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Abstract

No two cities in the world are alike. Each urban environment is characterised by a unique
variety and heterogeneity as a result of its evolution and transformation, reflecting the
differences in needs human populations have had over time manifested, in space, by a
plethora of urban patterns.

Traditionally, the study of these patterns over time and across space is the domain o urban
morphology, a field of research stretching from geography to architecture. Whilst urban
morphology has considerably advanced the current understanding of processes of forma-
tion, transformation and differentiation of many such patterns, predominantly through
qualitative approaches, it has yet to fully take advantage of quantitative approaches and
data-driven methods recently made possible by advances in geographic data science and
expansion of available mapping products. Although relatively new, these methods hold
immense potential in expanding our capacity to identify, characterise and compare urban
patterns: these can be rich in terms of information, scalable (applicable to the large scale
of extent, regional and national) and replicable, drastically improving the potential of
comparative analysis and classification.

Different disciplines with more profound quantitative methods can help in the development
of data-driven urban morphology, as now, for the first time, we are in the position where
we can rely on a large amount of data on the built environment, unthinkable just a
decade ago. This thesis, therefore, aims to link urban morphology and methodologically
strong area of quantitative biological systematics, adapting its concepts and methods to
the context of built-up fabric. That creates an infrastructure for numerical description
of urban form, known as urban morphometrics, and a subsequent classification of urban
types.
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Conceptually building on the theory of numerical taxonomy, this research progresses the
development of urban morphometrics to automate processes of urban form characterisa-
tion and classification. Whilst many available methods are characterised by significant
limitation in applicability due to difficulties in obtaining necessary data, the proposed
method employs only minimal data input - street network and building footprints - and
overcomes limitations in the delineation of plots by identifying an alternative spatial unit
of analysis, the morphological tessellation, a derivative of Voronoi tessellation partition-
ing the space based on a composition of building footprints. As tessellation covers the
entirety of urban space, its inherent contiguity then constitutes a basis of a relational
framework aimed at the comprehensive characterisation of individual elements of urban
form and their relationships. Resulting abundant numerical description of all features is
further utilised in cluster analysis delineating urban tissue types in an unrestricted urban
fabric, shaping an input for hierarchical classification of urban form - a taxonomy.

The proposed method is applied to the historical heterogeneous city of Prague, Czechia
and validated using supplementary non-morphological data reflecting the variation of
built-up patterns. Furthermore, its cross-cultural and morphological validity and expand-
ability are tested by assessment of Amsterdam, Netherlands and a combination of both
cases into a unified taxonomy of their urban patterns. The research is accompanied by a
bespoke open-source software momepy for quantitative assessment of urban form, provid-
ing infrastructure for replicability and further community-led development.

The work builds a basis for morphometric research of urban environment, providing op-
erational tools and frameworks for its application and further development, eventually
leading to a coherent taxonomy of urban form.

Keywords: urban morphometrics, taxonomy, classification, measuring, urban form,
quantitative analysis, urban morphology, software
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Chapter 1

Introduction

Cities grow, shrink and even disappear. Nevertheless, all inevitably change, reflecting
the ever-changing human society. We, people, have built our cities to accommodate our
needs of shelter and social interaction. However, those needs were different 50 years ago
than they are now and disparate 500 or 5000 years ago. The historical, geographical and
societal differences in our needs are imprinted in every small village, town, and metropolis,
leaving distinct patterns of development behind. These changes in the way how we design
our cities and how their urban form is materialised can be tracked, studied, and can later
influence the environment we create for ourselves today.

This thesis aims to contribute to the knowledge of urban morphology, the study of human
habitat (Moudon, 1997), by proposing a data-driven method of analysis and classification
of urban form able to distinguish the physical imprints of our needs as patterns in the
built environment.

1.1 Context of the study

There are two different perspectives when it comes to the study of patterns of development
of cities. One tries to capture them to understand their influence on other aspects of
life. The other tries to recognise their inner logic and processes of their formation and
transformation. Neither of them is new, and both are deeply interconnected.
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The study of relation to patterns of urban form is present in a wide range of fields.
Economists are interested in the effects of density (Ahlfeldt and Pietrostefani, 2019), a
social scientist may look into social mobility (Ewing et al., 2016) sustainability (Bramley
and Power, 2009) or include aspects of urban morphology into geodemographic classifi-
cation models (Alexiou et al., 2016). The role of form is present in energy consumption
research (Banister et al., 1997; Ewing and Rong, 2008) or study of biodiversity (Tratalos et
al., 2007; Andersson and Colding, 2014). The list could go on. What all have in common
is an attempt to understand the consequence of planning decisions and hence influence
the future shape of cities. What this perspective needs is a complex characterisation of
urban form which does not limit it to one or few particular aspects easy to capture. For
that, it needs tools and methods which are universal enough and easy to use and interpret
(Boeing, 2020b). Urban morphology, an interdisciplinary study of urban form, focus on
such characterisation. However, its tools and methods are not always optimal for the
changing needs of today’s research.

Urban morphology as a specific field of research was formally established in the early
1960s in the work of MRG Conzen (Conzen, 1960), a geographer, and independently
in the work of Saverio Muratori (Muratori, 1959), an architect. The stretch between
geography and architecture is typical for urban morphology and forms the core of its
interdisciplinarity. Since then, the discipline expanded and proposed different approaches
(Oliveira, 2016; Kropf, 2017), some positioned far from the original qualitative works
focused on processes and longitudinal aspects (Batty and Longley, 1987; Hillier, 1996;
Batty, 1997; Porta et al., 2006). The delineation of patterns of urban form has been
studied from various angles, ranging from land use (Caniggia and Maffei, 2001) to the
historical origin and geographical location (Conzen, 2004), societal form (Thienel, 2013),
building regulations (Forster, 1972) and architectural layout (Beresford, 1971). In recent
years, the attempts are more often including computational geography, data science and
purely quantitative description of the form (Dibble et al., 2017; Feliciotti et al., 2017;
Araldi and Fusco, 2019; Berghauser Pont et al., 2019; Usui and Asami, 2019; Li et al.,
2020; Mottelson and Venerandi, 2020; Taubenböck et al., 2020). Such approach, if turned
into the systematic and comprehensive method, could react to the needs outside the niche
of urban morphology as resulting characterisation could have potential to be adopted by
other fields seeking to understand the relation of form and other facets of life.

The rise of data-driven approaches is not coincidental. Current era offers more abundant
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geographic data than any other before (Singleton and Arribas-Bel, 2019). Satellite im-
agery can now bring detailed data on the change of cities at almost real-time in a resolution
of 50cm per pixel or less (planet, 2020; Maxar, 2020). Governments and municipalities
are increasingly releasing their mapping products under open licenses (UN-Habitat, 2020)
and OpenStreetMap, the largest crowdsourced mapping project is enhancing its coverage
and quality, making it a reliable source of data for morphological analysis (Barron et al.,
2014; Sehra et al., 2020). Data science tools to handle large geospatial datasets (Rocklin,
2015; Yu et al., 2015; Hughes et al., 2015) are readily available, together with general-
purpose algorithms helping to make sense of the abundance of data (Pedregosa et al.,
2011; Abadi et al., 2016; Paszke et al., 2019). The age of Big Data might enable to build
better geographical models over space and time (González-Bailón, 2013), but similarly to
geography itself (Singleton and Arribas-Bel, 2019), urban morphology needs to bring new
methodological tools to increase its relevancy in digital times.

The combination of data abundance, new tools and urban morphology has a potential
to deliver detailed analysis on an unprecedented extent as scalable algorithms with a
potential to handle big data can, in theory, analyse metropolitan and larger areas while
keeping information on the granular level. This idea is in the heart of this thesis, and the
research presented on the following pages aims to propose steps towards this goal.

1.2 Problem statement

Quantitative (big) data-driven methods are new in urban morphology and far from being
matured. While network-based approaches like Space Syntax (Hillier, 1996) or Multiple
Centrality Assessment (Porta et al., 2006, 2010) have been around for more than ten
years, including tools and wealth of publications, their scope is limited. Recent additions,
building on the previous theories, as Multiple Fabric Assessment (Araldi and Fusco, 2019)
or street, plot and building types by Berghauser Pont et al. (2019) are trying to change
the situation and expand the existing scope, but there is a long way towards comprehen-
siveness able to capture the complexity of urban form.

In particular, a focus on delineation of homogenous patterns of development is scarce.
Published literature offers a small number of methods which are data-driven and able
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to work on a large scale. If there are such methods, they are limited either in terms
of classification detail (e.g. Taubenböck et al. (2020)) or granularity (e.g. Jochem et al.
(2020)). Furthermore, although based on a large sample of features, methods are often
based on a small number of variables, limiting their ability to deal with (variable) selection
bias and complex nature of urban patterns. Methods which would delineate homogenous
areas, systematically classify them and determine the relationship between different types
are rare and lack some of the other aspects mentioned above.

Classification of urban form patterns into meaningful, data-driven types is in its infancy.
Literature either classify features into predefined types (Lehner and Blaschke, 2019), de-
termine relations between cases (Dibble et al., 2017; Serra et al., 2018) or identify areas
without a further interaction (Araldi and Fusco, 2019) between them. The critical as-
pect which should be studied but it is not to date are relations between automatically
recognised urban patterns capturing their similarity, dissimilarity and potentially even
phylogenic affinity.

1.3 Aim and scope

This thesis aims to propose a method of derivation of numerical (data-driven) taxonomy of
urban form patterns. Numerical taxonomy is a specific type of hierarchical classification
which is based on quantitative characterisation of samples, reflecting the relationship
between them (see chapter 3 for details). Furthermore, the proposed method should
be able to delineate homogenous urban patterns used as samples in the classification in
an unsupervised manner, without prior specification of types to minimise the potential
bias built in the definition of the types. Optimally, the resulting method will overcome
some of the limitations of previous research and provide a comprehensive description of
urban form, which will inclusively cover the whole urban fabric instead of predefined case
samples. The inclusive taxonomy can be, from a certain perspective, seen as an ultimate
classification, one which is able to allocate any urban pattern into a hierarchical structure.
Learning from other scientific fields, especially biology, taxonomies are generally accepted
as the optimal model of systematisation as they capture not only individual species but
also their similarity and relationships. Urban morphology cannot offer such a classification
at the moment and existing methods do not aim for delivering one (see the chapter 3 for
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details).

The scope of work is limited to a quantitative approach enabling large scale analysis and
minimal data input, expanding the applicability of results. This research is purely form-
focused to further reduce data requirements, excluding land-use data, points of interest
(POI), or any other additional data layers generally used in urban analytics. When de-
scribing the built environment, the current abundance of data of various kinds gives us
endless opportunities to use the various dataset in the analysis. However, there are two
reasons to limit the inputs to the fundamental minimum at this stage of research: 1) as
the title suggests, this thesis aims to develop a methodological foundation - a framework
on which further research can build. Such a framework should consist only of necessary
parts and allow the flexible addition of other components based on the specific needs of
future research applications. That said, the inclusion of other data inputs reflecting open
spaces, green and blue space or POIs should be considered in later stages and is out of
the scope of this work; 2) the framework itself should be applicable across different con-
texts, esp. regarding varying data availability. If we base the method on a rare dataset
representing, for example, the placement and size of trees in streets, the resulting method
will be applicable in a handful of cities around the world that can provide such input.
However, the goal is to develop a basis that can be applied in the data-rich European
context and cities of the Global South with limited cartographic representation.

From the perspective of data sources, it is limited to vector representation of urban form as
raster-based earth observation does not yet offer a detailed understanding of morphological
elements within remotely sensed data. Nevertheless, it is assumed that earth observation
will play a crucial role in morphological research in future as it rapidly evolves and by
definition allows the consistent quality of data in any context on the Earth.

The aim and scope drive the background analysis presented in chapters 2, 3 and 4. Explicit
research questions and hypothesis (see Chapter 5) are then formulated based on conclusion
derived from each of the background chapters.
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1.4 Significance of the study

Due to its scope, this research should provide broad applicability, allowing classification
of a large number of urban environments while providing their descriptive numerical char-
acterisation. Urban areas around the world are currently covered either by governmental,
crowdsources or even private data capturing elements of urban form. As the method
results in a classification based on numerical profiling of each recognised urban pattern, it
could become an input for the studies analysing the effect of urban form on other aspects
of life in cities. This research’s role is methodological, aiming to provide a descriptive
layer on which other studies can build. For example, to study the effect of urban form on
obesity, a researcher typically has to characterise both aspects - urban form and obesity.
However, having expertise in both is rare, often leading to the superficial description of
one. This research should deliver a thorough evidence-based portrayal of the urban envi-
ronment, which could be directly embedded in such a study. For that reason, this work is,
from a technical perspective, designed as replicable and reproducible research, enabling
an easy application by other researchers to other areas.

On a theoretical level, this thesis proposes a comprehensive morphometric description of
urban form, including specification of fundamental elements and a framework for their
analysis. Furthermore, it revisits the implementation of originally biological concepts of
morphometrics and numerical taxonomy in urban morphology, along with the specification
of classification units.

On a practical level, it provides a methodological foundation for the construction of an
expandable hierarchical classification of urban form. Moreover, it comes with bespoke
software tools for quantitative analysis of urban form backing the whole research.

1.5 Overview of the study

The thesis is structured in two major parts, background and core each with three individual
chapters. The structure is graphically represented in a figure 1.1.

Chapter 2 (Existing approaches to classification of the urban form), looks into the theory
of classification, introduces different methods of its application followed by the theoretical
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proposal of criteria for an optimal classification model of urban form. Furthermore, it
provides an overview of approaches to classification of the urban form known in the
literature to date and assesses each of them against the aforementioned criteria, allowing
the identification of a gap within the existing research.

Chapter 3 (Numerical taxonomy) zooms into detail of one specific classification method -
numerical taxonomy. The concept initially developed in biology has been recently intro-
duced into urban morphology (Dibble et al., 2017). However, as chapter 3 shows, aspects
of the existing proposal need to be reevaluated before applying it further. Principles of
numerical taxonomy are hence introduced and theoretically transposed onto the urban
form, specifying the key question which needs to be resolved.

Chapter 4 (Urban morphometrics and its terminological inconsistency) dives into the
realm of quantitative characterisation of urban form, providing an overview of nearly
all potential measurements literature used to date. That requires to deal with the ter-
minological inconsistency and missing framework for nomenclature and categorisation of
measurable characters. Therefore chapter 4 proposes a classification and naming schema
and applies it across a wide range of characters, enabling the identification of predominant
ways of measuring and potential gaps.

The three background chapters are then synthesised in chapter 5 (Research design state-
ment), which builds hypothesis and research questions on the relevant findings and pro-
poses a framework for reproducibility for the rest of the work. Further, it outlines the
selected case studies and links background and core chapters.

Chapter 6 (Morphometric elements of the urban form), the first of the core chapters,
provides the basis for morphometric assessment by proposing its fundamental elements,
ways of their aggregation and a coherent relational framework binding altogether. The
chapter builds on fundamental elements of the urban form known from literature but
proposes an implementation of morphological tessellation as a basic spatial unit instead
of traditionally used plots. The ability of tessellation to reflect similar phenomena as
the plot is then empirically tested together with the various models of location-based
aggregation aiming to capture contextual information.

Chapter 7 (Identification of tissue types through urban morphometrics) uses the foun-
dation proposed in chapter 6 and the database of measurable characters from chapter 4
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to develop a comprehensive morphometric characterisation of urban form on the level of
an individual building. The resulting hyper-dimensional description is used as an input
of cluster analysis able to identify distinct types of urban tissues within an unrestricted
urban fabric on a case study of Prague, Czechia.

Chapter 8 (Taxonomic relationships of urban tissues) proposes the final methodological
step resulting in a hierarchical classification (i.e. taxonomy) of types of urban tissues
delineated in the previous chapter. The whole method is then validated using additional
variables reflecting historical origin, land use and qualitative classification of urban form.
Furthermore, the transferability of the whole method is tested on another case study
(Amsterdam, Netherlands) and both cases are then combined to assess the potential of
extensibility of proposed numerical taxonomy of urban form.

Final chapter 9 (Synthesis) synthesises the research, discuss its character, potential appli-
cation, limits and directions of further research.

Furthermore, this thesis contains five appendices, four containing supplementary informa-
tion to relevant chapters (4, 6, 7, and 8) and one containing Jupyter notebooks allowing
reproduction of the major parts of the work. On top of that, two additional annexes
contain evidence of dissemination of the work. Annexe 1 consists of the open-source
Python package momepy, which accompanies the work presented in this thesis, allows its
reproducibility and lays a foundation for further morphometric research.

Notice that the structure does not contain an independent chapter dedicated to methods.
That is due to the specific design of the core chapters. Each of them has its methodology
dependent on the results from the previous chapter.
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Chapter 1

Chapter 2

Chapter 3

Background

Core

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Research design statement

Introduction

Existing approaches to classification of urban form

Numerical taxonomy

Urban morphometrics and its terminological inconsistency

Morphometric elements of urban form

Identification of tissue types through urban morphometrics

Taxonomic relationships of urban tissues

Synthesis

Figure 1.1: Structure of the thesis and allocation of chapters into parts.
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Chapter 2

Existing approaches to classification
of urban form

To start the journey towards a taxonomy of urban form, we first need to look at the state
of the art of the field. Hence, this chapter aims to understand the classification and its
various models from a theoretical perspective and review how are these models applied
to urban form. Following the scope of the work defined in the first chapter, the main
focus is on quantitative methods of urban morphology based on the vector representation
of form. However, some detours to the remote sensing field are necessary. Both to give
a full picture of the possible approached and to break the existing firm barriers between
the fields.

This chapter is structurally split into two main sections. The first one is outlining the gen-
eral theory of classification, its principles and different models. That is directly reflected
in the specification of a hypothetical, optimal model of classification of urban form, i.e. a
set of principles which should a model fulfil to gain a theoretical ability to reflect the
complexity of urban form. The second part of the chapter examines models of classifica-
tion present in literature to this day and compares them to the specified requirements. It
first focuses on the spectrum of works ranging from the metropolitan scales to the level
of individual buildings (from the perspective of the unit). It then identifies three recur-
ring concepts shared among wide groups of researchers - Urban Structural Type, Land
cover classification and Local Climate Zones. The overview leads to the specific gap in the
current methodology, as none of the published works fits the optimal model requirements.
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In short, the following chapter answers four questions allowing this research to build on
the existing knowledge:

1. What is classification?
2. How should it look like?
3. How was it done to date?
4. What is missing?

2.1 Making sense of the world

The world is an inherently complex entity, which needs to be simplified to manageable
pieces of information to ensure that the human mind will be able to understand it, i.e. to
avoid combinatorial explosion (Fernbach and Sloman, 2017). The natural way of doing
so is similar grouping features into chunks and thinking about those. We do not think
about individual trees and plants; we consider them all together as a forest. We cluster
them based on their functional and geographical relationships into the higher-order entity.
That is the essence of classification; we join smaller things into higher-order groups and
talk about groups. It is easier for the brain to manage.

2.1.1 Classification as a method

Before we can talk about classification, it is necessary to declutter and define the term
itself as it is used in literature in multiple meanings. In an overview of the whole concept
and its meanings, Bailey (1994) defines classification as “the ordering of entities into
groups or classes on the basis of their similarity” (p.1). At the same time, he notes that
“classification is both process and an end result” (p.2). That can cause terminological
confusion as in some situation it might be unclear whether we refer to the resulting
systematics or the procedure which generates one. This polysemic nature of the term
itself is even more pronounced if we explore the definition offered by the Oxford English
Dictionary (OED), which comes with three relevant options:

• “A systematic distribution, allocation, or arrangement of things in a number of
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distinct classes, according to shared characteristics or perceived or deduced affinities.”
• “The action of classifying or arranging in classes, according to shared characteristics

or perceived affinities”
• “ A category to which something is assigned; a class.” (Oxford English Dictionary,

2020a)

While the first two coincide with the definition offered by Bailey (1994), the last adds one
more option - a class. This research will refer to classification as process and the final
result, following Bailey’s approach, always trying to specify which meaning is used. The
last definition offered by OED will not be used within this research.

Classification systems vary and can be systematised based on the different aspects of the
resulting structure and the method used in the process (Bailey, 1994).

The first distinction can be made based on the number of dimensions to unidimensional
and multidimensional. The scope of this work lies in multidimensional classification as a
single dimension does not have the explanatory power to describe the complexity of urban
form. Dimensions can be both numerical and categorical variables, where unidimensional
numerical classification is also known as binning or a “classification scheme” following
Marradi (1990).

Looking at the structure of the classification results, we can talk about flat and hierarchical
models. Flat models generally define all classes as equal and do not specify the relationship
between them, either because it could not be specified or because the model does not focus
on such aspect. An example is general land use classification, which is flat (e.g. residential
use, commercial, industrial) and the relationship between different classes is conceptually
complicated to define. Hierarchical models specify, either numerically or conceptually,
the relationship between different classes and hence offer a certain level of flexibility of
classification as their structure can be interpreted on multiple levels of resolution. That
allows the division of elements into two macro classes or multiple micro classes within
the same system. A typical example is biological taxonomy of species, where different
levels of resolution are represented by domains, kingdoms, families or species. Typical
hierarchical classification is, compared to flat models, computationally or conceptually
more challenging, but the flexibility which it brings (where applicable) is valuable.

Marradi (1990) uses the term “typology” for flat classification models and ”taxonomy for
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hierarchical models. However, Bailey (1994) suggests using the same terms to distinguish
between classification models based on different criteria. Methodologically, he recognises
two key approaches - one is conceptual, for which he uses the term typology, and the
other is numerical, named taxonomy. Typology is then a conceptual classification, where
resulting classes represent concepts, not empirical cases (Bailey, 1994). This means that
typologies can be seen as qualitative classifications because there is generally no statistics
involved. The land-use case mentioned above is a good example of a typology. On the
other side is a taxonomy, which is quantitative classification, with classes being empirical
entities in the system proposed by Bailey (1994) as well as earlier by Sneath and Sokal
(1973).

This confusion in what typology and taxonomy mean and the criteria used to distinguish
between them is present across the literature and is not easy to solve. Furthermore, as
with the term classification, taxonomy is also used to describe both process and the final
result.

Literature knows three terms for quantitative classification based on statistical analysis,
to complicate the matter further. One is numerical taxonomy (Sneath and Sokal, 1973),
which is quantitative, algorithmic classification (more on numerical taxonomy is in section
3.1.2). The other is term cluster analysis, describing the process of classification. As Bailey
(1994) points out, the methods of numerical taxonomy can be classified as clustering
algorithms, making the numerical taxonomy (in the sense of a process) and cluster analysis
“virtually synonymous” (p.7). The machine learning area, to make things more complex,
uses term unsupervised classification for cluster analysis, but these two (together with
clustering) are equal.

Within this research, the term taxonomy will be predominantly used to describe the final
result of hierarchical quantitative classification, the usage which fits in the definition of
both Bailey (1994) and Marradi (1990) but can be used for general hierarchical models
if needed. Cluster analysis and clustering may be used interchangeably and describe the
process. The term typology will be used within the relevant context to avoid potential
disambiguation and its application will generally follow Marradi (1990) rather than Bailey
(1994). Unsupervised classification is left only for occasions where it is needed. 1

1Since we are talking about unsupervised classification, it is worth noting that supervised classification
is a bit different concept and it is technically rather labelling or classing. It is a tool to sort features into
pre-defined categories, unlike all above, which encompass the determination of categories as well. Again,
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Bailey (1994) has summarised the reasons why is classification useful in ten fundamen-
tal advantages, which are all transferable to urban morphology and classification of the
spatial structure of cities. In short, a classification is a tool for description (1), giving
an overview of all classes within data based on the same criteria. The classified data has
reduced complexity (2) to a manageable extent. We cannot deal with all individual ani-
mals on Earth, but we can work with their taxonomy, significantly reducing the amount
of information to work with. Classification can be used to identify similarities (3) and
differences (4) among cases. Identification of similarities allows us to treat all individ-
uals of a single class of similar classes equally (e.g. beware of snakes or go shopping to
commercial district). On the other hand, we can distinguish subtle differences between
similar entities (e.g. the difference between venomous and non-venomous snakes can be
helpful). A classification, if done properly, is defined by an exhaustive list of dimensions
(5) on which different classes are based. In such a case, the resulting classification can be
comprehensive, while capturing the relationships between classes and dimensions, which
is useful for further analysis and profiling of classes. That allows quick, straightforward
comparison (6) of classes from different parts of the classification structure. Complete
list of classes can serve as the inventory (7) for management purposes and allows the
study of relationships (8) among dimensions, relative to the structure of the classification.
Moreover, classes can be used as criteria for measurement (9), where one class is the
criterion, and other are assessed according to similarity with the criterion (e.g. how close
is snake A to a python? or how similar is neighbourhood A to Manhattan?). Finally,
the classification may be versatile (10), as it can represent both individual units under
scrutiny and their location within property space, but also describes the whole sample of
units. (pp.12 - 14).

2.1.2 Optimal classification model

Classification model can follow a multitude of pathways and can be defined based on
various aspects for a plethora of purposes. However, the aims and scope of each research
should drive the classification. Since this research aims to develop a data-driven method,
its methodological nature should be a quantitative. The optimal classification model
(OCM) for this research can be then defined based on the following set of rules derived

this is a terminological issue, but because it is not used in this work, we can leave it out.
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from definitions presented in the previous sections. Each of the existing models presented
in literature and outlined in the next section is then related to OCM. Furthermore, the
specification of the model used within this study should directly reflect the rules in its
fundamental design.

The optimal classification model of the urban form should be:

1. Exhaustive
2. Mutually exclusive
3. Empirical
4. Hierarchical
5. Comprehensive
6. Detailed
7. Scalable

An exhaustive model covers all entities within the set, meaning that there should not
be unlabelled cases in the resulting classification. While the specification of levels of
uncertainty in the labelling is welcome, it should not prevail. Mutual exclusivity ensures
that no entity is at the same time member of more than one class to minimise ambiguities.
However, probabilistic clustering specifies the probability of each feature to be a member of
each class, but the resulting classification typically uses a single threshold value. Empirical
nature ensures the data-driven nature of the classification limiting the potential bias in
the derivation of concepts and dependency on the expert knowledge to assess each entity.
Structurally, the model should be hierarchical to allow flexibility of its reading, unavailable
for flat options. With hierarchical relations between groups, the information encoded
in the classification becomes adaptable and provides more straightforward interpretation.
Comprehensiveness entails the number of dimensions, or descriptors used to cluster entities.
The selection of dimensions can be biased and negatively influence the resulting taxonomy.
By implementing the large number of dimensions (trying to be as inclusive as possible),
such a possibility can be effectively minimised (Sneath and Sokal, 1973). The classification
of the urban form should be detailed in terms of spatial granularity, meaning that labels
should be assigned to individual plots or buildings rather than districts or cities. Finally,
the model should be scalable. That is both a technical and conceptual requirement,
which should ensure that the same model can be used to classify small town and large
metropolitan areas.
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A classification model which would adhere to these seven principles is currently not avail-
able in the published literature. However, the spectrum of existing approaches is vast,
and all the points have been addressed in various works. However, not at the same time.

2.2 Spectrum of classification models

There are two main branches of science focusing on urban form classification, which are
surprisingly separated from each other - remote sensing (RS) and urban morphology
(UM). The diffusion between them is minimal, even though both may conceptually focus
on similar questions. Urban morphologists tend to prefer to work with the elements of
the urban form directly and build the classification from the constituents parts of urban
form upwards (as in Dibble et al. (2017)). They need to identify buildings, plots or
blocks first, identify the structural features, and then describe and classify them. On the
other hand, remote sensing research usually does not dwell into the detail of individual
elements, but instead tries to capture the whole pattern directly (Taubenböck et al.,
2020). The other approach is to extract the elements first, as in Dogrusoz and Aksoy
(2007), but then the methodology is essentially two-step, starting with remote sensing in
the extraction part and finishing with morphological analysis of extracted elements in the
second. Even though both fields approach the topic differently, there are some similar
concepts, although currently unlinked.

Following sections provide an overview of the quantitative trajectory classification of urban
form followed in last decades and of recurring concepts stemming from the field of remote
sensing. The overview does not include concepts derived from traditional qualitative
urban morphology as it is not within the scope of this research.

2.2.1 The trajectory of systematic quantitative classifica-
tion

The literature on quantitative urban morphology offers a wide selection of proposed meth-
ods of classification of urban form, ranging from flat typologies to hierarchical taxonomies
and from city to buildings scales (as per the unit of analysis). However, if we want to
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focus on the methods following similar aims as this research, we find that there are not
many methods, which would come close to OCM. This section presents a trajectory of
relevant models, focusing here mostly on urban morphology rather than RS, between the
years 2007 and 2020. The earlier work (Barnsley and Barr, 1996; Herold et al., 2002)
is seen as too distant from the current research, likely due to the scarce data and tools
availability.

The first relevant method proposed by Dogrusoz and Aksoy (2007) attempts to classify
urban form based on satellite imagery using automatic extraction of building footprints
followed by a cluster analysis of the structure of minimum spanning tree between buildings.
The resulting classification can determine whether neighbourhoods tend to be organized
or unorganized as illustrated in figure 2.1. As such, it makes the first step towards the
detection of different patterns, which is naturally relatively distant from OCM in some of
the criteria.

Figure 2.1: Three steps of classification from satellite imagery, through detected building footprints to resulting
classes. (Dogrusoz and Aksoy, 2007, figure 4)

Song and Knaap (2007) are proposing a classification of neighbourhoods defined as a 1/4
mile (approx. 400m) buffer around selected sites of new single-family development. Using
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21 characters, factor analysis and cluster analysis (K-means), they propose flat model of
six clusters. By classification of 6788 homes into neighbourhood types, they illustrate
the scalability of the model and potential for detailed assessment, as each site has its
own neighbourhood defined in a location-based manner (i.e. neighbourhoods are defined
independently on each other and can overlap). However, 21 characters and focus on
single-family housing only does not ensure the comprehensiveness of the model.

Classification method presented by Steiniger et al. (2008) uses a predefined conceptual
typology of buildings and uses morphometric assessment to predict its classes. In this
sense, the authors provide the first assessment of the validity of morphometrics in the
context of classification of urban form, but the typology itself is not defined empirically.
Of a similar nature is research presented by Neidhart and Sester (2004), Wurm et al.
(2016) and Hartmann et al. (2016). Even though based on a different set of indicators
and data inputs, these three works illustrate the progress in labelling over the years.

Spacemate diagram by Berghauser Pont and Haupt (2010) identifies six building types
based on three measurable dimensions - Floor Space Index, Ground Space index and Open
Space Ratio (figure 2.2). They propose the same method to be applied on the scale of the
building and the scale of fabric. The method has the potential to be scalable and detailed,
but not comprehensive as it is based on three characters only. Moreover, the classification,
even though based on empirical values, is rather conceptual than data-driven as it is based
on nine pre-defined archetypes.
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Figure 2.2: Spacemate diagram and building types on the scale of fabric. (Berghauser Pont and Haupt, 2010,
figure 23)

Gil et al. (2012) characterise streets and block using 25 quantitative characters and
cluster them based on K-means into six groups of blocks and four groups of streets. The
case study area is covering two neighbourhoods of different origin, and results indicate
the potential of cluster analysis based on morphometric values in urban morphology. The
method is one of the first which use historical origin as a method of validation of clustering
and which results reflect expected distinction (figure 2.3).
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Figure 2.3: Geographical distribution of block clusters and street clusters in two studied neighbourhoods. (Gil
et al., 2012, figure 4)

Louf and Barthelemy (2014) propose hierarchical taxonomy of 131 cities based on their
street network patterns, with the actual characterisation based on block area and shape.
The resulting dendrogram illustrating the classification is shown in figure 2.4. The large
set of cases illustrate the scalability of research, but that comes at the cost of granularity
and comprehensiveness.
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Figure 2.4: Dendrogram representing the structure of classification of cities by Louf and Barthelemy (2014,
figure 4). Each bar represents a single case.

Schirmer and Axhausen (2015) proposes classification on multiple levels, where the top
one is a municipality, even though the unit is a building defined by centrality and acces-
sibility characters. While their proposal is for a “multiscale typology”, methodologically
purpose four flat classification models and do not relate one to the other. Their resulting
“municipal typology” is illustrated on figure 2.5 below. While all scales combined may be
based on comprehensive information, the proposed model is not.
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Figure 2.5: Four classes of Schirmer and Axhausen’s (2015, figure 11) municipal-level classification mapped
in the area of Zurich.

The scale of neighbourhood Schirmer and Axhausen (2015) shares with Serra et al. (2018),
who are classifying neighbourhoods defined as “circular areas of 1km radius” (p.65) char-
acterised by 12 morphological indicators derived from street network, blocks and buildings.
Resulting classification is hierarchical taxonomy of selected neighbourhoods, represented
by a dendrogram on figure 2.6. In its current form classification is not exhaustive as it
covers only pre-defined, yet overlapping neighbourhoods (figure 2.7), and it is not known
how would it scale to the continuous classification of whole areas.
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Figure 2.6: Hierarchical classification of neighbourhoods proposed by Serra et al. (2018).

Figure 2.7: Geographical distribution of clusters of neighbourhoods proposed by Serra et al. (2018).

Similar neighbourhood scale is used by Dibble et al. (2017), where the unit of classification
is Sanctuary Area (Mehaffy et al., 2010). The resulting classification is a hierarchical tax-
onomy (figure 2.8) based on the comprehensive set of morphometric characters. However,
due to the selection of the basic unit, it is not detailed and exhaustive. The method itself
is time-consuming (Dibble, 2016), and its proposed form is not scalable. However, the
work of Dibble et al. (2017) is building foundations of the science of urban morphometrics
and will be further examined in section 3.2.2.
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Figure 2.8: Resulting dendrogram illustrating the classification of Sanctuary Areas by Dibble et al. (2017,
figure 6, rotated). Notice the consistency of morphometric classification and historical origin of individual
cases.

The work on urban typologies presented by scholars at Chalmers University in a series
of recent publications (Berghauser Pont and Olsson, 2017; Berghauser Pont et al., 2019;
Bobkova et al., 2019) proposes to use three individual typologies of morphological el-
ements: plots, streets and buildings. Each typology is defined through a handful of
morphometric characters and cluster analysis, thus making the outputs influenced by this
particular selection. Compared to the optimal criteria above, their model is not hier-
archical and, notably, not comprehensive (due to the limited number of morphometric
characters it uses).

24



Chapter 2. Existing approaches to classification of urban form

Figure 2.9: Spatial distribution of plot types in selected case studies developed by Berghauser Pont et al. (2019,
supplementary material figure 10).

The work of Araldi and Fusco (2019) proposes a classification of street segments from
the pedestrian point of view, based on 20+ morphometric characters derived from street
networks, building footprints and digital terrain model. The model is powerful in terms
of top-level classification of urban form, however, similarly to the Chalmers’, it is not
hierarchical (the relationship between the types is unknown) and still far from compre-
hensive (compared, e.g. to others which use a more significant number of characters such
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as Dibble et al. (2017) with 207). The selection of street as the smallest unit is also a
limitation as it assumes homogeneity of the urban form along both sides of the whole
segment, which is rarely the case in urban contexts of almost all periods of development.

Figure 2.10: Urban fabric classes as a result of the MFA procedure by Araldi and Fusco (2019, figure 2).

Dong et al. (2019) proposes a classification of blocks into hierarchical taxonomy using
convolutional autoencoder (CAE). The method rasterises the vector representation of
block footprints to 64x64 pixels and uses a neural network for image recognition to cluster
them. Due to the necessity to keep data for autoencoder of a similar size, oversized and
undersized cases were excluded, drawing the method not entirely exhaustive. Resulting
hierarchical clustering (figure 2.11) identifies 16 clusters, but in a way which includes all
cases, leaving some (approx 40%) unclassified. However, the application of CAE is quite
unique in the context of the rest of the field.
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Figure 2.11: Hierarchical clustering of sample of blocks and illustration of different types (rotated). (Dong et
al., 2019, figure 6)

Li et al. (2020) focus on classification of 83 blocks into hierarchical taxonomy on the
basis of 11 indicators (figure 2.12). On top of hierarchical clustering, authors also do
K-means analysis, resulting in 5 types, although the relation between K-means clusters
and hierarchal one seems to be left unexplored. The sample of blocks covers only a single
small case study area, leaving the question of scalability unresolved.
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Figure 2.12: Hierarchical clustering of selected blocks and illustration of different types (rotated). (Li et al.,
2020, figure 5)

The method proposed by Jochem et al. (2020) works on 100m grid and is based on
building footprint data and 7 characters measured per grid cell. That resulted in 12 types
(figure 2.13) in the first and 5 in the consequent step. The method dependent on the
arbitrary grid does not follow the natural composition of urban form and in some case
might be unable to recognise certain linear patterns. Although scalable, as presented in
the paper, the method is likely not comprehensive enough due to the small number of
measurable character influencing the resulting classification.
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Figure 2.13: Settlement types prediction in Kinshasa, Congo in the resolution of 12 types based on 100m grid.
(Jochem et al., 2020, figure 3)

2.2.2 Recurring concepts

The trajectory above presents instead unlinked methods and concepts as urban morphol-
ogy did not agree on a specific approach yet. Likely due to the relative sub-optimality of
all presented above. In remote sensing, partially overlapping with urban morphology, are
identifiable three recurring partially linked concepts in the literature - Urban Structural
Types (UST), Land Cover (LC) classification and Local Climate Zone (LCZ) classification.

The concept of UST (and related Urban Structural Unit) has been first developed for
planning purposes in the 1960s (Lehner and Blaschke, 2019), alongside the UM concepts
of the morphological region (Conzen, 1960; Oliveira and Yaygin, 2020) or tessuta urbana
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(Caniggia and Maffei, 1979), with which it shares the core of the definition based on the
internal homogeneity. In the RS, UST started to appear since the early 1990s (Lehner
and Blaschke, 2019) and become quickly popular. However, the methods and terms are
still remaining inconsistent. Defining UST is not an easy task as the literature is not
consistent in the definition and a range of works reviewed by Lehner and Blaschke (2019)
agree on principles, but not on specific “definition, description and derivation” (Lehner
and Blaschke, 2019, p. 7). Generally speaking, UST can be defined as a unit of a “specific
spatial characteristics, e.g., the morphology and the spatial relationships between urban
artefacts such as buildings, streets, trees, lawns” (Lehner and Blaschke, 2019, p. 2). The
practical translation of this, relatively vague description, varies. Some UST classifications
are flat while others are hierarchical, work on various scales and are mostly conceptual
typologies, with only a few examples of data-driven models (Lehner and Blaschke, 2019).
In relation to the OCM requirements, it is complicated to assess the concept as a whole
due to its internal inconsistency, but no method found in literature fulfils all the criteria.

Land cover is a related but more straightforward concept coming from Remote Sensing
area. Unlike all the other, it does not focus purely on the urban environment but aims
to classify all areas together. As such, its detail when it comes to urban form is gener-
ally low, with CORINE Land Cover classification (European Environment Agency, 1990)
dividing urban form into continuous and discontinuous, plus specialist (industrial/com-
mercial, ports, airports). Copernicus Urban Atlas refines Corine by adding density on top
of continuity as a second criterion. One of the most refined is the work of Pauleit and
Duhme (2000) which distinguish 10 types of urban form. However, due to the nature of
land cover classification, which is usually done as a supervised classification (i.e. labelling),
it is usually a conceptual method (which can be both flat and hierarchical).

Classification into Local Climate Zones (Stewart and Oke, 2012) is a mix of both urban
structure and land cover into a singular conceptual typology of 10 types of the built form
and 7 land cover types (figure 2.14). It is intentionally very generic to produce inclusive
classification, covering all possible types of urban development. It is a flat model with
classes defined numerically, but still capturing rather conceptual divisions. In RS, LCZ
are used on a large scale (Taubenböck et al., 2020) to characterise cites across the world,
but the classification itself is still relatively limited by design and very top-level.
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Figure 2.14: Local Climate Zones as reported by Taubenböck et al., 2020, figure 1)

2.2.3 Overview

The relation of each of the concepts mentioned above to the OCM is summarised in the
table 2.1 below.
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Table 2.1: Relation of methods to OCM. x marks fulfilled criteria, - un-fulfilled and * potentially fulfilled.

reference exhaustive exclusive empirical hierarch. compreh. detailed scalable

Dogrusoz & Aksoy (2007) x x x - - x x
Song & Knaap (2007) - - x - - - x
Steiniger et al. (2008) x x - - - x x
Berghauser Pont & Haupt (2010) x x x - - x x
Gil et al. (2012) x x x - - * -
Louf & Barthelemy (2014) x x x x - - x
Schirmer & Axhausen 2015 x x x - * * x
Serra et al. (2018) - x x x - - -
Dibble et al. (2017) x x x x x - -
Berghauser Pont et al., (2019) x x x - - x x
Araldi and Fusco (2019) x x x - * * x
Dong et al. (2019) - x x x * * x
Li et al. (2020) x x x x - * -
Jochem et al. (2020) x x x - - - x
UST x x * * * * x
LC x x - * * * x
LCZ x x - - - x x
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The majority of methods provide mutually exclusive classification, are exhaustive and
empirical. Assessing scalability is not straightforward as the published research is mostly
not reproducible without much effort. The scalability is then inferred from the case study
area or the method description and may not be entirely precise. The least fulfilled criteria
are hierarchical nature and comprehensiveness of methods, with only a few works being
such. However, this seems to be changing, as the proportion is growing in recent years.

2.3 The gap in the systematic classification

Even though literature covers fields of geography, urban morphology, remote sensing or
cartography, there is no classification method in the scrutinised body of work which fulfils
all seven criteria of OCM. Both exhaustivity and mutual exclusivity are generally well
covered as most of the methods follow these rules. The empirical nature is less presented.
We have to keep in mind the difference between classifications with clusters based on
empirical data and those that use empirical data to label observations properly. The
latter is not empirical in the sense of OCM as the model itself is conceptual.

Although we can find methods which produce hierarchical classification, it is not a stan-
dard, likely due to a) popularity and performance of flat clustering methods as K-means
in case of empirical studies, b) additional complexity in case of conceptual studies; hence
they rarely reflect inter-group relationships. The significant issue is with the comprehen-
siveness of presented models. Most of them are based on a handful of dimensions, making
them less robust and more prone to bias induced by the careful selection of indicators.
Those few examples which are based on a broad set of descriptors (Dibble et al., 2017)
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unfortunately fail to fulfil one or more of the other criteria.

There are studies which are detailed, i.e. their spatial unit is granular (building, plot) but
again - they are sub-optimal in other aspects. The scalability is not easy to assess as the
majority of methods is not readily reproducible, some do not even describe used tools and
computational framework, but that is an issue by itself. In works where the method is
described to a sufficient detail, the scalability varies. However, with the rapid expansion
of scientific geospatial software and GIS in general, it is assumed that it should not be an
issue in future unless the method depends on qualitative data.

All above lead to the conclusion that current methods are not able to provide sufficient
details and complexity when it comes to the classification of urban form and hence their
applicability in further research or planning practice is limited.

2.4 Summary

Classification is a rich and polysemic term, which needs specific definitions to resolve pos-
sible ambiguities. However, even more specific terms as typology and taxonomy are used
with different meanings. The ideal path is to be explicit about the context and do not rely
entirely on a single definition of the term. Note that since taxonomy can stand for both
procedure and the final result, the terminology also needs more refinement. Therefore,
this research uses term taxonomy for the final result, whilst term cluster analysis for the
procedure.

The classification itself brings a lot of valuable aspects. However, to ensure that all are
present, the method for the classification of the urban form should follow the principles
of the Optimal Classification Model based on seven simple requirements. It should be
exhaustive, mutually exclusive, empirical, hierarchical, comprehensive, detailed and scal-
able. None of the models present in literature fulfils all seven criteria to date. The rest
of this research will focus on developing a novel method, which embeds all principles into
its design to derive the taxonomy (i.e. quantitative classification) of urban form.

Existing models for classification of urban form present in the literature vary and spread
across multiple dimensions, from different basic scales (from city to building) to different
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methodological prepositions (from remote sensing to typo-morphology). Across the field,
all OCM criteria have been met; however, not within a single model.
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Chapter 3

Numerical taxonomy

The previous chapter focus on the concept of classification in general and its application
in the context of urban morphology. One of the specific classification methods is nu-
merical taxonomy, which is conceptually quantitative, and structurally hierarchical. The
following chapter aims to provide a more in-depth overview of numerical taxonomy and
its components, from its biological origins to application on urban form.

The first section of this chapter introduces original biological methods of morphometrics
and numerical taxonomy, including the overview of core concepts as Operational Taxo-
nomic Unit, taxonomic characters, resemblance and structure. The second section then
discusses the transferability of these concepts into urban morphology, starting with a
theoretical review of principles. Furthermore, it critically assesses the preceding work of
Dibble et al. (2017), who tried to provide the first link between the numerical taxonomy
and urban morphology.

3.1 Learning from biology

From a conceptual point of view, this research builds on the previous of Dibble et al.
(2017) (partially published as Dibble et al. (2015) and Dibble (2016)), which established
the theory of urban morphometrics and made the first link between numerical taxonomy
- a classification method used in primarily in biology - and urban morphology. Both mor-
phometrics and numerical taxonomy have a long and rich history outside urban sciences
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and the core idea behind the Dibble’s work, which is also applied to this research, is that
urban form can be in its own way perceived as a group of individual entities which can be
consistently measured and numerically classified. In Dibble et al. (2017), authors demon-
strated that the idea is viable and that the potential of urban morphometrics should be
explored further.

Researchers in biology did much work setting the scene for morphometrics, and we should
learn from it to avoid reinventing the wheel, where the key principles hold.

3.1.1 Morphometrics as a descriptive tool

Morphometrics is a quantitative analysis of form, i.e. size and shape (Rohlf and Marcus,
1993) of objects under scrutiny, in biology that usually refers to a size and shape of an
individual, in which case morphometrics, as a descriptive tool has the ability to determine
the level of the resemblance of different individuals, either of the same species or different
species (Sneath and Sokal, 1973) . Literature knows several branches of morphometrics, all
conceptually similar, used for complementary purposes but based on different principles
of what to measure and how. The two main approaches are traditional and geometric
morphometrics.

Traditional or multivariate morphometrics is based on “the application of multivariate sta-
tistical methods to sets of variables” (Rohlf and Marcus, 1993, p. 129). The variables used
within the analysis usually represent widths, lengths and angles of features or distances
between specific landmarks (Rohlf and Marcus, 1993), hence containing little information
about the geometry of the structure (Zelditch et al., 2004). The recreation of the original
shape is not possible based on the used set of variables (Adams et al., 2004). Among the
statistical techniques used within traditional morphometrics Rohlf and Marcus (1993) list
principal component analysis, discriminant functions of canonical variate analysis. An
example of measurements used within traditional morphometrics is shown in figure 3.2.
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Figure 3.1: Example of the application of multivariate morphometrics. Overview of different morphometric
measurements investigated in S.panijus (Siddik et al., 2016)

The typical application of traditional morphometrics is allometry, the study of change
of the shape with the change of the size. However, in biology, this method has certain
limitation mostly related to the normalisation of the shape values affected by size (Breno
et al., 2011).

The second major branch of morphometrics, which tries to overcome some limitations of
the previous one is geometric morphometrics (Rohlf and Marcus, 1993), focusing on the
position of landmarks and semi-landmarks on the grid and its deformation (figure 3.2).
The description of both size and shape is then captured through the series of coordinates
either on a 2D plane or in 3D space.
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Figure 3.2: Example of the application of geometric morphometrics. Locations of the landmarks on a dorsal
view of the skull and the relevant distortion of the grid.

Geometric morphometrics is dependent on the shared landmarks features between an
individual in a study. Hence its application in an urban context is difficult due to the
complexity of urban form and the variety of patterns, making the definition of shared
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landmark features complicated.

Similar to geometric morphometric is an outline analysis, which is trying to fit mathemat-
ical functions to points sampled along the outline of the studies shape, an approach which
has already been applied in urban morphology either to study the shape of settlements
(Batty and Longley, 1987) or different aspects of streetscape (Cooper, 2003, 2005). Fur-
thermore, there are other branches of morphometrics (tissue morphometrics (Bodenstein
and Sidman, 1987), geomorphometrics (Coblentz et al., 2014), neuroimaging (Wang and
Jernigan, 1994)) which are applying the same principles in their respective fields.

All these approaches and methods can inform the development of urban morphometrics.

3.1.2 Numerical taxonomy as a classification tool

One of the specific application of morphometrics is the usage of measurements in the clas-
sification of species, for which Sneath and Sokal (1973) use the term numerical taxonomy
and define it as “the grouping by numerical methods of taxonomic units into taxa on the
basis of their character states” (Sneath and Sokal, 1973, p. 4). In biology, this requires a
distinction between phenetics (overall similarity) and cladistics (evolutionary branching
sequence).

The key principle of numerical taxonomy is that it is a classification which is operational
and empirical. As further explained by Sneath and Sokal (1973), “operationalism implies
that statements and hypotheses about nature be subject to meaningful questions; that is,
those that can be tested by observation and experiment (p.17)”. That further assumes that
numerical taxonomy as a method has the potential to be reproducible and replicable.

Sneath and Sokal (1973) define seven key principles of numerical taxonomy:

1. The greater the content of information in the taxa of a classification and the more
characters on which it is based, the better a given classification will be.

Selection of morphometric characters which is used for classification is inherently biased.
To limit a bias as much as possible, we should employ an as large number of characters
as is possible (and meaningful) as long as it does not violate any other rule.
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2. A priori, every character is of equal weight in creating natural taxa. 

Some of the classification models apply weighting, which means that character A is seen
as more important than character B. However, this decision often introduces bias into the
selection because the rules defining the weighting can be arbitrary. Furthermore, we do
not a priori know which character will have the highest discriminatory power.

3. Overall similarity between any two entities is a function of their individual similar-
ities in each of the many characters in which they are being compared.

In other words, when measuring the similarity between two entities, all characters need
to be taken into account.

4. Distinct taxa can be recognised because correlations of characters differ in the groups
of organisms under study.

Taxa, i.e. classes of numerical taxonomy, represent different groups of organisms or other
entities under scrutiny. The relations between morphometric values within taxa are dif-
ferent from relations to other taxa.

5. Phylogenetic inferences can be made from the taxonomic structures of a group and
character correlations, given certain assumptions about evolutionary pathways and
mechanisms.

Phenetic information used to build a taxonomy is not able to reflect phylogeny entirely,
but the difference between the true evolutionary development of species and that observed
in phenetic taxonomy is often minimal. In an urban environment, that means that we
might be able to, to a degree, trace historical origin in numerical taxonomy of urban form.

6. Taxonomy is viewed and practised as an empirical science.

Conceptual assumptions about observations should have no role in the taxonomy.
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7. Classifications are based on phenetic similarity.

Phenetic similarity represented by the relations (e.g. correlation) between morphometric
characters is the only aspect taken into account when building a classification.

While the scope of this work is not to give a detailed overview of biological numerical tax-
onomy, there are four crucial concepts which need to be understood before the application
of numerical taxonomy to urban form - Operational Taxonomic Unit (OTU), taxonomic
characters, taxonomic resemblance and taxonomic structure.

3.1.2.1 Operational Taxonomic Unit

OTU is the lowest ranking taxa employed in a given study. In biology that is usually
species represented by an individual (e.g. a single bird specimen). In some cases, OTUs
can be species or other aggregated groups if the aim is to develop higher-order taxa.
Generally, OTU should be the fundamental unit in a large majority of instances. Sneath
and Sokal (1973) suggest that in the case of biology, “a taxonomic unit at any level should
be based on individuals” (p.69) to ensure consistency and rigour. Naturally, the urban
form does not offer a simple definition of the individual, and the question of optimal
OTU needs to be further studied.

3.1.2.2 Taxonomic characters

Taxonomic characters are, in essence, morphometric characters used to derive numerical
taxonomy. For the application in biology, they can be defined as “a characteristics (or
feature) of one kind of organism that will distinguish it from another kind; or any attribute
of a member of a taxon by which it differs or may differ from a member of a different
taxon” (Sneath and Sokal, 1973, p. 71) For application on urban form, the term organism
will refer to a set OTU.

The critical step in the design of numerical taxonomy is the selection of taxonomic charac-
ters. The set of characters which is used can significantly affect the results of the analysis;
therefore, an extensive set of rules of selection should be defined and followed. The general
principle should be driven by inclusivity - all available kinds of characters should be used.
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Furthermore, all characters which may bring new information should be employed, and
the set should not follow a limited set of conventionally used analytical variables. The
advice given by Sneath and Sokal (1973) says “take as many characters as is feasible and
distribute them as widely as is possible over the various body regions, life history stages,
tissues, and levels of organisation of organisms” (p. 108) - again, the terminology refers
to biology. However, the principle could be translated into urban morphology.

3.1.2.3 Taxonomic resemblance and structure

Taxonomic resemblance, the similarity between OTUs, is determined using cluster analysis
based on the resemblance matrix. Resemblance matrix consists of all morphometric values
and all OTUs in the study. As results, clusters, i.e. higher-order taxa, are based on
phenetic resemblances in an objective manner.

The optimal interpretable outcome of numerical taxonomy is a hierarchical dendrogram
merging lower-order taxa into the higher-order (fig. 3.3). However, the methods of cluster
analysis vary, even though the tendency is to employ hierarchical methods. 1

1That does not necessarily mean that flat clustering methods like K-means are not used. Although if
the final output should be captured in a dendrogram, a single layer of K-means clustering is not enough
and other steps should be introduced.
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Figure 3.3: Example of dendrogram using Ward’s method classification of 39 species of Mallomonas. (Feng
and Xie, 2013)

Of high relevance for the urban form is a mixture problem. That happens “when taxonomist
assumes that sampled populations consist of a mixture that he first wishes to decompose into
separate populations, which are then investigated further or are used as OTU’s” (Sneath
and Sokal, 1973, p. 199). If the OTU in place will be an aggregation as is Sanctuary area
in case of Dibble et al. (2017) or urban tissue, the sample may be composed of individual
buildings which need to be first assigned into their respective SA/tissue. In that case, the
OTU for taxonomy itself will be the population of buildings composing a morphological
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aggregation.

3.1.3 Criticism of numerical taxonomy

As any other classification, numerical taxonomy has its drawbacks and limitations, which
should be carefully considered before its application. Sneath and Sokal (1973) name three
major problems related to the phenetic classification of organisms of which all are relevant
for urban morphology.

The first one points out a possible dissimilarity of clusters based on morphometric char-
acters obtained during different time periods. Those would be life stages for an animal
but could be seen as stages of the development cycle in urban morphology. Phenetic
description of OTUs would differ, potentially causing differences in taxonomy. While it
is relatively simple to control such an issue in biology, capturing urban form in the same
stage of the development cycle is virtually impossible, and the limitation needs to be
taken into account in the interpretation of resulting classification.

The second and third problems are related and focus on the design of a cluster analysis.
The selection of similarity coefficients between morphometric characters and selection of
clustering method can both result in differences in identified relationships between OTUs
and affect the interpretability of the classification. The method of classification should
then be selected either as a result of comparative analysis or based on the theoretical
understanding of the data structure and the optimal clustering algorithm for the data.

3.2 Transferability of concepts into urban morphology

The conceptual and methodological framework of numerical taxonomy and morphometrics
is well defined in biology but less so in urban morphology. Therefore, the transferability
of individual concepts needs to be studied before a method leading numerical taxonomy
of urban form can be defined.
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3.2.1 Morphometrics

Morphometrics has a tradition in urban morphology, although the term itself is not fully
established yet. There is a wide range of literature applying quantitative methods of
characterisation of form, ranging from building dimensions (Schirmer and Axhausen, 2015)
to network-based characters (Porta et al., 2010) and beyond (Araldi and Fusco, 2019). The
detailed overview of a published work is available in chapter 4. What can be concluded
now, is that the principle of morphometrics, explicitly brought to urban morphology first
by Carneiro et al. (2010) and then further elaborated by Dibble et al. (2017), is applicable
to urban form without many constraints. However, to ensure that the set of morphometric
characters used for a taxonomy of urban form is inclusive enough, detailed analysis of the
potential of urban morphometrics and its current limits is required and provided in chapter
4. It has to be noted that urban morphometrics in conceptually traditional, multivariate
morphometrics.

3.2.2 Operational Taxonomic Unit

From the theoretical perspective of a numerical taxonomy as a classification concept,
there is no reason to believe that it could not be applicable to urban morphology. From
a practical perspective, it is necessary to discuss individual components of the procedure,
primarily Operational Taxonomic Unit (OTU).

In biology, an OTU for taxonomy on the level of a specimen is an individual. However,
in urban morphology, we face the problem defining what is individual in cities. If we try
to define an individual generally, we will find the following:

• a single person or thing, especially when compared to the group or set to which they
belong (Cambridge Dictionary, 2020)

• a single organism capable of independent existence (Dictionary.com, 2020)
• a member of a compound organism or colony (Dictionary.com, 2020)
• a particular being or thing as distinguished from a class, species, or collection

(Merriam-Webster.com, 2020)
• a single organism as distinguished from a group (Merriam-Webster.com, 2020)
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• a single, separate organism (animal or plant) distinguished from others of a same
kind (Biology-online.org, 2020)

Morphological literature used various elements as the unit of analysis, from a building
(Schirmer and Axhausen, 2015) or plot (Bobkova et al., 2017) to sanctuary area Dibble
et al. (2017) or neighbourhood (Song and Knaap, 2007). However, none gives a definite
answer on what is the individual, the smallest indivisible meaningful unit from which we
could derive a taxonomy of urban form. The fact that settlements can grow from a single
building, and are composed of buildings as (one of) fundamental elements (Moudon, 1997)
may lead to an idea of a building being an individual in the city. Alternatively, the same
conclusion could be made about a plot. In such a case, a taxonomy of urban form focusing
on the classification of built form patterns is not examining the lowest taxa (buildings),
but higher ranks, which means that we have to deal with the mixture problem outlined
in section 3.1.2.3. We should then look at the problem in a similar way as biologists are
looking at taxonomy at the level of the population (put aside the fact that population in
the case of cities still needs to be defined) or species level.

That moves the problem to a different terminological issue - how do we define a species of
urban form. Biology knows several ways of species definition, one based on the deviation
of DNA code, other based on the ability of two individuals to interbreed (De Queiroz,
1998). However, the definition which could be helpful in urban morphology is a phenetic
one -  a taxonomic species based on morphologically similar populations located in a definite
geographic area and morphologically distinct from other populations assigned to different
species (Sneath and Sokal, 1973, p. 364). In practice, phenetic species can be defined
as “the smallest cluster that can be recognised upon given criterion as being distinct
from other clusters” (ibid), which could be seen as the smallest cluster of buildings or
plots, characterised by their form and spatial distribution and configuration, which is
morphologically distinct from the other.

3.2.3 Critical assessment of preceding work

This work, as mentioned above, is a direct continuation of the previous research at the
Urban Design Studies Unit at the University of Strathclyde published as Dibble et al.
(2017). The authors attempted to bridge urban morphology and numerical taxonomy,
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which means that they also provided a conceptual analogy of crucial concepts and notably
OTU.

The following section will examine several aspects of preceding work and argue why some
of the previous decisions need to be reevaluated.

3.2.3.1 Sanctuary area as OTU

As an OTU, Dibble et al. (2017) use Sanctuary area (SA), defined as the portion of the
urban fabric enclosed by main streets (Mehaffy et al., 2010). However, such a decision
comes with an inherent issue of potential internal heterogeneity. The SAs used in previous
research were ideal cases, but cities are not composed of ideal cases only. The classification
model should recognise what cities are composed of, which patterns and urban forms and
systematise them. Which means that OTU needs to reflect such individual patterns,
while a concept of SA applied to the whole city comes with a large portion of SAs which
are internally heterogeneous - composed of multiple patterns. In that case, results of
classification would not reflect the actual patterns of urban form but the way they coincide
with each other.

Consider an illustrative example below, of a small town in Czechia2. The whole fabric of
the town is composed of few SAs. The working hypothesis Dibble et al. (2017) use is that
it is composed of several classes of urban patterns following the division of urban fabric
into SAs as shown on figure 3.43.

2The hometown of the author.
3The identification of homogenous areas is purely perceptional, based on the personal knowledge of

the place and visual interpretation of build form patterns. The map is for an illustrative purpose only.
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Figure 3.4: Illustration of sanctuary areas in a town Milevsko, Czechia. Main streets forming boundaries of
SAs are marked as black lines. It is clear that SAs are composed of multiple heterogeneous patterns and do
not function as a unit of urban form which would be sensible to use as OTU.

In case of using SAs as an OTU, the distinction between different urban patterns (figure
3.5) within this town would be impossible as these SAs are far from homogenous. The
problem with SAs is that their definition and identification is essentially a phylogenic
approach; it is based on the process of development of the settlement. The rest of the
classification is, however, a systematisation based on purely phenetic attributes. There-
fore, I argue that Sanctuary Area does not fit into the definition of an OTU, because an
SA is not taxa on any level of systematisation, and should not be used for general analysis
outside the safe selection of the best examples (like in the case of Dibble et al. (2017)).
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Figure 3.5: Illustration of homogenous patterns of urban form in a town Milevsko, Czechia. The optimal goal
of taxonomy would be to classify patterns as these.

Use of a SA as an OTU assumes that whole cities are ideal according to ‘Emergent
Neighbourhood Model’ (Mehaffy et al., 2010). Even the authors state that they are not
(e.g. the three pathologies). While the concept of SA in this model perfectly works, in the
case of taxonomy, it does not.

3.2.3.2 Selection of taxonomic characters

While selecting morphometric characters used for classification, one should avoid the
empirical correlation of resulting values (Sneath and Sokal, 1973). That means we should
not include two or more characters capturing conceptually the same aspect of an OTU
as such concept would be overrepresented in the set of characters and skew the result of
cluster analysis (see section 7.2.1 for a detailed discussion). In the case of Dibble et al.
(2017), the assessment of collinearity is missing, and there are likely characters which are
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collinear. The first indication is a theoretical assessment of all characters, but the clear
manifestation is their cost-benefit analysis (CBA). CBA results show that with only 9
variables out of 207, the classification model reached more than 90% accuracy. Such a
radical reduction of dimensionality would not be possible if the initial set of characters
avoided correlated ones.

Therefore, the whole set of characters used within numerical taxonomy needs to be revised
alongside OTU and other conceptual and methodological aspects.

3.3 Summary

Chapter 2 provides an overview of models of classification of urban form, methodolog-
ically limiting it to quantitative approaches. Chapter 3 focuses on one specific way of
classification - numerical taxonomy, the approach which is established in another field
of research, notably biology where it originates, and which has undoubtedly potential to
provide useful insights into urban morphology.

Numerical taxonomy is a purely quantitative classification based on the morphometric
assessment of taxonomic units. Morphometrics itself is present in urban morphology in
recent years, although often not explicitly, but under the umbrella of quantitative urban
morphology. The current expansion of data availability and enhancements in computa-
tional tools and environments allow us to generate a detailed morphometric description of
urban form, as is shown in detail in the next chapter. Principles of numerical taxonomy
are slowly finding its way to urban morphology as well, but still lacking methodological
comprehensiveness.

The potential of morphometrics and numerical taxonomy in the urban context is high, as
Dibble et al. (2017) previously shown. However, the transfer of the method from biology
and other fields is not yet optimal as the previously proposed method was exploratory,
which limits its further applicability.

Numerical taxonomy of urban form therefore requires a detailed study of each aspect
of the method. Urban morphology will have to deal with several interconnected issues.
The core issue lies with the identification of OTU, which will likely be linked with a
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mixture problem. The OTU of urban form will therefore be a population of fundamental
elements, which needs to be identified first. Another important aspect which needs to be
thoroughly revisited is the selection of morphometric characters used within the study to
avoid collinearity issues and ensure a detailed description of patterns at the same time.
The final task will lie in the actual method of numerical taxonomy. There is a variety of
options on how to derive the phenetic relationship between OTUs, but only some will be
fit for the context of urban morphology.
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Chapter 4

Urban morphometrics and its
terminological inconsistency

The content of this chapter was partially published in Fleischmann and Romice
et al. (2020).

The previous chapter outlined the need for morphometrics as a key component of numer-
ical taxonomy and pointed out that literature in urban morphology implements a wide
spectrum of morphometric characters.

In the age of urbanisation, urban planning and design still struggle to offer reliable models
to address the challenges of the 21st century (Cuthbert, 2007; Romice et al., 2020), while
the discipline’s shift towards an evidence-based approach and a “new science of cities”
is still in its infancy (Batty, 2012, p. S15). Despite remarkable growth and progress,
urban morphometrics is no exception. In particular, two issues still hinder a quantitative
approach to the analysis of urban form: first, the availability, quality and consistency of
data across geographical regions; second, the discipline’s inherent difficulties in offering
a rigorous and consistent definition of urban form, its fundamental components and the
relationships between them. This chapter contributes to the resolution of this second
problem.

The high variety of morphometric characters, defined as a characteristic (or feature) of
one kind of urban form that distinguishes it from another kind (adapted from Dibble
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et al., 2017; Sneath and Sokal, 1973), used in literature is fragmented across numerous
unrelated sources, and despite several attempts to systematise it, (Larkham and Jones,
1991; Caniggia and Maffei, 2001; Conzen, 2004; Dibble et al., 2017) a comprehensive
overview is still lacking. This gap of knowledge creates uncertainty as to which research
areas are covered and which need further research. Moreover, the terminology is not con-
sistent nor univocal, resulting in weaker methodological compatibility and higher hurdles
in comparing research outputs. According to Whitehand (2012),

“comparative research is faced with a plethora of case studies that use different,
or sometimes unspecified, definitions. […] In addition to problems of non-
comparability of definitions, methods and concepts, differences between the
sources of information employed need to be overcome” (p.60).

In this chapter, this research: a) proposes a coherent and comprehensive classification
system of measurable urban form characters, and b) uses this system to resolve current
inconsistencies and redundancies and identify areas of weakness in the existing literature.

4.1 Selection and systematisation of methods and characters

The first section presents: 1) the criteria utilised to select relevant literature used to map
the field of UM; 2) the process of systematisation of such literature, which is then used
to 3) identify, cross-compare, (re)define and 4) the re-classify morphometric characters.

As for terminology, terms such as “attribute”, “variable”, “measurement”, “metric”, “in-
dex”, “character”, “indicator” or “proxy” are often used interchangeably in urban mor-
phology to signify the measurable feature of an object (Schirmer and Axhausen, 2015;
Bobkova et al., 2017; Dibble et al., 2017; Vanderhaegen and Canters, 2017; Araldi and
Fusco, 2019). This research follows Dibble et al. (2017) where the term “character” de-
fines “a characteristic (or feature) of one kind of organism that will distinguish it from
another kind” Sneath and Sokal (1973). Here, however, “organism” refers to a distinct
kind or type of urban form. “Urban form” as a term has been used to loosely signify
different aspects of space’s configuration in cities along with its use and agents. It is,
therefore, a polysemic term, while this work refers exclusively to the physical components
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of urban space, i.e. the built-up fabric (blocks, streets, buildings…) and its fundamental
spatial subdivision (plots) after Moudon (1997).

4.1.1 Literature selection and systematisation

To review the literature (figure 4.1), this research selected sources that: a) explicitly
undertake a quantitative examination of urban form characters1; b) include urban form
characters that are not present in already selected sources, to avoid unnecessary duplica-
tion and overlapping.

First, it looked at papers published in two leading journals of urban analytics and morphol-
ogy: “Environment and Planning B” and “Urban Morphology”. From here, it extracted
keywords, which were then used to identify several academic citation databases (Google
Scholar, Scopus, Mendeley Search, ResearchGate, Taylor and Francis Online) and to un-
dertake a broader snowballing exploration. The process of keyword search and snowballing
was iterated whenever new inputs were found and adopted to ensures that the selection
is rigorous and inclusive.

Figure 4.1: Scheme of the process of selection of literature and its usage.

All selected papers were then classified according to grain, i.e. the scale (size) of the
basic spatial unit on which descriptors are calculated; extent, i.e. the scale (coverage)

1In some cases, the research focused both on physical and non-physical characteristics and was there-
fore included, but only the physical part of the method was used in the analysis.
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of the case study; purpose; potential comprehensiveness, i.e. the number of urban form
characters measured; timeframe, whether synchronic (comparing different cases at the
same time) or diachronic (comparing the same case at different times).

While there is a partial overlap with the literature presented in chapter 2, the scope of
this chapter is different and focus on a wider spectrum of research methods.

As a grain is considered the basic spatial unit as the smallest element being measured,
while for extent, is coverage as the total area of the case study analysed. Both are taken
into account and then organised from 1 (small) to 10 (large)2.

4.1.2 Classification of characters

From the sources classified as above were then extracted individual morphometric char-
acters. Those influenced by non-morphological data, such as distance to the nearest bus
stop (Song and Knaap, 2007) or land use (Dibble et al., 2017), were excluded.

To overcome terminological inconsistencies among the morphometric characters adopted
in different studies3, this research comprehensively redefined them (see Section 4.3.1). On
these new definitions is then designed a classification framework of characters, based on
their nature and the spatial unit they belong to. Finally, the framework is tested in the
classification of all urban form characters initially extracted from literature, followed by
a discussion of the emerging gaps and redundancies and suggestions for further develop-
ments.

4.2 A state of art

While the existing literature on urban morphology shows a historical inclination towards
qualitative methods (Dibble et al., 2015), through the iterative literature review process

2This classification is based on conceptual ranking rather than metric size: the building scale is smaller
than the plot scale, in that the former is conceptually contained in the latter, even though in terms of
sheer size some buildings may be larger than some plots.

3This phenomenon, occurring when the same urban form characters are presented under different
names or different urban form characters under the same name, is called nicknaming in this work.
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illustrated above are identified 72 predominantly quantitative works (peer-reviewed arti-
cles, conference papers, book chapters, PhD theses). In figure 4.2, selected literature items
are positioned according to their grain and extent scales and classified by their purpose
(colour), and a number of urban form characters considered (size).

Figure 4.2: Classification of Literature. Predominantly quantitative studies in urban morphology classified
according to grain scale (Y axis), extent scale (X axis), purpose (colour) and number of urban form characters
(size). The histograms show a relative balance in terms of scale of grain and a tendency towards large scales
of extent. Note: placement of points is jittered to minimise overlaps.
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4.2.1 Patterns of research

Quantitative analysis in urban morphology appears to have three distinct research pur-
poses in particular: to enable comparison among cases, to measure the performance of
urban form and to monitor or predict urban growth. Comparison is the largest group
containing 45 out of the 72 selected works (62%) and is significantly synchronic (95%).
It includes studies which cover a range of urban form characters from one only (Batty
and Longley, 1987; Frankhauser, 2004; Thomas et al., 2010; Ariza-Villaverde et al., 2013;
Agryzcov et al., 2017) to many (Dibble et al., 2015, 2017); however, those covering more
than 10 urban form characters are only the 33%, and those with more than 25 the 15%,
demonstrating a lack of comprehensiveness in literature. In terms of scales, comparative
studies tend to be lower in grain scale (more detailed) and higher in extent scale (more
extensive case studies).

Papers measuring performance refer in particular to one specific aspect of urban form, such
as sustainability (Haggag and Ayad, 2002; Bourdic et al., 2012), resilience (Feliciotti et al.,
2016), urbanity (Oliveira, 2013), or network-based accessibility (Krizek, 2003; Sevtsuk et
al., 2016). Similar to the comparison group, the majority of works in this second group is
synchronic. However, unlike comparative studies, they tend to use similar scales for both
grain and extent.

Not surprisingly, studies on urban growth are mostly diachronic. Many publications in
this group focus on the analysis of urban sprawl (Galster et al., 2001; Song and Knaap,
2004) to capture sprawl indices (Gielen et al., 2017); here data are often aggregated and
classified in a built-unbuilt binary framework (Galster et al., 2001; Seto and Fragkias,
2005), enriched by Cellular Automaton (Batty, 1997; Kong and Sui, 2016) or machine
learning (Cheng, 2011) techniques. As growth is measured mostly at a metropolitan
scale, with a few exceptions (Hallowell and Baran, 2013) all works focus on a large scale
of extent, while mostly using the same scale of grain.

Crucial for the success of a comparative method is complexity. It is represented by both
the cross-scale extent of the research, as reflected for example in the work of Song and
Knaap (2007), later refined by Song et al. (2013) or Schirmer and Axhausen (2015)4, and
the number of urban form characters measured (potential comprehensiveness). Still, over

4In the figure 4.2, cross-scale research is listed at all relevant scales (as Schirmer and Axhausen (2015)).
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the whole set of 72 literature items selected, those measuring a number of urban form
characters large enough to minimise biases and errors (i.e. > 25 urban form characters) is
relatively rare (15%). Only recently, a few such comprehensive studies started to emerge
(Ewing et al., 2006; Bourdic et al., 2012; Oliveira, 2013; Schirmer and Axhausen, 2015;
Dibble et al., 2017), contributing to the growing area of urban morphometrics (Carneiro et
al., 2010; Dibble et al., 2017; Feliciotti et al., 2017). However, the sheer number of urban
form characters scrutinised (comprehensiveness) does not necessarily ensure complexity,
as many of them may be collinear and hence capture the same information.

4.3 Classification of morphometric characters

The review of the 72 quantitative studies illustrated above produced a list of 465 individual
morphometric characters, which are further studied and classified.

4.3.1 Nomenclature

Of these 465 characters, many were duplicated or hidden under the same name (“nicknam-
ing”), suggesting the persistence of significant nicknaming even in the quantitative area
of urban morphology analysis. For example, the term “connectivity” is in some cases used
to signify a broader group of urban form characters (usually related to network analysis)
(Dibble et al., 2017), while in other cases is attributed to one single one of them, and yet
with different meanings (Hillier, 1996; Lowry and Lowry, 2014); in some instances, the
term is used in both ways in the same study (Bourdic et al., 2012).

Hence, this research applied a process of “character redefinition”, and introduced the “In-
dex of Element” aimed at achieving a higher degree of consistency between the name of
urban form characters and their substance. This index essentially defines each morpho-
metric character according to the measure that it calculates (the Index) and the element
of urban form that it measures (the Element). Let us consider the “connectivity” of the
pedestrian grid in Bourdic et al. (2012), for example. We can easily distinguish the
measure being calculated (Index), which is a weighted number of intersections, and the
“thing” the urban form character of which is calculated (Element), which is the pedestrian
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network. This brings redefinition of the measure as ”Weighted Number of Intersections
of Pedestrian Network ”, leaving much narrower room for interpretation. The use of a
rigorous terminological criterium such as the Index of Elements is, even in quantitative
urban morphology analysis, still occasional, though not absent (Schirmer and Axhausen,
2015). The Index of Element helps achieve an understandable definition of urban form
characters by their same name: the Index part of the name captures the nature of the
measure, independently from what is measured, while the Element part of the name cap-
tures the nature of what is measured, independently from how it is measured. Urban form
characters defined by the combination of the two become consistently understandable and
comparable across different methods. Application of this method on 465 identified urban
form characters led to the elimination of 104 cases of duplication (22.4%), leaving 361
uniquely defined ones.

Table 4.1: Examples of Index of Element conversions. In some cases, urban form character’s redefinitions
bring in crucial information about the urban form character, in others only minor change. However, adding
Element into the urban form character’s name helps to develop quantitative urban morphology by making it
more intelligible, hence comparable.

original name index element reference

Urban Form Continuity Built-up area Gielen et al.
(2017)

Connectivity of
the pedestrian
grid

Weighted
Number of
Intersections

Pedestrian
network

Bourdic et al.
(2012)

Redundancy
index

Redundancy Street network Feliciotti (2018)

Block section Longest diagonal of/between Block Feliciotti (2018)
Building size -
footprint

Area Building Hallowell and
Baran (2013)

Built-up area Built-up area Block Gil (2014)
Distance Distance Building Hijazi et al.

(2016)
Angle Angle Building Hijazi et al.

(2016)
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4.3.2 Classification

Having tackled the terminology issue, this research proposes a typology of morphometric
characters directly based on their name (which now captures their definition). This is a
“concept-based classification”, i.e. one ” which conceptually separates a given set of items
multidimensionally. … the key characteristic of a typology is that its dimensions represent
concepts rather than empirical cases” (Smith, 2002, p. 381). In this sense, by examining
the urban form characters’ names we can classify them along three dimensions: 1) the
nature of the Index, 2) the scale of the grain of the character, and 3) the scale of the
Element’s extent.

While most authors classify their observed urban form characters in groups, which are
usually case-specific, these classifications vary. Generally, we can identify two approaches:
one refers to the character’s scale, as the sequence Object, Composition, Neighbourhood,
District, Municipality and Region in Schirmer and Axhausen (2015); the second refers to
the Element’s nature, for example in Song et al. (2013) Permeability, Vitality, Variety,
or equally in Bourdic et al. (2012) Intensity, Distribution, Proximity, Connectivity, Com-
plexity, Diversity, Form. This research proposes that the first step in the classification of
urban form characters follows the nature of the measure itself, which is captured in the
Index part of its Name. On this ground, it builds on Bourdic et al. (2012) classification,
adapting it to reflect the needs of a general analysis of urban form5.

Hence, a classification firstly distinguished in the Index six categories that are ontological
(they express the nature of the Index): 1. Dimension, 2. Shape, 3. Spatial distribution,
4. Intensity, 5. Connectivity, and 6. Diversity. These six categories are in ranked order
from the simplest (1. Dimension) to the most complex (6. Diversity). For example,
“Weighted Number of Intersections of Pedestrian Network”, where the term “Weighted
Number of Intersections” is the Index and “Pedestrian Network” is the Element will be
classified as a character of Index category “4. Intensity”. The six categories are not purely
independent, as we can identify functional relationships between them. Often characters
in latter groups are mathematically dependent on others in the former: for example, those
indexed by Elongation, which fall in the “2. Shape” category, are functionally dependent

5Research of Bourdic et al. (2012) focuses on measuring urban sustainability, and one of the categories
is defined as ‘form’ which is refined into ‘dimension’ and ‘shape’, while ‘proximity’ is excluded as it is
referring to non-morphological elements.
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on those indexed by Width and Length, which fall into “1. Dimension”, since Elongation =
Width/Length ratio. Also, the proposed system classifies the character into three categories
that capture its grain– the scale of the spatial unit in which the unique value is stored.
Finally, it distinguishes in the Element three categories that are descriptive of the scale
at which the element itself occurs (the equivalent of the scale of spatial extent in figure
4.2), is observable and measurable in urban morphology.

Since many measurable urban form characters in literature work at multiple scales, the
classification needs to maintain a certain level of breadth in defining the amplitude of scale.
Therefore, it is proposing three conceptual levels of scale only: Small (S) representing the
spatial extent of the building, plot, street or block (and similar), Medium (M) representing
the scale of the sanctuary area (Mehaffy et al., 2010), neighbourhood, walkable distance
(5 or 10 minutes) or district (and similar) and Large (L), representing the city, urban
area, metropolitan area or similar. Thus, to continue with the example, the character
“Weighted Number of Intersections of Pedestrian Network”, would be classified based on
1) its grain, and 2) the scale of its Element “Pedestrian Network”. In this case, networks
as physical entities occur and have meaning, and therefore can be observed and measured
at the larger (M, L) scales, while they do mean very little at the small scale. Because
the network, in this case, refers solely to pedestrian use, the urban form character falls
into the category M of scale, or alternatively M/L if we allow more flexible cross-scale
definition which might be desirable in general, as it softens the hard boundaries which
might not be applicable to some, accounting for the authors’ specific conceptualisation
of spatial scale (such as Space Syntax). As this urban form character measures a single
number per network, the scale of its grain and that of the extent of its Element coincide.
However, that is not the case in all situations: for example, Closeness Centrality of Street
Network is measured on the larger network (M, L scales), while the value is specific for
each node (S scale)6.

The resulting typology offers an unambiguous identification of each urban form character
based on its very nature, as reflected in its name (table 4.2).

6Note that the extent in section 4.2 refers to the whole method used in each paper, in this section it
refers to the spatial extent of single character only. The two concepts of extent are not the same.
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Table 4.2: Table of Urban Form Characters (extract). A sample of measurable urban form characters, showing:
definition of each category; name/definition of characters according to the Index of Elements approach; urban
form character’s position according to category and scale. The complete version of the Table, including all
361 urban form characters identified at this stage of the research, is provided as an Appendix 4.1.

category definition Index Element grain extent reference

dimension

the basic
geometrical
dimensions of
individual
objects

Length

of

Street S S Dibble et al. (2017)
Height Building S S Schirmer and Ax-

hausen (2015)
Bounding box
area

Building S S Schirmer and Ax-
hausen (2015)

Core area
index

Building S S Colaninno, Cladera
and Pfeffer (2011)

Number of
floors

Building S S Ye and Van Nes
(2014)

Mesh size Grid network M M Siksna (1997)
Area Built-up area L L Seto and Fragkias

(2005)
Length Urban edge L L Boeing (2018a)

shape the
mathematical
features of
geometrical
dimensions of
individual
objects

Height to
width ratio

of

Street S S Schirmer and Ax-
hausen (2015)

Compactness
index

Plot S S Schirmer and Ax-
hausen (2015)

Form factor Building S S Bourdic, Salat,
Nowacki (2012)

Fractal dimen-
sion

Axial map M M Ariza-Villaverde et al.
(2013)

Rectangularity
index

Sanctuary area M M Schirmer and Ax-
hausen (2015)

Complexity
index

Built-up area L L Seto and Fragkias
(2005)

spatial dis-
tribution

the spatial
distribution of
objects in
space and their
reciprocal
positioning

Built Front
Ratio

of

Block S S Schirmer and Ax-
hausen (2015)

Solar orienta-
tion

Building S S Gil et al. (2012)

Distance Buildings S S Hijazi et al. (2016)
Continuity Built-up area L L Galster et al. (2001)
Concentration
index

Built-up area L L Gielen et al. (2017)

intensity the intensity of
space
occupation,
referring to
the density of
elements
within a set
context

Covered Area
Ratio

of

Plot S S Schirmer and Ax-
hausen (2015)

Floor Area
Ratio

Block S S Schirmer and Ax-
hausen (2015)

Number of
plots

Accessible
radius

S M/L Marcus, Berghauser
Pont, Bobkova (2017)

Weighted
number of
intersections

Street network M M Araldi and Fusco
(2019)
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Table 4.2: Table of Urban Form Characters (extract). A sample of measurable urban form characters, showing:
definition of each category; name/definition of characters according to the Index of Elements approach; urban
form character’s position according to category and scale. The complete version of the Table, including all
361 urban form characters identified at this stage of the research, is provided as an Appendix 4.1.

category definition Index Element grain extent reference

Proportion of
dead-ends

Street network L L Boeing (2018a)

Proportion of
4-way intersec-
tions

Street network L L Boeing (2018a)

connectiv-
ity

the spatial in-
terconnection
of the
segments of
the networks
(usually street
networks)

Closeness
centrality

of

Street network S M/L Porta et al. (2006)

PageRank Street network M M Boeing (2018a)
Self-loop pro-
portion

Street network L L Boeing (2018a)

Clustering
Coefficient

Street network L L Boeing (2018a)

Node/edge
connectivity

Street network L L Boeing (2018b)

Node connec-
tivity

Street network L L Boeing (2018b)

diverstiy the variety and
richness of the
elements and
their
characteristics
in the study
area

Power law
distribution

of

Blocks M M Louf and Barthelemy
(2014)

Plot area
heterogeneity

Sanctuary area M M Feliciotti (2018)

Plot area
diversity

Accessible
radius

S M/L Bobkova, Marcus
and Berghauser Pont
(2017)

Intersection
type propor-
tion

Street network M M Song and Popkin
(2013)

4.4 Interpretation

The summative statistics of the complete Table of Urban Form Characters offers in-depth
information into the current state of how terminology is defined and used in the field.
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4.4.1 Distribution of characters

The distribution of characters across the scales of extent shows a slight decline as we
proceed from Small to Large scales, but the distribution is relatively balanced (figure
4.3b). In terms of the scale of grain, it is naturally skewed towards Small scale (figure
4.3a). The situation changes if we explore the distribution of urban form characters among
the 6 different categories established at the start of our classification. In this case, spatial
distribution and diversity are underrepresented (with respectively 27 and 13 urban form
characters), while all other categories each contain relatively high numbers each (from 55
in connectivity to 115 in intensity) (figure 4.3c). One of the reasons for this distribution is
that dimension, shape, intensity and connectivity are much easier to capture than spatial
distribution or diversity and their urban form characters are simpler to define.

Grain Extent Categories
S M L S M L

0

100

200

0

50

100

a) b) c)

Figure 4.3: Number of urban form characters per scale of grain (a), the scale of the extent (b), number of
characters per category (c). Note that some characters are present at multiple scales.

To understand the distribution of urban form characters in better intra-category detail,
figure 4.4 shows decomposed statistics, which helped understand the relationship between
categories and both definitions of scales. Dimension and shape categories tend to be sig-
nificantly more present at the Small scale, from both perspectives. At this scale, physical
features tend to be more precisely defined; hence it is natural that their dimensions and
shapes are measured at the same scale. On the other side is connectivity, being present
exclusively at larger scales (M, L) of extent, but skewed towards smaller scales of grain.
This is an inherent consequence of the nature of this urban form character which is typical
of networks, more comfortable to identify at larger scales of the environment in which
they are observed, while the values are often unique for each component of network (as
mentioned above).
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Grain Extent
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Figure 4.4: Number of urban form characters per each scale decomposed to each category. Note that some
urban form characters are present at multiple scales.

The overview of urban form characters shows some clear recurring patterns from the per-
spective of (both) scales as well: it is worth noting that complex urban form characters
are more likely to be measured at larger scales of extent (M, L). It seems to be partially
caused by the nature of the classification system, where the limited amount of data in-
puts at a small scale makes results for more compound and the aggregated urban form
characters less reliable. However, at the same time, this pattern is posing the question
of whether the information is being missed out in this overview. Not even one of the six
categories shows a balanced coverage of all three scales (for both grain and extent). It can
be questioned which parts of the classification are less comprehensive for a logical reason
(smaller scales are not suitable for complex relational urban form characters) and which
are so just because some may have been missed out.

Back to the issue of spatial distribution and diversity, the former seems to differ across
scales (the scales of grain and extent are identical for all urban form character in spatial
distribution and, except for 2, in diversity as well). 17 out of 27 urban form characters in
spatial distribution category are present at S scale. While the number is still lower than
for the other groups (except diversity), the gap seems to be more significant at larger
scales. The situation with diversity appears similar, featuring a majority of urban form
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characters at M scale (15 in terms of grain and 17 in terms of extent), but the overall
number is too low to conclude scalar dependency, even though such a tendency might be
present.

An issue revealed by the proposed classification of urban form characters is the overlap
and at times redundancy of some of them (the empirical correlation between urban form
characters which makes some redundant). This is most evident among those capturing
shape at the level of the block and below. Here a high number of such characters is utilised
in the literature to capture the objects’ geometry and form. Basaraner and Cetinkaya
(2017) assessed the capacity of some of the urban form characters to capture the com-
plexity in the shape of building footprints and concluded that only six out of 20 generally
used are appropriate (p. 1972). Similar assessment should be done for other types, to rule
out redundancy and increase the effectiveness and reliability of the fewer selected. On
the other hand, the fact that certain types of urban form characters are abundant and
might overlap or even lead to redundancy suggests that there is a general agreement on
their value as descriptors of urban form.

4.4.2 Terminological inconsistency

Finally, terminological inconsistency could be explained by two causes. On the one hand,
the current lack of a comprehensive framework for the systematisation and comparabil-
ity of morphometric characters, on the other, the relative novelty of quantitative meth-
ods in urban morphology. There is, therefore, an urgent need for coherent terminology,
as the amount of quantitative studies is expected to rise with the development of Geo-
graphic Information Systems (GIS), big data science, data mining as well as open data
and volunteer-based mapping services. The problems of comparability of studies defined
by Whitehand (2012) could be limited if a more rigorous typological system such as the
Index of Elements proposed in this chapter was applied which would leave room for the
interpretation of urban form characters, while making them comparable. In this regard,
this work is dependent on the scope of existing research, and its validity is affected by the
limits of the initial literature review. However, it could be argued that the method used
to select papers ensures a reasonable level of representativeness as demonstrated by the
fact that we were able to extract and successfully systematise 465 characters covering a
significant number of measurements. The consequent systematisation exemplified in a tab.
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4.2 and reported in full in the Appendix A4 seems to be inclusive and coherent enough to
make sense of all of them, and yet this should be seen as just an initial framework. The
proposed systematisation is meant to be refined and expanded as research progresses, in
an open repository of tested urban form characters which would be ideally a collective
product of the urban morphology scientific community as a whole. Moreover, the work
could be expanded by the inclusion of other ways of conceptualisation of urban form, to
cover land use or behavioural patterns (among others).

In reviewing the literature, it was necessary to rely on previously defined descriptions of
characters. In several cases, these proved to be vague, sometimes lacking any definitions
and/or mathematical formulas. Therefore, the classification of such characters might not
align perfectly with the original source work. Even if it was able to classify all relevant
characters successfully, it still might be possible to find in the future some that just do
not fit into any of the six proposed categories (yet, it would still be possible to define it
through the Index or Elements naming approach).

4.5 Summary

Quantitative approaches to urban morphology are critical to inform the long-overdue
undertakings of a new “sciences of cities”. The current state of the discipline is, however,
to some degree, inconsistent. To make further progress, it is essential to understand
what the limits and potentials of existing measuring methods are, and where the gaps of
knowledge are.

The terminology used is often unclear, methods and urban form characters vary in ways
that are at times difficult to understand. This limits the development of comparative
studies, which however are essential to evidence-based research.

This chapter presented the first attempt at systematically and comprehensively organ-
ising existing measurable characters of urban form while overcoming terminological dis-
crepancies. It collected a significant and representative sample of published literature and
identified the main purposes of the research that underpinned it. From this sample, it
extracted individual urban form characters capturing the physical structure of urban form
and identified significant terminological inconsistencies (“nicknaming”), which were seen
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as undermining the comparability of research outcomes across cases and methods. The
chapter then introduced a new terminological framework based on an Index of Element
approach, which then tested to redefine all the 465 urban form characters extracted from
literature. As a part of a newly proposed conceptual typology, it organised them into
six distinct and inclusive categories. The new framework allowed to identify a degree
of redundancy in both the definition of urban form characters and their measurements,
which led to producing a more rigorous set of final 361.

Analysis of how these urban form characters have been deployed identified a few anomalies
in the distribution of their qualifying categories: the most significant tendency is the
underrepresentation of spatial distribution and diversity. Moreover, shape and dimension
are predominantly used at smaller scales, connectivity at larger scales (this tendency does
not seem to be a consequence of the nature of the urban form character, but rather the
lesser production of research on this topic).

Future research on the quantitative analysis of urban form, or urban morphometrics,
should aim at collectively building a reasonably reliable and stable typology of measurable
urban form characters, in order to achieve consistency across methods and case studies.
Furthermore, the area should progress in recognising and measuring the full scalar and
structural complexity of urban form, and we should be more comprehensive with regards
to scales.

From the review within this chapter, it is clear that the state of urban morphometric is
matured enough to provide a stable basis for numerical taxonomy. However, there are
still issues to resolve.

69



Chapter 5

Research design statement

The following chapter bridges three previous background chapters and three subsequent
core chapters. It provides a partial research design, formulates hypothesis and research
questions and introduces case studies and general approach to the research driven by the
reproducibility of the whole study.

In the first section, this chapter summarises the core findings from background chapters
(2, 3, 4) and uses them to formulate the hypothesis, main research question and supple-
mentary research questions provided in the second section. The third section introduces
the principle of reproducibility into technical aspects of the work and provides an overview
of an open-source software package design for morphometric research. The fourth section
presents three case studies used within the remaining chapters of the work, and the last
section outlines the contents of the three core chapters 6, 7 and 8 coming immediately
after.

5.1 Synthesis of background chapters

The goal of chapters 2, 3 and 4 was to provide a necessary theoretical, conceptual and
methodological background for the work proposed within this study. It is clear that the
field of urban morphometrics is advancing in recent years at a fast pace. However, as
shown in each of the chapters, there are still clear and wide gaps to fill.
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Existing literature, as shown in chapter 2, offers various methods for classification of urban
form. While approaches vary from simple duality organised-unorganised form based on
remotely sensed data (Dogrusoz and Aksoy, 2007) to comprehensive small scale studies
based on detailed manual digitisation of urban form elements (Dibble et al., 2017), none
of them is ideal. The optimal classification model, which consists of 7 principles (see
section 2.1.2), is not fully reflected in any of the existing proposals (problem 1).

One of the potential pathways which could lead to better classification models is morpho-
metrics and related numerical taxonomy stemming from the phenetic studies in biology.
Conceptually, morphometrics itself is already well established in urban morphology (as
shown in detail in chapter 4) and previous work of Dibble et al. (2017) showed the po-
tential of application of numerical taxonomy as well. However, as shown in chapter 3,
the existing proposals bridging the two are not fully operational on a large scale and
unrestricted spatial units. The critical element, an operational taxonomic unit, needs to
be revisited to reflect the nature of urban form better and allow an exhaustive analysis of
metropolitan areas, rather than a specific carefully selected set of case studies (problem
2).

The related biological concept which may help with the issue of undefined OTU is a mix-
ture problem. That arises when a taxonomist needs to identify populations within samples
to perform classification on a population level then. The parallel in urban morphology is
apparent. From a pool of fundamental units, i.e. buildings, plots and streets (Moudon,
1997), morphologist needs to identify distinct patterns of form and classify those into a
taxonomy (problem 3).

Chapter 4 then provided a deep dive into urban morphometrics and existing methods of
measuring of urban form. For the rest of the thesis, it is possible to draw three conclu-
sions out of the chapter. First, although there is a rich pool of relevant studies, we lack
those that are at the same time granular and extensive, while providing a comprehensive
description of the form (problem 4). Second, the field has a nomenclature issue to tackle.
The so-called nicknaming issue prevents comparability and brings a layer of inconsistency
hard to declutter without a detailed decomposition of each individual method to the level
of characters’ formulas (solution discussed in the chapter 4). Last, urban morphomet-
rics can measure an abundant number of characters covering all aspects of urban form.
However, the focus is not very balanced, and some categories of characters require the
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development of new approaches. At the same time, it forms a stable ground for numerical
taxonomy of urban form.

5.2 Hypothesis & research questions

This work aims to fill some of the gaps identified in previous chapters and develop a
method of classification of urban form which reflects optimal classification model and
follows principles of morphometrics and numerical taxonomy. The scope of the work is
primarily technical, focused on reproducibility and replicability of quantitative science of
urban morphology, eventually leading to the establishment of the atlas of urban form.
However, in its nature, the work is still exploratory. If the principles hold, the work
should pave the way for more robust implementations. Furthermore, its main theoretical
contribution lies in the revaluation of the bridge between numerical taxonomy and urban
morphology previously proposed by Dibble et al. (2017).

5.2.1 Hypothesis

Drawing on the background knowledge presented in previous chapters, the main hypoth-
esis behind the proposals laid in the rest of the thesis is then as follows:

Methods of morphometrics and numerical taxonomy established in the classifi-
cation of biological species can be applied in the context of urban morphology
to lay the foundations of numerical taxonomy of urban form.

The rest of the thesis builds on the hypothesis and proposes an implementation of nu-
merical taxonomy, which is later validated in chapter 8. The validation of the method
then indirectly indicates whether the hypothesis is valid, which in turn tells whether the
application of numerical taxonomy in urban morphology is a viable direction of research.
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5.2.2 Research questions

The process of verification of the hypothesis needs to provide an answer to the main
research question and a series of subsequent supplementary research questions.

5.2.2.1 Main research question

The main research question (RQ) focuses on the operationalisation of numerical taxonomy
in the context of urban morphology:

RQ: How to adapt methods of numerical taxonomy to study of urban form?

Answering the question gives us enough ground to understand whether such adaptation
provides meaningful information for further analysis of the built environment. The task
itself could then be subdivided into four supplementary research questions, which together
outline the research proposal, eventually answering the RQ.

5.2.2.2 Supplementary research questions

All four supplementary research questions (SRQ) focus on the operationalisation of nu-
merical taxonomy as a method based on urban morphometrics.

The first question focus on the identification of features which at the same time form
urban fabric and could be studied using morphometric methods, and the connections
between them:

SRQ1: What are the fundamental morphometric elements and how to model
their relationship?

Chapter 6 is dedicated to answering the question.

The second question builds on the previous and fills the gap identified in chapter 3. The
question of OTU is critical as it directly affects the very nature of the taxonomy. The
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question itself seeks an answer to both theoretical definition of the fundamental unit of
urban form and the technical aspects of its delineation:

SRQ2: What is the optimal Operational Taxonomic Unit of urban form and
how to identify it in the continuous urban fabric?

Since an OTU is the result of a population delineation (see mixture problem in section
3.1.2.3), it is necessarily an aggregation of fundamental morphometric elements. The
overview of aggregation models is available in chapter 6, together with a theoretical dis-
cussion and definition of OTU for this study. The delineation part is the content of
chapter 7.

Morphometric assessment of any kind is based on morphometric characters, i.e. measur-
able aspects of elements used within the study. Their selection and implementation are
the key drivers influencing the results of the analysis; hence it is necessary to give them
enough attention and dedicate one SRQ to the topic:

SRQ3: What are the taxonomic characters describing urban form?

The first part of chapter 7 aims to provide answers, building on the database collected in
chapter 4.

The final SRQ focuses on the final aspect of the creation of numerical taxonomy, the
quantification of similarity of OTUs:

SRQ4: How to determine the taxonomic relationship between OTUs to derive
taxa of urban form?

The method of creation of numerical taxonomy in the context of urban form and related
answers to the last question is part of chapter 8.

5.3 momepy: Urban Morphology Measuring Toolkit

The content of this section was partially published in Fleischmann (2019).
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Urban morphology is based on the analysis of space, traditionally mostly visual and
qualitative (Dibble et al., 2015); its objects are the fundamental elements of urban form
(building, plot, street) (Moudon, 1997) as well as a range of analytical constructs such as
axial maps (Ariza-Villaverde et al., 2013) or proximity bands (Araldi and Fusco, 2019).
The increased availability of morphological data and computational power have led in
time to more emphasis on quantitative forms of analysis, and the emergence of urban
morphometrics (Dibble et al., 2017). Since morphometric analysis is addressed both in-
depth and at large scale, it is grounded on the intensive use of GIS software (proprietary
ArcGIS, MapInfo, open-source QGIS) either through built-in processing tools or specific
plugins like Urban Network Analysis (Sevtsuk and Mekonnen, 2012) or Place Syntax Tool
(Ståhle et al., 2005). However, essential functions to conduct measurements of specific
urban morphometric characters or tools to generate required geometry as axial maps or
proximity bands are not always available: current plugins offer only a limited number of
functionalities as they are mainly application or case-specific.

This thesis is hereby proposing momepy, a Python toolkit which aims to overcome such
limitations by enabling a systematic in-depth analysis of urban form, to comprehensively
include a wide range of measurable characters, with a prospect of expanding future de-
velopment due to its open-source nature and independence on proprietary software or
operating systems. The development of momepy is timely, as the role of measurable char-
acters is vital to recognise form-based patterns and establish descriptive and analytical
frameworks of human settlements, in the “age of urbanisation”.

Momepy holds all morphometric algorithms used within this thesis (and some more) to
simplify the adoption of urban morphometrics and allow easy reproducibility of the whole
work presented in this study. Furthermore, momepy is designed to be more flexible
than other toolkits as its functions are generally not restricted to specific morphological
elements but to geometry types only and as such, can be used in various analytical models.

The six core modules of momepy represent six categories of urban morphometric charac-
ters: dimension, shape, spatial distribution, intensity, connectivity (graph module),
and diversity identified in chapter 4. These six modules together provide a wide range
of algorithms measuring different aspects of urban form and are able to describe its com-
plexity with a significant degree of precision. Each of the characters tested or used in
chapters 6 and 7 are included in the respective module. Additional modules help with
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the generation of necessary morphometric elements, preprocessing of input data and other
utilities.

Internally, momepy is built on the GeoPandas Python package (Jordahl et al., 2020),
using its GeoSeries and GeoDataFrame objects to store and handle large amounts of
geospatial information. Under the hood uses PySAL (Rey and Anselin, 2007; Rey, 2019),
mostly taking care of spatial weights matrices capturing the adjacency of elements of
urban form. The graph module uses the capabilities of networkX (Hagberg et al., 2008)
for the analysis of urban street networks. Basic Python knowledge is required to use
momepy, but exemplar Jupyter notebooks should provide enough information to allow
using momepy with a standard GIS knowledge only.

Version 0.1. of the package was released in November 2019. Current version 0.3 (as of
November 2020) was released in July 2020, and the software is being picked up by the
research community (Mottelson and Venerandi, 2020). Thanks to the Journal of Open
Source Software, the whole package is now peer-reviewed.

The reproducibility and replicability of research is a critical asset which should be ever-
present, especially in the data-driven studies like this one. Momepy is seen as a fundamen-
tal component of the significance of this work as it enables further research and minimises
barriers to urban morphometrics.

The software and its documentation are publicly available on momepy.org.

5.4 Case studies

The following chapters will present the work done on the three case studies - Prague, CZ,
Amsterdam, NL and Zurich, CH.

The research focus of this work requires morphological richness in its case studies, which
should capture various situations and assess the versatility of the proposed method. The
second requirement is the availability of data representing selected morphometric elements
of inconsistent quality and level of detail. Furthermore, it is advantageous if the researcher
knows the place or has the ability to do a study visit to verify findings and interpretation
on the ground.
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The core case study used throughout the following chapters is Prague. Prague was se-
lected as a case for its morphological richness of multiple historical layers. It was only
mildly affected by bombing during the WW2, leaving the large part of the medieval
core and other historical neighbourhoods intact. Furthermore, during the era of commu-
nism between 1948 and 1989, the city built its modernist belt, offering, together with
the other areas, wide scope of urban patterns within a relatively compact extent. The
study area is limited by the administrative boundary of the city (figure 5.1), which still
extends the built-up area of the city by a large margin. That ensures the minimisation
of the edge effect (Gil, 2016) which could otherwise adversely affect morphometric values.
Prague’s Institute provided the data used within this study for Planning and Development
(www.geoportalpraha.cz) and further preprocessed using bespoke algorithms.

Figure 5.1: Prague case study area, which matches the administrative boundaries. Data source © IPR Praha,
CC BY-SA 4.0

The second case study to which Prague will be compared in chapter 8 is Amsterdam.
Both cities share some of the characteristics as both have (relatively) preserved medieval
cores and a range of patterns of development spanning through historical periods. How-
ever, Amsterdam’s planning context is very different. Prague is historically mercantile
city on the river, which was never fully exploited by industry. On the other hand, Ams-
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terdam is a port city with a high presence of port-related industry. Its historical centre is
interlaced with artificial canals bringing different spatial order. Furthermore, the devel-
opment of the second half of the 20th century and the beginning of 21st followed different
planning paradigms that the one in Prague. The study area could not be limited to
the administrative boundary as that does not reflect the morphology of a city. Instead,
contiguous built-up land is used to avoid cutting through urban fabric (figure 5.2). The
data are obtained from Dukai (2020) and Basisregistratie Grootschalige Topografie, BGT
(http://data.nlextract.nl/). Road network was further preprocessed to eliminate dual car-
riageways, roundabouts and similar transport-focused features following the procedure
proposed in Krenz (2018).

Figure 5.2: Amsterdam case study area, which follows continuous built-up area. Data source © BGT
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For a one specific step requiring cadastral layer, Zurich, CH is used as a case study.
The relevant section of chapter 6 has been published as an independent research paper
(Fleischmann and Feliciotti et al., 2020) prior specification of Prague and Amsterdam
as case studies for numerical taxonomy as a boundary is used administrative area of
Zurich (figure 5.3). Zurich was chosen for its historically characterised and heterogeneous
urban fabric as well as for the availability of the ‘Amtliche Vermessung’ dataset, a freely-
accessible resource containing high-quality information on cadastral plots and building
footprints.

Figure 5.3: Zurich case study area, which matches the administrative boundaries. Data source © Kanton
Zürich, CC BY-SA 4.0

5.5 Outline of the second part

The second (core) part of the thesis is formed of three chapters (6, 7, 8), followed by
synthesis.
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Chapter 6 studies morphometric elements of urban form. It provides an overview of
fundamental ones and method of their aggregation, both area-based and location-based.
It discusses in detail the issue of the smallest spatial unit, leading to the proposal and
later test of morphological tessellation, Voronoi-based partitioning of space, as a basic
unit of analysis. The topological aggregation capability of tessellation is further tested
in comparison to conventionally used methods. Furthermore, chapter 6 proposes urban
tissue as an operational taxonomic unit for numerical taxonomy and defines a relational
framework of urban form, which will be later used for the morphometric characterisation
of both main case studies.

Chapter 7 builds on the proposals and empirical tests presented in the previous chapter
and presents a selection of morphometric characters of two kinds - primary and contextual.
A complex quantitative description of urban form patterns linked to the level of individual
buildings is then used as an input for cluster analysis identifying urban tissue types in
the urban fabric in the form of homogenous contiguous clusters.

Chapter 8, the last core chapter then proposes a method of composition of numerical
taxonomy based on urban tissue types identified in chapter 7. Furthermore, it extensively
validates the whole method using additional data layers (historical origin, land use, mu-
nicipal typology) and additional case study (Amsterdam). The final part of the chapter
assesses extensibility of a taxonomy allowing further expansion of the database, eventually
leading to the atlas of urban form.

The final chapter 9 synthesises the whole research, discusses the implications, limits and
potential application of the proposed method, outlines potential further research and
concludes the thesis.
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Chapter 6

Morphometric elements of urban
form

The content of this chapter was partially published in Fleischmann and Feli-
ciotti et al. (2020).

The first half of the thesis presented the work done in the field of urban morphometrics
to date, used as a basis for the formulation of hypothesis and research questions made
in the previous chapter. The following chapter 6 is the first of the three chapters which
focus on operationalising top-level ideas and answering questions posed in chapter 5.

The aim of this chapter is to lay the building blocks for morphometric analysis out. It fo-
cuses on morphometric elements of urban form, their relation to traditional morphological
elements and range of possible issues from conceptual to practical ones. To overcome some
of them, this chapter introduces the concept of morphological tessellation as the smallest
spatial unit of analysis. The critical question which needs to be answered is the way of
combining all elements together, as literature offers a range of potential frameworks, but
few of them are explicitly defined, and minimum has the ability to link all elements and
their aggregations together.

Structurally, the following chapter is divided into five major sections. Section 6.1 starts
with the introduction of analytical representation of urban form, covering fundamental
morphometric elements of urban form and their aggregations into larger features. The
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specific focus is on the issues related to the plot as the smallest spatial unit and potential
use of morphological tessellation. In its second part, the section follows with the overview
of analytical frameworks (6.1.2), i.e. the ways how to combine elements and their aggre-
gations into a singular schema. Section 6.2 builds on the previous in a proposal of a
relational framework of urban form for comprehensive morphometric applications, relying
on topology and morphological tessellation. To ensure that tessellation holds as a spatial
unit, the rest of the chapter is dedicated to empirical experiments assessing its ability to
capture the similar information as the plot and the potential of topological aggregation
in comparison with other location-based methods. Hence section 6.3 outlines the method
of testing and section 6.4 presents the results of the empirical study. The chapter con-
cludes with a short discussion of presented results and paves the way to the application
of relational framework and tessellation in chapter 7.

6.1 Analytical representation of urban form

This chapter aims to talk about the analytical, measurable representation of urban form.
It does not attempt to build a new theory of urban morphology or re-conceptualise its
understanding. It focuses on the operationalisation of the analysis within the context of
urban morphometrics. For that, we need to understand two aspects - what are the basic
components of urban form we can capture in relevant data, and how they relate to each
other. In other words, what are the morphometric elements of urban form and how to
work with them in an analytical framework.

6.1.1 Elements of urban form in the context of urban mor-
phometrics

Morphological theory talks about a wide variety of elements, but only some are seen as
fundamental. Furthermore, we have to take into account the issue of data availability
- since high-quality data representing urban form are not always available, we need to
use as a small number of resources as possible to keep any morphometric method widely
applicable. For this reason, this research attempts to work with the minimal input needed
- fundamental elements only.
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6.1.1.1 Fundamental morphometric elements

Urban morphology knows three fundamental elements of urban form. Both (Moudon,
1997) and later (Kropf, 2017) agree on buildings, streets and plots as features representing
three fundamental aspects of human behaviour: sleep, happening in a shelter, i.e. building,
movement, first reflected in tracks and today in streets and roads and local activity, initially
happening in a core territory, which can be today seen as a plot (Kropf, 2017).

Fundamental morphometric elements are based on fundamental morphological elements,
and their goal is to reflect the same phenomena. However, the difference between mor-
phological and morphometric elements is that the latter are operational, measurable and
represented as (usually vector) GIS data. Hence we can talk about three layers of data:
buildings (either as footprints or models), street networks and plots as smallest spatial
units.

It is essential to ensure that the data are good enough to represent morphometric elements.
That could be an issue for all types of elements, so there are cases when the data needs
to be prepared for morphometric analysis. The pre-processing can be in some cases
automatised, in other, unfortunately, manual or at least semi-manual to have the data in
a correct form in the end.

Whilst each dataset coming from a different source is specific; hence the cleaning procedure
needs to be tailored to each source, there are some common issues which are not unique to
specific datasets. The following section presents all fundamental morphometric elements
and outlines these common issues and ways of resolving them or at least minimising the
error under a significant level. We cannot expect data to be perfect all the time (they
are never perfect). This limitation has to be taken into account during the design of
any morphometric analysis, which needs a certain level of robustness to accommodate
potentially erroneous data.

6.1.1.1.1 Buildings Buildings can be represented as footprints, i.e. two-dimensional
projections of building shape to the ground or 3D models. Somewhere in between lies
what we can call the 2.5D model, which is a building footprint with an attribute of a
building height. All the options are being used in morphometric research. However, since
one of the key goals of the method being developed within this work is wide applicability,
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it cannot depend on 3D representation due to its limited availability. The most accessible
representation of buildings are vector-based footprints (figure 6.1), either generated by
official national or municipal mapping agencies (like Ordnance Survey in Great Britain)
or by volunteers within OpenStreetMap crowdsourcing mapping movement (Haklay and
Weber, 2008). Hence this research depends on 2.5D vector representation, providing a
balance between availability and precision.

Figure 6.1: Building footprints in the optimal resolution and data quality.

Having data layer representing building footprints correctly and consistently is the first
condition for successful morphometric analysis. There are several aspects which need
to be fulfilled - topological correctness, consistency in detail, representation of individual
buildings and building height attribute presence. Overall, it is expected to have a building
data representing Level of Detail 1 (LoD1) (Biljecki et al., 2016) (figure 6.2).
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Figure 6.2: Diagram of LoD classification on the example of single-family housing. (Biljecki et al. 2016, figure
3)

Topological correctness ensures that geometry represents the relationship between build-
ings on the ground. There are characters measuring continuity of a perceived wall in
a joined buildings or shared walls ratio which require building polygons to be correctly
snapped together when two buildings touch. In that case, it is expected that neighbouring
polygons will share vertices and boundary segments. There should not be a gap between
polygons when there is none in reality. Also, polygons must not overlap at any case as
that could cause significant disruption of analysis.

The building detail should be consistent across the dataset and represent an optimal
approximation of building shape based on LOD specification as proposed by Biljecki et al.
(2016). The approximation should represent LOD1.1 (no details, but the shape is kept)
or LOD 1.2 (minor details), building shapes should not be overly detailed nor overly
simplified. In the case of inconsistency, simplification of more detailed shapes should be
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done before morphometric assessment.

Each polygon should represent a single building. There are datasets (often of a remote
sensing origin) capturing all structures which are joined by any means as a single polygon.
Such data do not represent the morphological truth on the ground. Their pre-processing
is complicated as it requires splitting of existing geometries based on an additional dataset.
The second extreme is the opposite situation when multiple polygons represent a single
building. These usually represent different height levels, through routes or similar features.
If these polygons, representing parts of buildings, have a common ID which allows joining
them together to get a single polygon representing a single building, the pre-processing
of such a data is only a simple dissolution. However, there are many cases when this ID
is missing, and correct pre-processing require either clever heuristics to understand which
polygon belongs to which or laborious manual work.

A number of morphometric characters use building height attribute, which, in that case,
has to be present in the original input dataset. The resolution should be able to capture
the distinction between floor levels.

6.1.1.1.2 Street network Street network represents a street, but that itself can be,
form the data perspective, defined as multiple features. We can understand it as a move-
ment, as an area or as a network. Furthermore, an important aspect of a street (network)
is also a junction - node relationship. Therefore, within this study, a street is represented
as a street network consisting of edges representing centrelines and nodes representing
junctions. Both can be abstracted to a simple LineString (polyline) geometry and its
configurational graph representation.
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Figure 6.3: Illustration of street network represented as street centrelines, from which can be derived both
street edge and node.

The similar pre-processing situation as with building layer is with a street network. In-
correctly drawn street network may cause significant errors in morphometric results and
consequently in taxonomy. There are three critical cases which need to be checked be-
fore the analysis - topological correctness, morphological correctness and consistency in
classification.

Topological correctness ensures that each street segments is represented by a single
LineString geometry, that neighbouring segments share end vertex and that geometry
is not split if the segments intersect only on the projected plane and not in reality
(typically multi-level communications, when one is on the bridge across the other so that
projected intersection is not a real intersection).

Moreover, street networks have to be morphologically correct, which means that geome-
tries represent morphological connections, not other, usually transport-focused elements.
That often mean simplifications of networks to eliminate transport geometries like round-
abouts or similar types of junctions, or dual lines representing dual carriageways. In
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certain cases, networks have to be snapped together, because due to traffic-calming mea-
sures, some junctions might not be connected when they should be (morphologically).

Finally, the network needs to be consistently drawn in terms of inclusion of different levels
of network hierarchy. Hence the definition of what is considered a street and what is a
minor pedestrian connection is crucial and needs to be consistent throughout the study.

Subject to data availability, networks are widely available. However, geometries mostly
represent transport network and often do not follow ideal topological rules. The pre-
processing to ensure that all three points above are fulfilled is hence necessary and can
be partially automatised either using momepy or using methodology outlined by Krenz
(2018), using conventional GIS tools. However, there might be cases when more compli-
cated procedures should be employed, either to provide a more accurate algorithm or to
include manual steps.

6.1.1.1.3 Spatial unit The identification of a reliable, significant and universal spa-
tial unit of analysis is of crucial importance. However, the situation with a traditionally
used plot is complicated.

6.1.1.1.3.1 Plot In traditional Urban Morphology, a plot, is considered to be the
smallest meaningful unit of spatial subdivision and a fundamental component to under-
standing the spatial structure of the ordinary fabric of urban settlements (Moudon, 1997;
Panerai et al., 2004; Porta and Romice, 2014) and their processes of formation and trans-
formation in time (Whitehand, 1981).

However, despite its significance, the plot remains a problematic construct. At ontological
level, there is no agreement on what exactly a plot is: indeed, it has been variously defined
as “a land-use unit defined by boundaries on the ground” (Conzen, 1969, p. 128), a module
of the urban tissue constituted by a built-up area and its open pertinent area (Caniggia
and Maffei, 1979), a piece of property, subject to subdivision and amalgamation as a result
of successive patterns of occupation (Moudon, 1986), or again, according to Bobkova et al.
(2017), as “a basic unit of control”, “a fundamental link between spatial and non-spatial
medium”, “a connection between built space and space of movement” and “the framework
for building evolution over time” (p. 47.5). Furthermore, crucially, more often than not,
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these definitions may represent very different entities on the ground “potentially leading
to misinterpretation and so a somewhat obscured picture of the dynamics of urban form”
(Kropf, 1997, p. 1).

The second problem has to do with the relevance and applicability of the plot to dif-
ferent urban contexts. In literature, plots have been predominantly used to study and
characterise traditional urban tissues that having evolved incrementally at the plot level
(Conzen, 1969; Bobkova et al., 2017), are quintessentially plot-based (Panerai et al., 2004).
It is, however, not the case for urban forms that came about after the Second World War,
which appear to respond to substantially different rules of the organisation (Dibble, 2016;
Feliciotti, 2018). For these tissues, “plots no longer have a structuring role” (Levy, 1999,
p. 83), and hence can hardly be a suitable unit of analysis. While the process of identi-
fying plots in traditional tissues is somewhat less controversial, the same is not true in
contemporary ones (figure 6.4).

Figure 6.4: Comparison of traditional (left) and modernist (right) urban tissues in Glasgow. Plots are clearly
better identifiable—even just visually—in the former, where distinction of public and private space is clear-
cut, than in a modernist housing estate, where the transition between public and private is blurred. Source:
Ordnance Survey MasterMap, January 2019 (EDINA Digimap Service)

In addition to this issue, the identification of plots in the urban fabric also poses a series
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of analytical problems: given a map or a satellite image, how to determine the plot
boundaries consistently? Moreover, in the case of existing datasets, what do they actually
represent? What definition of plots do they adopt? Are different datasets comparable?

Not all mapping agencies explicitly report plots and, even when they do, not all of them
define or represent plots in the same way. In some spatial databases, as in the Swiss
Katasterwesens, plots are represented as a unitary land parcel, whilst in other cases,
ownership-based plots can be made of multiple unlinked features, as in the French Cadas-
tre, limiting comparability between different datasets. In other cases, the identification
of plots from available sources is inferred by the analyst via resource-intensive manual
interpretation. However, that makes the resulting procedure on the one hand unsuitable
for large scale analysis, and on the other potentially biased, as heavily dependent on both
individual interpretation and the often uneven quality of the underlying data. Indeed,
while through open-data policies (Huijboom and Van den Broek, 2011) and Voluntary
Geographical Information System (VGIS) (Barrington-Leigh and Millard-Ball, 2017) the
availability of free-to-use geo-data is growing dramatically, their quality, coverage and res-
olution are often insufficient to determine individual plots and generally limited to building
footprints, street centrelines, natural features and administrative boundaries. All of this
reduces the reliability of the analysis and the universality of its results considerably.

Given the aforementioned issues, and despite plots being still widely used in urban mor-
phology to capture the “pattern of human intention and activity” (Kropf, 1997, p. 5),
they are ill-suited as a basic unit for morphometric applications.

6.1.1.1.3.2 Morphological tessellation One of the few alternatives of plots pro-
posed in the literature (Hamaina et al., 2012, 2013; Schirmer and Axhausen, 2015, 2019)
is morphological tessellation (MT). A method of deriving a spatial unit of analysis, the
morphological cell (MC), which is able to convey reliable, universal and meaningful plot-
scale information and, at the same time, to minimise manual labour, subjective interpre-
tation and data dependence. Hence it is proposed to use morphological tessellation as a
spatial unit instead of the plot in urban morphometrics.

90



Chapter 6. Morphometric elements of urban form

Figure 6.5: Illustration of morphological tessellation as the smallest spatial unit with the ability to partially
replace the plot while being fully derived from building footprint data.

At the core of the proposed implementation of MT lies the Voronoi tessellation (VT), a
method of geometric partitioning that from a planar set of ‘seeds’ generates a series of
polygons, known as Voronoi Cells (VC). Each Voronoi cell encloses the portion of the
plane that is closer to its seed than to any other (figure 6.6), representing its ‘influence
zone’1.

1The term Voronoi Tessellation can be used to describe both the process of partitioning space (method)
and the geometric mesh it generates (output). In this text, the two meanings are used interchangeably.
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Figure 6.6: Voronoi tessellation based on randomised seeds. Each colour represents the area of one tessellation
cell (influence zone). Dashed lines end in infinity

Voronoi tessellation has been already used in relation to urban form, in the context of
spatial clustering algorithms (Dogrusoz and Aksoy, 2007) and built-form geometry gen-
eralisation techniques (Basaraner and Selcuk, 2004; Li et al., 2004; Ai and Zhang, 2007;
Liu et al., 2014), or as input for image-based pattern recognition (Yu et al., 2017). In re-
cent years, morphological tessellation was used to study the micro-scale properties of the
urban fabric (Hamaina et al., 2012, 2013) in order to produce a reliable method for urban
form patterns’ recognition, which pioneered the generation of VC from building footprints.
Later, Schirmer and Axhausen (2015, 2019) devised a method to define “influence zones”
around buildings using a “topological skeleton” of unbuilt space that is mathematically
similar to morphological tessellation. In parallel, Usui and Asami (2013, 2017, 2019) in-
cluded the street network as an additional input alongside the building footprint to the
Voronoi tessellation algorithm, to mimic the plot structure of traditional Japanese urban
fabrics. Whilst the generated mesh shows remarkable similarity to the plot pattern, its
main limitation is the inability to capture the spatial pattern of modernist (post-WWII)
urban tissues and the highly variable distance between building and street that is typical
of such fabrics. On a similar vein, Araldi and Fusco (2017, 2019) developed an approach
based on Voronoi tessellation and street segments to define a spatial unit based on the
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pedestrian point of view.

In all these cases, the use of Voronoi tessellation helped to rigorously and reliably cluster
components according to their configuration although, as pointed out by Usui and Asami
(2019), the relationship between morphological cell and ‘conventional’ plots has never
been directly tested to date. In this sense, the morphological tessellation approach is to
be intended as a continuation of this line of works, and insofar it too utilises the Voronoi
tessellation procedure. However, unlike previous studies, this research aims to provide a
fully operational and replicable method by examining the details of the tessellation process
and its parameters and testing the similarity of morphometric characters as measured on
both morphological cells and plots through direct comparison.

6.1.1.2 Analytical aggregations

Since morphological analysis aims to capture patterns of urban form, it must describe
single elements as well as their spatial configurations and relationships. Therefore, larger
analytical units have to be identified. Generally, we can distinguish two approaches of
aggregation of fundamental elements into larger units: area-based and location-based
(Berghauser Pont and Marcus, 2014).

6.1.1.2.1 Area-based Area-based approaches divide space into preselected units,
i.e. administrative boundaries (Gielen et al., 2017), abstract projected boundaries (grid)
(Galster et al., 2001), or larger morphological structures such as a block (Gil et al.,
2012) or a Sanctuary Area (Dibble et al., 2017). However, such methods may face two
connected issues, together named “Modifiable Areal Unit Problem” (MAUP) (Openshaw,
1984): scale issue (how big the area of aggregation should be) and aggregation issue
(where should we draw its boundaries). Specific non-morphological area-based approaches
are prone to both of them, particularly the latter: a change of the boundary, for example,
the voting district, might affect the analysis’ results.

However, there is still a significant scope to study morphological aggregations. Starting
from the smallest plot scale, we recognise street edge, block, street, up to either urban
tissue if we follow one definition (Kropf, 2017) or in sanctuary area if we follow another
(Mehaffy et al., 2010; Feliciotti et al., 2016).
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The smallest morphological aggregation of plots is a street edge, which is a “series of one
or more plots served by the same street” (Feliciotti et al., 2016, p. 5). To resolve the issue
of corner plots, Feliciotti et al. (2016) add “bound to the centrality of the street is sits
on”, which can be translated as the importance of each street. A corner building simply
belongs to the more important street of the two. More massive related aggregation is a
block, or what Kropf (2017) calls a plot series. Block can be defined “an aggregate of
plots surrounded on all sides by street spaces” (Kropf, 2017, p. 47). Both street edges
and blocks are combinations of plots, limited by a street network and as such, both are
relatively easy to define even algorithmically given appropriate data.

On the larger scale, area-based aggregations result either in Sanctuary area (Mehaffy et
al., 2010; Feliciotti et al., 2016; Dibble et al., 2017) or urban tissue, morphological region
or another homogeneity-based structure (e.g. urban structural unit, character area). Sub-
optimality of Sanctuary area has been explained in chapter 3 and hence is not scrutinised
again here.

Urban tissue (figure 6.7) and related concepts, on the other hand, are worth considering
as they repeatedly emerge from various schools of urban morphology. As a morphological
region, or plan unit, it has a prominent role in Conzenian historic-geographical approach
(Oliveira and Yaygin, 2020). While different terms often capture different concepts, the
underlying logic is always the same. It is well summarised in Kropf’s definition of urban
tissue: “a distinct area of a settlement in all three dimensions, characterised by a unique
combination of streets, blocks/plot series, plots, buildings, structures and materials and
usually the result of a distinct process of formation at a particular time or period.” (Kropf,
2017, p. 89)
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Figure 6.7: Urban tissues in the fringe (top) and central areas (bottom) of Bath identified by Kropf 2017
(figure 8.4)

While some of the area-based aggregations, mostly those following morphological nature
of form (edge, block, tissue), are entirely meaningful and minimise MAUP, others are
not ideal and should be generally avoided (administrative units, census blocks, voting
districts).

6.1.1.2.2 Location-based Location-based approaches generate analytical units inde-
pendently for each source-element as a unique aggregation around it, typically at walking
or driving distance, where distance is measured either along with the street network (net-
work distance) or an approximation of it (for example as the crow flies). Therefore, the ag-
gregated values are uniquely and consistently generated for each source-element (e.g. build-
ing), and the effect of arbitrary data aggregation is minimised, resolving MAUP’s aggre-
gation issue. For this reason, literature prefers location-based analytical units, as their
nature partially resolves MAUP. The scale problem part of MAUP is present also in
location-based methods, and it is up to the methodology adopted on a case-by-case base
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to limit its effect to a minimum.

Currently, morphological literature relies on a few methods to define an aggregation of
units in a location-based manner. The most straightforward is based on simple Euclidean
(as-crow-flies) distance from the elements of analysis (typically a radius of 400 metres
around a building) (Schirmer and Axhausen, 2015). However, such an approach does
not reflect the actual morphological situation on the ground. In some instances, as in
traditional compact urban tissues, it can capture hundreds of buildings within 400 me-
tres. However, only a few in sparse modernist urban tissues, leading to fundamental
differences in the amount of information captured, causing issues of comparability of such
information.

Excluding the effect of specific tissue types from the definition of aggregations over-
comes method based on reach. Following the street network or axial map of urban form
(Berghauser Pont and Marcus, 2014; Marcus et al., 2017), it captures the area which
is possible to reach within a set distance (mostly metric). As a location-based method,
reach is useful because it reacts to unequal morphologies, but only through constraints
that limit access to space, rather than through detection of a difference in urban form
itself. The logic is based on the cognitive experience of cities but limited to accessible
open spaces, excluding the intra-block relationships. It can generate situations of two
buildings facing each other across the block (hence directly influencing each other) not
being aggregated together, ignoring their relationship. Furthermore, unlike any other
method, network-based reach adds a requirement of street network data input limiting
its applicability, e.g. in the context of remote sensing-based building footprints in the
informal context where no street network is available.

Both Euclidean distance and metric reach methods cannot capture the change in the gran-
ularity of urban tissues, hence are effectively measuring different information in granular
and sparse tissues. In the case of reach, the distance could be defined topologically as
a number of steps on the network (represented by a graph structure) (Berghauser Pont
and Marcus, 2014), allowing to recognise the change in the pattern of aggregations, but
it still does not eliminate the issue of intra-block relationships. On top of that, network-
based methods face issues in data availability - street networks usually need significant
adaptations before they can be used, as they are typically drawn for traffic purposes, not
morphological ones; axial maps are scarcely available, and their generation needs a very
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specialised type of morphological knowledge limiting the applicability of such method.

The third method present in literature is K-nearest neighbour (KNN) analysis, which is
based on Euclidean distance, but it is using it differently. It defines an aggregation as a
set number of nearest neighbours, defined via as-crow-flies distance. Whilst only scarcely
used in urban morphology (Liqiang et al., 2013), it has potential as such an approach
might reflect changes in the granularity of urban tissues. However, due to the Euclidean
definition of nearest neighbours, it cannot react to the detail of some spatial configurations
(e.g., be able to detect linear patterns with natural boundaries between as features across
the boundary might be closer than those within the pattern). Theoretically, KNN could
be used together with reach analysis, joining both the ability to capture morphology
represented by networks and scalability of KNN, but this concept has not been applied in
morphological literature so far. However, it would still not resolve the issue of intra-block
relationship.

It should be pointed out that the morphological cells do offer added values that are relevant
on their own in the context of aggregation, regardless of their similarity to the plots. These
have to do with the potential innovations – yet largely unexplored – which are triggered
by the very nature of this geometry. For example, unlike other methods of urban form
partitioning, the morphological tessellation covers the totality of space uniformly within
the set study area, allowing to capture the topology of contiguous space at the plot-level.
Indeed, since all MCs are determined by adjacency, by using morphological tessellation it is
possible to think in terms of topological distance (set number of topological steps between
cells) rather than geographic distance (set metric distance around elements, either “as the
crow flies” or along with the street network). Moreover, thinking in terms of topological
distance as opposed to metric, the morphological tessellation can be used to define new
aggregated analytical units that are able to capture the immediate area of influence of a
building on its surrounding fabric and, at the same time, of the surrounding fabric on the
building. Indeed, since the size of each morphological cells depends on the granularity
of the urban structure, the spatial representation of a set topological distance would be
far smaller for a morphological cell located in a fine-grained built-up area than for the
same located in a coarse one (figure 6.8). Crucially, this is a kind of information that
would not be possible to access with plots alone, which allows for reframing the very idea
of ‘proximity’ by rethinking the relationship between scale and spatial meaning, thereby
enhancing the ability to capture the context in morphometric analysis.
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Figure 6.8: Relationship between morphological cells of topological distance 2: the red geometry represents
the adjacency network of neighbouring elements (buildings, morphological cellss) at topological distance 1
(adjacent neighbour of first order), while blue geometry represents the boundary of the aggregated analytical
unit of topological distance 2 for each of the highlighted buildings. In the image, a fabric characterised by
fewer and sparser buildings (b) generate larger cells and aggregated units compared to a denser and more
compact fabric (a).

Topology captures the information on adjacency of neighbouring elements (cells) - two
cells are neighbouring if they share at least one point (so-called Queen contiguity) or one
segment (so-called Rook contiguity). It defines the proximity of elements in terms of
the number of steps needed to get from each element A to each element B. Topological
relationships can be of two types - unconstrained, if not limited by any other element
than tessellation itself, and constrained if the step between two neighbours is impeded by
constraint (a block is the maximum number of topological steps from element without the
need to cross the street network, while the street network is the constraint in this case).
Thus, we can define an aggregation around each element based on several topological
steps (topological reach) on the morphological tessellation, where aggregation defined by
n steps includes all morphological cells which we can reach within x <= n steps.
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6.1.1.3 Operational Taxonomic Unit as a morphological aggre-
gation

Having defined aggregation models, the question of Operational Taxonomic Unit arises
again. It was noted that definition of OTU in for numerical taxonomy of urban form fol-
lows in principle mixture problem (see section 3.1.2.3), meaning that an OTU is necessarily
an aggregation of fundamental elements. Moreover, it has to be area-based aggregation
to avoid overlaps of elements brought by location-based techniques.

Assuming that the initial pool of fundamental elements is a mixture of separate “popu-
lations” which need to be identified, the population is a group of individuals of a single
species. Even though the term species is abstract in urban morphology, its phenetic
definition is very much applicable. Following Sneath and Sokal (1973), species is ”the
smallest (most homogenous) cluster that can be recognised upon some given criterion as
being distinct from other clusters (p.365). That definition is conceptually the same as
the definition of urban tissue in urban morphology as both are primarily based on the
distinctiveness of each group identified either as species or as a tissue. However, a species
is a taxon; therefore, its counterpart would be urban tissue type.

Therefore, within the framework of a mixture problem, we can consider urban tissue type
an Operational Taxonomic Unit of numerical taxonomy of urban form.

6.1.2 Analytical frameworks of urban form

Analytical frameworks of urban form are conceptual schemas linking fundamental ele-
ments together for the purpose of morphological analysis. The way we link fundamental
elements and their aggregation’s matters and frameworks are often not specified in liter-
ature, just assumed.

The literature mostly offers frameworks which are hierarchical in nature, meaning that
on a single level, each element can be part of a single aggregation. One of them is a
framework used by Feliciotti et al. (2016) and Dibble et al. (2017) (figure 6.9) which
stacks elements together to form Sanctuary areas. A similar concept is used by Kropf
(2017) in his multi-level diagram of built form (figure 6.10), which itself is based on older
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Canniggian theory (Caniggia and Maffei, 1979).

Figure 6.9: Hierarchical framework combining individual plots into street edges, blocks and sanctuary areas.
Reproduced from Feliciotti (2018).
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Figure 6.10: Multi-level diagram of built form proposed by Kropf (2017, figure. 6.39)

A structurally different approach is proposed by Alexander (1966). In his work A City
is not a Tree, Alexander points out that city does not work in a tree-like hierarchy,
which is reflected in both frameworks above, but as a semi-lattice of connections (figure
6.11). However, none of the analytical frameworks tends to reflect that. Furthermore,
Alexander’s own work on pattern language does not help in morphometric analysis.
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Figure 6.11: Diagrams comparing the tree-like hierarchical structure (left) and overlapping semi-lattice (right).
Reproduced from Alexander (1966).
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Some frameworks focus on specific elements of urban form, but elements from different
approaches are usually not linked together. A typical example is network analysis based
on nodes and edges and its relation to hierarchical frameworks mentioned above. The
value of, say ’degree of a node‘, is not possible to reflect within the framework as the
relation between a node and other elements is not captured.

While the literature shows that there is a broad spectrum of elements and their aggrega-
tions useful for morphometric analysis, no method links then into a singular overarching
framework, which would, in turn, take a structure of semi-lattice instead of simple tree-
like hierarchy. The key question here is how to build a framework which is not strictly
hierarchical?

6.2 Theory of Relational framework of urban form

To put things forward, this research proposes a relational framework of urban form for
urban morphometrics.

6.2.1 Relational analytical framework as an analytical
tool

Relational analytical framework (RF) of urban form is based on two concepts - topology
and inclusiveness. The framework acknowledges that there are identifiable relations be-
tween all elements of urban form and their aggregations. As such, it accommodates all
analytical aggregations into a singular framework, linking all potential measurable char-
acters to the smallest element. Furthermore, it employs topological relations in the way
it generates location-based aggregations of fundamental elements.

Unlike frameworks above, relational analytical framework is analytical, not conceptual
or structural. It does not try to propose a new theory of urban form; it has purely
morphometric nature.

Within this research, relational analytical framework is operationalised based on morpho-
logical tessellation. That does not have to be the rule, but only one interpretation of the
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principle. The same could be done with plots and different aggregation frameworks.

6.2.1.1 Tessellation-based relational framework

Tessellation-based relation framework starts from two hypotheses. First, that morpholog-
ical tessellation can be the smallest spatial unit in the morphometric analysis. Second,
that tessellation-based contiguity aggregation is better than any other location-based ag-
gregation framework. Both hypotheses will be further tested before the application of
relational framework.

Assuming both hypotheses hold, the key principles are as follows.

1. Urban form is represented as building footprints, street networks and footprint-
based morphological tessellation.

2. There is an identifiable relationship between buildings and street networks, buildings
and street nodes and buildings and tessellation cells.

3. Morphometric characters are measured on scales defined by topological relations
between elements.

• Element itself
• Element and its immediate neighbours
• Element and its neighbours within n topological steps, either in a constrained

or an unconstrained way.

4. Therefore, we can define subsets of relational framework as measurable entities of
urban form based on fundamental elements and topological scales.

5. Subsets are overlapping, reusing each element within all relevant relations.

Since the relation between all elements is preserved throughout the process of their combi-
nation, we can always link values measured on one subset to another. For example, due to
the fixed relation between building and street node, we can attach a node’s degree value
to a building as an element. The constrained topological relation can identify traditional
area-based aggregations like block (as a combination of all tessellation cells which topolog-
ical relation does not cross a street). As such, they allow us to combine both area-based
and location-based aggregations while minimising MAUP for each of them.
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6.2.1.1.1 Subsets of elements Subsets are a combination of topological scales and
fundamental elements. Overlap of morphometric characters derived from subsets, where
each subset is representing a different structural unit, gives an overall characteristic of
each duality building - cell, which can be later used for further analysis.

We can divide subsets into three topological scales: Small (or Single), Medium and Large.

Note that topological distance is possible to define within each layer (relations between
buildings, relations between cells, relations between edges or nodes), but not as a combi-
nation of layers. The relation between building, its cell, its segment and its node is fixed
and seen as a singular feature. That is why morphometric characters like covered area
ratio of the cell are classified as a Small scale character.

6.2.1.1.1.1 Small/Single (S) Small scale captures fundamental elements themselves
(topological distance is 0 - itself). In the case of building and tessellation cell, it captures
the individual character of each cell. In the case of street segment and node, it captures
value for segment or node, which is then applied to each cell attached to it.

We have four subsets within small scale:

• building
• tessellation cell
• street segment
• street node

building tessellation cell street segment street node

Figure 6.12: Diagrams illustrating the subsets on the small/single scale.

6.2.1.1.1.2 Medium (M) The medium-scale reflects topological distance 1. It cap-
tures individual character for each element derived from the relation to its adjacent ele-
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ments.

• adjacent buildings
• neighbouring cells
• neighbouring segments
• linked nodes

adjacent buildings neighbouring cells

neighbouring segments linked nodes

Figure 6.13: Diagrams illustrating the subsets on the medium scale.

6.2.1.1.1.3 Large (L) Large scale captures topological distance 2-n. In the case of
cells, it captures individual character for each cell derived from the relation to cells within
set topological distance. In the case of joined buildings and block, resulting measurable
values are shared among all elements within such a structural unit. Block here is based
on morphological tessellation and is defined as the contiguous portion of land comprised
of cells which are normally bounded by streets or open space.
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• joined buildings
• neighbouring cells of larger topological distance
• block
• neighbouring segments of larger topological distance
• linked nodes of larger topological distance

joined buildings neighbouring cells of larger topological distance tessellation-based block

neighbouring segments of larger topological distance linked nodes of larger topological distance

Figure 6.14: Diagrams illustrating the subsets on the large scale.

The resulting combination of all subsets is overlapping, following, in principle, Alexander’s
schema more than hierarchical frameworks.
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Figure 6.15: Diagrams illustrating the overlapping nature of the relational framework. The left diagram
overlays all subsets on top of each other capturing the importance of each element for description of urban
form around the indicated building. The darker the colour is, more times each element is used within various
subsets. Diagram on the right shows all subsets aligned on top of each other describing the similar information
while showing each subset directly.
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6.3 Method of tessellation testing

Other sections of this chapter test the viability of morphological tessellation as the smallest
unit based on its ability to reflect the similar information as the plot and topological
aggregation compared to other options. The relational framework itself can be tested
only in an application, which is left for chapters 7 and 8.

6.3.1 Tessellation as a unit

The first section tests whether tessellation holds as the smallest spatial unit, alongside the
traditionally used plot, here represented by cadastral layer (i.e. following ownership-based
definition of the plot). In the first part it presents a method of creation of morphological
tessellation and in the second a method of assessment of resulting geometry in comparison
to the plot.

6.3.1.1 Generation of Morphological Tessellation

Whenever observing a map or a satellite view of a city, the eye of the observer is caught
by the existence of a fundamental relationship between buildings – their geometry and
spatial configuration – and the plot pattern. This ‘intuitive’ relationship is the reason why
approaches based on Voronoi tessellation appear to ‘make sense’ when applied to the urban
form of cities: by partitioning the space into cells, they capture the way buildings relate
to each other in space and, more precisely, give a spatial meaning to the “morphological
influence” that each building exerts on its immediate spatial context (Usui and Asami,
2017). It, in turn, implicitly captures how spatial configuration affects visibility, light
penetration, ventilation, movement, etc. around each and every building (Hamaina et al.,
2012).

The main advantage of methods based on Voronoi tessellation is the capacity to derive
objective spatial partitions that are applicable to every type of urban tissue in a way
independent from the researcher’s subjective interpretation. In addition, most of these
methods (Hamaina et al., 2012, 2013) require minimum data input, as they fundamentally
rely on the polygon that describes the footprint of a building. Similarly, the proposed
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morphological tessellation method only requires a polygon layer representing building
footprints (figure 6.16a). From this, morphological tessellation moves forward in five
steps:

1. Inward offset from building footprint (figure 6.16b). The offset is necessary to avoid
overlaps between boundaries of adjacent buildings and generate a gap between ad-
jacent geometries which will later define the boundaries of the cell.

2. Discretisation of polygons’ boundaries into points (figure 6.16c). As Voronoi tessel-
lation can efficiently be generated only from point features, the polygonal shape of
the building footprint needs to be approximated as series of points to be placed at
regular intervals along its boundary, where generated points retain the ID of the
building they belong to.

3. Generation of Voronoi cells (figure 6.16d). Voronoi cells are generated around each
of the points representing the building footprint. Again, the original ID of the
building is preserved in the resulting VC.

4. Dissolution of Voronoi cells (figure 6.16e). All Voronoi cells sharing the same build-
ing ID – and hence generated from the same building – are dissolved in unitary
geometries. This step provides a preliminary boundary of the morphological cells.

5. Clip of preliminary tessellation (figure 6.16f). As a geometrical construct, Voronoi
cells tends to infinity as the boundaries of each cell are only defined by proximity
with adjacent ‘seeds’. However, when applied to the analysis of urban form, for
obvious reasons, no cell can tend to infinity. To avoid this, it is necessary to limit the
maximum spatial extent of the tessellation by setting defined study area boundaries.
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Figure 6.16: The proposed morphological tessellation method. Grey polygons represent building footprints,
while red lines show the edges of tessellation at each step. 3a) Building shapes within the boundary of the study
area (blue); 3b) inward offset from building footprint polygon; 3c) discretisation of boundaries of polygons
into points; 3d) generation of VCs around points: at this stage, the edges of cells (red) tend to infinity; 3e)
dissolution of Voronoi cells based on original building ID; 3f) clip of preliminary tessellation by study area.

Three of the five steps listed above, namely inward offset distance (step 1), discretisation
interval (step 2) and clipping method (step 5), require setting parameters that can have
a significant effect on the resulting tessellation. As such, these need to be evaluated in
greater detail. More specifically, in the case of inward offset distance (step 1), the selec-
tion of too large values may cause the collapse of narrow parts of building shapes and
loss of detail, while too small ones may generate unwanted “saw-like” geometries between
adjacent buildings. Similarly, a large discretisation interval (step 2) may produce the
same “saw-like” geometry issue, whilst the opposite would increase exponentially com-
putational demand (figure 6.17). Additionally, since the two parameters are interlinked,
their individual effect on the shape of each cell is not independent: as such, their combined
effect needs to be balanced to generate geometries with insignificant shape deviation and
minimum computational burden. Finally, the adoption of a clipping method for the tessel-
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lation (step 5) also requires considerations in order to appropriately limit the focus of the
analysis to the urbanised footprint and exclude large open un-built spaces while limiting
potential MAUP effects (Openshaw, 1984). Due to the importance of correctly setting
these parameters, section 6.3.1.1. will discuss the adopted method for the determination
of inward offset distance (step 1), discretisation interval (step 2) and method.

a) b)

Figure 6.17: Illustration of the effect of an improper combination of inward offset distance and discretisation
interval causing geometry on the boundary between adjacent buildings (b) compared to ideal combination (a).

The conceptual sequence described in this section was translated into a Python code,
building its key parts on the capability of SciPy (Jones et al., 2001), Shapely (Gillies and
others, 2007) and GeoPandas (Jordahl et al., 2020). Computation was run on Ubuntu
Bionic 18.04 running at Amazon Web Services EC2. The resulting Python script is
released as part of momepy.

6.3.1.2 Morphological Tessellation and plots: data and compar-
ison method

6.3.1.2.1 The dataset Even though the rest of the thesis works primarily with Prague
and Amsterdam as a case study, the following section focuses on the administrative area of
Zurich, Switzerland (figure 6.18). It was chosen for its historically characterised and het-
erogeneous urban fabric as well as for the availability of the ‘Amtliche Vermessung’ dataset,
a freely-accessible resource containing high-quality information on cadastral plots and
building footprints. Before generating the morphological tessellation, data was cleaned as
follows:

1. From the cadastral layer, which covers the 100% of the study area, all features not
containing buildings (e.g. streets or large open spaces) were removed, as they do
not represent built-up form;
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2. From the building layer, features smaller than 30 m2 were filtered out, as such
smaller objects are likely ancillary structures rather than actual buildings.

Figure 6.18: The selected study area, defined by the administrative boundary of the Zurich Kanton (left); the
Langstrasse area in Zurich (right) was selected for testing the tessellation algorithm parameters: the red-line
boundaries follow the street centerlines.

6.3.1.2.2 Definition of morphological tessellation parameters: inward offset
distance, discretisation interval and clipping method To determine the optimal
setting for inward offset distance (step 1) and discretisation interval (step 2), a test was
run on a portion of the Langstrasse area in Zurich (Figure 5), a heterogeneous fabric
predominantly characterised by adjacent buildings (significantly more prone to error than
isolated buildings) limited by the street network. The test considered several combinations
of inward offset (from 0.1 to 1 meter) and discretisation interval (from 0.05 to 5 meters)
and evaluated them against the most precise setting (0.1 / 0.05), which provides the
highest-resolution tessellation with minimal effect on the building shape. The test then
assessed deviation of cell perimeter and area values for each combination, as well as its
computational demand: the latter is a function of the number of discretisation points,
as these directly impact on memory and processing demand. The result of this test is
presented in section 6.4.1.1. Based on it, the optimal combination of the two parameters
was adopted to generate the morphological tessellation in later stages.
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Finally, in order to clip the tessellation (step 5), the test adopted a definition of urban
footprint aligned with Angel et al. (2007; 2018), and limited the study area extent by
setting a 100m buffer from the built-up area. However, to test the robustness and stability
of the buffer and avoid arbitrary selection, it also tested 14 other buffers, ranging from
10 to 300 metres. The stability of the 15 buffer distances is discussed alongside the
comparative analysis in section 6.4.1.2.

6.3.1.2.3 The informational value of morphological tessellation vs plots: the
12 morphometric characters To test the informational value of the morphological
tessellation compared to plots, 12 morphometric characters (table 6.1) grouped into the six
morphometric categories (dimension, shape, spatial distribution, intensity, connectivity
and diversity) proposed in chapter 4, are selected and measured on both the cadastral
layer and morphological tessellation layer, at the 15 buffer distances. With the exclusion
of Reach Centrality, which is measured using the Urban Network Analysis (UNA) Toolbox
(Sevtsuk and Mekonnen, 2012), all characters are computed using Python scripts released
as part of the momepy package.
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Table 6.1: Selection of morphometric characters used for comparison

Category Character Formula

Dimension Area area
Longest Axis Length (LAL) max{d1, d2, . . . , dn }

Shape Circular Compactness area
area of enclosing circle

Shape Index
√

area
π

0.5∗LAL

Rectangularity area
areaMBR

Fractal Dimension 2log( perimeter
4 )

log(area)

Spatial Distribution Orientation

 azimuthMBR, azimuthMBR < 45◦

azimuthMBR − 2(azimuthMBR − 45◦), azimuthMBR ≥ 45◦

Intensity Frequency ∑400
dist=1 element

Coverage Area Ratio (CAR) areabuilding
area

Diversity Gini Index of Area G =
∑n

i=1 (2i−n−1)areai

n
∑n

i=1 areai

Gini Index of CAR G =
∑n

i=1 (2i−n−1)CARi

n
∑n

i=1 CARi

Connectivity Reach Centrality Rr[i] =∥ {j ∈ G − {i} : d[i, j] ≤ r} ∥

d1 . . . dn are diagonals of convex hull of element.
MBR is minimum bounding rectangle.
Azimuth is defined as orientation of axis between 1st and 3rd quadrant.
“The reach centrality, Rr[i], of a building i in a graph G describes the number of other buildings in G that are reachable from
i at a shortest path distance of at most r.” (Sevtsuk and Mekonnen, 2012, p.9).
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Once all morphometric characters are calculated for cadastral plots and the 15 morpholog-
ical tessellation layers (at each buffer distance), the similarity of the resulting values for
the two datasets is evaluated using three methods: 1) Spearman’s rank correlation; 2) Nor-
malised root squared mean deviation (NRSMD) and 3) Accuracy of significant patterns
defined by local Moran’s I indicator of spatial autocorrelation (LISA) (Anselin, 2010).
Spearman’s rank correlation is “a measure of the correlation between ranks, calculated by
using the ranks in place of the actual observations in the formula for the correlation coef-
ficient r” (Kokoska and Zwillinger, 2000, p. 372) (see Equation 1) and was used due to
non-normality of distribution of measured values. It ranges from -1 (negative correlation)
to 1 (positive correlation), with values > 0.5 or < –0.5 indicate moderately significant
positive or negative correlation (Hinkle et al., 2003).

(1) s = 1 − 6
∑

d2

n(n2−1) ,

where di = rg (Xi) − rg (Yi) is the difference between the rank of observed and expected
value and n is the number of observations (Kokoska and Zwillinger, 2000).

NRSMD is a frequently used measure of “an estimate of the standard deviation of residuals
from the model” (Alexander et al., 2015, p. 5) normalised by the range (see Equation
2), and it is used to measure the difference between the expected and observed values,
normalised by the range. As a ratio of deviation, it ranges from 0 to 1, where 0 means no
deviation and 1 means deviation equal to the range of values. As the range is sensitive to
outliers, NRSMD might not be relevant for characters of Dimension category.

(2) NRMSD(y, ŷ) =
√

MSE(y,ŷ)

ymax−ymin
,
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where MSE(y, ŷ) = 1
n

∑n−1
i=0 (yi − ŷi)

2 where y, ŷ are observed and expected values.

Accuracy is “closeness of computations or estimates to the exact or true values that the
statistics were intended to measure” (OECD, 2006). It is here used to measure the simi-
larity of significant spatial clusters identified from the cadastral layer and those identified
from each version of the tessellation (see Equation 3). Since studies in Urban Morpho-
metrics are more interested in uncovering recurrent patterns in urban form rather than
actual values (Feliciotti, 2018), this method is probably the most relevant of the three. In
fact, it measures whether corresponding features from both datasets (cadastral plots and
morphological cells in this case) significantly fall within the same cluster (i.e. p <= 0.05),
with values ranging from 0 (no match) to 1 (perfect match).

(3) aLISA = SCmatch
SCmax

,

where SCmatch is the number of the elements belonging to the same significant spatial
cluster in both y, ŷ and SCmax is the number of the elements ŷ belonging to any significant
cluster. The adjacency matrix used for LISA represents 200 metres Euclidean distance
from each building.

It must be noted that, for the statistical comparison of selected morphometric characters
across the morphological tessellation layers and the cadastral layer, these must correspond
perfectly. However, whilst there is a 1:1 match between morphological cells and buildings,
the same does not apply to morphological cells and plots, as the latter may contain
one building (single-building plots) or more than one (multi-building plots). To resolve
this issue, the building layer is used as a proxy between tessellation and cadastre and,
therefore, all morphometric characters computed on both morphological cells and plots are
associated to the building layer (i.e. each building is linked to the value of its morphological
cell and of the plot it sits on). However, to better understand the impact of ‘single-
building’ and ‘multi-building’ plots (79% and 21% of all plots respectively), the three
methods described above are applied to the whole dataset and, separately, for single-
building and multi-building plots. In particular, we expected that multi-building plots,
although important for their effect on the overall analysis, would hold limited comparative
value for most of the assessed morphometric characters (perhaps with the only exclusion
of covered area ratio and Gini index of CAR, which capture compatible concepts).
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6.3.2 Topological contiguity of tessellation as an aggrega-
tion framework

The second test of tessellation within this chapter focuses on its ability to derive topo-
logical location-based aggregations. The definition of aggregated analytical units via the
topology of morphological tessellation can overcome issues of the three methods described
above and provide a more consistent way to understand the relationship between adjacent
elements of urban form (in the case of buildings or morphological cells). This section is
testing this hypothesis in the case of Prague, Czechia.

6.3.2.1 Comparing aggregation methods

The methodology of this research follows a twofold approach, analysing both small scale
case studies and urban scale statistical data. Small scale case studies examine the differ-
ence between three methods extracted from literature (Euclidean distance, metric reach,
K-nearest neighbour) and unconstrained topology of morphological tessellation in differ-
ent types of urban form; large scale statistical analysis examines the parameters of these
methods of aggregation across the whole of Prague.

The method compares how each of the tested methods aggregate tessellation cells (be-
ing smallest spatial unit) within two scales: one achieved by nine topological steps, the
equivalent of approximately 400 metres used in the morphological analysis to represent
a walking distance of 5 minutes; and one achieved by 4 topological steps, representing
roughly 200 metres. The number of neighbours for KNN is then derived from the mean
number of neighbours captured by each of the topological distance and metric reach, to
keep the dimension comparable (table 6.2).

Table 6.2: Default topological distances and their equivalents. Values are derived from the summative analysis
of topology-based aggregations defined around each morphological cell on Prague.

Topology of MT Euclidean Metric reach KNN

4 steps 200 metres 200 metres 70 neighbours
9 steps 400 metres 400 metres 320 neighbours
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The aim of the small-scale analysis is to understand how each of the four methods identifies
and represent the same information across 5 types of urban form - medieval organically
grown, 19th century compact perimeter blocks, 20th century mixed single and multi-family
villas, 20th century modernist housing, and 20–21th century industrial estates. It should
allow ascertaining how consistently each method distinguishes variations in form and
morphological behaviours.

At the urban scale is conducted a statistical analysis to compare the distribution of values
derived from the whole of Prague. The statistical distribution of data across the whole
urban area describes the spread and variance of values, which can be used to assess
the ability of each method to capture the intended information across types of urban
tissue. To understand the different performance of each method, the method compares
distributions of two descriptive variables as a proxy for the performance assessment –
number of neighbours and covered area.

The first variable is the number of neighbours captured. Neighbours represented by build-
ings and related tessellation cells capture most of the morphological information. For that
reason, it is desirable to use the method which will identify the somewhat similar number
of neighbours no matter the urban tissue to keep the similar essence and amount of infor-
mation to maximise comparability of values. It means that the distribution of such values
should have a relatively small standard deviation and be close to symmetrical distribution
to have a similarly positive and negative deviation from the mean.

The second variable should represent the concept of the geographical extent of aggregation,
as it bears the information of the scale of each type of urban tissue and therefore could
describe the ability of each method to adapt to the scale. Amongst the possible measurable
variables are mean distance to neighbours, maximum distance to neighbours and area
covered by aggregation. Because they all represent the scale and extent of aggregation of
elements (buildings, tessellation cells), we use the only area covered to represent them all
as it is the most straightforward one and easy to understand. The statistical distribution
of the covered area should represent the adaptability of the aggregation method. Hence,
the ideal outcome should have a high standard deviation and high range of values, meaning
that many different options (levels of granularity of urban form) are all captured.
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6.4 Results

The following section presents results of the analysis, first assessing the tessellation as a
unit in the case of Zurich and then analysing its aggregation ability in the case of Prague.

6.4.1 Tessellation as a unit

Test of tessellation as a unit focused on two aspects - determination of optimal parame-
ters of the algorithm generating tessellation from building footprints and comparison of
morphometric values between the cadastral layer and tessellation.

6.4.1.1 Determination of optimal parameters of the MT algo-
rithm

The test performed on the selected inward offset ranges (from 0.1 to 1 meter) and discreti-
sation intervals (from 0.05 to 5 meters) allowed to assess computational demand (i.e. a
number of discretisation points) and deviation of cell perimeter and area for each combi-
nation. In terms of computational demand, as shown in figure 6.19, it appears that the
discretisation segment length has an exponential effect on the number of generated points.
For values below the mean (tail of the distribution), computational demand remains rel-
atively stable, whilst for higher values (head of the distribution) it grows sharply, more
than doubling at each step. Discretisation intervals � 0.5m are therefore preferred as more
computationally effective.
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Figure 6.19: Relation of discretisation segment length and number of points generated. The red line illustrates
the mean value above which the number of points more than doubles at each step

The effect of negative buffer and discretisation interval on the deviation of the morpho-
logical cell’s area compared to the high-resolution tessellation is insignificant for all tested
combinations (0.00 and 0.01%), showing that, no matter the parameters, results are stable.
In turn, the same effect on the morphological cell’s perimeter is more pronounced (figure
6.20) due to the aforementioned phenomenon of “saw-like” geometries (see the section
6.3.1.1) with per cent deviation ranging from 0.05% to 7.4%. Focusing on the 0.5 metres
discretisation interval, providing the balance between the morphological cell shape detail
and computational demands, deviation values range from 0.47% to 3.1% (figure 6.21). It
suggests that the combination of 0.5m metres discretisation interval and 0.4m inward off-
set distance provides the optimal balance in terms of the effectiveness of computation and
minimisation of error. These values are hence adopted as parameters in the computation
of the morphological tessellation in the next stages.
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Figure 6.20: The mean deviation in percents of perimeter of each cell for each combination of inward offset
distance (vertical axis) and discretisation interval (horizontal axis).
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Figure 6.21: Relation of inward offset distance and error margin, showing that for 0.4 meter, the error margin
reaches its minimum.

6.4.1.2 Comparison between the cadastral layer and morpholog-
ical tessellation

Having determined the optimal combination of the tessellation parameters (inward offset
= 0.4m and discretisation intervals = 0.5m), the morphological tessellation for Zurich is
computed using momepy. From a first visual inspection of the generated layer, it is already
possible to appreciate how the morphological tessellation is able to capture variations in
size nicely, grain and compactness of buildings (figure 6.22), not dissimilar what observed
in a typical cadastral layer. The method subsequently calculates the 12 morphological
characters in table 6.1 for cadastral plots and tessellation cells. In the next section, their
correlation at each buffer of tessellation is studied.
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Figure 6.22: Morphological tessellation cells as generated across four different areas of Zurich; 4a) organic
tissue of Niederdorf; 4b) compact tissue of Langstrasse; 4c) detached villas of Hottingen; 4d) mixed post-war
development of Friesenberg.

6.4.1.2.1 Spearman’s rank correlation Using Spearman’s rank correlation, results
show that correlation of measured characters ranges between 0.25 (fractal dimension)
to 0.89 (reach), with differences between morphometric categories and between single-
or multi-building plots. Characters in the Shape category exhibit the worst performance,
with insignificant correlation for the whole sample (~0.27) and multi-building plots (~0.09)
and low significance for single-building plots (~0.42). This result was expected, due to
the intrinsically different geometry of the two spatial units (morphological cells and plots)
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and to the existence of multi-building plots.

Dimension characters inherently differ between multi- and single-building plots, showing
only low significance for the former (~0.35, ~0.4) and high significance for the latter
(~0.83, ~0.7). Remaining characters show moderate or high significance for all samples,
with higher values for single-building plots (figure 6.23 and Table 2). Results for all buffers
are relatively consistent, with fluctuations observed only at smaller distances (< 50m),
indicating the stability of the selected value of 100m.
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Figure 6.23: Spearman’s rho rank correlation between cadastral values and each of the selected buffers of
tessellation based on the whole dataset (figures for single and multi-building plots are found in Appendix 6.1).

Table 6.3: Spearman’s rank correlation of the whole dataset, single-building plots and multi-building plots at
100m buffer (emphasis reflects significance of correlation).

Category Character All Single Multi

Dimension Area 0.4767 0.8273 0.3583
Longest Axis Length 0.4943 0.7055 0.4073

Shape Circular Compactness 0.2758 0.4203 0.0864
Shape Index 0.2758 0.4203 0.0864
Rectangularity 0.2940 0.4040 0.1214
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Table 6.3: Spearman’s rank correlation of the whole dataset, single-building plots and multi-building plots at
100m buffer (emphasis reflects significance of correlation).

Category Character All Single Multi

Fractal Dimension 0.2593 0.4407 0.0360
Spatial Distribution Orientation 0.6859 0.7985 0.5713
Intensity Frequency 0.7995 0.9103 0.7093

Coverage Area Ratio 0.6721 0.7649 0.5567
Diversity Gini Index of Area 0.6882 0.7291 0.6312

Gini Index of CAR 0.5963 0.6263 0.5551
Connectivity Reach 0.8851 0.9371 0.8282

6.4.1.2.2 Normalised RMSD Overall, the RMSD test indicates a high level of simi-
larity between datasets (figure 6.24 and Table 3), excluding Dimension characters which,
as mentioned in Section 3.2 are heavily skewed by large outliers, hence not comparable
with the rest of the data. Apart from Orientation, which is the worst-performing charac-
ter in the set (~0.22 for the whole dataset, ~0.26 for multi-building plots and ~0.18 for
single-building plots), all other characters score RMSD values lower than 0.2 (~0.15 for
single-building plots and ~0.18 for multi-building plots). It suggests that, even though
the spatial coverage of the morphological tessellation is different from plots, this differ-
ence is, in terms of information, only minor. Even the poorer performance of Orientation
depends more on the way this is measured than on dissimilarity between datasets: unlike
other metrics, Orientation is calculated as a deviation of the orientation of the longest
axis of minimum bounding rectangle (sometimes called oriented envelope) from cardinal
directions in degrees and, as such, it ranges from 0 to 45º. Hence, a deviation of 0.2 cor-
responds to a difference only of 9º. It is worth noting that for smaller buffers (15 to 40m)
results show high instability, where some characters exhibit the highest correlation values
and others the lowest: this confirms that smaller buffers are unsuitable as parameters
to limit the tessellation. In turn, the 100-metre buffer is confirmed as robust and stable
across all characters.
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Figure 6.24: NRMSD of cadastral values and each of the selected buffers of tessellation based on the whole
dataset (figures for single and multi-building plots are found in Appendix 6.2).

Table 6.4: NRMSD for the whole dataset, single-building plots and multi-building plots at 100m buffer.

Category Character All Single Multi

Dimension Area 0.0213 0.0075 0.0326
Longest Axis Length 0.0469 0.0162 0.0645

Shape Circular Compactness 0.1545 0.1270 0.1788
Shape Index 0.1252 0.1000 0.1479
Rectangularity 0.1671 0.1563 0.1773
Fractal Dimension 0.0754 0.0566 0.0970

Spatial Distribution Orientation 0.2229 0.1775 0.2601
Intensity Frequency 0.1862 0.1507 0.2163

Coverage Area Ratio 0.0366 0.0432 0.1224
Diversity Gini Index of Area 0.1618 0.1509 0.1724

Gini Index of CAR 0.0752 0.0691 0.0838
Connectivity Reach 0.1685 0.1528 0.1828
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Figure 6.25: Example of LISA patterns of Frequency measured on the MT shows Moran Local Scatterplot
LISA clusters and actual distribution of values.

6.4.1.2.3 Recognition of significant patterns using LISA The analysis of pat-
terns with LISA (figure 6.25) captures differences across measured characters; however,
given the dissimilarity of the datasets due to multi-building plots, the accuracy scores
are not expected to reach values close to 1. The highest pattern similarity is recognised
for the Frequency character (~0.78, corresponding to an almost 80% match) (figure 6.26),
followed by Orientation and Diversity characters (Gini Index of Area and Gini Index of
CAR) and CAR (0.74 – 0.66), while Dimension characters are around ~0.5 depending on
the sample considered (single- or multi-building plots). Shape characters are consistently
the ones providing lowest accuracy, apart from Reach Centrality, due to the single-building
vs. multi-building deviation in the datasets. Overall, the difference between samples is
relatively consistent, with single-building plots reaching values between 0.1 and 0.2 higher
than multi-building plots. While none of the values indicates an equality of both datasets,
some are close enough to be considered as proxies of each other. The effect of buffer
distance confirms already observed pattern and the stability of the 100m buffer.
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Figure 6.26: LISA accuracy of cadastral values and each of the selected buffers of tessellation based on the
whole dataset (figures for single and multi-building plots are found in Appendix 6.3).

Table 6.5: aLISA for the whole dataset, single-building plots and multi-building plots at 100m buffer.

Category Character All Single Multi

Dimension Area 0.5938 0.6447 0.5090
Longest Axis Length 0.5181 0.6138 0.4028

Shape Circular Compactness 0.4235 0.5061 0.3319
Shape Index 0.4449 0.5312 0.3475
Rectangularity 0.3330 0.3930 0.2761
Fractal Dimension 0.4644 0.5652 0.3489

Spatial Distribution Orientation 0.7389 0.8055 0.6711
Intensity Frequency 0.7763 0.8240 0.7318

Coverage Area Ratio 0.6610 0.7313 0.5908
Diversity Gini Index of Area 0.7050 0.7333 0.6759

Gini Index of CAR 0.6585 0.6742 0.6423
Connectivity Reach 0.4007 0.3363 0.4644
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6.4.2 Tessellation contiguity as an aggregation method

At the small scale, the method studied how five urban types in Prague are represented by
the four methods of aggregation. The Old Town, a tissue of a medieval origin which has
grown organically, shows few differences between the four methods, with slightly larger
footprints of aggregations defined by Euclidean distance and a morphological tessellation
topology at both 200 (figure 6.27a) and 400 (figure 6.28a) metres distances. Numerically,
the difference is clear, but for pattern-detection this difference is not substantial, sug-
gesting that all methods are relatively equal in this tissue for both 200 and 400 metres
(and equivalents). Differences might be explained by the high granularity of the tissue,
with many elements on a relatively small area (the reason for KNN being the smallest)
and complex configuration amongst them (buildings have many neighbours, expressed by
more extensive topological-based aggregation).
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Figure 6.27: Comparison of boundaries of aggregations defined by each of the tested method for 4 topological
steps and equivalents (200 metres, 70 neighbours). a) Old Town, b) Vinohrady, c) Hanspaulka, d) Jižní Město,
e) Malešice

In the second case, the urban tissue of 19th century of compact perimeter blocks in the
Vinohrady neighbourhood results almost match the previous case. Due to the high gran-
ularity of this urban tissue, purely Euclidean distance-based area is the largest, while
K-nearest neighbour the smallest (figure 6.27b, figure 6.28b).

Overall, in these two historic tissues, the difference is not significant to conclude that one
method is better than the other - simple visual comparison shows that boundaries almost
overlaps for both tested distances.

The first crucial differences are noticeable in Hanspaulka, an area of 20th century mixed
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single and multi-family villas, where the street network is becoming less dense and less
connected than in the city centre, leading to the difference between the area captured by
metric reach (smaller) and the other three methods, which almost overlap without any
substantial distinction (figure 6.27c, figure 6.28c). This indicates that the street network
plays a crucial role in the applicability of reach-based methods.

Figure 6.28: Comparison of boundaries of aggregations defined by each of the tested method for 9 topological
steps and equivalents (400 metres, 320 neighbours). a) Old Town, b) Vinohrady, c) Hanspaulka, d) Jižní
Město, e) Malešice.

The twentieth-century modernist housing of Jižní Město is the first example of a post-
WW2 urban tissue. The planning ideology behind it comes with the radical change of
scale and a distinctive approach to streets and their connectivity. This change is reflected
in how each of our tested methods captures the space: while the area defined by Euclidean
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distance remains mostly the same as in pre-WW2 tissues, the area captured by metric
reach shrinks due to the convoluted street network. In theory, both topological and
KNN definitions of aggregation should be able to capture the difference in scale and up
to a certain level they do. However, KNN, even though being larger than metric-based
methods, lacks the ability to deal with large pavilion-like buildings with many direct
neighbours, unlike the topological definition which correctly reacts to the abrupt change
of scale of the granularity of urban tissue and captures the relationship between high-
rise buildings and their low-rise pavilion counterparts by acknowledging that they are
neighbouring (figure 6.27d, figure 6.28d).

Whilst industrial type tissues are generally not the concern of urban morphology, as clas-
sified as specialist and treated differently than more ordinary fabric, they are nonetheless
large, therefore important parts of our cities and as such deserve to be studied using the
same approach as the more conventional ones. Their scale is radically different. Buildings
are of the size of the traditional block or larger, the plot structure is mostly unorganised,
and the street network is utilitarian only, following different principles than in residential
or mixed-use parts of the city. These differences are captured through the application
of our four methods. The network-based method is unreliable on this tissue, captur-
ing the only a minor area around the building due to the major drop in a granularity
and connectivity. The Euclidean distance of 200 or 400 metres, which seems to capture
enough information in more granular urban tissues lacks the same capacity in this case.
K-nearest neighbour analysis struggles to capture the peculiarities of this particular urban
tissue, which is characterised by a large amount of additional built-up structures to main
buildings, leading to the identification of smaller area that makes a comparison with the
other cases confused. The topological definition achieved by the morphological tessella-
tion seems to tackle all issues of the other methods, whilst capturing a similar amount of
information as it did in previous cases (figure 6.27e, figure 6.28e).

Overall, the differences between methods in defining aggregation are heavily dependent on
the type of urban tissue analysed. More traditional (from a European perspective) urban
tissues like medieval (Old Town) or perimeter blocks (Vinohrady) indicate that in these
contexts the choice of the method is purely the matter of opinion and that the resulting
value offered by the four methods is mostly similar. However, once we start focusing
on post-WW2 development, we often observe a change of scale of urban patterns, which
makes distance-based methods (Euclidean, metric reach) unable to react to such change.
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The information captured is consequently different in pre-and post-WW2 urban tissues,
complicating the further comparability, whilst we seek similar and consistent data. If
the urban patterns change their scale, the method of capturing such an extent needs to
be able to adapt to it. Our results of the small-scale analysis indicate that topology of
morphological tessellation is the method able to fulfil this condition adequately. Whilst
small scale analysis illustrated the capacity of the four selected methods to provide stable
information, it is only at an urban scale, through statistical analysis, that we can show a
full overview of how the four methods perform.

As mentioned, neighbouring elements are bearing the primary information about urban
patterns. For this reason, researchers aim to use methods capturing an equal number of
neighbours across contexts. Such a method might be K-nearest neighbour, but due to
the variety of urban configurations, a method needs a certain level of adaptability (which
KNN with a fixed number cannot provide). As figure 6.29(a, b) shows, the statistical
distribution of the number of neighbours captured is the most stable for the topology of
morphological tessellation, being almost perfect Gaussian distribution (the deviation in
the number of neighbours is the same in both directions from the mean), with the smallest
standard deviation (σ). The metric reach method to provides right-skewed distribution
and Euclidean distance high deviation, which are both undesirable features in terms of
stability of information.

Then, the comparison of distributions of covered area aims to test the adaptability of
each method. As mentioned, the changing scale of urban patterns means that the same
level of information is spread to larger areas. Therefore, an ideal method should show
high flexibility (the distribution of values should have large range and high standard
deviation) in the area captured to fit all patterns possible. The results as shown in figure
6.29(c, d) indicate that topology of morphological tessellation offers by a large margin the
highest standard deviation out of tested methods, indicating that the change of the scale
is captured successfully. Metric methods (Euclidean distance, metric reach) are the least
flexible in this sense, while K-nearest neighbour might offer desired value alongside with
morphological tessellation topology.
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Figure 6.29: Statistical distributions of number of neighbours a) 4 steps and equivalents, b) 9 steps; and total
covered area c) 4 steps and equivalents, d) 9 steps.

Even though there are differences between smaller and larger distances (4 steps / 9 steps
and its equivalents), topologically defined aggregation seems to reflect desired outcomes
(i.e. stability in a number of elements captured and flexibility in metric values) in both
statistical comparisons better than other tested methods. This finding is in line with
the one we drew from small-scale case studies, indicating that topology of morphological
tessellation is a valuable approach to be employed in morphological analysis.

6.5 What is the value of tessellation?

Results of both experiments show that there is a high potential in using morphological
tessellation as a spatial unit, both as a unit of analysis and as a core of the aggregation
technique.
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6.5.1 Tessellation in relation to plot

The results suggest that the proposed method contributes to resolving some of the limi-
tations associated with using the plot as a unit of morphometric analysis. However, the
picture resulting from testing the similarity between cadastral plots and morphological
cells is rather complex. Notably, the significance of the similarity between plots and mor-
phological cells varies considerably depending on the morphometric character selected:
this is generally high for all Intensity characters (Frequency, CAR, whilst Shape charac-
ters (Rectangularity, Circular Compactness, Shape Index, and Fractal Dimension) report
a comparatively lower performance and a higher deviation. It means that if, for several
of the morphometric characters assessed, morphological tessellation is able to retain plot-
level information which is comparable to that provided by the cadastral layer, for other
characters morphological cells are less efficient proxies of plots and capture comparatively
different information.

It is also evident that the similarity of datasets is higher across all measured characters
for single-building plots compared to multi-building plots. To consider that the former
ones are predominantly found in pre-industrial urban tissues. At the same time, the
latter is more typical of modern and contemporary development, and it is suggested that
the morphological cell might capture similar information as the plot in the context of
traditional fabrics better than in modernist and contemporary ones.

Overall, there appears to be a scope for the morphological cell to be utilised as the basic
unit of morphometric analysis, given its ability to capture meaningful patterns of urban
form at the plot scale, the degree of reliability and universality of the underlying method
and the wide accessibility of the data required to generate it. Indeed, while the recogni-
tion of plots can be very troublesome and resource-intensive, morphological tessellation
is consistent throughout, since it is only based on building footprint information which
is equally present in all kinds of urban areas. Moreover, by using morphological tessella-
tion instead of traditional methods relying on buildings, street networks and plots, data
dependency is reduced by a third as the tessellation is generated from the building layer
alone.

On the other hand, the morphological tessellation cannot fully substitute the plot. The
similarity of information indicates only partial overlap, and there are aspects of form
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which cannot be derived from morphological tessellation conceptually, like the relationship
between public and private or ownership-based analysis. That said, the morphological
tessellation has the potential to work as an analytical spatial unit within the morphometric
assessment, acknowledging that the information obtained from it is not equal to that
derived from plots (no matter the definition).

6.5.2 Location-based aggregation using tessellation

Existing location-based methods of aggregation of elements into larger analytical units
all face some issues limiting their applicability and reliability. The alternative method
presented is based on the topology of space as captured by the morphological tessellation.
Such a method of partitioning space reflects the influence of each building on the space
around it to overcome existing challenges and provide a context-sensitive method. Initial
results of the twofold analysis of the topological ability of the morphological tessellation
indicate that the type of urban tissue influences the outcome of morphological analysis and
that in the case of pre-WW2 traditional European-like urban tissues, all currently available
methods of definition of aggregation are relevant and almost interchangeable. However,
this is not the case with post-WW2 urban developments, as in them there has been a
significant change in the scale of form’s granularity. In these cases, urban morphology
needs to employ methods which are sensitive to the scale and configuration of urban form
and at the same time can detect its granularity. The morphological tessellation and the
topology derived from the analysis of its structure seem to be the most successful, sensitive
method, suitable for general analysis. All of the methods that have been tested partially
solve one of the key issues identified in spatial analysis (MAUP), as data are aggregated
independently for each element, and there are no preselected boundaries in play.

No matter the results of the presented analysis, methods extracted from the literature
have their role in morphological analysis. However, Euclidean definition and metric reach
should be used in specific situations only, due to their limitations, as mentioned above. It
is either in stable environments without abrupt changes of granularity or in a definition
of larger-scale aggregations, where multiple urban tissues are included. In that case, the
main benefits of the morphological tessellation — following the spatial configuration of
urban patterns — is not so crucial and from certain scale does not even provide added
value.
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For the analysis done on the small scale (scale of urban tissue and smaller), Euclidean
definition and metric reach do not provide stable information, unlike KNN (which always
captures the same number of elements of similar informational value, but not the same re-
lationship) and the topology of morphological tessellation. Moreover, aggregation defined
via the topology of morphological tessellation may be used even on the smallest scales of
one or two steps as it will always capture intended comparable information based on the
relationship of elements.

6.6 Summary

The method of morphometric analysis presented in this thesis is designed with applica-
bility in mind. To ensure that the paucity of viable input data does not limit it, the
analytical framework is based on fundamental morphometric elements only. Those reflect
fundamental elements known in urban morphology - building, street and, to a degree,
the plot. Plots are commonly seen as the ideal spatial division for morphological anal-
ysis, but they also have their drawbacks, causing the limited applicability of plot-based
methods and, more importantly, the reduced reliability of results obtained by employing
them. This chapter tries to address some of the issues characterising the definition of the
plot and plot boundaries, the availability and accessibility of plot data and the labour
intensiveness of manually extracting reliable plot-level information, aspects that limit the
potential of urban morphometrics. The need to objectively define a unit of analysis able
to capture the smallest and arguably most fundamental level of spatial subdivision, and
to develop a reliable and replicable method to generate and measure it, is the rationale
behind the morphological cell unit and the morphological tessellation method.

The universal and algorithmic nature of the proposed morphological tessellation has the
potential to scale up morphometric analysis with minimum effort to the large scale, while
significantly reducing the interpretative input of the analysts along the process. This lat-
ter property of morphological tessellation appears to be particularly relevant to making
large scale morphometric analysis viable and take full advantage of big data in the GIS
area. The robustness of the proposed method and the validity of the proposed spatial unit
of analysis is verified through the assessment of 12 representative morphometric characters
and the application of three different quantitative comparative methods, Spearman’s cor-
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relation, NRMSD and accuracy of LISA, aimed at evaluating the similarity of information
between morphological cells and cadastral plots.

The morphological tessellation, as tested and presented in this chapter, offers a different
approach to spatial division whilst still capturing a level of quality of information on
urban form that is, to a degree, similar to that conveyed by the plot. Findings presented
in this chapter indicate that there is a partial overlap between the information derived
from cadastral plots and the one derived from morphological tessellation. The degree of
this overlap depends on the category of morphometric characters and the type of urban
context, but for certain types of morphologic analysis, it is large enough to consider the
information comparable to the one derived from plots. At the same time, it is important
to keep in mind that morphological cells cannot fully replace plots in the understanding
and analysis of urban form patterns.

However, the morphological tessellation is a step towards achieving consistency in urban
morphology in both definitions of the smallest spatial unit and analytical aggregation.
The advantage of morphological tessellation is that it limits the data dependency as it
is based on building footprints only and allows the elimination of subjectivity in the
partitioning of space. Most importantly, it is context-sensitive, allowing the researcher to
use the same method across different types of urban tissues whilst still get comparable
information, much needed for reliable results of any statistical analysis.

On top of an application of tessellation itself, this chapter proposes the tessellation-based
relational framework for morphometric analysis of urban form based on the idea of over-
lapping elements and their aggregations. The resulting description is then based on the
semi-lattice of relationships between individual subsets of measurable features. Since
tessellation seemingly holds as a spatial unit, the proposed tessellation-based relational
framework will be used and tested in the next chapters as a basis of morphometric analysis.

Finally, the overview of morphological aggregations and their linkage to a mixture problem
of identification of OTU resulted in a working hypothesis of urban tissue types as OTU
for numerical taxonomy of urban form. To which degree can we operationalise this idea
and how to use morphometrics to delineate tissue types prior taxonomy are questions left
for the next chapter.

138



Chapter 7

Identification of tissue types through
urban morphometrics

The previous chapter defined the building blocks for morphometric analysis and proposed
a conceptualisation needed for a comprehensive description of urban form, namely via
relational framework of urban form. That can be now implemented in the next step
towards a taxonomy of urban form - the algorithmic identification of urban tissue types
as operational taxonomic units.

This chapter aims to provide theoretical and practical grounds to the method of automatic
detection of distinct types of urban tissues. While similar research has been done before
(Schirmer and Axhausen, 2015; Araldi and Fusco, 2019; Berghauser Pont et al., 2019;
Bobkova et al., 2019), it was never linked to the coherent theory of morphometrics and
numerical taxonomy, nor it was both inclusive in terms of a spectrum of characters used
within a model and the spatial extent (see Chapter 2). Following pages present a method
which aims to be inclusive in these terms and at the same time automatised and efficient
to allow for examination of large datasets spanning across metropolitan regions.

Structurally, this chapter is divided into two main sections. The first one is focusing
on the methodological propositions and briefly discuss theoretical grounds of the whole
approach based on numerical taxonomy (section 7.1.1), following with specification of
two types of morphometric characters used within this research - primary (section 7.1.2.1)
and contextual (section 7.1.2.2). The second part of methods (section 7.1.3) outlines the
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cluster analysis and introduces a Gaussian Mixture Model clustering together with the
issues of the selection of the optimal number of clusters and scalability of the method.

The second major section (7.2) applies the methods on the case study of Prague, Czechia
and presents the results of all steps, eventually presenting the urban tissue types detected
using cluster analysis based on morphometric assessment.

7.1 Methodological proposition

The automatic detection of urban tissue types consists of multiple procedural steps de-
tailed in the following section. It first requires specification of the principle of the recog-
nition itself, followed by the design of actual methodological steps, starting from identi-
fication of morphometric characters for individual elements, finishing with the clustering
algorithm detecting clusters. The structure of the method is reflected in the structure of
the following sections.

7.1.1 Tissue type as a homogenous cluster

Building on the propositions outlined in chapters 5 and 6, it is possible to define the
hypothesis of urban tissue type recognition based on relational framework presented in
the previous chapter. The working hypothesis hence stands as follows:

Urban tissue types can be recognised by empirical measuring of the physical
structure of urban fabric represented by the relational analytical framework
of urban form in the form of homogenous clusters.

The concept of urban tissue discussed in the previous chapter is fundamental for the
understanding of the structure of cities we live in but at the same time a bit elusive in
what distinct in the definition means. How much distinct two parts of the urban fabric
needs to be to become different tissues? Who makes the decision, and based on what
ground? While some have partial answers to these questions (Kropf, 1996), one remains
unanswered. How to consistently identify urban tissues across metropolitan areas in an
automatised, algorithmic way?
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This research attempts to answer that question using the recognition of clusters based on
the principles of numerical taxonomy (see chapter 3). Whilst previous chapters identified
urban tissue as an OTU of urban form; we first have to identify those. For the cluster
analysis recognising tissue types, we focus on a dual feature building-tessellation cell as
the smallest entity of urban form. The whole cluster recognition is then based on the
assumption that features recognised as a part of the same cluster (species) are, in fact,
elements of the single urban tissue (where continuous) or of multiple individuals of the
same kind of urban tissue (where discontinuous).

The urban form is full of exceptions from the pattern. Individual plots follow the different
development process and are, in some cases, amalgamated or split (Conzen, 1960). That
does not happen to the rest of the same tissue at the same time (while it might or might
not later), causing the constant emergence of exceptions from the pattern. The proposed
method is working with two kinds of characters - primary and contextual to overcome the
issue of exceptions.

The primary characters are those focusing on the individual elements and their relation-
ships as identified in the relational framework (Chapter 6). These are mostly following
what a character would be in biology. A typical example could be building height or area.
Both are specific to each building. In the context of plots with subsequent internal devel-
opment, buildings in the head and the tail of the plot might have significantly different
values, i.e. exceptions from a continuous pattern.

As primary characters, by definition, do not describe the pattern but rather its elements,
they are not optimal input for pattern detection algorithms. The second type of characters,
contextual, has been designed specifically to turn values captured by primary characters
into values describing the characters’ tendency in the area - to describe the pattern. As
such, values are spatially lagged and can be used as an input for the cluster analysis. In
the end, the data captured by contextual characters are used to cluster individual building-
tessellation cell entities to statistically homogenous clusters, each capturing distinct kind
of urban tissue.

The following section will detail the use of primary characters, contextual characters and
the clustering method itself.
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7.1.2 Morphometric characters

The main scope of this research is not to develop new morphometric characters (even
though there are some to fill the gaps), but to use existing knowledge in urban morpho-
metrics and combine it in a systematic framework providing a comprehensive description
of urban form. Chapter 4 mapped in detail the existing characters used across the field
and the resulting database (Appendix A4) and classification is the basis for selection and
definition of primary characters and to some extent, even contextual characters.

7.1.2.1 Primary characters

Primary characters describe different elements and their relationships as are identified
within the relational framework of urban form. Building on the definition1 of the term
primary from Oxford English Dictionary (Oxford English Dictionary, 2020b), we can
define primary characters within the context of this cluster analysis as characters occurring
first in a sequence of methodological steps capturing individual features of urban form
elements and their fundamental relations. The link to the relational framework is crucial
here as it defines which relations are meant and later reflected in the whole recognition
model.

The choice of characters affects the result of cluster analysis; therefore, a potential embed-
ded bias can cause a distortion of clustering results towards aspects occurring multiple
times or other adverse effects. For that reason, specific principles of characters selection
were defined.

7.1.2.1.1 Principles of character selection and definition The idea of morpho-
metric recognition of tissue types is based on mixture problem, and the selection of mor-
phometric characters then build on the principles used within the selection of taxonomic
characters in biology, as defined by Sneath and Sokal (1973). Building on the biological
experience brings methodological grounds to the selection, and it is expected that a final
set of characters selected according to these rules will describe an urban form suitable for

1” Occurring or existing first in a sequence of events; belonging to the beginning or earliest stage of
something; first in time.” (Oxford English Dictionary n.d.b)
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recognition of clusters. However, the validity of the set is still only hypothetical, unlike
the validity of individual characters which is tested throughout the selection process.

Selection strategy is tied to the classification of morphometric characters into categories
as defined in chapter 4 and, more importantly, to the relational framework of urban form.
There are three top-level aims for the selection of primary characters. The set should:

1. Capture structural complexity of urban form by covering all categories
of morphometric characters:

• dimension
• shape
• spatial distribution
• intensity
• connectivity
• diversity

Each category captures different aspects of urban form, which all should be incorporated
to derive a complex description of urban patterns. However, as different categories tend
to focus on different scales and elements (see chapter 3), not all are likely to be equally
represented. That is not an issue, rather a consequence of the nature of characters and
the aim of the recognition model.

2. Capture all fundamental elements of urban form

In this case, in the context of the relational framework, these are:

• building
• street network
• morphological cell

Urban form is composed of multiple elements. Hence all fundamental ones should be
captured. Here the attempt is to use as little of input data as possible, to extend the
applicability of the whole model. Other elements (e.g., plot, open space, greenery) could

143



Chapter 7. Identification of tissue types through urban morphometrics

be included, and the resulting model would likely be more precise, but the availability of
such data is limited. This research uses only the three elements of urban form defined in
the relational framework (coming from two data sources as MT is generated); hence this
aim is focused on these only.

3.  Capture cross-scale complexity of urban form by covering all meaningful
topological scales

The relational framework defines three topological scales:

• single/small
• medium
• large

For tissue type recognition, not all scales are equally meaningful, as the spatial extent
of tissues is usually restricted. However, S, M and L are all relevant for the scale of
urban tissue and should all be represented. The city and its urban form are composed of
complexities occurring on different scales. Capturing them all together within the single
model allows the description of cross-scale complexity needed for systematic morphometric
characteristics of built-up patterns.

To fulfil the aims, the relational framework comes to help with defined subsets as a
combination of elements and scales, combining second and third aim into a single solution.
Each of the subsets represents specific relations between specific elements, hence covering
all subsets will help the pursuit of complex description. Then, having subsets, meaningful
characters for each subset should be identified. The following procedure directly builds
on the Sneath and Sokal (1973) to determine a methodical approach to the selection of
the final set of morphometric characters. Steps of selection and elimination should follow
this sequence:

1. Extract all characters used in relevant literature

The starting point should be a wide range of characters used within relevant literature, as
such characters are already tested, and it is expected that they bear significant meaning
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in the description of urban form. This extraction has already been done in Chapter 4, so
the resulting database of morphometric characters can be directly used. This database
works as the principal source of characters. Due to its extent, it is expected that the
majority of possible characters is included (keeping in mind identified gaps).

2. Select characters using data intended to be used within each subset

Not all characters are based on the same data sources used within this research and rela-
tional framework (see Chapter 6 for details). Some can be adapted (e.g., a morphological
cell can be, in some cases, used as a spatial unit where plot is normally used), but some
are based on the different sources of data. Characters which could not be used within
subsets of the relational framework are then excluded from the initial selection.

3. Adapt characters to fit the framework

Those characters which are applicable, but are not readily available to be used within the
relational framework should be adapted to fit the framework. It comprises mostly trans-
lation of plot-based characters to cell-based and metric-based characters into topology-
based. Adaptation should be made with a sense of the meaning of each character which
should not be significantly changed. Otherwise, its foundation in literature would be
questionable, and a character should be seen as a newly developed one.

4. Eliminate logical correlations

Logically correlated characters should be omitted. Otherwise, the feature which is causing
the correlation could distort the results of the clustering. Fully correlated characters
caused by the causality (because A equals 1, B will be 1) have to be excluded, and only
one should be kept. Partial logical correlation depends on the nature of other factors that
are affecting character. If they reflect variation, we can include them. Also, “characters
that are tautological - those that are true by definition as well as those that are based on
properties known to be obligatory - should not be included.” (Sneath and Sokal, 1973, p.
104)
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5. Eliminate ineffective characters

Due to the nature of the analysis, working with large-scale data, the process of measuring
has to be computationally efficient. Some of the characters are not easily measurable, and
it has to be evaluated whether the value of the characters would balance the difficulty
of implementation and/or computational demand. Examples of such characters could be
those based on expensive generative elements like axial maps (Hillier, 1996) or topological
skeleton (Schirmer and Axhausen, 2015), or characters which implementation details are
improperly documented in the literature.

6. Add characters to minimise gaps in subsets

The database of characters showed an imbalance of different categories and pointed out
gaps, especially in the measuring of diversity. Moreover, the relational framework brings
some subsets, which are often overlooked in the existing literature. While the overall
balance between subsets and categories is only theoretical and would not reflect different
nature and importance of different subsets, each of them should be sufficiently covered
to capture the complex phenomenon of urban form structure. That may involve the
development of new characters.

7. Exclude invariant characters

Some characters might be invariant over the entire sample. Those should not be included
as they are not bearing any morphometric value. However, this exclusion is an ongoing
process because it depends on actual measured values. Moreover, the invariance in one
sample of data does not mean that the character overall is not valuable.2

8. Limit empirical correlation
2Consider an example of a courtyard area within a building. That will likely show variance in Mediter-

ranean historical context, but invariance in the US sprawled urban tissues. If the study does not aim to
be comparable across different contexts, characters like this should be excluded. However, if the study
expects later inclusion of additional data, it may be more complicated to select those which should be
eliminated. Such a decision needs to be done base don the complete data which will be used within the
study.
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When we have the evidence that more than one factor affects two correlated characters
within a study, regardless of whether this evidence comes from within a study or from
outside, we would include both characters; otherwise, we would employ only one. We
assume that at least some independent sources of the variation in any empirical correlation
unless we have reason to believe otherwise.

9. Exclude characters which cannot capture patterns.

Some characters may show random-like spatial distribution, meaning that the geograph-
ical location has no relationship to the actual value. These characters do not have the
value within this framework, as they are not able to describe a spatial pattern. To test
the capability of each character to capture such patterns is used spatial autocorrelation
analysis based on global Moran’s I (Moran, 1950). Those characters without a signifi-
cant autocorrelation should be excluded as they do not bear any value in the process of
identification of tissue types.

10. Balance scales and uniqueness of values.

The set of taxonomic characters has to be balanced regarding the scale as well as unique-
ness of values. Some of the initially identified characters are possible to measure on
different topological scales. Due to the logical correlations between them, only one has to
be used. The selection is trying to use the most appropriate in terms of the meaning of
the character (which might be more suitable to the street edge than a block, for example).
It also aims to limit the characters with limited uniqueness of values. Because the values
are always stored on the smallest scale, the values of characters measured on the block
scale are shared among all elements in the block. The intention is to limit those characters
to a minimum.

The data on selection itself, starting from the database retrieved from chapter 4 is avail-
able as Appendix 7.1. It illustrates the selection process determining which characters
should be part of the final set. The following section describes the final set of 74 primary
characters only.
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7.1.2.1.2 Identified set of primary characters Based on the principles described
in the section above, the following morphometric characters compose the final set of
primary characters.3

1. Area of a building is denoted as

(4) ablg

and defined as an area covered by a building footprint in m2 .

2. Height of a building is denoted as

(5) hblg

and defined as building height in m measured optimally as weighted mean height (in
case of buildings with multiple parts of different height). It is a required input value not
measured within the morphometric assessment itself.

3. Volume of a building is denoted as

(6) vblg = ablg × hblg

and defined as building footprint multiplied by its height in m3.

4. Perimeter of a building is denoted as

(7) pblg

and defined as the sum of lengths of the building exterior walls in m.
3For the implementation details, please refer to the original referred work and to the documentation

and code of momepy, which contains Python-based implementation of each character. On top of the
definition and related formulas below, classification of characters and references are in Appendix 7.2.
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5. Courtyard area of a building is denoted as

(8) ablgc

and defined as the sum of areas of interior holes in footprint polygons in m2.

6. Form factor of a building is denoted as

(9) FoFblg = ablg

v
2
3
blg

.

It captures three-dimensional unitless shape characteristic of a building envelope unbiased
by the building size (Bourdic et al., 2012).

7. Volume to façade ratio of a building is denoted as

(10) V FRblg = vblg

pblg×hblg
.

It captures the aspect of the three-dimensional shape of a building envelope able to dis-
tinguish building types, as shown by Schirmer and Axhausen (2015). It can be seen as a
proxy of volumetric compactness.

8. Circular compactness of a building is denoted as

(11) CCoblg = ablg

ablgC

where ablgC is an area of minimal enclosing circle. It captures the relation of building
footprint shape to its minimal enclosing circle, illustrating the similarity of shape and
circle (Dibble et al., 2017).

9. Corners of a building is denoted as

(12) Corblg = ∑n

i=1 cblg
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where cblg is defined as a vertex of building exterior shape with an angle between adjacent
line segments ≤ 170 degrees. It uses only external shape (shapely.geometry.exterior),
courtyards are not included. Character is adapted from (Steiniger et al., 2008) to exclude
non-corner-like vertices.

10. Squareness of a building is denoted as

(13) Squblg =
∑n

i=1 Dcblgi
n

where D is the deviation of angle of corner cblgi
from 90 degrees and n is a number of

corners.

11. Equivalent rectangular index of a building is denoted as

(14) ERIblg =
√

ablg

ablgB
∗ pblgB

pblg

where ablgB is an area of a minimal rotated bounding rectangle of a building (MBR)
footprint and pblgB its perimeter of MBR. It is a measure of shape complexity identified
by Basaraner and Cetinkaya (2017) as the shape characters with the best performance.

12. Elongation of a building is denoted as

(15) Eloblg = lblgB

wblgB

where lblgB is length of MBR and wblgB is width of MBR. It captures the ratio of shorter
to the longer dimension of MBR to indirectly capture the deviation of the shape from a
square (Schirmer and Axhausen, 2015).

13. Centroid - corner distance deviation of a building is denoted as

(16) CCDblg =
√

1
n

∑n

i=1

(
ccdi − ¯ccd

)2
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where ccdi is a distance between centroid and corner i and ¯ccd is mean of all distances. It
captures a variety of shape. As a corner is considered vertex with angle < 170º to reflect
potential circularity of object and topological imprecision of building polygon.

14. Centroid - corner mean distance of a building is denoted as

(17) CCMblg = 1
n

(∑n

i=1 ccdi)

where ccdi is a distance between centroid and corner i. It is a character measuring a
dimension of the object dependent on its shape (Schirmer and Axhausen, 2015).

15. Solar orientation of a building is denoted as

(18) Oriblg = |oblgB − 45|

where oblgB is an orientation of the longest axis of bounding rectangle in a range 0 - 45.
It captures the deviation of orientation from cardinal directions. There are multiple ways
of capturing orientation of a polygon. As reported by Yan et al. (2007), Duchêne et
al. (2003) assessed five different options (longest edge, weighted bisector, wall average,
statistical weighting, bounding rectangle) and concluded a bounding rectangle as the most
appropriate. Deviation from cardinal directions is used to avoid sudden changes between
square-like objects.

16. Street alignment of a building is denoted as

(19) SAlblg = |Oriblg − Oriedg|

where Oriblg is a solar orientation of the building and Oriedg is a solar orientation of the
street edge. It reflects the relationship between the building and its street, whether it is
facing the street directly or indirectly (Schirmer and Axhausen, 2015).

17. Cell alignment of a building is denoted as
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(20) CAlblg = |Oriblg − Oricell|

where Oricell is a solar orientation of tessellation cell. It reflects the relationship between
a building and its cell.

These seventeen characters are capturing aspects of individual building (topological con-
text 0). Following are measuring aspects of tessellation cells on the same level.

18. Longest axis length of a tessellation cell is denoted as

(21) LALcell = dcellC

where dcellC is a diameter of the minimal circumscribed circle around the tessellation cell
polygon. The axis itself does not have to be fully within the polygon. It could be seen as
a proxy of plot depth for tessellation-based analysis.

19. Area of a tessellation cell is denoted as

(22) acell

and defined as an area covered by a tessellation cell footprint in m2.

20. Circular compactness of a tessellation cell is denoted as

(23) CCocell = acell
acellC

where acellC is an area of minimal enclosing circle. It captures the relation of tessellation
cell footprint shape to its minimal enclosing circle, illustrating the similarity of shape and
circle.

21. Equivalent rectangular index of a tessellation cell is denoted as

(24) ERIcell =
√

acell
acellB

∗ pcellB
pcell
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where acellB is an area of the minimal rotated bounding rectangle of a tessellation cell
(MBR) footprint and pcellB its perimeter of MBR. It is a measure of shape complexity
identified by Basaraner and Cetinkaya (2017) as a shape character of the best performance.

22. Solar orientation of a tessellation cell is denoted as

(25) Oricell = |ocellB − 45|

where ocellB is an orientation of the longest axis of bounding rectangle in a range 0 - 45.
It captures the deviation of orientation from cardinal directions.

23. Street alignment of a building is denoted as

(26) SAlcell = |Oricell − Oriedg|

where Oricell is a solar orientation of tessellation cell and Oriedg is a solar orientation of
the street edge. It reflects the relationship between tessellation cell and its street, whether
it is facing the street directly or indirectly.

24. Coverage area ratio of a tessellation cell is denoted as

(27) CARcell = ablg

acell

where ablg is an area of a building and acell is an area of related tessellation cell (Schirmer
and Axhausen, 2015). Coverage area ratio (CAR) is one of the commonly used characters
capturing intensity of development. However, the definitions vary based on the spatial
unit.

25. Floor area ratio of a tessellation cell is denoted as

(28) FARcell = fablg

acell
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where fablg is a floor area of a building and acell is an area of related tessellation cell.
Floor area could be computed based on the number of levels or using an approximation
based on building height.

26. Length of a street segment is denoted as

(29) ledg

and defined as a length of a LineString geometry in metres (Gil et al., 2012; Dibble et
al., 2017).

27. Width of a street profile is denoted as

(30) wsp = 1
n

(∑n

i=1 wi)

where wi is width of a street section i. The algorithm generates street sections every 3
meters alongside the street segment, and measures mean value. In the case of the open-
ended street, 50 metres is used as a perception-based proximity limit (Araldi and Fusco,
2019).

28. Height of a street profile is denoted as

(31) hsp = 1
n

(∑n

i=1 hi)

where hI is mean height of a street section i. The algorithm generates street sections
every 3 meters alongside the street segment, and measures mean value (Araldi and Fusco,
2019).

29. Height to width ratio of a street profile is denoted as

(32) HWRsp = 1
n

(∑n

i=1
hi
wi

)
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where hI is mean height of a street section i and wi is the width of a street section i.
The algorithm generates street sections every 3 meters alongside the street segment, and
measures mean value (Araldi and Fusco, 2019).

30. Openness of a street profile is denoted as

(33) Opesp = 1 −
∑

hit

2
∑

sec

where ∑
hit is a sum of section lines (left and right sides separately) intersecting buildings

and ∑
sec total number of street sections. The algorithm generates street sections every

3 meters alongside the street segment.

31. Width deviation of a street profile is denoted as

(34) wDevsp =
√

1
n

∑n

i=1 (wi − wsp)
2

where wi is width of a street section i and wsp is mean width. The algorithm generates
street sections every 3 meters alongside the street segment.

32. Height deviation of a street profile is denoted as

(35) hDevsp =
√

1
n

∑n

i=1 (hi − hsp)
2

where hi is height of a street section i and hsp is mean height. The algorithm generates
street sections every 3 meters alongside the street segment.

33. Linearity of a street segment is denoted as

(36) Linedg = leucl
ledg

where leucl is Euclidean distance between endpoints of a street segment and ledg is a street
segment length. It captures the deviation of a segment shape from a straight line. It is
adapted from Araldi and Fusco (2019).
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34. Area covered by a street segment is denoted as

(37) aedg = ∑n

i=1 acelli

where acelli
is an area of tessellation cell i belonging to the street segment. It captures

the area which is likely served by each segment.

35. Buildings per meter of a street segment is denoted as

(38) BpMedg =
∑

blg

ledg

where ∑
blg is a number of buildings belonging to a street segment and ledg is a length of

a street segment. It reflects the granularity of development along each segment.

36. Area covered by a street node is denoted as

(39) anode = ∑n

i=1 acelli

where acelli
is an area of tessellation cell i belonging to the street node. It captures the

area which is likely served by each node.

37. Shared walls ratio of adjacent buildings is denoted as

(40) SWRblg = pblgshared
pblg

where pblgshared
is a length of a perimeter shared with adjacent buildings and pblg is a

perimeter of a building. It captures the amount of wall space facing the open space
(Hamaina et al., 2012).

38. Alignment of neighbouring buildings is denoted as

(41) Aliblg = 1
n

∑n

i=1 |Oriblg − Oriblgi
|
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where Oriblg is the solar orientation of a building and Oriblgi
is the solar orientation of

building i on a neighbouring tessellation cell. It calculates the mean deviation of solar
orientation of buildings on adjacent cells from a building. It is adapted from Hijazi et al.
(2016).

39.  Mean distance to neighbouring buildings is denoted as

(42) NDiblg = 1
n

∑n

i=1 dblg,blgi

where dblg,blgi
is a distance between building and building i on a neighbouring tessellation

cell. It is adapted from Hijazi et al. (2016). It captures the average proximity to other
buildings.

40. Weighted neighbours of a tessellation cell is denoted as

(43) WNecell =
∑

celln

pcell

where ∑
celln is a number of cell neighbours and pcell is a perimeter of a cell. It reflects

granularity of morphological tessellation.

41. Area covered by neighbouring cells is denoted as

(44) acelln = ∑n

i=1 acelli

where acelli
is area of tessellation cell i within topological distance 1. It captures the scale

of morphological tessellation.

42. Reached cells by neighbouring segments is denoted as

(45) RCedgn = ∑n

i=1 cellsedgi

where cellsedgi
is number of tessellation cells on segment i within topological distance 1.

It captures accessible granularity.
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43. Reached area by neighbouring segments is denoted as

(46) aedgn = ∑n

i=1 aedgi

where aedgi
is an area covered by a street segment i within topological distance 1. It

captures an accessible area.

44. Degree of a street node is denoted as

(47) degnodei
= ∑

j edgij

where edgij is an edge of a street network between node i and node j. It reflects the basic
degree centrality.

45. Mean distance to neighbouring nodes from a street node is denoted as

(48) MDinode = 1
n

∑n

i=1 dnode,nodei

where dnode,nodei
is a distance between node and node i within topological distance 1. It

captures the average proximity to other nodes.

46. Reached cells by neighbouring nodes is denoted as

(49) RCnoden = ∑n

i=1 cellsnodei

where cellsnodei
is number of tessellation cells on node i within topological distance 1. It

captures accessible granularity.

47. Reached area by neighbouring nodes is denoted as

(50) anoden = ∑n

i=1 anodei
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where anodei
is an area covered by a street node i within topological distance 1. It captures

an accessible area.

48. Number of courtyards of adjacent buildings is denoted as

(51) NCoblgadj

where NCoblgadj
is a number of interior rings of a polygon composed of footprints of

adjacent buildings (Schirmer and Axhausen, 2015).

49. Perimeter wall length of adjacent buildings is denoted as

(52) pblgadj

where pblgadj
is a length of an exterior ring of a polygon composed of footprints of adjacent

buildings.

50. Mean inter-building distance between neighbouring buildings is denoted
as

(53) IBDblg = 1
n

∑n

i=1 dblg,blgi

where dblg,blgi
is a distance between building and building i on a tessellation cell within

topological distance 3. It is adapted from Caruso et al. (2017). It captures the average
proximity between buildings.

51.  Building adjacency of neighbouring buildings is denoted as

(54) BuAblg =
∑

blgadj∑
blg

where ∑
blgadj is a number of joined built-up structures within topological distance three

and ∑
blg is a number of buildings within topological distance 3. It is adapted from

Vanderhaegen and Canters (2017).
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52. Gross floor area ratio of neighbouring tessellation cells is denoted as

(55) GFARcell =
∑n

i=1 F ARcelli∑n
i=1 acelli

where FARcelli
is a floor area ratio of tessellation cell i and acelli

is an area of tessellation
cell i within topological distance 3. Based on Dibble et al. (2017).

53. Weighted reached blocks of neighbouring tessellation cells is denoted as

(56) WRBcell =
∑

blk∑n
i=1 acelli

where ∑
blk is a number of blocks within topological distance three and acelli

is an area
of tessellation cell i within topological distance three.

54. Area of a block is denoted as

(57) ablk

and defined as an area covered by a block footprint in m2.

55. Perimeter of a block is denoted as

(58) pblk

and defined as lengths of the block polygon exterior in m.

56. Circular compactness of a block is denoted as

(59) CCoblk = ablk
ablkC

where ablkC is an area of minimal enclosing circle. It captures the relation of block footprint
shape to its minimal enclosing circle, illustrating the similarity of shape and circle.
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57. Equivalent rectangular index of a block is denoted as

(60) ERIblk =
√

ablk
ablkB

∗ pblkB
pblk

where ablkB is an area of the minimal rotated bounding rectangle of a block (MBR) foot-
print and pblkB its perimeter of MBR.

58. Compactness-weighted axis of a block is denoted as

(61) CWAblk = dblkC ×
(

4
π

− 16(ablk)
p2

blk

)

where dblkC is a diameter of the minimal circumscribed circle around the block polygon,
ablk is an area of a block and pblk is a perimeter of a block. It is a proxy of permeability
of an area.(Feliciotti, 2018)

59. Solar orientation of a block is denoted as

(62) Oriblk = |oblkB − 45|

where oblkB is an orientation of the longest axis of bounding rectangle in a range 0 - 45.
It captures the deviation of orientation from cardinal directions.

60. Weighted neighbours of a block is denoted as

(63) wNblk =
∑

blkn

pblk

where ∑
blkn is a number of block neighbours and pblk is a perimeter of a block. It reflects

granularity of a mesh of blocks.

61.  Weighted cells of a block is denoted as

(64) wCblk =
∑

cell

ablk
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where ∑
cell is a number of cells composing a block and ablk is an area of a block. It

captures the granularity of each block.

62. Local meshedness of a street network is denoted as

(65) Mesnode = e−v+1
2v−5

where e is a number of edges in a subgraph, and v is the number of nodes in a subgraph
(Feliciotti, 2018). A subgraph is defined as a network within topological distance five
around a node.

63. Mean segment length of a street network is denoted as

(66) MSLedg = 1
n

∑n

i=1 ledgi

where ledgi
is a length of a street segment i within a topological distance 3 around a

segment.

64. Cul-de-sac length of a street network is denoted as

(67) CDLnode = ∑n

i=1 ledgi
, if edgi is cul-de-sac

where ledgi
is a length of a street segment i within a topological distance 3 around a node.

65. Reached cells by street network segments is denoted as

(68) RCedg = ∑n

i=1 cellsedgi

where cellsedgi
is number of tessellation cells on segment i within topological distance 3.

It captures accessible granularity.

66. Node density of a street network is denoted as
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(69) Dnode =
∑

node∑n
i=1 ledgi

where ∑
node is a number of nodes within a subgraph and ledgi

is a length of a segment
i within a subgraph. A subgraph is defined as a network within topological distance five
around a node.

67. Reached cells by street network nodes is denoted as

(70) RCnodenet
= ∑n

i=1 cellsnodei

where cellsnodei
is number of tessellation cells on node i within topological distance 3. It

captures accessible granularity.

68. Reached area by street network nodes is denoted as

(71) anodenet
= ∑n

i=1 anodei

where anodei
is an area covered by a street node i within topological distance 3. It captures

an accessible area.

69. Proportion of cul-de-sacs within a street network is denoted as

(72) pCDnode =
∑n

i=1 nodei, if degnodei
=1∑n

i=1 nodei

where nodei is a node whiting topological distance five around a node. Adapted from
(Boeing, 2017b).

70. Proportion of 3-way intersections within a street network is denoted as

(73) p3Wnode =
∑n

i=1 nodei, if degnodei
=3∑n

i=1 nodei
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where nodei is a node whiting topological distance five around a node. Adapted from
(Boeing, 2017b).

71. Proportion of 4-way intersections within a street network is denoted as

(74) p4Wnode =
∑n

i=1 nodei, if degnodei
=4∑n

i=1 nodei

where nodei is a node whiting topological distance five around a node. Adapted from
(Boeing, 2017b).

72. Weighted node density of a street network is denoted as

(75) wDnode =
∑n

i=1 degnodei
−1∑n

i=1 ledgi

where degnodei
is a degree of a node i within a subgraph and ledgi

is a length of a segment
i within a subgraph. A subgraph is defined as a network within topological distance five
around a node.

73. Local closeness centrality of a street network is denoted as

(76) lCCnode = n−1∑n−1
v=1 d(v,u)

where d(v, u) is the shortest-path distance between v and u, and n is the number of nodes
within a subgraph. A subgraph is defined as a network within topological distance five
around a node.

74. Square clustering of a street network is denoted as

(77) sClnode =
∑kv

u=1
∑kv

w=u+1 qv(u,w)∑kv
u=1

∑kv
w=u+1[av(u,w)+qv(u,w)]
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where qv(u, w) are the number of common neighbours of u and w other than v (ie squares),
and av(u, w) = (ku − (1 + qv(u, w) + θuv))(kw − (1 + qv(u, w) + θuw)), where θuw = 1
if u and w are connected and 0 otherwise (Lind et al., 2005).

The final selection consists of 74 morphometric characters spanning across the subsets of
the relational framework and covering all categories, even though not equally.4 The set
is a result of the identification process proposed above. As such, it should provide an
unbiased and non-skewed description of each of the elements.

7.1.2.2 Contextual characters

Looking at the primary characters and their spatial distribution, they could be abrupt
and do not necessarily capture urban patterns as we would like them to (even though all
capture some patterns as per spatial autocorrelation).

The characters defined above have to be expressed using their contextual, spatially lagged
versions to become useful for pattern detection within the recognition model, which does
not employ direct spatial constraints. Context here is defined as vicinity of each tessella-
tion cell within three topological steps on morphological tessellation. That covers approx-
imately 40 nearest neighbours (median 40, standard deviation ~13.4 based on Prague)
providing a balance between the spatial extent large enough to capture a pattern and at
the same time small enough not to over-smooth boundaries between different patterns
(see Appendix 7.3 for sectional diagram analysis).

Within this method, four types of contextual characters are proposed. One is capturing
a local central tendency and three capturing the properties of the distribution of values
within the context. For each of the primary characters, each of the contextual is then
calculated and then used within the clustering algorithm itself. The resulting set of used
characters is then composed of 4 times 74 characters, giving 296 individual contextual
characters.

4The balance across categories within the specific set is not required as different categories offer
different information relevant for different purposes.
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7.1.2.2.1 Local central tendency Statistics knows central tendency as a measure
of a typical value for a probabilistic distribution (Weisberg and Weisberg, 1992, p. 2).
Based on a set of data of unknown distribution, central tendency aims to simplify the
whole set into one representative number. In the case of morphometric characters, we
can measure the central tendency of values of a single character across the whole case
study, but that would not give us much information. As contextual characters are defined
on three topological steps, it is proposed to measure local central tendency, thus a value
unique for each building measured as a typical within its immediate context.

Commonly used measures of central tendency are mean, median or mode (Wilcox and
Keselman, 2003). Each of them fits a different purpose. If one wants to use the arith-
metic mean to determine central values, underlying distribution should not be skewed.
Otherwise, outliers may significantly affect the resulting value. A mode is, by definition,
not suitable for continuous variables like those obtained in primary characters. Median is
the most robust of all, measuring the middle value. However, the robustness comes at a
cost - the shape of a distribution is not reflected at all. Another option is to find a middle
ground between easily distorted mean and robust median using truncated mean. Instead
of computing arithmetic mean of the whole distribution, we can work with interquar-
tile (smallest and largest 25% are omitted) or interdecile (smallest and largest 10% are
omitted) range to minimise the outlier effect on the mean.

The distribution of values of individual characters vary and in some cases, tends to be
skewed. As shown in Appendix 7.4 analysing the difference between mean, interdecile
mean, interquartile mean and median (being equal to extremely truncated mean) on
a selection of 8 characters, it is clear, that majority of data is somewhat asymmetric,
causing volatility of mean, which should not be used in such cases. The question is
then limited to the distinction between the median and truncated means (leaving aside
midhinge and similar estimators). The data indicate that the difference between median
and interquartile mean is minimal (but still present, e.g., in the case of shared walls ratio).
As interquartile mean uses more information than the median, while being similarly robust
to outliers, this research settles on implementation of the interquartile mean as a measure
of local central tendency, denoted as

(78) IQMch = 2
n

∑ 3n
4

i= n
4 +1 chi,
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where ch is selected primary character. Formula assumes sorted values.

7.1.2.2.2 Properties of a distribution Apart from a local central tendency (in the
geographical context sometimes present in literature also as spatial lag (Anselin, 2001)),
which aims to capture representative value, it is fundamental to understand how the
actual distribution of values within the context looks like.

That could be approached in multiple ways. Three notable are 1) capturing the diversity
of values within the local context, 2) measuring the statistical dispersion of values, and
3) measuring similarity of a target and an actual distribution of values, like in the case of
inequality.

7.1.2.2.2.1 Diversity While discussion on the importance of diversity has been cen-
tral to urban discourse since the era of Jane Jacobs (Jacobs, 1961), there is not a very
wide range of characters actually measuring diversity. The research focuses mostly on
Simpson’s diversity index (Bobkova et al., 2017; Feliciotti, 2018), developed initially for
categorical, not continuous variables and hence relying on pre-defined “bins” (classes of
values). For example, Bobkova et al. (2017) use this index to measure the diversity of
plot sizes, but their binning into intervals based on the actual case-specific values makes
the comparability of outcomes limited: if we apply the same formula to another place,
we will get different binning and different results. This appears to be a rather ubiquitous
problem in applying Simpson’s diversity index, i.e., it is necessary to set a finite set of
pre-established bins prior to undertaking the analysis. However, despite the need for ur-
ban morphometric analysis to produce comparable outcomes, it is challenging to ensure
specific descriptiveness to “universal” pre-defined bins. The use of the Simpson’s diver-
sity index in ecology is encouraged (Jost, 2006) because ecologists have a finite number
of groups enabling them to pre-define all bins appropriately (moreover, bins are usually
not defined on a continuous numerical scale). However, this is not often the case in urban
morphology. Simpson’s diversity index and similar characters based on binning provide
values specific to individual cases where binning is set and have to be interpreted as such.

Recent literature shows that there might be alternative ways to measure the diversity of
morphological characters. Caruso et al. (2017) and Araldi and Fusco (2019) applied the
Local Index of Spatial Autocorrelation (LISA) in the form of local Moran’s I, defined as
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“the weighted product of the difference to the mean of the value of a variable at a certain
observation and the same difference for all other observations, with more weight given
to the observations in close spatial proximity.” (Caruso et al., 2017, p. 84) LISA aims
to identify clusters of similar values in space, describing their similarity or dissimilarity,
which could be seen as a proxy for diversity, but due to the limited number of significant
categories (High-High, High-Low, Low-High, Low-Low), its application in this context is
limited and somewhat reductionist.

7.1.2.2.2.2 Statistical dispersion The second approach is to measure statistical dis-
persion, i.e., the ratio to which the distribution is stretched (wide distribution) or squeezed
(narrow distribution). Together with the central tendency, dispersion is often used to de-
scribe the basic properties of distributions.

There are multiple ways of measuring dispersion. The most used are probably standard
deviation, range or interquartile range as examples of dimensional (resulting value have
the same units as the original character) measures. Dimensional measures of dispersion
are the most common as they are generally easy to understand and interpret. Similarly
to the measure of central tendency, all can be measured on the full range of values or a
limited one, usually again as interquartile (IQ) or interdecile (ID) range. Dimensionless
measures are not expressed in the same units as original characters, so while a dimensional
measure of dispersion for building area will be in meters, dimensionless will have no units
(the values are relative). Among dimensionless measures are the coefficient of variation
(CoV) or quartile coefficient of dispersion (QCoD).

7.1.2.2.2.3 Distribution matching The third approach focuses on the comparison
of the actual distribution and the ideal distribution. One example is a test whether such
a distribution follows the principle of the Power Law used by Salat (2017). However, that
is not a straightforward measurement, especially if the distribution is of a different shape;
it is hard to quantify the relationship. Specific distribution is also embedded in the Gini
index customarily used to measure inequality or indirectly in entropy-based indices like
Theil index of inequality (a special case of the generalised entropy index) (Novotnỳ, 2007).
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7.1.2.2.2.4 Comparison of potential characters To understand the properties and
behaviour of potential characters capturing properties of distributions on the real morpho-
metric data, wide selection of the most relevant characters from each group is analysed
as a way of selecting the most appropriate ones to be used as contextual characters.

In terms of diversity measures, the key question is not which one should be used, either
Simpson’s diversity index as in Bobkova et al. (2017) or Gini-Simpson diversity index as
in Feliciotti (2018), but how to define binning as that can significantly affect the resulting
diversity values. For that reason, Simpson’s diversity is tested using natural breaks (Jenks,
1967) (number of classes is based on the Goodness of Absolute Deviation Fit (GADF) (Rey
and Anselin, 2007)), Head Tail breaks (Jiang, 2013) and quantiles (5 and 10 bins). The
reason for the inclusion of Simpson’s diversity index, even though it may not be fully
comparable across cases is the fact that the recognition of tissue types is always local,
always case-specific.

Dimensional characters capturing dispersion included in comparison are standard devia-
tion (SD), range, and absolute deviations (median - MAD, average - AAD). Both standard
deviation and range are measured for IQ, ID and unrestricted range of values. Included di-
mensionless characters are coefficient of variation (CoV), quartile coefficient of dispersion
(QCoD).

The last group is represented by both Gini index, and Theil index; both measured for IQ,
ID and unrestricted range of values.

Using four morphometric characters as test data - area of a building, height of a building,
coverage area ratio of tessellation cell and floor area ratio of tessellation cell, all potential
contextual characters listed above are measured on three topological steps around each
building. Resulting spatial distribution is visually assessed to eliminate those unfit for
pattern recognition, either for relative randomness of result or significant outlier effect
(typically present in measures based on unrestricted range of values). Finally, a correlation
matrix is used to identify potential overlaps and uniqueness of values leading to the
selection of optimal contextual characters.

The results section of this assessment is available in Appendix 7.5.
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7.1.2.2.2.5 Resulting selection of contextual characters While the complete re-
sults of the analysis are available as Appendix 7.5, the main conclusions are as follows.

Because some of the values follow exponential (power-law or similar) distribution within
the whole dataset, the binning method for Simpson’s diversity index has to acknowledge
that. For that reason, HeadTail Breaks are the ideal method as it is specifically tailored
to exponential distributions (Jiang, 2013). Those characters which do not resemble ex-
ponential distribution should use natural breaks or similar classification method sensitive
to the actual distribution, rather than quantiles, which may cause significant disruptions
and very similar values may fall into multiple bins causing high diversity values in place
where is not.

Within measures of statistical dispersion, IQ range and IQ standard deviation are better
in capturing boundaries between types of development and are robust to outliers. In-
terquartile range was used by Dibble et al. (2017) and is easier to interpret. Due to its
definition, CoV tends to infinity when the mean value tends to zero, being very sensitive
to changes of the mean.

Theil index and Gini index are both used to assess inequality, but Theil index, unlike
Gini, is decomposable to within-group inequality and between-group differences (Novotnỳ,
2007), making it more suitable for spatial analysis than Gini index would be. ID values
used within the Theil index are better than other ranges as the resulting analysis is more
sensitive, while outlier effect is still minimal. ID captures, for example, inner structures
of blocks better than IQ, where such structures might be filtered out. It may help to
distinguish between blocks with and without internal buildings.

The final selection of contextual characters is then composed of four distinct uncorrelated
characters. Local central tendency is captured by interquartile mean (IQM) and describe
the most representative value. The local measure of statistical dispersion is represented
by Interquartile range (IQR) as dimensional character which expresses the range of values
around IQM, indicating where the values mostly lie. IQR is denoted as

(79) IQRch = Q3ch − Q1ch,

where Q3ch is third quartile of selected primary character and Q1ch first quartile. Formula
assumes sorted values. Interdecile Theil index (IDT) is denoted as
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(80) IDTch = ∑n

i=1

(
chi∑n

i=1 chi
ln

[
N chi∑n

i=1 chi

])
,

where ch is selected primary character, and describes the (in)equality of distribution of
values. Finally, Simpson’s diversity index (SDI) is denoted as

(81) SDIch =
∑R

i=1 ni(ni−1)
N(N−1) ,

where R is richness expressed as number of bins, ni is the number of features the ith
type and N is the total number of features. It captures the presence of various classes of
values. Together, these four characters have a potential to describe spatial distribution of
morphometric values within a set context.

For the clarity in terms of classification of contextual characters, IQM inherits the cate-
gory from the primary parental character, while IQR, IDT and SDI all fall into diversity
category.

After linking together primary and contextual characters, each of the primary 74 char-
acters is represented by all four contextual, based on the values measured within three
topological steps on morphological tessellation around each building. That gives 296 con-
textual characters in total, the set which is spatially autocorrelated by definition and
hence can be used within the clustering method to identify distinct homogenous clusters
representing tissue types. The fact that all input data for clustering are measured using
this spatially lagged method ensures that spatial clusters should be geographically coher-
ent and mostly continuous. The nature of data allows the use of spatially unconstrained
clustering methods.

Importance of the proper selection of morphometric characters and the effect it may have
on the overall results in not debatable. A robust method described above is employed
starting from the selection of primary morphometric characters from literature and their
adaptation to fit relational framework of the urban form and to minimise the potential
error in selection. The resulting set of 74 characters is established to cover a wide range
of descriptive features capturing urban form configuration from dimensions of individ-
ual elements, through spatial distribution to diversity. Four contextual characters are
introduced to describe a local central tendency and variation in the area capturing mor-
phological patterns, rather than a description of individual elements. These, combined,
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have the potential to capture the nature of each of the primary characters and their
behaviour in the immediate spatial context.

7.1.3 Identification of clusters

The actual identification of urban tissue types is in principle statistical clustering of build-
ing/tessellation cell features with similar information about itself and its context. More-
over, clusters, in this case, need to be contiguous5. As mentioned above, the solution
of the contiguity issue is built in the design of contextual characters. All characters are
spatially autocorrelated by design6. There is a significant overlap between areas used for
computation of contextual characters of two neighbouring cells that indirectly supports
contiguity of clustering. However, this solution may result in less defined boundaries be-
tween two clusters, and every edge of the cluster needs to be interpreted as fuzzy rather
than defined. Specific mitigation of over-smoothing of boundaries is embedded in the
design of contextual characters as they are mostly based on truncated values, which not
only eliminate outlier effect but also result in more defined boundaries.

The general principle of clustering is using the data to iteratively determine the optimal
division of observed data into homogenous clusters. In case of probabilistic methods, this
prediction can have associated probability that the chosen cluster is the correct one and
have the probability of belonging to every other cluster.

Current progress in machine learning brings various methods to choose from. Every clus-
tering method follows different principles and is able to identify different kinds of clusters.
The most common is k-means clustering (MacQueen and others, 1967) and its derivatives

5Contiguity is not easy to accomplish as spatially constrained clustering methods, which are designed
to be contiguous and take into account spatial relationship of clustered elements, like Skater (Assunção
et al. 2006) or Max-p Region Problem (Duque et al. 2012) are computationally inefficient, which is
multiplied by the size of the datasets used within this research. They would not be able to crunch the
amount of data. The second option how to include spatial dimension in clustering is the actual inclusion
of x and y coordinates of each object (in case of building likely x and y coordinates of building centroids).
The geographical coordinates would then become another two dimensions in the dataset. This solution
might work if the number of dimensions is low, and two additional characters could make a significant
effect. As the dataset of contextual characters is in composed of 296 dimensions, the simple inclusion of
two others might not make much of a difference and not ensure any spatial contiguity.

6Median of Moran’s I is 0.77, St.Dev 0.12, with values ranging between 0.42 (Square Clustering of
Street Network Theil Index) and 0.98 (Gross Density Interquartile Mean) all with *p < 0.001*. Complete
Spatial Autocorrelation analysis is available as Appendix 7.6
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(k-medoid (Park and Jun, 2009), k-median (Jain and Dubes, 1988) or Gaussian mixture
models (Reynolds, 2009)). The algorithm divides observations into predefined k clusters
based on the nearest mean value to minimise within-cluster variance based on squared
Euclidean distances between observations (Reynolds, 2009). As a result, clusters tend to
be of a similar size. In the case of urban form, it is unlikely that each urban typology is
equally present, rendering the use of k-means as less fit for the purpose. It is expected
that cluster will be on unequal size and also of unequal density - clusters capturing rigid
patterns will be more densely packed than those capturing more diverse areas. The clus-
tering algorithm needs to take into account all these requirements stemming from the
specificity of urban morphometric data. Moreover, every building is by definition part of
some urban tissue, which could be very heterogeneous, meaning that algorithms expecting
and identifying noise (in this case buildings which do not belong to any cluster) in the
data like DBSCAN (Ester et al., 1996), HDBSCAN (McInnes et al., 2017) or OPTICS
(Ankerst et al., 1999) are not ideal either.

7.1.3.1 Gaussian Mixture Model clustering

Clustering method which does reflect the nature of the problem is the Gaussian Mixture
Model (GMM), a probabilistic derivative of k-means (Reynolds, 2009). Unlike the k-
means itself, it does not rely on squared Euclidean distances only but is based on the
assumption that a Gaussian distribution represents each dimension of each cluster. Hence
the cluster itself is defined by a mixture of Gaussians. Where k-means looks for clusters of
similar extent, GMMs embedded expectation-maximization (EM) algorithm, which allows
identification of different shapes. EM is an iterative method which starts from random
points (like k-means) but can find the maximum likelihood of parameters of expected
underlying Gaussians.

GMM is probabilistic clustering, which means that it defines n components (equal to k
in k-means) and their expected underlying Gaussian distributions and then predicts the
probability that each observation belongs to each cluster. The exemplar observation A
can then belong to cluster 1 with the probability 0.6, to cluster 2 with the probability
0.35 and to clusters 3 - 9 with probability <0.01, considering 9-component-GMM.

The result of GMM applied to the illustrative artificial dataset, as shown on figure 7.1,
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illustrates both resulting labelling, which correctly identifies known clusters, and underly-
ing Gaussian distributions shown as ellipses, where the shade reflects the probability that
the points in hyperspace belong to the selected cluster.
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Figure 7.1: GMM clustering (4 components) of the illustrative artificial two dimensional (x, y) dataset con-
taining four known clusters. All clusters are fairly successfully distinguished. The figure also shows underlying
Gaussian distributions as ellipses reflecting the probability by the change of the shade.

Because in the first step of GMM, the seed points are placed randomly, this placement
might affect the resulting model. This specificity makes GMM non-deterministic cluster-
ing, which means that each run will likely result in (slightly) different clusters. GMM
has to be done repeatedly in several initializations, of which the best should be used to
ensure the stability of the clustering.

Within the context of urban morphology, the method has been applied within
a similar classification task by Jochem et al. (2020). Within this research, a
sklearn.mixture.GaussianMixture() implementation of GMM within open-source
python package scikit-learn v.0.22 (Pedregosa et al., 2011) is used. Further details on
the exact algorithm are available in scikit-learn documentation and code.
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7.1.3.2 Levels of clustering resolution and its scalability

The ideal outcome of the tissue type recognition is each cluster as a distinct urban tissue
type. However, the definition of urban tissue does not specify the threshold when two
similar parts of the city are still the same tissue type and when they become a different one.
This issue is mirrored in the clustering method. The ideal outcome of clustering is the
optimal number of clusters based on the actual structure of the observed data. That might
not be straightforward to determine as better-looking clustering (from the statistical, not
visual perspective) might be just overfitted. Moreover, the relation between resulting
clusters and urban tissues is always questionable as there is no ground truth for either
of them. Detecting 5 large cluster in the whole Prague would likely be based on under-
fitted model and cluster would not represent urban tissues in the traditional sense, but
their aggregations. On the other hand, detecting 100 would likely represent the over-
fitted model, and each cluster would be only a part of a tissue. It is expected that the
statistically optimal number of clusters should be close to what we would typically call
urban tissue. However, this link requires further interpretative work, which should happen
based on the taxonomy of clusters to allow scale-dependent flexibility.

7.1.3.2.1 Number of components Gaussian Mixture Model clustering requires, sim-
ilarly to k-means, specification of a number of components of the model (i.e., clusters)
before clustering. However, that number is usually not known, especially in the case of
urban form. Assumptions can be made based on the expert knowledge, but that would
limit the application and unsupervised nature of the whole process and go against the
prepositions set in chapters 1 and 5.

The way around is to estimate the ideal number of components based on the goodness
of fit of the model for each of them. That means that the GMM is trained multiple
times based on the range of feasible options of the number of components and each of
the models is then assessed against the whole dataset (to determine how well clusters
are distinguished). The assessment is of a quantitative statistical nature, keeping the
method relatively unsupervised. The only input researcher needs to make at this stage
is an interpretation of the resulting values and the curve of the goodness of fit to specify
the number of components for the final clustering.
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7.1.3.2.1.1 Goodness of fit The goodness of fit measures a fit of a trained model
to a set of observations (e.g., the original dataset)(D’Agostino, 1986). It describes how
consistent is the distribution of clustered model to the distribution of the whole dataset.
With K-means clustering is often used silhouette method, which could, in theory, be used
with GMM as well. Another option is measuring the average log-likelihood score. However,
the optimal method for GMM is the Bayesian information criterion (BIC), a model based
partly on the likelihood function (Schwarz and others, 1978). Unlike similar Akaike
information criterion (Akaike, 1973), BIC implements penalisation for a high number of
clusters trying to mitigate possible overfitting of the model.

In practice, BIC is measured for each n within the tested range. The lowest the BIC is,
the better the model represent original data.

The interpretation of the goodness of fit score is not a question of comparing the numbers
only, but understanding the resulting curve. In theory, the lower the BIC score is, the
better the model fits the original data. However, it has to be kept in mind that there
is a certain confidence interval and that BIC itself penalises a higher number of clusters.
The optimal number is not always the one which reaches the lowest BIC score, especially
if the score is within the confidence interval of other options. The clustering aims to
simplify the whole dataset into the smallest number of meaningful clusters, but not too
small. Hence in the situation with multiple options within the same confidence interval,
we should select the first significant minimum, i.e., the smallest number of components
which has its mean score within the confidence interval of the numerically best fit.

In the ideal case, the BIC curve would reach the minimum for an optimal number of
components and then start growing again, making the interpretation relatively straight-
forward. However, due to the possibility of overfitting, the curve may not culminate
but only change the gradient. In such cases, the gradient itself should be analysed and as
optimum should be selected a number of components before the flattening of the gradient.

7.1.3.2.1.2 Stability of procedure Non-deterministic nature of GMM means that
each of the trials should be repeated multiple times to understand what is the confidence
interval of possible outcomes. Testing each number of components only once might lead
to incorrect interpretation of results. The ideal situation is to compute multiple runs (the
higher the number, the better the result) of each option and plot the confidence interval
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to help with the interpretation later. To better understand the magnitude of the effect,
the model should be trained multiple times and resulting BIC score should be reported for
each of them. The same should happen during the final clustering based on the selected
number of components - the model should be initialised repeatedly, and the best of the
resulting models should be kept and used.

The result of clustering is never the same, especially with the amount of the data this
research is using. There is an inevitable variability, but that is mostly represented by
unstable boundaries between clusters rather that significant results in clusters themselves.
The boundaries should never be interpreted as a fixed line. There is always a certain
degree of fuzziness, which could be captured by an overlay of resulting clusters form
multiple models of same parameters.

7.1.3.2.2 Sample-based clustering As the dataset grows, it may become increas-
ingly impossible to perform clustering on the whole dataset, especially if we want our
data with a meaningful confidence interval. The calculation of dimensions between com-
ponents of the model in the hyperspace of 296 dimensions is a demanding task requiring
time and computational power. While data for Prague (~140 000 features) could be pro-
cessed on a desktop with modern multi-core processors within days (multiple options with
a confidence interval, not a single run), that is not true for larger metropolitan areas where
features count can reach millions. The data like this can be run in the same way on cloud-
based services providing significantly more computational power and servers tailored to
data analysis, but this solution can be costly.

For that reason, it might be worth training the method on sampled data before classifying
the whole dataset. Instead of using all features to train the model, randomly samples
subset could be used as a training set for GMM, which, once fitted, could be used to classify
the whole dataset. This solution lowers computational demands as the number of features
used in the learning process is smaller, but there are also issues with it. The random
sample should reflect the structure of the whole dataset to provide results comparable
with GMM trained on the whole dataset. However, that is never entirely true. The larger
the sample is, the more similar to the complete data is, but at the same time, the effect
of sampling on computation is becoming less significant. Even larger samples may, in
some cases, miss smaller clusters present in the full-data clustering as features composing
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these cluster would not be present in the sample (the smaller the cluster, the higher the
probability than it will be missed in the sample).

The decision whether to train GMM on the full or sampled data should reflect the balance
between what is ideal (full) and what is possible in certain conditions. The different
options of sample-based clustering are tested and compared to the default clustering in
the following section, to assess the behaviour of sample-based clustering in the case of
Prague. The behaviour will be likely different at different places as the real structure
and distribution of values affects the sampling-effect. Places with more diverse structure
and several smaller tissues will be probably affected more than places with a homogenous
structure where the likelihood of proper sampling of all clusters is higher.

7.1.3.2.3 Sub-clustering There are situations when resulting clustering is not refined
enough for the specific analysis. The components are too big, and one may want a better
resolution of clustering. One way to do it is to iteratively cluster individual already
identified clusters, i.e. to do sub-clustering of existing clusters.

The morphometric dataset is rich in information, so if there is an assumption that a
cluster should be divided, it is expected that the difference will be reflected in the data.
The reason why it did not split the cluster in two initially is that such a difference is not
significant from the perspective of the whole datasets, but it may be significant on a local
scale. So when it is appropriate, the same data used for initial cluster recognition can be
used again only on the sample belonging to one of the clusters.

The relation of sub-clusters to other than parental cluster is different from the relation
between initial clusters themselves, and the difference has to be retained throughout the
analysis and has to be correctly interpreted. Doing selective sub-clustering and then
approaching initial clusters and sub-clusters as equal is not recommended even though
there might be a particular situation when this approach might be viable. However, it
has to be done consciously after an assessment of possible consequences.

The other way, aggregating clusters together based on their similarly will be discussed in
the next chapter 8.

Either way, it is crucial to acknowledge that clustering is always based on the actual struc-
ture of the used data. That means that the result of clustering is always local. Clusters
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identified in Prague using solely Prague-based data would not be equal to clusters iden-
tified in Amsterdam using Amsterdam-based data only. The structure of both datasets
determines what the optimal division is and as both structures are different, the optimal
division is done along different lines. It is expected that results will be comparable as
the optimal cluster should reflect optimal urban tissues. Chapter 8 will test whether the
misalignment is significant or not to further explore the link between two local clustering
models.

Selection of the clustering model and its parameters affects the results of identification
of urban tissues. The decision has to be made based on detail theoretical considerations
of what the behaviour of morphometric datasets likely is. While many of its properties
are still unknown, based on the assumptions outlined in this sections, it is believed that
GMM, in combination with BIC for determination of the number of GMM components,
can identify distinct homogenous clusters as a proxy of urban tissue types.

7.1.4 Data model

The data model representing the elements of the urban form consists of two input and
three generated layers, all linked together through the proxy of a building based on the
system of unique identifiers according to the structure presented in a table 7.1.

Table 7.1: Presence of different unique identifiers on different data layers. buildings contains all of them
and are used as a connector.

layer uID nID nodeID bID

buildings x x x x
tessellation x
street edges x
street nodes x
blocks x

Buildings are in the role of connecting elements and contain all identifiers. Morphological
tessellation is based on the building layer, and cells hence inherit buildings’ uID. Street
edges are linked to buildings based on the proximity of building centroid to street segment
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geometry (the nearest edge is linked using momepy). Street nodes are linked to buildings
based on proximity either, but linked node has to be end node of linked nearest edge.
Blocks are based on tessellation, and their id is linked to buildings using intersection-
based spatial join during their creation.

Momepy uses unique identifiers to efficiently link elements together without the need for
repeating costly spatial operations for every relevant character.

7.2 Tissue type recognition | Case study Prague

The first trial of the proposed tissue type recognition method outlined above is the case
study of Prague, a dataset which after pre-processing contains 140 315 individual buildings,
22 503 street edges, 16 207 street nodes and 7 395 tessellation-based blocks. Following
section reports on each step of the method in terms of both results and interpretation.
The overall discussion on the method itself, its relevance and applicability is in chapter
9 and includes results of the taxonomical analysis presented in chapter 8. The validation
of results is included in chapter 8.

7.2.1 Primary characters

The basis of the method lies with primary morphometric characters. These continuous
variables describe individual aspects of fundamental elements and their combinations
based on the relational framework. Following the method, all 74 of them are measured in
Prague and then linked to the building-tessellation unit according to the data model. All
morphometric characters are measured using momepy classes using reproducible Jupyter
notebook presented in Appendix N.

The results of measured primary characters can be explored in two ways - 1) to assess a
spatial distribution of values, and 2) to assess statistical distribution of values.
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7.2.1.1 Spatial distribution

The spatial distribution of resulting values, i.e., spatial morphometric patterns, could be
projected on maps and assessed visually, to determine the character of a pattern, or sta-
tistically. Since the aim of measuring is, eventually, to identify homogenous areas defined
by distinct patterns of spatial configuration, each of the characters must capture local pat-
terns. Statistically speaking, each of the characters needs to be spatially autocorrelated,
which can be assessed using Moran’s I (Moran, 1950)7.

Based on the visual assessment, there are three types of characters within the measured
set, represented by three examples below - 1) patterns with sudden changes, 2) smooth
continuous patterns, 3) visually unclear patters.

7The same method has been used during the selection of primary characters to ensure that all capture
spatial patterns. See Appendix 7.6 for details.
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1 km
shared walls ratio of adjacent buildings 

0.0 0.2 0.4 0.6 0.8 1.0

Figure 7.2: Spatial distribution of shared walls ratio of adjacent buildings in the area of Prague’s city centre
and its surroundings. The figure illustrates clear spatial patterns with the presence of sudden changes.

Figure 7.2 shows shared walls ratio of adjacent buildings in the part of Prague’s city
centre. There is a clear distinction between buildings having shared walls and those
standing independently. The values show a relative homogeneity in the centre of the
figure (Vinohrady), but high variability in some other places, especially in the Old Prague
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neighbourhood (top left). There are sudden changes in values on neighbouring tessellation
cells. This pattern is not unique, and it is somewhat expected for characters based on
individual elements as these do not have a notion of contiguity.

1 km
proportion of 4-way intersections of street network

0.0 0.2 0.4 0.6

Figure 7.3: Spatial distribution of the proportion of 4-way intersections of the street network in the area of
Prague’s city centre and its surroundings. The figure illustrates clear continuous spatial patterns with unclear
boundaries between low and high values.

The second example on the figure 7.3 shows proportion of 4-way intersections of street
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network within the same area. This is purely network-based character measuring proper-
ties of subgraphs around each network node (i.e. a junction). Subgraphs, by definition,
overlap causing the smooth transition of values across the study area. It is relatively
simple to describe resulting patterns visually, with high values in more grid-like areas
(Vinohrady - centre, Smíchov - left). However, the definition of boundaries between high
and low values would be a relatively complicated procedure due to the inherent spatial
smoothing. Characters based on a broader topological context tend all to have continuous
patterns like this.
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1 km
equivalent rectangular index of tessellation cell

0.6 0.8 1.0

Figure 7.4: Spatial distribution of equivalent rectangular index of tessellation cell in the area of Prague’s city
centre and its surroundings. Figure illustrates visually unclear spatial patterns.

The last, not very frequent though, is the example on figure 7.4 showing visually unclear
spatial distribution. The figure shows  equivalent rectangular index of tessellation cell in
the same area. To determine spatial patterns visually require much effort, and still, the
results are questionable. This is one of the examples where one might want to exclude
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such character for apparent randomness of resulting values. However, visual assessment
should not be used for such a decision because it is naturally arbitrary and biased based
on the ability of a researcher to detect patterns. For that reason, this work uses Moran’s
I index of spatial autocorrelation to determine whether a character captures meaningful
spatial pattern or not.

Figure 7.5 below shows the value of Moran’s I compared to reference distribution and a
Moran scatterplot based on the contiguity of morphological tessellation. The I value for
the whole of Prague is 0.07, showing significant autocorrelation. It is not a high value,
for a reference two previous example have I 0.387 and 0.912 respectively. However, it is
still significant (the value itself is likely not within a reference distribution), meaning that
even not visually apparent, spatial pattern is still present. The whole set of characters
contains a couple of other examples similar to this one, but overall this situation is not a
frequent one.

Figure 7.5: Reference distribution in relation to actual Moran’s I value and Moran scatterplot of the equivalent
rectangular index of tessellation cell based on the whole Prague. The results indicate significant, however weak
spatial autocorrelation. (Rey and Anselin, 2007)

Due to the large variety of characters attempting to capture both structural complexity
and cross-scale complexity within a single set, the spatial distribution of resulting values
may vary. However, all show significant spatial patterns.
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7.2.1.2 Statistical distribution

Statistical distributions of resulting values are also different, based on the nature of each
character. From the literature is known, that urban context is often described by expo-
nential distributions like a power law (Salat, 2017), but that is far from being a rule for a
selected set of morphometric characters. Figure 7.6 shows four examples of distributions
as captured in Prague.
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Figure 7.6: Histogram of four types of statistical distributions. Circular compactness of tessellation cell (top
left),  the area covered by neighbouring cells (top right), the width of a street profile (bottom left), and degree
of a street node (bottom right).

The first case,  circular compactness of tessellation cell (top left), is slightly skewed Gaus-
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sian distribution with a minimum of values being in one of the extremes. It illustrates
the range of characters with a more or less distorted normal distribution. Median value
tends to be in the middle of the range.

The second case,  area covered by neighbouring cells (top right), tends to follow already
mentioned exponential distribution, with a majority of values being in the lowest extreme
and only a few in the highest. Median value tends to be close to the overall minimum.

The third case,  width of a street profile (bottom left), reflects the specific rule of the spatial
organisation of cities. In this bimodal case, we can see peaks around 22 and 35 metres,
which are likely predominant street widths in the context of Prague. The minor peak at
50 meters is caused by the maximum value of the defaulting to 50 metres in case of open
spaces. Median value tends to be in the middle of the distribution, but that is not the
overall rule for all characters of similar type of distribution.

The last case, degree of a street node (bottom right), is specific as the results are always
integer values with a limited range. Cases like this are a minority. Apart from this
example, only those measuring number of corners show similar behaviour.

These are not the only types of distributions in the set, but they illustrate the variability
of morphometric characters.

Descriptive summary values of all character are presented in table 7.2.

Table 7.2: Overview of the primary morphometric values for the whole case study. The key to character IDs
is available in table A7.3. Units, where applicable are in the section Identified set of primary characters

id mean std min 25% 50% 75% max

sdbAre 260 860 30 87 130 240 89000
sdbHei 9.9 6.7 3 5.5 7.4 12 110
sdbVol 3200 12000 90 550 960 3100 1.3e+06
sdbPer 64 56 20 40 51 67 3000
sdbCoA 2.1 64 0 0 0 0 11000
ssbFoF 1.4 0.57 0.23 1 1.3 1.6 11
ssbVFR 3 1.7 0.43 2.1 2.6 3.5 67
ssbCCo 0.53 0.11 0.026 0.47 0.56 0.61 1
ssbCor 8.8 7.4 0 4 8 10 390
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id mean std min 25% 50% 75% max

ssbSqu 5.3 9.1 9.5e-09 0.48 1.1 5 85
ssbERI 0.94 0.086 0.25 0.91 0.96 1 1.1
ssbElo 0.71 0.2 0.026 0.56 0.74 0.87 1
ssbCCD 1.5 2.2 0 0.068 1 1.9 88
ssbCCM 9.4 6.6 3 6.3 7.6 10 210
stbOri 16 13 0 6.2 13 25 45
stbSAl 6.7 8.9 4.9e-10 0.61 2.5 9.5 45
stbCeA 6.9 9 8.9e-12 0.48 3 9.9 45
sdcLAL 67 42 7.9 40 52 79 970
sdcAre 2100 4100 31 540 940 1900 350000
sscCCo 0.45 0.14 0.027 0.35 0.46 0.55 0.98
sscERI 0.97 0.062 0.43 0.94 0.98 1 1.1
stcOri 18 13 0 7.1 16 29 45
stcSAl 9.2 9.7 1.9e-05 1.5 5.6 14 45
sicCAR 0.2 0.15 0.00092 0.092 0.16 0.26 1
sicFAR 0.67 0.92 0.00092 0.14 0.32 0.74 17
sdsLen 230 260 0.047 110 160 260 3300
sdsSPW 29 8.4 1 22 29 35 50
sdsSPH 10 6.1 0 6.4 8 13 57
sdsSPR 0.41 0.32 0 0.21 0.3 0.49 23
sdsSPO 0.58 0.21 0 0.44 0.58 0.71 1
sdsSWD 3.6 2.1 0 1.9 3.7 5.1 12
sdsSHD 2.3 2.3 0 0.94 1.5 2.7 24
sssLin 0.95 0.13 0 0.97 1 1 1
sdsAre 31000 56000 34 6900 13000 30000 740000
sisBpM 0.075 0.079 0.00056 0.046 0.068 0.095 21
sddAre 30000 46000 86 9400 16000 31000 660000
mtbSWR 0.18 0.2 0 0 0.15 0.32 1
mtbAli 4.8 5.1 1.4e-09 0.9 3 7 44
mtbNDi 25 18 0 13 20 30 200
mtcWNe 0.046 0.022 0.0012 0.03 0.045 0.059 0.26
mdcAre 16000 19000 390 5500 9400 19000 530000

189



Chapter 7. Identification of tissue types through urban morphometrics

id mean std min 25% 50% 75% max

misRea 44 25 1 27 40 55 290
mdsAre 86000 110000 770 33000 53000 94000 1.3e+06
mtdDeg 3.1 0.82 1 3 3 4 6
mtdMDi 170 150 0.047 99 130 190 3300
midRea 52 28 1 33 49 67 270
midAre 97000 110000 770 42000 65000 110000 1.3e+06
libNCo 0.6 3.3 0 0 0 0 58
ldbPWL 180 250 20 51 82 200 3400
ltbIBD 27 11 0 20 25 33 120
ltcBuA 0.65 0.24 0.043 0.49 0.7 0.84 1
licGDe 0.57 0.67 0.0022 0.18 0.35 0.66 5
ltcWRB 9e-05 6.7e-05 1.7e-06 3.9e-05 7.3e-05 0.00012 0.00072
ldkAre 120000 240000 710 15000 31000 110000 2e+06
ldkPer 1500 1800 100 550 830 1700 13000
lskCCo 0.43 0.13 0.11 0.33 0.44 0.53 0.98
lskERI 0.86 0.13 0.35 0.79 0.9 0.96 1.1
lskCWA 360 470 0.43 87 170 430 3100
ltkOri 18 13 0.00098 7 15 28 45
ltkWNB 0.0074 0.0043 0 0.004 0.0066 0.01 0.04
likWBB 0.00089 0.00066 8.3e-06 0.00037 0.00074 0.0013 0.006
lcdMes 0.15 0.06 -0.33 0.11 0.15 0.19 0.34
ldsMSL 150 76 45 110 130 170 1600
ldsCDL 280 390 0 13 160 380 4200
ldsRea 350000 310000 770 190000 260000 400000 4.2e+06
lddNDe 0.013 0.0055 0 0.0095 0.012 0.014 0.13
lddRea 190 86 1 130 190 240 680
lddARe 370000 310000 770 200000 280000 420000 4.2e+06
linPDE 0.13 0.087 0 0.067 0.11 0.17 1
linP3W 0.64 0.11 0 0.57 0.64 0.71 0.97
linP4W 0.23 0.12 0 0.15 0.22 0.3 0.73
linWID 0.025 0.01 0 0.019 0.024 0.029 0.18
lcnClo 5.3e-06 2.5e-06 0 3.4e-06 5.1e-06 6.9e-06 2e-05
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id mean std min 25% 50% 75% max

xcnSCl 0.056 0.087 0 0 0 0.086 1

Without exploring the table 7.2 above in detail, it is worth pointing out two characters
standing out - courtyard area of a building (sdbCoA) and  number of courtyards of adjacent
buildings (libNCo). Both are capturing similar concepts of closed courtyards (either in a
single building or in a composite of adjacent buildings), and both are relatively invariant
(min, 25%, 50% and 75% are all 0). While these might not be critical for identification
of clusters in Prague, there are urban tissues, especially in warmer environments, charac-
terised by these properties. While the overall aim of this research is to be comparable,
not tailored to a specific context, these characters are still included.

Figures 7.7 - 7.11 show histograms capturing the (truncated) distribution of all measured
characters. Note the differences outlined above and overall variety of distributions.
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Figure 7.7: Histograms of characters 1-15 are showing the variety of distributions within the measured primary
data. Histograms illustrate data within percentiles (5, 95) to avoid extreme skewing due to the presence of
outliers. Data in table are presented complete for reference.
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Figure 7.8: Histograms of characters 16-30 are showing the variety of distributions within the measured primary
data. Histograms illustrate data within percentiles (5, 95) to avoid extreme skewing due to the presence of
outliers. Data in table are presented complete for reference.
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Figure 7.9: Histograms of characters 31-45 are showing the variety of distributions within the measured primary
data. Histograms illustrate data within percentiles (5, 95) to avoid extreme skewing due to the presence of
outliers. Data in table are presented complete for reference.
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Figure 7.10: Histograms of characters 45-60 are showing the variety of distributions within the measured
primary data. Histograms illustrate data within percentiles (5, 95) to avoid extreme skewing due to the
presence of outliers. Data in table are presented complete for reference.
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Figure 7.11: Histograms of characters 61-74 are showing the variety of distributions within the measured
primary data. Histograms illustrate data within percentiles (5, 95) to avoid extreme skewing due to the
presence of outliers. Data in table are presented complete for reference.
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7.2.1.3 Statistical relationship of characters

Understanding the relationship between measured characters is an essential aspect of
the morphometric assessment. As specified in section 7.1.2.1.1, characters should not
include many empirical correlations. Collinear characters (those being correlated and
reflecting the same concept) should not be present in the resulting data as they might
skew the hyperspace and adversely affect the result of clustering. As characters do not
follow always follow a normal distribution, Spearman’s rank correlation (Spearman, 1961)
is used to assess the relationship between characters. The results are illustrated in the
correlation matrix on figure 7.12 below.

197



Chapter 7. Identification of tissue types through urban morphometrics
sd

bA
re

sd
bH

ei

sd
bV

ol

sd
bP

er

sd
bC

oA

ss
bF

oF

ss
bV

FR

ss
bC

C
o

ss
bC

or

ss
bS

qu

ss
bE

R
I

ss
bE

lo

ss
bC

C
D

ss
bC

C
M

st
bO

ri

st
bS

A
l

st
bC

eA

sd
cL

A
L

sd
cA

re

ss
cC

C
o

ss
cE

R
I

st
cO

ri

st
cS

A
l

si
cC

A
R

si
cF

A
R

sd
sL

en

sd
sS

P
W

sd
sS

P
H

sd
sS

P
R

sd
sS

P
O

sd
sS

W
D

sd
sS

H
D

ss
sL

in

sd
sA

re

si
sB

pM

sd
dA

re

m
tb

S
W

R

m
tb

A
li

m
tb

N
D

i

m
tc

W
N

e

m
dc

A
re

m
is

R
ea

m
ds

A
re

m
td

D
eg

m
td

M
D

i

m
id

R
ea

m
id

A
re

lib
N

C
o

ld
bP

W
L

ltb
IB

D

ltc
B

uA

lic
G

D
e

ltc
W

R
B

ld
kA

re

ld
kP

er

ls
kC

C
o

ls
kE

R
I

ls
kC

W
A

ltk
O

ri

ltk
W

N
B

lik
W

B
B

lc
dM

es

ld
sM

S
L

ld
sC

D
L

ld
sR

ea

ld
dN

D
e

ld
dR

ea

ld
dA

R
e

lin
P

D
E

lin
P

3W

lin
P

4W

lin
W

ID

lc
nC

lo

xc
nS

C
l

sdbAre

sdbHei

sdbVol

sdbPer

sdbCoA

ssbFoF

ssbVFR

ssbCCo

ssbCor

ssbSqu

ssbERI

ssbElo

ssbCCD

ssbCCM

stbOri

stbSAl

stbCeA

sdcLAL

sdcAre

sscCCo

sscERI

stcOri

stcSAl

sicCAR

sicFAR

sdsLen

sdsSPW

sdsSPH

sdsSPR

sdsSPO

sdsSWD

sdsSHD

sssLin

sdsAre

sisBpM

sddAre

mtbSWR

mtbAli

mtbNDi

mtcWNe

mdcAre

misRea

mdsAre

mtdDeg

mtdMDi

midRea

midAre

libNCo

ldbPWL

ltbIBD

ltcBuA

licGDe

ltcWRB

ldkAre

ldkPer

lskCCo

lskERI

lskCWA

ltkOri

ltkWNB

likWBB

lcdMes

ldsMSL

ldsCDL

ldsRea

lddNDe

lddRea

lddARe

linPDE

linP3W

linP4W

linWID

lcnClo

xcnSCl

1.00 0.52 0.93 0.98 0.11 0.08 0.97 -0.10 0.35 0.12 -0.24 -0.01 0.47 0.93 -0.08 0.03 -0.07 0.43 0.49 0.13 -0.07 -0.08 -0.03 0.30 0.47 0.06 -0.06 0.38 0.35 -0.06 -0.08 0.22 -0.03 0.11 -0.24 0.11 0.01 0.04 0.17 -0.32 0.39 -0.10 0.10 -0.03 0.08 -0.11 0.08 0.27 0.59 0.11 -0.24 0.37 -0.19 0.14 0.12 0.04 -0.01 0.07 -0.05 -0.06 -0.23 -0.03 0.07 0.01 0.09 -0.01 -0.05 0.08 -0.05 -0.04 0.06 0.01 0.00 -0.06

0.52 1.00 0.78 0.45 0.07 -0.75 0.58 0.25 0.20 0.12 -0.03 0.19 0.16 0.46 -0.10 -0.09 -0.31 0.07 0.04 -0.09 -0.08 -0.14 -0.21 0.40 0.78 -0.07 -0.09 0.65 0.55 -0.26 -0.16 0.24 0.05 -0.12 -0.02 -0.12 0.41 -0.09 -0.05 -0.03 -0.00 -0.04 -0.12 0.07 -0.08 -0.03 -0.11 0.34 0.55 -0.10 -0.49 0.52 0.09 -0.11 -0.12 0.04 0.12 -0.12 -0.09 0.17 0.11 0.14 -0.11 -0.14 -0.10 0.07 0.03 -0.09 -0.19 -0.03 0.15 0.13 0.20 0.03

0.93 0.78 1.00 0.88 0.11 -0.25 0.93 0.03 0.33 0.13 -0.18 0.07 0.40 0.85 -0.09 -0.02 -0.18 0.35 0.37 0.05 -0.09 -0.11 -0.10 0.38 0.66 0.02 -0.07 0.54 0.47 -0.14 -0.12 0.26 -0.01 0.04 -0.18 0.04 0.17 -0.01 0.11 -0.25 0.29 -0.09 0.03 0.01 0.04 -0.09 0.02 0.33 0.65 0.05 -0.36 0.48 -0.11 0.06 0.04 0.04 0.04 0.01 -0.07 0.02 -0.13 0.03 0.01 -0.05 0.03 0.01 -0.02 0.03 -0.11 -0.04 0.10 0.06 0.07 -0.03

0.98 0.45 0.88 1.00 0.13 0.15 0.89 -0.24 0.43 0.15 -0.38 -0.09 0.57 0.92 -0.07 0.04 -0.03 0.43 0.49 0.12 -0.11 -0.06 -0.00 0.29 0.42 0.06 -0.07 0.34 0.32 -0.06 -0.05 0.21 -0.04 0.11 -0.22 0.11 -0.01 0.06 0.15 -0.31 0.38 -0.10 0.10 -0.03 0.08 -0.11 0.08 0.27 0.59 0.10 -0.22 0.34 -0.19 0.14 0.12 0.03 -0.01 0.08 -0.04 -0.06 -0.22 -0.04 0.07 0.02 0.09 -0.01 -0.04 0.08 -0.04 -0.03 0.05 0.01 -0.00 -0.07

0.11 0.07 0.11 0.13 1.00 0.05 0.08 -0.08 0.07 0.08 -0.13 -0.02 0.09 0.12 -0.01 0.02 0.00 0.05 0.06 0.01 -0.05 -0.01 0.00 0.09 0.09 -0.01 -0.05 0.07 0.08 -0.06 0.00 0.05 -0.00 0.00 -0.02 -0.01 0.02 0.03 -0.03 -0.03 0.05 -0.03 -0.02 -0.01 -0.02 -0.03 -0.02 0.24 0.11 -0.05 -0.08 0.09 -0.01 0.00 -0.00 0.00 0.01 -0.00 -0.01 0.02 -0.01 -0.01 -0.04 -0.01 -0.02 0.04 -0.02 -0.02 -0.02 0.03 -0.01 0.04 0.04 -0.02

0.08 -0.75 -0.25 0.15 0.05 1.00 -0.00 -0.40 0.07 -0.04 -0.19 -0.25 0.19 0.11 0.07 0.14 0.33 0.25 0.33 0.20 0.02 0.11 0.23 -0.25 -0.57 0.13 0.07 -0.51 -0.43 0.28 0.15 -0.15 -0.08 0.22 -0.14 0.22 -0.52 0.15 0.19 -0.20 0.29 -0.03 0.21 -0.10 0.15 -0.04 0.19 -0.25 -0.26 0.19 0.44 -0.38 -0.24 0.23 0.23 -0.03 -0.16 0.20 0.08 -0.25 -0.30 -0.18 0.19 0.18 0.17 -0.09 -0.07 0.16 0.19 0.02 -0.14 -0.15 -0.24 -0.08

0.97 0.58 0.93 0.89 0.08 -0.00 1.00 0.07 0.25 0.08 -0.08 0.07 0.34 0.90 -0.08 0.01 -0.11 0.41 0.47 0.13 -0.03 -0.08 -0.06 0.30 0.50 0.06 -0.04 0.41 0.36 -0.05 -0.10 0.21 -0.03 0.10 -0.24 0.10 0.02 0.01 0.18 -0.31 0.37 -0.10 0.09 -0.02 0.08 -0.11 0.08 0.25 0.55 0.12 -0.24 0.39 -0.18 0.12 0.10 0.04 0.00 0.06 -0.05 -0.05 -0.22 -0.02 0.07 -0.00 0.08 -0.02 -0.04 0.08 -0.07 -0.04 0.07 0.01 0.01 -0.05

-0.10 0.25 0.03 -0.24 -0.08 -0.40 0.07 1.00 -0.10 -0.10 0.37 0.72 -0.37 -0.23 -0.01 -0.12 -0.17 -0.12 -0.09 0.03 0.19 -0.04 -0.14 -0.03 0.12 -0.07 0.03 0.12 0.07 -0.03 -0.09 -0.03 0.06 -0.12 -0.01 -0.11 0.04 -0.09 0.03 0.08 -0.11 -0.03 -0.10 0.06 -0.07 -0.01 -0.09 -0.02 -0.16 -0.01 -0.01 0.03 0.12 -0.14 -0.13 0.02 0.08 -0.11 -0.01 0.12 0.11 0.11 -0.07 -0.08 -0.09 -0.00 -0.00 -0.08 -0.08 -0.03 0.08 0.03 0.08 0.08

0.35 0.20 0.33 0.43 0.07 0.07 0.25 -0.10 1.00 0.43 -0.79 0.15 0.76 0.13 0.00 0.00 0.09 0.15 0.20 0.10 -0.08 -0.01 0.01 0.08 0.14 -0.07 -0.06 0.08 0.08 -0.06 -0.00 0.00 0.03 -0.06 -0.07 -0.06 -0.12 0.11 0.05 -0.06 0.10 -0.07 -0.06 0.04 -0.06 -0.05 -0.06 0.13 0.16 -0.05 -0.01 0.05 0.04 -0.07 -0.07 0.03 0.06 -0.07 -0.01 0.07 0.02 0.07 -0.07 -0.05 -0.06 0.02 -0.01 -0.06 -0.05 -0.03 0.05 0.04 0.08 0.03

0.12 0.12 0.13 0.15 0.08 -0.04 0.08 -0.10 0.43 1.00 -0.26 0.04 0.38 0.05 0.04 0.02 0.07 -0.08 -0.06 0.05 -0.10 0.02 -0.00 0.17 0.16 -0.11 -0.17 0.14 0.17 -0.18 0.03 0.08 0.06 -0.14 0.04 -0.12 0.08 0.17 -0.16 0.10 -0.09 -0.01 -0.12 0.08 -0.12 0.01 -0.11 0.26 0.17 -0.19 -0.16 0.16 0.14 -0.13 -0.13 0.03 0.08 -0.12 -0.01 0.16 0.13 0.12 -0.13 -0.10 -0.08 0.07 0.07 -0.06 -0.12 -0.02 0.08 0.11 0.18 0.04

-0.24 -0.03 -0.18 -0.38 -0.13 -0.19 -0.08 0.37 -0.79 -0.26 1.00 -0.07 -0.82 -0.08 -0.02 -0.02 -0.14 -0.11 -0.14 -0.07 0.14 -0.02 -0.05 -0.05 -0.03 0.06 0.07 0.04 0.00 0.05 -0.04 0.02 -0.02 0.05 0.02 0.05 0.13 -0.11 -0.00 0.03 -0.06 0.05 0.05 -0.03 0.06 0.04 0.05 -0.10 -0.12 0.07 -0.04 0.03 -0.04 0.05 0.05 -0.02 -0.03 0.05 -0.01 -0.05 -0.02 -0.04 0.07 0.02 0.05 -0.03 0.01 0.05 0.01 0.01 -0.01 -0.03 -0.05 -0.02

-0.01 0.19 0.07 -0.09 -0.02 -0.25 0.07 0.72 0.15 0.04 -0.07 1.00 0.01 -0.20 0.01 -0.10 -0.07 -0.09 -0.04 0.09 0.12 -0.02 -0.10 -0.01 0.09 -0.11 -0.02 0.06 0.04 -0.06 -0.06 -0.05 0.08 -0.15 -0.01 -0.14 -0.04 -0.02 -0.01 0.08 -0.10 -0.05 -0.13 0.08 -0.11 -0.02 -0.12 0.05 -0.12 -0.07 0.03 -0.00 0.15 -0.17 -0.17 0.04 0.10 -0.15 -0.00 0.15 0.13 0.13 -0.11 -0.09 -0.11 0.01 -0.00 -0.10 -0.08 -0.04 0.08 0.04 0.11 0.09

0.47 0.16 0.40 0.57 0.09 0.19 0.34 -0.37 0.76 0.38 -0.82 0.01 1.00 0.30 0.00 0.02 0.12 0.18 0.24 0.12 -0.14 -0.00 0.04 0.15 0.16 -0.05 -0.11 0.08 0.12 -0.09 0.03 0.05 0.02 -0.03 -0.08 -0.03 -0.10 0.13 0.02 -0.10 0.14 -0.08 -0.03 0.02 -0.05 -0.07 -0.04 0.19 0.28 -0.06 -0.05 0.09 -0.00 -0.02 -0.03 0.03 0.03 -0.03 -0.00 0.04 -0.03 0.03 -0.05 -0.02 -0.03 0.03 -0.02 -0.03 -0.03 -0.03 0.03 0.04 0.06 0.00

0.93 0.46 0.85 0.92 0.12 0.11 0.90 -0.23 0.13 0.05 -0.08 -0.20 0.30 1.00 -0.09 0.05 -0.07 0.41 0.44 0.08 -0.10 -0.08 -0.02 0.31 0.45 0.09 -0.06 0.38 0.35 -0.05 -0.07 0.24 -0.05 0.14 -0.21 0.14 0.07 0.02 0.14 -0.32 0.38 -0.08 0.13 -0.05 0.11 -0.09 0.11 0.26 0.61 0.12 -0.27 0.39 -0.22 0.18 0.16 0.03 -0.03 0.11 -0.05 -0.09 -0.24 -0.07 0.10 0.03 0.12 -0.02 -0.03 0.11 -0.04 -0.02 0.04 0.00 -0.02 -0.09

-0.08 -0.10 -0.09 -0.07 -0.01 0.07 -0.08 -0.01 0.00 0.04 -0.02 0.01 0.00 -0.09 1.00 0.05 0.07 0.00 0.01 0.01 0.01 0.62 0.06 -0.09 -0.11 0.01 0.01 -0.14 -0.12 0.03 0.09 -0.08 -0.04 0.01 -0.01 0.00 -0.09 0.18 0.02 -0.01 0.00 -0.01 0.00 -0.01 0.01 -0.01 0.00 -0.07 -0.11 0.04 0.14 -0.15 0.00 -0.00 0.01 -0.05 -0.05 0.02 0.48 -0.02 -0.02 -0.03 0.00 0.03 -0.01 0.01 -0.01 -0.00 0.05 0.03 -0.05 -0.01 -0.01 -0.01

0.03 -0.09 -0.02 0.04 0.02 0.14 0.01 -0.12 0.00 0.02 -0.02 -0.10 0.02 0.05 0.05 1.00 0.19 0.21 0.20 -0.01 -0.02 0.08 0.52 -0.18 -0.16 0.29 -0.01 -0.07 -0.03 0.16 0.29 0.09 -0.60 0.32 -0.17 0.26 -0.11 0.35 0.16 -0.23 0.25 0.00 0.24 -0.18 0.28 -0.05 0.20 -0.11 -0.04 0.24 0.10 -0.12 -0.30 0.30 0.31 -0.14 -0.26 0.29 0.10 -0.32 -0.28 -0.28 0.24 0.21 0.12 -0.04 -0.15 0.10 0.20 0.12 -0.23 -0.12 -0.28 -0.21

-0.07 -0.31 -0.18 -0.03 0.00 0.33 -0.11 -0.17 0.09 0.07 -0.14 -0.07 0.12 -0.07 0.07 0.19 1.00 0.16 0.21 0.14 -0.07 0.26 0.52 -0.30 -0.36 0.05 0.03 -0.25 -0.21 0.18 0.17 -0.05 -0.09 0.09 -0.12 0.10 -0.39 0.28 0.18 -0.12 0.19 -0.04 0.10 -0.07 0.08 -0.06 0.08 -0.14 -0.26 0.14 0.29 -0.25 -0.14 0.12 0.13 -0.04 -0.12 0.12 0.08 -0.14 -0.17 -0.11 0.10 0.10 0.07 -0.04 -0.06 0.06 0.12 0.03 -0.10 -0.08 -0.13 -0.07

0.43 0.07 0.35 0.43 0.05 0.25 0.41 -0.12 0.15 -0.08 -0.11 -0.09 0.18 0.41 0.00 0.21 0.16 1.00 0.92 -0.16 -0.04 0.03 0.18 -0.56 -0.32 0.29 0.24 -0.02 -0.10 0.46 -0.00 -0.01 -0.25 0.44 -0.49 0.42 -0.32 0.20 0.77 -0.84 0.83 -0.17 0.40 -0.21 0.36 -0.23 0.35 -0.18 0.02 0.62 0.19 -0.16 -0.57 0.46 0.43 -0.06 -0.21 0.34 0.07 -0.45 -0.62 -0.32 0.39 0.25 0.29 -0.15 -0.22 0.25 0.22 0.04 -0.17 -0.21 -0.39 -0.21

0.49 0.04 0.37 0.49 0.06 0.33 0.47 -0.09 0.20 -0.06 -0.14 -0.04 0.24 0.44 0.01 0.20 0.21 0.92 1.00 0.18 0.16 0.05 0.20 -0.60 -0.36 0.26 0.21 -0.05 -0.11 0.45 0.02 -0.00 -0.22 0.39 -0.53 0.39 -0.49 0.24 0.79 -0.76 0.85 -0.20 0.37 -0.18 0.33 -0.24 0.32 -0.17 -0.06 0.57 0.26 -0.16 -0.54 0.41 0.39 -0.05 -0.19 0.31 0.07 -0.41 -0.61 -0.28 0.36 0.23 0.27 -0.15 -0.21 0.24 0.19 0.03 -0.15 -0.20 -0.35 -0.19

0.13 -0.09 0.05 0.12 0.01 0.20 0.13 0.03 0.10 0.05 -0.07 0.09 0.12 0.08 0.01 -0.01 0.14 -0.16 0.18 1.00 0.62 0.04 0.05 -0.10 -0.12 -0.07 -0.05 -0.05 -0.03 0.01 0.03 -0.00 0.06 -0.09 -0.10 -0.07 -0.40 0.10 0.09 0.18 0.06 -0.06 -0.07 0.06 -0.06 -0.04 -0.06 0.03 -0.17 -0.08 0.15 0.01 0.07 -0.10 -0.09 0.03 0.04 -0.07 0.00 0.09 0.01 0.07 -0.06 -0.03 -0.02 -0.00 0.02 -0.02 -0.04 -0.03 0.05 0.02 0.07 0.04

-0.07 -0.08 -0.09 -0.11 -0.05 0.02 -0.03 0.19 -0.08 -0.10 0.14 0.12 -0.14 -0.10 0.01 -0.02 -0.07 -0.04 0.16 0.62 1.00 0.01 -0.04 -0.26 -0.21 -0.01 0.06 -0.05 -0.06 0.10 -0.01 -0.05 0.02 -0.02 -0.11 -0.01 -0.30 0.04 0.24 0.08 0.10 -0.06 -0.01 0.01 -0.00 -0.05 -0.01 -0.10 -0.25 0.04 0.14 -0.04 -0.01 -0.03 -0.03 0.01 0.01 -0.02 0.01 0.01 -0.04 0.01 0.01 0.01 0.01 -0.02 -0.02 0.01 -0.00 -0.01 0.01 -0.02 -0.01 0.01

-0.08 -0.14 -0.11 -0.06 -0.01 0.11 -0.08 -0.04 -0.01 0.02 -0.02 -0.02 -0.00 -0.08 0.62 0.08 0.26 0.03 0.05 0.04 0.01 1.00 0.18 -0.13 -0.16 0.02 0.03 -0.14 -0.12 0.06 0.10 -0.06 -0.05 0.03 -0.04 0.03 -0.13 0.17 0.05 -0.04 0.05 -0.02 0.03 -0.03 0.03 -0.03 0.02 -0.09 -0.13 0.07 0.14 -0.14 -0.04 0.04 0.04 -0.05 -0.07 0.05 0.37 -0.05 -0.06 -0.06 0.03 0.05 0.02 0.00 -0.03 0.01 0.07 0.03 -0.07 -0.03 -0.04 -0.03

-0.03 -0.21 -0.10 -0.00 0.00 0.23 -0.06 -0.14 0.01 -0.00 -0.05 -0.10 0.04 -0.02 0.06 0.52 0.52 0.18 0.20 0.05 -0.04 0.18 1.00 -0.24 -0.26 0.19 0.02 -0.16 -0.12 0.19 0.24 0.04 -0.39 0.23 -0.14 0.19 -0.23 0.24 0.17 -0.18 0.22 -0.02 0.18 -0.13 0.19 -0.05 0.15 -0.16 -0.14 0.21 0.20 -0.18 -0.23 0.22 0.23 -0.09 -0.20 0.21 0.09 -0.24 -0.24 -0.20 0.18 0.15 0.10 -0.04 -0.12 0.08 0.16 0.07 -0.17 -0.10 -0.22 -0.14

0.30 0.40 0.38 0.29 0.09 -0.25 0.30 -0.03 0.08 0.17 -0.05 -0.01 0.15 0.31 -0.09 -0.18 -0.30 -0.56 -0.60 -0.10 -0.26 -0.13 -0.24 1.00 0.85 -0.21 -0.28 0.39 0.43 -0.54 -0.09 0.21 0.19 -0.29 0.36 -0.29 0.57 -0.24 -0.72 0.50 -0.53 0.13 -0.28 0.16 -0.26 0.16 -0.25 0.46 0.61 -0.52 -0.53 0.52 0.37 -0.29 -0.29 0.09 0.20 -0.25 -0.12 0.36 0.42 0.26 -0.31 -0.23 -0.20 0.15 0.18 -0.17 -0.25 -0.06 0.20 0.23 0.37 0.13

0.47 0.78 0.66 0.42 0.09 -0.57 0.50 0.12 0.14 0.16 -0.03 0.09 0.16 0.45 -0.11 -0.16 -0.36 -0.32 -0.36 -0.12 -0.21 -0.16 -0.26 0.85 1.00 -0.16 -0.21 0.62 0.59 -0.47 -0.15 0.28 0.14 -0.24 0.21 -0.24 0.59 -0.21 -0.47 0.30 -0.33 0.05 -0.24 0.13 -0.20 0.08 -0.21 0.46 0.69 -0.36 -0.61 0.63 0.27 -0.24 -0.24 0.08 0.19 -0.21 -0.12 0.32 0.32 0.23 -0.25 -0.22 -0.17 0.13 0.13 -0.15 -0.26 -0.06 0.21 0.21 0.33 0.10

0.06 -0.07 0.02 0.06 -0.01 0.13 0.06 -0.07 -0.07 -0.11 0.06 -0.11 -0.05 0.09 0.01 0.29 0.05 0.29 0.26 -0.07 -0.01 0.02 0.19 -0.21 -0.16 1.00 -0.03 -0.05 -0.00 0.26 0.23 0.22 -0.58 0.85 -0.16 0.66 -0.11 0.03 0.24 -0.31 0.33 0.29 0.60 -0.05 0.77 0.27 0.61 -0.14 -0.04 0.38 0.16 -0.13 -0.47 0.46 0.47 -0.27 -0.31 0.45 0.04 -0.52 -0.38 -0.31 0.53 0.32 0.46 -0.28 0.10 0.45 0.20 0.06 -0.17 -0.33 -0.39 -0.19

-0.06 -0.09 -0.07 -0.07 -0.05 0.07 -0.04 0.03 -0.06 -0.17 0.07 -0.02 -0.11 -0.06 0.01 -0.01 0.03 0.24 0.21 -0.05 0.06 0.03 0.02 -0.28 -0.21 -0.03 1.00 -0.16 -0.61 0.44 -0.22 -0.23 0.05 0.03 -0.26 0.10 -0.14 -0.03 0.30 -0.23 0.22 -0.11 0.12 -0.06 0.07 -0.12 0.11 -0.29 -0.15 0.30 0.19 -0.17 -0.17 0.13 0.12 0.01 -0.03 0.09 0.03 -0.14 -0.20 -0.11 0.16 0.10 0.13 -0.10 -0.07 0.12 0.10 0.01 -0.05 -0.13 -0.14 -0.06

0.38 0.65 0.54 0.34 0.07 -0.51 0.41 0.12 0.08 0.14 0.04 0.06 0.08 0.38 -0.14 -0.07 -0.25 -0.02 -0.05 -0.05 -0.05 -0.14 -0.16 0.39 0.62 -0.05 -0.16 1.00 0.84 -0.35 -0.16 0.50 0.03 -0.10 -0.01 -0.11 0.42 -0.08 -0.12 0.03 -0.02 -0.03 -0.11 0.07 -0.07 -0.02 -0.11 0.43 0.55 -0.13 -0.63 0.71 0.09 -0.09 -0.10 0.04 0.13 -0.11 -0.12 0.20 0.11 0.18 -0.14 -0.18 -0.10 0.10 0.05 -0.09 -0.26 -0.05 0.20 0.18 0.25 0.04

0.35 0.55 0.47 0.32 0.08 -0.43 0.36 0.07 0.08 0.17 0.00 0.04 0.12 0.35 -0.12 -0.03 -0.21 -0.10 -0.11 -0.03 -0.06 -0.12 -0.12 0.43 0.59 -0.00 -0.61 0.84 1.00 -0.47 -0.01 0.49 -0.02 -0.06 0.09 -0.10 0.39 -0.05 -0.21 0.10 -0.09 0.02 -0.12 0.06 -0.05 0.02 -0.11 0.46 0.52 -0.20 -0.59 0.64 0.11 -0.10 -0.10 0.02 0.09 -0.10 -0.11 0.19 0.14 0.15 -0.15 -0.16 -0.12 0.11 0.05 -0.11 -0.22 -0.03 0.16 0.18 0.23 0.04

-0.06 -0.26 -0.14 -0.06 -0.06 0.28 -0.05 -0.03 -0.06 -0.18 0.05 -0.06 -0.09 -0.05 0.03 0.16 0.18 0.46 0.45 0.01 0.10 0.06 0.19 -0.54 -0.47 0.26 0.44 -0.35 -0.47 1.00 -0.06 -0.24 -0.20 0.31 -0.57 0.35 -0.36 0.08 0.49 -0.47 0.48 -0.15 0.37 -0.11 0.34 -0.16 0.34 -0.37 -0.32 0.56 0.45 -0.39 -0.42 0.32 0.30 0.01 -0.15 0.23 0.07 -0.37 -0.46 -0.26 0.39 0.25 0.33 -0.21 -0.13 0.31 0.21 0.03 -0.15 -0.27 -0.35 -0.15

-0.08 -0.16 -0.12 -0.05 0.00 0.15 -0.10 -0.09 -0.00 0.03 -0.04 -0.06 0.03 -0.07 0.09 0.29 0.17 -0.00 0.02 0.03 -0.01 0.10 0.24 -0.09 -0.15 0.23 -0.22 -0.16 -0.01 -0.06 1.00 0.24 -0.28 0.19 -0.00 0.13 -0.16 0.22 0.01 -0.01 0.03 0.07 0.11 -0.09 0.17 0.05 0.10 -0.16 -0.15 0.06 0.19 -0.19 -0.10 0.13 0.15 -0.16 -0.22 0.19 0.09 -0.17 -0.09 -0.16 0.11 0.13 0.04 -0.01 -0.05 0.04 0.14 0.10 -0.18 -0.07 -0.14 -0.10

0.22 0.24 0.26 0.21 0.05 -0.15 0.21 -0.03 0.00 0.08 0.02 -0.05 0.05 0.24 -0.08 0.09 -0.05 -0.01 -0.00 -0.00 -0.05 -0.06 0.04 0.21 0.28 0.22 -0.23 0.50 0.49 -0.24 0.24 1.00 -0.16 0.16 -0.00 0.11 0.16 0.02 -0.08 -0.01 0.04 0.11 0.10 0.01 0.17 0.10 0.10 0.18 0.28 -0.01 -0.29 0.39 -0.07 0.09 0.09 -0.09 -0.08 0.10 -0.06 -0.02 -0.03 -0.01 0.08 0.00 0.09 -0.02 0.09 0.09 -0.08 0.03 0.04 0.01 0.04 -0.05

-0.03 0.05 -0.01 -0.04 -0.00 -0.08 -0.03 0.06 0.03 0.06 -0.02 0.08 0.02 -0.05 -0.04 -0.60 -0.09 -0.25 -0.22 0.06 0.02 -0.05 -0.39 0.19 0.14 -0.58 0.05 0.03 -0.02 -0.20 -0.28 -0.16 1.00 -0.54 0.19 -0.41 0.09 -0.17 -0.19 0.26 -0.28 -0.09 -0.36 0.16 -0.47 -0.03 -0.32 0.14 0.03 -0.32 -0.10 0.13 0.38 -0.36 -0.37 0.19 0.31 -0.35 -0.09 0.42 0.33 0.32 -0.34 -0.25 -0.19 0.11 0.14 -0.17 -0.22 -0.10 0.23 0.18 0.37 0.21

0.11 -0.12 0.04 0.11 0.00 0.22 0.10 -0.12 -0.06 -0.14 0.05 -0.15 -0.03 0.14 0.01 0.32 0.09 0.44 0.39 -0.09 -0.02 0.03 0.23 -0.29 -0.24 0.85 0.03 -0.10 -0.06 0.31 0.19 0.16 -0.54 1.00 -0.09 0.76 -0.17 0.04 0.33 -0.46 0.50 0.20 0.69 -0.22 0.72 0.14 0.65 -0.19 -0.04 0.52 0.21 -0.21 -0.67 0.64 0.63 -0.25 -0.38 0.57 0.06 -0.68 -0.58 -0.44 0.59 0.38 0.47 -0.24 -0.06 0.44 0.30 0.07 -0.25 -0.33 -0.56 -0.28

-0.24 -0.02 -0.18 -0.22 -0.02 -0.14 -0.24 -0.01 -0.07 0.04 0.02 -0.01 -0.08 -0.21 -0.01 -0.17 -0.12 -0.49 -0.53 -0.10 -0.11 -0.04 -0.14 0.36 0.21 -0.16 -0.26 -0.01 0.09 -0.57 -0.00 -0.00 0.19 -0.09 1.00 -0.20 0.29 -0.19 -0.45 0.52 -0.56 0.36 -0.23 0.02 -0.26 0.34 -0.21 0.10 0.08 -0.46 -0.23 0.08 0.32 -0.16 -0.14 -0.03 0.05 -0.08 -0.06 0.19 0.44 0.15 -0.26 -0.17 -0.22 0.15 0.19 -0.21 -0.09 -0.02 0.07 0.17 0.17 0.10

0.11 -0.12 0.04 0.11 -0.01 0.22 0.10 -0.11 -0.06 -0.12 0.05 -0.14 -0.03 0.14 0.00 0.26 0.10 0.42 0.39 -0.07 -0.01 0.03 0.19 -0.29 -0.24 0.66 0.10 -0.11 -0.10 0.35 0.13 0.11 -0.41 0.76 -0.20 1.00 -0.18 0.05 0.32 -0.46 0.49 0.36 0.84 -0.06 0.85 0.30 0.82 -0.17 -0.04 0.51 0.22 -0.21 -0.65 0.57 0.56 -0.17 -0.31 0.49 0.04 -0.62 -0.55 -0.39 0.64 0.37 0.58 -0.32 0.06 0.57 0.27 0.04 -0.20 -0.38 -0.54 -0.21

0.01 0.41 0.17 -0.01 0.02 -0.52 0.02 0.04 -0.12 0.08 0.13 -0.04 -0.10 0.07 -0.09 -0.11 -0.39 -0.32 -0.49 -0.40 -0.30 -0.13 -0.23 0.57 0.59 -0.11 -0.14 0.42 0.39 -0.36 -0.16 0.16 0.09 -0.17 0.29 -0.18 1.00 -0.23 -0.44 0.25 -0.37 0.10 -0.17 0.08 -0.15 0.11 -0.16 0.38 0.68 -0.29 -0.63 0.44 0.22 -0.18 -0.18 0.07 0.16 -0.17 -0.09 0.22 0.31 0.16 -0.19 -0.16 -0.14 0.12 0.11 -0.13 -0.18 -0.04 0.15 0.17 0.24 0.06

0.04 -0.09 -0.01 0.06 0.03 0.15 0.01 -0.09 0.11 0.17 -0.11 -0.02 0.13 0.02 0.18 0.35 0.28 0.20 0.24 0.10 0.04 0.17 0.24 -0.24 -0.21 0.03 -0.03 -0.08 -0.05 0.08 0.22 0.02 -0.17 0.04 -0.19 0.05 -0.23 1.00 0.23 -0.16 0.22 -0.09 0.06 -0.09 0.06 -0.11 0.03 -0.03 -0.12 0.13 0.15 -0.12 -0.12 0.11 0.11 -0.08 -0.14 0.11 0.12 -0.11 -0.14 -0.14 0.07 0.09 0.03 0.01 -0.08 0.03 0.10 0.09 -0.15 -0.03 -0.07 -0.13

0.17 -0.05 0.11 0.15 -0.03 0.19 0.18 0.03 0.05 -0.16 -0.00 -0.01 0.02 0.14 0.02 0.16 0.18 0.77 0.79 0.09 0.24 0.05 0.17 -0.72 -0.47 0.24 0.30 -0.12 -0.21 0.49 0.01 -0.08 -0.19 0.33 -0.45 0.32 -0.44 0.23 1.00 -0.58 0.72 -0.15 0.31 -0.16 0.30 -0.18 0.28 -0.35 -0.24 0.62 0.31 -0.24 -0.46 0.35 0.34 -0.09 -0.21 0.29 0.07 -0.35 -0.48 -0.26 0.34 0.21 0.24 -0.16 -0.17 0.21 0.20 0.05 -0.16 -0.22 -0.33 -0.16

-0.32 -0.03 -0.25 -0.31 -0.03 -0.20 -0.31 0.08 -0.06 0.10 0.03 0.08 -0.10 -0.32 -0.01 -0.23 -0.12 -0.84 -0.76 0.18 0.08 -0.04 -0.18 0.50 0.30 -0.31 -0.23 0.03 0.10 -0.47 -0.01 -0.01 0.26 -0.46 0.52 -0.46 0.25 -0.16 -0.58 1.00 -0.74 0.19 -0.44 0.23 -0.39 0.25 -0.38 0.17 -0.00 -0.64 -0.23 0.16 0.60 -0.50 -0.47 0.07 0.23 -0.38 -0.07 0.49 0.66 0.34 -0.42 -0.28 -0.31 0.16 0.24 -0.28 -0.24 -0.04 0.18 0.23 0.42 0.23

0.39 -0.00 0.29 0.38 0.05 0.29 0.37 -0.11 0.10 -0.09 -0.06 -0.10 0.14 0.38 0.00 0.25 0.19 0.83 0.85 0.06 0.10 0.05 0.22 -0.53 -0.33 0.33 0.22 -0.02 -0.09 0.48 0.03 0.04 -0.28 0.50 -0.56 0.49 -0.37 0.22 0.72 -0.74 1.00 -0.21 0.47 -0.25 0.41 -0.28 0.41 -0.16 -0.02 0.71 0.23 -0.15 -0.71 0.53 0.50 -0.07 -0.25 0.40 0.07 -0.52 -0.72 -0.37 0.45 0.30 0.34 -0.16 -0.27 0.30 0.25 0.04 -0.19 -0.23 -0.45 -0.24

-0.10 -0.04 -0.09 -0.10 -0.03 -0.03 -0.10 -0.03 -0.07 -0.01 0.05 -0.05 -0.08 -0.08 -0.01 0.00 -0.04 -0.17 -0.20 -0.06 -0.06 -0.02 -0.02 0.13 0.05 0.29 -0.11 -0.03 0.02 -0.15 0.07 0.11 -0.09 0.20 0.36 0.36 0.10 -0.09 -0.15 0.19 -0.21 1.00 0.48 0.26 0.38 0.86 0.45 0.02 0.02 -0.16 -0.07 0.02 0.02 0.09 0.10 -0.10 -0.08 0.12 -0.05 -0.09 0.16 0.05 0.21 0.05 0.36 -0.21 0.57 0.36 -0.02 -0.05 0.07 -0.17 -0.04 0.07

0.10 -0.12 0.03 0.10 -0.02 0.21 0.09 -0.10 -0.06 -0.12 0.05 -0.13 -0.03 0.13 0.00 0.24 0.10 0.40 0.37 -0.07 -0.01 0.03 0.18 -0.28 -0.24 0.60 0.12 -0.11 -0.12 0.37 0.11 0.10 -0.36 0.69 -0.23 0.84 -0.17 0.06 0.31 -0.44 0.47 0.48 1.00 -0.03 0.77 0.33 0.88 -0.18 -0.05 0.51 0.22 -0.21 -0.65 0.57 0.56 -0.15 -0.31 0.48 0.04 -0.64 -0.55 -0.40 0.70 0.40 0.68 -0.34 0.10 0.65 0.29 0.03 -0.20 -0.41 -0.55 -0.20

-0.03 0.07 0.01 -0.03 -0.01 -0.10 -0.02 0.06 0.04 0.08 -0.03 0.08 0.02 -0.05 -0.01 -0.18 -0.07 -0.21 -0.18 0.06 0.01 -0.03 -0.13 0.16 0.13 -0.05 -0.06 0.07 0.06 -0.11 -0.09 0.01 0.16 -0.22 0.02 -0.06 0.08 -0.09 -0.16 0.23 -0.25 0.26 -0.03 1.00 -0.09 0.46 0.14 0.13 0.03 -0.26 -0.09 0.13 0.36 -0.32 -0.33 0.14 0.24 -0.30 -0.05 0.34 0.28 0.37 -0.17 -0.11 0.09 -0.10 0.49 0.20 -0.21 -0.17 0.31 0.00 0.47 0.29

0.08 -0.08 0.04 0.08 -0.02 0.15 0.08 -0.07 -0.06 -0.12 0.06 -0.11 -0.05 0.11 0.01 0.28 0.08 0.36 0.33 -0.06 -0.00 0.03 0.19 -0.26 -0.20 0.77 0.07 -0.07 -0.05 0.34 0.17 0.17 -0.47 0.72 -0.26 0.85 -0.15 0.06 0.30 -0.39 0.41 0.38 0.77 -0.09 1.00 0.32 0.75 -0.17 -0.05 0.47 0.20 -0.16 -0.57 0.53 0.53 -0.23 -0.32 0.48 0.05 -0.58 -0.47 -0.37 0.66 0.39 0.56 -0.34 0.11 0.55 0.24 0.05 -0.19 -0.40 -0.51 -0.23

-0.11 -0.03 -0.09 -0.11 -0.03 -0.04 -0.11 -0.01 -0.05 0.01 0.04 -0.02 -0.07 -0.09 -0.01 -0.05 -0.06 -0.23 -0.24 -0.04 -0.05 -0.03 -0.05 0.16 0.08 0.27 -0.12 -0.02 0.02 -0.16 0.05 0.10 -0.03 0.14 0.34 0.30 0.11 -0.11 -0.18 0.25 -0.28 0.86 0.33 0.46 0.32 1.00 0.47 0.04 0.01 -0.24 -0.07 0.04 0.14 -0.02 -0.00 -0.08 -0.01 0.03 -0.06 0.01 0.24 0.16 0.16 -0.01 0.34 -0.24 0.71 0.40 -0.10 -0.07 0.14 -0.17 0.09 0.17

0.08 -0.11 0.02 0.08 -0.02 0.19 0.08 -0.09 -0.06 -0.11 0.05 -0.12 -0.04 0.11 0.00 0.20 0.08 0.35 0.32 -0.06 -0.01 0.02 0.15 -0.25 -0.21 0.61 0.11 -0.11 -0.11 0.34 0.10 0.10 -0.32 0.65 -0.21 0.82 -0.16 0.03 0.28 -0.38 0.41 0.45 0.88 0.14 0.75 0.47 1.00 -0.16 -0.05 0.46 0.22 -0.19 -0.58 0.48 0.47 -0.14 -0.25 0.40 0.03 -0.56 -0.48 -0.33 0.70 0.37 0.73 -0.40 0.22 0.75 0.23 0.03 -0.15 -0.44 -0.48 -0.11

0.27 0.34 0.33 0.27 0.24 -0.25 0.25 -0.02 0.13 0.26 -0.10 0.05 0.19 0.26 -0.07 -0.11 -0.14 -0.18 -0.17 0.03 -0.10 -0.09 -0.16 0.46 0.46 -0.14 -0.29 0.43 0.46 -0.37 -0.16 0.18 0.14 -0.19 0.10 -0.17 0.38 -0.03 -0.35 0.17 -0.16 0.02 -0.18 0.13 -0.17 0.04 -0.16 1.00 0.49 -0.38 -0.49 0.49 0.21 -0.20 -0.23 0.15 0.25 -0.25 -0.10 0.28 0.24 0.24 -0.24 -0.21 -0.13 0.11 0.14 -0.11 -0.27 -0.10 0.23 0.21 0.32 0.09

0.59 0.55 0.65 0.59 0.11 -0.26 0.55 -0.16 0.16 0.17 -0.12 -0.12 0.28 0.61 -0.11 -0.04 -0.26 0.02 -0.06 -0.17 -0.25 -0.13 -0.14 0.61 0.69 -0.04 -0.15 0.55 0.52 -0.32 -0.15 0.28 0.03 -0.04 0.08 -0.04 0.68 -0.12 -0.24 -0.00 -0.02 0.02 -0.05 0.03 -0.05 0.01 -0.05 0.49 1.00 -0.16 -0.66 0.59 0.02 -0.01 -0.03 0.07 0.10 -0.05 -0.10 0.11 0.08 0.07 -0.09 -0.10 -0.04 0.09 0.06 -0.03 -0.16 -0.05 0.14 0.14 0.17 -0.02

0.11 -0.10 0.05 0.10 -0.05 0.19 0.12 -0.01 -0.05 -0.19 0.07 -0.07 -0.06 0.12 0.04 0.24 0.14 0.62 0.57 -0.08 0.04 0.07 0.21 -0.52 -0.36 0.38 0.30 -0.13 -0.20 0.56 0.06 -0.01 -0.32 0.52 -0.46 0.51 -0.29 0.13 0.62 -0.64 0.71 -0.16 0.51 -0.26 0.47 -0.24 0.46 -0.38 -0.16 1.00 0.39 -0.32 -0.75 0.55 0.54 -0.14 -0.35 0.47 0.10 -0.58 -0.69 -0.46 0.54 0.36 0.38 -0.22 -0.30 0.35 0.33 0.07 -0.26 -0.32 -0.55 -0.25

-0.24 -0.49 -0.36 -0.22 -0.08 0.44 -0.24 -0.01 -0.01 -0.16 -0.04 0.03 -0.05 -0.27 0.14 0.10 0.29 0.19 0.26 0.15 0.14 0.14 0.20 -0.53 -0.61 0.16 0.19 -0.63 -0.59 0.45 0.19 -0.29 -0.10 0.21 -0.23 0.22 -0.63 0.15 0.31 -0.23 0.23 -0.07 0.22 -0.09 0.20 -0.07 0.22 -0.49 -0.66 0.39 1.00 -0.73 -0.24 0.20 0.21 -0.09 -0.20 0.21 0.15 -0.30 -0.31 -0.21 0.26 0.21 0.19 -0.19 -0.13 0.17 0.27 0.06 -0.23 -0.27 -0.34 -0.05

0.37 0.52 0.48 0.34 0.09 -0.38 0.39 0.03 0.05 0.16 0.03 -0.00 0.09 0.39 -0.15 -0.12 -0.25 -0.16 -0.16 0.01 -0.04 -0.14 -0.18 0.52 0.63 -0.13 -0.17 0.71 0.64 -0.39 -0.19 0.39 0.13 -0.21 0.08 -0.21 0.44 -0.12 -0.24 0.16 -0.15 0.02 -0.21 0.13 -0.16 0.04 -0.19 0.49 0.59 -0.32 -0.73 1.00 0.22 -0.18 -0.19 0.08 0.18 -0.17 -0.17 0.34 0.24 0.26 -0.23 -0.24 -0.13 0.13 0.17 -0.10 -0.35 -0.08 0.29 0.25 0.39 0.07

-0.19 0.09 -0.11 -0.19 -0.01 -0.24 -0.18 0.12 0.04 0.14 -0.04 0.15 -0.00 -0.22 0.00 -0.30 -0.14 -0.57 -0.54 0.07 -0.01 -0.04 -0.23 0.37 0.27 -0.47 -0.17 0.09 0.11 -0.42 -0.10 -0.07 0.38 -0.67 0.32 -0.65 0.22 -0.12 -0.46 0.60 -0.71 0.02 -0.65 0.36 -0.57 0.14 -0.58 0.21 0.02 -0.75 -0.24 0.22 1.00 -0.72 -0.70 0.16 0.40 -0.59 -0.07 0.77 0.75 0.59 -0.63 -0.46 -0.45 0.20 0.30 -0.40 -0.43 -0.06 0.33 0.34 0.70 0.32

0.14 -0.11 0.06 0.14 0.00 0.23 0.12 -0.14 -0.07 -0.13 0.05 -0.17 -0.02 0.18 -0.00 0.30 0.12 0.46 0.41 -0.10 -0.03 0.04 0.22 -0.29 -0.24 0.46 0.13 -0.09 -0.10 0.32 0.13 0.09 -0.36 0.64 -0.16 0.57 -0.18 0.11 0.35 -0.50 0.53 0.09 0.57 -0.32 0.53 -0.02 0.48 -0.20 -0.01 0.55 0.20 -0.18 -0.72 1.00 0.98 -0.32 -0.63 0.87 0.08 -0.83 -0.78 -0.52 0.54 0.43 0.38 -0.16 -0.17 0.33 0.39 0.06 -0.31 -0.28 -0.58 -0.36

0.12 -0.12 0.04 0.12 -0.00 0.23 0.10 -0.13 -0.07 -0.13 0.05 -0.17 -0.03 0.16 0.01 0.31 0.13 0.43 0.39 -0.09 -0.03 0.04 0.23 -0.29 -0.24 0.47 0.12 -0.10 -0.10 0.30 0.15 0.09 -0.37 0.63 -0.14 0.56 -0.18 0.11 0.34 -0.47 0.50 0.10 0.56 -0.33 0.53 -0.00 0.47 -0.23 -0.03 0.54 0.21 -0.19 -0.70 0.98 1.00 -0.45 -0.73 0.94 0.09 -0.83 -0.74 -0.52 0.53 0.42 0.37 -0.15 -0.16 0.32 0.39 0.08 -0.33 -0.28 -0.57 -0.36

0.04 0.04 0.04 0.03 0.00 -0.03 0.04 0.02 0.03 0.03 -0.02 0.04 0.03 0.03 -0.05 -0.14 -0.04 -0.06 -0.05 0.03 0.01 -0.05 -0.09 0.09 0.08 -0.27 0.01 0.04 0.02 0.01 -0.16 -0.09 0.19 -0.25 -0.03 -0.17 0.07 -0.08 -0.09 0.07 -0.07 -0.10 -0.15 0.14 -0.23 -0.08 -0.14 0.15 0.07 -0.14 -0.09 0.08 0.16 -0.32 -0.45 1.00 0.66 -0.68 -0.07 0.34 0.13 0.21 -0.19 -0.12 -0.09 0.06 0.02 -0.08 -0.15 -0.15 0.22 0.13 0.21 0.14

-0.01 0.12 0.04 -0.01 0.01 -0.16 0.00 0.08 0.06 0.08 -0.03 0.10 0.03 -0.03 -0.05 -0.26 -0.12 -0.21 -0.19 0.04 0.01 -0.07 -0.20 0.20 0.19 -0.31 -0.03 0.13 0.09 -0.15 -0.22 -0.08 0.31 -0.38 0.05 -0.31 0.16 -0.14 -0.21 0.23 -0.25 -0.08 -0.31 0.24 -0.32 -0.01 -0.25 0.25 0.10 -0.35 -0.20 0.18 0.40 -0.63 -0.73 0.66 1.00 -0.86 -0.13 0.55 0.40 0.37 -0.31 -0.27 -0.18 0.06 0.12 -0.15 -0.29 -0.12 0.29 0.16 0.36 0.26

0.07 -0.12 0.01 0.08 -0.00 0.20 0.06 -0.11 -0.07 -0.12 0.05 -0.15 -0.03 0.11 0.02 0.29 0.12 0.34 0.31 -0.07 -0.02 0.05 0.21 -0.25 -0.21 0.45 0.09 -0.11 -0.10 0.23 0.19 0.10 -0.35 0.57 -0.08 0.49 -0.17 0.11 0.29 -0.38 0.40 0.12 0.48 -0.30 0.48 0.03 0.40 -0.25 -0.05 0.47 0.21 -0.17 -0.59 0.87 0.94 -0.68 -0.86 1.00 0.10 -0.76 -0.61 -0.48 0.47 0.37 0.31 -0.13 -0.13 0.27 0.36 0.11 -0.33 -0.25 -0.51 -0.33

-0.05 -0.09 -0.07 -0.04 -0.01 0.08 -0.05 -0.01 -0.01 -0.01 -0.01 -0.00 -0.00 -0.05 0.48 0.10 0.08 0.07 0.07 0.00 0.01 0.37 0.09 -0.12 -0.12 0.04 0.03 -0.12 -0.11 0.07 0.09 -0.06 -0.09 0.06 -0.06 0.04 -0.09 0.12 0.07 -0.07 0.07 -0.05 0.04 -0.05 0.05 -0.06 0.03 -0.10 -0.10 0.10 0.15 -0.17 -0.07 0.08 0.09 -0.07 -0.13 0.10 1.00 -0.10 -0.11 -0.09 0.05 0.08 0.01 0.02 -0.08 0.00 0.10 0.03 -0.09 -0.03 -0.08 -0.06

-0.06 0.17 0.02 -0.06 0.02 -0.25 -0.05 0.12 0.07 0.16 -0.05 0.15 0.04 -0.09 -0.02 -0.32 -0.14 -0.45 -0.41 0.09 0.01 -0.05 -0.24 0.36 0.32 -0.52 -0.14 0.20 0.19 -0.37 -0.17 -0.02 0.42 -0.68 0.19 -0.62 0.22 -0.11 -0.35 0.49 -0.52 -0.09 -0.64 0.34 -0.58 0.01 -0.56 0.28 0.11 -0.58 -0.30 0.34 0.77 -0.83 -0.83 0.34 0.55 -0.76 -0.10 1.00 0.75 0.63 -0.64 -0.49 -0.42 0.22 0.24 -0.37 -0.49 -0.11 0.42 0.38 0.72 0.33

-0.23 0.11 -0.13 -0.22 -0.01 -0.30 -0.22 0.11 0.02 0.13 -0.02 0.13 -0.03 -0.24 -0.02 -0.28 -0.17 -0.62 -0.61 0.01 -0.04 -0.06 -0.24 0.42 0.32 -0.38 -0.20 0.11 0.14 -0.46 -0.09 -0.03 0.33 -0.58 0.44 -0.55 0.31 -0.14 -0.48 0.66 -0.72 0.16 -0.55 0.28 -0.47 0.24 -0.48 0.24 0.08 -0.69 -0.31 0.24 0.75 -0.78 -0.74 0.13 0.40 -0.61 -0.11 0.75 1.00 0.49 -0.54 -0.41 -0.39 0.19 0.32 -0.34 -0.36 -0.04 0.27 0.29 0.57 0.29

-0.03 0.14 0.03 -0.04 -0.01 -0.18 -0.02 0.11 0.07 0.12 -0.04 0.13 0.03 -0.07 -0.03 -0.28 -0.11 -0.32 -0.28 0.07 0.01 -0.06 -0.20 0.26 0.23 -0.31 -0.11 0.18 0.15 -0.26 -0.16 -0.01 0.32 -0.44 0.15 -0.39 0.16 -0.14 -0.26 0.34 -0.37 0.05 -0.40 0.37 -0.37 0.16 -0.33 0.24 0.07 -0.46 -0.21 0.26 0.59 -0.52 -0.52 0.21 0.37 -0.48 -0.09 0.63 0.49 1.00 -0.55 -0.56 -0.27 0.01 0.38 -0.22 -0.71 -0.16 0.62 0.27 0.68 0.37

0.07 -0.11 0.01 0.07 -0.04 0.19 0.07 -0.07 -0.07 -0.13 0.07 -0.11 -0.05 0.10 0.00 0.24 0.10 0.39 0.36 -0.06 0.01 0.03 0.18 -0.31 -0.25 0.53 0.16 -0.14 -0.15 0.39 0.11 0.08 -0.34 0.59 -0.26 0.64 -0.19 0.07 0.34 -0.42 0.45 0.21 0.70 -0.17 0.66 0.16 0.70 -0.24 -0.09 0.54 0.26 -0.23 -0.63 0.54 0.53 -0.19 -0.31 0.47 0.05 -0.64 -0.54 -0.55 1.00 0.47 0.79 -0.47 0.05 0.73 0.35 0.08 -0.28 -0.56 -0.71 -0.22

0.01 -0.14 -0.05 0.02 -0.01 0.18 -0.00 -0.08 -0.05 -0.10 0.02 -0.09 -0.02 0.03 0.03 0.21 0.10 0.25 0.23 -0.03 0.01 0.05 0.15 -0.23 -0.22 0.32 0.10 -0.18 -0.16 0.25 0.13 0.00 -0.25 0.38 -0.17 0.37 -0.16 0.09 0.21 -0.28 0.30 0.05 0.40 -0.11 0.39 -0.01 0.37 -0.21 -0.10 0.36 0.21 -0.24 -0.46 0.43 0.42 -0.12 -0.27 0.37 0.08 -0.49 -0.41 -0.56 0.47 1.00 0.33 -0.13 -0.15 0.30 0.61 -0.13 -0.26 -0.30 -0.48 -0.31

0.09 -0.10 0.03 0.09 -0.02 0.17 0.08 -0.09 -0.06 -0.08 0.05 -0.11 -0.03 0.12 -0.01 0.12 0.07 0.29 0.27 -0.02 0.01 0.02 0.10 -0.20 -0.17 0.46 0.13 -0.10 -0.12 0.33 0.04 0.09 -0.19 0.47 -0.22 0.58 -0.14 0.03 0.24 -0.31 0.34 0.36 0.68 0.09 0.56 0.34 0.73 -0.13 -0.04 0.38 0.19 -0.13 -0.45 0.38 0.37 -0.09 -0.18 0.31 0.01 -0.42 -0.39 -0.27 0.79 0.33 1.00 -0.47 0.38 0.93 0.18 -0.03 -0.07 -0.48 -0.38 -0.13

-0.01 0.07 0.01 -0.01 0.04 -0.09 -0.02 -0.00 0.02 0.07 -0.03 0.01 0.03 -0.02 0.01 -0.04 -0.04 -0.15 -0.15 -0.00 -0.02 0.00 -0.04 0.15 0.13 -0.28 -0.10 0.10 0.11 -0.21 -0.01 -0.02 0.11 -0.24 0.15 -0.32 0.12 0.01 -0.16 0.16 -0.16 -0.21 -0.34 -0.10 -0.34 -0.24 -0.40 0.11 0.09 -0.22 -0.19 0.13 0.20 -0.16 -0.15 0.06 0.06 -0.13 0.02 0.22 0.19 0.01 -0.47 -0.13 -0.47 1.00 -0.26 -0.50 -0.06 0.06 -0.01 0.93 0.26 -0.01

-0.05 0.03 -0.02 -0.04 -0.02 -0.07 -0.04 -0.00 -0.01 0.07 0.01 -0.00 -0.02 -0.03 -0.01 -0.15 -0.06 -0.22 -0.21 0.02 -0.02 -0.03 -0.12 0.18 0.13 0.10 -0.07 0.05 0.05 -0.13 -0.05 0.09 0.14 -0.06 0.19 0.06 0.11 -0.08 -0.17 0.24 -0.27 0.57 0.10 0.49 0.11 0.71 0.22 0.14 0.06 -0.30 -0.13 0.17 0.30 -0.17 -0.16 0.02 0.12 -0.13 -0.08 0.24 0.32 0.38 0.05 -0.15 0.38 -0.26 1.00 0.46 -0.29 -0.16 0.36 -0.11 0.40 0.12

0.08 -0.09 0.03 0.08 -0.02 0.16 0.08 -0.08 -0.06 -0.06 0.05 -0.10 -0.03 0.11 -0.00 0.10 0.06 0.25 0.24 -0.02 0.01 0.01 0.08 -0.17 -0.15 0.45 0.12 -0.09 -0.11 0.31 0.04 0.09 -0.17 0.44 -0.21 0.57 -0.13 0.03 0.21 -0.28 0.30 0.36 0.65 0.20 0.55 0.40 0.75 -0.11 -0.03 0.35 0.17 -0.10 -0.40 0.33 0.32 -0.08 -0.15 0.27 0.00 -0.37 -0.34 -0.22 0.73 0.30 0.93 -0.50 0.46 1.00 0.14 -0.02 -0.04 -0.49 -0.31 -0.11

-0.05 -0.19 -0.11 -0.04 -0.02 0.19 -0.07 -0.08 -0.05 -0.12 0.01 -0.08 -0.03 -0.04 0.05 0.20 0.12 0.22 0.19 -0.04 -0.00 0.07 0.16 -0.25 -0.26 0.20 0.10 -0.26 -0.22 0.21 0.14 -0.08 -0.22 0.30 -0.09 0.27 -0.18 0.10 0.20 -0.24 0.25 -0.02 0.29 -0.21 0.24 -0.10 0.23 -0.27 -0.16 0.33 0.27 -0.35 -0.43 0.39 0.39 -0.15 -0.29 0.36 0.10 -0.49 -0.36 -0.71 0.35 0.61 0.18 -0.06 -0.29 0.14 1.00 -0.21 -0.43 -0.34 -0.51 -0.29

-0.04 -0.03 -0.04 -0.03 0.03 0.02 -0.04 -0.03 -0.03 -0.02 0.01 -0.04 -0.03 -0.02 0.03 0.12 0.03 0.04 0.03 -0.03 -0.01 0.03 0.07 -0.06 -0.06 0.06 0.01 -0.05 -0.03 0.03 0.10 0.03 -0.10 0.07 -0.02 0.04 -0.04 0.09 0.05 -0.04 0.04 -0.05 0.03 -0.17 0.05 -0.07 0.03 -0.10 -0.05 0.07 0.06 -0.08 -0.06 0.06 0.08 -0.15 -0.12 0.11 0.03 -0.11 -0.04 -0.16 0.08 -0.13 -0.03 0.06 -0.16 -0.02 -0.21 1.00 -0.73 -0.02 -0.17 -0.04

0.06 0.15 0.10 0.05 -0.01 -0.14 0.07 0.08 0.05 0.08 -0.01 0.08 0.03 0.04 -0.05 -0.23 -0.10 -0.17 -0.15 0.05 0.01 -0.07 -0.17 0.20 0.21 -0.17 -0.05 0.20 0.16 -0.15 -0.18 0.04 0.23 -0.25 0.07 -0.20 0.15 -0.15 -0.16 0.18 -0.19 0.07 -0.20 0.31 -0.19 0.14 -0.15 0.23 0.14 -0.26 -0.23 0.29 0.33 -0.31 -0.33 0.22 0.29 -0.33 -0.09 0.42 0.27 0.62 -0.28 -0.26 -0.07 -0.01 0.36 -0.04 -0.43 -0.73 1.00 0.24 0.49 0.24

0.01 0.13 0.06 0.01 0.04 -0.15 0.01 0.03 0.04 0.11 -0.03 0.04 0.04 0.00 -0.01 -0.12 -0.08 -0.21 -0.20 0.02 -0.02 -0.03 -0.10 0.23 0.21 -0.33 -0.13 0.18 0.18 -0.27 -0.07 0.01 0.18 -0.33 0.17 -0.38 0.17 -0.03 -0.22 0.23 -0.23 -0.17 -0.41 0.00 -0.40 -0.17 -0.44 0.21 0.14 -0.32 -0.27 0.25 0.34 -0.28 -0.28 0.13 0.16 -0.25 -0.03 0.38 0.29 0.27 -0.56 -0.30 -0.48 0.93 -0.11 -0.49 -0.34 -0.02 0.24 1.00 0.43 0.09

0.00 0.20 0.07 -0.00 0.04 -0.24 0.01 0.08 0.08 0.18 -0.05 0.11 0.06 -0.02 -0.01 -0.28 -0.13 -0.39 -0.35 0.07 -0.01 -0.04 -0.22 0.37 0.33 -0.39 -0.14 0.25 0.23 -0.35 -0.14 0.04 0.37 -0.56 0.17 -0.54 0.24 -0.07 -0.33 0.42 -0.45 -0.04 -0.55 0.47 -0.51 0.09 -0.48 0.32 0.17 -0.55 -0.34 0.39 0.70 -0.58 -0.57 0.21 0.36 -0.51 -0.08 0.72 0.57 0.68 -0.71 -0.48 -0.38 0.26 0.40 -0.31 -0.51 -0.17 0.49 0.43 1.00 0.23

-0.06 0.03 -0.03 -0.07 -0.02 -0.08 -0.05 0.08 0.03 0.04 -0.02 0.09 0.00 -0.09 -0.01 -0.21 -0.07 -0.21 -0.19 0.04 0.01 -0.03 -0.14 0.13 0.10 -0.19 -0.06 0.04 0.04 -0.15 -0.10 -0.05 0.21 -0.28 0.10 -0.21 0.06 -0.13 -0.16 0.23 -0.24 0.07 -0.20 0.29 -0.23 0.17 -0.11 0.09 -0.02 -0.25 -0.05 0.07 0.32 -0.36 -0.36 0.14 0.26 -0.33 -0.06 0.33 0.29 0.37 -0.22 -0.31 -0.13 -0.01 0.12 -0.11 -0.29 -0.04 0.24 0.09 0.23 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 7.12: Correlation matrix of Spearman’s rho values capturing the statistical relationship between resulting
morphometric values of primary characters. With a few exceptions, the relationship is none or very weak.

As expected (the set is designed in such a way), characters generally show minimal corre-
lations, with a few exceptions. These are reflecting different concepts and are capturing
different phenomena, which makes them admissible.

Primary morphometric characters are the core of the method of identification of tissue
types. Their selection, to capture different complexities aspects of urban form, results
in a very heterogeneous set of measured data showing variable spatial patterns as well
as statistical distributions. However, this data are the direct input of the clustering
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procedure, but they are an input of calculation of contextual characters. The results of
this following step are illustrated in the next section.

7.2.2 Contextual characters

While the importance of primary morphometric characters is that they bring the funda-
mental information about the spatial order of elements of urban form, the values which are
used for the identification of clusters itself are based on the contextualisation. Resulting
contextual characters are of four types (interquartile mean, interquartile range, interdecile
Theil index, Simpson diversity index), where each describes the same primary character
from a different perspective. Together, they reflect the context of each tessellation cell,
defined as three topological steps, comprehensively and inclusively.

The actual values measured in Prague could, once again, be explored visually to assess
the spatial distribution of resulting values and numerically to assess resulting statistical
distributions.

7.2.2.1 Spatial distribution

Unlike in the case of primary characters, contextual characters are always capturing spa-
tially consistent patterns. The reason is the inclusion of the topological context in each
of them. However, the actual distribution of values differ. Following four figures show
contextual characters based on width of a street profile to illustrate the differences and
similarities between contextual characters. Note that this is an only illustrative example,
and spatial distribution would differ for other characters.
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Figure 7.13: Spatial distribution of the interquartile mean of a width of a street profile measured within three
topological steps on morphological tessellation in the area of Prague’s city centre and its surroundings.

Figure 7.13 shows interquartile mean of a width of a street profile measured within three
topological steps on morphological tessellation. As a version of truncated mean, this
character directly reflects the actual values of primary characters, and it is relatively
simple to indicate areas with generally narrow streets (historical core) and those with a
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wider profile (heterogenous areas on south and south-east). The overall distribution of
values within the shown area is very symmetrical with a peak at 22 metres, which seems
to be a common street width in Prague.

1 km
sdsSPW_rangeIQ3

0 10 20 30

Figure 7.14: Spatial distribution of the interquartile range of a width of a street profile measured within three
topological steps on morphological tessellation in the area of Prague’s city centre and its surroundings.

Figure 7.14 illustrates interquartile range of a width of a street profile measured within
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three topological steps on morphological tessellation. That reflects the range of values,
so it is a proxy of statistical dispersion. In the example above it does divide places with
either major street or generally wider streets from predominantly homogenous areas. The
distribution of values is balanced but truncated at 0 (range could not be negative). We
can identify certain similarity with the patterns on previous figure 7.13, because wider
street (i.e., higher interquartile mean) causes a bigger range, but the patterns are not
identical.
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Figure 7.15: Spatial distribution of interdecile Theil index of a width of a street profile measured within three
topological steps on morphological tessellation in the area of Prague’s city centre and its surroundings.

Figure 7.15 illustrates interdecile Theil index of a width of a street profile measured within
three topological steps on morphological tessellation. The resulting map shows as the most
unequal area around Vaclavske sq. (darker red) where one street (in this case, elongated
square) is significantly different from the other. Previously highlighted areas of wider
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streets are not so from the perspective of Theil index. The distribution has a long tail,
somewhat typical for Theil index applied to morphometric characters.

1 km
density of neighbours

0.2 0.4 0.6 0.8 1.0

Figure 7.16: Spatial distribution of interdecile Simpson index of a width of a street profile measured within
three topological steps on morphological tessellation in the area of Prague’s city centre and its surroundings.

The last contextual character, shown on figure 7.16, is Simpson diversity index of a width
of a street profile measured within three topological steps on morphological tessellation.
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The values, in this case, are binned using Natural Breaks (k=7). It captures (inversely)
similar information as Theil index, but that is not the rule. These two are somewhat
related as both capture dispersion of values, but the relationship between them is not
fixed as will be illustrated in the next section.

Depending on the spatial distribution of primary characters, the contextual pattern may
be more similar to each other (like in the case above) or less similar. However, as illustrated
in the chapter on primary characters, the visual assessment is not enough.

7.2.2.2 Statistical distribution

Figure 7.6 in previous section showed four types of distribution of primary characters.
This section illustrates how each of them translates into the distribution of contextual
characters.
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Figure 7.17: Histograms of statistical distribution of contextual versions of circular compactness of tessellation
cell. Interquartile mean (top left), interquartile range (top right) interdecile Theil index (bottom left), Simpson
index (bottom right).

The first example, circular compactness of tessellation cell on figure 7.17, was initially
mildly skewed Gaussian-like distribution. In terms of IQ mean and IQ range, this property
remains the same. Both are relatively symmetrical distributions with small tail on one
or the other side. On the other hand, the distribution of the Theil index and Simpson
diversity resembles exponential curve due to heavy tail in both.
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Figure 7.18: Histograms of statistical distribution of contextual versions of area covered by neighbouring cells.
Interquartile mean (top left), interquartile range (top right) interdecile Theil index (bottom left), Simpson
index (bottom right).

Initially, exponential distribution of area covered by neighbouring cells remains exponential
in both IQ mean and IQ range cases (figure 7.18). Theil index is also exponential, although
the curve is not so unequal. Simpson index is significantly different from all three. The
HeadTail binning used within the calculation is tailored to exponential distributions and
resulting Simpson diversity is then relatively balanced across the values. The values 1
showing a significant spike mean that the probability that any other value is within the
same bin is 100%, hence no diversity in the area. It is typical for relatively homogenous
compact urban tissues.
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Figure 7.19: Histograms of statistical distribution of contextual versions of  width of a street profile. Interquar-
tile mean (top left), interquartile range (top right) interdecile Theil index (bottom left), Simpson index (bottom
right).

The third example,  width of a street profile which was illustrated on maps on previous
pages, had initially specific distribution affected by rules on which streets are designed
(there were spikes for narrower and wider streets). Figure 7.19 shows that none of the con-
textual character share this profile and, more importantly, all have different distributions.
IQ mean is almost ideal Gaussian distribution, IQ range is right-skewed and truncated
with a spike on 0, Theil index is again exponential, and Simpson diversity is right-skewed,
but relatively symmetrical distribution. Even though figures 7.13 - 7.16 may seem similar,
the difference in distributions on figure 7.19 indicates otherwise. What is important are
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numerical values, not visual perception.
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Figure 7.20: Histograms of statistical distribution of contextual versions of  degree of a street node. In-
terquartile mean (top left), interquartile range (top right) interdecile Theil index (bottom left), Simpson index
(bottom right).

Initially, restricted values of degree of a street node remained present in IQ range (figure
7.20 but not in the other contextual characters. IQ mean is symmetrical with a large spike
on 3, which is almost its median value. Theil index is very different from previous examples
and does not follow exponential distribution this time, while the Simpson diversity index
has two spikes on 0.5 and 1.0 and relative balance otherwise.

As the examples above indicate, the variety present in primary characters remained
present, in a different way, in contextual characters as well. Complete results for all
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contextual characters are available as Appendix 7.7.

7.2.2.3 Statistical relationship of characters

The statistical relationship between contextual characters will directly influence the results
of clustering in the next steps. For that reason, we should aim for minimisation of such
relationship in terms of Spearman’s correlation. As illustrated above, we may expect
some relations, however only selective, affected by the nature of primary characters. Below
(figure 7.21) is a correlation matrix of contextual characters for illustration of the measured
relationship8.

8Due to a large number of characters, the matrix is not optimal for presentation in this form. Its
high-quality version is available in Appendix 7.8.
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Figure 7.21: Correlation matrix of contextual capturing the statistical relationship between resulting morphome-
tric values of contextual characters. With a few exceptions, the relationship is none or very weak. High-quality
version of the matrix is in Appendix 7.8.

Even though there, once again, are some characters which tend to be correlated, the overall
correlation is minimal. Such data then have the potential to provide the meaningful,
unskewed result of clustering.

The exploration of measured primary and consequent contextual character shows that the
data comply with requirements set by the method and show a high variety of information.
It is assumed, that they describe urban form in its structural complexity as well as cross-
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scale complexity.

7.2.3 Cluster analysis

The critical point in the whole process if the identification of distinct clusters is the clus-
tering procedure itself. This section will explore the results of clustering on the complete
set of data and then on sampled data, to understand the difference and possibility to
lower computational demands. Both ways will start with an assessment of an optimal
number of components based on the Bayesian Information Criterion (BIC) and follow
with Gaussian Mixture Model (GMM) clustering itself. Furthermore, the final part of
this section explores the potential of sub-clustering, i.e., generating even more detailed
distinction of urban tissues.

7.2.3.1 Complete data

Clustering based on complete data is likely the key result of the whole research. It will
either support the main hypothesis or reject it depending on the resulting clusters. GMM
clustering of a complete dataset means that all features (n=140315) are used within a
training set. It is expected that the algorithm will be able to detect clusters, although
there might be present some adverse effects of the dimensionality curse9.

Before analysis itself, data are standardised by mean removal and variance scaling:

(82) z = x−µ

s

9The morphometric description of each building/cell has 296 values (each for each contextual charac-
ter). In the case of Prague, composed of approximately 140,000 buildings, it means that clustering has to
deal with more than 40,000,000 values (140,000 buildings * 296 characters). That is a significant number,
which is not only demanding in terms of computational power but also tricky in terms of statistics itself.
The high dimensionality of the dataset (each character is a dimension in a hyperspace) may come with a
*curse of dimensionality*. That means that even though there is the value in additional data (additional
dimensions), it may negatively affect results. The high-dimensional hyperspace tends to become inflated
(bigger), which in turn may render clusters very sparse. Individual data points are further away, and
density-based or distance-based clusterings (GMM is distance-based) may struggle to correctly identify
them, because Euclidean distances between pairs of points on sparse high-dimensional data would be of
little difference, rendering clustering extremely unstable and insignificant. However, that is not always
the case as it depends on the internal structure of the dataset and relations between dimensions.
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where µ is the mean of the training values, and s is the standard deviation.

7.2.3.1.1 Bayesian Information Criterion To perform GMM clustering, one needs
to specify the number of components to look for. While this information is not a priori
known, one has to determine the optimal number using other methods before GMM.
In this research, the Bayesian Information Criterion is used. BIC analysis repeatedly
generates GMM clusters for a different number of components in a range (2, 40) and
measures the goodness of fit of resulting clusters to the original dataset. The results in
Prague are shown in figure 7.22. The lower the value, the better fit.
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Figure 7.22: Bayesian Information Criterion score for the variable number of components. Shaded area reflects
.95 confidence interval, red line marks the first significant minimum.

The pattern shows a steep decline from a small number of components to approximately
15 components where it starts flattening. The results between 15 and 35 components
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are very similar, and then the BIC starts growing again. That suggests that the optimal
number of components for the final clustering is between these two values. The optimum
is 20 as the value, which is the first significant minimum. It is the smallest number after
which no other is significantly (with the confidence interval) below the achieved score.
The differentiation within the range in question is better recognisable in a zoomed figure
7.23 below.
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Figure 7.23: Trimmed plot of Bayesian Information Criterion score for the variable number of components,
to see the differentiation within values. Shaded area reflects .95 confidence interval, red line marks the first
significant minimum.

Within the trimmed figure, it is more evident the difference between the BIC score. The
reason why 24 or 26 are not selected as optimum, while both being smaller than 20 is
the significance. The aim is to detect the smallest optimal number of clusters as larger
numbers may have better due to overfitting. Hence we want the first significant minimum,
which is 20. 24 is below, but its confidence interval goes above the score of 20. The same
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applies to 26.

Based on the BIC results, GMM clustering of complete data will focus on the identification
of 20 components (clusters).

7.2.3.1.2 Distinct clusters as urban tissue types Gaussian Mixture Model clus-
tering with 20 components is done using full covariance matrix and five initialisations,
from which the best is selected based on the per-sample average log-likelihood. The
complete Jupyter notebook is available in Appendix N.

The resulting prediction of cluster membership is shown visually on the figure 7.24. Each
feature (building/tessellation cell) is coloured according to a cluster of the highest proba-
bility10. The map shows the delineation of distinct homogenous clusters and their spatial
distribution across the whole case study area. At this moment, it is possible to say that
the proposed method did identify the particular type of proxy of urban tissues using the
purely quantitative method based on urban morphometrics. How well it did that will be
assessed on the following pages and later validated by other data in Chapter 8.

10As mentioned above, Gaussian Mixture Model clustering is probabilistic, which means that each
feature has predicted the probability that it belongs to any of the components. What is shown on all
maps and data below is the cluster with the highest probability. In theory, it should be possible to work
with secondary or tertiary labels for each feature, but the actual data on probability tell otherwise. The
probability that features belong to any other than the primary cluster tends to be insignificant. Only 89
out of 140,315 features have the probability that they belong to any other than primary cluster bigger than
0.1. The reason behind it is likely related to the richness of the data and especially related dimensionality
causing big differences in Euclidean distance between clusters. So while GMM is, in theory, probabilistic,
in practice, it provides a single primary label only.

215



Chapter 7. Identification of tissue types through urban morphometrics

Figure 7.24: Spatial distribution of 20 clusters as identified by GMM based on complete data.

The 20 cluster seems to be relatively well defined and based on the first observation tend
to reflect homogenous form. Even though there is no spatial constraint in the clustering
itself, results show apparent contiguity caused by the design of contextual characters. The
figure 7.25 shows detail of the section of Prague covering City Centre and the area towards
the southern boundary for better understanding of results.
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Figure 7.25: Detail of spatial distribution of 20 clusters as identified by GMM based on complete data.
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Starting from the top left corner, where the historical core of Prague is, we can see
(id 11 in red) delineation of what could be seen as medieval urban form, transitioning
to compact perimeter blocks of Vinohrady neighbourhood (id 5 in dark blue). That is
surrounded by less rigid heterogenous perimeter block-like tissues (id 10 in light blue) and
then fringe areas (id 7 in pink). Towards south and east are present low-rise tissues (id
8 and 3 in lighter yellow) and modernist developments (ids 2 and 12 in grey and green).
Drawing from the pure observation, clusters seems to be very precise and detailed and,
most importantly, meaningful in terms of their link to the concept of the urban tissue.

The following section describes each of the identified clusters to give a detailed overview
and understanding of what each cluster is composed.

7.2.3.1.2.1 Individual clusters Each of the individual clusters is presented by one
example (usually the largest contiguous area) and its surroundings within 1,5km buffer.
Colour schema is the same as in figures 7.24 and 7.25 and will be kept throughout the
chapter. Clusters are sorted according to their ID, which is randomly assigned.

The first cluster (figure 7.26), noted as 0, is composed of predominantly low-rise, single-
family housing. It has mostly residential character and tends to be located in the outer
parts of the city, further away from the city centre. It is the largest of all clusters, with
15337 features, which is approximately 11% of all buildings in the study area.
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Figure 7.26: Example of cluster 0 and its surroundings within 1,5km buffer located at the eastern boundary
of study area. Aerial image courtesy of mapy.cz

The cluster on figure 7.27, noted as 1, contains mostly small-scale industry areas with
small coverage, relatively small buildings. Often is adjacent to other clusters. It tends to
be located in outer rings of the city but is overall very sparsely distributed. With only
2038 (less than 1.5%) features is one of the smallest clusters overall.
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Figure 7.27: Example of cluster 1 and its surroundings within 1,5km buffer located at the north-east of study
area. Aerial image courtesy of mapy.cz

Cluster 2, shown in figure 7.28 is one of the urban tissue types following modernist prin-
ciples of spatial configuration, with linear buildings, but still relatively connected street
network. These areas are mostly infills of the existing structure located within the city
(except its central part) rather than on the periphery. It is relatively abundant with 12016
features (approximately 8.5%).
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Figure 7.28: Example of cluster 2 and its surroundings within 1,5km buffer located at the north-west of study
area. Aerial image courtesy of mapy.cz

Cluster 3 (figure 7.29) is one of the smaller ones. Its structure is defined by row-houses,
a typology which is not very common in Prague. There are only 4133 features, less than
3% of all buildings scattered mostly in peripheral locations.

Figure 7.29: Example of cluster 3 and its surroundings within 1,5km buffer located at the east of study area.
Aerial image courtesy of mapy.cz
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Cluster 4 (figure 7.30) is one of the types with an industrial character, in this case being
distributed as sort of infill development in the fringe areas. It is mostly adjacent to other
urban tissues, relatively evenly distributed across the study area. It is composed of 5281,
which is 3.8% of the total number.

Figure 7.30: Example of cluster 4 and its surroundings within 1,5km buffer located at the south of study area.
Aerial image courtesy of mapy.cz

Cluster 5 (figure 7.31) can be best described as compact perimeter block-based residential
area. This dense, grid-like development is located in the central areas of the city around
the historical core and is one of the best defined urban tissues in Prague. There are 5930
of features belonging to this cluster, which is a bit more than 4.2% of the total count.
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Figure 7.31: Example of cluster 5 and its surroundings within 1,5km buffer located at the centre of study area.
Aerial image courtesy of mapy.cz

Cluster 6 (figure 7.32) is very different from the previous one as it contains fringe low-
rise, not very well defined urban tissues. These are small-scale tissues scattered evenly
around the study area, adjacent to other types of tissues, often filling topographically
inconvenient areas. There are 10329 of these features, which is about 7.4%, so it is one
of the more abundant clusters.
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Figure 7.32: Example of cluster 6 and its surroundings within 1,5km buffer located the south-east direction
from the city centre. Aerial image courtesy of mapy.cz

Cluster 7 (figure 7.33) is an example of more heterogeneous area. It has a similar character
as cluster 4, but unlike that, it often contains other types of development with a less
defined structure, like contemporary housing or office parks which do not reflect traditional
rules of spatial configuration. That leads to higher heterogeneity in the area, making these
tissues complicated to define. It consists of 4140 features, which is nearly 3% of the total
amount.
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Figure 7.33: Example of cluster 7 and its surroundings within 1,5km buffer located the souther direction from
the city centre. Aerial image courtesy of mapy.cz

Cluster 8 (figure 7.34) predominantly contains single-family housing in a relatively dense
setting resembling garden city movement development. These places have interconnected
network of relatively grid-like character, with buildings adjacent to each other either as
row-house typology or similar. There are 7845 features within this cluster (5.6%).
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Figure 7.34: Example of cluster 8 and its surroundings within 1,5km buffer located the souther direction from
the city centre. Aerial image courtesy of mapy.cz

Cluster 9 on figure 7.35 seems to identify low-rise areas of organic development, which
seems to be cores of the historical villages around Prague. These are small-scale tissues
evenly distributed in the outer ring of development, now mostly embedded in the other
development. They compose 5.6% of total features (7862).
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Figure 7.35: Example of cluster 9 and its surroundings within 1,5km buffer located at the south-west of the
study area. Aerial image courtesy of mapy.cz

Cluster 10 (figure 7.36) is very often adjacent to cluster 5 (compact blocks) or composes
its own areas of block-based development. However, unlike in cluster 5, these blocks tend
to be skewed or distorted in some other way. In some cases, this cluster could be seen as
a transitional area between homogenous compact blocks and other types of urban tissue.
These are 7203 features within this group, making 5.1% of the total amount.
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Figure 7.36: Example of cluster 10 and its surroundings within 1,5km buffer located next to the city centre.
Aerial image courtesy of mapy.cz

Cluster 11 (figure 7.37) is a very straightforward one to describe as it composes solely of
historic medieval core of Prague. It includes areas on both sides of the river and correctly
excludes the area cut-out of the Old Town, which has been demolished in 19th century
and rebuilt after that (Hrůza, 2003)ƒ. There are 2167 features, making historical core one
of the smallest clusters of all, composing only 1.5% of the total amount.

228



Chapter 7. Identification of tissue types through urban morphometrics

Figure 7.37: Example of cluster 11 and its surroundings within 1,5km buffer located in the city centre. Aerial
image courtesy of mapy.cz

Cluster 12 is another very distinct one. As illustrated in figure 7.38, the origin of the de-
velopment is modernist, covering large-scale modernist housing estates. These are typical
with slab buildings, the incoherent relationship between buildings, plots and streets and
large amounts of open spaces, among other characteristics. In Prague they are almost
exclusively on the peripheral ring of the city, forming a so-called modernist belt of Prague.
They consist of 6885 features, which is 4.9% of the total amount.
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Figure 7.38: Example of cluster 12 and its surroundings within 1,5km buffer located on the southern edge of
the city. Aerial image courtesy of mapy.cz

Cluster 13 (figure 7.39) is another example consisting of single-family housing. This time
it is low-density development with predominantly detached buildings. It is typical with
elongated blocks which in part is a reaction to the underlying topography. It is a very
abundant cluster with 14992 features, making more than 10.6% of the total amount,
distributed along the periphery of the city.
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Figure 7.39: Example of cluster 13 and its surroundings within 1,5km buffer located on the south-western
edge of the city. Aerial image courtesy of mapy.cz

Cluster 14 is distributed almost exclusively within the wider centre of Prague, often
adjacent to the homogenous compact city as is illustrated on the figure 7.40. The cluster
could be defined as an inner fringe composed of heterogeneous developments on the edge
of existing homogenous one. There are 4984 features within it, making 3.6% of the data.
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Figure 7.40: Example of cluster 14 and its surroundings within 1,5km buffer located north of the city centre.
Aerial image courtesy of mapy.cz

Cluster 15 (7.41) is perimeter-block based tissue type with very heterogeneous develop-
ment in the block interiors. It has a very high coverage area ratio located in in the city
centre either as a transitional area between medieval core and compact city or as industrial
development. There are only 3060 features within the cluster (2.2%).
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Figure 7.41: Example of cluster 15 and its surroundings within 1,5km buffer located north of the city centre.
Aerial image courtesy of mapy.cz

Cluster 16 (7.42) is not very straightforward to define as it is a heterogeneous one. It
mostly consists of small patches of not very well defined tissues with the predominant role
of small-scale buildings but not exclusively. It may be seen as other, combining parts of
the dataset which do not fit elsewhere, but at the same time, all places have the similar
character of being out of sight. It is evenly distributed, but not very abundant one with
3548 making approximately 2.5% of the dataset.
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Figure 7.42: Example of cluster 16 and its surroundings within 1,5km buffer located north of the city centre.
Aerial image courtesy of mapy.cz

Cluster 17 (7.43) is another of the low-density single-family tissue types. It has a less
defined and rigid structure, and it is often adjacent to open space. It does have a certain
inner heterogeneity expressed as various kinds of buildings from detached to row houses.
Like the other similar clusters, this is also relatively abundant with 12145 features (8.7%).
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Figure 7.43: Example of cluster 17 and its surroundings within 1,5km buffer located west of the city centre.
Aerial image courtesy of mapy.cz

Cluster 18 (7.44) consists of relatively independent detached areas of low-density village-
like development. Clusters can be only a strip along the road or other open-space facing
tissues. It is located mostly on the periphery of the city and entails 8764 features (6.2%)

Figure 7.44: Example of cluster 18 and its surroundings within 1,5km buffer located on the north of the city.
Aerial image courtesy of mapy.cz
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The last cluster, 19 illustrated on figure 7.45 is industrial urban tissue type, consisting
of a mixture of large-scale and small-scale buildings, convoluted street network and a
minimum of residential use. It is only at a few places, but of a large-scale, mostly towards
the edge of the city. There are only 1656 features within the cluster, making 1.2% of the
total amount.

Figure 7.45: Example of cluster 19 and its surroundings within 1,5km buffer located on the eastern edge of
the city. Aerial image courtesy of mapy.cz

From the overview is clear that some clusters are very distinct like the historical core
(11) or modernist estates (12), while others resemble each other as is the case of low-
density single-family clusters (0, 8, 13, 17). However, even between these seemingly
similar clusters are recognisable differences. Numerical assessment of differences between
clusters is part of Chapter 8, to determine which characters are causing the distinction
and understand the clusters based on their morphometric profiles.

7.2.3.2 Sampled data

Gaussian Mixture Model uses training data on the input to estimate the optimal clustering
and then predicts the probability that each feature belongs to any of the components. That
means that training data do not have to equal the data we want to classify. The GMM and
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especially the estimation of the number of components, which does GMM repeatedly, could
have relatively high computational demands as the size of the dataset grows. The Prague
example, with 140,000 features took approximately 60 hours to measure all BIC values
and do the final clustering on a desktop computer with a 12-core Intel Xeon processor.
Running larger areas at once may get unfeasible, it is hence critical to understand if the
method can work with sampled data.

Sampled clustering would use a randomly selected fraction of the data as a training set
and then use it for prediction on the complete data. That might significantly reduce
computational demands because they rise exponentially with the growing dataset, but
at the same time might not provide useful results. Sampling procedure might miss some
clusters entirely (none or very few features are included in the sample) or affect the results
in another way. The following section tries to answer some of the questions comparing
the clustering based on the complete dataset with sampled one.

7.2.3.2.1 Sampled Bayesian Information Criterion Three versions of sampling
are assessed - 10%, 25%, and 50% of the dataset. Because random sampling results in
different samples each time, which could affect BIC, each option is sampled three times
and GMM is run three times on each (in total nine runs of GMM per option). To assess
the number of components, values from range 2 - 40 were tested. BIC is measured using
the complete dataset. The resulting values are shown in figure 7.46 below.
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Figure 7.46: Bayesian Information Criterion score for sampled clustering. Shaded area reflects .95 confidence
interval.

Figure 7.46 shows a striking difference between the results of 0.1 (10%) sampling and the
rest. The BIC score for this option is significantly higher than for the rest, indicating
that the sample is way too restricted to capture the structure of the dataset and generate
meaningful clustering. Due to this difference, any differences between the other options
are not recognisable. For that reason, figure 7.47 shows the same data without 0.1 option.
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Figure 7.47: Bayesian Information Criterion score for sampled clustering excluding 0.1 sampled results. Shaded
area reflects .95 confidence interval.

All two remaining options show similar curves as was already seen in the complete clus-
tering. The bigger the sample is, the better results can GMM provide. One key difference
between the samples is the resulting optimal number of components. It seems that the
smaller the sample is, the sooner BIC curve culminates, which results is a smaller number
of optimal components. 0.25 sampling culminates at 11 components, 0.5 at 15 components
and 1.0 (complete data) at already mentioned 20 components. The difference between
0.25 and 1.0 both in terms of BIC and an optimal number of components is big, so it is
questionable if such a small sample can provide any similar results.
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Figure 7.48: Bayesian Information Criterion score for sampled clustering excluding 0.1 and 0.25 sampled results.
Shaded area reflects .95 confidence interval.

Figure 7.48 compares 0.5 and 1.0 sampling only as the difference is not so dramatic. Unlike
1.0 sampling, where the point of culmination is not as clear, 0.5 culminates sooner, and
the curve starts ascending quicker. That makes the decision of optimum easier. Following
the same principle as in the previous case, the first significant minimum is 15 components.
The BIC score overall is worse than in non-sampled case, but it is worth testing the
similarity of the actual cluster recognition.

7.2.3.2.2 Sampled distinct homogenous clusters Identification of distinct clus-
ters based on sampled data (random sample 50%) using 15 components results in the
spatial distribution of clusters illustrated on figure 7.49.
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Figure 7.49: Spatial distribution of clusters based on sampled data (0.5) and 15 components within the whole
study area.

Visual assessment of clustering indicates that the clusters seem to be meaningful and could
be seen as a proxy of urban tissues. Due to the smaller number of components, some areas
are showing less differentiation than in the complete clustering, but the difference does
not seem to be in terms of correctness or wrongness of one or the other clustering, but
only in terms of the change of the resolution of results.

7.2.3.2.2.1 Comparison of sampled and complete clustering Three easy-to-
interpret clusters are compared 1:1 and their composition and shape are assessed to
understand what are the actual on-ground differences between two versions of cluster-
ing apart from the different number of components.

241



Chapter 7. Identification of tissue types through urban morphometrics

Figure 7.50: Comparison of spatial distribution of cluster 5 and sampled cluster 4 in the city centre.

Original cluster 5, capturing compact perimeter blocks, has its counterpart in sampled
cluster 4. The example of their spatial distribution is illustrated in figure 7.50. Both
versions capture mostly the same type of urban tissue with a very similar footprint. The
only apparent difference is that sampled cluster is more inclusive (covering larger area)
than a complete cluster, likely due to the smaller overall number of clusters (clusters needs
to be naturally more abundant).
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Figure 7.51: Composition of cluster 5 and sampled cluster 4 in relation to each other. Shows the number of
features labelled as studied cluster and their labels in the other clustering variant.
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The comparison of the composition of both clustering versions in relation to each other
on figure 7.51 shows that features initially marked as being in the complete cluster 5 are
almost entirely within sampled cluster 4. On the other hand, features labelled as sampled
cluster 4 are predominantly located in complete cluster 5, but due to higher inclusiveness
also in clusters 10 and 15.

Figure 7.52: Comparison of spatial distribution of cluster 11 and sampled cluster 9 in the historical core.

The second example based on complete cluster 11 (figure 7.52) representing the historical
core of Prague shows a similar story as the first one. Both versions correctly delineate
medieval urban tissue and avoid newer redevelopment of the former Jewish quarter in the
North. The difference is in inclusiveness, where the sampled cluster covers more extensive
areas, which are in the complete clustering seen as cluster 15, the transitional one.
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Figure 7.53: Composition of cluster 11 and sampled cluster 9 in relation to each other. Shows the number of
features labelled as studied cluster and their labels in the other clustering variant.

The assumption derived from the visual assessment is correct based on the numerical data
on the actual composition (figure 7.53). Features classified as cluster 11 in the complete
clustering, are classified as cluster 9 in sampled clustering. Features classified as cluster
9 in sampled clustering, however, include parts of complete cluster 15 (less than 1/3 of
cluster 9 comes from 15).

Figure 7.54: Comparison of spatial distribution of cluster 12 and sampled cluster 5 in the west of the city.

Even more, similarity shows a comparison of large-scale modernist urban tissues (figure
7.54) with very few differences which could be derived from visual observation. Even
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the complicated case of modernist area mimicking perimeter blocks in the South of the
example shows the same pattern, with middle part being excluded from the rest (likely
an effect of a configuration of the street network).
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Figure 7.55: Composition of cluster 12 and sampled cluster 5 in relation to each other. Shows the number of
features labelled as studied cluster and their labels in the other clustering variant.

The composition of clusters is, with a few exceptions equal (figure 7.55). The same
features which belong to cluster 12 in the complete clustering are labelled as cluster 5 in
the sampled clustering and vice versa.

Figure 7.56: Comparison of the city centre focusing on cluster 15, which is not present in the sampled
clustering.
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Three examples above show that there is a striking similarity between both results. How-
ever, there is a different number of clusters, so where is the difference? The example on
figure 7.56 shows cluster 15 based on complete data, which does not have its counterpart
in sampled clustering. Instead, it is split into three almost equal parts (figure 7.57) each
linked to another cluster. What was the so-called transitional area between medieval core
and historical compact city is no longer present. That by itself is likely not a big issue, but
it illustrates the behaviour of sampled clustering with a smaller number of components. It
does not necessarily merge two similar clusters into one, but at some places splits clusters
into multiple pieces. GMM, in this case, sees different data and hence might exclude some
smaller clusters. Because these might have been in between other, parts are now closer
to one and other parts closer to another cluster. The resulting clustering should then be
seen as a different perspective using different resolution, rather than a coarser version of
complete clustering.
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Figure 7.57: composition of cluster 15 in relation to sampled clustering. Shows a number of features labelled
as studied cluster and their labels in the other clustering variant.

Looking onto other clusters which do not have a counterpart in sampled clustering (apart
from 15, 2, 6, 9, and 10), none of them is swallowed by one larger cluster. All are split
into two sampled clusters. Sometimes more equally (e.g., cluster 2 is equally split between
10 and 14), sometimes less equally (e.g., cluster 6 is more present in sampled cluster 0
than sampled cluster 8). This illustrates the probabilistic rather than hierarchical nature
of GMM. The full comparison is available in Appendix 7.9.
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Depending on the aim of the study, sampled clustering could likely be used instead of
complete clustering, considering the fact that results based on samples smaller than 50%
are not precise enough. However, for the ideal, detailed identification of urban tissues,
sampled clustering might provide sub-optimal results.

7.2.3.3 Sub-clustering

The trial of sub-clustering, i.e., division of existing clusters, obtained using the complete
dataset will be done on two of the original clusters, which are very different. The first
example will focus on cluster 5, compact perimeter blocks, and the second on the mod-
ernist belt of Prague labelled as cluster 12. The assumption behind sub-clustering is that
the richness of the data may allow us to determine differences within the cluster. These
are not significant from the perspective of the whole dataset, that is why they were not
picked initially as independent clusters, but they might be significant internally.

7.2.3.3.1 Compact Prague The first case is the cluster 5, which could be interpreted
as the urban type of compact, rigid perimeter blocks. The reason for its selection is that
due to the varied topography. These blocks have to react to the steeper surface at some
places, and the perceptional character of such areas is different from those laying on the
flat grounds.

Sub-clustering uses contextual data of individual features within the cluster and performs
the identification of types once again, starting from determination of the optimal number
of components using BIC and consequent training of the model and prediction of labels.
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Figure 7.58: Bayesian information criterion score for cluster 5 sub-clustering to determine optimal number of
components.

Bayesian Information Criterion illustrated in figure 7.58 indicates that there is a scope for
sub-clustering as both 2 and 3 components have a better score than a single component.
If the situation would be otherwise, and a single component would have the lowest BIC
score, there would be no significant sub-clusters in the data and results of forced clustering
would likely suffer from discontinuity. Following the rule of the first significant minimum,
this trial works with two components.
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Figure 7.59: Spatial distribution of sub-clusters of cluster 5 marks the distinction between rigidly and distorted
grids.

The result of sub-clustering of cluster 5 is shown in figure 7.59. It feels fair to conclude,
that newly identified sub-clusters have a meaning and distinguish between areas which
are more rigidly gridded and those which tend to have grid distorted.

7.2.3.3.2 Modernist Prague The second sub-clustering trial focuses on large-scale
modernist housing estates on the periphery of Prague. There is an assumption of the
inner differentiation of the relevant cluster 12 because each of these neighbourhoods has
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been designed, and there were different authors and approaches in different places and
periods of development (Hrůza, 2003). It is assumed that morphometric data should be
able to reflect this difference.
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Figure 7.60: Bayesian information criterion score for cluster 12 sub-clustering to determine optimal number of
components.

BIC results on figure 7.60 indicates that subdivision of the cluster is significantly better
than a single group with all the options between 2 and 7 having a lower score that one
component. The first significant minimum, in this case, are three components.
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Figure 7.61: Spatial distribution of sub-clusters of cluster 12 showing the different location of all three groups.

The map on the figure 7.61 shows the whole cluster 12 divided into three sub-clusters.
The interesting case is the green group, located exclusively on the western edge of the
study area. The fact that it is not present anywhere else indicates that sub-clustering
indicates that results are not affected by randomness. A closer look at the differences as
illustrated on the figure 7.62 shows why these tissues are split in such a way. The green
sub-cluster has large blocks and a circular character. The red one tends to be a large-scale
orthogonal configuration, while blue is smaller-scale more compact urban tissue.
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500 m

Figure 7.62: Comparison of examples of sub-clusters of cluster 12 illustrating the structural differences.

Both examples above indicate that there is a scope for sub-clustering if the research
using this method needs a more refined level of detail. As noted above, sub-clustering
ability depends on the internal homogeneity of each cluster, and it may not be possible in
some cases. However, in cases where this possibility is available, results show meaningful
patterns, enabled by the richness of the morphometric dataset.

7.3 Summary

This chapter took morphometric elements organised within the relational framework of
urban form and defined the rich set of characters to be used within the rest of the study.
Morphometric characters, divided into 74 primary and 296 contextual characters were
then tested on the case of Prague. As the set followed specific rules driving its definition,
it proved to provide a complex multi-scale characterisation of the local context of each
individual building. That served as an input of cluster analysis using Gaussian Mixture
Model method, which delineated 20 potential types of urban tissues within the fabric of
the city.

While the validation is left for Chapter 8, results of clustering illustrated on previous
pages indicate that the morphometric method of identification of urban tissues and their
types has a potential. The outcome of the Gaussian Mixture Model learning procedure
does match the expectations of what a tissue type should be. The question remains what
the relation of these clusters to the actual concept of urban tissues is.
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One should be aware that cluster is a numerical, morphometric statistical proxy of ur-
ban tissue, not its definition and replacement. GMM clustering is non-deterministic, so
boundaries are not fixed, but rather indicative. It is not a ground truth (there is no
ground truth at all in fact), and the meaning of clusters and relation between them has
to be determined and interpreted before any further steps. The one approach on how to
do so is proposed in the next chapter.
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Taxonomic relationships of urban
tissues

The previous chapters introduced the framework implementing comprehensive urban mor-
phometrics on a metropolitan scale. Based on the selection of measurable characters, it
established a method of a complex description of urban form on the granularity of in-
dividual buildings. As reported, derived information then enabled the identification of
urban tissue types within urban form. Consequent results of the cluster analysis indicate
the validity of the morphometric method in recognition of urban form patterns and the
potential for both additional subdivision and upscaling of the model.

In this chapter, therefore, the observed clusters are employed in the role of input data
and investigated from two perspectives - 1) conceptualisation of clusters as OTUs, leading
to the taxonomic classification, 2) validity of clusters as a proxy of urban tissues via
assessment of relation to additional data, the transferability of the method to the different
geographical context, and expandability of the taxonomy.

This chapter relates to chapter 3 and introduces numerical taxonomy of urban tissues.
The resulting classification is subsequently validated together with initial clusters based
on the study of its relationship to the supplementary, non-morphological data known
to be descriptive of urban form. Finally, the case study of Amsterdam is included to
examine the ability of the proposed morphometric framework to identify urban tissues
in the context of another heterogeneous historical city, although of different patterns of
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development.

Structurally, this chapter is divided into two major parts. It first outlines the need for a
classification of urban tissues (section 8.1) and bridges the concept of numerical taxonomy
from chapter 3 to the context of morphometric tissue types (section 8.1.1). Furthermore,
it explains the importance of validation and two validation models used within this study
(section 8.1.2).

The two major parts are Methodological proposition (section 8.2) and Case studies (sec-
tion 8.3). The structure of the methodological section is reflected in the structure of
case studies, having each part of the proposed method tested in the relevant part of the
associated case studies section.

Methodological propositions first introduce the method of hierarchical clustering, leading
to the taxonomy of urban tissues (section 8.2.1). Moreover, the results are utilised in the
next section 8.2.2 establishing the method of validation of identified urban tissues and
their taxonomy, using data on historical origin, land-use patterns and qualitative classifi-
cation of urban areas. Finally, the second part of the section 8.2.1 brings in another case
study (Amsterdam) and presents the method of evaluation of transferability of the mor-
phometric assessment. The evaluation focuses on the identification of urban tissue types,
their hierarchical classification and combination of two geographically distinct datasets
to a single taxonomy, examining the expandability of the method. Following section 8.3
presents the results of the proposed method applied to case studies in the same order and
hierarchy of sections.

The final section (8.4) of the chapter summarises the findings and prepares the foundation
for chapter 9, synthesising and discussing the whole research.

8.1 Classification and validation

The urban tissue types presented in the previous chapter are all seen as equal, meaning
that there is no specified relationship between them at this stage. However, the degree of
similarity between individual clusters varies and can be quantified. Therefore, a numerical
representation of similarity, based on already measured morphometric characters, becomes
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a basis for the further classification of urban tissues.

As illustrated in chapter 2, there have been attempts to deliver classification frameworks,
some even taking hierarchical structure but still deviating from the optimal classification
model. This section proposes the application of the biological model of classification in
the form of a numerical taxonomy leading to the establishing hierarchical classification as
a conceptual basis for the atlas of urban form.

However, the model of identification of urban tissues and their classification needs to
be validated. There are two critical questions regarding the validity which needs to be
answered:

1. Are morphometric clusters a valid proxy of urban tissue types?
2. Is the method transferable outside of the context of the initial case study?

To answer the first question, this chapter introduces a validation as an assessment of the
relation of the tissue types and their taxonomy to additional data, which are known to
be linked to the form of cities. The significant relationship between them and proposed
clustering and therefore, the classification would indicate their validity and the validity of
the proposed method. The second question requires the inclusion of another case study
from a different geographical and historical context. Clusters identified in that case study
should be internally valid and comparable with those identified in Prague.

8.1.1 Taxonomy of tissue types

Resulting clusters can be theoretically interpreted, in a conceptual sense, as populations
and studied as such. Based on the propositions outlined in chapter 3, the biological
analogy is taken further in this chapter, to propose a numerical taxonomy of urban form.
The operational taxonomic unit (OTU) in this case is a morphometric urban tissue type.
Each cluster as a whole is considered as a unit for the classification, conceptually mirroring
classification on the level of populations, following the principles of numerical taxonomy
(Sneath and Sokal, 1973) with only minor adaptations related to the specificity of urban
form.
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Urban form is traditionally classified not in a taxonomic, but in a typologic way (Kropf,
2017). Where taxonomy is based on quantitative relations between its elements, typology
follows conceptual division (Bailey, 1994). Both approaches are valid as they assess the
same entity (urban form) from a different perspective. Moreover, if the classification
results coincide, the method can validate each other. This study aims to explore the
potential of quantitative description of urban form. Hence it is natural that it chooses
the path of taxonomy.

The taxonomy results in the hierarchical tree capturing the relationship of clusters, or
taxa. That allows agglomeration of the lowest-level taxa into higher-level ones, adaptively
changing the resolution of classification. That is especially helpful for studies assessing
the effect of urban form on socio-economic aspects as it can adapt to coarser data.

8.1.2 Validation and applicability

Validation is an assessment of the correctness of a result. In the context of this work,
validation should mainly focus on understanding whether the identification of urban tissue
types works as intended and whether the method is transferable to other contexts and
eventually extensible.

The validation of a clustering method which does not have a ground truth data is always
indirect. That means that any validation procedure can give only an indication of the
method’s performance, not a precision estimate. To make the validation more robust, it is
better to compare results to more than one validation layer. Furthermore, it is critical to
ensure that the literature identifies that there is an expected relation between the concept
validation layers capture and urban form patterns.

Transferability of the proposed method should be tested by its application on other case
studies and validating the results independently of the first one. If the method produces
reasonable results and validation via proxy layers indicates statistical relation, we can
assume that the method is transferable to contexts in which it was tested.

Finally, expandability of hierarchical classification (i.e. taxonomy) is critical for the future
development of a taxonomy of urban form. The method is extensible if the results of tissue
type identification from one case can be successfully linked to tissue types from the other
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case to build a common taxonomy.

The following section first proposes a method of hierarchical clustering to derive the basis
for a taxonomy of urban form. Then it outlines methods of validation using the test of
relation to proxy layers, transferability to a different context and finally, expandability as
an attempt to merge two cases into a single classification.

8.2 Methodological proposition

Methodological propositions of this chapter focus on two distinct questions. The first one
has been defined in chapter 5 as one of the supplementary research questions:

1. How to determine the taxonomic relationship between OTUs to derive taxa of urban
form?

To answer that, this section proposes the application of hierarchical clustering method
outlined below.

The second question is related to both results of the previous chapter 7 and hierarchical
clustering proposed in this chapter:

2. Is the overall method valid for classification of urban form?

That is a question which is critical but at the same time hard to answer. Therefore, this
section proposes a series of tests to get a reliable indication of what the answer could be.

8.2.1 Hierarchical clustering

Hierarchical clustering, in case of urban tissues, aims to develop a hierarchy of similarities
between observations based on their morphometric profiles. We can generally distinguish
two main principles, agglomerative and divisive. The former starts with the pool of
observations, each with its own cluster and identifies pairs of clusters while moving up
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the hierarchy. The latter does the opposite as it starts with a single cluster and iteratively
divides it while moving down the hierarchy. Statistics offer a wide range of procedures
for both principles, which description is out of the scope of this research. This research
employs Ward’s minimum variance hierarchical clustering, as the method with a long
lineage in academic use (Singleton and Longley, 2009) and recent application in urban
morphology (Dibble et al., 2017; Serra et al., 2018). Each tissue type is represented
by its centroid (mean of each character) within the hyperspace and Ward’s algorithm
agglomeratively links observations together in a way, which minimises an increase in total
within-cluster variance (Ward Jr, 1963). The classification has a form of a dendrogram
capturing a cophenetic relationship between observations (i.e., morphometric similarity).

Resulting dendrogram can be further interpreted and initial OTUs flexibly clustered to-
gether based on the branching of the diagram. That can, in turn, be mapped, and the
spatial distribution of branches can be visually assessed. Furthermore, branching enables
focused analysis of individual macro clusters, if that is of interested in one’s particular
study.

8.2.2 Validation

Validation of identification of tissue types and consequent hierarchical clustering is done
in two ways. The first one studies the relationship of resulting classification to additional
non-morphometric data to verify whether the expected link between morphology and
other aspects is present in the data. The second approach tests the applicability of the
method outside of the initial case study. As the design and decision making behind it
were based on the Prague dataset, it may have incurred context-specific features which
limits the applicability of the method elsewhere. To ensure that this did not happen,
the method should be applied to unrelated data, and resulting classification should be
examined to ensure that the results are comparable.

8.2.2.1 Relation to non-morpohological data

Capturing the relation of proposed classification to additional data is an indirect validation
method. There are theoretical grounds on which we can expect that the relation between
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urban form and other data exist and hence should be present in the classification. It is
well known that urban patterns change based on the era in which they are built, meaning
that there is a significant relation between urban types and their historical origin (Panerai
et al., 2004; Dibble et al., 2017). Similar relation could be found with land-use patterns
(Castro et al., 2019) and some other data.

However, such additional data should not be seen as ground truth for classification as it
does not reflect the same concepts. The relation should be seen as indicative.

In this research, the proposed classification will be compared to three datasets - 1) the
period of the historical origin of a place, 2) predominant land-use patterns, and 3) quali-
tative typology of urban form. All three will use the method of validation, based on cross-
tabulation, using a) statistical analysis using chi-square statistic and related Cramér’s
V, further interpreted based on b) compositional analysis focusing on the composition of
each cluster in relation to the tested data, and c) visual assessment of spatial distribution
to illustrate the behaviour of both compared data in space.

8.2.2.1.1 Analytical tools Validation is using cross-tabulation (contingency table)
as an input for all Chi-square test, Cramér’s V and compositional analysis. Cross-
tabulation measures the number of observations within each cluster-category pairs, where
categories are reflecting the different classes of used proxy data (e.g. land use types).

The detailed method of application of selected analytical tools is proposed below.

8.2.2.1.1.1 Chi-square test of independence The proposed classification, as well
as proposed additional data, are categorical variables, including the historical origin which
is presented as unevenly distributed eras rather than age. The chi-square test of indepen-
dence of variables determines whether there is a significant relationship between two
categorical variables based on a contingency table (Agresti, 2018). The null hypothesis
(H0) and the alternative hypothesis (H1) of the analysis states that

H0: Morphometric classification of urban tissues is independent of variable.
H1: Morphometric classification of urban tissues is not independent of
variable.
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The statistic itself is denoted as

(83) ∑
χ2

ij = (O−E)2

E
,

where O is the actual observed count, E is the expected value, chi2 is the cell Chi-square
value. The expected value E is calculated as

(84) E = MR×MC
n

,

where MR is the row marginal (sum of the row) for the cell, MC is the column marginal
(sum of the column) for the cell and n is the total sample size (Agresti, 2018).

The chosen alpha level of significance is α = 0.01.

The actual implementation is based on scipy.stats.chi2_contingency function from
open-source toolkit SciPy (Jones et al., 2001).

8.2.2.1.1.2 Cramér’s V The chi-squared statistic does indicate whether there is an
association or not but does not tell how strong it is. Cramér’s V coefficient is based on
chi-squared statistic but extends it to provide a value between 0 and 1, reflecting the
level of association similarly as Pearson’s correlation does. Value 0 corresponds to no
association while 1 to perfect association (Crewson, 2006).

Cramér’s V coefficient is denoted as

(85) V =
√

χ2
n(q−1)

where q is the smaller number of either rows or columns. The strength of association
described by V is illustrated in table 8.1.
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Table 8.1: Strength of association of two categorical variables based on Cramér’s V coefficient. Reproduced
from (Crewson, 2006).

V association

>.5 high
.3 to .5 moderate
.1 to .3 low
0 to .1 little if any

8.2.2.1.1.3 Cross-tabulation compositional analysis Each of the clusters and
each of the branches is then studied independently to understand what is its composi-
tion in relation to the validation data, focusing on individual rows of a contingency table.
The perfect relation would show all observations of a single class within a single cluster
and none within any other. An equal count would reflect no relation among the classes.
The compositional analysis is aimed to provide more in-depth interpretative values that
chi-square and Cramer’s-V, but it does not state any significance level.

8.2.2.1.1.4 Visual assessment of spatial distribution The visual assessment of
spatial distribution overlays the boundaries defined by morphometric classification over
the validation classes to determine spatial relationship visually. Alongside the compo-
sitional analysis, the visual assessment is meant to provide interpretative information,
allowing a better understanding of the relation between tested data. It does not pro-
vide any numerical results as it only links compositional analysis with the geographical
context.

8.2.2.1.2 Validation data Three datasets are used within the validation framework
- historical origin, land use patterns and qualitative typology of urban form linked to the
predefined boundaries.

8.2.2.1.2.1 Historical origin The link between the historical origin and the patterns
of urban form is well established in the literature (Panerai et al., 2004) and has been re-
cently studied using morphometric tools, from the composition and configuration of street
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networks (Porta et al., 2014; Boeing, 2020a) to the complex morphometric assessment of
sanctuary areas (Dibble et al., 2017). The relation, which is described in the literature,
should be present in the data studied in this research. The existence of the significant
relationship between the historical origin and results of morphometric classification would
indicate the validity of the proposed classification.

The data on historical origin provided by the Institute for Planning and Development
Prague denotes the time frame in which was each part of the city first built-up. However,
the data do not provide a single year, but a specific range, presenting what would be a
continuous variable of age as ordered categorical one. Moreover, the categories are not
equally distributed in time, with maximums within each category being 1840, 1880, 1920,
1950, 1970, 1990, and 2012. That may lead to the situation where three adjacent buildings,
built in years 1878, 1879 and 1881 are not seen as of the (almost) same age. The first two
are in the second category, being treated as equal while the last is in the third category
being treated as different. Moreover, its difference from 1841 is the same as the difference
from 1949.

These data ignore the redevelopment of parts of the city which happened later. Newly
built areas, which are built in the area of previously demolished urban form are not
reflected and should be interpreted accordingly.

However, even with these limitations, the dataset does represent the different periods of
Prague’s development, and there should be a significant relation.

Before doing the analysis itself, data on historic origin were spatially linked to the building
layer. Each building got assigned a single category of origin denoting not its own period
of origin, but the first moment of the development of the area it sits in.

8.2.2.1.2.2 Land use patterns Land use is determining building typology, which is
partially reflected in the patterns of urban form. Single-family housing is always different
from industrial or commercial areas, while multi-family housing can be developed in a
plethora of ways, but still different from other uses. That gives us theoretical grounds
for validation of proposed morphometric taxonomy using land-use patterns. However, it
has to be noted that such a relation will likely not be perfect, as there are mixed uses in
many places.
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The data on land use in Prague capture land use to the level of individual building and
plot and divides it into 123 categories. However, only 15 of them contain more than 1,000
buildings. Categories are providing detailed classification, but that does not reflect the
predominant tendency of land use within the area but the individual buildings. For that
reason, the initial data are used to compute predominant land-use patterns within three
topological steps on morphological tessellation. As predominant land-use is seen the one
with the highest frequency within the context.

Initial land-use data are spatially linked to buildings layers to have a single value repre-
senting category per building. Then the predominant land-use is calculated based on the
context. Out of resulting categories, only 5 (Multi-family housing, Single-family housing,
Villas, Industry small, Industry large) contain more than 1% of the dataset. For that
reason, these five are used, and the rest is denoted as Other.

8.2.2.1.2.3 Municipal typology Planning system of Prague is based on the concept
of localities, small neighbourhoods (Institut plánování a rozvoje hlavního města Prahy,
2018). Each neighbourhood has specified boundaries partially based on its morphology
and partially on other aspects, from historical origin to social perception of the area. Fur-
thermore, these neighbourhoods were qualitatively classified into one of the 10 structural
types. This municipal typology tends to capture morphology and as such, could be used
as a validation method. In the ideal world, this layer would become a ground truth for the
morphometric classification. However, that is not possible due to methodological flaws
embedded in the typology.

The typology consists of the following 10 types (loosely translated into English):

• organic structure
• perimeter block structure
• hybrid structure
• heterogenous structure
• village structure
• garden city structure
• modernist structure
• production area
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• services area
• linear structure

While these types might work for planning purposes, they are conceptually incoherent
mixing types based on morphology (organic, perimeter block) with those based on plan-
ning ideology (garden city, modernist), or those based on land use (production, services).
Moreover, the fixation of the typology to localities comes with Modifiable Aerial Unit
Problem (Openshaw, 1984), leading to the inclusion of ambiguous loosely defined hybrid
and heterogeneous types.

However, the typology itself, considering above mentioned limitations, reflects what the
planning authority thinks Prague is composed of, and it is worth studying the relation of
this qualitative typology to the proposed quantitative classification. The only adaptation
which needs to be done is the exclusion of hybrid and heterogenous types from the analysis
due to their MAUP-based origin and of linear structure capturing railway structures only.

The data provided as polygons represented localities are spatially joined to buildings layer,
and features containing excluded types are removed from the data.

8.2.2.2 Transferability of the method

The proposed method of identification of urban tissues is validated in the context of
Prague using the methods above. However, that by itself does not ensure that the method
is transferable and applicable elsewhere. Different geographical contexts, bringing various
types of urban tissues, and their underlying spatial logic may be challenging for a method
tested in a single, no matter how heterogenous, case. The transferability of the method
is a critical feature for its robustness and applicability. The method should show similar
performance, in terms of identification of tissue types and a consequent taxonomy, in
additional case studies.

Therefore, the method as it stands is tested on the case of Amsterdam, NL. Both Ams-
terdam and Prague are heterogeneous cities with several historical layers, but of different
planning context during their respective developments.
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8.2.2.2.1 Urban tissues of Amsterdam The first part of the analysis of Amster-
dam is the identification of urban tissue types using the method proposed in chapter 7.
Precisely the same set of primary and contextual characters is used within Gaussian Mix-
ture Model clustering and related BIC analysis of the number of components. For the
details of the method, refer to the previous chapter. Similarly, the method of hierarchical
clustering proposed in section 8.2.1 is applied to the resulting tissue types.

Both results will be assessed visually on a map to understand whether the clusters alone
and within their branches are interpretable and contiguous.

8.2.2.2.2 Validation of clustering in Amsterdam The resulting clusters in Ams-
terdam are validated using the method proposed in section 8.2.2.1 above, using data on
the historical origin of each building. In the case of the datasets obtained from Dukai
(2020), each building has assigned a year of its construction. Unlike in Prague, the year
does not represent the data when the area/plot was first built-up, but the latest construc-
tion. Even though the data are not initially binned, only buildings constructed after the
year 1800 have a specific year. To ensure the compatibility of the data with those used in
Prague and to avoid issues with pre-1800 periods, the origin dates are therefore binned
into 11 groups following the classification of Spaan and Waag Society (2015). The rest of
the validation follows the method outlined in 8.2.2.1.

8.2.2.3 Expandability of the classification

The study of expandability of hierarchical classification is the last methodological step
in the whole thesis, and its role is to understand whether results of the morphometric
study from one case study can be related to another case study. Expandability of the
classification is crucial for further expansion of the database of urban tissue types. Even
though clusters and hierarchical classification may work in individual cases, the question
is whether we can combine the results to a single taxonomy. It tests the compatibility
of results and a potential issue of clustering being tied to a single context. The optimal
situation would mirror the biological world, where a newly discovered species can be
usually embedded into an existing taxonomy. However, to get to the stabilised situation
where taxonomy is not substantially changed by the discovery of a new species, we first
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need a critical mass of species to be included. That is certainly not the case in newly
built taxonomy of urban form, and it is expected that it could be relatively unstable in
the beginning and stabilise by the inclusion of more cases.

The method can be considered extensible if the taxonomy of tissue types from Prague
and Amsterdam combined does not substantially change the interpretative value of den-
drograms.

The generation of the combined taxonomy is a straightforward process. All clusters from
both cases are combined into a single pool and used as an input of Ward’s hierarchical clus-
tering. The resulting dendrogram is then compared to the initial individual dendrograms,
and their structures are compared. That reflects whether resulting branches capture simi-
lar tissues in both contexts. The results are then visually assessed using branches mapped
on to the urban form of both cities alongside.

The final step is an interpretative analysis of the reshuffle of clusters between individual
dendrograms and a combined one. In the ideal case, tissue types which are in a single
branch in an individual tree should stay within a single branch in a combined one. How-
ever, as mentioned above, it is expected that some degree of reshuffle may happen when
a classification structure is not yet saturated.

The following section applies the methods and presents their results.
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8.3 Case studies - continuation of Prague, Amsterdam

This section presents the results of the methods proposed in the previous one. It starts
with the continuation of the work on Prague presented in the previous chapter, developing
hierarchical clustering of initially identified urban tissue types. Further, it presents the
indirect validation of the results using non-morphological data. The second part presents
an inclusion of Amsterdam case study, as the delineation of tissue types, taxonomy and
validation using historical origin. The final section discusses expandability of the proposed
method testing its ability to form a methodological foundation of a general atlas of urban
form.

8.3.1 Hierarchical clustering

The centroid values of each cluster, obtained as a mean value of each morphometric char-
acter, are used taxonomic characters within Ward’s hierarchical clustering. The resulting
relationship between centroids, representing the relationship between identified urban
tissues, is illustrated on the dendrogram on figure 8.1. The horizontal axis represents
each individual cluster, while the vertical axis captures the cophenetic distance, i.e. the
similarity between observations. The lower the connection between two branches is, the
more similar the tissues represented by these branches tend to be. The values under each
connection represent the actual cophenetic distance of a connection and number of obser-
vations which belong to the link. The different branches of the tree are coloured to ease
the interpretation of the tree itself and to provide the visual link between the dendrogram
and the resulting spatial distribution of branches.
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Figure 8.1: Dendrogram representing the results of Ward’s hierarchical clustering or urban tissue types in
Prague. The y-axis shows a cophenetic distance between individual clusters, i.e. their morphometric similarity.
Branches are interpretative coloured - the colours are then used on maps illustrating spatial distribution of
these branches.

The dendrogram shows several major bifurcations on different levels of cophenetic dis-
tance, indicating several distinct groups of urban tissues. However, the exploration and
interpretation of each branch require the projection of the results into the geographical
space. To allow that, each cluster is coloured according to the branch of the dendrogram
it belongs to, using different lightness of the same hue to distinguish between individual
clusters. The spatial distribution of hierarchically represented cluster in the whole Prague
is illustrated on the figure 8.2, and the detail of the city centre is shown on the figure 8.3.
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Figure 8.2: Spatial distribution of different branches of the dendrogram. Each tissue type is coloured according
to a branch it belongs to, with a minor differences in colour intensity to allow for distinguishing of individual
clusters.
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Figure 8.3: Spatial distribution of different branches of dendrogram zoomed to the central area of Prague.
Each tissue type is coloured according to a branch it belongs to, with minor differences in colour intensity to
allow for distinguishing of individual clusters.
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Examining the dendrogram, we can highlight the different branches to understand their
spatial distribution. Starting from the top of the dendrogram, from the bifurcation with
the higher cophenetic distance (43.53), we can divide Prague’s urban form into two major
taxa. The right side of the tree represent urban form we could call organised city and
is illustrated in figure 8.4. It consists of areas of mixed origin, spanning from the histor-
ical core to modernist and contemporary developments. The common characteristic is
predominantly residential nature of all tissues.

Figure 8.4: Spatial distribution of clusters within a branch representing organised city. We can see a relative
contiguity in the city centre but scattered discontinuous areas in the periphery.

On the other side lies an unorganised city. It contains both industrial and fringe areas
as well as contemporary office parks. The apparent shared logic is a relative disorder of
patterns and high heterogeneity.
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Figure 8.5: Spatial distribution of clusters within a branch representing unorganised city, located mostly on
the outer ring of the city.

Going deeper into the right side of the dendrogram, we reach another major bifurcation
happening at a distance 30.40 dividing the branch into two, representing mostly the
intensity of the development. Left side, illustrated on figure 8.6 captures urban tissues
which could be characterised by single-family housing of all sorts, spanning from villages
to garden city-like neighbourhoods. To illustrate the density, the mean floor area ratio of
the branch is 0.38.
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Figure 8.6: Spatial distribution of clusters within a branch representing low density, organised development.

The other side of this branch represents the dense city of all sorts (figure 8.7), from the
medieval core, through historical perimeter block tissues to modernist housing estates.
All these share the high volumetric density (mean floor area ratio of the branch is 1.76).
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Figure 8.7: Spatial distribution of clusters within a branch representing high density, organised development.
It is capturing two distinct phases of development of Prague - the historical period in the central areas and
modernist development (mostly) in the periphery.

Further reading of the branching shows the bifurcation dividing the medieval city from the
rest (c.d. 25.84) and further one splitting ordered grid-like city from disordered one (figure
8.8), composed of fringe areas adjacent to ordered city and modernist housing estates.
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Figure 8.8: Spatial distribution of clusters within a branch representing high density, organised development
with a fringe-like disorder in their patterns.

This basic description of branching shows that the top-level structure of the taxonomy
reflects the spatial logic of the structure of Prague to a high degree of interpretability. As
the key aim of this study is not to provide deep insight into Prague’s structure but to
develop the method itself, this section does not go into further detail. However, the rest
of the maps of individual branches is available as an Appendix 8.1.
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8.3.2 Validation

Validation results are divided into several sections. The first one focuses on the relation
of delineation of urban tissue types and their taxonomic branches, and additional data,
which should have the ability to reflect the differences in built-up patterns. That entails
historical origin, land use patterns and municipal typology of urban form, all in the context
of Prague. The second section outlines the results of cluster analysis and subsequent
hierarchical classification of Amsterdam. To validate the Amsterdam case itself, local
tissue types are assessed against data of historical origin. The third and last section
focuses on results of combined taxonomy and potential of the expandability of the method
and potential future development of the taxonomy of urban form.

8.3.2.1 Relation to additional data

Relation to additional data reflects the results of clustering and hierarchical classification
compared to the historical origin, land use patterns and qualitative municipal typology of
urban form. All these are assessed based on the contingency table and visual assessment
of spatial distributions. The contingency table is used to calculate Chi-square statistic
and Cramer’s V, and to examine the composition of each cluster.

8.3.2.1.1 Origin Data for historical origin are illustrated in figure 8.9. There are
some significant patterns which should be reflected in the clustering, notably historical
core and modernist belt. However, not all differences in origin have their counterparts
in differences in clustering, as there are patterns which are consistently built across time
frames (e.g., low-density single-family housing).
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Figure 8.9: Spatial distribution of different periods of historical origin.

Contingency table 8.2 shows the distribution of buildings within clusters and time periods.
Obviously, there is a relation, especially when it comes to the larger historical grouping
into pre-WW2 and post-WW2 macro groups.

Table 8.2: Contingency table showing the counts of features per historical origin within individual clusters.

cluster 1840 1880 1920 1950 1970 1990 2012

0 251 110 2004 9310 2602 542 501
1 171 41 90 425 523 431 233
2 461 241 952 4585 3668 1816 224
3 6 16 27 1625 439 1217 749
4 302 208 728 1332 1359 842 299
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cluster 1840 1880 1920 1950 1970 1990 2012

5 752 1707 2522 926 11 2 1
6 1146 406 763 3193 2040 1870 729
7 244 150 281 834 639 1188 594
8 107 255 923 5125 636 287 509
9 3048 516 912 1766 581 421 573

10 825 1284 2630 2034 279 66 52
11 2097 9 17 26 0 0 1
12 42 7 85 255 919 5220 290
13 1028 234 1021 6227 2611 1284 2472
14 868 656 1179 1466 345 139 189
15 1514 880 468 171 5 4 5
16 417 214 337 1002 601 571 288
17 740 354 1298 6229 1959 925 576
18 1346 204 544 2887 1686 719 1178
19 1 0 20 356 412 620 198

Reported results of a Chi-square test, based on the contingency table, assessing whether
there is a significant relationship between two variables (origin and clustering), are
χ2(104, N = 140315) = 106700.51, p < .001, which indicates a significant relationship. 
Cramérs-V assessing the strength of the relationship is 0.358, indicating moderate
association. Since we cannot expect complete match because the data as the theoretical
relation is only partial, both results are indicating the high performance of cluster
analysis.

Looking at the composition of each cluster extracted from the contingency table (figure
8.10), we can see the relationship in a more interpretative way. Where the relationship
is expected based on literature, there is a clear association (historical core, modernism)
with the majority even falling into a single category. The striking difference between the
structure of pre-WW2 and post-WW2 urban patterns partially confirms previous results
reported by Dibble et al. (2017) and Porta et al. (2014).
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Figure 8.10: Illustration of composition of selected representative clusters from the perspective of historical
origin.

Branches of the local taxonomy show similar relation (where is feasible to expect one),
especially regarding the tendency of significant changes of development patterns after
the Second World War (figure 8.11). However, it is important to note that unlike other
European cities, Prague was not significantly damaged during the Second World War and
the difference cannot be then interpreted as post-war regeneration and redevelopment.
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Figure 8.11: Illustration of composition of selected representative branches from the perspective of historical
origin.

Spatial distribution tells us what do all these statistical values mean on the ground and
how good is the coincidence there. The historical core of Prague in figure 8.12 captures
the relation if cluster 11 to the historical origin. However, due to the limitation in data
grouping, all development build pre-1840 into a single category, some differences need to
be explained. Jewish quarter, the pre-1840 area but not part of the cluster on the north of
the centre, has been demolished and rebuilt in early 1800. Therefore it is not of medieval
origin and is correctly excluded from the cluster.
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Figure 8.12: Illustration of the overlap between cluster 11 representing historical core and periods of historical
origin. Colours represent period and the saturation the extent of the cluster.

Cluster 5, the one we can call a compact dense city was built according to the same
principle over the years, but generally tends to coincide with relevant origin categories as
shown on the figure 8.13. Notice the split in historical origin in the central part into 1880
and 1920 categories. Similar split has been identified by sub-clustering in section 7.2.3.4.1
shown in figure 7.59. However, there can be two reasons for the similarity - one is the
historical period and the other topography, as the areas shown in green are mostly built
on slopes.
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Figure 8.13: Illustration of the overlap between cluster 5 representing historical compact development and
periods of historical origin. Colours represent period and the saturation the extent of the cluster.

A major part of the modernist housing belt around the city (cluster 12) was built between
the 60s and early 90s, which is very nicely shown by the overlaps of distributions as well
as on the figure 8.14 below.
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Figure 8.14: Illustration of the overlap between section of cluster 12 representing modernist development and
periods of historical origin. Colours represent period and the saturation the extent of the cluster.

Looking at the combination of different branches, if we focus on a sample of the ordered
part of a dense city branch, we see almost perfect overlap with pre-1950s development.
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Figure 8.15: Illustration of the overlap between branch representing dense compact development and periods
of historical origin. Colours represent period and the saturation the extent of the branch.

As far as it is possible to link these two aspects of form, origin and patterns, there is a
significant connection validating the results of clustering and classification.
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8.3.2.1.2 Land use Patterns of predominant land use are illustrated in figure 8.16.
The large areas of the city are covered by single-family housing and multi-family housing.
The latter spans from historical development in central areas to large developments dur-
ing the second half of the 20th century, covering both dense compact development and
modernist housing typology. There are only minor areas denoted as villas in the obtained
land-use classification, mostly located in the north-west of the city. Moreover, the patches
of the industry are often mixed with other land use categories, which indicates that the
need to be cautious during the interpretation of results as this reflects the limitation of
the data.

Figure 8.16: Spatial distribution of predominant land use categories.

Contingency table 8.3 shows even more evident patterns than in the previous example.
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Table 8.3: Contingency table showing the counts of features per predominant land use within individual clusters.

cluster

Multi-
family

housing

Single-
family

housing Villas
Industry

small
Industry

large other

0 91 14412 819 0 0 15
1 30 304 2 72 287 1343
2 6019 5426 487 3 3 78
3 201 3817 0 0 0 115
4 312 1065 1 733 546 2624
5 5905 0 0 0 0 25
6 2176 7038 255 214 146 500
7 2489 573 15 221 151 691
8 287 7321 236 0 0 1
9 191 7292 160 73 20 126

10 6609 389 196 1 1 7
11 1461 0 0 0 0 706
12 6684 199 0 0 0 2
13 6 14794 130 8 0 54
14 3775 281 59 104 64 701
15 2731 0 0 0 6 323
16 431 2632 78 49 97 261
17 505 11127 466 11 2 34
18 42 7384 61 41 6 1230
19 18 31 0 27 706 874

Reported Chi-square results, based on the contingency table, assessing whether there is a
significant relationship between two variables (land-use and clustering), are χ2(95, N =
140315) = 176165.83, p < .001, which indicates a significant relationship. Cramérs-V
value is 0.501, indicating high association, higher than in the previous case. The land-use
typology is known to be related to the form, even though not always in the same manner
(see compact blocks vs modernism being in the same class). The results demonstrate that
the clustering does reflect the similar subdivision as land-use presumes, hence indicate
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the validity of the classification.

Detail of the composition of individual clusters (figure 8.17) shows in even more straight-
forward way the clear relationship between both variables. Cluster 11 (historical core)
has a higher proportion of other uses caused by its central position where parts of the
historical core are used as the central business district, therefore bringing different land
uses to the same area.
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Figure 8.17: Illustration of composition of selected representative clusters from the perspective of predominant
land use.

Similarly, a high degree of relation is present when we assess branches instead of individual
clusters (figure 8.18). What can be seen as the highest rate of imprecision is 0.09 ratio of
single-family housing in the industrial city branch, which shows that the actual precision
is more than 90%.
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Figure 8.18: Illustration of composition of selected representative branches from the perspective of predominant
land use.

Illustration of spatial distribution tells the same story and it is not necessary to go into
the details. The same branch of the dense city (figure 8.19) as above shows what is already
explained in numbers, i.e. the high level of overlap between land-use and clustering.
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Figure 8.19: Illustration of the overlap between branch representing dense compact development and predom-
inant land use. Colours represent land use and the saturation the extent of the branch.

The results of validation of clustering and taxonomy based on land use data show even
higher levels of similarity between the variables than in the case of historical origin, clearly
indicating that the morphometric tissue types can be relevant.

8.3.2.1.3 Municipal typology Comparison of the clusters and the qualitative mu-
nicipal typology is the last validation using additional proxy data. As described in the
section 8.2.2.1.2.3, there are certain limitations when it comes to the municipal typology
itself which results in the necessity to drop a fraction of features (20960 are dropped,
therefore 119355 features are used) before the actual analysis. The data used for the
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analysis and their respective types are illustrated in figure 8.20. The types are clearly
distinguished and in a sense, reflect the combination of origin and land-use categories.

Figure 8.20: Spatial distribution of individual classes of qualitative municipal typology in Prague.

Contingency table 8.4 shows even more evident patterns than in the previous examples.

Table 8.4: Contingency table showing the counts of features per municipal typology classes within individual
clusters.

cluster organic
perimeter

block village
garden

city modernismproductionservices

0 0 0 5158 9386 3 0 0
1 0 0 252 87 0 960 92
2 0 305 965 3802 3600 13 49
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cluster organic
perimeter

block village
garden

city modernismproductionservices

3 0 0 381 1338 616 0 51
4 1 31 660 269 59 1997 543
5 375 5350 0 7 0 0 0
6 0 207 2551 3050 1042 445 283
7 0 158 178 174 1331 479 434
8 0 0 1941 4655 101 0 0
9 0 2 5659 1569 3 0 0
10 115 5248 70 853 46 2 3
11 2137 0 0 0 0 2 11
12 0 6 79 101 6540 4 13
13 0 0 8805 5640 2 2 5
14 174 2825 22 258 102 294 269
15 1283 1734 0 0 0 10 9
16 0 3 1198 1103 129 257 53
17 0 8 3538 6300 301 25 15
18 0 0 4327 3153 34 34 59
19 0 0 6 1 1 1461 73

Reported Chi-square results, based on the contingency table, assessing whether there
is a significant relationship between two variables (municipal typology and clustering),
are χ2(114, N = 119355) = 325595.20, p < .001, which again indicates a significant
relationship. Cramérs-V value is 0.674, indicating high association, the highest of all tested
datasets. That is no surprise, as both layers (clusters and municipal typology) are trying
to describe the same aspects of the city. Considering the MAUP-related imprecision of
municipal dataset and error margin of clustering, the results offer a strong indication of
the validity of the clustering output.

The relation is also clearly present in the composition of each cluster (figure 8.21) with
the only difference of distinction between village and garden city typology. That is poorly
specified in the original dataset and the difference is unclear as it mixes historical origin
and ideology with the morphological description. So the difference between the two should
be taken with care as it might just be misleading.
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Figure 8.21: Illustration of composition of selected representative clusters from the perspective of municipal
typology.

Branches are combining different groups of municipal typology in a similar manner they
combine clusters (figure 8.22). We can see some deviations, but the general tendency is
clear and tells a very similar story as taxonomy itself.
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Figure 8.22: Illustration of composition of selected representative branches from the perspective of municipal
typology.

A single illustration of spatial distribution on the branch of the dense historical city shows
almost precise overlap with municipal typology (figure 8.23). The differences, e.g. the ar-
eas marked as perimeter blocks in municipal typology not captured by clusters, are mostly
incorrectly classified in the typology itself due to MAUP (Dejvice University Campus in
the north-west, Industrial belt of Holesovice in the north).
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Figure 8.23: Illustration of the overlap between branch representing dense compact development and municipal
typology. Colours represent classes of typology and the saturation the extent of the branch.

Municipal typology shows the highest similarity with the morphometric urban tissue types
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from all three proxy layers. This layer should be similar as it tries to capture a similar
perspective of the city. The fact that it does shows such high significance tells that the
clustering method and classification does deliver results capturing meaningful results.

The aim of the section was to validate the results of clustering using additional data.
The clusters would be seen as validated if they showed a significant relationship to all
tested layers. The results of the validation show significance and moderate (origin) to
a high association (both land-use and municipal typology) based on the employed tests.
These results clearly indicate that the method of identification of urban tissue types
proposed in the previous chapter and related hierarchical classification of urban tissues
are both reflecting the morphological reality and could be seen as a valid method of urban
morphology analysis.
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8.3.2.2 Transferability to other places

Even though the method is valid in the context of Prague, it is unclear whether it is
transferable to other contexts. It was designed with universality in mind, so it is assumed
that it should be able to capture a similar level of information in other geographic and
historical contexts. To test this hypothesis, the whole methodology is applied to the case
study of Amsterdam, including one layer of validation using historical origin data.

Amsterdam dataset tests not only the transferability of the method but also its scalabil-
ity. The number of buildings on the input of clustering is 252,385 compared to 140,315
buildings in Prague.

The results of primary and contextual characters are not presented in the main body
of the text, and their distributions are available as Appendix 8.2. Since the method is
following the steps defined in sections 7.1 and 8.2.1, results report the selection of an
optimal number of components, results of clustering and hierarchical classification.

8.3.2.2.1 Clusters Bayesian Information Criterion shows different curve than we have
seen in Prague case as it does not culminate to indicate the optimum (figure 8.24). That
is a situation which may happen with BIC and indicates overfitting of the model, which
BIC is unable to correct.
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Figure 8.24: Bayesian Information Criterion score for the variable number of components. Shaded area reflects
.95 confidence interval.

In cases like this, it is recommended to follow a different principle of identification of the
optimal number of components derived from the gradient of the curve (figure 8.25). The
resulting number is then the smallest value on the stabilised gradient. Once it flattens,
i.e. the change starts to become more linear, it is not expected that a larger number of
components will significantly improve the classification. For that reason, the number of
components used for identification of clusters in Amsterdam is derived from the gradient
curve as 30.
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Figure 8.25: Gradient of Bayesian Information Criterion score for the variable number of components. The
shaded area reflects a .95 confidence interval. The red line marks the culmination of the gradient at about 30
components.

Results of the cluster analysis are shown visually on figures 8.26 and 8.27. Spatial distri-
bution on the next two pages (the full extent of the case study and the detail of the city
centre) show potentially meaningful clusters. Especially clusters in the city centre show
a high degree of legibility initially seems to reflect different phases of the development
of Amsterdam. From this first perspective, it looks promising, and there is no reason to
think that the method identification of clusters is not transferable yet.
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Figure 8.26: Spatial distribution of 30 clusters as identified by GMM based on morphometric data.
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Figure 8.27: Detail of spatial distribution of 30 clusters as identified by GMM based on morphometric data.
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Consider cluster 29 in the previous figure. It, with some margin of error, captures the
original historical core of Amsterdam. The next concentric belt is captured as cluster 13.
The difference between dark blue (11) and grey/pink areas (4, 18) reflects the change in the
planning paradigm with the rise of New Amsterdam School (Panerai et al., 2004), captured
especially by grey cluster 18. On the other hand, the results in peripheral parts of the
city show a certain degree of fuzziness, which again can be a sign of potential overfitting,
indicating that the actual number of clusters might need to be smaller. However, that
may be resolved by taxonomy, by linking individual clusters together to branches and
assessing the urban form via branches.

It is important to tests the method in additional geographical contexts than initial Prague
case study to ensure that it is transferable. Applying the method on the case of Amster-
dam, NL, first results indicate that the method is transferable. However, the case also
raised questions regarding the stability of the method of determination of the number of
components for Gaussian Mixture Model clustering as BIC curve did not culminate. That
should be further explored in further research, and additional ways of identification of the
optimal number might have to be introduced.

8.3.2.2.2 Hierarchical tree The hierarchical tree (figure 8.28) derived from morpho-
metric data of Amsterdam shows similar characteristics as we have seen in Prague, with
the significant bifurcation into two branches distinguishing predominantly industrial and
housing tissues and then consequent bifurcations lower in the tree distinguishing different
rules of the organisation.
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Figure 8.28: Dendrogram representing the results of Ward’s hierarchical clustering or urban tissue types in
Amsterdam. The y-axis shows a cophenetic distance between individual clusters, i.e. their morphometric simi-
larity. Branches are interpretative coloured - the colours are then used on maps illustrating spatial distribution
of these branches.

The spatial distribution shows what the branches actually mean. See the whole case study
and its detail coloured according to the dendrogram on figures 8.29 and 8.30. Again, each
cluster has a different shade of the same colour when it belongs to the same branch.
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Figure 8.29: Spatial distribution of different branches of dendrogram in Amsterdam. Each tissue type is
coloured according to a branch it belongs to, with a minor differences in colour intensity to allow for distin-
guishing of individual clusters.
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Figure 8.30: Detail of spatial distribution of different branches of dendrogram in Amsterdam. Each tissue
type is coloured according to a branch it belongs to, with a minor differences in colour intensity to allow for
distinguishing of individual clusters.
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The first bifurcation is analogous to one identified in Prague and divides the city to
the organised (figure 8.31) and unorganised (figure 8.32) parts. Organised is composed
of predominantly residential use. It entails the whole historical core and major parts
of residential housing. However, there are major gaps between contiguous areas caused
by the high presence of all sorts of industry and other uses. After all, Amsterdam is
historically a port city.
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Figure 8.31: Spatial distribution of clusters within a branch representing organised city in Amsterdam. Although
there are significant gaps, the overall distribution of tissues seems to be more contiguous than in Prague.
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Figure 8.32: Spatial distribution of clusters within a branch representing unorganised city in Amsterdam.
Similarly to the previous figure, clusters belonging to this branch tend to form either contiguous areas or follow
main roads in between.
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The branch comprising the organised city splits into high density and low density in a
similar manner as Prague’s case does. High density is mostly historical core 8.33, in
this case, the one of Amsterdam and also Weesp on the east side of the city. Moreover,
parts of the modern development of former port sites tend to show similar characteristics.
Further bifurcation within lower density development is readable and follows sorts of the
compactness and homogeneity of patterns, so we have organised residential areas, their
more heterogeneous counterparts and fringe areas around compact high-density areas
(figure 8.34). The tree also resolves the initial fuzziness of individual clusters (notice that
light blue, red and pink branches are very similar to each other).
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Figure 8.33: Spatial distribution of clusters within a branch representing high density, mostly historical devel-
opment of in Amsterdam.
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Figure 8.34: Spatial distribution of clusters within a branch representing low density development in Amster-
dam.
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Hierarchical taxonomy shows very similar character as was observed in Prague and visually
works in a coherent way. It seems safe to conclude that the proposed method similarly
behaves in both cities, which indicates its universality and transferability.

8.3.2.2.3 Validation using historical origin To further assess the validity of clus-
tering in Amsterdam, one layer of validation based on additional data, historical origin,
is used as a proxy. The initial input data are illustrated on figure 8.35.

It should be noted that it captures the origin of individual buildings, not the time when
the plot was first built as in Prague. As with the data on origin for Prague, we can expect
a certain degree of association, but not full as not all patterns are time-dependent. The
test will be done using the same method based on the contingency table, chi-squared and
Cramér’s V.
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Figure 8.35: Spatial distribution of different periods of historical origin in Amsterdam.
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Table 8.5: Contingency table showing the counts of features per historical origin within individual clusters in
Amsterdam

cluster 1800 1850 1900 1930 1945 1960 1975 1985 1995 2005 2020

0 827 4 3012 2560 484 154 86 311 471 1048 854
1 2 1 23 752 748 5678 5841 2048 5582 2136 3210
2 761 10 625 2307 839 431 207 495 593 590 181
3 14 21 116 584 251 381 546 385 337 460 328
4 38 0 526 5743 2771 75 6 6 20 23 5
5 80 52 698 4214 2126 2132 2034 1208 932 920 763
6 6 4 83 821 490 679 1521 693 1993 1365 1287
7 0 0 1 0 7 604 5455 3455 3282 503 367
8 29 6 50 38 36 149 449 360 442 516 399
9 4 6 136 3151 4444 5095 1579 578 1154 791 1279

10 1 0 13 498 340 5379 3086 839 2949 1940 1796
11 980 0 3526 4324 272 38 50 200 452 204 58
12 2 0 35 272 114 252 630 178 718 1582 1267
13 2815 41 287 462 170 42 57 68 124 121 23
14 35 14 165 1525 911 2398 4149 1916 2511 1529 1305
15 12 9 154 498 209 302 408 369 390 375 354
16 0 0 23 19 0 277 321 171 136 65 93
17 50 19 225 553 238 691 1578 998 1197 1228 962
18 33 0 312 8359 3280 573 45 357 344 102 34
19 14 0 16 270 37 208 499 504 560 9 145
20 3 0 3 30 19 77 2031 4203 1475 325 167
21 18 11 96 323 94 207 340 228 219 243 165
22 1 0 83 152 317 1901 1108 1160 1023 709 1143
23 0 0 11 10 2 12 51 84 158 158 117
24 0 0 0 2696 942 2457 932 107 3806 768 624
25 46 14 142 1459 796 632 1112 597 675 692 609
26 1 1 38 229 164 344 569 315 329 371 228
27 48 16 128 687 319 336 421 308 325 638 309
28 0 0 31 255 155 685 859 2430 2032 1453 402
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cluster 1800 1850 1900 1930 1945 1960 1975 1985 1995 2005 2020

29 2971 62 367 703 233 48 65 145 279 92 50

The contingency table 8.5 is shown above. Reported Chi-square results, based on the con-
tingency table, assessing whether there is a significant relationship between two variables
(origin and clustering), are χ2(290, N = 252385) = 312903.31, p < .001, which indi-
cates a significant relationship. Cramérs-V value is 0.353, indicating moderate association.
The value is almost the same as reported in Prague, indicating that the relationship of
clustering to historical origin is consistent across both cases, and it is not case-dependent.
The further exploration of the contingency table is excluded here as it is only illustrative,
and the numerical values are significant.

Results of morphometric cluster analysis, consequent taxonomy and validation using his-
torical origin data in the case of Amsterdam, NL, indicate the transferability of the method
to other geographical and planning contexts, at least within the European region. The
results are consistent with what was reported above for Prague, leading to the conclusion
that the method can be seen as valid even from the perspective of transferability.
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8.3.2.3 Expandability and compatibility

The last question which remains to be answered is whether these two cases are compatible
with each other. On other words, whether we can build combined taxonomy and further
extend it by adding other cases.

The extension is tested in a relatively simple way. Identified tissue types from both cased
are mixed to form a single pool of clusters, all represented as cluster centroids and used
as an input of hierarchical clustering. That means that while the first step, the cluster
analysis is done locally for each city independently on the other, the second, taxonomy
is combining them. Hence, the resulting hierarchical taxonomic tree should identify the
similarity of urban tissue types across both cities.

The dendrogram from the combined pool of clusters (figure 8.36) shows the similar struc-
ture as both individual ones have, with a major bifurcation dividing unorganised/indus-
trial areas from the organised city. Further bifurcation of organised city splits into the
dense, compact city and the rest and then further into sub-types of development.
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Figure 8.36: Dendrogram representing the results of Ward’s hierarchical clustering or urban tissue types from a
combined pool of Prague and Amsterdam. The y-axis shows a cophenetic distance between individual clusters,
i.e. their morphometric similarity. Branches are interpretative coloured - the colours are then used on maps
illustrating spatial distribution of these branches.

Spatial distribution of resulting branching (figures 8.37 and 8.38) tells the same story as
individual classifications in both Prague and Amsterdam. What is important here is the
ability to compare similar tissue types across cities, and as shown in the dendrogram,
there are some which are really close to each other.
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Figure 8.37: Detail of spatial distribution of different branches of a the combined dendrogram in Prague. Each
tissue type is coloured according to a branch it belongs to, with a minor differences in colour intensity to allow
for distinguishing of individual clusters.
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Figure 8.38: Detail of spatial distribution of different branches of a the combined dendrogram in Amsterdam.
Each tissue type is coloured according to a branch it belongs to, with a minor differences in colour intensity
to allow for distinguishing of individual clusters.
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We can further look into the spatial distribution of the same major branches in both cities
(figures 8.39, 8.40, 8.41, 8.42). It is a great tool to study their structure and compare
them. One clear outcome of this first comparison is the observation that industrial areas
are much larger in Amsterdam due to its port nature compare to traditionally mercantile
Prague, but such an analysis could be done in a very detailed manner. However, that is
not within the scope of this study.

Figure 8.39: Spatial distribution of clusters within a branch representing organised city in Prague, derived from
a combined dendrogram.
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Figure 8.40: Spatial distribution of clusters within a branch representing organised city in Amsterdam, derived
from a combined dendrogram.
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Figure 8.41: Spatial distribution of clusters within a branch representing unorganised city in Prague, derived
from a combined dendrogram.
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Figure 8.42: Spatial distribution of clusters within a branch representing unorganised city in Amsterdam,
derived from a combined dendrogram.
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However, there are some differences in branching. The resulting tree reshuffled few of
the clusters and slightly reorganised branches. It will likely happen when we add more
cases until the taxonomy will get more saturated. As shown on figure 8.43, the reshuffle
is, however, relatively minimal and clusters which were associated to the same branch in
individual dendrograms tend to stay together in the combined one as well. Furthermore,
the overall structure of the dendrogram and the relationship between different branches
remains relatively consistent.
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Figure 8.43: Diagram illustrating the flow of clusters between branches of individual dendrograms and the
combined one.

There are a few differences worth noting. The Prague clusters 6 and 16 has moved from
the unorganised city branch to organised. Both clusters are capturing mostly single-family
housing built on the steeper hills causing the disruption of a standard pattern. The similar
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shift happened to Amsterdam clusters 27 and 35, composed of low-density development
around roads. All are now classified among other single-family tissue types, which seems
to be a more appropriate place. Prague’s cluster 10 (fringe-like edges of compact devel-
opment) is now closer to the homogenous compact development making together more
reasonable branching. There is a reshuffle in low-density branches of Amsterdam, but as
these are generally similar, it is not a big issue. The inclusion of Prague’s low-density
cluster most likely caused new regrouping based on additional information. Generally,
it looks that those few reshuffles are actually making the taxonomy more robust and
eliminate the potential issues due to the small number of OTUs in a single case study.

As shown by the results above, there does not seem to be an issue with combining mor-
phometric tissue types identified independently of each other into a singular taxonomy.
The differences are expected as the current number of tissue types, i.e. OTUs for the
derivation of taxonomy is still low, and the taxonomy itself is not yet saturated. However,
it is assumed that further expansion of the pool of case studies could eventually lead to
the stabilisation.

8.4 Summary of taxonomy and validation

This chapter, the last of the core chapters, focused on the development of a method able
to derive a taxonomy of urban form and validation of the whole morphometric assessment
proposed in this research.

The development of taxonomy takes the form of Ward’s hierarchical clustering of initial
morphometric tissue types defined in Chapter 7, represented by their centroids (i.e. mean
values of contextual morphometric characters). The results show a very meaningful iden-
tification of relationships between individual tissue types and allow a rich analysis of the
structural composition of the city of Prague.

The validation of the morphometric assessment was done in three steps. The first one
compares the spatial distribution of clusters and taxonomic branches to additional proxy
data which are known to reflect the patterns of urban development. This research used
data on historical origin, predominant land use patterns and finally, qualitative municipal
typology of urban form. Data on all three showed a significant relationship between them
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and identified clusters, indicating that from the perspective of the ability of classification
to reflect expected patterns of these proxy layers, morphometric urban tissue types are a
valid concept.

The second validation step was the application of the whole method on the case study
of Amsterdam, NL, which on the one hand shares the morphological richness of Prague
and on the other was built in a different planning context. The resulting urban tissue
types and their taxonomy tend to behave in a similar manner as was observed in Prague,
indicating that the method could be transferable from one context to the other.

The final part of the chapter is assessing the proposed method from the perspective of its
expandability and compatibility of results from Prague with those from Amsterdam. In
other words, it tested whether it can become a methodological foundation of the taxonomy
of urban form. The combined taxonomy of tissue types shows a high degree of consistency
if compared to individual ones. Furthermore, the certain reshuffle which happened mostly
reflected the previous misalignment of tissue types, rendering the final taxonomy more
robust than those done independently.

Chapter 9 will discuss what the implication of these results and where the research should
head next is.
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Synthesis

Where chapter 1 introduced the issue of classification of urban form, chapters 2, 3, and 4
provided background knowledge allowing formulation of hypothesis and research questions
in chapter 5 to be answered in chapters 6, 7, and 8, the final chapter aims to put the
whole research back into the broader context. Therefore, the following sections provide
reflections and discussion of the value of the thesis and its components, their limitations
and potential further research.

The chapter first links the proposals of this thesis to the context described in the back-
ground chapters and specific gaps of knowledge and limitation identified there. Then it
discusses the relation of presented results to the hypothesis and each of the research ques-
tions. Having summarised the research itself, the next section discusses its limitations
followed by the proposals for further research.

9.1 Reflections and discussion

The background chapter (2, 3, and 4) provided the context of specific aspects of urban
morphology to date. It is hence only fair to examine where the method proposed in
the core chapter (6, 7, and 8) sits in relation to all three chapters and the key gaps of
knowledge they identify.
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9.1.1 Classification of urban form

Classification can be done in a multitude of ways, as shown in chapter 2. However, a
classification which reflects the aim of this thesis should follow seven principles of the
Optimal Classification Model (see section 2.1.2 for details). As shown in Table 2.1, none
of the existing models presented in the published literature reflects all seven principles.
The method proposed in this research attempts to be the first one which does.

The method, as a combination of cluster analysis delineating urban tissue types and
subsequent hierarchical classification deriving a taxonomy, is exhaustive as it covers all
observations within the dataset (i.e. all tessellation cells) leaving none unclassified. Fur-
thermore, classification is mutually exclusive - none of the features is member of more than
one class at the same time. The method is unsupervised, data-driven, hence purely empir-
ical. The final structure of the taxonomy is hierarchical, allowing flexible interpretation
following different branches, enabling classification of form from 2 to N classes, depending
on the requirements of each subsequent study. The data input for cluster analysis has
296 variables, reflecting the spatial distribution of 74 primary morphometric characters,
based on relational framework of urban form, which indicates that the method can be
considered comprehensive. That, in turn, minimises the selection bias and attempts to
reflect the complexity of urban form. At the same time, the classification is done on the
level of individual buildings/tessellation cells. That brings high granularity of the result,
making the method detailed. Finally, due to its algorithmic nature and Python backend
(see section 5.3 and Annexe 2), the method is scalable. While it is currently shown on
metropolitan areas composed of up to 250 000 features, the method itself has the potential
to scale further up.

There are similarities between the proposed method and some of the existing. The princi-
ple of tissue type delineation is similar to Araldi and Fusco (2019). Both methods measure
primary characters on selected elements (street segment in the case of Araldi and Fusco
(2019)), then include contextualisation layer (LISA/ILINCS patterns in the case of Araldi
and Fusco (2019)), which is used in cluster analysis determining types. Although the
direct quantitative comparison of Araldi and Fusco’s method with the presented one has
not been done, the proposed method is expected to be able to capture more granular
differences in urban patterns due to the smaller unit of analysis (street segment vs tessel-
lation cell), provides a higher granularity of the typology (9 types in French Riviera vs 20
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in Prague and 30 in Amsterdam) and the hierarchical layer of taxonomy (compared to the
flat model used by Araldi and Fusco (2019)). Similarly to Dibble et al. (2017), Dong et al.
(2019), Li et al. (2020) or Serra et al. (2018), the resulting classification is hierarchical,
but there are generally more differences between mentioned works and the current one
than similarities, primarily due to the automatic delineation of tissue types used as the
OTU. Granularity and extent are similar to Berghauser Pont et al. (2019), who do not
combine elements into a single classification and generally use only a small number of
variables. Whilst missing the direct comparison of results, the proposed method provides
a higher granularity of typology (i.e., more types) and the recognition of similarity be-
tween the types (hierarchical classification), not present in the assessed research. In the
case of Amsterdam, as a case study shared by this research and Berghauser Pont et al.
(2019), the clustering in the city centre area presented in this thesis follows the historical
development of Amsterdam more closely (while comparing with plot types). However, it
is important to acknowledge that the work of Berghauser Pont et al. (2019) is based on
different conceptual assumptions and has a different aim; therefore the direct compari-
son is not entirely possible. Notably, the proposed method includes more morphometric
characters than other studies available in the literature to date.

9.1.2 Numerical taxonomy

The proposed method adheres to the seven principles of numerical taxonomy outlined in
chapter 3, where applicable to urban morphology. Although some results may indicate
the possibility to infer the phylogenetic relationship between urban tissue types from the
taxonomy, it would be a bold statement at this point.

The classification of urban form is, in principle, classification on the population level.
Where in biology population would reflect a group of individuals belonging to the same
species within the same geographical area, the population in case of urban form is anal-
ogous to urban tissue. Therefore, the whole process is seen as a mixture problem (see
section 3.1.2.2). The Operational Taxonomic Unit is an urban tissue type, which itself is
recognised as a population of fundamental elements of urban form defined by inner mor-
phometric homogeneity. Such an approach limits the effect of MAUP as no predefined
artificial aggregation or boundary is in play. Moreover, it allows capturing patterns in
different planning contexts, following different structural principles.
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9.1.3 Urban morphometrics

The context of chapter 4 and classification of quantitative studies in urban morphology
(section 4.2), this work can be categorised into comparison based on purpose, using 296
characters, with the smallest scale of grain (1) and the largest scale of extent (10), occu-
pying the bottom right corner of figure 4.2, as shown in figure 9.1.
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Figure 9.1: Classification of Literature with an inclusion of this research (bottom right - highlighted). Predom-
inantly quantitative studies in urban morphology classified according to grain scale (Y axis), extent scale (X
axis), purpose (colour) and number of urban form characters (size). The histograms show a relative balance
in terms of scale of grain and a tendency towards large scales of extent. Note: placement of points is jittered
to minimise overlaps.

Terminologically, the whole research follows Index of Element principle in the naming
of morphometric characters, limiting ambiguity and nicknaming to a minimum. The

332



Chapter 9. Synthesis

classification of characters into categories is illustrated in figure 9.2. The most common
category of primary characters (24 characters) is a dimension, the most simple one. Shape
(16), spatial distribution (15) and intensity (11) are relatively balanced. Connectivity
is naturally sparse since the required scale of characters does not allow for characters
derived from large networks. Diversity is present in two examples only, but that is due
to the research design. Looking at the distribution of contextual characters used in the
cluster analysis (figure 9.2b), the fact that interquartile range, interdecile Theil index and
Simpson’s diversity index are all meta characters belonging to diversity category changes
the balance with a significant prevalence of diversity over other categories (see section
7.1.2.2 for details).

a) b)

Figure 9.2: Number of morphometric characters per category as used within different stages of this study. a)
shows counts of primary characters per category; b) shows counts of contextual characters per category.

9.1.4 Hypothesis and research questions

Whilst chapter 5 formulated the hypothesis and a series of research questions, the following
chapters tried to answer them and validate the results.

The main hypothesis of the research related to the applicability of methods of morphomet-
rics and numerical taxonomy in the context of urban morphology remains plausible. The
results do not indicate that there is a ground for its rejection, and it is possible to conclude
that the hypothesis still holds. That means that there is clear potential in the application
of such methods and further research in the topic as the initial work of Dibble et al. (2017)
as well as this one are explorative. Both works, although using different implementations,
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conclude the same - numerical taxonomy is applicable in urban morphology.

The overall method proposed in chapters 6, 7 and 8 provides an answer to the main
research question,  how to adapt methods of numerical taxonomy to study of urban form.
Subdividing the answer into relevant supplementary research questions:

SRQ1 -  What are the fundamental morphometric elements and how to model
their relationship?

Chapter six proposes three fundamental elements based on two sources of input data.
Buildings, represented as footprint polygons and street network, represented as centreline
geometry, which can be further split to nodes and edges capturing intersections and
streets, are direct inputs. Furthermore, buildings can be used to generate morphological
tessellation, the smallest spatial unit taking the role of the smallest spatial unit of analysis
within the morphometric assessment. The relationships between all elements are then
captured by the relational framework of urban form, structurally following overlapping
semi-lattice argued for in Alexander (1966).

SRQ2 -  What is the optimal Operational Taxonomic Unit of urban form and
how to identify it in continuous urban fabric?

The Operational Taxonomic Unit, as understood within this study, is an urban tissue type
for the level of taxonomy. The way of identifying it in continuous urban fabric follows
the mixture problem, i.e. delineation of populations based on morphometric profiles of
individual features (building/tessellation cell entity). The method itself then measures
primary and contextual characters, which are then used within cluster analysis (employing
Gaussian Mixture Model method) defining tissue types (Operational Taxonomic Units).

SRQ3 -  What are the taxonomic characters describing urban form?

Chapter 4 and Appendix A4 provide a comprehensive overview of possible morphometric
characters which can be used in the study of urban form. The set of taxonomic characters
used within this thesis is a smaller subset primarily designed to delineate urban tissue
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types and characterise them. However, it is worth noting that the completeness of a set of
taxonomic characters is always an illusion to a degree. An infinite number of characters
can theoretically describe each urban tissue and even each individual element.

SRQ4 - How to determine the taxonomic relationship between OTUs to derive
taxa of urban form?

The answer to the last supplementary question, which completes the answer to the main
research question is proposed in chapter 8. The application of Ward’s hierarchical cluster-
ing in the derivation of the taxonomic relationship between urban tissue types seem to be
plausible not only based on the results of the validation in chapter 8 but also considering
relevant literature tending to employ the same algorithm (Dibble et al., 2017; Serra et al.,
2018; Jochem et al., 2020).

One question remains. What is the relation of morphometric urban tissue type (i.e. clus-
ters) and urban tissue as it would be identified using qualitative methods of traditional
urban morphology (Oliveira, 2016)? If we assume that clusters precisely capture what
would be an urban tissue type, a single urban tissue would be a contiguous patch of mor-
phological tessellation belonging to the same class. However, the question is still hard to
answer as it would require a proper typo-morphological or historic-geographical study of
one of the case studies and comparison of results. The closest available dataset is the mu-
nicipal typology of Prague’s urban fabric, which even though it has its own limitations (see
section 8.2.2.1.2.3), indicates a high association between the two. What plays a significant
role in this relationship is the definition of homogeneity. Tissue is a distinct area (Kropf,
2017), but the definition does not specify how much distinct is should be. Therefore it is
not straightforward to link tissue and cluster in a definitive way. Is tissue a contiguous
area of a cluster as delineated in chapter 7? Or is tissue rather a contiguous area of a
branch of dendrogram defined in chapter 8? A theory does not give us an answer as both
can be correct. It always depends on the required resolution of each study. However, the
flexibility which comes with the dendrogram helps in finding this connection.
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9.2 Limitations

Whilst the method proposed in this thesis and its components appear to be a promising
new addition to urban morphology; there are some limitations.

The general limitation which affects all steps of the method is data availability. It is
not complicated to find case studies offering the data in required quality and detail, but,
indeed, data of this level of precision are not available everywhere around the world. That
is true, especially for building height parameters. Having all data, as outlined in chapter
6, is the ideal situation. In the real world, the situation might be less optimal than
that, so pre-processing procedures have to be employed before performing the analysis
itself. Furthermore, in cases with sub-optimal data which can not be pre-processed to the
required level of detail or which do not have known building height, the method needs to
be adapted and further validated.

Going to the individual aspects of the proposed method, the first limit of an assessment
of morphological tessellation presented in chapter 6 is that the cadastral parcels in Zurich,
which were loosely treated as ‘plots’, are solely based on land-ownership. That causes
a discrepancy between the generated tessellation and the cadastral layer, which includes
multi-building plots. However, as only 21% of plots are affected and results are reported
for both groups, it is believed that the presented method is robust enough to provide
relevant results.

Furthermore, whilst it is true that a morphological tessellation can be generated directly
from a building layer alone, it cannot be created from any building layer, as this needs
to comply to certain quality requirements, which links back to the first limitation above.
Notably, since the method sees every feature of GIS layer as an individual input for
tessellation, it is important not to have buildings composed of multiple features each
representing, for example, different heights or different parts of the same (as in the case
of British Ordnance Survey). Similarly, it is important not to have different independent
buildings collapsed into a single simplified feature (as in the case of vast portions of
OpenStreetMap).

The key component of the method is the selection of morphometric characters used for
both delineation of tissue types and hierarchical clustering. Although the set of primary
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characters is defined based on a thorough procedure (see section 7.1.2.1.1), its verification
comes only indirectly through the validation of the whole method. There are likely char-
acters which are not included, but which would help in classification. Furthermore, due
to computational demands, it was not tested whether the full set is required. However,
the results indicate that the used set of characters could be perceived as valid for the
purpose.

A similar situation is with contextual characters. The method uses four meta contextual
characters to derive spatially lagged information on the spatial distribution of values
of primary characters. Although the selection is able to deliver expected results, other
options may be more suitable. However, that is left for further research.

Gaussian Mixture Model technique used to delineate morphometric tissue types does
reflect the nature of the clustering problem but comes with certain limits. First, the
method is non-spatial, which mean that it does not include any contiguity constraint.
That can be an issue, since the resulting cluster may be in some cases scattered, especially
along boundaries of distinct tissues or in heterogeneous areas. While this issue is mostly
mitigated by the design of contextual characters which are an input of the cluster analysis,
it is not perfect and there are some features which could be seen as mislabeled from the
perspective of contiguity. However, available methods of spatially constrained clustering
are not yet efficient enough to deal with datasets of this size.

The computational efficiency also limits GMM to a degree. Compared to more straightfor-
ward methods as K-Means, a probabilistic component of GMM significantly slows down
the computation and it is a question how scalable the method will be when used on
larger areas composed of millions of features. Although there are potential performant
implementations based on distributed computing on GPU (Rocklin, 2015; Bingham et al.,
2019), it may become a weak link in the whole process of scaling up. However, as shown
in chapter 7, there is still the potential to train model on a sample of the data.

Furthermore, similarly to K-Means, GMM uses an initial random seed, which affects the
final result. While the effect of the seed is not significant, there is some, present mostly
in areas where two tissues meet. The resulting boundary between tissue types should
hence be seen as fuzzy, since different random seeds place is in a similar, but not the same
position.
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The validation has two limitations - one related to additional data, other related to the
additional case study. As mentioned in chapter 8, there is no ground truth with which
the results could be compared. Therefore, the first step of validation is using data which
should indirectly reflect changes in urban patterns. Although the selection is representa-
tive, there could be other sources of data more appropriate, which would give us better,
more direct, understanding of the performance of the proposed method. One such layer
could be the qualitative study of the same case study already mentioned above.

The second limitation is affecting the validation of transferability and extensibility of the
method. Since this research focuses solely on the European context and selects two cities
of a historical origin, its validity in other contexts is still unknown. Although it is assumed
that it should perform similarly in Asian, African or North American cities with different
spatial logic, this remains to be tested.

Finally, the scope of this work restricted to minimal data input comes with the limitation
regarding the ability to reflect other dimensions of the built environment. None of the
characters used within the method captures green and blue space or land use, among
other aspects of cities, all of which may affect the outcome of clustering and taxonomy.
The significance of such an effect is unknown and will likely depend on individual cases.
However, it is necessary to acknowledge that differences in urban patterns reflected, for
example, by the variable density of natural features are not captured by the presented
model. Another consequence of the restriction of data input is the exclusion of the plot
layer, which is partially substituted by morphological tessellation. While morphological
tessellation can provide analytical information on the scale of the plot, the method is not
able to capture morphological characters reflecting the position of a building on a plot
(among others).

9.3 Applicability of morphometric data

The morphometric data resulting from the proposed method offer three layers of applica-
bility: 1) morphometric characterisation of urban environment based on 370 individual
measurable characters, 2) delineation of urban tissue types, and 3) taxonomy of tissue
types. Each offer different kind of information which can be used to answer (or to help
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answer) different questions.

The raw morphometric values, linked to either morphological tessellation or relevant ele-
ments of urban form (e.g. street network nodes), provide a characterisation of the built
environment from a broad range of perspectives. As such, they could become an input of
various predictive models and semi-morphological studies, aiming at understanding rela-
tions between different aspects of urban form and other facets of life. Furthermore, some
of the characters literature identifies as proxies for urban form resilience (Feliciotti, 2018)
or other performance-based indicators (e.g. sustainability (Bourdic et al., 2012)), allowing
for a more narrowly focused assessment of urban fabric.

The delineation of urban tissues (i.e. flat classification) is the major step in complexity
reduction since it combines a large number of fundamental elements into a small set of
tissue types. The types can be consequently employed as a unit of analysis when asking
about the relation of urban patterns and other aspects of the urban environment. Where
the layer of raw morphometric values provides information on individual structural aspects
of urban form, the layer of tissue types captures coherent patterns as their combination.

Finally, the taxonomy identifies similarity between tissue types which in turn brings flex-
ibility to the classification. If we take the Amsterdam case study as an example, we
may ask about the relationship between tissue types and AirBnB locations (leaving aside
other aspects influencing such the locations for the sake of the illustration). It is likely
that using the initial 30 clusters may prove suboptimal since they are covered by each
type is relatively small and within this question hard to interpret. Therefore we may
want to reduce the number of classes, which can be flexibly done by moving through the
dendrogram upwards. The final analysis can therefore look into the location of Airbnb
listings within, e.g., five macro taxa of tissue types. The level of aggregation into higher-
order taxa depends on the research question asked and within the proposed model can be
adapted to the specific needs.

9.4 Further research

The avenue of further research based on the findings presented in this thesis is wide. One
direction could further study different aspects of the method to eliminate some of its cur-
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rent limitations, while the other could focus on the applicability of urban morphometrics
and numerical taxonomy in urban science.

Starting with the first direction and proposed morphological tessellation, further research
should resolve the question of the external boundary of tessellation which is currently
defined as a static 100m buffer around building footprints. This decision likely causes
edge effect, where edge cells are significantly larger than they should be. The optimal
solution could be a limitation of tessellation by the pre-defined known boundary of the
built-up area. Alternatively, an adaptive buffer capturing the different scales of urban
patterns could be developed. Moreover, further research should focus on the question of
the exact meaning and variation of topological distance on morphological tessellation and
its definition for specific purposes. The question of how many topological steps should be
used for the analysis of urban form does not have a fixed answer. It is expected that it
will vary depending on the scope of the research.

Inclusion (or even elimination) of additional morphometric characters into the set of pri-
mary characters is an expected evolution of the method. Furthermore, the set should be
adapted to different data sources, e.g. with missing height attribute of different level of
detail to expand its applicability. That also entails Earth Observation. One of the poten-
tial directions could attempt to derive morphometric profiles based on EO multispectral
raster data, which would radically expand the applicability of the method.

Similarly, contextual characters should be further studied to ensure better interpretability
and eliminate potential issues related to binning within Simpson’s diversity index.

Considering the limitations of GMM outlined above, further research should focus on the
efficiency of the implementation needed for studies on a larger scale. Also, as shown in
the case of Amsterdam, Bayesian Information Criterion might not be the optimal method
to determine the number of clusters and other options (e.g. clustergram (Schonlau, 2002))
could be tested alongside with other clustering algorithms besides GMM.

Finally, as already briefly discussed in the previous section, the method could be further
validated using other additional data and especially using comparative analysis with qual-
itative typo-morphological and/or historic-geographical studies of urban form alongside
the application of the method in different geographical contexts.

The second major direction of further research can build on the methodological foun-
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dations presented in this thesis and focus on different questions using the information
obtained from numerical taxonomy. One of them is the application if the method to
eventually build an atlas of urban form, containing urban tissue types from a wide set of
case studies, hierarchically categorised based on their phenetic similarity. Such an atlas
could provide a global repository of urban patterns, a counterpart of atlases known in
biology (e.g. an atlas of birds or an atlas of fungi).

When it comes to the application of the method on specific case studies, a large number
of observations can be made based on morphometric values backing the whole method.
Each recognised tissue type as well as each branch of taxonomy have rich morphometric
profiles. The combination of all measured values within each cluster gives an abundant
description of various morphological aspects which can be further analysed and eventually
even turned into form-based regulatory plans directing further development.

Further work should also look into the question of character selection and importance.
Very similar results can likely be achieved with a reduced set of characters instead of 296
applied to presented case studies. However, such a reduction would necessarily be case-
specific, reflecting the local nature and peculiarities of urban form. In other words, it is
assumed that character importance will vary across cases and using, for example, the top
20 characters identified based on the Prague dataset to delineate clusters in both Prague
and Amsterdam would likely affect the latter significantly more than the former. Such
an effect would be even more pronounced in a different geographical context. Therefore,
further work should expand the set of case studies to cover different historical, cultural and
geographical contexts and analyse the character importance within the complete pool as
well as independently per each case. The result could provide insight of two types. First,
it can limit the set of morphometric characters that should be measured, which would
lower computational demands. Second, it may identify differences between urban fabrics
of different cities and indicate the variation between underlying rules influencing their
formation and transformation.

The exclusion of certain data inputs within this research, notably plots and natural infras-
tructure, opens a potential pathway of research building on top of the proposed framework
and including measurable characters based on additional data. That may overcome the
limitations induced by the scope of the work pointed out above and develop a complex
characterisation of the built environment that goes beyond the morphometric description
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of minimal features representing urban form.

9.5 Conclusions

There are two different perspectives when it comes to the study of patterns of development
of cities - relational and descriptive. This research belongs to the second one, to urban
morphology, trying to describe urban form as it is and as it was formed. At the same
time, it aims to support the other perspective. For any study of relation of urban form
and other aspects of life, from economy, wellbeing, happiness, to social deprivation, the
core component is the description of urban form, i.e. the way we are able to capture and
characterise it. This work offers one approach, exploiting the abundance of geospatial
data, building tools to make sense of it and proposing a detailed quantitative description
of individual elements of urban form, patterns they form and similarity between them.

The introduction stated that urban morphology or urban studies in general face three
problems. The field is unable to describe form comprehensively enough, its methods of
identification and systematisation of homogenous areas lack either detail, granularity or
scalability, and data-driven classification is in its infancy. This work proposes method-
ological framework which may eventually lead to the minimising or even elimination of
all three of them.

The overall aim of this thesis was to propose a method of derivation of data-driven taxon-
omy of urban form patterns. Considering the contents presented in previous chapters and
results of validation, it seems to be fulfilled. The method of analysis of urban form based
on urban morphometrics and numerical taxonomy allows for unsupervised delineation of
urban tissue types or using the generalised terminology of the first chapter, urban form
patterns. Furthermore, it defines the phenetic relationship (similarity) between all of them
forming the basis for the taxonomy of urban form. All that within the scope defined in
section 1.3, thus using minimal data input (building footprints with a height attribute
and street network) capturing solely the fundaments of urban form.

Based on the two case studies, the method seems to be transferable to other geographical
and planning contexts. The question remains whether the same performance will hold
outside the European tradition. With the proposal of morphological tessellation as the
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smallest spatial unit and relational framework of urban form, the work builds a foundation
for the transfer of numerical taxonomy to urban morphology and a broader application of
urban morphometrics as such. That is further supported by the release of software tools,
allowing the reproduction of the whole work in a flexible form of an open-source Python
package, allowing further development within the research community.

Although the quantitative science of urban form is rapidly evolving, we still have a long
way to go. I believe that this thesis can be a small but valuable addition to the pursuit of
a comprehensive quantitative description of urban form and one step towards capturing
its inherent complexity.
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Appendix A4: Supplementary
material for chapter 4

A4.1 Table of Urban Form Characters

The full version of the Table 4.2 (see section 4.3.2).

Table A4.1: Table of Urban Form Characters. A full overview of measurable urban form characters, showing:
category; name/definition of characters according to the Index of Elements approach; urban form character’s
position according to category and scale.

category Index Element grain extent reference

Dimension Area Block S S Dibble et al. (2017)
Dimension Built-up area Block S S Gil (2012)
Dimension Depth Block S S Sevtsuk (2016)
Dimension Gross floor area Block S S Gil (2012)
Dimension Height Block S S Hermosilla (2014)
Dimension Layers (number of

floors)
Block S S Gil (2012)

Dimension Length Block S S Gil (2012)
Dimension Longest Diagonal Block S S Feliciotti (2018)
Dimension Perimeter Block S S Gil (2012)
Dimension Private space area Block S S Gil (2012)
Dimension Public space area Block S S Gil (2012)
Dimension Volume Block S S Hermosilla (2014)
Dimension Width Block S S Gil (2012)
Dimension Area Building S S Colaninno, Cladera and

Pfeffer (2011)
Dimension Bounding box Area Building S S Hamaina, Leduc and

Moreau (2012)
Dimension Core Area Index Building S S Colaninno, Cladera and

Pfeffer (2011)
Dimension Floor area Building S S Schirmer and Axhausen

(2015)

Continued on next page
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Table A4.1: Table of Urban Form Characters. A full overview of measurable urban form characters, showing:
category; name/definition of characters according to the Index of Elements approach; urban form character’s
position according to category and scale.

category Index Element grain extent reference

Dimension Height Building S S Berghauser Pont, M. et al.
(2017)

Dimension Influence zone area Building S S Schirmer and Axhausen
(2015)

Dimension Length Building S S Hamaina, Leduc and
Moreau (2012)

Dimension Length fo centrelines Building S S Schirmer and Axhausen
(2015)

Dimension Number of floors Building S S Ye and van Nes (2014)
Dimension Number of stories Building S S Schirmer and Axhausen

(2015)
Dimension Volume Building S S Hamaina, Leduc and

Moreau (2012)
Dimension Width Building S S Hamaina, Leduc and

Moreau (2012)
Dimension Weighted Average

Height
Buildings in
Block

S S Dibble et al. (2017)

Dimension Weighted Height Built Fronts S S Dibble et al. (2017)
Dimension Bounding box Area Composite S S Schirmer and Axhausen

(2015)
Dimension Bounding box Length Composite S S Schirmer and Axhausen

(2015)
Dimension Bounding box Perime-

ter
Composite S S Schirmer and Axhausen

(2015)
Dimension Bounding box Width Composite S S Schirmer and Axhausen

(2015)
Dimension Convex Hull Area Composite S S Schirmer and Axhausen

(2015)
Dimension Convex Hull Perimeter Composite S S Schirmer and Axhausen

(2015)
Dimension Enclosing circle Area Composite S S Schirmer and Axhausen

(2015)
Dimension Enclosing circle

Perimeter
Composite S S Schirmer and Axhausen

(2015)
Dimension Enclosing circle Ra-

dius
Composite S S Schirmer and Axhausen

(2015)
Dimension Perimeter Composite S S Schirmer and Axhausen

(2015)
Dimension Width along centerline Composite S S Schirmer and Axhausen

(2015)
Dimension Convex Hull Area Courtyard S S Schirmer and Axhausen

(2015)

Continued on next page
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Table A4.1: Table of Urban Form Characters. A full overview of measurable urban form characters, showing:
category; name/definition of characters according to the Index of Elements approach; urban form character’s
position according to category and scale.

category Index Element grain extent reference

Dimension Depth Mean Maxi-
mum Gravity
block

S S Sevtsuk (2016)

Dimension Widht Mean Maxi-
mum Gravity
block

S S Sevtsuk (2016)

Dimension Width Open space S S Araldi and Fusco (2019)
Dimension Area Patch S S Vanderhaegen and Can-

ters (2017)
Dimension Edge length Patch S S Vanderhaegen and Can-

ters (2017)
Dimension Perimeter Patch S S Vanderhaegen and Can-

ters (2017)
Dimension Area Plot S S Dibble et al. (2017)
Dimension Depth Plot S S Song and Knaap (2007)
Dimension Extension on Street

Front
Plot S S Dibble et al. (2017)

Dimension Height Street S S Sevtsuk (2016)
Dimension Length Street S S Dibble et al. (2017)
Dimension Width Street S S Dibble et al. (2017)
Dimension Length Street front S S Schirmer and Axhausen

(2015)
Dimension Length Street segment S S Bourdic, Salat and

Nowacki (2012)
Dimension Slope Surface S S Araldi and Fusco (2019)
Dimension Area Urban block

related street
area (UBRSA)

S S Hermosilla (2014)

Dimension Area Voronoi cell S S Hamaina, Leduc and
Moreau (2012)

Dimension Median Area Blocks in
buffer area

M M Song and Knaap (2007)

Dimension Median Perimeter Blocks in
neighborhood

M M Lowry and Lowry (2014)

Dimension Mesh size Grid network M M Siksna (1997)
Dimension Median Area Plots in neigh-

borhood
M M Lowry and Lowry (2014)

Dimension Area Sanctuary
Area

M M Dibble et al. (2017)

Dimension Cul-de-sac Length Street network M M Lowry and Lowry (2014)
Dimension Length Street network M M Song and Knaap (2007)
Dimension Length within radius Street network M M Krizek (2003)
Dimension Actual Nonresidential

Area
Study area M M Song and Knaap (2004)

Continued on next page
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Table A4.1: Table of Urban Form Characters. A full overview of measurable urban form characters, showing:
category; name/definition of characters according to the Index of Elements approach; urban form character’s
position according to category and scale.

category Index Element grain extent reference

Dimension Zoned nonresidential
Area

Study area M M Song and Knaap (2004)

Dimension Area Patch L L Pham (2011)
Dimension Length Street network L L Khirfan (2011)
Dimension Area Study area L L Khirfan (2011)
Dimension Length Cul-de-sac L/M L/M Song and Knaap (2003)
Dimension Effective Mesh size Plot L/M L/M Hausleitner, B. and

Berghauser Pont, M.
(2017)

Dimension Diameter Street network L/M L/M Boeing (2018b)
Dimension Length Street network L/M L/M Boeing (2018a)
Shape Area perimeter ratio Block S S Gil (2012)
Shape Compactness index Block S S Dibble et al. (2017)
Shape Contour stretch

Length
Block S S Vanderhaegen and Can-

ters (2017)
Shape Fractal Dimension Block S S Hermosilla (2014)
Shape Fragmentation Block S S Feliciotti (2018)
Shape Length / width Pro-

portion
Block S S Gil (2012)

Shape Length of Radial
profile radial stretch

Block S S Vanderhaegen and Can-
ters (2017)

Shape Normalise nr of
perimeter alterations

Block S S Vanderhaegen and Can-
ters (2017)

Shape Normalised nr of
radial alterations

Block S S Vanderhaegen and Can-
ters (2017)

Shape Normalised number of
contour alterations

Block S S Vanderhaegen and Can-
ters (2017)

Shape Percentage of coun-
tours

Block S S Vanderhaegen and Can-
ters (2017)

Shape Percentage of perime-
ter

Block S S Vanderhaegen and Can-
ters (2017)

Shape Percentage of radials
of radial progfile

Block S S Vanderhaegen and Can-
ters (2017)

Shape Rectangularity index Block S S Dibble et al. (2017)
Shape Shape factor Block S S Louf and Barthelemy

(2014)
Shape Shape index Block S S Hermosilla (2014)
Shape Area/Covex hull ratio Building S S Steiniger (2008)
Shape Area/perimeter ratio Building S S Colaninno, Cladera and

Pfeffer (2011)
Shape Compactness Building S S Schirmer and Axhausen

(2015)
Shape Corners to centroid

distance
Building S S Schirmer and Axhausen

(2015)

Continued on next page
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Table A4.1: Table of Urban Form Characters. A full overview of measurable urban form characters, showing:
category; name/definition of characters according to the Index of Elements approach; urban form character’s
position according to category and scale.

category Index Element grain extent reference

Shape Elongation Building S S Steiniger (2008)
Shape Form factor Building S S Bourdic, Salat and

Nowacki (2012)
Shape Generalised

width/height
Building S S Hamaina, Leduc and

Moreau (2012)
Shape Lines in skeleton only

connected to one side
Building S S Schirmer and Axhausen

(2015)
Shape Number of centreline

orientations
Building S S Schirmer and Axhausen

(2015)
Shape Number of centrelines Building S S Schirmer and Axhausen

(2015)
Shape Number of corners Building S S Steiniger (2008)
Shape Shape Building S S Steiniger (2008)
Shape Shape index I Building S S Colaninno, Cladera and

Pfeffer (2011)
Shape Shape index II Building S S Colaninno, Cladera and

Pfeffer (2011)
Shape Size factor Building S S Bourdic, Salat and

Nowacki (2012)
Shape Squareness Building S S Steiniger (2008)
Shape Surface area/footprint Building S S Yoshida and Omae (2005)
Shape Surface area/volume Building S S Yoshida and Omae (2005)
Shape Volume/footprint Building S S Yoshida and Omae (2005)
Shape Volumetric compact-

ness
Building S S Bourdic, Salat and

Nowacki (2012)
Shape Area/bounding box

ratio
Composite S S Schirmer and Axhausen

(2015)
Shape Area/Covex hull ratio Composite S S Schirmer and Axhausen

(2015)
Shape Area/Enclosing circle

ratio
Composite S S Schirmer and Axhausen

(2015)
Shape Courtyard area/area

ratio
Composite S S Schirmer and Axhausen

(2015)
Shape Number of wings Composite S S Schirmer and Axhausen

(2015)
Shape Perimeter/bounding

box ratio
Composite S S Schirmer and Axhausen

(2015)
Shape Perimeter/Convex hull

perimeter ratio
Composite S S Schirmer and Axhausen

(2015)
Shape Volume to façade ratio Composite S S Schirmer and Axhausen

(2015)
Shape Width to length ratio

of bounding box
Composite S S Schirmer and Axhausen

(2015)
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Table A4.1: Table of Urban Form Characters. A full overview of measurable urban form characters, showing:
category; name/definition of characters according to the Index of Elements approach; urban form character’s
position according to category and scale.

category Index Element grain extent reference

Shape Height/width ratio open space S S Araldi and Fusco (2019)
Shape Area weighted fractal

dimension
Patch S S Vanderhaegen and Can-

ters (2017)
Shape Area weighted shape

index
Patch S S Vanderhaegen and Can-

ters (2017)
Shape Edge density Patch S S Vanderhaegen and Can-

ters (2017)
Shape Fractal Dimension Patch S S Vanderhaegen and Can-

ters (2017)
Shape Perimeter/area ratio Patch S S Vanderhaegen and Can-

ters (2017)
Shape Shape index Patch S S Vanderhaegen and Can-

ters (2017)
Shape Compactness Plot S S Bobkova, Marcus and

Berghauser Pont (2017)
Shape Compactness index Plot S S Dibble et al. (2017)
Shape Degree of openness Plot S S Bobkova, Marcus and

Berghauser Pont (2017)
Shape Plot frontage/depth Plot S S Sevtsuk (2016)
Shape Rectangularity index Plot S S Dibble et al. (2017)
Shape Fractal Dimension Skyline S S Cooper (2003)
Shape Acclivity Street S S Araldi and Fusco (2019)
Shape Corridor effect Street S S Araldi and Fusco (2019)
Shape Height to width ratio Street S S Oliveira (2013)
Shape Fractal Dimension Street edge S S Cooper (2005)
Shape Linearity/Windingness Street segment S S Araldi and Fusco (2019)
Shape Fractal Dimension Axial map M M Ariza-Villaverde et al.

(2013)
Shape Perimenter Shape

index
Neighborhood M M Song and Popkin (2013)

Shape Perimeter Mean Frac-
tal Dimension Index

Neighborhood M M Song and Popkin (2013)

Shape Perimeter-area fractal
dimension

Neighborhood M M Song and Popkin (2013)

Shape Edge density Built-up area L L Seto and Fragkias (2005)
Shape Fractal based scaling

behaviour curve
Built-up area L L Thomas (2010)

Shape Fractal Dimension Built-up area L L Gielen (2017)
Shape Shape complexity Built-up area L L Seto and Fragkias (2005)
Shape Shape index Built-up area L L Gielen (2017)
Shape Area weighted mean

fractal dimension
Patch L L Pham (2011)

Shape Edge density Patch L L Pham (2011)
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Table A4.1: Table of Urban Form Characters. A full overview of measurable urban form characters, showing:
category; name/definition of characters according to the Index of Elements approach; urban form character’s
position according to category and scale.

category Index Element grain extent reference

Shape Fractal Dimension Urban edge L L Batty and Longley (1987)
Shape Box-counting fractal

dimension
Built-up area L/M L/M Boeing (2018b)

Shape Hausdorff fractal
dimension

Built-up area L/M L/M Boeing (2018b)

Shape Circuity Street segment L/M L/M Boeing (2018a)
Distribution Built Front Ratio Block S S Dibble et al. (2017)
Distribution Closeness Block S S Schirmer and Axhausen

(2015)
Distribution Neighboring blocks Block S S Hermosilla (2014)
Distribution Openess Block S S Hausleitner, B. and

Berghauser Pont, M.
(2017)

Distribution Orientation Block S S Gil (2012)
Distribution Permeability Block S S Schirmer and Axhausen

(2015)
Distribution Solar orientation Block S S Gil (2012)
Distribution Corner position Building S S Schirmer and Axhausen

(2015)
Distribution Orientation Building S S Schirmer and Axhausen

(2015)
Distribution Street Distance Building S S Schirmer and Axhausen

(2015)
Distribution Alignment Buildings S S Oliveira (2013)
Distribution Angle betweeen build-

ings
Buildings S S Hijazi (2016)

Distribution Distance betweeen
buildings

Buildings S S Hamaina, Leduc and
Moreau (2012)

Distribution Party-walls ratio Buildings S S Hamaina, Leduc and
Moreau (2012)

Distribution Ground openess Open space S S Hamaina, Leduc and
Moreau (2012)

Distribution Sky openess Open space S S Hamaina, Leduc and
Moreau (2012)

Distribution Cul-de-sac presence Plot S S Song and Knaap (2003)
Distribution Adjacency Building M M Vanderhaegen and Can-

ters (2017)
Distribution Proximity Building M M Colaninno, Cladera and

Pfeffer (2011)
Distribution Fragmentation degree Built-up area L L Gielen (2017)
Distribution Index of concentration Built-up area L L Gielen (2017)
Distribution Euclidean nearest

neighbour distance
Patches L L Pham (2011)
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Table A4.1: Table of Urban Form Characters. A full overview of measurable urban form characters, showing:
category; name/definition of characters according to the Index of Elements approach; urban form character’s
position according to category and scale.

category Index Element grain extent reference

Distribution Minimum spanning
tree Inter-building
distance

Building L/M L/M Caruso, Hilal and Thomas
(2017)

Distribution Clustering Built-up area L/M L/M Galster (2001)
Distribution Continuity Built-up area L/M L/M Galster (2001)
Distribution Nuclearity Built-up area L/M L/M Galster (2001)
Distribution Concentration Housing units L/M L/M Galster (2001)
Intensity Building coverage area Block S S Hermosilla (2014)
Intensity Covered Area Ratio Block S S Dibble et al. (2017)
Intensity Floor Area Ratio Block S S Dibble et al. (2017)
Intensity Internal Plot Ratio Block S S Dibble et al. (2017)
Intensity Internal Ways Ratio Block S S Dibble et al. (2017)
Intensity Normalised built-up

volume
Block S S Hermosilla (2014)

Intensity Normalised number of
plots

Block S S Hausleitner, B. and
Berghauser Pont, M.
(2017)

Intensity Number of buildings Block S S Gil (2012)
Intensity Number of courtyards Block S S Schirmer and Axhausen

(2015)
Intensity Number of plots Block S S Dibble et al. (2017)
Intensity Open Space Ratio Block S S Dibble et al. (2017)
Intensity Open space ratio Block S S Gil (2012)
Intensity Regular Plot Ratio Block S S Dibble et al. (2017)
Intensity Volume/UBRSA area

ratio
Block S S Hermosilla (2014)

Intensity Number of plots Block frontage S S Sevtsuk (2016)
Intensity Active Fronts to All

Fronts Ratio
Building S S Dibble et al. (2017)

Intensity Active Fronts to Built
Fronts Ratio

Building S S Dibble et al. (2017)

Intensity Building area to buffer
area ratio

Building S S Steiniger (2008)

Intensity Building area/Influ-
ence zone area ratio

Building S S Schirmer and Axhausen
(2015)

Intensity Buildings area to
buffer area

Building S S Colaninno, Cladera and
Pfeffer (2011)

Intensity Frequency Building S S Hallowell (2013)
Intensity Contiguity Buildings S S Araldi and Fusco (2019)
Intensity Covered Area Ratio Composite S S Schirmer and Axhausen

(2015)
Intensity Number of courtyards Composite S S Schirmer and Axhausen

(2015)
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Table A4.1: Table of Urban Form Characters. A full overview of measurable urban form characters, showing:
category; name/definition of characters according to the Index of Elements approach; urban form character’s
position according to category and scale.

category Index Element grain extent reference

Intensity Coverage ratio Patch S S Vanderhaegen and Can-
ters (2017)

Intensity Density Patch S S Vanderhaegen and Can-
ters (2017)

Intensity Floor Space Index Plot S S Berghauser Pont, M. and
Olsson J. (2017)

Intensity Ground Space Index Plot S S Berghauser Pont, M. and
Olsson J. (2017)

Intensity Use ratio Plot S S Dibble et al. (2017)
Intensity Coverage ratio Projected area S S Yoshida and Omae (2005)
Intensity Coverage ratio Proximity

band
S S Araldi and Fusco (2019)

Intensity Frequency of buildings Proximity
band

S S Araldi and Fusco (2019)

Intensity Plot Fragmentation Proximity
band

S S Araldi and Fusco (2019)

Intensity Prevalence of building
type

Proximity
band

S S Araldi and Fusco (2019)

Intensity Normalised number of
plots

Street edge S S Feliciotti (2018)

Intensity Floor Space Index Tessellation
cell

S S Hamaina, Leduc and
Moreau (2012)

Intensity Ground Space Index Tessellation
cell

S S Hamaina, Leduc and
Moreau (2012)

Intensity Buildings/UBRSA
ratio

Urban block
related street
area

S S Hermosilla (2014)

Intensity Number of buildings 2 minutes
driving dis-
tance

S M Schirmer and Axhausen
(2015)

Intensity Number of deadends 2 minutes
driving dis-
tance

S M Schirmer and Axhausen
(2015)

Intensity Number of intersec-
tions

2 minutes
driving dis-
tance

S M Schirmer and Axhausen
(2015)

Intensity Total floorspace 2 minutes
driving dis-
tance

S M Schirmer and Axhausen
(2015)

Intensity Total length of net-
work

2 minutes
driving dis-
tance

S M Schirmer and Axhausen
(2015)

Intensity Number of plots Accessible
radius

S M Bobkova, Marcus and
Berghauser Pont (2017)
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Table A4.1: Table of Urban Form Characters. A full overview of measurable urban form characters, showing:
category; name/definition of characters according to the Index of Elements approach; urban form character’s
position according to category and scale.

category Index Element grain extent reference

Intensity Number of plots Accessible
radius

S M Marcus, Berghauser Pont
and Bobkova (2017)

Intensity Spatial attraction of
plot

Accessible
radius

S M Marcus, Berghauser Pont
and Bobkova (2017)

Intensity Total floorspace Accessible
radius

S M Marcus, Berghauser Pont
and Bobkova (2017)

Intensity Total open space area Accessible
radius

S M Hausleitner, B. and
Berghauser Pont, M.
(2017)

Intensity Number of cul-de-sacs Buffer area S M Song and Popkin (2013)
Intensity Number of intersec-

tions
Buffer area S M Song and Knaap (2007)

Intensity Number of single-
family plots

Buffer area S M Song and Knaap (2007)

Intensity Proportion of road
types

Buffer area S M Song and Popkin (2013)

Intensity Total open space area Buffer area S M Song and Knaap (2007)
Intensity Tree canopy area Buffer area S M Song and Knaap (2007)
Intensity Built-up area Buffer area

(100-500m)
S M Schirmer and Axhausen

(2015)
Intensity Number of buildings Buffer area

(100-500m)
S M Schirmer and Axhausen

(2015)
Intensity Number of deadends Buffer area

(100-500m)
S M Schirmer and Axhausen

(2015)
Intensity Number of intersec-

tions
Buffer area
(100-500m)

S M Schirmer and Axhausen
(2015)

Intensity Total floorspace Buffer area
(100-500m)

S M Schirmer and Axhausen
(2015)

Intensity Total length of net-
work

Buffer area
(100-500m)

S M Schirmer and Axhausen
(2015)

Intensity Normalised number of
housing units

Neighborhood M M Lowry and Lowry (2014)

Intensity Number of blocks Neighborhood M M Song and Knaap (2003)
Intensity Number of blocks Neighborhood M M Song and Knaap (2004)
Intensity Number of intersec-

tions
Neighborhood M M Song and Popkin (2013)

Intensity Normalised floor space
area

Sanctuary
Area

M M Dibble et al. (2017)

Intensity Normalised length of
streets

Sanctuary
Area

M M Feliciotti (2018)

Intensity Normalised number of
blocks

Sanctuary
Area

M M Feliciotti (2018)

Intensity Normalised number of
intersections

Sanctuary
Area

M M Feliciotti (2018)
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Table A4.1: Table of Urban Form Characters. A full overview of measurable urban form characters, showing:
category; name/definition of characters according to the Index of Elements approach; urban form character’s
position according to category and scale.

category Index Element grain extent reference

Intensity Number of internal
streets

Sanctuary
Area

M M Dibble et al. (2017)

Intensity Cul-de-sacs to streets
ratio

Street network M M Lowry and Lowry (2014)

Intensity Ingress/ Egress Ratio Street network M M Dibble et al. (2017)
Intensity Node degree Street network M M Feliciotti (2018)
Intensity Normalised length Street network M M Dibble et al. (2017)
Intensity Weighted intersection

density
Street network M M Dibble et al. (2017)

Intensity Strong Grid Pattern
Ratio

Street net-
work/Block

M M Dibble et al. (2017)

Intensity Weak Grid Pattern
Ratio

Street net-
work/Block

M M Dibble et al. (2017)

Intensity Normalised number of
plots

Street S M/S Dibble et al. (2017)

Intensity Continuity Built-up area L L Gielen (2017)
Intensity Discontinuous surface Built-up area L L Gielen (2017)
Intensity Housing-normalised

open space area
Built-up area L L Gielen (2017)

Intensity Normalised floor space
area

Built-up area L L Gielen (2017)

Intensity Number of segments Street network L L Khirfan (2011)
Intensity Normalised length of

streets network
800m-side
square

S L/M Berghauser Pont, M. and
Olsson J. (2017)

Intensity Normalised length of
streets network

800m-side
square

S L/M Hausleitner, B. and
Berghauser Pont, M.
(2017)

Intensity Coefficient of land
occupancy

Case study L/M L/M Bourdic, Salat and
Nowacki (2012)

Intensity Normalised area of
pedestrian and bicycle
paths

Case study L/M L/M Bourdic, Salat and
Nowacki (2012)

Intensity Normalised area of
roads

Case study L/M L/M Bourdic, Salat and
Nowacki (2012)

Intensity Normalised built-up
area

Case study L/M L/M Ye and van Nes (2014)

Intensity Normalised floor space
area

Case study L/M L/M Bourdic, Salat and
Nowacki (2012)

Intensity Normalised green
space area

Case study L/M L/M Bourdic, Salat and
Nowacki (2012)

Intensity Normalised number of
housing units

Case study L/M L/M Bourdic, Salat and
Nowacki (2012)

Intensity Normalised number of
plots

Case study L/M L/M Bourdic, Salat and
Nowacki (2012)
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Table A4.1: Table of Urban Form Characters. A full overview of measurable urban form characters, showing:
category; name/definition of characters according to the Index of Elements approach; urban form character’s
position according to category and scale.

category Index Element grain extent reference

Intensity Number of Segments Minimum
spanning tree

L/M L/M Caruso, Hilal and Thomas
(2017)

Intensity Normalised green
space area

Neighborhood L/M L/M Lai et al. (2018)

Intensity Normalised length of
streets

Neighborhood L/M L/M Lai et al. (2018)

Intensity Normalised number of
intersections

Pedestrian
network

L/M L/M Bourdic, Salat and
Nowacki (2012)

Intensity Normalised number of
intersections

Road network L/M L/M Bourdic, Salat and
Nowacki (2012)

Intensity Proportion dedicated
to public transport

Road network L/M L/M Bourdic, Salat and
Nowacki (2012)

Intensity Average node degree
presence

Street network L/M L/M Araldi and Fusco (2019)

Intensity Housing units-
normalised length

Street network L/M L/M Song and Knaap (2003)

Intensity Node degree Street network L/M L/M Boeing (2018a)
Intensity Normalised number of

intersections
Street network L/M L/M Lai et al. (2018)

Intensity Proportion of 3-way
intersections

Street network L/M L/M Boeing (2018a)

Intensity Proportion of 4-way
intersections

Street network L/M L/M Boeing (2018a)

Intensity Proportions of dead-
ends

Street network L/M L/M Boeing (2018a)

Intensity Streets per node Street network L/M L/M Boeing (2018a)
Intensity Normalised length of

streets network
Urban area L/M L/M Peponis et al. (2007)

Intensity Normalised number of
blocks

Urban area L/M L/M Peponis et al. (2007)

Intensity Normalised number of
housing units

Urban area L/M L/M Galster (2001)

Intensity Normalised number of
intersections

Urban area L/M L/M Peponis et al. (2007)

Intensity Normalised number of
street network nodes

Urban area L/M L/M Boeing (2018b)

Intensity Normalised number of
street segments

Urban area L/M L/M Boeing (2018a)

Intensity Number of blocks Urban area L/M L/M Peponis et al. (2007)
Intensity Number of intersec-

tions
Urban area L/M L/M Boeing (2018a)

Intensity Number of street
segments

Urban area L/M L/M Peponis et al. (2007)

Continued on next page

355



Table A4.1: Table of Urban Form Characters. A full overview of measurable urban form characters, showing:
category; name/definition of characters according to the Index of Elements approach; urban form character’s
position according to category and scale.

category Index Element grain extent reference

Connectivity Cyclomatic complexity Pedestrian
network

M M Bourdic, Salat and
Nowacki (2012)

Connectivity Block accessibility Street network S M Oliveira (2013)
Connectivity Accessibility of plots Street network S M Oliveira (2013)
Connectivity Accessible plot density Street network S M Feliciotti (2018)
Connectivity Connectivity Street network M M Lowry and Lowry (2014)
Connectivity External connectivity Street network M M Song and Knaap (2004)
Connectivity Internal connectivity Street network M M Song and Knaap (2004)
Connectivity Link / Node Ratio Street network M M Dibble et al. (2017)
Connectivity Local closeness Street network S M Feliciotti (2018)
Connectivity Meshedness Street network S M Feliciotti (2018)
Connectivity Redundancy Street network S M Feliciotti (2018)
Connectivity Straightness Street network S M Feliciotti (2018)
Connectivity Connectivity Axial map S L/M Hallowell (2013)
Connectivity Global integration Axial map S L/M Hallowell (2013)
Connectivity Local integration Axial map S L/M Hallowell (2013)
Connectivity Cyclomatic complexity Car network L/M L/M Bourdic, Salat and

Nowacki (2012)
Connectivity 2 mins driving dis-

tance Area
Street network S L/M Schirmer and Axhausen

(2015)
Connectivity Accessibility of build-

ings
Street network S L/M Schirmer and Axhausen

(2015)
Connectivity Accessibility of

floorspace
Street network S L/M Schirmer and Axhausen

(2015)
Connectivity Angular betweenness Street network S L/M Omer and Kaplan (2018)
Connectivity Angular betweenness

centrality
Street network S L/M Berghauser Pont, M. et al.

(2017)
Connectivity Angular closeness Street network S L/M Omer and Kaplan (2018)
Connectivity Average mean maxi-

mum gravity
Street network L/M L/M Sevtsuk (2016)

Connectivity Betweenness centrality Street network S L/M Porta et al. (2006)
Connectivity Centrality Street network S L/M Boeing (2018a)
Connectivity Closeness centrality Street network S L/M Porta et al. (2006)
Connectivity Clustering Coefficient Street network L/M L/M Boeing (2018a)
Connectivity Combined

betweenness-closeness
Street network S L/M Omer and Kaplan (2018)

Connectivity Connected Node Ratio Street network L/M L/M Feliciotti (2018)
Connectivity Connectivity Street network S L/M Hillier (various)
Connectivity Connectivity alpha

index
Street network L/M L/M Song and Popkin (2013)

Connectivity Connectivity beta
index

Street network L/M L/M Song and Popkin (2013)

Connectivity Connectivity cyclo-
matic index

Street network L/M L/M Song and Popkin (2013)
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Table A4.1: Table of Urban Form Characters. A full overview of measurable urban form characters, showing:
category; name/definition of characters according to the Index of Elements approach; urban form character’s
position according to category and scale.

category Index Element grain extent reference

Connectivity Connectivity gamma
index

Street network L/M L/M Song and Popkin (2013)

Connectivity Control Street network S L/M Hillier (various)
Connectivity Directional distance Street network S L/M Peponis et al. (2007)
Connectivity Eigenvector centrality Street network S L/M Agryzcov et al. (2017)
Connectivity External connectivity Street network L/M L/M Song and Knaap (2003)
Connectivity Gravity Street network S L/M Sevtsuk and Mekonnen

(2012)
Connectivity Gravity accessibility

of Mean Maximum
Gravity ...

Street network S L/M Sevtsuk (2016)

Connectivity Gravity achieved Street network S L/M Sevtsuk (2016)
Connectivity Choice Street network S L/M Hausleitner, B. and

Berghauser Pont, M.
(2017)

Connectivity Integration Street network S L/M Hausleitner, B. and
Berghauser Pont, M.
(2017)

Connectivity Internal connectivity Street network L/M L/M Song and Knaap (2003)
Connectivity Link / Node Ratio Street network L/M L/M Dill (2004)
Connectivity Local betweenness Street network S L/M Gil (2012)
Connectivity Local closeness Street network S L/M Gil (2012)
Connectivity Node connectivity Street network L/M L/M Boeing (2018b)
Connectivity Node/edge connectiv-

ity
Street network L/M L/M Boeing (2018b)

Connectivity PageRank Street network L/M L/M Boeing (2018a)
Connectivity Reach Street network S L/M Sevtsuk and Mekonnen

(2012)
Connectivity Self-loop proportion Street network L/M L/M Boeing (2018a)
Connectivity Straightness centrality Street network S L/M Porta et al. (2006)
Connectivity Total plots required

in block frontage to
achi...

Street network L/M L/M Sevtsuk (2016)

Connectivity Weighted Clustering
Coefficient

Street network L/M L/M Boeing (2018a)

Diversity Block Area Power law
distribution

Sanctuary
Area

M M Feliciotti (2018)

Diversity Interface type Power
law distribution

Sanctuary
Area

M M Feliciotti (2018)

Diversity Plot Area Heterogene-
ity (Gini-Simpson)

Sanctuary
Area

M M Feliciotti (2018)

Diversity Plot Area Power law
distribution

Sanctuary
Area

M M Feliciotti (2018)
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Table A4.1: Table of Urban Form Characters. A full overview of measurable urban form characters, showing:
category; name/definition of characters according to the Index of Elements approach; urban form character’s
position according to category and scale.

category Index Element grain extent reference

Diversity Street length power
law distribution

Sanctuary
Area

M M Feliciotti (2018)

Diversity Intersection propor-
tion

Street network M M Song and Popkin (2013)

Diversity Dissimilarity index Tract S M Krizek (2003)
Diversity Plot area diversity

(Simpson’s)
Accessible
radius

S L/M Bobkova, Marcus and
Berghauser Pont (2017)

Diversity Plot Area Diversity Case study L/M L/M Bourdic, Salat and
Nowacki (2012)

Diversity Block Area Power law
distribution

Neighborhood L/M L/M Louf and Barthelemy
(2014)

Diversity Block Shape factor
Probaility conditional
dist...

Neighborhood L/M L/M Louf and Barthelemy
(2014)

Diversity Diversity index Street network L/M L/M Agryzkov, Tortosa and
Vicent (2018)

Diversity Scale hierarchy Street network L/M L/M Bourdic, Salat and
Nowacki (2012)
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A6.1 Spearman’s rho rank correlation

Additional figures to figure 6.23 capturing the details of Spearman’s rank correlation on
subsets of data (see section 6.4.1.2.1).
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Figure A6.1: Spearman’s rho rank correlation between cadastral values and each of the selected buffers of
tessellation based on the single-building plots.
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Figure A6.2: Spearman’s rho rank correlation between cadastral values and each of the selected buffers of
tessellation based on the multi-building plots.
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A6.2 NRMSD

Additional figures to figure 6.24 capturing the details of NRMSD on subsets of data (see
section 6.4.1.2.2).
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Figure A6.3: NRMSD of cadastral values and each of the selected buffers of tessellation based on the single-
building plots.
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Figure A6.4: NRMSD of cadastral values and each of the selected buffers of tessellation based on the multi-
building plots.
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A6.3 LISA accuracy

Additional figures to figure 6.25 capturing the details of LISA accuracy on subsets of data
(see section 6.4.1.2.3).
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Figure A6.5: LISA accuracy of cadastral values and each of the selected buffers of tessellation based on the
single-building plots.
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Figure A6.6: LISA accuracy of cadastral values and each of the selected buffers of tessellation based on the
multi-building plots.
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Appendix A7: Supplementary
material for chapter 7

7.1 Selection of primary characters

Supplementary material for section 7.1.2.1.1. Table A7.1 contains initial selection of
applicable characters and reasoning behind its selection or exclusion.

Table A7.1: Initial selection of applicable characters as an extraction from the Table of Urban Form Characters
(Table A4.1.) Selection reflects steps defined in section 7.1.2.1.1. Result indicates whether tested character
is included in the final set of primary characters or not, alternatively specifies the reason. Characters using
different data than specified in the relational model are excluded a priori.

id index element extent category result

sdbAre area building S dimension included
sdbFlA floor area building S dimension collinear
sdbHei height building S dimension included
sdbVol volume building S dimension included
sdbPer perimeter building S dimension included
sdbCoA courtyard area building S dimension included
sdbBRA bounding rectangle

area
building S dimension collinear

sdbBRW bounding rectangle
width

building S dimension collinear

sbdBRL bounding rectangle
length

building S dimension collinear

Continued on next page
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Table A7.1: Initial selection of applicable characters as an extraction from the Table of Urban Form Characters
(Table A4.1.) Selection reflects steps defined in section 7.1.2.1.1. Result indicates whether tested character
is included in the final set of primary characters or not, alternatively specifies the reason. Characters using
different data than specified in the relational model are excluded a priori.

id index element extent category result

sdbBRP bounding rectangle
perimeter

building S dimension collinear

sdbECR enclosing circle ra-
dius

building S dimension collinear

sdbCHA convex hull area building S dimension collinear
sdbCHP convex hull perime-

ter
building S dimension collinear

ssbFoF form factor building S shape included
ssbFra fractal dimension building S shape collinear
ssbVFR volume/façade ratio building S shape included
ssbCCo circular compactness building S shape included
ssbSCo square compactness building S shape collinear
ssbCon convexeity building S shape collinear
ssbCor corners building S shape included
ssbShI shape index building S shape collinear
ssbSqu squareness building S shape included
ssbERI equivalent rectangu-

lar index
building S shape included

ssbElo elongation building S shape included
ssbCCD centroid - corners

distance deviation
building S shape included

ssbCCM centroid - corners
mean distance

building S shape included

stbOri solar orientation building S distribution included
stbSAl street alignment building S distribution included
stbCeA cell alignment building S distribution included
sdcLAL longest axis length tessellation cell S dimension included
sdcAre area tessellation cell S dimension included
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Table A7.1: Initial selection of applicable characters as an extraction from the Table of Urban Form Characters
(Table A4.1.) Selection reflects steps defined in section 7.1.2.1.1. Result indicates whether tested character
is included in the final set of primary characters or not, alternatively specifies the reason. Characters using
different data than specified in the relational model are excluded a priori.

id index element extent category result

sdcBRA bounding rectangle
area

tessellation cell S dimension collinear

sdcBRW bounding rectangle
width

tessellation cell S dimension collinear

sdcBRL bounding rectangle
length

tessellation cell S dimension collinear

sdcBRP bounding rectangle
perimeter

tessellation cell S dimension collinear

sdcECR enclosing circle ra-
dius

tessellation cell S dimension collinear

sdcCHA convex hull area tessellation cell S dimension collinear
sdcCHP convex hull perime-

ter
tessellation cell S dimension collinear

sscCCo circular compactness tessellation cell S shape included
sscSCo square compactness tessellation cell S shape collinear
sscElo elongation tessellation cell S shape collinear
sscFra fractal dimension tessellation cell S shape collinear
sscCon convexeity tessellation cell S shape collinear
sscShI shape index tessellation cell S shape collinear
sscERI equivalent rectangu-

lar index
tessellation cell S shape included

sscElo elongation tessellation cell S shape collinear
stcOri solar orientation tessellation cell S distribution included
stcSAl street alignment tessellation cell S distribution included
sicCAR coverage area ratio tessellation cell S intensity included
sicFAR floor area ratio tessellation cell S intensity included
sdsLen length street segment S dimension included
sdsSPW street profile width street S dimension included
sdsSPH street profile height street S dimension included
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Table A7.1: Initial selection of applicable characters as an extraction from the Table of Urban Form Characters
(Table A4.1.) Selection reflects steps defined in section 7.1.2.1.1. Result indicates whether tested character
is included in the final set of primary characters or not, alternatively specifies the reason. Characters using
different data than specified in the relational model are excluded a priori.

id index element extent category result

sdsSPR street profile
height/width ratio

street segment S shape included

sdsSPO street openness street S distribution included
sdsSWD setback deviation street S diversity included
sdsSHD height deviation street S diversity included
sssLin linearity street segment S shape included
sdsAre area covered tessellation cell S dimension included
sisBpS buildings per seg-

ment
building S intensity no meaning

sisBpM buildings per meter building S intensity included
sddAre area covered tessellation cell S dimension included
sddBpN buildings per node building S intensity no meaning
mtb-
SWR

shared walls ratio building M distribution included

mtbAli building alignment building M distribution included
mtbNDi mean neighbour

distance
building M distribution included

mtcNei neigbours tessellation cell M distribution no meaning
mtcWNe neigbours per m tessellation cell M distribution included
mdcAre area covered tessellation cell M dimension included

mtsMDO
mean deviation of
orientation

street segment M distribution no meaning

misRea reached cells tessellation cell M intensity included
mdsLen length street segment M dimension collinear
mdsAre area covered tessellation cell M dimension included
mtdDeg node degree street node M distribution included
mtdMDi mean distance to

nodes
street node M dimension included

midRea reached cells tessellation cell M intensity included
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Table A7.1: Initial selection of applicable characters as an extraction from the Table of Urban Form Characters
(Table A4.1.) Selection reflects steps defined in section 7.1.2.1.1. Result indicates whether tested character
is included in the final set of primary characters or not, alternatively specifies the reason. Characters using
different data than specified in the relational model are excluded a priori.

id index element extent category result

midAre area covered tessellation cell M dimension included
libNCo number of court-

yards
building L intensity included

ldbPWL perimeter wall
length

building L dimension included

ltbIBD mean inter-building
distance

building L distribution included

ltcBuA building adjacency building L distribution included
licGDe gross density tessellation cell L intensity included
ltcWRB weighted reached

blocks
tessellation cell L intensity included

ldkAre block area block L dimension included
ldkPer block perimeter block L dimension included
ldkBRA bounding rectangle

area
block L dimension collinear

ldkBRW bounding rectangle
width

block L dimension collinear

ldkBRL bounding rectangle
length

block L dimension collinear

ldkBRP bounding rectangle
perimeter

block L dimension collinear

ldkECR enclosing circle ra-
dius

block L dimension collinear

ldkCHA convex hull area block L dimension collinear
ldkCHP convex hull perime-

ter
block L dimension collinear

lskElo block elongation block L shape collinear
lskFra block fractal dimen-

sion
block L shape collinear

Continued on next page
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Table A7.1: Initial selection of applicable characters as an extraction from the Table of Urban Form Characters
(Table A4.1.) Selection reflects steps defined in section 7.1.2.1.1. Result indicates whether tested character
is included in the final set of primary characters or not, alternatively specifies the reason. Characters using
different data than specified in the relational model are excluded a priori.

id index element extent category result

lskCCo block circular com-
pactness

block L shape included

lskSCo blocks square com-
pactness

block L shape collinear

lskCon block convexeity block L shape collinear
lskShI block shape index block L shape collinear
lskERI block equivalent

rectangular index
block L shape included

lskCWA Compactness-
weighted axis

block L shape included

ltkOri block solar orienta-
tion

block L distribution included

ltkNei block neighbours block L distribution no meaning
ltkWBN weighted block

neighbours
block L distribution included

likBpB buildings per block block L intensity no meaning
likWBB weighted buildings

per block
block L intensity included

lcdMes meshedness street network L connectivity included
ldsMSL mean segment

length
street network L dimension included

ldsTSL total segment length street network L dimension collinear
ldsCDL cul-de-sac length street network L dimension included
ldsRea reached cells tessellation cell L dimension included
lddNDe node density street network L intensity included
lddRea reached cells tessellation cell L dimension included
lddARe area covered tessellation cell L dimension included
lcnMND mean node degree street network L connectivity collinear

Continued on next page
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Table A7.1: Initial selection of applicable characters as an extraction from the Table of Urban Form Characters
(Table A4.1.) Selection reflects steps defined in section 7.1.2.1.1. Result indicates whether tested character
is included in the final set of primary characters or not, alternatively specifies the reason. Characters using
different data than specified in the relational model are excluded a priori.

id index element extent category result

linPDE proportion of dead-
ends

street network L connectivity included

linP3W proportion of 3-way
intersections

street network L connectivity included

linP4W proportion of 4-way
intersections

street network L connectivity included

linWID weighted intersec-
tion density

street network L intensity included

licSpA spatial attraction tessellation cell L intensity scale
lcnSLP self-loop proportion street network L connectivity collinear
lcnNeC network clustering street network L connectivity collinear
lncWNC weighted network

clustering
street network L connectivity collinear

lcnEdC edge connectivity street network L connectivity collinear
lcnNoC node connectivity street network L connectivity collinear
lcnCyC cyclomatic complex-

ity
street network L connectivity collinear

lcnENR edge / node ratio street network L connectivity collinear
lcnExC external connectiv-

ity
street network L connectivity no data

lcnGaI gamma index street network L connectivity collinear
lcnDiD directional distance street network L connectivity ineffective
lcnGCC global clustering

coefficient
street network L connectivity meaningless

lcnRed redundancy street network L connectivity ineffective
lcnClo local closeness cen-

trality
street network L connectivity included

xcnSCl square clustering street network XL connectivity included
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The following figures measure Spearman correlation between tested characters within
each group of elements. It illustrates the reasoning behind exclusion of characters due
to collinearity. From a group of collinear characters, only one is included in the final set.
The selection is driven by variance, interpretability and literature.

Figure A7.1: Correlation matrix of Spearman’s rho values capturing the statistical relationship between mor-
phometric values of tested characters based on buildings.
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Figure A7.2: Correlation matrix of Spearman’s rho values capturing the statistical relationship between mor-
phometric values of tested characters based on tessellation cells.
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Figure A7.3: Correlation matrix of Spearman’s rho values capturing the statistical relationship between mor-
phometric values of tested characters based on streets.

372



Figure A7.4: Correlation matrix of Spearman’s rho values capturing the statistical relationship between mor-
phometric values of tested characters based on blocks.
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Figure A7.5: Correlation matrix of Spearman’s rho values capturing the statistical relationship between mor-
phometric values of tested characters based on network nodes.
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7.2 Classification of primary characters

Classification of primary characters into categories. See section 7.1.2.1.2 for details.

Table A7.2: Classification of primary characters. Grain is S for all characters.

notation index element category extent

ablg area building dimension S
hblg height building dimension S
vblg volume building dimension S
pblg perimeter building dimension S
ablgc courtyard area building dimension S
FoFblg form factor building shape S
V FRblg volume to façade ratio building shape S
CCoblg circular compactness building shape S
Corblg corners building shape S
Squblg squareness building shape S
ERIblg equivalent rectangular

index
building shape S

Eloblg elongation building shape S
CCDblg centroid - corner distance

deviation
building shape S

CCMblg centroid - corner mean
distance

building shape S

Oriblg solar orientation building distribution S
SAlblg street alignment building distribution S
CAlblg cell alignment building distribution S
LALcell longest axis length tessellation cell dimension S
acell area tessellation cell dimension S
CCocell circular compactness tessellation cell shape S
ERIcell equivalent rectangular

index
tessellation cell shape S

Oricell solar orientation tessellation cell distribution S
SAlcell street alignment tessellation cell distribution S
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notation index element category extent

CARcell coverage area ratio tessellation cell intensity S
FARcell floor area ratio tessellation cell intensity S
ledg length street segment dimension S
wsp width street profile dimension S
hsp height street profile dimension S
HWRsp height to width ratio street profile shape S
Opesp openness street profile distribution S
$wDev_{sp}
$

width deviation street profile diversity S

hDevsp height deviation street profile diversity S
Linedg linearity street segment shape S
aedg area covered street segment dimension S
BpMedg buildings per meter street segment intensity S
anode area covered street node dimension S
SWRblg shared walls ratio adjacent buildings distribution S
Aliblg alignment neighbouring

buildings
distribution S

NDiblg mean distance neighbouring
buildings

distribution S

WNecell weighted neighbours tessellation cell distribution S
acelln area covered neighbouring cells dimension S
RCedgn reached cells neighbouring

segments
intensity S

aedgn reached area neighbouring
segments

dimension S

degnode degree street node distribution S
MDinode mean distance to

neighbouring nodes
street node dimension S

RCnoden reached cells neighbouring nodes intensity S
anoden reached area neighbouring nodes dimension S
NCoblgadj

number of courtyards adjacent buildings intensity S
pblgadj

perimeter wall length adjacent buildings dimension S
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notation index element category extent

IBDblg mean inter-building
distance

neighbouring
buildings

distribution S

BuAblg building adjacency neighbouring
buildings

distribution S

GFARcell gross floor area ratio neighbouring
tessellation cells

intensity S

WRBcell weighted reached blocks neighbouring
tessellation cells

intensity S

ablk area block dimension S
pblk perimeter block dimension S
CCoblk circular compactness block shape S
ERIblk equivalent rectangular

index
block shape S

CWAblk compactness-weighted
axis

block shape S

Oriblk solar orientation block distribution S
wNblk weighted neighbours block distribution S
wCblk weighted cells block intensity S
Mesnode local meshedness street network connectivity M
MSLedg mean segment length street network dimension S
CDLnode cul-de-sac length street network dimension S
RCedg reached cells street network dimension S
Dnode node density street network intensity M
RCnodenet

reached cells street network dimension S
anodenet

reached area street network dimension S
pCDnode proportion of cul-de-sacs street network connectivity M
p3Wnode proportion of 3-way

intersections
street network connectivity M

p4Wnode proportion of 4-way
intersections

street network connectivity M

wDnode weighted node density street network intensity M
lCCnode local closeness centrality street network connectivity M
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notation index element category extent

sClnode square clustering street network connectivity L
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References for primary characters. Characters without a reference are newly introduced or
adapted to the point where it would not be correct to refer to its original implementation.
See section 7.1.2.1.2 for details.

Table A7.3: Reference table for primary characters. Contains references to existing literature and to identifier
of each character used within computational Jupyter notebooks.

notation reference id

ablg (Hallowell and Baran, 2013) sdbAre
hblg (Schirmer and Axhausen, 2015) sdbHei
vblg (Yoshida and Omae, 2005) sdbVol
pblg (Vanderhaegen and Canters, 2017) sdbPer
ablgc (Schirmer and Axhausen, 2015) sdbCoA
FoFblg (Bourdic et al., 2012) ssbFoF
V FRblg (Yoshida and Omae, 2005) ssbVFR
CCoblg (Dibble et al., 2017) ssbCCo
Corblg (Steiniger et al., 2008) ssbCor
Squblg (Steiniger et al., 2008) ssbSqu
ERIblg (Basaraner and Cetinkaya, 2017) ssbERI
Eloblg (Steiniger et al., 2008) ssbElo
CCDblg ssbCCD
CCMblg (Schirmer and Axhausen, 2015) ssbCCM
Oriblg (Schirmer and Axhausen, 2015) stbOri
SAlblg (Schirmer and Axhausen, 2015) stbSAl
CAlblg stbCeA
LALcell sdcLAL
acell (Hamaina et al., 2012) sdcAre
CCocell sscCCo
ERIcell sscERI
Oricell stcOri
SAlcell stcSAl
CARcell (Hamaina et al., 2013) sicCAR
FARcell (Hamaina et al., 2013) sicFAR
ledg (Gil et al., 2012) sdsLen
wsp (Araldi and Fusco, 2019) sdsSPW
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notation reference id

hsp (Araldi and Fusco, 2019) sdsSPH
HWRsp (Araldi and Fusco, 2019) sdsSPR
Opesp (Araldi and Fusco, 2019) sdsSPO
$wDev_{sp} $ (Araldi and Fusco, 2019) sdsSWD
hDevsp (Araldi and Fusco, 2019) sdsSHD
Linedg (Araldi and Fusco, 2019) sssLin
aedg sdsAre
BpMedg sisBpM
anode sddAre
SWRblg (Hamaina et al., 2012) mtbSWR
Aliblg (Hijazi et al., 2016) mtbAli
NDiblg (Hijazi et al., 2016) mtbNDi
WNecell mtcWNe
acelln mdcAre
RCedgn misRea
aedgn mdsAre
degnode (Boeing, 2018) mtdDeg
MDinode mtdMDi
RCnoden midRea
anoden midAre
NCoblgadj

(Schirmer and Axhausen, 2015) libNCo
pblgadj

ldbPWL
IBDblg (Caruso et al., 2017) ltbIBD
BuAblg (Vanderhaegen and Canters, 2017) ltcBuA
GFARcell (Dibble et al., 2017) licGDe
WRBcell ltcWRB
ablk (Dibble et al., 2017) ldkAre
pblk (Gil et al., 2012) ldkPer
CCoblk (Schirmer and Axhausen, 2015) lskCCo
ERIblk (Basaraner and Cetinkaya, 2017) lskERI
CWAblk (Feliciotti, 2018) lskCWA
Oriblk (Gil et al., 2012) ltkOri
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notation reference id

wNblk ltkWNB
wCblk likWBB
Mesnode (Feliciotti, 2018) lcdMes
MSLedg ldsMSL
CDLnode ldsCDL
RCedg ldsRea
Dnode lddNDe
RCnodenet

lddRea
anodenet

lddARe
pCDnode (Lowry and Lowry, 2014) linPDE
p3Wnode (Boeing, 2018) linP3W
p4Wnode (Boeing, 2018) linP4W
wDnode (Dibble et al., 2017) linWID
lCCnode (Porta et al., 2006) lcnClo
sClnode xcnSCl
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7.3 Sectional diagram analysis

Sectional diagrams show the distribution of measured values along the longitudinal section
through the whole case study. Diagrams were generated every 1km and individually
assessed to understand the effect of a different number of steps on the distribution. The
overall aim is to use that number of steps which illustrate the tendency within the local
area but in too smooth to disable identification of boundaries between areas of different
characters. Based on the visual assessment of sectional diagrams, three topological steps
are the closest option to the goal mentioned above. Figures A7.6 and A7.7 below illustrate
one such diagram and its detail.

Note: Please refer to the PDF version of the thesis for a better clarity. Sectional diagrams
are not optimised for print.
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Figure A7.6: Full sectional diagrams illustrating spatial distribution of selected values (IQM of area, ID Theil
index of area, IQR of area, adjacency).
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Figure A7.7: Details of two sectional diagrams illustrating spatial distribution of selected values (IQM of area,
ID Theil index of area).
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7.4 Analysis of local central tendency characters

This appendix presents results of tests of different of measuring central tendency to better
understand the differences between them. The aim is to select one (or more) to be used
within the cluster analysis.

Tested characters:

• building area
• tessellation area
• height
• building circular compactness
• building solar orientation
• cell circular compactness
• CAR
• shared walls ratio

Tested options:

• mean
• interdecile mean
• interquartile mean
• median

Tested on 3 topological steps.

The aim is to identify such a method which is not prone to outlier effect but at the same
time reflect the best true nature of each context.
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Figure A7.8: Distributions of values measured using each tested option to capture local central tendency.
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7.5 Comparison of characters capturing properties of distributions

Supplementary data for section 7.1.2.2.2.4. Figures below show spatial distribution (fig-
ures A7.10 - A7.17)and correlation (figures A7.18, A7.21) of selected characters capturing
properties of distributions.
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Figure A7.10: Spatial distribution of characters capturing properties of distributions tested on area of a
building.

389



Figure A7.11: Spatial distribution of characters capturing properties of distributions tested on area of a building
(cont.).
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Figure A7.12: Spatial distribution of characters capturing properties of distributions tested on height of a
building.
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Figure A7.13: Spatial distribution of characters capturing properties of distributions tested on height of a
building (cont.).
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Figure A7.14: Spatial distribution of characters capturing properties of distributions tested on coverage area
ratio of tessellation cell.
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Figure A7.15: Spatial distribution of characters capturing properties of distributions tested on coverage area
ratio of tessellation cell (cont.).
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Figure A7.16: Spatial distribution of characters capturing properties of distributions tested on floor area ratio
of tessellation cell.
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Figure A7.17: Spatial distribution of characters capturing properties of distributions tested on floor area ratio
of tessellation cell (cont.).

396



ar
ea

_s
t_

de
v

ar
ea

_s
t_

de
v_

IQ

ar
ea

_s
t_

de
v_

ID

ar
ea

_i
qr

ar
ea

_i
dr

ar
ea

_r
an

ge

ar
ea

_m
ad

ar
ea

_a
ad

ar
ea

_c
ov

ar
ea

_c
ov

_I
Q

ar
ea

_c
ov

_I
D

ar
ea

_q
cd

ar
ea

_g
in

i

ar
ea

_g
in

i_
IQ

ar
ea

_g
in

i_
ID

ar
ea

_t
he

il_
N

on
e

ar
ea

_t
he

il_
iq

ar
ea

_t
he

il_
id

ar
ea

_s
im

ps
on

ar
ea

_s
im

ps
on

_1
0

ar
ea

_s
im

ps
on

_H
T

area_st_dev

area_st_dev_IQ

area_st_dev_ID

area_iqr

area_idr

area_range

area_mad

area_aad

area_cov

area_cov_IQ

area_cov_ID

area_qcd

area_gini

area_gini_IQ

area_gini_ID

area_theil_None

area_theil_iq

area_theil_id

area_simpson

area_simpson_10

area_simpson_HT

1.00 0.74 0.79 0.74 0.81 0.94 0.68 0.95 0.75 0.70 0.72 0.67 0.81 0.70 0.71 0.84 0.69 0.73 -0.47 -0.37 -0.81

0.74 1.00 0.96 0.99 0.91 0.56 0.95 0.88 0.26 0.80 0.67 0.75 0.53 0.80 0.71 0.41 0.83 0.72 -0.41 -0.32 -0.88

0.79 0.96 1.00 0.97 0.98 0.61 0.89 0.94 0.32 0.80 0.79 0.77 0.62 0.80 0.79 0.49 0.82 0.82 -0.45 -0.36 -0.92

0.74 0.99 0.97 1.00 0.93 0.57 0.94 0.89 0.27 0.81 0.71 0.77 0.56 0.80 0.74 0.43 0.83 0.75 -0.42 -0.33 -0.89

0.81 0.91 0.98 0.93 1.00 0.64 0.86 0.95 0.36 0.78 0.81 0.74 0.66 0.77 0.79 0.53 0.78 0.82 -0.46 -0.37 -0.92

0.94 0.56 0.61 0.57 0.64 1.00 0.52 0.80 0.84 0.58 0.60 0.56 0.77 0.57 0.59 0.85 0.56 0.59 -0.45 -0.35 -0.68

0.68 0.95 0.89 0.94 0.86 0.52 1.00 0.81 0.23 0.70 0.60 0.70 0.49 0.72 0.65 0.37 0.72 0.65 -0.38 -0.30 -0.84

0.95 0.88 0.94 0.89 0.95 0.80 0.81 1.00 0.56 0.79 0.80 0.75 0.77 0.78 0.79 0.71 0.79 0.82 -0.49 -0.38 -0.91

0.75 0.26 0.32 0.27 0.36 0.84 0.23 0.56 1.00 0.47 0.54 0.49 0.85 0.47 0.53 0.95 0.41 0.50 -0.35 -0.31 -0.42

0.70 0.80 0.80 0.81 0.78 0.58 0.70 0.79 0.47 1.00 0.90 0.96 0.78 1.00 0.94 0.64 0.98 0.92 -0.50 -0.42 -0.77

0.72 0.67 0.79 0.71 0.81 0.60 0.60 0.80 0.54 0.90 1.00 0.91 0.87 0.89 0.99 0.73 0.85 0.98 -0.50 -0.44 -0.77

0.67 0.75 0.77 0.77 0.74 0.56 0.70 0.75 0.49 0.96 0.91 1.00 0.81 0.96 0.95 0.66 0.92 0.92 -0.49 -0.43 -0.74

0.81 0.53 0.62 0.56 0.66 0.77 0.49 0.77 0.85 0.78 0.87 0.81 1.00 0.78 0.87 0.95 0.71 0.82 -0.52 -0.48 -0.68

0.70 0.80 0.80 0.80 0.77 0.57 0.72 0.78 0.47 1.00 0.89 0.96 0.78 1.00 0.93 0.64 0.98 0.92 -0.50 -0.43 -0.77

0.71 0.71 0.79 0.74 0.79 0.59 0.65 0.79 0.53 0.94 0.99 0.95 0.87 0.93 1.00 0.72 0.89 0.98 -0.51 -0.45 -0.77

0.84 0.41 0.49 0.43 0.53 0.85 0.37 0.71 0.95 0.64 0.73 0.66 0.95 0.64 0.72 1.00 0.59 0.70 -0.40 -0.33 -0.57

0.69 0.83 0.82 0.83 0.78 0.56 0.72 0.79 0.41 0.98 0.85 0.92 0.71 0.98 0.89 0.59 1.00 0.91 -0.42 -0.33 -0.75

0.73 0.72 0.82 0.75 0.82 0.59 0.65 0.82 0.50 0.92 0.98 0.92 0.82 0.92 0.98 0.70 0.91 1.00 -0.45 -0.37 -0.77

-0.47 -0.41 -0.45 -0.42 -0.46 -0.45 -0.38 -0.49 -0.35 -0.50 -0.50 -0.49 -0.52 -0.50 -0.51 -0.40 -0.42 -0.45 1.00 0.91 0.60

-0.37 -0.32 -0.36 -0.33 -0.37 -0.35 -0.30 -0.38 -0.31 -0.42 -0.44 -0.43 -0.48 -0.43 -0.45 -0.33 -0.33 -0.37 0.91 1.00 0.47

-0.81 -0.88 -0.92 -0.89 -0.92 -0.68 -0.84 -0.91 -0.42 -0.77 -0.77 -0.74 -0.68 -0.77 -0.77 -0.57 -0.75 -0.77 0.60 0.47 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure A7.18: Correlation of characters capturing properties of distributions tested on area of a building.
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Figure A7.19: Correlation of characters capturing properties of distributions tested on height of a building.
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Figure A7.20: Correlation of characters capturing properties of distributions tested on coverage area ratio of
tessellation cell.
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Figure A7.21: Correlation of characters capturing properties of distributions tested on floor area ratio of
tessellation cell.

7.6 Spatial autocorrelation of morphometric characters

Results of assessment of spatial autocorrelation of morphometric characters. Values which
show significant autocorrelation (Moran’s I) tend to capture contiguous patterns.

See sections 7.1.2.1.1 and 7.1.3 for details.

Primary characters
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Table A7.4: Global Moran’s I spatial autocorrelation of primary characters. Key to character IDs is available
in table A7.3.

I p_sim p_norm

lcdMes 0.85362 0.001 0
lcnClo 0.862475 0.001 0
ldbPWL 0.592621 0.001 0
lddARe 0.798202 0.001 0
lddNDe 0.577277 0.001 0
lddRea 0.736014 0.001 0
ldkAre 0.731736 0.001 0
ldkPer 0.676249 0.001 0
ldsCDL 0.709263 0.001 0
ldsMSL 0.815984 0.001 0
ldsRea 0.810434 0.001 0
libNCo 0.710798 0.001 0
licGDe 0.938796 0.001 0
likWBB 0.655763 0.001 0
linP3W 0.852988 0.001 0
linP4W 0.911839 0.001 0
linPDE 0.815483 0.001 0
linWID 0.629364 0.001 0
lskCCo 0.533229 0.001 0
lskCWA 0.65397 0.001 0
lskERI 0.562295 0.001 0
ltbIBD 0.819981 0.001 0
ltcBuA 0.918511 0.001 0
ltcWRB 0.786888 0.001 0
ltkOri 0.607896 0.001 0
ltkWNB 0.729433 0.001 0
mdcAre 0.509591 0.001 0
mdsAre 0.780909 0.001 0
midAre 0.793405 0.001 0
midRea 0.664584 0.001 0
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I p_sim p_norm

misRea 0.642062 0.001 0
mtbAli 0.302355 0.001 0
mtbNDi 0.319068 0.001 0
mtbSWR 0.387207 0.001 0
mtcWNe 0.43183 0.001 0
mtdDeg 0.338198 0.001 0
mtdMDi 0.699161 0.001 0
sdbAre 0.0909169 0.001 0
sdbCoA 0.0101648 0.001 0
sdbHei 0.508558 0.001 0
sdbPer 0.171366 0.001 0
sdbVol 0.101862 0.001 0
sdcAre 0.244891 0.001 0
sdcLAL 0.377011 0.001 0
sddAre 0.762546 0.001 0
sdsAre 0.736197 0.001 0
sdsLen 0.63461 0.001 0
sdsSHD 0.45782 0.001 0
sdsSPH 0.738876 0.001 0
sdsSPO 0.542333 0.001 0
sdsSPR 0.700646 0.001 0
sdsSPW 0.395235 0.001 0
sdsSWD 0.357013 0.001 0
sicCAR 0.510195 0.001 0
sicFAR 0.60611 0.001 0
sisBpM 0.153048 0.001 0
ssbCCD 0.0972815 0.001 0
ssbCCM 0.246668 0.001 0
ssbCCo 0.159506 0.001 0
ssbCor 0.101771 0.001 0
ssbERI 0.0928927 0.001 0
ssbElo 0.171279 0.001 0

402



I p_sim p_norm

ssbFoF 0.267186 0.001 0
ssbSqu 0.136881 0.001 0
ssbVFR 0.251518 0.001 0
sscCCo 0.152741 0.001 0
sscERI 0.0677793 0.001 0
sssLin 0.412019 0.001 0
stbCeA 0.0993836 0.001 0
stbOri 0.540843 0.001 0
stbSAl 0.285133 0.001 0
stcOri 0.291539 0.001 0
stcSAl 0.147622 0.001 0
xcnSCl 0.466779 0.001 0

Contextual characters

Table A7.5: Global Moran’s I spatial autocorrelation of contextual characters. Key to character IDs is available
in table A7.3.

I p_sim p_norm

lcdMes_meanIQ3 0.955598 0.001 0
lcdMes_rangeIQ3 0.50685 0.001 0
lcdMes_simpson 0.689865 0.001 0
lcdMes_theilID3 0.681572 0.001 0
lcnClo_meanIQ3 0.959075 0.001 0
lcnClo_rangeIQ3 0.536619 0.001 0
lcnClo_simpson 0.726854 0.001 0
lcnClo_theilID3 0.658432 0.001 0
ldbPWL_meanIQ3 0.940908 0.001 0
ldbPWL_rangeIQ3 0.772736 0.001 0
ldbPWL_simpson 0.877407 0.001 0
ldbPWL_theilID3 0.652227 0.001 0
lddARe_meanIQ3 0.950351 0.001 0
lddARe_rangeIQ3 0.630399 0.001 0
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I p_sim p_norm

lddARe_simpson 0.814212 0.001 0
lddARe_theilID3 0.62819 0.001 0
lddNDe_meanIQ3 0.907499 0.001 0
lddNDe_rangeIQ3 0.620502 0.001 0
lddNDe_simpson 0.810196 0.001 0
lddNDe_theilID3 0.675864 0.001 0
lddRea_meanIQ3 0.931665 0.001 0
lddRea_rangeIQ3 0.543221 0.001 0
lddRea_simpson 0.674778 0.001 0
lddRea_theilID3 0.66969 0.001 0
ldkAre_meanIQ3 0.928541 0.001 0
ldkAre_rangeIQ3 0.570235 0.001 0
ldkAre_simpson 0.788347 0.001 0
ldkAre_theilID3 0.522912 0.001 0
ldkPer_meanIQ3 0.918906 0.001 0
ldkPer_rangeIQ3 0.585438 0.001 0
ldkPer_simpson 0.777687 0.001 0
ldkPer_theilID3 0.597642 0.001 0
ldsCDL_meanIQ3 0.921323 0.001 0
ldsCDL_rangeIQ3 0.60509 0.001 0
ldsCDL_simpson 0.810959 0.001 0
ldsCDL_theilID3 0.534048 0.001 0
ldsMSL_meanIQ3 0.944622 0.001 0
ldsMSL_rangeIQ3 0.583908 0.001 0
ldsMSL_simpson 0.799475 0.001 0
ldsMSL_theilID3 0.615352 0.001 0
ldsRea_meanIQ3 0.95118 0.001 0
ldsRea_rangeIQ3 0.600647 0.001 0
ldsRea_simpson 0.80886 0.001 0
ldsRea_theilID3 0.618526 0.001 0
libNCo_meanIQ3 0.949998 0.001 0
libNCo_rangeIQ3 0.841513 0.001 0

404



I p_sim p_norm

libNCo_simpson 0.909637 0.001 0
libNCo_theilID3 0.561885 0.001 0
licGDe_meanIQ3 0.976722 0.001 0
licGDe_rangeIQ3 0.758523 0.001 0
licGDe_simpson 0.845604 0.001 0
licGDe_theilID3 0.60388 0.001 0
likWBB_meanIQ3 0.904411 0.001 0
likWBB_rangeIQ3 0.59347 0.001 0
likWBB_simpson 0.803015 0.001 0
likWBB_theilID3 0.599414 0.001 0
linP3W_meanIQ3 0.962415 0.001 0
linP3W_rangeIQ3 0.513581 0.001 0
linP3W_simpson 0.690559 0.001 0
linP3W_theilID3 0.56403 0.001 0
linP4W_meanIQ3 0.976016 0.001 0
linP4W_rangeIQ3 0.508686 0.001 0
linP4W_simpson 0.71637 0.001 0
linP4W_theilID3 0.646389 0.001 0
linPDE_meanIQ3 0.95383 0.001 0
linPDE_rangeIQ3 0.551748 0.001 0
linPDE_simpson 0.827951 0.001 0
linPDE_theilID3 0.627833 0.001 0
linWID_meanIQ3 0.922797 0.001 0
linWID_rangeIQ3 0.602441 0.001 0
linWID_simpson 0.815416 0.001 0
linWID_theilID3 0.595879 0.001 0
lskCCo_meanIQ3 0.882728 0.001 0
lskCCo_rangeIQ3 0.518586 0.001 0
lskCCo_simpson 0.682315 0.001 0
lskCCo_theilID3 0.714485 0.001 0
lskCWA_meanIQ3 0.913762 0.001 0
lskCWA_rangeIQ3 0.593642 0.001 0
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I p_sim p_norm

lskCWA_simpson 0.790063 0.001 0
lskCWA_theilID3 0.568035 0.001 0
lskERI_meanIQ3 0.897361 0.001 0
lskERI_rangeIQ3 0.566972 0.001 0
lskERI_simpson 0.671685 0.001 0
lskERI_theilID3 0.785261 0.001 0
ltbIBD_meanIQ3 0.916813 0.001 0
ltbIBD_rangeIQ3 0.641772 0.001 0
ltbIBD_simpson 0.760663 0.001 0
ltbIBD_theilID3 0.619924 0.001 0
ltcBuA_meanIQ3 0.961734 0.001 0
ltcBuA_rangeIQ3 0.631009 0.001 0
ltcBuA_simpson 0.79074 0.001 0
ltcBuA_theilID3 0.725754 0.001 0
ltcWRB_meanIQ3 0.915843 0.001 0
ltcWRB_rangeIQ3 0.737241 0.001 0
ltcWRB_simpson 0.850155 0.001 0
ltcWRB_theilID3 0.609031 0.001 0
ltkOri_meanIQ3 0.904165 0.001 0
ltkOri_rangeIQ3 0.536899 0.001 0
ltkOri_simpson 0.697909 0.001 0
ltkOri_theilID3 0.68647 0.001 0
ltkWNB_meanIQ3 0.928892 0.001 0
ltkWNB_rangeIQ3 0.54861 0.001 0
ltkWNB_simpson 0.74367 0.001 0
ltkWNB_theilID3 0.60766 0.001 0
mdcAre_meanIQ3 0.861546 0.001 0
mdcAre_rangeIQ3 0.751638 0.001 0
mdcAre_simpson 0.8328 0.001 0
mdcAre_theilID3 0.574389 0.001 0
mdsAre_meanIQ3 0.944663 0.001 0
mdsAre_rangeIQ3 0.617205 0.001 0
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I p_sim p_norm

mdsAre_simpson 0.807483 0.001 0
mdsAre_theilID3 0.57988 0.001 0
midAre_meanIQ3 0.947303 0.001 0
midAre_rangeIQ3 0.620141 0.001 0
midAre_simpson 0.810922 0.001 0
midAre_theilID3 0.586441 0.001 0
midRea_meanIQ3 0.904878 0.001 0
midRea_rangeIQ3 0.507217 0.001 0
midRea_simpson 0.766685 0.001 0
midRea_theilID3 0.610119 0.001 0
misRea_meanIQ3 0.903812 0.001 0
misRea_rangeIQ3 0.534213 0.001 0
misRea_simpson 0.77369 0.001 0
misRea_theilID3 0.604976 0.001 0
mtbAli_meanIQ3 0.845607 0.001 0
mtbAli_rangeIQ3 0.741485 0.001 0
mtbAli_simpson 0.83494 0.001 0
mtbAli_theilID3 0.676688 0.001 0
mtbNDi_meanIQ3 0.855789 0.001 0
mtbNDi_rangeIQ3 0.755206 0.001 0
mtbNDi_simpson 0.846039 0.001 0
mtbNDi_theilID3 0.729665 0.001 0
mtbSWR_meanIQ3 0.920196 0.001 0
mtbSWR_rangeIQ3 0.744766 0.001 0
mtbSWR_simpson 0.839345 0.001 0
mtbSWR_theilID3 0.642402 0.001 0
mtcWNe_meanIQ3 0.869615 0.001 0
mtcWNe_rangeIQ3 0.654455 0.001 0
mtcWNe_simpson 0.75302 0.001 0
mtcWNe_theilID3 0.682041 0.001 0
mtdDeg_meanIQ3 0.835449 0.001 0
mtdDeg_rangeIQ3 0.519432 0.001 0
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I p_sim p_norm

mtdDeg_simpson 0.705833 0.001 0
mtdDeg_theilID3 0.723812 0.001 0
mtdMDi_meanIQ3 0.925984 0.001 0
mtdMDi_rangeIQ3 0.593588 0.001 0
mtdMDi_simpson 0.806522 0.001 0
mtdMDi_theilID3 0.588363 0.001 0
sdbAre_meanIQ3 0.820124 0.001 0
sdbAre_rangeIQ3 0.756028 0.001 0
sdbAre_simpson 0.900207 0.001 0
sdbAre_theilID3 0.743363 0.001 0
sdbCoA_meanIQ3 0.676399 0.001 0
sdbCoA_rangeIQ3 0.472574 0.001 0
sdbCoA_simpson 0.902308 0.001 0
sdbCoA_theilID3 0.74238 0.001 0
sdbHei_meanIQ3 0.941584 0.001 0
sdbHei_rangeIQ3 0.78105 0.001 0
sdbHei_simpson 0.92606 0.001 0
sdbHei_theilID3 0.756276 0.001 0
sdbPer_meanIQ3 0.880991 0.001 0
sdbPer_rangeIQ3 0.809868 0.001 0
sdbPer_simpson 0.881562 0.001 0
sdbPer_theilID3 0.770573 0.001 0
sdbVol_meanIQ3 0.840984 0.001 0
sdbVol_rangeIQ3 0.764246 0.001 0
sdbVol_simpson 0.904012 0.001 0
sdbVol_theilID3 0.708305 0.001 0
sdcAre_meanIQ3 0.846201 0.001 0
sdcAre_rangeIQ3 0.788472 0.001 0
sdcAre_simpson 0.833662 0.001 0
sdcAre_theilID3 0.64362 0.001 0
sdcLAL_meanIQ3 0.858866 0.001 0
sdcLAL_rangeIQ3 0.721431 0.001 0
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I p_sim p_norm

sdcLAL_simpson 0.823481 0.001 0
sdcLAL_theilID3 0.657668 0.001 0
sddAre_meanIQ3 0.937527 0.001 0
sddAre_rangeIQ3 0.611057 0.001 0
sddAre_simpson 0.806723 0.001 0
sddAre_theilID3 0.548801 0.001 0
sdsAre_meanIQ3 0.925027 0.001 0
sdsAre_rangeIQ3 0.606761 0.001 0
sdsAre_simpson 0.805935 0.001 0
sdsAre_theilID3 0.524675 0.001 0
sdsLen_meanIQ3 0.91244 0.001 0
sdsLen_rangeIQ3 0.598489 0.001 0
sdsLen_simpson 0.796079 0.001 0
sdsLen_theilID3 0.576659 0.001 0
sdsSHD_meanIQ3 0.891916 0.001 0
sdsSHD_rangeIQ3 0.718592 0.001 0
sdsSHD_simpson 0.876636 0.001 0
sdsSHD_theilID3 0.68296 0.001 0
sdsSPH_meanIQ3 0.954994 0.001 0
sdsSPH_rangeIQ3 0.685786 0.001 0
sdsSPH_simpson 0.885641 0.001 0
sdsSPH_theilID3 0.659245 0.001 0
sdsSPO_meanIQ3 0.910225 0.001 0
sdsSPO_rangeIQ3 0.525057 0.001 0
sdsSPO_simpson 0.715839 0.001 0
sdsSPO_theilID3 0.773536 0.001 0
sdsSPR_meanIQ3 0.964001 0.001 0
sdsSPR_rangeIQ3 0.725299 0.001 0
sdsSPR_simpson 0.889633 0.001 0
sdsSPR_theilID3 0.64308 0.001 0
sdsSPW_meanIQ3 0.879784 0.001 0
sdsSPW_rangeIQ3 0.540892 0.001 0
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I p_sim p_norm

sdsSPW_simpson 0.695483 0.001 0
sdsSPW_theilID3 0.683547 0.001 0
sdsSWD_meanIQ3 0.859928 0.001 0
sdsSWD_rangeIQ3 0.544153 0.001 0
sdsSWD_simpson 0.706063 0.001 0
sdsSWD_theilID3 0.683033 0.001 0
sicCAR_meanIQ3 0.942188 0.001 0
sicCAR_rangeIQ3 0.775051 0.001 0
sicCAR_simpson 0.877473 0.001 0
sicCAR_theilID3 0.771826 0.001 0
sicFAR_meanIQ3 0.964149 0.001 0
sicFAR_rangeIQ3 0.889602 0.001 0
sicFAR_simpson 0.934126 0.001 0
sicFAR_theilID3 0.74142 0.001 0
sisBpM_meanIQ3 0.834023 0.001 0
sisBpM_rangeIQ3 0.520404 0.001 0
sisBpM_simpson 0.774814 0.001 0
sisBpM_theilID3 0.593089 0.001 0
ssbCCD_meanIQ3 0.849419 0.001 0
ssbCCD_rangeIQ3 0.780761 0.001 0
ssbCCD_simpson 0.84992 0.001 0
ssbCCD_theilID3 0.813876 0.001 0
ssbCCM_meanIQ3 0.889831 0.001 0
ssbCCM_rangeIQ3 0.819487 0.001 0
ssbCCM_simpson 0.881239 0.001 0
ssbCCM_theilID3 0.78196 0.001 0
ssbCCo_meanIQ3 0.864255 0.001 0
ssbCCo_rangeIQ3 0.749751 0.001 0
ssbCCo_simpson 0.788952 0.001 0
ssbCCo_theilID3 0.790146 0.001 0
ssbCor_meanIQ3 0.841669 0.001 0
ssbCor_rangeIQ3 0.697948 0.001 0
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I p_sim p_norm

ssbCor_simpson 0.826181 0.001 0
ssbCor_theilID3 0.688075 0.001 0
ssbERI_meanIQ3 0.856649 0.001 0
ssbERI_rangeIQ3 0.808194 0.001 0
ssbERI_simpson 0.812285 0.001 0
ssbERI_theilID3 0.848991 0.001 0
ssbElo_meanIQ3 0.864312 0.001 0
ssbElo_rangeIQ3 0.698684 0.001 0
ssbElo_simpson 0.765896 0.001 0
ssbElo_theilID3 0.791906 0.001 0
ssbFoF_meanIQ3 0.893053 0.001 0
ssbFoF_rangeIQ3 0.777009 0.001 0
ssbFoF_simpson 0.857507 0.001 0
ssbFoF_theilID3 0.805237 0.001 0
ssbSqu_meanIQ3 0.89365 0.001 0
ssbSqu_rangeIQ3 0.827903 0.001 0
ssbSqu_simpson 0.873586 0.001 0
ssbSqu_theilID3 0.659983 0.001 0
ssbVFR_meanIQ3 0.892769 0.001 0
ssbVFR_rangeIQ3 0.777149 0.001 0
ssbVFR_simpson 0.876502 0.001 0
ssbVFR_theilID3 0.772907 0.001 0
sscCCo_meanIQ3 0.837064 0.001 0
sscCCo_rangeIQ3 0.633735 0.001 0
sscCCo_simpson 0.730701 0.001 0
sscCCo_theilID3 0.781972 0.001 0
sscERI_meanIQ3 0.814612 0.001 0
sscERI_rangeIQ3 0.691816 0.001 0
sscERI_simpson 0.720924 0.001 0
sscERI_theilID3 0.75613 0.001 0
sssLin_meanIQ3 0.834239 0.001 0
sssLin_rangeIQ3 0.626923 0.001 0
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I p_sim p_norm

sssLin_simpson 0.815024 0.001 0
sssLin_theilID3 0.731798 0.001 0
stbCeA_meanIQ3 0.833449 0.001 0
stbCeA_rangeIQ3 0.75756 0.001 0
stbCeA_simpson 0.838166 0.001 0
stbCeA_theilID3 0.784623 0.001 0
stbOri_meanIQ3 0.909016 0.001 0
stbOri_rangeIQ3 0.639928 0.001 0
stbOri_simpson 0.797732 0.001 0
stbOri_theilID3 0.752463 0.001 0
stbSAl_meanIQ3 0.844173 0.001 0
stbSAl_rangeIQ3 0.694922 0.001 0
stbSAl_simpson 0.827305 0.001 0
stbSAl_theilID3 0.61161 0.001 0
stcOri_meanIQ3 0.890039 0.001 0
stcOri_rangeIQ3 0.696291 0.001 0
stcOri_simpson 0.795035 0.001 0
stcOri_theilID3 0.805094 0.001 0
stcSAl_meanIQ3 0.832939 0.001 0
stcSAl_rangeIQ3 0.719319 0.001 0
stcSAl_simpson 0.821816 0.001 0
stcSAl_theilID3 0.739995 0.001 0
xcnSCl_meanIQ3 0.838289 0.001 0
xcnSCl_rangeIQ3 0.592369 0.001 0
xcnSCl_simpson 0.780986 0.001 0
xcnSCl_theilID3 0.422105 0.001 0
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7.7 Statistical overview of contextual characters results

Interquartile mean

Table A7.6: Overview of the contextual morphometric values of interquartile mean for the whole case study.
Key to character IDs is available in table A7.3.

mean std min 25% 50% 75% max

stcOri 18 6.8 0.12 13 18 23 42
sdcLAL 69 25 25 51 64 82 310
sdcAre 2400 2100 180 1100 1700 2900 50000
sscCCo 0.45 0.055 0.14 0.42 0.46 0.49 0.74
sscERI 0.97 0.018 0.86 0.96 0.97 0.98 1.1
stcSAl 9.3 3.7 0.12 6.7 9 12 36
sicCAR 0.19 0.1 0.0022 0.13 0.16 0.21 0.73
sicFAR 0.66 0.7 0.0022 0.25 0.39 0.73 4.4
mtcWNe 0.045 0.013 0.0016 0.036 0.045 0.054 0.15
mdcAre 18000 14000 1600 8700 14000 22000 370000
licGDe 0.57 0.64 0.0022 0.2 0.36 0.65 4.1
ltcWRB 8.8e-05 5.6e-05 2.7e-06 4.6e-05 7.8e-05 0.00012 0.00048
sdbHei 9.9 4.7 3 6.3 8.1 12 37
sdbAre 310 330 33 130 200 360 10000
sdbVol 3800 4600 130 910 2000 5100 150000
sdbPer 68 26 24 49 60 79 460
sdbCoA 3.3 15 0 0 0 0 340
ssbFoF 1.4 0.3 0.73 1.2 1.4 1.6 4.8
ssbVFR 3.1 0.9 1.4 2.5 2.9 3.7 19
ssbCCo 0.53 0.044 0.27 0.5 0.53 0.56 0.72
ssbCor 9.2 2.7 4 7.5 8.6 10 54
ssbSqu 5.4 3.5 0.016 2.9 4.5 7.1 39
ssbERI 0.93 0.03 0.7 0.92 0.94 0.95 1.1
ssbElo 0.7 0.085 0.23 0.65 0.72 0.76 0.96
ssbCCM 9.8 3.5 3.8 7.3 8.9 11 59
ssbCCD 1.7 0.81 0.00036 1.1 1.5 2 16

413



mean std min 25% 50% 75% max

stbOri 16 8.8 0.026 9.8 15 22 44
stbSAl 6.8 4.5 0.038 3.3 6.1 9.3 39
stbCeA 7 3 0.058 4.8 6.8 9 27
mtbSWR 0.17 0.12 0 0.077 0.14 0.25 0.75
mtbAli 4.9 2.7 0.005 2.8 4.7 6.7 38
mtbNDi 26 10 0 19 25 32 120
libNCo 0.59 2.7 0 0 0 0.049 51
ldbPWL 180 190 24 69 110 210 2100
ltbIBD 27 9.7 0 21 26 33 120
ltcBuA 0.65 0.22 0.083 0.5 0.69 0.82 1
mtdDeg 3.1 0.44 1 2.9 3.1 3.4 4.8
lcdMes 0.15 0.054 -0.23 0.11 0.15 0.19 0.32
linP3W 0.64 0.1 0 0.57 0.64 0.71 0.93
linP4W 0.23 0.11 0 0.15 0.22 0.3 0.72
linPDE 0.13 0.077 0 0.072 0.11 0.17 1
lcnClo 5.3e-06 2.3e-06 6.8e-08 3.6e-06 5.1e-06 6.7e-06 1.7e-05
ldsCDL 280 310 0 78 190 370 3600
xcnSCl 0.056 0.055 0 0.012 0.046 0.083 0.75
mtdMDi 170 120 36 110 140 190 3300
lddNDe 0.013 0.004 0.0028 0.01 0.012 0.014 0.063
linWID 0.025 0.0079 0 0.02 0.024 0.029 0.11
lddRea 190 71 2 140 190 230 630
lddARe 370000 270000 39000 230000 300000 410000 3.8e+06
sddAre 30000 39000 3000 12000 19000 32000 660000
midRea 52 22 2 38 49 62 270
midAre 97000 96000 12000 51000 70000 110000 1.2e+06
sdsLen 230 200 36 140 180 260 3300
sdsSPW 29 5 11 26 29 32 50
sdsSPH 10 5.1 0 6.6 8.5 13 38
sdsSPR 0.41 0.27 0 0.24 0.31 0.47 2
sdsSPO 0.58 0.14 0.027 0.5 0.58 0.66 1
sdsSWD 3.6 1.2 0 2.8 3.6 4.4 9.8
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mean std min 25% 50% 75% max

sdsSHD 2.3 1.5 0 1.2 1.8 2.9 14
sssLin 0.95 0.077 0 0.93 0.97 0.99 1
sdsAre 31000 46000 2100 10000 17000 32000 740000
sisBpM 0.074 0.031 0.0013 0.056 0.07 0.086 0.79
misRea 44 19 2 32 40 52 230
mdsAre 86000 92000 8600 41000 59000 95000 1.1e+06
ldsMSL 150 67 57 110 140 170 1200
ldsRea 350000 270000 39000 220000 280000 390000 3.8e+06
ldkAre 120000 200000 3200 26000 56000 130000 2e+06
ldkPer 1500 1400 250 720 1100 1800 13000
lskCCo 0.43 0.09 0.13 0.37 0.43 0.5 0.98
lskERI 0.86 0.096 0.36 0.81 0.88 0.93 1.1
lskCWA 370 370 0.43 140 240 450 3100
ltkOri 18 9.4 0.034 10 17 25 45
ltkWNB 0.0074 0.0035 0 0.0047 0.0071 0.0097 0.025
likWBB 0.00088 0.00051 3e-05 0.00051 0.0008 0.0012 0.004
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Figure A7.22: Histograms of interquartile mean for characters 1-15 are showing the variety of distributions
within the measured contextual data. 416
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Figure A7.23: Histograms of interquartile mean for characters 16-30 are showing the variety of distributions
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Figure A7.25: Histograms of interquartile mean for characters 46-60 are showing the variety of distributions
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Figure A7.26: Histograms of interquartile mean for characters 61-74 are showing the variety of distributions
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Interquartile range

Table A7.7: Overview of the contextual morphometric values of interquartile range for the whole case study.
Key to character IDs is available in table A7.3.

mean std min 25% 50% 75% max

stcOri 14 7.4 0.013 8.8 14 19 45
sdcLAL 36 23 0.045 17 30 51 160
sdcAre 1800 2000 3.7 590 1100 2200 47000
sscCCo 0.19 0.052 0.00011 0.15 0.18 0.22 0.5
sscERI 0.069 0.022 0.00024 0.054 0.067 0.081 0.27
stcSAl 11 5.4 0.013 7.2 10 14 41
sicCAR 0.13 0.062 2e-05 0.083 0.11 0.15 0.62
sicFAR 0.56 0.56 2e-05 0.19 0.32 0.73 3.8
mtcWNe 0.021 0.0089 7.8e-07 0.015 0.02 0.025 0.15
mdcAre 13000 13000 0 4500 9300 18000 290000
licGDe 0.19 0.22 0 0.062 0.12 0.24 2.4
ltcWRB 4e-05 3.1e-05 0 1.8e-05 3.3e-05 5.4e-05 0.00038
sdbHei 5 4.9 0 2 3.1 6.1 42
sdbAre 170 250 0.097 57 96 180 17000
sdbVol 2400 3300 2.1 480 1100 3500 170000
sdbPer 28 26 0.018 13 20 32 420
sdbCoA 0.096 2 0 0 0 0 160
ssbFoF 0.47 0.29 0.00044 0.28 0.39 0.58 4.2
ssbVFR 1.1 0.84 0.0029 0.58 0.86 1.4 21
ssbCCo 0.13 0.054 0.00027 0.086 0.12 0.16 0.37
ssbCor 5.6 2.9 0 4 5.2 6.8 76
ssbSqu 5.7 6 0.001 1.1 2.4 9.9 45
ssbERI 0.087 0.046 1.6e-05 0.059 0.079 0.1 0.44
ssbElo 0.26 0.09 0.00025 0.2 0.26 0.32 0.69
ssbCCM 3.7 3.7 0.0029 1.6 2.5 4.2 57
ssbCCD 1.7 1.1 0.00014 1 1.5 2.1 22
stbOri 9.8 8.8 7.3e-09 2.3 7.6 15 45
stbSAl 7.9 6.7 2.5e-08 2.5 6.4 11 42
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mean std min 25% 50% 75% max

stbCeA 8.8 4.7 0.015 5.3 8.5 12 43
mtbSWR 0.2 0.13 0 0.12 0.21 0.28 0.9
mtbAli 4.7 2.8 0 2.6 4.6 6.5 24
mtbNDi 15 9.4 0 8.6 13 20 82
libNCo 0.62 3.2 0 0 0 0 52
ldbPWL 130 220 0 28 62 140 3200
ltbIBD 6.6 4.2 0 3.5 5.7 8.7 49
ltcBuA 0.1 0.061 0 0.057 0.085 0.13 0.62
mtdDeg 0.6 0.73 0 0 0 1 4
lcdMes 0.029 0.024 0 0.013 0.024 0.038 0.47
linP3W 0.051 0.046 0 0.024 0.043 0.067 0.8
linP4W 0.044 0.037 0 0.02 0.036 0.059 0.46
linPDE 0.039 0.045 0 0.016 0.03 0.05 0.97
lcnClo 1.2e-06 9.1e-07 0 5.5e-07 1e-06 1.7e-06 7e-06
ldsCDL 200 290 0 11 110 260 4100
xcnSCl 0.056 0.074 0 0 0.04 0.08 1
mtdMDi 74 98 0 21 43 87 1500
lddNDe 0.0028 0.0038 0 0.00098 0.0019 0.0035 0.096
linWID 0.0055 0.0065 0 0.002 0.0039 0.0069 0.15
lddRea 56 44 0 25 46 76 480
lddARe 140000 180000 0 42000 89000 170000 3.7e+06
sddAre 20000 31000 0 4400 9700 22000 590000
midRea 22 17 0 10 18 29 220
midAre 49000 66000 0 14000 28000 56000 900000
sdsLen 140 190 0 44 85 160 2900
sdsSPW 8.9 5.3 0 4.8 8.8 13 36
sdsSPH 2.9 3.5 0 0.77 1.6 3.7 38
sdsSPR 0.18 0.17 0 0.063 0.12 0.23 2.2
sdsSPO 0.19 0.11 0 0.11 0.18 0.26 0.91
sdsSWD 2.3 1.3 0 1.3 2.2 3.1 8.7
sdsSHD 1.7 2 0 0.53 1 2.1 20
sssLin 0.073 0.13 0 0 0.011 0.09 1
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mean std min 25% 50% 75% max

sdsAre 23000 40000 0 4900 11000 25000 710000
sisBpM 0.039 0.029 0 0.021 0.034 0.051 0.92
misRea 19 16 0 9 16 25 180
mdsAre 46000 67000 0 12000 25000 53000 970000
ldsMSL 31 43 0 8 17 36 1100
ldsRea 130000 170000 0 40000 80000 160000 2.9e+06
ldkAre 98000 200000 0 5300 21000 96000 2e+06
ldkPer 940 1500 0 98 340 1100 13000
lskCCo 0.12 0.095 0 0.042 0.1 0.18 0.56
lskERI 0.11 0.11 0 0.031 0.08 0.16 0.65
lskCWA 270 410 0 30 100 340 3000
ltkOri 9.9 9.5 0 2.3 6.9 15 45
ltkWNB 0.0028 0.0024 0 0.00085 0.0023 0.0041 0.019
likWBB 0.00049 0.00048 0 0.00014 0.00037 0.0007 0.0053
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Figure A7.27: Histograms of interquartile range for characters 1-15 are showing the variety of distributions
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Figure A7.28: Histograms of interquartile range for characters 16-30 are showing the variety of distributions
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Figure A7.29: Histograms of interquartile range for characters 31-45 are showing the variety of distributions
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Figure A7.30: Histograms of interquartile range for characters 46-60 are showing the variety of distributions
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Figure A7.31: Histograms of interquartile range for characters 61-74 are showing the variety of distributions
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Interdecile Theil index

Table A7.8: Overview of the contextual morphometric values of interdecile Theil index for the whole case
study. Key to character IDs is available in table A7.3.

mean std min 25% 50% 75% max

stcOri 0.14 0.13 8.3e-08 0.059 0.11 0.19 2.2
sdcLAL 0.046 0.033 2e-08 0.02 0.039 0.066 0.27
sdcAre 0.18 0.12 1.7e-07 0.085 0.15 0.24 1.6
sscCCo 0.027 0.022 1.3e-08 0.014 0.021 0.032 0.41
sscERI 0.00078 0.0005 2.5e-08 0.00047 0.00067 0.00096 0.023
stcSAl 0.32 0.16 1e-06 0.21 0.29 0.4 2.4
sicCAR 0.093 0.072 1e-06 0.043 0.073 0.12 0.78
sicFAR 0.16 0.11 1e-06 0.084 0.14 0.22 1.2
mtcWNe 0.037 0.029 1.2e-07 0.017 0.029 0.049 0.39
mdcAre 0.11 0.082 0 0.048 0.084 0.14 1
licGDe 0.026 0.032 -1.1e-16 0.0073 0.017 0.034 0.75
ltcWRB 0.038 0.036 -2.2e-16 0.014 0.026 0.049 0.47
sdbHei 0.044 0.046 0 0.015 0.027 0.056 0.51
sdbAre 0.12 0.12 2.5e-07 0.04 0.073 0.15 1.5
sdbVol 0.18 0.17 2.5e-07 0.064 0.13 0.25 2.1
sdbPer 0.04 0.042 1.6e-08 0.014 0.024 0.05 0.47
sdbCoA 0.041 0.34 -1.1e-16 0 0 0 4.7
ssbFoF 0.023 0.025 2.8e-08 0.0075 0.013 0.029 0.34
ssbVFR 0.024 0.025 2.2e-07 0.0093 0.016 0.03 0.39
ssbCCo 0.01 0.0082 1.3e-07 0.004 0.0077 0.014 0.097
ssbCor 0.087 0.045 -1.1e-16 0.06 0.079 0.1 0.8
ssbSqu 0.54 0.27 0.00012 0.33 0.53 0.71 2.2
ssbERI 0.0017 0.0021 4.2e-11 0.00063 0.0011 0.0019 0.032
ssbElo 0.022 0.016 5.9e-07 0.01 0.018 0.03 0.19
ssbCCM 0.031 0.036 9.4e-09 0.0087 0.017 0.038 0.41
ssbCCD 0.38 0.28 3.4e-07 0.19 0.3 0.48 2.7
stbOri 0.13 0.18 4.4e-09 0.017 0.075 0.17 3.6
stbSAl 0.4 0.24 6.1e-07 0.23 0.35 0.52 3
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mean std min 25% 50% 75% max

stbCeA 0.48 0.22 6.3e-07 0.33 0.45 0.6 2.4
mtbSWR 0.88 0.78 -1.1e-16 0.3 0.69 1.3 4.3
mtbAli 0.22 0.17 0 0.11 0.18 0.29 2.3
mtbNDi 0.065 0.051 0 0.031 0.052 0.085 0.67
libNCo 0.14 0.43 -1.1e-16 0 0 0 4.6
ldbPWL 0.11 0.11 -2.2e-16 0.03 0.07 0.15 1.2
ltbIBD 0.01 0.012 -2.2e-16 0.0031 0.0066 0.013 0.28
ltcBuA 0.0073 0.011 0 0.001 0.0029 0.0085 0.15
mtdDeg 0.029 0.04 -1.1e-16 0.005 0.0095 0.049 0.27
lcdMes 0.024 0.096 -5.6e-16 0.0021 0.0056 0.015 3.3
linP3W 0.0038 0.044 -6.7e-16 0.00042 0.00095 0.002 3.9
linP4W 0.038 0.16 -6.7e-16 0.0022 0.0058 0.016 3.9
linPDE 0.073 0.22 -4.4e-16 0.0065 0.017 0.046 3.9
lcnClo 0.02 0.041 -6.7e-16 0.0031 0.0088 0.023 1.6
ldsCDL 0.38 0.51 -6.7e-16 0.038 0.17 0.51 4.3
xcnSCl 0.54 0.65 -4.4e-16 0.008 0.31 0.84 4.7
mtdMDi 0.045 0.06 -5.6e-16 0.0099 0.025 0.057 0.96
lddNDe 0.017 0.044 -6.7e-16 0.0022 0.0058 0.015 1.5
linWID 0.017 0.056 -5.6e-16 0.0024 0.0061 0.015 3.9
lddRea 0.029 0.039 -1.1e-16 0.0052 0.014 0.037 0.94
lddARe 0.043 0.06 -5.6e-16 0.0079 0.022 0.053 0.97
sddAre 0.11 0.11 -6.7e-16 0.036 0.078 0.15 1.2
midRea 0.046 0.047 -1.1e-16 0.015 0.032 0.063 0.71
midAre 0.067 0.077 -6.7e-16 0.018 0.042 0.088 1.1
sdsLen 0.083 0.09 -6.7e-16 0.027 0.056 0.11 1.1
sdsSPW 0.022 0.019 -5.6e-16 0.0087 0.018 0.03 0.25
sdsSPH 0.03 0.082 -5.6e-16 0.0026 0.0076 0.025 3
sdsSPR 0.049 0.084 -6.7e-16 0.013 0.028 0.054 3.7
sdsSPO 0.033 0.049 -6.7e-16 0.0092 0.02 0.039 1.5
sdsSWD 0.13 0.15 -6.7e-16 0.034 0.084 0.18 3.7
sdsSHD 0.16 0.19 -5.6e-16 0.038 0.091 0.21 3.7
sssLin 0.009 0.044 -5.6e-16 0 0.00033 0.0043 2
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mean std min 25% 50% 75% max

sdsAre 0.15 0.14 -6.7e-16 0.059 0.11 0.2 1.5
sisBpM 0.061 0.056 -6.7e-16 0.025 0.047 0.08 1.1
misRea 0.049 0.049 -1.1e-16 0.016 0.034 0.067 0.6
mdsAre 0.079 0.089 -5.6e-16 0.021 0.049 0.1 1
ldsMSL 0.012 0.025 -5.6e-16 0.0012 0.0039 0.011 0.35
ldsRea 0.042 0.061 -5.6e-16 0.0072 0.021 0.051 0.96
ldkAre 0.22 0.25 -6.7e-16 0.04 0.13 0.32 1.9
ldkPer 0.1 0.13 -6.7e-16 0.013 0.053 0.15 1
lskCCo 0.023 0.028 -6.7e-16 0.0048 0.014 0.032 0.31
lskERI 0.0063 0.011 -6.7e-16 0.00058 0.0022 0.0072 0.12
lskCWA 0.16 0.18 -6.7e-16 0.034 0.1 0.23 1.4
ltkOri 0.14 0.18 -6.7e-16 0.018 0.078 0.2 2.6
ltkWNB 0.041 0.047 -6.7e-16 0.0092 0.026 0.058 0.54
likWBB 0.081 0.082 -6.7e-16 0.019 0.057 0.12 0.84
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Figure A7.32: Histograms of interdecile Theil index for characters 1-15 are showing the variety of distributions
within the measured contextual data. 432
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Figure A7.33: Histograms of interdecile Theil index for characters 16-30 are showing the variety of distributions
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Figure A7.34: Histograms of interdecile Theil index for characters 31-45 are showing the variety of distributions
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
midRea_theilID3

0

5000

10000

15000

20000

25000

30000

35000

0.0 0.2 0.4 0.6 0.8 1.0
midAre_theilID3

0

5000

10000

15000

20000

25000

30000

35000

40000

0 1 2 3 4
libNCo_theilID3

0

20000

40000

60000

80000

100000

120000

0.0 0.2 0.4 0.6 0.8 1.0 1.2
ldbPWL_theilID3

0

5000

10000

15000

20000

25000

0.00 0.05 0.10 0.15 0.20 0.25
ltbIBD_theilID3

0

10000

20000

30000

40000

50000

60000

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
ltcBuA_theilID3

0

10000

20000

30000

40000

50000

60000

70000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
licGDe_theilID3

0

10000

20000

30000

40000

50000

60000

0.0 0.1 0.2 0.3 0.4
ltcWRB_theilID3

0

5000

10000

15000

20000

25000

30000

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
ldkAre_theilID3

0

5000

10000

15000

20000

25000

30000

35000

0.0 0.2 0.4 0.6 0.8 1.0
ldkPer_theilID3

0

10000

20000

30000

40000

0.00 0.05 0.10 0.15 0.20 0.25 0.30
lskCCo_theilID3

0

5000

10000

15000

20000

25000

30000

35000

40000

0.00 0.02 0.04 0.06 0.08 0.10 0.12
lskERI_theilID3

0

10000

20000

30000

40000

50000

60000

70000

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
lskCWA_theilID3

0

5000

10000

15000

20000

25000

30000

0.0 0.5 1.0 1.5 2.0 2.5
ltkOri_theilID3

0

10000

20000

30000

40000

50000

60000

0.0 0.1 0.2 0.3 0.4 0.5
ltkWNB_theilID3

0

5000

10000

15000

20000

25000

30000

35000

40000

Figure A7.35: Histograms of interdecile Theil index for characters 46-60 are showing the variety of distributions
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Figure A7.36: Histograms of interdecile Theil index for characters 61-74 are showing the variety of distributions
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Simpson index

Table A7.9: Overview of the contextual morphometric values of Simpson index for the whole case study. Key
to character IDs is available in table A7.3.

mean std min 25% 50% 75% max

sdcLAL 0.57 0.22 0.15 0.39 0.54 0.74 1
sdcAre 0.67 0.22 0.15 0.49 0.67 0.85 1
stcSAl 0.5 0.16 0.14 0.38 0.47 0.6 1
sicCAR 0.58 0.21 0.13 0.42 0.56 0.73 1
sicFAR 0.7 0.26 0.13 0.5 0.75 0.95 1
mdcAre 0.62 0.24 0.12 0.42 0.6 0.85 1
licGDe 0.83 0.22 0.12 0.62 1 1 1
ltcWRB 0.67 0.26 0.1 0.44 0.61 1 1
sdbHei 0.68 0.25 0.13 0.46 0.67 0.94 1
sdbAre 0.71 0.22 0.16 0.51 0.73 0.91 1
sdbVol 0.73 0.23 0.17 0.51 0.78 0.96 1
sdbPer 0.61 0.21 0.17 0.44 0.6 0.79 1
sdbCoA 0.99 0.048 0.43 1 1 1 1
ssbFoF 0.52 0.18 0.11 0.4 0.49 0.64 1
ssbVFR 0.59 0.21 0.14 0.41 0.56 0.78 1
ssbCor 0.53 0.14 0.16 0.43 0.52 0.62 1
ssbSqu 0.63 0.18 0.16 0.5 0.64 0.77 1
ssbCCM 0.62 0.23 0.14 0.44 0.6 0.83 1
ssbCCD 0.53 0.15 0.18 0.42 0.51 0.62 1
stbSAl 0.59 0.21 0.13 0.42 0.55 0.76 1
stbCeA 0.53 0.16 0.15 0.4 0.5 0.63 1
mtbAli 0.54 0.23 0.12 0.35 0.48 0.7 1
mtbNDi 0.53 0.21 0.13 0.37 0.49 0.66 1
libNCo 0.92 0.16 0.2 0.94 1 1 1
ldbPWL 0.74 0.23 0.15 0.53 0.78 1 1
linPDE 0.75 0.23 0.18 0.53 0.77 1 1
ldsCDL 0.75 0.23 0.18 0.53 0.77 1 1
xcnSCl 0.66 0.23 0.2 0.47 0.6 0.9 1
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mean std min 25% 50% 75% max

mtdMDi 0.74 0.22 0.22 0.53 0.76 1 1
lddNDe 0.7 0.23 0.19 0.51 0.68 0.97 1
linWID 0.7 0.23 0.17 0.5 0.66 0.96 1
lddARe 0.76 0.22 0.21 0.54 0.8 1 1
sddAre 0.78 0.22 0.21 0.56 0.83 1 1
midRea 0.65 0.22 0.17 0.49 0.59 0.85 1
midAre 0.77 0.22 0.17 0.56 0.82 1 1
sdsLen 0.73 0.22 0.2 0.53 0.72 1 1
sdsSPH 0.75 0.25 0.15 0.52 0.82 1 1
sdsSPR 0.74 0.25 0.15 0.51 0.78 1 1
sdsSHD 0.69 0.25 0.15 0.48 0.66 1 1
sdsAre 0.78 0.22 0.2 0.57 0.83 1 1
sisBpM 0.6 0.21 0.2 0.45 0.54 0.74 1
misRea 0.65 0.22 0.16 0.49 0.59 0.85 1
mdsAre 0.78 0.22 0.17 0.56 0.83 1 1
ldsMSL 0.79 0.22 0.2 0.58 0.87 1 1
ldsRea 0.77 0.22 0.17 0.56 0.82 1 1
ldkAre 0.82 0.21 0 0.61 0.94 1 1
ldkPer 0.78 0.21 0 0.57 0.82 1 1
lskCWA 0.77 0.21 0.25 0.56 0.8 1 1
likWBB 0.67 0.24 0.16 0.5 0.61 0.95 1
stcOri 0.3 0.13 0.17 0.21 0.25 0.34 1
sscCCo 0.2 0.05 0.14 0.18 0.19 0.22 1
sscERI 0.2 0.041 0.13 0.18 0.2 0.22 1
mtcWNe 0.27 0.093 0.13 0.21 0.25 0.3 1
ssbCCo 0.24 0.081 0.14 0.19 0.22 0.28 1
ssbERI 0.32 0.11 0.14 0.25 0.29 0.36 1
ssbElo 0.24 0.075 0.17 0.2 0.23 0.27 1
stbOri 0.47 0.22 0.17 0.3 0.41 0.59 1
mtbSWR 0.49 0.17 0.25 0.36 0.44 0.58 1
ltbIBD 0.45 0.19 0.15 0.31 0.4 0.52 1
ltcBuA 0.56 0.21 0.17 0.41 0.51 0.67 1
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mean std min 25% 50% 75% max

mtdDeg 0.63 0.18 0.33 0.5 0.59 0.76 1
lcdMes 0.55 0.19 0.16 0.41 0.51 0.66 1
linP3W 0.54 0.19 0.13 0.4 0.5 0.63 1
linP4W 0.59 0.2 0.16 0.45 0.54 0.72 1
lcnClo 0.52 0.2 0.16 0.37 0.48 0.62 1
lddRea 0.47 0.18 0.15 0.34 0.43 0.55 1
sdsSPW 0.38 0.15 0.15 0.27 0.33 0.43 1
sdsSPO 0.38 0.16 0.15 0.27 0.34 0.43 1
sdsSWD 0.37 0.15 0.17 0.27 0.33 0.42 1
sssLin 0.74 0.22 0.2 0.54 0.75 1 1
lskCCo 0.47 0.19 0.15 0.33 0.42 0.54 1
lskERI 0.49 0.19 0.16 0.36 0.45 0.57 1
ltkOri 0.53 0.21 0.17 0.37 0.48 0.63 1
ltkWNB 0.53 0.22 0.15 0.36 0.47 0.64 1
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Figure A7.37: Histograms of Simpson index for characters 1-15 are showing the variety of distributions within
the measured contextual data. 440
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Figure A7.38: Histograms of Simpson index for characters 16-30 are showing the variety of distributions within
the measured contextual data. 441
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Figure A7.39: Histograms of Simpson index for characters 31-45 are showing the variety of distributions within
the measured contextual data. 442
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Figure A7.40: Histograms of Simpson index for characters 46-60 are showing the variety of distributions within
the measured contextual data. 443
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Figure A7.41: Histograms of Simpson index for characters 61-74 are showing the variety of distributions within
the measured contextual data. 444



7.8 Correlation matrix of contextual characters

Figure A7.42: Correlation matrix of contextual characters. Please refer to a PDF version for a better clarity.

7.9 Structure of clusters of sampled and complete clustering

Supplementary material for section 7.2.3.2.2.1.
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Figure A7.43: Composition of clusters in relation to sampled clustering. Shows number of features labeled as
studied cluster and their labels in the other clustering variant.
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Figure A7.44: Composition of sampled clusters in relation to original clustering. Shows number of features
labeled as studied cluster and their labels in the other clustering variant.
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Appendix A8: Supplementary
material for chapter 8

A8.1 Individual branches in Prague

Spatial distribution of individual branches of the dendrogram. Selection of branches was
presented in the section 8.3.1. Complete overview of branches is presented below. For a
better clarity please refer to the electronic version of the document.

Figure A8.1: Spatial distribution of clusters within a branch 0
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Figure A8.2: Spatial distribution of clusters within a branch 1

Figure A8.3: Spatial distribution of clusters within a branch 2
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Figure A8.4: Spatial distribution of clusters within a branch 3

Figure A8.5: Spatial distribution of clusters within a branch 4
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Figure A8.6: Spatial distribution of clusters within a branch 5

Figure A8.7: Spatial distribution of clusters within a branch 6
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Figure A8.8: Spatial distribution of clusters within a branch 7

Figure A8.9: Spatial distribution of clusters within a branch 8
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Figure A8.10: Spatial distribution of clusters within a branch 9

Figure A8.11: Spatial distribution of clusters within a branch 10
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Figure A8.12: Spatial distribution of clusters within a branch 11

Figure A8.13: Spatial distribution of clusters within a branch 12
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A8.2 Morphometric characters in Amsterdam

Reported morphometric data used in the section 8.3.2.2.

Descriptive summary values of all primary characters measured on Amsterdam data are
presented in the table below.

Table A8.1: Overview of the primary morphometric values for the Amsterdam case study. The key to character
IDs is available in Appendix 7.

id mean std min 25% 50% 75% max

sdbAre 180 1300 30 51 64 96 430000
sdbHei 8.3 4.8 3 4.8 7.1 11 120
sdbVol 1900 16000 90 300 440 980 3.7e+06
sdbPer 47 53 19 30 36 45 4700
sdbCoA 0.93 57 0 0 0 0 22000
ssbFoF 1.3 0.71 0.24 0.92 1.1 1.5 22
ssbVFR 2.3 1.8 0.66 1.6 1.8 2.2 92
ssbCCo 0.5 0.11 0.022 0.43 0.52 0.58 1
ssbCor 7.2 10 0 4 6 8 3000
ssbSqu 2.9 7.7 0 0.026 0.14 0.76 85
ssbERI 0.95 0.073 0.26 0.92 0.99 1 1.1
ssbElo 0.6 0.18 0.019 0.47 0.58 0.73 1
ssbCCD 1 2.1 0 0.0029 0.45 1.4 150
ssbCCM 7.4 6.5 0.35 5.3 5.9 7.1 360
stbOri 21 13 0 10 20 30 45
stbSAl 5.5 8.5 0 0.39 1.3 6.9 45
stbCeA 3.1 6.1 0 0.04 0.43 2.9 45
sdcLAL 51 38 8.3 30 37 54 1100
sdcAre 1100 4000 33 180 280 600 600000
sscCCo 0.31 0.15 0.027 0.2 0.26 0.41 0.99
sscERI 0.95 0.068 0.047 0.92 0.98 1 1.1
stcOri 21 13 0 10 20 30 45
stcSAl 6.6 8.8 0 0.63 2.4 9.4 45
sicCAR 0.26 0.15 0.00094 0.15 0.26 0.35 1.4
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id mean std min 25% 50% 75% max

sicFAR 0.69 0.71 0.001 0.22 0.43 0.86 16
sdsLen 200 330 6.4 73 120 190 5500
sdsSPW 28 8.5 2.8 22 30 34 50
sdsSPH 8.6 4.7 0 5.5 7.1 11 86
sdsSPR 0.37 0.34 0 0.18 0.25 0.45 9.1
sdsSPO 0.41 0.22 0 0.24 0.38 0.56 1
sdsSWD 3 1.8 0 1.6 2.9 4.2 11
sdsSHD 1.2 1.4 0 0.26 0.81 1.4 47
sssLin 0.93 0.15 0 0.96 1 1 1
sdsAre 27000 88000 47 3700 7200 15000 1.2e+06
sisBpM 0.16 0.085 0.00053 0.096 0.15 0.22 1.3
sddAre 23000 59000 47 4700 7900 15000 640000
mtbSWR 0.42 0.24 0 0.27 0.5 0.62 1.7
mtbAli 2.1 3.8 0 0.075 0.4 2.6 45
mtbNDi 18 15 0 10 14 21 200
mtcWNe 0.069 0.033 0.0006 0.046 0.068 0.091 0.3
mdcAre 9800 21000 210 2000 3400 8400 920000
misRea 69 57 1 35 57 86 630
mdsAre 63000 130000 47 16000 26000 44000 1.4e+06
mtdDeg 3 0.79 1 3 3 3 6
mtdMDi 140 200 6.4 70 94 130 5500
midRea 81 63 1 41 68 100 620
midAre 70000 140000 47 20000 31000 53000 1.3e+06
libNCo 0.53 2.4 0 0 0 0 45
ldbPWL 240 280 20 88 140 280 9800
ltbIBD 20 9.7 0 14 18 24 200
ltcBuA 0.36 0.21 0.029 0.22 0.3 0.44 1
licGDe 0.64 0.62 0.0011 0.22 0.39 0.85 5.2
ltcWRB 0.00018 0.00014 1.2e-06 6.8e-05 0.00014 0.00025 0.0013
ldkAre 82000 180000 90 11000 20000 61000 1.8e+06
ldkPer 1200 1500 41 470 680 1300 12000
lskCCo 0.44 0.13 0.07 0.34 0.44 0.54 0.98
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id mean std min 25% 50% 75% max

lskERI 0.87 0.14 0.14 0.8 0.91 0.97 1.1
lskCWA 300 500 0.43 75 140 280 4100
ltkOri 21 13 0.0019 10 20 30 45
ltkWNB 0.0092 0.0051 0 0.0055 0.0087 0.012 0.049
likWBB 0.0025 0.0016 4.3e-06 0.0011 0.0024 0.0036 0.013
lcdMes 0.14 0.061 -0.33 0.1 0.14 0.18 0.38
ldsMSL 2900 2400 6.4 1600 2300 3400 22000
ldsCDL 210 600 0 0 71 190 13000
ldsRea 230000 340000 6600 82000 120000 200000 3.7e+06
lddNDe 0.13 0.22 0 0.046 0.077 0.13 5.5
lddRea 280 180 1 150 240 370 1300
lddARe 240000 350000 4400 86000 130000 220000 3.6e+06
linPDE 0.11 0.093 0 0.042 0.095 0.16 1
linP3W 0.67 0.12 0 0.59 0.67 0.75 1
linP4W 0.21 0.12 0 0.13 0.2 0.29 0.71
linWID 0.25 0.42 0 0.092 0.16 0.26 10
lcnClo 4.4e-06 2e-06 0 2.9e-06 4.4e-06 5.6e-06 1.4e-05
xcnSCl 0.055 0.1 0 0 0 0.08 1
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Figures A8.14 - A8.18 show histograms capturing the (truncated) distribution of all mea-
sured characters. Note the differences outlined above and overall variety of distributions.
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Figure A8.14: Histograms of characters 1-15 are showing the variety of distributions within the measured
primary data (Amsterdam). Histograms illustrate data within percentiles (5, 95) to avoid extreme skewing
due to the presence of outliers. Data in table above are presented complete for reference.
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Figure A8.15: Histograms of characters 16-30 are showing the variety of distributions within the measured
primary data (Amsterdam). Histograms illustrate data within percentiles (5, 95) to avoid extreme skewing
due to the presence of outliers. Data in table above are presented complete for reference.
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Figure A8.16: Histograms of characters 31-45 are showing the variety of distributions within the measured
primary data (Amsterdam). Histograms illustrate data within percentiles (5, 95) to avoid extreme skewing
due to the presence of outliers. Data in table above are presented complete for reference.
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Figure A8.17: Histograms of characters 45-60 are showing the variety of distributions within the measured
primary data (Amsterdam). Histograms illustrate data within percentiles (5, 95) to avoid extreme skewing
due to the presence of outliers. Data in table above are presented complete for reference.
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Figure A8.18: Histograms of characters 61-74 are showing the variety of distributions within the measured
primary data (Amsterdam). Histograms illustrate data within percentiles (5, 95) to avoid extreme skewing
due to the presence of outliers. Data in table above are presented complete for reference.
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Appendix N: Reproducible
computational Jupyter notebooks

Appendix N comprises a selection of key Jupyter notebooks used in the thesis. Notebooks
contain reproducible Python code largely dependent on momepy, which code is not in-
cluded in notebooks and is documented in Annexe 1. The goal of this appendix is to allow
easy reproducibility of each critical step of the research. Notebooks mostly consist of code
actual production code, which means that it may not always follow the optimal patterns.
However, the major contribution of this research on the ground of reproducibility are
not notebooks, but momepy as an independent fully documented and tested open-source
package.

The PDF version of Jupyter notebooks spans across more than 100 pages, therefore is not
directly included in the main submission. The complete set is available at:

martinfleischmann.net/thesis_notebooks.zip

Notebooks related to chapter 4 and part of chapter 6 have been already published alongside
relevant peer-reviewed articles. Notebooks related to chapters 7 and 8 will be published
alongside article summarising their contents.

The archive contains following notebooks:

• Chapter 4 - Matrix of Literature
• Chapter 4 - Quantitative assessment of the database
• Chapter 6 - Generate tessellation diagram
• Chapter 6 - Parameters optimisation analysis
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• Chapter 6 - Generating morphological tessellation and measure morphometric char-
acters

• Chapter 6 - Analysis of similarity of measured data
• Chapter 6 - Spatial autocorrelation
• Chapter 6 - Contiguity diagram
• Chapter 6 - Aggregation models
• Chapter 7 - Generate additional morphometric elements
• Chapter 7 - Measure contextual - spatially lagged characters
• Chapter 7 - Measure primary characters
• Chapter 7 + 8 - Cluster analysis + taxonomy
• Chapter 8 - Comparison of taxa and period of building origin
• Chapter 8 - Comparison of taxa and land use
• Chapter 8 - Comparison of taxa and qualitative classification
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Annexe 1: momepy: Urban
Morphology Measuring Toolkit

Annexe 1 consists of the open-source Python package momepy, which accompanies the
work presented in this thesis, allows its reproducibility and lays a foundation for further
morphometric research. Due to its nature, it is not possible to attach it directly to the
thesis in an informative way. Therefore, please follow the links to the online presence of
its source code and documentation.

Source code:

github.com/martinfleis/momepy

Online documentation:

docs.momepy.org
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