a resonant light pulse and

image the shadow of the cloud onto a camera [106]. Assuming that the imaging

beam propagates along the y axis with an initial intensity profile I0(x, z), the

light intensity I(x, z) that reaches the camera on the x,z plane is given by [107]:

I(x, z) = I0(x, z)e−D(x,z), (3.1)

where D(x, z) is the optical density, which is

D(x, z) = D0(x, z)
1

1 + I
Isat

+ 4∆2

Γ2

(3.2)

with D0(x, z) = σ0

∫
n(x, y, z)dy. (3.3)

Here Isat is the saturation intensity for caesium, ∆ is the detuning from the

imaging transition, Γ is the line width of the transition, σ0 is the absorption cross

section and n(x, y, z) the cloud density distribution. In our imaging setup, we

use linearly polarised light1 that is resonant, ∆ = 0, with the |F = 4〉 → |F ′ = 5〉
transition, Figure 3.2, and we set the intensity of the imaging beam such that

I/Isat � 1 to work in the linear regime. We extract the atom number by taking

a picture of the beam intensity profile with the atom cloud, I(x, z), and without

the atom cloud, I0(x, z). By inverting equation 3.1, we obtain the number of

1For linearly polarised light the absorption cross-section σ0 is calculated from the average of
the Clebsch-Gordan coefficients over all mF Zeeman sub-levels leading to σ0 = 0.1945λ2, where
λ is the wavelength of the imaging beam [108]. We chose to use linearly polarised light because
the imaging process is robust against small magnetic field fluctuation and it is well suited to
our experimental configuration.
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atoms from the ratio between I(x, z) and I0(x, z). A typical imaging sequence

consists of releasing the atoms from the cooling or trapping beams and letting

them expand with the levitation field on for few tens of milliseconds. In this

stage the offset field is set close to 17.2 G to minimise interaction effects during

the expansion. Then, we switch off the levitation and offset field and let the atoms

fall for 5 ms. The images are taken at zero magnetic field and the measured time

for the magnetic field to settle close zero is below 3 ms. Subsequently, we send a

pulse of repumping and resonant light of a duration of 100µs to image the atomic

cloud. After the first image, we wait about 100 ms and we take the image of the

beam intensity profile.

We employ two horizontal imaging setups in which one is used for imaging

large clouds, for instance of the MOT, and the other one for imaging small clouds,

for instance BECs. For a large field of view, we employ, in the 4-f configuration,

a sequence of f = 300 mm and f = 100 mm lenses with a diameter of 25.4 mm,

which set a diffraction limited resolution of 10µm and a magnification of 1/3,

and a CCD camera (Allied Vision Manta G-125B). For a stronger magnification,

we use a sequence of f = 75 mm (diameter of 25.4 mm), and f = 150 mm doublet

lenses (diameter of 50.8 mm), which set a diffraction limited resolution of 2.5µm

(4µm smallest measured size of a BEC) and a magnification of 2, and a CMOS

camera (MatrixVision BlueFox3-1012bG).

3.4.2 Microwave spectroscopy

Microwave spectroscopy provides a sensitive tool to diagnose magnetic fields. It

relies on the differential Zeeman shifts of atomic hyperfine states in a magnetic

field, leading to magnetic field-dependent transition frequencies. In our case, we

perform microwave spectroscopy between |F = 3〉 and |F = 4〉 hyperfine levels,

which are separated by 9.19 GHz.

For implementing microwave spectroscopy, we use a frequency generator,

which produces frequencies up to 2.7 GHz (Marconi2031), set to an output of

about 2.3 GHz. The signal is sent to a frequency doubler (Mini-Circuits ZX90-2-

36-S+), then to two amplifiers (Mini-Circuits ZX60-6013E-S+ and ZX60-V62+)
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and to a second frequency doubler (Mini-Circuits ZX90-2-50-S+). The generated

signal is at 9.2 GHz and is amplified by other two amplifiers (Mini-Circuits ZX60-

183A-S+ and Kuhne PA8501000). The signal is eventually sent to a microwave

horn, which is positioned below the main chamber at a distance of about 15 cm

from the trap center.

3.4.3 Computer control

We require a precise control of digital and analogue signals with a time resolution

of 10µs. The signals are used to regulate currents and laser pulses during our

experimental sequence.

Our hardware is based on two digital boards (National Instruments NI-6534),

two analog boards (National Instruments NI-6733) and a digital-analog board

(National Instruments NI-6723). In total, we have 40 analog channels, which

output voltages in the range of -10 V to +10 V, and 64 digital outputs, which

generate TTL signals, all with a time resolution of 10µs.

The NI cards are controlled by a dedicated PC and a server program that was

developed in C++. In order to have an intuitive user interface, we employ a sep-

arated PC to program the experimental sequence in MATLAB and transmit the

timing information via network to the hardware server program. Our MATLAB

interface allows us to set predefined parameters, such as timings and wave forms,

by means of a graphical user interface (GUI).

3.5 BEC generation sequence

As mentioned in the introduction, the first successful cooling sequence for the

generation of BECs of caesium was developed in Innsbruck [41] and our sequence

is based on that pioneering work. In addition, we enhance atom numbers and

loading durations by using a 2D-MOT setup and large-volume dipole traps.
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Figure 3.7: Optical setup of the 2D+MOT consisting of a cage-mounted telescope
and three polarizing beam splitters with half-wave plates and quarter-wave plate
at the input and output port respectively. The transversal beams are retro-
reflected by mirrors mounted on mirror mounts, which are fixed on the aluminium
bracket.

3.5.1 2D and 3D MOT

Magneto-optical trapping is the most common technique for confining and cooling

atoms down to the micro-Kelvin regime. In our experiment, we use a 2D-MOT

as a source of a cold atomic beam and a 3D-MOT as an initial cooling stage

for cooling and trapping of atoms in our main chamber. Magneto-optical traps

employ the dissipative force, generated by red-detuned and counter-propagating

light beams, to slow and cool down the atoms while a magnetic quadrupole field

generates a position-dependent force, which provides a spatial confinement [109,

110].

Our sequence starts by cooling atoms in the 2D-MOT section. Here, the

atoms are cooled in the two transversal dimensions by means of three 25 mm

size retro-reflected beams in a σ++σ− configuration and trapped transversally

by two pairs of anti-Helmoltz coils as described in Section 3.3.1. As illustrated

in Figure 3.7, the transversal beam is magnified up to a diameter of a 25.4 mm

by a cage-mounted telescope, and three vertical and horizontal MOT-beams are

derived by polarizing beam splitters. A half-wave plate at the input port of each
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PBS is used to regulate the power, and a quarter-wave plate at each output port is

employed to generate circularly polarised light. Every component is mounted on

an aluminium bracket designed to keep the optical system as compact as possible.

Three mirrors, which are mounted on mirror mounts, are used to retro-reflect the

beams. We use the same design for the vertical direction. A total light power of

180 mW is used, and the optimised magnetic field gradient is close to 5 G/cm.

In order increase the atomic flux, we adopted a slightly modified version called

2D+MOT [111] where two counter-propagating laser beams are added along the

longitudinal direction. The beams have a diameter of 25 mm and a power of

about 1.5 mW. One of the beams enters from the back of the glass cell whereas

the other enters from the side and is reflected along the longitudinal axis by a

gold-plated mirror glued onto the differential pumping tube, Figure 3.7. In the

center of the gold-plated mirror, a small exit hole (4 mm) allows the atoms to

be transferred into the main chamber. Such transfer is accomplished by using a

resonant light beam, also called push beam, which has a diameter of 2 mm and a

power of about 400µW.

In the main chamber, the atoms are captured by a 3D-MOT, which consists of

three pairs of counter-propagating laser beams and a quadrupole magnetic field.

We use a single polarization-maintaining optical fiber to deliver the laser light

containing the cooling and repumping frequencies for the 3D-MOT. The laser

beam is magnified up to almost 25 mm diameter by a telescope and split into six

MOT-beams with an optical power of 80 mW. The optical setup for the splitting

of the beams is built on the back of the main breadboard in order to save space.

As shown in Figure 3.8, the six beams are directed towards the glass cell by mean

of six periscopes.

In our 3D-MOT, a maximal atom number was determined for optimized pa-

rameters of 12 G/cm for the magnetic-field gradient, and a red detuning of 20 MHz

for the cooling light. The initial loading rate of our 3D-MOT is 7× 109 atoms/s,

which sets a lower bound on the atom flux from the 2D+MOT. After almost 3 s

of loading time, we reach a saturated cloud of more than 9×109 atoms. The mea-

sured temperature of the cloud is about 260µK, which is obtained by absorbtion
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Figure 3.8: 3D MOT optical setup in which three pairs of laser beams are directed
towards the centre of the main chamber by periscopes.

imaging in time of flight.

In order to increase the phase-space density2, we compress the cloud by de-

tuning the cooling light to -90 MHz from the |F = 4〉 → |F ′ = 5〉 transition with

a linear ramp of a duration of 4 ms. The gradient and total optical power are

kept constant. After the compression phase we reach a temperature of about 42

µK.

3.5.2 Degenerate Raman sideband cooling

Degenerate Raman sideband cooling is a powerful cooling scheme, which has

been employed for achieving sub-µK temperatures [48,112,113] and, recently, for

generating BEC without evaporative cooling [114]. In our case, it allows us to

reach temperatures around 1µK and at the same time to polarise the atoms

into the |F = 3,mF = 3〉 state. Our design is based on references [48,113] which

consists of four lattice beams and a single polarising beam. Here, we describe the

essential features of this cooling scheme.

In summary, once the atoms are released from the 3D MOT, the lattice light,

2The phase-space density is defined as PSD = nλ3dB, where n is the peak density

38



3.5. BEC GENERATION SEQUENCE

Figure 3.9: Scheme of the degenerate Raman sideband cooling. The blue arrows
represent two-photon transitions, induced by the lattice light, that couple Zeeman
states with degenerated vibrational levels. The red arrows show the absorbtion
(full line) and the emission (dashed line) σ+ polarized light, which provides optical
cooling. In addition, the employment of linearly polarised light permits the atoms
to be transferred out of the dark state.

which is resonant with the |F = 4〉 → |F ′ = 4〉 transition, pumps the atoms

quickly into the |F = 3〉 state. At this stage, the atoms populate the highly

excited vibrational trap levels of the lattice. The vibrational levels are coupled

by the lattice light, which is now -9.19 GHz detuned from the |F = 4〉 → |F ′ = 4〉
transition, and drives coherent Raman transitions between these states. At the

same time, a weak magnetic field shifts the levels |mF = k + 1, ν = l + 1〉 and

|mF = k, ν = l〉, where ν denotes the vibrational quantum number, so that they

are degenerate. The cooling cycle can be described as follows: in a first step,

an atom starting in the level |mF = k + 1, ν = l + 1〉 is transferred to the level

|mF = k, ν = l〉 by a Raman transition; in a second step a σ+-polarised beam

excites the atom from the |mF = k, ν = l〉 level into the |F ′ = 2〉 state, where it

decays by emitting an incoherent σ+-photon into the |mF = k + 1, ν = l〉 level 3

3The vibrational level ν = l does not change during the absorbtion and spontaneous emission

39



3.5. BEC GENERATION SEQUENCE

as shown in Figure 3.9. In addition, a small amount of linearly polarised light

allows to transfer atoms in the mF = 2 state to the dark state mF = 3. This can

be accomplished by adjusting the horizontal magnetic fields by means of a pair

of shim coils.

In the experimental sequence, we load the atoms into the lattice by ramping

up the light intensity in 2 ms with a linear ramp. Each lattice beam has a diameter

of 1.5 mm and a final optical power of about 25 mW. For the given lattice beam

parameters, we found optimal cooling for a weak magnetic field of 100 mG. The

polarising beam has a diameter of 2 mm and a final optical power of about 2 mW.

This beam is 7 MHz blue detuned respect to the |F = 3〉 → |F ′ = 2〉 transition

in order to account for the ac-Stark shift induced by the lattice light. Since the

cooling efficiency depends crucially on the polarisation of the polarising beam, we

use a combination of two half-wave plates and a quarter-wave plate for setting the

polarisation. After 3 ms of degenerate Raman sideband cooling we, have 3 × 108

atoms in the |F = 3,mF = 3〉 state, at temperature of just below 1µK.

3.5.3 Magnetic levitation

Unlike the other alkali-metal atoms, caesium atoms need to be in the lowest

Zeeman state |F = 3,mF = 3〉 to reach quantum degeneracy. This state is col-

lisionally stable, but it is a high-field seeker state, with the disadvantage that

magnetic traps cannot be used. Moreover, caesium is the heaviest alkali-metal

atom and experiences a relatively strong gravitational attraction, which requires

optical traps with large laser powers for compensation. In order to suppress the

gravitational force, we apply a vertical magnetic field gradient, which levitates

the atoms. By assuming that the atomic magnetic dipole follows the magnetic

field adiabatically, i.e for slow-varying magnetic fields, the magnetic potential

Umag experienced by an atom can be written as

Umag = µBgFmf |B| , (3.4)

of the photon when the atoms in the lattice are in the Lamb-Dicke regime.
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Figure 3.10: Calculated magnetic field strength for a magnetic field gradient ∂zB
of 31 G/cm and for an offset field B0 of 17 G. The lines have a spacing of 2 G.

where µB is the Bohr magneton, gf is the gyromagnetic factor related to the

hyperfine level F and mf the magnetic quantum number. In our case, the total

magnetic field B is the sum of a quadrupole field, which generates a vertical

gradient ∂zB, and a positive offset field B0 oriented along the vertical direction,

which allows for interaction tuning. The total magnetic field strength in the

vertical plane is illustrated in Figure 3.10.

The gravitational potential for a caesium atom is Ugra = mgz, where g is

the gravitational acceleration. The value of the magnetic field gradient, which

counteracts the gravitational acceleration is

∂Bz

∂z
=

mg

µBgFmf

, (3.5)

which is 31.1 G/cm for or caesium in the |F = 3,mF = 3〉 state.

As consequence of the solenoidal nature of the magnetic field, i.e ∇ ·B = 0,

the presence of a vertical magnetic gradient leads to a magnetic field gradients

along the horizontal directions, which results in an outwards horizontal force.

The potential deriving from this horizontal force can be expressed in the form of
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a harmonic expulsive potential [65]

Uhor = U0 −
1

2
mα2r2, (3.6)

where r =
√
x2 + y2 is the horizontal displacement of the atoms from the origin

and α is the anti-trapping angular frequency, which in the case of levitated atoms

is [65]

α = g

√
m

3µBB0

. (3.7)

From equation 3.6, the equations of motion for an atom at initial position r(0)

with a initial speed of vr(0) are [65]

r(t) = r(0) cosh(αt) + α−1vr(0) sinh(αt) (3.8)

vr(t) = vr(0) cosh(αt) + αr0 sinh(αt). (3.9)

As we will discuss in Chapter 4, such anti-trapping potential will be an important

limiting factor in our interferometric measurements with levitated atoms.

In the experimental sequence, the levitation field needs to be switched on

quickly after the Raman cooling to avoid the atoms’ acceleration which would

lead to the heating of the cloud. By employing a 400 V discharge capacitor,

which drives a short current pulse in the inner-most section of the main coil, we

manage to levitate the atoms and to keep its position while the levitation field is

ramped up to 31.1 G/cm with a linear ramp of a duration of 5 ms. At the same

time an offset field of about 40 G is applied to shift the center of the quadrupole

field and to control the collision rate via magnetic Feshbach resonances.

3.5.4 Reservoir and dimple traps

After Raman cooling, we have a cold levitated atom cloud that needs to be

confined. We employ far-detuned optical dipole traps to provide a conservative

potential which allows us to capture the atoms with minimal heating of the cold

cloud. Here, we summarise the basic physical mechanism underlying conservative

potentials generated with laser light. Further details about optical dipole traps
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for neutral atoms can be found in the review article [115].

In synthesis, the oscillating electric field E of a laser light induces an oscillating

electric dipole d in a neutral atom at the same driving angular frequency ω, such

that d = α(ω)E. Here, α(ω) is the atomic polarisability, which in general is a

complex quantity. The induced oscillating dipole interacts again with the electric

field of the laser light, resulting in the dipole potential Vdip = 1/2 〈dE〉, where 〈·〉
denotes a time average, which is proportional to the intensity I of the laser field.

For an atom which has a transition energy of ~ω0 with a natural linewidth of Γ,

the dipole potential Vdip(r) and the photon scattering rate Γsc are related to the

real and imaginary part of α(ω), respectively. They are given by [115]:

Vdip(r) = −3πc2Γ

2ω3
0

(
1

ω0 − ω
+

1

ω0 + ω

)
I(r), (3.10)

and

Γsc(r) = −3πc2Γω3

2~ω6
0

(
1

ω0 − ω
+

1

ω0 + ω

)2

I(r). (3.11)

In the case of caesium, the above formulae have to account for the D1 and D2

transitions by introducing an effective transition frequency [115]

ωeff =
1

3
ω1 +

2

3
ω2 = 2π × 256 THz, (3.12)

and an effective natural linewidth

Γeff =
1

3
Γ1 +

2

3
Γ2 = 2π × 5.00 MHz. (3.13)

In all the trapping stages of the experiment, we use beams with a Gaussian

intensity profile, i.e [115]

I(r, z) =
2P

πw2(z)
exp

(
−2

r2

w2(z)

)
with w(z) = w0

√
1 +

(
z

zR

)2

, (3.14)

where r is the coordinate in the radial direction, z is the coordinate along the

beam propagation axis, P is the beam power, w0 the beam waist at the focus,

and zR = πw2
0/λ is the Rayleigh length. Here, λ represents the wavelength of the
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Figure 3.11: Absorbtion image of a cold cloud of about 3 ×107 atoms after being
released from the large volume dipole trap.

laser light.

In the experimental sequence, once the atoms are released from the Raman

lattice and then levitated, the cold cloud is loaded within 40 ms into a large and

shallow optical dipole trap which is formed by two crossed horizontal beams at

a wavelength of 1070 nm. The laser light is provided by an Ytterbium fiber laser

with a maximum power of 200 W (IPG Photonics, YLR-LP-200), which is split

by a polarising plate and focussed such that each beam has a maximum power of

100 W and a waist of 800µm at the centre of the main chamber, corresponding

to 25µK trapping potential depth. After a hold time of 200 ms, we have about

3.8×107 atoms at a temperature of about 9µK, Figure 3.11.

The large beam waists of the reservoir trap provide a large capture volume

for the atoms, but they prevent efficient and fast evaporative cooling. Instead,

immediately after the loading of the reservoir trap, two tightly focused beams in

a crossed configuration, also named dimple, are employed to locally increase the

phase space density of the cold cloud [116, 117]. Our dimple beams consist of

a vertical and a horizontal beam with waists of 90µm and 50µm, respectively.

Both beams are derived from a 50 W fiber amplifier (Nufern NUA-1064-PD-0050-

DO) seeded by a Nd:YAG laser (Coherent Mephisto), which provides light at a

wavelength of 1064 nm with a line width below 10 kHz. The dimple beams are
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ramped up in 2 ms to 120 mW for the horizontal beam, and to 260 mW for the

vertical beam and kept at these powers for 100 ms while the reservoir trap is at

the maximum power.

Subsequently, we ramp down the reservoir beams in 1300 ms while the offset

field is reduced to 23 G in order to control three-body losses and to keep a good

thermalisation rate. After 100 ms of plain evaporation in the dimple trap, we

have about 1.1 × 106 atoms at a temperature of 1µK, corresponding to a phase

space density of about 10−6, which are good condition for starting the forced

evaporative cooling.

3.5.5 Forced evaporation and BEC

We employ three stages of forced evaporation to reach quantum degeneracy. Each

stage consists of a linear ramp of the intensities of the dipole beams, and a ramp of

the magnetic field. In the first stage, we ramp down the intensity of the horizontal

and vertical dipole beams to 30 mW and 70 mW respectively in 500 ms. At the

same time we set the offset field at 21 G aoff = 210a0 for three-body collision

losses minimisation [41, 42]. At this stage we have a thermal cloud of 8 × 105

at a temperature of about 230 nK, which correspond to a phase space density of

about 0.53.

In the second stage, a 1 s-duration linear ramp that decreases the beam power

to 10 mW (horizontal) and 26 mW (vertical) allows us to reach the phase transi-

tion from a thermal gas to a BEC, as can be seen in the appearance of a bimodal

distribution, Figure 3.12. We have 5 × 105 atoms at a temperature of approxi-

mately 60 nK.

Eventually, a third final linear ramp lowers the beams power to 1 mW (hori-

zontal) and 8 mW (vertical) in 3 s allowing us to obtain a BEC of about 2.0×105

with a condensate fraction of N/N0 = 0.48 at temperature of about 10 nK.
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Figure 3.12: Absorbtion images of the density distribution of the atom cloud
after free expansion of 50 ms at different stages of the evaporation. a) After the
first evaporation stage the atoms are still thermal. b) After the second ramp, the
cloud reaches the phase transition. The integrated density profile starts to show
a bimodal distribution. c) BEC with thermal fraction after the last evaporation
stage. Red line: integrated density profile. Blue dashed line: Gaussian fit of
the thermal cloud. Black dashed line: parabola fit, TFA, of the BEC fraction.
Green dashed line: Bimodal distribuction resulting from the combination of the
two previous fits.
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Chapter 4

Interferometric measurement of

micro-g acceleration with

levitated atoms

The chapter is an extension of the article A. Di Carli, C. D. Colquhoun, S.

Kuhr, and E. Haller, “Interferometric measurement of micro-g acceleration with

levitated atoms”, New J. of Phys. 21, 053028 (2019). The article can be found

in Appendix C and is cited as Ref. [56].

4.1 Introduction

In the last decades, atomic interferometry has been employed successfully for

precise measurements of the local gravitational acceleration [118, 119], for sens-

ing rotations [120–122] and inertial forces [123–125]. Furthermore, atomic in-

terferometers have found application in both applied, such as gravimetry and

gradiometry [126–128], and fundamental physics, such as measurements of the

fine structure constant [131,132], Newton’s gravitational constant [133–135], con-

straints on dark energy [136] and forces exerted by black-body radiation [137].

Analogous to optical interferometers, in atom interferometers, the matter wave

is split into two or more parts, then the parts evolve independently along different

paths. The atoms accumulate relative phase shifts depending on the interaction

48



4.1. INTRODUCTION

Figure 4.1: Analogy between an optical and an atom interferometer. In both
cases, the optical and matter waves are split by a beam splitting element (BS)
and, after a free evolution, reflected by a mirror element (M). Eventually, the
waves are recombined by another beam splitting element (BS). The interference
pattern that forms after the recombination depends on the relative phase shift ϕ
accumulated along the total interferometric sequence. Figure inspired by [174].

with a local potential and eventually are recombined to form an interference

pattern as shown in Fig. 4.1. A comprehensive review on atom interferometry is

given in [156].

Most atom interferometers use cold thermal atom clouds as sources of matter

waves for sensing inertial forces [118,120]. Recent experiments also employ Bose-

Einstein condensates for atom interferometry [146–150]. BECs, as described in

Chapter 2, provide coherent, low dispersive and very bright sources of cold atoms

which are capable to enhance the visibility of the interference pattern very close to

100% [151]. Although at first glance the high density of the BEC might improve

the sensitivity of an atom interferometer, it is its Achilles’ heel. The presence

of interaction-induced dephasing [152] might lead to uncontrolled phase shifts

caused by density fluctuations and strongly limit the interferometer’s signal-to-

noise ratio. The effect of atom-atom interactions is considerably stronger for

trapped BEC interferometers [129,130,146], whereas it is negligible for expanded

BECs [148,150,153,154].

For inertial quantities, it is widely known that the sensitivity of atom inter-

ferometers increases with the space-time area enclosed by the arms of the inter-

ferometer [155]. In general, the area depends on the interrogation time of the

interferometer and is limited by Earth’s gravitational acceleration in most Earth-
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based experimental setups. Several strategies have been adopted to increase

interferometer sensitivity, such as large-momentum transfer (LMT) [157–159] for

increasing the area spanned by the interferometer, or atomic fountains [160],

drop towers [161,162], parabolic fights [163,164] and space facilities [165,166] for

increasing the interrogation time.

In this chapter, I will describe an experiment in which we use magnetic lev-

itation as a different approach to extend the evolution time in Earth-based lab-

oratories. Compared to the other aforementioned methods for extending the

free evolution time, our experimental setup is significantly simpler and smaller.

We utilize magnetic levitation to create and to interferometrically measure milli-

g and micro-g acceleration of BECs in free expansion, and we show that the

negligible center-of-mass motion of levitated atoms facilitates a direct study of

phase-shifting elements in the interferometer paths. We employ BECs as sources

of cold atoms for increasing the performance of the interferometer. In addi-

tion, we study the advantages and limitations of using magnetic levitation and

demonstrate that it can be employed to reach an expansion time of 1 s, which is

comparable to current drop-tower experiments [162].

The chapter is organised as follows: Section 4.2 provides an overview of our

experimental setup. Section 4.3 motivates and illustrates the techniques we use for

implementing atomic splitters and mirrors whereas in Section 4.4, we illustrate the

interferometer scheme and provide the expression of the phase shift accumulated

along the interferometer sequence. In Section 4.5, we present the results of the

measurements achieved with our levitated interferometer. Small changes to the

magnetic levitation gradient allow us to create marginal accelerations of milli-

g (Section 4.5.1) and micro-g (Section 4.5.2). An additional laser beam in one

of the interferometer paths constitutes a phase-shifting element, presented in

Section 4.5.3. In Section 4.6 we estimate possible sources of noise and systematic

errors. In Section 4.7, we measure features of the magnetic field distribution,

such as the transversal curvature of the force field. Finally, using a combination

of low interaction strength, low trapping frequencies, and magnetic levitation we

demonstrate long expansion and observation times in Section 4.8.
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Figure 4.2: Sketch of the experimental apparatus. Magnetic field coils to control
the offset field B0 (blue, outer coils) and the vertical gradient of the magnetic
field ∂zB (red, inner coils). Laser beams with small beam waists (S1, S2) and
large beam waists (H1, H2, H3) trap the atoms, and a lattice L1 is used to split
the wave packet during the interferometer sequence. Figure published in [56].

4.2 Description of the experimental apparatus

The experimental apparatus needed for performing the experiment is shown Fig-

ure 4.2. The part of the setup employed for magnetic-field generation consists of

one pair of coils with co-propagating currents (blue, outer pair of coils), and one

pair with counter-propagating currents (red, inner pair of coils). They are used

for generating the offset field B0 and the magnetic levitation field ∂zB respec-

tively. Additional pairs of independently controlled shim coils are used for fine

tuning.

The optical section consists of two crossed dipole beams (S1, S2), a vertical

lattice beam (L1) and three large-waist dipole beams (H1, H2, H3). The beams

S1 and S2 are employed for the evaporative cooling and the handling of the BEC

after its generation, L1 is used to split and reflect the wave packet during the

interferometer sequence and H1-H3 are employed for the long-expansion experi-

ment.
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The sequence for the generation of the BEC has been described in detail in

chapter 3. We start with BECs of 2.5 × 105 atoms in the crossed laser beams

S1 and S2 with trap frequencies ωx,y,z = 2π × (23.5, 17.7, 15.4) Hz. The atoms

are in the absolute ground state |F = 3,mf = 3〉 at a scattering length of a =

210 a0. We further reduce interactions by tuning the scattering length to 65 a0

and by removing atoms by forced evaporation with a non-levitating magnetic

field gradient. The starting condition for the interferometry measurements is a

BEC of approximately 8 × 104 atoms corresponding to a peak density of about

6× 1013 cm−3.

4.3 Splitting and reflection of a BEC

In analogy with optical interferometers, atom interferometers need some basic

elements which split and reflect coherently the atomic wave function. Coher-

ent splitting and reflection of matter waves can be accomplished by employing

nanostructures, such as transmission gratings [138], double slits [139] and atom

holograms [140], or by exploiting the mechanical force imprinted onto the atom

by the light, like absorption from a travelling wave [141], stimulated Raman tran-

sitions [142] and optical standing waves [143–145].

In our experiment we use optical standing waves, also called optical gratings

or lattices, for splitting and reflecting BEC whose center-of-mass is initially at

rest. One advantage of using optical gratings instead of other methods that use

resonant light is that the momentum states of the matter waves are changed

whereas the internal states of the atoms are left unchanged. This leads to the

suppression of noise effects caused by uncontrolled phase shifts relative to the

different magnetic moments of the internal states in a homogeneous magnetic

field. Other advantages are the suppression of incoherent photon scattering, which

prevents the heating of the cold cloud, and the possibility of imparting large

momentum to the matter wave without significant losses [157].

The effect of a light grating on matter was studied in the early stages of the

quantum theory in 1933 by Kapitza and Dirac [168] where they showed that a
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beam of electrons is partially diffracted from a standing wave of light by stim-

ulated Compton scattering. This effect has been called Kapitza-Dirac scatter-

ing. Kapitza-Dirac scattering was later demonstrated for atomic beams [144] and

BECs [169] in the limit of short light pulse durations and strong atom-light in-

teraction and is used as a fundamental tool for splitting ultracold atom clouds.

The basic physical mechanism relies on the coherent absorption and emission

of off-resonant photons from the optical grating by the atoms [156, 167]. When

an atom absorbs or emits a photon it exchanges a linear momentum equal to

p = ±~k, where k is the photon wave number. In a standing wave, due to sym-

metry reasons, the atom can only be excited in the ±2n~k momentum states.

The characteristic energy associated with the absorbtion or emission of a photon

by the atom is called the recoil energy and is given by:

Er =
~2k2

2m
, (4.1)

where m is the mass of the atom. For caesium atoms and for a lattice light with

a wavelength of 1064 nm, the value of one recoil energy is Er = h× 1325 Hz.

An optical standing wave is typically generated by a couple of counter-propagating

laser beams. The resulting AC Stark potential for the atoms can be written

as [170]

V (x, t) = V0(t) cos2(kx), (4.2)

where V0(t) is the lattice depth. In general, the potential is time dependent and

is proportional to the intensity of the laser beam. The equation which describes

a BEC in an optical lattice is thus

i~
∂

∂t
ψp(x, t) =

[
− ~2

2m

∂2

∂x2
+ V0(t) cos2(kx)

]
ψp(x, t), (4.3)

where the effects of interactions have been omitted because the timescale associ-

ated with the peak chemical potential of the released BEC is usually longer than

the timescale of a typical splitting pulse. By considering a single square pulse

of duration tp, which is shorter than the typical oscillation time in the lattice

53



4.3. SPLITTING AND REFLECTION OF A BEC

well, tho = 2π/ωho with ωho =
√

4V Er/~ [170], we can neglect the motion of the

atoms during the pulse and thus the kinetic term in equation 4.3. In this so called

Raman-Nath regime or thin grating regime, the general solution for atoms at rest

is given by [167,170]

ψ(x, t) = e
−i βt

2tp

∞∑

n=−∞

(−i)nJn
(
βt

2tp

)
ψ2n~k(x, t), (4.4)

where β = V0tp/~ represents the pulse area, n is an integer number and Jn

corresponds to the n-th Bessel function. From the given solution, it is clear that

only even momentum states of the atoms are excited, thus recovering the intuitive

picture given earlier. The population of the n -th momentum state after a pulse

duration tp is

Pn = Jn

(
β

2

)
. (4.5)

It would be desirable to use a single pulse for transferring all atoms from

|p = 0~k〉 to momentum states |p = ±2~k〉 and vice versa, which would imple-

ment a 50 : 50 beam splitter. Unfortunately, this is not possible and composite

pulses are needed as shown in [146, 149, 171, 172], where efficiencies above 99%

were accomplished. In our experiment we adopt the composite pulse, shown in

Figure 4.3, that is a combination of square sub-pulses in which the two side sub-

pulses are characterised by the same duration ts and intensity Is whereas the

central sub-pulse is characterised by a duration tc and intensity Ic. More de-

tails about the splitting-recombination pulse used in this experiment are given

in [173–175]. Here, we limit ourself to optimise the pulse parameters experimen-

tally.

The second element that we need to implement for our interferometer scheme

is an atomic mirror which inverts the motion of the two wave packets, allowing

us to close the interferometer arms. In terms of quantum states, the optical

grating transfers atoms from the |±2~k〉 state to the |∓2~k〉 state imparting

thus a momentum of ∆p = ±4~k. We implement the inversion with a Gaussian

shaped light pulse, which is characterised by an intensity maximum Imax and a

1/e duration of tG.

54



4.4. INTERFEROMETER SEQUENCE AND PHASE SHIFT

Figure 4.3: Time-dependent intensity and characteristic durations of the com-
posite light pulse employed for the high efficiency splitting and recombination of
the BEC. The two side sub-pulses are characterised by the same duration ts and
intensity Is. The central sub-pulse has a duration of tc and intensity of Ic.

4.4 Interferometer sequence and phase shift

Our interferometer setup and pulse sequence are based on references [146,149,171]

and illustrated in Figure 4.4. The BEC is split by a first pulse into two wave

packets with opposite momenta ±2~k. The wave packets propagate freely for an

evolution time, T1, under the effect of the gravitational potential Ugra(z) = mgz

and the magnetic potential Ugra(z) = µBmfgfB(z), where B(z) can be written

as B(z) = B0 + ∂zBz. In a second step, we apply a Gaussian pulse that reflects

the wave packets and we let them evolve for an evolution time T2. A third pulse,

which is identical to the first pulse, is used for recombining the two wave packets.

The result of this pulse sequence are three wave packets with momenta p0 = 0,

p = ±2~k.

In optical and matter wave interferometry, the interference pattern depends

crucially on the accumulated phase shift of the wave packets during their evo-

lution, and the measured quantity is typically inferred from the shape and time

evolution of the interference pattern. The signal of the interferometer sequence

described above has an oscillatory behaviour in the relative population of the mo-
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Figure 4.4: Scheme of the interferometer sequence. The sequence starts with a
BEC initially at rest, at the vertical position zi. The BEC is split by a first light
pulse at ti, in two wave packets. The wave packets evolve along two classical
paths A and B, which are affected by the reflection pulse, at tinv, and by total
acceleration a. Eventually, the wave packets are recombined by a light pulse, at
tf , at the final position zf . The free evolution times are denoted with T1 and T2.
The difference between the final and initial position is ∆z.

mentum modes, resulting in a probability P0 to find an atom in the p0 momentum

mode of the following form:

P0 = Pm +
C

2
cos(∆Φtot), (4.6)

where C is the interference contrast, Pm is the offset of the interference signal and

∆Φtot is the total phase difference accumulated during the whole interferometric

sequence. In our experiment, P0 is determined from the ratio between the atom

number in the p0 mode and the total atom number in all momentum modes.

Our goal is to measure the centre-of-mass acceleration, ac, of a BEC, using the

phase difference between the wave packets during the interferometer sequence. As

shown in Figure 4.4, our interferometer has an upper arm (A) and a lower arm

(B). The phase difference, ∆Φ, which is accumulated during the interferometer

evolution, is proportional to the difference between the action SΓA computed

along the classical path ΓA and the action SΓB computed along the classical path
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ΓB [149,176], namely

∆Φ =
SΓA − SΓB

~
. (4.7)

The the action SΓ is defined as

SΓ =

∫ tf

ti

dtLΓ, (4.8)

where LΓ is the Lagrangian of the system, defined as the difference between the

kinetic energy and the potential energy, and evaluated along the path for which

the action is stationary. In our case the Lagrangian can be written as:

L =
1

2
mv2 − (mgz − µBmfgfB(z)) . (4.9)

We use the energetically lowest Zeeman sub-state of caesium atoms with mf = 3

and gf = −1/4. Based on the Euler-Lagrange equation, we write the equation of

motion

mac =
3

4
µB∂zB −mg, (4.10)

where the center-of-mass acceleration, ac, results from the difference between the

gravitational force and the magnetic levitation force. The thorough calculation

of the phase difference due to the external potentials in the previous Lagrangian

∆φext can be found in [175], with a final result of

∆φext = 4kac
(
T 2

2 − T 2
1

)
. (4.11)

In our interferometer scheme, the free evolution times T1 and T2 are equal, making

the contribution of the external potentials Ugra and Umag towards ∆Φ equal to

zero. This is also valid for vanishing ac, namely when there is a perfect balance

between the gravitational acceleration and the magnetic levitation acceleration.

It is useful to recall that the value of the magnetic gradient which cancels the

gravitational acceleration for a cesium atom is ∂zB = 4mg/(3µB) = 31.1 G/cm.

Additional phase contributions arise from the interaction between the optical

standing wave and the cloud of atoms during the splitting, the reflection and the
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recombination pulse [149,176]. Since the phase value of a standing wave is space

dependent, a spatial displacement ∆z, as shown in Figure 4.4, is proportional to

a phase difference, ∆ΦL, leading to the simple relation [149]

∆z =
∆ΦL

2kL
(4.12)

During the total interferometer evolution time ∆T = T1 + T2 + Tpulse, the center-

of-mass of the BEC is displaced by

∆z =
1

2
ac∆T

2. (4.13)

We can thus write the phase difference due to the optical standing wave as

∆ΦL = 2kL
1

2
ac∆T

2. (4.14)

The total phase difference is therefore given by

∆Φtot = ∆Φext + ∆ΦL + Φ0 = 2kL
1

2
ac∆T

2 + Φ, (4.15)

where the phase term Φ0 has been introduced to account for phase shifts due to

the initialization process, noise such as lattice vibrations [164], and for interaction

effects [148]. A typical experimental sequence is shown in Figure 4.5. The splitting

and recombination pulses are optimised experimentally for durations of 60µs,

110µs, and 60µs, and lattice intensities of 6.6Er, 0.2Er, and 6.6Er. We achieve

a splitting efficiency of 96% of the atoms in the ±2kL~ modes. The limiting

factor is given by the thermal component of our BEC. As mentioned earlier, the

reflection pulse has a Gaussian intensity shape and we find that a maximum of

17Er and a 1/e duration of 35µs maximise the reflection efficiency for the atoms.

Our efficiency of the inversion pulse is 83%, which is much lower than the efficiency

of the splitting pulse, and atoms in other momentum modes are clearly visible

in Figure 4.5. This lower efficiency may be due to the velocity selectivity of the

inversion pulse and due to the velocity difference of the accelerated wave packets.
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Figure 4.5: Interferometer scheme. Average of three absorption images of the
matter waves after the splitting and the inversion pulses (left to right: T1 = T2 =
0 ms, 6 ms, 12 ms), and after the recombination pulse and an expansion time of
10 ms. All images are taken after an additional time-of-flight of 1ms. Figure
published in [56].

4.5 Interferometric measurement of the acceler-

ation

4.5.1 Milli-g detection

In the previous section, we demonstrated that the total vertical acceleration of

the centre-of-mass of our BEC depends on our magnetic field gradient. We are

thus able to apply small forces to the atoms by changing the levitation current

Ilev which is defined as the coil current with a cancellation of magnetic and grav-

itational accelerations. Experimentally, we determine Ilev by minimising position

drifts of the BEC during free levitated expansion.

Once the BEC is prepared, we increase the current I in the gradient coils with

a linear ramp of duration of 75 ms to the ratios I/Ilev of 1.003, 1.001, and 1.0003.

We then release the BEC from the optical trap and apply the interferometer se-

quence described in Section 4.4. The current imbalance results in a small upwards

acceleration of the BEC, which is measured with our interferometer scheme. Fig-

ures 4.6 a-c show the measurements of P0 for varying evolution times ∆T . As

expected, we observe sinusoidal oscillations of P0 and we employ equation 4.6
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Figure 4.6: Interferometric measurement of milli-g accelerations. a-c) Probability
of observing atoms in the p0 = 0 × kL momentum mode for increasing duration
∆T and gradient coil currents I/Ilev of a) 0.003, b) 0.001, c) 0.0003. Solid lines
represent fits to the data points using equation 4.6. Error bars indicate one
standard deviation of the data points. Figure published in [56].

for fitting the data (solid lines) and extracting the values of the acceleration ac,

Figure 4.7.

An independent measurement of ac, based on the free motion of the BEC, is

provided for comparison. We measure the shift of the center-of-mass position for

an expansion time Texp of an untrapped BEC in our magnetic-field gradients. The

acceleration ac is given by the free fit parameter (blue diamonds in Figure 4.7).

We find excellent agreement within two standard deviations between the two

methods. However, the sensitivity of the free-expansion measurement is limited

by the observation time. Although our levitation scheme allows for very long

observation times, as described extensively in Section 4.8, it also induces a hori-

zontal dispersion of the BEC in free space, which will be discussed in Section 4.7.
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Figure 4.7: Comparison of the acceleration measurement with the interferometer
scheme (red circles) and by the center-of-mass motion (blue diamonds). Figure
published in [56].

Here, we limit the observation time to 200 ms, which allows us to measure the

acceleration for I/Ilev = 1.001, 1.003, but not for 1.0003. The measurement re-

sults in Figure 4.7 have relative uncertainties of approximately 4% for the free

expansion measurement and 0.5% for the interferometric approach.

4.5.2 Micro-g detection

In a second measurement, we utilize the interferometer scheme to minimise the

forces on the atoms. We vary the currents in our shim coils and Ilev with the goal

to maximise the oscillation period of P0 (red circles Figure 4.8a). For optimal cur-

rent values, we observe a slow drop of the value of P0 from approximately 0.75 to

0.45 over ∆T 2 ≈ 1600 ms2. This reduction is not necessarily caused by a residual

acceleration of the wave packets, as it can also originate from dephasing mecha-

nisms that are discussed in Section 4.6. However, fitting P0(t) with equation 4.6

provides an upper limit to the acceleration experienced by the atoms. We deter-

mine an upper limit for the acceleration of the atoms of ac = 70(10)×10−6 g which

is to the best of our knowledge, the smallest absolute value for an acceleration

that is measured directly with ultracold-atom interferometry.
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4.5.3 Phase-shifting element detection

Compared to fountain experiments, the center-of-mass motion of our wave pack-

ets is contained within a small spatial region of a few hundreds of micrometers,

and it is straightforward to add additional phase-shifting elements in the path

of the wave packets. As a result, it is possible to use the levitated interferom-

eter scheme to analyse additional potentials for the atoms with high precision.

We demonstrate this approach by adding a horizontal laser beam (wavelength

1064 nm, waist 40µm, power 29µW) approximately 50µm above the initial po-

sition of the atoms (Figure 4.8b). This beam creates a Gaussian dipole potential

with a depth of approximately 3 nK, and it introduces a differential phase shift

between the upper and lower wave packets which can be detected by the inter-

ferometer. In addition to a measurement of the AC Stark shift of the light field

as in reference [177], our setup facilitates the study of the spatial dependence of

the potential.

The effect of the laser beam on P0(t) is clearly visible in Figure 4.8a when

comparing the data sets with the beam (blue squares) and without the beam

(red circles). For increasing pulse duration T1, the upper wave packet passes

twice through the laser beam and it samples increasing spatial sections of the

potential. We adjusted the power of the beam to create a single oscillation of the

phase for a wave packet that fully transverses the beam, resulting in a minimum

of P0(t) at an evolution time T1 = 7 ms in Figure 4.8a.

Constant propagation velocities of the wave packets during the evolution times

T1 and T2 make it easy to relate the time to the position of the atoms. We use

a numerical model to integrate the phase shift of the upper wave packet in the

dipole potential of the laser beam over the interferometer path z(t) and include

the unperturbed phase shift as measured in Section 4.5.2. Fitting the model

parameters to our data set (blue line Figure 4.8a), we determine a beam position

of 45(1)µm, a waist of 37(4)µm and a beam power of 25(3)µW, which are in

excellent agreement with the independently measured values.

Our model neglects the spatial extent of the wave packets and we determine

the phase shift at the center-of-mass position, whereas our experimental sequence
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Figure 4.8: Interferometric measurement of micro-g accelerations and phase shifts
due to a laser beam. a) Probability of observing atoms in the 0~kL momentum
mode vs T1 for minimized acceleration of the atoms (red circles) and for an
addition laser beam in the path of the upper wave packet (blue squares). Error
bars indicate one standard deviation of the data points. b) Illustration of the
position of the wave packets and the additional laser beam during the pulse
sequence. Angles and axes are not to scale in the illustration. Figure published
in [56].

averages over local phase shifts within the upper matter wave packet. Local

phase shifts result in density variations in the profiles of the momentum modes in

our absorption images, but measuring the total atom number in the momentum

modes provides only the average phase shift of the wave packet.

4.6 Estimation of systematic effects

We estimate possible sources of measurement errors, fluctuations and dephasing

mechanisms. Fluctuations of a homogeneous magnetic field will only slightly

change the interaction strength of our BEC, but deviations of the magnetic-field

gradient can induce additional accelerations and alter the measurement result.

In our setup, small deviations of the magnetic field gradient can occur as the

wave packets move during an interferometer sequence away from the original

position with optimized levitation. We estimate from our numerical magnetic

field simulation that our coil design causes a relative increase of the field gradient
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of 2 × 10−6 for a vertical position shift of 50µm. In addition, the quadratic

Zeeman effect induces another deviation of the levitation force of 6×10−6 for the

same position shift. As a result, the upper and lower wave packets experience

a position-dependent acceleration, which increases the separation of the wave

packets before the inversion pulse, and which reduces the convergence after the

inversion pulse. Similar to our measurements in Section 4.7, we would expect the

final displacement of the wave packets to cause horizontal fringes in the absorption

images, which we do not observe. As a result, we conclude that the vertical force

gradients are negligible for the time scales of our interferometer.

In addition, the position-dependent magnetic field strength causes an almost

linear change of the scattering length of approximately ±10 a0 over 50µm. As

a result, the atoms in the upper wave packet experience a stronger interaction

and faster phase evolution than the atoms in the lower wave packet. Assuming

constant densities and a linear change of the scattering length, we would expect

the phase shift between the wave packets to increase with ∆T 2, and it would

be difficult to distinguish this effect from a phase evolution due to acceleration.

However, in our setup the wave packets expand after release and the densities

decrease strongly over a timescale of 1/ωx,y,z ≈ 10 ms. The position-dependent

scattering length would result in a change of the oscillation frequencies within

10-15 ms in Figure 4.6a-c, which we do not observe, and we conclude that the

phase shift due to a position-dependent scattering length is below our sensitivity

for this measurement.

Fluctuations of the acceleration of the BEC can be caused by time-dependent

changes of B0 and ∂zB, either due to external magnetic fields or due to the finite

stability of the currents in our coils. We determine a current reproducibility of

1.4 × 10−6 by measuring the standard deviation of the current during the in-

terferometer sequence over 60 consecutive cycles. For each cycle, the current

measurement averages over 80 ms. We believe that the current reproducibility

will eventually set the limiting precision for our interferometric measurements

with levitated atoms. While it is in principle possible to increase the current

reproducibility by 1-2 orders of magnitude by improving our current regulation
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Figure 4.9: Effect of the force field curvature on the interference pattern. a)
Calculated interferometer path of the center-of-mass positions of the levitated
wave packets with δt = 0 ms. b) Center-of-mass positions of the two wave packets
for δt = -0.4 ms (blue), -0.2 ms, 0 ms, +0.2 ms (grey). Blue parallel lines indicate
the orientation of the interference pattern. c) Fringe angles (red circles) and fringe
spacings (blue squares) vs. the delay δt of the recombination pulse, inferred from
the data in (d). Solid lines show our fit results for eq. 4.20. d) Absorption images
for varying δt between -2.0 ms and 2.0 ms in steps of 0.4 ms. Common parameters
are α = 2π × 3.29 Hz, ϕ = 0.108◦, T1 = 20 ms, Texp=30 ms. Figure published
in [56].

electronics, it would be very hard to reach the precision of atomic fountain ex-

periments, which are of the order of ∆g/g ∼ 10−9 [119]. Nonetheless, we believe

that magnetic levitation schemes will provide a valuable technological addition

for precision measurements with ultracold atoms. Reducing gravitational accel-

eration to micro-g effectively removes the center-of-mass motion of the atoms,

and it allows for a direct measurement of phase-shifts due to additional elements

in the interferometer path, as demonstrated in the previous section.
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4.7 Effects of spatial curvature of the force field

Our magnetic field configuration does not only provide a vertical magnetic field

gradient to levitate the atoms, but it also generates a weak, horizontal anti-

trapping potential. This potential is a result of the spatial curvature of our

quadrupole-like distribution of the magnetic field. In this section, we demonstrate

that the anti-trapping potential causes an additional interference pattern which

can be employed to measure the anti-trapping frequency or the angle between

the lattice beam and the vertical field axis.

It is useful to recall some results on the levitating magnetic field given in

Chapter 3. In the quadrupole approximation, the horizontal magnetic field and

magnetic force experienced by the atom are given by [41,178,179]

Bhorz(r) = B0 +
2

9

m2

µB

g2

B0

r2, (4.16)

Fhorz(r) = mα2r, (4.17)

where r =
√
x2 + y2 is the horizontal displacement of the atoms from the origin

and α = g
√
m/(3µBB0). The quadratic scaling of Bhorz(r) with r results in a

weak, outwards-directed force in the horizontal plane. This anti-trapping effect

can be associated with frequency α, and it causes a weak, position-dependent ac-

celeration with a time-dependent horizontal position r(t) and horizontal velocity

vr(t) [75]:

r(t) = r(0) cosh(αt) + α−1vr(0) sinh(αt)

vr(t) = vr(0) cosh(αt) + αr0 sinh(αt)

z(t) = vz(0)t+ z(0). (4.18)

For this calculation we assume perfect levitation and linear vertical motion z(t)

during the interferometer sequence.

In an experimental setup there will always be a small angle ϕ between the
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lattice beam L1 and the vertical axis of the magnetic field, and a splitting pulse

will always imprint a small velocity component vr(0) = (~kL/m) sin(ϕ) along the

horizontal direction. Consequently, a small horizontal displacement due to vr(0)

results in an outwards-directed force on the wave packets in the anti-trapping

potential, and in a finite horizontal displacement at the end of the interferometer

sequence as illustrated in Figure 4.9a. The horizontal distance between the wave

packets is typically two orders of magnitude smaller than the vertical displacement

during the interferometer sequence, and both distances become comparable only

in the proximity of the recombination pulse and during the expansion time. We

illustrate the positions of the wave packets in Figure 4.9b for small delay times

of the recombination pulse δt = T2 − T1 with T1 = 20 ms. Depending on δt,

the orientation of the blue line connecting the wave packets changes from almost

vertical for δt = ±0.4 ms to horizontal for δt = 0 ms. We define an angle θ, which

is chosen to be positive clockwise and in the interval [−90◦, 90◦], to indicate the

orientation of the line, and we define d(δt) to be the distance between the two

wave packets.

In analogy to Young’s double slit experiment [17,162], the interference pattern

of two wave packets at distance d(δt) shows a fringe spacing dF of

dF = π~t/(md) + d0. (4.19)

Here, t is the total duration of the interferometer sequence with t = T1 + T2 +

Tpulse − δt + Texp, and d0 ≥ 0 is a constant phase shift that depends on the

initial conditions such as the density distribution [180–182]. In our absorption

images of the interfering wave packets for constant times T1, Texp and varying

delay δt (Figure 4.9d), interference fringes with varying separation dF and angle

θ are clearly visible for all momentum modes p0, p±.

From the evolution of the fringes as a function of time delay δt, we infer

properties of the curvature α and the angle ϕ. We simultaneously fit the fringe

spacing in equation 4.19 and the fringe angle θ with θ(δt) = arctan(z(δt)/r(δt)).

Here z(δt) and r(δt) are the vertical and horizontal positions of the wave pack-
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ets for varying δt. We integrate the center-of-mass motion of the wave packets

in equation 4.18 with starting conditions r(0) = z(0) = 0 over all steps of the

interferometer sequence to determine z(δt) and r(δt)

z(δt) =− vz(0)δt

r(δt) =
vr(0)

α
cosh(αTexp)

[
sinh(αT1) cosh(α(T1 + δt)) +

(cosh(αT1)− 1) sinh(α(T1 + δt))

]
+

vr(0)

α
sinh(αTexp)

([
sinh(αT1) sinh(α(T1 + δt)) +

(cosh(αT1)− 1) cosh(α(T1 + δt))

]
+ 1

)
. (4.20)

Equations 4.20 contain two free parameters, the anti-trapping frequency α and the

lattice angle ϕ, which can both be used to fit our data points in Figure 4.9c. We

choose to constrain α and vary ϕ during the fitting procedure, as it is experimen-

tally difficult to determine the laser beam angle with milliradian precision, and

we independently measured α by observing center-of-mass oscillations of BECs

in optical dipole traps. The fit results, represented by solid lines in Figure 4.9c,

show good agreement with our data points, and we measure a lattice angle of

ϕ = 0.108(7)◦ for α = 2π × 3.29(5) Hz.

Note that α scales with 1/
√
B0 in equation 4.16, and we can use larger values

for B0 to reduce the anti-trapping effect, e.g. by tuning the interaction strength

with a broad magnetic Feshbach resonance at 800 G [35]. However, it will be dif-

ficult to reduce α significantly due to its square-root dependence on B0. Instead,

it is easier to compensate the anti-trapping effect with an additional dipole trap,

as demonstrated in the next section.
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Figure 4.10: Long expansion times. a) Average of 6-8 absorption images for
each expansion time: Texp = 50, 200, 400, 600, 800, 1000 ms. Note that the scaling
of the images changes as indicated by the 50µm scale bar in each picture. b)
RMS-widths of the integrated 1D-density distribution vs. expansion time. c,d)
1D-density profiles and fits (blue lines) for expansion times of c) 400 ms and d)
600 ms. Figure published in [56].

4.8 Long expansion times: exploiting micro-g

acceleration

In this section, we demonstrate that magnetic levitation allows us to extend the

expansion time of a BEC to 1 s. Typical expansion times for falling BECs are

on the order of tens of milliseconds, often limited by the detection area of the

imaging system, by the gravitational acceleration and by the expansion velocity

of the gas. Usually, the expansion velocity of a quantum gas is not caused by the

temperature of the gas but by repulsive interaction during the initial spreading.

The current record for long observation times under milli-g acceleration is 1 s [161]

with an expansion energy of 9 nK. The experiment was performed in a drop tower,

and ballistic expansion was observed over approximately 500 ms, limited by stray

magnetic fields.
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In our experiment, we can reduce the interaction energy of the BEC by tuning

the scattering length close to 0 a0 by means of a magnetic Feshbach resonance

(Figure 2.5). Further reduction of the expansion energy has been demonstrated

by rapidly changing the scattering length from a positive value to 0 a0 during trap

release [178], but we refrain from using this trick to avoid excitations of the BEC

during release. Our horizontal magnetic field curvature (Section 4.7) introduces

another limitation. During long observation times, the BEC expands horizontally

into regions with a lower magnetic field gradient, causing a position-dependent sag

of the density profile. In addition, small fluctuations of the horizontal magnetic

field can break the symmetry and introduce slow horizontal drifts. We suppress

both effects by keeping a vertical laser beam (H3 in Figure 4.2a) on during the

expansion time, thus observing free expansion only in the vertical direction.

In detail, we reduce the trap frequency by slowly transferring the atoms from a

crossed dipole trap of beams S1 and S2 to a crossed dipole trap of beams H1, H2,

and H3 with final trap frequencies of ωx,y,z = 2π × (3.2, 3.4, 2.1) Hz, a scattering

length of 15 a0 and atom numbers of approximately 1.1 × 104. Excitations of

the BEC during the transfer are suppressed by smooth changes of the potential

with a total transfer duration of 4 s. After an additional settling time of 1 s we

switch off the horizontal beams H1 and H2 and study the expansion of the BEC

in the vertical beam H3. The vertical trapping frequency of the laser beam H3

is approximately 25 mHz, and the resulting fractional reduction of the expansion

width after 1 s is 6× 10−4, which is far below our measurement sensitivity for the

width of the BEC.

The expansion of the BEC in the vertical direction is clearly visible on ab-

sorption images (Figure 4.10a) for expansion times 0 to 1000 ms, and horizontally-

integrated 1D density profiles for expansion times of 400 ms and 600 ms are given

in Figure 4.10c and d. Although the trapped BEC is initially only weakly confined

with almost symmetric trap frequencies, it changes dimensionality during the ex-

pansion process in the vertical beam. The density of the BEC decreases strongly

during the vertical expansion, and the chemical potential becomes smaller than

the transversal harmonic oscillator energy ~ωx,y as required for a quasi-1D de-
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scription [186]. As a result, we do not expect a shape-preserving spreading of

the density distribution for a 1D expansion because the BEC passes through

various interaction regimes as its density decreases [183, 184]. For illustration,

we show a fit to the upper 80% of the 1D-density profiles n(z) for the “3D

cigar”-regime [185] (Figure 4.10c), but we refrain from a complete analysis of

the density profiles, which is beyond the scope of this thesis. Instead, we quan-

tify the width of the expanding BEC with the root-mean-square (RMS) radius

∆Z =
(

1
N

∫
n(z)(z − z̄)2

)1/2
to provide an estimate of the expansion velocity (red

circles Figure 4.10b). Here, z̄ is the center-of-mass position of the atoms. We ob-

serve an initial interaction driven expansion and a ballistic flight for Texp ≤ 400 ms

with an RMS expansion velocity of vrms = 0.128(5) mm/s and a corresponding ki-

netic energy of mv2
rms/2 = 1

2
kB × 260(20) pK. We note that this is the expansion

energy of the BEC component, but not the initial temperature of the trapped

quantum gas.

Similar to reference [161], we find an accelerated expansion for longer expan-

sion times, Texp > 500 ms. We expect that the dominant source of the accelerated

expansion is the curvature of our levitation gradient due to the quadratic Zee-

man effect and due to our coil design, as discussed in Section 4.5.2. However, the

density profiles of the atoms on the absorption images indicate two other contribu-

tions. We observe small radial bending of the expanding cloud for long expansion

times after release from the trap in the guiding beam H3 (see image Texp = 1 s in

Figure 4.10a). This bending effect can be caused by a non perfect alignment of

guiding beam H3 along the vertical gradient direction and can distort the radially

integrated density distribution. In addition, we observe asymmetric 1D density

profiles n(z) for Texp > 500 ms (Figure 4.10d). The profiles show a slower expan-

sion velocity for the lower part of the cloud than for the upper part. We assume

that this effect is caused by the position-dependent scattering length due to our

magnetic field gradient. The zero crossing of a is indicated in Figure 4.10d by a

dashed blue line. We find small position fluctuations for long expansion times

Texp > 400 ms of the BEC due to the finite current stability for the magnetic

field gradient (Section 4.5.2). For illustration, we re-centered the center-of-mass

71



4.9. CONCLUSIONS

position in the absorption images for the averaging process in Figure 4.10a, but

all other data in Figure 4.10b-c results from the analysis of individual absorption

images.

4.9 Conclusions

In conclusion, we employed an atom interferometer with BECs with tuneable in-

teraction and magnetic levitation to demonstrate absolute acceleration measure-

ments in the micro-g regime and we used the negligible center-of-mass motion of

levitated atoms to study the position-dependent phase-shift of the dipole poten-

tial of a focused laser beam. Moreover, we demonstrated expansion times of 1 s

for a BEC, which is comparable to current drop-tower experiments, and we used

an extrapolation method for the fringe patterns to study the curvature of a force

field that acts perpendicular to our interferometer setup. In our setup, limitations

were provided by magnetic-field fluctuations due to the current regulation, and

by position-dependent interactions and magnetic-field gradients. Although the

sensitivity of our interferometer setup with levitated atoms is significantly lower

than the sensitivity of atomic fountain experiments, we believe that levitation

schemes provide interesting features with the prospect of technical applications.

Cancelling gravitational acceleration offers the possibility to combine long obser-

vation times with compact interferometer setups. Interesting applications for our

setup are the measurement of local variations of electric and magnetic fields, and

of mean-field effects due to atomic interactions.
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Chapter 5

Excitation modes of bright

matter-wave solitons

This chapter is an extension of the article A. Di Carli, C. D. Colquhoun, G.

Henderson, S. Flannigan, G.-L. Oppo, A. J. Daley, S. Kuhr, E. Haller, “Excitation

modes of bright matter-wave solitons”, Phys. Rev. Lett. 123, 123602 (2019).

The article can be found in Appendix D and is cited as Ref. [57].

5.1 Introduction

Bright solitons are one-dimensional (1D) non-linear waves that preserve their

shape during the propagation in a homogeneous potential and, except for a change

in the relative phase shift, during their mutual collisions [187]. They appear in

various fields such as non-linear optics [188, 189], where they found also appli-

cation in broadband long-distance communications [189], particle physics [190],

fluid dynamics [191,192], geophysics [193,194] and biophysics [195,196].

Bose-Einstein condensates with attractive interactions can also display soli-

tary dispersion properties which arise from the interplay between the zero-point

kinetic energy, which tends to disperse the matter-wave, and the attractive mean

field interaction, which tends to increase the BEC’s density [197]. Attractive

BECs are not always stable against collapse, as demonstrated in [71,73,198–201],

and stable ground states are only allowed for a restricted set of parameters. The
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stability condition for harmonically trapped BECs is set by the dimensionless

parameter [96,97]:

kc =
N |a|
aho

. (5.1)

Typical values of kc are of the order of unity and depend on the trapping geom-

etry. Such values have been the subject of numerous theoretical, both numeri-

cal [202–205] and variational [206–208], studies, which employed the full Gross-

Pitaevskii equation (3D-GPE), equation 2.31. Experimental investigation of kc

was performed in [72].

Strictly speaking, solitons propagate in a one-dimensional (1D) geometry. Due

to the intrinsic three-dimensional nature of our world it is not possible to realise

a pure one-dimensional system working with attractive BECs. However, it is

possible to circumvent this limitation by introducing the concept of a quasi-one-

dimensional system [209]. The general idea for creating low-dimensional systems

with quantum gases consists of “freezing” the degrees of freedom by making

them energetically inaccessible. In this way the system is kept in the ground

state along the restricted directions while it can evolve freely along the others. In

the case of harmonically trapped quantum gases, quasi-one-dimensional regimes

can been accomplished by confining it in a cylindrically, symmetric trapping

potential such that the energy associated with the transversal confinement ~ωr is

larger than all the other characteristic energies of the system namely the chemical

potential µ and the longitudinal trapping energy ~ωz or, equivalently, such that

the transversal harmonic oscillator length ar is smaller than the healing length

ξ of the condensate and the transversal harmonic oscillator length az [186, 210].

In this limit, the BEC is well described by the one-dimensional Gross-Pitaevskii

equation (1D-GPE), equation 5.7, or by an effective one-dimensional equation

which accounts for small 3D effects, the so called non-polynomial Schrödinger

equation (NPSE), equation 5.6.

As stated in the definition, bright solitons are also properly defined when the

potential along the propagation direction is homogeneous so that the 1D-GPE

reduces to the non-linear Schrödinger equation (NSE), equation 5.8. BECs are

usually generated in harmonic trapping potentials although box potentials have
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been recently achieved [211]. The presence of a harmonic potential breaks the

integrability of the system preventing the realisation of a real soliton. Neverthe-

less, stable ground states forming in a harmonic potential still posses soliton-like

behaviour under propagation and collisions [205,212,213]. Such non-linear waves

are sometimes named bright solitary waves (BSW) [205, 212, 213], and this def-

inition is also extended to stable attractive BECs in which 3D effects are not

negligible [205, 214, 215]. Here, we do not make this distinction and we will use

the term bright matter-wave soliton in a broad sense.

Experimentally, bright matter-wave solitons have been created in cigar shaped

potentials by quenching the particle interaction in a BEC from repulsive to at-

tractive, in the case of confining [30, 216] and expulsive [31, 217, 218] harmonic

potentials. Moreover, several dynamical properties of bright matter-wave soli-

tons, such as, formation of soliton trains by modulational instabilities [219, 220],

mutual collisions [221], reflection from a barrier [222], excitations following the

collapse of attractive BECs [216], quadrupole oscillations of attractive BECs in

three dimensions (3D) [223], have been investigated. Moreover, BEC solitons have

been proposed, and later successfully employed, for enhancing the performance of

atom interferometers [224–226]. Although the aforementioned experiments have

improved considerably the understanding of solitons in BECs, the experimental

investigation of the excitation modes of a single bright matter-wave soliton is still

missing.

In this chapter, I will describe an experiment in which we study the fundamen-

tal breathing mode of a single soliton by measuring its oscillation frequency and

the time evolution of its density profile. In our experiment bright matter-wave

solitons are created by quenching the interactions of our BEC from repulsive to

attractive in combination with a rapid reduction of the longitudinal confinement.

By mismatching the quench parameters, we excite the breathing modes of the

emerging soliton, allowing us to study its breathing frequency as a function of

atom number and harmonic confinement. We compare the experimental results

with numerical simulations of the 1D-GPE and of the NPSE, as well as, with

analytical expressions derived from a variational model. In addition, we observe
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signatures of higher-order matter-wave solitons. Higher-order solitons are exact

solutions of the NSE and can be interpreted as stable excitations with a peri-

odic and coherent evolution of the density profile and phase, or as a bound state

of overlapping modes [208, 232]. We generate higher-order solitons by matching

the initial size of the BEC before an interaction quench to values close to those

required for second- and third-order solitons.

The chapter is structured as follows: in Section 5.2 we introduce the equa-

tions that describe BEC in the quasi-1D limit and that are used for numerical

simulations whereas in Section 5.3 we illustrate the variational model, which is em-

ployed to derive an analytical expression of the breathing oscillation frequencies.

Section 5.4 provides an overview of the experimental apparatus and Section 5.5

describes how we generate bright matter-wave solitons experimentally. In Sec-

tion 5.6 we present measurements of the solitons’s breathing oscillation frequencies

as a function of the atom number and of the longitudinal trapping confinement.

Finally, in Section 5.7, we report about observation of higher-order matter-wave

solitons.

5.2 From 3D-GPE to 1D-GPE

As mentioned in the introduction, matter-wave bright solitons are typically gen-

erated in a cylindrically shaped trapping potential in which the transversal trap-

ping frequency ωr is greater than the longitudinal trapping frequency ωz. By

substituting the definition of the order parameter, Ψ(r, t) =
√
Nϕ(r, t), in equa-

tion 2.31 and considering the cylindrical symmetry of the system, the 3D-GPE

can be rewritten in the following form:

i~
∂

∂t
ϕ(r, t) =

[
− ~2

2m
∇2 +

1

2
m(ω2

rr
2 + ω2

zz
2) + gN |ϕ(r, t)|2

]
ϕ(r, t), (5.2)

where r2 = x2 + y2. Several approaches can be followed for reducing the di-

mensionality of the 3D-GPE [96, 97, 227]. Here, we sketch the method used by

Salasnich et al [228] who derived an effective one-dimensional equation that also
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takes into account three-dimensional effects. The 3D-GPE can be obtained by

imposing the stationary condition on the action δS = 0 with S defined by [228]:

S =

∫
dtdrϕ∗(r, t)

[
i~
∂

∂t
+

~2

2m
∇2 − Vext(r)− gN

2
|ϕ(r, t)|2

]
ϕ(r, t). (5.3)

When the chemical potential of the condensate µ is comparable with the energy

of the transversal harmonic oscillator ~ωr it is reasonable to assume the following

ansatz [228]

ϕ(r, t) = f(z, t)× 1√
πσ(z, t)

exp

[
−(x2 + y2)

2σ(z, t)2

]
, (5.4)

where f(z, t) represents a slowly varying wave function along the longitudinal

axis and σ(z, t) represents a Gaussian width with an axial degree of freedom that

takes interaction effects into account. By substituting the above ansatz in the

definition of the action and deriving the Euler-Lagrange equation for f(z, t) and

σ(z, t) we obtain the following equation for σ [228]:

σ2 = a2
r

√
1 + 2aN |f |2, (5.5)

where ar =
√
~/mωr represents the transversal harmonic oscillator length. The

time evolution for f follows [228]:

i~
∂

∂t
f =

[
− ~2

2m

∂2

∂z2
+ Vext(z) +

gN

2πa2
r

|f |2√
1 + 2aN |f |2

+
~ωr
2


 1√

1 + 2aN |f |2
+

√
1 + 2aN |f |2



]
f.

(5.6)

The last equation is called the non-polynomial Schrödinger equation (1D-NPSE).

It has been employed successfully, e.g., for the description of the dynamics of a

bright soliton in an expulsive potential [229], the tunneling and nonlinear self-

trapping in a Josephson junction [21] and the formation of trains of solitons [220].

In the limit of weak interactions, Na|f |2 � 1, the 1D-NPSE reduces to the well
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Figure 5.1: a) Comparison between the numerically computed ground state wave
function for 1D GPE (red line) and the NPSE (blue dashed line) for a harmonic,
longitudinal trapping potential. b) Gaussian ground state in the transversal di-
rection. Parameters used: ωz = 2π × 5 Hz, ωr = 2π × 95 Hz, N = 1500, a = 6 a0.

known 1D Gross-Pitaevskii equation [96]

i~
∂

∂t
f =

[
− ~2

2m

∂2

∂z 2 + Vext(z) +
gN

2πa2
r

|f |2
]
f. (5.7)

The 1D-GPE describes an effective one-dimensional BEC with a constant radial

component, e.g. σ = ar. In Figure 5.1a the comparison is shown between the

ground state wave function computed employing the 1D GPE (red line) and the

NPSE (blue dashed line) for a longitudinal harmonic potential and for parameters

which are similar to those used in the experiment. The wave function computed

with the NPSE shows a slightly higher peak1 compared to the 1D-GPE wave

function. This is due to the fact that the NPSE allows the interactions to partially

expand the BEC along the radial direction, Figure5.1b, keeping the overall wave

function more compact. The code for solving the ground state wave functions

employs the Split-Step Fourier Method in imaginary time propagation and has

been taken and adapted from [230].

In the case of absence of the external longitudinal potential Vext(z) = 0, the

1D-GPE reduces to the so called non-linear Schrödinger equation (NLSE) [96,97]:

i~
∂

∂t
f =

[
− ~2

2m

∂2

∂z 2 +
gN

2πa2
r

|f |2
]
f, (5.8)

1The relative difference between the two peak densities is about 0.02.
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Figure 5.2: Soliton profiles for different atom number, calculated using equa-
tion 5.9. Parameters used: ωr = 95 Hz, a = −5 a0.

which is a well known equation in the context of non linear optics [189]. In

the case of a BEC with attractive interactions a < 0 the NLSE possesses an

analytic solution, derived for the first time by Zakharov and Shabat in [231],

which describes a shape preserving object, called a soliton, that has, in the static

situation, the following form [96,97]:

f(z) =
1√
2ξ

sech

(
z

ξ

)
, (5.9)

where ξ = a2
⊥/ (|a|N) represents the characteristic spatial extension of the soliton

and corresponds to the healing length at its peak density. Typical soliton profiles

are shown in Figure 5.2 for various atom numbers. For increasing atom number

and thus mean field attractive interaction the soliton width decreases. It is worth

noticing that both the 1D-GPE (equation 5.7) and the NLSE (equation 5.8) do

not support BEC collapse due to the fact that in 1D the dispersive term is always

able to counterbalance the effect of the attractive mean field.
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Figure 5.3: a)-d) Energy surfaces defined by equation 5.12, in units of ~ωr, re-
spectively for N = 1000, N = 1500, N = 2000, N = 2500 atoms. The white
asterisk indicates the local minimum of the energy surface. e) Scaled energy per
particle, EGP , along the path of lowest energy as a function of the longitudinal
soliton width lz. Common parameters are ωr = 95 Hz, a = −5 a0.
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5.3 Variational model

The equations 5.6 and 5.7 given in the previous section provide the correct frame-

work for a numerical simulation of our experimental conditions. However, numer-

ical simulations alone do not provide an intuitive and qualitative understanding of

the model we want to study. Variational methods provide an intuitive and accu-

rate model for exploring static and dynamic properties of bright solitary matter-

waves [205–208]. In this section the variational model of references [205,208] will

be presented and will be used to provide a simple expression for the breathing

frequencies of bright matter-wave soliton in the limit of weak interactions.

For a cylindrical cigar-shaped potential the energy functional of equation 5.2

is given by [205,208]:

E[ψ] =

∫
d3r

[
~2

2m
|∇ψ(r)|2 +

1

2
m(ω2

rr
2 + ω2

zz
2)|ψ(r)|2 +

gN

2
|ψ(r)|4

]
. (5.10)

The ansatz for a solitonic solution in a 3D cigar-shaped trap is [205,208]:

ψ(r, z) =
1√
2lz

sech

(
z

lz

)
× 1√

πlr
exp

(
− r

2

2l2r

)
, (5.11)

where lr, lz correspond, respectively, to the transverse and longitudinal widths.

The functional is minimized with respect to the parameters lr, lz. By performing

the integral in equation 5.10 with the above ansatz and by rescaling the variables

with the transversal frequency ωr, the following equation for the scaled energy is

obtained [208]:

εGP =
1

2γ2
r

+
γ2
r

2
+

1

6γ2
z

+
π2

24
λ2γ2

z +
α

3γ2
rγz

, (5.12)

with εGP = EGP/~ar, γr = lrar, γz = lzar, λ = ωz/ωr, α = Na/ar. The energy

surface which arises from the previous equation is shown in Figure 5.3 a-d, for

trapping and interaction parameters similar to those used in the experiment, as a

function of the atom number N . A local minimum exists for atom numbers below

a critical value (white asterisk, Figure 5.3 a-c), with a combination of widths lr, lz
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that provide a stable configuration for the BEC. Above the critical atom number,

the energy has a minimum when both the widths are zero, and the BEC collapses.

Figure 5.3e shows the scaled energy per particle along the path of lowest energy

as a function of the longitudinal width lz. Collapse is prevented by an energy

barrier formed by the kinetic energy. For increasing atom number, this barrier

is gradually reduced by the interaction energy until the local minimum vanishes.

By differentiating equation 5.10 with respect to the two normalised widths and by

equating to zero the two deriving equations, the parameters of the local energy

minimum can be found by solving the system of equations [208]:

− γ−3
r + γr −

2

3
αγ−3

r γ−1
z = 0 (5.13)

− γ−3
z

3
+
π2

12
λ2γz −

α

3
γ−2
r γ−2

z = 0. (5.14)

In general, the previous system of equations does not provide an analytical so-

lution and must be solved numerically. In the limit of weak interactions and

strong transversal confinement ~ωr � µ, the condensate populates the ground

state of the transversal harmonic oscillator. In this regime we can set γr = 1

in previous equations, and the minimum of the energy is found by solving equa-

tion 5.14. Also, considering attractive interactions α = −|α| = −√ζ we obtain

the equation [208]:
π2

4
λ2γ4

z +
√
ζγz − 1 = 0. (5.15)

In reference [208] the previous equation has been solved in the case of expulsive

potential ω2
z < 0. Here we provide the solution in the case of a trapping potential

ω2
z > 0:

γ∗z =
F√
ζ
, (5.16)

with

F = −
√
G
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+

1

2

√
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where
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∆

π
4
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) 4
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) 2
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, (5.18)

83



5.4. EXPERIMENTAL SEQUENCE

with

∆ =
3

√√√√
1 +

√
1 +

64π2

27

(
λ

ζ

)2

. (5.19)

In order to find the oscillation frequencies, equations of motion for the variational

parameters are needed. By performing a Lagrangian variational analysis, such

equations are [208]:

γ̈r = γ−3
r − γr +

2α

3γz
γ−3
r (5.20)

(
π2

12

)
γ̈z =

γ−3
z

3
− π2

12
λ2γz +

α

3γ2
r

γ−2
z , (5.21)

where the time derivative is with respect to the normalised time τ = ωrt. We

assume that the quench will excite breathing motion along the z direction only.

Again, by setting γr = 1 in the previous equations we obtain:

(
π2

12

)
γ̈z =

γ−3
z

3
− π2

12
λ2γz +

α

3
γ−2
z . (5.22)

In the case of small deviations from the equilibrium position (minimum of the

energy landscape), we can write the solution as γz = γ∗z + δγz, where γ∗z is the

minimum given by equation 5.16 and δγz is a small deviation. A linear expansion

of equation 5.22 leads to the following expression for the longitudinal breathing

angular frequency:

ωB = ωr

√
12

π2

(
γ∗z
−4 +

π2

12
λ2 +

2α

3
γ∗z
−3

)
. (5.23)

5.4 Experimental sequence

The experimental sequence starts with a levitated BEC of 2.5×105 atoms with a

condensate fraction of approximately 70% and a scattering length of a = 210 a0.

As described in Chapter 3, the BEC is generated in a crossed optical dipole

trap formed by the horizontal and vertical laser beams LH and LV as shown in

Figure 5.4a.

The solitons in our setup are confined to a quasi-1D geometry with almost
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Figure 5.4: a) Sketch of the experimental setup with laser beams LH , LV . b)
Thomas-Fermi density profile for a BEC (solid red line) and a soliton density
profile (dashed blue line). c) Integrated density profile of the absorption image
for t = 60 ms (red line) and fitted profile by using the function A(sech(z/B))2

(dotted blue line). Figures published in [57].

free propagation along the horizontal direction and strong radial confinement

of ωr = 2π × 95 Hz provided by laser beam LH . In quasi-1D geometry, the

critical dimensionless parameter kc, defined in equation 5.1, can be rewritten as

kc = N |a|/ar with kc = 0.67 [205]. For our typical experimental scattering

length of approximately −5 a0, this corresponds to a critical atom number of

2500. As a result, we need to strongly reduce the atom number to avoid collapse,

modulation instabilities [30] and three-body losses [220] for a deterministic and

reproducible creation of the soliton. We remove atoms with a small additional

magnetic-field gradient, which pushes the atoms over the edge of the optical dipole

trap. Our precise control of magnetic-field strengths allows us to reduce the atom

number down to 200 atoms, with a reproducibility of ±100 for 600 atoms and

±350 for 4500 atoms, measured as the standard deviation of the atom number

in 50 consecutive runs, Figure 5.5. A removal period of 4 s and smooth ramps

of the magnetic-field strength are necessary to minimise excitations of the BEC.

Following the removal procedure we measure residual fluctuations of the width

of the BEC below 3.5%.
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Figure 5.5: Atom number as a function of the percentage of the gravitational
acceleration experienced by the atom in the trap. Figure taken from [101].

5.5 Soliton generation via quench

We generate the matter-wave soliton with a quench of the scattering length to-

wards attractive interaction (ai → af ), and by a reduction of the longitudinal trap

frequencies (ωz,i → ωz,f ). When changing a and ωz independently, the quenches

excite inward- and outward motion, respectively. Usually it is desirable to mini-

mize the excitations of the soliton by matching the initial Thomas-Fermi density

profile of the BEC closely to the density profile of the soliton, as illustrated in

Figure 5.4b and by adjusting the quench parameters. However, we deliberately

mismatch the quench parameters from those employed for generating a stable soli-

ton to create breathing oscillations of the soliton in order to study its self-trapping

potential. The cloud size lz(t) at a hold time t after the quench is measured by

fitting the function A(sech(z/B))2, with fit parameters A and B, to the density

profiles, Figure 5.4c. The density profiles are determined from absorption images

after a free expansion time of 16 ms (Figure 5.6a).

The response of the atomic cloud to the different steps of the quench protocol

is presented in Figure 5.6b. We first quench only the longitudinal confinement

for N ≈ 1700 atoms from ωz,i = 2π × 5.8(2) Hz to ωz,f = 2π × 4.3(2) Hz in 4 ms
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Figure 5.6: a) Absorption images after an expansion time of 16 ms (taken from
data set with red circles in b). b) Oscillations of a quantum gas with N ≈ 1700
after various quenches with a final trap frequency ωz,f = 2π × 4.3(2) Hz. Blue
diamonds: quench of only ωz excites breathing oscillations of a BEC; Red circles:
additional interaction quench to af = −5.4a0 to excite breathing oscillations of a
soliton; Green squares: optimized quench parameters to minimize the breathing
amplitude of the soliton. The uncertainty intervals indicate ±1 standard error.
Solid lines are damped sinusoidal fits. Figure published in [57].

while keeping the interaction strength constant ai = +7 a0 (blue diamonds in

Figure 5.6b). The BEC starts an outwards motion with an oscillation frequency

of ωBEC = 2π × 7.5(1) Hz ≈
√

3 ωz,f , which is well expected for a BEC in the

Thomas-Fermi regime [44, 185]. In a second quench protocol, we additionally

quench the interaction strength to af = −5.4 a0 (green squares in Figure 5.6b).

In order to minimise excitations of the soliton, we set ωz,i = 2π × 11.2(2) Hz to

match the width of the BEC to the expected size of the soliton. As a result, we

observe almost dispersionless solitons with a linear increase of lz of 0.7(3)µm/s

(green line in Figure 5.6b). Finally, we deliberately mismatch the size of the

BEC with ωz,i = 2π× 8.5(1) Hz, and generate small amplitude oscillations of the

soliton with a frequency of ωsol = 2π × 12.8(4) Hz (red circles in Figure 5.6b).

This breathing frequency of the soliton is significantly larger than any possible

breathing frequency of a BEC, and larger than the breathing frequency of non-
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interacting atoms of 2ωz,f = 2π×8.6(3) Hz. We observe no discernible oscillation

in the radial direction after the quenches.

5.6 Measurement of the breathing frequency of

a soliton

We demonstrate that the breathing frequency, ωsol, depends on the interaction

strength, a property typical of the nonlinear character of the soliton. The in-

teraction term in the 1D-GPE depends on the product Na, and we expect that

the variation of scattering length and atom number have equivalent effects on

ωsol. We choose to change N , since the initial removal process is independent of

the interaction quench, and it allows us to study the breathing frequency with-

out changing the quench protocol and without excitations of additional modes.

We measure the breathing frequency, ωsol, for varying N with fixed parame-

ters ωz,i = 2π × 5.8(2) Hz, ωz,f = 2π × 4.3(2) Hz, ai = +7 a0, af = −5.4 a0,

ωr = 2π × 95 Hz (see red circles in Figure 5.7). The values of ωsol decrease for

lower N , and they approach the breathing frequency 2ωz,f for non-interacting

atoms in a harmonic trap (dashed gray line).

We compare our experimental data points to numerical and variational mod-

els. For a numerical simulation of the 1D-GPE and NPSE, we use the ansatz in

equation 5.9 to calculate the starting conditions, and we determine the breathing

frequency from a spectral analysis of the time evolution of the wave function (blue

triangles in Figure 5.7). The simulations were done in collaboration with the lo-

cal theoretical group, lead by A. Daley and G.-L Oppo. Numerical simulations

were performed by Grant Henderson and Stuart Flannigan [57]. In addition, we

compare the data with the analytical approximation for the breathing frequency

(Figure 5.7 red line) provided by equation 5.23. We find that the models agree

well with the trend of the measurements of ωsol, although our experimental data

points are systematically lower for large N than our theoretical predictions. We

speculate that this is due to non-harmonic contributions to the energy of the

soliton on the breathing oscillations for finite oscillation amplitudes.
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Figure 5.7: Dependence of the soliton breathing frequency ωsol on the atom
number N . Quench parameters ωz,i = 2π × 5.8(2) Hz, sωz,f = 2π × 4.3(2) Hz,
ai = +7a0, af = −5.4a0, ωr = 2π × 95 Hz. Red circles: experimental data, the
uncertainty bars for the atom number indicate the standard deviation of N over
the first 100 ms of each frequency measurement. Blue triangles: numerical sim-
ulation of the 1D-GPE. Blue squares: numerical simulation of the NPSE. Red
line: analytical approximation from equation 5.23. Dashed gray line: oscillation
frequency of a non-interacting gas, 2ωz,f . Figure published in [57].

To determine the influence of the trapping potential, we measure the variation

of ωsol as we reduce the longitudinal trapping frequency ωz,f . Smaller values of

ωz,f result in larger equilibrium sizes of the soliton, and we need to reduce the

initial trap frequencies ωz,i to keep the oscillation amplitudes comparable during

the measurements. The typical difference between ωz,i and ωz,f is approximately

3 Hz. Two regimes can be identified in Figure 5.8 where the soliton frequency

changes with varying the trap frequencies ωz,f . For large values of ωz,f the trap

dominates the breathing of the soliton and ωsol approaches twice the trap fre-

quency 2ωz,f . For small values of ωz,f , interactions dominate the breathing of the

soliton and ωsol reaches a constant value. This offset of the breathing frequency

is a result of the “self-trapping” potential of a free soliton.

Again, we compare the experimental results with our theoretical models (see

red line in Figure 5.8) and the numerical simulations of the 1D-GPE (see blue

band in Figure 5.8 for simulations between N = 1300 and N = 1500. Numeri-

cal simulations were performed by Grant Henderson and Stuart Flannigan [57]).

The simulations predict a lower breathing frequency for the free soliton than the
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Figure 5.8: Dependence of the soliton breathing frequency ωsol on the trap fre-
quency ωz for af = −5.4a0. Red circles: experimental data points for N ≈ 1450.
Blue area: simulation of the 1D-GPE for N = 1300 to 1500. Red line: analytical
approximation from equation 5.23. Dashed gray line: 2ωz,f . Figure published
in [57].

analytical approximation, but all curves are within the uncertainly range of the

experimental data.

5.7 Observation of higher-order bright matter-

wave solitons

5.7.1 Wave functions for higher-order solitons

Breathing oscillations of the soliton width are not the only possible excitation

modes of solitons. The existence of higher-order solitons has been predicted

in 1974 by Satsuma and Yajima for the dimensionless non-linear Schrödinger

equation [232]

i
∂

∂τ
b =

1

2

∂2

∂ζ 2 b+ |b|2b, (5.24)

and observed later in non-linear optics [188,234]. Higher-order solitons arise from

the evolution of the non-normalised soliton solution

b(ζ, τ = 0) = Asech(ζ) (5.25)
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when A is equal to an integer number and they can be interpreted as stable

excitations with periodic oscillations of the density profile and phase or as a

bound state of n strongly overlapping solitons [208].

Later, similar effects were proposed for bright matter-wave solitons [208,233],

where it was suggested that nth-order solitons can be generated by a rapid increase

of the attractive interaction strength by a factor n2, with n representing an integer

number. This relies on the fact that the constant A in equation 5.25 is related to

the initial li and the post-quench lf characteristic lengths by [208]

A =

√
li
lf
, (5.26)

where l = a2
r/(2aN). In the homogeneous case, the second-order soliton has the

following analytic expression [208] (see also Appendix A )
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)


 , (5.27)

which has an oscillation period of

T = 32πml2f/~. (5.28)

Essentially, an nth-order soliton forms for a sech-shaped wave function with an

initial size l
(n)
z that is the n2 multiple of the healing length lz, i.e. l

(n)
z = n2 lz.

Similarly, our simulations of the 1D-GPE show that higher-order solitons can be

created for an increased initial size of the wave packet, Figure 5.9. Large initial

soliton sizes lead to the periodic formation of local maxima and minima of the

density profile. Striking characteristics of the time evolution are the periodic

development of a sharp central peak with side wings for the second-order soliton

(Figure 5.9a,b), and the periodic formation of a broad double-peak structure for

the third-order soliton (Figure 5.9c,d). Sizes and interaction quenches that do

not fulfil the previous conditions lead to a “shedding” of the atomic density in

the z−direction, as will later see in the experiments in Section 5.7.2. The wave
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Figure 5.9: Simulation of higher-order solitons in the 1D-GPE. Temporal snap-
shots a) and temporal evolution b) of the atomic density profile of an n = 2

soliton for N = 1800, a = −3.7 a0, l
(2)
z = 10.2 µm = 4l

(1)
z , and an oscillation

period of T2 = 271 ms. Temporal snapshots c) and temporal evolution d) of the
atomic density profile of an n = 3 soliton for the same values of N, a, but with
l
(3)
z = 22.8 µm= 9l

(1)
z , and with a period T3 = 1373 ms. The density profiles in

a) and c) are plotted at t = 0 (dotted lines), t = 1/4T (dashed lines), t = 1/2T
(solid lines). The dashed lines in b) and d) display the temporal evolution of the
size of the soliton wavepacket zrms (right scale). Figure published in [57].

packet oscillates and loses particles until its size and shape match the next (lower

n) higher-order soliton [232].

5.7.2 Observation of second-order bright matter-wave soli-

tons

We apply two different quench protocols to study the evolution of strongly excited

solitons. In the first protocol, we apply a strong quench to a repulsive BEC

whereas in the second, we create a soliton by a first quench followed by second

quench of the scattering length by approximately a factor 4, as suggested in [208].

Depending on the initial size and the quench parameters, we observe shedding

and fragmentation of the wave packet, and we measure oscillation frequencies

that indicate the creation of higher-order solitons. To demonstrate the effect of

a strong quench of an elongated BEC, we prepare a BEC containing N ≈ 3000
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Figure 5.10: Time evolution after a strong quench of interactions and trap fre-
quency. a) Absorption images at time t after the quench and after 11 ms of free
expansion. b) 1D-GPE simulation of the density profiles for a second-order soliton
with 1100 atoms, af = −5.3 a0, and with an oscillation period T (2) of 432 ms. c)
Time evolution of the measured width lz of the central wave packet (red circles),
sinusoidal fit with period 420(30) ms (dashed red line). The uncertainty intervals
indicate ±1 standard deviation . Figure published in [57].

atoms in a cylindrical dipole trap with ωr = 2π×86 Hz and ωz,i = 2π × 4.9(2) Hz

at an initial scattering length of ai = 56 a0. Then we increase ai and reduce ωz,i

before slowly ramping a and ωz to −5.3 a0 and 2π × 0.0(6) Hz in 13 ms, while

keeping ωr constant. Our quench induces an initial spreading of the wave packet,

followed by a strong shedding of atoms and, finally, in the formation of a soliton

that contains N ≈ 1100 atoms (Figure 5.10a). We determine soliton width and

find a slow oscillation of lz(t) with a frequency of 2π × 2.4(2) Hz (Figure 5.10c).

This frequency is significantly smaller than the expected breathing frequency of

first-order solitons, 2π× 6.0 Hz, and it matches well to the expected frequency of

2π × 2.3 Hz for second-order solitons in equation 5.28.

Observing shedding and oscillations agrees well with the predictions for higher-
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Figure 5.11: Second-order soliton and splitting after the double-quench. a) Ab-
sorption images at time t after the quench and after 7 ms of free expansion. b)
Time evolution of the measured width lz of the central wave packet (red circles),
sinusoidal fit with period 180(20) ms (dashed red line). The histogram counts
the fraction of images showing a splitting of the wave function (9 repetitions per
time step). Inset: absorption image of a split matter-wave for t = 210 ms. Figure
published in [57].

order solitons within the 1D-GPE [232], however, we find a strong dependence on

details of the quench parameters, such as the quench duration, the initial atom

number and the final values of the longitudinal trapping frequency and scatter-

ing length. We also implement the double-quench protocol, which consists of

creating a stable soliton with a first quench followed by second quench of the

scattering length. We start by preparing a BEC at an initial scattering length

of ai = 29 a0, with atom number and trapping parameters similar to those used

in the previous protocol. To generate a stable soliton, we quench the scattering

length ai and the longitudinal trapping frequency, respectively, to af = −0.8 a0

and ωf = 2π × 1.4(2) Hz in 15 ms. After a settling time of 25 ms, we apply a

second quench in 2 ms of only the interaction strength to af = −4.6 a0. Start-

ing with approximately 2200 atoms, we observe no shedding but a small loss of

300 atoms during the first 60 ms. The density distributions (Figure 5.11a) resem-

ble the expected profiles for a second-order soliton (Figure 5.10b) and the width
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Figure 5.12: Attempt to observe a third-order solitons. a) Absorption images
after 6ms of expansion time for different evolution times t. b) Evolution of the
second-moment zrms. Error bars indicate ±1 standard errors. The solid lines
show numerical simulations with the 1D-GPE model for the evolution of zrms
(see Supplementary material in [57]). Figure published in [57].

of the wave packet oscillates with a frequency of 2π × 5.6(6) Hz (Figure 5.11b),

which matches the expected frequency of 2π × 5.2 Hz for second-order solitons

(2π × 13.2 Hz for the first-order).

For both measurements (Figure 5.10c, 5.11b), a small percentage of absorption

images show the splitting of the soliton into two fragments (inset Figure 5.11b).

Due to the destructive nature of our absorption images it is difficult to follow

the evolution of the same matter-wave soliton and to provide an explanation

on the cause of the splitting process. A double-peak structure in the density

profile can indicate fragmentation due to classical or quantum effects, or simply

an insufficient technical control of our quench parameters. The percentage of

images which show a splitting of the wave packet increases for longer evolution

times, and we indicate the fraction in Figure 5.11b with a histogram.
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5.7.3 Attempt to observe a third-order soliton

We also tried to generate a third-order soliton by a strong quench of a BEC.

We start by preparing a BEC with N ≈ 1800 atoms and by adjusting its initial

size by setting the initial trap frequency and scattering length to ωz,i = 6.0(2) Hz

and ai = 10 a0, respectively. Then we quench both the longitudinal trapping

frequency and the scattering length to ωz,f = 2π × 0.6(5) Hz, and af = −6.7 a0.

The result of this quench is illustrated in Figure 5.12 in which the absorption

images show the formation of a double-peak structure that indicates the presence

of a third-order soliton. We quantify the periodic change of the soliton shape by

evaluating the second moment zrms of the density distribution η(z, t), i.e.

zrms(t) =

(
1

N

∫
η(z, t)(z − z̄)2dz

)1/2

, (5.29)

where z̄ is the mean position of the wave packet, and compare it with a numerical

simulation of the 1D-GPE (Figure 5.12a grey line). The time evolution of zrms(t)

exhibits a local maximum for the double peak structure of the third-order soliton,

Figure 5.12a. However, the experimental data do not agree with the numerical

simulation of the 1D-GPE. In particular, the second moment zrms measured in the

experiment is systematically smaller than that expected from the simulation and

the general trend predicted from the 1D-GPE is not matched by the experimental

data. We suspect that deviation may be caused by finite quench duration, by a

residual trapping potential, or by our imaging resolution.

5.8 Conclusions

In conclusion, we experimentally investigated the excitation modes of bright

matter-wave solitons in a quasi-one-dimensional geometry. The solitons were

created by quenching the interactions from repulsive to attractive and the lon-

gitudinal confinement of a BEC. A mismatch of quench parameters allowed the

excitation of breathing modes of a soliton. We determined its breathing frequency

as a function of atom number N and longitudinal confinement ωz. Moreover, we
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observed signatures of the generation of second-order solitons by measuring their

oscillation period. We also observed the shedding and splitting of the soliton

wave function, and showed absorption images that hint to possible creation of a

third-order soliton.
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Chapter 6

Conclusions and outlook

During the course of my PhD I built the experimental setup, which took the best

part of two years. We implemented and optimised all the stages for the generation

of Bose-Einstein condensate of caesium. As a result, our system can routinely

produce BECs of 2.0 × 105 atoms. We employed our tunable caesium BECs for

performing two strands of experiments which formed the key part of my thesis.

In the first series of experiments, we used a magnetic levitation scheme for

measuring micro-g accelerations by means of atom interferometry. In this context,

we discussed the limitations of the levitation scheme due to the curvature of the

force field, and due to field fluctuations caused by our current regulation. In

the second series of experiments, we generated bright matter-wave solitons by

taking advantage of a zero crossing of a broad Feshbach resonance. We studied

the breathing mode of a single bright matter-wave soliton in quasi-1D geometry

by measuring its oscillation frequency as a function of the atom number and

longitudinal confinement. Furthermore, we reported on the observation of the

N = 2 higher-order soliton and its decay.

6.1 Outlook

We are currently performing experiments in which we employ the vertical mag-

netic field gradient to map the field-dependent s-wave scattering length a(B) to

position space. This approach opens the possibility to explore the dynamics of
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Figure 6.1: Absorption images of expanding and levitating BECs in a vertical
dipole trap in spatially varying scattering length a over an evolution time of
300 ms.

BECs with position-dependent interactions, also called collisionally inhomoge-

neous matter-wave [235]. First theoretical investigations studied the adiabatic

compression of a bright matter-wave soliton due to time- and space-dependent

s-wave scattering lengths [236]. Later, the combination of magnetic Feshbach

resonances and magnetic-field gradients was proposed for the generation of col-

lisionally inhomogeneous matter waves [235]. In this context, compression [235],

dynamical trapping and transmission of matter-wave solitons were predicted [237].

Other theoretical proposals exploited optical Feshbach resonances for realising

BECs with space-dependent interactions [238–241]. So far, collisionally inho-

mogeneous BECs have been experimentally realised by using optical Feshbach

resonances [242, 243], but inelastic light-induced collisions caused loss and heat-

ing of the quantum gas. Our experimental system facilitates magnetic Feshbach

resonances and magnetic-field gradients, and is well suited for the implementation

of some of the above mentioned proposals [235,237].

For magnetic-field values which are sufficiently far from the Feshbach reso-

nance, it is possible to express locally the spatial dependence of the scattering
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length a as a linear function of the vertical position z, i.e a = ā0 + ∆a z. Here ā0

and ∆a represent the offset and the spatial gradient of the scattering length re-

spectively. In the case ∆a d/ā0 � 1, where d represents the characteristic length

scale of the matter-wave, the expanding BEC experiences an adiabatic variation

of the scattering length as discussed in [235, 237]. It is interesting to probe the

regime of a strong scattering-length gradient which violates the above condition.

In particular, matter-waves, which expand simultaneously into regimes with at-

tractive and repulsive interactions, are intriguing. Figure 6.1 shows preliminary

expansion measurements of a BEC close to the zero crossing of the scattering

length. The BEC first expands asymmetrically in a vertical dipole trap, and then

forms a soliton on the attractive side of the crossing. The soliton decays and

induces density modulations in the quantum gas. Currently, we are investigating

the mechanism underlying the formation and the decay of the initial soliton.

The decay of bright matter-wave solitons is an active field of theoretical re-

search. As the role of quantum noise is strongly debated [244–249], we are plan-

ning to study solitons with small atom numbers. So far, experimentally gener-

ated bright matter-wave solitons contain a few hundreds of atoms [30, 222]. In

this regime, solitons can still be described within a mean-field theory by the

Gross-Pitaevskii equation. Recently, excitation modes of higher-order solitons

have been proposed for testing various theoretical models beyond GPE, such as

the multi-configurational time-dependent Hartree method for bosons [244, 245],

truncated Wigner methods and positive-P phase-space representations [246,247],

numerical Bethe ansatz [248] and time-evolving block decimation [249]. We plan

to perform experiments with the goal of testing the above mentioned theoretical

models.
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Appendix A

Matching 1D-GPE with the
Satsuma-Yajima model

The aim of this section is to find the correspondence between the 1D-GPE and

the dimensionless non-linear Schrödinger equation used by Satsuma and Yajima

in 1974 [232] in which, for the first time, the analytic solution for the second

order N = 2 higher order soliton has been found. However, such a solution has

been given in dimensionless units and the connection with the physical units that

appear in the 1D-GPE is needed. Although the explicit solution in terms of the

1D-GPE units has been already given by L. Carr and Y. Castin in 2002 [208], we

found it useful to make explicitly the full derivation.

We start by recalling the 1D-GPE (see eq. 5.7 in Chapter 5):

i~
∂

∂t
f(z) =

[
− ~2

2m

∂2

∂z 2 + Vext(z) +
gN

2πa2
r

|f(z)|2
]
f(z), (A.1)

where Vext(z) is a general external potential, g = 4π~2a/m and ar =
√
~/mωr.

The wave function f(z) satisfies the normalisation condition:

∫ ∞

−∞
dz|f(z)|2 = 1, (A.2)

which implies that its physical dimension is [f ] = 1/
√
L with L representing

length. In order to obtain a bright soliton solution, the atom-atom interactions

must be attractive i.e the value of the scattering length is negative a < 0. For

convenience we will use the absolute value of the scattering length |a| and write
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explicitly the minus sign in the equation. Moreover, in the Satsuma-Yajima model

the external potential is set to zero. We can thus simplify eq. A.1 and write:

i~
∂

∂t
f =

[
− ~2

2m

∂2

∂z 2 −
|g|N
2πa2

r

|f |2
]
f. (A.3)

The characteristic length that emerges naturally by equating the kinetic and

interaction energy is:
~2

ml2
=

4π~2aN

2πma2
r

1

l
, (A.4)

which leads to

l =
a2
r

2aN
. (A.5)

We define the new dimensionless variable in the following way:

ζ =
z

l
. (A.6)

In order to maintain the correct normalisation need to scale the integral of f as

well, leading to the following relations:

dz = ldζ (A.7)

∫ ∞

−∞
ldζ

∣∣∣∣
F (ζ)√

l

∣∣∣∣
2

=

∫ ∞

−∞
dζ |F (ζ)|2 = 1, (A.8)

where we have imposed:

f(z) ≡ F (ζ)√
l
. (A.9)

This implies that every time we scale a length in the 1D-GPE we need to redefine

the wave function in a similar way to eq. A.9. The 1D-GPE becomes:

i~
∂

∂t
F = − ~2

2ml2
∂2

∂ζ 2F −
~2

ml2
|F |2F. (A.10)

By rewriting it as:

i
ml2

~
∂

∂t
F = −1

2

∂2

∂ζ 2F − |F |2F, (A.11)
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and defining the normalised time as:

τ =
~
ml2

t, (A.12)

we get

i
∂

∂τ
F = −1

2

∂2

∂ζ 2F − |F |2F. (A.13)

By setting u = F ∗, we obtain

i
∂

∂τ
u =

1

2

∂2

∂ζ 2u+ |u|2u. (A.14)

The integral of |u|2 is

∫ ∞

−∞
dζ|u(ζ)|2 =

∫ ∞

−∞
dζ|F (ζ)|2 = 1. (A.15)

Satsuma-Yajima solutions are not normalised, their ansatz is

b(ε, θ = 0) = A sech(ε), (A.16)

where A is a real number. The integral of the modulus square of the ansatz is:

∫ ∞

−∞
dε|b(ε)|2 = A2

∫ ∞

−∞
dε sech2(ε) = 2A2 (A.17)

As pointed out in reference [208], the value of A can be connected with a

quench of the parameters of the physical system. We start from some given

initial conditions which set the characteristic length li. The ground state solution

of equation A.14 is

u(ζi) =
1√
2

sechζi, (A.18)

which corresponds to the normalised solution of eq. A.16 withN = 1, i.e bA=1(ζi) =
√

2u(ζi). We quench now one of the parameters of the system and this leads to

the final characteristic length lf which is related to the initial one by the relation

li = qlf , where q is a real number that accounts for the magnitude of the quench,

implying that the scaled variables will satisfy the relation ζf = qζi. We now
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evaluate the integral of the ground state with respect to the final dimensionless

variable ζf : ∫ ∞

−∞
dζf sech2(ζi) =

∫ ∞

−∞
dζf sech2(ζf/q) = 2q. (A.19)

By equating A.19 with A.17 we obtain that:

A =

√
li
lf
. (A.20)

The above relation is important because it suggests how a higher-order soliton can

be generated. For instance, for an N = 2 higher-order soliton the quench should

satisfy li = 4lf which, as suggested in [208], can be accomplished by quenching

the scattering length by a factor 4.

We still need to rewrite eq. A.14 with the normalisation given in eq.A.16. By

multiplying equation A.14 by (2A2)
3
2 and by defining the function

a =
√

2A2u, (A.21)

we get:

i2A2 ∂

∂τ
a = 2A2 1

2

∂2

∂ζ 2a+ |a|2a. (A.22)

The function a is scaled to match the square modulus integral of eq A.16:

∫ ∞

−∞
dζ|a(ζ)|2 = 2A2

∫ ∞

−∞
dζ|u(ζ)|2 = 2A2. (A.23)

Let us scale again the ’spatial’ variable by defining:

ε =
ζ

2A2
. (A.24)

With this change of variable we need to keep the integral of the modulus square

of a constant. Since dζ = 2A2dε we have:

∫ ∞

−∞
2A2dε| b(ε)√

2A2
|2 =

∫ ∞

−∞
dε|b(ε)|2 = 2A2, (A.25)
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where we have defined the function b(ε):

a =
b(ε)√
2A2

. (A.26)

Equation A.22 can be rewritten as:

i(2A2)2 ∂

∂τ
b =

1

2

∂2

∂ε2 b+ |b|2b. (A.27)

By defining:

θ =
τ

(2A2)2
, (A.28)

we get the dimensionless non-linear Schrödinger equation of reference [232]:

i
∂

∂θ
b =

1

2

∂2

∂ε2 b+ |b|2b (A.29)

with the correct normalisation of the function b:

∫ ∞

−∞
dε|b(ε)|2 = 2A2. (A.30)

A second-order soliton is defined when A = 2, and the corresponding analytical

solution of eq. A.29 is [232]:

b(ε, θ) = 4e−iθ/2
[

cosh(3ε) + 3e−4iθ cosh(ε)

cosh(4ε) + 4 cosh(2ε) + 3 cos(4θ)

]
. (A.31)

From eq. A.28, eq. A.24 and eq. A.26, we can rewrite eq.A.31 as:

a(ζ, τ) =
√

2e−i
τ

128

[
cosh(3ζ

8
) + 3e−i

τ
16 cosh( ζ

8
)

cosh( ζ
2
) + 4 cosh( ζ

4
) + 3 cos( τ

16
)

]
. (A.32)

By recalling the definition of u, eq. A.21, and that F = u∗ we obtain:

F (ζ, τ) =
1

2
ei

τ
128

[
cosh(3ζ

8
) + 3ei

τ
16 cosh( ζ

8
)

cosh( ζ
2
) + 4 cosh( ζ

4
) + 3 cos( τ

16
)

]
. (A.33)

Finally, from eq. A.12, eq. A.9, and eq. A.6, we recover the expression for A = 2
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in the physical units of the 1D-GPE given in [208]:

f(z, t) =
1

2
√
l
ei

~t
128ml2

[
cosh(3z

8l
) + 3ei

~t
16ml2 cosh( z

8l
)

cosh( z
2l

) + 4 cosh( z
4l

) + 3 cos( ~t
16ml2

)

]
. (A.34)

From the previous equation the oscillation period associated with a second order

soliton is:

T =
32πml2

~
. (A.35)

In conclusion, we obtained the analytical expression of the second-order soliton

and of its oscillation period in terms of the physical units that appear in the

1D-GPE.
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Note: A simple laser shutter with protective shielding for beam
powers up to 1 W

Craig D. Colquhoun, Andrea Di Carli, Stefan Kuhr, and Elmar Hallera)

Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG, United Kingdom

(Received 22 August 2018; accepted 10 November 2018; published online 5 December 2018)

We present the design of an inexpensive and reliable mechanical laser shutter and its electronic driver.
A camera diaphragm shutter unit with several sets of blades is utilized to provide fast blocking of laser
light and protective shielding of the shutter mechanism up to a laser beam power of 1 W. The driver
unit is based on an Arduino microcontroller with a motor-shield. Our objective was to strongly reduce
construction effort and expenditure by limiting ourselves to a small number of modular parts, which are
readily available. We measured opening and closing durations of less than 800 µs, and a timing jitter
of less than 25 µs for the fastest set of blades. No degradation of the shutter performance was observed
over 5·104 cycles. © 2018 Author(s). All article content, except where otherwise noted, is licensed
under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1063/1.5053212

Mechanical optical shutter units have become indispens-
able in modern optics laboratories to provide a time-dependent
extinction of laser light. Depending on the application, a mul-
titude of desirable properties can be identified, such as low
extinction ratios, fast switching times, low time jitter, high
reliability, high repetition rates, small sizes, or long operation
lifetimes.

Commercial products are currently available that fulfil
most of those design requirements at high costs,1 but labo-
ratories often need dozens of shutter units and commercial
solutions can quickly become unaffordable. As a result, many
experimental groups have developed their own shutter designs
with varying design goals and technical approaches,2 e.g.,
based on loudspeakers,3 computer hard drives,4 or piezoelec-
tric devices.5,6

In this article, we present the design of a mechanical shut-
ter and its driver unit with two design objectives. The first
objective is to strongly reduce construction effort and costs
while preserving fast switching times and a high reliability.
We do so by limiting ourselves to a small number of modular
parts which are readily available.7,8 The shutter unit utilizes a
small diaphragm shutter with multiple blades as is normally
used in compact digital cameras, and the driver unit is based on
an Arduino microcontroller with a motor-shield.8 The second
design objective is a protection mechanism that facilitates the
blocking of laser beams up to a continuous power of 1 W. We
implement the protection with a shielding blade that reflects
the laser light.

Details and additional materials for the construction are
available in the supplementary material. Here, we give an out-
line to the design of the shutter blades, the driver unit, the
microcontroller software, and the enclosure of the shutter. An
experimental characterisation of the switching time, the jitter,
and the reliability is provided.

a)Electronic mail: elmar.haller@strath.ac.uk

Figure 1 illustrates the design of the shutter blades. The
shutter contains three sets of blades—a light pair of blades B1
that close from opposite sides of the aperture in a “scissor”
motion, overlapping in the centre and blocking light; a sturdy
filter blade B2 originally intended to attenuate the light in a
camera; and an unused blade with a hole which only limits the
aperture size B3. We utilize blades B1 for fast switching oper-
ations and blade B2 for protection and dispersive reflection of
laser light. Typically, the blades of small diaphragm shutters
are optimized for low weight and friction, and they start to
bend or melt when absorbing laser powers of more than 50
mW. We managed to increase the beam power up to 1 W9 by
adhering a small strip of aluminum foil to filter blade B2 that
dispersively reflects the laser light and dissipates heat. By our

FIG. 1. Images of the (a) back and (b) front of the shutter before modifications
and (c) within its 3D-printed enclosure. Red dashed lines indicate removed
parts, and red arrows point toward the (a) connection terminals of the solenoids
and (b) sliders of the shutter blades. The labels indicate that the connection
terminals and sliders attach to scissor blades B1, filter blade B2, and unused
aperture blade B3.

0034-6748/2018/89(12)/126102/3 89, 126102-1 © Author(s) 2018
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design, most of the reflected light is trapped in the enclosure
of the shutter.

The positions of the blades are controlled by small
solenoids with independent connection terminals as indicated
by red arrows in Fig. 1(a). The shutter blades are bistable with-
out any springs or other self-restoring elements, and a short
current pulse of ±200 mA for a duration of 3 ms is sufficient
to flip the position. The final state of the shutter is determined
by the direction of the current. For simplicity, we typically
connect both blades, B1 and B2, in series by soldering thin
wires to the connection terminals, but an independent control
of the blades is used for the purpose of testing the shutter for
this note.

The shutter driver consists of an Arduino microcon-
troller with a motor-shield (Fig. 2). The microcontroller mon-
itors a digital (TTL) input signal that indicates the state of the
shutter—a low (high) signal corresponds to a closed (open)
state. The detection of a signal change triggers the short current
pulse of the motor-shield with the required current direction
to flip the blades. An operation of both solenoids in series
requires a supply voltage of 5–6 V for the motor-shield to
generate the correct current pulse. It is possible to supply the
shield by the regulated 5 V output of the Arduino microcon-
troller, but a direct connection to the main power supply is
advisable for the simultaneous control of 4 shutters units. For
convenience, we added to the circuit a toggle switch to open
the shutter manually, and a light emitting diode (LED) to indi-
cate the shutter status. We intentionally limited the circuit to
include only essential elements, and all components except
for the microcontroller can be integrated into the front panel
without the need of an additional circuit board.

Our microcontroller software is provided in the supple-
mentary material. The tasks of the program are the tracking of
the shutter status, the detection of a change of the TTL input
signal, and the control of the motor-shield. Timer interrupts are
included for the parallel control of several shutter units. The
use of interrupts allows us to generate current pulses of well-
defined duration without blocking the program flow. We mea-
sured a response delay between the input signal and the current
pulse of 230(30) µs for a simultaneous use of 4 shutters units.

A plastic enclosure is used for the shutter unit to reduce
the coupling of vibrations. The casing is 3D-printed using

FIG. 2. Circuit diagram of the shutter controller. The design is based on an
Arduino microcontroller with a motor-shield. We added a toggle switch to
open the shutter manually by bypassing the TTL input signal, and an LED
to indicate the status of the shutter blades. One motor-shield facilitates the
simultaneous control of 4 shutter units.

fused deposition modeling of polylactide (PLA) plastic. We
sandwich the shutter between rubber “O” rings and a black
anodised aluminum disc with a small hole of 4 mm diame-
ter to further dampen vibrations. The disc reduces possible
backscattering from the aluminum foil adhered to the shutter
blades, and it prevents a melting of the casing material due to
a misaligned laser beam. The corresponding computer-aided
design (CAD)-model files of the enclosure can be found in the
supplementary material.

The final part of this note describes an experiment to
benchmark the speed, time jitter, and robustness of the shutter
and driver unit. We used a photodiode10 and an oscilloscope to
measure the power of a laser beam after it propagated through
the shutter. Timings for the shutter and for the acquisition oscil-
loscope were provided by an NI-multifunction IO device.11

The shutter aperture is 4 mm in diameter, and the laser beam
was collimated with a 1/e2 waist of 1.1 mm. As opposed to
our normal operation, we connected each shutter blade to the
shutter driver separately to study the timed opening and clos-
ing of the blades independently of one another. The intensity
profiles of 500 consecutive opening and closing cycles were
recorded and analyzed (Fig. 3). No degradation was detected
over the course of 5·104 additional cycles.

Figure 3 shows the photodiode signal for a time t after the
trigger signal to (a) open or (b) close the shutter with scissor
blades B1 (blue) and filter blade B2 (red). The photodiode
voltage is normalized for each data set to the signal of an open
shutter. We determine an opening delay between the trigger and
an increase to 5% of the full photodiode signal of 2.29(2) ms
and 3.71(3) ms for blades B1 and B2. The opening durations,
measured by an increase from 5% to 95% of the total signal,
is 790(10) µs and 1.51(3) ms for the two sets of blades. The
closing procedure is slightly faster with a closing delay of
2.73(2) ms and 2.71(3) ms and a closing duration of 573(7) µs
and 1.46(2) ms for blades B1 and B2, respectively. Opening
and closing delays are longer than the electronic response time,
and we expect most of the delay time to be used to overcome

FIG. 3. Transmission signals of the two blades being (a) opened and (b)
closed. The red (blue) lines show the transmission throughout the operation
of filter blade B2 (scissor blades B1). The gray lines show the operation of B2
for a reduced beam waist (see text). The time scale indicates the delay time t
after the change of the TTL input signal.
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FIG. 4. Histograms of opening times for the transmission signals. (a) half-
opening times and (b) half-closing times of filter blade B2. (c) half-opening
times and (d) half-closing times of scissor blades B1.

friction and to separate the overlapping blades. We presume
that the scissor blades are faster than the filter blade because
they close in from both sides and meet in the centre of the
aperture, thus traveling half the distance. Both blades have a
velocity of approximately 1.2 m/s.

Another important property to characterise a shutter is the
reproducibility of operation times. The histograms in Fig. 4
show the variation of the half-opening and half-closing times,
i.e., the time ∆T to reach 50% of the total beam power after
a change of the trigger signal. Our histograms display a low
jitter time with no significant outliers. Filter blade B2 shows
a positive (negative) skew of the distribution for the opening
(closing) process with standard deviations of 60 µs (40 µs).
The distributions of the timing of scissor blades B1 show the
opposite skews with the standard deviations of 21 µs (24 µs).
We speculate that this skewing is due a position dependent
variation of the friction between blades, and the details of the
skewing might vary from device to device. The difference in
opening and closing times for the same blade might be due to a
small misalignment between the center of the shutter aperture
and the laser beam.

For a better comparison with other publications, we reduce
the 1/e2-waist of the beam to 140 µm and repeat the mea-
surements. 500 data sets for the opening and closing of blade
B2 are represented by gray lines in Fig. 3. The reduced
beam waist results in a reduction in the time taken for the

photodiode signal to change between 5% and 95% of the
total signal. For blades B1 (B2), we measure an opening
duration of 137(7) µs [220(5) µs] and a closing duration of
100(4) µs [155(5) µs], which are in agreement with previous
measurements and with the scaling of the beam waist.

In conclusion, we implemented and benchmarked a sim-
ple and robust shutter design based on a diaphragm shutter
with multiple pairs of blades. A lightweight pair of blades is
utilized for fast shutter operation while being protected by a
slower and sturdier blade. The shutter can operate up to a con-
tinuous laser beam power of 1 W. For the opening and closing
of fast blades B1, we measured delays of less than 3 ms, open-
ing and closing durations of less than 800 µs (140 µs for the
smaller waist) and a timing jitter of less than 25 µs. Our design
goal for the shutter and driver units was to strongly reduce con-
struction effort and costs while preserving robustness and high
power operation.

Please see supplementary material for the software of the
microcontroller and for the CAD-model files for the casing of
the shutter.
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2S. Martı́nez, L. Hernández, D. Reyes, E. Gomez, M. Ivory, C. Davidson,
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Abstract
The sensitivity of atom interferometers is usually limited by the observation time of a free falling cloud
of atoms in Earth’s gravitational field. Considerable efforts are currentlymade to increase this
observation time, e.g. in fountain experiments, drop towers and in space. In this article, we
experimentally study and discuss the use ofmagnetic levitation for interferometric precision
measurements.We employ a Bose–Einstein condensate of cesium atomswith tuneable interaction
and aMichelson interferometer scheme for the detection ofmicro-g acceleration. In addition, we
demonstrate observation times of 1s, which are comparable to current drop-tower experiments, we
study the curvature of our forcefield, andwe observe the effects of a phase-shifting element in the
interferometer paths.

1. Introduction

Precisionmeasurements withmatter waves have shown tremendous advances over the last decades. In
particular, atomicmatter wave interferometers demonstrated a ground-breaking increase of themeasurement
precision of inertial effects, such as rotation [1, 2] and acceleration [3, 4]. In addition, atomicmatter wave
interferometers have been used to determine the fine-structure constant [5], Newton’s gravitational constant
[6, 7], and constraints on dark energy [8]. Similar to optical interferometers, atom interferometers split amatter
wave into two parts, evolve the parts independently along different paths, andfinally recombine thewaves to
form an interference pattern [9]. The interference pattern depends on the accumulated phase shift of thewave
packets during the independent evolution, and themeasured quantity is typically inferred from the shape and
time evolution of the pattern. The sensitivity of interferometers increases with the accumulated phase shift,
which again depends on the evolution time [10]. However, the evolution time of a free falling atom cloud is
limited by Earth’s gravitational acceleration inmost experimental setups, and considerable efforts aremade to
increase the duration, e.g. in fountain experiments [11], drop towers [12, 13], parabolic flights [14, 15] and in
space [16].

In this article, we employmagnetic levitation as a differentmethod to extend the evolution time in
earthbound laboratories.Magnetic levitation relies on the use ofmagnetic forces to cancel the gravitational
acceleration and to levitate the particles in space. Themethod is well established for experiments with ultracold
atoms [17–19], and its experimental implementation, i.e. using a pair of current-carrying coils, is significantly
simpler and smaller than an atomic fountain apparatus or a drop-tower experiment. Here, we study the
advantages and limitations ofmagnetic levitation formatter wave interferometry with themotional states of
Bose–Einstein condensates (BECs), andwe demonstrate thatmagnetic levitation can be employed to reach an
expansion time of 1s, which is comparable to current drop-tower experiments [12]. Furthermore, we utilize
magnetic levitation to create and to interferometricallymeasuremicro-g acceleration in free expansion, andwe
show that the negligible center-of-massmotion of levitated atoms facilitates a direct study of phase-shifting
elements in the interferometer paths.

Other interferometer schemes use external trapping potentials to prevent the gravitational acceleration by
channelling thewave packets alongmagnetic [20, 21] and optical [22, 23]waveguides. External guiding and
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trapping potentials allow for equally long observation times [24], however, they introduce additional challenges.
External potentials can cause spatially varying phase shifts and undesired excitations of thewave packets [23, 24],
which limit themeasurement precision.Our levitation scheme avoids trapping potentials along the gravitational
axis, and it facilitates a tuneable scattering length for future studies of interaction effects in atom interferometers.

This article is structured as follows: section 2 provides an overview of our experimental setup,magnetic
levitation scheme, and the use of amagnetic Feshbach resonance to control the interaction strength of cesium
atoms. Section 3 is used to illustrate the interferometer scheme, and in section 4 we evaluate ourmeasurement
precision. Small changes to themagnetic levitation gradient allow us to createmarginal accelerations of
milli-g (section 4.1) andmicro-g (section 4.2). An additional laser beam in one of the interferometer paths
constitutes a phase-shifting element in section 4.3. In section 5, wemeasure features of themagnetic field
distribution, such as the transversal curvature of the force field. Finally, using a combination of low
interaction strength, low trapping frequencies, andmagnetic levitation we demonstrate long expansion and
observation times in section 6.

2.Magnetic levitation scheme and experimental apparatus

Our experimental apparatus is designed to independently control twoparameters of themagneticfield.The
magneticfield strength = ∣ ( )∣B x y zB , ,0 , at theposition of the atoms (x=y=z=0mm) is used to tune atomic
interactions bymeansof a broadmagnetic Feshbach resonance for cesiumatoms in the strong-field-seeking
Zeeman state = = ñ∣F m3, 3F .We reduce the effects of interaction by settingB0 to 17.4 Gwith an s-wave
scattering length, a, of approximately 65 a0 during the interferometer sequences (figure 1(c)), where a0 isBohr’s
radius. The second controlled parameter is the vertical gradient of themagneticfield,∂z B, which can be adjusted to
exert a vertical pull on the atoms and cancel the gravitational acceleration.Due to theZeeman effect, cesiumatoms
in the given state experience a vertical force that is proportional to themagneticfield gradient, m= ¶F BB zvert

3

4
. For

amassmof a cesiumatom, the levitation gradient can be calculated as∂z B=4mg/(3μB)=31.1 G cm−1 [19, 25].
Here,μB represents the Bohrmagneton and g the gravitational acceleration.

Our coil configuration is based on established designs [18, 19, 25]. It consists of two vertical coils above and
below the atoms (inner diameter 12 cm, separation 6 cm), with 5 independently controllable sections.We
generateB0 and∂z B bymeans of two vertical pairs of coil sections with co- and counter-propagating currents
(outer and inner sections infigure 1(a)). Pairs of shim coils on each axis at distances of approximately 20 cm

Figure 1.Experimental setup. (a)Magnetic field coils to controlB0 (blue, outer coils) and∂z B (red, inner coils). Laser beamswith
small beamwaists (S1, S2) and large beamwaists (H1,H2,H3) trap the atoms, and a lattice L1 is used to split thewave packet during
the interferometer sequence. Top and bottom coils have an inner diameter of 12 cm and a vertical separation of 6 cm. (b)Numeric
simulation of the totalmagneticfield ∣ ( )∣B y z, for∂B/∂ z=31.1 G cm−1 andB0=17.4G,field lines indicate amagnetic field
strength of 2–40 G. (c)Zero crossing of the scattering length at 17.1 G due to a broad Feshbach resonance for cesium atoms.
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from the atoms allow for additional fine control of themagnetic field. Figure 1(b) shows the totalmagnetic field
strengthB(y, z) in the vertical plane as calculated by a numerical simulation of our coils withfinite wire elements.
Thefield can be approximated by amagnetic quadrupolefieldwith a shiftedminimumat a fewmillimetres
below the atom cloud. Experimentally, we determineB0 bymicrowave spectroscopy andwe optimize the
levitation gradient∂z B by varying the levitation current Ilev andminimizing position drifts of a BECduring free
levitated expansion. Additional effects due to horizontalfield curvature and limitations of the levitations scheme
for precisionmeasurements are discussed in section 5.

Thematter waves of our interferometer are provided byBose–Einstein condensates. In our setup, ´2 109

cesium atoms are loaded froma 2D+magneto optical trap (MOT) into a 3DMOTwithin 3 s. The atoms are
cooled by degenerate Raman sideband cooling [26], and then sequentially transferred into two pairs of crossed
optical dipole traps, the first withwavelength 1070 nm, total power 200W,waists 700 μm, and the secondwith
wavelengthλ=1064.495(1) nm, power 400 mW,waists 90 μm (labels S1, S2 infigure 1(a) ). Bose–Einstein
condensation is reached after 6 s of evaporative cooling, and the density distribution of the atoms is detected by
means of resonant absorption imaging after a variable time of levitated expansion and after 1ms of unlevitated
time-of-flight. One cooling cycle has a duration of 15 s and it is similar to [25].

We generate BECs of 2.5×105 atoms in the Zeeman sub-state = = ñ∣F m3, 3F at a scattering length of
a=210 a0, trapped in the crossed laser beams S1, S2with trap frequencies ofωx, y, z=2π×(23.5,17.7,15.4)Hz.
To reduce interactions during the interferometricmeasurement, we tune the scattering length to 65 a0 and
remove atoms by forced evaporationwith a non-levitatingmagnetic field gradient. The BECs for the
interferometermeasurements in this work consist of approximately 8×104 atomswith a thermal fraction below
5%.Vibrational isolation and damping of the optical table is achieved by a pneumatic isolation system (Newport
S-2000A).

3. Interferometer scheme

Weemploy aMichelson interferometer scheme that is based on three Kapitza–Dirac pulses with a standing light
wave (figure 1(a), beamL1) [27]. The pulses change themotional states of thematter waves but leave the internal
states of the atoms unchanged [28]. Our pulse sequence and the resultingmotion of thematter wave packets are
illustrated infigure 2. Afirst pulse splits the BEC into twowave packets with oppositemomenta±2ÿkL. Here,
kL=2π/λ is thewavenumber of the lattice beam and ÿis Planck’s constant. Thewave packets propagate freely
for an evolution timeT1 until we apply a second pulse that inverts the direction of thewave packets and changes
theirmomentumby 4ÿkL. A third pulse is used after an evolution timeT2 to recombine the twowave packets. It
is identical to thefirst pulse and generates three wave packets withmomenta p0=0, p±=±2ÿkL. The relative
population of the recombinedwave packets depends on the acquired phase differenceΔΦ, resulting in a
probability P0 of finding an atom in the p0momentummode

Figure 2. Interferometer scheme. Average of three absorption images of thematter waves after the splitting and the inversion pulses
(left to right: = =T T 01 2 , 6, 12 ms), and after the recombination pulse and an expansion time of 10 ms. All images are taken after an
additional time-of-flight of 1 ms.
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= + DF( ) ( )P P
C

2
cos . 1m0

Here,C is the interference contrast and Pm is the offset of the interference signal.We determine P0 from the ratio
of atoms in the p0mode to the total atomnumber in allmomentummodes.

Several factors can contribute to the phase differenceΔΦ. For fallingwave packets with spatially
homogeneous acceleration ac, the phase difference is directly proportional to the center-of-mass displacement
Δz that was acquired during the total interferometer timeΔT=T1+T2+Tpulse. Here,Tpulse represents the
total duration of the pulses. The total phase difference is given by [29]

DF = D + F = D + F( ) ( )k z k a T2 2
1

2
, 2L L c0

2
0

with a term F0 that accounts for additional phase shifts introduced during the initialization process, by noise
such as lattice vibrations [15], or by interactions (see section 4.2).

The pulse sequence used in this experiment is based on previous work [20, 30, 31]. Our splitting and
recombination pulses consist of three sub-pulses of lattice beam L1with durations 60, 110 and 60 μs, and lattice
intensities of 6.6 Er, 0.2 Er, and 6.6 Er. Here, = ( )E k m2r L

2 2 is the recoil energy for cesium at a lattice
wavelength of 1064 nm.Our inversion pulse has aGaussian intensity distributionwith amaximumof 17 Er and
a 1/e-duration of 35 μs. The sub-pulse scheme allows us to reach a splitting efficiency of 96%of the atoms in the
±2kLmodes, andwe speculate that the limit of the efficiency is given by the thermal component of our BEC. The
efficiency of the inversion pulse is lower, 83%, and residual atoms are clearly visible infigure 2 in the 0 and
±2ÿkLmodes.We suspect that this is due to the velocity selectivity of the inversion pulse and the velocity
difference of the acceleratedwave packets.

4. Interferometricmeasurements

4.1.Measuringmilli-g acceleration
Ourmagnetic levitation scheme allows us to apply small forces to the atoms by changing the levitation current
Ilev in the vertical coils with counter-propagating currents.We use this approach to characterize our
interferometer setup for non-zero accelerations. After the preparation of the BECwe increase the current I in the
coils, which create themagnetic field gradient, in 75 ms to the ratios I/Ilev of 1.003, 1.001, and 1.0003. The
acceleration of the BEC ismeasuredwith our interferometer scheme. Figures 3(a)–(c) show the corresponding
measurements ofP0 for varying evolution timesΔT2 withT1=T2. As expected, we observe sinusoidal
oscillations ofP0, which are fitted using equations (1) and (2) (solid lines) to determine the accelerations ac (red
circles, figure 3(d)).

An independentmeasurement of ac, based on the freemotion of the BEC, is provided for comparison.We
measure the shift of the center-of-mass position for an expansion timeTexp of an untrapped BEC in our
magnetic field gradients, =( )z T a T1 2 cexp exp

2 , with afit parameter ac (blue diamonds, figure 3(d)).Wefind
excellent agreement within two standard deviations between the twomethods. However, the sensitivity of the
free expansionmeasurement is limited by the observation time. Although our levitation scheme allows for very

Figure 3. Interferometricmeasurement ofmilli-g accelerations. (a)–(c)Probability of observing atoms in the 0ÿkLmomentummode
for increasing durationΔT and gradient coil currentsΔI/Ilev of (a) 0.003, (b) 0.001, (c) 0.0003. Solid lines represent fits to the data
points using equations (1) and (2). (d)Comparison of the accelerationmeasurement with the interferometer scheme (red circles) and
by the center-of-massmotion (blue diamonds). Error bars indicate one standard deviation of the data points.
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long observation times (section 6), it also induces a horizontal dispersion of the BEC in free space, whichwill be
discussed in section 5.Here, we limit the observation time to 200 ms, which allows us tomeasure the
acceleration for I/Ilev=1.001, 1.003, but not for 1.0003. Themeasurement results infigure 3(d) have relative
uncertainties of approximately 4% for the free expansionmeasurement and 0.5% for the interferometric
approach.

4.2.Measuringmicro-g acceleration
In a secondmeasurement, we utilize the interferometer scheme tominimize the forces on the atoms.We vary
the currents in our shim coils and Ilev with the goal tomaximize the oscillation period ofP0 (red circles figure 4).
For optimal current values, we observe a slow drop of the value ofP0 from approximately 0.75 to 0.45 over
ΔT2≈1600ms2. This reduction is not necessarily caused by a residual acceleration of thewave packets, as it can
also originate fromdephasingmechanisms that are discussed in the next paragraph.However,fitting P0(t)with
equation (1) provides an upper limit to the acceleration experienced by the atoms.We determine an upper limit
for the acceleration of the atoms of ac=70(10)×10−6 g. Atomic fountain interferometers facilitate the
measurement of significantly smaller differential accelerations and reach staggering precisions of the order
Δg/g∼10−10 [3, 4, 32]. Ourmeasurement, however, provides, to the best of our knowledge, the smallest
absolute value for an acceleration that ismeasured directly with ultracold atom interferometry.

We estimate possible sources ofmeasurement errors,fluctuations anddephasingmechanisms. Fluctuations of
a homogeneousmagneticfieldwill only slightly change the interaction strength of our BEC, but deviations of the
magneticfield gradient can induce additional accelerations and alter themeasurement result. In our setup, small
deviations of themagneticfield gradient canoccur as thewavepacketsmoveduring an interferometer sequence
away from the original positionwith optimized levitation.Weestimate fromournumericalmagneticfield
simulation that our coil design causes a relative increase of thefield gradient of 2×10−6 for a vertical position shift
of 50 μm. In addition, thequadratic Zeeman effect induces another deviation of the levitation force of 6×10−6 for
the sameposition shift. As a result, theupper and lowerwavepackets experience a position-dependent
acceleration,which increases the separationof thewavepackets before the inversionpulse, andwhich reduces the
convergence after the inversion pulse. Similar to ourmeasurements in section 5,wewould expect thefinal
displacement of thewavepackets to cause horizontal fringes in the absorption images, whichwedonot observe. As
a result,we conclude that the vertical force gradients are negligible for the time scales of our interferometer.

In addition, the position-dependentmagnetic field strength causes an almost linear change of the scattering
length of approximately±10 a0 over 50 μm (see also section 6). As a result, the atoms in the upper wave packet
experience a stronger interaction and faster phase evolution than atoms in the lowerwave packet. Assuming
constant densities and a linear change of the scattering length, wewould expect the phase shift between thewave
packets to increase withΔT2, and it would be difficult to distinguish this effect from a phase evolution due to

Figure 4. Interferometricmeasurement ofmicro-g accelerations and phase shifts due to a laser beam. (a)Probability of observing
atoms in the 0ÿkLmomentummode vsT1 forminimized acceleration of the atoms (red circles) and for an addition laser beam in the
path of the upperwave packet (blue squares). Error bars indicate one standard deviation of the data points. (b) Illustration of the
position of thewave packets and the additional laser beamduring the pulse sequence. Angles and axes are not to scale in the
illustration.
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acceleration.However, in our setup thewave packets expand after release and the densities decrease strongly
over a timescale of 1/ωx,y, z≈10 ms. The position-dependent scattering lengthwould result in a change of the
oscillation frequencies within 10–15 ms infigures 3(a)–(c), whichwe do not observe, andwe conclude that the
phase shift due to a position-dependent scattering length is belowour sensitivity for thismeasurement.

Fluctuations of the acceleration of the BEC can be caused by time-dependent changes ofB0 and∂z B, either
due to externalmagnetic fields or due to thefinite stability of the currents in our coils.We determine a current
reproducibility of 1.4×10−6 bymeasuring the standard deviation of the current during the interferometer
sequence over 60 consecutive cycles. For each cycle, the currentmeasurement averages over 80 ms.We believe
that the current reproducibility will eventually set the limiting precision for our interferometricmeasurements
with levitated atoms.While it is in principle possible to increase the current reproducibility by 1–2 orders of
magnitude by improving our current regulation electronics, it would be very hard to reach the precision of
atomic fountain experiments. Nonetheless, we believe thatmagnetic levitation schemeswill provide a valuable
technological addition for precisionmeasurements with ultracold atoms. Reducing gravitational acceleration to
micro-g effectively removes the center-of-massmotion of the atoms, and it allows for a directmeasurement of
phase-shifts due to additional elements in the interferometer path.We demonstrate this approach in the next
section by adding a focused laser beam in the upper path of the interferometer and bymeasuring its position-
dependent phase shift on the atoms.

4.3.Detection of phase-shifting elements
Compared to fountain experiments, the center-of-massmotion of ourwave packets is containedwithin a small
spatial region of a few hundreds ofμm, and it is straightforward to add additional phase shifting elements in the
path of thewave packets. As a result, it is possible to use the levitated interferometer scheme to analyze additional
potentials for the atomswith high precision.We demonstrate this approach by adding a horizontal laser beam
(wavelength 1064 nm,waist 40 μm, power 29 μW) approximately 50 μmabove the initial position of the atoms
(figure 4(b)). This beam creates aGaussian dipole potential with a depth of approximately 3 nK, and it
introduces between the upper and lowerwave packets a differential phase shift, which can be detected by the
interferometer. In addition to ameasurement of the AC Stark shift of the lightfield as in reference [33], our setup
facilitates the study of the spatial dependence of the potential.

The effect of the laser beamonP0(t) is clearly visible infigure 4(a)when comparing the data sets with the
beam (blue squares) andwithout the beam (red circles). For increasing durationT1, the upper wave packet
passes twice through the laser beam and it samples increasing spatial sections of the potential.We adjusted the
power of the beam to create a single oscillation of the phase for awave packet that fully transverses the beam,
resulting in aminimumofP0(t) at an evolution timeT1=7 ms infigure 4(a).

Constant propagation velocities of thewave packets during the evolution timesT1 andT2make it easy to
relate the time to the position of the atoms.We use a numericalmodel to integrate the phase shift of the upper
wave packet in the dipole potential of the laser beamover the interferometer path z(t) and include the
unperturbed phase shift asmeasured in section 4.2. Fitting themodel parameters to our data set (blue line
figure 4(a)), we determine a beamposition of 45(1) μm, awaist of 37(4) μmand a beampower of 25(3) μW,
which are in excellent agreementwith the independentlymeasured values.

Ourmodel neglects the spatial extent of thewave packets andwe determine the phase shift at the center-of-
mass position, whereas our experimental sequence averages over local phase shifts within the uppermatter wave
packet. Local phase shifts result in density variations in the profiles of themomentummodes in our absorption
images, butmeasuring the total atomnumber in themomentummodes provides only the average phase shift of
thewave packet.

5. Spatial curvature of the forcefield

Ourmagnetic field configuration does not only provide a verticalmagnetic field gradient to levitate the atoms,
but it also generates aweak, horizontal anti-trapping potential. This potential is a result of the spatial curvature
of our quadrupole-like distribution of themagnetic field (see figure 1(b)). In this section, we demonstrate that
the anti-trapping potential causes an additional interference pattern, which can be employed tomeasure the
anti-trapping frequency or the angle between the lattice beam and the vertical field axis.

Within the quadrupole approximation it is possible to derive simple equations for themagnetic field and for
the forces along the dashed horizontal line infigure 1(b) [19, 25, 34]

m
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Here, = +r x y2 2 is the horizontal displacement of the atoms from the origin. The quadratic scaling of
Bhorz(r)with r results in aweak, outwards-directed force in the horizontal plane. This anti-trapping effect can be
associatedwith frequencyα, and it causes aweak, position-dependent accelerationwith a time-dependent
horizontal position r(t) and horizontal velocity vr(t) [35]:

a a a
a a a

= +
= +
= +
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For this calculationwe assume perfect levitation and linear verticalmotion z(t) during the interferometer
sequence.

In an experimental setup there will always be a small anglej between the lattice beamL1 and the vertical axis
of themagnetic field, and a splitting pulsewill always imprint a small velocity component

 j=( ) ( ) ( )v k m0 sinr L along the horizontal direction. Consequently, a small horizontal displacement due to
vr(0) results in an outwards-directed force on thewave packets in the anti-trapping potential, and in afinite
horizontal displacement at the end of the interferometer sequence as illustrated infigure 5(a). The horizontal
distance between thewave packets is typically two orders ofmagnitude smaller than the vertical displacement
during the interferometer sequence, and both distances become comparable only in the proximity of the
recombination pulse and during the expansion time.We illustrate the positions of thewave packets in
figure 5(b) for small delay times of the recombination pulse δt=T2−T1withT1=20 ms.Depending on δt,
the orientation of the blue line connecting thewave packets changes from almost vertical for δt=±0.4ms to
horizontal for δt=0ms.We define an angle θ, which is chosen to be positive clockwise and in the interval
[−90°, 90°], to indicate the orientation of the line, andwe define d(δt) to be the distance between the twowave
packets.

In analogy to Young’s double slit experiment [13, 36], the interference pattern of twowave packets at
distance d(δt) shows a fringe spacing dF of

p= +( ) ( )d t md d . 5F 0

Here, t is the total duration of the interferometer sequencewith t=T1+T2+Tpulse−δt+Texp, and d 00

is a constant phase shift that depends on the initial conditions such as the density distribution [37–39]. In our
absorption images of the interfering wave packets for constant timesT1,Texp and varying delay δt (figure 5(d)),
interference fringes with varying separation dF and angle θ are clearly visible for allmomentummodes p0, p±.

Figure 5.Effect of the forcefield curvature on the interference pattern. (a)Calculated interferometer path of the center-of-mass
positions of the levitatedwave packets with δt=0 ms. (b)Center-of-mass positions of the twowave packets for δt=−0.4 ms (blue),
−0.2, 0,+0.2 ms (grey). Blue parallel lines indicate the orientation of the interference pattern. (c) Fringe angles (red circles) and fringe
spacings (blue squares) versus the delay δt of the recombination pulse, inferred from the data in d. Solid lines showour fit results for
equation (6). (d)Absorption images for varying δt between−2.0 and 2.0 ms in steps of 0.4 ms. Commonparameters are
α=2π×3.29 Hz,j=0.108°,T1=20 ms ,Texp=30 ms.

7

New J. Phys. 21 (2019) 053028 ADCarli et al



From the evolution of the fringes as a function of time delay δt, we infer properties of the curvatureα and the
anglej.We simultaneouslyfit the fringe spacing in equation (5) and the fringe angle θwith
q d d d=( ) ( ( ) ( ))t z t r tarctan . Here z(δt) and r(δt) are the vertical and horizontal positions of thewave packets
for varying δt.We integrate the center-of-massmotion of thewave packets in equation (4)with starting
conditions r(0)=z(0)=0 over all steps of the interferometer sequence to determine z(δt) and r(δt)
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Equations (6) contain two free parameters, the anti-trapping frequencyα and the lattice anglej, which can both
be used tofit our data points infigure 5(c).We choose to constrainα and varyj during the fitting procedure, as
it is experimentally difficult to determine the laser beam angle withmilliradian precision, andwe independently
measuredα by observing center-of-mass oscillations of BECs in optical dipole traps. Thefit results, represented
by solid lines infigure 5(c), show good agreementwith our data points, andwemeasure a lattice angle of
j = ( )◦0.108 7 forα=2π×3.29(5)Hz.

Note thatα scales with B1 0 in equation (3), andwe can use larger values forB0 to reduce the anti-trapping
effect, e.g. by tuning the interaction strengthwith a broadmagnetic Feshbach resonance at 800 G [40]. However,
it will be difficult to reduceα significantly due to its square-root dependence onB0. Instead, it is easier to
compensate the anti-trapping effect with an additional dipole trap, as demonstrated in the next section.

6. Long expansion times

The sensitivity of an interferometricmeasurement increases with the evolution time of thewave packets [12],
but evenwithout the implementation of an interferometer scheme, long observation times of an expanding BEC
facilitate a sensitive accelerationmeasurement. In this section, we demonstrate thatmagnetic levitation allows us
to extend the expansion time of a BEC to 1 s, andwe evaluate advantages and limitations of this scheme for
precisionmeasurements.

Typical expansion times for falling BECs are on the order of tens ofmilliseconds, often limited by the
detection area of the imaging system, by the gravitational acceleration and by the expansion velocity of the gas.
Usually, the expansion velocity of a quantumgas is not caused by the temperature of the gas but by repulsive
interaction during the initial spreading. The current record for long observation times undermilli-g acceleration
is 1 s [12]with an expansion energy of 9 nK. The experiment was performed in a drop tower, and ballistic
expansionwas observed over approximately 500 ms, limited by straymagnetic fields.

In our experiment, we can reduce the interaction energy of the BECby tuning the scattering length close to
0 a0 bymeans of amagnetic Feshbach resonance (figure 1(c)). Further reduction of the expansion energy has
been demonstrated by rapidly changing the scattering length from a positive value to 0 a0 during trap release
[25], but we refrain fromusing this trick to avoid excitations of the BECduring release. Our horizontalmagnetic
field curvature (section 5) introduces another limitation. During long observation times, the BEC expands
horizontally into regionswith a lowermagnetic field gradient, causing a position-dependent sag of the density
profile. In addition, smallfluctuations of the horizontalmagnetic field can break the symmetry and introduce
slowhorizontal drifts.We suppress both effects by keeping a vertical laser beam (H3 infigure 1(a)) on during the
expansion time, thus observing free expansion only in the vertical direction.

In detail,we reduce the trap frequencyby slowly transferring the atoms froma crossed dipole trap of beams S1,
S2 to a crosseddipole trap of beamsH1,H2, andH3withfinal trap frequencies ofωx,y, z=2π×(3.2, 3.4, 2.1)Hz, a
scattering length of 15 a0 and atomnumbers of approximately 1.1×104. Excitations of the BECduring the transfer
are suppressed by smooth changes of the potentialwith a total transfer duration of 4 s. After an additional settling
time of 1 swe switchoff the horizontal beamsH1andH2and study the expansionof theBEC in the vertical beam
H3. The vertical trapping frequency of the laser beamH3 is approximately 25mHz, and the resulting fractional
reductionof the expansionwidth after 1 s is 6×10−4, which is far belowourmeasurement sensitivity for thewidth
of the BEC.

The expansionof theBEC in the vertical direction is clearly visible on absorption images (figure 6(a)) for
expansion times 0–1000ms, andhorizontally-integrated 1Ddensity profiles for expansion times of 400ms and
600ms are given infigures 6(c) and (d). Although the trappedBEC is initially onlyweakly confinedwith almost
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symmetric trap frequencies, it changes dimensionality during the expansionprocess in the vertical beam.
Thedensity of theBECdecreases strongly during the vertical expansion, and the chemical potential becomes
smaller than the transversal harmonic oscillator energyÿωx,y as required for a quasi-1Ddescription [41]. As a
result, wedonot expect a shape-preserving spreading of the density distribution for a 1D expansion because the
BECpasses through various interaction regimes as its density decreases [42, 43]. For illustration,we showafit to
theupper 80%of the 1D-density profilesn(z) for the ‘3Dcigar’-regime [44] (figure 6(c)), butwe refrain froma
complete analysis of the density profiles, which is beyond the scope of this article. Instead,wequantify thewidth

of the expandingBECwith the root-mean-square (rms) radius  òD = -( )( )( ¯)n z z z
N

1 2 1 2
to provide an

estimate of the expansion velocity (red circlesfigure 6(b)).Here, z̄ is the center-of-mass position of the atoms.We
observe an initial interaction driven expansion and a ballisticflight for T 400exp mswith an rms expansion

velocity of vrms=0.128(5)mm s−1 and a corresponding kinetic energy of = ´ ( )mv k2 1 2 260 20Brms
2 pK.

Wenote that this is the expansion energyof theBEC component, but not the initial temperature of the trapped
quantumgas.

Similar to reference [12], wefind an accelerated expansion for longer expansion times,Texp>500 ms.We
expect that the dominant source of the accelerated expansion is the curvature of our levitation gradient due to
the quadratic Zeeman effect and due to our coil design, as discussed in section 4.2. However, the density profiles
of the atoms on the absorption images indicate two other contributions.We observe small radial oscillations for
long expansion times after release from the trap in the guiding beamH3 (see imageTexp=1 s infigure 6(a)).
Those oscillations can couple to the verticalmotion or they can distort the radially integrated density
distribution. In addition, we observe asymmetric 1Ddensity profiles n(z) forTexp>500 ms (figure 6(d)). The
profiles show a slower expansion velocity for the lower part of the cloud than for the upper part.We assume that
this effect is caused by the position-dependent scattering length due to ourmagnetic field gradient. The zero-
crossing of a is indicated infigure 6(d) by a dashed blue line. This asymmetric expansion of a BECwith position-
dependent scattering length requires further investigation that is beyond the scope of this article.Wefind small
position fluctuations for long expansion timesTexp>400 ms of the BECdue to thefinite current stability for
themagneticfield gradient (section 4.2). For illustration, we re-centered the center-of-mass position in the
absorption images for the averaging process infigure 6(a), but all other data infigures 6(b)–(c) results from the
analysis of individual absorption images.

Figure 6. Long expansion times. (a)Average of 6–8 absorption images for each expansion time:Texp=50, 200, 400, 600, 800,
1000 ms.Note that the scaling of the images changes as indicated by the 50 μmscale bar in each picture. (b) rms-widths of the
integrated 1D-density distribution versus expansion time. (c), (d) 1D-density profiles andfits (blue lines) for expansion times of (c)
400 ms and (d) 600 ms.
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7. Conclusion

In conclusion, we experimentally studied the benefits and challenges of the use ofmagnetic levitation schemes
for interferometric precisionmeasurements with ultracold atoms.We employed aMichelson-type
interferometer setupwith BECswith tuneable interaction andmagnetic levitation to demonstrate absolute
accelerationmeasurements in themicro-g regime andwe used the negligible center-of-massmotion of levitated
atoms to study the position-dependent phase shift of the dipole potential of a focused laser beam.Moreover, we
demonstrated expansion times of 1 s for a BEC,which is comparable to current drop tower experiments, andwe
used an extrapolationmethod for the fringe patterns to study the curvature of a force field that acts
perpendicularly to our interferometer setup.

In our setup, limitations of the sensitivity arise frommagnetic fieldfluctuations due to the current
regulation, and fromposition-dependent interactions andmagnetic field gradients. Although the sensitivity in
our setup is significantly lower than the sensitivity of atomic fountain experiments, we believe that levitation
schemes provide interesting features with the prospect of technical applications. Cancelling gravitational
acceleration offers the possibility to combine long observation timeswith compact interferometer setups.
Interesting applications are themeasurement of local variations of electric andmagnetic fields, and ofmeanfield
effects due to atomic interactions.
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We experimentally study the excitation modes of bright matter-wave solitons in a quasi-one-dimensional
geometry. The solitons are created by quenching the interactions of a Bose-Einstein condensate of cesium
atoms from repulsive to attractive in combination with a rapid reduction of the longitudinal confinement.
A deliberate mismatch of quench parameters allows for the excitation of breathing modes of the emerging
soliton and for the determination of its breathing frequency as a function of atom number and confinement.
In addition, we observe signatures of higher-order solitons and the splitting of the wave packet after the
quench. Our experimental results are compared to analytical predictions and to numerical simulations of the
one-dimensional Gross-Pitaevskii equation.
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The dispersionless propagation of solitary waves is one
of the most striking features of nonlinear dynamics, with
multiple applications in hydrodynamics, nonlinear optics,
and broadband long-distance communications [1]. In fiber
optics, one-dimensional (1D) “bright” solitons, i.e., sol-
itons presenting a local electric field maximum with one-
dimensional propagation, have been observed [2]. They
exhibit a dispersionless flow and excitation modes such as
breathing or higher-order modes [2–4]. Matter waves can
also display solitary dispersion properties. Typically, bright
matter-wave solitons are created in quasi-1D systems by
quenching the particle interaction in a Bose-Einstein
condensate (BEC) from repulsive to attractive [5].
Recent experiments demonstrated the collapse [6], colli-
sions [7], reflection from a barrier [8], and the formation of
trains [9–11] of bright solitons.
In this Letter, we experimentally study the excitation

modes of a single bright matter-wave soliton. In previous
studies, other dynamical properties have been observed,
such as the center-of-mass oscillation of solitons in an
external trap [7] and excitations following the collapse of
attractive BECs [6,12]. Here, we probe the fundamental
breathing mode of a single soliton by measuring its
oscillation frequency and the time evolution of its density
profile. In addition, we observe signatures of higher-order
matter-wave solitons, which can be interpreted as stable
excitations with periodic oscillations of the density profile
and phase, or as a bound state of overlapping modes [3,13].

The shape-preserving evolution of a matter-wave soliton
is due to a balancing of dispersive and attractive terms in
the underlying 3D Gross-Pitaevskii equation (GPE) [14].
For quasi-1D systems with tight radial confinement, we can
approximate the matter wave in the 3D GPE by the product
of a Gaussian wave function for the radial direction and a
function fðzÞ for the longitudinal direction (see Ref. [15]).
Depending on the ansatz for the Gaussian with either
constant or varying radial sizes, fðzÞ satisfies either the 1D
GPE or the nonpolynomial Schrödinger equation [18]. We
make reference to the analytical solutions of the 1D GPE in
the Letter, but use both equations in our numerical
simulations [15].
For the 1D GPE, an ansatz for the normalized longi-

tudinal wave function fðzÞ is of the form

fðzÞ ¼ 1
ffiffiffiffiffiffi

2lz
p sech

�

z
lz

�

; ð1Þ

with a single parameter lz that determines both the
longitudinal size and the amplitude of the soliton.
Solitons form with a value of lz that minimizes the total
energy and that provides a compromise between the kinetic
and the interaction energies. This is illustrated in Fig. 1(b),
which shows the energy of the wave packet for varying
sizes lz [19]. The kinetic energy provides a potential barrier
for small lz that prevents the collapse of the soliton, while
its spreading is inhibited by the interaction energy, which
increases for large lz.
Even without an external longitudinal potential, the

soliton is stable against small perturbations of lz. In a
way, a bright matter-wave soliton creates its own trapping
potential, which defines its size and excitation modes.
Variational methods provide accurate predictions of its size
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at the energy minimum which can be calculated analyti-
cally [13,20] or numerically [19]. For the fundamental
solution (order n ¼ 1) of the 1D GPE with an atom number
N, s-wave scattering length a, and radial trapping fre-
quency ωr, the size lz corresponds to the healing length at

the peak density of the soliton, i.e., lðn¼1Þ
z ¼ a2r=ðNjajÞ

[13,19]. Here, ar ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=ðmωrÞ
p

is the radial harmonic
oscillator length. Small deviations of lz close to the energy
minimum lead to oscillations of the soliton size. We use
those oscillations resulting from an initial mismatch of lz to
experimentally measure the self-trapping frequency of the
soliton potential.
Our experimental starting point is a Bose-Einstein

condensate of 500–2000 cesium (Cs) atoms in the state
jF ¼ 3; mF ¼ 3i at scattering length of a ¼ þ7a0, where
a0 is Bohr’s radius. The BEC is levitated by a magnetic
field gradient, and it is confined by an optical dipole trap
formed by the horizontal and vertical laser beams LH and
LV [Fig. 1(a)]. An additional magnetic offset field allows us
to tune the scattering length by means of a broad magnetic
Feshbach resonance [21]. Details about our experimental
setup, the levitation scheme, and the removal of atoms can
be found in Refs. [15,22].

Our matter-wave solitons are confined to a quasi-1D
geometry with almost free propagation along the
horizontal direction and strong radial confinement of ωr ¼
2π × 95 Hz provided by laser beam LH. They are generated
with a quench of the scattering length towards attractive
interaction (ai → af), and by a reduction of the longi-
tudinal trap frequency (ωz;i → ωz;f). When changing a and
ωz independently, the quenches excite inward and outward
motions, respectively. Usually, it is desirable to minimize
the excitations of the soliton by matching the initial
Thomas-Fermi density profile of the BEC closely to the
density profile of the soliton [inset of Fig. 1(a)]. However,
we deliberately mismatch the quench parameters to create
breathing oscillations of the soliton in order to study its
self-trapping potential. Quenches with different parameters
are labeled by the symbols Q1–Q7 (see Ref. [15]).
Following an evolution time t in quasi-1D and after a
short period of 16 ms of expansion in free space, we take
absorption images to determine the density profile of the
atoms [Fig. 1(c)]. The cloud size lzðtÞ is determined by
fitting the function A(sechðz=BÞ)2 to the integrated
1D-density profiles with fit parameters A and B [15].
The response of the atomic cloud to the different quenches

is presented in Fig. 1(d). We first quench only the longi-
tudinal confinement by 25% to ωz;f ¼ 2π × 4.3ð2Þ Hz
(quench Q1 in Ref. [15]) while keeping the repulsive
interaction strength constant [Fig. 1(d), diamonds]. The
BEC starts an outwardsmotionwith an oscillation frequency
of 2π × 7.5ð1Þ Hz ≈ ffiffiffi

3
p

ωz;f as expected for a BEC in the
Thomas-Fermi regime [23,24]. In a secondmeasurement,we
additionally quench the interaction strengthaf to−5.4a0 and
increase ωz;i to match the initial size of the BEC to the
expected size of the soliton [Q2, Fig. 1(d), squares]. As a
result,we observe almost dispersionless solitonswith a linear
increase of the cloud size of 0.7ð3Þ μm=s [Fig. 1(d), green
line]. Finally, we deliberately mismatch the initial size of the
BEC by reducing ωz;i (Q3), and generate small-amplitude
oscillations of the soliton with a frequency ωsol of 2π ×
12.8ð4Þ Hz [Fig. 1(d), circles]. This breathing frequency
of the soliton is significantly larger than any breathing
frequency of a BEC or of noninteracting atoms, 2ωz;f ¼
2π × 8.6ð3Þ Hz.We observe no discernible oscillation in the
radial direction after the quenches.
In a second experiment, we demonstrate that the breath-

ing frequency ωsol depends on the interaction term Na in
the 1D GPE, a property typical of the nonlinear character of
the soliton. We choose to change N, since the initial
removal process is independent of the interaction quench,
and we can study ωsol without changing the quench
protocol [Q4, Fig. 2(a), circles]. The measured values of
ωsol decrease for lower N, and they approach the breathing
frequency 2ωz;f for noninteracting atoms in a harmonic trap
[Fig. 2(a), dashed line].
We compare our experimental data points to two

theoretical models. In a numerical simulation of the 1D

FIG. 1. Experimental setup and oscillation measurements.
(a) Sketch of the experimental setup. Inset: Density profiles
for a BEC (solid red line) and for a soliton (dashed blue line).
(b) Total energy of a soliton, a ¼ −5.2a0, ωr ¼ 2π × 95 Hz,
N ¼ 2000, with an external trap, ωz ¼ 2π × 5 Hz (dashed blue
line), and without external trap, ωz ¼ 0 Hz (solid red line).
(c) Absorption images after a free-expansion time of 16 ms [from
dataset with circles in (d)], integrated density profile for t ¼
60 ms (blue line) and fit (dashed red line). (d) Oscillations of a
quantum gas after the quench procedure. Blue diamonds, quench
of only ωz for a BEC (Q1); red circles, additional interaction
quench to create soliton (Q3); green squares, optimized quench
parameters to minimize breathing of the soliton (Q2). Uncertainty
intervals indicate �1 standard error.
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GPE, we use the ansatz in Eq. (1) to set the starting
conditions, and we determine the breathing frequency from
a spectral analysis of the time evolution of the wave
function [15] [Fig. 2(a), triangles]. In addition, we use
an analytical approximation for the breathing frequency
(red line) calculated with a Lagrangian variational analysis
at the energy minimum of the 3D GPE [13,15]. We find that
both models agree well with the trend of the measurements
of ωsol, although our experimental data points are system-
atically lower for large N than our theoretical predictions.
We speculate that this is due to nonharmonic contributions
to the energy of the soliton on the breathing oscillations for
finite oscillation amplitudes [Fig. 1(b)].
To determine the influence of the trapping potential, we

measure the variation of ωsol as we reduce the longitudinal
trapping frequency ωz;f (Q5). Two regimes of ωsol can be
identified in Fig. 2(b) for varying the values ofωz;f. For large
values ofωz;f, the trap dominates the breathing of the soliton
and ωsol increases like 2ωz;f. For small values of ωz;f, inter-
actions dominate the breathing of the soliton andωsol reaches
a constant value. This offset of the breathing frequency is a
result of the “self-trapping” potential of a free soliton.
Again, we compare the experimental results with our

theoretical model [Fig. 2(b), red line] and the numerical

simulations of the 1D GPE. The blue band in Fig. 2(b)
indicates the simulated frequencies for N ¼ 1300 to
N ¼ 1500. The simulation predicts a lower breathing
frequency for the free soliton than the analytical approxi-
mation, but all curves are within the uncertainly range of
the experimental data.
External trapping potentials can in principle alter the

soliton dynamics [7,25,26], causing, e.g., modulations of
the soliton’s tails due to residual nonautonomous terms of
the 1D GPE in a harmonic potential [27]. For the following
experiments, however, we employ trap frequencies that are
significantly smaller than the observed oscillation frequen-
cies of the soliton (2ωz < ωsol) to decouple the influence of
the trapping potential. In summary, for small-amplitude
oscillations we find good agreement of ωsol between
our experimental results and analytical and numerical
predictions based on the 1D GPE (and nonpolynomial
Schrödinger equation [15]).
Breathing oscillations of lz close to the equilibrium size

are not the only possible excitation modes of solitons. The
existence of higher-order solitons has been predicted in the
nonlinear Schrödinger equation [3], and has been observed
for optical solitons in silica-glass fibers [2,4]. A soliton of
order n can be interpreted as a bound state of n strongly
overlapping solitons [13]. By exploiting the equivalence of
the nonlinear Schrödinger equation and 1D GPE, similar
effects were later proposed for bright matter-wave solitons
[13,28], where it was suggested that nth-order solitons can
be generated by a rapid increase of the attractive interaction
strength by a factor n2. Similarly, our simulations of the 1D
GPE show that higher-order solitons can be created for an
increased initial size of the wave packet. An nth-order
soliton forms for a sech-shaped wave function with an

initial size lðnÞz that is the n2 multiple of the healing length

lð1Þz , i.e., lðnÞz ¼ n2lð1Þz [15].
Within the 1D GPE theory, both creation methods result

in the periodic development of multipeaked structures for
higher-order solitons [3,29]; e.g., they create a sharp central
peak with side wings for a second-order soliton [Fig. 3(a)]
and a double peak for a third-order soliton [15]. Sizes and
interaction quenches that do not fulfil the previous con-
ditions lead to a “shedding” of the atomic density in the z
direction. The wave packet oscillates and loses particles
until its size and shape match the next (lower n) higher-
order soliton [3]. For a second-order soliton, the predicted
oscillation period Tð2Þ is [13]

Tð2Þ ¼ 8π

ℏ
m

�

a2r
Njafj

�

2

: ð2Þ

Recently, excitation modes of higher order have also
been used as a test bed for various theoretical models
beyond GP theory. The fragmentation of solitons with an
increased initial width was predicted within the multi-
configurational time-dependent Hartree method for bosons

FIG. 2. Breathing frequency ωsol of the soliton. (a) Atom
number dependence (Q4). Red circles, experimental data; the
uncertainty bars for the atom number indicate the standard
deviation of N over the first 100 ms of each frequency
measurement. Blue triangles, simulation of the 1D GPE [15].
Red line, analytical approximation [13,15]. Dashed gray line,
oscillation frequency of a noninteracting gas, 2ωz;f . (b) Depend-
ence of ωsol on the trap frequency (Q5). Red circles, experimental
data points forN ≈ 1450. Blue area, simulation of the 1D GPE for
N ¼ 1300–1500. Red line, analytical approximation. Dashed
gray line, 2ωz;f .
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[30] and critically discussed [31], and the influence of
quantum effects on the dissociation process was inves-
tigated [32–34].
Here, we apply two different quench protocols to study

the evolution of strongly excited solitons. Depending on the
initial size and the quench parameters, we observe shedding
and fragmentation of the wave packet, and we measure
oscillation frequencies that indicate the creation of higher-
order solitons. To demonstrate the effect of a strong quench
of an elongated BEC, we increase ai and reduce ωz;i before
ramping a and ωz to −5.3a0 and 2π × 0.0ð6Þ Hz in 13 ms
(Q6). Our quench induces an initial spreading of the wave
packet, followed first by a strong shedding of atoms, and
then by the formation of a soliton that contains approx-
imately 1=3 of the initial atom number [Fig. 3(b)]. We
determine the soliton width and find a slow oscillation of
lzðtÞ with a frequency of 2π × 2.4ð2Þ Hz [Fig. 3(c)]. This
frequency is significantly smaller than the expected breath-
ing frequency of first-order solitons, 2π × 6.0 Hz, and it
matches well to the expected frequency of 2π × 2.3 Hz for
second-order solitons in Eq. (2).
Observing shedding and oscillations agrees with the

predictions for higher-order solitons within the 1D GPE
[3]; however, we find a strong dependence on details of the
quench protocol and on the dynamical evolution during the
quench. For a closer match to theoretical works [13], we
implement a double-quench protocol, with a first quench
to generate a soliton with weak attractive interaction,
af ¼ −0.8a0, ωf ¼ 2π × 1.4ð2Þ Hz, and, after a settling
time of 25 ms, a second quench of only the interaction

strength, af ¼ −4.6a0 (Q7). Starting with approximately
2200 atoms, we observe no shedding but a small loss of 300
atoms during the first 60 ms. The vertical density profiles in
our absorption images [Fig. 4(a)] resemble the expected
profiles of a second-order soliton [Fig. 3(a)], and the
vertical width of the wave packet oscillates with a fre-
quency of 2π × 5.6ð6Þ Hz [Fig. 4(b)], which matches the
expected frequency of 2π × 5.2 Hz for second-order sol-
itons (2π × 13.2 Hz for the first-order solitions).
For both measurements [Figs. 3(c) and 4(b)], a small

percentage of absorption images show a splitting of the
soliton into two fragments [inset of Fig. 4(b)], and they are
omitted from the fitting procedure. Because of the destruc-
tive nature of our absorption images it is difficult to
conclude on the evolution and on the cause of the splitting
process. A double-peak structure in the density profile can
indicate the generation of a third-order soliton, fragmenta-
tion due to quantum effects, or simply an insufficient
technical control of our quench parameters. For our setup,
the control of horizontal magnetic field gradients to avoid
longitudinal accelerations is especially challenging [22].
The percentage of images that show a splitting of the wave
packet increases for longer evolution times, and we indicate
their fraction in Fig. 4(b) with a histogram.
In conclusion, we experimentally studied the creation

and the excitation of breathing modes of bright matter-
waves solitons in a quasi-one-dimensional geometry after a
quench of interaction and longitudinal confinement. We
measured the “self-trapping” frequency ωsol for first-order
solitons and its dependence on N and ωz. For stronger
excitations and for a double-quench protocol, we observed
signatures of second-order solitons and the shedding and
splitting of the wave function. Further measurements of the

FIG. 4. Second-order soliton and splitting after the double
quench Q7. (a) Absorption images at time t after the quench and
after 7 ms of free expansion. (b) Time evolution of the measured
width lz of the central wave packet (red circles), sinusoidal fit
with period 180(20) ms (dashed red line). The expected period
from the 1D GPE simulations is 192 ms. The histogram counts
the fraction of images showing a splitting of the wave function
(9 repetitions per time step). Inset: Absorption image of a split
matter wave for t ¼ 210 ms.

FIG. 3. Time evolution after a strong quench of interactions
and trap frequency (Q6). (a) 1D GPE simulation of the
density profiles for a second-order soliton with 1100 atoms,
af ¼ −5.3a0, and with an oscillation period Tð2Þ of 432 ms.
(b) Absorption images at time t after the quench and after 11 ms
of free expansion. (c) Time evolution of the measured width lz of
the central wave packet (red circles), sinusoidal fit with period
420(30) ms (dashed red line). The uncertainty intervals indicate
�1 standard deviation.
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splitting process and the damping of the oscillations due to
shedding are necessary to distinguish technical fluctuations
from higher-order solitons and fragmentation due to quan-
tum effects [32–34].
The data used in this publication are openly available at

the University of Strathclyde KnowledgeBase [35].
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I. EXPERIMENTAL METHODS

A. Controlling the atom number in the BEC

The solitons are confined to a quasi-1D geometry with
almost free propagation along the horizontal direction
and strong radial confinement of ωr = 2π × 95 Hz
provided by laser beam LH . In quasi-1D geometry,
bright matter-wave solitons collapse for large densities
and interactions [1], which for our typical experimental
scattering length of approximately −5 a0 corresponds to
a critical atom number of 2500 [2]. As a result, we need
to strongly reduce the atom number to avoid collapse,
modulation instabilities [3] and three-body loss [4] for a
deterministic and reproducible creation of the soliton.
We remove atoms with a small additional magnetic field
gradient, which pushes the atoms over the edge of the
optical dipole trap. Our precise control of magnetic field
strengths allows us to reduce the atom number down to
200 atoms, with a reproducibility of ±100 for 600 atoms
and ±350 for 4500 atoms, measured as the standard
deviation of the atom number in 50 consecutive runs. A
removal period of 4 s and smooth ramps of the magnetic
field strength are necessary to minimize excitations of
the BEC. Following the removal procedure we measure
residual fluctuations of the width of the BEC below 3.5%.

B. Quench parameters

Several different quench protocols are employed for the
measurements. The quenches are labeled by the symbols
Q1-Q7 in the main article:

Q1 We quench only the trap frequency from ωz,i =
2π × 5.8(2) Hz to ωz,f = 2π × 4.3(2) Hz with a
linear ramp of the laser power of beam LV over
4 ms. Atom number N ≈ 1800, constant interac-
tion strength ai = +7 a0, ωr = 2π×95 Hz.

Q2 In addition to the quench Q1 of the trap frequency,
we also quench the interaction strength from ai =
+7 a0 to af = −5.4 a0 in 4 ms. We minimize oscil-
lations of the width of the soliton by reducing the
initial size of the BEC with ωz,i = 2π× 11.2(2) Hz.
Atom number N ≈ 1800, ωz,f = 2π × 4.3(2) Hz,
ωr = 2π×95 Hz.

Q3 We mismatch the initial size of the BEC before

the quench with ωz,i = 2π × 12.8(4) Hz to gen-
erate small amplitude oscillations of the width of
the soliton. Atom number N ≈ 1700, ωz,f =
2π × 4.3(2) Hz, ωr = 2π×95 Hz.

Q4 Quench to determine the atom-number dependence
of ωsol. We vary the atom number N from 500 to
1700 for the measurement. ωz,f = 2π × 4.3(2) Hz,
ai = +7 a0, af = −5.4 a0, ramp duration 4 ms,
ωr = 2π×95 Hz.

Q5 Quench to determine the dependence of ωsol on the
trap frequency ωz,f . We vary ωz,f from approxi-
mately 1 Hz to 9 Hz. Smaller values of ωz,f result
in larger equilibrium sizes of the soliton, and we
need to reduce the initial trap frequencies ωz,i to
keep the oscillation amplitudes comparable during
the measurements. The typical difference between
ωz,i and ωz,f is approximately 3 Hz. N ≈ 1500,
af = −5.4 a0, ωr = 2π×95 Hz.

Q6 Strong quench starting from an elongated BEC to
excite higher-order oscillations and shedding. The
ratio between the calculated initial Thomas-Fermi
radius of the BEC and the expected width lz of
the soliton is 24. ai = 56 a0, af = −5.3 a0, ωz,i =
2π × 4.9(2) Hz, ωz,f = 2π × 0.0(6) Hz, initial atom
number N ≈ 3000 drops to 1100 after shedding of
atoms, quench duration 13 ms, ωr = 2π×86 Hz.

Q7 Double quench to create a stable soliton in step 1
and quench the scattering length by approximately
a factor of 4 in step 2. Step 1: ωz,i = 2π×4.9(2) Hz,
ωz,f = 2π × 1.4(2) Hz, ai = 29 a0, af = −0.8 a0,
ωr = 2π×86 Hz, quench duration 15 ms, N ≈ 2200.
Settling delay of 25 ms between quenches. Step 2:
reduce interaction strength in 2 ms to af = −4.6 a0,
no change of other parameters.

C. Fit of density profiles

We employ absorption imaging to measure the 2D-
density profile of the soliton, and we integrate over
one radial axis to determine the 1D-density profile (red
line in Fig. 5). The width lz of the soliton in Eq. 1 of
the main article, is determined by fitting the function
A(sech(z/B))2, with fit-parameters A and B, to the in-
tegrated 1D-density profiles (dotted blue line in Fig. 5).
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FIG. 5. 1D-density profile of a soliton. Red line: integrated
density profile of the absorption image for t = 60 ms in Fig. 1c
(main article). Dotted blue line: fitted profile according to
Eq. 1 in the main article.

II. THEORETICAL METHODS

A. The Model

The time evolution of the collective wave function
of N atoms in an external potential with the 3D
Gross-Pitaevski equation (GPE) for a time and space-
dependent collective atomic wave-function, ψ(r, t), is
given by,

i~
∂

∂t
ψ(r, t) =

[
− ~2

2m
∇2 + V (r) + gN |ψ(r, t)|2

]
ψ(r, t),

(1)
where g = 4π~2a/m, m is the atomic mass, and a is the
two-body s-wave scattering length. This semi-classical
field equation can be seen as a mean-field computation,
and describes the dynamics of many weakly interacting
particles at low temperatures when the condition n|a|3 �
1 is satisfied [5], where n is the particle density. Our
external potential V (r) is given by a 3D (anisotropic)
harmonic trap.

For tight radial trapping potentials, ωr � ωz, we can
approximate the 3D wave function with a Gaussian solu-
tion in the radial directions and an arbitrary component,
f(z, t), in the longitudinal direction,

ψ(r, t) = f(z, t)
1√

πarσ(z, t)
exp

[
− (x2 + y2)

2a2rσ(z, t)2

]
, (2)

where ar is the harmonic oscillator length in the radial
direction and σ(z, t) is a free parameter that dictates
the width of the radial wavefunction. Substituting this
ansatz into the 3D-GPE, and integrating over the ra-
dial directions, we arrive at the so called non-polynomial

Schödinger equation (NPSE) [6]

i~
∂

∂t
f(z, t) =

[
− ~2

2m

∂2

∂z2
+ V (z)

+
gN

2πa2rσ(z, t)2
|f(z, t)|2

+
~ωr

2

(
σ(z, t)2 +

1

σ(z, t)2

)]
f(z, t),

(3)

where ωr = ~/ma2r. The condition for σ(z, t) that min-
imizes the action functional integrated along the trajec-
tories in phase space is [6],

σ(z, t)2 =
√

1 + 2aN |f(z, t)|2. (4)

For σ(z, t) = 1, we obtain the ground state of a har-
monic oscillator in the radial directions, and we recover
the usual 1D-GPE

i~
∂

∂t
f(z, t) =

[
− ~2

2m

∂2

∂z2
+ V (z)

+
gN

2πa2r
|f(z, t)|2 + ~ωr

]
f(z, t).

(5)

We have numerically integrated Eqs 3 and 5 using the
split-step Fourier transform method [7], where we exploit
the fact that the kinetic and potential terms in the Hamil-
tonian are diagonal in momentum and real space, respec-
tively.

III. SOLITON BREATHING FREQUENCY

In this section we explain how the numerical calcula-
tions of the soliton breathing frequencies shown in Fig. 2
of the main text were carried out. We begin with the
order 1 soliton solution,

f(z, 0) =
1√
2lz

sech

(
z

lz

)
(6)

where lz = a2r/(N |ai|), and we have used ai = 7 a0. We
then evolve this initial state either with the 1D-GPE
or NPSE to a simulation time of 4000 ms and evalu-
ate the frequency spectrum of the oscillation of the soli-
ton’s centre (z = 0). In Fig. 6 we present the frequency
spectrum for the GPE and a longitudinal frequency of
ωz = 2π × 5 Hz and atom number N = 1300, which
is characteristic of the behaviour for all other ωz data
points. We observe several prominent frequency modes
in the signal, but we select the lowest frequency peak to
compare to the experimental measurements, because the
resolution in the experiment is restricted to low frequency
components.

Fig. 6b also shows the results of the simulation using
both the 1D-GPE and the NPSE (compare with Fig. 2
of the main text). We can see that for these atom num-
bers there are differences between the predictions of the
1D-GPE and NPSE. However these differences are small
compared to the uncertainty in the experimental results.



3

5 10 15 20 25 30 35 40 45

10
-3

10
-2

10
-1

10
0a)

b)

FIG. 6. Simulation results for the soliton breathing frequency,
for comparison with Fig. 2 in the main text. (a) Frequency
spectrum calculated using the 1D-GPE with a longitudinal
frequency of ωz = 2π×5 Hz and atom number N = 1300. (b)
Breathing frequency (first peak in the spectrum as in a)) vs.
trap frequency. N ≈ 1300 − 1500 atoms, af = −5.4 a0 for
the NPSE (red) and the GPE (green). The simulations were
evolved in time to 4000 ms.

IV. HIGHER ORDER SOLITONS

Figure 7 shows numerical simulations of the 1D-GPE
for the time evolution of second- and third-order solitons
with initial sizes l

(2)
z and l

(3)
z . Large initial soliton sizes

lead to the periodic formation of local maxima and min-
ima of the density profile. Striking characteristics of the
time evolution are the periodic development of a sharp
central peak with side wings for the second-order soliton
(Fig. 7a,b), and the periodic formation of a broad double-
peak structure for the third-order soliton (Fig. 7c,d).

We also simulate the time evolution of solitons with
the same start conditions using the NPSE and analyse
the results using the root mean square width of the wave
packet for a quantitative comparison (Fig. 8)

zrms(t) =

(
1

N

∫
n(z, t)(z − z̄)2dz

)1/2

. (7)

Here, z̄ is the mean position of the wave packet and
n(z, t) is the 1D-density. We observe small quantitative
differences between the two equations but the overall be-
haviour is very similar.

FIG. 7. Simulation of higher-order solitons in the 1D-GPE.
Temporal snapshots (a) and temporal evolution (b) of the
atomic density profile of an n = 2 soliton for N = 1800, a =

−3.7 a0, l
(2)
z = 10.2 µm = 4l

(1)
z , and an oscillation period of

T2 = 271 ms. Temporal snapshots (c) and temporal evolution
(d) of the atomic density profile of an n = 3 soliton for the

same values of N, a, but with l
(3)
z = 22.8 µm= 9l

(1)
z , and with

a period T3 = 1373 ms. The density profiles in (a) and (c)
are plotted at t = 0 (dotted lines), t = 1/4T (dashed lines),
t = 1/2T (solid lines). The dashed lines in (b) and (d) display
the temporal evolution of the size of the soliton wavepacket
zrms (right scale).
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FIG. 8. Simulation results for the root mean square width of
the soliton as it undergoes second order solitary behaviour,
for the NPSE (blue) and the 1D-GPE (red). Here, ωz = 0 Hz,
with an atom number N = 1800 and a scattering length a =
−3.7 a0.

V. VARIATIONAL APPROACH FOR THE
BREATHING FREQUENCY

In this section, we show how the longitudinal breath-
ing frequency plotted in Fig. 2 of the main article can
be determined from the variational ansatz for the soli-
ton. For a cylindrical cigar-shaped potential the energy
functional of Eq. 1 is given by [2, 8]

E[ψ] =

∫
d3r

[
~2

2m
|∇ψ(r)|2+

1

2
m(ω2

rr
2 + ω2

zz
2)|ψ(r)|2 +

gN

2
|ψ(r)|4

]
(8)
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The energy of a soliton can be determined with a vari-
ational method using the following ansatz for the wave
function

ψ(r, z) =
1√
2lz

sech

(
z

lz

)
· 1√

πlr
exp

(
− r2

2l2r

)
, (9)

where the transverse width lr and longitudinal width lz
are the variational parameters [2, 8]. Combining Eqs. 8
and 9, and rescaling the variables by the transverse fre-
quency ωr, provides an equation for the normalized en-
ergy of the soliton [2]

εGP =
1

2γ2r
+
γ2r
2

+
1

6γ2z
+
π2

24
λ2γ2z +

α

3γ2rγz
, (10)

with εGP = E/~ωr, γr = lr/σr, γz = lz/σr, λ = ωz/ωr,

α = Na/σr, and σr =
√

~/mωr. We can simplify Eq. 10
for our system with weak interactions and strong trans-
verse confinement by neglecting variations of the radial
soliton size, i.e. γr = 1. The energy minimum is found
by calculating the zero-crossing of the first derivative of
Eq. 10 with respect to γz

π2

4
λ2γ4z +

√
ζγz − 1 = 0, (11)

where α = −|α| = −√ζ. Eq. 11 has been solved for an
expulsive potential with ω2

z < 0 [2]. Here, we provide
the solution for a trapping potential with ω2

z > 0. The
longitudinal size of the soliton γ∗z at the energy minimum
is

γ∗z =
F√
ζ
, (12)

with

F = −
√
G

2
+

1

2

√
−2G+

4
√

2

π2
√
G

(
ζ

λ

)2

, (13)

where

G =
∆

π
4
3

(
ζ

λ

) 4
3

− 4

3π
2
3

1

∆

(
ζ

λ

) 2
3

, (14)

with

∆ =
3

√√√√
1 +

√
1 +

64π2

27

(
λ

ζ

)2

. (15)

In order to find the oscillation frequency ωz of the
soliton, the equations of motion for the variational pa-
rameters are determined with a Lagrangian variational
analysis [2]

(
π2

12

)
γ̈z =

γ−3
z

3
− π2

12
λ2γz +

α

3
γ−2
z , (16)

where the time derivative is calculated with respect to
the normalised time τ = ωrt. Again, we have assumed
that the radial size of the soliton is constant, i.e. γr = 1.

For small deviations of the soliton size from its equi-
librium value, we can write the solution as γz = γ∗z +δγz,
where γ∗z is the minimum given by Eq. 12 and δγz is a
small deviation. A linear expansion of Eq. 16 leads to the
expression for the longitudinal breathing frequency

ωz = ωr

√
12

π2

(
γ∗z

−4 +
π2

12
λ2 +

2α

3
γ∗z

−3

)
. (17)

We compare our experimental measurements of the
breathing frequency of the soliton to the predictions of
Eq. 17 in Fig. 2 of the main article (red line).
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[52] J. Söding, D. Guéry-Odelin, P. Desbiolles, G. Ferrari, and J. Dalibard, “Gi-
ant Spin Relaxation of an Ultracold Cesium Gas”, Phys. Rev. Lett. 80, 1869
(1998).

139



BIBLIOGRAPHY

[53] S. A. Hopkins, S. Webster, J. Arlt, P. Bance, S. Cornish, O. Maragó, and
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[130] F. Baumgärtner, R. J. Sewell, S. Eriksson, I. Llorente-Garcia, J. Dingjan,
J. P. Cotter, and E. A. Hinds, “Measuring Energy Differences by BEC In-
terferometry on a Chip”, Phys. Rev. Lett. 105, 243003 (2010).

[131] S. Gupta, K. Dieckmann, Z. Hadzibabic, and D. E. Pritchard, “Contrast
Interferometry using Bose-Einstein Condensates to Measure h/m and α”,
Phys. Rev. Lett. 89, 140401 (2002).
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Landragin and P. Bouyer, “Dual matter-wave inertial sensors in weightless-
ness”, Nat. Commun. 7, 13786 (2016).

[165] A. Cho, “Trapped in orbit”, Science 357, 986 (2017).

[166] D. Becker et al., “Space-borne Bose–Einstein condensation for precision
interferometry”, Nature 562, 391 (2018).

147



BIBLIOGRAPHY

[167] S. Gupta, A. Leanhardt, A. Cronin, and D. E. Pritchard, “Coherent manip-
ulation of atoms with standing light waves”, C. R. Acad. Sci. 2, 479 (2001).

[168] P. L. Kapitza and P. A. M. Dirac, “The reflection of electrons from stand-
ing light waves”, Mathematical Proceedings of the Cambridge Philosophical
Society 29, 297 (1933).

[169] Y. B. Ovchinnikov, J. H. Müller, M. R. Doery, E. J. D. Vredenbregt, K.
Helmerson, S. L. Rolston, and W. D. Phillips, “Diffraction of a released
Bose-Einstein condensate by a pulsed standing light wave”, Phys. Rev. Lett.
83, 284 (1999).

[170] B. Gadway, D. Pertot, M. G. Cohen, and D. Schneble, “Analysis of Kapitza-
Dirac diffraction patterns beyond the Raman-Nath regime”, Optics Express
17, 19173 (2009).

[171] S. Wu, Y.-J. Wang, Q. Diot, and M. Prentiss, “Splitting matter waves using
an optimised standing-wave light-pulse sequence”, Phys. Rev. A 71, 043602
(2005).

[172] K. J. Hughes, B. Deissler, J. H. T. Burke, and C. A. Sackett, “High-fidelity
manipulation of a Bose-Einstein condensate using an optical standing wave”,
Phys. Rev. A 76, 035601 (2007).

[173] K. J. Hughes, “Optical manipulation of atomic motion for a compact gravi-
tational sensor with a Bose-Einstein condensate interferometer”, PhD thesis,
University of Virginia (2008).

[174] B. I. Robertson, “High Contrast Measurements with a Bose-Einstein Con-
densate Atom Interferometer”, PhD thesis, University of Strathclyde (2017).

[175] A. R. MacKellar, “Single-Shot Holographic Readout of an Atom Interfer-
ometer”, PhD thesis, University of Strathclyde (2017).

[176] P. Storey and C. Cohen-Tannoudji, “The Feynman path integral approach
to atomic interferometry. A tutorial”, J. Phys. II 4, 1999 (1994).

[177] B. Deissler, K. J. Hughes, J. H. T. Burke, and C. A. Sackett, “Measurement
of the ac Stark shift with a guided matter-wave interferometer”, Phys. Rev.
A 77, 031604(R) (2008).

[178] T. Kraemer, J. Herbig, M. Mark, T. Weber, C. Chin, H.-C. Nägerl and
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